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Foreword to Second Edition

This monograph by Pierre Sagaut and Claude Cambon, a revision of an earlier
edition, is extraordinary in scope and audacious in outlook: It is not often that one
encounters a coherent account of more than 900 pages on turbulence. I will not list
the contents of the book or provide a detailed critique, but mention a few aspects
that appeal to me.

The cliché that turbulence is the last unsolved problem of classical physics,
repeated ad nauseam by everyone who wants to give a talk on the subject to
non-specialist audience, or wishes to write for a general audience outside the
subject, while being literally true, does considerable injustice to both the practi-
tioners of the subject and the external audience. The statement at once diminishes
the important work that has occurred and robs an outsider of the curiosity that she
may otherwise have had for the subject. The authors make no claim that the
problem has been solved (whatever that might mean, exactly) but present accurately
the progress that has occurred in quantitative predictions of turbulence. This pro-
gress is based on combinations of theories and models, combining exact dynamical
equations with sophisticated closure assumptions, supported by increasingly pow-
erful experiments and numerical simulations. This book attempts to provide a
synthesis of much of that work, which has taken place roughly since the 70s,
providing a complement to A. S. Monin and A. M. Yaglom’s well-known second
volume. It does not touch, except very briefly, either the considerable work on
modern scaling approaches, exemplified well, at the time it was written, by
U. Frisch in his popular book of 1995, or present plots of engineering calculations
justifying the pragmatic success of the authors’ approaches; rather, it presents a
philosophy of turbulence research covering a vast range of material that treads
carefully from what G. K. Batchelor called analytical theories of turbulence to how
such theories can be put to use in practical circumstances. The authors retain rigor
where possible but do not shy away from ad hoc modeling where necessary—and
they do this, in 18 chapters that are readable and comprehensive, for various classes
of flows from homogeneous and isotropic turbulence to geophysical flows to
quantum turbulence.
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It is not that I agree with everything that the authors say, or that the selection
of their material is perfect from my point of view, but what is admirable is the
authors’ ambition as well as the balance between skepticism and optimism that they
display. Their philosophy is that, while a full understanding of turbulence is still
lacking, the quantitative description has advanced to a phenomenal degree. Just
consider numerical simulations. Many of us remember well the excitement created
by S. A. Orszag’s simulations of homogeneous and isotropic turbulence on a 323

box: now P. K. Yeung and collaborators have advanced it to cubes of 16,3843 grid
points. Similar advances have occurred in Nagoya, Madrid and elsewhere, from
passive scalars to wall-bounded flows. Experiments in a variety of flows have in
recent years pushed the parameter space (such as the Reynolds number, Rayleigh
number, rotation rates, etc) to incredible levels. All of this has enhanced our ability
to query the flow characteristics immensely, but we need to create tools with which
to query the data. That ability to query will clearly depend on the theoretical tools
we develop, and on our willingness to reject the splintering of the field by creating
silos that become so specialized as to be almost meaningless.

The authors themselves regard their book as an important medium for provoking
“an honest and up-to-date survey of turbulence theory, with the special purpose of
reconciling different angles of attack”. I agree with this hope wholeheartedly and
congratulate the authors on this book: I am sure it will undergo further modifica-
tions with time and will provoke more interesting work.

K. R. Sreenivasan
New York University

New York, USA
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Preface to Second Edition

This book aims to build on an earlier edition, published under the same title by
CUP, NY in 2008. As in that book, Chap. 2 presents the basic equations of fluid
motion, in both Eulerian and Lagrangian forms, while Chap. 3 is an addition
concerning compressible flows. These chapters provide a basis, subsequently used
to rigorously derive the statistical-moment equations, in particular those of
multi-point moments.

Roughly half the book treats statistically homogeneous turbulence rendered
anisotropic by, e.g. uniform velocity gradients, density stratification or rotation.
This framework encompasses a very wide class of models and theoretical analyses,
from linear theory (which includes rapid distortion theory) to triadic closures, which
allow for nonlinear interactions between Fourier components. As far as possible, we
aim to provide a unified presentation in which weak turbulence, dominated by
resonant interactions between dispersive waves (e.g. inertial, internal and gravity
waves), gives way to strongly nonlinear interactions as the turbulent intensity
increases. Strong turbulence involves modelling and we discuss many applications
of the anisotropic EDQNM approach, while keeping in mind the less sophisticated
RANS single-point models which remain the mainstay of industrial calculations.

Classical isotropic turbulence has not been neglected. Indeed, Chap. 4 reviews
the state of the art in that area, while also making some connections with other
subject areas, such as visco-elastic structural vibration (Chap. 5) and quantum
turbulence (Chap. 6). These openings into other fields illustrate the power of the
theoretical tools and concepts employed in this book, in particular the Lagrangian
formalism. There are also paybacks from these other fields, e.g. the analogy
between the equations of visco-elastic fluids and those of magneto-hydrodynamics.

Chapter 10, originally devoted to turbulence in stably stratified flow, now
includes a review of more recent work on unstable stratification and mixing layers
due to Rayleigh/Taylor instability. Among other things, these studies, which have
parallels in geo- and astrophysics, extend the classical homogeneous approach by
allowing for forcing of the mean flow by non-uniformities of the Reynolds stresses.
Chapter 11, which concerns the effects of rotation, stratification and shear, has been
augmented by applications to accretion disks, and, more notably, models of transient
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growth and transition. The new Chap. 12 concerns magneto-hydrodynamic turbu-
lence, of particular interest in astrophysics and possible fusion reactors, and focuses
on Alfvén waves and anisotropic Ohmic dissipation.

Chapters 13–16 concern compressible flows, their modelling and DNS, in par-
ticular Chap. 13, whose subject is isotropic compressible turbulence, while Chap. 14
discusses combined effects of shear and compressibility and Chaps. 15 and 16
shock-turbulence interactions.

The final two chapters allow for the increased scope of the new book and aim to
provide an improved overview of the theoretical principles and models which form
its centre of gravity. Chapter 17 focuses more on technical aspects (e.g. detailed
equations and numerical techniques), whereas Chap. 18 provides an overall
conclusion.

We would like to warmly acknowledge all very nice colleagues who helped us in
writing this book by providing us figures and also for rich and fruitful discussions
about the content of the book: Antoine Briard, Alexandre Delache, Diego Donzis,
Gabriel Farag, Benjamin Favier, Boris Galperin, Fabien Godeferd, Benoit-Joseph
Gréa, Jérôme Griffond, César Huete, Danaila Luminita, Raffaele Marino, Marcello
Meldi, Vincent Mons, Jim Riley, Abdelaziz Salhi, Julian Scott, Gustavo Wouchuk,
with special and warm thanks for Katepalli Sreenivasan for writing a wonderful
foreword for this book.

Marseille, France Pierre Sagaut
Lyon, France Claude Cambon
September 2017
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Abstract

This book provides state-of-the-art results and theories in homogeneous turbulence,
including anisotropy and compressibility effects with extension to quantum tur-
bulence, magneto-hydrodynamic turbulence and turbulence in non-Newtonian
fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear,
etc.), and presents and compares experimental data, numerical results, analysis
of the Reynolds stress budget equations and advanced multipoint spectral theories.
The role of both linear and non-linear mechanisms is emphasized. The link between
the statistical properties and the dynamics of coherent structures is also addressed.
Despite its restriction to homogeneous turbulence, the book is of interest to all
people working in turbulence, since the basic physical mechanisms which are
present in all turbulent flows are explained. The reader will find a unified presen-
tation of the results and a clear presentation of existing controversies. Special
attention is given to bridge the results obtained in different research communities.
Mathematical tools and advanced physical models are detailed in dedicated
chapters.

xxix



Chapter 1
Introduction

1.1 Scope of the Book

Turbulence is well known to be one of the most complex and exciting field of research,
which raises many theoretical issues and which is a key feature in a large number
of application fields, ranging from engineering to geophysics and astrophysics. It
is still a dominant research topic in fluid mechanics, and several conceptual tools
developed within the framework of turbulence analysis have been applied in other
fields dealing with non-linear, chaotic phenomena (e.g.: non-linear optics, non-linear
acoustics, econophysics ...).

Despite more than a century of work and a number of important insights, a com-
plete understanding of turbulence remains elusive, as witnessed by the lack of fully
satisfactory theories of such basic aspects as transition and the Kolmogorov k−5/3

spectrum. Nevertheless, quantitative predictions of turbulence have developed. They
are often based on theories and models which combine exact dynamical equations
and closure assumptions, and are supported by physical and —more and more—
numerical experiments.

Homogeneous turbulence remains a timely subject, even half a century after the
publication of Batchelor’s book (Batchelor 1953) in 1953, and this framework is piv-
otal in the present book. Isotropic homogeneous turbulence (HIT) is the best known
canonical case; it is very well documented — even if not completely understood—
from experiments/simple models to recent 12, 2883 full Direct Numerical Simula-
tion (DNS) (Ishihara et al. 2016). Of course, this case is addressed (in Chap. 4) but
more generally emphasis is put on Homogeneous Anisotropic Turbulence (HAT) in
the presence of mean (velocity, temperature ...) gradients and/or body forces. This
context is illustrated by several physical and numerical experiments (the latter being
easy to perform by slightly modifying pseudo-spectral numerical methods designed
for DNS of isotropic turbulence following the method introduced by Rogallo in the
late 1970s), but its interest to develop fundamental understanding and to improve the-
ories/models is largely underestimated, regarding the existing literature. Depending
on the strength of the distortion (by mean gradients and/or body forces) and its time
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2 1 Introduction

Fig. 1.1 Sketch of the
hierarchy of embedded
turbulence theories and
closures

of application, it is possible to move from pure linear approaches, such as the Rapid
Distortion Theory (RDT), to fully nonlinear statistical theories, with the important
intermediate step of ‘weak’ turbulence theories, such as the wave-turbulence theory.
As far as possible, it is proposed to pass from ‘weak’ to ‘strong’ turbulence by follow-
ing a strict hierarchy of embedded models/theories, which is illustrated in Fig. 1.1.

This strategy was introduced by the second author in its contribution to the book
Theories of turbulence (Oberlack and Busse 2002). Even if the most original part of
the present book deals with two-point statistics, the Reynolds stress budget is very
informative and therefore Reynolds stress equations are discussed before addressing
more complex approaches. Limits or failure of single-point closures are enlighted in
each case.

A discussion of the physical relevance of the HAT cannot be eluded, and we
show that homogeneous turbulence in the presence of space-uniform mean gradients
is not so ideal and restrictive. In addition to physical and numerical experiments
which are capable of reproducing HAT, some typical equations (e.g. Townsend
or Craya equations) are shown to remain relevant for analysing flows with non-
uniform mean gradients (e.g. short-wave stability analyses, WKB Rapid Distortion
theory). In some cases, pedagogical explanations for “purely” homogeneous turbu-
lence can be extended towards inhomogeneous turbulence (e.g. near wall turbulent
shear flow). Another important point is that homogeneous sheared turbulence exhibits
self-sustained cycles, which are very a key features of turbulence dynamics in near-
wall regions.

A large number of books devoted to turbulence are available, which put the empha-
sis on three aspects: statistical properties of isotropic, incompressible turbulence (e.g.
Batchelor 1953; Frisch 1995; Tsinober 2009; McComb 1992, 2014), description of
global dynamics and statistical properties of some academic flows (boundary layer,
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mixing layer, jet, wake, ... e.g. Townsend 1976; Smits and Dussauge 2006) and mod-
eling of turbulent motion for engineering purpose (among other Durbin and Petersson
Reif 2001; Wilcox 2004; Sagaut 2005; Sagaut et al. 2013). Only little information
on the dynamics of turbulent scales is usually provided, and most authors put the
emphasis on a particular feature. One should of course mention general purpose
textbooks (see Pope 2000; Tennekes and Lumley 1994; Bailly and Comte-Bellot
2003), which provide the reader with a general survey of different issues related
to turbulence research. Therefore, recent results dealing with dynamics of turbu-
lent motion obtained from direct numerical simulations, advanced statistical models
(linear theories and models, nonlinear triadic closures, ...) and experiments are not
available to the reader in a single book. Results are disseminated among a huge num-
ber of journal articles, technical reports and conference papers that do not always
use the same terminology.

The present book aims at providing a state-of-the-art sum of results and theories
dealing with homogeneous turbulence, including anisotropic effects and compress-
ibility effects. The underlying idea is to gather most recent results dealing with
dynamics of homogeneous turbulence when it interacts with external forcing (strain,
rotation, ...) and when compressibility effects are at play. Each chapter will be devoted
to a given type of interactions, and will present and compare experimental data,
DNS/LES results, analysis of the Reynolds stress budget equations and advanced
linear and nonlinear theoretical models. The role of both linear and non-linear mech-
anisms are emphasized. The link between the statistical properties and the dynamics
of coherent structures is also addressed. Despite it is restricted to homogeneous tur-
bulence, the book will be of interest to all people involved in turbulence studies, since
it will enlight basic physical mechanisms which are present in all turbulent flows.

Another interest of the book is the possibility for the reader to find a unified
presentation of the results, and also a clear presentation of existing controversies and
lacks in the theoretical background. A special attention is paid to bridging between
the results obtained in different research communities. This last point is developed
concerning both results dealing with turbulence dynamics and the tools used to
investigate it.

1.2 Structure and Contents of the Second Edition
of the Book

As in the first edition of the book, the presentation of the results is carried out in
such a way that it allows for two levels of reading: a first level for readers interested
in the results but who do not want to enter the details of the tools (i.e. linear and
nonlinear theoretical models) employed to get them, and a second level for readers
interested in these details. The Chap. 2 has been enlarged and now incorporates more
elements that result from rigorous, not to say “exact”, equations of conservation in
both Eulerian and Lagrangian formalisms, along with their optimal treatment. This

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 1.2 Organization of the book

involves an enhanced use of the Lagrangian formalism and direct use of Green’s
tensors for solutions of equations, from basic Navier–Stokes-type equations for the
fluctuating field to three-point third-order statistical equations. Accordingly, some
modeling approaches, ranging from the modeling of the pressure Hessian in the
equation for the perceived velocity gradient, to the application of main nonlinear
closures, appear as byproducts of rigorous Green-function-based equations. More
background for compressibility effects have been also added in this chapter. The
most specific aspects of compressibility, from this viewpoint, are put in the new
complementary Chap. 3.

The book is now organized in 18 chapters (see Fig. 1.2), with turbulent flow cases
ranging from homogeneous isotropic turbulence (without distortion in Chap. 4, along
with new chapters dealing with non-Newtonian effects, see Chap. 5, and Quantum
Turbulence in superfluids and Bose-Einstein condensates, see Chap. 6) to HAT sub-
jected to various distorting processes (rotation, strain, shear, stratification, and now
Magnetohydrodynamics (MHD) in Chaps. 7–12. Flows subjected to coupled forcing
effects are gathered in Chap. 11 and in the new Chap. 12 on Magnetohydrodynamic
turbulence, whereas compressible turbulence is addressed in Chaps. 13–16.

The mathematical details of Linear Interaction Theory for shock/turbulence inter-
action are presented in Chap. 16, with extension to mixture of perfect gas, detonation
waves and rarefaction waves.
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Constraints for ensuring consistency of statistical homogeneity — for turbulence
— with the distorting processes are given in the most general way, for both incom-
pressible (particularly in Chaps. 2 and 8) and compressible flows (Chap. 14). The
physical relevance of this framework is also discussed, especially for the analysis of
both explicit and implicit effects of compressibility on turbulent shear flows.

The essentials of linear and nonlinear theories and models for incompressible
anisotropic turbulence are now gathered in Chap. 17, that replaces Chaps. 13 and 14
in the former edition. Finally, our concluding comments are presented in Chap. 18.

Every typical flow case is revisited under different angles of attack, from observa-
tions/simulations, models, to theories, combining dynamical, statistical and structural
aspects, as follows:

(i) Observations, physical and numerical experiments
(ii) Analysis through Reynolds Stress Tensor (RST) equations, balance and coupling

terms
(iii) Refined analysis using linear theory
(iv) Refined analyses through full nonlinear theories and models for two-point statis-

tics (if available)
(v) Phenomenological (and possibly dynamical) approach to structures, evolution,

coupling

It is worth noting that two classes of flows are discussed in the book. The first
one is the class of flows without turbulence production mechanism (e.g. decaying
isotropic turbulence, rotating homogeneous turbulence, stably stratified homoge-
neous turbulence, ...) and flows with turbulent kinetic energy production mechanism
(e.g. homogeneous sheared turbulence, new case of unstably stratified turbulence).
In the former case, nonlinear dynamics and its modification by the mean flow effects
are the sole features of the flow, while in the later case linear mechanisms are the
main dynamical characteristic features. Therefore, nonlinear models will be privi-
leged tools in the first case (but eigenfunctions of the linear theories can provide
optimal basis to write them), while they will be more briefly discussed in flows with
production for which linear theories are very powerful.

The most complete illustration of the hierarchy of embedded models in each other
is the case of pure rotation (Chap. 7). Common models, such as RST closure models,
are shown to present definite flaws in this case, and some limited attempts to improve
single-point closure techniques are only briefly reviewed. As an important related
point, linear theories such as the Rapid Distortion Theory have almost been reviewed
for irrotational mean flows only in other recent monographs about turbulence (e.g.
Pope 2000; Durbin and Petersson Reif 2001), with the only exception of pure shear
in the book of Townsend (1976), written long time ago. In contrast, linear theory
for HAT subjected to more general rotational mean flows is a very important part of
the present book. In addition, our extended linear theory is a building block which
may be useful for a wider community (e.g. the elliptical flow instability from the
viewpoint of stability analysis, the rotating and/or stratified shear flow, in Chap. 11).
The domain of application of RDT has evolved during the last one or two decades,

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_18
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and this change is discussed in depth in the present edition of the book, especially
in Chap. 11. The linear spectral theory, that underlies RDT, is now almost forgotten
in the Engineering community that used it for calibrating some constants in sta-
tistical models for Reynolds-Averaged Navier–Stokes equations, e.g. in modeling
“rapid” pressure-strain rate tensors. In turn, it is increasingly used in geophysics and
astrophysics, taking advantage of the possibility to recovering non-modal stability
analysis and thereby to predict explosive transient growth and bypass transition to
turbulence. Applications to the stability and transition to accretion discs are provided.

The domain of application of two-point nonlinear closures is even more restricted
in existing monographs (e.g. Monin and Yaglom 1975; Leslie 1973; Lesieur 1997;
Frisch 1995; McComb 1992, 2014). Only isotropic turbulence is treated in a straight-
forward way, and only few attempts to deal with small anisotropy are offered, whereas
the linkage to linear models and wave-turbulence is ignored. The effort to integrate
and reconcile a holistic spectral approach from “RDT” to fully nonlinear triadic clo-
sures has been further developed in the present second edition. About wave turbulence
theory, there is a wealth of recent studies, but much more devoted to vibrating plates
and surface waves than for 3D turbulence modified by internal waves (e.g. inertial
waves, gravity waves, Alfvén waves, and combination of them). In addition, the very
old terminology, that is used in most of these studies, often masks the asymptotic
quasi-normal markovian character of the basic theory. This point is addressed in
Chaps. 7 and 12.

The last item about “structures” deserves some clarification. On the one hand, it is
recognized that typical structures can be evidenced in snapshots, or random realiza-
tions, of statistically homogeneous flows. The first example is the occurence of vortex
tubes in isotropic turbulence. Other well-known structures are streak-like structures
(in shear flows), cigar-like (in flows with dominant rotation) or pancake-like (in flows
with dominant stable stratification) structures. On the other hand, the relevance of
low-order statistics to identify and quantify these structures is controversial. Second
order statistics, if they include fully anisotropic two-point correlations, can give a
real insight into these structures, with quantitative informations such as elongation
parameters and aspect ratios. It is sometimes objected that phase coherence is lost
in homogeneous statistics. This is true only for single-time second-order correla-
tions. Linear operators identified in spectral linear theory affect any realization of
the fluctuating field. If this anisotropic effect is not directly reflected in second-order
statistics — as in the cases without production — it appears on three-point third-
order correlations, where phase information is recovered. The sketch displayed in
Fig. 1.3 illustrates how the distribution in Fourier space, via angle-dependent spectra,
underlies the presence of anisotropic structures, in several flow cases of shear-driven
or buoyancy-driven turbulence.

It is worthwhile to stress that our detailed anisotropic description includes dimen-
sionality, with a possibility to quantify the transition between 3D state to either a 2D
or a 1D state. For instance, the structure-based modelling by Kassinos and Reynolds,
which allows to distinguish between dimensionality and componentality, becomes a
by-product of our general description, at least for homogeneous turbulence.

http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_12
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Fig. 1.3 Sketch of the linkage of angle-dependent spectral distribution to anisotropic structures.
Anisotropy affects both dimensionality and componentiality, or, as illustrated in the whole book,
directional anisotropy and polarization anisotropy. Courtesy from Alexandre Delache

The advanced models and theories selected here systematically incorporate
dynamical operators which are really based on Navier–Stokes equations, even if
they deal with “weak” turbulence only (e.g. linearized models, wave-turbulence),
not to mention exact triadic equations and conventional two-point closures based on
them. 3D Fourier space is an unavoidable tool in HAT analysis; it is first considered
here as a mathematical convenience to account for solenoidal properties (in isovol-
ume turbulence) and to simplify related modal decompositions. A special use is made
of a decomposition of the fluctuating velocity in Fourier space, often referred to as
the Craya–Herring decomposition, which amounts to a general Helmholtz decom-
position, in terms of two solenoidal (toroidal–poloidal type), or vortical, modes and
one dilatational (or divergent) mode. In incompressible turbulence, the Poisson equa-
tion for the pressure fluctuation is immediately recovered by projecting momentum
equations onto the dilatational mode, the dilatational velocity mode being zero, so
that dynamical equations only deal with the two solenoidal modes. This decompo-
sition readily generates the helical mode decomposition, and various “vortex-wave”
decompositions when a buoyancy fluctuation is accounted for (see Chaps. 10–12).
The dilatational mode recovers its dynamic role, together with the pressure mode,
when compressibility is introduced. The increase of the complexity of the system
can be presented as follows:

(i) Two mode-turbulence, in which the two independent unknowns are u(1), u(2)

using the toroidal-poloidal decomposition, or u(2)±ıu(1) considering the helical

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_12
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mode variant. The dilatational mode u(3) is strictly zero so that the pressure mode
u(4) is completely enslaved to the two solenoidal ones, and therefore removed
from consideration (Chaps. 4–12).

(ii) Three mode-turbulence. Same situation as before, but an additional buoyancy
term is incorporated as a pseudo-dilatational mode. The physical problem with
5 components (3 for velocity fluctuations, one for pressure fluctuations, one for
buoyancy fluctuations) is turned into a three-mode one thanks to the Boussinesq
approximation (divergence-free velocity field and related Poisson equation for
pressure holds again, even if the buoyancy term can fluctuate). This case is met
in Chaps. 10 and 11.

(iii) Four-mode-turbulence u(1), ..., u(4), as in the quasi-isentropic flow cases
addressed in Chaps. 13 and 14. If the acoustic equilibrium hypothesis holds,
u(3) and u(4) can be combined like (u(4) ± ıu(3)), u(3) corresponding to the
kinetic energy of acoustic waves, and u(4) giving their potential counterpart,
respectively.

In this rapid survey, the exact definition of the modes denoted as “toroidal”,
“poloidal”, “divergent” and “pressure” is not mandatory. They will be identified
later on, with u(1), u(2), u(3) being the three components of the Fourier mode of the
fluctuating velocity in the Craya–Herring frame, and u(4) being the Fourier mode
of the pressure fluctuation, scaled as a velocity. In buoyant flows affected by mean
stratification, within the Boussinesq approximation, the component u(3) character-
izes the fluctuating buoyancy term, again scaled as a velocity. In the case of incom-
pressible Magnetohydrodynamic turbulence, both solenoidal velocity field u and
magnetic field b amount to 4 modes, say u(1), u(2), b(1), b(2), with possible linear re-
combination under helical modes and/or Elsaesser ones. What happens if full com-
pressibility is considered? Instead of considering a possible fifth mode, identified as
the entropy mode, we prefer to keep the principle of a four-modes decomposition,
but consider their further decomposition according to small parameter(s), related to
the Mach number or/and a typical ratio such as the dilatational to the solenoidal dis-
sipation rate. For instance, the Chu–Kovaznay decomposition, introduced in Chap. 3,
amounts to a first-order decomposition, in which the “vortical mode” is only a part
of the solenoidal mode generated by the full set (u(1), u(2)), whereas the “entropic
mode” only concerns the bulk dissipation related to them. The decomposition used
for shock-turbulence interaction in Chaps. 15 and 16, and anticipated in the Chap. 3,
is now better connected to the general four-mode decomposition (excluding MHD)
used in the rest of the book. As a final remark, the difficulty of designing an optimal
modal decomposition in fully compressible turbulence is also connected to the use of
mass-weighted variables (velocity, momentum ρu, or intermediate mixed quantity
ρx u ?). The problem is not solved in this book, anyway, but relevant discussions are
displayed in the dedicated chapters.

We can say now what aspects are not addressed, or only incidentally, in this book,
and what are emphasized, as follows:

(i) Theoretical stochastic models (as used by physicists to work on internal inter-
mittency) are not generally considered in the present book except if explicitly

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_12
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_15
http://dx.doi.org/10.1007/978-3-319-73162-9_16
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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stated in dedicated sections, as in the end of Chap. 2, with Langevin mod-
els. Indeed, we favour models that retain dynamical aspects of basic Navier–
Stokes-type equations. From this viewpoint, shell-models are briefly addressed
in Chap. 12 when they incorporate helical modes. Other exceptions concern the
“Kinematic Simulation”, when exact linear operators (RDT-type) are incorpo-
rated in it (see Chap. 11). Shell-models mimic a simplified triadic interaction,
between only three adjacent shells in Fourier space, but statistical moments of
any order can be predicted from them in principle. On the other hand, second-
order empirical (spherically averaged) shell-models exist. Because recent pro-
gresses were made, with the possibility to disentangle in them directional
anisotropy and polarization anisotropy, their general linkage to rigorous expan-
sions in terms of angular harmonics is discussed in Chap. 2 and results are
presented in Chap. 8.

(ii) Phenomenological theories about scaling and (internal) intermittency, from the
legacy of Kolmogorov, are touched upon but in a minimal way, since they retain
very little from Navier–Stokes equations. Only the Kolmogorov equation for the
third order structure function is partly based on Navier–Stokes-type equation,
but its “exactness” depends on the Reynolds number, as revisited in Chap. 4.
In addition, we consider as highly controversial the interpretation (Bohr et al.
1998; Frisch 1995) of “anomalous exponents”1 departure from the original
Kolmogorov (1941) theory (which leads to ζn = n/3) as internal intermittency.
Generally, the pure statistical description based on anomalous exponents, or
ESS laws, mixes anisotropy, inhomogeneity and possible internal intermittency
in an intricated way. More discussion is given, case by case, with a sum of
arguments given in Chap. 18.

(iii) Statistical two-point “triadic” closures, the simplest one being EDQNM, are rec-
onciled with linear models and wave-turbulence theory, and finally are shown
to be still useful and relevant (especially with respect to the phenomenological
theories quoted just before). Their limitation to low order moments precludes in
principle the description of internal intermittency, but the three-point descrip-
tion of third-order moments gives much more information on cascades than a
third-order structure function based on only two points. Low-order two-point
(or more) moments are shown to be very informative: second-order moments
for energy distribution, third-order moments for energy transfers (cascade),
fourth-order ones for typical closure, especially in connection with associated
dynamical equations. Higher-order moments, via n-structure functions and full
probability density functions are very briefly discussed.

At last, results dealing with Lagrangian statistics and passive scalar transport are
sparsely provided, but all the background exists in Chap. 2, and some applications
are addressed, case by case. It is worthy to note that the case of “active” scalars, as
the buoyancy in Chap. 10 cannot be disconnected from the simpler case of passive
scalar.

1Often denoted ζn in the literature, n being the order of the structure function which is supposed to
decay as r−ζn .
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Let us go back to Chaps. 13–16, dealing with dynamics of compressible turbu-
lence. This issue is almost absent in most previous books dealing with turbulence
fundamentals. Chapter 13 is devoted to presentation of state-of-the-art knowledge
about the dynamics of compressible isotropic turbulence. The Chu–Kovazsnay modal
decomposition of the turbulent fluctuations introduced in Chap. 3, is extended to pro-
vide the reader with a physical insight into coupling between acoustics, entropy and
vorticity. Then, the different regimes observed in numerical simulations and theoret-
ical analyses are described: the pseudo-acoustic regime, the subsonic regime (both
pseudo-acoustic and thermal régimes are considered) and the supersonic régime. In
each case, details of the interactions and transfers among scales and modes are dis-
cussed and the link with the dynamics of coherent events (vortical structures, acoustic
waves, shocklets, ...) is made. Some low-Mach triadic interaction theory results are
included, together with simplified models. Chapter 14 presents the coupling of com-
pressible turbulence with mean gradient effects. In this chapter, the emphasis is put
on linear theory and DNS results since they are well suited to describe dominant
dynamical mechanisms in such strongly anisotropic flows. The theory of compress-
ible Rapid Distortion Theory is enlightened. Chapters 15 and 16 are dedicated to
the shock/turbulence interaction, which has been proved to be very accurately pre-
dicted by the Linear Interaction Approximation (LIA) for a large class of flows.
The LIA is presented in Chap. 16 in its most achieved version, and it is used to illus-
trate the physics of the interaction of a shock with different kinds of fluctuations
corresponding to the Chu–Kovazsnay modes. The comparison with DNS and exper-
imental results is also made. Despite it is restricted to simple flow configurations, the
basic physical mechanisms emphasized in this part are the building blocks for the
interpretation and understanding of the properties of compressible turbulent flows in
complex configurations.
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Chapter 2
Governing Equations, from Dynamics
to Statistics

2.1 Background Deterministic Equations

2.1.1 Mass Conservation

The equation of mass conservation is well known and do not need long explanations
to be derived. Both Eulerian and Lagrangian forms will be given below. The latter
is less common in fluids dynamics but it deserves some attention, since it brings in
some fundamental Lagrangian concepts and relationships.

Let us begin addressing the Eulerian description. To this end, we consider a fixed
arbitrary control volume V , delineated by a surface S. The total mass of the fluid is
governed by the following integral balance equation

d

dt

∫∫∫
V

ρ(x, t)d3x
︸ ︷︷ ︸

variation

= −
∫∫

S
ρ(x, t)u(x, t) · ndσ

︸ ︷︷ ︸
f lux

+
∫∫∫

V
m(x, t)d3x

︸ ︷︷ ︸
production

.

(2.1)

in which ρ, u and m are the density, the velocity and the rate of mass production,
respectively. All these fields are assumed to be continuous fields in terms of time t and
Eulerian and Cartesian coordinates x. In this equation, d3x is the elementary volume
of a fluid particle, dσ is the elementary surface with outward normal and n the unit
vector. The classical Ostrogradsky formula yields

∫∫
S ρu ·ndσ = ∫∫∫

V ∇ ·(ρu)d3x,
so that the previous equation is rewritten as

∫∫∫
V

[
∂ρ

∂t
+ ∇ · (ρu) − m

]
d3x.

For the sake of clarity, the divergence of a vector V will be denoted ∇ · (V ) or
∂Vi
∂xi

alternatively in the following. The classical local and instantaneous counterpart
of the above equation is the continuity equation
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∂ρ

∂t
+ ∇ · (ρu) = m. (2.2)

In the Lagrangian description, fluid particles follow trajectories, which are given
by the relationship

xi = x L
i (X, t, t0) (2.3)

which links the position of the fluid particle at time t to its initial position X at time
t0. The Lagrangian coordinates X characterize the initial position, and therefore label
the trajectory. In order to avoid any confusion, the trajectory equation is denoted x L

i ,
different from the Eulerian coordinates xi . In the following, the superscript L will be
often omitted, but different notations will be used for time-derivatives.

On the one hand, ∂
∂t denotes the Eulerian time derivative, at constant x, as in Eq.

(2.2). On the other hand, the overdot is related to the Lagrangian time derivative, at
constant X . As a first example, the differential term associated to Eq. (2.3) can be
expanded as

dxi = ui dt + Fi j d X j (2.4)

(in which dxi holds for dx L
i ), straightforwardly leading to

ẋi = ∂x L
i

∂t
= ui

and

Fi j (X, t, t0) = ∂x L
i

∂X j
. (2.5)

The latter matrix, referred to as the Cauchy matrix,1 will be denoted only ∂xi/∂X j

from now on, for the sake of brevity. It is related to the classical semi-Lagrangian
displacement gradient in continuum mechanics (see Eringen 1971, to whom notations
are borrowed).

The brief reminder above is needed for deriving the continuity equation in the
Lagrangian description. Now, one considers that the mass of an ensemble of fluid
particles is conserved during its motion

d

dt

∫∫∫
V

ρ(X, t, t0)d
3x =

∫∫∫
V

m(X, t, t0)d
3x

︸ ︷︷ ︸
M

but the moving domain V has to be considered as the mapping of an initial domain
V0 following all individual trajectories with positions in this domain (m ought to be
considered in Lagrangian coordinates, too, but a new specific notation is not needed

1According to a recent historical investigation by U. Frisch, a more complete nomenclature would
be “The Jacobian matrix of Cauchy–Lagrange”.
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for the sake of simplicity). From the very definition of Fi j , its determinant (always
nonzero positive) is the Jacobian of the x-to-X transformation, so that

d3x = Jd3 X,

with
J (X, t, t0) = det F (2.6)

being the local and instantaneous volumetric ratio following a trajectory. The con-
servation equation can be written as

d

dt

∫∫∫
V0

ρJd3 X = M,

and the (Lagrangian) time derivative holds inside the integral, so that

∫∫∫
V0

(
ρ̇J + ρ J̇

)
d3 X = M.

From

Ḟi j = ∂ ẋi

∂X j
= ∂ui

∂xn
Fnj (2.7)

one derives
J̇ = ∇ · (u)J. (2.8)

Finally, the continuity equation can be expressed as ˙(ρJ ) = Jm, or

J (X, t, t0) = ρ(X, t0)

ρ(X, t)
+

∮ t

t0

(Jm)dt, (2.9)

using J (X, t0, t0) = 1 (where the time integral of m is computed along a trajectory),
or alternatively

ρ̇ = −ρ∇ · (u) + m. (2.10)

Of course, the identity of the latter equation with Eq. (2.2) can be checked, using

ρ̇ = ∂ρ

∂t
+ ẋ j

∂ρ

∂x j
= ∂ρ

∂t
+ u j

∂ρ

∂x j
. (2.11)

2.1.2 The Momentum, Navier–Stokes, Equations

In the same way as for the mass, the conservation of momentum yields
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d

dt

∫∫∫
V

ρui d
3x

︸ ︷︷ ︸
variation

= −
∫∫

S
ρui u · ndσ

︸ ︷︷ ︸
f lux

+
∫∫∫

V
ρ fi (x, t)d3x

︸ ︷︷ ︸
production

, (2.12)

in which the ‘production’ involves a body force per mass unit, denoted f , but the
domain of fluid is not isolated: a surfacic strain tensor σi j is acting on it. Accordingly,
a pure kinematic balance, as in the previous subsection for the mass, is no longer valid,
and dynamics must be accounted for. Replacing ui u · n = ui u j n j by (ui u j −σi j )n j ,
one obtains

∂(ρui )

∂t
+ ∂(ρui u j − σi j )

∂x j
= bi , (2.13)

or

ρu̇i = ∂σi j

∂x j
+ ρ fi , (2.14)

using the continuity equation with m = 0.
Finally, the classical Navier–Stokes equations2 correspond to the following

expression of the strain tensor in Eq. (2.14):

σi j = −pδi j + μ

⎛
⎜⎜⎜⎝

∂ui

∂x j
+ ∂u j

∂xi︸ ︷︷ ︸
Si j

−2δi j

3

∂un

∂xn

⎞
⎟⎟⎟⎠ + 3λ + 2μ

3

∂un

∂xn
δi j

︸ ︷︷ ︸
σvisc

i j

, (2.15)

in which the threefold decomposition includes a spherical term linked to pressure p,
a shearing viscous term which involves the symmetric, tracefree velocity-gradient
tensor, and a viscous ‘bulk’ term. The fluid-dependent parameters μ and λ are the
counterpart of the Lamé coefficients (for a solid), and are often linked together by
the Stokes relationship 3λ + 2μ = 0, which removes from consideration the pure
volumic ‘bulk’ dissipation process.

2.1.3 Incompressible Turbulence

Strict incompressibility is recovered assuming ρ(x, t) = ρ0 in the continuity equa-
tion, so that the velocity field is divergence-free or solenoidal. Ignoring the mass

2These equations were established by Claude Navier in 1823 and rediscovered or rederived at least
four times: by Cauchy in 1823, by Poisson in 1829, by Saint-Venant in 1837 and by Stokes in
1847 (Darrigol 2005). Navier already distinguished two types of motion, ‘régulier’ (mean) and
‘tumultueux’ (turbulent), foreshadowing the Osborne’s Reynolds decomposition. The idea that two
length scales are present was also considered by Saint-Venant.
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production term m for the sake of simplicity, mass conservation reduces to the
divergence-free (solenoidal) condition, or to J = 1 from the Lagrangian viewpoint,
and the momentum equation reduces to

u̇i = − 1

ρ0

∂ p

∂xi
− ν∇2ui + fi , (2.16)

in which the left-hand-side term is the acceleration, or

u̇i = ∂ui

∂t
+ ẋ j

∂ui

∂x j
= ∂ui

∂t
+ u j

∂ui

∂x j
(2.17)

as for Eq. (2.11). ν = μ/ρ0 is the kinematic viscosity, which will be considered
as a constant parameter. The problem is self-consistent and well-posed, with four
dependent variables (u1, u2, u3, p) and four equations (one for the divergence-free
constraint, three for the system of Navier–Stokes equations above).

The pressure is no longer a thermodynamic, autonomous, variable, but a sim-
ple Lagrange multiplier connected to the solenoidal constraint for velocity. Taking
the divergence of Eq. (2.16), and accounting for the incompressibility constraint
∂ui/∂xi = 0, one obtains

1

ρ0
∇2 p = − ∂2

∂xi∂x j

(
ui u j

) − ∂ fi

∂xi
. (2.18)

This Poisson-type equation shows how the pressure is connected to the terms
which are not divergence-free in the Navier–Stokes equations3: the acceleration term
itself (contributing to the first term in the r.h.s.) and possibly the body force term
(second term in the r.h.s.). In contrast, divergence-free terms, such as ∂ui/∂t and
ν∇2ui are removed. This relationship between velocity and pressure is essential in
many turbulent flows as the ones discussed in Chaps. 4–11. Two remarks can be made
from the very beginning:

• this nonlocal and instantaneous relationship is not physical, since it implies that
the speed of sound is infinite, so that a pressure disturbance in a remote position
instantaneously responds to a velocity disturbance.

• however, this unphysical problem is very relevant to study and to understand low-
Mach number turbulence. It is now clear that the ‘problem of turbulence’ is not
only due to the nonlinearity of the acceleration term (2.17), as often advocated,
and not only due to the lack of integrability of trajectories (2.3) (e.g. Lagrangian
chaos). The ‘pressure-released’ turbulence, illustrated by the Burger’s equation in
the one-dimensional case, and by the cosmological gas in three dimensions (e.g.
Polyakov 1995) is essentially solved! Hence, the role of pressure, or identically,
the restriction to solenoidal modes (projection onto a solenoidal subspace) is an
essential point to understand why turbulence is so complex. In addition, ‘solenoidal

3It is important to note that such terms exist even if the velocity field is solenoidal.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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turbulence’, as calculated using pseudo-spectral DNS at the highest order available
(e.g. 40963, Kaneda et al. 2003), mimics all characteristics of — low-speed —
‘real’ physical turbulence.

2.1.4 First Insight into Compressibility Effects

As soon as the solenoidal constraint is relaxed, the coupling between pressure and
velocity becomes very different. First of all, the problem with five components
(ρ, u1, u2, u3, p) is only governed by four equations, i.e. mass and momentum
conservation, the latter with given σi j . The state law of the fluid provides a new
equation, but also introduces a new variable, usually temperature or entropy. Conse-
quently, a new conservation equation (for energy, enthalpy, entropy) is needed. As
illustrated in Chap. 3, the entropy term s can be chosen, so that the six-component
(ρ, u1, u2, u3, p, s) compressible problem will be addressed using a six-component
system of equations: 1 (mass conservation) + 3 (momentum conservation) + 1 (state
law) + 1 (entropy conservation).

As a first illustration, it is possible to derive a wave propagation-like equation for
ρ, combining mass and momentum equations. Taking the time-derivative of the mass
conservation equation and the divergence of the momentum equation, one obtains
after some algebra:

∂2ρ

∂t2
− a2

0∇2ρ = ∂2

∂xi∂x j

⎛
⎜⎝ρui u j − σvisc

i j + δi j (p − a2
0ρ)︸ ︷︷ ︸

Ti j

⎞
⎟⎠ . (2.19)

The characteristic speed of sound, a0, is assumed to be space-uniform in this
equation, which is ‘exact’ in this limit (only ‘production’ terms m and f are ignored,
for the sake of simplicity). For instance, with isentropic and low Mach number
additional assumptions, Ti j reduces to its first term, and (2.19) can be used as a
cornerstone to derive acoustic analogies (e.g. Lighthill and many followers). An
equation similar to (2.19) can be found for the pressure, so that Eqs. (2.18) and
(2.19) illustrate the different dynamics when compressibility is called to play.

2.1.5 Splitting the Velocity Field: Helmholtz Decomposition,
Poloidal-Toroidal Decomposition and Clebsh Potentials

2.1.5.1 The Helmholtz Decomposition

The Helmholtz decomposition is an exact, purely kinematic decomposition for the
velocity field. It reads

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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u(x, t) = u(sol)(x, t) + u(dil)(x, t) + u(sd)(x, t), (2.20)

which appears as the sum of a solenoidal contribution u(sol)(x, t), a dilatational
one u(dil)(x, t), and a mixed one, u(sd)(x, t). The third part is a purely harmonic
contribution such that ∇ × u(sd)(x, t) = 0 and ∇ · u(sd)(x, t) = 0. In the absence
of relevant boundary effects, or in the case of periodic boundaries (as used in DNS
for approaching realizations of an homogeneous flow), the harmonic component is
space-uniform and can therefore be taken equal to zero. More generally, even in
the presence of solid boundaries, the harmonic term can be absorbed, e.g. in the
dilatational term. This is illustrated by the RDT solution for an irrotational straining
process in the presence of a wall based upon the Helmholtz decomposition of the
linearized Weber equation (8.20) originating from Eq. (2.31).

The solenoidal mode corresponds to a purely vortical mode, with null divergence,
i.e. ∇ · u(sol) = 0 and ω = ∇ × u = ∇ × u(sol). The dilatational mode has a non-zero
divergence and has zero Curl, yielding ∇ × u(dil) = 0 and d = ∇ · u = ∇ · u(dil).
Their properties are satisfied by introducing a stream function vector ψ for the first
one and a scalar potential ϕ for the second one, such that

u(sol)(x, t) = ∇ × ψ(x, t), u(dil)(x, t) = ∇ϕ(x, t). (2.21)

It may be noted that instead of the symbolic notation ∇×ψ, a tensorial expression
using the third-order alternating pseudo-tensor εi jn (often referred to as the Levi-
Civita tensor), can be used for safer calculations since the symbolic operator ∇ is
not a vector, and some permutation rules do not hold for it.

The fact that the dilatational mode is one-dimensional is obvious; on the other
hand, the two-dimensional (or two-component) structure of the solenoidal term is not
easily transfered to the stream function vector. Exhaustive discussions about Gauge
conditions are outside our scope, but we use the toroidal-poloidal decomposition as
a practical way to express u(sol) in Eq. (2.25).

Note that the Helmholtz decomposition is useful even in strictly incompressible
flow cases: considering any type of incompressible Navier–Stokes equations as

∂u
∂t

+ S + ∇ p = 0, (2.22)

in which S represents any linear or nonlinear term, the solenoidal condition for
u = u(sol) yields

∂u(sol)

∂t
+ S(sol) = 0, ∇(p + S(dil)) = 0.

Accordingly, one recovers the fact that the pressure term balances the dilata-
tional part of the arbitrary contribution S, whereas the first equation, as a reduced
purely solenoidal equation in which the pressure is removed from consideration, only
involves the contribution S(sol). Of course, for practical applications, the Curl of the
first equation gives the Helmholtz equation for vorticity, whereas the divergence of

http://dx.doi.org/10.1007/978-3-319-73162-9_8
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the second equation gives the Poisson equation for pressure in the incompressible
case. In short, if the full Helmholtz decomposition is not useful for u in the pure
incompressible case, it can be transferred to any S, which governs the velocity-time-
derivative, in addition to the pressure gradient term.

Going back to the general case of compressible turbulence, is there a systematic
way to separate “compressible” from “incompressible” components of flow vari-
ables other than the velocity? Generally speaking, the Helmholtz decomposition is
static, in the sense that it does not rely on the evolution equations which govern
the dynamics, up to some exceptions mentioned throughout this book. Accordingly,
this decomposition does not provide any help in the task of splitting the pressure,
the density and the entropy between compressible and incompressible components.
Therefore, the splitting given by Eq. (2.20) must be supplemented by some arbitrary
definition of “incompressible” and “compressible” parts of other physical variables.

The pressure is usually split as

p = ps + pd (2.23)

where ps is defined as the part of the pressure field which satisfies the Poisson
equation found for the pressure in the incompressible case, leading to

∇2 ps = −∇ · ∇ · (u(sol) ⊗ u(sol)). (2.24)

The component pd is then defined as the remainder, i.e. pd = p − ps .
An important remark is that the solenoidal field (u(sol), ps) does not include acous-

tic waves, but that the residual field (u(dil), pd) is not restricted to acoustic phenom-
ena. The characteristic velocity scale associated to (u(sol), ps) is the fluid velocity,
while (u(dil), pd) can have two characteristic scales in the most general case: the
fluid velocity and the speed of sound. The former will hold if (u(dil), pd) is domi-
nated by heat transfer (convective phenomenon), while the latter will be relevant in
acoustics-governed cases.

Another point is the possible interest to use density-weighted variables. Instead
of applying the Helmholtz decomposition to the velocity field, or to the S term in Eq.
(2.22), it can be applied to the momentum ρu. One can introduce this way a hierarchy
of embedded levels of approximation, among which the anelastic approximation. As
a second example, following Kida and Orszag (1990a, b, 1992), Miura and Kida
(1995) extend the usual Helmholtz decomposition by applying it to the vector field
w = √

ρu. Using this definition, the authors enforce the positive-definiteness of the
spectra of the compressive and rotational kinetic energies.

It must be mentioned that looking at mathematical details, rather complex non-
local relationships are found when inverting some above mentioned equations, e.g.
when extracting velocity from vorticity, stream vector function and scalar potential
function from velocity, toroidal and poloidal potential scalars from solenoidal veloc-
ity. The use of Fourier space, consistent with our homogeneous framework, yields
algebraic simplified relations for all these mathematical projections, as it will be
shown everywhere in this book.
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2.1.5.2 The Poloidal-Toroidal Decomposition and Clebsh Potential

The toroidal-poloidal decomposition can provide a useful alternative for expressing
the solenoidal field, in terms of two components:

u(sol)(x, t) = ∇ × (stor (x, t)n)︸ ︷︷ ︸
toroidal part

+∇ × [∇ × (spol(x, t)n)]︸ ︷︷ ︸
poloidal part

(2.25)

in which spol and stor are scalar potentials. Of course, this definition involves an arbi-
trary direction n, but it is important noting that there is no important lack of generality,
and that the toroidal-poloidal decomposition is not restricted to axisymmetric flows,
even though it yields dramatic simplifications in that case. One recovers an explicit
three-terms description with three scalar potentials (toroidal-poloidal-dilatational)
for any velocity field, combining Eqs. (2.21) and (2.25).

Another decomposition, with a most general definition of the toroidal mode,
deserves some attention, especially for deriving the expansion in terms of spherical
harmonics for a vector field (Chandrasekhar 1981; Rieutord 1987), as discussed in
Sect. 2.5.2.1.

Another alternative consists of using Clebsch potentials λ(x, t) and μ(x, t), with

u = λ∇μ + ∇ϕ′′. (2.26)

It is less practical because the part generated by Clebsch decomposition has both
solenoidal and dilatational contributions, to be disentangled, according to

u(sol) = (λ∇μ)(sol) , u(dil) = (λ∇μ)(dil) + ∇ϕ′′.

In contrast, both toroidal and poloidal contributions are explicitly and separately
divergence-free.

2.1.6 Reminder About Circulation and Vorticity

The reader is referred to basic textbooks for the fundamentals about circulation,
related Kelvin theorem and vorticity, e.g. Saffman (1995). The vorticity is defined
as the Curl of velocity, i.e. ω = Curl(u), leading to

ω = ∇ × u or ωi = εi jn
∂un

∂x j
. (2.27)

It is found that ω = ∇ × u(sol), and

ω = −∇2ψ, (2.28)
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in which only solenoidal terms are involved.
From the momentum conservation law (2.14) it follows that

ω̇i + ∂u j

∂x j
ωi − ∂ui

∂x j
ω j = εi jn

∂

∂x j

[
1

ρ

∂σnm

∂xm
+ fn

]
.

The right-hand-side is exactly the Curl of the acceleration u̇. Ignoring the viscous
and body force terms, this equation can be rewritten as

˙(
ωi

ρ

)
= ∂ui

∂x j

ω j

ρ
+ 1

ρ3
εi jn

∂ρ

∂x j

∂ p

∂xn
, (2.29)

in which the baroclinic torque appears as the second term in the right-hand-side.
This term vanishes in the barotropic case p = p(ρ), and not only in the pure

incompressible case. In such a situation, the Eq. (2.7) for Fi j is the same as the above
equation for ωi/ρ at fixed j . As a consequence, the evolution of the vorticity vector
along trajectories is governed by the Cauchy matrix according to the following law

ωi (x, t) = 1

det F
Fi j (X, t, t0)ω j (X, t0). (2.30)

A similar but less common equation for the velocity is the Weber equation

ui (x, t) = F−1
j i (X, t, t0)u j (X, t0) + ∂ϕ′

∂xi
. (2.31)

where ϕ′ is a scalar potential, similar those found in Eq. (2.21) and in the Clebsch
decomposition. It is easy to derive Eq. (2.30) from Eq. (2.31) via the Curl operator,
but the reciprocal is much more difficult to establish. An alternative way (Julian Hunt,
private communication) for proving (2.31) is to start from the Kelvin circulation
theorem ∮

C
u(x, t) · δx =

∮
C0

u(X, t0) · δX

in which the closed chains of fluid particles, respectively C0 at initial time and C at
final time, are connected via trajectories. Since the result has to be independent of
the form of the (e.g. initial) loop C0, a differential formula can be derived from the
integral one, as in thermodynamics for first and second principles, yielding

u(x, t) · δx − u(X, t0) · δX = dφ

in which dφ is a total differential. The Weber equation is recovered from the former
differential equation using δXi = F−1

i j δx j and dφ = ∂φ
∂xi

δxi .
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2.1.7 Evolution Equation for Velocity Gradient and Vorticity

Even in the purely incompressible case, to which the rest of the present chapter is
devoted, the vorticity dynamics is essential but is not the whole story: The vortex
stretching effect illustrates the important interaction of the symmetric part of the
velocity-gradient with the vorticity, related to its antisymmetric part. Consequently,
fundamental evolution equations for velocity-gradient related quantities are very
important to get a full understanding of flow dynamics. Introducing the velocity
gradient tensor A = ∇u, its symmetric part (the strain) S = 1

2 (A+AT ), its antisym-
metric part W = 1

2 (A − AT ), the Navier–Stokes equations straightforwardly lead
to

Ȧ = ∂

∂t
A + u · ∇A = −A2 + ν∇2A + H (2.32)

where Hi j = (∂2 p/∂xi∂x j ) is the Hessian of pressure fluctuations, along with

Ẇ = ∂

∂t
W + u · ∇W = − (SW + WS) + ν∇2W (2.33)

Ṡ = ∂

∂t
S + u · ∇S = −

(
S2 − 1

3
T r(S2)I

)
−

(
W2 − 1

3
T r(W2)I

)
+ ν∇2S + Hp

(2.34)
where Hp denotes the deviatoric part of the pressure Hessian:

H p
i j = −

(
∂2 p

∂xi∂x j
− 1

3
∇2 pδi j

)
(2.35)

Now considering the vorticity vector ω and reminding that ωi = εi jk W jk where
εi jk denotes the Levi-Civita tensor, one obtains

ω̇ = ∂ω

∂t
+ u · ∇ω = Sω + ν∇2ω (2.36)

and

∂

∂t
S+u·∇S = −

(
S2 − 1

3
T r(S2)I

)
−

(
ωωT − ω2

3
I

)
+ν∇2S+Hp. (2.37)

One recover the incompressible version of Eq. (2.29), and its couplings with the
S-equation are displayed.

Being a traceless second-rank tensor in three dimensions, A can be reduced to
the following five scalar invariants, which are often used to describe turbulence
properties:
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Q = −1

2
Alk Akl, R = −1

3
Ai j A jk Aki , QS = −1

2
Slk Skl,

RS = −1

3
Si j S jk Ski , V 2 = Sin Simωnωm . (2.38)

The set of independent scalars can be given as well by two eigenvalues of S (three
eigenvalues for a symmetric tensor, but with zero sum, because it is trace-free) and
the three components of vorticity, seen in the eigenframe (principal axes) of S.

A first look at Eq. (2.32) shows that A is subjected to advection by the velocity
field, quadratic self-amplification or self-attenuation, viscous damping and pressure
effects. It is worth reminding that H is both non-local and linear, while the A2 is a
local non-linear term. Equation (2.36) shows that the vorticity is amplified or damped
by the vortex stretching term Sω depending on the sign of the eigenvalues of S and
the relative orientation of ω with respect to its eigenvectors. The first term in the
right-hand side of Eq. (2.37) is responsible for a local, quadratic self-amplification
of self-attenuation of the velocity gradient, since it is diagonal in the eigenframe of
S. The second term, which is related to vorticity effect on the local rate of strain, is
also a gradient amplification mechanism coupled to a local rotation of the eigenframe
of S.

From the above equations one can recover evolution equations for the enstrophy
ω2/2 and the total strain S2 = Si j Si j . In the absence of external forcing, one has
(making indices to appear for the sake of clarity)

1

2

∂ω2

∂t
+ u j

∂ω2

∂x j
= ωiω j Si j + νωi∇2ωi (2.39)

1

2

∂S2

∂t
+ u j

∂S2

∂x j
= −Sik Sk j Si j − 1

4
ωiω j Si j − Si j

∂2 p

∂xi x j
+ νSi j∇2Si j . (2.40)

2.1.8 Biot–Savart Relationship and Non-local Closure
of Vorticity Equation

The vorticity vector includes all the information on the velocity field in the incom-
pressible case, up to possible complex boundary conditions ignored here for the
sake of simplicity. But the Helmholtz equation is not closed in terms of vorticity,
because the strain tensor responsible for the vortex stretching effect is also affected
by the pressure Hessian. As for the nonlocal relationship of pressure to velocity (see
Eq. (2.53) and associated discussions), it is necessary to look at the relationship of
velocity to vorticity, which is found by inverting the Curl operator.

Taking the Curl of vorticity, one obtains,

εimn
∂

∂xm
ωn = − ∂2ui

∂xm∂xm
+ ∂

∂xi

∂um

∂xm
,
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which simplifies as
∇ × ω = −∇2u (2.41)

in the incompressible case, so that u can be expressed in terms of ∇ × ω using the
Green’s function of the Laplacian operator, as for solving the Poisson equation for the
pressure (see Eq. (2.53)). A slightly more direct relationship is given by Biot–Savart
as

u(x, t) = 1

4π

∫∫∫
ω(x′, t) × x − x′

| x − x′ |3 d3x′. (2.42)

An explicit non-local relationship follows for the strain tensor in terms of the
velocity (Constantin 1994; Majda and Bertozzi 2002) as

S(x) = 3

8π
PV

∫∫∫ [
(x − x′) ⊗ [(x − x′) × ω(x′)]

| x − x′ |5

+[(x − x′) × ω(x′)] ⊗ (x − x′)
| x − x′ |5

]
d3x′, (2.43)

where the integral is understood as a Cauchy Principal Value (denoted PV ) and ⊗
is the tensor product, i.e. (x ⊗ y)i j = xi y j .

The Helmholtz equation is eventually closed using the latter equation. A technical
problem is that the kernel operator appearing in Biot–Savart law is not differentiable
in the sense of classical functions, but in the sense of distributions only. In addition to
the detailed analysis by Majda and Bertozzi (2002), the reader is referred to Pereira
et al. (2016) for a recent application to a dissipative random velocity field.

Beyond homogeneous turbulence, the Biot–Savart relationship is shown by Garry
L. Brown and Anatol Roshko to be essential for the clumping of the vorticity with
instability in turbulent shear layers and wakes (Brown and Roshko 2012).

2.1.9 Adding Body Forces or Mean Gradients

In the absence of external forcing or turbulence production via interaction with a
non-uniform mean velocity field, the ‘incompressible’ turbulence (only this case
will be discussed here) decays, and, but this is more controversial, returns, at least
partially at small scales, towards isotropy. Therefore, decaying isotropic turbulence,
which is addressed in Chap. 4, is the best illustration of turbulence dynamics. Sta-
tistical homogeneity is a mandatory requirement to study such a turbulence, so that
the concepts of homogeneity and isotropy are intimately connected in various fun-
damental approaches to Homogeneous Isotropic Turbulence (HIT). A main theme of
this book is to illustrate how the framework of Homogeneous Anisotropic Turbulence
(HAT) is informative and useful … up to careful definitions and some caveats. In this
context, the emphasis is put on anisotropic forcings, which can render the turbulence
anisotropic and inject energy, so that the ultimate decay is altered or even prevented.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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How such a forcing can preserve homogeneity, as far as possible, while represent-
ing a physical process, is the first question. Our experience is that forcing processes
often used in fundamental studies have nothing to do with actual flows. On the
other hand, mean rotation, strain, shear, density-stratification are physically relevant
effects, consistent or not with statistical homogeneity.

The case of turbulence in a rotating frame is helpful to introduce our concept of
HAT. On the one hand, a solid body motion

x (0)
i = Fi j (t − t0)X j (2.44)

can be superimposed to a disturbance motion which will be considered as ‘turbulent’.
In the above equation, the solid body motion can be considered as a base flow. X
denotes the Lagrangian coordinates associated to the base flow motion, and Fi j (t) is
also the base flow counterpart of the general matrix introduced at the beginning of this
chapter. In agreement with the usual solid body motion description, the velocity field
is characterized by the angular velocity vector �n with magnitude � and orientation
n, so that

u(0) = �n × x with ∇ × u(0) = 2�n

up to a constant term, which can set equal to zero by changing the frame of ref-
erence thanks to the Galilean invariance property. In other words, the base flow is
characterized by a constant velocity gradient matrix A

A =
(

∂u(0)
i

∂x j

)
=

⎛
⎝ 0 −� 0

� 0 0
0 0 0

⎞
⎠ (2.45)

choosing ni = δi3 without loss of generality. Accordingly, it is possible to replace
ui by u(0)

i + u′
i in the background equations, and to study the turbulent flow (i.e. u′)

in the presence of a particular base flow u(0) with constant, antisymmetric gradient
matrix. In our simple example dealing with solid body rotation, the base displacement
gradient matrix is

(
F (0)

i j

)
=

⎛
⎝ cos �(t − t0) − sin �(t − t0) 0

sin �(t − t0) cos �(t − t0) 0
0 0 1

⎞
⎠ . (2.46)

On the other hand, it is well known that it is easier to study turbulence in the
rotating frame, projecting both position and velocity in this non-Galilean frame of
reference. Replacing xi by Xi and ui by vi , defined in the same way as in Eq. (2.44)
by

ui = F (0)
i j (t − t0)v j ,

it is seen that vi and Xi satisfy the same equations as ui and xi in the Galilean
reference frame, up to additional centrifugal and Coriolis forces. This non-Galilean
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acceleration term is defined as

f = −2�n × v︸ ︷︷ ︸
Coriolis

−�2(n × (n × X)).

This simple example, addressed with more details in Chap. 7, is used here to
illustrate the relevance of adding a constant base velocity gradient, or adding a body
force. For solid body rotation, energy is not directly injected into turbulence, since the
Coriolis force produces no work (and the centrifugal force can be removed from con-
sideration if it is incorporated in the pressure term), but the energy cascade is strongly
altered and rendered highly anisotropic. Without anticipating the results dealing with
statistical properties of this flow, which will be presented in Chap. 7, the presence
of solid body rotation can be shown to be consistent with statistical homogeneity of
the turbulent flow: removing the base flow motion for defining homogeneity (and
hence restricting the analysis to disturbances) in the first case, u′ = u − u(0),4 and
considering homogeneity for u′ → v in the rotating frame in the second case.

To what extent the pure antisymmetric base velocity gradient matrix can be
replaced by a more general one, including both symmetric and antisymmetric part?
Craya introduced in 1958 a relevant formalism for this purpose, which has been
completely revisited in Cambon’s thesis (1982), and rediscovered later in the context
of stability analysis, e.g. Craik and Criminale (1986). In a large part of this book, a
constant mean velocity gradient matrix A will be used to study the turbulent velocity
field

u′
i = ui − Ai j x j ,

The following comments can be made prior to the analysis:

(i) A special form of A is required to preserve statistical homogeneity of the tur-
bulent field. In the incompressible case, however, these conditions are not very
stringent, allowing hyperbolic, linear and elliptical streamlines for the mean
motion. As soon as A has a nonzero symmetric part, kinetic energy can be
directly injected into the turbulent flow, i.e. some turbulence production mech-
anisms can take place.

(ii) The strict analogy with the effect of body forces holds for solid body motion
only. The advection of the turbulent motion by the mean flow can be removed
by a convenient change of frame, even if A is not purely antisymmetric, but all
other terms in the equations for u′ are then rendered more complicated, since
they will involve F(0)(t − t0)-dependent factors (Rogallo 1981; Cambon 1982).

(iii) Both linear (as in the Rapid Distortion Theory (RDT) or in similar stability
analyses) and full nonlinear approaches can be carried out with the additional
constant-mean-velocity-gradient-matrix effect, keeping the context of homo-
geneous, but often highly anisotropic, turbulence.

(iv) What is the physical relevance of a mean flow without boundaries having the
same A matrix over the whole space (often called extensional base flow in the

4It is worth noting that the base flow is not invariant by translation.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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community of hydrodynamic stability)? This question is essential. It received
a clear answer, at least for the linear theory, ranging from WKB RDT to short-
wave disturbance analyses: one has to consider that the spatial homogeneity, and
therefore the region in which the mean gradient is almost constant, is restricted to
a domain which is large with respect to the size of relevant ‘turbulent’ structures
(turbulence in general), or large with respect to the wavelength of disturbances,
from the linear stability viewpoint.

The last point (iv) suggests that the HAT in the presence of constant A is not only
a marginal domain in the field of turbulence research. We therefore propose to use
it as one of the main thread in this book. Of course, this point has to be discussed
with care, in order to delineate its relevance to understand the dynamics of realistic
shear flows of practical interest. In addition, it is shown in Chap. 16 that turbulence
in the presence of a shock wave can be handled using the HAT formalism. Even if
the effect of the shock is very far from a mean gradient effect, it is consistent with
the absence of typical lengthscale L for the distorting mechanism: L is considered as
infinite (or very large with respect to the size of turbulent structures) in the first case;
it is zero (the thickness of the shock-wave), in contrast, in the second case (or very
small with respect to the size of turbulent or organized structures passing through
the shock-wave).

2.2 Briefs About Statistical and Probabilistic Approaches

A presentation of statistical tools is a ‘compulsory figure’ in any book on turbulence.
The reader is referred to, e.g., the Tennekes and Lumley’s monograph (Tennekes and
Lumley 1972) and to Chap. 3 of the more recent book (Mathieu and Scott 2000) for
a deep and comprehensive review. Since this aspect is well documented, only key
definitions and procedures are recalled in this subsection.

2.2.1 Ensemble Averaging

The most fundamental statistical averaging deals with an ensemble of independent
realizations of a random variable V and will be denoted either by an overbar V or
by brackets 〈V 〉 in the following. Possible approximations using temporal or spatial
averaging are not discussed here. We assume that the ensemble averaging has all the
properties of commutation (with time and spatial derivatives) which are often referred
to as the Reynolds axioms, and can therefore be referred to as a Reynolds averaging.
Discussing ergodicity is also beyond the scope of this book. The probability density
function (pdf) which underlies the calculation of any statistical moment, as V n for a
scalar, or V n for a vector, will be introduced only when it will be used in a specific
context.

http://dx.doi.org/10.1007/978-3-319-73162-9_16
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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2.2.2 Single-Point and Multi-point Moments

It is important to point out that the Reynolds decomposition in terms of a mean
(velocity u) and a fluctuating (velocity u′) motion remains useful in many applica-
tions. It is used as a mandatory requirement before applying the statistical tools to
u′

i , e.g. evaluating statistical moments of the turbulent field. In this sense, statisti-
cal modelling is restricted to a centered random variable u′ = u − u. In addition,
Nth-order moments of u′ can be taken at the same point in the spatial domain, or
at different points, from 2 to N . Evolution equations can be derived for all these
quantities, with a problem of closure revisited in the last section of this chapter. A
given level of description can be labelled as [N , P], with N the order of correlations,
and P (P ≤ N ) the number of undependent points. Emphasis will be put in this book
on low-order moments, with N ranging from 2 to 4, but possibly in a multi-point
description.

2.2.3 Statistics for Velocity Increments

An alternative to the two-point description, for instance based on the velocity corre-
lation tensor

Ri j (x, r, t) = ui (x, t)u j (x + r, t) (2.47)

is to work with velocity increments

δui = ui (x + r, t) − ui (x, t)

and to consider their moments only. This analysis will be discussed in Chap. 4. A
local scaling (in terms of r) of related moments, or structure functions, is easier to
justify, following Kolmogorov, since the velocity increments are naturally smaller
and smaller as the distance r = |r| decreases. This analysis is restricted to an inertial
range of scales, with r being significantly larger than the Kolmogorov scale and
significantly smaller than a typical integral lengthscale. High order moments, i.e.
high order structure functions, are investigated in order to characterize the internal
intermittency, but the multi-point approach is always a two-point one.

2.2.4 Application of the Reynolds Decomposition
to Dynamical Equations

The velocity and pressure fields are first split into mean and fluctuating components
and equations for their time evolution are derived from the basic equations of motion
of the fluid. Assuming incompressibility, as done in this chapter unless explicitly
stated, one obtains the following mean flow equations

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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∂ui

∂t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
− ∂u′

i u
′
j

∂x j︸ ︷︷ ︸
Reynolds stress term

(2.48)

∂ui

∂xi
= 0 (2.49)

and the equations for the fluctuating component

∂u′
i

∂t
+ u j

∂u′
i

∂x j
+ u′

j

∂ui

∂x j
+ ∂

∂x j
(u′

i u
′
j − u′

i u
′
j )

︸ ︷︷ ︸
Nonlinear term

= −∂ p′

∂xi︸ ︷︷ ︸
Pressure term

+ ν
∂2u′

i

∂x j∂x j︸ ︷︷ ︸
Viscous term

(2.50)

and
∂u′

i

∂xi
= 0. (2.51)

Here, ui and p are the mean velocity and static pressure (divided by density),
while u′

i and p′ are the corresponding fluctuating quantities, usually interpreted as
representing turbulence.

At various points, we will mention related works in the area of hydrodynamic
stability. It is worth noting that in the inhomogeneous case Eqs. (2.50) and (2.51)
for the fluctuating flow are essentially the same as those for a perturbation u′

i , about
a basic flow ui , with an additional forcing term ∂u′

i u
′
j/∂x j . Although the aims of

stability theory (to characterize growth of the perturbations) and of the theory of
turbulence (to determine the statistics of u′

i ) are different, it is nonetheless valuable
to draw parallels between these two fields. It is our hope that doing so we will
encourage specialists in both areas to become more conversant with each others
work.

Equation (2.50) is now used to derive equations for the time evolution of velocity
moments, i.e. averages of products of u′

i with itself at one or more points in space.
Setting up the equations for the nth-order velocity moments at n points, one discovers
that there are two main difficulties. Firstly, the term in (2.50) which is nonlinear with
respect to the fluctuations leads to the appearance of (n + 1)th-order moments in
the evolution equations for nth-order moments. Secondly, the pressure term brings
in pressure-velocity correlations.

The pressure field is intimately connected with the incompressibility constraint.
Indeed, taking the divergence of (2.50) one obtains a Poisson equation for the pressure
fluctuations

∇2 p′ = − ∂2

∂xi∂x j
(u′

i u j + ui u
′
j + u′

i u
′
j − u′

i u
′
j ). (2.52)

The solution of this equation based on Green’s functions expresses p′ at any point
in space in terms of an integral of the velocity field over the entire fluid domain,



2.2 Briefs About Statistical and Probabilistic Approaches 31

together with integrals over the boundaries, the details of whose expression in terms
of velocity do not concern us here.

The solution of the Poisson equation ∇2 p′ = f ′ can be written as

p′(x, t) =
∫

R3
G(x, x′) f ′(x′, t)d3x′, (2.53)

with the related Green’s function given by

G(x, x′) = 1

4π

1

|x′ − x| , (2.54)

in a three-dimensional unbounded domain, getting rid of specific boundary condi-
tions.

Replacing f ′ in Eq. (2.53) by the whole right-hand-side of Eq. (2.52) yields
both linear and nonlinear, nonlocal contributions from fluctuating velocity. Thus, the
pressure at a given point is nonlocally determined by the velocity field at all points
of the flow, leading to integro-differential equations for the velocity moments when
the pressure-velocity moments are expressed in terms of the sole velocity. It must
be observed that nonlocality is not specific to the use of statistical methods, but is
an intrinsic feature of incompressible fluids, in which the pressure field responds
instantaneously and nonlocally to changes in the flow to enforce incompressibility.
The source term in the Poisson equation (2.52) consists of parts which are linear
and nonlinear with respect to the velocity fluctuation. Therefore, the pressure can be
decomposed as the sum of two components: a pressure term p′(r) associated to linear
terms (and referred to as the rapid pressure term, since it responds immediately to
a change in the mean flow) and a second one, p′(s), which is associated to the non-
linear ones (referred to as the slow pressure term, since it is not directly sensitive to
a change in the mean flow):

∇2 p′(r) = − ∂2

∂xi∂x j
(u′

i u j + ui u
′
j ), (2.55)

∇2 p′(s) = − ∂2

∂xi∂x j
(u′

i u
′
j − u′

i u
′
j ). (2.56)

2.3 Reynolds Stress Tensor and Related Equations

2.3.1 RST Equations

In addition to simple closure models for the Reynolds-averaged Navier–Stokes equa-
tions, such as models of turbulent viscosity using a mixing length assumption, second-
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order single-point [2, 1] models offer both a dynamical and a statistical description of
the turbulent field. The governing equations for the Reynolds stress tensor, turbulent
kinetic energy, and for its dissipation rate can reflect the effects of convection, dif-
fusion, distortion, pressure and viscous stresses, which are present in the equations
that govern the fluctuating field u′

i .
The exact evolution equation for the Reynolds Stress tensor Ri j = u′

i u
′
j (with

r = 0 in Eq. (2.47)), derived from Eq. (2.50), has the form

∂Ri j

∂t
+ uk

∂Ri j

∂xk
= Pi j + �i j − εi j − ∂Di jk

∂xk
, (2.57)

where

Pi j = −∂ui

∂xk
Rk j − ∂u j

∂xk
Rki (2.58)

is usually referred to as the production tensor and is the only term on the right-hand-
side of Eq. (2.57) which does not require modelling, since it is given in terms of the
basic one-point variables ui and Ri j . The remaining terms are not exactly expressible
in terms of the basic one-point variables and heuristic approximations, forming the
core of the model, are introduced to close the equations.

The second term in the right hand side of Eq. (2.57) is associated with the fluctu-
ating pressure and is given by

�i j = p′
(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)
, (2.59)

consisting of one-point correlations between the fluctuating pressure and rate of
strain tensor. As discussed in the introduction, p′ is nonlocally determined from the
velocity field by the Poisson equation (2.52) which, in principle, requires multi-point
methods for its treatment. It is usual to decompose �i j into three parts

�i j = �
(r)
i j + �

(s)
i j + �

(w)
i j (2.60)

corresponding to the three components of the Green’s function solution of (2.52).
The first is known as the “rapid” pressure component and arises from the pressure
component defined by Eq. (2.55). Being linear, this component is present in RDT,
hence the term “rapid” component. The second term in (2.60) is the “slow” component
and comes from (2.56). Finally, �

(w)
i j is the wall component and corresponds to a

surface integral over the boundaries of the flow in the Green’s function solution for p′
which is additional to the volume integrals expressing the rapid and slow components.
The three components of �i j have zero trace, and are assumed to represent physically
distinct mechanisms. Hence, they are modelled separately. The pressure-strain tensor
is traceless (because of the incompressibility constraint) and therefore corresponds
to a mechanism of redistribution of energy between the different components of the
Reynolds stress tensor. Linear and nonlinear mechanisms reflected in its ‘rapid’ and
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‘slow’ parts, respectively, will be discussed at the end of this subsection. In simple
models, a mechanism of isotropization of the production is attributed to �

(r)
i j , and a

mechanism of return to isotropy, or isotropization of the Reynolds stress tensor, is
attributed to �

(s)
i j .

The dissipation tensor

εi j = 2ν
∂u′

i

∂xk

∂u′
j

∂xk
(2.61)

accounts for the destruction of kinetic energy by viscous effects. The usual scalar
dissipation rate, denoted ε, is defined as

ε ≡ 1

2
εi i . (2.62)

The last term in Eq. (2.57) vanishes in homogeneous turbulence. This term is
expressed as a flux of a third order correlation tensor Di jk , which gathers triple
velocity correlations, pressure-velocity terms and viscous diffusion terms:

Di jk = u′
i u

′
j u

′
k + 1

ρ

(
δ jk p′u′

i + δik p′u′
j

)
+ ν

(
u′

i

∂u′
j

∂xk
+ u′

j

∂u′
i

∂xk

)
. (2.63)

Its role is essential to spatial transfer of the turbulent kinetic energy (and
anisotropy), which is created near a wall, away from it. It will be ignored, how-
ever, as far as strict statistical homogeneity will be assumed in this book.

Given the importance of K − ε model in engineering, together with the specific
role of trace-free terms in the Reynolds stress equations, it is useful to introduce a
trace-deviator decomposition for the Reynolds stress tensor

Ri j = 2K
(

δi j

3
+ bi j

)
, K = 1

2
Rii , bi j = Ri j

2K − δi j

3
(2.64)

and to write the governing equations for both the kinetic energy K and the deviatoric,
tracefree and dimensionless, anisotropy tensor bi j .

The evolution equation for the kinetic energy derived from Eq. (2.57) is

∂K
∂t

+ uk
∂K
∂xk

= P − ε − ∂Dk

∂xk
, (2.65)

and a similar equation is derived for bi j . All the terms present in the Reynolds stress
equation contribute to the equation for the kinetic energy, except the — traceless —
pressure-strain tensor. The scalar production term P = Pi i/2 can be rewritten as

P = −K
[

1

3

(
∂ui

∂x j
+ ∂u j

∂xi

)
+

(
∂ui

∂xk
bk j + ∂u j

∂xk
bki

)]
. (2.66)
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The deviatoric part of the dissipation tensor is either neglected or simply modelled
similarly as the ‘slow’ part of the pressure-strain tensor. Only the scalar dissipation
rate ε is considered as an independent variable, which is governed by its own equation.
Since the exact evolution equation for ε is very complex, the model equation used
in practice is obtained deriving the equation for ε̇/ε from the one for K̇/K, which is
much easier to derive.

The terms which appear in the evolution equations for Reynolds stress models in
homogeneous turbulence can be exactly expressed as integrals in Fourier space of
contributions derived from the second order spectral tensor R̂i j , which is the Fourier
transform of double correlations at two point, and from the third-order ‘transfer’
spectral tensor Ti j , which involves the Fourier transform of two-point triple velocity
correlations (see Sect. 2.5).

2.3.2 The Mean Flow Consistent with Homogeneity
Restricted to Fluctuations

If we consider a mean flow, filling all the space, with space-uniform velocity gradi-
ents, which generalizes the solid body motion u(0) introduced in Sect. 2.1.9:

ūi (x, t) = Ai j (t)x j + u0
i , (2.67)

its presence can be consistent with statistical homogeneity for the fluctuating flow.
This is a common background for homogeneous turbulence and recent linear stability
analyses (see Craik and Criminale 1986, among others).5 Equations (2.48) and (2.50)
can be simplified by dropping the Reynolds stress term in both, so that (2.48) reduces
to a particular Euler equation with solution of type (2.67). As a consequence, the
trace-free matrix A is subjected to the condition that dA/dt +A2 must be symmetric,
or equivalently

εi jk

(
d A jk

dt
+ A jn Ank

)
= 0 Aii = 0. (2.68)

Irrotational mean flows, which are the flow with a symmetric gradient matrixA, i.e.
with Ai j = A ji , are obvious solutions. Rotational mean flows yield more complicated
linear solutions, and only the steady case has received much attention (Craik and
coworkers, Bayly and coworkers performed recent developments in unsteady cases,

5It is important to stress that the feedback of the Reynolds stress tensor in (2.48) vanishes due
to statistical homogeneity (zero gradient of any averaged quantity), so that the mean flow (2.67)
has to be a particular solution of the Euler equations and can be considered as a base flow for
stability analysis. In turn, the form (2.67) is consistent with the preservation of homogeneity of the
fluctuating flow governed by (2.50) and (2.51), provided that homogeneity holds for the initial data.
This explains why homogeneous RDT can have the same starting point as a rigorous and complete
linear stability analysis in this case, before the random initialisation of the fluctuating velocity field
is considered.
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Fig. 2.1 Sketch of isovalues of the streamfunction for the steady mean flow in homogeneous RDT:
the three canonical cases, a elliptical �2 > S2, b hyperbolical �2 < S2, c linear �2 = S2

see e.g. Bayly et al. 1996). Conditions (2.68) imply that A writes as

A =
⎛
⎝ 0 S − � 0

S + � 0 0
0 0 0

⎞
⎠ (2.69)

in the steady, rotational case, when axes are chosen appropriately, where S,� ≥ 0.
This corresponds to steady plane flows, combining vorticity 2� and irrotational
straining S. The related (scalar here and related to the two-dimensional mean flow)
streamfunction (sketched on Fig. 2.1) is

� = S

2
(x2

1 − x2
2 ) + �

2
(x2

1 + x2
2 ) (2.70)

with ui = εi3 j
∂�
∂x j

. The problem with arbitrary S and � was analysed in order to
generalise classical RDT results, which were restricted to pure strain and pure shear.
For S > �, the mean flow streamlines are open and hyperbolic. For S < �, the
mean flow streamlines are closed and elliptic about the stagnation point at the origin.
The limiting case, S = �, correspond to pure shearing of straight mean streamlines
(see Chap. 9 for fundamentals of RDT analysis).

http://dx.doi.org/10.1007/978-3-319-73162-9_9
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2.3.3 Homogeneous RST Equations. Briefs About
Closure Methods

Classical closure methods are now briefly addressed. The reader is referred to ref-
erence books for an exhaustive discussion about turbulence modelling, e.g. Piquet
(2001). If we restrict our attention to homogeneous turbulence in the presence of
mean velocity gradients previously defined, the Reynolds Stress tensor is unsteady:
the steadiness of RST equations, often assumed in RANS methods, comes from
the use of time averaging, and does not concern us here. Historically, basic con-
cepts for deriving statistical closures were introduced in this unsteady homogeneous
framework (Launder et al. 1975; Lumley 1975). The most difficult term to close
in homogeneous turbulence is the linear (rapid) contribution to the pressure-strain
tensor in Eqs. (2.57) and (2.60), which can be written as

�
(r)
i j = 2Amn

(
Minmj + M jnmi

)
, (2.71)

with

Mi jpq = 1

4π

∂2

∂rp∂rq

∫∫∫
1

| r − r ′ | Ri j (r ′, t)d3r ′, (2.72)

using Eqs. (2.53) and (2.54). A slightly different form of Mi jpq can be found in Laun-
der et al. (1975), Lumley (1978). The alternative relationship for Mi jpq in Fourier
space, more tractable from our viewpoint, will be given in Sect. 2.6.2, in exact agree-
ment with, e.g., Kassinos et al. (2001). In general, there is no direct link between
Mi jpq and the Reynolds Stress tensor, even if the identity Mi jpp = Ri j holds, and
the problem of closure arises from the two-point structure in Eq. (2.72). In classical
closures, the non-dimensional tensor Mi jpq/(2K) is sought as a tensorial function of
the nondimensional deviatoric tensor bi j defined in Eq. (2.64). Models range from
linear (Launder et al. 1975) to cubic tensorial expansions.

Similarly, the slow pressure-strain tensor is assumed to be an isotropic tensorial
function of bi j . In the simplest version, �

(s)
i j is proportional to −bi j , in agreement

with an heuristic principle of return-to-isotropy.
Finally, the ε-equation is usually closed by pure analogy with the K-equation. This

can be understood considering the following evolution equations for their logarithmic
derivatives:

1

K
dK
dt

= P
K − ε

K (2.73)

and
1

ε

dε

dt
= Cε1

P
K − Cε2

ε

K . (2.74)

where Cε1 and Cε2 are two real arbitrary parameters, which are tuned to optimize the
results on some very simple flows (e.g. decaying isotropic turbulence, homogeneous
shear flow, turbulent flat-plate boundary layer, …) The first equation can be consid-
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ered as exact in the homogeneous unsteady limit, if the production term, given by Eq.
(2.66) is known (it derives from the Reynolds Stress tensor, but it is evaluated from
simplified bi j -models in linear and nonlinear K − ε models). On the other hand, the
second equation is only a carbon copy of the first one, using two empirical constants,
without linkage to the true enstrophy equation.

2.3.3.1 KRR’s New Tensors

Even if the Reynolds Stress tensor is recovered in contracting the last two indices of
Mi jpq , the closure of this whole tensor in terms of the Reynolds Stress tensor only is
an heuristic method, which was questioned, especially in the presence of a rotational
mean flow. In order to capture more of the components of Mi jpq , Kassinos, Reynolds
and Rogers (see Kassinos et al. 2001) proposed to introduce a Dimensionality tensor

Dpq = Miipq , (2.75)

along with a Circulicity tensor, denoted Fi j in Kassinos et al. (2001) but fi j here to
avoid any confusion with the Cauchy matrix, and a Stropholysis tensor Qi jn

fi j = εi pmε jqn Mmnpq , Qi jn = εi pq M jqpn, (2.76)

with an alternative fully symmetrized version Q∗
i jn . In homogeneous turbulence, the

circulicity tensor is not an independent one, in agreement with

fi j = Kδi j − Di j − u′
i u

′
j . (2.77)

Alternative definitions (also valid in inhomogeneous turbulence) were given by
using a vector potential, or turbulence stream function vector ψ′

i , first introduced in
Eq. (2.21), or

u′
i = εimnψ

′
n,m,

so that

u′
i u

′
j = εimnεi pqψ′

n,mψ′
q,p, Di j = ψ′

n,iψ
′
n, j , fi j = ψ′

i,nψ
′
j,n. (2.78)

The reader is referred to Kassinos et al. (2001) for the definition of a last tensor,
denoted Ci j and specifically inhomogeneous. As for Mi jpq , a new insight to this
structure-based modelling will appear using spectral formalism.
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2.4 Anisotropy in Physical Space. Single-Point Correlations

In single-point modelling used in RANS methods, the deviatoric part of the Reynolds
stress tensor is used as the unique anisotropy indicator. An equation for bi j is readily
derived from (2.57), as the K-equation (2.65).

The anisotropy tensor bi j defined in Eq. (2.64) can be used to characterize the
structure of the anisotropic flows. Following the Cayley–Hamilton theorem, one has

b3
i j + I2bi j − I3δi j = 0 (2.79)

where the second and third invariants of the anisotropy tensor are defined as I2 =
−bi j b ji/2 and I3 = det(b), respectively. It was shown by Lumley and Newman
(1977) that all physically admissible turbulent flows are contained within a finite
region (often referred to as the Lumley triangle) in the space spanned by I2 and I3

(or equivalently in the space spanned by the two non-vanishing eigenvalues of the
anisotropy tensor). Each admissible point in the anisotropy map corresponds to a
specific shape of the ellipsoid generated by the three diagonal components of the
Reynolds stress tensor. The classification of the main anisotropy states was recently
clarified by Simonsen and Krogstadt (2005). The main elements of the classification
are summarized in Table 2.1 and illustrated in Fig. 2.2.

This analysis can be applied to any ‘deviatoric’ tensor, dimensionless and
tracefree, derived from a definite-positive symmetrical tensor. The complete with
possible prefactors in terms of n!, that are absorbed or not in the definition of exten-
dees Lagrange polynomials. Definite-positive tensor, be the Reynolds stress tensor,
the dimensionality tensor, yields three positive eigenvalues related to the orthog-
onal frame of eigenvectors (principal axes), which can be used instead of the λi

Table 2.1 Characteristics of Reynolds stress tensor and the anisotropy tensor. Adapted from
Simonsen and Krogstad (2005)

State of turbulence Invariants Eigenvalues of bi j Shape of Reynolds
stress ellipsoid

Isotropic I2 = I3 = 0 λ1 = λ2 = λ3 = 0 Sphere

Axisymmetric (one
large λi )

−I2
3 =

(
I3
2

)2/3
0 < λ1 < 1

3
− 1

6 < λ2 = λ3 < 0
Prolate spheroid

Axisymmetric (one
small λi )

−I2
3 =

(
− I3

2

)2/3
0 < λ1 < 1

3
0 < λ2 = λ3 < 1

6

Oblate spheroid

One-component I3 = 2
27 I2 = − 1

3 λ1 = 2
3

λ2 = λ3 = − 1
3

Line

Two component
(axisymmetric)

I3 = − 1
108

I2 = − 1
12

λ1 = − 1
3

λ2 = λ3 = 1
6

Disk

Two component − I2
3 = ( 1

27 + I3
)

λ1 + λ2 = 1
3

λ3 = − 1
3

Ellipsoid
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Fig. 2.2 Lumley’s
anisotropy invariant map and
related Reynolds stress
ellipsoids. Admissible
turbulent states are located
inside the triangle-like
subdomain. From Simonsen
and Krogstad (2005), with
permission of the AIP

eigenvalues. Many instances will be given throughout this book, including structure-
based modelling and spectral tensors as well.

Note that the initial reference to dimensionality (1D, 2D) for discussing the Lum-
ley invariant map was confusing, because the Reynolds stress tensor gives only access
to componentiality. This was partly clarified by Kassinos et al. (2001), and the con-
cepts of dimensionality and componentiality for single-point structure tensors can
be exactly derived from the irreducible decomposition of the spectral (or two-point)
tensor of second-order velocity correlations in terms of directional anisotropy and
polarization anisotropy.

2.5 Spectral Analysis, from Random Fields to Two-Point
Correlations. Local Frame, Helical Modes

2.5.1 Second Order Statistics

Regarding homogeneous turbulence, we aim at taking into account the possible
distorting effects of a mean flow defined by Eqs. (2.67) and (2.68), or effects of body
forces, so that anisotropy is essential. Therefore, the emphasis is put on Homogeneous
Anisotropic Turbulence (HAT). The Fourier transform is a valuable tool to handle
equations for velocity and pressure fluctuations, considered as random variables,
as well as their statistical multipoint correlations matrices. The relations between
second-order tensors defined in both physical and Fourier spaces are displayed in
Fig. 2.3.

The inverse Fourier transform which connects u′ to û is expressed as

u′
i (x, t) =

∫
ûi (k, t) exp(ı k · x) d3k. (2.80)
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Fig. 2.3 Schematic view of
the relations which exist
between second-order
tensors defined in both
physical and Fourier spaces

Applying it to the two-point correlation tensor, one obtains

u′
i (x, t)u′

j (x + r, t) =
∫

R̂i j (k, t) exp(ı k · r)d3k. (2.81)

One may recall here that the direct Fourier transform writes

R̂i j (k, t) = 1

(2π)3

∫
Ri j (r, t) exp(−ı k · r)d3r. (2.82)

It is worth noting that the prefactor 1/(2π)3 appears in Eq. (2.82), and not in Eq.
(2.81). According to (2.81), the Reynolds Stress tensor, which is obtained by setting
r = 0 in Ri j , derives from its spectral counterpart R̂ through a 3D integral

u′
i (x, t)u′

j (x, t) =
∫

R̂i j (k, t)d3k. (2.83)

The last interesting equation is

û∗
i ( p, t)û j (k, t) = R̂i j (k, t)δ3(k − p). (2.84)

Two alternative ways can be used to derive evolution equations for statistical
quantities in spectral space. On the one hand, an equation for u′

i (x, t)u′
j (x + r, t)

can be derived by first using Eq. (2.50) and then obtaining the equation for R̂i j , by
applying (2.82), following Craya and Oberlack (2001). On the other hand, an equation
for ûi (k, t) can be directly obtained in Fourier space, from which the equation for R̂i j

is derived using Eq. (2.84). At least in homogeneous turbulence, the second way is
simpler since the pressure term can be solved in the simplest way in the equation for
ûi . As a consequence, it will be used in the following. The first way (Craya 1958),
even if more cumbersome, has the advantage of applying Fourier-transform only
on statistical (smooth) quantities, without need for distribution theory. The reader
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is referred to Batchelor (1953) and to Chap. 6 of Mathieu and Scott (2000) for a
detailed analysis of Fourier expansions of both random variables and their statistical
moments and their limit in an infinite box.

2.5.2 Poloidal-Toroidal Decomposition, and Craya–Herring
Frame of Reference

The simplified poloidal-toroidal decomposition was given by Eq. (2.25). It is used
to represent a three-component divergence-free velocity field in terms of two inde-
pendent scalar terms, taking advantage of the presence of a privileged direction n:

u′ = ∇ × (s ′
tor n)︸ ︷︷ ︸

toroidal part

+∇ × [∇ × (s ′
pol n)]︸ ︷︷ ︸

poloidal part

.

The axial vector n is chosen (Chandrasekhar 1981) along the vertical direction,
without loss of generality. As a caveat, some care is needed to represent vertically
sheared horizontal flows (VSHF) (as coined in Smith and Waleffe 2002) which are
defined as u′ = u′(x · n, t) with u′ · n = 0.

In Fourier space, the above decomposition yields a pure geometrical representa-
tion

û = k × n(ı ŝtor )︸ ︷︷ ︸
toroidal mode

− k × (k × n)(ŝpol)︸ ︷︷ ︸
poloidal mode

(2.85)

and it appears immediately that the Fourier mode related to the vertical wavevector
direction, k ‖ n, has zero contribution. This gap in the spectral description precludes
the capture of the VSHF mode in physical space. In order to cure this problem, one
can define an orthonormal frame of reference, which is nothing but the local reference
frame of a polar-spherical system of coordinates for k (see Fig. 2.4)

Fig. 2.4 Polar-spherical
system of coordinates for k
and related ‘Craya–Herring’
frame of reference
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e(1) = k × n
|k × n| , e(2) = e(3) × e(1), e(3) = k

k
(2.86)

with k × n �= 0. Local frame vectors e(1), e(2), e(3) may coincide with the fixed
frame of reference, with e(3) = n for k ‖ n. In the turbulence community, the local
frame (e(1), e(2)) of the plane normal to the wave vector is often referred to as Craya–
Herring frame. Accordingly, the divergence-free velocity field in Fourier space has
only two components in the Craya–Herring frame

û(k, t) = u(1)e(1) + u(2)e(2). (2.87)

For k × n �= 0, u(1) and u(2) are directly linked to the toroidal mode and the
poloidal mode, respectively. For k × n = 0, they correspond to the VSHF mode. For
the vorticity fluctuation, a similar decomposition is found:

ω̂i (k, t) = ık
(

u(1)e(2)
i − u(2)e(1)

i

)
, (2.88)

so that u(1) and u(2) are directly related to the spectral counterparts of Orr–
Sommerfeld/Squires variables: ω̂3 = −k⊥u(1) for ω′

3 and −k2û3 = −kk⊥u(2) for
∇2u′

3, with k⊥ = |k × n|. A similar decomposition is used in Bayly et al. (1996).
Finally, the wave-vortex decomposition introduced in Riley et al. (1981) in the par-
ticular context of stably stratified turbulence (see Chap. 10), is also a particular case
of Eq. (2.25).

Rapid Distortion Theory equations (and fully nonlinear ones, too) can be written
in the Craya–Herring frame, resulting in a reduced Green’s function with only four
independent components (Cambon 1982). Details will be given in next Sect. 2.5.7,
then in next chapters, in which RDT solutions are discussed.

The poloidal-toroidal decomposition gives access, for instance, to the potential
vector in Eq. (2.21) as

ψ′
i = s ′

tor ni + εi pq

∂s ′
pol

∂x p
nq . (2.89)

The usual way to recover the two scalar functions s ′
pol and s ′

tor from the solenoidal
velocity field is not recalled here for the sake of brevity.

2.5.2.1 Towards Vectorial Spherical Harmonics

The Craya–Herring decomposition, as a spectral counterpart of the simplified
toroidal-poloidal decomposition is used throughout this book, with several variants.
The problem of expanding a vector field in terms of spherical harmonics, however,
cannot be solved using Eq. (2.25). For this purpose, the alternative way of using
vectorial spherical harmonics given by Chandrasekhar (1981), Rieutord (1987) is
now introduced and discussed. Expansion of the scalar field in terms of spherical

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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harmonics is well known. Using a system of polar-spherical coordinates (r, θ,φ) for
any scalar s, e.g. in physical space, the SSH (Scalar Spherical Harmonics) Y m

n (θ,φ)

use extended Legendre polynomials P |m|
n as follows

s(r, θ,φ) =
N∑

n=0

m=n∑
m=−n

sm
n (r)P |m|

n (θ) exp(ımφ), (2.90)

with possible prefactors in terms of n!, that are absorbed or not in the definition of
extended Legendre polynomials. What about a vector (or tensorial) field? One may
immediately extend expansions in terms of SSH to toroidal and poloidal potentials in
Eq. (2.25) . . .but the problem of null contribution to the “pole” (r ‖ n) rears its ugly
head! Following the study by Rieutord (1987), a different toroidal mode is defined
as

u(tor) = ∇ × (s ′′(r)r/r), (2.91)

with a related expansion in terms of vectorial spherical harmonics

u(tor)(r, θ,φ) =
N∑

n=0

n∑
m=−n

wm
n (r)∇ ×

(
Y m

n (θ,φ)
r
r

)
.

Details on the rest of the decomposition, with a spheroidal field for u, or u − u(tor),
also related to an extended poloidal field (Chandrasekhar 1981; Rieutord 1987), is
not given here for the sake of brevity. Let us retain only that the radial vector of the
polar-spherical system of coordinates is used for defining the toroidal field instead
of the polar axis. The problem of the “hole in the pole” is solved, but translation in
Fourier space raises new difficulties. An expansion of a scalar field, from s(r, θ,φ)

in physical space to ŝ(k, θk,φk) in 3D Fourier space is very simple, using the same
SSH. On the other hand, the counterpart of basis of the vectorial spherical harmonics
should use a modified toroidal field as

û(tor) = k ×
(

∂s ′′′(k)

∂k

)
,

with a differential operator, now contaminating the 3D Fourier space representation,
that is purely algebraic with the Craya–Herring decompositions and its variants.
Accordingly the vectorial spherical harmonics (VSH) decomposition deserves fur-
ther investigation, but it brings out new difficulties. Keeping in mind the invaluable
role of Fourier decomposition in HAT, we will continue to privilegiate the Craya–
Herring decomposition and its variants in the following.
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2.5.3 The Helical Mode Decomposition

This decomposition is an alternative to the Craya–Herring decomposition, and
presents some advantages regarding frame-invariance properties, treatment of back-
ground nonlinearity, and rotating turbulence. The helical modes are defined from

Ni (k) = e(2)
i (k) − ıe(1)

i (k) (2.92)

so that the solenoidal velocity field in Fourier space is decomposed as

û(k, t) = ξ+(k, t)N(k) + ξ−(k, t)N(−k). (2.93)

The definition above is the same as in the Cambon’s thesis (1982). It was used
in all the subsequent papers (e.g. Cambon and Jacquin 1989) from the same team.
Particularly, this definition ensures Hermitian symmetry

N(−k) = N∗(k)

since e(1)(−k) = −e(1)(k) and e(2)(−k) = e(2)(k). The most useful property is

ı k × N = k N, (2.94)

which means that Neı k·x and its complex conjugate are eigenmodes of the Curl
operator. Accordingly, the vorticity fluctuation in Fourier space is written as

ω̂i (k, t) = k (ξ+(k, t)Ni (k) − ξ−(k, t)Ni (−k)) . (2.95)

Helical modes (2.92) were also used by Waleffe (1992). Only looking at the
literature from the turbulence community, similar modes were introduced in the
1970s as helicity waves (Uriel Frish and Marcel Lesieur, private communication),
but they were not used to get simplified dynamical equations.

Key elements of three spectral decompositions presented above are summarized
in Table 2.2.

2.5.4 On the Use of Projection Operators

Even when pure incompressible flows are considered, the solenoidal property for
the velocity field is not satisfied by some terms in the governing equations, so that
projection onto a solenoidal subspace is needed. The Helmholtz decomposition,
which was addressed in Sect. 2.1.5, with Eq. (2.21) can be used in a simple way to
define longitudinal and transverse projection operators.
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Table 2.2 Local frame of reference in the Fourier space. The general form is û(k, t) =
χ1(t)V 1(k) + χ2(t)V 2(k), where (V 1(k), V 2(k)) is a local frame in the plane orthogonal to k
This local basis is supplement by a third vector V 3. The vector n is an arbitrary parameter in the
three decompositions

Decomposition name V 3(k) V 1(k) V 2(k)

Poloidal-toroidal n ı k × n −k × (k × n)

Craya–Herring
k
k

k × n
|k × n|

k
k

× k × n
|k × n|

Helical
k
k

k
k

× k × n
|k × n| − ı

k × n
|k × n|

k
k

× k × n
|k × n| + ı

k × n
|k × n|

A simple geometric decomposition is obvious for any vector V into a component
along a given direction spanned by a unit vector a and a component contained in the
plane normal to a

V = V ‖ + V ⊥,

with V ‖ = (V · a)a and, by difference V ⊥ = V − (V · a)a. This decomposition
brings in two projection matrices, P‖

i j = ai a j , with V ‖
i = P‖

i j Vj , and P⊥
i j = δi j −ai a j

with V ⊥
i = P⊥

i j Vj .
If we now consider V (k) as the Fourier transform of any term in the background

equation which governs û, and set a equal to the unit vector along k, i.e. ai = ki/k,
the above geometric decomposition gives a simplified instance of the Helmholtz
decomposition. Accordingly,

V ‖
i (k) = ki k j

k2
Vi (k)

corresponds to the projection onto the dilatational mode, and

V ⊥
i (k) =

(
δi j − ki k j

k2

)
Vj (k)

corresponds to the projection onto the solenoidal mode. This immediately suggests
to define a longitudinal projection operator

P‖
i j = ki k j

k2
(2.96)

and a transverse projection operator as

P⊥
i j = δi j − ki k j

k2
. (2.97)

Let us consider the generic model equation, Eq. (2.22)
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∂u′
i

∂t
+ Si + ∂ p′

∂xi
= 0

with a solenoidal u′ and an arbitrary term Si . Its counterpart in Fourier space is

∂ûi

∂t
+ Ŝi + ıki p̂ = 0,

and the solenoidal property is replaced by the condition that û and k are orthogonal.
Application of the longitudinal projection operator yields

P‖
i j û j = 0,

and
P‖

i j Ŝ j + ıki p̂ = 0,

which corresponds to the Poisson equation for the pressure term, whereas the trans-
verse projection operator gives

P⊥
i j û j = ûi

and
∂ûi

∂t
+ P⊥

i j Ŝi = 0.

The latter equation is a pure solenoidal equation, which no longer includes the
pressure term. Putting the emphasis on solenoidal turbulence, only the latter form of
the dynamical equation is useful (as far as the specific information on the pressure
term is not needed), and only the tranverse projection operator P⊥(k) is needed. For
the sake of simplicity the adjective ‘transverse’ and the superscript ⊥ will be omitted
from now on. Of course, the projection operator has a simple expression in terms of
Craya–Herring and helical modes

Pi j = e(1)
i e(1)

j + e(2)
i e(2)

j = � (
Ni N ∗

j

)
. (2.98)

The decomposition of an arbitrary vector field V (k), which is not a priori
divergence-free, requires the use of the three vectors (e(1), e(2), e(3)) of the Craya–
Herring base, with e(3)

i = ki/k. One recovers here the fact that the third component
is related to the dilatational mode (which is a one-dimensional mode in the local
reference frame) and that the first two components represent the solenoidal mode
(which is a priori two-dimensional in the local reference frame), in agreement with
both the Helmholtz and toroidal-poloidal decompositions in physical space.
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2.5.5 Nonlinear Dynamics

Considering a mean flow which preserves the statistical homogeneity of the fluctu-
ating motion, the nonlinear equation (2.50) can be recast as follows

˙̂ui + Mi j û j = si − νk2ûi , (2.99)

where
˙̂ui = ∂ûi

∂t
+ ∂ûi

∂km

dkm

dt
= ∂ûi

∂t
− Almkl

∂ûi

∂km
(2.100)

is related to linear advection by the mean flow (see Eq. (2.67)), and Mi j = Amj (δim −
2ki km/k2) gathers linear distortion and pressure terms (see Chap. 8). Once nonlinear
and viscous terms have been summed, Eq. (2.99) generalises the linear inviscid
equation.

The nonlinear term si is given by

si (k, t) = −ı Pi jk(k)

∫
p+q=k

û j (p, t )̂uk(q, t)d3p, (2.101)

in which the third-order tensor Pi jk = 1
2 (Pi j kk + Pikk j ) arises from the elimination

of pressure using the incompressibility condition ki ûi (k, t) = 0, in agreement with
the use of the projection operator (2.97) as discussed in the previous subsection.

The equations (2.99)–(2.101) are completely generic, and hold for other cases,
including body forces and additional random variables. This is achieved in a straight-
forward manner only changing the matrix M of the linear operator, and/or the influ-
ence matrix Pi jk in the convolution product which reflects quadratic nonlinearity.
The evolution equation for R̂i j (Craya 1958) derived from Eqs. (2.84) and (2.99) is

˙̂Ri j + Mik R̂k j + M jk R̂ik = Ti j − 2νk2 R̂i j , (2.102)

where the left-hand side arises from the linear inviscid part of Eq. (2.99). The term
˙̂Ri j is a convective time derivative in k-space with distortion components. The second

term in the right-hand-side is the spectral counterpart of the dissipation tensor. The
generalized transfer tensor Ti j is mediated by nonlinearity as

< û∗
i ( p, t)s j (k, t) + s∗

i ( p, t)û j (k, t) >= Ti j (k, t)δ( p − k). (2.103)

This tensor involves triple velocity correlations as shown by Eq. (2.101) for si .
More details on it will be given in Chap. 4.

Although the purely linear theory closes the equations and simplifies mathematical
analysis, its domain of applicability is rather limited since it neglects all interactions
of turbulence with itself, including the physically important cascade process. Multi-
point turbulence models which account for nonlinearity via closure lead to moment

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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equations with a well-defined linear operator and nonlinear source terms. The view
taken in this chapter is that, even when nonlinearity is significant, the behaviour of
the linear part of the model often has a significant influence. Thus, it is important
to first understand the properties of the linearised model. An additional interesting
output of the linearised analysis is that it often allows for the definition of a simplified
formulation of the nonlinear model using more appropriate variables.

2.5.6 Background Nonlinearity in the Different Reference
Frames

Equations given in Sect. 2.5.5 express background linear and nonlinear terms in three-
dimensional Fourier space. They can be rewritten in the different local reference
frames introduced above (results are summarized in Table 2.3).

In the Craya–Herring frame of reference, the û vector with three components is
replaced by the u(α) vector which has two components, and Eq. (2.99) becomes

u̇(α) + mαβu(β) = −ı
∫

p+q=k
Pαβγu(β)( p, t)u(γ)(q, t)d3 p, (2.104)

with
mαβ(k) = e(α)

i Mi j e
(β)

j − ė(α)
i e(β)

j (2.105)

and Chandrasekhar (1981)

Pαβγ(k, p) = k

2

[
(e(α)(k) · e(β)( p))(e(3)(k) · e(γ)(q))

+ (e(α)(k) · e(γ)(q))(e(3)(k) · e(β)( p))
]
. (2.106)

More details will be given in Chaps. 4 and 10. Using the helical modes decompo-
sition, with ξs = (1/2)ûi (k)Ni (−sk), the background equation (2.104) becomes

ξ̇s + mss ′ξs ′ = −ı
∫

p+q=k
Pss ′s ′′ξs ′( p, t)ξs ′′(q, t)d3 p, (2.107)

with

mss ′(k) = (1/2)Ni (−sk)Mi j N j (s
′k) − (1/2)Ṅi (−sk)N j (s

′k) (2.108)

and

Mss ′s ′′ = k

4

[
(N(−sk) · N(s ′ p))(e(3)(k) · N(s ′′q))

+ (N(−sk) · N(s ′′q))(e(3)(k) · N(s ′ p))
]
. (2.109)

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_10
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The signs s, s ′, s ′′ take only the values ±1, and the Einstein convention on repeated
indices is used. The last equation will be revisited in Chaps. 4 and 10.

It is worth noting that Eqs. (2.106) and (2.109) directly use the expression of
the basic nonlinearity as the solenoidal part of ∇(u ⊗ u). A very interesting variant
is obtained starting from the solenoidal part of ω × u (e.g. Waleffe 1992). The
counterpart of (2.106) is

Pαβγ = 1

2
εβδ3e(α)(k) · (

qe(δ)( p) × e(γ)(q) + pe(δ)(q) × e(γ)( p)
)
, (2.110)

whereas the counterpart of (2.109) is

Mss ′s ′′ = 1

2
(s ′ p − s ′′q)N(−sk) · (

N(s ′ p) × N(s ′′q)
)
. (2.111)

Applications of the first equation is given in Chap. 10, whereas applications of the
second equations appear in Chaps. 4 and 7.

2.5.7 Inverting Linear Operators: Introduction to Green
Functions

Our basic equations, mainly seen in Fourier space, involve both linear operators
induced by mean gradients and/or body forces, and quadratic nonlinearities. Solving
(or inverting) these linear operators, for models ranging from RDT approximation to
fully nonlinear equations recast in an adequate way, is useful even in the absence of
any closure application. Such mathematical operation will help to clarify the structure
of many two-point or triadic closures, anyway.

For this purpose, we anticipate some developments presented in Chaps. 7–11.
A basic tensorial Green’s function is identified in the viscous RDT approxima-

tion. Considering the nonlinear problem Eq. (2.99), it leads to the following formal
solution:

ûi (k(t), t) = G(0)
i j (k, t, t0)û j (k(t0), t0) +

∫ t

t0

G(0)
i j (k, t, t ′′)s j (k(t ′′), t ′′)dt ′′,

(2.112)
in which the first term gives the purely linear solution, or viscous RDT solution, and
the second one accounts for the nonlinear term and any given forcing added to it. It
is worth noting that it is based on a Lagrangian approach (for the mean flow only,
see Sect. 2.8) and that the time dependence of the wave vector resulting from the
advection by the mean flow is involved. The use of a time-dependent wave vector
is equivalent of solving the advection term in Eq. (2.100) following characteristic
lines; details are given in Sect. 8.4, with Eq. (17.28).

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_17
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The associated form of this solution in the Craya–Herring frame of reference
(which leads to the definition of the problem with the minimal number of components)
is

u(α)(k(t), t) = g(0)

αβ (k, t, t0)u
(β)(k(t0), t0) +

∫ t

t0

g(0)

αβ (k, t, t ′′)sβ(k(t ′′), t ′′)dt ′′,

(2.113)
with

gαβ(k, t, t ′′) = e(α)
i (k(t))Gi j (k, t, t ′′)e(β)

j (k(t ′′)), α,β = 1, 2. (2.114)

In order to gather both contributions from initial data and from the forcing non-
linear term, the previous equations can be compacted as

ûi (k(t), t) =
∫ t

−∞
G(0)

i j (k, t, t ′′) f j (k(t ′′), t ′′)dt ′′, (2.115)

with f (k(t ′′), t ′′) = û(k(t ′′), t ′′)δ(t ′′ − t0) + s(k(t ′′), t ′′)H(t ′′ − t0), where δ and H
denote the Dirac and Heaviside temporal distributions, respectively.

2.5.7.1 Single-Time Statistics

The formal solution of the Craya equation (2.102) for the single-time second-order
spectral tensor is

R̂i j (k(t), t) = G(0)
im (k, t, t0)G

(0)
jn (k, t, t0)R̂mn(k(t0), t0)

+
∫ t

t0

G(0)
im (k, t, t ′′)G(0)

jn (k, t, t ′′)Tmn(k(t ′′), t ′′)dt ′′. (2.116)

Going to third-order statistical moment, one obtains

Si jm(k(t), p(t), t) = G(0)
iu (q, t, t0)G

(0)
jv (k, t, t0)G

(0)
mw Suvw(k(t0), t0)

+
∫ t

t0

G(0)
iu (q, t, t ′′)G(0)

jv (k, t, t ′′)G(0)
mw( p, t, t ′′)τuvw(k(t ′′), p(t ′′), t ′′)dt ′′,

(2.117)
in which Si jm is related to three-point third-order correlations, via

ı ûi (q, t)û j (k, t)ûm( p, t) = Si jm(k, p, t)δ3(k + p + q), (2.118)

with

Ti j (k, t) = km

∫∫∫ (
Si jm(k, p, t) + S∗

j im(k, p, t)
)

d3 p, (2.119)
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and where τi jm accounts for all contributions originating in fourth-order correlations.
Of course, this procedure can be extended to any statistical moments with arbi-

trary order N (see also Sect. 2.6.3), without any additional assumption other than
incompressibility and statistical homogeneity restricted to fluctuations.

A direct closure in terms of single-time statistics can be found for three-point third-
order correlations, replacing the “bare” Green’s function in the nonlinear part of Eq.
(2.116) by a nonlinear Green’s tensor G(N L)

i j similar to the Kraichnan’s response
tensor discussed below, and simultaneously replacing the contribution from fourth-
order correlations τuvw by its quasi-normal approximation τ (QN )

uvw , leading to

Si jm(k(t), p(t), t) = G(0)
iu (q, t, t0)G

(0)
jv (k, t, t0)G

(0)
mw Suvw(k(t0), t0)

+
∫ t

t0

G(N L)
iu (q, t, t ′)G(N L)

jv (k, t, t ′)G(N L)
mw ( p, t, t ′)τ (QN )

uvw (k(t ′), p(t ′), t ′)dt ′.

(2.120)

The quasi-normal expression τ (QN )
uvw , which appears as a factorization of fourth-

order correlations in terms of second-order ones, is not detailed here. Because τuvw

differs from its quasi-normal expression τ (QN )
uvw via fourth-order cumulants, these

cumulants generate the departure of G(N L)
i j from its purely linear counterpart G(0)

i j .
Equation (2.120) can therefore give the structure of generalized EDQNM, or TFM
(Test Field Model) once reduced to single-time statistics, if the derivation of the
nonlinear tensorial Green’s function is not specified.

2.5.7.2 Towards Two-Time Statistics, and Discussion

The concept of response tensor, as a nonlinear Green’s tensor, was introduced by
Kraichnan, so that we should introduce, at least for the sake of formal comparisons,
some background from DIA (Direct Interaction Approximation) (Kraichnan 1958).
To this end, it is useful to look at two-time correlations as well, because they are
essential for the derivation of all theories inspired from DIA. In the absence of mean
advection effect, the two-time counterpart of R̂i j is immediately found as

û∗
i ( p, t ′)û j (k, t) = R̂i j (k, t, t ′)δ3(k − p). (2.121)

The response tensor is introduced for expressing the infinitesimal velocity pertur-
bation in terms of the nonlinear forcing perturbation as

δûi (k, t) =
∫ t

t0

Gi j (k, t, t ′′)δ f j (k, t ′′)dt ′′. (2.122)

Putting aside the advection term, this equation is similar to the linear equa-
tion (2.115), but linearization is performed around a fully nonlinear state, so that
an additional convolution term δû ⊗ û is generated in linearized Navier–Stokes-type
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equations from the quadratic nonlinearity. Incidentally, Eq. (2.122) is an oversim-
plification, because the nonlinear response tensor should be nonlocal in space, as
Gi j (k, k′′, t, t ′′) is, at least before specifying statistical properties such as homo-
geneity or isotropy that should hold for its statistical moments only. This point will
be rediscussed in Chap. 17.

Now, analogies with single-time Eqs. (2.117) and (2.120) are sought, but it must
be kept in mind that DIA relies on perturbative expansions. In the equation governing
the two-time second-order spectral tensor R̂(k, t, t ′), nonlinearity calls into play the
following two-time and perturbative counterpart of −ı Si jm :

S1 = δûi (q, t ′)û j (k, t)ûm( p, t ′) + ûi (q, t ′)δû j (k, t)ûm( p, t ′)

+ ûi (q, t ′)û j (k, t)δûm( p, t ′).

The second term on the right hand side may be written as

ûi (q, t ′)δû j (k, t)ûm( p, t ′) =

− ı Puvw(k)

∫ t

t0

G ju(k, t, t ′′)ûm( p, t ′)ûv(− p, t ′′)ûi (q, t ′)ûw(−q, t ′′)dt ′′,

(2.123)

and similarly for the other two terms, where Gi j denote the Kraichnan’s response
tensor for infinitesimal perturbations. Only its ensemble-average, finally involved in
closure equations, will be referred to as response tensor in the following.

Considering now the procedure inherited from Kraichnan’s initial DIA, the closure
relationship from Eq. (2.123) yields

ûi (q, t ′)δû j (k, t)ûm( p, t ′) =

− ı Puvw(k)

∫ t

t0

G ju(k, t, t ′′)ûm( p, t ′)ûv(− p, t ′′) · ûi (q, t ′)ûw(−q, t ′′)dt ′′,

(2.124)

in which the weak dependence principle implies quasi-normal factorization of fourth-
order velocity correlations, as done in Eq. (2.120). Finally, how to reconcile Eq.
(2.120) and Eq. (2.124)? If we accept to identify G(N L)

i j and Gi j , the apparent dif-
ference is a three-fold product of response tensors in the first equation, and a single
response tensor in the second one. In fact, the three-fold product is recovered when
“converting” two-time second-order statistics into single-time ones: The response
tensor is used for this purpose, in agreement with a so-called fluctuation-dissipation
theorem, which amounts to write

R̂vm( p, t ′, t ′′) = Gmr ( p, t ′′, t ′)R̂vr ( p, t ′′, t ′′), (2.125)

with t ′′ ≤ t ′ ≤ t for instance, and similarly for R̂wi (q, t ′′, t ′) from Eq. (2.124).

http://dx.doi.org/10.1007/978-3-319-73162-9_17
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This preliminary discussion of DIA gives a link between single-time and two-time
approaches to triadic closures, but we have eluded important technical problems. This
point is further discussed with care in Chap. 17. Three points can be specified from
now on as follows.

• To our best knowledge, the correct zeroth-order response tensor, denoted G(0)
i j here,

is never used to get practical results in two-time theories, even when homogeneous
anisotropic shear-driven flows are addressed. In contrast, perturbation expansions
are started with a purely isotropic zeroth-order expansion, so that only very weak
anisotropy is considered in the homogeneous context. The mean-shear-advection,
which amounts to link different wave vectors and different times is not taken into
account, and this reflects an oversimplification of the (random) response tensor for
perturbations, before and even after averaging it. Accordingly, two-time theories
ought to be completely re-formulated in order to address arbitrary anisotropy.

• DIA is applied to inhomogeneous flows, both shear driven and thermally driven in
Kraichnan (1964). Is it possible to by-pass the intermediate step of homogeneous
arbitrary anisotropic flows? This is a difficult question, almost outside the scope
of this book, but a discussion cannot be eluded (see Chaps. 10 and 17.)

• The possible advantage of two-time theories is to use a coupled equation for the
nonlinear response tensor, which is not specified a priori, as it might be in single-
time EDQNM-type approach. In counterpart, the relevance of this equation, always
obtained by a perturbation expansion, depends on its zeroth order.

Finally, it is important to emphasize that nothing is said about small perturbations
in exact (before closure) Eq. (2.117) leading to Eq. (2.120). In some cases, the purely
linear term in these equations, that reflects rapid distortion of three-point third-order
correlations, provides very valuable informations about the transient effect of transfer
terms. This is exemplified in the present book by many examples, e.g. purely rotating
turbulence, in which RDT gives no useful evolution for double correlations started
from isotropy. Classical wave turbulence theory, illustrated by rotating turbulence as
well, provides an asymptotic case, in which the nonlinear part of Eq. (2.120) can be
considered as exact, even without changing (“dressing”) the bare Green’s tensor G(0)

into G(N L). In the latter case, the three-fold product of bare Green’s tensors generate
the three-wave resonant operator.

2.6 Anisotropy for Multipoint Correlations

To describe anisotropic correlations tensors is an important task. Firstly, one has to
determine an optimal set of scalar or pseudo-scalar descriptors, in order to describe
what was called componentiality by W. C. Reynolds. Secondly, we can look at the
possible expansion of the preceding set in terms of angular harmonics, with respect
to separation vectors, as r in physical space, or with respect to related wave vectors,
in Fourier space. For single-point correlations, only the first step is explicit, even
if we will see that implicit effects of dimensionality can be related to expansions

http://dx.doi.org/10.1007/978-3-319-73162-9_17
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_17
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in terms of first non-trivial angular harmonics for the new structure-based tensors
introduced by Kassinos et al. (2001).

Because of the isometric properties of the Fourier transform, expansion of sta-
tistical descriptors in terms of angular harmonics is similar in physical space and
in Fourier space. We will privilegiate the spectral tensors rather than the multipoint
correlations tensors here because the solenoidal property for the velocity field yields
a much simpler procedure in Fourier space.

For instance, looking at second-order two-point correlations in physical space,
application of group invariance properties (e.g. axisymmetry with or without mir-
ror symmetry) to R(r, t) must be made prior to application of the incompressibility
constraint, and results in the determination of some pseudo-scalar terms. Incom-
pressibility yields implicit differential relationships between these different terms
resulting from the symmetry group analysis (Chandrasekhar 1981; Sreenivasan and
Narasimha 1978). In contrast, as we shall see below, the incompressibility constraint
a priori yields dramatic simplifications (reduction of the number of scalar or pseudo-
scalar descriptors) once and for all for the spectral tensor, which is the 3D-Fourier
counterpart of R(r, t), so that application of symmetry group properties, as a second
step, is much simpler. The reader is referred to Cambon et al. (2013) for a review of
anisotropic description in both physical space and Fourier space.

Another important question is the possibility to use the SO(3) symmetry group,
which is the best procedure for the sake of generality, or a SO(2) group, for techni-
cal convenience when a dominant direction is used. Anisotropic structure functions,
related to two-point correlations, are addressed in the scaling/intermittency com-
munity, using SO(3) symmetry group for angular harmonic expansions (Arad et al.
1999). As far as possible, we will try to reconcile the different procedures in the
following.

2.6.1 Second Order Velocity Statistics

Independently of closure, the spectral tensor R̂i j is not a general complex matrix, but
has a number of special properties, including the fact that it is Hermitian, positive-
definite, as follows from Eq. (2.84). The incompressibility condition k j û j = 0 and
Eq. (2.84) also yield R̂i j k j = 0. Taken together, these properties show that, instead of
the 18 real degrees of freedom needed to describe a general complex tensor, R̂i j can
be represented using only four independent scalars. Indeed, using the spherical polar
coordinate system in k-space defined by Eqs. (2.86) and (2.87), the tensor simplifies
as

R̂ =
⎛
⎝ �11 �12 0

�12∗ φ22 0
0 0 0

⎞
⎠ . (2.126)

Displaying the first two unit vectors of the Craya–Herring frame, one obtains



56 2 Governing Equations, from Dynamics to Statistics

R̂i j = �11e(1)
i e(1)

j + �12e(1)
i e(2)

j + �12∗e(2)
i e(1)

j + �22e(2)
i e(2)

j , (2.127)

or, in a more compact form:
R̂i j = �αβe(α)

i e(β)

j ,

in which the summation convention over repeated Greek indices, taking only the
values 1 and 2, is used.

Similarly, the decomposition in terms of helical modes yields

R̂i j =
∑
s=±1

∑
s ′=±1

Ass ′
Ni (−sk)N j (s

′k).

Even if these decompositions are essentially the same, and rely on four indepen-
dent real scalars, an optimal splitting can be found to identify the most ‘physical’ and
the most intrinsic (with respect to any change of the orthonormal frame of reference)
quantities. Using

Ni N ∗
j = Pi j − ıεi jn

kn

k
,

in which Pi j denotes the projection operator and εi jn the alternating third-order tensor,
the later equation can be rewritten as

R̂i j = E(k, t)Pi j (k) + Re[Z(k, t)Ni (k)N j (k)] + ıH(k, t)εi jn
kn

k
, (2.128)

where E(k, t) and H(k, t) are real scalars, and Z(k, t) = Zr + ı Zi is a complex-
valued scalar. The quantity

E(k, t) = 1

2
R̂ii = 1

2

(
�11 + �22

)
(2.129)

is the energy density in three-dimensional k-space, whereas

kH(k, t) = − ı

2
klεli j R̂i j = k��12 (2.130)

is the helicity spectrum. Global kinetic energy K and global helicity h are given by

K(t) = 1

2
u′

i u
′
i =

∫
E(k, t)d3k h(t) = 1

2
ω′

i u
′
i =

∫
kH(k, t)d3k. (2.131)

The third term

Z = 1

2
R̂i j N ∗

i N ∗
j = 1

2

(
�22 − �11

) + ı��12, (2.132)
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characterizes a polarization anisotropy, as discussed below. Equivalent decomposi-
tions for vorticity correlations and helicity are gathered in Table 2.4 as well as the
linkage of two-point correlations to their spectral counterpart.

Anisotropy is expressed through the variations of these scalars with respect to the
direction of k, as well as departures of H and Z from zero at a given wavenumber.
Whatever spectral closure is used, the number of real unknowns may be reduced
to the above four scalar parameters when carrying out numerical simulations, and
analysis of the results can be simplified using these variables, particularly when the
turbulence is statistically axisymmetric.

In various homogeneous isotropic or anisotropic configurations, the radial energy
spectrum E(k, t) is a key quantity,6 which is obtained from E(k, t) by averaging over
spherical shells of radius k = |k|

E(k, t) =
∫∫

k=|k|
E(k, t)d2k =

∫ π

0

∫ 2π

0
E(k, θ,φ, t)k2 sin θdθdφ, (2.133)

the last integral specifying the use of conventional variables in a polar-spherical
system of coordinates. Other one-dimensional energy spectra can be obtained by
averaging over planes or cylinders. They will be defined only when specific applica-
tions will be addressed. For three-dimensional isotropic turbulence (including mirror
symmetry), the general set (E, Z ,H) reduces to

E = E(k, t)

4πk2
, Z = H = 0

so that

R̂i j (k, t) = E(k, t)

4πk2︸ ︷︷ ︸
E

(
δi j − ki k j

k2

)
︸ ︷︷ ︸

Pi j

. (2.134)

2.6.1.1 Directional and Polarization Anisotropy – Intrinsic Form

Equation (2.128) (Chandrasekhar 1981) can be written in any direct orthonormal
system of Cartesian coordinates. It can be shown that E , |Z | and H, are invariants.
If the fixed frame of reference is changed, or if the specific Craya–Herring frame is
rotated around the wavevector k, only the phase of Z will be modified. It is therefore
possible to have access to the intrinsic (eigen) representation of the spectral tensor
by specifying a unique angle, directly related to the phase of Z . For physical conve-
nience, let us discuss only the symmetric, real part of the spectral tensor, ignoring
the contribution from helicity. The real part of the spectral tensor can be represented
in the orthonormal frame defined by its principal axes. The two nonzero eigenvalues
E +|Z | and E −|Z | are associated with the two principal axes, which are orthogonal

6This quantity is also often referred to as the three-dimensional energy spectrum.
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Fig. 2.5 Schematic representation of the anisotropy, from spectral space to its impact on the
Reynolds stress tensor. The top line displays the ellipse spanned by the four non-vanishing compo-
nents of R̂ is the local Craya–Herring reference frame (see Eq. (2.126)), giving for every k, E+ | Z |
(length of the largest axis), E− | Z | (length of the smallest axis), and their angle in the plane normal
to k by means of the phase of Z . The bottom line shows the associated ellipsoid generated by the
corresponding Reynolds tensor in the physical space. Adapted from Cambon and Jacquin (1989)

to k and to each other. The third eigenvalue, which is equal to 0, is related to the unit
vector spanned by k. Finally Z describes the anisotropic structure of the real part of
the spectral tensor at a given k: its modulus is half the difference of the nonzero eigen-
values, whereas its phase is related to the angle for passing from the Craya–Herring
frame to the eigenframe by rotation around k (see Fig. 2.5). Note that the different
cartoons in this figure are further illustrated by realistic flow cases in the rest of the
book. From left to right, four cases are displayed. The first one is related to purely 3D
isotropic turbulence, without directional anisotropy and polarization. The second one
illustrates directional anisotropy towards bi-dimensionalization: it is further exam-
plified by the purely linear phase of quasi-static MHD (Magnetohydrodynamics) in
Fig. 12.4.2-top-left. When the second one is combined with polarization anisotropy
on the third one, they yield together the cases of purely rotating turbulence, that is
shown in Fig. 7.17, and the case of fully nonlinear quasi-static MHD in Fig. 12.4.2.
Note that the trends to create a cigar shape or a pancake shape in the Reynolds stress
tensor are opposite in the second and the third sketches. Finally, the case of Unstable
Stratified Homogeneous Turbulence (USHT) combines the second and the fourth
cases: A 2D trend for directional anisotropy and a vertical trend for polarization (see
Fig. 10.18.) In the latter case, the trends to create a cigar shape for the Reynolds
stress tensor are additive, for both directional and polarization anisotropies. Only the
case of Stably Stratified Homogeneous Turbulence was not anticipated in Fig. 2.5:
it corresponds to concentration of energy towards the polar zone of the sphere in
Fourier space, with dimensional anisotropy towards a 1D structure without signifi-
cant polarization anisotropy, and a pancake trend for the Reynolds stress tensor.

The anisotropic structure is then analyzed by isolating the pure isotropic contri-
bution (2.134) in Eq. (2.128), so that

http://dx.doi.org/10.1007/978-3-319-73162-9_12
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_12
http://dx.doi.org/10.1007/978-3-319-73162-9_10
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�
(

R̂i j

)
= E(k)

4πk2
Pi j︸ ︷︷ ︸

I sotropic part

+
(

E(k) − E(k)

4πk2

)
Pi j

︸ ︷︷ ︸
Directional anisotropy

+ � (
Z(k, t)Ni N j

)
︸ ︷︷ ︸

Polari zation anisotropy

. (2.135)

It is now possible to discriminate the directional anisotropy, which means that all
directions of k on a spherical shell do not have the same amount of energy, from the
polarization anisotropy, which means that the orientations of the vector û, located
in the plane normal to a given wavevector k, are not statistically equivalent. The
first kind of anisotropy is quantified by the angular distribution of E − E/(4πk2),
whereas the second kind is measured by Z , whose modulus and phase are related to
the intensity and the phase of polarization, respectively.

2.6.1.2 Expansion in Terms of Angular Harmonics

An important step, considering symmetries associated to SO(3) or SO(2) invariance
groups,7 is to expand the typical scalar or pseudo-scalar descriptors, which depend on
the separation vector r in physical space or on the related wave vector k in Fourier
space, in terms of angular harmonics. The procedure is well known for the ‘true’
scalar E(k), and a general SO(3)-related expansion yields

E(k) = E(k)

4πk2

(
1 + U 2(dir)

i j (k)αiα j + U 4(dir)
i jmn (k)αiα jαmαn + · · ·

)
. (2.136)

Only angular harmonics of even degree are relevant in the preceding expansion,
in which two kinds of quantities appear, namely tensors depending only on the
wavenumber k =| k | and tensorial products of the orientation α = k/k of the
wave vector. An equivalent, more common, expansion in terms of scalar spherical
harmonics is

E(k, θk,φk) = E(k)

4πk2

⎛
⎜⎝1 +

N∑
n=1

2n∑
m=−2n

U m(dir)
2n (k) Pm

2n(θk) exp(ımφk)︸ ︷︷ ︸
Y m

2n(θk ,φk )

⎞
⎟⎠ ,

(2.137)

in which a polar-spherical system of coordinates is used for k, with θk its polar
angle and φk its azimuthal angle, respectively. The Pm

2n(θk) are extended Legendre
polynomials, already used in Eq. (2.90). The advantage of Eq. (2.137) is that it relies
on orthogonal polynomials, allowing for an easy extraction of individual coefficients
from any angular distribution of E in terms of k. On the other hand, it is apparently
a SO(2) expansion because it depends on the choice of the polar axis; nevertheless
the degree n (m is called the order) of the expansion is self-consistent considering
any change of the polar axis. The latter expansion is not restricted to axisymmetric

7It is recalled that these multiplicative groups are related to rotations.
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turbulence, but it is particularly simple in that case, with m = 0, so that the spherical
harmonic functions Y 2n

m reduce to ordinary Legendre polynomials P (2n)(cos θk).
Of course, similar expansions are found for the scalar (1/2)R(r) in physical space

(see, e.g. Cambon and Teissèdre 1985; Cambon et al. 2013).
Looking now at the anisotropic structure of the polarization, things are more

complicated, because a tensor cannot be expanded in terms of angular harmonics as
a scalar, and as a matter of fact Z represents a tensor. Following Rubinstein et al.
(2015), a SO(3) expansion of the polarization tensor is eventually translated in terms
of Z as

Z(k) = E(k)

4πk2

(
U 2(pol)

i j (k) + ıU 3(pol)
i jm (k)αm + U 4(pol)

i jmn αmαn + · · ·
)

N ∗
i (α)N ∗

j (α).

(2.138)
The role and form of k-modulus-spherical tensors with odd degree (or spin) is now
completely clarified: in accordance with Hermitian symmetry, they are purely imag-
inary, whereas the ones with even degree are real.

A related question is how to relate the angular harmonics in the Z -expansion to
the vectorial spherical harmonics in Sect. 2.5.2.1. Work is still in progress.

2.6.2 Induced Anisotropic Structure of Arbitrary
Second-Order Statistical Quantities

The anisotropic decomposition introduced above can be used to obtain a meaningful
decomposition of any arbitrary second-order statistical tensor.

The most detailed information on two-point second-order velocity statistics is
given by R̂(k), or similarly by E and Z descriptors in terms of k-vector.

One can retain this information only in terms of spherically-averaged descriptors,
by spherically integrating the second-order spectral tensor, retaining the basic three-
fold splitting

ϕi j (k) = 2E(k)

(
1

3
δi j + H (dir)

i j (k) + H (pol)
i j (k)

)
. (2.139)

This is summarized in Table 2.5. The deviatoric tensors, which are both tracefree
and symmetric, are directly related to the generating tensors of angular harmonic
expansions in Eqs. (2.136) and (2.138) at the first nontrivial degree, yielding

U 2(dir)
i j (k) = −15H (dir)

i j (k), U 2(pol)
i j (k) = 5H (pol)

i j (k), (2.140)

in which the exact coefficients of proportionality derive from the following analytical
identity
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Table 2.5 Description of anisotropy for two-point velocity correlations, using k-vector descriptors
and their corresponding spherically-averaged contributions. The generic relationship, first line, is
E(k) = E(k)

4πk2 (1−15H (dir)
mn (k)αmαn +· · · ). Integral relationship is

∫∫
R̂i j (k)d2k = 2E(k)(δi j /3+

H (dir)
i j (k) + H (pol)

i j (k))

. Spherically averaged descriptors

k-vector descriptors Isotropy Directional anisotropy Polarization
anisotropy

E(k, t) E(k, t) H (dir)
i j (k, t) 0

Z(k, t) 0 0 H (pol)
i j (k, t)

∫∫
k=|k|

αi1αi2 . . . αi2N d2k = 4πk2

3.5 . . . (2N + 1)
δN

i1i2...i2N
, (2.141)

with δ1
i j = δi j , δ2

i jmn = δi jδmn + δimδ jn + δ jmδin . . . etc.
It is now possible to recover single-point correlations by integrating on the

wavenumber k the spherically-averaged descriptors.
By integrating Eq. (2.139), the following threefold splitting is obtained for the

Reynolds Stress tensor

u′
i u

′
j =

∫∫∫
R̂i j (k, t)d3k = 2K

⎛
⎜⎜⎝δi j

3
+ b(dir)

i j + b(pol)
i j︸ ︷︷ ︸

bi j

⎞
⎟⎟⎠ , (2.142)

where

2Kb(dir)
i j =

∫∫∫ (
E − E

4πk2

)
Pi j d

3k, 2Kb(pol)
i j =

∫∫∫
� (

Z Ni N j
)

d3k.

(2.143)
The fourth-order tensor Mi jpq can be expressed as

Mi jpq =
∫∫∫ (

ki kp

k2
R̂q j (k, t) + k j kp

k2
R̂qi (k, t)

)
d3k. (2.144)

2.6.2.1 Bridging with Dimensionality and Componentality

Similar decompositions can be found for the dimensionality structure tensor
(Kassinos et al. 2001)

Di j =
∫∫∫

ki k j

k2
2E(k, t)d3k = 2K

(
δi j

3
− 2b(dir)

i j + 0

)
,
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Table 2.6 Structure-based single-point tensors. The generic relationship, first line, is ui (x)u j (x) =
2K(δi j /3+b(dir)

i j +b(pol)
i j ). Integral relationships are: K = ∫ ∞

0 E(k)dk = ∫∫∫ E(k)d3k, 2Kb(dir)
i j =∫ ∞

0 2E(k)H (dir)
i j (k) = ∫∫∫

(E(k) − E(k)

4πk2 )Pi j (α)d3k

. Using homogeneity (iso, dir, pol)

Single-point
tensors

In terms of
stream-function

Isotropy Directional
anisotropy

Polarization
anisotropy

(•) = 2
3 (•)δi j +2K(•) +2K(•)

Reynolds stress εimnε j pqψm,nψp,q K b(dir)
i j b(pol)

i j

Dimensionality ψm,i ψm, j K − 2b(dir)
i j 0

Circulicity ψi,mψ j,m K b(dir)
i j −b(pol)

i j

and for the vorticity correlations tensor.8 Details are summarized in Table 2.6, along
with a reminder of the expressions in terms of the vector streamfunction. The resulting
expressions are

ω′
iω

′
j = ω2

(
δi j

3
+ b(k2e)

i j − b(k2z)
i j

)
, (2.145)

with

ω2 =
∫∫∫

k2Ed3k, (2.146)

ω2b(k2e)
i j =

∫∫∫
k2

(
E − E

4πk2

)
Pi j d

3k, (2.147)

ω2b(k2z)
i j =

∫∫∫
k2� (

Z Ni N j
)

d3k. (2.148)

Relations (2.147) and (2.148) show that the anisotropy tensor bi j is the sum of two
very different contributions: b(dir)

i j which originates the directional (or dimension-

ality) anisotropy and b(pol)
i j which accounts for polarization anisotropy. Surprising

RDT results in rotating flows are explained by this decomposition (see Chap. 7), and
the formalism introduced in Kassinos et al. (2001) appears as a byproduct of Eq.
(2.128) in homogeneous turbulence, the decomposition in terms of directional and
polarization anisotropy lending support to componental and dimensional anisotropy.

8Rather than the vorticity correlations tensor, Kassinos et al. (2001) introduced the circulicity tensor
fi j , given by Eq. (2.78), which involves larger scales. This tensor corresponds to

fi j = 2K
(

δi j

3
+ b(dir)

i j − b(pol)
i j

)

with our notations.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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The third tensor introduced by Kassinos and coworkers, referred to as stropholysis
is also connected to the E − Z decomposition, and its form can be recast as

Qi jm = Kεi j p

(
2b(dir)

pm − δpm

3

)
︸ ︷︷ ︸

Q(dir)
i jm

+
∫∫∫

km

k
�(Z Ni N j )d

3k
︸ ︷︷ ︸

Q[pol)
i jm

. (2.149)

A possible contribution from the helicity spectrum may be added, it is not taken
into account here for the sake of coherence with the main part of the book, and also
for the sake of brevity. Under a fully symmetrized form, only the contribution from
polarization Q∗

i jm = Q∗(pol)
i jm remains: The spectrum of this single-point tensor is

firstly generated by the spin-3 term U 3(pol)
mpq (k) in Eq. (2.138), and probably by all

other possible odd-order terms. Beyond pure kinematics, a dynamical stropholysis
effect induced by vortical mean flows, is discussed in Chap. 8.

More details on the exact hierarchy between k-vector descriptors (E, Z ),
spherically-averaged descriptors, and single-point tensors, via straightforward inte-
gration, can be found in the appendix of Mons et al. (2016).

In conclusion, it is worthwhile to point out that a fully anisotropic spectral (or
two-point) description carries a very large amount of information, even if restricted
to second-order statistics. In the inhomogeneous case, the POD (proper orthogonal
decomposition, see Lumley 1967) has renewed interest in second-order two-point
statistics, but this technique is applied to strongly inhomogeneous quasi-deterministic
flows. It is only said that POD spatial modes are Fourier modes in homogeneous tur-
bulence, without considering that a spectral tensor such as R̂ ought to be diagonalized
in order to exhibit its eigenmodes as POD modes in the anisotropic case.

2.6.3 Some Comments About Higher Order Statistics

N -order correlations at N points can be defined in homogeneous turbulence via
spectral tensors, similarly as for the second order case (N = 2). For instance

< û∗
i1
(kN )ûi2(k1) . . . ûiN−1(kN−2)ûiN (kN−1) >

= R̂i1i2...iN (k1, k2, . . . , kN−1)δ

(
kN −

N−1∑
i=1

ki

)
. (2.150)

Since the N wave-vectors form a closed polygon, only N − 1 of them, k1, k2,
…, kN−1, are independent, corresponding to the N − 1 independent separations
vectors r1, . . . , r N−1 in physical space. The interest of addressing the most complex
configuration, with N independent points for representing Nth-order correlations is
discussed in the last section of this chapter.

http://dx.doi.org/10.1007/978-3-319-73162-9_8
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As a first general result, for incompressible turbulence, it is possible to extend
Eq. (2.102), which was derived for N = 2, to an arbitrary order, yielding an
equation for R̂i1...iN (k1, . . . , kN−1, t). In this equation, all pressure effects can be
exactly incorporated as functions of R̂i1...iN itself, as all the linear effects, and of the
(N + 1)th-order spectral tensor.

As a second result, it is possible to replace û(kn) by u(α)(kn) using either of the
local Craya or poloidal-toroidal frame attached to kn . Accordingly, the Nth-order
spectral tensor is shown to depend on N + 1 scalar components only, considering
that u(α) has two components and that the spectral tensor is left unchanged when
permuting simultaneously the N wavevectors and the N -indices. The latter result
was found independently in the Ph.D. theses of Cambon (1982) and Lindborg (1996).

Of course, the most general case has very little applications, but the cases N = 3
and N = 4 are relevant in triadic and quasi-normal closure theories and models,
which are addressed in the following chapters. Orders larger than N = 4 are com-
monly addressed in the ‘scaling-intermittency’ community, for structure functions,
but always restricted to two-point correlations.

2.7 A Synthetic Scheme of the Closure Problem:
Non-linearity and Non-locality

Both the nonlinear pressure component and the nonlinear term appearing directly in
Eq. (2.50) contribute to the closure problem: the equation for the nth-order velocity
moments involves (n + 1)th-order moments. As a consequence, no finite subset of the
infinite hierarchy of integro-differential equations describing the velocity moments
at all orders is closed, reflecting the fundamental difficulty of the turbulence problem,
viewed through the classical statistical description in terms of statistical moments.
The origin of the closure problem is nonlinearity of the Navier–Stokes equations,
which is beared by the convective terms and the nonlinear part of the pressure fluc-
tuations. Non-locality, by itself, does not lead to problems, although the technical
difficulties associated with integro-differential are nontrivial.9

The non-local problem of closure is discarded only in models for multi-point
statistical correlations, e.g. double correlations at two points or triple correlations at
three points, so that in such models the problem of closure is determined by the sole
non-linearity.

The knowledge of the probability density function (pdf) of the velocity fluctuations
is equivalent to the knowledge of all the statistical moments of arbitrary orders. There-
fore, the above mentioned problem of the open hierarchy of the moment-equations,
is precluded in a pdf-based approach. Consequently, the problem of closure induced

9Non-locality ought to be only understood in physical space here. Of course, the operators related to
pressure and dissipation will appear as local quantities in Fourier space, but this is only for the sake
of mathematical convenience. Discussing the possible degree of locality of nonlinear interactions
in Fourier space is beyond our scope, too.
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Fig. 2.6 Synthetic scheme for statistical closures

by the non-linearity is precluded using a pdf approach, but the non-local problem of
closure remains, so that the equations for a local single-point velocity pdf involve a
two-point velocity pdf, and equations for a n-point velocity pdf involve a (n + 1)-
point velocity pdf. This open hierarchy of multipoint pdf is often referred to as the
Lundgren–Monin–Novikov hierarchy (Lundgren 1967; Monin 1967; Novikov 1968).
Statistical symmetries of this hierarchy were recently addressed by Waclawczyk et al.
(2014).

In order to summarize all the consequences of the above discussion, a synthetic
scheme using a triangle is shown in Fig. 2.6. The vertical axis bears the order of the
statistical moments, from 1 (the mean velocity), 2 (second order moments), up to
arbitrary high order moments. For the sake of convenience, the moments of order
greater of equal to 2 are centered, so that they only involve the fluctuating velocity
field. Along the vertical axis, n corresponds to the number of possible different points
for a multi-point description of the nth-order moment under consideration along the
horizontal axis. Considering the nth-order moment, the number of points ranges
from 1 (single-point correlation), 2 (two-point correlation), up to n. The possible
solutions are observed to generate a triangle in this representation.

In other words, the vertical axis displays the open hierarchy due to non-linearity,
while the horizontal one deals with non-locality. Each point in the triangle char-
acterizes a level of description. As an example, the point [3, 2] is related to triple



2.7 A Synthetic Scheme of the Closure Problem: Non-linearity … 67

correlations at two points, which are associated with the spectral energy transfer
and the kinetic energy cascade. In addition, the problem of closure can be stated by
looking at the adjacent points (if any) just above and just to the left. For instance, The
main problem which concerns engineering, when solving Reynolds-averaged Navier
Stokes equations, is expressing the flux of the Reynolds stress tensor. This can be
represented by an arrow from [2, 1] to [1, 1]. Then, the equations that govern the
Reynolds-stress tensor [2, 1] need extra information (not given by [2, 1] itself, lead-
ing to the appearance of the closure problem) on second-order two-point correlations
[2, 2] (involved in the ‘rapid’ pressure-strain rate term and the dissipation term), on
triple-order single-point correlations [3, 1] and triple-order two-point correlations
[3, 2] (involved in the ‘slow’ pressure-strain rate and diffusion terms). Of course,
the Reynolds stress tensor [2, 1] is directly derived from second-order correlations
at two points [2, 2], illustrating the simple rule of concentration of the information
when moving from the right to the left. The non-locality issue, due to pressure and
dissipation terms, is discarded when looking only at [n, n] correlations (located on
the hypotenuse of the triangle in Fig. 2.6), leaving only the hierarchy due to non-
linearity. The governing equations for [2, 2] need only extra information on [3, 2].
The equations which govern [3, 3] require only extra-information on [4, 3]. These
two examples, which are directly involved in classical two-point closures, will be
discussed in Chap. 4.

The arrow from [n + 1, n] to [n, n] gives an obvious generalization of the opti-
mal way to use multipoint closures, and illustrates the open hierarchy of equa-
tions due to the sole non-linearity. Often the closure relationship holds at the level
[n + 1, n + 1], from which is readily derived the level [n + 1, n]. For instance, the
Quasi-Normal assumption, which is involved in all multi-point closures, as well as
in wave-turbulence theories, calls into play the [4, 4] level.

Regarding the pdf approach, we are concerned with the upper horizontal side of
the triangle. It seems to be consistent to relate to the point [∞, 1] a description in
terms of a local velocity pdf. Accordingly, the arrow from [∞, 2] to [∞, 1] shows
the need for extra-information on the two-point pdf in the equations which govern
single-point pdfs. In the same way, the arrow from [∞, n + 1] to [∞, n] shows the
link between n-point and (n +1)-point pdf (Lundgren 1967), and illustrates the open
hierarchy of equations due to the sole non-locality.

The last limit concerns the ultimate point [∞,∞]. It is consistent to consider that
the limit of a joint-pdf of velocity values at an infinite number of points is equivalent to
the functional pdf description of Hopf (1952). In this case we reach the top left point
of the triangle and there is no need for any extra-information. The Hopf equation is
closed, and it is possible to derive from it any multi-point pdf or statistical moment.
It is interesting to point out that the bottom right point [1, 1] gives the most crude
information about the velocity field – its mean value – whereas the opposite point
[∞,∞] gives the most sophisticated.

As a last general comment, our synoptic scheme clearly shows that the problem
of closure, which reflects a loss of information at a given level of statistical descrip-
tion, can be removed from consideration, at least partially, if additional degrees of
freedom are introduced in order to enlarge the configuration-space. For instance, to

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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introduce as a new dependent variable the vector which joins the two points in a two-
point second-order description allows for the removal of the problem of closure due
to nonlocality, which is present using a single-point second-order description. The
introduction, as a new dependent variable, such as the test-value ϒi of the random
velocity field u′

i in a pdf approach

P(ϒi , x, t) = δ(u′
i (x, t) − ϒi )

allows for the removal of the problem of closure due to nonlinearity, which is present
in any description in terms of statistical moments. Finally, any problem of closure
is removed using the Hopf equation but the price to pay is an incredibly compli-
cated configuration-space! The probabilistic description, which is of practical inter-
est regarding a concentration scalar field rather than a velocity field, is extensively
addressed in the context of combustion modelling, and will no longer be considered
in this book.

2.8 On the Use of Lagrangian Formalism

We conclude this chapter on “exact” dynamical aspects by a survey of the use of the
Lagrangian formalism with application to both turbulence structure and modeling.
A large part of applications are developed within the Eulerian framework, and the
synoptic scheme of closures given in the preceding section is essentially drawn in
this context.

Equivalence of Eulerian and Lagrangian frameworks is a truism, at least for the
fluid considered as a continuum, even if some recent statistical studies from physi-
cal and numerical experiments advocate for a richer information of the Lagrangian
description. This viewpoint is influenced by the increase of the number of studies
related to particle-laden flows, and the fact that statistics are necessary multi-time in
the Lagrangian approach. Of course, two-time Lagrangian statistics are richer than
single-time Eulerian statistics, but all can be reconciled in principle using the same
level — eg. two-time two-point — of statistical description.

It is important noticing that nonlinearity and nonlocality discussed in the last
section in the Eulerian context, are radically different in the Lagrangian description.
Quadratic nonlinearity due to the convection term is removed from consideration
in the Lagrangian framework, but difficulty is transferred to pressure gradient and
dissipative term. Let us recall the standard Navier–Stokes equations for Eq. (2.13),
with linear Lagrangian acceleration as

ρẍi = − ∂ p

∂xi
+ μ

∂2 ẋi

∂x j∂x j
,
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in which the Cauchy matrix, or semi-Lagrangian gradient of displacements,
F(X, t, t0) in Eq. (2.5), must be used for expressing ρ (as ρ = ρ0/ det F from Eq.
(2.11)) and for “converting” Eulerian gradient terms into Lagrangian ones, via

∂

∂xi
= ∂X j

∂xi

∂

∂X j
= F−1

j i (X, t, t0)
∂

∂X j
. (2.151)

Finally one obtains

ẍi = det F

ρ0

(
−F−1

j i

∂ p

∂X j
+ μ

(
F−1

mj F−1
nj

∂ ẋi

∂Xm∂Xn
+ F−1

nj

∂F−1
mj

∂Xn

∂ ẋi

∂Xm

))
.

(2.152)

A last modification should consist in replacing ∂ ẋi
∂Xm

by Ḟim , but there is no need
to further emphasize the high complexity of the “Lagrangian” r.h.s. term, which
involves plenty of F−1 factors.

Now, the discussion can be organized around the pivotal role of the matrix F in
different approaches, in which a formal or actual analogy with visco-elastic mech-
anisms can be drawn. The problem of existence and smoothness, at least for large
times t − t0, can be discussed for F in turbulent flow realizations, but we can at least
mention some interesting properties in a smooth flow case. Along with the additive
decomposition of A into a divergent part (trace), a symmetric traceless (strain) part
and an antisymmetric one linked to vorticity, matrix theory shows that F has the
following multiplicative decomposition

F(X, t, t0) = (det F)1/3R · Q, (2.153)

in which Q is an orthogonal matrix (cumulated rotation effect along trajectories) and
R (cumulated strain effect along trajectories) a symmetric tensor; det F characterizes
a bulk cumulated compression if different from one. By forming the Cauchy–Green
tensor, C = F · F̃, the symmetric factor is extracted, as C = (det F)2/3R2.

2.8.1 From RDT to Visco-Elastic Mechanisms

The role of F is obvious in nonlinear expressions such as Eqs. (2.30) and (2.31),
whose linearized form is useful for deriving analytical RDT solutions for inhomo-
geneous straining processes. Before linearization, the Helmholtz decomposition can
be applied to the Weber equation in the incompressible case, so that

u(x, t) =
(
F̃−1(X, t, t0)u(X, t0)

)(sol)
, (2.154)

whereas its projection on the “dilatational subspace” yields



70 2 Governing Equations, from Dynamics to Statistics

(
F̃−1(X, t, t0)u(X, t0)

)(dil) + ∇ϕ′ = 0.

The term ϕ′ holds for a temporal integral of the total pressure p + 1
2ρu2 along

trajectories. Applications are discussed in Chap. 8.
We can move to “homogeneous” RDT as follows. When a mean flow with space-

uniform velocity gradients is introduced, following Craya, it is possible to con-
sider statistical homogeneity restricted to fluctuations and to restrict the Lagrangian
approach to the mean flow. In this case, only simplified mean trajectories are
accounted for, as linear relationship of x to X , and F is space-uniform as well.
Looking at the Green’s tensor denoted G(0) from Eq. (2.112), its purely viscous
factor displays F, and its inviscid factor is

Pi j (k(t))F−1
j i (t, t0),

for irrotational mean flows, in accordance with Eq. (2.154). Even if the homogeneous
RDT solution can be more complicated for rotational mean flows, the time-dependent
wave vector, that reflects mean-flow-advection, is directly linked to F in all cases by
the following relation:

ki (t) = F−1
j i (t, t0) k j (t0)︸ ︷︷ ︸

K

,

in accordance to the mean flow trajectories

xi = Fi j (t, t0)X j .

In addition to linear RDT, such a formalism was implicitly used by Rogallo (1981)
to extend nonlinear pseudo-spectral DNS in tri-periodic boxes to flows subjected to
mean velocity gradients (his formalism corresponds to x ′

i = Xi and Bi j = F−1
i j ).

The role of F for building RDT solutions gives a formal support to the analogy of
the regime, rapid distortion + nonlinear relaxation, with a visco-elastic mechanism.
Such an analogy is still used in some stochastic models, touched upon at the very
end of this chapter.

A second application deals with the pressure Hessian in Eq. (2.32), using its
Lagrangian counterpart via the exact transform

∂2 p

∂x j∂x j
= F−1

jm F−1
jn

∂2 p

∂Xm∂Xn
+ F−1

nj

∂F−1
mj

∂Xn

∂ p

∂Xm
, (2.155)

using Eq. (2.151). At least for its modeling in HIT, revisited in Chap. 4, F is not
dominated by a mean flow effect, as in homogeneous RDT, but it is supposed to be
well defined and relatively smooth, related to a “perceived” large-scale mean flow
gradient A.

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_4


2.8 On the Use of Lagrangian Formalism 71

The reader is referred to Chap. 5 for applications to flows with microstructures
subjected to viscoelastic mechanisms.

2.8.2 Lagrangian Stochastic Models

Paul Langevin introduced his equation for the Brownian motion in 1908. Many
instances of related studies were developed for modeling Lagrangian diffusion. The
trajectory of a particle considered as a fluid element is given by

ẋi = ui (x, t),

and the acceleration ẍ = u̇ is expressed as

u̇ = L(u) + ξ, (2.156)

in which the first term in the r.h.s is deterministic and linear, whereas the second one
is a stochastic forcing, varying for each realization. The linear operator can simplify
as − u

τL
using an ad-hoc linear time scale τL . One of the most elaborated model was

introduced by Thomson (1987), with

dui = ai (x, u, t)dt + bi j (x, u, t)dξ j ,

in which ξ is a white noise Gaussian process in time with standard deviation dt .
It is chosen to put the emphasis on exact dynamical equations in this chapter, as

a starting point for an approach to developed turbulence. We do not question the
validity of these equations, even if they imply smooth fields, whereas “turbulent”
fields are not. It is worth noting that the classical Kolmogorov (K41) scalings for
structure functions in the inertial range are not consistent with such a smooth field,
from the fractional exponent induced by δu(r) ∼ (εr)1/3 in average. On the other
hand, when we address statistical quantities, they are smooth, and their governing
equations are really built from “exact” conservation equations given throughout this
chapter. This viewpoint allows us to present a well-defined problem of closure, and
is consistently addressed from k − ε modeling to the Hopf equation, with a special
emphasis on two-point and three-point statistics, mainly Eulerian, but for a simplified
mean, or large-scale, flow.

Accordingly, stochastic modeling is at odds of the main stream of the present book.
There are possible linkages, such as a spectral stochastic model that can be consistent
with basic DIA, and perhaps with EDQNM (but this is more controversial). In turn,
stochastic models are generally not consistent with “exact” dynamical equations. As
recalled by Raoul Robert (private communication), a Wiener process can be made
fully consistent with Burger equations, but no stochastic model can presently match
the Euler equations. On the other hand, internal intermittency is often a byproduct
of some stochastic models. This point is touched upon in our introduction and will
be rediscussed in the conclusion.

http://dx.doi.org/10.1007/978-3-319-73162-9_5
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Chapter 3
Additional Reminders: Compressible
Turbulence Description

3.1 Navier–Stokes Equations for Compressible Flows
and Shock Jump Conditions

3.1.1 Governing Conservation Equations

The basic governing equations for such flows are

∂ρ

∂t
+ ∇ · (ρu) = m, (3.1)

ρ

(
∂u
∂t

+ u∇u
)

= −∇ p − 2

3
∇ (μ∇ · u) + ∇ · (μS) + ρ f , (3.2)

p

R
(

∂s

∂t
+ u · ∇s

)
= ∇ · (κ∇T ) + μ

(
1

2
S : S − 2

3
(∇ · u)2

)
+ Q, (3.3)

where R, p, ρ, T , u, s, μ and κ denote the perfect gas constant, pressure, density,
temperature, velocity, entropy, coefficients of viscosity and heat conduction, respec-
tively. The additional variables m, f and Q are related to the rate of mass injection
per unit volume, the body force per unit mass and the rate of heat addition per unit
volume, respectively. Both the viscosity and the heat conduction are assumed to be
monotonic functions of the temperature, i.e. μ = μ(T ) and κ = κ(T ). The system
is supplemented by the perfect gas law

p = ρRT, (3.4)

and the definition of the entropy

s − sr = cv log

[(
p

pr

) (
ρr

ρ

)γ]
(3.5)
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where sr , pr and ρr are related to a reference state. cv and cp denote the specific
heat at constant volume and pressure, respectively, and γ = cp/cv . Introducing the
viscous stress tensor �

� = μ

(
2S − 2

3
(∇ · u)I

)
, (3.6)

where the symmetric part of the velocity gradient tensor, S, is defined as in Sect. 2.1.7,
the momentum equation can be rewritten as follows

∂ρu
∂t

+ ∇ · (ρuu) = −∇ p + ∇ · � . (3.7)

For the sake of completeness, the evolution equation for the internal energy, e =
cvT , the enthalpy, h = cpT , the vorticity ω = ∇ × u and the pressure are given
below:

∂ρe

∂t
+ ∇ · (ρue) = −p(∇ · u) + � : (∇u) + ∇q, (3.8)

∂ρh

∂t
+ ∇ · (ρuh) =

(
∂ p

∂t
+ u · ∇ p

)
+ � : (∇u) + ∇q, (3.9)

∂ω

∂t
+ (∇ω)u = (∇u)ω + ν∇2ω − (∇ · u)ω

+ 1

ρ2
(∇ρ) ×

(
∇ p − 4

3
∇(μ(∇ · u)) + μ∇ × ω

)

+∇ ×
(

2

ρ
S(∇μ) − 2

3

1

ρ
(∇ · u)(∇μ)

)

−1

ρ
(∇μ) × (∇ × ω), (3.10)

∂ p

∂t
+ u · ∇ p = γ p

cp

(
∂s

∂t
+ u · ∇s

)
− γ p(∇ · u), (3.11)

where the heat conduction flux vector q is defined as

q = −κ∇T . (3.12)

Considering constant molecular viscosity and diffusivity, and taking the inner
product of (3.10) with ω, one obtains an evolution equation for the enstrophy � =
ω · ω/2:

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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∂�

∂t
+ ∇ · (u�) = −�(∇ · u) + ω · S · ω − 1

ρ2
ω · (∇ p × ∇ρ)

+ν

ρ
ω · ∇2ω

−νω ·
(

1

ρ2
∇ρ ×

(
∇2u + 1

3
∇(∇ · u)

))
. (3.13)

3.1.2 Rankine–Hugoniot Jump Relations

Most cases dealing with shock/turbulence interaction addressed in Chaps. 15 and 16
do not take viscous effects into account. The rationale for that is that viscous effects
are negligible compared to other physical mechanisms during the interaction (this
will be proved a posteriori comparing theoretical results with DNS and experimental
results), and that relaxation times associated to vibrational, rotational and transla-
tional energy modes of the molecules are very small with respect to macroscopic
turbulent time scales. Therefore, the shock is modeled as a surface discontinuity
with zero thickness. An important consequence is that the shock has no intrinsic
time or length scale, and its corrugation is entirely governed by incident fluctuations.
Its effects are entirely captured writing the Rankine–Hugoniot jump conditions for
the mass, momentum and energy.1

It is reminded that for a scalar quantity q(x, t) governed by the following global
conservation law in a fixed domain D with boundary ∂D

∂

∂t

∫∫∫
D

qd3x =
∫∫∫

D
Pqd3x +

∫∫
∂D

(qu + Fq) · nd2x (3.14)

where Pq , qu, Fq and n denote the volume production, the convective flux, the
diffusive flux and the outward unit vector, respectively, the jump relation across a
discontinuity which moves with velocity us is

[[
(q(u − us) + Fq) · n

]] = 0. (3.15)

Applying this result to the compressible Navier–Stokes equations for mass,
momentum and total energy, one obtains for a planar shock wave moving at constant
speed in the direct ex :

[[ρun]] = 0, (3.16)

[[
ρu2

n + p
]] = 0, (3.17)

[[ut ]] = 0, (3.18)

1Extensions to mixtures of perfect gas and reactive shock waves with chemical reactions will be
discussed in devoted sections in Chaps. 15 and 16.

http://dx.doi.org/10.1007/978-3-319-73162-9_15
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[[
e + p

ρ
+ u2

]]
= [[H ]] = 0, (3.19)

where H is the stagnation enthalpy and u is the velocity in the reference frame tied
to the shock wave, i.e. u = v − us where v and us are the fluid velocity and the
shock speed in the laboratory frame, respectively. Subscripts n and t are related to the
normal and tangential components of vector fields with respect to the shock wave,
respectively:

un ≡ u · n, ut ≡ n × (u × n), u = unn + ut , (3.20)

where n is the shock normal unit vector. An exact general jump condition for the
vorticity can be derived from the relations given above Hayes (1957). First noting
that the vorticity vector ω = ∇ × u can be decomposed as ω = ωnn + ωt with

ωn = (∇ × ut )n, (3.21)

and

ωt = n ×
(

∂ut

∂n
+ ut · ∇n − ∇||un

)
, (3.22)

where ∇|| denotes the tangential (with respect to the shock surface) part of the nabla
operator, one obtains the following vorticity jump conditions in unsteady flows in
which the shock experiences deformations:

[[ωn]] = 0, (3.23)

[[ωt ]] = n ×
(

∇||(ρun)

[[
1

ρ

]]
− 1

ρun
[[ρ]]

(
D||ut + us D||n

))
, (3.24)

with

D||ut =
(

dut

dt

)
t

+ ut · ∇||ut =
(

∂ut

∂t
+ us

∂ut

∂n

)
t

+ ut · ∇||ut (3.25)

and

D||n = dn
dt

+ ut · ∇||n = −∇||us + ut · ∇||n. (3.26)

It is seen that the normal component of the vorticity is continuous across the
shock, while the jump of the tangential component depends on the density jump,
the tangential velocity and the shock wave deformation. In steady flows, the jump
condition for the tangential vorticity simplifies as

[[ωt ]] = n ×
(

∇||(ρun)

[[
1

ρ

]]
− 1

ρun
[[ρ]] ut · ∇||ut

)
. (3.27)
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3.1.3 Linearization of Rankine-Hugoniot Jump Relations

In the analysis of the interaction between turbulent fluctuations and a shock wave (see
Chap. 15) it may be very helpful to use the Linear Interaction Approximation (see
Chap. 16) that relies on the linearized Rankine-Hugoniot jump relations for small
disturbances. This is done linearizing the usual jump relations (3.16)–(3.19) written
in a frame of reference that moves at the local instantaneous speed of the shock wave.
Reminding that all quantities, including shock speed us , shock normal unit vector
n and shock tangential unit vector t exhibit a fluctuation and can be expressed as
q = q̄ + q ′ (where q is a dummy quantity and q ′ is assumed to be a first-order
perturbation), one obtains

[[
(ρ̄ + ρ′)(ū + u′ − ūs − u′

s) · (n̄ + n′)
]] = 0, (3.28)

[[{(ρ̄ + ρ′)[(ū + u′) ⊗ (ū + u′ − ūs − u′
s) + ( p̄ + p′)I} · (n̄ + n′)

]] = 0, (3.29)

[[{(ρ̄ + ρ′)(Ē + E ′)(ū + u′ − ūs − u′
s) + ( p̄ + p′)(ū + u′)} · (n̄ + n′)

]] = 0.

(3.30)

We now restrict the analysis to the case an unidirectional case with a planar
shock wave normal to ex . The mean flow is ū = (U1, 0, 0) upstream the shock
wave and ū = (U2, 0, 0) in the downstream region. The fluctuating velocity is
expressed as u′ = (u′, v′, w′) in Cartesian coordinates. Introducing α′ = n · t ′ the
first order angle between the unperturbed shock front and the local tangent of the
corrugated shock, j̄ = ρ̄(U − ūs) the mean mass flux across the shock front and
j ′ = ρ′(U − ūs) + ρ̄(u′ − u′

s) the mass flux fluctuation, on obtains the following
linearized jump relations

[[
j ′]] = 0, (3.31)

j̄
[[

u′]] + j ′ [[U ]] + [[
p′]] = 0, (3.32)[[

Uα′ + v′]] = 0, (3.33)

j̄
[[

e′ + Uu′]] + j ′ [[ē + U 2/2
]] + [[

p̄u′ + p′U
]] = 0. (3.34)

3.2 Introduction to Modal Decomposition of Turbulent
Fluctuations

3.2.1 Statement of the Problem

A natural question which arises when dealing with compressible turbulent flows is:
how to characterize the compressibility effects on turbulence? Or, in an equivalent
way, what are the differences between the compressible turbulent fluctuations and the

http://dx.doi.org/10.1007/978-3-319-73162-9_15
http://dx.doi.org/10.1007/978-3-319-73162-9_16
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incompressible ones? To answer this question, it is first important to remark that in
incompressible flows the full solution is contained in the sole velocity field since the
pressure is nothing but an enslaved Lagrange multiplier. In compressible turbulence,
this is no longer true since pressure is now an autonomous variable and that at least
one additional physical variable is required to describe the solution.2

A common way to solve this problem is to try to decompose the observed fluctu-
ations as the sum of a compressible part and an incompressible one, the latter being
very often understood as the part of the solution which fulfills the incompressible
Navier–Stokes equations, the former being defined as the difference between the full
solution and the incompressible part. Unfortunately, no fully general decomposition
based on this approach leading to tractable and useful analysis has been proposed
up to now. A main reason for that is that such a decomposition does not explicitly
distinguish between acoustic waves and other compressible phenomena.

To remedy this problem and to provide a meaningful and powerful decomposi-
tion of compressible fluctuations into physical modes, Kovasznay proposed a small-
parameter expansion discussed below (Sect. 3.2.2), which is based on the assumption
that the turbulent fluctuations will be small in some sense with respect to a uniform
mean flow. As it will be seen below, this decomposition provides us with many mean-
ingful informations, but its validity is restricted since it relies on a linearized theory.
To handle flows in which nonlinear mechanisms are dominant, another approach
consists in using the exact Helmholtz decomposition of the compressible velocity
field (see Sect. 2.1.5). Since this decomposition does not rely on any assumption
dealing with the amplitude of the turbulent fluctuations, it is valid in all flows. But its
weakness its that it does not allow a direct splitting of other flow variables like den-
sity, pressure or entropy. Therefore, it must be supplemented with arbitrary splitting
procedures for these variables.

3.2.2 Kovasznay’s Linear Decomposition

The first step in Kovasznay’s approach (Kovasznay 1953) consists in expanding the
turbulent field as

u = u0 + εu1 + ε2u2 + ... , (3.35)

ρ = ρ0 + ερ1 + ε2ρ2 + ... , (3.36)

p = p0 + εp1 + ε2 p2 + ... , (3.37)

s = s0 + εs1 + ε2s2 + ... (3.38)

2The discussion in the present chapter is restricted to the case of single-phase, non-reactive,
single-species flows of divariant fluids. The case of binary mixtures of perfect gas is addressed
in Sect. 16.9.2.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_16
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where ε is a small parameter related to the amplitude of the perturbation field and
(u0, ρ0, p0, s0) are related to a uniform mean field. It is worth noting that the leading
fluctuating terms in the pressure and the density fields are assumed to have the same
scaling order with respect to ε. Different scaling laws can also be considered (e.g.
Zank and Matthaeus 1990, 1991; Bayly et al. 1992). The mean velocity u0 can be
set to zero by changing the frame of reference.

Assuming that the source terms in the right-hand sides of Eqs. (3.1)–(3.3) scale
like ε and inserting the above expansions into these equations, one obtains the fol-
lowing linearized set of equations for the first-order fluctuating field (u1, ρ1, p1, s1)

(the subscript 1 will be omitted hereafter for the sake of clarity):

∇ · u + ∂ p

∂t
− ∂s

∂t
= m

ρ0
, (3.39)

∂u
∂t

+ a2
0∇ p − ν0∇2u − 1

3
ν0∇(∇ · u) = f , (3.40)

∂s

∂t
− 4

3
ν0∇2s − 4

3
(γ − 1)ν0∇2 p = Q

ρ0cpT0
, (3.41)

where ν0 = μ0/ρ0, γ = cp/cv , cp being the specific heat at constant pressure and cv

that at constant volume. It is to be noted that the pressure and the entropy have been
normalized by γ p0 and cp, respectively (the notations have not been changed for the
sake of simplicity). The speed of sound in the undisturbed medium, a0, is computed
as a0 = √

γ p0/ρ0. The Prandtl number μcp/κ has been taken equal to 3/4 for the sole
purpose of simplifying the algebra. This linear system can be rewritten introducing
the fluctuating vorticity ω = ∇ × u. By a slight manipulation, one obtains

∂ω

∂t
− ν0∇2ω = ∇ × f , (3.42)

∂s

∂t
− 4

3
ν0∇2s = 4

3
(γ − 1)ν0∇2 p + Q

ρ0cpT0
, (3.43)

∂2 p

∂t2
− a2

0∇2 p − 4

3
γν0

∂

∂t

(∇2 p
) =

[(
∂

∂t
− 4

3
ν0∇2

)
m

ρ0
− ∇ · f

+ ∂

∂t

(
Q

ρ0cpT0

)]
. (3.44)

This set of equations is supplemented by additional relations obtained by lineariz-
ing the perfect gas law (3.4) and the entropy definition (3.5):

γ p − ρ

ρ0
− T

T0
= 0, (3.45)
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p + 1

γ − 1

(
s − T

T0

)
= 0. (3.46)

Using these equations, Kovasznay proposes to define three physical modes, each
mode corresponding to the solution of a subsystem extracted from (3.42)–(3.44):

• The vorticity mode, whose fluctuating field is denoted (ωv, pv, sv, uv), is defined
as follows

∂ωv

∂t
− ν0∇2ωv = ∇ × f , (3.47)

pv = 0, sv = 0, ∇ × uv = ωv, ∇ · uv = 0. (3.48)

The vorticity mode is associated with a solenoidal rotational velocity field, and
it can be interpreted as the “incompressible” part of the solution. But it is worth
noting that there is no corresponding pressure disturbance because it is expected
to be of order ε2. If the source term is set equal to zero, an exact wave-like solution
is

ωv = Zv exp
(
ı kv · x − ν0k2

v t
)
, (3.49)

uv = ı
kv × Zv

k2
v

exp
(
ı kv · x − ν0k2

v t
)
, (3.50)

where the wave vector associated with the vorticity mode, kv , and the complex
amplitude fluctuation vector Zv are such that Zv · kv = 0, i.e. the associated
velocity field corresponds to a transverse wave.

• The entropy mode whose corresponding perturbation field is (ωs, ps, ss, us), is
defined as

∂ss

∂t
− 4

3
ν0∇2ss = 4

3
(γ − 1)ν0∇2 ps + Q

ρ0cpT0
, (3.51)

ωs = 0, ps = 0, ∇ × us = 0, ∇ · us = ∂ss

∂t
. (3.52)

The corresponding wave-like solution for the source-free problem is

ss = S exp

(
ı ks · x − 4

3
ν0k2

s t

)
, (3.53)

us = ı S
4

3
ν0ks exp

(
ı ks · x − 4

3
ν0k2

s t

)
, (3.54)

where S and ks are the complex amplitude and the wave vector, respectively.
The velocity perturbation is purely dilatational and is induced by the sole viscous
effects, and therefore us = 0 in the inviscid case.
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• The acoustic mode, which is characterized by (ωa, pa, sa, ua). The governing
relations for this mode are

∂2 pa

∂t2
− a2

0∇2 pa − 4

3
γν0

∂

∂t

(∇2 pa
) =

[(
∂

∂t
− 4

3
ν0∇2

)
m

ρ0
− ∇ · f

+ ∂

∂t

(
Q

ρ0cpT0

)]
, (3.55)

∂sa

∂t
− 4

3
ν0∇2sa = 4

3
(γ − 1)ν0∇2 pa, (3.56)

∇ × ua = 0, ∇ · ua = ∂sa

∂t
− ∂ pa

∂t
+ m

ρ0
. (3.57)

The wave solution is

pa = P exp (ı(ka · x − σt)) , (3.58)

sa = 4

3
P

(γ − 1)ν0k2
a

c − 4
3ν0ka

exp (ı(ka · x − σt)) , (3.59)

ua = ı Pka
a2

0

c − 4
3ν0ka

(ı(ka · x − σt)) , (3.60)

where P and ka are the complex amplitude and the wave vector, respectively. The
complex propagation frequency σ is defined as

σ = −a0ka

(√
1 − 4γ2ν2

0 k2
a

9a2
0

− ı
2

3

γν0ka

a0

)
. (3.61)

The imaginary part of σ gives the damping rate of the acoustic waves while the
real part is related to the frequency of oscillations. It is observed that the viscous
effects lead to the existence of a dispersive solution. The existence of an acoustic
entropy fluctuation originates in the viscous dissipation of the pressure waves.
In the inviscid case, one recovers sa = 0 and waves travel at the speed a0 (i.e.
σ = −a0ka).

It is seen that disturbances associated with the entropy mode and the vorticity
mode are passively advected by the mean field (velocity u0 in a reference frame at
rest), while acoustic disturbances travel at the speed of sound relatively to the mean
flow.

Using this three-mode decomposition, all turbulent fluctuations can be decom-
posed as indicated in Table 3.1.
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Table 3.1 Non-vanishing Kovasznay mode contribution to the fluctuating field. Symbols are related
to non-vanishing contributions. X: non-zero contribution in the viscous case only; © = non-zero
contribution in both viscous and inviscid case

Mode/fluctuation s p u ω

Acoustic X © ©
Entropy © X

Vorticity © ©

The analysis of governing equations for each mode also give some information
on the role of the forcing terms m, f and Q.

The mass addition term m leads to a production of the acoustic mode (see Eqs.
(3.55) and (3.57)). The effect is twofold: mass addition induces the rise of a non-zero
velocity perturbation, and it also generates pressure waves. But it is worth noting
that if m obeys the diffusion equation

(
∂

∂t
− 4

3
ν0∇2

)
m

ρ0
= 0 (3.62)

no pressure wave is created. In this case, the generated velocity field is a potential
field whose potential φp satisfies the following Poisson equation

∇2φp = m

ρ0
. (3.63)

The forcing term f produces both the vorticity mode and the acoustic mode.
A closer examination of the governing equations shows that the irrotational (resp.
solenoidal) part of f generates the acoustic (resp. vorticity) mode and cannot generate
the vorticity (resp. acoustic) mode. If f is an harmonic force field (i.e. it is both
solenoidal and irrotational) no fluctuating vorticity and pressure fields are generated.
The only effect is the creation of an harmonic velocity field uH given by

∂uH

∂t
= f . (3.64)

The effect of heat addition (term Q) is to create both entropy mode and acoustic
mode. Adding heat obviously yields an increase of the entropy (creation of the entropy
mode) and leads to a local dilatation of the medium and a local disturbance in the
pressure field (creation of the acoustic mode).

The Kovasznay modes are decoupled in the absence of mean flow gradient, show-
ing that they correspond to eigenmodes of the linearized Euler equations in that case.
The associated characteristic propagation velocities correspond to the eigenvalues
of the system. This point is further discussed in Sect. 3.2.7.
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Table 3.2 Source terms associated with second-order bilateral modal interactions according to
Kovasznay decomposition

Modal interaction Acoustic source Vorticity source Entropy source

Acoustic-Acoustic Steepening and
self-scattering
∇ · ∇ · (ua ua) +
a2

0∇2 p2
a + γ−1

2
∂2 p2

a
∂t2

O(ε2ε′) O(ε2ε′)

Vorticity-Vorticity Generation
2∇ · ∇ · (uvuv)

Self-convection and
stretching
−uv∇ωv + ωv∇uv

O(ε2ε′)

Entropy-Entropy O(ε2ε′) O(ε2ε′) O(ε2ε′)
Acoustic-Vorticity Scattering

2∇ · ∇ · (uvua)

Vorticity convection and
stretching
−ua∇ωv + ωv∇ua −
ωv∇ · ua

O(ε2ε′)

Acoustic-Entropy Scattering
∂
∂t ∇ · (ss ua)

Baroclinic source
−a2

0(∇ss) × (∇ pa)

Heat convection
−ua · ∇ss

Vorticity-Entropy O(ε2ε′) O(ε2ε′) Heat convection
−uv · ∇ss

3.2.3 Weakly Nonlinear Corrected Kovasznay Decomposition

The linear decomposition presented above makes it possible to define the three physi-
cal modes, but it does not provide any insight into the interactions between them since
the modes evolve independently. Informations dealing with the creation/destruction
of fluctuations due to the modal interactions are recovered looking at terms of order
ε2 resulting from bilateral interactions (Chu and Kovasznay 1957). The full anal-
ysis brings in 18 terms and also involves a second non-dimensional parameter3

ε′ = ν0k/a0 which measures the ratio of the characteristic length scale of the pertur-
bation, 1/k, and the intrinsic scale of the medium ν0/a0. Second-order terms scale
as ε2 or ε2ε′. Since for turbulent flows at atmospheric pressure and density one has
ε′ � ε,4 it is chosen to neglect terms of order ε2ε′. Remaining terms and associated
production mechanisms are displayed in Table 3.2.

It is important to note that this second-order corrections make all the modes fully
coupled, since even self-interactions yield the growth of the other modes. Therefore,
the Kovasznay decomposition strictly holds for fully linear approximations only.
Statistical theories for the interaction between isotropic turbulence and the acoustic

3It is recalled that the first non-dimensional parameter ε is related to the amplitude of the perturba-
tions.
4Considering ν0 = 0.15 · 10−4 m2s

−1
and a0 = 300 ms−1, one obtains ν0/a0 = 5 · 10−8 m which

is of the order of the mean-free path of the molecules in the gas. For a frequency equal to 1 Hz, one
has 1/k = 300 m and ε′ = 1.66 · 10−10. For 1 kHz one has ε′ = 1.66 · 10−7 and ε′ = 1.66 · 10−4

at 1 MHz. Even at 1 GHz, one obtains ε′ = 1.66 · 10−1 < 1 !
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field are addressed in Sects. 13.2.10 and 13.2.11, which are related to noise generation
and noise scattering by quasi-isentropic turbulence, respectively. The production of
entropy by vorticity self-interactions in low-Mach number isotropic turbulence is
discussed in Sect. 13.3.4.

3.2.4 Bridging Between Kovasznay and Helmholtz
Decomposition

The Kovasznay decomposition can be related to the Helmholtz decomposition (see
Sect. 2.1.5) for the velocity field.

In the case where u(sd) = 0 in Eq. (2.20), one obtains in the viscous case:

u(sol) = uv, u(dil) = ua + us . (3.65)

It is worth noting that the Helmholtz approach does not rely on a small parameter
expansion and is therefore exact, while the Kovasznay decomposition is nothing but
a first-order approximation. It is important to remind that u(sol) is associated to a null
fluctuating pressure field in this case, since ps is a second-order quantity.

3.2.5 Helmholtz-Decomposition-Based Kinematic Relations
for Isotropic Turbulence

The Helmholtz decomposition u′ = u′
s + u′

d can be used to extend the kinematic
relations discussed in the incompressible flow framework in Chap. 2. The two-point
velocity correlation tensor Ri j (x, x+r) can be split in isotropic turbulence as follows

Ri j (r) = u′
si
(0)u′

s j
(r)︸ ︷︷ ︸

Rs
i j (r)

+ u′
si
(0)u′

d j
(r) + u′

di
(0)u′

s j
(r)︸ ︷︷ ︸

Rsd
i j (r)

+ u′
di
(0)u′

d j
(r)︸ ︷︷ ︸

Rd
i j (r)

. (3.66)

It can be shown that Rsd
i j (r) ≡ 0 in isotropic turbulence. The general formulation

for second-order isotropic tensors yields

Ri j (r) = u′2
[

a(r) − b(r)

r2
rir j + b(r)δi j

]
, (3.67)

where a(r) and b(r) are the total longitudinal and lateral two-point velocity correla-
tion functions, respectively. The solenoidal character of u′

s leads to the fact that the
expression of Rs

i j (r) is identical to those found in the incompressible case:

http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Rs
i j (r) = u′2

[
− 1

2r
f ′
s (r)rir j +

(
fs(r) + 1

2
r f ′

s (r)

)
δi j

]
, (3.68)

where fs(r) denotes the longitudinal correlation function of the solenoidal velocity
component u′

s . The fact that the curl of Rd
i j (r) vanishes leads to

Rd
i j (r) = u′2

[
1

r
g′

d(r)rir j + gd(r)δi j

]
, (3.69)

where gd(r) denotes the transverse correlation function of the dilatational velocity
component u′

d . Equalizing (3.67) and the sum of (3.68) and (3.69), one obtains

r f ′
s (r)/2 − rg′

d(r) = b(r) − a(r), r f ′
s (r) + fs(r) + gd(r) = b(r) (3.70)

whose solution is:

fs(r) = −2

3

∫ +∞

0

h(z)

z
dz + 2

3

∫ r

0

h(z)

z

(
1 − z3

r3

)
dz (3.71)

gd(r) = 2

3

∫ +∞

0

h(z)

z
dz + 1

3

∫ r

0

h(z)

z

(
1 − z3

r3

)
dz −

∫ r

0

h(z)

z
dz + b(r),

(3.72)

where h(r) = b(r) − a(r) + rb′(r). In the incompressible case, one has b(r) =
a(r) + ra′(r)/2, leading to fs(r) = a(r) and gd(r) = 0.

The spectral tensor can also be split into a dilatational and a solenoidal component:

R̂i j (k) = R̂s
i j (k) + R̂d

i j (k), (3.73)

where

R̂s
i j (k) ≡

∫∫∫
Rs

i j (x)e−ı k·xd3x = As(k)(k2δi j − ki k j ) (3.74)

R̂d
i j (k) ≡

∫∫∫
Rd

i j (x)e−ı k·xd3x = Ad(k)ki k j . (3.75)

Introducing the associated three-dimensional spectra

E(k) =
∫∫

k=‖k‖
R̂ii (k)d2k, (3.76)

Ess(k) =
∫∫

k=‖k‖
R̂s

ii (k)d2k = −4πk4 As(k), (3.77)
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Edd(k) =
∫∫

k=‖k‖
R̂d

ii (k)d2k = 4πk4 Ad(k), (3.78)

one obtains E(k) = Ess(k) + 1
2 Edd(k), along with

R̂i j (k) = 1

4πk4

(
[Edd(k) − Ess(k)] ki k j + k2 Ess(k)δi j

)
. (3.79)

The solenoidal and dilatational kinetic energy, respectively denoted Ks and Kd ,
are computed as follows

Ks(t) =
∫ +∞

0
Ess(k, t)dk, Kd(t) =

∫ +∞

0
Edd(k, t)dk (3.80)

while the corresponding dissipations are defined as

ε̄s(t) = 2ν

∫ +∞

0
k2 Ess(k, t)dk, ε̄d(t) = 2

4

3
ν

∫ +∞

0
k2 Edd(k, t)dk. (3.81)

Combining the above relations, one can also express the three-dimensional spectra
as functions of the correlation functions:

Ess(k) = u′2

π

∫ +∞

0
fs(r)k2r2

(
sin(kr)

kr
− cos(kr)

)
dr, (3.82)

Edd(k) = u′2

π

∫ +∞

0
gd(r)k2r2

(
sin(kr)

kr
− cos(kr)

)
dr. (3.83)

3.2.6 On the Faisability of a Fully General Modal
Decomposition

The second-order correction of the linear Kovasznay decomposition provides a mean-
ingful qualitative insight into bilateral interactions. Because of the small amplitude
hypothesis, it is not able to lead correct quantitative predictions in fully developed
turbulent flows. Therefore, more sophisticated decompositions must be found to deal
with genuinely nonlinear dynamics.

The idea of defining nearly independent physical modes which can serve as a basis
to decompose turbulent compressible fluctuations is very appealing, but unfortunately
it cannot be extended to arbitrary mean fields. The very reason why is that in the
general case the mean field gradients bring in new terms in linearized equations
which do not allow to decouple the different fluctuating fields. The search for such a
system of equations for the acoustic mode developing about an arbitrary mean field is
the Holy Graal of aeroacoustics, and a large number of surrogate evolution equations
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have been proposed which will not be discussed here. The interested reader is invited
to refer to reference books in acoustics.

Other chapters of this book deal with the coupling between the modes induced
by the mean field non-uniformity: Chap. 14 is devoted to the interactions induced by
a non-uniform smooth mean velocity field while the case of the interaction with a
planar normal shock wave is detailed in Chap. 15.

3.2.7 Remarks on the Energy of Disturbances
in Compressible Turbulence

The definition of the energy of small disturbances in compressible turbulence is a
non-trivial topic, since several definitions have been proposed for it. For the sake of
physical consistency, energy in a disturbance should be defined as a positive definite
norm that characterizes the level of fluctuation in the disturbance about a base flow.

The best definition was given by Chu (1965), Joseph et al. (2011). Considering
the linearized set of equations for small amplitude viscous disturbances, he proposed
to define the energy contained in a control volume V as

E(t) =
∫∫∫

V

{
1

2
ρ0(u

′
i u

′
i ) + 1

2

a2
0

γρ0
ρ′2 + 1

2

ρ0cv

T0
T ′2

}
dx (3.84)

=
∫∫∫

V

{
1

2
ρ0(u

′
i u

′
i ) + 1

2
ρ0a2

0

(
p′

γ p0

)2

+ 1

2

γ − 1

γ
p0

(
s ′

R

)2
}

dx. (3.85)

This definition has the advantage to define an inner product, with respect to which
the linearized Euler equations about a uniform base flow are self-adjoint. This is
illustrated considering 2D case for the sake of brevity without loss of generality
and a uniform base flow (ρ0, u0, 0, T0). Introducing the normalized monochromatic
fluctuation vector with wave vector k = (kx , ky) as

V ′(x, t) =
(

u′(t)
a0

eı k·x,
v′(t)
a0

eı k·x,
ρ′(t)√
γρ0

eı k·x,
T ′(t)√

γ(γ − 1)T0
eı k·x

)
, (3.86)

the linearized evolution equations can be recast as

dV ′

dt
= MV ′, M =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ıkx u0 −ı kx a0√
γ

−ı kya0√
γ

0

−ı kx a0√
γ

−ıkx u0 0 −ı kx a0
√

γ−1√
γ

−ı kya0√
γ

0 −ıkx u0 −ı kya0
√

γ−1√
γ

0 −ı kx a0
√

γ−1√
γ

−ı kya0
√

γ−1√
γ

−ıkx u0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.87)

http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_15
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The eigenvalues of M are (−ıkx u0,−ıkx u0,−ıkx u0 − i‖k‖a0,−ıkx u0 + i‖k‖a0).
M is purely imaginary and symmetric, hence normal. Reminding that the adjoint of
a matrix is its conjugate transpose, the adjoint of M is simply its negative, leading
to the fact that M is self-adjoint. Therefore, its eigenvectors are orthogonal to each
other. They are expressed as

Y 1 =

⎛
⎜⎜⎜⎜⎝

√
γ−1
γ

0

0
− 1√

γ

⎞
⎟⎟⎟⎟⎠ , Y 2 =

⎛
⎜⎜⎜⎝

0
ky

‖k‖
−kx
‖k‖
0

⎞
⎟⎟⎟⎠ , Y 3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2γ

kx√
2‖k‖
ky√
2‖k‖√
γ−1
2γ

⎞
⎟⎟⎟⎟⎟⎟⎠

, Y 4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2γ

−kx√
2‖k‖
−ky√
2‖k‖√
γ−1
2γ

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.88)

and are related to entropy, vorticity, fast and slow acoustic waves, respectively. These
eigenvectors are related to the Kovasznay modes discussed in Sect. 3.2.2, showing
that the Kovasznay decomposition is a normal-mode decomposition of small com-
pressible disturbances. Defining the control area as V = [0, 2π/kx ] × [0, 2π/ky],
Chu’s disturbance energy can be rewritten in terms of the L2-norm of the state vector
as

E(t) = γ p0π
2

2kx ky
‖V ′‖2

2. (3.89)

The fact that evolution equations are self-adjoint with respect to the inner product
associated to the energy definition is very important, since it allows for an exact
energy conservation in the inviscid case with uniform base flow without spurious
energy growth due to non-normal modal interactions. Since the eigenvectors form a
complete basis, any arbitrary perturbation can be written a linear combination of the
eigenvectors:

V ′(t) = a1(t)Y 1 + a2(t)Y 2 + a3(t)Y 3 + a4(t)Y 4. (3.90)

Thanks to the fact that eigenvectors are orthonormal, the inner product simplifies
as

‖V ′(t)‖2
2 = |a1(t)|2 + |a2(t)|2 + |a3(t)|2 + |a4(t)|2. (3.91)

The solution of the linear time evolution problem is

V ′(t) = a1(0)eλ1t Y 1 + a2(0)eλ2t Y 2 + a3(0)eλ3t Y 3 + a4(0)eλ4t Y 4. (3.92)

Since all eigenvalues are purely imaginary, one has

‖V ′(t)‖2
2 = |a1(0)|2 + |a2(0)|2 + |a3(0)|2 + |a4(0)|2 = ‖V ′(0)‖2

2, (3.93)

leading to exact energy conservation, which is physically relevant. In the case the
linearized operator is not self-adjoint with respect to the energy-associated inner
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product, energy can exhibit transient fluctuations due to non-normal couplings
between physical modes (Chomaz 2005). Such variations are mathematically cor-
rect but physically meaningless, and may lead to misleading conclusions about flow
dynamics.

3.3 Mean Flow Equations, Reynolds Stress Tensor
and Energy Balance in Compressible Flows

3.3.1 Arbitrary Flows

We first address the derivation of the governing equations for the mean field and
the associated second-order turbulent stresses. The usual density-weighted average,
referred to as the Favre averaging technique,5 is retained here. For a dummy variable
φ (either a scalar or a vectorial one), the mean part, φ̃, and the fluctuating part, φ′′,
are defined as

φ̃ ≡ ρφ

ρ̄
, φ′′ ≡ φ − φ̃, (3.94)

where the bar symbol is related to the usual statistical average.
Applying the mass-weighted averaging procedure (3.94) to the system (3.1), (3.2)

and (3.8) (removing external source terms for the sake of simplicity) and using the
binary regrouping6 approach for the convective terms:

ρφui = ρ̄φ̃ũi + ρφ′′u′′
i = ρ̄φ̃ũi + ρ̄˜φ′′u′′

i , (3.95)

one obtains the following equations for the mean flow variables:

∂ρ̄

∂t
+ ∂(ρ̄ũ j )

∂x j
= 0, (3.96)

∂ρ̄ũi

∂t
+ ∂(ρ̄ũi ũ j )

∂xi
= − ∂ p̄

∂xi
+ ∂τ̄i j

∂x j
− ∂ρ̄Ri j

∂x j
, (3.97)

∂ρ̄ẽ

∂t
+ ∂(ρ̄ẽũ j )

∂x j
= − p̄

∂ũi

∂xi︸ ︷︷ ︸
I

− p
∂u′′

i

∂xi︸ ︷︷ ︸
I I

+ τ̄i j
∂ũi

∂x j︸ ︷︷ ︸
I I I

+ τi j
∂u′′

i

∂x j︸ ︷︷ ︸
I V

+ ∂q̄i

∂xi︸︷︷︸
V

− ∂(ρ̄˜e′′u′′
j )

∂x j︸ ︷︷ ︸
V I

(3.98)

5But let us notice that the density-weighted average was introduced by Osborne Reynolds in is
seminal paper in 1884!
6This term was coined by Chassaing and coworkers (see Chassaing et al. 2002), who developed the
alternative ternary regrouping approach.
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where the Reynolds stress tensor is now defined as

Ri j ≡ ˜u′′
i u′′

j . (3.99)

An additional equation for the mean kinetic energy K ≡ ρ̄ũi ũi/2 is obtained
by taking the inner product of the mean momentum equation (3.97) by the mean
density-weighted velocity vector ũ:

∂K

∂t
+ ∂(K ũ j )

∂x j
= − ∂( p̄ũi )

∂xi︸ ︷︷ ︸
V I I

+ p̄
∂ũi

∂xi︸ ︷︷ ︸
I

− ∂(ρ̄Ri j ũi )

∂x j︸ ︷︷ ︸
V I I I

+ ρ̄Ri j
∂ũi

∂x j︸ ︷︷ ︸
I X

+ ∂(τ̄i j ũi )

∂x j︸ ︷︷ ︸
X

− τ̄i j
∂ũi

∂x j︸ ︷︷ ︸
I I I

.

(3.100)

The physical meaning of source terms in the mean internal energy equation and
the mean kinetic energy are

• I: mean pressure-dilatation energy transfer, which is strictly null if the mean veloc-
ity field ũ is solenoidal.

• II: pressure-fluctuation dilatation correlation, which vanishes if the fluctuating
velocity field u′′ is solenoidal.

• III: viscous heat production associated to mechanical dissipation by the mean flow.
• IV: viscous heat production associated to mechanical dissipation by the fluctuating

flow (turbulent dissipation of turbulence kinetic energy).
• V: mean external heat source by conduction.
• VI: turbulent diffusion of internal energy.
• VII: power of the mean external pressure forces in the mean motion.
• VIII: power of the Reynolds stresses
• IX: energy exchange with the turbulence kinetic energy (shear production). This

term is null if the mean shear is zero.
• X: power of the mean external viscous stresses in the mean motion.

The evolution equation for the fluctuating velocity is

∂(ρ̄u′′
i )

∂t
+ ∂(ρ̄u′′

i ũ j )

∂x j
= −∂(ρ̄Ri j )

∂x j
− ρ̄u′′

j

∂ũi

∂x j
− ρ̄u′′

i

∂u′′
i

∂x j

+ρ′

ρ

∂ p

∂xi
− ρ′

ρ

∂τi j

∂x j
. (3.101)

In the same way as in the incompressible flow case, evolution equations for the
Reynolds stresses can be deduced from the Navier–Stokes equations. Still consider-
ing the binary regrouping, one obtains:
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∂ρ̄Ri j

∂t
+ ∂(ρ̄Rik ũk)

∂xk
= −ρ̄

(
Rik

∂ũ j

∂xk
+ R jk

∂ũi

∂xk

)
+ p′

(
∂u′′

i

∂x j
+ ∂u′′

j

∂xi

)

− ∂

∂xk

(
ρu′′

i u′′
j u

′′
k + p′u′′

i δ jk + p′u′′
jδik − τ ′

iku′′
j − τ ′

jku′′
i

)

+u′′
i

(
∂τ̄ jk

∂xk
− ∂ p̄

∂x j

)
+ u′′

j

(
∂τ̄ik

∂xk
− ∂ p̄

∂xi

)

−τ ′
ik

∂u′′
j

∂xk
− τ ′

jk

∂u′′
i

∂xk
. (3.102)

Defining the instantaneous turbulence kinetic energy as k ′′ = u′′
i u′′

i /2, one deduces
from the Reynolds stress equations the following evolution equation for the mean
density weighted turbulence kinetic energy K = ρ̄u′′

i u′′
i /2:

∂K
∂t

+ ∂(Kũ j )

∂x j
= − ∂(ρ̄˜k"u′′

j )

∂x j︸ ︷︷ ︸
X I

− ρ̄Ri j
∂ũi

∂x j︸ ︷︷ ︸
I X

− ∂( p̄u′′
i )

∂xi︸ ︷︷ ︸
X I I

− ∂ p′u′′
i

∂xi︸ ︷︷ ︸
X I I I

+ p
∂u′′

i

∂xi︸ ︷︷ ︸
I I

+ ∂(τi j u′′
i )

∂x j︸ ︷︷ ︸
X I V

− τi j
∂u′′

i

∂x j︸ ︷︷ ︸
I V

, (3.103)

where the physical mechanisms at play are:

• XI: turbulent diffusion.
• XII: external power of mean pressure forces acting through the fluctuating motion.
• XIII: external power of pressure fluctuations in the fluctuating motion.
• XIV: external power of fluctuating viscous forces in the fluctuating motion.

Direct energy exchanges between the mean flow kinetic energy, the mean internal
energy and the mean turbulence kinetic energy are due to common terms appearing in
equations (3.98), (3.100) and (3.103), namely terms I, II, III, IV and IX. A schematic
view of this dynamical scheme is displayed in Fig. 3.1.

3.3.2 Simplifications in the Isotropic Case

The dynamical scheme presented above simplifies dramatically in isotropic turbu-
lence, due to the absence of mean flow gradient and to the symmetry properties of
statistical moments of turbulent fluctuations. In this case, the system (3.98)–(3.100)–
(3.103) becomes:

∂ρ̄ẽ

∂t
= − p

∂u′′
i

∂xi︸ ︷︷ ︸
I I

+ τi j
∂u′′

i

∂x j︸ ︷︷ ︸
I V

, (3.104)
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Fig. 3.1 Schematic view of mean energy exchanges in compressible turbulence

∂K

∂t
= 0, (3.105)

∂K
∂t

= p
∂u′′

i

∂xi︸ ︷︷ ︸
I I

− τi j
∂u′′

i

∂x j︸ ︷︷ ︸
I V

. (3.106)

One observes that, as in the case of incompressible flow, the mean kinetic energy
is constant since the turbulent force in the mean momentum equation vanishes. The
remaining coupling terms II and IV correspond to energy exchanges between the
mean internal energy and the mean turbulence kinetic energy (see Fig. 3.2). It is
worth noting that the term II depends on the sole dilatational part of the fluctuating
velocity field. Using the Kovasznay decomposition, one can see that this term is
associated to the acoustic mode and the entropy mode. In the general case where a
temperature-dependent viscosity is considered, term IV also accounts for turbulent
fluctuations of the molecular viscosity. This term is also present in the incompressible
case, and therefore is associated to the three modes of the Kovsznay decomposition.

The full dynamical scheme in isotropic turbulence consists in energy exchanges
at constant total mean energy between the mean turbulence kinetic and the mean
internal energy since

∂

∂t
(ẽ + K + K) = ∂ẽ

∂t
+ ∂K

∂t
= 0. (3.107)
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Fig. 3.2 Schematic view of mean energy exchanges in compressible isotropic turbulence

Therefore, the whole dynamics is governed by terms II and IV and most studies
dealing with compressible isotropic turbulence have been devoted to the analysis of
these two terms and the underlying physical mechanisms.

To get a deeper insight into the contributions of each physical mode, it is useful
to decompose the terms II and IV.

The pressure-dilation correlation (term II) can be rewritten like

p
∂u′′

i

∂xi
= p′ ∂u′′

i

∂xi
= p′ ∂u′

i

∂xi
, (3.108)

where it is important to note that u′ ≡ (u − ū) is defined using the usual statistical
average and not the density-weighted one. This change is possible because, as pointed
out by Feiereisen and coworkers (1981), the density-weighted average and the usual
average are equivalent in homogeneous flows. This is observed writing the following
exact decomposition of the density-weighted momentum:

ρ̄ũi ≡ ρ̄ūi + ρu′
i = ρ̄ūi + ρ′u′

i , (3.109)

from which it follows that

ũi = ūi + ρ′u′
i

ρ̄
. (3.110)

Since the momentum is conserved in homogeneous turbulence (and more gen-
erally in all periodic domains) and that the statistical average can be interpreted as
a volume average by invoking the ergodic theorem, the last term in the right-hand
side of Eq. (3.110) is constant in space and time. The two velocity fields ũ and ū are
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related by an additive constant, which can be chosen to be zero selecting the ad hoc
frame of reference.

Introducing the Helmholtz decomposition u′ = u′
s + u′

d and p′ = p′
s + p′

d , the
pressure-dilatation term is rewritten as

p′ ∂u′
i

∂xi
= p′

s

∂u′
d i

∂xi
+ p′

d

∂u′
d i

∂xi
. (3.111)

This new expression emphasizes that this term is strictly null in incompressible
flows, but also that the solenoidal field has a contribution associated to the correlation
between the solenoidal pressure fluctuations and the divergence of the fluctuating
velocity field. Since the entropy mode has no pressure fluctuation (at least in the
first-order Kovasznay approximation), it is seen that term II is null if there is no
acoustic mode. In the true solution of nonlinear problems, it is expected to be very
small if no acoustic waves are present or if no very intense entropy source is present.

Neglecting the molecular viscosity fluctuations,7 the dilatation-dissipation term
(term IV) can be decomposed in homogeneous turbulence as8

τi j
∂u′′

i

∂x j
= τ ′

i j

∂u′′
i

∂x j
= ρ̄ε̄s + ρ̄ε̄d , (3.112)

where ε̄s and ε̄d , which are respectively referred to as the solenoidal and the dilata-
tional dissipation rate, are defined as

ε̄s = 2
μ̄

ρ̄
W ′

i j W
′
i j = μ̄

ρ̄
ω′

iω
′
i , W ′

i j = 1

2

(
∂u′

i

∂x j
− ∂u′

j

∂xi

)
, (3.113)

ε̄d = 4

3

μ̄

ρ̄

(
∂u′′

i

∂xi

)2

= 4

3

μ̄

ρ̄

(
∂u′′

d i

∂xi

)2

, (3.114)

where ω′ ≡ ∇ × u′ = ∇ × u′
s . It is observed that ε̄s (resp. ε̄d ) does not depend

on the dilatational (resp. solenoidal) field at all, and will therefore be exactly zero if
the solenoidal (resp. dilatational) field is not present in the flow. In high speed flows
without strong external entropy source, and restricting the analysis to the linear

7This assumption is relevant for most high-speed non-reactive flows.
8In non-homogeneous flows a third contribution must be taken into account, which is defined as

ε̄n = 2
μ̄

ρ̄

(
∂2

∂xi ∂x j
u′

i u
′
j − 2

∂

∂x j

(
u′

j

∂u′
i

∂xi

))
.



3.3 Mean Flow Equations, Reynolds Stress Tensor … 97

Kovasznay splitting, it is seen that the solenoidal dissipation ε̄s is associated to the
sole vorticity mode, while the dilatational dissipation is mainly due to the acoustic
mode.
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Chapter 4
Incompressible Homogeneous Isotropic
Turbulence

To caricature, it can be jokingly said that, once one has eliminated all features of a
flow that one understands, what remains is turbulence. This sentence (Mathieu and
Scott 2000) is even more relevant in Homogeneous Isotropic Turbulence (HIT), in
which no interaction with a structuring effect (mean flow, body force, shock-wave,
wall ...) may occur. HIT, even if it can be described statistically with a few number
of quantities, is really the core of the turbulence problem.

4.1 Observations and Measures in Forced and Freely
Decaying Turbulence

4.1.1 How to Generate Isotropic Turbulence?

Isotropic turbulence can be investigated using both experimental and numerical
approaches, despite it requires the existence of an unbounded domain from the the-
oretical point of view.

A quasi-isotropic fully developed turbulent state can be reached in wind tunnels
using a grid to promote turbulence (see Fig. 4.1). In such a setup, boundary layers
develop along solid walls, but a quasi-isotropic flow is recovered in the core of wind
tunnel. The grid wake transforms a part of mean flow kinetic energy into turbulent
kinetic energy. After a certain distance downstream the grid, the mean flow is uniform
and no more turbulence production mechanism takes place. Therefore, the turbulent
fluctuations dynamics is entirely governed by the advection due to the uniform mean
flow, the non-linear interactions and the linear viscous effects, leading to a monotonic
decay of the turbulent kinetic energy K.

Several regions are usually identified downstream the grid, which correspond to
different dynamical regimes. These decay regimes are discussed in Sect. 4.1.3.

© Springer International Publishing AG 2018
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Fig. 4.1 Schematic view of wind tunnel set-up for generating isotropic turbulence

The full-scale spatial development of isotropic turbulence observed in wind tun-
nels cannot be exactly reproduced in numerical simulations, due to the enormous
required computing power. But it is mimicked switching from a spatially evolving
flow to a time-developing flow. In this new configuration, periodic boundary con-
ditions are imposed in all space directions, and a pseudo-turbulent initial condition
is used. An isotropic time decaying turbulent flow is then obtained. It can be made
statistically steady in time inserting an ad hoc forcing term. But it is worth noting
that the use of periodic boundary conditions induces spurious couplings at scales
of the order of the computational domain size, and that the analysis of large scale
dynamics must be carried out with great care.

Spatially-developing and time-evolving flows can be compared thanks to Taylor’s
frozen turbulence hypothesis. In 1938, Taylor hypothesized that the turbulent velocity
fluctuation u(x, t) measured by a stationary probe can be interpreted as resulting from
the advection of a frozen spatial structure by a uniform steady flow with velocity U ,
yielding

u(x, t) = u(x − U t, 0). (4.1)

This hypothesis can also be used to find a approximate relation between space and
time derivatives. Let us consider consider a new reference frame advected at velocity
U . Denoting quantities expressed in this new reference frame by a tilde, one has:

x̃ = x − U t, t̃ = t, ũ(x̃, t̃) = u(x, t) − U (4.2)
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and
∂ui

∂t
= ∂ũi

∂x j

∂x j

∂t
+ ∂ũi

∂t
= ∂ũi

∂t
− U j

∂ũi

∂x j
. (4.3)

If one now assumes that the signal is frozen in the advected frame, i.e. if ∂ũ/∂t ≈
0, then the following relation holds

∂

∂t
≈ U j

∂

∂x j
. (4.4)

It is important to note that the Taylor hypothesis does not hold in the following
cases, at least from the theoretical viewpoint:

• A single advecting velocity cannot be defined. This is the case in compressible
flows, in which hydrodynamic and acoustic perturbations do not have the same
speed, and in flows in which the advection speed depends on the scale of the
perturbation. This last case is met in some shear flows (e.g. mixing layers, boundary
layers).

• The rate of change in the moving frame cannot be neglected. Let us consider a
structure with characteristic size L and characteristic time T . The Taylor hypoth-
esis is valid if

L

U
� T . (4.5)

Now using the relation
√K ≈ L/T , the validity criterion can be recast as

√
K � U, (4.6)

showing that the mean flow speed must be large compared with the characteristic
turbulent velocity scale.

One of the first experiment of decaying grid-generated turbulence, but perhaps
one of the most documented, was carried out by Comte-Bellot and Corrsin (1966).
In order to achieve a better isotropy, at least measured looking at the Reynolds
stress tensor, a convergent duct was placed after the grid, in the “formation region”.
Without this additional device, the Reynolds stresses exhibit a mild axisymmetry
with u2

1 > u2
2 ∼ u3

2: the effect of the convergent duct is to diminish the Reynolds
stress component in the axial direction (x1 here) and to increase it in the radial
directions, as shown by Rapid Distortion Theory (see Chap. 8). Unfortunately, such
experiments cannot reproduce high Reynolds number flows, a typical value of the
Reynolds number based on the Taylor microscale Reλ = λu′/ν being 70–80. Here

u′ =
√

2
3K denotes the characteristic velocity scale of the large, energy-containing

http://dx.doi.org/10.1007/978-3-319-73162-9_8
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scales, and λ ≡ √15νu′2/ε is the Taylor microscale,1 where ε is the kinetic-energy
dissipation rate (see Sect. 4.2.1 for more details).

DNS began to reach higher Reynolds numbers from the early 1980s. A weakness
of these simulations is that the large scale forcing which is present in the simulation
prevent recovering reliable information about the smallest wavenumbers. The semi-
empirical law

N ∼ Re0.74
λ

was recently proposed, where N is the number of grid points along the side of a cubic
box in a conventional pseudo-spectral DNS. Using such a high-accuracy method, the
recommended mesh size is �x ∼ 4 − 5η, where η refers to the Kolmogorov length
scale. This estimate was further refined in the case of freely decaying turbulence by
Meldi and Sagaut (2017). To avoid spurious confinement effects, the domain size
should be at least ten times larger than the integral scale at the final time of simulation.
Therefore, in order to simulate turbulence decay from time t0 to tF with an initial
turbulent Reynolds number ReL(0), one should take

N = 2

(
1 + tF

t0

)2/(σ+3)

Re3/4
L (t0), (4.7)

where σ is the slope of the energy spectrum at very large scales, i.e. E(kL � 1) ∝ kσ.

4.1.2 Main Observed Statistical Features of Developed
Isotropic Turbulence

The main results retrieved from laboratory experiments and numerical simulations
are the following:

• Typical observed turbulent kinetic energy spectrum shapes are displayed in
Fig. 4.7. An universal inertial range is observed in the turbulent kinetic energy
spectrum if the Reynolds number is high enough. At very high wave numbers, vis-
cous dissipation becomes dominant, and the energy spectrum falls very quickly.
The physical assumption that the turbulent field is regular in the sense that the
L2 norm of all high order spatial derivatives of the velocity field is finite suggests
that the spectrum shape should exhibit an exponential decay at very high wave
numbers.
The spectrum shape at large scales (i.e. small wave numbers) which do not belong
to the inertial range is observed to be flow-dependent.

1It is recalled that the Taylor microscale is associated with scales at which the spectrum of kinetic-
energy dissipation, or equivalently the enstrophy spectrum, exhibits its maximum.
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The time evolution of the turbulent kinetic energy spectrum is displayed in
Figs. 4.7 and 4.8. Results dealing with both the free decay case and the statistically
steady case are presented. In the former case, no source of turbulent kinetic energy
is present, and the turbulent kinetic energy is a monotonically decaying function
of time, while in the latter a kinetic energy source is used to reach a statistically
steady state. In both cases, it is observed that the spectrum shape relaxes towards a
universal shape at small scales (provided that the Reynolds number is high enough
to allow for the existence of the inertial range). The change in the kinetic energy
spectrum shape is due to non-linear interactions between modes. Two mechanisms
are obviously at play: a direct kinetic energy cascade from large to small scales
(also referred to a the forward cascade) which is responsible for the existence of
the inertial range, and an inverse kinetic energy cascade from small to large scales
(also named the backward cascade) which yield the growth of the energy spectrum
at very small wave numbers.

• Turbulent velocity fluctuations are not Gaussian random variables.
A first manifestation of non-Gaussianity of the turbulent velocity field is that its
odd-order statistical moments are not zero, while they are identically zero for a
random Gaussian field. A measure of this difference is therefore gained looking at
the skewness and the flatness parameters2 based on velocity increments (or equiv-
alently the velocity gradients). Common reported values of the skewness factor
are S0 = −0.4 ± 0.1 (instead of S0 = 0 for a Gaussian field), while the flatness
factor, F0, ranges from 4 to 40, depending on the Reynolds number (instead of
F0 = 3 for a Gaussian field).
It is worth noting that the single point even moments of velocity fluctuations exhibit
a quasi-normal distribution (see Fig. 4.2), while velocity increments are not Gaus-
sian random variables. Therefore, the one-point analysis of the turbulent velocity
field is not sufficient to analyze the lack of Gaussianity of turbulence: two-point
quantities must be considered. Extreme velocity events, which correspond to the
very end of the tails of the pdf plots are observed to escape the Normal distribu-
tion. As a matter of fact, the tails of the velocity-increment pdf are observed to
be exponential or even stretched exponential. The negative value of the skewness
factor is associated to a strong asymmetry in the distribution of longitudinal veloc-
ity increment with dominating compressive events. A possible explanation is that
this extreme events are (at least partially) governed by the physical mechanisms

2Let us recall that the flatness factor F(a) and the skewness factor S(a) of the random field a are
defined as

F(a) ≡ 〈a4〉
〈a2〉2 , S(a) ≡ 〈a3〉

〈a2〉3/2 . (4.8)

If a is a Gaussian field, then
F(a) = 3, S(a) = 0. (4.9)

Still assuming that a is a random Gaussian field, and defining ωa = curla and Sa = 1
2 (∇a+∇T a),

one has
F(ωa) = 5/3, F(S2

a ) = 7/5. (4.10)

Another important point is that almost all non-linear functions of a will exhibit a non-Gaussian
behavior.
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Fig. 4.2 Probability density function of normalized velocity fluctuation in isotropic turbulence.
From Noullez et al. (1997) with permission of CUP

responsible for the production of turbulent kinetic energy.3 Therefore, they are
flow-dependent and do not exhibit an universal behavior, since they are sensitive
to the characteristic time scale of the turbulence production at large scales.
The analysis of the pdf of the longitudinal velocity increments shows that the lack
of Gaussianity is scale-dependent (see Fig. 4.3), in the sense that velocity incre-
ments at small scales exhibit larger differences with the Normal distribution than
velocity increments at larger scales.
The lack of Gaussianity is an intrinsic feature of turbulence, due to the nonlinearity
of the Navier–Stokes equations. This point will be addressed in Sect. 4.11.5.

4.1.3 Energy Decay Regimes

The turbulent kinetic energy K is observed to follow different regimes, depending on
the position in the wake of the turbulence-generating grid. Three regions are usually

3It can be shown Falkovich and Lebedev (1997) that a Gaussian random forcing having a correlation
scale lF and a time scale τF yields velocity pdf tails of the form

ln P(u) ∝ −u4 for u � max(urms, lF/τF ),

where P(u) is the pdf of the velocity fluctuation u. For a short-correlated forcing such that τF �
lF/urms, one obtains

ln P(u) ∝ −u3 for lF/τF � u � urms.

Therefore, it is seen that the interplay between the external forcing and the turbulence non-linearity
leads to an automatic breakdown of Gaussianity for very intense events.
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Fig. 4.3 Probability density function of normalized velocity increment in isotropic turbulence.
From Noullez et al. (1997) with permission of CUP

identified, which are presented below. They have an universal character, since they
are observed in almost all clean experimental data sets.

(i) The formation region, in which the wakes of the rods of the grid interact and
merge. These interactions lead to a loss of memory of turbulent fluctuations and
to the rise of an quasi-isotropic state.4 It is important noting that this return to
isotropy is not observed if the initial Reynolds number is too low.

(ii) The initial region, in which the flow can be considered as isotropic and is
strongly energetic. In this region, the Taylor-scale-based Reynolds number Reλ

is high, meaning that the non-linear effects are dominant. Both experimental
data and theoretical analysis lead to Reλ ≥ 100 as a minimum to recover the
high-Reynolds decay exponent, higher values being required when higher-order
statistics are considered. In this region, the turbulent kinetic energyK is observed
to decay approximately like t−n with n ≈ 1.1−1.38, while the Taylor scale
grows like t0.35−0.4. Most existing turbulence theories yield 6/5 ≤ n ≤ 4/3, but
some significant differences with experimental data are reported. It is impor-
tant to notice that experimental uncertainties dealing with the measure of the
decay exponent are high, since this measure relies on several strong assump-
tions (Mohamed and Larue 1990; Skrbek and Stalp 2000). This is illustrated in
Fig. 4.4 in which the histogram of about 600 values of the decay exponent of
kinetic energy in grid turbulence published over the last 50 years is displayed.
Theoretical analyses based on two-point closures, like EDQNM (see Sect. 4.8.6)

4The term quasi-isotropic refers here to a state in which at least second-order statistical moments
are isotropic. But some anisotropic effects due to turbulence memory may remain on higher-order
moments.
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Fig. 4.4 Histogram of about 600 published values of the power law exponent nu2 related to the
decay turbulent kinetic energy in DNS and wind tunnel experiments. Grey areas are related to the
probabilistic regions predicted by Meldi et al. (2011) for Saffman and Batchelor turbulence using
uncertainty quantification techniques to account for possible changes in the initial spectrum. From
Meldi and Sagaut (2012) with permission of CUP

reveal that the decay exponent n is sensitive to many parameters related to the
initial condition, such as the shape of the turbulent kinetic energy spectrum at
very small wave numbers at initial time, but also to possible saturation effects
due to the finite size of both experimental facilities and computational domains
(Skrbek and Stalp 2000). The analysis of these states is presented in Sect. 4.4.

(iii) The final region, which is defined as the region in which the Taylor-based
Reynolds number is so low that the viscous linear effects are dominant. The
criterion Reλ ≤ 1 is sometimes used to define the final region, but EDQNM
analysis show that Reλ ≤ 0.1 is a better threshold to observe the asymptotic
low-Reynolds behavior. The turbulent kinetic energy now decays more fastly,
leading to K ∼ t−n with n ≈ 2−2.5, while the Taylor microscale grows like

√
t .

It is important to note that, at such low Reynolds number, isotropy is very difficult
to achieve, either in laboratory experiment and in numerical simulations, due
to couplings between large and small scales. As in the previous case, the decay
rate is expected to be sensitive to the slope of the spectrum at very low wave
numbers and various parameters of the experimental apparatus. Experimental
realizations of the final region are very rare, and it seems that the transition
between the initial and the final region has never been observed experimentally,
since it would require very long wind tunnels (Skrbek and Stalp 2000). Details
about this decay regime are displayed in Sect. 4.4.5.
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4.1.4 Coherent Structures in Isotropic Turbulence

Statistical isotropy does not imply that isotropic turbulence fluctuations are unco-
herent. Since the pioneering simulations of Siggia (1981), it has been observed that
vortical coherent events are present in isotropic turbulence. One usually distinguishes
elongated vortices, referred to as worms or vortex tubes, and flat vortex sheets. These
structures, their dynamics and their role in the turbulence dynamics are discussed in
Sect. 4.10.

4.2 Classical Statistical Analysis: Energy Cascade, Local
Isotropy, Usual Characteristic Scales

4.2.1 Double Correlations and Typical Scales

Isotropy implies that the two-point second order correlation tensor

Ri j (r) =< u′
i (x)u′

j (x + r) >

(time is omitted for the sake of brevity) can be expressed as Ri j = A(r)δi j +
B(r)rir j , or

Ri j (r) = u′2
(
g(r)δi j + ( f (r) − g(r))

rir j

r2

)
, (4.11)

introducing the scaling factor u′2 = 2
3K, and using the longitudinal correlation

function

u′2 f (r) = Ri j (r)
rir j

r2
, (4.12)

and its transverse counterpart

u′2g(r) = Ri j (r)ni n j , (4.13)

in which n is a unit vector normal to r (see Fig. 4.5).
The scalar correlation functions f and g are linked via the incompressibility

constraint. Using ∂Ri j

∂r j
= 0 one obtains

g(r) = f (r) + r

2

∂ f

∂r
. (4.14)
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Fig. 4.5 Schematic view of
multi-point correlations.
Top: general sketch of the
correlation between
two-velocity components
taken at two differents points
A and B. Bottom: illustration
of the physical meaning of
the longitudinal correlation
function f (r) and its
transverse counterpart g(r)

It can be easily seen that

∂2ng

∂r2n

∣∣∣∣
r=0

= (n + 1)
∂2n f

∂r2n

∣∣∣∣
r=0

(4.15)

along with

f (0) = 1, f ′(0) = 0, f ′′(0) < 0, (4.16)

where the notation f ′ is introduced to denote the derivative of ∂ f/∂r for the sake
of simplicity. Finally, reintroducing the time dependency, the evolution equation for
the two-point second order tensor amounts to the single scalar equation, e.g. for f ,
as follows

∂

∂t
(u′2 f ) =

(
∂

∂r
+ 4

r

)(
RL L ,L(r, t) + 2ν

∂

∂r
(u′2 f )

)
, (4.17)

which is referred to as the Karman–Howarth equation. The term RL L ,L represents
the longitudinal two-point third-order correlation function, which is involved via the
quadratic non linearity. It is defined as
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RL L ,L(r, t) = u′
i (x, t)u′

i (x, t)u′
m(x + r, t)

rm

r
= u′3h(r, t). (4.18)

A slightly different form can be found in Mathieu and Scott (2000).
Typical length scales of turbulence can be defined using functions f (r) and g(r).

The longitudinal and transverse integral lengthscales, denoted L f and Lg , respec-
tively, are defined as

L f =
∫ ∞

0
f (r)dr, Lg =

∫ ∞

0
g(r)dr. (4.19)

Isotropy implies

Lg = 1

2
L f . (4.20)

showing that there is only one independent integral scale. These scales are usually
interpreted as the typical scale of the most energetic eddies in the flow. The integral
scale L f is commonly replaced by the characteristic large scale Lu = K3/2/ε that
can be easily computed using the outputs of most existing statistical turbulence
models developed for engineering purposes within the Reynolds Averaged Numerical
Simulation (RANS) framework. It is important noting that L f and Lu are not equal,
since

Lu = lim
ReL →+∞

3π

4
L f . (4.21)

EDQNM results show that the approximation Lu ∼ L f holds for Reλ ≥ 100,
while at lower Reynolds numbers finite Reynolds effects become significant.

The longitudinal and transverse Taylor microscales, λ f and λg, are computed as

λ f =
√

− 2

f ′′(r = 0)
, λg =

√
− 2

g′′(r = 0)
, (4.22)

respectively, with

λ2
g = 1

2
λ2

f (4.23)

in isotropic flows. This scale is defined as the point at which the osculatory parabola
of f (r) at point r = 0 defined by y(r) = f (0) + f ′(0)r + f ′′(0) r2

2 = 1 + f ′′(0) r2

2
vanishes. Reminding that

∂

∂xk
u′

i (x, t)u′
j (x + r, t) = −u′2 ∂Ri j

∂rk
, (4.24)
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one has

−u′2 ∂2 f

∂r2

∣∣∣∣
r=0

= − lim
r→0

∂2

∂r2
u′

1(x + rex , t)u′
1(x, t)

= − lim
r→0

(
∂2u′

1

∂r2

∣∣∣∣
x+rex

u′
1(x, t)

)

=
(

∂u′
1

∂x1

)2

= 4

3

K
λ2

f

. (4.25)

Combining this results with the isotropic relation

ε = 15ν

(
∂u′

1

∂x1

)2

, (4.26)

one recovers the usual expression for the dissipation rate

ε = 30ν
u′2

λ2
f

= −15νu′2 f ′′(0). (4.27)

Consequently, the Taylor microscales are commonly interpreted as the typical
size of eddies at which the maximum of dissipation occurs.

The fourth-order derivative of f at r = 0 can be evaluated by the use of the same
procedure:

u2
∂4 f

∂r4

∣∣∣∣
r=0

= lim
r→0

∂4

∂r4
u′

1(x + rex , t)u′
1(x, t)

= lim
r→0

∂2u′
1

∂r2

∣∣∣∣
x+rex

∂2u′
1

∂r2

∣∣∣∣
x+rex

=
(

∂2u′
1

∂x2
1

)2

∝
(

∂ω′
1

∂x2

)2

,

=⇒ ∂4 f

∂r4

∣∣∣∣
r=0

= G

λ4
, (4.28)

where G is the palinstrophy coefficient defined in Eq. (4.47).
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Table 4.1 Definitions of characteristic space and time scales associated to the fluctuating velocity
field

Integral scale Taylor scale Kolmogorov scale

Space Lu = K3/2

ε
λg =
√

10Kν

ε
η =
(

ν3

ε

)1/4

Time τu = K
ε

τλ =
√

15ν

ε
τη =
√

ν

ε

Reynolds number ReL = K2

νε
Reλ =

√
20

3

K√
νε

Reη = 1

Remark Large
energy-containing
scales

Small scales,
maximum of
dissipation/enstrophy
spectrum

Local Reynolds
number equal to 1

A last family of scales was introduced by Kolmogorov in 1941. Assuming local
isotropy, he made the hypothesis that two-point two-time statistical moments of
the fluctuating field may be evaluated thanks to dimensional analysis using r , the
separation distance, τ , the time delay, ν, the fluid viscosity and ε. Here the physical
meaning of ε deserves a brief discussion. On can define at least three typical rates
looking at time evolution of kinetic energy K in isotropic turbulence. The first one
is the production rate, εP , associated to production of kinetic energy by a source
term, if any. The second one, εT , is associated to the non-linear transfer of kinetic
energy toward small scales by the energy cascade mechanisms. It is assumed to be
scale-independent within Kolmogorov inertial range in most theories. The last rate is
the dissipation rate, ε, which is related to transformation of kinetic energy into heat
via viscous mechanisms. In the case of local equilibrium, one has εP = εT = ε and
ε can be understood as a non-linear energy transfer rate across scales rather than a
viscous phenomenon rate.

Several quantities can be build using ε and ν thanks to dimensional analysis. The
Kolmogorov length scale, η, time scale τη and velocity scale uη are given by

η =
(

ν3

ε

)1/4

, τη =
√

ν

ε
, uη = (νε)1/4. (4.29)

The physical meaning of Kolmogorov scales is obtained observing that the local
Reynolds number Reη = uηη/ν =1. Such a low value shows that eddies with size
of the order of η are governed by linear diffusive effects. As a consequence, the
Kolmogorov scale is commonly accepted as the smallest active scale in a turbulent
flow.

Integral, Taylor and Kolmogorov scales whose definitions are summarized in
Table 4.1 are tied by scaling laws summarized in Tables 4.2 (for spatial scales) and
4.3 (for time scales).
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Table 4.2 Relations between spatial integral scales in isotropic turbulence

Lu λg η

Lu 1 Re1/2
L /

√
10 Re3/4

L

λg

√
10Re−1/2

L 1
√

10Re1/2
L

η Re−3/4
L Re−3/4

L /
√

10 1

Table 4.3 Relations between temporal integral scales in isotropic turbulence

τu τλ τη

τu 1 Re1/2
L /

√
15 Re1/2

L

τλ

√
15Re−1/2

L 1
√

15

τη Re−1/2
L 1/

√
15 1

4.2.2 (Very Brief) Reminder About Kolmogorov Legacy,
Structure Functions, ‘Modern’ Scaling Approach

Structure functions are interesting alternatives to velocity correlations at two points,
using equivalent r (two-point) separation vectors, but velocity increments δu′ =
u′(x + r) − u′(x) instead of u′(x) or u′(x + r). The structure function of order n is
defined as

Sn(r) =
[
(u′(x + r) − u′(x)) · r

r

]n
. (4.30)

Now restricting the analysis to the longitudinal structure functions in isotropic
turbulence, this expression simplifies as

Sn(r) = [u′(r) − u′(0)]n. (4.31)

The counterpart of the longitudinal correlation f is the (longitudinal) second-order
structure function S2(r). In homogeneous turbulence, the second-order longitudinal
structure function, for instance, is given by

S2(r) = 2

3
K (1 − f (r)) . (4.32)

More generally, on can keep in mind that structure functions give information on
two-point statistics for r �= 0, and tend to zero with vanishing r .

The Karman–Howarth equation can be rewritten to obtain an exact evolution
equation for S2(r). In freely decaying isotropic turbulence, one has:
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2

3

∂K
∂t

= −2

3
ε = 1

2

∂S2

∂t
+ 1

6r4

∂

∂r
(r4S3) − ν

r4

∂

∂r

(
r4 ∂S2

∂r

)
. (4.33)

Kolmogorov originally proposed to scale the structure functions in terms of r and
the dissipation rate ε only, the first and simplest version (denoted K41, since the
seminal paper of Kolmogorov was published in 1941) reducing to

Sn(r) ∼ (εr)n/3. (4.34)

The scaling only results from dimensional analysis, once the physical param-
eters have been chosen. Of course, this choice relies on nontrivial phenomeno-
logical aspects. The scaling holds for an inertial range, i.e. for L � r � η,
delineated by a large scale L , comparable to L f in Eq. (4.19) and the Kolmogorov
scale η given by Eq. (4.29). It is important to notice that the classical Taylor series
expansion ui (x + r) = ui (x) + ∂ui

∂rl
rl + · · · would yield a different scaling law:

Sn(r) ∼ ((∂u/∂r)r)n . This result, which holds for a smooth, differentiable, velocity
field, may be valid for the smallest scales, i.e. r < η. The simple fact that the K41
exponent (n/3) is fractional means that the velocity field is not differentiable in the
inertial range, and that self-similar dynamics is expected at such scales.

Modern phenomenological theories continue in search of a more general scaling,
replacing the n/3 exponents by new ones, ζn , called ‘anomalous exponents’, since the
former are questioned in the case of internal intermittency. The background argument
for introducing such new scaling is to consider a local dissipation rate ε(r) which is
no longer independent from the size r . The reader is referred to the following books
for more details: Monin and Yaglom (1975), Frisch (1995), and Mathieu and Scott
(2000).

Finally, let us just mention the famous Kolmogorov’s four-fifths law

S3(r) = −4

5
εr + 6ν

∂

∂r
S2(r), (4.35)

which appears as a simplified form of the Karman–Howarth equation (4.33) assuming
a steady turbulence (and therefore adding a source term to balance viscous dissipa-
tion). It can be further simplified neglecting viscous terms, leading to the popular
approximate formula:

S3(r) = −4

5
εr. (4.36)

Accordingly, the K41 scaling remains unquestioned (at least in HIT at very high
Reynolds number) for n = 3.

It is important noting that relation (4.36) is an asymptotic scaling law, which
requires very high Reynolds numbers to be accurately recovered. In many practical
realizations, Finite Reynolds Number effects are present that yield a departure from
this relation, as seen from Eq. (4.35). Such departure should not be misinterpreted
as intermittency effects.
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forced

Fig. 4.6 Finite Reynolds Number effects: convergence of C3 versus the Taylor-based Reynolds
number. The Kolmogorov 4/5th-law is recovered when C3 = 4/5. Courtesy of A. Briard, adapted
from an original figure in Tchoufag et al. (2012)

Introducing the Reynolds-dependent coefficient

C3 = − max
r

S∗
3 (r), S∗

3 (r) = S3(r)

−εr
, (4.37)

one recovers the Kolmogorov law as an asymptotic limit with limReλ→+∞ C3 = 4/5.
The convergence is illustrated in Fig. 4.6, in which it is observed that Reλ ≥ 5.104 is
required to recover the 4/5 value in freely decaying turbulence while Reλ ≥ 5.103 is
enough in forced turbulence. A few empirical models that account for the Reynolds-
dependency of C3 and S∗

3 (r) are displayed in Tables 4.4 and 4.5. Results gathered
in this figure follow those of Antonia and Burattini (2006), who proposed one of
the best available semi-empirical fit (dotted line) for finite-Reynolds number effects.
In addition, EDQNM results are given by solid lines, and the CBC (Comte-Bellot
and Corrsin) points were obtained by calculating S3, using Eq. (4.59), from the
spectral transfer terms shown in Fig. 4.21, that are very similar in both experiment
and EDQNM calculations.

4.2.3 Turbulent Kinetic Energy Cascade in Fourier Space

It is often easier to investigate two-point statistics using the three-dimensional Fourier
space. The counterpart of Eq. (4.11) in the Fourier space is Eq. (2.134), recalled below

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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R̂i j (k, t) = E(k, t)

4πk2︸ ︷︷ ︸
E(k,t)

(
δi j − ki k j

k2

)

︸ ︷︷ ︸
Pi j

.

It should be borne in mind that isotropy yields a very special form of the spectral
tensor. The involved parameters are the following: E(k, t), with k = |k|, is the
usual energy spectrum, representing the distribution of turbulent kinetic energy over
different scales and the quantity in brackets will be recognized as the projection
matrix, Pi j (k). Thus, R̂i j is determined by a single real scalar quantity, E , which is a
function of the sole magnitude of k. Therefore, both the form of R̂i j at a single point
and its distribution over k-space are strongly constrained by isotropy.

The evolution of the energy spectrum is governed by the Lin equation

∂E(k, t)

∂t
+ 2νk2 E(k, t) = T (k, t) (4.38)

in which the third-order correlations are involved in the scalar spectral transfer term
T (k, t).5 This equation can be seen as a spectral counterpart of the Karman–Howarth
equation (4.17). Exact relationship between E(k), T (k) and all the correlations
defined in physical space can be found in Mathieu and Scott (2000). This equa-
tion derives from the Craya’s equation (2.102) by cancelling mean-gradient terms
and by assuming isotropy, so that

E(k, t) = 2πk2 R̂ii T (k, t) = 2πk2Tii . (4.39)

Integrating the equation over k yields

K(t) =
∫ ∞

0
E(k)dk ε = 2ν

∫ ∞

0
k2 E(k, t)dk (4.40)

and
∫ ∞

0
T (k)dk = 0. (4.41)

This allows us to recover the basic equation (4.233), and shows that T (k, t) is
a pure redistribution term in the Fourier space. The last relation accounts for the
fact that the convection term conserves the total kinetic energy, leading to the well-
known result that global kinetic energy is an invariant in inviscid incompressible
flows (without boundary conditions).

5Let us emphasize here the physical meaning of the sign of T (k). The net effect of nonlinearity on
modes k such that T (k) > 0 is a kinetic energy gain (which must be balanced by viscous effects in
the statistically steady case ∂E(k, t)/∂t), while modes such that T (k) < 0 lose more kinetic energy
than they gain through nonlinear interactions (these scales must be fed by a forcing term to obtain
a statistically steady state). At last, scales such that T (k) = 0 are in equilibrium, in the sense that
they don’t lose or gain kinetic energy on the mean.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Typical shapes of E(k), 2πk2 E(k) and T (k) are displayed in Fig. 4.22. It is
observed that the peak of the energy spectrum, E(k) is significantly separated from
the one of the dissipation spectrum 2νk2 E(k) at large Reynolds number. The transfer
term is almost zero in a small zone within the inertial range, negative for smallest k
and positive for largest k, the areas of both positive and negative values being exactly
balanced. The physical meaning is that small wave number modes lose kinetic energy
on the mean due to the non-linear interactions, while large wave number modes gain
kinetic energy. The scale located within the inertial range have a zero net transfer.
The associated dynamic picture is the celebrated forward energy cascade process6:
turbulent kinetic energy is injected in the system (by external forcing, hydrodynamic
instabilities, ...) at small wave number modes. The energy is then pumped toward
higher wave number modes by the non-linear interactions,‘streaming’ in some sense
toward modes at which it will be transformed into heat by viscous mechanisms. The
inertial range is defined as the zone in which the net transfer is zero. In the inertial
zone, the classical Kolmogorov scaling7

E(k) = K0ε
2/3k−5/3 (4.42)

is observed in both experimental an numerical datasets.
The evolution equation for the dissipation ε is recovered from Eq. (4.38) by

integrating it over k after multiplication by the factor 2νk2, yielding

dε

dt
=

∫ ∞

0
2νk2T (k)dk −

∫ ∞

0
(2νk2)2 E(k)dk (4.43)

= − 7

15

(
1

2
S(t)Reλ(t) + G(t)

)
ε2(t)

K(t)
(4.44)

= − 7

3
√

15
S(t)
√

ReL(t)
ε2(t)

K(t)︸ ︷︷ ︸
Generation of dissipation

− 7

15
G(t)

ε2(t)

K(t)︸ ︷︷ ︸
Destruction of dissipation

, (4.45)

where the skewness S and the palinstrophy G parameters are defined as

S = − (∂u′/∂x)3

(∂u′/∂x)2
3/2 = −3

√
30

14

∫ +∞
0 k2T (k, t)dk

[∫ +∞
0 k2 E(k, t)dk

]3/2 = h′′′(0)

f ′′(0)

3/2

(4.46)

6The term cascade was coined by Onsager in the late 1940s.
7This scaling is consistent with the content of the papers published by Kolmogorov in 1941. But it
is worth noting that Kolmogorov never worked in the Fourier space. The expression of the turbulent
kinetic spectrum was given by his PhD student A. Obhukov, and almost independently rendered
popular by Heisenberg.
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G = 30

7

νK
ε

∂ω′
i

∂x j

∂ω′
i

∂x j

ω′
kω

′
k

= 120

7

νK
ε

∫ +∞
0 k4 E(k, t)dk∫ +∞
0 k2 E(k, t)dk

= λ4 f (I V )(0) (4.47)

where h is the triple correlation function defined in Eq. (4.18).
This equation is the spectral counterpart of the following evolution equation in

the physical space:
∂ε

∂t
= 2νω′

iω
′
j

∂u′
i

∂x j
− 2ν2 ∂ω′

i

∂x j

∂ω′
i

∂x j
. (4.48)

Looking at Eq. (4.43), it is clear that the second term in the right-hand-side is nega-
tive and corresponds to a viscous destruction mechanism. The first term is essentially
positive. A part of T (k) (at large k) is privileged by the k2 weighting factor, and can
be interpreted as a production of ε by nonlinear interactions. This point will be further
discussed in Sect. 4.11.

The fact that the evolution of ε results from the imbalance between two very
different terms, whose sum can be efficiently modeled using the purely negative
term −Cε2

ε2

K = − n
n+1

ε2

K along with K(t) ∝ t−n is certainly true in HIT at high
Reynolds number, but remains not completely understood. As a matter of fact, the
exact equation (4.45) leads to

Cε2 = n

n + 1
= 7

15

(
1

2
S(t)Reλ(t) + G(t)

)
, (4.49)

showing that both Cε2 and n should be Reynolds-number and time-dependent in the
general case. This point will be further discussed in Sect. 4.6.

We should perhaps say a few words about two-dimensional turbulence. On the
one hand, this state corresponds to an extreme anisotropic (axisymmetric) case
with respect to three-dimensional HIT, in which two-point correlations are invari-
ant along a direction x‖, and with a Dirac distribution of spectral kinetic energy
e(k) = E(k)/(2πk)δ(k‖). This viewpoint will be addressed in Chap. 7, showing
that the accurate description of a partial transition from three-dimensional to two-
dimensional structure needs a very refined anisotropic description. On the other hand,
one can just get rid of the third dimension and consider HIT in two dimensions as a
self-consistent area of study. In this case the scaling

E(k) ∼ ω′2k−3

has been proposed by Kraichnan, in connection with the conservation of enstrophy
ω′2 and with an inverse cascade.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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4.2.4 Bridging Between Physical and Fourier Space: Some
Useful Formulas

It is worth reminding that in isotropic turbulence the Karman–Howarth equation and
the Lin equation are equivalent, and that quantities defined in physical space can be
expressed using spectral quantities, and vice versa.

A few useful relations are recalled below:

(i) Velocity longitudinal integral length scale:

L f ≡
∫ +∞

0
f (r)dr = 3π

4

∫∞
0

E(k)

k
dk

∫∞
0 E(k)dk

= 1

2

∫ +∞

0
g(r)dr = 1

2

∫ +∞

0

[
f (r) + 2

r
f ′(r)

]
dr

(4.50)

(ii) Velocity longitudinal Taylor length scale:

λ2
f ≡ − 1

f ′′(0)
= 10Kν

ε
= 5

∫∞
0 E(k, t)dk∫∞

0 k2 E(k, t)dk
(4.51)

(iii) Turbulent dissipation rate:

ε = ν
∂u′

i

∂x j

∂u′
i

x j
= νω′

i ω
′
i = 2ν

∫ +∞

0
k2 E(k)dk = 10

Kν

λ2
f

= −10 f ′′(0)Kν = 15ν

(
∂u′
∂x

)2

(4.52)

(iv) Longitudinal velocity correlation function as a function of the three-dimensional
energy spectrum:

u′2 f (r, t) = 2
∫ +∞

0
E(k, t)

(
sin(kr)

k3r3
− cos(kr)

k2r2

)
dk (4.53)

(v) Transverse velocity correlation function as a function of the three-dimensional
energy spectrum:

u′2g(r, t) = 2
∫ +∞

0
E(k, t)

(
sin(kr)

kr
− sin(kr)

k3r3
+ cos(kr)

k2r2

)
dk (4.54)

(vi) Three-dimensional energy spectrum as a function of the longitudinal velocity
correlation function:

E(k, t) = u′2

π

∫ +∞

0
kr(sin kr − kr cos kr) f (r, t)dr (4.55)
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(vii) Spectral energy transfer term (in Lin equation) as a function of the triple cor-
relation function h(r) defined in Karman–Howarth equation by Eq. (4.18):

T (k, t) = −2
u′3

π

∫ +∞

0

[
(k2r2 − 3)kr sin(kr) + 3k2r2 cos(kr)

] h(r)

r
dr

(4.56)
(viii) Triple correlation function h(r) as a function of the spectral energy transfer

term:

u′3h(r) =
∫ +∞

0

[
(k2r2 − 3) sin(kr)

k4r4
+ 3 cos(kr)

k3r3

]
T (k)

k
dk (4.57)

(ix) Second-order velocity structure function

S2(r) = [u(r) − u(0)]2 = 2u′2 [1 − f (r)] = 4
∫ +∞

0
E(k)a(kr)dk, a(x) = 1

3
− sin x − x sin x

x3

(4.58)

(x) Third-order velocity structure function

S3(r) = [u(r) − u(0)]3 = −12u′3h(r) = 4
∫ +∞

0

T (k)

k2

∂a(kr)

∂r
dk (4.59)

4.3 Models for Single-Time and Two-Time Energy Spectra
and Velocity Correlation Functions

4.3.1 Models for Three-Dimensional Energy Spectrum E(k)

Most existing analytical models for the spectrum E(k) can be recast in the following
generic form Pope (2000), Meyers and Meneveau (2008)

E(k) = K0ε
2/3k−5/3 fL(kL) fη(kη), (4.60)

where fL and fη are the dimensionless shape functions at large and small scales,
respectively. Some consistency relations exist, that lead to integral constraints on the
spectrum shape functions:

∫ +∞

0
E(k)dk = K =⇒

∫ +∞

0
x−5/3 F(x Re−3/4)dx = 1, (4.61)

∫ +∞

0
k2 E(k)dk = ε/2ν =⇒

∫ +∞

0
x1/3 F(x)dx = 1/2, (4.62)
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∫ +∞

0
k4 E(k)dk = ∂ω′

i

∂x j

∂ω′
i

∂x j
=⇒
∫ +∞

0
x7/3 F(x)dx = −7S

12
√

15
, (4.63)

where x = kη is a dummy variable and F(kη) = K0 fL(kηRe3/4
L ) fη(kη). The

fluctuating vorticity is defined as ω′ = curl(u′). The skewness parameter S is given
by Eq. (4.46).

The celebrated hypotheses proposed by Kolmorogov in 1941 yield the following
asymptotic spectrum shapes for small scales for which the local isotropy hypothesis
holds:

E(k) = K0ε
2/3k−5/3 fη(kη), (4.64)

where K0, ε and η are the Kolmogorov constant, the dissipation rate and the Kol-
mogorov scale, respectively.

The assumed regularity of the derivatives of the velocity field is ensured by the
function fη, which must be a fastly decaying function, i.e.

∫ +∞

0
xn fη(x)dx < ∞ ∀n ≥ 0. (4.65)

Among the numerous proposals made for fη(x) (see Table 4.7), a widely admitted
one is

fη(x) = Cxα exp[−βxn], (4.66)

where C , α, β and n are real parameters. Not to mention values of n such as
n = 4/3 (proposed by Pao, for pure mathematical convenience), n = 2 (suggested
by Townsend, assuming linear response of small scales), n = 1 is consistently
predicted by all “triadic” closures (EDQNM, DIA, LHDIA, LRA) (Kaneda 1993)
and supported by recent experimental and DNS results. The reader is referred to
Ishihara et al. (2005) for a survey including new DNS with the Taylor micro-scale
Reynolds number Reλ and resolution ranging up to about 675 and 40963, respec-
tively. In addition to n = 1, the values of α and β obtained by the latter DNS
decrease monotonically with Reλ and appear to tend to constants as Reλ → ∞, but
the convergence, especially that of β, is slow. A simple power law fitting suggests
the following asymptotic (infinite Reλ) values

α = −2.9, β = 0.62, C = 0.044.

Surprisingly, the above-mentioned closures predict α = 3 (Kaneda 1993). This
positive value, however, does not yield an overshoot for the spectrum, between the
end of the inertial range and the beginning of the dissipative range, because β is
sufficiently large.
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For small scales much larger than the Kolmogorov scale η, one recovers the
inertial-range expression8:

E(k) = K0ε
2/3k−5/3. (4.67)

The exact value of the Kolmogorov constant is not known. A large number of
estimates are provided in the literature (Sreenivasan 1995), coming from measures
in the atmospheric boundary layer, from laboratory experiments and numerical sim-
ulations. This uncertainty comes from either the departure from isotropy in many
flows or the absence of a large inertial range in the spectrum. An reliable estimate
seems to be K0 = 1.5 ± 0.1.

It is important noting that the Kolmogorov scaling comes from an asymptotic
dimensional analysis. Denoting L the integral scale of turbulence, usual estimates
for the upper and lower bounds of the inertial range are:

Lupper � 5(ReL)−1/2 L , L lower � 50(ReL)−3/4 L . (4.68)

The miminum Reynolds number for an inertial range to exist is an open issue,
but there are evidences that the Taylor-scale based Reynolds number Reλ must be
O(100) for any natural inertial range to exist, and that Reλ = O(1000) for a decade
of inertial range.

The shape function at large scale fL is purely empirical, since no universal theory
exist for such scales. Large scale features are very difficult to measure directly in
experiments because of confinement problems and statistical convergence issues.
Therefore, they are very often inferred using an a priori model for large scales,
whose coefficients are tuned to fit available data. Common sense says that there
should be a finite cutoff scale, since real fluid flow always occur in a finite domain
(even a very large but finite one like Earth’s atmosphere). In the same way, one should
remember that numerical simulations are performed in finite computational domains.
As a consequence, one should assume that E(k) = 0 for scales larger than a cutoff
scale. Such a limit is never taken into account in existing models (see Table 4.6), in
which the constraint E(k → 0) = 0 is enforced.

Several turbulence theories yield to the proposal that E(k) should exhibit an
asymptotic algebraic form, i.e.

E(k → 0) ∝ kσ (4.69)

with σ ranging from 1 to 4. A detailed discussion about the large-scale behavior of
the energy spectrum is given in Sect. 4.3.3. Let us just mention here that a detailed
analytical analysis show that E(k) might exhibit non-algebraic behaviors in some
cases.

8It is important to keep in mind that Kolmogorov inertial range theory is a priori derived assuming
that turbulence scales are at equilibrium, i.e. that they are statistically steady. Consequences of
non-equilibrium, e.g. in freely decaying turbulence, are discussed in Sect. 4.5.6.3.
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Table 4.6 Shape function of the kinetic energy spectrum at large scales, fL . σ denotes the energy
spectrum slope at very large scales: E(k) ∝ kσ, (kL) � 1. The models obtained by an analytical
integration of an evolution equation for E(k) are denoted with an asterisk

Author fL (x), x = kL

Pope (2000)

(
x√

x2 + cL

)5/3+σ

, cL ∼ 6.78

Meyers & Meneveau (2008)

(
x

(x p + α5)
1/p

)5/3+β+σ

x−β, β = μ/9,

μ = 0.25, p = 1.5

Pao (1965)∗
(

1 + 3K0

2
(kl̂)−2/3

)−(3σ+5)/2

,

l̂2/3 = l̂2/3
0 +
∫ t

0
ε(t ′)dt ′

4.3.2 Models for Longitudinal Velocity Correlation Function
f (r)

The exact form of the function f (r) is unknown. At small separation distance r , the
Taylor series expansion of f (r) yields

f (r) = 1 − r2

λ2
f

+ r4

λ4
f

G

24
+ O(r6/λ6

f ). (4.70)

The asymptotic behavior of f (r) at very large separation distance is still an open
issue, and it is often conjectured that f (r → +∞) ∼ r−m where m is an integer to
be determined.

At asymptotically low Reynolds number, i.e. neglecting h(r) in the Karman-
Horwarth equation, some analytical solutions can be derived. The most popular one
was provided by Taylor in (1935):

f (r) = exp(−r/λ f ). (4.71)

Another famous solution is the Gaussian solution provided by Batchelor and
Townsend in 1948:

f (r) = exp(−r2/λ2
f ). (4.72)

More expression for the asymptotic low-Reynolds case have been proposed
(Table 4.7).

At high Reynolds number composite models made of the combination of a Taylor
series expansion for r → 0 and an algebraic decay law for r → +∞ have been
proposed, but almost all of them are not fully satisfactory. The reason for that is that
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Table 4.7 Shape function of the kinetic energy spectrum at small scales, fη . The models obtained
by an analytical integration of an evolution equation for E(k) are denoted with an asterisk

Author fη(x), x = kη

Pope (2000) exp
(
−β([x4 + c4

η]1/4 − cη)
)

, cη ∼ 0.4,

β ∼ 5.2

Meyers & Meneveau (2008)

(
1 + α2(x/α4)

α3

1 + α2(x/α4)α3

)
exp(−α1x)

Pao (1965)∗ exp

(
−3K0

2
x4/3
)

Kovasznay (1948)∗
{ (

1 − αx4/3
)2

x < 1,α = (2K0)
−1/3

0 otherwise

Heisenberg (1948)∗
Bass (1949)∗
Chandrasekhar (1949)∗
Goldstein (1951)∗

⎧
⎪⎨
⎪⎩

(
1 +
(

8

3α2
H

− 1

m4

)
αx4

)−4/3

x < m

0 otherwise

Qian (1984)
1.19

K0

(
1 + x2/3

)
exp
(
−5.4x4/3

)

Saffman (1963) exp
(
−2x2
)

Manley (1992) exp
(−am xm) , am =

(
2

m
K0�(4/3m)

)3m/4

Kraichnan (1959) Axγ exp (−βx)

A = 6.3 ± 2 or 8.4 ± 0.6
γ = −1.6 ± 0.2, β = 4.9 ± 0.4

Ishihara et al. (2005) Axγ exp (−βx)

A = 0.038 + 23.5Re−0.42
λ

γ = −2.9 + 7.2Re−0.47
λ

β = 0.62 + 9.3Re−0.19
λ

the velocity correlation function must verify a number of physical constraints, and it
appears that a model that fulfill all these constraints is still lacking. This is illustrated
for a couple low-Reynolds models for f (r) in Table 4.8.

A composite model that fulfill almost all constraints was recently proposed par
Monte, Meldi and Sagaut:

f (r, t) = fin(r/λ, Reλ) + fout (r/L ,σ), (4.73)

where fin(r/λ, Reλ) and fout (r/L ,σ) are related to the behavior at small at large
separation distances, respectively. The function fin is defined as:



126 4 Incompressible Homogeneous Isotropic Turbulence

fin (r/λ, Reλ) =
1 + c1 log

(
1 + c2

r

λ

)
+ c3

r

λ

1 + c4
r

λ

·
exp(−c5

r

λ
)

1 + exp(−c5
r

λ
)

(4.74)

where the coefficients ci are positive functions of Reλ. These coefficients have to
be tuned in order to take into account the observed Reλ dependency at small r . The
outer function is defined as:

fout (r/L ,σ) =
exp(−c6

r

L
)

1 + exp(−c6
r

L
)

· 1

1 + c7

( r

L

)m(σ)
(4.75)

where m is the parameter governing the decay dynamics of the two-point velocity
correlation. The parameter m is related to the energy spectrum parameter σ thanks
to

m =
{

σ + 1 σ = 1, 2, 3

6 σ = 4
. (4.76)

A least-square optimization procedure based on EDQNM data yields

c1 = 0.11Re0.45
λ , c2 = 248Re−1.14

λ , c3 = 10.6Re−0.02
λ − 9.2,

c4 = 665.5

Reλ + 282.2
, c5 = 15.7

Reλ − 64
, c6 = 0.88, c7 = 5 × 10−5. (4.77)

4.3.3 Remarks on Asymptotic Behaviors E(k → 0) and
f (r → +∞)

Most existing models and theories for the three-dimensional energy spectrum E(k)

and velocity correlation function f (r) assume that E(k → 0) ∝ kσ and f (r →
∞) ∝ r−m where exponents 1 ≤ σ ≤ 4 and 2 ≤ m6 are tied by a simple univoque
relation.

A deeper analysis reveals that this hypothesis stems from an oversimplified math-
ematical analysis. Starting from the exact relations (4.53) and (4.55) one can show
that non-algebraic solutions exists after some rigorous algebra, as shown in Davidson
(2011) whose results are summarized in Table 4.9.

The full rigorous solution was given more recently by Llor and Soulard (2013).
Considering a correlation function of the form:
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Table 4.9 Asymptotic
behaviour of E(k) for fixed
algebraic behaviour of f (r).
I and A are the Loistsyansky
integral parameter given in
Eq. (4.143) and a constant
parameter, respectively.
Adapted from Davidson
(2011)

u′2 f (r → ∞) E(k → 0)

Ar−2 A
2 k

Ar−3 A
π k2

Ar−4 A
4 k3

Ar−5 A
3π k4(D − ln k), D = O(1)

Ar−6 I
24π2 k4 + O(Ak5)

f (r) =
+∞∑

m=m0

cm

( r

L

)−m
, (4.78)

they obtained the following exact asymptotic expression:

π

2u′2 E(k) =
+∞∑
n=4

(φn − cn+1 ln(kL))an Ln+1kn +
+∞∑

m=m0

cmαm Lmkm−1, (4.79)

where an = (−1)n/2(n − 2)/(n − 1)! (n being restricted to even integers) along with

φn = lim
R→+∞

(∫ R

0

[
f (r) −

<n+1∑
m=m0

cm

( r

L

)−m
]

rn

Ln+1
dr − cn+1 ln(R/L)

)
(4.80)

and

αm = lim
ε→0

(∫ +∞

ε

ξ−m

[
ξ(sin ξ − ξ cos ξ) −

<m−1∑
n=4

anξ
n

]
dξ

)
. (4.81)

The first term in this expression for E(k) exhibits a logarithmic correction, show-
ing that non-algebraic behavior for E(k) or f (r) must be considered, which has not
been the case in almost all existing theories. It is worth noting that these expressions
stem from kinematic analysis, and that there is no evidence that they are solutions of
the Lin and Karman–Howarth equations.

4.3.4 Model for Wave-number-frequency Energy Spectrum
E(k,ω)

The energy spectrum models can be extended to obtain a wave-number frequency
energy spectrum, which will account for advection of the turbulent scales. Introducing
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the two-point two-time velocity correlation tensor Ri j (r, τ ) =
u′

i (x, t)u′
j (x + r, t + τ ) and its Fourier transform in the physical space

R̂i j (k, τ ) = 1

(2π)3

∫∫∫
Ri j (r, τ )e−ı k·rd r, (4.82)

the two-time energy spectrum E(k, τ ) is defined as

E(k, τ ) = 1

2
R̂ii (k, τ ). (4.83)

The wave-number-frequency energy spectrum is then obtained applying the
Fourier transform in time

E(k,ω) =
∫

E(k, τ )e−ıωτ dτ . (4.84)

To model E(k,ω) it is necessary to identify advection mechanisms that are at
play, the emphasis being put on small scales for which a universal behavior may be
expected. At least three advection mechanisms can be taken into account:

(i) Advection by a mean flow velocity, which will be uniform in the isotropic
turbulence case. Small scales are assumed to evolved slowly compared to the
mean velocity and to be advected in a quasi-frozen state, as hypothesized by
Taylor in 1938 (see Sect. 4.1.1).

(ii) Passive advection by large turbulent scales. This phenomenon was addressed
in pioneering works by Kraichnan in 1964 and later by Tennekes in 1975. It is
coined as the random sweeping of small scales by large ones.

(iii) Straining by large scale fluctuations, which results in the nonlinear cascade
process.

The effects of the first two advection mechanisms can be understood considering
an extended version of Kraichnan’s Linear Random Advection model in which both
advecting fields are accounted for:

∂

∂t
u(k, t) = −ı [k · (v0 + v)] u(k, t), (4.85)

where u, v0 and v denotes the small scale velocity field, the mean velocity field
and the large-scale velocity field with zero mean, respectively. The exact analytical
solution is

u(k, t) = exp [k · (v0 + v)t] u(k, 0), (4.86)

which corresponds to Eq. (2.112), with G(0)
i j (k, t, t0) = exp [k · (v0 + v)t] and a zero

source term s. Here, since the mean flow velocity is assumed to be uniform, one has
k(t) = k(t0).

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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The two-time spectral energy tensor is therefore given by

u′
i (k, t)u′

j (k′, t ′) = 1

(2π)6

∫
u′

i (x, t)u′
j (x′, t ′)e−ı(k·x+k′ ·x′)d3xd3x′. (4.87)

Noting x′ = x + r and t ′ = t + τ and reminding that

δ(k + k′) = 1

(2π)3

∫∫∫
e−ı(k+k′)·xd3x,

one obtains
u′

i (k, t)u′
j (k′, t + τ ) = δ(k + k′).R̂i j (k′, τ ). (4.88)

Now inserting the solution (4.86), one obtains

u′
i (k, t)u′

j (k′, t + τ ) = u′
i (k, 0)u′

j (k′, 0) (4.89)

×exp
[−ı k · (v0 + v)t − k′ · (v0 + v)(t + τ )

]
,

which can be rewritten as a relation between two-time and single-time spectral ten-
sors:

δ(k+ k′)R̂i j (k′, τ ) = δ(k+ k′)R̂i j (k′)exp
[−ı k · (v0 + v)t − k′ · (v0 + v)(t + τ )

]
.

(4.90)
Integration over k′ leads to

R̂i j (k, τ ) = R̂i j (k)exp [−ı k · (v0 + v)τ ], (4.91)

from which one recovers the relation between two-time and single-time energy spec-
tra:

E(k, τ ) = E(k)exp [−ı k · (v0 + v)τ ]. (4.92)

This expression can be further developed assuming that the sweeping velocity
field v is a Gaussian random field. In this case, one has

exp [−ı k · (v0 + v)τ ] = exp [−ı k · v0τ ] exp [−ı k · vτ ]

= exp [−ı k · v0τ ] exp

[
v2k2τ 2

6

]
, (4.93)

showing that the two-time energy spectrum originates in a combination of harmonic
oscillations induced by the mean field advection and exponential decay due to random
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sweeping. The single-time energy spectrum E(k) is not modified and is still fully
general at this point. One can note that (4.93) is the Fourier transform of a Gaussian
distribution with mean velocity v0 and a variance specified by the sweeping velocity

V =
√

v2/3.
Therefore, the associated expression wave-number-frequency spectrum spectrum

is Wylczek and Narita (2012)

E(k,ω) = E(k)√
2πk2V 2

exp

(
− (ω − k · v0)

2

2k2V 2

)
, (4.94)

showing that the mean flow advection induces a Doppler shift in frequency, while
random sweeping generates a Doppler broadening of the spectrum in the frequency
domain. This model might be further complexified accounting for the Doppler shift
induced by the random field v. The energy spectrum E(k,ω) may be anisotropic
even in the case of an isotropic E(k) because of the Doppler shift term k · v0.

It is important to note that this model is based on the simplified linear propagator
(4.85) which does not account for viscous, pressure and nonlinear effects, allowing
for a simple analytical integration. This model is observed to be in satisfactory
agreement with DNS data.

A last comment is that these results, including the exponential term due to ran-
dom sweeping, are recovered considering Taylor series expansions about the isotropic
solution (Kaneda 1993; Kaneda et al. 1999). In these references, two-time correla-
tions are obtained computing the coefficient of the time expansion thanks to spectral
closures, namely the Lagrangian Renormalized Approximation, which also assumes
some degree of Gaussianity for velocity fluctuations.

4.3.5 Models Two-Point Two-Time Velocity Correlation
R(r, τ )

The longitudinal two-point two-time correlation function R(r, τ ) = R11(r ex , τ ) is
classically approximated via polynomial expansion, which aims at expressing it in
terms of the single-time correlation function.

Considering advection by a uniform mean flow with a component u0 along the x-
axis, Taylor’s frozen turbulence hypothesis yields the following linear approximation:

R(r, τ ) = R(r − u0t, 0), (4.95)

which is observed to yield bad results, since iso-correlation contours are straight
lines in the (x, t) plane that extend up to infinity, which is unphysical since turbulent
eddies have finite correlation scales. A more realistic model is obtained considering
higher-order expansions. A second-order Taylor series expansion leads to
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R(r, τ ) = R(0, 0) + r
∂R

∂r
(0, 0) + τ

∂R

∂τ
(0, 0) + r2

2

∂2 R

∂r2
(0, 0)

+τ 2

2

∂2 R

∂τ 2
(0, 0) + rτ

∂2 R

∂τ∂r
(0, 0)

+O(r3, τ 3, r2τ , rτ 2). (4.96)

Statistical isotropy and stationarity imply

∂R

∂r
(0, 0) = ∂R

∂τ
(0, 0) = 0.

Such an expansion was proposed by Kaneda in a series of papers, e.g. Kaneda
(1993), Kaneda et al. (1999), to predict both Lagrangian and Eulerian correlation
tensors in isotropic turbulence. In Kaneda et al. (1999) a Padé approximation is used
to recover the fact that R(r, τ → +∞) = 0, an asymptotic behavior that a simple
short-time Taylor series expansion is unable to recover.

A second-order model coined as the Elliptic model or the scale-similarity model is
obtained considering an isocontour R(r, τ ) = C (He et al. 2009; Zhao and He 2009).
This isocontour intercepts the space separation axis at the point (rc, 0), leading to

R(r, τ ) = R(rc, 0) = C. (4.97)

Now inserting the second-order expansion (4.96), one obtains

r2
c = (r − Ucτ )2 + V 2

c τ 2, (4.98)

where

Uc = − ∂2 R

∂τ∂r
(0, 0)

(
∂2 R

∂r2
(0, 0)

)−1

(4.99)

V 2
c = −∂2 R

∂τ 2
(0, 0)

(
∂2 R

∂r2
(0, 0)

)−1

− U 2
c (4.100)

leading to the final model

R(r, τ ) = R

(√
(r − Ucτ )2 + V 2

c τ 2, 0

)
. (4.101)

Correlation isocontours are self-similar ellipses, with aspect ratio A and angle
with the horizontal axis α given by the following formula:

tan2 α = 4U 2
c

(√
(1 + U 2

c − V 2
c )2 + 4U 2

c V 2 + (1 + U 2
c − V 2

c )

)−2

(4.102)
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A2 = 4V 2
c

(√
(1 + U 2

c − V 2
c )2 + 4U 2

c V 2
c + (1 + U 2

c − V 2
c )

)−2

. (4.103)

The elliptic model is observed to yield very accurate results for small scales within
the inertial range, and yields very satisfactory prediction of Taylor and integral scales.
Addition of higher-order terms is not observed to yield significant improvement of the
results. It is worth noting that the elliptic approximation is not accurate for pressure
fluctuations (see Sect. 4.9).

This model accounts for both advection (at velocity Uc) and random sweeping
(with characteristic velocity Vc) phenomena. It is compatible with the model two-
time two-point energy spectrum (4.94), and can be extended to shear flows (see
Sect. 9.6.2.1).

As a matter of fact, an exact relation between R(r, τ ) and the two-time energy
spectrum is

R(r, τ ) = 2
∫∫∫

E(k, τ )eıkx r d3k. (4.104)

Now inserting the model (4.92) and accounting for (4.93), one obtains in the
isotropic case (and using notation of the preceding section)

R(r, τ ) = 2
∫

E(k)
sin(k(r − u0τ ))

(k(r − u0τ ))
exp

(
−1

2
k2V 2τ 2

)
dk, (4.105)

which should also be equal to (using the elliptic model)

R(r, τ ) = 2
∫

E(k)
sin(krc)

krc
dk. (4.106)

A second order expansion yields the following identification

r2
c = (r − u0τ )2 + 3V 2τ 2, (4.107)

leading to the following identifications: Uc = u0 and Vc = √
3V . The formula above

show that the random sweeping by large scales results in an exponential decay of
the correlations at small scales, without introducing the viscous damping effect. The
elliptic model is reported to be in very satisfactory agreement with DNS data also
at relatively large scales for which the truncated Taylor series expansions should not
hold. It has not be assessed at very large scales.

The velocities Uc and Vc may be measured and evaluated thanks to relations
(4.99) and (4.100). They can also be evaluated thanks to dedicated models to recover
a predictive model. In the isotropic case, one has

http://dx.doi.org/10.1007/978-3-319-73162-9_9
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∂2 R

∂r2
(0, 0) = −

∫∫∫
k2

x R̂ii (k, 0)d3k = −1

3

∫∫∫
k2 R̂ii (k, 0)d3k

= −2

3

∫ +∞

0
k2 E(k)dk = − ε

3ν
(4.108)

along with

∂2 R

∂τ∂r
(0, 0) = 2

3
u0

∫ +∞

0
k2 E(k)dk = u0

ε

3ν
(4.109)

and

∂2 R

∂τ 2
(0, 0) = −2

3

(
u2

0 + v2)
∫ +∞

0
k2 E(k)dk = − (u2

0 + v2) ε

3ν
, (4.110)

where the random sweeping velocity is approximated as v2 = 2
∫ kc

0 E(k)dk, kc the
largest wave number associated to large scales. As a first approximation one can take
v2 = K, leading to

Uc = u0, V 2
c = K. (4.111)

This elliptic model, being coherent with the spectrum model discussed in the
preceding section, does not account for viscous, pressure and straining effects. The
relative influence of straining and sweeping can be analyzed considering the scale-
by-scale evolution of the correlation time.

Defining the two-time correlation coefficient at wavenumber k as

C(k, τ ) = ûi (k, t)ûi (k, t + τ )

ûi (k, t)ûi (k, t)
, (4.112)

the correlation time at wave number k is defined as τD(k) = ∫∞
0 C(k, τ )dτ . Depend-

ing on the dominant mechanisms, one should have in the inertial range

τD(k) �
{

(E(k)k3)−1/2 � (εk)−2/3 dominant straining

(Vck)−1 dominant random sweeping
. (4.113)

Favier et al. (2010) observed in DNS that τD(k) switch slowly from dominant
straining at large scales to dominant sweeping at smaller scales within the inertial
range.
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4.4 Free Decay Theories: Self-similarity, Self-preservation,
Symmetries and Invariants

We now address the issue of free decay of isotropic turbulence, which is assumed
to correspond to grid turbulence in wind tunnels. Specific issues related to this flow
can be identified, the most popular one being the prediction of decay of the turbulent
kinetic energy K(t). Tremendous efforts have been devoted to this question since
the early 20th century, but a fully satisfactory theory is still lacking. Several related
questions have been raised during the past 100 years, among which one must mention:

(i) Does freely decaying isotropic turbulence exhibits self-similar solutions?
(ii) Does kinetic energy follow an algebraic decay law, i.e. K(t) ∝ t−n?

(iii) Is there a universal decay regime such that K(t) ∝ t−1?

These questions have been controversial issues during the last decades, and defini-
tive answers are still to be found in many cases.

4.4.1 Self-similarity, Self-preservation and Partial
Self-preservation

The very definition of self-similarity, self-preservation or partial self-preservation has
been debated during decades, yielding several misunderstanding and controversies.
In the present book, the following definitions are selected:

(i) A solution will be said to be exactly self-preserving iff the full solution at any
time and any scale can be described using a single length scale �(t) and a single
velocity scale v(t), leading to u′(r, t)u′(0, t) = v2(t)F(r/�(t)) and E(k, t) =
v2(t)�(t)G(k�(t)) where F(x) and G(x) are dimensionless shape functions for
the velocity correlation function and energy spectrum, respectively. The very
concept of self-preservation (also referred to as the von Karman hypothesis in
Monin and Yaglom 1975) was pioneered by Taylor (1935), von Karman and
Howarth (1938) and von Karman and Lin (1949).

(ii) A solution will be said to be partially self-preserving if self-preservation is
observed over a limited range of scales and not at all scales.

(iii) A solution will be said to be self-similar, according to George’s definition (some-
times referred to as extended self-similarity hypothesis) George (1992), if Lin
equation (or equivalently the Karman–Howarth equation) admits a self-similar
solution such as E(k, t) = Es(t, �)ψ(k�(t), �), T (k, t) = Ts(t, �)ϕ(k�(t), �),
where Es and Ts are time-dependent amplitude terms and ψ and ϕ shape func-
tions, respectively. Here, � denotes a possible dependency on initial conditions.
This definition is more flexible than pre-existing self-similarity theory, accord-
ing to which E(k, t) = v2(t)�(t)ψ(kl(t), �) and T (k, t) = v3(t)ϕ(k�(t), �).
The difference lies in the fact that no a priori choice is made on both Es and Ts

in the former case, while amplitude scalings are fixed in the later.
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The self-similarity theories aim at analyzing the statistical structure of the turbu-
lent field, but they also allow for the prediction of the evolution laws of global physical
quantities such as kinetic energy K(t), turbulent dissipation rate ε(t), integral length
scale L f (t) and Taylor microscale λ f (t).

The present section is organized as follows. First, symmetry-based analysis of
Navier–Stokes equations is discussed in Sect. 4.4.2 along with consequences dealing
with the existence of self-similar solutions. The link between symmetry analysis,
existence of invariant quantities and algebraic decay of kinetic energy is presented in
Sects. 4.4.3 and 4.4.4. Then, the dimensional analysis based Comte-Bellot–Corrsin
theory, which bridges between the decay exponent and the features of the initial
conditions, is introduced in Sect. 4.4.5. The presentation ends with George’s extended
self-similarity theory in Sect. 4.4.6, that starts from the full evolution equations to
obtain the two important results: (i) self-similar solutions may exist and (ii) the
associated decay exponent depends on features of the initial condition. The results
of these theoretical analyses are summarized in Sect. 4.4.7, while the most recent
results based on numerical simulations, experimental data and EDQNM analysis are
presented in Sect. 4.5

4.4.2 Symmetries of Navier–Stokes Equations and Existence
of Self-similar Solutions

Let us first recall that a physical law F(x, t; u1, . . . , uN ) (where x and t denote the
space and time, respectively, and ui , i = 1, N are physical quantities) is said to be
invariant under the transformation F −→ F∗, x −→ x∗, t −→ t∗, ui −→ u∗

i (i =
1, N ) if and only if

F(x, t; u1, . . . , uN ) = F(x∗, t∗; u∗
1, . . . , u∗

N ), (4.114)

i.e. the physical law is not modified by the change of variables. The Navier–Stokes
equations for an incompressible fluid in an unbounded domain (i.e. without boundary
conditions) are known to admit the following one-parameter set of symmetries9

(which has the mathematical structure of a Lie group):

• Time translation:
(t, x, u, p) −→ (t + t0, x, u, p) (4.115)

• Pressure translation:

(t, x, u, p) −→ (t, x, u, p + ζ(t)) (4.116)

• Rotation (with Q a constant rotation matrix):

9Other symmetries, such as the mirror symmetry, exist but are not one-parameter symmetries.
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(t, x, u, p) −→ (t, Qx, Qu, p) (4.117)

• Generalized Galilean transformation:

(t, x, u, p) −→ (t, x + v(t), u + v̇(t), p − ρx · v̈(t)) (4.118)

• Scaling I:
(t, x, u, p) −→ (α2t,αx,α−1u,α−2 p) (4.119)

• Scaling II:
(t, x, u, p, ν) −→ (t,αx,αu,α2 p,α2ν) (4.120)

where α is an arbitrary strictly positive real parameter.
It is important noting that these symmetries are identified conducting an exact

mathematical analysis of the incompressible Navier–Stokes equations, without intro-
ducing any hypothesis or modelling assumptions.10

Boundary conditions may eventually decrease the number of symmetries, but
cannot introduce new symmetries. It is worth noting that scalings I and II are particular
forms (taking h = −1 and h = 1) of the even more general rescaling given below

(t, x, u, p, ν) → (α1−ht,αx,αhu,α2h p,α1+hν). (4.124)

We now focus on isotropic turbulence. In this case, symmetries such as rotation
invariance, Galilean invariance, pressure and time translation are implicitly met.
Therefore, the emphasis is to be put on the scaling symmetries and look at the
statistical moments of the turbulent velocity field. Let r and f be the correlation
distance and the normalized two-point double velocity correlation, respectively (see
Sect. 4.2.1 for a detailed description). In the limit of very large Reynolds numbers (i.e.
vanishing molecular viscosity), these quantities are transformed as follows (Oberlack
2002)

10This analysis is performed considering the following one-parameter (Lie-group) transformation:

Ta : y → ŷ = ŷ( y, a), y = (t, x, u, p, ν) (4.121)

which depends continuously on the real parameter a. Let us write formally the Navier–Stokes
equations as NS( y) = 0. Ta is said to be a symmetry of the Navier–Stokes equations iff

NS( y) = 0 ⇐⇒ NS( ŷ) = 0. (4.122)

The set of symmetries constitutes a local one-parameter Lie Group, referred to as a symmetry
group of the Navier–Stokes equations. Assuming that the neutral element of this group (i.e. the
identity transformation) corresponds to a = 0, the group is characterized by the variation of y
under Ta around a = 0, which is represented by the infinitesimal generator X :

X ≡ ∂ ŷ
∂a

∥∥∥∥
a=0

=
∑

i

ξi
∂

∂yi
, ξi ≡ ∂ ŷi

∂a

∥∥∥∥
a=0

. (4.123)

Once X is known, all elements of the symmetry group Ta can be calculated.
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t∗ = α2t, r∗ = α1r, u′2∗ = (α1/α2)
2u′2, f ∗ = f. (4.125)

In the case of finite Reynolds number, the only possible solution is α2 = α2
1. A

set of invariants r̆ , f̆ , ŭ, p̆ can be defined:

r̆ = r

t
2

σ+3

, f̆ = u′2 f

t−2 σ+1
σ+3

, ŭ = u

t− σ+1
σ+3

, p̆ = p

t−2 σ+1
σ+3

, (4.126)

where

σ = 2
ln α2

ln α1
− 3. (4.127)

It is worth noting that, in the finite Reynolds number case, σ = 1 is the only
possible value. It can be shown, still considering the high Reynolds number limit,
that the parameter σ is related to the spatial decay of the two-point correlations and
the shape of the kinetic energy spectrum at low wave number:

E(k → 0) ∼ kσ. (4.128)

It is important noticing that the constants involved in these scaling laws are
assumed to be independent of time, corresponding to the so-called Permanence of
Large Eddies (PLE) hypothesis.

We now show that the existence of self-similar solutions for the isotropic decay
problem can be deduced from the symmetry analysis (and not assumed a priori). To
this end, let us consider the following one-parameter sub-group of transformation
(Clark and Zemach 1998)

t∗ = α(t + t0) − t0, x∗ = αγ x, (4.129)

where α is an arbitrary real parameter. This sub-group is labeled by γ and t0, which
are two real parameters. We are now looking for turbulent flows such that the shape
of the kinetic energy spectrum E(k, t) is invariant under the transformation (4.129).
Simple dimensional analysis yields:

α3γ−2 E(k, t) = E(α−kk,α(t + t0) − t0). (4.130)

The above property holds for all group elements if it holds for the infinitesimal
element, i.e. for the group element α = 1 + δα, with δα � 1. To this end, one
differentiates (4.130) with respect to α and then takes α = 1. The result is the
following determining equation:

(3γ − 2)E(k, t) = −γk
∂E

∂k
+ (t + t0)

∂E

∂t
(4.131)
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which can be solved by the method of characteristics in the spectral space. The
right-hand side of Eq. (4.131) leads to the following characteristic line equation:

d

dt
k(t) = − γ

t + t0
k(t) (4.132)

and therefore the wavenumber k evolves as

k(t) =
(

1 + t

t0

)−γ

k(0) (4.133)

along the characteristic line spanned by k(0). Along this line, the kinetic energy
spectrum evolution is given by the following relation:

d

dt
E(k(t), t) = ∂E

∂k

dk

dt
+ ∂E

∂t
= 3γ − 2

t + t0
E(k(t), t) (4.134)

leading to the following solution:

E(k(t), t) =
(

1 + t

t0

)3γ−2

E0(k(0))

=
(

1 + t

t0

)3γ−2

E0

(
k(t)

(
1 + t

t0

)γ)
. (4.135)

Introducing the lengthscale �(t) and the energy scale v′2(t) such that

�(t) = �0

(
1 + t

t0

)γ

, v′2(t) = v′2
0

(
1 + t

t0

)2γ−2

(4.136)

one obtains
E(k, t) = v′2(t)�(t)F(k�(t)) (4.137)

in which the non-dimensional shape function F is such that

F(ξ) = E0(ξ/�0)

v′2
0 �0

. (4.138)

Therefore, the solution obeys a self-similar decay regime.11 The important con-
clusion is that (4.137) is not postulated as in early studies like those of Karman and
Howarth in the late 1930’s, but deduced as being a consequence of the symmetries
of the governing equations in the limit of very high Reynolds number.

11An adequate choice for v′2
0 yields v′2(t) = K(t).
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4.4.3 Algebraic Decay Exponents Deduced from Symmetry
Analysis

The symmetry analysis introduced in the previous section can also be used to recover
some information about the time evolution of the solution. This is done finding the
values of σ in Eq. (4.127) or γ in Eq. (4.129).

Time scaling laws for the turbulent kinetic energy K(t), turbulent dissipation
ε(t), integral lengthscale L f (t) and turbulent Reynolds number ReL are deduced
from relation (4.126) in a straightforward way:

L f (t) =
∫ +∞

0
f (r, t)dr = t

2
σ+3

∫ +∞

0
f (r∗)dr∗ ∼ t

2
σ+3 , (4.139)

K(t) ∼ t−2 σ+1
σ+3 , (4.140)

ReL(t) = L f (t)
√

2K(t)/3

ν
∼ t− σ−1

σ+3 , (4.141)

ε(t) ∼ d

dt
K(t) ∼ t− 3σ+5

σ+3 . (4.142)

It is seen that the time evolution exponents of these global turbulent parameters
are explicit functions of σ. Since σ is also related to the shape of the kinetic energy
spectrum at very large scales (see Eq. (4.128)), this leads to the conclusion that the
self-similar decay regime is governed by the very large scales of turbulence.

Different values for σ have been proposed during the past decades, which are
now briefly surveyed (corresponding time evolution exponents are displayed in
Table 4.10). A value of σ is associated to the existence of an invariant quantity
which will remain constant during the decay (see below). In some cases the exis-
tence and the physical meaning of this invariant quantity are easily handled, while
some controversies exist in other cases. The most popular values for the parameter
σ are:

• σ = 4. According to the Loitsyansky-Landau theory, it was hypothesized by Loit-
syansky in 1939 that the following integral quantity (referred to as the Loitsyansky
integral or the Loitsyansky invariant)

I = −
∫

r2u′(x) · u′(x + r)d3r = 8πu′2
∫ +∞

0
r4 f (r)dr (4.143)

is invariant in time during the decay phase. The corresponding time evolution
exponents where derived by Kolmogorov in 1941. The associated form the kinetic
energy spectrum is referred to as the Batchelor spectrum:

E(k) = I

24π2
k4 + · · · (kL f � 1) (4.144)
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The time invariance of I is a controversial issue since it depends on the
decay rate of velocity two-point correlation at long range. It is constant if velocity
long-range interactions decay fast enough, which is not obvious since the pressure
fluctuations may induce stronger long-range interactions.12 The controversy was
initiated by Proudman and Reid in 1954, followed by Batchelor and Proudman
in 1956, who advocated that long-range interactions are strong enough to render
I time dependent. Since that time, I has been observed to be time-dependent in
many numerical simulations, in agreement with predictions of many two-point
closures like EDQNM. This issue was very recently revisited by Davidson and
coworkers (Davidson 2004; Ishida et al. 2006), who observed that I becomes
time independent after a transient phase in high-resolution DNS, provided that
the domain size is much larger that the turbulent integral scale (they considered a
ratio up to 80) and that the Reynolds number is larger than 100. Therefore, time
dependency observed in previous simulations was an artefact due to spurious long-
range correlations induced by the insufficient domain size and periodic boundary
conditions. The fact that pressure fluctuations do not lead to a strong long-range
coupling may be attributed to a screening effect in fully developed turbulence:
long-range correlations are weakened by opposite cancelling effects of the very
intricate turbulent vorticity field.

• σ = 2. This second value was proposed in 1954 by Birkhoff, who made the hypoth-
esis that the following integral quantity is invariant (referred to as the Birkhoff
integral but also as the Saffman integral):

S =
∫

u′(x) · u′(x + r)d3r = 4πu′2
∫ +∞

0
r2
(
3 f + r f ′(r)

)
dr. (4.145)

The corresponding time behavior of the solution was derived by Saffman in
1967, after he argued that the Loitsyansky integral is diverging in isotropic turbu-
lence. For that purpose, Saffman revised the approach introduced by Comte-Bellot
and Corrsin in 1966 to investigate the connection between the energy spectrum
and the energy decay. The associated spectrum shape (the Saffman spectrum) at
large scales is

E(k) = S

4π2
k2... (kL f � 1). (4.146)

• σ = 1. This value was proposed by Oberlack (2002), who emphasizes that this is
the only value of σ which allows for the full similarity of the Karman–Howarth
equation (see Eq. (4.17) and the corresponding subsection) at finite Reynolds
number. A noticeable feature of this solution is that the decay occurs at constant
turbulent Reynolds number.

12This point is easily understood looking at the Green function solution given by Eqs. (2.53) and
(2.54), which show that the pressure fluctuations caused by an eddy at a distance r from this eddy
have an intensity p′ ∼ r−3 for large r .

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Table 4.10 Time evolution exponents in self-similar decay of isotropic turbulence deduced from
symmetry analysis, assuming the PLE hypothesis holds

σ = 1 σ = 2 σ = 4 σ = +∞
L f (t) ∼ t1/2 t2/5 t2/7 Const.

K(t) ∼ t−1 t−6/5 t−10/7 t−2

ReL (t) ∼ Const. t−1/5 t−3/7 t−1

Invariant name ReL Birkhoff Loitsyansky L f (t)

Invariant
definition

L
√

K/ν Eq. (4.145) Eq. (4.143)
∫ +∞

0 f (r)dr

Associated
spectrum

Saffman Batchelor

• σ = +∞. This solution was also proposed by Oberlack in 2002. It corresponds
to a decay with constant integral scale.

4.4.4 Time Variation Exponent and Inviscid Global
Invariants

The direct physical interpretation of the value of the decay parameter σ is unclear in
some cases. It is possible to get a deeper insight into the related physics looking at
the links that exist between the choice of a value for σ and the conservation of exact
invariants of inviscid flows.

Following Oberlack (2002), let us first recall that, for an inviscid flow in an
unbounded domain V , the following non-local conservation laws are exact:

d

dt

∫

V
u · ud3x = 0 (kinetic energy conservation), (4.147)

d

dt

∫

V
x × ud3x = 0 (angular momentum conservation), (4.148)

d

dt

∫

V
u · (∇ × u)d3x = 0 (linear impulse or helicity conservation). (4.149)

Now using the change of variable based on the invariants introduced in Eq. (4.126),
the three conservation laws can be rewritten as follows:

(σ − 2)

∫

V
ŭ · ŭd3 x̆ = 0 (kinetic energy conservation) (4.150)
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(σ − 7)

∫

V
x̆ × ŭd3 x̆ = 0 (angular momentum conservation) (4.151)

(σ − 1)

∫

V
ŭ · (∇̆ × ŭ)d3 x̆ = 0 (linear impulse or helicity conservation). (4.152)

The kinetic energy is strictly positive in a turbulent flow, while the sign and the
absolute value of angular momentum and the helicity are not a priori known. Since
a choice for σ can enforce only one of the three conservation laws given above, it
makes sense to assume that the total linear momentum and helicity are identically
null, while the kinetic energy is preserved, yielding σ = 2. Therefore, the Birkhoff-
Saffman theory is coherent with the preservation of kinetic energy at infinite Reynolds
number.

Another interpretation is possible (Davidson 2004) since both Loitsyansky and
Birkhoff integral quantities are related to exact dynamical invariants of inviscid
motion in an unbounded domain. The first one is the linear impulse, ILI, and the
second is the angular momentum, IAM, with

ILI = 1

2

∫

V
(x × curlu)dV, (4.153)

IAM =
∫

V
(x × u)dV . (4.154)

Considering a volume V filled by isotropic turbulence with a characteristic length
much larger that the integral length scale of the turbulent motion, the following
relations hold 〈

I2
LI

〉

V
� I, (4.155)

〈
I2

AM

〉

V
� S. (4.156)

If turbulent eddies have a finite, non-negligible linear momentum, then S �= 0 and
therefore the spectrum will be of Saffman type and σ = 2. If their linear momentum
is very small but their angular momentum is finite, then S � 0 and I �= 0, yielding
a Batchelor-like spectrum and σ = 4.

Let us just note that, if the two-point correlations fall sufficiently rapidly to ensure
that all integrals are convergent, the following Taylor series expansion holds at small
wave numbers:

E(k) = S

4π2
k2 + I

24π2
k4 + · · · (kL f � 1). (4.157)
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4.4.5 Comte-Bellot – Corrsin Theory

The theory proposed by G. Comte–Bellot and S. Corrsin for high-Reynolds decay
regime relies on dimensional analysis and the following model spectrum

E(k, t) =
{

Cσkσ kL(t) ≤ 1, 1 ≤ σ ≤ 4
K0ε

2/3k−5/3 kL(t) ≥ 1
(4.158)

where [Cσ] = [L]σ+3[T ]−2 is a parameter. The Permanence of Large Eddies hypoth-
esis consists in assuming that it is time-independent. The scale L(t) is related to the
integral scale and characterizes the energy spectrum peak. This model is an exactly
self-preserving solution.

Assuming that the Permanence of Large Eddies hypothesis holds, simple dimen-
sional analysis and spectrum continuity at kL = 1 lead to

d L

dt
∝ C1/2

σ L−(σ+1)/2 =⇒ L(t) = L(0)

(
1 + t

t0

)2/(3+σ)

. (4.159)

Turbulent kinetic energy can then be approximated as

K(t) ∼ 1

L(t)
E(1/L(t)) = 1

L(t)
Cσ L(t)−σ, (4.160)

from which one obtains the following time-evolution law:

K(t) = K(0)

(
1 + t

t0

)−2(σ+1)/(3+σ)

. (4.161)

An algebraic decay law that depends on the initial condition via σ is recovered, in
accordance with the idea that exact self-preservation leads to algebraic deacy laws.
The breakdown of Permanence of Large Eddies hypothesis, i.e. the dependency of
Cσ may be taken into account replacing σ in the expressions for the time exponent
by (σ − p) where the correction factor p is to be determined experimentally of using
a more complex model. Results are summarized in Table 4.11.

The theoretical analysis based on the EDQNM closure shows that Cσ is constant
in time and p = 0 for σ ≤ 3, while p � 0.5 for σ = 4. Therefore, one has n = −6/5
for σ = 2 and n = −1.38 for σ = 4. Neglecting the time variation of C4, one recovers
the Kolmogorov value of n = −10/7 � −1.43 for σ = 4.13

13The value n = −1.38 for σ = 4 is associated to a time varying Loitsyanski integral: I ∼ t0.16.
This results conflicts the most recent DNS results Ishida et al. (2006). This can be understood looking
at the expansion of the nonlinear transfer term mediated by strongly non-local triadic interactions
in the limit of very small wave numbers retrieved from two-point closures (e.g. EDQNM):

T (k → 0) = ∂E/∂t ∼ Ak4 − 2νturbk2 E,
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Table 4.11 Analytical formulas for the prediction of the power-law exponents of the decay of the
main statistical quantities given by the Comte-Bellot – Corrsin theory. σ denotes the slope of E(k)

at small wave numbers and p is the correction for breakdown of the Permanence of Large Eddies
hypothesis

K ε L λ η ReL Reλ

High Reλ −2 σ−p+1
σ−p+3 − 3(σ−p)+5

σ−p+3
2

σ−p+3
1
2

3(σ−p)+5
4(σ−p+3)

1−(σ−p)
(σ−p+3)

1
2

1−σ+p
σ−p+3

Saturated
high Reλ

−2 −3 0 1
2

3
4 −1 − 1

2

Low Reλ − σ+1
2 − σ+3

2
1
2

1
2

σ+3
8

1−σ
4

1−σ
4

Typical numerical results (obtained using simplified numerical models, since these
data cannot be obtained by experimental means and are out of range of available
supercomputing facilities) are displayed in Fig. 4.7. Turbulent flows with an initial
small wave-number slope higher than 4 are observed to relax towards the σ = 4
solutions at large scales.

All results displayed above in this section are related to the initial stage of decay,
i.e. the asymptotic high-Reynolds regime, which is governed by non linear interac-
tions. They are observed to be very accurate, since the error on the exponents of the
different quantities compared with EDQNM simulations is within 1% in all cases
for all quantities (Meldi et al. 2011; Meldi and Sagaut 2012, 2013a). The previous
analysis can be extended to asymptotically low-Reynolds numbers, i.e. to the final
stage of decay. Before doing that, it is worth reminding that neglecting convective
terms the exact solution to the Lin equation reads

E(k, t) = E(k, 0)e−2νk2t , (4.162)

which is not well suited for quick algebraic manipulation. Assuming that at very low
Reynolds number wave number larger than 1/L have a negligible kinetic energy, one
can write

K(t) ∼
∫ 1/L(t)

0
Cσkσdk. (4.163)

Assuming that dynamics is governed by viscous effects, dimensional analysis leads
to L(t) = γ

√
νt , where γ is a dimensionless parameter14 and therefore

K(t) ∼
∫ 1/(γ

√
νt)

0
Cσkσdk = Cσ

σ + 1

(
1

γ
√

ν

)(σ+1)/2

t−(σ+1)/2 (4.164)

where νturb is an eddy viscosity. An error on the constant A may yield an error on the energy balance
at very small wave numbers, inducing a spurious time-evolution of I.
14One recognizes here

√
νt which is the similitude variable that appears in the dimensional analysis

of the diffusive problems.
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Fig. 4.7 Evolution of the
kinetic energy spectrum in
the initial stage decay. Top:
emergence of self-similarity
and validation of the PLE
hypothesis for k1 scaling at
low wave number. Middle:
emergence of self-similarity
and validation of the PLE
hypothesis for k2 scaling at
low wave number. Bottom:
emergence of self-similarity
with a k4 behavior for initial
Gaussian-shaped spectrum,
and PLE hypothesis
breakdown for the k4

spectrum. From Clark and
Zemach (1998) with
permission of AIP

and

K(t) = K(0)

(
1 + t

t0

)−(σ+1)/2

, ReL(t) = ReL(0)

(
1 + t

t0

)(1−σ)/4

. (4.165)

Results are summarized in Table 4.11. They are observed to be as accurate when
compared to EDQNM results as in the high-Reynolds number case. Breakdown of
PLE hypothesis at very low Reynolds number has never been studied or even reported,
therefore no correction is added here to power-law exponents.

Long-time evolution of the kinetic energy spectrum computed with an EDQNM
closure is displayed in Fig. 4.8. It is observed that a self-similar final stage of decay
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Fig. 4.8 Evolution of the
kinetic energy spectrum with
transition from the initial
stage decay to the final stage
of decay. From Clark and
Zemach (1998) with
permission of AIP

is reached at very long time. Here τ denotes the eddy turnover time scale associated
with the peak of the spectrum at the initial time: τ = (k3

max(0)E(kmax, 0))−1/2. It is
also noticed that, in the final viscous decay stage, the PLE holds, even in the present
case in which E(k, 0) ∼ k4 at very large scales.

It is worth noting that σ = 1 is related to a singular regime, since decay occurs
at constant ReL along with K(t) ∝ t−1, for both high-Reynolds and low-Reynolds
decay regimes.

An interesting problem is the time needed to reached the final stage of decay
starting from a high-Reynolds number solution initially governed by a non linear
initial decay stage. The time evolution of the effective time decay exponent n(t)
defined as

n−1(t) = − ∂

∂t

( K(t)

∂K(t)/∂t

)
(4.166)

is displayed in Fig. 4.9 for different values of the spectrum low-wave-number power-
law exponent.

It is observed that in all cases a very long time is needed before the solution
reach the final stage of decay, i.e. n = const. The turbulence quickly reaches a
cascade-dissipation equilibrium for the k1 spectrum.15 For other spectrum shapes,
the transition is too long to be observed (Clark and Zemach 1998). Considering a
wind tunnel with air and a mean flow velocity equal to 20 m s−1, a grid-generated
turbulence such that K(0) = 20 m2 s−2 and the initial turbulent Reynolds number
is equal to ReL = 3000, the wind tunnel length required to reach the final stage is
of the order of 1016 m (about one light-year, or about one-third the distance to the
nearest star!) for k2-shaped spectrum, and 5.106 m (almost an Earth radius!) for k4

spectra.

15This is consistent with the fact that it is the only solution which is fully consistent with the
symmetry analysis at finite Reynolds number.
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Fig. 4.9 Evolution of the free decay exponents of kinetic energy (top-left), dissipation (top-right),
integral velocity scale L (bottom-left) and length scale K3/2/ε versus Reλ for large-scale spectrum
slope σ = 1, 2, 3, 4. σ = 1 is discontinuous, since Reλ is constant in time for that solution. From
Meldi and Sagaut (2013a) with permission of Taylor & Francis

Previous analyses can be extended to account for more physical phenomena.
Skbrek and Stalp introduced a small scale cutoff to account for the very fast damping
at scales smaller than the Kolmogorov scale η and a low-wavenumber cutoff to
account for possible saturation effects. Saturation occurs if turbulence evolves in
a finite-size box. Since L(t) is growing in time in all cases, it will reach the size
of the box in a finite time. After that time, L(t) becomes time-independent and no
scale larger than L can exist. This can be modeled in a smart and simple way setting
σ = +∞ in the high-Reynolds regime formula, yielding K(t) ∝ t−2 after saturation,
whatever was σ at initial time. Saturation is therefore associated to a bifurcation in the
flow dynamics and a change in the time exponents of all quantities. Both analytical
developments and EDQNM simulations show that introducing the small scale cutoff
does not change the classical results.

It is important noting that the Comte-Bellot–Corrsin theory is compatible with
the symmetry-based analysis discussed in Sect. 4.4.3, i.e. its results encompass those
found in previous section. Decay exponents are the same in cases that can be
addressed by symmetry analysis, but this theory is also more general since it allows to
include more physics (cutoff at small scales, saturation effects, arbitrary values of σ).
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One can also identify invariant quantities during the decay using exponents dis-
played in Table 4.11. Taking K(t), L(t) and η(t) as independent variables, one can
built two invariants IL(σ) ≡ KαL and Iη(σ) ≡ Kβη where

α = 1

σ − p + 1
, β = 1

8

3(σ − p) + 5

σ − p + 1
(4.167)

at high Reynolds number (Reλ ≥ 200 in practice). The Saffman invariant and the
Loitsyansky’s invariant are recovered as IL(2) and IL(4), respectively. In the later
case, one must observe that the p correction is not taken into account in the original
theory, yielding slow drift of that quantity.

In the low-Reynolds number asymptotic regime (Reλ ≤ 0.1 − 0.01 in practice),
one as

α = 1

σ + 1
, β = 1

4

σ + 3

σ + 1
. (4.168)

The differences in the expressions of α and β at low- and high-Reynolds number
show that it is impossible to define exact Reynolds-independent quantities that may
remain invariant over arbitrary long times, i.e. during the transition between the two
regimes. The only case in which such exact invariants may be defined is σ = 1, in
which α = β = 1/2 in both regimes and there is only one independent invariant,
which is proportional to the Reynolds number since IL(1) ∝ Iη(1) ∝ Reλ ∝ ReL .
But it is important to note that some “finite-but-long-time” invariant quantities may
be encountered as long as the Reynolds number is high enough or once it has reached
the low-Re asymptotic regime. In these cases, both IL(σ) and Iη(σ) will be almost
constant and can be considered as invariant quantities. It is important to notice that,
in these cases, any function depending only on these two quantities will be invariant,
showing that an infinite number of invariants can be defined.

4.4.6 Georges’ Extended Self-similarity Theory

George (1992), George and Wang (2000) proposed a theory for the decaying homo-
geneous isotropic turbulence in which self-preserving solutions of the Lin equation
for E(k) are found. The new feature with respect to older self-similarity theories is
that both the spectrum and the nonlinear transfer terms are not assumed a priori to
scale with a single length and velocity scale.

The starting point is to express the energy spectrum E(k) and the spectral transfer
function T (k) under the following the self-preserving forms:

E(k, t) = Es(t, �)ψ(ξ, �), T (k, t) = Ts(k, �)ϕ(ξ, �), (4.169)
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with ξ = k� where � = �(t, �) is a characteristic length scale to be determined.
The argument � denotes a possible dependence on initial conditions. Differentiating
Eq. (4.169) leads to

∂E

∂t
=
[

d Es

dt

]
ψ(ξ, �) +

[
Es

�
· d�

dt

]
ξψ′(η, �) , (4.170)

where the prime denotes the differentiation with respect to ξ. Substituting into the
Lin equation and dividing by νEs/�

2 to obtain a dimensionless equation, one obtains

[
�2

νEs
· d Es

dt

]
ψ +
[

�

ν
· d�

dt

]
ξψ′ =
[

Ts�
2

νEs

]
ϕ − [1] 2ξ2ψ , (4.171)

where the dependency on t , ξ and � have been suppressed for the sake of simplicity.
Bracketed terms are independent dimensionless parameters. George’s analysis relies
on that equation. In practice, self-similar solutions are sought keeping all terms (i.e.
considering all physical mechanisms) or neglecting some of them. Observing that
the coefficient of the last term is time independent, self-preserving solutions exist iff
all other bracketed terms are also time independent.

Keeping all terms in the dimensionless Lin equation (4.171), one get

[
�2

νEs
· d Es

dt

]
= const,

[
�

ν
· d�

dt

]
= const,

[
Ts�

2

νEs

]
= const. (4.172)

The second condition straightforwardly leads to

�2(t) = 2Aν(t − t0), (4.173)

where integration factor was taken equal to 2A for the sake of convenience and t0 can
be eliminated by an adequate choice of time origin. Then, hereafter t0 will assumed
to be zero without loss of generality. Combining the first and the third condition one
get

t

Es
· d Es

dt
= p , (4.174)

where p is a constant. By integrating one obtains the following power-law decay

Es = Es(t0)

(
t

t0

)p

, (4.175)

The third condition in Eq. (4.172) is satisfied iff

Ts ∼ νEs

�2
∼ Es

t
. (4.176)
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One has

K = 3

2
u′2 =
∫ ∞

0
E(k, t)dk =

[
Es

�

] ∫ ∞

0
ψ(ζ, �)dζ , (4.177)

where the integral term is time independent, leading to

Es ∼ u′2� . (4.178)

Equations (4.173), (4.175) and (4.178) lead to the following algebraic evolution
law

u′2

u′2
0

∼
[

t

t0

]p [
�0

�

]
∼
[

t

t0

]p−1/2

, (4.179)

then

K(t) ∝ u′2(t) ∝ tn , (4.180)

with n = p − 1/2, where p or n must be determined using experimental data or
more complex theories.

Now considering the dissipation rate ε, one obtains

ε = ν

∫ ∞

0
k2 E(k, t)dk =

[
νEs

�3

]
2
∫ ∞

0
ζ2 f (ζ)dζ ∼ ν

u′2

�2
. (4.181)

Now recalling that the energy dissipation ε(t) in isotropic turbulence reads

ε = 15ν

[
∂u′

∂x

]2
= 15ν

u′2

λ2
f

, (4.182)

and comparing Eq. (4.181), the characteristic length � is observed to scale as the
Taylor microscale λ f , i.e.:

� ∼ λ f .

Therefore, relation (4.173) yields the following result

λ2
f = 2Aνt , (4.183)

showing that λ f (t) ∝ √
t , in agreement with the Comte-Bellot – Corrsin theory. The

coefficient A can be related to the decay law exponent n using the kinetic energy
equation

d

dt

(
3

2
u′2
)

= −ε
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and Eq. (4.182). Thus one obtains

λ2
f = −10

n
νt , (4.184)

which is the result obtained by von Karman and Howarth (1938). As a consequence
the Taylor-based Reynolds number evolves as

Reλ(t) = u′λ f

ν
∝ t

n+1
2 . (4.185)

The transfer function amplitude Ts can now be evaluated using λ ∼ � in a straight-
forward way:

Ts ∼ ν
u′2

�
= ν

u′3

Reλ
∝ tn− 1

2 . (4.186)

Among the main conclusions of George’s theory, one can mention that the Lin
equation admits self-preserving solutions with the following characteristics

• The characteristic length scale for the entire spectrum is the Taylor microscale λ f

which evolves as λ f ∼ t1/2. As a consequence, the Reynolds number characteriz-
ing the turbulent motion is Reλ.

• The energy follows a an algebraic decay law, i.e. K(t) ∝ tn , where n is a parameter
to be determined.

• The constant of proportionality and the exponents are fixed by the initial conditions
and are flow-dependent.

All these results are coherent with those issued from the Comte-Bellot–Corrsin
theory. Introducing additional assumptions makes it possible to obtain new decay
regimes. In practice, this is done assuming that one or several bracketed terms in Eq.
(4.171) are identically zero. As an example, the famous Kolmogorov “local equilib-
rium” similarity solution is recovered considering that the two first bracketed terms
are zero. A very interesting extension of these results dealing with the possibility of
non-algebraic, exponential decay laws for K(t) was obtained by George (2000).

Assuming that decay occurs with a time-independent characteristic length, i.e.
taking d�/dt = 0 and � = �0 and setting the second bracketed term equal to zero,
integrating the first bracketed term yields

Es(t) = Es0 exp
[
ν(t − t0)/�

2
0

]
, (4.187)

along with

K(t) = K(0) exp
[−10ν(t − t0)

2/λ2
0

]
. (4.188)

This result is important, since this is the unique case in which a non-algebraic
decay law is predicted. George’s extended self-similarity is the only one able to
predict such a behavior.



4.4 Free Decay Theories: Self-similarity, Self-preservation … 153

4.4.7 Sum of Results

All theories for isotropic turbulence decay yield coherent results, which can be sum-
marized as follows:

(i) Self-similar solutions might exist and are tied to the existence of invariant
quantities. The existence of such solutions is further discussed in Sect. 4.5.2.
Arbitrary values of the decay exponent of kinetic energy, i.e. K(t) ∼ t−n with
n ≥ −1, may be obtained by arbitrarily neglecting some terms in the equations
and prescribing some invariant quantities as found by von Karman and Howarth
(1938), or in an equivalent way according to Noether’s theorem, enforcing a
symmetry in the problem (Clark and Zemach 1998; Oberlack 2002). As an
example, neglecting the nonlinear term yields an approximation for the low-
Reynolds final period of decay, while neglecting the viscous term is classically
done to analyze the initial high-Reynolds period of decay.

(ii) Kinetic energy exhibits an algebraic decay whose time exponent depends on
the initial condition, more precisely on the shape of the spectrum at very large
scales. This spectrum shape can also be related to some integral invariant quan-
tities (each spectrum shape is related to specific invariants) or equivalently to
some symmetries.

(iii) The Taylor microscale evolves independently of the Reynolds number and the
initial condition with λ f (t) ∝ √

t .
(iv) In the general case, two asymptotic decay regimes are identified, the first one

at very high Reλ and the second one at very low Reλ.
(v) Assuming exact self-preservation and inserting associated expressions for two-

point velocity correlation and energy spectrum in Eqs. (4.17) and (4.38), one
finds that there is a unique solution when keeping all terms in these two equa-
tions: �(t) = λ f (t) ∼ t1/2 and K(t) ∼ t−1, as recognized since the pioneering
works on the subject, e.g. Dryden (1943) and Batchelor (1948).

(vi) The case E(k) ∝ k at very large scales (i.e. σ = 1) is a singular case, since
decay occurs at constant Reλ along with K(t) ∝ t−1. In this very unique regime
all length scales (integral scale, Taylor scale, Kolmogorov scale) have the same
growth exponent 1/2.

4.5 Recent Results About Decay Regimes

4.5.1 Power-Law Exponent in the Transitional Decay Regime

Most theoretical predictions of the power-law exponents given in the preceding
section originate in asymptotic high- or low-Reynolds developments. This is not
explicitly mentioned in the Comte-Bellot–Corrsin analysis, but this is implicitly
assumed when chosing the simplified spectrum model for E(k). Therefore, a theory
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that bridges between the two asymptotic regimes to describe turbulence decay at
finite Reynolds number16 would be very useful, since it would correspond to the
majority of existing experiments and Direct Numerical Simulations.

A proposal was recently made by Djenidi and Antonia (2015), Djenidi et al.
(2015) who developed a theoretical analysis for partially self-preserving decay of
isotropic turbulence. Considering the Karman–Howarth equation for the second-
order structure function (4.33) equipped with the closure S3 = SS3/2

2 , where S is the
skewness given in Eq. (4.46), and performing an analysis similar to George’s one,
these authors proved that the decay exponent n of K(t) obeys the following relation:

n = −1 + 2(t − t0)
1

Re�

d Re�

dt
(4.189)

where �(t) denotes the (unique) length scale for which self-preservation is obtained
at all scales. It has been seen above that exact self-preservation is obtained in the
sole case σ = 1. Therefore, to extend that result to more realistic cases in which
only partial self-preservation exist, the authors propose to take the Taylor scale as a
characteristic scale, i.e. � = λ, leading to the semi-empirical law

n = −1 + 2(t − t0)
1

Reλ

d Reλ

dt
. (4.190)

This formula is consistent with the Comte-Bellot–Corrsin theory whose results
are recovered for both high- and low-Reynolds number regimes.

4.5.2 Do Self-similar Solutions Exist?

The physical relevance of self-similar or self-preserving solutions is a non trivial
issue, as emphasized by Batchelor (1953, p. 148): “The assumption of similarity of
shape of the statistical functions during decay in the earlier work was principally
a mathematical device, used to enable definite results to be obtained ... To find
such solutions has been one task; to determine the conditions under which they
can and do provide a correct description of turbulence is another. In this latter
task which has engaged much attention in the last five years, but even so most of
the established results are negative, and our positive results still rest insecurely on
vague intuitive arguments (vague for most of us - clear and precise for the inspired few
!)”. While exact self-preservation is appealing from a theoretical and mathematical
viewpoint, its physical relevance has been questioned very early. As a matter of
fact, early experimental results did not support exact self-preservation, while they
were in much better agreement with theoretical results based on incomplete self-
preservation, leading Hinze to state that (Hinze 1975, p. 162): “Hence it appears

16Looking at previous results, such a theory should fill the gap that exists for 0.1 − 1 ≤ Reλ ≤
100 − 300.
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to be impossible to take one simple characteristic length for the entire wavenumber
range to make the energy spectrum self-similar during decay. It is possible to assume
only incomplete self similar preservation ... we may do so for the wavenumber of
the energy-containing eddies plus the absolute equilibrium range” and Monin and
Yaglom (1975) to qualify it as “definitely incorrect”.

Despite such solutions are the cornerstones of almost all existing theories for
isotropic turbulence decay, their existence has been an open issue until the very
recent past. The main difficulty is that a direct measurement of the spectrum E(k)

at very large scales is almost impossible in both wind tunnel experiments (because
of statistical convergence issue and confinement effects) and direct numerical sim-
ulations (for grid resolution and computational cost reasons). What is measured in
practice is the kinetic energy decay rate, whose relation with the spectrum shape is
inverted to recover an estimate for the parameter σ. But in such a procedure one
makes two key assumptions: i) self-similar solutions exist whose large-scale behav-
ior is E(k) ∝ kσ and ii) only self-similar solutions lead to an algebraic decay law
K(t) ∝ t−n where the decay exponent n(σ) is given by the theories discussed in the
preceding section.

It has been shown recently that the both assumptions are wrong the general case
and that algebraic decay law can be recovered for non-self-similar solutions.

An exhaustive EDQNM analysis has been carried out by Meldi and Sagaut
(2013a), who have shown that in the general case there exist no unique length scale
�(t) that allow for a description of the solution using a unique time-independent
spectrum shape function. The only exception is the case σ = 1, which is the only
one that exhibits complete self-similarity, in agreement with the fact that all length
scales have the same time exponent. The same conclusions hold for the transfer func-
tion T (k). Typical results are displayed in Figs. 4.10 and 4.11. It is seen that partial
self-preservation is observed on E(k) (based on the integral scale for large scales
and Kolmogorov scales for very small scales), while no such behaviour appears on
the transfer function T (k).

4.5.3 Which Scales Govern the Energy Decay Rate?

Another interesting issue in isotropic turbulence decay theory is to identify which
scales govern the decay rate, i.e. determine the value of the decay exponent of kinetic
energy. In most existing theories (see Sect. 4.4), the decay exponent is expressed as
a function of the parameter σ, which is usually interpreted as the slope of the energy
spectrum at asymptotically large scales, i.e. E(k → 0) ∝ kσ .

This point was recently investigated by Mons and coworkers (Mons et al. 2014),
who developed a Variational Data-Assimilation method based on the Lin equation
equiped with an EDQNM closure. It is reminded here that Data Assimilation is an
iterative optimal control procedure that allows for the optimization of free parameters
(in the initial condition definition in the present case) in order to minimize a given
cost function. Data Assimilation was used to reconstruct the optimal initial condition
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Fig. 4.10 Rescaled energy spectrum E(k) at different EDQNM simulation times/Reynolds num-
bers. Scaling is based on (from left to right) integral scale, Taylor scale and Kolmogorov scale.
Initial condition was chosen such that E(k) ∝ kσ at large scales with σ = 4 (top), σ = 2 (medium)
and σ = 1 (bottom)

that minimizes the differences with an arbitrary prescribed target decay regime. The
gradient of the cost function with respect to the initial condition was obtained by Mons
solving the adjoint problem associated to the Lin-EDQNM equation. Looking a finite
time decay, the conclusion is that a given time t the decay rate mostly influenced by
scales in the range [L f (t), 10 L f (t)]. This scales are the one at which the sensitivity
of the cost function is maximal, indicating that these scales govern the decay rate.
Therefore, considering the full decay from initial time t0 to final time t f , the history
of decay exponent is mostly sensitive to scales ranging from L f (t0) to 10 L f (tc).

This result may be recovered by considering the expression of the Gâteaux deriva-
tive of the power-law exponent n such that K(t) ∝ tn at a given spectrum E(k) in
the direction F(k).17

17The Gâteaux derivative of a function � at E in the direction F , with both E and F in the space
spanned by the energy spectrum, is defined as:

〈∂�

∂E
(E), F〉 = ∂�

∂E

∣∣∣∣
E

(F) = lim
ε→0

d

dε
�(E + εF).
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Fig. 4.11 Rescaled transfer function T (k) at different EDQNM simulation times/Reynolds num-
bers. Scaling is based on (from left to right) integral scale, Taylor scale and Kolmogorov scale.
Initial condition was chosen such that E(k) ∝ kσ at large scales with σ = 4 (top), σ = 2 (medium)
and σ = 1 (bottom)

Starting from the classical exact evolution equation for K(t) in the case of freely
decaying HIT:

∂K
∂t

= −ε, (4.191)

one can deduce the following expression for n:

n = −
(

∂

∂t

(K
ε

))−1

=
(

1 + K
ε2

∂ε

∂t

)−1

(4.192)

where the exact expression of ∂ε
∂t originating in the Lin equation is:

∂ε

∂t
= −
∫ ∞

0
4ν2k4 E(k)dk +

∫ ∞

0
2νk2T (E, k)dk. (4.193)
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The resulting expression of the Gâteaux derivative of n (in which all quantities
are now considered as a functions of the energy spectrum E(k)) is

∂n

∂E

∣∣∣
E
(F) = −nK(E)2

ε(E)2

[(
K(F) − 2K(E)

ε(F)

ε(E)

)∂ε

∂t
(E) + K(E)

∂

∂E

(∂ε

∂t

)∣∣∣
E
(F)

]
,

(4.194)

where the expression of the Gâteaux derivative of the operator ∂ε
∂t defined in (4.193)

is given by:

∂

∂E

(∂ε

∂t

)∣∣∣
E
(F) = −

∫ ∞

0
4ν2k4 F(k)dk +

∫ ∞

0
2νk2 ∂T

∂E

∣∣∣
E
(F, k)dk. (4.195)

The expression of ∂T
∂E |E (F, k) should be given by a turbulence closure. Using

EDQNM, one obtains

∂T

∂E

∣∣∣
E
(F, k) =

∫∫

�k

θkpq Gkpq

[
F(q)
(
k2 E(p) − p2 E(k)

)+ F(p)k2 E(q) − F(k)p2 E(q)
]
dpdq

+
∫∫

�k

Dkpq

{∫ k
0 r2 F(r)dr

ηk
+
∫ p

0 r2 F(r)dr

ηp
+
∫ q

0 r2 F(r)dr

ηq

}
dpdq

(4.196)
where the factor Dkpq is defined by:

Dkpq = A2

2

−1 + (μkpq t + 1)e−μkpq t

μ2
kpq

Gkpq E(q)
(
k2 E(p) − p2 E(k)

)
. (4.197)

Expressions for the EDQNM parameters Gkpq ,μkpq andθkpq are given in Sect. 4.8.7.
Further algebra yields the following estimate at larger scales

∂n

∂E(k)
∼ −n2

ε2

∂ε

∂t
k, (4.198)

showing that the sensitivity of the power-law exponent vanishes linearly in the limit
k → 0. It is important to note that this results is independent of the shape of the
spectrum at large scales.

From the physical point of view, this means that the decay rate is mostly governed
by the rate at which energetic large scales release their kinetic energy toward small
ones via the non-linear kinetic energy cascade, the rate at which it is effectively
dissipated being of secondary importance (if it is not too different from the energy
cascade rate). This finding is in agreement with a common intuitive picture of the
energy cascade process, but it does not fit the interpretation of asymptotic self-
similarity theories. More precisely, the asymptotic interpretation of the role of the
slope at very large scales such that k → 0 is correct if the energy spectrum exhibits a
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range such that E(k) ∝ kσ in the range k ∈ [0, 1/L f ]. If it exhibits a more complex
shape, then the interpretation becomes misleading.

The choice of the integral length scale to characterize the dynamics of energetic
eddies is relevant. Since these eddies are expected to govern the decay rate of kinetic
energy via tuning of the kinetic energy cascade rate, it is likely to be correct length
scale to parameterize the decay regime. This is consistent with the observation that
the Comte-Bellot–Corrsin theory, which relies on the sole integral scale, yields very
accurate predictions of power-law exponents.

A consequence of that result is that manipulating the shape of the large scales that
govern the kinetic energy transfer rate it is possible to prescribe the decay rate during
a finite time. Numerical experiments relying on Data Assimilation have also shown
that it is possible to enforce unusual decay rate, e.g. very fast decay rate compared
with those predicted by classical theories, or even exponential-like decay prescribing
unusual initial shape spectrum.

In practice, shape of E(k) at large energetic scales originate in the physical mech-
anisms responsible for turbulence production. In experiments, this leads to practical
difficulties to obtain a fine and explicit control of the decay rate, since there is no
available theory that bridges between a grid topology and the induced energy spec-
trum shape.

4.5.4 Do All Solutions Converge Toward Self-preserving
State in Finite Time?

Results and conclusions displayed in Sect. 4.5.3 show that scales much larger than
the integral length scale may have no influence on the decay rate of kinetic energy
during over a finite time window, since only scales up to 10 times larger the final
integral length scale have a significant role. Therefore, the decay rate is insensitive
to detailed features of E(k) at such large scales, and non-self-preserving solutions
may be defined that will lead to self-preserving-like decay regimes identical to those
discussed in Sect. 4.4 over finite time. The description of such solutions is now
discussed, along with the issue of the possibility of non-self-preserving solutions to
be sustained over arbitrary long times.

This issue was raised by Eyink and Thomson (2000) on the grounds of theoretical
arguments and later on revisited and extended to more general cases by Meldi and
Sagaut (2012) who also performed and exhaustive EDQNM analysis. The idea is to
consider non-self-similar initial conditions given by a three-range energy spectrum
of the form:

E(k, t = 0) =

⎧
⎪⎨
⎪⎩

Akσ1 k ≤ 1/�1(t)

Bkσ2 1/�1(t) ≤ k ≤ 1/�2(t)

K0ε
2/3k−5/3 k ≥ 1/�2(t).

(4.199)
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Fig. 4.12 Plot of the region
with infinite tc in the
(σ1,σ2) plane

and to show that such solutions may exist over arbitrary long evolution times.
A Comte-Bellot–Corrsin type analysis yields

�1(t) ∝ t2p2/(σ2−σ1+p1)(σ2−p2+3), �2(t) ∝ t2/(σ2−p2+3).

The solution will recover a self-preserving character if the intermediary spectrum
range vanishes in a finite time, i.e. if �2(t) grows faster in time than �1(t). The
associated condition is

2p2

(σ2 − σ1 + p1)(σ2 − p2 + 3)
<

2

(σ2 − p2 + 3)
. (4.200)

Therefore the solution will become self-similar at a finite critical time tc if (σ2 −
σ1 + p1) < 0 while the three-range solutions will be sustained over arbitrary long
times if (σ2 − σ1 + p1) > 0. These solutions are displayed in the (σ1,σ2) plane in
Fig. 4.12.

The important point is that in the case of a finite critical time tc the solution will
exhibit a bifurcation at t = tc, switching from decay laws for self-similar solutions
with σ = σ2 to self-similar laws for σ = σ1. Such a behavior is illustrated in Fig. 4.13.
For infinite tc the solution will obey self-similar decay laws associated with σ = σ2

over arbitrary long time, without any bifurcation toward another state.
Therefore, measuring the decay exponent for a times smaller than tc will never

allow for identifying the existence of the first spectrum part E(k) ∝ kσ1 , even though
this range is sustained over infinite times. That shows that observation of algebraic
decay laws predicted by self-similarity/self-preservation theories is not an evidence
of the existence of such solutions. Another consequence is that features of the very
large turbulent scales cannot be inferred from a measure of power-law exponent of
global quantities such as K(t), ε(t) or L(t).
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This self-similarity breakdown was also observed in one-dimensional Burgers
turbulence simulations by Noullez et al. (2005) (see Sect. 4.12.3 for more details
about Burgers turbulence).

4.5.5 Does a Universal Decay Regime with
K(t) ∝ t−1 Exist?

The existence of universal solutions describing freely decaying isotropic turbulence
is strictly tied to the loss of memory of the initial energy spectrum shape. The pos-
sible loss of memory of initial conditions is a highly debated issue, because of its
relevance in turbulence statistical description. Very recently, Krogstad and Davidson
(2012) stated that “this ability of the turbulence to largely forget its initial condi-
tions is consistent with numerical studies”, while George stated the same year that
“while there might have been reasons to doubt the role of initial conditions 20 years
ago, or even to question the experiments or a new theory, the careful studies of the
past two decades have made it clear that theory and experiment are in agreement:
initial (and/or upstream) conditions do matter” George (2012). The later statement
is strongly supported by results stemming from self-similarity theories discussed
above.

The status of a universal decay regime with K(t) ∼ t−1 has been discussed during
decades up to a very recent past. It is the sole decay regime associated with exact
self-similar/self-preserving solutions keeping all terms in Eqs. 4.17 and 4.38. The
interest in that regime as a universal attractor was renewed by Speziale and Bernard
(1992), who carried out a fixed point analysis of the evolution equations for kinetic
energy and dissipation. The analysis is based on the exact equations for K(t) and
ε(t) which are recalled here:
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dK
dt

= −2ν

∫ +∞

0
k2 E(k, t)dk = −ε(t), (4.201)

dε

dt
= − 7

3
√

15
S(t)
√

ReL(t)
ε2(t)

K(t)
− 7

15
G(t)

ε2(t)

K(t)
. (4.202)

Assuming that both the palinstrophy G and the skewness S are time independent,
i.e. G(t) = G∞ and S(t) = S∞, which amount to assume that exact self-preservation
based on the Taylor scale holds, they conclude: “By a fixed point analysis and numer-
ical integration of the exact one-point equations, it is demonstrated that the K ∼ t−1

power-law decay is the asymptotically consistent high-Reynolds number solution ...
Arguments are provided which indicate that a t−1 power law decay is the asymptotic
decay toward which a complete self-preserving isotropic turbulence is driven at high
Reynolds number ” Speziale and Bernard (1992). This means that the K(t) ∼ t−1

regime is an attractor, that should be reached starting from any self-similar initial con-
dition. It is worth noting that this asymptotic state is associated with a non-vanishing
turbulent Reynolds number: ReL → ReL∞ �= 0. This approach was cast in its final
form by Ristorcelli and coworkers in a series of papers (Ristorcelli 2003; Ristorcelli
and Livescu 2004; Ristorcelli 2006). In the most recent article (Ristorcelli 2006),
which displays the final solutions for both kinetic energy decay but also for turbulent
mixing, it is stated that: “Is is emphasized that the constant Reynolds number, asymp-
totic decay K ∼ t−1, is a rigorous mathematical consequence of the above Taylor
Self-Similarity (TSS) and Kolmogorov Self-Similarity (KSS) scalings. We make no
claim that the K ∼ t−1 decay is a universal attractor: it is an open question for
which there are a number of different results. The TSS and KSS consequences that
ReL → ReL∞ and that K ∼ t−1 are treated as useful pedagogical approximations”
and that: “Such K ∼ t−1 has not been seen experimentally. The speculation has
been that the approach to the t−1 is too slow to be seen experimentally. However
the DNS, for example, do all seem to exhibit this behavior when special care has
been taken to adjust for virtual origin effects. Using DNS to investigate fixed-point
behavior requires long time computations and is a nontrivial problem; the two point
correlation begins to approach box size and the energetic modes are at the lowest
wavenumber and the largest scales are represented by very few points .... Whether
this occurs in practice is another issue and is dependent on the accuracy of the exper-
imental measurements of these quantities.” The existence of such a regime was also
recently revisited in Guo et al. (2013), who proposed an attractive fixed-point solution
of a HIT non-linear cascade model, and by Davidson (2011), who discussed possible
singularities associated to such a solution which may appear as “pathological in a
number of respects”.

A solution to that question is found looking at results of self-similar decay theories
presented in the preceding section and EDQNM results Meldi and Sagaut (2013a).
As a matter of fact, it is true that the sole full self-similar solution is associated with
K ∼ t−1 and that it also corresponds to a decay at constant Reynolds number. But it
is associated to a single initial condition, i.e. E(k, t = 0) ∝ k at energetic scales and
the decay regime is observed from the very beginning of time evolution. Therefore,
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Fig. 4.14 Evolution of the Skewness parameter S (left) and the palinstrophy parameter G versus
the Taylor Reynolds number in EDQNM simulations for different initial conditions. It must be kept
in mind that σ = 1 corresponds to decay at constant Reynolds number and therefore to discrete plot
with one simulation per value of Reλ

the wrong part of the initial statement is to hypothesize that it is a universal attractor
for long time evolution, but not to say that such a regime may exist.

The flaw in the fixed-point analysis is that authors assume that S(t) − G(t) =
const , S(t) = S(0) and G(t) = G(0). It can be shown that the skewness and the
palinstrophy are tied by the following relation:

G = 15

7

(
n − 1

n

)
− S Reλ

2
, (4.203)

where n is the decay exponent of kinetic energy, i.e. K(t) ∝ t−n . This relation
shows that two asymptotic regimes can be expected. At very high Reynolds number
one should observed G/S ∝ Reλ while G should be nearly constant at vanishing
Reynolds number. At medium Reλ all parameters n, S and Reλ depend on both time
and initial condition. The Skewness S reaches an asymptotic value S = −0.53 at very
high Reynolds numbers (Reλ > 5000 in EDQNM results), while it scales like Reλ

at low Reynolds number. The relation G = S Reλ/2 is exact for the full self-similar
solution σ = 1 only. These behaviours are illustrated in Fig. 4.14.

4.5.6 Non-equilibrium State of Isotropic Turbulence:
Observations and Theories

4.5.6.1 On Instantaneous Energy Transfers

Most of results presented above dealing with the kinetic energy spectum and the
energy transfers (e.g. E(k) and T (k) profile) are related to ensemble-averaged data,
and therefore should be interpreted as time-averaged results (providing that the
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ensemble-average can be seen as a time-average thanks to the ergodicity theorem)
in the forced HIT case.

Direct numerical simulations have provided informations dealing with the main
features of the non-averaged, instantaneous energy transfers Kida and Ohkitani
(1992a, b) in forced isotropic turbulence. It is observed that both E(k, t) and T (k, t)
fluctuate around their mean values, and that the energy transfer function takes both
positive and negative values at the same wave number, depending on time. As a
consequence, the kinetic energy cascade process is to be understood as an ensemble-
averaged concept, which can be difficult to identify in instantaneous fields.

Kida and coworkers observed that the standard deviation of the energy transfer

function,
√

T (k, t)2 scales like k−1. By tracking ‘blobs’ of kinetic energy in the (k, t)
plane, they found that the time for energy to be transferred from wave number k0 to
wave number k = αk0 is equal to

Tk0→k =
(

α2/3

α2/3 − 1

) (
(ε̄k2

0)
−1/3 − (ε̄k2)−1/3

)
, (4.204)

where ε̄ is related to the ensemble-averaged value of the dissipation. The value
α � 1.4 leads to the best fit of the numerical data, indicating that the net energy
transfer is mostly local.

It is worth noting that expression (4.204) has been obtained using the Kolmogorov-
type expression for the characteristic time τk for the energy to be transferred across
the wave number k:

τk = (ε̄k2
)−1/3

. (4.205)

4.5.6.2 Nonlinear Cascade Time Scale, Equilibrium and Dissipation
Asymptotics

The possible existence of a universal value of the normalized dissipation rate Cε in
high Reynolds number turbulent flows has been addressed by several authors, and is
sometimes referred to as the zeroth law of turbulence

This non-dimensional coefficient is defined as

Cε = εL

u′3 , (4.206)

where L and u′ =
√

2
3K are the integral lengthscale (see Sect. 3.4.1) and a turbulent

velocity scale, respectively. It appears in commonly used scaling laws related to
Kolmogorov’s theory, e.g.

Reλ =
√

15

Cε
ReL . (4.207)

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Both experimental data and numerical simulations exhibit a significant scatter in
the values of Cε. The sensitivity on the nature of the flow (freely decaying turbulence
or forced turbulence) and on the Reynolds number is observed to be large. A rationale
for these discrepancies, based on both EDQNM simulations and an analytical analysis
based on a simplified model spectrum, has been proposed in Bos et al. (2007).

The first important conclusion is that the asymptotic value of Cε explicitly depends
on the existence of a turbulence production mechanism at large scales. The key point
is that one must distinguish between several characteristic quantities to get an accurate
description of kinetic energy dynamics in isotropic turbulence:

• The production rate, i.e. the rate at which the turbulent kinetic energy K is injected
at scales of order L . This production rate is characterized by u′3(t)/L(t). The rate
at which kinetic energy leaves the large scales is denoted ε f (t), with

ε f (t) = C f
ε

u′3(t)
L(t)

, (4.208)

where C f
ε is the proportionality constant.

• The cascade time, Tc, which measures the time it takes for an amount of energy
initially injected at scale L to reach the dissipative Kolmogorov scale η. Consider-
ing a simplified Kolmogorov inertial range, one obtains Tc = T (1 −β−2/3) where
T = L/u′ is the integral time scale and β = L/η.

• The dissipation rate, ε(t), which characterizes the transformation of kinetic energy
into heat at very small scales.

In forced turbulence with constant injection rate, a statistically stationary state
can be reached, in which the production rate is equal to both the cascade transfer
rate and the dissipation rate, i.e. ε f (t) = ε(t). The associated value non-dimensional
dissipation parameter is denoted Cε = C forced

ε .
In freely decaying turbulence, both u′ and L vary in time, yielding time-dependent

production and cascade rate. A packet of kinetic energy injected at time t will be
dissipated once it as reached the dissipative scales, i.e. at time t + Tc. Therefore, the
equilibrium equality between ε f (t) and ε(t) found in the forced turbulence case no
longer holds, and one must write ε f (t) = ε(t + Tc) �= ε(t), or equivalently

ε(t + Tc) = C forced
ε

u′3(t)
L(t)

. (4.209)

Introducing the time decay exponent n such that K(t) ∝ t−n and ε(t) ∝ nt−n−1,
one has L(t) ∝ t1−n/2 and T ∝ t , yielding
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ε(t + Tc) = C forced
ε

u′3(t + Tc)

L(t + Tc)

(
t

t + Tc

)−n−1

= Cdecay
ε

u′3(t + Tc)

L(t + Tc)
(4.210)

and therefore

Cdecay
ε

C forced
ε

=
(

1 + Tc

t

)n+1

= (1 + Ac(1 − β−2/3)
)n+1

, (4.211)

showing that the normalized dissipation coefficient cannot cannot be the same in
forced and freely decaying turbulence. Another important fact is that the decay
exponent n is known to be flow-dependent, since it is a function of the kinetic energy
spectrum shape at very large scales. For large values of β, i.e. for large values of
ReL , a very good agreement with EDQNM results is obtained taking Ac = 0.2.

An expression for C forced
ε can be found considering a simplified model spectrum.

Using the model

E(k) =
⎧
⎨
⎩

Akσ kL ≤ 1
K0ε

2/3k−5/3 kL ≥, kη ≤ 1
0 kη > 1

, (4.212)

where A is an arbitrary positive parameter, one obtains

C forced
ε = π

(
(3σ + 5)/5σ − 3

5β−5/3
)

2K 3/2
0

(
(3σ + 5)/(3σ + 3) − β−2/3

)5/2 , (4.213)

along with

ReL = πK 3/2
0

(
(3σ + 5)/σ − 3β−5/3

) (
3β4/3 − (3σ + 5)/(σ + 3)

)

20
√

(3σ + 5)/(3σ + 3) − β−2/3
. (4.214)

Relations (4.213) and (4.214) lead to an implicit expression of C forced
ε as a function

of ReL , whose asymptotic value is

lim
ReL −→+∞ C forced

ε = π(3σ + 3)5/2

10K 3/2
0 σ(3σ + 5)3/2

. (4.215)

This asymptotic expression is observed to fit EDQNM results for ReL ≥ 103. As
a general conclusion, let us emphasize that no universal value for Cε can exist.

In a different context, without using a cascade time-scale nor a production rate,
Mazellier and Vassilicos (2008) reach similar conclusions, expressed by the very
title of their article: “The turbulence dissipation constant is not universal because
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of its universal dependence on large-scale flow topology”. The gist of their conclu-
sions can be summarized as follows. A self-similar pattern is one where the small
number of large scales is directly reflected in the large number of small scales. Zero-
crossings of turbulent velocity correlations form such a pattern and as a result, the
averaged distance between consecutive zero-crossings is strongly influenced by a
nondimensional parameter C ′

s which is some sort of number of large-scale eddies
within an integral scale. The “constant” Cε is then related to the preceding parameter
by Cε = f (log Reλ)C ′3

s , with the dimensionless function tending to 0.26 in the limit
of log Reλ � 1. In addition to the variability in terms of moderate Reλ, the topologi-
cal structure of large eddies govern the parameter C ′

s . Evaluation of this parameter is
finally obtained from different physical experiments (regular grid-turbulence, fractal
grid-one, “chunk” turbulence at the S1 wind tunnel in Modane, jet).

4.5.6.3 Energy Spectrum in Non-equilibrium Isotropic Turbulence

As discussed above, the free decay régime corresponds to a non-equilibrium state of
turbulence, in which the classical energy spectrum expressions must be modified to
account for unsteadiness. Starting from the Lin equation with a production source
term P(k)

∂E(k, t)

∂t
= −2νk2 E(k) + T (k) + P(k), (4.216)

and considering the following small-parameter expansion around a high Reynolds
steady-state solution E0(k) with a k−5/3 inertial range associated to a steady injection
of energy spectrum P0(k):

E(k, t) = E0(k) + δE1(k, t) + δ2 E2(k, t) + · · · (4.217)

where the small parameter δ is related to a low-amplitude slow variation of the
production term, a multiscale analysis (Woodruff and Rubinstein 2006; Horiuti and
Tamaki 2013; Horiuti et al. 2016; Bos and Rubinstein 2017) based on the Heisen-
berg and Kovasznay differential models for the non-linear transfer term T (k) (see
Sect. 4.7.1) leads to

δ ∼
(

L̇

L

)(K
ε

)
� 1, (4.218)

where L̇ denotes the time derivative of the integral scale L . The associated expansion
of the energy spectrum is

E(k, t) = E0(k) + 2

3
K 2

0
ε̇

ε2/3
k−7/3 + 1

3
K 3

0

(
ε̈

ε
− 2

3

(ε̇)2

ε2

)
k−9/3 + · · · (4.219)
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Fig. 4.15 Steady state
solution spectrum,
E0(k) ∝ k−5/3 (red) and
first- and second-order
perturbations,
E1(k) ∝ k−7/3 (blue) and
E2(k) ∝ k−9/3 (green),
respectively. From Horiuti
et al. (2016) with permission
of IOP

While the exact expressions of the coefficients may be sensitive to the closure
used for T (k) in the analytical study, the important point is that the classical, steady-
state spectrum with a classical k−5/3 inertial range is corrected at first order by
E1(k) ∝ k−7/3 and by E2(k) ∝ k−9/3 at second order. This has been recently
assessed by numerical simulations in which these perturbations are very accurately
observed, see Fig. 4.15.

The associated expansion of the transfer term in the inertial range is

T (k) = 0 + δT1(k) + δ2T2(k) + · · ·
= 2

3
K0

ε̇

ε1/3
k−5/3 + 2

3
K 2

0

(
ε̈

ε2/3
− 1

3

(ε̇)2

ε5/3

)
k−7/3 + · · ·

(4.220)

showing that the net transfer is not zero within the inertial range for the perturbative
components E1(k) and E2(k).

These expressions can be used to derive non-equilibrium corrections to various
integral quantities (Bos and Rubinstein 2017). Writing E(k) = E0(k) + E ′(k), one
has by direct integration

K = K0 + K′, ε = ε0 + ε′, L = L0 + L ′. (4.221)

Restricting the expansions to the first-order perturbation, one obtains

ε′

ε0
� 1

Reλ

K′

K0
,

K′

K0
� (ε̇/ε)

ε1/3 L2/3
0

(4.222)

and, after some algebra,
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Reλ

Reλ0

∼
(

1 + K′

K0

)
(4.223)

along with

Cε

Cε0

∼
(

1 + 10
7

K′
K0

)
(

1 + K′
K0

) ∼
(

1 + K′

K0

)−15/14

(4.224)

for the dissipation parameter Cε. Combining these expressions and using Reλ0 ∼√
ReL0 , one finds

Cε(t) ∝
(√

ReL0

Reλ(t)

)15/14

, (4.225)

which agrees with the analysis carried out in Sect. 4.5.6.2 on the conclusion that Cε

is a time-dependent parameter in decaying isotropic turbulence.
Time decay of an initially perturbed isotropic turbulence can be analyzed using

previous expressions. On should distinguished between two stages: a first transient
phase during which the previous expressions holds (with a time-independent base
flow E0(k)), and a second one corresponding to decaying base flow with a stabilized
non-equilibrium. The second phase is assumed to correspond to an algebraically
decaying turbulence such that K(t) ∝ t−n , the decay exponent being described by
classical theories discussed in Sect. 4.4. Taking into account the fact that ε̇/ε =
(−n + 1)/t and ε/K = n/t , and evaluating these quantities as

K(t) = K0(t) + K′(t) =∼
∫ 1/η

1/L
(E0(k, t) + E ′(k, t))dk (4.226)

ε(t) = ε0(t) + ε′(t) ∼ 2ν

∫ 1/η

1/L
k2(E0(k, t) + E ′(k, t))dk (4.227)

one obtains, after some algebra:

K′

K0
= −2

9

n + 1

n
,

Cε

Cε0

≈
(

9n

7n − 2

)15/14

, (4.228)

and

Reλ

Reλ0

≈ 9n

7n − 2
,

λ/L

λ0/L0
=
(

Reλ

Reλ0

)1/14

. (4.229)
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Fig. 4.16 Comparison of Bos-Rubinstein theoretical prediction (dashed lines) with experimental
data (symbols) and DNS data (solid line) for non-equilibrium decaying turbulence. From Bos and
Rubinstein (2017) with permission of APS

It is seen that during this second stage the ratio of the two components of kinetic
energy and the one of the dissipation parameter are time-independent, showing that
solution does not relax toward an true equilibrium state. As a matter of fact, self-
similar decay is not related to equilibrium but to a state in which the non-equilibrium
part is a constant fraction of kinetic energy.

Such a behavior has been reported first in fractal grid experiments since the mid-
2000’s by C. Vassilicos and his group at Imperial College, and more recently by other
groups (see Vassilicos 2015 for a survey). These authors proposed the following
relation by data-fitting

ε(t) ∼ Rep/2
0

Req
λ(t)

u′3(t)
L(t)

, p ∼ q ∼ 1, (4.230)

where Re0 is a global time-independent Reynolds number characterizing initial or
inlet conditions, which leads to the following scaling law for the dissipation parameter
proposed by Vassilicos and colleagues:

Cε(t) = ε(t)L(t)

u′3(t)
∝

√
Re0

Reλ(t)
, (4.231)

which is very close to the relation (4.225). The theory proposed in Bos and Rubinstein
(2017) exhibits a very good agreement with experimental and DNS data for both
transient stages, as shown in Fig. 4.16 and is presently the best available explanation.
A remarkable results is that (4.231) has been reported to agree with experimental
data associated to more complex flows, such as wakes of fractal bluff bodies.
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4.5.7 Anomalous Decay Regimes: Very Fast Algebraic Decay
and Exponential Decay

Some recent experimental results dealing with grid turbulence exhibit decay rate
that are much higher than those expected looking at classical theories discussed in
Sect. 4.4. Most of them have been obtained considering grids with fractal topology
by Vassilicos and colleagues from the Imperial College group (Vassilicos 2015).
Similar results have been obtained via DNS (Goto and Vassilicos 2015) and EDQNM
simulations (Meldi et al. 2014), showing that these anomalous decay regimes are not
governed by the breakdown of isotropy or homogeneity.

Despite these phenomena are still not fully understood, some hypotheses about
the underlying physical phenomena can be proposed. Two main possibilities are
identified:

• Scenario I: anomalous fast decay régimes are free-decay phenomena due to uncom-
mon initial energy spectrum E(k). Fractal grids induce turbulence production on
a range of scales much wider than classical grids with only one rod diameter and
grid cell size. Typical fractal grid topologies correspond to 2 to 4 iterations of
fractal duplication of the original pattern, leading to a ratio between the largest
and the smallest grid scales about 10. Therefore one can expect that such grids will
lead to a massive injection of energy within about 1 decade of turbulent scales. If
the production rate is much larger than the kinetic energy turbulence cascade rate,
the energy will pile-up at large-scales, leading to the existence of kinetic energy
spectra with non-classical shape at large energetic scales at the end of the forma-
tion region. According to that hypothesis, the non-classical very fast decay régimes
would be a free-decay transient effect associated to the relaxation of a non-classical
energy spectrum toward a more classical one, due to the initial non-equilibrium
of large scales. This explanation is consistent with the analysis of the intensity of
triadic energy transfers presented in Sect. 4.8.4: a bump in the energy spectrum
E(k) at energetic scales will induce an increase in the kinetic energy cascade rate
and therefore the dissipation rate until this bump will have been smoothed and a
classical decay rate recovered. The possibility to obtain kinetic energy spectrum
with a non-classical peak shape characterized by a bump at energetic scales using
a fractal isotropic forcing term was assessed using EDQNM (Meldi et al. 2014),
see Fig. 4.17. The existence of a very fast decay régimes with decay rate such that
K(t) ∝ t−3 during a finite time before relaxing toward a classical decay régime
starting from such an initial solution was reported (Meldi et al. 2014; Goto and
Vassilicos 2015). DNS results dealing with non-classical decay also exhibit such a
non-classical initial spectrum (Goto and Vassilicos 2015) as displayed in Fig. 4.17.
A very nice piece of evidence supporting the idea of a pure initial solution effect are
the initial spectra obtained using Data Assimilation by Mons and Sagaut (unpub-
lished). Prescribing very fast decay rates during a fixed finite time window, initial
solutions E(k, 0) with a bump at energetic scales were obtained (see Fig. 4.17).
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• Scenario II: anomalous fast decay régimes are forced-decay phenomena due to
long-lasting production phenomena originating in fractal grid wake shear. The
key idea is that fractal object wakes generate long-lasting multiscale shear effects
downstream the grid with associated turbulence production effects. Therefore, the
turbulence experiences decay in the presence of an evolving forcing term. Here,
the possibility to generate non-classical decay rate is trivially recovered, since the
Lin equation if modified as follows

∂E(k)

∂t
+ 2νk2 E(k) = T (k) + f (E(k), k, t), (4.232)

where the forcing term f (E(k), k, t) depends a priori on the spectrum E(k),
the scale k, time but also on geometrical features of the grid. Models for
this forcing term have been proposed for both DNS and EDQNM simulations
(Mazzi and Vassilicos 2004; Meldi et al. 2014). Playing with f (E(k), k, t) one
can manipulate the time-evolution of K(t) in an arbitrary way, from growth to
rapid decay. Time evolution of decay exponent of kinetic energy obtained using
EDQNM with different time-vanishing fractal forcing term that mimic turbulent
kinetic production in the wake is illustrated in Fig. 4.18.

These two scenarii can also be combined, since underlying mechanisms (unusual
spectrum shape, long-lasting forcing term) are not contradictory.

The question of the exact form of the anomalous fast decay régime is still an
open question. The possibility of an exponential free decay reminiscent of the one
predicted by George and Wang (2000) (see Sect. 4.4.6) in the free decay with a con-
stant characteristic length scale has been advocated by some authors, but anomalous
decay is usually observed on transient time that are too short to distinguish between
exponential and algebraic laws.

4.6 Reynolds Stress Tensor and Analysis of Related
Equations

For decaying Homogeneous Isotropic Turbulence (HIT), the Reynolds stress tensor
reduces to a spherical form, as the dissipation tensor, so that

u′
i u

′
j = 2K δi j

3
, εi j = 2ε

δi j

3
,

while Eqs. (2.73) and (2.74) simplify as

dK
dt

= −ε (4.233)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 4.17 Initial kinetic energy spectrum E(k, t) leading to anomalous decay régime. Top-left:
solution obtained via EDQNM with fractal forcing (enlarged view of the peak region), from Meldi
et al. (2014) with permission of CUP; Top-right: solution obtained via DNS with initial anisotropic
vortical forcing, from Goto and Vassilicos (2015) with permission of AIP; Bottom-left: solution
(solid line) obtained via Data Assimilation with EDQNM enforcing K(t) ∝ t−1.5, dashed line is
the initial guess of the Data Assimilation procedure; Bottom-right: solution (solid line) obtained
via Data Assimilation with EDQNM enforcing K(t) ∝ t−3, dashed line is the initial guess of the
Data Assimilation procedure

Fig. 4.18 Time evolution of
the kinetic energy decay
exponent n such that
K(t) ∝ tn in EDQNM with
vanishing fractal forcing. α
is related to the decay rate of
the forcing term, with
α = 10−4 and α = 1
corresponding to very slowly
and very quickly decaying
forcing, respectively. From
Meldi et al. (2014) with
permission of CUP
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and
dε

dt
= −Cε2

ε2

K . (4.234)

In the absence of production due to the uniformity of the mean flow, the first equa-
tion is exact. But is important to notice that the second equation for the dissipation
rate is a rough approximation since the exact equation (4.44) yields the following
expression for the parameter Cε2 :

Cε2 = 7

15

(
1

2
S(t)Reλ(t) + G(t)

)
. (4.235)

Therefore, assuming that Cε2 is a constant parameter is wrong in the general case
looking at conclusions given in Sect. 4.5.5, in which it was shown that this quantity
depends on the Reynolds number and that it exhibits two different asymptotic values,
at asymptotically large and small Reynolds numbers.

Assuming that Cε2 is constant and using the logarithmic derivatives, the system
(4.233)–(4.234) can be simply solved. It admits power law solutions of the form

K(t) = K(0)

(
1 + t

t0

)−n

, ε(t) = n
K(0)

t0

(
1 + t

t0

)−n−1

, (4.236)

with

t0 = n
K(0)

ε(0)
, Cε2 = − d(log ε)

d(log K)
,

yielding

Cε2 = n + 1

n
. (4.237)

Accordingly, a direct link of Cε2 to the exponent of the decay law is given. Fol-
lowing the results summarized in Table 4.11, one obtains σ = 2, n = 6/5 and
Cε2 = 11/6 for a Saffman spectrum and σ = 4, n = 1.38 and Cε2 = 1.72 for
a Batchelor spectrum. The analysis of the initial decay stage given in the previous
section emphasized that the decay exponent is directly tied to the power-law behavior
of the kinetic energy spectrum at low-wavenumber. Therefore, Cε2 can also be recast
as a function of the spectrum shape at large scales that govern the decay rate. Using
the Comte-Bellot–Corrsin theory, one obtains

Cε2 = 1 + σ + 3

2(σ + 1)
, with E(k) ∼ kσ, (kL � 1). (4.238)

A direct consequence is that there is no really universal value for Cε2, and that a
K − ε model with fixed parameters is not able to capture the subtle changes in the
decay rate of K which may occur.
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The special form of Eq. (4.236) implies that kinetic energy and dissipation rate
(or similarly kinetic energy and Taylor microscale) are known simultaneously in
the initial stage with time t0. In an actual experiment, t0 corresponds to an “initial
section” at a distance (e.g. x/M ∼ 40 in CBC) pretty far downstream the grid. This is
in contrast with the conventional law K ∼ (t − τ ∗)−n′

, sought using a virtual origin
τ ∗, that is empirically adjusted for obtaining the longest power law. In an actual grid-
turbulence experiment, the virtual origin corresponds to a cross-section upstream the
grid; accordingly, the resulting perceived exponent −n′ takes into account all stages
of decay from the close vicinity of the grid. In a preliminar study, Claude Rey (private
communication) began to compare n, obtained by simultaneously measuring K and ε
according to Eq. (4.236), and n′ adjusted in connection with a virtual origin. Decays
of both kinetic energy and scalar variance (heated grid) were considered. A very
large scattering of the perceived exponent n′ was found, in contrast with a very weak
variability of n, around 1.25. These results suggest that the very large scattering of
decay exponents, shown in Fig. 4.4, could be drastically reduced, and is probably
dependent on the adjustment of the virtual origin in experiments.

All these developments hold for large values of the Reynolds number only, i.e.
in the case in which the parameter Cε2 takes its asymptotic high-reynolds value. At
lower Reynolds number finite Reynolds number effects occur and more complex
expressions for Cε2 must be found. Since the high Reynolds number asymptotic
analysis can no longer be used, only empirical expressions are available. Most of
them rely on an exponential interpolation between asymptotic values. As an example,
let us mention the model proposed by Coleman and Mansour (1991):

Cε2(ReL) = 1. − 0.222 exp(−0.1677
√

ReL), (4.239)

where the turbulent Reynolds number ReL is defined as ReL = K2/νε. A limitation
of this model, which is shared by almost all other models, is that it does not take
into account other parameters, like the initial condition. Considering a fully linear
evolution, the turbulent kinetic energy spectrum evolves as

E(k, t) = E(k, 0)e−2νk2t . (4.240)

For small wave numbers, one obtains

E(k, t) ∼ kσe−2νk2t , (4.241)

which leads to K(t) ∝ t−(σ+1)/2. Available experimental data, in which non-linear
effects are small but not identically zero, lead to σ � 3. In the strictly linear limit, one
expects to recover either the Batchelor solution (σ = 2, Cε2 = 1.67) or the Saffman
solution (σ = 4, Cε2 = 1.4).

The analysis can be further extended to account for the influence of the skewness
of velocity gradients. This point will not be discussed here (see Piquet 2001 for a
detailed discussion of the modeling issues related to the free decay case).
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It is clear that the main trends of high-Reynolds dynamics of decaying HIT can be
predicted by the simplest K−ε model, if the initial conditions are taken into account,
including the initial spectrum shape. But the discussion presented above also shows
that, even for a very simple turbulent flow such as HIT, several physical mechanisms
escape the formalism of the K − ε model defined by Eqs. (4.233)–(4.234). The very
reason why is that the turbulent decay depends on both the large and the small scales,
and that most turbulence models written in the physical space are not able to account
for spectral features of turbulence.

It is also worth emphasizing that prediction is not explanation and that our knowl-
edge of HIT remains elusive. Internal intermittency which is reflected in the scaling
of high order moments is an open problem; formation of micro-structures like worms
is shown in physical and numerical experiments but not really explained from the
analysis of Navier–Stokes equations.

4.7 Differential Models for Energy Transfer

This section is devoted to local closures for the Lin and Karman–Howarth equations
based on eddy-diffusivity or eddy-viscosity paradigm. These closures are some-
times referred to has classical closures. It is important noting that closures have
been developed independently in Fourier and physical space, so that closures for
the Karman–Howarth equation are not explicitly tied to those proposed for the Lin
equation.

4.7.1 Closures for the Lin Equation in Fourier Space

The Lin equation (4.38) for the time evolution of the three-dimensional energy spec-
trum E(k) is among the cornerstones of the theory of turbulence since solving it
yields the capability to describe accurately time evolution of kinetic energy of tur-
bulence K(t). A first class of models developed to close that equation gathers all
models based on a differential closure. Assuming that T (k) is regular enough so that
there exists a function F(k) such that

F(k) =
∫ k

0
T (p)dp ⇐⇒ T (k) = −∂F(k)

∂k
, (4.242)

where it is assumed that F(0) = 0, an hypothesis which is assessed by existing data
and advanced spectral closures (see Sect. 4.8), one obtains

∂E(k, t)

∂t
+ 2νk2 E(k, t) = ∂F(k)

∂k
. (4.243)
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The global conservation property
∫ k

0 T (p)dp = 0 yields F(0) = F(k → +∞) =
0. The function F(k) can be interpreted as the total energy flux exchanged by scales
larger than 1/k with scales smaller than 1/k. This is observed looking at the kinetic
energy budget of scales larger than 1/k, i.e. by integrating (4.243) between 0 and k:

∂

∂t

∫ k

0
E(p, t)dp + 2ν

∫ k

0
p2 E(p, t)dp = F(k). (4.244)

In the case viscous dissipation can be neglected, the equation simplifies as

∂

∂t

∫ k

0
E(p, t)dp = F(k), (4.245)

showing that large scale kinetic energy decay is driven by non linear cascade mech-
anisms.

This differential form of Lin equation can be closed expressing the flux function
F(k) as an explicit function of the kinetic energy spectrum E(k). A large number
of closures have been proposed since the 1940s, some of which are displayed in
Table 4.12. It is worth noting that many of them have been designed to allow for an
analytical expression for E(k) by exact integration of (4.243) rather than representing
the real energy flux. The closure problem consists then in determining F(k). The
first constraint used to build a model is F(0) = 0. Another common constraint
consists in using the relation F(k) = ε, and then T (k) = 0, in the statically isotropic
stationary turbulence at very large Reynolds number in the inertial range where
E(k) = K0ε

2/3k−5/3. A last relation is that the model should ideally be able to
recover the steady-state equilibrium solution of the truncated Euler equations, i.e.
E(k) ∝ k2, yielding F(k) = 0 in this case.

The main models are given in the Table 4.12. We can distinguish several model
families

• The Oboukhov model (1941) and its variant given by Ellison (1961). Starting
from a spectral equilibrium hypothesis, one assumes that the kinetic energy
production at large scale, the dissipation at small scales and the energy transfer
between large and small scales are the same. We can then write (in the inertial
range of the kinetic energy spectrum)

Ri j
∂ūi

∂x j
= −ε = F(k). (4.246)

Dimensional analysis yields

Ri j =
∫ +∞

k
E(p)dp,

∂ūi

∂x j
=
(∫ k

0
p2 E(p)dp

)1/2

, (4.247)

leading to the original Oboukhov’s model.
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Table 4.12 Model for the spectral density of energy flux T (k) = −∂F(k)

∂k
. The asterisk denotes

the models which lead to an analytical form for the spectral density of kinetic energy E(k) by
integrating the Lin equation

Model F(k)

Oboukhov (1941)∗ αO

(∫ +∞

k
E(p)dp

)(∫ k

0
p2 E(p)dp

)1/2

Ellison (1961)∗ αE k E(k)

(∫ k

0
p2 E(p)dp

)1/2

Heisenberg (1948)∗ αH

(∫ +∞

k

√
p−3 E(p)dp

)(∫ k

0
p2 E(p)dp

)
, αH = 16

9
K −3/2

0

Stewart-Towensend (1951) αST

(∫ +∞

k
p−(1+1/2c) E1/2c(p)dp

)c (∫ k

0
p2 E(p)dp

)

Ogura-Miyakoda (1953) αO M
1

k

(∫ +∞

k
E(p)dp

)1/2 (∫ k

0
p2 E(p)dp

)

von Karman (1948) αV K

(∫ +∞

k
pm En(p)dp

)(∫ k

0
p1/2−m E3/2−n(p)dp

)

Goldstein (1951) αG

(∫ +∞

k
pm En(p)dp

)λ (∫ k

0
pm′

En′
(p)dp

)λ′

(m + 1)λ + (m′ + 1)λ′ = 5/2, nλ + n′λ′ = 3/2

Malfliet (1974) αM

(∫ +∞

k

√
pE(p)dp

)(∫ +∞

k
E(p)dp

)
, αM = 4

9
K −3/2

0

Rubinstein-Clark (2004) αM

(
−
∫ k

0
q4dq
∫ +∞

k

E2(p)

p2 �(p, q)dp

+
∫ k

0
q2 E(q)dq

∫ +∞

k
�(p, q)E(p)dp

)

�−1(p, q) = θ−1(p) + θ−1(q), θ(k) =
(∫ k

0 p2 E(p)dp
)−1/2

Kovasznay (1948)∗ αK k5/2 E3/2(k), αK = K −3/2
0

Pao (1965)∗ αPε1/2k5/3 E(k)

Tenekes (1968),
Yaglom (1969)

αT Y ε1−2n/3k5n/3 En(k), n > 0

Yaglom (1969)
Panchev (1969)
Panchev (1969), Lin (1972)

αY ε1−2n/3k5n/3 En(k)ϕ(kη), n > 0
ϕ(0) = 1, limx→+∞ ϕ(x) ∝ xα,α ≤ 4/3

n = 1, ϕ(x) = x4/3

n = 1, ϕ(x) = (1 + cx2/3)−1

Leith (1967) −αL k13/2 ∂

∂k

(
k−3 E3/2(k)

)
, αL = 2

11
K −3/2

0

Clark (1999) −αL

(∫ k

0
p2 E(p)dp

)1/2

k4 ∂

∂k

(
E(k)

k2

)

Connaughton-Nazarenko
(2003)

−1

8
k11/2
√

E(k)
∂

∂k

(
E(k)

k2

)
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• Spectral eddy viscosity models This approach, initially suggested by von
Weizsäcker in 1948, has been concretized by Heisenberg the same year18 under
the spectral eddy viscosity model. The underlying physical paradigm is that the
energy transfer from large toward small scales (energy cascade) can be viewed as
an energetic drainage of the large scales by a dissipative mechanism. This approach
can be seen as an analogy with kinetic gas theory, in which the movement at the
molecular scale is the mechanism which generates the viscosity at larger macro-
scopic scales. If the eddy viscosity hypothesis seems to be efficient to represent the
interactions between very different scales, it seems however to be very contestable
for describing the interactions between scales of the same order. the problem,
encountered in this theory, is that a turbulent flows contains a continuity of scales
which are dynamically active, and that the hypothesis of a scale separation is not
valid.
Numerous versions and generalizations have been proposed. The generic form of
these models is

F(k) = 2νt (k)

∫ k

0
p2 E(p)dp, (4.248)

where νt (k) is the spectral turbulent viscosity. The original proposal of Heisenberg
is

νt (k) = 8

9
K −3/2

0

∫ +∞

k

√
p−3 E(p)dp. (4.249)

This relation has been extended to the general case by Stewart and Townsend in
1951, under the following relation

νt (k) =
(∫ +∞

k
p−(1+1/2c) E1/2c(p)dp

)c

, (4.250)

where c > 0 is an arbitrary constant. Moreover c = 1/2 lead to a simple expression,
used in particular by Howells en 1960 and Monin in 1962. This last relation can
itself be generalized in a new more general expression as

νt (k) =
∑

i

ai

(∫ +∞

k
p−(1+1/2ci )E1/2ci (p)dp

)ci

, (4.251)

with ai > 0 and ci > 0, ∀i .
• Spectral diffusion models, following the approach initiated by Leith in 1961.

The transfer is represented by a diffusive term in the wave-number space. One
advantage of this model, compared to those presented above is its local character
in the Fourier space which greatly improves its use. The generic form of a diffusion
model is

F(k) = −D
∂Q

∂k
(4.252)

18Weizsäcker and Heisenberg did not know the works of Oboukhov at this time.
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where D is a diffusion coefficient and Q a potential. The dimensional analysis
leads to DQ = [L][T ]−3. Several improved models have been proposed, e.g. by
Clark (1999) and Connaughton and Nazarenko (2003).

• Local models based on the dimensional analysis, e.g. models proposed by
Kovasznay and Pao. Such models may allow for the derivation of exact solu-
tions of the equation for E(k), mostly considering a steady state solution without
forcing (which is unphysical in the general case but may be considered as relevant
at small scales in some cases).

• Non-local models based on the Von Karman hypothesis, use the following generic
expression

F(k) =
∫ +∞

k

∫ k

0
P(k ′, k ′′)dk ′dk ′′ (4.253)

where P(k ′, k ′′)dk ′dk ′′ is the kinetic energy amount produced by the wavenumbers
[k ′, k ′ + dk ′] toward the wave numbers [k ′′, k ′′ + dk ′′] by time unit. The detailed
conservation property of the energy leads to P(k ′, k ′′) = −P(k ′′, k ′), which is a
constraint that the spectral fluxes models have to satisfy. The expression given by
Von Karman in 1948 reads

P(k ′, k ′′) = αV K (k ′)m(k ′′)1/2−m
(
E(k ′)
)n (

E(k ′′)
)3/2−n

(4.254)

for k ′ > k ′′. The spectral viscosity given by Heisenberg is obtained by taking
m = −3/2 and n = 1/2. Moreover, the values (m = 0, n = 1) give formula
close to the expression given by Oboukhov and the values (m = 0, n = 3/2) close
to the expression given by Kovasznay. Finally, the expression was generalized by
Goldstein (1951), whose model admits the models by Von Karman, Oboukhov,
Heisenberg and Stewart-Townsend as particular cases. It is worth noting that both
Leith and Kovazsnay models can be interpreted as limits of the Heisenberg model
in the case of distant interactions.

The ability of these models to lead to relevant unsteady solutions of Lin equation
has not been systematically investigated. Some models have been designed to find
steady analytical solutions of Lin equation, e.g. Pao’s model, but not to close the
dynamical equations.

A recent analysis was carried out by Clark et al. (2009), in which several models
were tested. The following criteria were used to assess the models:

(i) Capability of predicting the existence of a dissipation range with exponentially
decaying E(k). Heisenberg and Kovasznay models fail in predicting such a
range, while Leith model and Ellison model are able to recover such a behavior
(but with different exponentially decaying functions).

(ii) Capability of capturing the bottleneck phenomenon. This phenomenon is char-
acterized by a kink in the compensated energy spectrum between the inertial and
dissipation ranges. It originates in the fact that due to very high viscous damp-
ing, scales in the dissipative range cannot drain the energy of scales located at
the very end of the inertial range at the same rate at which these scales are fed
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by the nonlinear energy cascade, resulting in a weak pile-up of energy. None of
Leith, Heisenberg, Kovazsnay models is able to capture that phenomena, since
they are to crude to account for the modification of the cascade rate by viscous
damping. But more sophisticated models, such as the Rubinstein-Clark model
(which is a generalized Heisenberg model) perform well here.

(iii) Capability to predict the existence of a thermalized tail in the inviscid case. In the
ideal case of an inviscid fluid the equilibrium solution is E(k) ∝ k2 ∀k. Before
reaching that state, transient solution exhibit an inertial range with E(k) ∝ k−5/3

followed by the thermalized tail E(k) ∝ k2. Thermalized small scales play the
role of molecular motion, and give rise to an efficient viscosity that acts on larger
scales. Therefore, a small pseudo-dissipative range should be observed between
the end of the inertial range and the thermalized range. Both the Kovasznay and
the Heisenberg fail in predicting that behavior since they don’t yield vanishing
fluxes at equipartition, i.e. when T (k) = 0 when E(k) ∝ k2, while the Leith
and the Rubinstein-Clark models succeed. The later model also recover the
existence of the pseudo-dissipative range.

(iv) Capability to prevent unphysical overshoot of kinetic energy in transient solu-
tions of Lin equation. Considering the transient evolution of a turbulence sub-
mitted to a steady forcing toward a steady state solution, it appears that some
models may lead to unphysical overshoot in K(t). It is observed that no form of
Leith or Kovasznay models lead to such a spurious behavior, while Heisenberg
and Rubinstein-Clark models suffer from that weakness.

4.7.2 Closures for the Karman–Howarth Equation in
Physical Space

While closing the Lin equation has been paid a lot of attention during the last 70 years,
only very few works have addressed the issue of closing its counterpart in physical
space, i.e. the Karman–Howarth equation. Existing closures are local closures, mostly
differential closures, which will be discussed hereafter.

A first series of works addressed the evolution equation for the longitudinal cor-
relation function f (r), whose evolution equation (4.17) can be rewritten as

∂

∂t
f = K

u′2 + 2ν

(
∂2

∂r2
+ 4

r

)
f − 10ν

∂2 f

∂r2
(0) f, (4.255)

where

K (r) = u′3
(

∂

∂r
+ 4

r

)
k(r).

Eddy-viscosity closures are defined for this equation setting
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k(r) = 2
Dt (r)

u′
∂ f

∂r
(4.256)

where the turbulent diffusion parameter Dt (r) is expressed as

Dt (r) =
{

α1u′r Millionshtchikov (1969)

α2u′r
√

1 − f (r) Oberlack & Peters (1993)
(4.257)

where α1 and α2 are arbitrary parameters. Numerical experiments show that Million-
shtchikov’s model yields a poor representation of the kinetic energy cascade process
and unphysical results, while the second model leads to good representation of the
inertial range with an ad hoc tuning of α2. De Divitiis (2016) recently proposed
the sole closure that does not rely on an eddy-viscosity paradigm. Starting from a
Lyapunov analysis of the statistics of the velocity increment, he proposed

K (r) = u′3
√

1 − f (r)

2

∂ f

∂r
, (4.258)

which does not involve second-order derivatives of f , and therefore is not a diffusive
model. This model is observed to yields accurate results for isotropic turbulence
decay.

Another group of closures have been derived for the second-order structure func-
tion based Karman–Howarth equation (4.33), which can be recast in the following
compact form:

3
∂S2

∂t
= 1

r4

∂

∂r

[
r4

(
6ν

∂

∂r
S2 − S3

)]
− 4ε. (4.259)

Some proposed models are based on the eddy-viscosity assumption

S3 = −6νt
∂

∂r
S2. (4.260)

The most general model was proposed by Thiesset et al. (2013), which reads

νt

ν
= Sr∗2

12
√

15(1 + γr∗2)1/3
, r∗ = r/η, (4.261)

where S is the velocity skewness. This model is observed to yield very good results for
decaying isotropic turbulence, including finite Reynolds number effects, setting S =
0.424 and γ = 1/625, corresponding to a crossover the inertial and the dissipative
range at r∗ = 25, see Fig. 4.19. This model is an extension of the one proposed by
Domoradzki and Mellor in 1984 based on inertial range scaling:

νt

ν
= 1

5C
r∗4/3, C = 2, (4.262)
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Fig. 4.19 Eddy-viscosity closure for the Karman–Howarth equation. Left: a priori ratio of eddy-
viscosity to molecular viscosity in several turbulent flows deduced from experimental data. Right:
predicted (lines) versus experimental (symbols) evolution of the normalized third-order structure
function, showing Finite Reynolds Number effects on Kolmogorov’s 4/5th law. Courtesy of L.
Danaila. From Thiesset et al. (2013) with permission of APS

which is observed to poorly capture viscous effects, and the one based on dissipative
range scaling

νt

ν
= S

12
√

15
r∗2 (4.263)

which is not well suited for inertial range physics.
Simpler models have been proposed to obtain analytical solutions of the steady

problem within the inertial and dissipative range. Assuming a constant velocity skew-
ness, one can recover Obukhov’s closure (1949)

S3(r) = SS2(r)
√|S2(r)| (4.264)

which is consistent with inertial range scaling. More accurate analytical solutions in
the range r/η = O(1) with a capture of the bottleneck phenomenon are obtained
using a non-constant expression of the skewness, S = S3(r)(S2(r))−3/2, but details
of the dissipative range are still lost.

4.7.3 Why Do Classical Closures Work? A Systematic
Approach

The local differential closures, at least some of them, are observed to yield a satis-
factory qualitative recovery of a significant number of exact solution features. While
most of them have been derived in a pretty heuristic way, it is possible to get a better
understanding of the reason why they work, yielding also a better view at physical
mechanisms which are at play in turbulence dynamics (Clark et al. 2009).
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It can be shown (see Sect. 4.8) that the non-linear term in the Lin equation is equal
to

T (k, t) =
∫

dpdvqδ(k − p − q)S(k, p, q, t), (4.265)

where S(k, p, q, t) is related to triple correlations by

S(k, p, q, t) = ı

2
Pimn(k)um(q)un(q)ui (−k). (4.266)

Therefore, the flux term F(k) defined in Eq. (4.242) is excatly defined as

F(k, t) =
∫

k ′<k

∫

p,q>k ′
dpdqδ(k − p − q)S(k, p, q, t). (4.267)

Introducing a time scale �(k, p, q) for the triadic interaction, the integrand can
be developed as

S(k, p, q, t) = Pimn(k)Pirs(k)Pmr (p)Pns(q)E(p)E(q)�(k, p, q)

−Prmn(k)Pmrs(p)Pns(q)E(k)E(q)�(k, p, q)

−Prmn(k)Pmrs(q)Pns(p)E(k)E(p)�(k, p, q) (4.268)

The next step consists in considering distant interactions only. Selecting q as the
large scale, one now assumes that 0 ∼ q � p ∼ k along with E(q) � E(p), E(k).
Neglecting small terms and introducing the Taylor series expansion

E(‖k − q‖) � E(k) − qi
∂E

∂k

ki

k
+ 1

2
qi q j

∂

∂k j

(
∂E

∂k

ki

k

)
+ · · · (4.269)

one find, after integrating over sphere ‖k ′‖ = const and evaluating angular integrals,

F(k, t) = −c

(∫ k

0
q2 E(q)θ(k, q, q)dq

)
k4 ∂

∂k

[
E(k)

k

]

−c′
(∫ k

0
q2 E(q)dq

)(∫ +∞

k
θ(k, p, p)p3 ∂

∂ p

[
E(p)

p

]
dp

)
, (4.270)

where values of parameters c and c′ are given by the integration procedure. It is seen
that the first term appears as a local diffusion term that is a general extension of Leith’s
model, showing that local differential closures can be interpreted as restrictions
of more general non-local closures to distant interactions that lead to local energy
transfer. Therefore, these closures can recover some non-trivial features of turbulence
dynamics governed by such interactions.
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Several closures can be recovered by chosing a model for the time scales θ(k, p, p)

and θ(k, q, q), which are observed to depend on two wave number only, and are
therefore “pair” relaxation times. As an example, taking θ(k, p) = (k3 E(k))−1/2

one obtains classical closures of Kovasznay, Heisenberg and Leith.

4.8 Advanced Analysis of Energy Transfers in Fourier
Space

4.8.1 The Background Triadic Interaction

The equation introduced in the previous chapter

∂ûi

∂t
(k, t) = ı Pimn(k)

∑
�

û∗
m(p, t)û∗

n(q, t)

︸ ︷︷ ︸
si

(4.271)

with

Pimn = 1

2
(km Pin(k) + kn Pim(k)) (4.272)

is now detailed. Viscous effects are omitted and the symbol
∑

� for summation over
triads is used in a generic way, in order to avoid distinguishing between the discrete
and the continuous formulation from the beginning. The use of complex conjugates
for the Fourier coefficients in the sum (or integral) is consistent with a fully symmetric
relationship for the triad, i.e.

k + p + q = 0 (4.273)

instead of p + q = k coming from the convolution product.
A slightly different form of the nonlinear coupling term is found replacing the

term ∂ui u j

∂x j
in physical space by εi jnω j un . The corresponding form in Fourier space

is ısi = Pimεmjn
∑

� ω̂ j (p, t)ûn(q, t), which can be shown to be the same as the
previous one, using the Ricci relationship and a symmetric form with respect to p
and q. This formulation is more convenient when using the helical modes basis.

In terms of the helical modes, Eq. (4.271) has the generic form

∂ξs(k)

∂t
= ı
∑
�

Mss ′s ′′(k, p)︸ ︷︷ ︸
I

ξ∗
s ′(p, t)ξ∗

s ′′(q, t)︸ ︷︷ ︸
I I

(4.274)

using ξs(k) = (1/2)û · N(−sk) and û(p) = ∑s ′ ξs ′ N(s ′p). The signs s, s ′, s ′′, or
polarities, take the values ±1 only. It is worth noting that, in Eq. (4.274), term I
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is only related to the topology of the triad (i.e. is a purely geometric factor), while
term I I depends only on the amplitude of the modes, i.e. on the turbulent field itself.
From Eq. (4.271) it is found that (e.g. Cambon and Jacquin 1989)

Mss ′s ′′(k, p) = 1

2

(
(N(−sk) · N(−s ′p))(k · N(−s ′′q))

+ (N(−sk) · N(−s ′q))(k · N(−s ′′p))
)
. (4.275)

The second formulation, using ω × u as the basic nonlinearity (Waleffe 1992,
1993), yields

Mss ′s ′′(k, p) = 1

2
(s ′ p − s ′′q)N(−sk) · (N(s ′p) × N(s ′′q)) (4.276)

using the additional relationship

ω(p) = p
∑

s ′
s ′ξs ′(p, t)N(s ′p) (4.277)

and the antisymmetry of the triple scalar product.
The use of helical modes allows for an optimal factorization of the coupling terms

in terms of the moduli k, p, q and the angular variables: the former depend only on
the geometry of the triangle while the latter also depend on the orientation of its
plane. For further analysis, it is better to start from Eq. (4.276) since it appears more
symmetric than (4.275) in terms of the three vectors of the triads, involving a triple
scalar product, without need for additional calculations.

For instance, Eqs. (4.274) and (4.276) can be rewritten as

∂ξs(k)

∂t
=
∑
s ′s ′′

∑
�

(s ′ p − s ′′q)K (sk, s ′p, s ′q)ξ∗
s ′(p, t)ξ∗

s ′′(q, t) (4.278)

with

K (sk, s ′p, s ′′q) = i

4
N(−sk) · (N(−s ′p) × N(−s ′′q). (4.279)

The principle of triad instability stated by Waleffe (see Sect. 4.8.4) takes advantage
of the full symmetry of the coupling coefficient K with respect to any simultaneous
permutation of vectors and polarities within a given triad.

A last set of equations allows us to express K (and other related coefficients in
statistical closures) in terms of the parameters of the triad. The idea is to turn from
local reference frames (or helical modes) defined with respect to a fixed polar axis
to their counterparts defined with respect to the normal unit vector of the triad (or
almost equivalently with respect to a fixed k, if p and q are under consideration).
The unit normal vector is defined as
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γ = k × p
| k × p | , (4.280)

and unit vectors in the plane spanned by the triad, normal to k, p, q, respectively are

β = k
k

× γ, β′ = p
p

× γ, β′′ = q
q

× γ. (4.281)

‘Triadic’ helical modes are defined by

W(s) = β + ısγ, W(s ′) = β′ + ıs ′γ, W(s ′′) = β′′ + ıs ′′γ, (4.282)

and they are related to the original ones by

N(sk) = eısλW(s), N(s ′p) = eıs ′λ′
W ′(s ′), N(s ′′q) = eıs ′′λ′′

W ′′(s ′′), (4.283)

where λ, λ′ and λ′′ are angles which characterize the rotation of the plane of the triad
around k, p, q respectively (see also Chap. 17).

The advantage of the W(s), W ′(s ′), W ′′(s ′′) with respect to N(sk), N(s ′p),
N(s ′′q) is that any invariant combination (double or triple scalar product) of the
former will only rely on the geometry of the triad, and therefore can be expressed in
terms of the moduli k, p, q only. As a first useful application, the coefficient K can
be expressed as

K = i

4
e−ı(sλ+s ′λ′+s ′′λ′′)W(s) · (W ′(s ′) × W ′′(s ′′)).

The triple scalar product involves the sines of the internal angles of the triad

W(s) · (W ′(s ′) × W ′′(s ′′)) = ı(s ′s ′′ sin α + ss ′′ sin β + ss ′ sin γ).

These sines are connected to the lengths of the triangle through

sin α

k
= sin β

p
= sin γ

q
= Ckpq , (4.284)

so that

K (sk, s ′p, s ′′q) = e−ı(sλ+s ′λ′+s ′′λ′′) ss ′s ′′

4
(sk + s ′ p + s ′′q)Ckpq , (4.285)

with

Ckpq =
√

2k2 p2 + 2p2q2 + 2q2k2 − k4 − p4 − q4

2kpq
, (4.286)

which appears in EDQNM models (see Sect. 4.8.7).

http://dx.doi.org/10.1007/978-3-319-73162-9_17
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As a second application, the system of dependent variables k, p, q,λ is well suited
for representing the triadic interactions. If the symbolic operator

∑
� is replaced by

the integral ∫∫∫
S(k, p, t)d3p,

where S(k, p, t) originates from T = (1/2)Tii using Eqs. (2.101) and (2.103). Its
general expression in terms of triple velocity correlations (see also Eq. (4.288) below)
is not important here, since only the change of dependent variables at fixed k (switch-
ing from ((p1, p2, p3)) to (p, q,λ)) is considered, for any integrand S.

If q is expressed as −k−p in S, then the factors p, q and λ can replace p1, p2, p3,
yielding

∫∫∫
S(k, p, t)d3p =

∫∫

�k

pq

k
dpdq
∫ 2π

0
S(k, p, q,λ)dλ. (4.287)

The coefficient pq/k is the Jacobian of the change of integration variables, and
�k is the domain of p, q, so that k (fixed), p, q are the lengths of the sides of a
triangle.

Finally the other angular variables in Eq. (4.285), λ′ and λ′′, also can be expressed
as functions of k, p, q and λ.

4.8.2 Nonlinear Energy Transfers and Triple Correlations

The transfer term T (k) in Eq. (4.38) involves triple velocity correlations under sum-
mation on triads. We now address closure for triple correlations at three points. They
are developed in Fourier space for the sake of mathematical convenience. A third
order spectral tensor can be defined as

< ûi (k)û j (p)ûn(q) >= ı Si jn(k, p, t)δ(k + p + q), (4.288)

which corresponds to the general definition given in Chap. 2, up to a factor ı . The
transfer tensor which incorporates their contribution in the equation for the second
order spectral tensor is given by

Ti j (k)δ(k + p) =< si (p)û j (k) > + < ûi (p)s j (k) >,

or
Ti j (k) = τi j (k) + τ ∗

j i (k) (4.289)

with

τi j (k) = Pimn

∫
Sjmn(k, p)d3p. (4.290)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Two contributions can be distinguished in Ti j . The first one is given by

1

2

(
kn

∫
(Sjin + S∗

j in)d
3p + km

∫
(Sjmi + S∗

im j )d
3p
)

and corresponds to a true transfer tensor with zero integral. The complementary
contribution

1

2

kmkn

k2

(
ki

∫
Sjmnd3p + k j

∫
S∗

imnd3p
)

gives by integration the ‘slow’ pressure strain-tensor �s
i j introduced in Sect. 2.3.1.

Of course, we are only interested in

T (k) = 2πk2Tii = 2πk2(τi i + τ ∗
j i )

in HIT but it is necessary to address the equation for Si jn to derive a consistent
closure.

Similarly to the equation for the second order spectral tensor, the equation which
governs Si jn is found as:

[
∂

∂t
+ ν(k2 + p2 + q2)

]
Si jn(k, p) = Ti jn(k, p) + Tjni (p, q) + Tni j (q, k).

The first term (the other ones are derived by circular permutations) in the right-hand-
side is exactly expressed as

δ(k + p + q)Ti jn = ı < si (k)û j (p)ûn(q) >

=
∫

k=r+s
Pirs(k) < ûr (r)ûs(s)û j (p)ûn(q) > d3r, (4.291)

and involves fourth-order correlations.

4.8.3 Global and Detailed Conservation Properties

Some global conservation properties of the Navier–Stokes equations in the limit of
vanishing molecular viscosity can be easily recast in the Fourier space, providing
some useful constraints on the triadic non-linear transfer term.

We will consider here the conservation of the global kinetic energy and the global
helicity (in an unbounded domain and in the absence of external forcing):

∂

∂t

∫
u(x) · u(x)d3x = 0, (4.292)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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∂

∂t

∫
u(x) · ω(x)d3x = 0 ω = curl(u). (4.293)

The global kinetic energy invariance property can be recast in the Fourier space
as ∫ +∞

0
T (k)dk = 0, (4.294)

where T (k) is defined by Eq. (4.39).
These two relations illustrate the fact that the non-linear term redistribute energy

and helicity among the different modes. As shown by Kraichnan, these global con-
servation properties can be supplemented by other ones, which hold at the level of
each triad, leading to detailed conservation properties.

Let us consider a triad (k, p,q) which satisfies the constraint (4.273). Using the
helical mode decomposition and rewriting relation (4.278) for the single triad under
consideration, one obtains

∂ξs(k)

∂t
= (s ′ p − s ′′q)K (sk, s ′p, s ′q)ξ∗

s ′(p, t)ξ∗
s ′′(q, t), (4.295)

∂ξs ′(p)

∂t
= (s ′′q − sk)K (sk, s ′p, s ′q)ξ∗

s (k, t)ξ∗
s ′′(q, t), (4.296)

∂ξs ′′(q)

∂t
= (sk − s ′ p)K (sk, s ′p, s ′q)ξ∗

s (k, t)ξ∗
s ′(p, t). (4.297)

It is obvious from these equations that

ξ̇s(k)ξ∗
s (k) + ξ̇s ′(p)ξ∗

s ′(p) + ξ̇s ′′(q)ξ∗
s ′′(q) = 0,

since (s ′ p − s ′′q) + (s ′′q − sk) + (sk − s ′ p) = 0, all the other terms being perfectly
symmetric in terms of (sk, s ′p, s ′′q), as the factor K is. Here,

e = (1/2)ξs(k)ξ∗
s (k) = (1/2)û(k) · û∗

(k) (4.298)

denotes the spectral density of energy. In other words, examination of the very sim-
plified form for Mss ′s ′′ given in Eqs. (4.295) to (4.297) immediately shows that

Mss ′s ′′(k, p) + Ms ′s ′′s(p, q) + Ms ′′ss ′(q, k) = 0, (4.299)

using the same nomenclature as for the non-linear terms as in Sect. 4.8.1, so that the
detailed conservation of energy is found in an optimal way.

Detailed conservation of helicity is an even more striking result, due to the optimal
modal decomposition, with

skξ̇s(k)ξ∗
s (k) + s ′ pξ̇s ′(p)ξ∗

s ′(p) + s ′′q ξ̇s ′′(q)ξ∗
s ′′(q) = 0, (4.300)
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resulting from sk(s ′ p − s ′′q) + s ′ p(s ′′q − sk) + s ′′q(sk − s ′ p) = 0, which implies

sk Mss ′s ′′(k, p) + s ′ pMs ′s ′′s(p, q) + s ′′q Ms ′′ss ′(q, k) = 0. (4.301)

The spectral density of helicity is given by

h ∼
∑
s=±1

ıskξs(k)ξ∗
s (k) = (1/2)û∗

(k) · ω̂(k). (4.302)

The related interesting result is

Mss ′s ′′(k, p)

s ′′q − s ′ p
= Ms ′s ′′s(p, q)

sk − s ′′q
= Ms ′′ss ′(q, k)

s ′ p − sk
= −ı K (sk, s ′p, s ′′q). (4.303)

Equations (4.299) and (4.301) show that the non linear interactions among modes
within a given triad conserve both kinetic energy and helicity. A look at Eqs. (4.295)–
(4.297) also shows that two modes with the same wave number and the same polarity
do not force the third one in the triad. In the previous example, one has∂ξs ′′ (q)/∂t = 0
if k = p and s = s ′.

4.8.4 Advanced Analysis of Triadic Transfers and Waleffe’s
Instability Assumption

The analysis of triadic interactions can be further refined distinguishing between the
three following types of interactions:

• local interactions, which correspond to triads (k, p,q) such that k � p � q. A
usual definition is that max(k, p, q)/ min(k, p, q) ≤ 2 − 3.

• distant interactions, which are such that max(k, p, q)/ min(k, p, q) ≥ 7 − 10.

• non-local interactions, which correspond to all others cases.

It is important to stress that the detailed conservation of energy can be shown
in terms of primitive variables, û, with some consequences on the triadic transfers
discussed firstly below, but new properties of these transfers are displayed using
helical modes and taking advantage of the formal analogy of Eqs. (4.295)–(4.297)
with the Euler problem for the angular momentum of a solid body (see Sect. 4.8.5).

Brasseur coworkers addressed the question of the relative intensity of the transfers
associated to each type of triadic interaction (Brasseur and Wei 1994) at large wave
numbers contained in the inertial range of the energy spectrum. Considering the
triad (k,p,q), the non-linear term which appears in the evolution equation of e(k) =
û∗

(k) · û(k) associated to this single triad is

ė(k)NL = −ı
((

û(k) · û(p)
) (

k · û(q)
)+ (û(k) · û(q)

) (
k · û(p)

))+ c.c. (4.304)
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in terms of primitive variables, instead of

ė(k)NL = ı Mss ′s ′′(p, q)ξ∗
s (k)ξ∗

s ′(p)ξ∗
s ′′(q),

using helical modes. In any case, the detailed energy conservation implies

ė(k)NL + ė(p)NL + ė(q)NL = 0. (4.305)

Numerical simulations have shown that distant interactions play a very important
role in the dynamics of small scales. This observation can be explained as follows.

First, let us consider a distant triad which couples a low wave number k to two
high wave numbers p and q, and let us introduce the small parameter δ = k/p � k/q.
One obtains from Eq. (4.304) the following scaling laws:

ė(k)NL = O(δ), (4.306)

ė(p)NL = −ė(q)NL = −ı
((

û(p) · û(q)
) (

p · û(k)
))+ c.c. + O(δ), (4.307)

which show that energy transfers take place between the two high number modes,
leading to the existence of a local energy transfer associated to a distant interaction.
In the asymptotic limit δ −→ 0, one can see that no energy is exchanged between
large and small scales: the low wave number mode acts only as a catalyst. But it
is important to note that small and larger wave number modes are coupled through
the distant interactions, even if no energy is exchanged between them, since distant
interactions can propagate low-wave number (i.e. large scale) anisotropy at small
scales.

The magnitude of the rate of energy exchange of a high wave number mode k
(k � 1) due to distant interactions can be evaluated as

ė(k)NL ∝ e(k)k
√

e(p) (distant interactions), (4.308)

where p is the energy-containing mode (i.e. the low wave number mode of the distant
triad), while, for the local interactions, one obtains

ė(k)NL ∝ e(k)k
√

e(k) (local interactions). (4.309)

These evaluations show that the distant interactions induce a much larger energy
transfer than the local ones, since the energy of the low-wave number mode in the
distant triad, e(p), is much higher than e(k). As a consequence, the effect of distant
interactions is important at large wave numbers. The relative importance of transfers
associated with distant triads with respect to those associated to local triads is an
increasing function of the ratio of the energy contained is the small and high wave
number modes.
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Direct numerical simulations have also shown that:

• The energy transfer from large to small scales (i.e. the kinetic energy cascade) is
local across the spectrum.

• For energetic scales (i.e. wave numbers located near the peak of the spectrum), the
kinetic energy transfer towards the smaller scales is mainly due to local interactions

• For small scales (i.e. high wave number located within the inertial range), the
energy transfer is governed by distant interactions involving one mode in the
energy containing range.

A finer analysis of numerical databases also reveals that all distant interactions
do not contribute in same way to the energy transfer towards smaller scales, i.e.
that distant triads do not redistribute kinetic energy in the same way among the
three interacting modes. To explain this and to provide a detailed analysis of all
possible transfers within a single distant triad, Waleffe developed a theory based on
the instability assumption (Waleffe 1992, 1993).

The first step in Waleffe’s analysis is to consider the stability of the system (4.295)–
(4.297) around its steady solutions. There are three steady solutions. Considering the
steady solution given by (the two others can be deduced by simple permutations)

∂ξs(k)

∂t
= A,

∂ξs ′(p)

∂t
= ∂ξs ′′(q)

∂t
= 0, (4.310)

one obtains

∂2ξs ′(p)

∂t2
= (s ′′q − sk)(sk − s ′ p)|K (sk, s ′p, s ′q)|2|A|2ξ∗

s ′(p) (4.311)

where the modulus of the complex parameters are defined as follows

|K (sk, s ′p, s ′q)|2 ≡ K (sk, s ′p, s ′q)K ∗(sk, s ′p, s ′q), |A|2 ≡ AA∗. (4.312)

The disturbance in ξ∗
s ′(p) will grow exponentially if (s ′′q − sk)(sk − s ′ p) > 0.

This happens if sk is intermediate between s ′′q and s ′ p, leading to a stability criterion
based on the intermediate mode. Now combining the energy detailed conservation
relation (4.299) and the trivial geometric relation

(s ′′q − sk) + (sk − s ′ p) + (s ′ p − s ′′q) = 0 (4.313)

one can see that the unstable mode is the mode whose coefficient Mss ′s ′′ has a sign
opposite to the two others, with the highest absolute value. From this observation it
follows that:

• The mode associated to the largest wave number can never be unstable.
• The mode associated with the smallest wave number is unstable if the two larger

wave number modes have opposite polarities (i.e. helicities of opposite sign).
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Fig. 4.20 Schematic view of
kinetic energy transfers
according to Waleffe’s
instability assumption
among modes within a single
triad. The two types of
interactions are represented.
Thick arrows denote the
energy transfers

• The mode associated to the intermediate wave number is unstable if it has the same
polarity as the mode asssociated to the largest wave number.

The instability assumption advocated by Waleffe is that the mode which releases
energy towards the two others within a single triad is the instable mode.

The combination of the two possible polarities for the three wave vectors leads
to the existence of eight possible triadic interactions, which can be grouped in two
classes according to the resulting kinetic energy transfer (see Fig. 4.20):

• The forward interactions (F-type in the parlance of Waleffe), for which the two
smallest wave numbers have opposite polarities. In this case, the above analysis
show that the energy is released by the smallest wave number (i.e. the largest
scale), leading to a forward energy cascade.

• The reverse interactions (R-type), for which the smallest wave vectors have the
same polarity. In this case, the intermediate mode can be the unstable one, leading
to a transfer of energy towards both a larger (backward energy cascade) and a
smaller scale (forward energy cascade).

Let us now focus on the distant interactions, which are of particular importance in
the large wave number mode dynamics. Let (k, p,q) be a distant triad with |q − p| <

k � p � q. The triad-related geometrical factor that appears in the definition of
Mss ′s ′′ scales like (sk + s ′ p + s ′′q). As a consequence, the energy transfer scales like
±k ± (p −q) for distant F-type interactions and like ±k ± (p +q) for distant R-type
interactions. Therefore, on the average, distant triads mostly induce energy transfers
of the R-type, yielding a local energy transfer between the largest wave vectors.

Among the four possible R-type triadic interactions, two contributes in the mean
to the backward energy cascade from the large wave number modes towards the
small wave number modes. The direction of the cascade associated with the two
others depends on the value of the ratio between the smallest and the intermediate
wave numbers.

On the average, within the inertial range, the net effect of the R-type interac-
tions is a backward energy transfer toward the small wave number modes, the direct
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energy cascade being due to F-type interactions. Consequently, the net energy trans-
fer within the inertial range is a direct energy cascade due to large local energy
transfer associated to distant interactions.

Even a more quantitative evaluation of the different energy fluxes were performed
in Waleffe (1992, 1993) using additional statistical assumptions about self-similarity,
or a statistical closure as EDQNM (or TFM, which is almost identical to EDQNM
for 3D Homogeneous Isotropic Turbulence). EDQNM allows to reach much higher
Reynolds numbers than DNS, and it may be more accurate in terms of spectral
discretization, avoiding errors of cancellation since it can be developed in terms of
helical modes too, separating the eight different kinds of triads in exact agreement
with detailed conservation of energy and helicity.

4.8.5 Further Discussions About the Instability Assumption

We now discuss some analogies that exists between the instability principle and other
problems.

As stated by Waleffe in his seminal paper (Waleffe 1992), the instability principle
presented in the previous section is formally similar to the problem of the instability
of a rigid body rotating around one of its principal axes of inertia. Let first note that
the system (4.295)–(4.297) can be recast in the following compact form

dξ

dt
= K (sk, s ′p, s ′′q)(Dξ∗) × ξ∗ (4.314)

where ξ = (ξs(k), ξs ′(p), ξs ′′(q))T and

D =
⎛
⎝

sk 0 0
0 s ′ p 0
0 0 s ′′q

⎞
⎠ . (4.315)

Detailed conservation laws of energy and helicity within the triad yield

d

dt
(ξ · ξ∗) = d

dt
(ξ · Dξ∗) = 0. (4.316)

Let us consider a solid body in rotation, with L and ω its angular momentum
and angular velocity vectors, respectively. The Euler equations which describe this
motion are

d L
dt

= L × ω. (4.317)

Now introducing the tensor of inertia of the solid, denoted I, one can write the
angular momentum as the product of I with the rotation vector Iω. The problem
(4.317) can be rewritten in the principal axes of the inertia matrix as follows
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˙I1ω1 = (I2 − I3)ω2ω3, (4.318)
˙I2ω2 = (I3 − I1)ω3ω1, (4.319)
˙I3ω3 = (I1 − I2)ω1ω2. (4.320)

Therefore, the first conservation law is for the rotational kinetic energy I1ω
2
1 +

I2ω
2
2 + I3ω

2
3 (equivalent to the triadic kinetic energy conservation law - (4.299)), and

the second one for the norm of the angular momentum (I1ω1)
2 + (I2ω2)

2 + (I3ω3)
2

(equivalent to triadic helicity conservation law - (4.301)). The systems (4.314) and
(4.317) are mathematically similar, D and ξ playing the role of I and L, respectively.
It is known that there exist three steady state solutions for the problem of the rotating
solid, which correspond to rotation around any one of the principal axes of inertia.
Rotation around the axis of middle inertia is unstable, while the two other cases are
stable solutions. This implies that the smallest wave number is unstable if the two
largest wave numbers have helicities of opposite sign, and that the medium wave
number is unstable otherwise. Therefore, it is seen that the analogy enable to recover
the results of the previous section. But it is worth to remark that components of D
can exhibit negative values.

The second point discussed by Waleffe is the link between the F-type interac-
tions and the elliptical instability. Let us first recall that the elliptical instability is
the three-dimensional instability of flows with locally elliptical streamlines. The
unstable modes are resonant inertial waves associated with the uniform background
rotation (see Sect. 7.5). These waves are helical modes of opposite polarities and
eigenfrequencies, say f + and f −. A detailed analysis (see Waleffe 1992 for techni-
cal details) show that the elliptical instability corresponds to a F-interaction: the two
modes with eigenfrequency f + and f − have opposite polarities and are coupled with
the mean flow, which is associated to a zero frequency. It can also be shown that there
exists a low-wave-number cutoff: the wave number of the perturbation must remain
higher than effective wave number of the elliptic background flow for the instability
to develop. Therefore, the elliptical instability originates in an interaction that leads
to the instability of the smallest wave number mode in a triad through interactions
with two larger wave number modes of opposite polarities.

4.8.6 Principle of Quasi-normal Closures

The previous equations for ûi , R̂i j and Sinj illustrate the infinite hierarchy of open
equations, which is usually formally written like

∂

∂t
u = uu,

∂

∂t
< uu >=< uuu >,

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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∂

∂t
< uuu >=< uuuu >,

· · · = · · ·

A common feature of triadic closures, from EDQNM (Orszag 1970) to the most
sophisticated Kraichnan’s theories, is a quasi-normal relationship. Any technique
which aims at expressing high order moments as products of low order ones is a
good candidate for closing the above mentioned infinite hierarchy of open equa-
tions. Instead of moments, cumulants directly express the difference of moments
with respect to their factorized expression in terms of lower order ones, so that clas-
sical closures rely on small estimates of cumulants. Historically, the assumption of
vanishing fourth-order cumulant for the turbulent velocity fluctuations, i.e.

< uaubucud > − < uaub >< ucud > − < uauc >< ubud >

− < uaud >< ubuc >= 0, (4.321)

was first proposed by Milionschikov (1941), then by Tatsumi (1957). In the above
equation, different superscripts are used to distinguish different velocity modes,
possibly in physical space with four different positions and for different components,
finally in Fourier space for mathematical convenience. The assumption of vanishing
fourth-order cumulant is usually referred to as the Quasi-Normal approximation
(QN), but not as Normal (or Gaussian) approximation since nothing is said about
third order cumulants (or third-order moments since there is no contribution from
< u >< uu >). Of course, an estimate for third-order moments is sought, so that
a pure Gaussian relationship, which removes them, is meaningless (except in some
Rapid Distortion limit, which will be addressed in a subsequent chapter). In addition,
a Quasi-Normal assumption can be supported mathematically and physically in the
weak turbulence theory of Wave-Turbulence, as illustrated by Benney and Newell
(1969) and Zakharov et al. (1992) (this approach will be revisited in Chap. 7).

Starting from the exact definition for Ti jn , the QN assumption yields:

δ(k + p + q)Ti jn = Pirs(k)

∫

−k+r+s=0
d3p × [< ûr (r)ûs(s) >< û j (p)ûn(q) >

+ < ûr (r)û j (p) >< ûs(s)ûn(q) >

+ < ûr (r)ûn(q) >< û j (p)ûs(s) >
]
. (4.322)

Using < ûr (r)ûs(s) >= R̂rs(s)δ(r + s), the contribution from the first term is
found to be zero since R̂rs(k = 0) = 0, so that

T QN
i jn (k, p) = Pir ks

[
R̂r j (p)R̂sn(q) + R̂rn(q)R̂s j (p)

]
(4.323)

or equivalently
T QN

i jn (k, p) = Pirs R̂r j (p)R̂sn(q). (4.324)

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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Finally, one obtains the following Quasi-Normal closure

[
∂

∂t
+ ν(k2 + p2 + q2)

]
Si jn(k, p) = T QN

i jn (k, p) + T QN
jni (p, q) + T QN

ni j (q, k).

(4.325)

Eventhough the Quasi-Normal closure was proposed a long time ago, the reso-
lution of the corresponding Lin equation requires significant numerical ressources.
First numerical solutions obtained in the early 1960s (Ogura 1963; O’Brien and
Francis 1963) exhibited an incorrect behaviour for long-time evolution. A negative
zone appeared at small k in the energy spectrum, because of a too strong energy
transfer from largest structures. This lack of realizability was shown to result from a
too high estimate of the right-hand-side of the equation given above. In order to cure
this problem, Orszag (1970) proposed to add an Eddy-Damping term (ED), so that

Ti jn(k, p, t) − T QN
i jn (k, p, t) = − η(k, t)Si jn(k, p, t)︸ ︷︷ ︸

Damping term

.

Similar relationships are obtained for other wave vector pairs by permuting the
wave vectors of the triad. The special form of the linear relationship between fourth-
order and third-order cumulants was partly suggested by the Kraichnan’s Direct
Interaction Approximation (DIA) theory. The left-hand-side represents the contri-
bution from fourth-order cumulants and the right-hand-side deals with third-order
cumulants. The Eddy Damping coefficient plays the role of an extra-dissipation, rein-
forcing the dissipative laminar effect, which is not sufficient to ensure realizability
in the primitive QN closure. Gathering the dissipative terms into a single one

μkpq = θ−1
kpq = ν(k2 + p2 + q2) + η(k, t) + η(p, t) + η(q, t), (4.326)

the EDQN counterpart of Eq. (4.325) is easily obtained from it replacing ν(k2 +
p2 + q2) by θ−1

kpq . The solution of the latter equation is found as

Si jn(k, p, t) = exp
(−μkpq(t − t0)

)
Si jn(k, p, t0)

+
∫ t

t0

exp

(
−
∫ t

t ′
μkpq(t

′′)dt ′′
)(

T QN
i jn (k, p, t ′) + ...

)
dt ′. (4.327)

Conventionaly, the last procedure called Markovianization yields neglecting the
intrinsic history of T QN

i jn , or equivalently the one of R̂i j , in the time integral. In

other words R̂ and T QN are considered as slowly varying quantities, so that one can
take t ′ = t in them, whereas the exponential term is considered as rapidly varying.
Ignoring the initial data for triple correlations, consistently with large t − t0, the
simplest EDQNM closure (in the absence of complex additional linear terms) is:
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Si jn(k, p, t) = θkpq

[
T QN

i jn (k, p, t) + T QN
jni (p, q, t) + T QN

ni j (q, k, t)
]
. (4.328)

The latter equation illustrates an instantaneous relationship between third and
second order correlations, but nonlocality in spectral space and triadic structure is
preserved.

The tensor τi j defined in Eq. (4.290) is then expressed as follows

τi j =
∫

θkpq Pjnm(k)
(

Pirs(k)R̂rn(p)R̂sm(q) + Pnrs(p)R̂rm(q)R̂si (k)

+Pmrs(q)R̂rm(k)R̂sn(p)
)

d3p (4.329)

in which the characteristic time θkpq is given by relation (4.326). Permuting p and q
in the last term, the simplified form

τi j = Pjnm(k)

∫
θkpq R̂sm(q)

(
Pirs(k)R̂rn(p) + 2Pnrs(p)R̂ri (k)

)
d3p (4.330)

is finally obtained.

4.8.7 EDQNM for Isotropic Turbulence. Final Equations
and Results

Three-dimensional isotropy yields dramatic simplifications, as

R̂r j (p) = E(p)Pr j (p)

in Eq. (4.324), and
T (E)(k) = τi i (k)

from (4.290). The transfer term T (E) is therefore found as

T (E)(k, t) =
∫∫∫

2kpθkpqE(q, t) (A(k, p, q)E(p, t) − B(k, p, q)E(k, t)) d3p

(4.331)
with

Pinm(k)Psm(q)Pirs(k)Prn(p) = k2 A(k, p, q)

and
2Pinm(k)Psm(q)Pnrs(p)Pri (k) = 2kpB(k, p, q).

Since kpB(k, p, q) + kq B(k, q, p) = k2 A(k, p, q), A(k, p, q) can be replaced
by B(k, p, q) in the above equation. In addition, it is simpler to express this unique
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coefficient in terms of the cosines of the internal angles of the triangle of sides k, p, q

x = cos α = p2 + q2 − k2

2pq
, y = cos β = q2 + k2 − p2

2qk
,

z = cos γ = k2 + p2 − q2

2kp
. (4.332)

Another relevant geometric term is Ckpq , which was already found in Eq. (4.286).
Since C2 B(k, p, q) = kp − q2z, B(k, p, q) = sin α sin β − z sin2 γ, = xy + z −

z(1 − z2) and finally
B(k, p, q) = xy + z3,

the simplified expression follows

T (E) =
∫∫∫

2kpθkpq(xy + z3)E(q, t) (E(p, t) − E(k, t)) d3p, (4.333)

It is now possible to use the integration variables p, q and λ as in Eq. (4.287).
Since the integrand depends only on k, p, q and not on λ, the λ-integral reduces to
a multiplication by 2π, so that

T (E) =
∫∫

�k

4π p3q2θkpq(xy + z3)E(q, t) (E(p, t) − E(k, t))
dpdq

pq
. (4.334)

A last equation is found reintroducing E(k) = 4πk2E(k) and T (k) = 4πk2T (E)(k)

as

T (k, t) =
∫∫

�k

θkpq(xy + z3)E(q, t)
(
E(p, t)pk2 − E(k, t)p3

) dpdq

pq
. (4.335)

This is the conventional form of isotropic EDQNM. Instead of deriving this equation
from (4.271), it is also possible to start from (4.274). The “byzantine use of projectors”
(Leaf Turner) is the classical way to calculate geometric coefficients, but the same
result can be obtained in terms of helical modes and related amplitudes.

Isotropic turbulence allows for dramatic simplifications for all statistical theories
or models, and therefore is one of the most interesting canonical flow of reference.
For instance, all classical two-point triadic closure theories have the same structure,
since they express T (k) as a nonlocal function of E(k).

Different versions of statistical theories only differ from the expression of the
damping factor η in (4.326), which add nonlinear readjustment of the response func-
tion.

As shown by Orszag Orszag (1970), the use of

η(k, t) ∼ k
√

k E(k, t)
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yields a satisfactory behaviour of E when solving numerically the Lin equation,
with the establishment of a Kolmogorov inertial zone. Another variant Pouquet et al.
(1975) is

η(k, t) = A

√∫ k

0
p2 E(p, t)dp, (4.336)

which amounts to choose η as the inverse of the Corrsin time-scale, the constant A
André and Lesieur (1977) being fixed by a given value of the Kolmogorov constant.

Results of the EDQNM model in pure decaying (unforced) HIT are presented
below.

4.8.7.1 Well Documented Experimental Data, Moderate Reynolds
number

Comparisons with Comte-Bellot and Corrsin (1966) experimental data by Vignon
and Cambon (1980), Cambon et al. (1981) illustrate the relevance of EDQNM at
moderate Reynolds number (see Fig. 4.21)). The experimental data are very com-
prehensive, with access to E(k, t) at different sections downstream the grid (the
downstream distance x − x0 divided by the mean advection velocity U is equiva-
lent to an elapsed time), the energy spectrum is calculated from its one-dimensional
counterpart assuming isotropy. In addition, the dissipation spectrum is derived, and
finally even the transfer term T (k, t) is captured, comparing measures at two close
sections for estimating �E/�t .

4.8.7.2 Transfer Term at Increasing Reynolds Number

Increasing the Reynolds number, a large inertial zone is easily constructed for the
energy spectrum, but somewhat surprisingly, the zone of zero transfer term is much
shorter, as shown in Fig. 4.22. Particularly, the flat zone of zero transfer appears
only for huge values of Reλ (typically Reλ ≥ 104), while a significant inertial zone
appears in the energy spectrum for 102 < Reλ < 103. This result is consistent with
experimental studies, in which the 4/5-Kolmogorov law for the third-order structure
function was recovered only at unexpectedly high Reλ. Therefore, it is seen that the
definition of the inertial range deserves more discussion. All wave numbers located
within the inertial range in the energy spectrum do not have a vanishing T (k), and
are therefore dynamically sensitive to production and/or dissipation. Modes which
are not directly sensitive to production and viscous effects, i.e. modes which are
governed by the sole triadic non-linear transfer terms, are modes with wave numbers
such that T (k) = 0. This dynamical definition is much more stringent than the one
based on the existence of a self-similar zone in the kinetic energy spectrum.

These observations that EDQNM can be used to obtain additional results about
statistics in physical space, as second and third order structure functions, using
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Fig. 4.21 Comparaisons of
EDQNM and experimental
data in decaying
homogeneous isotropic
turbulence. Top: turbulence
kinetic energy spectrum
E(k) at three different
locations/elapsed times
(reproduced from Park and
Mahesh 2007 with
permission of Elsevier).
Bottom: spectral energy
transfer function T (k) at
three different
locations/elapsed times
(from Cambon et al. 1981)

isotropic relationship, which is well documented in Mathieu and Scott (2000), since
many recent experiments focused on these statistics. However, it should be borne
in mind that E(k) and T (k) are very informative, since they allow to compute vari-
ous statistics, and they are accurately predicted by EDQNM at almost any Reynolds
number. In Fig. 4.22, the transfer term is multiplied by k, in order to preserve the
zero value of the integral when k is expressed in logarithmic scale, according to the
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Fig. 4.22 Typical spectra (top), nonlinear transfer and viscous dissipation (bottom) in isotropic
turbulence at Reλ = 30 (left) and Reλ = 105 (right). x and y scales are chosen arbitrarily. The
straight lines are related to the Kolmogorov −5/3 slope

relation
kT (k)d(Lnk) = T (k)dk.

For the sake of clarity, the enstrophy (or dissipation up to a factor 2ν) spectrum is
also multiplied by k. The positive part of the transfer and the dissipation spectrum are
observed to coincide only when the transfer function exhibits a significant plateau.

4.8.7.3 Towards an Infinite Reynolds Number

EDQNM calculations can be started with zero molecular viscosity, initializing the
Lin equation with a narrow-band energy spectrum. In this case, the inertial zone well
develops and extends towards larger and larger k. It is conjectured that the inertial
zone could reach an infinite wavenumber, say kmax = ∞, in a finite time, yielding a
finite dissipation rate at zero viscosity: this is sometime called the ‘energetic catastro-
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Fig. 4.23 Time evolution of
the kinetic energy spectrum
in the purely inviscid case
using classical EDQNM.
Courtesy of W. Bos and
J.P. Bertoglio

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104

E
(K

)

K

K4
K-5/3

K2

t=2.6
t=2.8
t=3.2
t=4.0

phe’ in the turbulence community. Unfortunately, this cannot be completely proven,
because, in practice, the Lin equation closed by EDQNM cannot be solved analyti-
cally, so that a numerical solution, with discretized k and finite kmax is needed. Nev-
ertheless, very large kmax , related to a constant logarithmic step �k/k = Constant ,
can be used, without possible counterpart in DNS. As a very classical behaviour,
at least in DNS, spectral energy tends to accumulate near the cut-off wave-number
kmax , so that a viscous term ought to be introduced in order to avoid an energy peak
at the highest wave-vector. The only advantage of EDQNM with respect to DNS in
this case is the huge value of kmax related with a huge (but not infinite) Reynolds
number, which can be reached with modest computational ressources.

Very recently, following a calculation of truncated inviscid Euler equations by
Brachet and coworkers (Cichowlas et al. 2005; Bos and Bertoglio 2006a) used the
conventional EDQNM model to study the accumulation of spectral energy at a given
(very high) kmax with zero viscosity. As a nice result, both a thermalized19 tail fol-
lowing a k2 law and a large inertial range with k−5/3 behavior arise, separated by a
sink, as shown in Fig. 4.23.

This sink induces a kind of conventional dissipative range —but at zero laminar
viscosity—, probably mediated by the non-local eddy viscosity (Kraichnan 1971,
1976; Lesieur and Schertzer 1978), and is even clearer in EDQNM than in inviscid
truncated DNS. Here, the smallest scales act as the molecular motion in real viscous
flows, giving a nice illustration of the turbulent eddy viscosity concept.

4.8.7.4 Recent Improvements

A recent improvement, which renders EDQNM closer to a self-consistent theory, con-
sists of evaluating the eddy damping μ(k, t) using an additional dynamical equation
for a velocity-displacement cross correlation Bos and Bertoglio (2006b). As shown
in Fig. 4.24, a realistic value of the Kolmogorov constant K0 ∼ 1.73 is derived,
without need to specify it a priori in the model for μ, as in Eq. (4.336) via A.

19Thermalized is used here by analogy with the random molecular motion in which the macroscopic
quantities such as temperature and pressure originate.
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Fig. 4.24 Compensated
spectrum E(k)ε−2/3k5/3 in
isotropic turbulence
computed using EDQNM
with self-consistent eddy
damping. The plateau
correspond to the value of
the Kolmogorov constant K0
(denoted CK in the figure).
Courtesy of W. Bos and J.P.
Bertoglio
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It is also interesting to calculate by the EDQNM procedure, not only the con-
tribution of triple correlations to the transfer term (a typical cubic moment at two
point), which also generates the third order structure function, but more complex
cubic statistics in three points, which are very difficult to obtain from experiments
or even from DNS/LES (very noisy terms). For instance, triple vorticity (not only
velocity) correlations at three-point (which is related to their detailed distribution in
terms of triads) can be calculated in a systematic way, only from the given energy
spectrum. Applications to the statistics of vorticity, with an answer from statistical
theory to the problem of cyclonic/anticyclonic asymmetry in rotating turbulence, is
presented in Chap. 7.

4.9 Pressure Field: Spectrum, Scales and Time Evolution

4.9.1 Physical Space Analysis

Statistical moments of the fluctuating pressure field p′ are tied to those of the fluc-
tuating velocity field u′. This topic has been extensively studied by the scientific
community, from seminal contributions by Batchelor (1951) and Heisenberg (1948)
to recent contributions, e.g. Lesieur et al. (1999), Donzis et al. (2012), Meldi and
Sagaut (2013b). Following Batchelor’s work, pressure fluctuations can be analyzed
by the use of the Poisson equation, which is obtained by taking the divergence of
Navier-Stokes equations for an incompressible flow. In incompressible isotropic tur-
bulence one obtains:

1

ρ
∇2 p′ = −∂ui

∂x j

∂u j

∂xi
= ∂2

∂xi∂x j
(ui u j ) (4.337)

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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whose solution is

1

ρ
p′(x, t) = −

∫
∂2

∂yi∂y j

(
ui u j − ui u j

)
G(x, y)d3 y (4.338)

with G(x, y) = 1/4π|x − y| the Green function associated to the Laplacian oper-
ator in unbounded three-dimensional domains. The two-point single-time pressure
correlation Rpp(x, x′) = p′(x, t)p′(x′, t) is obtained in a straightforward way:

1

ρ2 Rpp(x, x′) =
∫∫ (

∂4ui u j u′
l u

′
m

∂yi ∂y j ∂y′
l∂y′

m
− ∂2ui u j

∂yi ∂y j

∂2u′
l u

′
m

∂y′
l∂y′

m

)
G(x, y)G(x′, y′)d3 yd3 y′

(4.339)
where primed quantities are evaluated at position y′, which can be rewritten account-
ing for isotropy as

1

ρ2
Rpp(ξ) =

∫∫
∂4 Ri j,lm(r)

∂ri∂r j∂rl∂rm
G(x, y)G(x + ξ, y + r)d3 yd3r (4.340)

with

Ri j,lm(r) = ui ( y)u j ( y)ul( y + r)um( y + r) − ui ( y)u j ( y) ul( y + r)um( y + r),

where y′ = y+r . The fourth-order two-point correlations Ri j,lm(r) can be expressed
as a linear combination of products of second-order two-point correlations Ri j (r) =
ui ( y)u j ( y + r) thanks to the Quasi-Normal hypothesis (see Batchelor 1951), leading
to a closed expression. Using the isotropic expression of Ri j (r) in terms of the
longitudinal velocity correlation function f (r):

Ri j (r) = 2

3
K
([

f (r) + 1

2
r f ′(r)

]
δi j − 1

2
f ′(r)

rir j

r2

)
(4.341)

one obtains

Rpp (r, t) = 2
(
u′2)2
∫ +∞

r

(
y − r2

y

) [
f ′(y)
]2

dy. (4.342)

The pressure fluctuation variance is then computed as

1

ρ2
p′2 = Rpp(0, t) = 2

(
u′2)2
∫ +∞

0
y
[

f ′(y)
]2

dy. (4.343)

A similar relation was obtained by Heisenberg for the fluctuating pressure gradient
variance:

1

ρ2
(∇ p′)2 = −3

∂2 Rpp

∂r2

∣∣∣∣
r=0

= 12
(
u′2)2
∫ +∞

0

1

y

[
f ′(y)
]2

dy. (4.344)
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4.9.2 Fourier Space Analysis

Dual expressions can be obtained in Fourier space. Introducing the pressure spec-
trum E pp(k, t) which is defined as the Fourier transform of the pressure correlation
Rpp(r, t), one has

1

ρ2
p′2 =
∫ ∞

0
E pp(k, t)dk, (4.345)

1

ρ2
(∇ p′)2 =

∫ ∞

0
k2 E pp(k, t)dk. (4.346)

Thanks to the Poisson equation and the Quasi-Normal hypothesis, the pressure
spectrum can be written as a function of the energy spectrum:

E pp(k) = k2

4π

∫

p+q=k
E(p)E(q)

sin4 β

p4
dq (4.347)

where β is the angle facing k in the triangle formed by the three vectors k, p, q.
Heisenberg (1948) also derived an expression for the pressure gradient variance:

1

ρ2
(∇ p′)2 =

∫ ∞

0

∫ ∞

0
E(p, t)E(q, t)

sin4β

(p − q)2
dpdq. (4.348)

An integral lengthscale L p for pressure fluctuations is also defined as

L p = π

2p′2

∫ +∞

0

E pp(k)

k
dk. (4.349)

Some interesting comments should be done here. First, it is important to note that
the Quasi-Normal approximation yields physical results when deriving an expression
for the pressure correlations, while it is known to yield unphysical results when
closing equations for the energy spectrum. This may be at least partially understood
reminding that pressure is a non-local, integral quantity (according to the integral
solution of the Poisson equation) which is expected to be smoother than the velocity
field and therefore less sensitive to intermittency effects that a responsible for the
breakdown of Gaussianity. Second, the shape of the pressure spectrum at very large
scales is independent of the slope of the energy spectrum at these scales, i.e. it is
independent of the parameter σ. As a matter of fact, one can show that the infrared
pressure spectrum behaves as

E pp(k → 0, t) ∼ Ap(t)k
2, Ap(t) = 8

15

∫ ∞

0

E2(q, t)

q2
dq. (4.350)
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Fig. 4.25 Pressure spectrum E pp(k) (left) and compensated pressure spectrum ε−4/3k7/3 E pp(k)

(right) from EDQNM simulations. From Meldi and Sagaut (2013b) with permission of CUP

Third, at high Reynolds number, E pp(k) exhibits an inertial range at small scales,
with

E pp(k, t) = ε4/3k−7/3 kL p � 1 (inertial range). (4.351)

The existence of this −7/3 inertial range is supported by both theoretical analy-
sis, EDQNM results and a few numerical simulations and experiments. It is much
harder to observed than the −5/3 inertial range on the energy spectrum, since Finite
Reynolds Number effects are stronger on pressure fluctuations. They lead to the
existence of a strong bottleneck effect on E pp(k), which can mask the inertial range.
This can be understood reminding that pressure spectrum is related to two-points
fourth-order velocity correlations while the energy spectrum depends on two-points
second-order correlations. EDQNM results show that Reλ ≥ 104 is necessary to
observe a clean plateau on the compensated pressure spectrum associated to the
inertial range, as shown in Fig. 4.25.

4.9.3 Time Evolution in Freely Decaying Isotropic
Turbulence

Time evolution of pressure-related statistical quantities can be investigated in the
same ways as for the velocity-related statistical quantities. The Comte-Bellot–Corrsin
theory can be extended in a straigthforward way considering an idealized high-
Reynolds initial condition such that

E(k, t) =
{

C(t)kσ kL(t) ≤ 1

ε2/3k−5/3 kL(t) ≥ 1
, E pp(k, t) =

{
Ap(t)k2 kL(t) ≤ 1

ε4/3k−7/3 kL(t) ≥ 1
,

(4.352)
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Table 4.13 Analytical formulas for the prediction of the power-law exponents of the decay of the
main pressure-related statistical quantities given by the Comte-Bellot–Corrsin theory. σ denotes the
slope of E(k) at small wave numbers and p is the correction for breakdown of the Permanence of
Large Eddies hypothesis

p′2 (∇ p′)2 L p Ap

−4
(σ − p + 1)

(σ − p + 3)
−9(σ − p) + 15)

2(σ − p + 3)

2

(σ − p + 3)
3 − 7

(σ − p + 1)

(σ − p + 3)

where it is assumed that E(k) and E pp(k) have a peak at the same wavenumber,
as observed in DNS and LES by Lesieur et al. (1999). Main results dealing with
time exponents of pressure-related quantities are summarized in Table 4.13. These
predictions are in very good agreement with EDQNM results. Looking at predicted
exponents, one recovers the well known fact that pressure fluctuations decay much
faster than velocity fluctuations, since the decay exponent of p′2 is exactly twice that
of K(t). The same observation holds for gradients, since (∇ p′)2 decays 1.5 times
faster than ε.

4.10 Topological Analysis, Coherent Events and Related
Dynamics

As mentioned above, it has been known since the direct observations by Siggia
(1981) that coherent structures exist in isotropic turbulence.20 A typical instantaneous
snapshot obtained via a high-resolution 40963 DNS of isotropic turbulence at Reλ =
732 performed by Kaneda an colleagues is displayed in Fig. 4.26. Small elongated
worm-like vortices are observed, which are grouped in larger-scale coherent packets.
Large empty volumes are also observed, showing the spatial intermittent character
of vorticity.

These coherent structures may divided grouped into two classes: vortex tubes
(also referred to as worms or vortex filaments) and vortex sheets. The former are
identified as elongated, tubelike vortices mainly subjected to an axial strain, while
the latter are related to vorticity sheets that experience a plain strain.

The existence of these events raises several important questions for both the anal-
ysis of isotropic turbulence study and the general turbulence theory:

(i) How to define these events, or, more precisely, how to define them unequivo-
cally?

(ii) What is the dynamics of these events: how are they generated? What is their
life cycle ? Do they exhibit some universal features?

20While the observation of these structure is recent, it is worth noting that the idea that turbulent
dissipation can be tied to a random distribution of vortex tubes and vortex sheets goes back to
Townsend in 1951.
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Fig. 4.26 Instantaneous vorticity contours in high-resolution DNS of isotropic turbulence at Reλ =
732 at different zoom levels. The domain size (in Kolmogorov length units) is (59842 × 1496)η3

a Full-domain view; b Zoom of the central region with size (29922 × 1496)η3 of (a) bounded by
the white rectangular line; c New of the central region of (b) in a domain equal to 14963η3; d New
zoom of the central region of (c) in a (7482 × 1496)η3 volume. Courtesy of Y. Kaneda, Nagoya
University, Japan

(iii) What is their role in the isotropic turbulence dynamics? How are they related
to well known features such as the kinetic energy cascade, the turbulent kinetic
energy dissipation and the internal intermittency?

Recent results dealing with these issues will be surveyed below. But let us empha-
size here that, despite the impressive amount of efforts devoted to the analysis of
isotropic turbulence, a global complete theory for the coherent events it contains is
still lacking.
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4.10.1 Topological Analysis of Isotropic Turbulence

The topological analysis of isotropic turbulence first brings in the problem of defin-
ing the various coherent events. A huge amount of works has been devoted to this
problem. The proposed techniques can be divided roughly into the following two
classes.

The first approach consists in projecting the instantaneous turbulent field onto
objects (sometimes referred to as the ‘cartoons of turbulence’) whose definitions are
given analytically. It involves a local tuning the control parameters that appear in the
analytical model to obtain the best fit with the local turbulent field, leading to the
definition of a pattern tracking algorithm. A complete survey of analytical solutions
for an isolated viscous vortex has recently be performed by Rossi (2000). Two useful
analytical models, namely the Burger’s vortex and the Burger’s vortex sheet models,
are given below.

The Burgers’ vortex is a model for an axially stretched viscous vortex. Denoting
z the direction of the vortex axis, � its circulation, α the time-independent rate of
strain and ν the viscosity, the cylindrical velocity component are given by

uz = 2αz, ur = −αr, uθ = �

2πr

(
1 − e−ζ

)
, (4.353)

where ζ = r2/4δ2 and

δ2 = ν

α
+
(
δ2

0 − ν

α

)
e−αt (4.354)

with δ(0) = δ0 and t denotes the time. The axial vorticity is found to be equal to
(other component are identically zero):

ωz = �

πδ2
e−ζ . (4.355)

The induced kinetic energy dissipation field is

ε = 12να2 + ν�2

16π2δ4

(
e−ζ − 1 − e−ζ

ζ

)2

. (4.356)

An asymptotic equilibrium solution is found for large times, i.e. for δ2 = ν/α.
For this solution, diffusion and convection are balanced and the total dissipation is
found to be independent of the viscosity ν. It is worth noting that the dissipation is
negligible outside a circular area of order δ2, while its peak is proportional to ν�2/δ4.
The total rate of vortex-induced dissipation par unit length scales as ν�2/δ2.

The Burgers’ vortex sheet is defined as the superposition of a plane potential flow
and a plane shear layer. It corresponds to a diffusing vortex sheet with stretched
vortex lines. Let us consider the case in which the shear layer vorticity is along the z
axis and varies in the y direction. The Cartesian components of potential flow field
are given by
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u p = 0, vp = −αy, wp = αz. (4.357)

The vorticity field of the Burgers’ vortex sheet is given by

ωz = − 4√
π

�U

δ
e−y2/δ2

, (4.358)

where �U is the velocity jump across the shear layer and δ is defined as

δ2 = 2ν

α

(
1 − e−2αt

)
. (4.359)

The equilibrium solution corresponds to δ2 = 2ν/α.
Both Burgers’ vortex model and Burgers’ vortex sheet model have been observed

to compare favorably with local features of simulated turbulent field, and can there-
fore be used as theoretical models to describe turbulence dynamics.

Before discussing other definitions, let us first recall some results dealing with
the topological analysis of instantaneous incompressible isotropic turbulent fields.
Most analyses rely on the relation that exists between the vorticity vector and the
eigenvectors of the strain rate tensor S. Let us note êi (i = 1, 2, 3) the three eigen-
vectors of S and λ̂i the corresponding eigenvalues. In the following, the eigenvalues
are reordered so that λ̂1 ≥ λ̂2 ≥ λ̂3. The incompressibility constraint yields

λ̂1 + λ̂2 + λ̂3 = 0, (4.360)

meaning that there is at least one positive (λ̂1) and one negative (λ̂3) eigenvalue.
The intermediate eigenvalue λ̂2 can be either negative or positive. Both numerical
and experimental data show that the vorticity vector is preferentially aligned with ê2.
Lund and Rogers (1994) defined the following non-dimensional parameter

λ̂∗ = − 3
√

6λ̂1λ̂2λ̂3(
λ̂2

1λ̂
2
2λ̂

2
3

)3/2 , (4.361)

which has the remarquable property that it ranges from −1 to 1 and that its p.d.f.
is uniform for a Gaussian random velocity field. This parameter is a measure of
the local deformations caused by the strain-rate tensor. Axisymmetric extension and
axisymmetric contraction occur when λ̂∗ = 1 and λ̂∗ = −1, respectively, while
plane shear corresponds to λ̂∗ = 0. Lund and Rogers observed in DNS data that the
most probable case in isotropic turbulence is axisymmetric extension, and that this
state is well correlated with region of high dissipation.

The preferential alignement of ω with ê2 is a pure kinematic effect. Jimenez
Jimenez (1992) showed that in the vicinity of a vortex whose maximum vorticity is
large with respect to that in the background flow the vorticity is automatically aligned
with the intermediate eigenvector. It can also be shown Horiuti 2001, Andreotti 1997,
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Nomura and Post 1998 that this alignement is the result of the crossover of the
eigenvalues at a certain distance from the vortex center in Burgers analytical vortex
model.21

The second approach for finding reliable definitions of coherent events relies on
the local analysis of the velocity gradient tensor ∇u = S + W, intuition telling us
that a vortex will be a region where the vortical part dominates over the irrotational
part of the strain.

The first general, Galilean-invariant three-dimensional vortex criterion was pro-
posed by Hunt and coworkers (Hunt et al. 1988). This criterion, referred to as the
Q-criterion, defines a vortex as a spatial region where the second invariant of the
velocity gradient tensor is positive:

Q = 1

2

(|W|2 − |S|2) = −1

2
tr
(
S2 + W2)

> 0, (4.364)

where |W| and |S| are Euclidian norms. The Q-criterion can be related to the pressure
field, since Q has the same sign as the Laplacian of the pressure field. Using this
criterion is equivalent to say that vortices are regions where ∇2 p < 0. It is worth
noting that, in two-dimensional flows, this criterion is equivalent to the Okubo-
Weiss criterion derived independently by Okubo in 1970 and Weiss in 1991. Tanaka
and Kida (1993) observed that the criterion given by Eq. (4.364) does not allow to
distinguish between vortex tube cores and curved vortex sheets (discussed below).
To isolate vortex tube cores, they used the threshold |W|2 > 2|S|2.

Another three-dimensional criterion is the � − cri terion (Chong et al. 1990).
Here, a vortex is a region where

� =
(

Q

3

)2

+
(

det(∇u)

2

)2

> 0. (4.365)

The swirling length criterion defined by Zhou and coworkers (Zhou et al. 1999)
is an extension of the � − cri terion. It relies on the observation that in regions
where the tensor ∇u has two complex conjugate eigenvalues λ̃cr ± i λ̃ci and a real
eigenvalue λ̃c, λ̃ci and λ̃r can be interpreted has a measure of the local swirling rate
inside the vortex (in the plane defined by the eigenvectors associated with the complex
eigenvalues) and a local stretching/compression strength along the last eigenvector.
A vortex tube is defined as a region satisfying the � − cri terion and in which λ̃ci

is above an arbitrary threshold.

21This can be directly seen looking at the analytical expressions of the eigenvalues obtained for the
Burgers vortex:

λ̂± = α

2

(
−1 ± Re�

(
4ν

αr2

(
1 − e−αr2/4ν

)
− e−αr2/4ν

))
, (4.362)

λ̂z = α, (4.363)

where Re� = �/4πν is the circulation-based Reynolds number. If Re� is high enough, the crossover
between λ̂+ and λ̂z occurs, i.e. there exists a region with λ̂+ ≥ λ̂z .
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This idea of using the local frame associated with the eigenvectors of the velocity
gradient tensor was further developed by Chakraborty and coworkers (Chakraborty
et al. 2005), who proposed the enhanced swirling strength criterion. Following this
criterion, a vortex is region where

λ̃ci ≥ ε and − δ′ ≤ λ̃cr

λ̃ci

≤ δ, (4.366)

where ε, δ and δ′ are positive threshold values.
Another popular criterion, referred to as the λ2 − cri terion, was proposed by

Jeong and Hussain (1995). According to this criterion, a vortex is defined as a region
where the intermediate eigenvalue (noted λ2 if the eigenvalues are reordered in
decreasing order) of the symmetric matrix S2 + W2 is negative:

λ2 < 0. (4.367)

A more recent criterion was proposed by Horiuti (2001), which can be seen as an
improvement of the λ2 criterion. The three eigenvalues of the tensor S2 + W2 are
renamed as λz , λ+ and λ−, where λz corresponds to the eigenvector which is the
most aligned with the vorticity vector, and λ+ and λ− are the largest and smallest
remaining eigenvalues, respectively. Using these definitions, Horiuti defines a vortex
as region where

0 > λ+ ≥ λ−. (4.368)

This criterion isolates vorticity-dominated region similar to a core region of a
Burgers’ vortex tube.

While these criterion perform similarly well in simple flows, their use in turbulent
shear flows and flows submitted to strong rotation is more problematic, since there
are not always able to separate the mean flow contribution from the turbulent one.

The case of vorticity sheets seems to be more difficult to handle and received less
attention than the vortex case. A reason for that is certainly that these structures are
more disorganized and less stable than vortex tubes. Therefore, their observation is
more difficult. Another difficulty is that the category of vortex sheets encompasses
different objects. Horiuti (2001) makes the distinction between flat sheets similar
to Burgers’ vortex layer and curved sheets that exist in the circumference of the
core region of a vortex tube. These two kinds of vorticity sheets may have different
dynamical features, since both vorticity and strain are dominant in flat sheets, while
strain is predominant is curved sheets. The flat sheets are also referred to as strong
vortex layer by Tanaka and Kida (1993), who defined them as regions where both
vorticity and strain rate take large comparable values.22 The criterion used by Tanaka
and Kida is

1

2
<

|W|2
|S|2 <

4

3
. (4.369)

22These authors also define a strong vortex tube as a region with large vorticity and small strain
rate.
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Based on the same reordering of the eigenvalues of the symmetric tensor S2 +W2

as for the vortex tube definition given in Eq. (4.368), Horiuti (2001) defines curved
sheets as regions where

λ+ ≥ λ− > 0, (4.370)

whereas flat sheet definition is
λ+ ≥ 0 ≥ λ−. (4.371)

This definition is observed to educe vortex sheets, but also vortex tube cores in
some cases. To get a more accurate definition, Horiuti and Takagi (2005) propose
a new definition based on the eigendecomposition of the symmetric second-order
velocity gradient tensor SW+WS. Denoting λs

z , λs+ and λs− the eigenvalue associated
with the eigenvector which is maximally aligned with the vorticity vector, the largest
and the smallest remaining eigenvalue, respectively, it is observed that vortex sheets
can be educed using the criterion

λs
+ > ε, (4.372)

where ε is an arbitrary positive threshold. The vortex sheet normal vector is accurately
computed as ∇λs+.

4.10.2 Vortex Tube: Statistical Properties and Dynamics

Vortex tube-like structures have been extensively analyzed using both Direct Numeri-
cal Simulations and laboratory experiments Jimenez et al. (1993). Probability density
functions of vortex tube main features are displayed in Figs. 4.27, 4.28, 4.29 and 4.30.
These data were obtained by Jimenez and Wray from Direct Numerical Simulations
Jimenez and Wray (1998) of isotropic turbulence for Taylor-scale-based Reynolds
numbers Reλ ranging from 37 to 168 using a vortex-tracking method which relies
on the projection of the instantaneous field onto the Burgers’ vortex model. It is
worth noting that while the normalized peak values are Reynolds-number indepen-
dent (showing that the vortex tubes exhibit some universal features), the p.d.f. tails
is sometimes observed to be sensitive to the Reynolds number (showing that some
extreme events do not hae the same dependency with respect to the Reynolds number
as the ’mean’ vortex tubes).

The main conclusions of Jimenez and coworkers are the following:

• The equilibrium Burgers’ vortex model is adequate to describe vortex tubes found
in isotropic turbulence, as shown by the peak in the pdf displayed in Fig. 4.28.
This point is also supported by results dealing with joint p.d.f.s of stretching and
radius and of radius and azimuthal velocity.

• The radius of a vortex tube scales like the Kolmogorov scale η, a typical value
being R � 4 − 4.2η.
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Fig. 4.27 P.d.f. of the radius R of the vortex tube normalized with the Kolmogorov scale η. Different
lines and symbols are related to different values of the Reynolds number. From Jimenez and Wray
(1998) with permission of CUP
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Fig. 4.28 P.d.f. of the radius R of the vortex tube normalized with the local equilibrium Burgers’
radius Rb. Burgers’ radius is defined as Rb = 2

√
ν/α, where ν is the viscosity and α the local

axial stretching. Different lines and symbols are related to different values of the Reynolds number.
From Jimenez and Wray (1998) with permission of CUP
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Fig. 4.29 P.d.f. normalized maximum axial vorticity of the vortex tube. Different lines and symbols
are related to different values of the Reynolds number. From Jimenez and Wray (1998) with
permission of CUP
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Fig. 4.30 P.d.f. maximum azimuthal velocity u0 of the vortex tube. Assuming that the vorticity
profile is Gaussian, one has u0 = 0.319Rω0. Different lines and symbols are related to different
values of the Reynolds number. From Jimenez and Wray (1998) with permission of CUP
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• The mean stretching experienced by the vortex tubes scales with ω′ independently
of Reλ. The statistics of the stretching along the vortex tube axis are the same as
in the background turbulent flow, showing that the later is responsible for the main
part of vortex stretching.
The maximum of the axial strain felt by the vortices scales like O(ω′ Re1/2

λ ). Since
it is Reynolds number-dependent, it is believed to be due to self-stretching.23

• The maximum vorticity in the vortex tube core scales like O(ω′ Re1/2
λ ). This is

in agreement with the idea that vortex tube are more intense at higher Reynolds
number.

• The azimuthal velocity, or equivalently the azimuthal velocity increment �u across
the vortex tube diameter scales with the turbulent intensity u′. Since u′ is associated
with large-scale energy containing scales, this scaling law is inconsistent with
Kolmogorov scaling, which states that the velocity increment across distances of
O(η) should be O(u′ Re−1/2

λ ). A Reλ-independent upper bound for the azimuthal
velocity is approximately 2.5u′, this limit being reached by vortex tubes with the
smallest radii. A rationale for that is given below.

• The circulation-based Reynolds number of the vortices observed in Jimenez and
Wray (1998) is about 20Re1/2

λ .
• The vortex tube length, defined in terms of the autocorrelation of some vortex tube

property φ as

Lφ =
∫ s0

0

φ(s ′ + s)φ(s ′)
φ2(s ′)

ds, (4.373)

where s0 denotes the point where the autocorrelation first vanishes, depends on
the quantity φ. Results show that two groups must be distinguished. The lengths
based on vortex radius and axial vorticity are O(ηRe1/2

λ ), i.e. scale with the
Taylor microscale λ, while the one based on the axial stretching varies like the
Kolmogorov scale η.
The fact that the correlation length of axial stretching is of the order of the vortex
tube diameter (i.e. of the Kolmogorov scale, which is also the correlation length of
the velocity gradient in the whole flow) shows that the main stretching experienced
by the vortex tubes originates in the background flow.
The existence of the second scale λ can be understood as follows. Let us consider
a vortex tube of length l � λ. The line integral of the vorticity stretching is given
by ∫ l

0
t.Stdl

︸ ︷︷ ︸
O(ω′ L)

= u · t‖l
0 −
∫ l

0

u · n
R dl

︸ ︷︷ ︸
O(Lu′R−1)

, (4.374)

where n, t , u, S and R are the unit normal vector and tangent vector, the velocity
vector, and the local radius of curvature. To enforce homogeneity between the
left and right hand side of Eq. (4.374), one must have R = O(u′/ω′) = O(λ).

23Another possible physical process for this scaling law, the interactions between vortex tubes, is
shown to be much weaker than self-stretching.
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The physical consequence is that vortex tube must be geometrically complex over
length larger than the Taylor microscale.
A higher upper bound for the vortex length is found using a vortex tube-tracking
algorithm: the length of the most intense tubes is of the order of the velocity integral
scale defined as Lε, where ε is the dissipation. The difference between the tube
length and the axial length of the vortex properties (radius, ...) can be explained
by the existence of axial Kelvin waves driven by the pressure fluctuation along the
vortex axis.

• The total volume fraction filled by the vortex tubes decreases as Re−2
λ , correspond-

ing to a total length which increases as Reλ, leading to a increasing intermittency.

The fact that this upper bound depends on large-scale scale quantities only while
the maximum vorticity depends on Re1/2

λ is not consistent by the classical dynamical
scheme of a stretched vortex with fixed circulation. A possible explanation, based on
the stability analysis of a columnar vortex, is that there exists a natural limit beyond
which a vortex tube of finite length cannot be stretched without becoming unstable.
This instability induces axial currents which counteract the external stretching. This
mechanism, studied in the case of the Burgers’ vortex by Jimenez and coworkers,
limits the maximum azimuthal velocity to be of the same order as the straining
velocity differences applied along the vortex axes. The straining field being induced
by the background turbulent flow, one recovers a O(u′)upper limit. As a consequence,
the vorticity can be amplified by the stretching while in the same time the maximum
azimuthal velocity remains bounded. This implies that the length of the vortex tube
with a azimuthal velocity close to u′ must be large enough to have an edge-to-edge
velocity difference of that order, i.e. it must be of the order of the velocity integral
scale Lε, in agreement with the numerical data.

The dynamics of vortex tubes formation is another fundamental issue. A first point
is that the vortex tubes are part of the O(ω′) background vorticity, and therefore must
be seen as particular extreme cases of a more general population of weaker vortical
structures. The latter have been observed in numerical simulation to originate in the
roll-up of vortex sheets due to Kelvin-Helmholtz-type instabilities. In the absence of
a mean flow gradient, vortex tubes are created by straining of the weaker vorticity
structures. Dimensional analysis shows the large-scale strain u′/Lε yield the creation
of Burgers’ vortices with an equilibrium radius of the order of the Taylor microscale
λ, while the small-scale strain, which is equal to the inverse of the Kolmogorov
timescale and to the r.m.s. vorticity ω′ = √

ε/ν, generates Burgers’ vortices with a
radius of the order of the Kolmogorov length η. One can the see that the classical
dynamical picture, which is in agreement with the Kolmogorov scaling. The existence
of high-intensity vortex tubes which escape the Kolmogorov scaling is discussed in
the next section.

The creation of vortex tubes with a length of the order of the integral scale can not
be explained by the usual vortex stretching mechanism. Jimenez made the hypothesis
that they originate in the connection of shorter precursors. It has also been shown
Verzicco et al. 1995, Jimenez and Wray 1998 that infinitely-long vortices can be
maintained by axially inhomogeneous locally compressive strains. Since similar axial
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fluctuations of the vorticity have been observed in vortex tubes, this mechanism may
explain that these very long vortex tubes are sustained in isotropic turbulence over
long times.

4.10.3 Bridging with Turbulence Dynamics and
Intermittency

The internal Reynolds number of the vortex tubes being of order O(Re1/2
λ ), these

vortices can be unstable at high Reynolds number. The numerical data suggest that
the maximum strain felt by the vortices, which scales like O(ω′ Re1/2

λ ), originates in
the first sage of this instability process which leads to vortex tube deformation and
the creation of small pinched segments whose length is of the order of the diameter
of the parent vortex.

This vortex instability lead Jimenez and coworkers to suggest the existence of
a coherent �u cascade. According to that theory, the vortex instability yields the
existence of a hierarchy of coherent stretched vortices, the circulation being preserved
while the upper bound �u ∼ O(u′) holds at each level. Using the Burgers’ vortex
as a model, two consecutive levels n an n − 1 are related by

αn ∼ u′

Rn−1
, ln ∼ Rn−1, Rn ∼

√
ν

αn
∼
√

νRn−1

u′ , (4.375)

where ln , Rn and αn denote the length, radius and axial strain of the vortex tubes
at the nth level of the coherent cascade. The limit of the cascade is obtained as the
asymptote n −→ ∞:

α∞ ∼ u′2

ν
∼ ω′ Reλ, l∞ ∼ R∞ ∼ ν

u′ ∼ ηRe−1/2
λ . (4.376)

The limit value of the circulation-based Reynolds number is 1. An interesting
feature of the preceding physical scheme is that it involves scales smaller than the
Kolmogorov scale η. Since they originate in vortex tube instabilities, the structures at
a given level of the cascade are not space-filling but are concentrated in small volumes,
leading to a natural interpretation of the internal intermittency of turbulence at small
scales.

It is also worth noting that strong vortex tubes with �u = O(u′) must be subject
to a more complex instability mechanisms, which will be compatible with the fact
that the circulation � is invariant and that the velocity increment �u ∼ �/R is upper-
bounded. A possible mechanism (compatible with both numerical and experimental
observations) is that when a vortex is so strained that its azimuthal velocity would
become higher than the driving axial velocity difference, vorticity is expelled into a
cylindrical vorticity sheet. The thickness of this sheet is equal to the Burgers’ length
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Fig. 4.31 Schematic
representation of the two
turbulent cascade
mechanisms. Adapted from
Jimenez and Wray (1998)

of the driving strain. It is unstable, and Kelvin–Helmholtz type instabilities will to
its breakup and the formation of longitudinal vortices whose circulation and radius
will be such that the global circulation is equal to that of the parent vortex.

The full global dynamical scheme proposed by Jimenez and coworkers consists
of two different cascade mechanisms (see Fig. 4.31):

• the incoherent cascade associated to space-filling structures such that �u/R < ω′
(i.e. incoherent structures) that fulfill the Kolmogorov scaling �u = O(R1/3). The
key physical mechanism is at play here is the stretching of non-coherent structures
by the background vorticity.

• the coherent �ucascade described above, which is associated with vortex tubes
that are not space-filling. The governing physical mechanism is the dynamic
response of the vortex tubes to the stretching they experience.

The global physical picture is the following. Large-scale uncoherent vortical struc-
tures24 are stretched by the background vorticity, leading to the existence of smaller
structures and the kinetic energy cascade. Once the cumulated stretching is strong
enough, coherent vortex tubes arise, with typical radius ranging from the Taylor
micro scale to the Kolmogorov scale. Each coherent vortex tube is then subject to
the coherent �u cascade mechanism, leading to the generation of a hierarchy of
thinner and thinner tubes. The dynamical scheme described above do not account for
possible interactions between vortex hierarchies generated by the coherent cascades.
Some exchanges are a priori possible, via phenomena such as vortex connection or
imperfect braiding.

Numerical data reveal that the O(ω′) background vorticity is concentrated in
large-scale vortex sheets which separate the energy-containing eddies at the integral
scales. This background vorticity is observed to be responsible for almost 80% of

24Uncoherent structures are defined here as structures with a characteristic vorticity weaker than
the background vorticity ω′.
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the total turbulent dissipation in existing numerical simulations, while it fills only
25 % of the total volume of the flow.

The vortex tube are not responsible for the global dynamics of the flow, and play
almost no role in global physical mechanisms like the kinetic energy cascade in the
inertial range or the turbulent dissipation. This point will be further discussed in
Sect. 4.11. Previous scaling laws show that their total energy scales like O(Re−2

λ ),
while they induced a kinetic energy dissipation which decreases like O(Re−1

λ ). They
are possibly responsible for the intermittency observed on higher-order statistics and
for extreme values found in the tails of p.d.fs of many turbulent quantities. It is
to be noted that no satisfactory link between coherent event dynamics and inertial
range intermittency has been established up to now. Vortex tubes are certainly a
source of intermittency, but mostly at small scales. The trend of vortex tubes to
form large-scale clusters reported by Moisy and Jimenez (2004) might be a source
for large-scale intermittency, but no definitive evidence is available at present time.
Other mechanisms, like the persisting long-range coupling between large and small
scales, may also contribute to the inertial range intermittency.

4.11 Non-linear Dynamics in the Physical Space

4.11.1 On Vortices, Scales, Wave Numbers and Wave
Vectors - What are the Small Scales?

The analysis of isotropic turbulence dynamics, as done in this chapter, is usually
carried out concurrently in both Fourier and physical space, a very difficult issue
being to bridge between these two different approaches.

It is important to emphasize here that several shortcomings are usually done,
which are misleading. The Fourier analysis is based on the use of wave vectors,
which are not equivalent to scales, since a wave vector also carry an information
dealing with orientation. The associated wave number, defined as a Euclidian norm
of the wave vector, has the dimension of the inverse of a length. A large part of the
information is now lost, such as the mode polarity in the helical mode decomposition
denoted by the parameter s in Eq. (2.104).

Another problem is to switch from the scale concept to classical objects of fluid
dynamics like vortices. Small scales are very often understood as ’small vortices’,
which is wrong. The two reasons for that are:

(i) Neither the Fourier analysis, which introduces the wave vectors, nor the scale-
dependent analysis in the physical space (based on structure functions, scale-
dependent increments, ...) involve the concept of coherent events such as a
vortex. It is worth noting that none of the recent definitions of a vortex or a
vortex sheets (see Sect. 4.10.1) is based on the scale concept.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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(ii) Modes in the Fourier space are non-local in space, while the very concept of
vortex is intrinsically local in the physical space since it is associated to a given
object.

(iii) As seen in Sect. 4.10.2, three-dimensional vortices (as defined according one
the available definitions) can not be defined using a single lengthscale. This is
obviously the case of vortex tubes, whose axial length is much higher than their
typical diameter.

Therefore, one must be very cautious when ’translating’ or ‘extrapolating’ results
coming from Fourier analysis in the physical space (and vice versa).

What definition of small scales can be used in the physical space ? Such a definition
should rely on the flow dynamics. It is commonly agreed that most of the kinetic
energy dissipation ε occurs at modes with high wave numbers25 since it is equal to

ε = 2ν

∫ +∞

0
k2 E(k)dk (4.377)

and that scales dominated by viscous effects are the small scales. Since the r.h.s. of
Eq. (4.377) is proportional to the square of the L2 norm of the velocity gradient ∇u,
one can see that small scales of turbulence in the physical space should be defined
as scales associated to large gradients of the velocity field. On the opposite, large
scales in the physical space are the ones which carry most of the turbulent kinetic
energy. Since

K =
∫ +∞

0
E(k)dk (4.378)

and that E(k) ≥ 0,∀k, one can see that modes with dominant contributions to K
and ε are not the same, the latter having larger wave numbers than the former at high
Reynolds number. In this sense, one can establish a link between wave numbers and
scales in the physical space.

Let us conclude this section by emphasizing that velocity gradients, from which
one can define the small scales in the physical space, include both symmetric and
anti-symmetric parts, i.e. both turbulent strain S and vorticity ω.

It is worthy noting that the true exact local expression for the dissipation in the
physical space is ε = 2νSi j Si j , i.e. dissipation is a function of strain, not vorticity.
Introducing the vorticity, one obtains

ε(x, t) ≡ 2νSi j Si j = νωiωi + ν
∂2

∂xi∂x j
(ui u j ), (4.379)

showing that, in unbounded or periodic domain, the following usual volume or sta-
tistical averaged relations hold:

25High is to be understood as a relative notion, the reference being the wave numbers at which
turbulent kinetic energy is injected/created by external forcing or hydrodynamic instabilities.
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ε ≡ 2νSi j Si j = νωiωi . (4.380)

Therefore, mean dissipation can be tied to the mean enstrophy through a purely
kinematic relation in isotropic turbulence. But such a relation is meaningless from a
local point of view, leading to the conclusion that the strain field is the right quantity
to describe the dissipation process.

4.11.2 Is There an Energy Cascade in the Physical Space?

While the kinetic energy energy cascade is a well-established result in the Fourier
space and in ensemble-averaged sense, its ‘translation’ in the physical space is not
straightforward. The Navier–Stokes equations just tell us that momentum and kinetic
energy are transported in the physical space, the global kinetic energy being invariant
in a fully periodic domain in the absence of viscous effects and external forcing. Exact
equivalences between terms appearing in Fourier and physical space formulations
are only global, non-local expressions, which do not make it possible to have a direct
access to single-wave-vector-related informations in the physical space. Therefore,
the energy cascade concept is not relevant in the physical space from a rigorous
viewpoint. It is directly related to the projection of the Navier–Stokes equations
onto basis functions which intrinsically bear the information related to the scale
dependency (such as Fourier, but also wavelets, hp bases in finite-element methods...).
This point was emphasized a long time ago by von Neumann and Onsager in 1949.

A very common picture deals with the kinetic energy cascade being the results of a
hierarchy of vortex breakdown phenomena, each vortex generating smaller vortices.
This phenomenological picture, very often presented as the Richardson cascade, is
wrong: experimental and numerical results show that vortices observed in isotropic
turbulence do not behave this way, and that the transfer of kinetic energy does not
originate in the instability of the vortices. As emphasized by Tsinober (2001) this
flawed physical picture originates in a too rapid reading of the famous sentence
written by Richardson in 1922 “We thus realize that: big whirls have little whirls
that feed on their velocity, and little whirls have lesser whirls and so on to viscosity
- in the molecular sense”. It is to be noticed that Richardson never made further use
this picture, and that the term cascade was coined by Onsager two decades latter in
the 1940s.

Therefore, the question arise of the existence of a mechanism in the physical
space which can be interpreted as the counterpart of the turbulent kinetic energy
cascade in the Fourier space. In the physical space, one observes that the injection of
turbulent kinetic energy at a given scale yields the generation of velocity gradients
and turbulent kinetic energy dissipation. Using the definition given above for the
small scales in the physical, one can see that the turbulent kinetic cascade in the
Fourier space must be replaced by the generation of velocity gradients (i.e. both
vorticity and strain) in the physical space.
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Fig. 4.32 Unphysical simplified view of the turbulent kinetic cascade in the physical space (left) and
true structure of the instantaneous vorticity field computed via high-resolution numerical simulation
(right). It is seen that the simplified picture based on hierarchical break up process has no physical
ground. Right picture reproduced with courtesy of LCSE

It is also important noting that some over-simplified pictures of the cascade which
illustrates this process as a hierarchical breakup of structures in smaller ones in the
physical space is misleading (see Fig. 4.32). A much more realistic picture is gained
looking at the true topology of the turbulent field, revealing that the basic mechanisms
are vorticity stretching, vortex sheet folding/rolling up, vortical blobs reconnection …

4.11.3 Self-amplification of Velocity Gradients

In agreement with the definition of the small scales in physical space given above and
the observation that the kinetic energy cascade picture does not hold in the physical
space, the dynamics of turbulence should be investigated looking at the dynamics
of velocity gradients. Therefore, strain and vorticity fields should be privileged to
describe turbulence dynamics. Another reason is that they are much more sensitive
to internal intermittency that velocity and kinetic energy. Historically, Taylor pointed
out the importance of vorticity in 1937, while the role of strain was emphasized by
Kolmorogov in 1941. These two quantities must be considered in parallel, since they
are weakly correlated in isotropic turbulence and that they are tied by a strongly
non-local relation.
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Starting from Eqs. (2.39)–(2.40) and restricting the analysis to isotropic turbu-
lence, the evolution of mean enstrophy and mean total strain are governed by the
following equations:

1

2

∂ω2

∂t
= ωiω j Si j + νωi∇2ωi , (4.381)

1

2

∂S2

∂t
= −Sik Sk j Si j − 1

4
ωiω j Si j + νSi j∇2Si j . (4.382)

Two of the most distinctive features of three-dimensional turbulence are:

(i) Enstrophy production via vortex stretching is positive in the mean

ωiω j Si j > 0, (4.383)

as hypothesized by Taylor in 1938. Using Lin’s equation (4.38) for the evolution
of E(k), it is seen that this term is exactly equal to

∫∞
0 k2T (k)dk.

Numerical simulations show that this term is by two order of magnitude larger
than other terms that appear in the r.h.s. of Eq. (4.381). It is important to note
that this term happens to take negative values locally. The positive mean value
comes from the fact that its p.d.f. is strongly positively skewed. More details
about the entrophy production will be given later on in this section, but let us
emphasize here that the positivity on the mean of enstrophy production can not
be explained considering vortex lines as material lines. This is a misconception,
since material line and vorticity line have very different behavior, due to the fact
that vorticity is not a passive scalar (it reacts back on the velocity field). These
discrepancies are exhaustively discussed in Tsinober (2001).

(ii) Total strain production is positive in the mean. Using the non-local kinematic
equality

ωiω j Si j = −4

3
Sik Sk j Si j , (4.384)

one observes that the characteristic feature of turbulence is that

− Sik Sk j Si j > 0. (4.385)

This term is observed to be larger by two order of magnitude than the viscous
term in the balance equation for S2.

A few important observations can be drawn from Eqs. (4.381) and (4.382):

(i) Enstrophy production results from the interaction of vorticity with the strain
field, while the production of total strain mainly comes from self-amplification
of the strain field. This is illustrated in Fig. 4.33.

(ii) In regions where ωiω j Si j > 0 the production of total strain is decreased since
the two terms have opposite sign (see Eq. (4.384)), i.e. vortex stretching tends

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 4.33 Schematic view of
the velocity gradients
self-amplification process in
isotropic turbulence

to suppress production of strain, at least in a direct way. On the opposite, vor-
tex compression (i.e. regions where ωiω j Si j < 0) aids the production of total
strain. Now identifying the dissipation and its production as the counterpart of
the kinetic energy cascade in the physical space, one arrives at the conclusion
that turbulence dynamics in the physical space is associated with predominant
production of the rate of strain via strain self-amplification and vortex com-
pression rather than with vortex stretching. The latter is observed to resist the
production of dissipation, and therefore to decrease the intensity of the turbulent
non-linear dynamics in some sense.

Direct Numerical Simulations provided a deep insight into the dynamics of the
generation of total strain and vorticity. Among other results, they make it possible to
identify the regions of space and the physical events responsible for the production
mechanisms presented above. As in Sect. 4.10.1, let us denote êi (i = 1, 2, 3) the
three eigenvectors of S and λ̂i the corresponding eigenvalues. Simple algebra yields

− Sik Sk j Si j = −(λ̂3
1 + λ̂3

2 + λ̂3
3) = −3λ̂1λ̂2λ̂3. (4.386)

One knows that λ̂1 > 0. Numerical simulation show that λ̂2 is positively skewed,

yielding λ̂3
2 > 0, and that λ̂3 is negatively skewed, ensuring the positive production

in Eq. (4.385). Typical values are displayed in Table 4.14. Therefore, the non-linear
dynamics, understood as the generation of dissipation and small scales, is directly
associated with regions in which λ̂3 < 0, i.e. with regions of vortex compression.

The vortex stretching term can be rewritten as follows:

ωiω j Si j = ω2λ̂i cos2(ω, êi ). (4.387)

Numerical data reveal that the largest contribution to positive enstrophy produc-
tion comes from regions where ω tends to align with ê1 (see Table 4.14, in which
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Table 4.14 Individual contributions of eigenmodes of the strain tensor S to the production of
velocity gradient. Ranges of variations are taken from Tsinober (2001), from Reλ = 75 (direct
numerical simulation) to Reλ = 104 (measurements in the atmospheric boundary layer). There is
no summation over repeated indices here

Non-linear term i = 1 i = 2 i = 3

λ̂3
i 1.2–1.62 0.05 −2.67 − 2.25

ω2λ̂2
i cos2(ω, êi ) 0.52–0.53 0.12–0.15 0.32–0.36

typical values of the contributions to |ωS|2 are displayed). But, as mentioned in
Sect. 4.10.1, it is known that, in vortex tubes, ω is mainly aligned with ê2. This
result indicates that vortex tubes are not responsible for the main part of enstro-
phy production, which originates in regions with larger strain than enstrophy, and
with large curvature of vorticity lines. In the latter, enstrophy production is maximal
and is much larger than viscous destruction. On the contrary, vortex tubes are axial
structures with low curvature and maximal enstrophy. In these tubes, modeled as
Burgers-like vortices, one observes an approximate equilibrium between enstrophy
production and viscous effects. Since their vorticity field is mostly concentrated on
the axial component, they are not able to react back on the strain field which stretch
them. In this sense, the non-linearity is reduced in these objects, yielding a long
lifetime.

It is important noting that enstrophy production mainly originates in strain-
dominated regions. Two types of such regions are found:

• Strain-dominated regions with small curvature of vorticity lines. These regions are
mostly located around vorticity-dominated regions (vortex tubes), in which the
vorticity lines wrap around the vortices, leading to a preferential alignement of ω
with ê2. These regions are not associated with the maximal enstrophy production.

• Strain-dominated regions with large curvature of vorticity lines. In these regions,
large enstrophy production is associated with large magnitude of λ̂3 and large neg-
ative values of the enstrophy production rate λ̂2

i cos2(ω, êi ). Predominant mecha-
nisms are vortex compressing and vortex tilting (change of orientation).

4.11.4 Further Investigating Gradient Dynamics: Pressure
Effects

Velocity gradient dynamics and related small scales of turbulence can be further
investigated looking at the role of the pressure Hessian H which induces both non-
linear and non-local effects (Meneveau 2011). It is worth recalling that the isotropic
part of the pressure Hessian preserves incompressiblity, while the deviatoric part Hp

induces couplings between distant points in the velocity gradient field.
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It is observed that the evolution equation (2.32) for A is unclosed due to the
presence of the pressure Hessian term in the right-hand side. The role of the viscous
term and Hp can be first investigated by just neglecting them, leading to the Restricted
Euler system. The mathematical analysis of this system has been carried out in
the early 1980 s by several researchers, among which Vieillefosse, who proved that
this system exhibits finite-time singularity for all non-null initial conditions. This
short-time singularity is due to gradient self-amplification, which is not balanced by
viscous and pressure effects. The Restricted Euler solutions also exhibit a preferential
alignment of the vorticity vector with the principal axes of S, as the Navier-Stokes
solutions do, showing that this phenomenon is due to the local non-linear mechanisms
(first two terms in the right-hand side of Eq. (2.37)).

A famous result obtained by Vieillefosse within the Restricted Euler system frame-
work is the following set of coupled ordinary differential equations for Q and R:

d Q

dt
= −3R,

d R

dt
= 2

3
Q2. (4.388)

A remarkable result stemming from the use of the Cayley-Hamilton theorem is
that the quantity 27

4 R2 + Q3 is time-independent. This leads to the definition of the
so-called Vieillefosse tail defined as Q = − 3

22/3 R2/3 in the (R, Q) plane, along which
experimental data and DNS results show an increased probability of points where
R > 0 and Q < 0. The associated Restricted Euler equations for the three remaining
invariants are

d QS

dt
= −2RS − R,

d RS

dt
= 2

3
Q QS + 1

4
V 2,

dV 2

dt
= −16

3
(RS − R)Q. (4.389)

An analytical solution for A has been found by Cantwell (1992), which is very
complex and that will not be reproduced here for the sake of brevity.

An interesting result is that the finite-time singularity cannot be removed for all
initial conditions by just adding a linear damping of the form − 1

τ
A to the Restricted

Euler system (which is a reasonable surrogate for the viscous term effect, at least for
Gaussian fluctuations), showing that the pressure term plays a significant role in the
gradient dynamics.

To alleviate this problem many models for the pressure Hessian or its deviatoric
part have been proposed since the early 1990s, most of them being designed in a
Lagrangian framework (see Meneveau 2011 for a review). The use of a Lagrangian
framework is due to the fact that is provides an interesting way to define closures for
both the pressure Hessian and the viscous term in Eq. (2.32). Reminding that a fluid
particule obeys d

dt x = u(x, t), one obtains the following exact relation

d Fi j

dt
= Aik Fk j , (4.390)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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where Fi j (X, t) = ∂xi
∂X j

is the Lagrangian deformation tensor, from which the

Cauchy-Green tensor C can be straightforwardly deduced since C = FFT .
The finite-time singularity can be prevented using a Lagrangian Linear Diffusion

Model, as proposed by Martin et al. (1998):

d Ai j

dt
+
(

Aik Ak j − 1

3
Alk Aklδi j

)
= −T r(C−1

)

3τL

(
1 − εs

Amn Amn

)
, (4.391)

where the Cauchy-Green tensor is obtained solving Eq. (4.390). The parameters τL

and εs are related to an arbitrary relaxation time and a prescribed equilibrium value for
Amn Amn , respectively. This pressure-free model shows that pressure is not necessary
to prevent singularities, but its results suffer several flaws. The most important one
is that solutions are too much concentrated along the Vieillefosse tail in the (R, Q)

plane, showing that pressure has important nonlinear effects that lead to a spreading
of the solution in the phase space.

Pressure effects have been modeled in several ways, among which the Tetrad
model Chertkov et al. (1999) based on the Lagrangian description of the evolution of a
group of four fluid particles and the Recent Fluid Deformation Approximation model
(Martins-Afonso and Meneveau 2010), which can be interpreted as a simplified
version of the Tetrad model. In the Tetrad model, the description of the displacement
of the four particles makes it possible to estimate the local deformation of a small
control volume and therefore to estimate A since four non-aligned points (which are
the tetrad) are enough to generate a basis in 3D. The model requires to solve coupled
sets of six equations, resulting in an heavy model that will not be given here for
the sake of conciseness. It is worth noting that the evolution equation for the Tetrad
model is close to the one for the conformation tensor of polymer molecules in the
study of visco-elastic turbulence using the FENE-P rheological model discussed in
Chap. 5. In the second model, the viscous term is approximated as

ν
∂2 Ai j

∂xk∂xk
= −T r(C−1

)

3T
Ai j , T = λ2

f /ν. (4.392)

Using the Eulerian-Lagrangian change of variables, one obtains

∂2 p(x, t)

∂xi∂x j
= ∂Xm

∂xi

∂Xn

∂x j

∂2 p(x, t)

∂Xm∂Xn
+ ∂2 Xm

∂xi∂x j

∂ p(x, t)

∂Xm
. (4.393)

Neglecting the spatial gradients of the deformation tensor F and assuming that
pressure loses memory of the initial condition, on can use an isotropic expression
for the Lagrangian pressure Hessian, yielding

http://dx.doi.org/10.1007/978-3-319-73162-9_5
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∂2 p(x, t)

∂xi∂x j
∼ ∂Xm

∂xi

∂Xn

∂x j

δmn

3

∂2 p

∂Xk∂Xk
(4.394)

= − T r(A2
)

T r(C−1
)
(C−1

)i j = 2Q

T r(C−1
)
(C−1

)i j . (4.395)

The Cauchy-Green tensor can be obtained integrating the corresponding evolution
equation. In practice, Chevillard et al. (2008) propose to use a kind Markovianized
approximation:

C = exp
(
τηA
)

exp
(
τηAT
)

, (4.396)

where τη is the Kolmogorov time scale. This model (and some variants) leads to
very interesting results. At low- to moderate Reynolds number, it is observed to
allow for the recovery of important features of Navier-Stokes solutions that were
lost considering the Restricted Euler solutions. Exhaustive comparisons with DNS
data at Reλ were performed by Chevillard et al. (see Fig. 4.34), who report a very
good recovery of pdf isocontours in the (R, Q) plane, showing that the model is
able to capture the predominance of the enstrophy-enstrophy production quadrant
(R < 0, Q > 0) and the dissipation-dissipation quadrant (R > 0, Q < 0), leading
to the tear pattern along the Vieillefosse tail. A good prediction of the pdfs of the
angles between ω and eigenvectors of S was also observed. Nevertheless, some
weaknesses are also observed in specific regions of the flow, especially in those in
which the vorticity vector is contracted. But the main problem is that both the accuracy
and the stability of the model are observed to rapidly decrease when increasing the
Reynolds number.

Several proposals have been made to obtain robust models for high Reynolds
flows. Multiscale models have been proposed. These models aim at stabilizing
the model by defining a hierarchy of embedded shells that are coupled via non-
linear terms to mimic the Richardson cascade, the smaller shell being subjected to
very strong dissipative mechanisms. Eventhough stability, i.e. bounded solutions are
obtained this way, the quality of the results is not fully satisfactory, since pressure
effects are not accurately taken into account. Another closure based on a Gaussian
random field modelling was also recently proposed (Wilczek and Meneveau 2014).
The main interest of such an approach is that all terms can be closed in a very clean
way. The weakness is that parameters should be tuned in an ad hoc way to recover
physical results, and robustness for arbitrary Reynolds number is not yet obtained.

Despite the fact that a fully robust, accurate fully general closure for the velocity
gradient equation is still to be found, the development of these models emphasized
the role of the pressure effects. It is observed that pressure effects play an impor-
tant role in the control of the gradient amplitude, contributing to the attenuation of
self-amplification mechanisms, and that pressure Hessian is also involved in many
geometrical features of the vorticity and strain fields.
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Fig. 4.34 Top: Joint statistics in the normalized (R, Q) plane, with R∗ = R/(Si j Si j )
3/2 and

Q∗ = Q/(Si j Si j ). Left: DNS at Reλ = 150; Right: Recent Fluid Deformation Model. Bottom: pdf
of the cosine between ω and eignevectors of S: most negative (dashed line), intermediate (solid line)
and most positive (das-dotted line). Left: DNS at Reλ = 150; Right: Recent Fluid Deformation
Model. Reproduced from Chevillard et al. (2008) with permission of AIP

4.11.5 Non-gaussianity and Depletion of Non-linearity

The non-Gaussian character of turbulence, pointed out in Sect. 4.1.2, is intrinsically
tied to dynamics of turbulence. This is understood looking at enstrophy and total
strain production processes, which can be seen as the counterpart of the turbulent
energy cascade in the physical space. A striking feature is that production terms in
Eqs. (4.381) and (4.382) are third-order moments, which should be identically zero
if the turbulent field was a Gaussian random field. Production of enstrophy and total
strain are non-Gaussian features of turbulence. Therefore, non-Gaussianity originates
in the very dynamics of turbulence dictated by the Navier–Stokes equations.

The strategy which consists in describing Navier–Stokes turbulence by comparing
it with the properties of a Gaussian random velocity field is appealing, since many
theoretical results are available for the latter. Kraichnan and Panda (1988) suggested
comparing the values of several key non-linear terms which are involved in the
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description of the non-linear dynamics in the physical space, and introduced the
notion of depletion of nonlinearity. This term was coined to account for the fact that
some even moments related to nonlinear mechanisms are larger in the Gaussian case
than in Navier–Stokes turbulence, e.g. the ratio

〈u∇u + ∇ p〉Navier–Stokes

〈u∇u + ∇ p〉Gaussian
� 0.5 − 0.6 (4.397)

is infered from available numerical data. This results could be interpreted as a sign
that the nonlinearities are depleted in Navier–Stokes turbulence. Of course, this idea
must be considered with care, since, looking at odd moments, the Navier–Stokes
turbulence appears to be infinitely more non-linear than its Gaussian approximation.

As mentioned above, it is also observed that both enstrophy and strain produc-
tion are reduced in regions dominated by enstrophy with respect to strain domi-
nated regions. Accordingly, vorticity dominated regions, and more specifically vor-
tex tubes, are regions in which the non-linear effects are less intense and can be
considered as locally depleted.

4.12 What Are the Proper Features of Three-Dimensional
Navier–Stokes Turbulence?

We will now address the following question: among all the features of turbulence
presented above, which are the ones which are proper characteristics of three-
dimensional Navier–Stokes incompressible turbulence in the sense that they are not
shared by other systems?

4.12.1 Influence of the Space Dimension: Introduction to
d-Dimensional Turbulence

A first question deals with the influence of the space dimension on turbulence dynam-
ics. While one-dimensional incompressible turbulence does not exist,26 the dynamics
of isotropic turbulence in two (see Lesieur 1997 for a detailed discussion of two-
dimensional turbulence), three and even four dimensions has been investigated, both
theoretically (Fournier and Frisch 1978) and numerically (Suzuki et al. 2005). Main
results are summarized below:

• Turbulent kinetic energy spectrum exhibits an inertial range at small scales if the
Reynolds number is high enough. But is worth noting that the spectrum shape

26In the one-dimensional case, the divergence-free constraint simplifies into a null space derivative
constraint, leading to uniform solutions in space.
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depends upon the space dimension. In two-dimensional turbulence, two inertial
ranges are detected. A first inertial range with E(k) ∝ k−5/3 is followed by a second
one at higher wave numbers, in which E(k) ∝ k−3. On the contrary, a single inertial
range with E(k) ∝ k−5/3 is observed in three- and higher dimensions.

• A kinetic energy cascade is observed in all cases, even in the two-dimensional
case where the vortex stretching term in the vorticity equation is identically zero.
But, in agreement with Waleffe’s instability assumption (see Sect. 4.8.4), since
F-type distant interactions are almost absent, the net ensemble-averaged dominant
mechanism is a reverse energry cascade from large to small wave number modes.
In the two-dimensional case, this reverse cascade is easily interpreted in terms
of vortex dynamics, since vortices are observed to merge, generating larger and
larger structures. In both three- and four-dimensional case, the forward energy
cascade is observed dominant at large wave numbers. Theoretical analyses show
that two-dimensional turbulence is a singular point, and that the forward cascade
is dominant in spaces with dimension d ≥ 3.

• Self-similar decay regimes exist in all dimensions. An extension of the analysis
presented in Sect. 4.1.3 shows that a self-similar decay regime in the d-dimensional
case exists if the kinetic energy spectrum at small wave number behaves like

E(k, t) ∝ C (d)(t)kd+1 (small wave numbers). (4.398)

Assuming that C (d)(t) is constant (i.e. assuming that the Permanence of Large
Eddies assumption holds), one obtains the following law for the decay of the
turbulent kinetic energy

K(t) ∝ t−n, n = 2(d + 2)

(d + 4)
, d ≥ 2. (4.399)

The decay coefficient n is a increasing function of the space dimension d. This
fact is interpreted by Suzuki as an evidence that energy transfer is more efficient
in higher dimension.

• Comparisons between three- and four-dimensional isotropic turbulence (Suzuki
et al. 2005) show that the total dissipation is less and less intermittent while inter-
mittency is stronger on velocity increment as the dimension increase. The reason
is a change in balance between pressure and convection terms as the dimension d
increases. The role of pressure and incompressibility becomes weaker in higher
dimension, since the system as more degrees of freedom. As a consequence, the
velocity field is less constrained and a larger intermittency can exist. The enhanced
energy transfer in higher dimension is also tied to this weakening of the pressure
influence: since more persistent straining of the small scales by the large scale
strain is allowed, the energy transfer towards small scale is enhanced.

• The role of coherent vortices in kinetic energy cascade is less an less important,
as the dimension d is increased.
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4.12.2 Pure 2D Turbulence and Dual Cascade

Two-dimensional turbulence without forcing can be characterized by the following
kinetic energy spectrum

E(k) = Cω2k−3,

in which ω2 is the total enstrophy, and k holds for the wavenumber component in
the waveplane normal to the direction of the missing velocity component. Two-
dimensional turbulence is often considered in the presence of some forcing, for
instance with spectral energy injected at a wavenumber k0, and two situations must
be distinguished: the previous law is valid for k > k0, whereas a conventional k−5/3

law prevails for k < k0. In addition, 2D turbulence can be seen as an limit case of
3D axisymmetric turbulence, so that the relation above corresponds to

E(k) = E(k⊥)

2πk⊥
δ(k‖), (4.400)

where the Dirac is related to the invariance of the velocity field with respect to the
coordinate x‖ in physical space. If two-dimensionality is related to the latter invari-
ance only, the Fourier component of the velocity may consists of both components
u(1) and u(2) in the Craya-Herring reference frame in the Fourier space, but restricted
to k‖ = 0 (horizontal wave-plane). In this case, u(1) corresponds to the horizontal vor-
tical component, and u(2) to the vertical ‘jetal’ velocity component. Classical 2D-2C
turbulence (two-dimensional two-component) is only characterized by u(1)-related
velocity.27 The counterpart of 3D isotropic equations for a single triad is (Fjortoft
1953; Kraichnan 1967; Waleffe 1992)

u̇(1)
k = (p2 − q2)

ıs

2
Ckpqu(1)∗

p u(1)∗
q , (4.401)

u̇(1)
p = (q2 − k2)

ıs

2
Ckpqu(1)∗

q u(1)∗
k , (4.402)

u̇(1)
q = (k2 − p2)

ıs

2
Ckpqu(1)∗

k u(1)∗
p , (4.403)

where Ckpq is given by Eq. (4.286). The sign s is equal to +1 for any even permu-
tation of the vectors k, p, q of the triad and −1 for an odd permutation. It is clear
that each interaction independently conserves energy and enstrophy. Without further
quantitative statistical analysis, it is immediately shown that only (R) triads are con-
cerned. Compared with the instability principle expressed in terms of helical modes
for 3D isotropic turbulence, the analogy with the Euler stability problem of a solid
rotating around its principal axes of inertia, is even more striking, replacing I1, I2,
I3 by k2, p2, q2 in Eqs. (4.318)–(4.320). Only positive terms are involved, without
need for looking at signs (i.e. polarities of helical modes) as before.

27Exact relations are u(1) = −ω̂‖/k and u(2) = −û‖ in the horizontal wave plane (k‖ = 0).
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A last important result is that the triad instability principle is found consistent with
the concept of dual cascade observed in two-dimensional turbulence, i.e. a dominant
inverse cascade for energy from large to small wavenumbers, and a direct enstrophy
cascade from small to large wave numbers.

4.12.3 Role of Pressure: A View at Burgers Turbulence

We will use here the results dealing with the turbulence-like solutions of the Burgers
equations, also referred to as Burgers turbulence or ‘Burbulence’, to discuss in the
role of the pressure. This model

∂u
∂t

+ u∇u = ν∇2u (4.404)

can be interpreted as an asymptotic model for hydrodynamics, in which pressure has
no feedback on the velocity field. Since it is the pressure gradient which enforces the
incompressiblity, the Burgers equations corresponds to an infinitely compressible
fluids. It is worth noting that the vorticity equation obtained applying the curl oper-
ator to Eq. (4.404) is similar to usual one derived from the Navier–Stokes equations.
But vorticity will remain identically zero for irrotational initial conditions and ad
hoc boundary condition, since a velocity potential exists.

Extensive analysis of both forced and decaying isotropic Burgers turbulence have
been carried out, with different space dimensions (Girimaji and Zhou 1995; Noullez
and Pinton 2002; Noullez et al. 2005). The main observations are:

• The Burgers velocity field is composed of planar viscous shocks (see Fig. 4.35)
and does not exhibit vortices as in the Navier–Stokes case. This important fact
put the emphasis on the role of pressure, which is responsible for the existence of
coherent vortices (as defined in Sect. 4.10.1). A consequence is that the analysis of
the sole vorticity equation is not relevant to characterize Navier–Stokes turbulence.
It is also to be noted that this observation if coherent with the one dealing with
the weakening of both pressure effects and vortices role in d-dimensional Navier–
Stokes turbulence for increasing d (see the preceding section).

• At high Reynolds numbers, Burgers turbulence exhibits an inertial range in the
kinetic energy spectrum. Both theoretical and numerical results agree on a E(k) ∝
k−2 behavior (see Fig. 4.36). The difference from the E(k) ∝ k−5/3 behavior of
the Navier–Stokes turbulence originates in the nature of the small scales events.
While in the Navier–Stokes case the small scales are completely characterized by
the molecular viscosity ν and the dissipation rate ε, they are determined by the
velocity jump across the shock [[u]] and the characteristic shock separation length
L in the Burgers case. The dissipation rate is therefore estimated as

ε = [[u]]3

24L
. (4.405)
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Since [[u]] ∼ √
12K and L is approximately equal to the velocity auto-correlation

length scale, it is seen that, in Burgers turbulence, small scales are determined by
large scale parameters.

• As in Navier–Stokes turbulence, the dominant mechanism within the inertial range
is a kinetic energy cascade toward the high wave numbers and a reverse cascade
drives the small wave number dynamics. Within the inertial range, the energy trans-
fer is local in spectral space. The triadic interactions causing the most energetic
transfers are distant ones, while most of the net kinetic energy transfer is induced
by local triadic interactions. Therefore, the global picture is close to the one found
in Navier–Stokes turbulence, despite the very important difference in the topology
of the velocity field, showing that the spectral features of Navier–Stokes dynamics
mentioned above are not intrinsically due to pressure effects and the existence of
vortices.

• Burgers turbulence exhibits intermittency, as Navier–Stokes turbulence: tails of the
velocity fluctuation p.d.fs have the same non-Gaussian behavior, while velocity
increment p.d.fs exhibit strong departure from the Normal distribution. This shows
that intermittency, as a general phenomenon, is not a consequence of the existence
of coherent vortices in Navier–Stokes turbulence, neither a pressure effect. It is
due to the non-linearity of the governing equations and to the existence of strong
non-local interactions in the Fourier space.

4.12.4 Sensitivity with Respect to Energy Pumping Process:
Turbulence with Hyperviscosity

We now address the influence of the energy pumping process on the self-similar decay
ad the inertial range behavior of isotropic turbulence. This question was investigated
by Borue and Orszag (1995a, b), who performed some simulations in the three-
dimensional case using the following hyper-viscous generalization of the Navier–
Stokes equations:

∂u
∂t

+ u∇u = −∇ p + νp∇2pu, (4.406)

∇ · u = 0, (4.407)

where νp is an hyper-viscosity. The usual Navier–Stokes equations are recovered
setting p = 1. Borue and Orszag used p = 8. Their results, in both forced and freely
decaying isotropic turbulence, suggest that inertial-range dynamics may be indepen-
dent of the particular mechanism that governs dissipation at high wave numbers. The
usual inertial range behavior was recovered, along with main features of intermit-
tency and non-Gaussianity. But, since the dissipation induced by the hyperviscosity
is concentrated at higher wave number than the physical one, the inertial range is
observed to be larger in the former case than in the latter. A generalized hyperviscous
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Fig. 4.35 Instantaneous ‘turbulent’ solution of the two-dimensional Burger’s equations. Shocks
are observed. Reproduced from Noullez and Vergassola (1994) with permission of PPC
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Fig. 4.36 Time evolution of the turbulent kinetic energy spectrum in freely decaying two-
dimensional Burger’s turbulence. The occurence of a self-similar solution with a k−2 inertial range
is observed. Reproduced from Noullez et al. (2005) with permission of APS
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Kolmogorov length ηp can be defined as

ηp =
(

ν3
p

ε

)1/(6p−2)

. (4.408)

This point was further investigated by Lamorgese et al. (2005) who considered
both p = 2 and p = 8. A novel finding is that the bottleneck effect, i.e. the bump
observed on the compensated spectrum ε−2/3k5/3 E(k) at the end of the intertial range,
is amplified in the case of hyperviscous simulations. The bottleneck effect originates
in the fact that scales in the dissipative region of E(k) are exponentially damped by
viscosity, leading to a decrease in the energy cascade rate and then to a small energy
pile-up at the end of the inertial range. Since hyperviscosity yields a dissipation of
the form

ε = νp

∫ ∞

0
k2p E(k)dk (4.409)

the damping of small scales in the dissipative region is an increasing function of
p. Therefore, an amplification of the bottleneck is expected when increasing p. The
amplitude of the bottleneck is observed to be a growing function of p and a decreasing
function of the Reynolds number in DNS results. A modified spectrum model was
proposed by Lamorgese to account for hyperviscous effects, in which the small scale
shape function is expressed as (see Sect. 4.3 for a definition of fη)

fη(x) =
(

1 + α1

2

[
1 + erf {(1.1 + 0.3α2x) log(α2x)}]

)
e−α3x p

(4.410)

where arbitrary parameters αi are determined on the grounds of DNS data via a least-
square procedure. These parameters are strongly p-dependent, sinceα1 is found equal
to 2.1 for p = 2 and 4.2 for p = 8, α2 is found equal to 3.9 for p = 2 and 1.2 for
p = 8, while α3 is found equal to 2.3 for p = 2 and 1.2 for p = 8. It is worth noting
that this model spectrum is strictly empirical and based on data interpolation. It is
observed to recover the main hyperviscosity effects on E(k) at small scales, including
p-effects and Reynolds number effects. But it yields unsatisfactory results when
trying to recover asymptotic features of Navier-Stokes turbulence (taking p = 1) in
the limit of infinite Reynolds number.
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Chapter 5
Isotropic Turbulence with Coupled
Microstructures. I: Visco-Elastic Turbulence

5.1 Introduction to Turbulence in Dilute Polymer Solutions

Turbulence in dilute polymers suspensions may exhibit some very new interesting
features due to the non-Newtonian character of the mixture. Polymers are macro-
molecules appearing as long chains of monomers which have a complex mechanical
behavior. In a turbulent flow, they experience unsteady random forcing and, depend-
ing on the ratio of their intrinsic time and length scales with those of turbulence,
they will interact with turbulence in a passive or active way. In the latter case, deep
modifications of turbulence physics may occur, leading to the definition of several
physical turbulent régimes.

The present chapter is restricted to isotropic turbulence in dilute polymer solutions,
in which mean shear effects are not present and direct interactions between polymer
molecules are negligible. Such a configuration is a very good illustration of turbulence
coupled to heterogeneous microstructural physics, since it allows for the analysis of
modifications of turbulence non-linear mechanisms without coupling to changes in
turbulence production mechanisms.

5.2 Governing Equations

5.2.1 Models for Polymer Physics: FENE, FENE-P
and Beyond

Many rheological models for polymers have been proposed, with different degrees
of complexity and realism. An interesting discussion is found in Jin and Collins
(2007). The emphasis is put here on the Finetely Extensible Non-linear Elastic model
(FENE) closed using the Peterlin approximation (FENE-P), since it is used in most
published numerical simulations. It is a good trade-off between physical complexity
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and numerical cost. Therefore, the FENE-P model will be discussed below, along
with the results obtained using it. It is worth noting that direct comparisons with
laboratory experiments carried out with real polymers can be done in a qualitative
way only, since exact rheological models for realistic polymer modes are still missing.
The same restriction also holds for comparisons between experimental data obtained
using different polymer solutions.

5.2.1.1 FENE-P Model for Dilute Polymers

In Brownian dynamics approach, a polymer is modeled as a sequence of N beads
connected by elastic springs and the deformation of the bead-spring chain is followed
along the trajectory of its center of mass. The FENE model corresponds to N = 2,
i.e. to a simplified dumbbell model.

At equilibrium a polymer molecule coils up into a ball-like shape with charac-
teristic radius R0. In dilute suspensions, the influence of the equilibrium size of
the polymers has a negligible effect on the solvent rheological behavior. In tur-
bulent flows, the condition is that it is much smaller than the Kolmogorov scale,
R0 � η. When immersed in a non-uniform flow, a molecule experiences a shear and
is deformed into an elongated structure characterized by its end-to-end vector R. In
a flow with constant velocity gradient, this vector evolves according to the FENE
model equation:

∂Ri

∂t
= R j

∂ui

∂x j
− �

∂E

∂R j
+ ξi (5.1)

where the terms in the right-hand side are related to the stretching by solvent velocity
gradient, the resistance to elongation and the forcing by the thermal noise. E and �

are related to the free energy of the molecule and its kinetic coefficient, respectively.
The latter is modeled as a random forcing whose auto-correlation tensor is given by

ξi (t)ξ j (t ′) = 2T kB�δi j (t − t ′) (5.2)

where kB is the Boltzmann constant. Denoting Rmax the maximum elongation of the
molecule, the latter can be described using elasticity theory when R � Rmax , its free
energy being expressed as E = K R2/2 where K denotes the Hook modulus. Thus,
R0 can be estimated from the condition E ∝ kB T as R0 ∼ √

kB T/K . The associated
equation is

∂Ri

∂t
= R j

∂ui

∂x j
− Riτ + ξi (t) (5.3)

where τ = (�K )−1 is the molecular relaxation time. In the general case τ is a function
of R, since the relaxation mechanism depends on non-linear interactions between
monomers. In the Finitely Extensible Non-linear Elastic (FENE) approximation, one
takes
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τ = τpφ(R2) = τp

(
1 − R2

R2
max

)
, (5.4)

where τp is the characteristic relaxation time scale toward in the absence of flow
proposed by Zimm and R = ‖R‖. Zimm’s time scale is usually computed using
Fleury’s formula:

τp = μs R3
g

kB T
, Rg = N 3/5a, (5.5)

whereμs, Rg, N and a denote the solvent viscosity, the equilibrium radius of gyration,
the number of monomers per molecule and the length of a monomer, respectively.

The polymer conformation tensor is defined as Ci j = 〈Ri R j 〉ξ , where 〈Ri R j 〉ξ
denotes a statistical average of thermal noise realizations.

Rewritting Eq. (5.3) as

∂Ri

∂t
= R j

∂ui

∂x j
− φ(R2)Riτp +

√
R2

0

τp
ξi (t), (5.6)

one obtains by application of the Itô formula

∂

∂t
(Ri R j ) = ∂Ri

∂t
R j + ∂R j

∂t
Ri + R2

0

τp
δi j

= ∂ui

∂xk
Rk R j + ∂u j

∂xk
Rk Ri − φ(R2)

τp
Ri R j

+ R2
0

τp
δi j +

√
R2

0

τp

(
R jξi + Riξ j

)
. (5.7)

Now averaging over realizations of thermal noise and reminding that < R jξ j >ξ=
0, one obtains the following time evolution equation for the FENE model:

∂

∂t
Ci j = ∂ui

∂xk
Ck j + ∂u j

∂xk
Cki − 1

τp

(〈φ(R2)Ri R j 〉ξ − R2
0δi j

)
. (5.8)

This equation describes the evolution of the polymer conformation tensor along
the Lagrangian trajectory of its center of mass. This model is not closed since
〈φ(R2)Ri R j 〉ξ is not known. The Peterlin approximation is

〈φ(R)Ri R j 〉ξ 
 φ(R2)〈Ri R j 〉ξ = φ(Tr(C))Ci j , (5.9)

leading to the definition of the FENE-P model. This model can be rewritten normal-
izing C so that C = I at equilibrium, i.e. taking Ci j = 〈Ri R j 〉ξ/R2

0 , yielding
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∂

∂t
Ci j = ∂ui

∂xk
Ck j + ∂u j

∂xk
Cki − 1

τp

(
f (Ckk)Ci j − δi j

)
, (5.10)

where the renormalized Peterlin function is

f (Ckk) = R2
0 − 3

R2
0 − Ckk

. (5.11)

The corresponding polymer elastic energy stored by unit volume is

K� = νp

2τp
ln[ f (Cii )] + P0 (5.12)

where P0 is the reference energy and νp denotes the zero-shear viscosity of the
polymer.

This model is the most common one in numerical simulations of turbulence, since
it is observed to be sufficient to describe the sationnary physics of both the extension
and the orientation of the polymer molecules in isotropic turbulence. Because it is
limited to a single pair of beads, the characteristic time τp is related to the largest
time scale of the molecule dynamics.

It is worth noting that the FENE-P model is a model for the conformation ten-
sor, which is a statistical quantity. It is therefore less general that the FENE model
(5.1), which is based on an equation for the vector R. Several authors have analyzed
the main drawbacks of Peterlin’s closure, and reported that Vincenzi et al. (2015):
(i) steady state p.d.f. of large R are overestimated, (ii) predicted alignment of poly-
mers with eigenvectors of the velocity gradient tensor and the vorticity is weaker than
with the FENE model and (iii) correlation time of both extension and orientation of
polymer molecules is underestimated. As a conclusion, FENE-P model is expected
to be less relevant when velocity gradient is much larger than τp.

A few simulations of turbulent flows have been performed using more complex
models, e.g. Horiuti et al. (2013), Jin and Collins (2007).

Some authors, e.g. Berti et al. (2006), Casciola and De Angelis (2007), use a
further simplified model, which is well suited for mild elongations. For such cases,
one has f (Cii ) 
 1 and ‖C‖ � 1, leading to the simplified linear equation

∂

∂t
Ci j = ∂ui

∂xk
Ck j + ∂u j

∂xk
Cki − Ci j

τp
. (5.13)

According to Sect. 2.5.7, and assuming that polymer molecules have no inertia
so that they are advected along fluid trajectories at fluid velocity, the Lagrangian
solution to Eq. (5.13) is (Balkovsky et al. 2001; Fouxon and Lebedev 2003)

C(x(t), t) = F(t, t0)C(x0, t0)F
T
(t, t0)e

−(t−t0)/τp , (5.14)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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where the Green function tensor F(t, t0) is the Cauchy matrix given by relation (2.5)
which is solution of

Ḟ = (∇u)F, F(t0, t0) = I. (5.15)

In the case of a statistically steady solution, one can show that (5.14) has to be
uniaxial, i.e. C = B ⊗ B where the vector B(x, t) characterizes the direction and
the strength of the polymer molecule elongations weighted by their contribution into
the stress tensor. The vector is given by

B(x(t), t) = W(t, t0)B(x0, t0)e
−(t−t0)/2τp (5.16)

and is solution of the Eulerian equation

∂

∂t
Bi + u j

∂Bi

∂x j
= B j

∂ui

∂x j
− Bi

τp
, (5.17)

which is similar to the one found for the magnetic field in MagnetoHydroDynamics
(MHD, see Chap. 12) with τp in place of the magnetic resistivity, as discussed in
Fouxon and Lebedev (2003). Similarly to the magnetic field, one can see that B
is solenoidal, i.e. ∇ · B = 0. Note that the analogy with MHD is not only based
on the similarity of Eq. (5.17) with the induction equation: this similarity holds for
the vorticity equation and the equation for a passively transported bi-point vector
as well. In addition, the last term in the modified Navier–Stokes Eq. (5.20) behaves
as the Lorentz force, so that coupled equations (5.17) and (5.20) do correspond
to MHD equations. Therefore, all methods and tools developed for the equivalent
MHD model can be used in a straightforward way, the Alfven waves being replaced
by elastic waves.

5.2.2 Navier–Stokes Equations for Polymer Solutions

In the case of incompressible flows, only the momentum equation for the solvent must
be modified to account for the polymer effects since mass conservation is assumed to
be left unchanged. The polymer molecules are assumed to have a negligible inertia
and therefore they move as passive tracer. As a consequence, the Eulerian hydrody-
namic model associated to (5.8) is

∂

∂t
Ci j + uk

∂

∂xk
Ci j︸ ︷︷ ︸

advection

= ∂ui

∂xk
Ck j + ∂u j

∂xk
Cki︸ ︷︷ ︸

vortex stretching action

− 1

τp

(
f (Cii )Ci j − δi j

)
︸ ︷︷ ︸

visco-elastic effects

+ χ
∂2

∂x2
k

Ci j,

︸ ︷︷ ︸
molecular diffusion

(5.18)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_12
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where χ denotes the solvent velocity and diffusivity, respectively. The diffusivity
term is usually neglected. The additional stress Ti j originating in the action of the
polymer on the fluid is

T p
i j = νp

τp

(
f (Cii )Ci j − δi j

) = (1 − β)ν

τp

(
f (Cii )Ci j − δi j

)
, (5.19)

where νp is the zero-shear-viscosity of the polymer, ν = νs + νp is the total viscosity,
with νs the solvent viscosity, and β = νs/ν leading to the following momentum
equation

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ βν

∂2ui

∂xi∂xi
+ ∂T p

i j

∂x j
. (5.20)

5.3 Description of Turbulence with FENE-P Model

The hydrodynamic model for polymer dilute suspensions appears as a modified
momentum equation (5.20) in which a visco-elastic stress is added, coupled to an
evolution equation for the polymer conformation tensor (5.18), along with ∇ · u = 0.
Starting from this set of equations, all sequel relations dealing with kinetic energy,
vorticity, enstrophy, dissipation ... discussed in Chap. 2 in the case of a Newtonian
fluid can be extended. For the sake of brevity, all equations will not be repeated here,
the emphasis being put on those which will enlight physical discussion. The proce-
dure to derive them starting from the Navier–Stokes-FENE-P governing equations
is identical to the one used in the Newtonian case, and therefore details will not be
given.

5.3.1 Quantities and Related Equations in Physical Space

The evolution equation for turbulent kinetic energy becomes, in the isotropic case in
the absence of external forcing term

∂K
∂t

= −εs − G, G = ∂u′
i

∂x j
T p

i j , (5.21)

where the definition of the kinetic energy dissipation rate εs is the same as for
Newtonian fluids, while the mean elastic energy stored by the polymer molecules
evolves as

∂ K̄�

∂t
= G − εp, εp = 1

2τp
f (Cii )T

p
ii . (5.22)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Here, G and εp denote the energy transfer term between kinetic and elastic energy
due to visco-elastic stress and the elastic energy dissipation rate (transformation
of elastic energy into heat), respectively. It is seen that polymers may accelerate
the decay of kinetic energy when G > 0 (molecules pump energy from the fluid,
converting kinetic energy into elastic energy), or act as a source term by restoring
some kinetic energy when G < 0.

The total mean free energy of the system, K̄tot = K + K̄�, is governed by

∂ K̄tot

∂t
= −εs − εp = −ε, (5.23)

where ε is related to the total dissipation rate. The equation for the evolution of the
instantaneous total strain (2.40) and vorticity (2.39) are modified as

1

2

∂S2

∂t
+ u j

∂S2

∂x j
= −Sik Sk j Si j − 1

4
ωiω j Si j − Si j

∂2 p

∂xi x j
+ νs Si j ∇2 Si j + ∂2

∂xk∂x j

(
T p

ik Si j
)

(5.24)
and

1

2

∂ω2

∂t
+ u j

∂ω2

∂x j
= ωiω j Si j + νsωi∇2ωi + εnjiωi

∂2T p
mj

∂xm∂xn
. (5.25)

For isotropic turbulence, the associated equation for the variance total strain and
variance of vorticity are

1

2

∂S′2

∂t
= −S′

ik S′
k j S′

i j − 1

4
ω′

iω
′
j S′

i j + νs S′
i j∇2S′

i j + ∂2

∂xk∂x j

(
T p

ik S′
i j

)
(5.26)

and
1

2

∂ω′2

∂t
= ω′

iω
′
j S′

i j + νsω
′
i∇2ω′

i + εnjiω
′
i

∂2T p
mj

∂xm∂xn
, (5.27)

respectively.

5.3.2 Quantities and Related Equations in Fourier Space

The Lin equation for the three-dimensional kinetic energy spectrum E(k) is trans-
formed into

∂E(k, t)

∂t
+ 2νsk2 E(k) = T (k, t) + T [p](k, t), (5.28)

where the new term T [p](k, t) represents the net exchange at wave number k between
kinetic and elastic energy. It is defined as

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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T [p](k, t) = 4πk2
∫∫

‖k‖=const

(
Ŝ∗

i j (k)T̂ p
i j (k) + Ŝi j (k)T̂ p∗

i j (k)
)

d2k, (5.29)

where the φ̂(k) denotes the Fourier transform of φ(x) and Si j is the symmetric part
of the velocity gradient tensor.

Integration of the extended Lin equation and term-by-term identification with
(5.21) lead to ∫ +∞

0
T [p](k, t)dk = −G, (5.30)

which is not zero in the general case, showing that T [p](k, t) is not a true transfer
term like T (k, t).

An spectral equation for the 3D elastic energy spectrum, E�(k, t), which is defined
so that

K̄�(t) =
∫ +∞

0
E�(k, t)dk (5.31)

can also be obtained. Since its exact expression in the general case directly deduced
from (5.18) and (5.12) is complex due to the non-linear character of the Peterlin func-
tion, it will not be displayed here. The important fact is that it appears as (neglecting
the effect of fluid diffusivity)

∂E�(k, t)

∂t
= T [p]

adv(k, t) + T [p]
p (k, t) + T [p]

visc(k, t), (5.32)

where terms in the right-hand side originate in the advection term, the vortex stretch-
ing term and the visco-elastic term, respectively. By integration over k and identifi-
cation with (5.22), one observe that

∫ +∞

0
T [p]

adv(k, t)dk = 0,

∫ +∞

0
T [p]

p (k, t)dk = G,

∫ +∞

0
T [p]

visc(k, t)dk = −εp.

(5.33)
The term T [p]

adv(k, t) is associated to the elastic kinetic energy cascade, and
T [p]

p (k, t) to the elastic-to-kinetic energy cascade. It is important to keep in mind
that T [p]

p (k, t) and T [p](k, t) are related by the integral relation

−
∫ +∞

0
T [p](k, t)dk =

∫ +∞

0
T [p]

p (k, t) = G, (5.34)

but that there is no a priori scale-by-scale balance, i.e. T [p](k, t) + T [p]
p (k, t) �= 0.

Now introducing the 3D spectrum Etot (k, t) = E(k, t) + E�(k, t) of total energy
K̄tot , one obtains summing (5.40) and (5.35)
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∂Etot (k, t)

∂t
= T [p](k, t) + T [p]

adv(k, t) + T [p]
p (k, t)︸ ︷︷ ︸

Ttot (k,t)

+T [p]
visc(k, t) − 2νsk2 E(k)

(5.35)
with ∫ +∞

0
Ttot (k, t)dk = 0. (5.36)

5.4 Turbulence Régimes in Dilute Polymer Solution

5.4.1 On the Existence of Different Physical Turbulent
Régimes

As said above, the coupling between turbulent fluctuations and visco-elastic mecha-
nisms can lead to the occurence of several physical régimes, which are discussed in
the present section.

A first condition for a strong interaction to occur is that turbulent scales can
stretch polymer molecules in an efficient way. One can hypothesize that polymer
molecules are affected only by turbulent eddies whose time scales is smaller than
polymer relaxation time τp. Considering small molecules such that the elongation
R = √

Cii is smaller than the Kolmogorov length scale η, the typical velocity gradient
experienced by the molecules is measured by the inverse of Kolmogorov time scale,
τη (see Sect. 4.2.1).

Therefore, a necessary condition for the polymers being stretched is

Wi = τp

τη
≥ 1, (5.37)

where Wi denotes the Weissenberg number. For Wi < 1, the polymer molecules
relax more quickly compared to the turbulent forcing. The Weissenberg number mea-
sures the relative influence of the relaxation toward equilibrium and the stretching
induced by the smallest scales, i.e. at the highest frequency generated by turbulence.
Therefore they remain coiled and are passively advected without any visco-elastic
effect. The fluid can be considered as a Newtonian fluid with a modified viscosity
ν = (νs + νp). Switching from Wi < 1 to Wi > 1 therefore results in a dramatic
change in flow physics, often referred to as the coil-stretch transition. The tran-
sition condition can also be expressed in terms of length scales (Xi et al. 2013).
In a fully developed turbulent flow, one may expect that scales small enough for
their characteristic time scale τ (k) is such that τp ≥ τ (k) will experience some vis-
coelastic effects, while larger scales will not. Therefore, there should be a scale,
referred to as the Lumley scale, r∗, at which the coil-stretch transition occurs. Taking
the classical scaling τ−1(k) ∝ √

k3 E(k) and assuming that the Kolmogorov scal-
ing E(k) = K0ε

2/3
s k−5/3 holds, the local Weissenberg number, Wi(k) = τp/τ (k),

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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is equal to Wi(k) = √
K0τpε

1/3
s k2/3. Therefore, the transition occurs at the Lumley

wave number k∗ = (τp
√

K0ε
1/3
s )−3/2, yielding

r∗ = 1/k∗ = (τp

√
K0ε

1/3
s )3/2. (5.38)

It is worth noting that the Weissenberg number can be expressed as a function of
the Reynolds number (Ouellette et al. 2014). Reminding that the Taylor-scale-based
Reynolds number Reλ is equal to

√
15τu/τη, with τu the turbulence time integral

scale, one has

Reλ = √
15

Wi

De
, De = τp/τu, (5.39)

where De is referred to as the Deborah number. It measures the respective influence
of the polymer relaxation toward the equilibrium coil state and the stretching imposed
by the large energetic scale, τu being also interpreted as a characteristic time scale
for non-linear cascade.

The criterion r < rL is not sufficient to ensures the coil-stretch transition, since
the fluid response is also sensitive to the polymer concentration (Sreenivasan and
White Sreenivasan et al. 2000). As a matter of fact, visco-elastic effects cannot be
observed if the concentration of polymer molecules is too low. Accounting for this
new criterion amounts to define a second length scale r∗∗. Three criteria have been
proposed to define r∗∗:

• A criterion based on the ratio between elastic and kinetic energy proposed by Tabor
and de Gennes in 1986, that states that transition occurs at scales such that their
elastic energy is equal to their kinetic energy.

• A criterion based on the equality of polymeric viscoelastic stresses and solvent
stresses at the transition scale, proposed by Balkovsky et al. (2001).

• A more recent criterion according to which transition takes place at scales at which
the elastic energy flux is equal to the turbulent energy flux (Xi et al. 2013).

In practice, it is chosen in the following to discuss the different régimes reported
in the literature in the (Wi, De) plane. The threshold values are given here for the
sake of clarity, but it must be kept in mind that they are not exactly known, since
results may depend on the Reynolds number and the rheological model selected for
the polymer.

These régimes are:

• Pseudo-Newtonian turbulence observed for Wi < 1 or De < 0.2, in which visco-
elastic elastic effects are negligible, and the fluid behaves as a Newtonian fluid
with modified viscosity (see Sect. 5.4.2).

• Elasto-inertial turbulence observed for Wi > and De > 0.2, in which both kinetic
energy and elastic energy cascade exist, along with a possible elastic-to-kinetic
energy cascade in some cases (see Sect. 5.4.3).

• Elastic turbulence observed for De � 1 at very low Reynolds number, in which
the fluid is almost laminar and turbulence is made of elastic waves due to visco-
elastic mechanisms (see Sect. 5.4.4).
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5.4.2 Pseudo-Newtonian Turbulence

In this régime, the effect of polymer molecules is almost identical to those of passive
particules, and the results reported for dilute particule-ladden flows are recovered.
The fluid behaves as a classical Newtonian fluid with modified viscosity ν = νs + νp.
The two dissipation mechanisms are almost independent, and the ratio of εs and εp

is proportional to β. Main results discussed for Newtonian isotropic turbulence are
valid, and the reader is referred to Chap. 4.

5.4.3 Elasto-Inertial Turbulence

5.4.3.1 Energy Cascade(s) in Visco-Elastic Turbulence

This régime corresponds to strong interactions between fluid turbulence and visco-
elasticity. Dynamics of the flow exhibits strong changes when increasing the Debo-
rah number at constant Weissenberg number. Evolution of normalized polymer and
solvent dissipations with respect to De obtained in high resolution DNS of forced
turbulence (Valente et al. 2014, 2016) are displayed in Fig. 5.6 along with the nor-
malized power input. It is observed that for De increasing from 0.2 to approximately
1, the fraction of the total dissipation stemming from the solvent is decreasing,
the polymer elastic dissipation εp becoming dominant about De ∼ 0.4. At De = 1
about 80–90% of the total dissipation comes from εs . This is observed to originate
in two phenomena: an increase of the total dissipation and a depletion of εs . Keeping
increasing the Deborah number for values larger than one, the trends are observed
to be inverted. The solvent dissipation becomes dominant again for De ≥ 6, along
with a decrease of the total dissipation and an increase of εs (Fig. 5.1).

This behavior is understood looking at Fig. 5.2, which displays the integral spectral
fluxes for different values of Wi and De. Here, spectral fluxes are defined integrating
terms in the Lin equation (5.40) between 0 and k:

D(k) = 2νs

∫ k

0
p2 E(p)dp, �(k) =

∫ k

0
T (p)dp, �[p](k) =

∫ k

0
T [p](p)dp.

(5.40)
In statistically steady turbulence, one should have

F(k) = �(k) + �[p](k) + D(k) ∀k, (5.41)

where F(k) denotes the integrated flux associated to the forcing term used to
obtain statistical stationarity. It is observed that for (Wi, De) = (0.5, 0.1) turbu-
lence exhibits a nearly classical character, since it is dominated by either energy
cascade flux �(k) or dissipation term D(k) at all scales, the total kinetic-to-elastic
energy transfer being small. This dynamics is schematized in Fig. 5.4. This picture

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 5.1 Top: Evolution of
the normalized solvent
dissipation εs/P and
normalized polymer
dissipation εp/P versus the
Deborah number, in DNS of
forced isotropic turbulence
with power input P; Bottom:
evolution of normalized
power input CP ∼ P L/K3/2

and normalized solvent
dissipation CP ∼ P L/K3/2

versus De. Several grid
resolutions are shown. From
Valente et al. (2016) with
permission of AIP

is deeply modified at higher Deborah numbers, since �[p](k) is observed to be the
dominant mechanism at all scales at De = 0.71. In such cases, the kinetic-to-elastic
energy transfer becomes the most important physical mechanisms responsible for
loss of kinetic energy. The flux associated to the classical energy cascade is observed
to almost vanish at large De (Fig. 5.3). Therefore, the depletion of εs is due to the
fact that large scale kinetic energy is pumped by elastic modes along with a decrease
of the kinetic energy cascade intensity. A deeper analysis reveals that the depletion
of the cascade is not due to a decrease of nonlinearities, but to the fact that the modi-
fication of the topology of vortical structures by visco-elastic effects induces a large
increase of the backward kinetic energy cascade from small to large scales, resulting
in a vanishing net kinetic energy flux across scales.

For large De, it is observed that �[p](k) tends to decrease at very small scales, a
phenomena that becomes very important for De ≥ 4 − 5. This phenomena is asso-
ciated to a change in the sign of the kinetic-to-elastic transfer function T [k] at small
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Fig. 5.2 Evolution of integral spectral fluxes appearing in the budget of turbulent kinetic energy
versus normalized scale kη. All quantities are normalized by the power input P . Top-
left: (Wi, De) = (0.5, 0.1); Top-right: (Wi, De) = (2.7, 0.71); Bottom: (Wi, De) = (80.9, 16.2),
where ζ denote the amplitude of the elastic-to-kinetic energy cascade. From Valente et al. (2016)
with permission of AIP and Valente et al. (2014) with permission of CUP

scales. This indicates that polymer molecules give some energy back to small turbu-
lent eddies, leading to the definition of an elastic-to-kinetic energy cascade: kinetic
energy is pumped at large scales by elastic modes, then transferred to small scales by
elastic mechanisms associated to an elastic energy cascade and finally transferred to
small eddies. The amplitude of the integrated flux associated to this new cascade is
measured by ζ in Fig. 5.2. It is observed to become as large as �[p](k) at De ∼ 16,
and this mechanisms is at play at all scales. The increase of the solvent dissipation
εs at increasing De is therefore due the fact that turbulent eddies are fed more and
more efficiently by the elastic-to-kinetic energy cascade, which remains the sole
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Fig. 5.3 Evolution of the
maximum of normalized
integral spectral flux �(k)

and the amplitude of the
elastic-to-kinetic energy
cascade, ζ, appearing in the
budget of turbulent kinetic
energy versus De in DNS of
forced turbulence. All
quantities are normalized by
the large scale factor
L/K3/2. From Valente et al.
(2016) with permission of
AIP

mechanism that enforces a transfer of kinetic energy toward small scales at large De.
This case is illustrated in Fig. 5.4.

The amplitude of the elastic-to-kinetic energy cascade is displayed in Fig. 5.3, in
which the evolution of ζ is compared to the maximum of �(k). A first observation is
that max(�(k)) + ζ = const , showing that the amplitude of total transfer of kinetic
energy toward small scales remains almost constant, since depletion of the kinetic
energy cascade is balanced by the growth of the elastic-to-kinetic energy cascade.
The second observation is that max(�(k)) ≤ ζ for De ≥ 1, showing that the most
efficient kinetic energy cascade mechanisms is the elastic-to-kinetic energy cascade
for Deborah numbers larger than unity.

5.4.3.2 Kinetic Energy Spectrum: Results and Model

The kinetic energy spectrum is observed to also dramatically change in the elasto-
inertial régime, according to the value of the Deborah number (see Fig. 5.6). In the
pseudo-Newtonian régime or at very low-De, the spectrum is almost identical to those
found in isotropic Newtonian turbulence, and a Kolomogorov inertial range with
E(k) ∝ ε

2/3
s k−5/3 is recovered. Increasing the Deborah number, one can observe in

DNS results a continuous switch toward a range with E(k) ∝ k−3 for 0.6 ≤ De ≤ 1,
followed by a return to a régime such that E(k) ∝ k−5/3.

The existence of a spectral range such that E(k) ∝ k−3 can be predicted in a
heuristic way. Assuming that the main effect of polymer molecules is to damp the
local strain by absorbing kinetic energy of eddies whose characteristic time scale
τ (k) is smaller than τp, one see that they ideally bound the local Wi(k) = τp/τ (k)

to one. Taking τ (k) = √
k3 E(k), it follows that
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Fig. 5.4 Schematic illustrations of flow dynamics in (top) the pseudo-Newtonian régime or low-De
elasto-inertial régime with negligible elastic-to-kinetic energy transfers at small scales and (bottom)
the elasto-inertial régime at high Deborah number

√
k3 E(k) = τp =⇒ E(k) ∝ k−3. (5.42)

This inertio-elastic range should be observed for scales smaller than the Lumley
wave number k∗. At very high Reynolds number, one should observed a classical
inertial range with E(k) ∝ k−5/3 at larger scales, i.e. for k < k∗. A range with a
k−3 has been observed in both DNS (Valente et al. 2016) and grid turbulence of
Polyethylene oxide in water (Vonlanthen and Monkewitz Vonlanthen et al. 2013). It
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is also supported by theoretical analysis of a linearized model derived from the mild
elongation model (Fouxon and Lebedev 2003).1

The switch observed for increasing De up to 1 can be understood on the same
grounds, since it corresponds to a growing efficiency of the kinetic-to-elastic transfer
mechanisms at all active scales. For De > 1, the energy drained by the polymer
molecules at large scales becomes larger than the energy they dissipate, and the
extra energy is injected back to turbulent eddies leading to the rise of the elastic-to-
kinetic cascade mechanism. As a consequence, the smoothing power of visco-elastic
stresses on the local strain is saturated, and the local strain rate τ (k) is no longer
bounded to one. At large De the amount of energy provided back to turbulence is
large, since max(�(k)) � ζ, and the −3 slope cannot be maintained. The fact that
the spectrum relaxes toward a solution with a Kolmogorov-like spectrum may be
explained reminding that, in the classical theory, dimensional analysis that leads
to E(k) ∝ ε

2/3
s k−5/3 assumes that εs is the flux of kinetic energy across scales. As

a matter of fact, one has �(k) = εs in the inertial range in steady fully developed
Newtonian turbulence. In the present case, the total flux of energy across scales is not
equal to �(k), since the elastic-to-kinetic energy cascade must be taken into account.
Therefore, using dimensional analysis, a relevant scaling law should be (Valente et al.
2016)

E(k) ∝ (max(�(k)) + ζ)2/3k−5/3, De � 1, (5.43)

which is observed to be in satisfactory agreement with DNS data (Fig. 5.5).
A spectrum model was proposed by Vonlanthen and Monkewitz (2013) to extend

expression (4.60) to the case of high Reynolds number with both Kolmogorov inertial
and inertio-elastic ranges. Using equilibrium statistical equilibrium assumption, it
reads

E(k) = K0ε0k−5/3
(

1 − � + �(1 + k̃γ)−2/γ
)2/3

fL(kL) fη(kη0, k̃), k̃ = k/k∗
(5.44)

where 0 ≤ � ≤ 1 is an empirical parameter that accounts for concentration, mole-
cular weight, degree of dilution and polymer type. The parameter γ governs the
rounding between the inertial and the inertio-elastic range. ε0 and η0 are computed
using the Kolmogorov range values. The large scale shape function fL(kL) can be
taken identical to those for the Newtonian case. On the contrary, the small scale shape
function is deeply modified as

1This model is formally equivalent to a linearized model for MagnetoHydroDynamics, Aflven waves
being replaced by elastic waves. It also predicts equipartition of kinetic and elastic energy, which
is not reported in non linear DNS results. This equilibrium shares many features of the equilibrium
between kinetic and acoustic energy found in linearized theory for weakly compressible isentropic
turbulence, see Sect. 13.2.2.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_13
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Fig. 5.5 Top: Evolution of
the premultiplied turbulent
kinetic energy spectrum
versus De in DNS of forced
turbulence. Bottom:
Evolution of computed slope
within the inertial range
versus De, with uncertainty
bars displayed. From
Valente et al. (2016) with
permission of AIP

ln fη(kη0, k̃) = −
{

5.2
[
(kη0)

4 + 0.44
]1/4 − 2.08

} (
1 − � + �(1 + k̃γ)−2/γ

)2/3

(
1 − � + 3

2�(1 + k̃γ)−2/γ
) .

(5.45)
The elastic energy spectrum E�(k) has been much less investigated that the kinetic

energy spectrum. In the absence of strong interaction with the velocity field, Tabor
and de Gennes proposed the following inertial range expression:

E�(k) = n pkB T

(
k

k∗

)5n/2

, (5.46)
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Fig. 5.6 Elastic energy
spectrum E�(k) in DNS of
low-Reynolds number
isotropic turbulence with
elastic-to-kinetic energy
cascade. From Li et al.
(2012) with permission of
Chinese Phys. J. via IOP

where n p, kB, T, k∗ and n denote the number of polymer molecules per unit volume,
the Boltzmann constant, the temperature, the Lumley wave number and an exponent
related to the average stretching of the local flow field, respectively. Experimental
results lead to n = 1 ± 0.2 for Polyacrylamide in water, for a concentration up to 10
ppm (parts per million by weight) (Xi et al. 2013).

In the case of strong interaction with the fluid at Deborah numbers such that the
transfers of energy between polymer and turbulent eddies are strong, the picture
may be different, as illustrated in Fig. 5.6 which displays the elastic energy spectrum
computed in a low-Reynolds DNS in a case with significant elastic-to-kinetic energy
cascade. A plateau is observed at very small scales, which corresponds to a pile-up
of elastic energy at very small scales.

5.4.4 Elastic Turbulence

Elastic turbulence has been analyzed theoretically (Balkovsky et al. 2001) and
observed in laboratory experiments at very low Reynolds number (Groisman and
Steinberg 2000). In this régime one has De � 1, meaning that all scales are domi-
nated by visco-elastic effects. The polymer stress tensor can reach a universal state.
The underlying physics is similar to the one found in the inertio-elastic range dis-
cussed in the preceding section, i.e. one observes elastic waves propagating at a speed
close to

√
Cii . The kinetic energy spectrum is expected to be E(k) ∝ k−3, but there

is no results available at present time to assess that hypothesis.
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5.5 Visco-Elastic Effects on Flow Topology

Equations (5.26) and (5.27) show that visco-elastic stresses may have a deep effect on
flow topology, since they appear in the budget equations of both fluctuating strain and
vorticity, which are at the core of turbulence non linear dynamics (see Sect. 4.11.3).
The modification in the kinetic energy cascade due to the growth of the backward
energy cascade discussed above is the footprint of dramatic changes in velocity gra-
dient topology and dynamics, since velocity gradient self-amplification mechanisms
govern Newtonian isotropic turbulence dynamics.

Typical modifications of flow topology are illustrated in Fig. 5.7. It is observed
that viscoelastic effects result in a strong depletion all types of small scales structures,
e.g. Cai et al. (2010), Cai et al. (2011), Horiuti et al. (2013), Valente et al. (2014),
Valente et al. (2016). Tube-like vortices that are observed in the Newtonian case can
be almost completely inhibited at large De, while vortex sheets are flattened and
smoothed. A fine analysis of associated p.d.fs shows that large extreme values of
fluctuating strain and vorticity are severely damped in dilute polymer solutions after
the coil-stretch transition.

As discussed in Sect. 4.11, the main mechanisms are the self-amplification of
strain in the generation of irrotational strain (term −S′

ik S′
k j S′

i j in Eq. (5.26)), and

generation of vorticity by vortex stretching (term ω′
iω

′
j S′

i j in Eq. (5.27)).
The analysis of low-to-medium Reynolds number DNS (De Angelis et al. 2005;

Cai et al. 2010, 2011; Li et al. 2012; Perlekar et al. 2006, 2010; Valente et al. 2014,
2016) provides some insight into the way that visco-elasticity modifies the flow
dynamics, at least for cases in which the elastic-to-kinetic energy cascade does not
completely overwhelms other mechanisms. The main observations are the following:

• Depletion of strain is due to a reduction of strain generation. The detailed analysis
of the results show that polymer-induced term in (5.26) is mainly negative, and
in opposite sign with the self-amplification term when the later is negative. The
two terms have similar amplitude, showing the importance of the visco-elastic
effect. Therefore, two effects are at play that inhibit the generation of strain: (i) the
existence of a visco-elastic term that preferentially reduces the strain generation
and (ii) the fact that the self-amplification mechanism itself is not intrinsically
modified but weakened since the strain amplitude is reduced and that it scales
as ‖S‖3. From the phenomenological viewpoint, the polymer effects inhibit the
generation of vortex sheets.

• Depletion of vorticity is not due to a significant modification of the vortex stretching
mechanism, since angles between the vorticity vector and the eigenvectors of the
strain tensor are almost the same as in the Newtonian case. The vorticity vector is
observed to be preferentially aligned with the first and intermediate eigenvectors
of the conformation tensor C and in the two directions along which the polymer
molecules are mostly stretched. Analysis of the p.d.f.s shows that the visco-elastic
term in (5.27) is mainly opposed to the vortex stretching term and then appears as
a sink term for vorticity. As for the strain case, depletion of vorticity originates in
several factors: (i) the existence of a visco-elastic force that counteracts the vortex

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 5.7 Instantaneous flow
topology in Newtonian fluid
(top), visco-elastic
turbulence (middle),
visco-elastic turbulence with
very strong vorticity
depletion effect (bottom).
Red: vortex structures; Grey:
vortex sheets. From Horiuti
et al. (2013) with permission
of AIP
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Fig. 5.8 Evolution of the p.d.f. of the alignment of the principal axes of C with those of the
strain-rate tensor S. Left column: eigenvector associated with the largest eigenvalue; Right column:
intermediary eigenvalue: Top: De = 0.19, Middle: De = 0.56, Bottom: De = 2.14. From Valente
et al. (2014) with permission of CUP
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stretching mechanisms, (ii) the reduction of the vortex stretching term because of
the damping of strain and (iii) the reduction of the vortex stretching term because
of the decrease of vorticity.

The occurence of the elastic-to-kinetic energy cascade is tied to the sign of the
term ∂u′

i
∂x j

T p
i j . Elastic energy is converted into kinetic energy if it is negative, while

the inverse transfer occurs when it is positive.
This tensor product can be rewritten as

∂u′
i

∂x j
T p

i j = λiξ j cos2(e(i)
k , g(i)

k ), (5.47)

where e(i) and λi , i = 1, 3 denote the eigenvectors and eigenvalues of the strain
tensor S and g(i) and ξi are related to those of Tp. These terms are sorted in the
order of decreasing eigenvalues. The p.d.f.s of the cosine of the angle between the
eigenvectors at different Deborah numbers is displayed in Fig. 5.8. In all cases, g(2) is
preferentially aligned with e(2). On the contrary, the g(1) exhibits a strong dependency
on the Deborah number. At low De it is mainly aligned with e(1), leading to a net drain
of kinetic energy by polymer molecules. At high De, it is preferentially aligned with
e(2), but with alternative preferred directions with angles of 45 and 55 with e(1) and
e(3), respectively. The latter can lead to negative values of the contraction of the two
tensor, and then to the elastic-to-kinetic energy cascade. At medium De, g(1) can be
aligned with either e(1) or e(2), leading to both elastic-to-kinetic and kinetic-to-elastic
transfers.
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Chapter 6
Isotropic Turbulence with Coupled
Microstructures. II: Quantum Turbulence

6.1 Introductory Phenomenology to Quantum Turbulence

Quantum Turbulence is a relatively recent field of research compared with classical
turbulence, since this terminology was coined in 1982 by C. Barenghi in his PhD
thesis. It encompasses a wide range of turbulent phenomena observed at ultra-low
temperature below a critical fluid-dependent temperature Tc in superfluid Helium
(superfluid phase of liquid 4He and 3He-B) and Bose–Einstein atomic condensates
(dilute atomic alkalis gas such as lithium or rubidium vapor, in practice), some of
which having been studied since the 1950s. Typical values of Tc are displayed in
Table 6.1. The present chapter is restricted to the case of isotropic turbulence in
such fluids, the emphasis being put on main differences and common features with
isotropic turbulence in classical Newtonian fluids, as discussed in Chap. 4. Here,
the purpose is to discuss features of turbulence when the very structure of small
scales is radically different from the one found in classical fluids. Therefore, the
emphasis will be put on the aspects related to fluid mechanics of superfluid turbulence,
introducing only the minimum amount of quantum physics. Historical perspectives
and issues related to experimental techniques will not be detailed here, and the reader
is referred to recent review articles, e.g. Vinen and Niemela (2002), Vinen (2006,
2010), Tsubota (2009, 2013), Skrbek and Sreenivasan (2012), Nemirovskii (2013),
Barenghi et al. (2014), Tsatos et al. (2016), Tsubota et al. (2017).

The most striking feature of superfluids is that, as anticipated by Onsager and
Feynman in the late 1940s and the early 1950s respectively, superfluids at zero
temperature behave as inviscid fluids in which circulation and vorticity are quantized.
More precisely, all vorticity is concentrated in discrete filament vortices with radius
rc and fixed vorticity (see Table 6.1 and Sect. 6.3 for details about the properties
of quantized vortices and their dynamics), and superfluid turbulence consists of a
disordered tangle of such vortices. A typical tangle is shown in Fig. 6.1. An important
fact is that the vortex radius is fluid-dependent and may vary with pressure and
temperature, but it is not governed by the flow. The quantum of circulation associated
to each vortex is �/m, where � = 6.6260 10−34 m2 kg/s is the Planck constant and m
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Table 6.1 Main features of the three levels of description of Quantum turbulence
4He 3He-B Bose–Einstein atomic

condensates

Transition temperature
at saturated vapor
pressure Tc

2.17 K 1 mK O(nK)

Threshold for pure
superfluid behavior

T < 0.3 − 1 K T < 200 µK

State Liquid Liquid Gas (alkalis)

Quantized vortex
radius rc

∼1 Å= 10−10 m ∼800 Å 10−7 m (105 atoms of
87 Rb)

Inter-vortex spacing � ∼10−5 m ∼10−5 m ∼rc

Typical � = log(�/rc) ↑ 12–14 ↑ 4 ∼1–2

Circulation quantum
κ = �/m

9.997 10−8 m2/s
(m = m4)

6.65 10−8 m2/s
(m = 2m3)

Kelvin-wave weak
turbulence (small
scales)

Yes Yes Yes

Pseudo-Kolmogorov
turbulence (large
scales)

Yes No (high normal fluid
viscosity)

Yes (in DNS)

Compressibility
effects on turbulence

Weak Weak Strong

the mass of the particule given by quantum physics theory (1 atom in 4He, 2 atoms
in 3He-B). Superfluid flows are characterized by two microscopic length scales: the
quantized vortex radius, rc, and the mean inter-vortex distance, �. At scales smaller
or of the order of �, superfluid flows are governed by quantized vortex dynamics and
exhibit a very particular dynamics not found in classical fluids.

Key elements of quantized vortex dynamics are reconnection, i.e. interaction with
neighbouring vortices yielding the creation of new vortices, oscillations due to Kelvin
waves excited by reconnection phenomena, and dissipation of energy via emission of
phonons (i.e. acoustic waves in the parlance of classical fluid mechanics, see Sect. 3.2)
in 4He or quasi-particules trapped in vortex core in 3He-B. A very important fact is
that quantized vortex vorticity depends on the fluid, the temperature and the pressure,
and that all vortices have the same vorticity. Therefore, they are not sensitive to the
vortex stretching mechanism which is a leading mechanism in vorticity dynamics in
classical fluids. As a matter of fact, quantized vortices in superfluids are not classical
vortices, and their name may be misleading. Looking at microscopic physical theories
stemming from quantum physics, they corresponds to topological defects of a state
vector which induce a quantum of circulation, than can be tied to an equivalent
quantum of vorticity thanks to Kelvin’s circulation theorem.

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Fig. 6.1 Typical view of a
vortex filament tangle in a
numerical simulation of
counterflowing 4He based on
the Biot–Savart filament
vortex model. From
Baggaley et al. (2014) with
permission of APS

At scales much larger than � classical hydrodynamics phenomena can be observed
under some circumstances, leading to so-called quasi-classical régimes. In the case
fluctuating kinetic energy is injected, e.g. using a grid, at scales much larger than �,
a flow can develop at hydrodynamics scales that shares many features with classical
turbulence, as observed in 4He. The fact that all vortices have the same radius and
that vortical structures whose typical size is several order of magnitude larger than rc

can occur is not paradoxical. As a matter of fact, large vortical hydrodynamic scales
correspond to pockets of fluids in which quantized vortices are partially or totally
polarized, yielding a non-zero coherent vorticity at large scales. Such pockets are
often referred to as vortex bundles. It is important noting that large-scales features
are very dependent on both the superfluid under consideration and the way that
turbulence is injected, e.g. via mechanical forcing or thermal forcing. Key elements
of Quantum Turbulence in the limit of zero-temperature are displayed in Sect. 6.4.
A schematic view based on actual knowledge of superfluid dynamics, mostly based
on counterflowing 4He turbulence theory is displayed in Fig. 6.2.

Superfluid flows at non-zero temperature are more complex, since thermal effects
come into play. A powerful paradigm to describe these effects is the two-fluid hydro-
dynamic model, proposed by Tisza and Landau. According to this model, a superfluid
flow at non-zero temperature can be described as the combination of a superfluid flow
and a classical viscous fluid flow, the two fluids being tied by a mutual friction force.
This mutual friction force is a paradigm to account for interactions between quan-
tized vortices and quasi-particules that constitute the normal fluid component (more
precisely scattering of phonons and rotons on the vortex core). In a macroscopic
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Fig. 6.2 Schematic view of Quantum Turbulence dynamics, mostly relevant for counterflowing
4He turbulence. rc: quantized vortex radius; λph : cutoff length of the Kelvin wave cascade due to
phonon emission; �: mean inter-vortex distance; �Q : cutoff length scale of the pseudo-Kolmogorov
inertial range at large hydrodynamic scales. Kelvin wave cascade is likely not to occur in 3He-B
and Bose–Einstein condensates, due to the low value of the ratio �/rc. Phonon radiation must be
replaced by quasi-particule radiation in 3He-B

description, these interactions are represented by forces exerted on quantized vor-
tices, e.g. a drag force, and the reciprocal force experienced by the normal fluid.
Despite this model is mostly an empirical model that does not derive rigorously
from finer microscopic models, it appears to be a meaningful and powerful model to
describe large-scale hydrodynamic features of turbulence in some cases, especially
liquid superfluid helium. In this model, the mass fraction of both superfluid and
normal fluid are tabulated as functions of temperature. The viscosity of the normal
fluid is strongly dependent on the nature of the superfluid under consideration: while
the normal component of 4He exhibits a very low viscosity, 3He-B is a very viscous
fluid whose viscosity behaves as 1/T 2. Consequently, hydrodynamic large scales
may exhibit very different dynamics depending on the fluid. As an example, let us
mention that quasi-classical turbulence has been reported at scales much larger than
the inter-vortex distance � in 4He, while the normal fluid component is almost at rest
due to its very high viscosity in existing experimental realization of turbulence in
3He-B. Mutual friction makes it possible to account for several effects such has the
lock-on between superfluid and normal fluid at large hydrodynamic scales, damping
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of Kelvin waves, but also production of turbulence in counterflowing turbulence.
Physical origin and models for the mutual friction are discussed in Sect. 6.6.

The case of dilute gas Bose–Einstein condensates is different, since these gas
have ultra-low densities (in practice, experimental realizations deal with O(103) -
O(107) trapped atoms of alkalis gas at adequate temperature and pressure). Here, the
range of scales is much smaller than in superfluid liquid helium, and ad hoc models
must be found. An interesting point is that quantized vortex radius is much larger
than in superfluid helium, allowing for highly improved experimental observations.
Another point is that, due to their very low-density, compressibility effects are more
important so that an adequate two-fluid model should incorporate many features of
weakly compressible turbulence (see Sect. 13.2).

Quantum turbulence is generic term that encompass a huge number of physical
phenomena that occur on a dramatically broad range of scales, from atomic scale to
large scales of turbulence such as the integral length scale. It is also observed that
the nature of the fluid, liquid for superfluid helium of gas for atomic Bose–Einstein
condensates, also plays a great role. Therefore, several models have been developed
to represent Quantum Turbulence dynamics at different scales in a efficient way, each
model being optimized to account for a set of physical mechanisms occuring over a
fixed range of scales. These models are described in Sect. 6.2.

6.2 The Three Levels of Description and Physical Modelling

There are three main models (with multiple variants and ad hoc corrections to account
for specific additional phenomena not captured in the original models):

• The Gross–Pitaevskii Equation, also referred to as the nonlinear Schrödinger equa-
tion, which is well suited to describe physics in weakly interacting Bose gas at zero
temperature from the atomic scale to the typical inter-vortex distance �, and which
accounts for almost all phenomena related to single quantized vortex dynamics
(see Sect. 6.2.1).

• The filament vortex model based on the Biot–Savart law, in which quantized vor-
tices are represented as incompressible vortex filaments with zero radius obeying
the incompressible Euler equations for an inviscid fluid (see Sect. 6.2.2).

• Two-fluid hydrodynamic model which is build to describe coarse-grained physics
at scale much larger than the inter-vortex distance (see Sect. 6.2.3). This can be
interpreted as a kind of homogenized model, keeping in mind that it is note derived
from finer models using a rigorous homogenization procedure.

Their main features and limitations are displayed in Table 6.2.

http://dx.doi.org/10.1007/978-3-319-73162-9_13


274 6 Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence

Table 6.2 Main features of the three levels of description of Quantum turbulence

Gross–Pitaevskii
equation

Biot–Savart vortex
line model

Two-fluid
hydrodynamic model

Liquid superfluid
helium

Limited accuracy
(ultra-low density
assumption violated)

Yes Yes

Atomic Bose–Einstein
condensates

Yes A priori poorly
accurate
(incompressibility
assumption)

No

Quantized vortex
internal dynamics

Yes No No

Quantized vortex
reconnection

Yes With ad hoc empirical
model only

No

Kelvin waves and
Kelvin cascade

Yes Yes No

Large-scale
hydrodynamics
(vortex bundles)

A priori loss of
accuracy (single-state
assumption may be
violated)

LIA not accurate due
to importance of
non-local effects

Yes

Dissipative
mechanisms

Yes (phonon emission) No Yes (equivalent
macroscopic viscosity)

Finite
temperature/mutual
friction effects

No (zero-temperature
assumption, but some
ad hoc models exist)

With ad hoc empirical
model only with ad
hoc empirical model
only

Yes, ad hoc models
with tabulated ρn(T )

and ρs(T )

Dilatational effects Yes No No

6.2.1 Gross–Pitaevskii Model for Superfluid Dynamics

6.2.1.1 The Gross–Pitaevskii Equation

The Gross–Pitaevskii equation, also referred to as the nonlinear Schrödinger equa-
tion, was derived in 1961 to describe quantized vorticity in a Bose gas at ultra-low
temperature and density (Tsubota 2009, 2013; Nemirovskii 2013; Tsatos et al. 2016).
This is a mean-field theory, in which it is assumed that all bosons are in the same
quantum state, so that the whole system can be described thanks to a single particule
state ψ(x, t), which is a complex-valued function. With such a simplification, the
particule density ρ is given by |ψ|2, i.e. the number of particules N is equal to

N =
∫∫∫

|ψ(x)|2d3x. (6.1)

The Gross–Pitaevskii evolution equation for a system of N particules of mass m
is
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ı�
∂

∂t
ψ(x, t) =

(
− �

2

2m
∇2 + Vtrap + g|ψ(x, t)|2

)
ψ(x, t), (6.2)

where �, Vtrap and g are related to the Planck constant, the confining external
potential1 and the strength of the particule interactions, respectively. The interac-
tion between particules is here assumed to be weak thanks to the hypotheses of
(i) ultra-low temperature and (ii) very low-density, leading to the use of the term
|ψ(x, t)|2. It is assumed to consist of weak s-wave scattering that can be modeled
by a two-body contact potential. The amplitude term g is taken proportional to the
s-wave scattering length rs , yielding g = 4πrs�

2/m.
Using the classical polar expression for complex numbers ψ(x, t) =

f (x, t)eı S(x,t), the macroscopic fluid velocity us and momentum ρs us are recov-
ered as

us = �

m
∇S, ρs = f 2 (6.3)

and relation (6.2) is rewritten as the following system

∂ f 2

∂t
= − �

m
∇ · ( f 2∇S), (6.4)

− �
∂S

∂t
= − �

2

2m
∇2 f + 1

2
m‖us‖2 + V (x) + g f 2. (6.5)

For an infinite time independent system, the quantized vortex radius can be eval-
uated as being equal to the healing length rc, i.e. the distance over which the pertur-
bation of the base state due to the vortex is non-negligible. Therefore, it is estimated
as the length scale over which the interaction term balances kinetic energy, i.e.

�
2

2m
|∇ψ|2 ∼ g|ψ|4 =⇒ �

2

2m

|ψ|2
r2

c

= g|ψ|4 =⇒ rc = �√
2mgρ0

, (6.6)

where ρ0 is the density of the uniform base state. Typical values are rc ∼ 10−10 m in
4He and rc ∼ 10−8 m in 3He-B, respectively.

6.2.1.2 Equivalent Hydrodynamic Equations

The equation for mass conservation appears to be exactly the same as for classical
fluids, i.e.

∂ρs

∂t
+ ∇ · (ρs us) = 0. (6.7)

1It must be kept in mind that experiments related to quantum turbulence are all performed in closed
configurations, which leads to the use of a potential to account for the confinement appartus.



276 6 Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence

The associated hydrodynamic momentum equation can be obtained taking the
gradient of Eq. (6.5), yielding the quantum Euler equations also referred to as the
Madelung equations:

∂us

∂t
= − 1

mρs
∇ ps − 1

2
∇u2

s + 1

m
∇
(

�

2m
√

ρs
∇2√ρs

)
− 1

m
∇Vtrap, (6.8)

where ρs = f 2 and ps = ρ2
s g/2 are the density and the pressure, respectively.

The third term in the right-hand side is known as the quantum pressure. It is non-
negligible only in regions in which the density varies rapidly, i.e. in the core of the
quantized vortices in which it is dominant over the pressure. Therefore, this term
can be neglected outside quantized vortex cores. The classical Euler equations for
an irrotational compressible flow of inviscid fluid are recovered as a limit consid-
ering � → 0. The associated speed of sound for small perturbations (see below

Sect. 6.2.1.4) obeying linearized equations is as =
√

1
m

∂ ps

∂ρs
.

The above equations are exact in the limit of an infinite number of particules at
zero temperature. They a priori cannot account for mutual friction and other finite
temperature effects. They can describe important phenomena for quantized vortex
dynamics, including Kelvin waves and vortex reconnection. It is worth noting that
they rely on the assumption that all particules are in the same state. Such an approx-
imation may be not realistic when handling a huge number of quantized vortices
subjected to partial or total polarization in subdomains, i.e. when considering large-
scale phenomena associated with Kolmogorov-like turbulence at scales much larger
than the separation length. Another point is that they are derived assuming very-low
densities, i.e. for gas, and their use to describe liquid superfluid helium is not assessed
a priori. Only qualitative features must be sought for in this case.

6.2.1.3 Energy of Fluctuations

Solutions to the Gross–Pitaevskii equation have a total energy Etot defined as

Etot (x, t) =
(

�
2

2m
|∇ψ(x, t)|2 + Vtrap|ψ(x, t)|2 + 1

2
g|ψ(x, t)|4

)
, (6.9)

which can also be split as Etot = EK + Ev + EI + EQ where the kinetic energy, EK ,
potential energy, Ev , interaction energy, EI and quantum energy, EQ are defined as

EK (x, t) = m

2
ρs(x, t)‖us(x, t)‖2, Ev(x, t) = ρs(x, t)Vtrap(x, t),

EI (x, t) = 1

2
gρ2

s (x, t), EQ(x, t) = �
2

2m
|∇√ρs(x, t)|2.
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It is worth noting that the velocity field us(x, t) is not solenoidal. Therefore, it can
be split into a solenoidal and a dilatational components as in the case of compressible
Navier–Stokes equations, e.g. using the Helmholtz decomposition, see Sect. 2.1.5.

6.2.1.4 Small Amplitude Waves

The dynamics of small disturbances can be analyzed using linearized Gross–
Pitaevskii equations. Considering a base state e−ıμt/�ψ0(x) along with a small dis-
turbance of the form e−ıμt/�[u(x)e−ıωt + v∗(x)eıωt ] and inserting this solution into
(6.2), one obtains at the leading order for the perturbation

�ωu(x) =
(

− �
2

2m
∇2 − μ + Vtrap + 2gψ0(x)

)
u(x) + gψ2

0(x)v(x), (6.10)

− �ωv(x) =
(

− �
2

2m
∇2 − μ + Vtrap + 2gψ0(x)

)
v(x) + gψ2

0(x)u(x). (6.11)

The solution found by Bogoliubov in 1947 considering a plane wave perturbation
with wave vector k is

(�ω(k))2 =
(

�
2k2

2m

)(
�

2k2

2m
+ 2gρs

)
, (6.12)

where �ω(k) is the energy of the perturbation. At large momenta, i.e. k 
 1, one
has ω(k) ∼ �k2/2m, corresponding to free-particule solutions. At low momenta
(k � 1), one obtains

ω(k) = ask, as =
√

gρs

m
, (6.13)

which corresponds to an acoustic wave propagating at the speed of sound as in the
macroscopic interpretation. It is interesting to observe that this speed of sound coin-
cides with the hydrodynamic definition a2

s = 1
m

∂ ps

∂ρs
for a fluid with equation of state

ps = gρ2
s /2. This solution shows that there is a continuous transition from free-

particules to phonons (and therefore acoustic waves using the macroscopic hydro-
dynamical interpretation) in the small disturbance solution. It is worth noticing that
the Gross–Pitaevskii model does not contain short-wave disturbances such as rotons,
i.e. perturbations are associated to irrotational velocity fields. Therefore the solution
is made of an inviscid superfluid component and a gas of quasi-particules (phonons,
i.e. an acoustic field). The acoustic waves can interact because of non-linear effects,
leading to an equilibrium state corresponding to the local Planck distribution of
phonons.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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6.2.1.5 Accounting for Thermal Dissipation

The Gross–Pitaevskii equation discussed above is valid in the limit of zero tem-
perature, and does not account for thermal effects, which are responsible for the
existence of mutual friction. It is important noticing that no concept exists in the
theory of atomic Bose–Einstein condensates that explains dissipation or mutual
friction of quantized vortices. Some dissipation can be added in an heuristic way
(Kobayashi and Tsubota 2006, 2007; Tsubota 2013) considering that both energy
and particules are exchanged with a particule reservoir. The latter is assumed to acts
in such a way that the chemical potential of the system, μ, relaxes toward that of
the reservoir, μr . Accounting for this relaxation phenomenon by a complex relax-
ation term γ(μ − μr ) into the evolution equation for the renormalized state function
ψμ(x, t) = ψ(x, t)e−ıμt , one obtains the following modified Gross–Pitaevskii equa-
tion

ı�
∂

∂t
ψμ(x, t) =

(
− �

2

2m
∇2 + g|ψμ(x, t)|2 − ıγ(μ − μr )

)
ψμ(x, t). (6.14)

The parameter γ is a relaxation frequency. Using the approximation

ı�
∂

∂t
ψμ(x, t) � μψμ(x, t), (6.15)

and μ � μr , one obtains

(ı − γ)�
∂

∂t
ψμ(x, t) =

(
− �

2

2m
∇2 + g|ψμ(x, t)|2 + ıγμ

)
ψμ(x, t). (6.16)

The associated equation for the state function ψ(x, t) is

(ı − γ)�
∂

∂t
ψ(x, t) =

(
− �

2

2m
∇2 + g|ψ(x, t)|2 − μ

)
ψ(x, t). (6.17)

It is important noticing that the introduction of this relaxation term yields a loss
of the conservation of both energy and number of particules. To recover a constant
number of particules, one should use a time-dependent chemical potential μr .

The hydrodynamic mass and momentum equations associated to (6.17), some-
times referred to as quantum Navier–Stokes equations, are

∂ρs

∂t
+ ∇ · (ρs us) = γ

(
�
√

ρs∇2√ρs

m
− mρsu2

s

�
− 2(gρs − μ)ρs

�

)
, (6.18)

∂us

∂t
= − 1

mρs
∇ ps − 1

2
∇u2

s + 1

m
∇
(

�

2m
√

ρs
∇2√ρs

)
− νq∇2us, (6.19)
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with the effective kinematic viscosity νq = �γ/2m, where γ is an arbitrary real
parameter. Introducing a reference length D, one can define the effective quantum
Reynolds number Req = Lus/νq = 2mLus/�γ.

This approach can be refined coupling the Gross–Pitaevskii equation for the con-
densate to an auxiliary equation for thermal disturbances, whose wave length is
smaller than the vortex core radius, rc. Such perturbations are emitted during vortex
reconnection, by high frequency Kelvin waves and small quantized vortex disap-
pearance. Introducing the decomposition

ψ(x, t) = ψ0(x, t) + ζ(x, t) (6.20)

where ψ0(x, t) and ζ(x, t) denote the base condensate state and the (small) thermal
noise excitation, respectively, one couples the Gross–Pitaevskii supplemented by a
thermal forcing term for the condensate to a Bogoliubov – de Gennes equation for
the excitation:

ı�
∂

∂t
ψ0(x, t) =

(
− �

2

2m
∇2 − μ + g

[
|ψ0(x, t)|2 + 2ζ†ζ

]
+ ıue · ∇

)
ψ0(x, t) + gζ2ψ∗

0

(6.21)

ı�
∂

∂t
ζ(x, t) =

(
− �

2

2m
∇2 − μ + g|ψ0(x, t)|2 + ıue · ∇

)
ζ(x, t) + gψ2

0(x, t)ζ†

(6.22)
where the term ıue ·∇ has been added to account for advection effect by the velocity
field ue. This advection term is useful when analyzing the origin of the mutual
friction term that is present in hydrodynamic two-fluid models of superfluid flows.
The dissipation in (6.21) is given by the imaginary term

g
(

ζ2ψ∗
0

ψ0

)
. (6.23)

6.2.2 Biot–Savart Model for Vortex Tangle Dynamics

6.2.2.1 Vortex Filament Kinematics

Modelling of quantized vortices as vortex filaments obeying the Biot–Savart law was
popularized by Schwarz in 1985 to perform numerical simulation of vortex tangle
dynamics (Schwarz 1985, 1988; Nemirovskii 2013; Tsubota et al. 2017). Using
that approximation, fine details of superfluid physics are neglected and quantized
vortices are represented as inviscid vortex filaments with zero radius that obey the
vorticity evolution equation (2.36) in which the viscous term is removed and where
the velocity field is computed thanks to the Biot–Savart law discussed in Sect. 2.1.8.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 6.3 Sketch of the
vortex filament

In the case of several filaments, it can be seen that each filament is submitted to
self-induction if it is not exactly straight and the force exerted by other filaments
since the velocity field originates in two sources.

Considering a single vortex filament L parametrized by ξ, the vorticity field ω is
given by

ω(x, t) = κ

∫
L

s′(ξ, t)δ (x − s(ξ, t)) dξ (6.24)

where s, s′ = ∂s
∂ξ

and s” = ∂2 s
∂ξ2 denote the unit radius vector, the unit tangent

vector along the filament at position s(ξ, t) and the principal normal vector at s with
magnitude 1/R, with R the local radius of curvature (see Fig. 6.3). Here κ = �/m is
related to the quantum of vorticity associated to each quantized vortex, as discussed
in the preceding section.

Introducing (6.24) into the Biot–Savart relation (2.42), one obtains the following
expression for the induced velocity field uBS:

uBS(x, t) = κ

4π

∫
L

s′(ξ, t) × [x − s(ξ, t)]
‖x − s(ξ, t)‖3

dξ. (6.25)

It is observed that this expression diverges when trying to compute the induced
velocity at a location s0 = s(ξ0, t) located on the vortex line, since the integrand
becomes singular as s → s0(ξ, t). This problem is treated expanding s(ξ) around
s0 = s(ξ0)

s = s0 + s′ξ + 1

2
s”ξ2 + · · · (6.26)

Inserting this expansion into (6.25) and introducing an upper cutoff parameter ξ∗
on the order of the curvature radius at point s0, one obtains

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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uBS(s → s0) = κ

8π
s′ × s”

∫ +ξ∗

−ξ∗

dξ

|ξ| + regular part. (6.27)

The singular part can be evaluated reminding that the Kelvin–Helmholtz theorem
states that each elementary piece of the vortex line should move with a velocity
equal to the velocity of the net motion of a small contour surrounding that element.
Reminding that the Biot–Savart formula holds only for |ξ| > rc and that the part of
the vortex line with |ξ| � rc has a negligible contribution to the net motion on the
small contour, one has

lim
ξ∗→0

∫ +ξ∗

−ξ∗

dξ

|ξ| = 2 ln(ξ∗/rc), (6.28)

leading to the following expression for the induced velocity:

uBS(x, t) = κ

4π
ln

(
R

rc

)
s′ × s”

︸ ︷︷ ︸
local part

+ κ

4π

∫
L/[ξ−R,ξ+R]

s′(ξ, t) × [x − s(ξ, t)]
‖x − s(ξ, t)‖3

dξ

︸ ︷︷ ︸
non-local part

(6.29)
where ξ∗ has been fixed equal to the radius of curvature R.

Let us note that conservation of kinetic energy and momentum are expressed
respectively as

d

dt

∫
ds · ds0

‖s − s0‖ = 0 (6.30)

and
d

dt

∫
s × ds = 0. (6.31)

Using this approximation, one can study the dynamics of vortex tangles in the
absence of vortex reconnection and mutual friction. Ad hoc models have been pro-
posed by some authors for these purposes (Schwarz 1985; Tsubota and Adachi 2011;
Baggaley 2012; Zuccher et al. 2012; Kondaurova et al. 2014). Since they are purely
empirical models they will not be discussed here for the sake of brevity. But it should
be kept in mind that they lead to interesting but model-sensitive qualitative results. It
is also worth noting that dissipative mechanisms that occur at very small scale (emis-
sion of phonos) are not taken into account. Compressibility-induced mechanisms are
also neglected, e.g. interaction between acoustic waves and quantized vortices. Such
phenomena are expected to be very weak in most configurations.

6.2.2.2 Local Induction Approximation

The previous estimation shows that in the absence of huge increase of non-local
interactions associated to polarization of the vortex tangle (i.e. in the absence of
large-scale vortical motion at scale much larger than the filament spacing scale �),
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the vortex line motion is dominated by the local self-induced singular contribution.
Therefore, one can simplifies Eq. (6.29) keeping the later term only, defining the
Local Induction Approximation (LIA):

uBS ∼ κ

4π
ln(R/rc)s′ × s” (6.32)

where R denotes a characteristic curvature radius taken as a constant parameter.
This approximation is valid in the absence of very strong local curvature effects for
which the Taylor series expansion may become meaningless, i.e. in the presence of
singularities like cusps associated to vortex reconnection. LIA is very attractive for
numerical simulation, since it is a purely local model that does not involve expensive
non-local integral terms. It can be shown that (6.32) exactly preserves filament length
and then filament energy, along with momentum. It also preserves more integral
invariants, such as the square of the curvature radius:

d

dt

∫
‖s”‖2dξ = 0. (6.33)

The link with Schrödinger equation can be established following the works by
Betchov in 1965 and Hasimoto in 1972. Rewriting (6.32) in terms of intrinsic vari-
ables of the vortex line, namely the curvature ζ and the torsion τ , and than introducing
the complex variable ψ(ξ, t) such that

ζ = |ψ|, τ = ∂�

∂ξ
, (6.34)

where � is the phase of φ, then (6.32) is equivalent to the 1D nonlinear Schrödinger
equation

ı
∂ψ

∂t
= −∂2ψ

∂ξ2
− 1

2
|ψ|2ψ. (6.35)

This equation, and consequently the LIA equation (6.32) is an integrable system
with an infinite number on invariants In:

In =
∫ +∞

−∞
an(ξ)dξ, a1 = 1

4
|ψ|, an+1 = ψ

d

dξ

(
an

ψ

)
+
∑

p+q=n

apaq . (6.36)

6.2.2.3 Forces Exerted on a Vortex Line and Dynamical Equations

We now address the issue of finding a dynamical evolution equation for the vortex
filament. Considering that the vortex filament moves at velocity uL in the laboratory
frame in a superfluid with density ρs and velocity us , it is subjected to the Magnus
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force,2 which is expressed as (per unit length)

f M = ρsκs′ × (uL − uT ) (6.37)

where uT = us + uBS is related to the total velocity of the superfluid in the vicinity
of the vortex filament in the laboratory frame.

The existence of mutual friction between the superfluid and the normal fluid
component originates in the scattering of quasi-particules that form the normal fluid
component (rotons, phonons) by the quantized vortex core and the neighboring region
in which us is large. Denoting un the velocity of the normal fluid component, it is
heuristically modeled as a drag force acting on the vortex filament, which is expressed
as (where underscript ⊥ denotes the component perpendicular to the vortex line)

f D = ρsκ
[
α′(un − uBS)⊥ − αs′ × (un − uBS)

]
(6.38)

or equivalently

f D = −ρsκ
[
α′s′ × [s × (un − uBS)] + αs′ × (un − uBS)

]
(6.39)

where α and α′ two empirical parameters proportional to ρn/ρ, where ρn is the
normal fluid density and ρ = ρn + ρs the total density. A detailed discussion of the
mutual friction model and its variants, along with the link with microscopic theories
is displayed in Sect. 6.6. Therefore, the second law of Newton yields:

mef f
d2s
dt2

= f M + f D (6.40)

where mef f ∝ ρsr2
c is the effective mass of the filament per unit length. Since it is

very small, inertia effects can be neglected, leading to f M + f D = 0. Considering
this equilibrium relation and remembering that a f D induces a velocity field equal
to 1

ρsκ
s′ × f D , Schwarz proposed in 1985 the following formula in is seminal paper

related to numerical simulation of vortex filament dynamics (Schwarz 1985):

ṡ = uBS + uD = uBS + αs′ × (un − uBS) − α′s′ × [s′ × (un − uBS)
]
. (6.41)

This formula can be enriched to account for the possible existence of a base flow
in the superfluid component with velocity us (e.g. a superfluid stream induced by a
temperature gradient), by operating the substitution uBS → uT = uBS + us , leading
to

ṡ = uBS + us + αs′ × (un − us − uBS) − α′s′ × [s′ × (un − us − uBS)
]
. (6.42)

2The Magnus force arises when a body with non-zero circulation moves into a flow. The circulation
induces an asymmetry in the velocity and pressure distribution along the body surface, yielding a
non-zero force.
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This formula can be upgraded to account for boundary conditions and reconnection
between vortices and more additional physical phenomena. Evaluation of parameters
α and α′ and bridging with microscopic theories are discussed in Sect. 6.6.

6.2.2.4 Hamiltonian Representation, Kelvin Waves and Weak Wave
Turbulence

Dynamics of Kelvin waves that develop on quantized vortices, including induced
weak wave turbulence generated by resonant interactions, can be captured using
the vortex filament model. An elegant way to do that is to use the Hamiltonian
mechanics framework when neglecting all normal fluid effects, i.e. in the limit of zero
temperature. The key elements of the resulting analysis are given below, technical
details being omitted for the sake of brevity. The reader is referred to original papers
for more details, e.g. Kozik and Svistunov (2004), L’vov et al. (2007), Kozik and
Svistunov (2009), L’vov and Nazarenko (2010), Laurie et al. (2010), Nemirovskii
(2013).

It is assumed that a vortex line can be parametrized in Cartesian coordinates
expressing its x and y coordinates as functions of z, i.e. the vortex filament
is parametrized as (x(z), y(z), z). Let’s introduce the position vector r(z, t) =
(x(z, t), y(z, t)). Then, time derivates of r and s are tied by the following relation

∂r
∂t

= ∂s
∂t

−
(

ez · ∂s
∂t

)(
ez + ∂r

∂z

)
. (6.43)

Then using expression for the time derivative of s and replacing r(z, t) by the com-
plex variable w(z, t) = x(z, t) + ı y(z, t), one arrives at the following Hamiltonian
Biot–Savart equation for vortex line motion:

ıẇ = δH{w,w∗}
δw∗ (6.44)

where ∗ denotes complex conjugation and w′ = dw/dz, with

H{w,w∗} = κ

4π

∫∫ [1 + �(w′∗(z1)w
′(z2)]√

(z1 − z2)2 + |w(z1) − w(z2)|2
dz1dz2. (6.45)

This Hamiltonian is singular as z1 → z2 and then requires to be regularized. This
can be done introducing a intermediary scale r∗ such that rc � r∗ � λ, where rc

and λ denotes the quantized vortex core radius and the typical wave length of Kelvin
waves, respectively. The Hamiltonian can then be expanded as the sum of a singular
local part, Hloc and a regular non-local part, Hnloc, i.e.

H{w,w∗} = Hnloc{w,w∗} + Hloc{w,w∗} + O(r∗/λ) (6.46)
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Hnloc{w, w∗} = κ

4π

∫∫
|z1−z2|>r∗

[1 + �(w′∗(z1)w′(z2)]√
(z1 − z2)2 + |w(z1) − w(z2)|2 dz1dz2 (6.47)

Hloc{w,w∗} = 2β

∫ √
1 + |w′(z)|2dz, β = κ

2π
ln(r∗/a∗) (6.48)

where the auxiliary scale a∗ ∼ rc is introduced to remove a factor of the order of
unity in the logarithm. Tuning r∗ such that ln(r∗/rc) 
 ln(λ/r∗), one can take

β � κ

2π
ln(λ/rc), (6.49)

which leads to a satisfactory approximation of the leading local term.
Further simplification originates in the fact that Hloc vanishes taking r∗ = a∗. In

this case, one obtains the pseudo-Hamiltonian approximation:

H{w,w∗} � κ

4π

∫∫
|z1−z2|>a∗

[1 + �(w′∗(z1)w
′(z2)]√

(z1 − z2)2 + |w(z1) − w(z2)|2
dz1dz2. (6.50)

Kelvin waves are found linearizing the pseudo-Hamiltonian function, i.e. assum-
ing that disturbances have small amplitudes and that

α(z1, z2) = |w(z1) − w(z2)|
|z1 − z2| � 1. (6.51)

At the leading order, the Hamiltonian Biot–Savart equation leads to

ıẇ = δH2{w,w∗}
δw∗ , (6.52)

with

H2{w,w∗} = κ

8π

∫∫
|z1−z2|>a∗

(
2�(w′∗(z1)w

′(z2)) − α2(z1, z2)
) dz1dz2

|z1 − z2| . (6.53)

The subscript 2 denotes the fact that H2{w,w∗} is a quadratic term that represents
the scattering of 1 wave into 1 wave. Considering a vortex filament of length L
with periodic boundary conditions and the Fourier mode decomposition w(z) =
L−1/2∑

k wk(t)eıkz , the linearized pseudo-Hamiltonian simplifies as

H2{w,w∗} = κ

4π

∑
k

�(k)w∗
k wk . (6.54)

Solving that problem, the dispersion law for Kelvin waves is found to be
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�(k) = κ

4π
k2

(
ln

1

ka∗
+ C0 + O((ka∗)2)

)
, C0 � −2.077, (6.55)

in agreement with results discussed in Sect. 6.3.2. Terms O((ka∗)2) should be omit-
ted, since they do not correspond to the range of validity of the pseudo-Hamiltonian.

Higher-order expansion of the Hamiltonian yields a wave-turbulence model which
represents the Kelvin-wave cascade of energy toward smaller scales, i.e. writing

H{w,w∗} = H2{w,w∗} + H4{w,w∗} + H6{w,w∗} + · · · (6.56)

where H4{w,w∗} is a quartic term that accounts for scattering of 2 interacting waves
into 2 waves and H6{w,w∗} a sixth-order term representing a 3-to-3 Kelvin wave
scattering, and so on. Nonlinear wave interactions responsible for the Kelvin cascade
are mediated by terms higher than H2{w,w∗}. A very heavy technical algebra yields
the conclusion that the 4-wave interaction term H4{w,w∗} does not contribute to
the cascade, and that weak turbulence made of interacting Kelvin waves is governed
by the 6-wave term H6{w,w∗}. The full expression of H6{w,w∗} contains 73 terms
among which 72 are related to the contribution of two-by-two combinations of 4-
wave interactions leading to 6-wave scattering, the last one representing direct 6-wave
scattering phenomena, as illustrated in Fig. 6.4. These 73 terms involves about 20,000
individual contributions, showing the complexity of the problem.

Thanks to a canonical change of variable (w,w∗) → (b, b∗), the problem can be
recast as

ı ḃ = δHef f {b, b∗}
δb∗ (6.57)

where, in Fourier space representation

Hef f {b, b∗} =
∑

k

ωkbkb∗
k + 1

36

∑
i+ j+p = l+m+n

W l,m,n
i, j,p bi b j bpb∗

l b∗
mb∗

n (6.58)

where W l,m,n
i, j,p is related to the nonlinear interactions of modes (i, j, p) resulting in

the generation of modes (l, m, n).
A controversy exists dealing with the estimate of the magnitude of W l,m,n

i, j,p . On
the one hand, Laurie, L’vov, Nazarenko and Rudenko propose

W l,m,n
i, j,p ∼ − 3

4πκ
ki k j kpklkmkn, (6.59)

where kq denotes the wave number of mode q, while, on the other hand, Kosik and
Sistunov have the different scaling in their original proposition

W l,m,n
i, j,p ∝ k2

i . (6.60)
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Fig. 6.4 Sketch of multiple wave scattering phenomena that contribute to the Kelvin-wave cascade

The main difference between the two scalings comes from the fact that the latter
theory is based on a locality assumption in wave number space (i.e. only wave
vectors with close amplitude yield significant interactions), while in the former it
is hypothesized that main interactions involve two wave vectors (on the same side:
incident or scattered) with amplitude O(�), i.e. two Kelvin waves with large wave
length.

This difference yields different estimations of the slope of the energy spectrum
associated to Kelvin wave, which will be discussed later on. But let us emphasize
here that there is no direct experimental measure of the Kelvin wave spectrum, and
that numerical simulations do not allow for a definitive conclusion at present time
due to a lack of spatial resolution. This point will be further discussed in Sect. 6.4.2.

6.2.3 Two-Fluid Model for Coarse-Grained Hydrodynamics

We now address two-fluid models for quantum turbulence, which where pioneered
by Tisza (1938) and Landau (1941). Such models, sometimes referred to as coarse-
grained models, are empirical models built to represent motion at scales much larger
than the quantized vortex separation length �, i.e. they are valid in the range of
hydrodynamic scales, see Vinen and Niemela (2002), Tsubota (2013), Nemirovskii
(2013). Therefore, they are a priori unable to describe smaller scale physics, such as
Kelvin wave dynamics and quantized vortex reconnection. Consequently, the normal
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and superfluid velocity fields, un and us , used in this macroscopic theory should be
understood as locally averaged values of those found in the two previous theories
over control volumes with typical diameter much larger than �.

The possibility to account for the existence of normal fluid effects in superfluid
momentum equation is understood in the following way. The effective energy per
atom is equal to mμ where μ is the chemical potential per unit mass. Therefore the
condensate state function is equal to ψ(x, t) = √

ρ(x, t) exp(−ımμt/�), yielding

∂us

∂t
= −∇μ (6.61)

Now introducing μ0 = μ− u2
s /2 the chemical potential in a frame at rest with the

superfluid, one has the classical thermodynamical relation (with s the entropy of the
fluid per unit mass):

dμ0 = −sdT + 1

ρ
dp − ρn

ρ
(un − us) · d(un − us), (6.62)

and therefore

∂us

∂t
+ ∇

(
u2

s

2

)
= s∇T −

(
1

ρ

)
∇ p + ρn

ρ
∇(un − us)

2. (6.63)

It is similar to the Euler equation for inviscid fluids, with two additional term. The
entropic term, which shows that superfluid current can be induced using temperature
gradient, and the last one, which accounts for the difference between superfluid and
normal velocity.

This simple model can be extended writing a companion equation for the normal
fluid component and inserting a mutual friction term as proposed by Gorter and
Mellink in 1949 that accounts for the drag force exerted of quantized vortices, leading
to the Hall–Vinen–Bekarevich–Khalatnikov model3:

ρs

(
∂us

∂t
+ us∇us

)
= −ρs

ρ
∇ p + ρss∇T + ρsρn

2ρ
∇(un − us)

2 − f ns, (6.64)

ρn

(
∂un

∂t
+ un∇un

)
= −ρn

ρ
∇ p − ρss∇T − ρsρn

2ρ
∇(un − us)

2 + f ns + μn∇2un,

(6.65)
where μn is the normal fluid viscosity, along with

∇ · us = 0, ∇ · un = 0. (6.66)

3The original HVBK model was not design for turbulence but equations used to describe quantum
turbulence are formally the same.
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The sake of coherence with the estimate for the drag force exerted on a single
rectilinear quantized vortex given by Eq. (6.39) yields

f ns = −ρnρs

2ρ

(
Bω̂ × [ω × (us − un)] + B ′ω̂ × (us − un)

)
, (6.67)

where ω denotes the vorticity and ω̂ = ω/‖ω‖ is the associated unit vector. More
details about this model and its relation to other mutual friction terms defined in the
vortex filament model and the Gross–Pitaevskii equation are given in Sect. 6.6.3.

Mutual friction modifies the propagation of second sound in superfluids. This fact
is important, since coefficients B and B ′ are often tabulated measuring the damping
of second sound waves in laboratory experiments. Denoting usn = us − un , the
modified wave equation for second sound disturbances is

üsn + (2 − B ′)(ω × u̇sn) − Bω̂ × (ω × u̇sn) = a2
s,2∇(∇ · usn), (6.68)

where as,2 is the speed of second sound waves in the absence of mutual friction.
These two-fluid equations can be further extended to account for anisotropy of

quantized vortex tangles, boundary conditions, inhomogeneity …Such extensions
are beyond the scope of the present book, and the reader is referred to original
publications, e.g. Lipniacki (2011), Jou et al. (2011).

6.3 Quantized Vortices and Kelvin Waves: Facts and
Models

Quantized vortices observed in laboratory experiments or in numerical solutions
of the Gross–Pitaevskii equation, appear as vortex filaments and vortex rings. Cor-
responding dynamics and kinematics can be described in a meaningful way using
models discussed above.

6.3.1 Quantized Vortex Kinematics

Quantized vortices are represented as vortex lines and/or vortex rings with quantized
circulation. Denoting � the circulation along a closed path L one has

� =
∮

L
us · tdl = �

m

∮
L

∇S · tdl (6.69)

where t is the tangential unit vector to L. It is assumed that the typical radius of L is
much larger than the healing length rc, i.e. than the quantized vortex radius. In the
case that L encompass n quantized vortices with the same vorticity sign, one has
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� = nκ = n
�

m
, (6.70)

where κ is the quantum of circulation, i.e. the circulation induced by a single vortex.
The velocity field induced by a single vortex (n = 1) outside the vortex core region
consists of an azimuthal velocity component vφ:

uφ(r > rc) = κ

2πr
. (6.71)

The energy per unit length of the quantized vortex, EQV , is equal to the kinetic
energy of the entrained superfluid. Considering a cylindrical domain with radius
b > rc centered on the vortex line, one has

EQV =
∫ b

rc

πρsu2
φrdr = ρsκ

2

4π
ln

(
b

rc

)
. (6.72)

Several models for the vortex core have been proposed based on semi-empirical
rationale, none of them being fully satisfactory. Therefore, they will not be discussed
here.

6.3.2 Kelvin Waves Using the Vortex Filament Model

Quantized vortices can be considered as vortex filaments described by classical fluid
mechanics. Classical analytical solutions for velocity and pressure distribution in a
cylindrical vortex will not be reproduced here for the sake of brevity, since they are
available in many textbooks. Therefore, as shown by Lord Kelvin in the analysis of
the stability of Rankine vortex, a small amplitude oscillation of the vortex with wave
length λ = 2π/k will give birth to an helical perturbation that rotates at angular
velocity �(k) and propagates along the vortex line at phase velocity �(k)/k, with

�±(k) = κ

2πr2
c

(
1 ±

√
1 + krc

Y0(krc)

Y1(krc

)
(6.73)

where Yn(x) denotes the Bessel function of second kind of order n of imaginary argu-
ment. The solution exhibits two branches, namely fast waves with angular velocity
�+(k) and slow waves with �−(k). Since on expects the Kelvin waves to be intrin-
sically polarized and to rotate in a sense opposite to the direction of the superfluid
velocity circulation, the fast wave must be discarded, therefore �(k) = �−(k). In
the long wavelength limit, asymptotic expansion yields

�(k) � − κ

2πr2
c

k2 [ln(2/krc) − A] , (6.74)
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where A is a constant of the order of the unity, which depends on the detailed
radial profiles of velocity and density inside the vortex core. A common value is
A = γE + 3/2, where γE = 0.5772 is the Euler–Tricomi constant.

The energy of the wave is given by the relation EK W (k) = ��(k).

6.3.3 Kelvin Waves in the Gross–Pitaevskii Model

Another solution is to describe vortex lines and Kelvin waves using the Gross–
Pitaevskii equation. Considering a steady straight vortex line defined in cylindrical
coordinates as

ψ0(r, z,φ, t) = e−ıμt eıφ f (r) (6.75)

and inserting this solution into Eq. (6.2), one obtains the following ordinary differ-
ential equation:

− �
2

2m

1

r

d

dr

(
r

d f

dr

)
+ �

2

2mr2
f − μ f + g f 3 = 0 (6.76)

which can be solved numerically. One can show that f (r) → 0 when r → 0 and
f (r) → const when r → +∞.

Kelvin waves are recovered considering small disturbances of the state function
ψ about ψ0 of the form

ψ(r, z,φ, t) = eı(φ−μt/�)bl(k, r)eı(kz+lφ). (6.77)

Pitaevskii recovered the same expression (6.74) for the angular velocity as in
the classical fluid dynamics solution. A very interesting result is that the solution
associated to (6.77) is not restricted to the vortex core, so that it also describes waves
emitted by the Kelvin waves. As seen in Sect. 6.2.1.4, this field is made of phonons,
i.e. Kelvin waves radiate an acoustic field. This phenomena is discussed in Sect. 6.3.7.

6.3.4 Kelvin Waves: Finite Amplitude Effects

Kelvin waves described in previous sections where assumed to be small disturbances
obeying linearized equations. Finite amplitude perturbations can also be analyzed
(Barenghi et al. 1985). To this end, the energy of a wave with wave number k is split
into the sum of the kinetic energy of the vibrating vortex core, Ec, and the potential
energy caused the increase of the length of the vortex, Ev . Assuming that Ec + Ev is
equal to the energy of a single wave, EK W (k), times the mean number of excitations,
one obtains
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Ec + Ev = ��(k)

exp
(

��(k)

kB T

)
− 1

, (6.78)

with kB and T the Boltzmann constant and the temperature, respectively. Defining z
as the axis of the (unperturbed) vortex and noting x(z) and y(z) the location of the
disturbed vortex at a given z, the kinetic energy per unit length is

ρs
πr2

c

2
(ẋ2 + ẏ2) (6.79)

where ρs is a mean density in the vortex core. Considering a rectilinear vortex with
initial length 2πR in its undisturbed state, along with a discrete set of modes, the
total kinetic energy associated with mode n is

Ec(n) = π2r2
c ρs A2

n�
2(kn)R (6.80)

where An and kn = n/R denote the amplitude and the wave number of the mode,
respectively. The potential energy for mode n is approximated as EQV �l(n), where
the energy per unit length of the quantized vortex is given by relation (6.72) and the
variation of the length of the vortex is computed as

�l(n) =
∫ 2πR

0

(√
1 + k2

n A2
n − 1

)
dz. (6.81)

The amplitude An is found solving Eq. (6.78) supplemented by relations (6.80)
and (6.81). Numerical solution reveals that in realistic cases finite wave amplitude
is about a few rc in 4He and 3He-B. It may be larger in dilute atomic gases, at least
for low-order modes. The increase of the quantized vortex length may be as large as
50% near the critical temperature.

6.3.5 Mutual Friction Effects on Kelvin Waves

Another issue deals with the modification of Kelvin wave features by mutual friction
force (Barenghi et al. 1985). Considering a case in which there is no mean superfluid
or normal velocity current, the equilibrium between the Magnus force and the drag
force for a massless vortex filament reads (see Sect. 6.2.2.3)

ρsκs′ × (uL − uBS) − γ0uL − γ′
0s′ × uL = 0, (6.82)

where γ0 and γ′
0 are the compact notations of the coefficients of the two component

of the mutual friction drag force. Considering the same geometrical configuration as
in the previous section devoted to finite amplitude effect, i.e. a displacement in the
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(x, y) plane, and projecting the previous equations onto the two axes in this plane,
one has

− ρsκẏ − γ0 ẋ + γ′
0 ẋ + T0

d2x

dz2
= 0, (6.83)

ρsκẋ − γ0 ẏ − γ′
0 ẏ + T0

d2 y

dz2
= 0. (6.84)

Here, the term −ρsκs′×uBS has been replaced by an equivalent tension force with
amplitude T0. Assuming that the displacement is proportional to exp[ı(�(k)t −kz)],
one obtains the system

ı�(k)(γ′
0 − ρsκ)y − (ı�(k)γ0 + T0k2)x = 0, (6.85)

ı�(k)(γ′
0 − ρsκ)x + (ı�(k)γ0 + T0k2)y = 0, (6.86)

whose solution is

�(k) = 2ıγ0T0k2 ± {−4γ2
0 T 2

0 k4 + 4T 2
0 k4[γ2

0 + (γ′
0 − ρsκ)2]}

2[γ2
0 + (γ′

0 − ρsκ)2] . (6.87)

The real and imaginary parts of �(k) are

�(�(k)) = T0k2

ρsκ

γ0"(ρsκ − γ′
0)

γ0ρsκ
∼ �−(k)

γ0"(ρsκ − γ′
0)

γ0ρsκ
, (6.88)

(�(k)) = T0k2γ0"

ρ2
s κ

2
∼ �−(k)

γ0"

ρsκ
, (6.89)

where �−(k) is the asymptotic solution of the slow mode solution given by Eq. (6.74)
and

γ0" = γ0ρ
2
s κ

2

γ2
0 + (ρsκ − γ′

0)
2
.

Looking at these results, it is seen that the mutual friction has two effects on
Kelvin waves: (i) a frequency shift and (ii) an amplitude damping. A numerical
analysis of these parameters shows that the modifications can be neglected unless the
temperature is very close to the critical temperature Tc associated with the transition
to the classical hydrodynamic régime (see Table 6.1).
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6.3.6 Normal Fluid Effects on Kelvin Waves:
Donnelly–Glaberson Instability

Frequency shift and damping of Kelvin waves induced by mutual friction are not
the only effects of the presence of the normal fluid component on Kelvin waves,
even in the case of a uniform normal fluid velocity with amplitude un . If un is
large enough, it can destabilize Kelvin waves via the Donnelly–Glaberson instability,
which is associated to the transformation of normal fluid kinetic energy into superfluid
vortex length, i.e. into superfluid energy, circulation and vorticity. In such a case, the
amplitude of the Kelvin wave A(t) with wave number k evolves as

A(t) = A(0)eσt , σ = α(kun − ν ′k2) (6.90)

where the efficient viscosity is defined as ν ′ = κ
4π

ln(1/krc). The mode that
undergoes the most rapid growth is kmax = un/2ν ′ with the amplification rate
σmax = αu2

n/4ν ′, which is a very long wave length compared with typical vortex
length since 2π/kmax ≥ �, where � is the mean intervortex spacing.

This instability yields large deformations of quantized vortices which can be
stopped by vortex reconnection. A rough estimate shows that in thermally driven
flows the amplitude of perturbations can grow to approximately � before reconnec-
tions dominate the behavior of the vortex tangle. In mechanically driven cases the
picture is different since perturbations along the vortices can be more amplified and
modify the topology of the vortex tangle before being dominated by reconnections.

6.3.7 Sound Radiation from a Kelvin Wave

As discussed above, Kelvin waves are associated to emission of phonons outside the
vortex core, i.e. they radiate an acoustic field. This phenomena can be efficiently
analyzed considering vortex filament model and calculating the emitted field using
classical models for vortex noise developed in the classical quasi-incompressible
flow aeroacoustic framework.

A first estimate was proposed by Vinen (2000, 2001, 2002), who considered a
Kelvin wave with wave length k̃ and angular frequency �(k̃) propagating over a
quantized vortex/vortex filament with undisturbed length 2l aligned with direction
z. Each element of the vortex displaced by the wave acts a sound source, whose
amplitude is denoted f (z) = f0eık̃z . The total amplitude of the radiated pressure field
at wave number k at an angle β to the plane normal to the length of the undisturbed
vortex, ps(q), where q = k sin β, is equal to

ps(q) = B

2

∫ +l

−l
f (z)e−ıqzdz = B f0l

sin[(k̃ − q)l]
(k̃ − q)l

, (6.91)
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where B and f0 are constants. The case k̃ = 0 corresponds to a straight vortex line
moving in a circle with radius b equal to the Kelvin wave amplitude at constant
angular velocity. The total radiated power by the Kelvin wave is

�(k̃) � 2B2 f 2
0 k

k̃2
, �(0) � πB f 2

0 l, (6.92)

from which it is easily seen that

�(k̃)

�(0)
∼ 2

π

1

k̃l

k

k̃
, k̃ 
 k. (6.93)

Classical aeroacoustic results for a line of dipolar sources yield

�(0) = ρsκ
2b2ω3

8a2
s

. (6.94)

Combination of these two results yields the following estimate for the power
radiated by a Kelvin wave with amplitude b on a vortex line per length l via acoustic
wave emission:

�(k̃) = ρsκ
3b2�3(k̃)b2

16π2a3
s l

ln

(
1

k̃rc

)
∝ k̃6. (6.95)

This approximation corresponds to a dipolar source, and vanishes as l → ∞ due
to cancellation of sound waves in phase opposition. A quadrupolar model would lead
to a non-vanishing contribution.

Such a quadrupolar estimate was proposed by Kozik and Svistunov (2004, 2005b,
2009), who derived an estimate based on the analysis of the Hamiltonian equation for
the occupation number4 of Kelvin waves, n(k), where k denotes the wave number.
According to their model

�(k̃) � κ2ρs

a5
s k̃

ε6
K W (k̃)b2(k̃)b2(−k̃) � k̃ε6

K W (k̃)

a5
s ρs

n(k̃)n(−k̃) � −εK W (k̃)ṅ(k̃),

(6.96)
where εK W (k̃) ∼ k̃rc�(k̃) and

ṅ(k̃) = − (κ/2π)5

15πρs

(
ln

(
1

krc

)
+ C0

)5
(

k̃

as

)5

k5n2(k̃) (6.97)

leading to

�(k̃) � ln6

(
�

rc

)
κ8ρsk11b2(k̃)

a5
s

, (6.98)

4This number denotes the number of Kelvin waves with wave number k.
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where b(k̃) is the spectrum of the amplitude of the Kelvin waves. It is important
noticing that there is no available direct measure of �(k̃), so that none of these
formula can be definitively assessed.

6.4 Quantum Turbulence Dynamics at Zero or Nearly-Zero
Temperature

This section is devoted to dynamics of Quantum Turbulence at (ideally) zero tem-
perature or nearly zero temperature, i.e. in configurations in which mutual friction
effects are not dominant. Main dynamical features are discussed below in separated
subsections, a separation being made between scales smaller than the mean vortex
separation length � and larger scales. The dynamics of the former is governed by
physical mechanisms that are associated to the very nature of quantized vortices
and which are absent in classical Navier–Stokes turbulence. The later can, in some
cases, exhibit features that are similar to Navier–Stokes turbulence, leading to the
quasi-classical régime.

6.4.1 Dynamics at Small Scales. I: Quantized Vortex
Reconnection

6.4.1.1 Generals and Dimensional Analysis

Reconnection is related to the interaction between two quantized vortices, during
which they connect and exchange tails as schematized in Fig. 6.6, leading to a change
in the topology of the vortex tangle. This phenomenon has been observed directly in
experiments dealing with dilute gas Bose–Einstein condensates (Tsatos et al. 2016)
and in numerical simulations based on the Gross–Pitaevskii equation, see Ogawa
et al. (2002), Zuccher et al. (2012), Tsubota (2013), Rorai et al. (2016), Tsubota
et al. (2017). It escapes simulations based on hydrodynamic two-fluid models, and
may be incorporated thanks to ad hoc models in vortex filament methods (Schwarz
1985, 1988; Tsubota and Adachi 2011; Baggaley 2012; Kondaurova et al. 2014).

It has been indirectly observed in liquid helium and can therefore be considered as
universal in the sense that is present in all types of quantum turbulence.

Quantized vortex reconnection occurs when two vortices get close enough to
trigger the reconnection mechanisms. A quantitative criterion is that the distance
between the two vortices should be smaller than a critical distance estimated as
R/ ln(R/rc), where R and rc are the radius of curvature of the vortex filament and the
vortex radius, respectively. The duration of a reconnection is very small. The typical
associated time scale is rc/as , leading to rc/as ∼ 10−12 s in 4He. This mechanisms is
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very important, since it is the only one that allows for the creation of new quantized
vortices in the absence of external forcing and boundary condition effects.

Direct numerical simulations based on the Gross–Pitaevskii equations have shown
that the reconnection is a compressible phenomenon, during which a rarefaction wave
is emitted that induces both acoustic waves and thermal excitations (Ogawa et al.
2002; Tsubota 2009, 2013; Rorai et al. 2016; Zuccher et al. 2012). The typical
wave length of emitted acoustic waves is of the order of the vortex radius. Vortex
reconnection is one of the most important small scale mechanisms, whose main
effects are5:

• Emission of phonons
• Decrease of the length of the vortices
• Generation of Kelvin waves on the quantized vortices
• Change in the topology of the vortex tangle by changing the p.d.f. of the length of

the quantized vortices present in the flow.

The first two mechanisms lead to a decay of kinetic energy, while the third one
induces both a direct cascade of energy toward small scales and a backward cascade
toward large scales (see Fig. 6.6). Generation of Kelvin waves can be understood in a
simple way. During reconnection, singularities or very sharp kinks are generated on
vortices, which have a non-local spectrum in Fourier space. Therefore a reconnection
should excite Kelvin waves on a wide range of wave numbers. The generation of
Kelvin waves by reconnections in a simple ring vortex configuration is illustrated in
Fig. 6.5, in which both the initial generation and induced the Kelvin-wave cascade
are observed. Both the large amplitude of the deformations and the kinky character of
the vortex lines at the last time must be noticed. It is also worth noticing that DNS of
the Gross–Pitaevskii equations have shown that Kelvin wave can be triggered by the
interaction between vortex lines and a strong acoustic/rarefaction waves, like those
generated during reconnections (Berloff 2004).

A first issue is to evaluate the reconnection rate per unit volume. This parameter
can be evaluated in the following heuristic way (Leadbeater et al. 2001; Ogawa et al.
2002; Barenghi et al. 2002, 2004) in the case of superfluid helium. Let’s first introduce
the vortex line density L0, defined as the total vortex length L per unit volume V .
The dimension of L0 is m−2. Observed values can be as large as L0 � 107 cm−2

and L0 � 106 cm−2 in 4He and 3He-B, respectively. The characteristic inter-vortex
distance is often evaluated as � ∝ L−1/2

0 along with the characteristic radius of
curvature of vortices, R, leading to � ∼ L−1/2

0 ∼ R. A vortex segment with length
equal to l moving at speed U during a time �t sweeps a volume V = �tUl2 in
which it interacts with m other vortices. The later is roughly estimated as the number
of vortex line per unit volume, n, times V times a geometrical prefactor equal to
2/3 which accounts for the fraction of vortex segments that are perpendicular to the
moving vortex: m = 2

3 nV . The number of vortex lines per unit volume, n, is taken

5It is important noticing that the most advanced theories for reconnection deals with the case of
Bose–Einstein condensates, which are often extrapolated for liquid helium for which no such theory
exists and only indirect measurements of vortex line length are possible.
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Fig. 6.5 Generation of Kelvin waves by vortex reconnections at zero temperature in a numerical
simulation based on the Biot–Savart vortex filament model. The original non-local generation is
observed at time t = 0.069. A much wider spectrum of disturbances originating in the Kelvin-wave
cascade is seen at t = 0.129. From Kivotides et al. (2001) with permission of APS

equal to the total vortex line length in V , L, divided by l, leading to n = (L/V)/ l =
L0/ l. Therefore, the number of collisions/reconnections experienced by a single
vortex line is m = 2

3 L0lU�t . The number of reconnections per unit time per unit
volume, i.e. the reconnection rate per unit volume is

f = mn/�t = 2

3
U L2

0. (6.99)

The kinetic energy transformed in acoustic energy per unit time per unit volume
is

�Ec

V �t
= f δE , (6.100)

where δE is the energy transformed into a sound burst by a single reconnection. There
is no exact theory to estimate δE , but numerical simulations show that it depends on
vortex topology and how the vortices reconnect (Leadbeater et al. 2001; Ogawa et al.
2002; Barenghi et al. 2002, 2004). A rough approximation is δE ∼ 3rc EQV , i.e. the
released energy corresponds to a decrease of 3rc of the quantized vortex length. A
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typical order of magnitude is δE ∼ 10−15 erg in liquid helium. Much larger values
can be obtained for Bose–Einstein condensates in which rc is much bigger.

Another important parameter is the vortex line density lost per unit time. It is
evaluated as

�L0

�t
= �L

V �t
= �L

�Ec

�Ec

V �t
= δE f

EQV
(6.101)

where EQV is the quantized vortex kinetic energy per unit length given by Eq. (6.72).
The last open question in this semi-empirical approach is the evaluation of the

characteristic velocity U . In the case the self-induced velocity is dominant, the Local
Induction Approximation (6.32) yields

U = ‖uBS‖ � κL1/2
0

4π
ln

(
L−1/2

0

rc

)
(6.102)

leading to

f = κ

6π
L5/2

0 ln

(
L−1/2

0

rc

)
∼ κL5/2

0 = κ�−5, (6.103)

where the logarithmic dependence has been omitted, and

�L0

�t
� 2

3

δE

κρs
L5/2

0 . (6.104)

The corresponding rate of energy loss per unit volume due to reconnections is
therefore

εreconnection = κ�−53rc EQV ∼ 3κ3�−5rcρs

4π
ln

(
�

rc

)
. (6.105)

In the case in which the counterflow velocity is dominant, then U ∼ α|uns |,
leading to

f = 2

3
α|uns |L2

0 (6.106)

along with
�L0

�t
� 4

3
α|uns |L2

0. (6.107)

The associated dissipation rate is

εreconnection = 2α|uns |L2
0rc EQV � 1

2π
αρsκ

2rc�L2
0. (6.108)

Therefore, two types of decay régimes in which the dissipation is driven by recon-
nections can be identified, with different evolution laws for the vortex line density
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L0: d L0/dt = −βLγ
0 , with γ = 5/2 (type II) in the absence of counterflow and

γ = 2 (type I) if counterflow velocity is dominant, whose general solution is

L0(t) =
[

L1−γ
0 (0) − β(1 − γ)t

]1/(1−γ)

. (6.109)

The two predicted decay exponents have been observed in numerical simulations
based on the Biot–Savart vortex filament method mimicking decaying 4He turbu-
lence, e.g. Schwarz (1988), Tsubota (2013), Kondaurova et al. (2014).

6.4.1.2 Random Quantized Vortex Loops and Rings: Model and Results

More detailed and rigorous theories have been proposed to study the kinetics of
quantized vortex rings and loops (Nemirovskii 2013). A powerful theory can be built
modeling the quantum turbulence structure as an ensemble of interacting vortex rings
and vortex loops, each one being strongly deformed by reconnections and Kelvin
waves. These deformations are modelled assuming that vortex loops composing
the vortex tangle have a random walk structure that can be described thanks to
a generalized Wiener distribution. The topology of the vortex tangle is described
introducing n(l, t) defined as the number of vortex loops with lengths in the range
[l, l +dl] per unit volume at time t . One can easily see that there are two mechanisms
at play in the evolution of distribution function n(l, t): the fusion of two loops into
a single larger loop and the breakdown of a vortex loop into two smaller loops. The
former is associated to a inverse energy cascade toward larger scales, while the latter
leads to a direct cascade of energy toward small scales. Denoting A(l, l1, l2) the
intensity of the first mechanisms and B(l, l1, l2) those of the second one, one obtains
the following kinetic equation for the rate of change of n(l, t)

∂n(l, t)

∂t
+ ∂

(
n(l, t)l̇

)
∂t

=
∫∫

A(l1, l2, l)n(l1)n(l2)δ(l − l1 − l2)dl1dl2

︸ ︷︷ ︸
l1+l2→l

−
∫∫

A(l1, l, l2)n(l1)n(l)δ(l2 − l1 − l)dl1dl2

︸ ︷︷ ︸
l1+l→l2

−
∫∫

A(l2, l, l1)n(l2)n(l)δ(l1 − l2 − l)dl1dl2

︸ ︷︷ ︸
l2+l→l1

−
∫∫

B(l, l1, l2)n(l)δ(l − l1 − l2)dl1dl2

︸ ︷︷ ︸
l→l1+l2
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Fig. 6.6 Schematic view of
quantized vortex
reconnection. Top: schematic
view of simple line
reconnection; Middle: Vortex
ring reconnection yielding a
direct cascade toward small
scales; Bottom: Vortex ring
reconnection yielding an
inverse cascade toward large
scales
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+
∫∫

B(l1, l2, l)n(l1)δ(l1 − l2 − l)dl1dl2

︸ ︷︷ ︸
l1→l+l2

+
∫∫

B(l2, l1, l)n(l2)δ(l2 − l1 − l)dl1dl2

︸ ︷︷ ︸
l2→l1+l

.

(6.110)

Each term in this equation can be evaluated analytically if an adequate model
for the vortex loop structure is used. The assumption of a Brownian nature of the
vortex loop structure allows for such an evaluation. After some very long algebra,
one obtains

A(l1, l2, l) = bmUl1l2, B(l, l1, l − l1) = bsU
l

(Rl1)3/2
, (6.111)

where bm = 1/
√

18, bs = √
3/64 π−9/4 and where R is the parameter of the gener-

alized Wiener distribution, taken to be of the order of typical curvature of the vortex
line, which is also the step in the random walk. As in the empirical calculations
displayed above, the characteristic velocity U can be computed considering that
self-induction is dominant, leading to U = cvκ/R, where cv is a constant parameter.

Some particular analytical solutions can be found. Among them, a stationnary
solution of (6.110) neglecting the second term in the left-hand side is n(l) = cnl−5/2,
where cn is a constant parameter.

Further insight into this solution can be gained introducing the length density
in space of sizes l, L(l, t) = n(l, t)l, which corresponds the total length in vortex
loops of size l per unit volume. The total vortex line length per unit volume L0,
i.e. the vortex line density, is recovered as L0(t) = ∫

L(l, t)dl. This last quantity
is conserved by vortex reconnection if dissipation via acoustic wave radiation is
omitted, i.e. d L0/dt = 0, which leads to

∂L(l, t)

∂t
+ ∂P(l, t)

∂l
= 0, (6.112)

where P(l, t), i.e. the flux of vortex length in space of sizes of the loops, can be
evaluated from A(l, l1, l2) and B(l, l1, l2). After some long algebra, one obtains

P = P+ − P− = 12.555

2
c2

nbmU − 5.545

2R3/2
cnbsU. (6.113)

Here, P+ and P− correspond to the inverse cascade toward large scales and the
direct cascade, respectively. This direct cascade mechanisms associated to reconnec-
tions of vortex loops was anticipated by Feynman in 1955. It has been debated, since
a cascade based on undisturbed circular vortex rings in place of Gaussian vortices
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used here would lead to violation of physical conservation laws. More precisely, con-
sidering circular vortex rings does not allow for the conservation of both energy and
momentum, while more complex shapes, such has the randomized Gaussian vortex
model allow for the recovery of conservation laws.

Since both P+ and P− are large quantities and that P is comparatively small, a
first-order approximation yields P+ � P−, leading to

cn = 5.545

12.555

bs

bm

1

2R3/2
= c′

n

1

2R3/2
, (6.114)

along with

n(l) = c′
n

2R3/2
l−5/2. (6.115)

A very interesting results if found considering the total length per unit volume
L0:

L0 =
∫ +∞

R
n(l)ldl = 2c′

n

R2
=⇒ R = √2c′

n L−1/2
0 , (6.116)

from which one can deduce that the inter vortex spacing � � L−1/2
0 is of the order

of the mean radius of curvature R. Reintroducing this relation into the evaluation of
the of the net flux (6.113), one obtains that both P+ and P− scale as L−2

0 , yielding

d L0

dt
∝ −L−2

0 . (6.117)

The full rate of reconnection is recovered from relation (6.110) giving a plus sign
to all terms. Therefore the total number of reconnection ntot evolves as

ṅtot = 1

3

κc′
n(bs + b2

m)

R5
= c′′

nκL5/2
0 = f, (6.118)

where c′′
n is a constant of the order of the unity. It is remarkable that the scaling law

found in the empirical approach is recovered.
It is worth noting that the cascades associated to the quantized vortex length

distribution n(l, t) induces both direct and inverse kinetic energy cascade, since the
energy of quantized vortices with length l per unit volume is equal n(l)l EQV . This
point is discussed below.

6.4.1.3 Reconnection-Driven Cascades

As mentioned above, reconnections induce several cascade phenomena:

• A direct energy cascade via breakdown of large vortex loops/rings into smaller
ones
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• An inverse energy cascade via merging of small vortex loops/rings into larger ones
• Injection of kinetic energy into small scales by direct nonlocal excitation of Kelvin

waves on quantized vortices due to the singular nature reconnections, which are
associated as a cusp with non local spectral signature at reconnection points.

• Indirect triggering of Kelvin wave cascades, which are discussed in Sect. 6.4.2.

Reconnections and induced cascades and dissipation are, in almost all existing
theories, considered as the dominant phenomena at scales of the order of the vortex
interspacing scale �, and possibly at scales larger or smaller than � within a few
decades of scales. Both direct and inverse reconnection-driven energy cascades have
been reported in simulations based on the Biot–Savart vortex filament method, e.g.
Baggaley et al. (2014). A careful analysis that the net effect is a forward energy
cascade toward small scales, due to the fact the splitting-type reconnections have
higher probability than merging-type ones. This asymmetry has been repeatedly
reported in simulations mimicking 4He turbulence, e.g. Kondaurova and Nemirovskii
(2012), Kondaurova et al. (2014), Baggaley et al. (2014).

A theoretical analysis of the dynamics of scales dominated by reconnections has
been proposed by Kozik and Svistunov (2008a, b, 2009). Considering a case in which
the superfluid is mechanically forced injecting kinetic energy at a rate εp at scales
much larger than � in such a way that quantized vortices are organized into polarized
bundles, these authors developed a model in which several ranges of scales must
be distinguished. The key assumptions of this analysis are that: (i) the energy flux
associated to the reconnection-driven energy cascade is conserved at all scales and
(ii) the quantity of energy transferred to a smaller scale after one reconnection of
vortex line at wave number k can be estimated as

ε(k) ∼ f (θ)�ρsκ
2k−1, � ≡ ln

(
�

rc

)
(6.119)

where θ denotes the angle at which the vortex lines cross, θ = 0 being associ-
ated to parallel lines. The dimensionless function f (θ) behaves asymptotically as
f (θ → 0) ∝ θ2, showing that the efficiency of energy transfer vanishes quickly for
nearly parallel vortices. The three proposed ranges of scales are:

• Scales dominated by reconnections of bundles, r−1
0 ≤ k ≤ λ−1

b , where r0 is the
size of the smallest classical eddies observed at hydrodynamic scales (i.e. the
Kolmogorov scale in classical fluids), which is also interpreted as the character-
istic size of the quantized vortex bundles. It is related to the interspacing length
by r0 � �1/2� > �, while � � (�κ3/εp)

1/4. At such large scales there is no
direct coupling between quantized vortices inside a given bundle, and the recon-
nections occur between vortex bundles. More precisely, crossing of bundles trigger
reconnections between all their quantized vortices. This picture is coherent with
numerical simulations based on both the Gross–Pitaevskii equations and the vor-
tex filament model. Dimensional analysis and phenomenological arguments yield
the following estimation of the energy flux per unit mass in this régime, which is
assumed to be equal to εp:
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εp =
(

k

ρsb2(k)

)
Nkε(k)τ−1

k , (6.120)

where the correlation volume of the reconnection is k
ρs b2(k)

, Nk ∼ (b(k)/�)2 is the

number of vortex lines involved in the reconnection and τ−1
k ∼ κ�k2 is the rate at

which the bundles cross. The associated solution for spectrum for the amplitude
of the deformation of vortex lines is

b(k) � r−1
0 k−2. (6.121)

The scale λb is defined as the scale at which the amplitude of the deformation is of
the order of the inter-vortex spacing, i.e. b(k) = �. Using the previous estimation,
one obtains λb = �1/4�. At smaller scales the notion of bundle is meaningless,
and reconnections between adjacent vortices become dominant.

• Scales dominated by reconnections of adjacent quantized vortices in the same
bundle, λ−1

b ≤ k ≤ λ−1
c . Here, the rate of reconnection per each line element with

length k−1 and the energy transferred by a single collision are estimated as �k2

and �b2(k)k, respectively, leading to

b(k) ∝ �(λbk)−1/2. (6.122)

The scale λc is determined as the scale at which the curvature of the quantized
vortices is large-enough to allow for self-reconnections of a quantized vortices.
The curvature being estimated as kb(k), the condition for self-reconnections to
take place is kb(k) � 1, leading to λc ∼= �−1/4�.

• Scales dominated by self-reconnections of quantized vortices, λ−1
c ≤ k ≤ λ−1∗ .

Self-reconnections govern the cascade for scales in this range, resulting in the
production of vortex rings/loops of typical size λ∗. The rate of production per unit
time in a control volume �3 is approximated as κ�1/2/�2. It is worth noting that
in the absence of vortex bundles, i.e. in a random superfluid turbulence without
large-scale polarization, the self-reconnection rate was estimated by Svistunov as
κ�2/�2. Conservation of the energy flux εp yields

b(k) ∝ k−1. (6.123)

The scale λ∗ ∼ �/�1/2 is the scale at which self-reconnection ceases and the
Kelvin wave cascade becomes dominant.

This phenomenological picture has not been presently assessed by either numer-
ical simulation or experiments. It is worth noting that in 4He and 3He-B one has
� = 12−15 and � = 1−2 in existing realizations of atomic gas Bose–Einstein con-
densates, leading to almost undistinguishable spectrum range in experimental data
or numerical simulations. Nevertheless, the different mechanisms (bundle reconnec-
tions, adjacent vortex reconnections and self-reconnections) should be at play in
practical cases. In the case of quantum turbulence without vortical hydrodynamic



306 6 Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence

scales, i.e. random distribution of quantized vortices, bundle reconnection does not
exist.

6.4.2 Dynamics at Small Scales. II: Kelvin-Wave Cascade
and Weak Wave Turbulence

The nonlinear Kelvin-wave cascade that takes place at scales smaller than λ∗ has
been investigated by many authors, since it is presently considered as the main
physical mechanisms responsible for transfer of kinetic energy to smaller scales at
which dissipation becomes significant. The cascade is usually considered to end at
the scale λph at which the dissipation via emission of phonons (at least in 4He) is
equal to the energy transfer rate via the cascade. It is worth noting that such cascade
is not observed directly in laboratory experiments because of the smallness of the
involved scales, and that other mechanisms, such that the direct nonlocal production
of Kelvin waves by reconnections may also play a role, as advocated by Vinen.
Another remark is that in some cases in which the dissipation occurs at scales that
are not very small compared with the vortex inter spacing scale, i.e. λph ∼ � (e.g.
in experimental realizations of dilute atomic gas Bose–Einstein condensates), such
a cascade is likely not to build up.

Several methods have been used to predict the solution associated to the Kelvin
wave cascade: phenomenological approach coupled to dimensional analysis (Vinen
2000), weak turbulence theory derived from Hamiltonian representation of the vortex
filament dynamics as discussed in Sect. 6.2.2.4 (Kozik and Svistunov 2004, 2005a;
Kozik and Svistunov 2009; L’vov et al. 2007; L’vov and Nazarenko 2010; Laurie et al.
2010; Boué et al. 2011; Nemirovskii 2013). Weak wave turbulence at small scales as
also been analyzed considering the Gross–Pitaevskii equations, including numerical
simulations (Nemirovskii 2013; Tsubota et al. 2017), extension of Kraichnan’s Direct
Interaction Approximation (Yoshida and Arimitsu 2013) for both strong and weak
turbulence régimes and classical approaches for wave turbulence (Proment et al.
2009; Fujimoto and Tsubota 2015; Tsubota et al. 2017).

An important point is that theoretical analyses that use relation (6.74) to evaluate
the frequency of the Kelvin waves implicitly assume that these waves are small ampli-
tude disturbances propagating along quantized vortices, since this relation originates
in a linear theory based on a small parameter expansion. Waves with large ampli-
tudes should a priori not be referred to as Kelvin waves, and there is presently no
detailed theory for them. Numerical simulations based on both the Biot–Savart vor-
tex filament model and the Gross–Pitaevskii equations have been performed, e.g.
Kivotides et al. (2001), Vinen et al. (2004). It is important noting that acoustic wave
radiation is not taken into account in the former, in which numerical resolution errors
are assumed to play the role of an implicit dissipation. Artificial dissipation is also
sometimes added to the Gross–Pitaevskii simulations to prevent energy pile-up at
smallest resolved scales.
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6.4.2.1 Empirical Theories

A first approach was developed by Vinen (Vinen and Niemela 2002) on the ground
of dimensional analysis. The evaluation of the Kelvin cascade is based on the upper
bound for the cascade rate, which is taken equal to the estimated production of
cascade rate by reconnections. Evaluating the reconnection rate as κ�−5 per unit
volume, and assuming that each reconnection lead to the generation of a length of
line of order � associated to an injection of energy into Kelvin waves equal to ρsκ�,
the rate of injection of energy into Kelvin wave per unit mass of superfluid is

εp = Gκ3�−4 = Gκ3 L̃2
0, (6.124)

where G is a constant of the order of unity and L̃0 is not the vortex line density
introduced in Sect. 6.4.1.1 but a smoothed vortex length per unit volume based
on the length of vortex line per unit volume after the excited Kelvin waves have
been removed. The corresponding rate of energy injection by reconnection per unit
smoothed length of vortex line is Gρsκ

3�−2.
The maximum spectral intensity is estimated assuming that the maximum ampli-

tude for a wave with wave number k is proportional to k−1, leading to (via dimensional
analysis)

EK W (k) = Aρsκ
2k−1 (6.125)

where A is a constant. It should be kept in mind that this is an upper bound estimation,
since the analysis carried out in Sect. 6.3.4 shows that displacements associated to
finite amplitude Kelvin waves are restricted to a few vortex cores.

The wave number kph ∼ 1/λph at which the Kelvin wave cascade vanishes due to
dissipation by phonon emission is found assuming that EK W (k) has a sharp cut-off
wave number at kph . The characteristic time associated to phonon emission for a
Kelvin wave with wave number k and amplitude b(k), τph(k), is computed as the
ratio of the energy of the Kelvin wave per unit length EQV over the power radiated
per unit length �(k) discussed in Sect. 6.3.7. Evaluating the increase of vortex length
due to the Kelvin wave by its amplitude b(k), the energy per unit length is equal to

EQV b2(k) = ρsκ
2

4π
ln

(
1

krc

)
k2b2(k), (6.126)

where EQV is given by (6.72), and using Vinen’s evaluation for �(k), one has

τph(k) = 4πa3
s �k2

κ�2(k)
. (6.127)

Equalizing the dissipation rate and the production rate yields

∫ kph

1/�

EK W (k)

τph(k)
dk = εp = Gρsκ

3�−2 =⇒ kph� �
(

16πGa3
s �

3

Aκ3

)1/4

(6.128)
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in which it has been assumed that kph 
 1 and ln(1/krc) � 4π. For a typical vortex
tangle in 4He with � = 10 µm, one has λph � 2 nm, which is much larger than the
vortex core radius rc ≈ 0.1 nm. The corresponding frequency is �(kph) � 4 GHz.
A generalized estimation is λph ∼ 100rc in 4He.

6.4.2.2 Weak Turbulence Theories Based on Hamiltonian Biot–Savart
Vortex Filament Model

Previous analyses based on dimensional analysis do not yield univocal results,
depending on the empirical ingredients used to recover expressions for the energy
flux and associated spectra. It is now commonly accepted that Kelvin-wave cascade
can be described by weak wave-turbulence theory and that dominant interactions are
three-to-three wave scattering discussed in Sect. 6.2.2.4.

The key element is the derivation of an evolution equation for the wave action
defined as

n(k, t) = L
2π

b(k, t)b∗(k, t), (6.129)

where b(k, t) denotes here the canonical variable that appears in the Hamiltonian
formulation (6.57). The Kelvin wave kinetic energy and kinetic energy spectrum are
recovered from the wave action via the following relations:

KK W =
∫ +∞

−∞
�(k)n(k)dk =

∫ +∞

0
�(k)N (k)dk =

∫ +∞

0
EK W (k)dk (6.130)

where N (k) = n(k)+n(−k) and the Kelvin wave frequency �(k) is given by (6.74)
and

EK W (k) = �(k)N (k) = �κ

4π
k2 N 2(k). (6.131)

The amplitude of Kelvin wave is recovered as b2(k) � k N (k). The equation
evolution derived from the Hamiltonian problem (6.57), commonly referred to as the
kinetic equation, is usually written as

dn(k, t)

dt
= St (k, n(k, t)), (6.132)

where the collision integral St (k, n(k, t)) is equal to

St (k, n(k, t)) = π

12

∫∫∫ ∫∫
|W3,4,5

k,1,2 |2nkn1n2n3n4n5δ
3,4,5
k,1,2δ�

3,4,5
k,1,2

×
(

1

nk
+ 1

n1
+ 1

n2
− 1

n3
− 1

n4
− 1

n5

)
dk1dk2dk3dk4dk5,

(6.133)
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where ni = n(ki ) and

δ3,4,5
k,1,2 = δ(k + k1 + k2 − k3 − k4 − k5)

along with

δ�3,4,5
k,1,2 = δ(�(k) + �(k1) + �(k2) − �(k3) − �(k4) − �(k5)).

A pseudo-Lin equation can be derived for EK W (k)

∂

∂t
EK W (k) = TK W (k) = ∂

∂k
FK W (k), (6.134)

where the energy flux term is given by

FK W (k) =
∫ k

0
St (p, n(p, t))�(p)dp (6.135)

that can be approximated as

FK W (k) = k Ṅ (k)�(k). (6.136)

The Kelvin wave cascade is observed to conserve two global quantities in the
absence of phonon emission: the total energy KK W and the total wave action
NK W = ∫ +∞

0 N (k)dk. Therefore, it is expected that two cascades will take place,
one direct cascade toward small scales and one inverse cascade toward large scales.
Corresponding solutions for n(k) exhibiting a constant non-zero flux in some iner-
tial ranges are referred to as Kolmogorov–Zakharov solutions in the field of wave
turbulence. There is one additional remarkable solution that corresponds to the ther-
modynamical equipartition of energy and wave action, namely the Rayleigh–Jeans
distribution given by

n(k) = T

�(k) + μ
, (6.137)

where T and μ are the temperature and the chemical potential, respectively.
The direct cascade if found observing that kinetic equation (6.132) has scale-

invariant solutions of the form N (k) ∼ k−m . Two main values for m have been
obtained depending on the assumed degree of locality of the Kelvin wave scatter-
ing. Using the local approximation, one obtains via dimensional analysis Ṅ (k) ∼
k14 N 5(k), yielding FK W (k) ∼ k15 N 5(k). Mimicking the analysis of the classical
Kolmogorov inertial range in isotropic turbulence in classical fluids, it is hypothe-
sized that there is an inertial range within the Kelvin wave cascade with a constant
energy flux, leading to N (k) ∼ k−17/5. The non-local approximation yields more
tedious manipulations, which are not reproduced here. The two solutions are
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N (k) ∼
{

4πε1/3	2/3k−11/3 L’vov−Nazarenko (non-local approx.)

k−17/5 Kozik−Svistunov (local approx.)
(6.138)

where 	 = 8πKK W /�κ2. Therefore, the Kelvin wave energy spectrum is equal to

EK W (k) ∼
{

�κε1/3

	2/3 k−5/3 L’vov−Nazarenko (non-local approx.)

�κ7/5ε1/5k−7/5 Kozik−Svistunov (local approx.)
. (6.139)

The cut-off wave number kph is evaluated in the same way as for the empirical
approaches, i.e. by finding the wave number at which the rate of dissipation via
phonon emission is equal to the energy cascade rate.

Using their estimate for the phonon emission rate and cascade rate, Kozik and
Svistunov propose two evaluations, one for cases with polarized vortex bundles and
another one for random vortex distribution:

λph ∼
{

�27/31(κ/as�)
25/31� (with polarized bundles)

�24/31(κ/as�)
25/31� (random distribution)

. (6.140)

The inverse cascade is found applying the same reasoning to the flux of wave
action F (n)

K W (k), defined as

F (n)
K W (k) =

∫ k

0
ṅ(p)dp =

∫ k

0
St (p, n(p))dp. (6.141)

Dimensional analysis yields F (n)
K W (k) ∼ k15n5(k), and constant flux assumption

leads to n(k) ∼ k−3, showing that there is a second inertial range associated to a
cascade of wave action. According to the Fjørtoft argument, this cascade is an inverse
cascade toward large scales.

The most recent theoretical works (Laurie et al. 2010; Boué et al. 2011) are in
favor of the non-local theory proposed by L’vov and Nazarenko. There is of course no
available direct measurement of such small scales, precluding strong assessment by
experiments. Most available numerical simulations based on the Biot–Savart vortex
filament methods yield results that are not accurate enough to draw a final conclu-
sions. As an example, Baggaley and Barenghi (2011) reported N (k) ∼ k−3.1, which
is close to both −11/3 = −3.7 and −17/5 = −3.4. But a very recent simulation
based on the full Biot–Savart equation (Baggaley and Laurie 2014) yielded results
in clear agreement with the non-local theory, giving the first numerical evidence that
the local model should be discarded, at least in the case of Kelvin waves developing
on an ideal straight vortex line. In these simulations, an inertial range with both a
constant energy flux and the expected spectrum slope was observed.
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6.4.2.3 About the 3D Energy Spectrum Generated by Kelvin Waves
Propagating along a Vortex Line

All theories mentioned above deal with the energy spectrum of Kelvin waves, which
are 1D waves that propagate along an idealized vortex. Therefore, the evaluation of
the associated 3D energy spectrum E(k) of the velocity field induced in the fluid
must be carried out to bridge with classical turbulence theory.

The general method to reconstruct E(k) is to compute the statistical average of
the spectrum generated by a single vortex element (line, loop, ring, …) corrugated by
Kelvin waves with a given spectrum EK W . In such a calculation, one must prescribe
(i) the type of vortex element, (ii) the distribution function of the vortex elements and
(iii) the spectrum of Kelvin waves, showing that their is a large degree of empiricism.

For a single vortex element with length L , one obtains the following general
formula:

E(k) = ρsκ
2

(2π)2

∫ L

0

∫ L

0
s′(ξ1) · s′(ξ2)

sin(k|s(ξ1) − s(ξ2)|)
k|s(ξ1) − s(ξ2)| dξ1dξ2. (6.142)

Applying that formula, one obtains the following results for typical vortex ele-
ments without Kelvin waves (Nemirovskii 2013):

• For a straight vortex line with zero radius:

E(k) ∝ k−1. (6.143)

• For a circular vortex ring with radius R:

E(k) ∝
{

k−2 k R � 1

k−1 k R 
 1
. (6.144)

• For random loops/rings with Gaussian distribution and with fractal Hausdorff
dimension HD and characteristic size L:

E(k) ∝
{

k2 kL � 1 (far field)

k−2+HD kL 
 1
. (6.145)

The disturbance in the energy spectrum induced by Kelvin waves, δE(k), is
obtained in the same way accounting for the corrugation of the vortex line in the
integrand in relation (6.142). Considering Kelvin waves with mean amplitude a and
spectrum EK W (p) ∝ p2−s , one obtains

δE(k) ∝ a2k2−s (6.146)



312 6 Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence

The fact that EK W and δE(k) exhibit the same exponent should not be generalized
into E(k) ∼ EK W (p), since the amplitude factor a2 is very small for waves described
by the weak turbulence theories discussed above.6

Therefore, the energy spectrum E(k) is mostly governed by the large scale topol-
ogy and distribution of vortex filaments, the Kelvin-wave-induced part δE(k) being
mostly a small-amplitude correction.

Most existing numerical simulations dealing with vortex tangle dynamics based
on the Biot–Savart vortex filament model exhibit E(k) ∝ k−1 at small scales, i.e.
much smaller than the inter vortex distance �, in agreement with the fact that at such
small scales vortex filament curvature effects are small and that the straight vortex
line should dominate. It is worth noting that in such simulations the dissipation related
to compressible mechanisms associated to acoustic wave radiation is not accounted
for.

6.4.2.4 Concluding Remarks

Some caveats must be mentioned at this point:

• Kelvin waves are small amplitude waves. Therefore, huge deformations of order �

of quantized vortices observed in numerical simulations a priori escape this theory
and miss to be theoretically described.

• Kelvin waves propagate along dynamically bent vortex filaments. In the theoretical
approaches discussed above curvature effects, which may be non-negligible for
long waves, are neglected.

• Quantized vortices experience reconnections at random points at a non-negligible
rate, the effect of which are not taken into account. Two effects should be taken
into account: “kinematic” non-local generation of Kelvin waves over a wide range
of scales by the singular topological character of the reconnection (without any
cascade-like process) and destruction of vortex filaments by reconnections.

• Kelvin wave theory is developed considering infinite vortex lines, and finite length
effects that must take place on real quantized vortices are not taken into account.

• All developments contain some degree of empiricism to identify the governing part
of the Hamiltonian term Wm,p,q

k,i, j . There is no rigorous mathematical proof here,
and comparison with the few existing DNS data is the only available validation.

• Numerical experiments have shown that quantitative results obtained thanks to
Biot–Savart-based vortex filament methods are very sensitive to details of the
numerical algorithms when the Local Interaction Approximation is used (Adachi
and Tsubota 2010; Baggaley 2012). Therefore mostly qualitative conclusions
should be drawn from these simulations.

The relevance of the Kelvin-wave-induced cascade to explain transfer of kinetic
energy toward small scales remains to be assessed in realistic cases, despite it has been
addressed in a large number of theoretical studies. The issue here is twofold. First,

6The shortcoming relation E(k) = EK W (k) is misleading and should be avoided.
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the idealized vortex filament model with null radius is mostly relevant to describe
superfluid 4He dynamics, while it is less appropriate to describe phenomena in 3He-B
and Bose–Einstein condensates, in which the quantized vortex radius is much larger,
restricting the range of scales over which a Kelvin-wave cascade may take place.
Second, there is a competition between reconnection-induced cascade and Kelvin-
wave induced cascade, the later being overwhelmed by the former in many cases. This
is illustrated by the following example given by Nemirovskii. Considering a typical
experiment in superfluid Helium with counterflowing velocity of 1 cm/s and a fluid
volume of 1 cm3, the interline space � ∝ L−1/2

0 is about 10−2 cm. The associated full
rate of reconnection is of the order of 107 collisions per second per unit volume and
the rate of reconnection per unit length of the vortex filaments is about 103 1/cm · s.
Therefore, a vortex loop with length ∼ 10� will experience about 100 reconnections
per second. Now considering signal propagation along the same vortex loop, one
can find that the characteristic propagation time is about �2/κ � 10 s. One can see
that Kelvin wave dynamics is a much slower process that reconnection, since its
characteristic time is nearly 100 times larger than the life time of the vortex loop, at
least for large-scale Kelvin waves. The two characteristic times become similar for
wave with period of the order of �, and Kelvin wave cascade should exist only at
scale much smaller than �.

Therefore, Kelvin wave dynamics is an important topic from a theoretical view-
point considering the nonlinear wave framework, but with restricted relevance for
Quantum Turbulence, since Kelvin waves are responsible for a limited part of the
full dynamics in practice, when they exist. According to Nemirovskii (2013), the two
main issues that may be addressed using Kelvin wave theory in the field of Quan-
tum Turbulence are (i) the decay of a vortex tangle and (ii) the 3D energy spectrum
generated by vortex lines with Kelvin waves excited on them.

6.4.3 Small Scales Dynamics. III: Turbulent Cascades Using
Gross–Pitaevskii Equations

6.4.3.1 Generals

A last set of theoretical results comes from the theoretical analysis of the Gross–
Pitaevskii equations in the non-linear régime. An important difference with previous
results is that the these results are not restricted to the incompressible velocity field
or to waves propagating along ideal vortex filaments. As mentioned in Sect. 6.2.1, the
fluctuations of the state field ψ(x, t) may represent fluctuations in the condensate,
phonons/acoustic waves or a mix of them. Therefore, a direct univoque correspon-
dance between previous results dealing with Kelvin waves and fluctuations described
in the present section should not be expected, but useful qualitative comparisons can
be done. An important point is that the Gross–Pitaevskii equation is a reliable model
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for dilute cold atomic gas at small to medium scales, and that the mean field assump-
tion may be violated at scales larger than �.

In the absence of external source/sink term, the Gross–Pitaevskii equation exhibits
three invariants. The two first invariants of motion are the number of particules per
unit volume, N̄ , and the total energy per unit volume Etot , where it is recalled that
ψ = √

neı S , with ρs = mn where m is the mass of the particule. The total number
of particules is computed as

N̄ = 1

V

∫
V

|ψ(x, t)|2d3x, (6.147)

while the total energy per unit volume is evaluated as the sum of the kinetic energy
and interaction energy

Etot = EK + EI = 1

V

∫
V

�
2

2m
|ψ(x, t)|2d3x + 1

V

∫
V

g

2
|ψ(x, t)|4d3x. (6.148)

The third one is the momentum per unit volume

M = 1

2
ı

1

V

∫
V
(ψ(x, t)∇ψ∗(x, t) − ψ∗(x, t)∇ψ(x, t))d3x, (6.149)

which can be taken equal to zero in isotropic turbulence.
Most of the analyses rely on the Fourier transform of the Gross–Pitaevskii equa-

tion, from which the following irreversible exact kinetic equation for the particule
number spectrum n̂(k) is derived

∂

∂t
n̂(k) = St (k) = 4π

∫∫∫
|T (k, k1, k2, k3)|2δ(k + k1 − k2 − k3)δ(ωk + ω1 − ω2 − ω3)

×(n1n2n3 + nkn2n3 − nkn1n2 − nkn1n3)dk1dk2dk3 (6.150)

where ωk = ω(k),ωi = ω(ki ) denote the Bogoliubov frequency given by Eq. (6.12)
and ni = n̂(ki ). T (k, k1, k2, k3) is a non-linear cubic geometrical interaction term
which originates in the very structure of the governing equations. It can be approx-
imated in different ways, according to the dominant physical mechanisms at play:
different approximations are used for strong turbulence, weak turbulence developing
about a strong condensate and weak wave turbulence about a weak condensate.

The energy spectrum is obtained as E(k) = n̂(k)ω(k), and the associated kinetic
equation is

∂

∂t
E(k) = ω(k)St (k). (6.151)

This equation plays the role of the Lin equation (4.38) for classical fluids described
via the Navier–Stokes equations, in which the non-linear transfer term T (k) is
replaced by ω(k)St (k). It is important noting that the present equation exhibits no
dissipative viscous term.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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The global quantities are recovered as

N̄ =
∫ +∞

0
n̂(k)dk, EK =

∫ +∞

0
n̂(k)ω(k)dk, (6.152)

and their conservation in the absence of source/sink term lead to

∫ +∞

0
St (k)(k)dk = 0,

∫ +∞

0
St (k)ω(k)dk = 0, (6.153)

showing that there should exist cascade mechanisms associated to the globally con-
servative non-linear transfer terms. The first cascade is related to the particule number
and is governed by St (k). The second one is an energy cascade driven by St (k)ω(k).

These cascades are classically characterized by their associated fluxes:

�K (k) = ∂

∂t

∫ k

0
St (p)ω(p)dp, �n(k) = ∂

∂t

∫ k

0
St (p)dp (6.154)

A fine analysis shows that, as for the classical Navier–Stokes turbulence, conser-
vation of global invariants originates in local conservation properties. Considering
a quartet of interacting waves with amplitudes Ai , wave vectors ki and frequencies
ωi = ω(ki ), one can show that quartic interactions conserve both energy and particule
number, i.e.

|A1|2 + |A2|2 + |A3|2 + |A4|2 = const. = N (6.155)

and

ω1|A1|2 + ω2|A2|2 + ω3|A3|2 + ω4|A4|2 + 2(A∗
1 A∗

2 A3 A4 + A1 A2 A∗
3 A∗

4) + N 2

−1

2
(|A1|4 + |A2|4 + |A3|4 + |A4|4) = const.

(6.156)

where it is recalled that Ak A∗
p = n̂(k)δ(k − p).

6.4.3.2 Weak Wave Turbulence Solutions

Weak turbulence theory has been applied to the Gross–Pitaevskii equation to char-
acterize some physical régimes governed by resonant interactions between small
amplitude waves. The relevance of such solutions depends strongly on the prop-
erties of the dispersion relation and the nonlinear interaction term T (k, k1, k2, k3),
since weak turbulence analysis holds when quadratic terms dominate over the quar-
tic ones. As an example, the applicability of weak wave turbulence results depends
also on the wave number: in the limit of vanishing k (very large scales), one has
T (k, k1, k2, k3)/ω(k) → +∞ and a genuinely non linear model is required.
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Weak-turbulence solutions are also expected to be valid over a limited time (in
finite domain without extra source/sink term), since the inverse cascade of particule
number yields an accumulation at very large scales that may trigger modulation
instabilities of the condensate and the rise of collapsing filaments, whose structure
is strongly non-linear. Nevertheless, if a damping term is added to prevent such an
accumulation, weak turbulence solutions may hold over long times.

Generally speaking, most wave-turbulence results obtained for quantum turbu-
lence have been derived in the absence of condensate, i.e. for a null mean state. The
presence of a condensate does not prevent the weak wave turbulence to occur, but it
modifies the results in a very deep way since one has to study fluctuations about a
non-zero mean state. One of the main effects is the change in the dispersion relation
from a four-wave relation to a three-wave resonant process of decay type.

As a general picture, weak-wave turbulence in the Gross–Pitaevskii equation is
mostly concerned with the coexistence of resonant interactions between quartets
of waves with nearly-gaussian statistics and a condensate field made of randomly
occuring collapsing filaments.

A first way consists of applying the same dimensional-analysis-based approach
as for classical turbulence to identify inertial ranges, which are defined as ranges of
scales with constant cascade fluxes. A first solution is the Rayleigh–Jeans solution
associated to thermodynamic equilibrium, i.e. zero fluxes of both particule number
and energy:

n̂(k) = T

μ + ω(k)
, (6.157)

where μ is the chemical potential and T the temperature.
The turbulent constant-�n and null energy flux Kolmogorov-like inertial range

solution obtained via dimensional analysis is

n̂(k) ∼ |�n|1/3ω−1−γ/3(k). (6.158)

The second pseudo-Kolmogorov inertial range associated to a constant energy
flux �K and zero particule number flux is

n̂(k) ∼ |�K |1/3ω−(4+γ)/3(k), (6.159)

where the parameter γ depends on the linear dispersion relation and features of
T (k, k1, k2, k3). Analysis of quartic terms yields in 3D turbulence

n̂(k) ∼
{

k−3 (�K �= 0,�n = 0)

k−7/3 (�K = 0,�n �= 0)
. (6.160)

A deeper analysis shows that, if excitations are injected at wave number k0 in
a wide-enough domain, a direct energy cascade (i.e. �K > 0) toward small scales
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(k > k0) will take place, along with an inverse cascade of particule number (i.e.
�n < 0) toward small scales (k < k0).

In a bounded domain, the system is expected to converge toward the equilibrium
solution over long time.

6.4.3.3 Results from Two-Point Two-Time Spectral Closure

Yoshida and Arimitsu (2013) analyzed the cascade phenomena thanks to a closed
form of Eq. (6.2) written in Fourier space. The associated unknowns are now the 1D
spectra 	(k) = 4πk2n̂(k) and 	n(k) which are such that

N̄ =
∫ +∞

0
	(k)dk, EK =

∫ +∞

0

k2

2m
	(k)dk, EI =

(∫ +∞

0
	n(k)dk + N̄ 2

)
.

(6.161)

The proposed closure is an extension of Kraichnan’s Direct Interaction Approxi-
mation, whose details will not be discussed here for the sake of brevity. Thanks to this
closure, inertial range solutions for the spectrum 	(k) considering both energy cas-
cade and particule-number cascade can be obtained, in a way similar to what is done
for energy and helicity cascade in classical fluid isotropic turbulence. Introducing
the energy flux �K (k) and the particule-number flux �n(k)

�K (k) = ∂

∂t

∫ k

0

(
k2

2m
	(p) + g

2
	n(p)

)
dp, �n(k) = ∂

∂t

∫ k

0
	(p)dp, (6.162)

and assuming that they are constant, i.e. independent of the wave number k, within
devoted inertial ranges, the two following inertial range solutions are obtained for
the energy cascade

	(k) ∼

⎧⎪⎪⎨
⎪⎪⎩

√
2mg−1/2�

1/2
K k−2 k0 � k � min(k∗, k1) (strong turbulence)

g−2/3�
1/3
K k−1 ln−1/3

(
k

max(k0,k∗)

)
max(k∗, k0) � k � k1 (weak wave turbulence, type I)

g−1 N̄−1/2�
1/2
K k−1 max(k∗, k0) � k � k1 (weak wave turbulence, type II)

(6.163)

where k∗ is the wave number at which the characteristic time scale for linear effect,
τL(k) ∼ 2 mk−2 is equal to the one of the non-linear terms, τN L ∼ 1/g N̄ , i.e. k∗ =√

2mg N̄ . For k < k∗ the dynamics will be dominated by non-linear effects, yielding
a strong turbulence régime, while in the opposite linear effects are more important,
leading to a weak wave turbulence dynamics. Here, k0 and k1 are the bounds of
the inertial range region in which both production effects by external forcing and
dissipative effects are negligible. Type I weak wave turbulence at small scales occurs
if N̄ is mostly associated to low wave numbers in the range k0 � k � min(k∗, k1) and
type II to the opposite case in which small scales are the main contributors. Analytical
developments show that �K > 0 at all scales, characterizing a direct energy cascade
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towards small scales in both inertial ranges. For the particule-number cascade, one
has

	(k) ∼
{

g−1/2|�n |1/2k−1 k0 � k � min(k∗n, k1) (strong turbulence)

(2m)−1/3g−2/3|�n |1/3k−1/3 max(k∗n, k0) � k � k1 (weak wave turbulence)
(6.164)

where the characteristic time of non-linear terms is τN L ,n = (g‖�n‖)−1/2, yielding
equality of linear and non linear effects at k∗n = √

2m(g‖�n|)1/4. Detailed analysis
shows that �n > 0 in the strong turbulence inertial range while �n < 0 in the weak
wave turbulence régime. This corresponds to the existence of a direct particule-
number cascade at large scales and an inverse cascade at small scales governed by
the weak wave turbulence régime.

The link with previous developments dealing with Kelvin wave weak turbulence
is not straightforward, since Gross–Pitaevskii solutions are space-filling solutions
that do not separate quantized vortex oscillations and induced near- and far-fields
of acoustic and non-acoustic nature. But the important results are that: (i) a weak
turbulence dynamics should occur at small scales while large ones exhibit a strong
turbulence dynamics associated to a direct energy cascade and (ii) an inverse cascade
associated to the second global conserved quantity is likely to occur at small scales.

6.4.3.4 Numerical Results and Conclusions

Several pseudo-Direct Numerical Simulations of Quantum Turbulence based on the
Gross–Pitaevskii equations have been published in the recent past, including high-
resolution 57603 simulations (Yepez et al. 2009). A typical view of instantaneous
solution at several zoom level is displayed in Fig. 6.7. The existence of vortex loops
and vortex rings at very small scale is observed, in agreement with theoretical state-
ments. The organization of the flow in large-scale packets of small objects is also
observed. This picture is reminiscent of the one found in classical isotropic Navier–
Stokes turbulence, in which small-scale vortex tubes and vortex sheets organized in
large-scale coherent clusters are detected (see Sect. 4.10).

Numerical simulations have allowed to see, on very simplified two-filament con-
figurations, the emission phonons under the form of a rarefaction wave that can
be approximated as an acoustic wave during vortex reconnection, proving that this
mechanisms is at the heart of Quantum Turbulence dynamics. Another striking fact
is the dispersion of results dealing with the slope of the energy spectrum E(k).

First, it must be reminded that the total energy, which is constant in the absence of
boundary condition of thermal noise, is the sum of several contributions, namely the
kinetic energy, the potential energy, the interaction energy and the quantum energy
(see Sect. 6.2.1). Since the Gross–Pitaevskii equation is related to a compressible
equivalent Navier–Stokes-like equation, the kinetic energy (and other components
too) can be split into a compressible and an incompressible component thanks to the
Helmholtz decomposition discussed in Sect. 2.1.5. Only very few numerical results
dealing with both components of the velocity fields are available, and such data escape

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 6.7 Instantaneous view
of DNS solution of the
Gross–Pitaevskii equation at
increasing zoom level. From
Sasa and Machida (2011)
with permission
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direct measurements in Bose–Einstein condensates. Most related simulations deal
with 2D quantum turbulence, and therefore characteristic features of 3D turbulence,
which is the scope of the present book, remain to be investigated. Existing results
show that the incompressible kinetic energy is converted into compressible one during
the emission of acoustic waves, as in classical isotropic compressible turbulence. The
existence of possible weak and strong equilibrium states between the solenoidal and
the compressible components similar to those found in compressible Navier–Stokes
quasi-isentropic turbulence (see Sect. 13.2.2) has not been investigated up to now.
Such equilibrium states in Quantum Turbulence should exist, as they do in Quasi-
Static MHD turbulence and viscoelastic turbulence. They should depend on the
features of the forcing term in stationary turbulence or those of the initial condition
in freely decaying turbulence.

The existence of an inertial range at small scales, i.e. scales smaller than the
average inter vortex spacing �, has been reported by several authors, but with a large
dispersion on the slope value. In their pioneering low-resolution simulation, Nore
et al. (1997) reported a trend toward E(k) ∝ k−1, while a −3 slope is observed
in much more recent high resolution simulations by Tsubota et al. (2017) and by
Yepez et al. (2009). Inertial-range-type solution is not observed in the simulation by
Sasa et al. (Sasa et al. 2011; Sasa and Machida 2011), in which a more complex
solution made of a E(k) ∝ k2 range followed by a E(k) ∝ k0 and then a rapidly
decaying region is reported. The k−1 solution found in Biot–Savart-vortex filament
simulation is not observed, showing the importance of the compressible dissipative
effects on the solution at small scales. At present time, no definitive conclusion about
the slope value can be drawn due to the very limited amount of available independent
solutions, but it seems that the most probable solution is E(k) ∝ k−3.

Another very interesting result coming from DNS of the dynamics of vortex rings
and vortex filaments (Berloff 2004) is that Kelvin wave generation can be triggered by
the interaction between vortex lines and acoustic waves, and not only directly during
vortex reconnection. This purely dilatational effect escapes simulations based on the
Biot–Savart filament vortex approach, and represents a feedback of the acoustic field
on the vorticity field whose effect in a full vortex tangle remains to be modeled and
quantified.

6.4.4 Dynamics at Small Scales. IV: Dissipative Mechanisms
and Vortex Heating

It has been seen in previous sections that dissipation at zero temperature is due to the
emission of quasi-particules (phonons in 4He, trapped quasi-particules
in 3He-B) during vortex reconnections or displacements and deformations of quan-
tized vortices (Vinen 2000, 2001; Leadbeater et al. 2001, 2004; Ogawa et al. 2002;
Berloff 2004; Kozik and Svistunov 2005b; Barenghi 2008; Hänninen 2013).
The later mechanisms can be interpreted as a generalization of the vortex sound

http://dx.doi.org/10.1007/978-3-319-73162-9_13


6.4 Quantum Turbulence Dynamics at Zero or Nearly-Zero Temperature 321

phenomenon in classical fluids, and available theories predict that high frequency
Kelvin-waves may yield a significant dissipation in 4He at very low temperature.
Quasi-particule emission due to large-amplitude large-scale deformations of vortex
filaments is still to be analyzed theoretically and numerically, but there is no evidence
that this phenomena is always negligible compared to other mechanisms. Therefore,
one can theoretically distinguish between three dissipative mechanisms, namely the
reconnection-induced decay, the large-scale vortex noise decay and the small scale
vortex noise decay associated to Kelvin waves. According to many authors inspired
by the Richardson energy cascade in classical fluid turbulence, the last dissipative
mechanisms is mediated by the Kelvin-wave cascade, which is assumed to be the main
way of transfer of energy from low-frequency Kelvin waves to high-frequency ones,
low-frequency waves being generated by reconnections. This scenario is appealing
because it mimics in some sense the classical turbulence dynamics, but it is worth
noting that there is presently no available direct measurement or clear numerical
evidence for it in realistic configurations.7

The respective part of each mechanisms in the total dissipation in realistic 3D
isotropic realizations of Quantum Turbulence remains to be measured and analyzed
theoretically. One can expect that the relative importance of each mechanisms will
be case-dependent, with significant differences between Bose–Einstein condensates,
4He and 3He-B. Vinen (Vinen 2005; Vinen and Niemela 2002) emphasizes that in
3He-B, due to the large radius of the quantized vortex,8 high frequency Kelvin waves
potentially responsible for dissipation by phonon emission can not be generated as in
4He. As a consequence, this dissipative mechanisms can not exist, but it is replaced
by another one, namely the damping of Kelvin waves (and other vortex deformations)
by interaction between bound quasi-particules in the vortex core and Kelvin waves.

At higher temperature mutual friction induces a new direct dissipation mecha-
nisms, but also indirectly modify the other dissipative mechanisms by influencing
the vortex reconnection and Kelvin wave dynamics (Vinen 2005). A smoothing of
the vortex filaments by mutual friction has been reported in vortex-filament-based
simulations, which lead to a damping of Kelvin wave and a regularization of the
kink induced by vortex reconnection. The later phenomena induces a decrease of the
non-local generation of Kelvin waves.

A side-effect of emission of phonons is the increase of the temperature of the
superfluid, a phenomenon referred to has vortex heating (Samuels and Barenghi
1998). Denoting �K the amount of kinetic energy transformed into dilatational

energy, the difference between the initial temperature Tinit and the final one T f inal

can be computed by integrating the usual relation d E = cvdT . For helium II below
0.6K, considering only the specific heat of phonons, i.e. taking

7As a matter of fact, most existing results dealing on Kelvin wave cascade have been obtained on
very simplified configurations with one or very few vortex filaments.
8At low temperatures, the quantized vortex core radius is about 77 nm in 3He-B, to be compared to
0.1 nm in 4He.
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cv =
(

2π5k4
B V

15�a3
s

)
T 3, (6.165)

where as ∼ 2.4×102 m/s, kB and V denote the speed of first sound, the Boltzmann’s
constant and the volume of fluid under consideration, respectively, Samuels and
Barenghi obtained

T 4
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ini t + 30�
3a3

π5k4
B

�K
V

. (6.166)

A important remark is that vortex heating may result in a significant increase of
the temperature and of related mutual friction effects, and then significant changes
in Quantum Turbulence dynamics. A detailed analysis of the resulting temperature
and velocity field in isotropic turbulence with frictional heating, similar to what has
been done for classical fluids (see Sect. 13.3.4) remains to be done.

6.4.5 Coarse-Grained Dynamics. I: Generals

Preceding sections where devoted to small scale dynamics, i.e. to physical phenom-
ena that occur at scales of the order or smaller than the inter-vortex spacing �. It has
been seen that small scale physics is dominated by quantized vortex dynamics, and
has no counterpart in classical fluid turbulence. But it appears that in some configu-
rations fluctuations at scales much larger than � may occur, which may exhibit many
features of classical isotropic turbulence, leading to the so-called quasi-classical Kol-
mogorov régime, see Sect. 6.4.6. In this state, large scale vortical eddies are detected
along with a direct cascade of kinetic energy. But another large scale state has been
identified, namely Vinen’s Ultra-Quantum turbulence in which no large scale vortical
eddies are present (see Sect. 6.4.7). The existence of these two states has been histor-
ically identified thanks to the fact that they are associated to significantly different
decay rate of kinetic energy in freely decaying grid turbulence. This point is discussed
in Sect. 6.5. Quasi-classical Kolmogorov and Vinen Ultra-Quantum states have been
mostly addressed considering counterflowing superfluid helium (both experimen-
tally and numerically, using either Biot–Savart-vortex-filament framework or two-
fluid hydrodynamic models), but they have also been reported in numerical solutions
of the Gross–Pitaevskii equation.

The existence of these large-scale régimes raises many presently unsolved issues.
Among them, one should mention the role of the mutual friction term and the pos-
sibility for them to exist at zero temperature, the identification of the mechanisms
responsible for the large-scale organization and dynamics, the role of external forc-
ing and the quantized vortex nucleation process, the very nature of the large scale
eddies …These issues are further discussed below.

http://dx.doi.org/10.1007/978-3-319-73162-9_13
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6.4.6 Coarse-Grained Dynamics. II: Quasi-classical
Kolmorogov Turbulence

In this régime, the energy spectrum at scales much larger than � is observed to
exhibit the classical Kolmogorov inertial range scaling, i.e. E(k) ∝ k−5/3. It has
been reported in numerical solutions based on both Gross–Pitaevskii equation, e.g.
Kobayashi and Tsubota (2005), Yepez et al. (2009), Sasa et al. (2011), Tsubota
(2013), Tsubota et al. (2017), and Biot–Savart vortex filament models, e.g. Baggaley
et al. (2012a, 2014), see Figs. 6.8 and 6.12. It has also been reported in numerical
simulations based on the two-fluid model, e.g. Roche et al. (2009), Tchoufag and
Sagaut (2010). It is worth noting that in Gross–Pitaevskii simulations, this result
is obtained looking at the kinetic energy of the solenoidal part of the velocity field
only. This robustness indicates that this large-scale organization is not very sensitive
to details of small scale physics and dissipation. But such a spectrum has not been
directly measured in experiments, even in Bose–Einstein condensates which allow
very interesting direct measurements of density fluctuations. As a matter of fact,
it is only indirectly inferred in experiments from data dealing with energy decay
in superfluid helium. It is worth noting that the classical turbulence in Newtonian
fluids is also observed to exhibit some degree of independence to details of the dis-
sipative mechanisms, as proved by numerical experiments based on hyperviscosity
(see Sect. 4.12.4) and by large-eddy simulation results (Sagaut 2005), in which the
physical Navier–Stokes dissipative term is replaced or supplemented by a dramat-
ically different nonlinear term. In these simulations, the classical E(k) ∝ k−5/3 is
recovered if both the Reynolds number and the grid resolution are large enough.

Large vortical eddies are observed, whose nature and dynamics are not fully
understood. The commonly adopted model for them relies on the concept of large
scale bundles of quantized vortex filaments, whose non-zero large-scale vorticity
comes from the total or partial polarization of the vortex lines inside the bundle. The
intensity of the vorticity can also be a function of the number threads/vortex filaments
trapped in the bundle. This schematic picture is a cornerstone of many theoretical
developments, but it is worth noting that bundles have never been directly observed
in experiments. It can be seen as a kind of extrapolation of what is observed in
laminar superfluid helium flow subjected to solid body rotation. In this case, quantized
vortices are organized as parallel, polarized vortex lines. First clear views of large-
scale organization of isotropic Quantum Turbulence have been obtained only very
recently thanks to high-resolution numerical simulations of the Gross–Pitaevskii
equation. But there are only very few of them, precluding definitive conclusions.
These results are illustrated in Fig. 6.7. It is seen small scales are mostly made of
loops and rings, which are clustered in large scale pockets. At the maximum zoom
level, a tendency of the rings and loops to be organized in a coherent way is seen.
More precisely, vortex loops/rings tend to be located in parallel planes, opening the
possibility for the generation of a coherent motion at larger scales. Therefore, a more
realistic picture might be to define quantized vortex bundles as clusters of (partially)

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 6.8 Kinetic energy spectrum of the solenoidal velocity field E(k) computed using the Gross–
Pitaevskii equation at different grid resolutions. From Sasa et al. (2011) with permission

coherently distributed quantized vortex loops/rings. This qualitative model shares
some features with large-eddies in classical turbulence, which appear as clusters of
small-scale worm-like elongated vortex tubes, as seen in Fig. 4.26.

How such large-scale coherent packets can be generated in superfluids with quan-
tized vortices and how they can sustain a Richardson-like cascade are still open prob-
lems. At this point, it is worth noting that a direct cascade of kinetic energy toward
small scales (but still larger than �) has been repeatedly reported in numerical sim-
ulations, and therefore such a mechanisms should be at play in the quasi-classical
turbulent régime. It has been seen in Sects. 4.11.2 and 4.11.3 that key features of
isotropic turbulence dynamics in classical fluids in physical space are (i) the pro-
duction of enstrophy by the interaction of vorticity with the strain field and (ii) the
self-amplification of strain by vortex compression. Another important finding is that
small-scale vortex tube dynamics, including the effects of vortex stretching on them,
is not a key element in the kinetic energy cascade in Newtonian fluid turbulence.
Therefore, there is a possibility that classical turbulence and Quantum Turbulence,
while exhibiting very different dynamics at the smallest scales, may have similar
dynamics at scales much larger than �. Nevertheless, two key questions remain to be
answered: (i) how a local velocity gradient can induce changes in the organization
of quantized vortices inside a bundle and (ii) how the rate of reconnection inside a
bundle is modified by a local shear. This first question may be (at least partially)
answered looking at kinematics of frozen vortex rings subjected to an homogeneous
shear. An expected result is that vortex rings with the same polarization will have the
same equilibrium orientation, giving a possible explanation for the local coherence
in flow regions with locally homogeneous of slowly-varying shear.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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The pseudo-Kolmogorov inertial range is not limited by viscous effects as in clas-
sical fluids at zero temperature, but it may develop only at scales that are not affected
by typical quantum effects such as reconnection. Therefore, an empirical estimate for
the high-wavenumber cutoff is kc ∼ 2π/�. Skbrek et al. (2001) introduced another
cutoff length scale, by analogy of the definition of the Kolmogorov scale in classical
turbulence. Using dimensional analysis, they define the characteristic quantum wave
number kQ = (ε/κ3)1/4 and the associated quantum length scale �Q = 2π/kQ . Here,
ε is the rate of transfer of kinetic energy mediated by the kinetic energy cascade, and
it is assumed to be constant across the inertial range, as in classical turbulence. Dupli-
cating the classical Kolmogorov-like dimensional analysis for the energy spectrum,
one finds

E(k) = Cε2/3k−5/3ϕ(k4
Qk−4), (6.167)

where ϕ is the dimensionless shape function at small hydrodynamic scales. They
propose ϕ(x) = xα, where α = 1/3 to optimize the fit with some experimental data
dealing with the energy decay rate. Therefore, one has E(k) = Cεκ−1k−3 for small
hydrodynamic scales such that kQ � k � �−1.

At very low but non-zero temperature, the existence of a normal fluid component
yields a more complex dynamical picture, because of mutual friction effects. In
the case of dominant mutual friction effects, the two-fluid macroscopic dynamical
system simplifies as

∂us

∂t
� −γ0�

ρs
(us − un),

∂un

∂t
� −γ0�

ρn
(un − us) (6.168)

leading to
∂

∂t
(us − un) � − 1

τγ
(us − un), τγ = ρn

αρκ�
, (6.169)

showing that the two velocity fields will be locked by the mutual friction. Therefore,
if a classical turbulence is induced on the normal fluid at large scales by external
mechanical forcing or initial conditions, the enslaved superfluid component will
exhibit similar features. This analysis can be refined reminding that the eddy turnover
time at wave number k can be estimated as τ (k) = (ku(k))−1, where u(k) ∼ √

k E(k)

is the characteristic velocity at this scale and E(k) the energy spectrum. Therefore,
the two fields will be locked at wave number k is the following condition is satisfied:

τγ

τ (k)
= ρnku(k)

αρκ�
� 1. (6.170)

Now assuming that E(k) = K0ε
2/3k−5/3, one has u(k) ∼ √

K0ε
1/3k−1/3 and the

criterion becomes
τγ

τ (k)
= ρn

√
K0ε

1/3k2/3

αρκ�
� 1. (6.171)
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Looking at experimental values for �,α and κ, it is seen than lock-on may occur
at almost all large scales in realistic superfluid helium flows. A quasi-perfect lock-on
over a wide range of scales is observed in two-fluid-based numerical simulations
(Roche et al. 2009; Tchoufag and Sagaut 2010). This analysis can be refined to
evaluate the possibility of the existence of a viscous cutoff due to the normal fluid
viscosity on the superfluid kinetic energy cascade because of the mutual-friction-
induced lock-on. To this end, Vinen and Niemela assumed that the Kolmogorov
spectrum matches “smoothly” the one derived considering the vortex filament model
at scales of the order of the inter vortex spacing �. Assuming that at such scales the
flow is made of a random tangle of quantized vortex lines, one has

u2(�−1) = βκ2

�2
(6.172)

where the parameter β depends on details of the tangle topology. Equalizing the two
expressions for the fluid velocity at scale �, one finds the following expression for
the kinetic energy cascade rate:

ε =
(

β

K0

)3/2

κ3�−4 =
(

β

K0

)3/2

κ3L2
0 (6.173)

where L0 denotes the length of vortex line per unit volume. Using this estimate for
ε, the velocity within the inertial range can be expressed as

u2(k) = β

(
κ2

�2

)
(k�)−2/3 (6.174)

and criterion (6.171) becomes

τγ

τ (k)
= ρnβ

1/2

αρ
(k�)2/3 � 1, (6.175)

which is satisfied at large scales such that k� � 1. Viscous effects can be taken into
account introducing the following viscous time scale, which has two different values
depending the fact that normal and superfluid components are fully coupled or fully
decoupled

τν(k) = (ν
k2
)−1

, ν
 =
{

μn/ρn (fully decoupled case)

μn/ρ (fully coupled case)
(6.176)

where μn is the normal fluid viscosity. Viscous effects will significantly damp velocity
fluctuations if

τν(k)

τ (k)
< 1 ⇐⇒ β1/2κ

ν


(k�)−4/3 < 1. (6.177)



6.4 Quantum Turbulence Dynamics at Zero or Nearly-Zero Temperature 327

Looking at physical values of the parameters in 4He, these expressions show that
dissipation is always negligible in the range k� < 1 at temperatures above 1 K, but
that it becomes important for smaller scales such that k� ≥ 1. As a consequence,
at least in 4He, the pseudo-Kolmogorov inertial range may develop down to scales
of the order of �. In 3He-B the normal fluid viscosity is much higher, and viscous
damping effects may preclude the occurence of a Kolmogorov-like inertial range
in the normal fluid component, and consequently also in the superfluid component.
Only very few experimental realizations of turbulence in 3He-B have been reported
up to now, but one can extrapolate the preceding reasoning defining a viscous cutoff
length scale for the normal fluid, lν , which will be of the order of the Kolmogorov
scale η = (ν3

n/ε)1/4 if it is turbulent (Vinen 2005). In the case lν ≥ �, the inertial
range, if any, may develop down to scales of the order of lν .

The question of the shape of the energy spectrum at hydrodynamic scales smaller
than the cut-off scale of the −5/3 inertial range has been the matter of several
controversies, and is still an open issue. Considering the two-fluid model, one can
see that this is a two-field problem with two-way couplings, that shares some features
with the problem of classical isotropic turbulence coupled to an active scalar field.
Neglecting the feedback of superfluid velocity on the normal component to get a
one-way coupling mode (e.g. L’vov et al. 2004), a weak analogy with possible states
exhibited by a passive scalar field depending of the Prandtl number and the production
mechanisms (e.g. Briard et al. 2015; Briard and Gomez 2015) indicates that a
systematic analysis would reveal a significant number of possible turbulent states
for both normal and superfluid components, parametrized by the temperature. The
hypothetical ranges that may exist could therefore be understood as some kind of
extensions of the inertio-convective, inertio-conductive and inertio-balanced ranges
found in the passive scalar case. Accounting for the two-way coupling increases the
number of possible states.

Several theories have been proposed, based on different physical assumptions and
tools. The emphasis is put here on the approach proposed in L’vov et al. (2004, 2006),
Vinen (2005), Skbrek (2006), and other authors, which is the most popular one. It
relies on Lin-type equations for both superfluid and normal kinetic energy spectra,
denoted Es(k) and En(k), respectively:

∂En(k, t)

∂t
− Tn(k, t) = F̂s→n(k, t) (6.178)

∂Es(k, t)

∂t
+ νnk2 Es(k, t) − Ts(k, t) = F̂n→s(k, t) (6.179)

where Ts, Tn, F̂n→s and F̂n→s are related to the nonlinear inertial transfer terms for
the superfluid and the normal component, and to the spectrum of the mutual friction
terms, respectively. Different states are then identified searching for steady solutions
of the set of coupled equations via fixed-point methods or analytical integration. The
system is closed using a differential model for the non-linear transfer terms Ts and
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Fig. 6.9 Schematic view of incompressible kinetic energy spectra of the normal fluid component
(En(k), solid black line) and the superfluid component (En(k), solid grey line) corresponding to four
possible asymptotic states at hydrodynamic scales. Dotted lines are related to Kolmogorov spectra
obtained when mutual friction effects are removed. Top: large mutual friction effects; Bottom: low
mutual friction effects; Left: large normal fluid density ρn ; Right: small normal fluid density ρn .
From L’vov et al. (2006) with permission

Tn (Kovasznay or Leith models in practice, see Sect. 4.7.1), and an ad hoc model for
the mutual friction terms (see L’vov et al. 2006; Vinen 2005 for details).

Depending on the amplitude of the normal fluid density ρs and the intensity of the
mutual friction, at least four possible states have been suggested in L’vov et al. (2006),
which are illustrated in Fig. 6.9. New possible spectral ranges with slopes equal to
−3 and −17/3 are predicted. These results have been confirmed solving dynamical
equations for Es(k) and En(k) using an EDQNM closure for Ts and Tn in place of
differential models (Tchoufag and Sagaut 2010). This agreement demonstrates the
robustness of the prediction versus the locality of the energy transfer responsible
for the pseudo-Richardson energy cascade at hydrodynamic scales. But since the
same model for the mutual friction was used, one cannot draw definitive conclu-
sions about the existence of the four solutions displayed in Fig. 6.9. Another point
is that these states must be considered as asymptotic solutions, which would only
be observable when clear scale separation between the different cutoff length scales
occurs, something that may be out of reach of realistic experimental configurations.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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The preceding analyses were restricted to hydrodynamic scales that can be repre-
sented by the two-fluid models, i.e. scales much larger than the inter vortex distance
�. Some proposals have been made to extend them to investigate the cross-over
region, in which the hydrodynamic solution is expected to match smoothly the one
dominated by typical mechanisms related to quantized vortices, namely reconnec-
tions, quasi-particule radiation and Kelvin wave dynamics (L’vov et al. 2007, 2008;
Kozik and Svistunov 2008a). In this spectral region, the energy flux is assumed to be
transferred from the large-scale hydrodynamic motion to quantum mechanisms. A
key assumption shared by the existing approaches is the continuity of the flux across
scales during this transition. Two main theories have been proposed, which lead to
different results.

The first one relies on an extension of the model discussed above to scales smaller
than �. A new Lin-type equation is proposed to compute the energy spectrum of
Kelvin waves EK W at non-hydrodynamic scales and a coupling term between En, Es

and EK W , e.g. Boffetta et al. (2009), L’vov et al. (2006, 2007, 2008) is added
to account for the energy transfer between hydrodynamic and non-hydrodynamic
scales. Ad hoc local differential models are used to close the equation for EK W ,
modeling several physical mechanisms, namely the Kelvin-wave cascade, the loss of
energy by phonon emission, the production by vortex reconnection and the damping
of Kelvin wave by mutual friction at high temperature. Results are then obtained
seeking for fixed-point solutions or numerical solutions of the set of coupled equa-
tions. Among the main outputs of these models, one must mention the existence of a
possible bottleneck in the energy spectrum in the cross-over range, as illustrated in
Fig. 6.10 which displays the total energy spectrum Es(k) + EK W (k) (where EK W is
here to be understood as the kinetic energy spectrum induced by the 1D Kelvin-wave
spectrum, see Sect. 6.4.2.3). The predicted bottlneck is characterized by a k2 range,
which is interpreted as a range of thermalized scales in which the energy transferred
from large scales pile-up. A fairly good comparison with numerical solution of the
Gross-Pitaesvkii equation is obtained, tuning the parameter � = log(�/rc) to 2,
while physical values are within the range 12–15 in superfluid helium. Here, it is
important to note that this comparison is the unique available piece of validation for
the model. But it should be kept in mind that the model was originally developed for
superfluid helium turbulence, in which the crossover region and Kelvin wave cascade
are likely to exist. The comparison with Gross–Pitaevskii solution should therefore
be considered with care, since this equation is not adequate for superfluid helium.
The decrease of � from 12–15 to 2 is coherent with the fact that this quantized
vortices have a much larger radius rc in atomic Bose–Einstein condensates than in
superfluid helium. This is also coherent with the absence of k2 region in the numer-
ical results. Consequently, more results are certainly needed to assess this crossover
model, especially in the case of superfluid helium.9

9As quoted by Nemirovskii (2013), it is also important to note that the idea underlying the pile-up
of kinetic energy at scales about the inter-vortex distance � is that the Kelvin wave energy at such
scales is much smaller than the one given by the Kolmogorov spectrum, leading to a mismatch
between the two spectra and the associated cascade rate. This corresponds to the flawed equality
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Fig. 6.10 Total kinetic energy spectrum in the cross-over region predicted by the L’vov–Nazarenko–
Rudenko model. Left: schematic view (from L’vov et al. 2008 with permission); Right: comparison
with large-scale simulation of the Gross–Pitaevskii equation at different grid resolutions (from Sasa
et al. 2011 with permission)

The second approach developed in Kozik and Svistunov (2008a, b, 2009) relies
on the detailed analysis of the different dynamical ranges of scales associated to
reconnection of bundles and quantized vortices discussed in Sect. 6.4.1.3. This model
predicts the existence of several ranges with associated slopes but without bottleneck.
It is illustrated in Fig. 6.11, which displays the schematic spectrum of Kelvin wave
amplitude, along with comparison with experimental data obtained in superfluid
helium (taking � = 13) for the evolution of associated vortex line density versus
the temperature-dependent mutual friction parameter α(T ). A very good agreement
with experimental data is observed, but it should be borne in mind that the model
exhibits 7 tunable parameters, and that the comparison deals with the vortex line
density, leading to an indirect validation only.

A few additional comments should be made to close this section:

• The existence of vortex bundles, as defined or described in most existing theories
for Quantum Turbulence, is still to be assessed by experiments. Only very few
numerical data show a trend to a large-scale organization of quantized vortices.
There is also no theoretical rigorous proof that such objects can be generated, and
their dynamics remains almost unknown.

• Bridging between kinematics and dynamics at scales larger than � is still unclear.
More precisely, physical mechanisms that govern kinetic energy cascade at these
scales in Quantum Turbulence have not been investigated with the same complet-
ness and accuracy as in classical Newtonian fluid turbulence.

• Most existing theoretical developments presented above that deal with the quasi-
Kolmogorov inertial range are based on heuristics and dimensional analysis, not
on a detailed analysis of either Gross–Pitaevskii or two-fluid model equations,
and it must be kept in mind that such small scales escape direct measurements

E(k) = EK W (k), as discussed in Sect. 6.4.2.3. As a matter of fact, if the correct kinetic energy, i.e.
the one of the velocity fluctuations induced by quantized vortices and Kelvin waves is taken into
account, the mismatch and the need for a bottlneck disappear.
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Fig. 6.11 Model for the cross-over region predicted by the Kozick and Svistunov. Left: schematic
view of the Kelvin wave spectrum (from Kozik and Svistunov 2009 with permission). The dif-
ferent ranges are discussed in Sect. 6.4.1.3; Right: comparison of the associated normalized vortex
line density (solide line) versus the temperature-dependent mutual friction parameter α(T ) with
experimental data (symbols) (from Kozik and Svistunov 2008b with permission)

in experiments. Existing theories dealing with spectrum shape at small scales at
the edge of the inertial range are mostly speculative and exhibit a wide dispersion
of results, and have received almost no assessment from experiments or direct
simulations. Therefore, it is almost impossible to draw conclusions on that issue
at present time.

• Most attention was paid to the solenoidal velocity field when analyzing solutions
of the Gross–Pitaevskii equation. Therefore, the structure of the dilatational part
of the solution, along with those of the density and the pressure fields, remain to
be analyzed. Possible similarities with results found in compressible isotropic
turbulence, especially in the quasi-isentropic régime (see Sect. 13.2) have not been
investigated up to now.

6.4.7 Coarse-Grained Dynamics. III: Vinen’s
Ultra-Quantum Turbulence

A second state, referred to as Ultra-Quantum turbulence, has been reported in several
experiments performed in superfluid Helium. It is characterized by a different kinetic
energy decay rate when compared to the quasi-Kolmogorov régime. There is no
direct experimental investigation of the topology of large scales in this régime, but
the most commonly admitted picture is that it is characterized by the absence of
vortical energetic eddies at scales larger than the intervortex distance �. This picture is
supported by numerical results obtained using the Biot–Savart filament vortex model
(Baggaley et al. 2012a, b), which exhibit decay régimes very close to experimental
data in both classical and ultra-quantum turbulence. The difference is illustrated

http://dx.doi.org/10.1007/978-3-319-73162-9_13
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Fig. 6.12 Kinetic energy spectrum E(k) at different times in Biot–Savart vortex filament model
simulations. Left: classical quasi-Kolmogorov state; Right: Vinen’s ultra-quantum state. From
Baggaley et al. 2012a with permission of APS

in Fig. 6.12, which displays the kinetic energy spectrum E(k) at different times.
The difference at wave numbers k� > 1 clearly shows the absence of energetic
hydrodynamic vortical eddies in the ultra-quantum régime.

Numerical experiments show that the ultra-quantum régime is obtained if the
kinetic energy injection (i) has a moderate intensity and duration and (ii) occurs at
scales larger but not very large compared to �. In these conditions, the kinetic energy
cascade cannot build-up with enough efficiency to give rise to a Kolmogorov-like
inertial range, preventing the occurence of the quasi-classical régime.

A qualitative rationale for the possibility of the existence of the two régimes
mentioned above has been suggested by Volovik (2003, 2004) on the grounds of
dimensional analysis, considering the case of isotropic turbulence in a counterflow
with uniform normal velocity U in a channel with characteristic diameter D. Start-
ing from the macroscopic equation for the superfluid velocity issued from two-fluid
models and writing it in the reference frame moving with the normal fluid coun-
terflow, i.e. taking un = 0 in Eq. (6.64), one obtains the following equation for the
macroscopic superfluid velocity us

∂us

∂ t̃
+ ∇μ̃ = us × ω + q

ω

‖ω‖ × (ω × us) (6.180)

where ω = ∇ × us is the vorticity of the coarse-grain superfluid velocity. The
dimensionless temperature-dependent parameter q is defined as

q = α

1 − α′ (6.181)

and where t̃ = (1 − α′)t is a renormalized time unit. Expressions and physical
meaning of coefficientsα andα′ are given in Sect. 6.6. This equation is to be compared
to the classical momentum equation for a Newtonian incompressible fluid:
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∂u
∂t

+ ∇μ = u × ω + ν∇2u. (6.182)

It is seen that 1/q is a measure of the ratio of inertial to coupling effects, and
plays the role of a kind of Reynolds number since it tunes the dissipation rate of the
superfluid kinetic energy Ks , εs :

εs = −
(

us · ∂us

∂ t̃

)
= −q

[
us ·

(
ω

‖ω‖ × (ω × us)

)]
. (6.183)

The amplitude of the dissipation can be roughly estimated as

εs � qωU 2
s , (6.184)

where Us is related to the mean value of the large-scale superfluid velocity. It is taken
equal to the velocity difference |uns | in the case of counterflowing superfluid helium
turbulence. One can see that turbulence may occur at large scales iff q � 1, i.e. if the
dissipation induced by mutual friction is small enough to allow for an energy cascade
to take place. Another condition is that the quantum Reynolds number Res = U D/κ
is very large, which is a necessary condition for the two-fluid model to hold.

Let us first consider the quasi-classical régime. The inertial range with E(k) ∝
ε2/3k−5/3 is assumed to range from kD ∼ 1/D to kc ∼ 1/ lc. The energy flux
ε is assumed to be constant across the scales within this range. Using classical
dimensional analysis, local velocity and vorticity are given by u(r) ∼ ε1/3r1/3 and
ω(r) = u(r)/r ∼ ε1/3r−2/3. Now assuming that the energy flux is continuous at the
cutoff scale lc, one obtains

ε ∼ qω(lc)U
2
s ∼ qU 2

s u(lc)/ lc = qU 2
s ε1/3r−2/3 = U 3

s /D, (6.185)

from which one can deduce the following scaling laws:

lc ∼ q3/2 D, u(lc) ∼ q1/2Us, (6.186)

which are valid if � � lc < D and u(lc) < Us . It is important noting that there is
one important underlying hypothesis in the above developments: the circulation is
assumed to be the one of turbulent large eddies, so that it must be much larger than the
one of a quantized vortex, leading to u(lc)lc � κ. Since u(lc)lc = q2Us D = q2κRes ,
this last condition yields the following criterion for the existence of the quasi-classical
régime:

Res > q−2 
 1. (6.187)

The utra-quantum state is therefore obtained in the case

q−2 > Res 
 1. (6.188)
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Fig. 6.13 Phase diagram for quasi-classical and ultra-quantum turbulence as suggested by Volovik.
Left: schematic phase diagram (adapted from Volovik 2003); Right: compilation of experimental
data (from Skbrek 2004 with permission)

In this state, the characteristic circulation is κ = �/m, where m is the mass of
the particule associated to the superfluid. Dimensional analysis yields also different
expressions for the vortex line density per unit volume, L0:

L0 ∝

⎧⎪⎨
⎪⎩

u(lc)

κlc
� Us

qκD
= 1

D2

Res

q2
(Quasi-classical Kolmogorov regime)

�−2 ∼ λ2 U 2
s

κ2
= Re2

s

λ2

D2
(Ultra-Quantum regime)

,

(6.189)
where λ is the dimensionless parameter such that � = λκ/Us . The corresponding
phase diagram proposed by Volovik is shown in Fig. 6.13.

6.5 The Decay of Isotropic Quantum Turbulence

6.5.1 Quasi-classical and Ultra-Quantum Decay Régimes

The decay of grid turbulence in superfluid is among the leading topic in the field of
superfluid turbulence theory, and a striking difference with the dual topic in classical
fluids is that only very few accurate quantitative experiments have been carried out,
e.g. Gao et al. (2016), the first one dealing grid turbulence in 4He having been carried
out in 2007. It should be borne in mind, reading the section below, that the main
available data deal with decay of kinetic energy, which is most often interpreted as
the evolution of the total quantized vortex length L and the corresponding vortex line
density L0. The main result is that two decay régimes have been identified, which
are assumed to be tied to two different flow dynamics. It is further hypothesized
that they are tied to the two different hydrodynamic scale topologies discussed in
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Fig. 6.14 Decay of vortex line density L0 for quasi-classical (left) and ultra-quantum (right) tur-
bulence. Top: experimental data obtained in 4He (from Walmsley and Golov 2008; Golov and
Walmsley 2009 with permission of APS). Bottom: numerical results computed using the Biot–
Savart vortex filament model (from Baggaley et al. 2012a with permission of APS)

Sects. 6.4.6 and 6.4.7. In the first one, referred to as the quasi-classical Kolmogorov
régime, the commonly reported decay law is K(t) ∝ t−2 and L0(t) ∝ t−3/2. In
the second one, namely the Vinen ultra-quantum state, one observes K(t) ∝ t−1 and
L0(t) ∝ t−1. These results have been obtained in both superfluid helium experiments
and numerical simulations based on the Biot–Savart vortex filament method, see
Fig. 6.14.

The existence of these two decay rates can be handled in a heurisitc way. The
starting point is the evolution equation for the turbulent kinetic energy in isotropic
turbulence without forcing:

dK
dt

= −ε (6.190)

where the dissipation rate ε gathers all existing dissipative mechanisms (mutual
friction, emission of phonons, …) that occur at all scales. By analogy with turbulence
in classical fluids, many authors introduce an associated effective viscosity ν ′ and a
mean superfluid vorticity ω̄s such that ε = ν ′ω̄2

s , where it is assumed that ω̄2
s ∼ κ2 L2

0
in grid turbulence. It is important to emphasize that the last relation is mainly derived



336 6 Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence

Fig. 6.15 Effective viscosity deduced from experimental data, in both quasi-classical and ultra-
quantum régimes. From Walmsley and Golov 2008 with permission

by analogy with classical isotropic turbulence and dimensional analysis, and that ν ′
is nothing but an artifact used for modelling purpose.

The K(t) ∝ t−2 law is obtained in a straightforward way thanks to the
Comte–Bellot-Corrsin analysis in the saturated case (see Sect. 4.4.5), the large-scale
saturation being very rapidly reached in experiments due to the very small diam-
eter of vessels used to deal with superfluid helium (Skrbek and Stalp 2000). The
main assumption here is that kinetic energy is mainly beared by scales with size
about the vessel diameter D, i.e. K ∼ K0ε

2/3 D2/3 and that the dissipation can
be expressed as ε ∼ κ3�−4. Plugging this relation into (6.190), one obtains the
result immediately by integration of the resulting relation. Combining the two above
expressions, one obtains the following expression for the turbulent kinetic energy:
K ∼ K0 D2/3κ2 L4/3

0 .
The second régime is recovered now assuming that turbulent kinetic energy and

characteristic vorticity are not associated to hydrodynamic large scales, but to very
small scales dominated by quantum phenomena. This new assumption leads to K ∼
ρs

κ2

4π
�L0, ω̄ ∼ κL0 and ν ′ ∝ κ, with � = log(�/rc). Inserting these relations into

(6.190), one recovers the expected results. It is worth noting that the turbulent kinetic
energy exponent in terms of L0 is not the same in the two régimes.

Values of ν ′ have been deduced from experimental data using the above reasoning.
Typical results are displayed in Fig. 6.15. A good approximation for temperature
above 1 K in superfluid Helium is ν ′ � qκ (Skbrek 2010).

More sophisticated expressions for the effective viscosity ν ′ can be obtained in
a few idealized cases (Vinen and Niemela 2002). Let’s first address the case in
which dissipation mainly originates in mutual friction. If there is no large-scale
hydrodynamic vortical eddies, the evolution equation deduced from the two-fluid
model is

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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dK
dt

= −αρsκ|uns |2 L0. (6.191)

Assuming that un = 0 and that the superfluid velocity is dominated by the self-
induction mechanisms, i.e. |us | � κ�/4π�, one obtains

dK
dt

= −
(

αρsκc2
2�

2

16π2

)
︸ ︷︷ ︸

ν ′
f r iction

(κL0)
2, (6.192)

where the self-similarity hypothesis �−2 = c2
2 L0 was used. In the presence of large

hydrodynamic scales, the effective viscosity is modified as follows

ν ′
f r iction = σ

(
αρsκc2

2�
2

16π2

)
, (6.193)

where 0 < σ < 1 is a parameter that accounts for the partial polarization of vortex
lines that induces a decrease in the rate of destruction of vortex lines. In both cases,
one has ν ′

f r iction ∝ κ, in agreement with Skrbek’s experimental fit. It is worth noting
that the existence of two different decay régimes when reconnection-dissipation is
dominant can also be derived from the two evolution régimes for the vortex line
density L0 in Sect. 6.4.1.1, since

1

V
dK
dt

= EQV
d L0

dt
(6.194)

where V and EQV denote the unit volume and the energy per unit length of quantized
vortex, respectively.

We now address the case of superfluid helium at zero-temperature at which mutual
friction vanishes, and neglecting the emission of phonons due to reconnections.
Within the Biot–Savart vortex filament framework, the variation of kinetic energy
is directly proportional to the change in total vortex line length. Now assuming that
the dissipation is due to the damping of Kelvin wave kinetic energy by radiation of
phonons, it is convenient to express the normalized Kelvin wave kinetic energy as:

L0 − L̃0

L̃0

= K̃K W

ρsκ2
= 1

ρsκ2

∫ +∞

1/�

EK W (k)dk (6.195)

where L0 and L̃0 are related to the total and the smoothed vortex line lengths (i.e.
without Kelvin-wave-induced corrugation), respectively. Using (6.125) for EK W and
integrating from 1/� to the cutoff wave number kph given by (6.128), one obtains

L0 − L̃0

L̃0

∼ A ln(kph�) (6.196)



338 6 Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence

Now using Vinen’s estimate for the phonon radiation (see Sect. 6.3.7), the rate of
dissipation of energy via phonon emission by Kelvin waves per unit mass of helium
is

εph � Gκ3L2
0

[1 + A ln(kph�)]2
. (6.197)

The associated effective kinematic viscosity ν ′ is obtained writing

εph = ν ′
phκ

2 L2
0, (6.198)

leading to

ν ′
ph � Gκ

[1 + A ln(kph�)]2
, (6.199)

where the injection rate of energy in the Kelvin-wave cascade by vortex reconnections
is taken equal to Gκ3�−4 ∼ Gκ3L2

0. Other formulas can be obtained using different
estimates for the phonon emission rate. In the case of reconnection-dissipation in
4He, (Vinen and Niemela 2002) evaluate the rate of reconnection per unit volume
as κ�−5 and the energy loss per reconnection as ρsκrc/4π, leading to a dissipation
rate per unit mass equal to

εreconnection = 1

4π
κ
(rc

�

)
︸ ︷︷ ︸
ν ′

reconnection

(κ2 L2
0) (6.200)

The factor rc/� is very small in 4He, supporting the hypothesis made above that
Kelvin-wave-induced dissipation is dominant in this case.

Another source of dissipation, referred to as quantized vortex diffusion
(Nemirovskii 2013), can also be taken into account when considering a fixed control
volume in a statistically unsteady flow. In such a configuration, there are non-zero
influx and outflux of quantized vortices which are not in balance, leading possibly to
a decrease of the total vortex length and the related kinetic energy within the control
volume.

The link between the measured decay exponent of K and the details of the flow
topology and physics is an important question, since no direct measurements of
energy spectrum and similar flow details are available in superfluid grid turbulence. At
present time, the main pieces of evidence that bridge between decay rates and large-
scale topology are the few existing vortex-filament based simulations that recover
the quasi-classical and the ultra-quantum régime. In the classical régime analysis,
the only assumption is that flow physics is dominated by large scales which are not
directly governed by vortex reconnection and quasi-particule emission. Dimensional
analysis does not allow for a deep insight of underlying physics. Therefore, one can
only conclude that the K(t) ∝ t−2 régime is coherent with what is found for a
saturated classical turbulence, but there is no direct evidence that large scales in
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that régime exhibit exactly the same dynamics as in Newtonian fluids. In the ultra-
quantum régime, the main assumption is that energetic scales are of the order of the
inter vortex distance. Once again, dimensional analysis yields no knowledge about
detailed dynamics at these scales. The weakness of the conclusions drawn from these
results has been quoted by several authors, e.g. Vinen (2010), Nemirovskii (2013).

6.5.2 Vinen’s Equation

The equation for the time evolution vortex line density L0 proposed by Vinen in 1957
is among the cornerstone of the theory of turbulence in superfluids, since it has been
used as a framework in a huge number of papers. Following the phenomenologi-
cal scheme proposed by Feynman, who proposed the idea of a vortex-ring-induced
energy cascade, Vinen proposed the following empirical relation:

d L0

dt
= PL0(t) − DL0(t), (6.201)

where the first and second terms in the right-hand side denote production and destruc-
tion rates, respectively. The key issues are then to close that expression by finding
appropriate models for the mechanisms that contribute to these two global effects.
The discussion about the nature of dissipation and the three different mechanisms that
contribute to it, along with the fact that they are fluid- and temperature-dependent,
shows that universal models are not likely to be derived. As a matted of fact, case-
dependent detailed models should be sought for.

In the case of turbulence in 4He generated by a thermal counterflow, mutual
friction generates vortex lines. Assuming that the production term depends only on
the instantaneous vortex line density L0(t), the quantized circulation κ and the mutual
friction force modulus | f ns |, Vinen found via dimensional analysis

PL0 ∼ κL2
0ϕ

(
| f ns |

ρsκL1/2
0

)
, (6.202)

where ϕ is a dimensionless function of a dimensionless input. Extrapolating the
results obtained by Hall for the growth of a single vortex ring put transversally with
a uniform counterflow, he proposed

PL0 = χ1|uns |L3/2
0 , (6.203)

where χ1 is a tunable parameter which a priori depends on the mutual friction para-
meter α that appears in the two-fluid model (and consequently on temperature T )
and uns = un − us .
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The destruction term is evaluated by analogy with dimensional analysis theory
of classical turbulence, in which ε ∝ u′3/L . Taking L = � � L−1/2

0 and defining
u′ as the velocity generated by an infinite straight vortex line at a distance �, i.e.
u′ = κ/2π� = L1/2

0 κ/2π,10 Vinen’s original model is

DL0 = χ2
κ

2π
L2

0, (6.204)

where χ2 is another adjustable parameter, leading to the famous Vinen equation:

d L0

dt
= χ1|uns |L3/2

0︸ ︷︷ ︸
Production

− χ2
κ

2π
L2

0︸ ︷︷ ︸
Destruction

(6.205)

whose steady-state solution is

L0 =
(

χ1

χ2

2π

κ

)2

|uns |2 = γ(T )|uns |2. (6.206)

This equilibrium solution has been observed in the case of counterflowing 4He
up to T = 1.95 K in numerical simulations based on the vortex filament method,
e.g. Schwarz (1988), Adachi and Tsubota (2010), Tsubota and Adachi (2011),
Kondaurova et al. (2014), and in experiments (Babuin et al. 2012). A good qualitative
agreement on the evolution of the parameter γ with respect to the temperature is
reported.

Bridging between the empirical Feynman–Vinen theory illustrated by Eq. (6.205)
and more recent ones, refining it and extending it to other flow configurations has been
the subject of many research works. Among them, one must notice the pioneering
work by Schwarz (1988, 1991) dealing with the recovery of Vinen’s equation starting
from the Biot–Savart vortex filament model discussed in Sect. 6.2.2. This is possible
because macroscopic quantities related to vortex tangle topology can be recovered
via statistical averaging over vortex filaments contained in a control volume V . As a
matter of fact, the vortex line density is recovered summing over all vortex filaments
within the control volume:

L0 = 1

V
∑

j

∫
|s′

j (ξ j )|dξ j . (6.207)

The macroscopic time evolution of a dummy quantity �(s j (ξ j , t)) defined along
vortex filaments is obtained thanks to the following exact relation:

10It is worth noting that this model for the destruction term corresponds to the type I decay discussed
in Sect. 6.4.1.1. Another version of Vinen’s equation must be formulated for the type II régime, in
which counterflow velocity is small with respect to the self-induced velocity and the destruction
term scales as L5/2

0 .
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∂

∂t
�(s j (ξ j , t)) =

∑
i

∫
δ�(s j (ξ j , t))

δsi (ξ
′
i , t)

∂si (ξ
′
i , t)

∂t
dξ′

i . (6.208)

To retrieve an equation for the vortex line density L0, one must first consider the
equation for the rate of change of an elementary vortex filament element with length
δl. Writing δl = |s′|δξ, one has

∂

∂t
δl = ∂

∂t
(|s′|δξ) = s′ · ds′

dt
δξ. (6.209)

Now using the Local Interaction Approximation to compute ds′/dt , one obtains

∂

∂t
δl = (α(s′ × s′′) · uns − αβ(s′ × s′′)2

)
δξ. (6.210)

Now integrating over the arc length and averaging over the control volume, one
recovers the following equation:

∂

∂t
L0 = αuns

∫
(s′ × s′′)dξ − αβ

∫
|s′′|2δξ. (6.211)

The terms in the right hand side can be further developed, introducing some topo-
logical parameters associated to the vortex tangle. These indicators were historically
introduced by Schwarz to characterize the anisotropy of a vortex tangle generated in
a vessel with axis ez in counterflowing 4He in the steady state case. The polarization
indicator Il is defined as

1

VL3/2
0

∑
j

∫
s′

j (ξ j ) × s′′
j (ξ j )dξ j = Il ez (6.212)

leading to
s′

j (ξ j ) × s′′
j (ξ j ) = Il L

1/2
0 ez . (6.213)

The second term can be expressed using the assumption that the mean curvature
of the vortex tangle should be of the order of the intervortex distance �:

1

VL0

∑
j

∫
s′′

j (ξ j ) · s′′
j (ξ j )dξ j = �, (6.214)

whose local counterpart is

s′′
j (ξ j ) · s′′

j (ξ j ) = c2
2 L0, (6.215)

where the dimensionless parameter c2
2 is of the order of the unity. Combining

Eqs. (6.211), (6.213) and (6.215) one recovers an expression for the empirical terms
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that appears in the original expression given by Vinen:

∂

∂t
L0 = αIl |uns |L3/2

0 − αβc2
2 L2

0. (6.216)

It is important to note that this last equation is valid assuming a very slow evolution,
i.e. a quasi steady-state in which the coefficients that appear in the right-hand side
are nearly constant, i.e. if they relax toward equilibrium much faster than L0(t). An
important remark is that the previous Vinen equation and steady-state solution can
be recovered looking for self-similar expressions (Schwarz 1988). Such solutions
are found introducing the scaling parameter λ and considering the transformation

x∗ → λx∗ = x, t∗ → λ2t∗ = t, (6.217)

and looking for symmetry-preserving solutions. Assuming that L0 depends only on
the counterflow velocity amplitude, one immediately finds

L0(uns) = L0(u
∗
nsλ

−1) = λ−2 L∗
0(u

∗
ns), (6.218)

whose solution is L0 ∝ u2
ns , which is the steady-state solution (6.206).

The role of the anisotropy of the vortex tangle can be further emphasized looking
for more general expressions of Vinen equation. Such extensions are beyond the scope
of the present chapter, and the reader is referred to original articles, e.g. Lipniacki
(2011), Jou et al. (2011), Nemirovskii (2013).

The Vinen equation can also be inferred from theoretical models, e.g. the Gaussian
random vortex loop model discussed in Sect. 6.4.1.2 (Nemirovskii 2013). Starting
from the identity

L0 =
∫ +∞

R
n(l)ldl, (6.219)

one obtains in a straightforward way

∂L0

∂t
= −

∫
∂

∂t
(n(l, t)l̇)ldl =

∫
n(l, t)l̇dl − P (6.220)

where the net flux of the length in l-space due to vortex loop/ring reconnections, P is
given by Eq. (6.113). The first term in the right-hand side is related to the change in
L0 due to the mutual friction, which can be evaluated thanks to the relation (6.210)
for the evolution of the length of an elementary line element δl. The Gaussian vortex
loop model allows for some analytical integrations:

s′ × s′′ = Il√
2c2 R

uns

|uns | , (s′ × s′′)2 = (s′′)2 = 1

2R2
, (6.221)
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leading to

∫
n(l, t)l̇dl =

(
α

Il |uns |√
2c2 R

− αβ
1

2R2

)∫
n(l, t)ldl =

(
−α

Il
√

2|uns |
c2 R

+ αβ
1

R2

)
L0

(6.222)
which can be rewritten, using the relation R ∝ L−1/2

0 and taking c2 = √
2 as

∫
n(l, t)l̇dl = αIl |uns |L3/2

0 − αβc2
2 L2

0. (6.223)

As mentioned in Sect. 6.4.1.2, the net flux can be approximated as P = |cF |κL2
0

where cF is a temperature-dependent parameter, leading to

∂L0

∂t
= αIl |uns |L3/2

0 − αβc2
2 L2

0 − |cF |κL2
0. (6.224)

The physical meaning of the term in the right-hand side are: production of vortex
lines by mutual friction, destruction of vortex lines by mutual friction and decrease
of vortex line density due to random collisions of quantized vortices which induce a
transfer toward small scales at which dissipative mechanisms take place.

6.6 Mutual Friction: Microscopic Origin and Models

6.6.1 Mutual Friction on Vortex Filaments

The mutual friction exerted on a quantized vortex per unit length can be heuristically
modeled in different ways, e.g. see Barenghi et al. (1983), Swanson et al. (1987),
Idowu et al. (2000). The most popular expressions used within the vortex filament
framework are

f D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−γ0s′ × [s′ × (un − uL)] + γ′
0κs′ × (un − uL)

−αρs s′ × [s′ × (un − us)] + α′κs′ × (un − us)

−B ρnρs

2ρ
s′ × [s′ × (un − us)] + B ′ ρnρs

2ρ
κs′ × (un − us)

−Ds′ × [s′ × (uR − uL)] + Dt s′ × (uR − uL)

(6.225)

where un, us, uL , uR denote the normal fluid velocity, the superfluid velocity, the
vortex line velocity and the normal fluid mean drift velocity, respectively, all mea-
sured in the laboratory frame. The drift velocity uR accounts for the fact that the
normal fluid is dragged by a vortex line, so that its velocity is not equal to un in
the surrounding of the vortex. Coefficients of the different expressions of the mutual
friction drag force can be written as functions of each others. One obviously has
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α = Bρn/2ρ, α′ = B ′ρn/2ρ, (6.226)

and, by elimination,

γ0 = ρnρs

2ρ
κ

B

(1 − B ′ρn/2ρ)2 + B2ρ2
n/4ρ2

, (6.227)

γ′
0 = ρnρs

2ρ
κ

B2ρn/2ρ − B ′(1 − B ′ρn/2ρ)

(1 − B ′ρn/2ρ)2 + B2ρ2
n/4ρ2

. (6.228)

Hall and Vinen introduced in 1956 the complex parameter E such that

un − uR = 1

E
f N , (6.229)

where f N is the force exerted on the excitation gas by a quantized vortex on a
cylinder of radius rc + L � L , where L is the mean free path of the quasi-particules
that are scattered by the vortex. Here, the normal fluid is treated as a classical viscous
fluid with a correction to account for the mean free path of the quasi-particules that
form it, i.e. mainly rotons in 4He for T >1 K, with L ∼ 10−6 cm. The parameter E
is estimated in the asymptotic case of low-amplitude large-wave length (compared
with the quantized vortex radius rc) rotons interacting with the vortex core. It can be
expressed as

E = − 4πνn

�(M)
, M = ln(l/2δ) + 1 + ıπ/4, (6.230)

where l = 3νn/ρnvG is the roton mean free path, δ = √
νn/ρnσ is the viscous

penetration depth, νn the normal fluid viscosity, vG = √
2kB T/πmr the roton group

velocity, mr the roton mass and σ the angular frequency of the counterflow oscillation.
Using relation (6.229), one obtains

α = a

ρsκ(a2 + b2)
, α′ = b

ρsκ(a2 + b2)
, (6.231)

with

a = 1

E
+ D

D2 + D2
t
, b = 1

ρsκ
− Dt

D2 + D2
t
, (6.232)

and

D = c

(c2 + d2)
, Dt = − d

(c2 + d2)
, (6.233)

where

c = α

ρsκ(α2 + α′2)
− 1

E
, d = α′

ρsκ(α2 + α′2)
− 1

ρsκ
. (6.234)
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Combination of previous results yields

γ0 = E[D(D + E) + D2
t ]

(D + E)2 + D2
t

, γ′
0 = Dt E2

(D + E)2 + D2
t
. (6.235)

6.6.2 Bridging with Microscopic Theories

A first link between mutual friction drag force in the vortex filament model and micro-
scopic theories can be established in the following way. In a microscopic theory, one
should relate the mutual friction to the scattering and absorption of quasi-particules of
the normal fluid by the vortex. Such an interaction results in a change of momentum
of the quasi-particules.

The force exerted on the vortex line per unit length due to scattering and absorption
is

f ex = D(uR − uL) + D′s′ × (uR − uL), (6.236)

where parameters are related to the scattering lengths σ‖ and σ⊥ by

D = ρnvGσ‖, D′ = ρnvGσ⊥. (6.237)

The scattering lengths could in principle be calculated from fundamental physics
of vortex-quasi-particule interaction. This is not possible in practice because there
exist no realistic model for the quantized vortex core. Therefore, these parameters
are tabulated from experimental data or DNS based on the modified Gross–Pitaevskii
equations (6.17) or (6.21) and (6.22), keeping in mind that such simulations are not
fully relevant for liquid superfluids. This is illustrated in Fig. 6.16, in which coeffi-
cients α and α′ are computed solving the latter model. Some analytical formula can
be derived in a few very simplified cases. This is illustrated below by the derivation
of model based on the Biot–Savart theory for vorticity-induced velocity field starting
from the more fundamental Gross–Pitaevski model. Expressing a line vortex with
radius rc as

ψ(r, t) = √
ρseıφ f (r/rc), (6.238)

where φ and f (x) denote the azimutal angle about the axis and the radial shape
function, respectively. One has f (0) = 0 and f (x → +∞) = 1. Therefore, the
vortex line model is recovered identifying the line such that ψ(x, t) = 0, which can
be parametrized as ψ(s(ξ, t), t) = 0. Following the chain rule, one obtains

∂ψ(r, t)

∂t
=
∫

�

δψ(r, t)

δs(ξ′, t)
· ∂s(ξ′, t)

∂t
dξ′. (6.239)
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Fig. 6.16 Evolution of
mutual friction force
coefficients α and α′ versus
normalized temperature
T/Tc computed solving a
coupled Gross–Pitaevskii–
Bogoliubov-de Gennes
system for a single quantized
vortex in a thermal bath with
an imposed velocity field.
Symbols: DNS data; lines:
best fits. From Kobayashi
and Tsubota (2006) with
permission of APS

Rewriting the Gross–Pitaevski equation including thermal noise source term as

�

m

∂ψ

∂t
= −(� + ı)

δH(ψ)

δψ∗ + ζ(x, t) (6.240)

where ζ is related to the thermal noise, � is related to the thermal noise excitation
ζ(x, t) by (with T the temperature and kB the Boltzmann constant)

ζ(x, t)ζ∗(x′, t ′) = 2kB T �

m/�
δ(x − x′)δ(t − t ′) (6.241)

and H(ψ) is the Ginzburg–Landau free energy functional:

H(ψ) =
∫ (

�
2

2m2
|∇ψ|2 − μ

m
|ψ|2 + V

2m
|ψ|4

)
dx3 (6.242)

after some cumbersome algebra (see Nemirovskii 2013 for details), one recovers the
following expression for the line velocity ṡ at point ξ0 one the vortex line:

ṡ(ξ0) = 1 + �2

1 + �2σ2
uBS(ξ0) + (1 + �2)�σ

1 + �2σ2
s′(ξ0) × uBS + m

�
ζ(ξ0, t), (6.243)

where σ = log(R/rc) (with R the local radius of curvature of the vortex line), and the
induced velocity uBS is given by Eq. (6.25). In the case of null macroscopic normal
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and superfluid velocities, i.e. un = us = 0, the two coefficients appearing in relation
(6.41) are identified as

α = (1 + �2)�σ

1 + �2σ2
, α′ = �2(σ2 − 1)

σ2�2 + 1
. (6.244)

Data shows that these coefficients strongly depend on the temperature, the pres-
sure and the fluid nature. Tabulated values and expressions based on data fitting are
available in the literature.

The condition for the balance of the force on the vortex line is

f N + f ex + f I = 0, (6.245)

where f I denotes the Iordanskii force (per unit length), with

f I = −ρnκs′ × (uR − uL). (6.246)

This extra-force originates in the fact that the normal fluid component in the two-
fluid model cannot be exactly identified with the fluid formed from the gas of thermal
excitations. This is understood observing that the momentum of the normal fluid is
ρn un , while the one carried by thermal excitations is ρn(un −us). Therefore, the total
momentum is obtained by adding that of the superfluid, ρs us , to ρn un , or by adding
that of the background fluid, ρus , to that of thermal excitations.

Since the total force on the superfluid must balance that on the normal fluid, one
has f N = f M (i.e. the Magnus force is equal to f N ), leading to

ρsκs′ × (us − uL) = D(uR − uL) + Dt s′ × (uR − uL), (6.247)

where Dt is the transverse diffusion coefficient.

6.6.3 Bridging with Hydrodynamic Two-Fluid Model

The mutual friction term f ns that appears in the momentum equations of the two-
fluid macroscopic models (6.64) and (6.65) is a force per unit volume that is the same
as the Magnus force per unit volume on the superfluid,

FM = 1

V

∫∫∫
L∈V

f M(x)d3x = L0 f̄ M . (6.248)

where the integral is computed over all vortex filaments L present in the control
volume V . Here, L0 = 2‖ω‖/κ denotes the effective length of quantized vortex per
unit volume and f M is given by (6.37) and f̄ M denotes the averaged value per unit
length within the control volume. Since all quantized vortices are not polarized and
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parallel in the control volume in the general case, the L0 is smaller than real total
vortex line length inside V .

The macroscopic mutual friction force can therefore be written as

f ns = −L0 f̄ M = −2‖ω‖
κ

f̄ M , (6.249)

The equilibrium condition on quantized vortices between Magnus force and the
mutual friction drag discussed in Sect. 6.2.2.3, f M + f D = 0, shows that the averaged
Magnus force f̄ M may be replaced by the averaged value of the mutual friction drag
force f̄ D .

It is often chosen to use an expression for the macroscopic volumic force that
mimics the microscopic force per quantized vortex unit length, and to introduce
adjustable parameters to account for the degree of polarization of quantized vortices,
yielding

f ns = − ρ̄n ρ̄s

2ρ̄

(
Bω̂ × [ω × (ūs − ūn)] + B ′ω̂ × (ūs − ūn)

)
, (6.250)

where bar symbol denotes the averaged value over the control volume V . This symbol
is omitted for the sake of brevity when manipulating the equations of the two-fluid
model. The coefficients B and B ′ are tabulated experimentally considering damping
of second sound waves.

It is worth noticing that some simplified expressions are sometimes used, mainly
to allow for analytical works or to accelerate numerical simulations. An example is

f ns = B
ρnρs

2ρ
‖∇ × us‖(un − us). (6.251)
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Chapter 7
Incompressible Homogeneous Anisotropic
Turbulence: Pure Rotation

7.1 Physical and Numerical Experiments

Rotation of the reference frame is an important factor in certain mechanisms of flow
instability, and the study of rotating flows is interesting from the point of view of
turbulence modelling in fields as diverse as engineering (e.g. turbomachinery and
reciprocating engines with swirl and tumble), geophysics and astrophysics. Effects
of mean curvature or of advection by a large eddy can be tackled using similar
approaches. In this chapter, the emphasis is put to the dynamics of turbulence sub-
jected to a solid body rotation with constant angular velocity. Considering rotation
with angular velocity � around the axis e3, the mean flow gradient matrix and
mean flow displacement gradient matrix are given by the following expressions (see
Sect. 2.1.9):

A =
⎛
⎝

0 −� 0
� 0 0
0 0 0

⎞
⎠ , F =

⎛
⎝

cos �t − sin �t 0
sin �t cos �t 0

0 0 1

⎞
⎠ . (7.1)

This expression for A is obtained setting S = 0 in Eq. (2.69).
Some commonly agreed statements have been drawn from several experimental,

theoretical and numerical studies, in which rotation is suddenly applied to homoge-
neous turbulence. The main results are summarized below:

• Rotation inhibits the energy cascade, so that the dissipation rate is reduced (Bardina
et al. 1985; Jacquin et al. 1990). This is illustrated in Fig. 7.1.

• The initial three-dimensional (3D) isotropy is broken, so that a moderate anisotropy,
consistent with a transition from a 3D to a 2D state, can develop. Anisotropy is
more reflected in integral lengthscales with various components than in Reynolds
stresses (Jacquin et al. 1990; Cambon et al. 1997). Typical results are shown in
Fig. 7.2.

• Elongated vortical structures are generated, with an asymmetry in terms of cyclonic
and anticyclonic axial vorticity (Bartello et al. 1994; Morize et al. 2005; Biferale
et al. 2016), structures with cyclonic vorticity being observed to be dominant.
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Fig. 7.1 Time evolution of
the turbulent kinetic energy
in initially isotropic
turbulence submitted to solid
body rotation. Top:
experimental data from
Jacquin et al. (1990), with
permissions of CUP;
Bottom: DNS data from
Morinishi et al. (2001), with
permissions of AIP. The
decay rate is observed to be a
decreasing function of the
rotation rate �. At very high
rotation rate, DNS results
perfectly match the decay
recovered considering the
linear Stokes equations,
showing that the non-linear
mechanisms are totally
inhibited. The rotation rate �

is not expressed in the same
units in the two plots

Cyclonic eddies are characterized by a positive fluctuating vorticity in the axial
direction ω‖ = ωi ni > 0 (= ω3 with a particular choice of frame), seen in the
rotating frame: they correspond to eddies rotating with the same sense as system
vorticity. Negative axial vorticity characterizes anti-cyclonic eddies in the same
conditions.

• If the turbulence is initially anisotropic, the “rapid” effects of rotation (i.e. the
linear dynamics described by the RDT approach) conserve a part of the anisotropy
(called directional anisotropy b(dir)

i j ) and damp the other part (called polarization

anisotropy b(pol)
i j ), resulting in a spectacular change of the anisotropy bi j of the

Reynolds Stress tensor (Cambon et al. 1992; Kassinos et al. 2001).
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Fig. 7.2 Time evolution of
the turbulence integral
lengthscales in initially
isotropic turbulence
submitted to solid body
rotation. Experimental data
from Jacquin et al. (1990),
with permissions of CUP

These effects, which are not at all taken into account by current one-point second
order closure models (from K − ε to u′

i u
′
j − ε models), have motivated new single-

point modelling approaches by Cambon et al. (1992), Mansour et al. (1991), and
to a lesser extent by Kassinos et al. (2001) for linear (or “rapid”) effects only. It
is worth noticing that the modification of the dynamics by the rotation ultimately
comes from the presence of inertial waves (Greenspan 1968). Inertial waves have
an anisotropic dispersion law. They are capable of changing the initial anisotropy
of the turbulent flow and also can affect the non-linear dynamics. This explains the
relevance of spectral theory to study HAT (Homogeneous Anisotropic Turbulence)
with mean flow rotation.

7.1.1 Brief Review of Experiments, More or Less
in the Configuration of Homogeneous Turbulence

A first class of experiments consists of decaying grid turbulence in a wind tunnel,
in which a rotation generator creates a constant angular velocity in the streamwise
direction. In the experiment by Traugott (1958), the rotation was imposed in the
annular region between two coaxial rotating discs. This study is mentioned for our
record, but very few information can be obtained, because of the non-uniformity
of the mean flow and the very short length of the duct. The experiment by Wige-
land and Nagib (1978) introduced a much better rotation generator. In this setup,
solid body rotation was enforced thanks to a cylindrical rotating honey comb, with
the grid just behind and attached to the rotating cylinder. This rotating device was
successfully used by Jacquin et al. (1990) (see Fig. 7.3) but in a much larger wind
tunnel, fulfilling homogeneity with an excellent accuracy and yielding reliable re-
sults about kinetic energy decay, Reynolds stress components, integral lengthscales
and one-dimensional energy spectra. The results can be analyzed as in a conventional
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Fig. 7.3 ONERA’s experimental setup for initially decaying isotropic turbulence submitted to solid
body rotation. Courtesy of O. Leuchter

grid-generated turbulence experiment, the streamwise spatial coordinate playing the
role of the elapsed time. A large range of “initial” (in the first transverse section cho-
sen closely downstream to the grid) Rossby numbers was covered. The only drawback
of this experiment was the initially moderate value, and monotonic decrease, of the
Reynolds number, as usual in grid-generated turbulence.

A second class of experiments were carried out in a rotating tank, a diffusive
turbulence being created by an oscillating grid (Hopfinger et al. 1982; Dickinson and
Long 1984) near the bottom of the tank. The turbulence is essentially inhomogeneous
in the vertical, axial, direction, and statistically steady. The steady state is different
in different horizontal sections, moving away from the grid. In the experiment by
Ibbetson and Tritton (1975), an unsteady turbulence was created by the initial motion
of perforated plates in a rotating torical annulus with square section.

Another interesting experiment was carried out by Mc Ewan (1976). A radially
uniform, small-scale mixing pattern without advection in the radial plane, was
obtained in a rotating transparent cylinder by injecting and pumping fluid from the
perforated plane-ended bottom. Polystyrene beads were suspended in the fluid and
illuminated by a stroboscope to visualise the flow motion. Without rotation, the jets
caused randomly shape wiggly particle paths, whereas intense vortices, always
cyclonic, were observed in the presence of rotation.

The development of Particle Image Velocimetry (PIV) measurements was ben-
eficial to these types of experiments, with renewed interest for the spatial structure
of the rotating flow. The experiment by Baroud et al. (2003) used a very special
forcing by jets in an annulus in the rotating tank. Despite specific non-homogeneity
and anisotropy are generated by the forcing process, in a way difficult to control and
to compare with the sole effect of rotation, useful conclusions about scaling laws
were drawn from the experimental results. Some of these results being consistent
with those of the experiment by Simand (2002) dealing with turbulence near the core
of a strong vortex, they will be discussed at the end of this chapter (see Sect. 7.7.6).
Another experiment by Praud et al. (2006), carried out in the Coriolis platform in
Grenoble, deserves attention. It will be discussed in Chap. 11, since it combined solid
body rotation and vertical stable stratification. In addition, the use of a rake instead
of a grid yielded a preferential forcing of the horizontal motion.

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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The experiment by Morize et al. (2005) has something to do with the experiment
by Ibbetson & Tritton, with the grid being moved only in a first phase, before study-
ing the free decay in a rotating tank. This experiment aimed at reproducing initially
homogeneous isotropic turbulence suddenly set into solid body rotation, but at higher
Reynolds number than in Jacquin’s experiment, and using modern PIV anemome-
try. Non-homogeneity and anisotropic forcing are prevented, as far as possible, by
moving the grid, only in the phase of generation of initial turbulence, in the whole
vertical extend of the tank. Another experimental study by Staplehurst et al. (2008)
appears to fulfil even better homogeneous conditions than the latter one, especially
in removing some mean flow spurious components.

Detailed results of these experiments are not discussed in this section. Results
dealing with quasi-homogeneous turbulence will be emphasized and discussed
throughout this chapter, inhomogeneous effects being briefly considered in Sects. 7.7
and 7.8.

7.2 Governing Equations

7.2.1 Generals

The problem of turbulence subjected to solid-body rotation can be directly related to
the case of turbulence in the presence of a mean flow with space-uniform gradients,
provided a purely antisymmetric mean velocity gradient matrix is chosen, i.e. Ai j =
εik j�k , where � is the angular velocity, in agreement with Eq. (7.1). But it is simpler
to work with a coordinate system and velocity vectors defined in the steadily rotating
frame. In this non-Galilean frame, rotation of the frame only introduces inertial
forces, namely centrifugal and Coriolis forces. Since the former can be incorporated
in the pressure term, only the latter has to be explicitly taken into account when
writing the Navier–Stokes equations in the rotating frame:

∂u
∂t

+ 2� × u + ∇ p = ν∇2u − u·∇u. (7.2)

As usual in incompressible fluid dynamics, the pressure term is completely de-
termined by the solenoidal condition ∇·u = 0. Taking the Divergence and the Curl
of these equations yields

∇2 p − 2�·ω = −∂u j

∂xi

∂ui

∂x j
(7.3)

and

∂ωi

∂t
+ u j

∂ωi

∂x j
− 2�l

∂ui

∂xl
= ωl

∂ui

∂xl
+ ν∇2ωi . (7.4)
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In all the equations given above, nonlinear and viscous terms are gathered on the
right-hand-side.

7.2.2 Important Non-dimensional Numbers. Particular
Régimes

Using a reference velocity scale U and a reference length scale L , so that ui = ũiU ,
xi = x̃i L , ∇ = ∇̃ 1

L , Eq. (7.2) becomes

∂ũ

∂ t̃
+ 1

Ro
n × ũ − 1

Re
∇̃2ũ + L

U 2
∇ p = −ũ·∇̃ũ, (7.5)

in which only non-dimensional quantities appear (except in the pressure term, which
is further discussed below). The unit vector n is chosen so that � = n�. In addition
to the Reynolds number Re, the Rossby number

Ro = U

2�L
(7.6)

is displayed. In the latter equation, the time scale was taken equal to L/U . Another
possibility is to choose 1/2� as the time scale, leading to t = 2�t̃ ,1 and

∂ũ

∂ t̃
+ n × ũ − Ro

Re
∇̃2ũ + 1

2�U
∇ p = −Roũ·∇̃ũ, (7.7)

so that the Rossby number only affects the nonlinear term. The term Ro/Re is the
inverse of the Ekman number. The linear inviscid limit is recovered by discarding the
right-hand-side, assuming very low Rossby number and very high Ekman number.
The pressure term is not so easy to treat. Following Eq. (7.3), it must be split into a
linear part and a nonlinear part which scale as 1

Ro U 2/L and U 2/L , respectively.
Applying the same scaling to Eq. (7.4) yields:

∂ω̃i

∂ t̃
− 1

Ro
nl

∂ũi

∂ x̃l
= ω̃l

∂ũi

∂ x̃l
+ 1

Re
∇̃2ω̃i (7.8)

in the first case, and

∂ω̃i

∂ t̃
− nl

∂ũi

∂ x̃l
= Roω̃l

∂ũi

∂ x̃l
+ Ro

Re
∇̃2ω̃i (7.9)

in the second case. The Proudman theorem is conventionally derived from Eq. (7.8),
in the limit of zero Rossby number, so that

1Possible slightly different scalings are t = t̃ �
2π and t = t̃ 2�

2π .
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n j
∂ũi

∂ x̃ j
= 0 (7.10)

characterizes a 2D state, in the sense that the dependency of velocity upon the axial
coordinate x‖ = x·n vanishes at high rotation rate. Accordingly, the velocity equation
reduces to the geostrophic balance in the same conditions, or

∇̃ p̃ = n × ũ. (7.11)

On the other hand, choosing �−1 as the time scale, the zero-Rossby limit only
leads to the linear regime, i.e.

∂ũ

∂ t̃
+ n × ũ + ∇̃ p̃ = 0 (7.12)

∇̃2 p̃ − n·ω̃ = 0 (7.13)
∂ω̃i

∂ t̃
− nl

∂ũi

∂ x̃l
= 0. (7.14)

It is important to note that the conditions for having a complete two-
dimensionalization are very stringent, since both linear and steady limits must be
reached at the same time. Taylor columns were found in beautiful historical ex-
periments of rotating laminar flows (Taylor 1921), for instance when Taylor slowly
pushed a coin in the bottom of his rotating tank. In a rapidly rotating turbulent flow,
it is clear that these conditions are not fulfilled at small but nonzero Rossby num-
ber, since nonlinear effects, even weak at a given time, can accumulate over a long
time and induce a modified cascade, which is not necessarily the conventional 2D
cascade. Anyway, the transition from 3D to 2D structure is essentially an unsteady
—transition requires evolution !— and nonlinear process, as will be seen below. The
linear régime consists of unsteady wave motion, which becomes steady (zero disper-
sion frequency) only in the 2D limit. Consequently, the Taylor–Proudman theorem
(Proudman 1916; Taylor 1921) will be used in a restricted sense here: the steady
mode of the motion is the 2D mode in the linear régime of rapidly rotating flow.
Non-dimensional equations will no longer be used in this chapter, but the choice of
relevant scales, L , U and �, remains an important issue, allowing to define different,
e.g. macro and micro, Rossby and Reynolds numbers.

7.3 Advanced Analysis of Energy Transfer via DNS

The striking decrease in the dissipation rate of kinetic energy has been intensively
investigated using Direct Numerical Simulation. The main findings are summarized
below, before being analyzed in the rest of this chapter through linear and non-linear
theories.
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Main observations are the following:

• Rotation induces a deep modification of the kinetic energy transfer function T (k).
Spherically averaged profiles of T (k) are displayed in Fig. 7.4. Both its shape and
amplitude are drastically modified, resulting in a dramatic reduction of the kinetic
energy cascade.

• Both the forward and the reverse energy cascade are affected by rotation. They
both vanish, as illustrated in Fig. 7.5.

• This modification is due to the so-called phase scrambling phenomenon,2 which
originates in the fact that the transfer function T (k) is generated by triadic contri-
butions which are differentially affected by oscillations, depending on the angle θ
between the wave vector k and the rotation vector �, not to mention similar effects
on the other vectors of each triad. This is illustrated in Fig. 7.6, which displays
T (k, cos θ) for different values of �. The usual dynamical picture is recovered in
the case � = 0, while in the cases � �= 0, regions with negative/positive values
of T (k) are more and more mixed, leading to a weakening of the kinetic energy
cascade.

• The effect of rotation is visible for a certain range of Rossby number only. Very
small rotation rate yields a negligible influence of rotation, while very high rota-
tion rates lead to an almost complete inhibition of the non linear kinetic energy
cascade, resulting in a “frozen” field submitted to linear viscous effects. Partial
two-dimensionalization and two-componentalization, resulting from fully nonlin-
ear dynamics, is illustrated in Fig. 7.7, which presents the evolution of directional
anisotropy component b(dir)

33 and the polarization anisotropy coefficient b(pol)
33 (first-

ly defined in Chap. 2) as a function of the Rossby number. The meaning and the
behavior of these descriptors will be rediscussed at length throughout this chapter.

Of course, present DNS results are limited in terms of Reynolds numbers and
elapsed time, and very long evolution time �t is required to capture nonlinear ef-
fects at very low Rossby numbers. This explains some of the discrepancies observed
between DNS, LES and statistical theory, as discussed later on. Fortunately, a very
consistent core of agreed statements arises from this threefold approach, not to men-
tion experimental data.

7.4 Balance of RST Equations. A Case Without
“Production”. New Tensorial Modelling

The Reynolds stress equations for HAT submitted to the solid body rotation defined
by Eq. (7.1) are

2This effect could be perhaps better denoted as phase-mixing, in connection with the very angle-
dependent dispersion relation of inertial waves, as we will discuss on the ground of basic equations.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 7.4 Spherically
averaged energy transfer
function T (k) in initially
decaying isotropic
turbulence submitted to solid
body rotation, for different
rotation rates. From
Morinishi et al. (2001) with
permission of American
Institute of Physics

Fig. 7.5 Time evolution of
the full transfer function
T (k), the forward transfer
function T (F)(k) and the
backward transfer function
T (R)(k) in initially decaying
isotropic turbulence
submitted to solid body
rotation, for different
rotation rates. One has
T (k) = T (F)(k) + T (R)(k).
Different values of k are
considered. From Morinishi
et al. (2001) with permission
of American Institute of
Physics

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk
= −�

⎛
⎝

−2u′
1u′

2 u′
1u′

1 − u′
2u′

2 −u′
2u′

3

u′
1u′

1 − u′
2u′

2 2u′
1u′

2 u′
1u′

3

−u′
2u′

3 u′
1u′

3 0

⎞
⎠ + �i j − εi j .

(7.15)
A careful examination of Eq. (7.15) reveals that the production term is identically

zero if the turbulent field is isotropic at the initial time. Therefore explicit coupling
between the mean flow and the turbulent field is not responsible for the triggering of
the departure from isotropy; pressure effects are responsible for this.

Considering only the most relevant Reynolds stress components (this is more
general than specifying initial isotropy or initial anisotropy), so that u′

αu′
3 = u′

3u′
α =

0,α = 1, 2, the system (7.15) simplifies as
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Fig. 7.6 Instantaneous plot
of the transfer function T (k)

as a function of k and θ,
which is defined has the
angle between k and �. Top:
no rotation (� = 0), middle:
medium rotation rate,
bottom: strong rotation rate.
Dark region corresponds to
negative value, and the other
regions to positive values.
From Morinishi et al. (2001)
with permission of American
Institute of Physics
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1u′

1

dt
= + 2�u′

1u′
2 +�11 −ε11

du′
2u′

2

dt
= − 2�u′

1u′
2 +�22 −ε22

du′
3u′

3

dt
= �33 − ε33

du′
1u′

2

dt
= �(u′

2u′
2 − u′

1u′
1) +�12 − ε12

. (7.16)

The different couplings are illustrated in Fig. 7.8.
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Fig. 7.7 Evolution of the directional anisotropy component b(dir)
33 (denoted b(e)

33 on the figure)

and the polarization anisotropy component b(pol)
33 (denoted b(z)

33 on the figure) as a function of the
Rossby number. Three Rossby numbers are shown: the macro-Rossby number RoL = √

K/2�L ,
the Taylor micro-Rossby number Roλ = √

K/2�λ, and the micro-Rossby number Roω = ω′/2�,
in which L = K3/2/ε and ω′ denotes the rms vorticity fluctuation. From Morinishi et al. (2001)
with permission of American Institute of Physics

Fig. 7.8 Couplings between
the different non-vanishing
Reynolds stresses in the pure
rotation case. Arrows
indicate the production
process, their color being
related to the physical
quantity at play (mean strain,
pressure, viscosity)

These equations can be rearranged in order to diagonalize the production term,
introducing the three deviatoric components (Cambon et al. 1992)

A = u′
3u′

3 − 1

2
(u′

1u′
1 + u′

2u′
2); B = 1

2
(u′

1 + ıu′
2)

2.
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The above system of equations results in

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dK
dt

= −ε

d A

dt
= �

(r)
A +�

(s)
A

d B

dt
= 4ı�B +�

(r)
B +�

(s)
B

, (7.17)

in which pressure-strain and dissipation-rate components are derived in a trivial way,
following the rules for deriving K, A, B from the Reynolds stress original compo-
nents. For convenience, pressure-strain rate contributions are split into a “rapid”
linear (superscript (r)) and a “slow” nonlinear (superscript (s)) contribution. Possible
deviatoric contributions from the dissipation tensor are included in the “slow” term.

Almost all the principles for single-point modelling are questioned in the case
of rotating turbulence. Looking at the turbulent kinetic energy, the exact K − ε
equations do not include any explicit additional term with respect to the isotropic
non-rotating case, since the Coriolis force produces no work (as evidenced from the
first equation of (7.17)). The only way to take into account alteration of the kinetic
energy decay is to modify the Cε2 constant in the evolution equation for the turbulent
dissipation (4.234). Empirical ways to render this constant sensitive to the Rossby
number (Bardina et al. 1985; Aupoix et al. 1983) are discussed in Cambon et al.
(1992).

A more rational way consists of modeling the inbalance between the production
(non-linear gradient self-amplification) and the destruction (dissipation) in the ε-
equation, as reported in Cambon et al. (1997). Using results of Sect. 4.11.3, the exact
equation for the dissipation rate is

dε

dt
= 2νω′

iω
′
j u

′
i, j − 2ν2ω′

i, jω
′
i, j ,

in rotating and non-rotating homogeneous turbulence, without any explicit contri-
bution from the Coriolis force. Using an adequate scaling, the velocity derivative
skewness Sk is linked to the enstrophy-production term by the following relation

Sk = 6
√

15

7
νω′

iω
′
j u

′
i, j

K
ε2

Re−1/2,

in which Re is a macro-Reynolds number and the numerical prefactor comes from
the conventional definition of the skewness used by experimentalists in isotropic tur-
bulence. A second non-dimensional parameter was defined by Mansour et al. (1991)
to account for the departure of the enstrophy-destruction term from its conventional
evaluation in the non-rotating case

G = 3
√

15

7

(
2ν2ω′

i, jω
′
i, j − Cε2(Re)

ε2

K
) K

ε2
Re−1/2.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 7.9 Experimental
measurements of velocity
derivative skewness Sk ,
denoted −S on the figure,
plotted in terms of the micro
Rossby number Roω .
Symbols: experimental data;
Solid line: Eq. (7.19). From
Morize et al. (2005) with
permission of AIP
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A modified ε-equation is then recovered

dε

dt
=

(
7

3
√

15
(Sk − G)Re1/2 − Cε2(Re)

)
ε2

K , (7.18)

where Sk is the only term which accounts for triple correlations directly affected by
rotation. The non-rotating case is simply recovered taking Sk = G, whereas a four-
equations model (whose unknowns are K, ε, S and G) was proposed by Mansour
et al. (1991) in the rotating case. This model was supported by EDQNM and full
DNS in Cambon et al. (1997), with the following asymptotic model for the velocity
gradient skewness

Sk = Sk(0)√
1 + 2/Ro2

ω

, Roω = ω′

2�
(7.19)

where Roω is the micro Rossby number, and Sk(0) ∼ −0.49 is the asymptotic value
in isotropic turbulence without rotation. An almost perfect collapse onto this curve
was also recovered in the experimental study by Morize et al. (2005), as shown in
Fig. 7.9.

The accuracy of description and/or prediction provided by conventional single-
point models is even worse regarding the anisotropy. In spite of the strong anisotropy
evidenced in two-point (or spectral) descriptions which is mainly reflected by the
integral lengthscales in physical space, the deviatoric part of the Reynolds stress
tensor is a very poor indicator. The condition of statistical axisymmetry implies

bi j = −3

2
binni n j

(
δi j

3
− ni n j

)
, (7.20)
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Fig. 7.10 Linear evolution
of b33 (= b(ver)) under rapid

rotation. β
(e)
2 = b(dir)

33 (0),

β
(z)
0 = b(pol)

33 . Reproduced
from Salhi and Cambon
(2007) with permission of
AIP

so that a single component bi j ni n j (b33 in the present case, proportional to A in
Eq. (7.17)) is enough to describe the full anisotropy tensor (and therefore the corre-
sponding line in the Lumley’s map is only needed). A similar relationship is valid for
any trace-free single-point tensor. Restricting our attention to the linear régime, rapid
rotation applied to an initially anisotropic flow yields conservation of directional
anisotropy b(dir)

i j and rapid damping of polarization anisotropy b(pol)
i j . This effect is

completely missed in any conventional single-point closure model, in which only
bi j is used. The latter effect was called “rotational randomization” by Kassinos et al.
(2001), but can be more physically related to anisotropic phase-mixing induced by
dispersive inertial waves (e.g. Cambon et al. 1992; Kaneda and Ishida 2000). As an
illustration, the case of axisymmetric initial anisotropy is shown in Fig. 7.10.

The rapid change of the relevant anisotropy ratio corresponds to the evolution
from the initial state in which b(dir)

33 (0) = − 1
2 b33(0) and bpol

33 (0) = 3
2 b33(0) (e.g.

as in the flow generated by an axisymmetric duct) to a final state in which b33 =
b(dir)

33 (0) = − 1
2 b33(0), due to the conservation of b(dir)

33 and rapid (about a quarter of

a revolution) damping of b(pol)
33 . In the same “rapid” limit, no Reynolds stress model,

even the most sophisticated one, yields an evolution of anisotropy. As a matter of fact,
the initial anisotropy is conserved, since there is no production and any conventional
closure of the rapid pressure strain tensor as a function of the sole Reynolds stress
tensor yields a zero contribution in rotating axisymmetric homogeneous turbulence.

For instance, in the axisymmetric case, only the first two equations of (7.17) are
relevant, and all classical closure models yield �

(r)
A = 0, with �

(s)
A = 0, in the rapid

inviscid limit. Some improvements were independently proposed by Cambon et al.
(1992) and Kassinos et al. (2001), using an implicit splitting in terms of directional
and polarization anisotropy. Finally, the role conventionally attributed in Reynolds
stress models to “rapid” and “slow” pressure-strain tensors is completely wrong in
rotating turbulence: in the true rotating homogeneous turbulence case, the rapid (lin-
ear) part contributes to a partial return to isotropy (i.e. a damping of b(pol)

33 ), whereas
the slow (non-linear) part must generate a mild anisotropy associated with the com-
ponent b33 (or equivalently A in Eq. (7.17)) indirectly connected to the transition
from 3D to 2D structure.
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7.5 Inertial Waves. Linear Régime

7.5.1 Analysis of Deterministic Solutions

Linearized inviscid equations, written in a non-dimensional form at the end of
Sect. 7.2, are revisited here for velocity, pressure and vorticity. Equations are rewrit-
ten in dimensional form for physical discussions:

∂u
∂t

+ 2� × u + ∇ p = 0, ∇·u = 0 (7.21)

∇2 p − 2�n·ω = 0 (7.22)
∂ωi

∂t
− 2�

∂ui

∂x‖
= 0. (7.23)

Since the Coriolis force is not divergence-free, the pressure term has a nontriv-
ial contribution to enforce the incompressibility constraint. A closed sub-system of
equations can be used for u‖ = u·n, p and ω‖ = ω·n. Eliminating the axial compo-
nents of velocity and vorticity in the latter subsystem, the following closed equation
is found for p:

∂2
t

(∇2 p
) + 4�2∇2

‖ p = 0, (7.24)

with ∇2
‖ = ∂2

∂x2‖
. Even if the primitive Poisson equation ∇2 p = f is an elliptic one,

Eq. (7.24) admits propagating wave solutions. Very surprising properties of these
inertial waves are illustrated by the St Andrew-cross shaped structures observed in
experiments by Mc Ewan (1970) and Mowbray and Rarity (1967) (see Fig. 7.11). If
a local harmonic forcing with frequency σ0 takes place in a tank rotating at angular
velocity �, simplified solutions can be sought using a normal mode decomposition.
Considering normal modes of the form p = eıσ0tP , the spatial part is governed by

[σ2
0∇2

⊥ + (σ2
0 − 4�2)∇2

‖ ]P = 0.

which shows the possible transition from an elliptic to a hyperbolic problem when σ0

crosses the threshold 2� by decreasing values. This transition explains the sudden
appearance of the cross-shaped structures for σ0 < 2�. In spite of the rather complex
geometry, one can assume, in addition, that the disturbances are plane waves, i.e.
p ∼ eı(k·x−σk t). Injecting this solution into Eq. (7.24), the classical dispersion law of
inertial waves is recovered

σk = ±2�
k‖
k

= ±2� cos θ. (7.25)
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Fig. 7.11 Saint Andrew’s
Cross shaped structures in a
rotating flow, a sketch of the
experiments by Mc Ewan
and Mowbray & Rarity, b
results from DNS in a plane
channel, rotating around the
vertical axis. From top to
bottom
2�/σ0 = 1.10, 1.33, 2.
Reproduced from Godeferd
and Lollini (1999) with
permission of CUP

Rotating tank

gC

Forcing
zone

k

(a)

(b)

The phase and group velocity of these inertial waves, denoted C p(k) and Cg(k),
respectively, are given by:

C p(k) = 2
� cos θ

k2
k = σk

k2
k (7.26)

Cg(k) = (∇σk) · k = 2

k3
k × (� × k) = 2

� sin θ

k
e(2) (7.27)

where e(2) is the vector of the local Craya–Herring frame in the Fourier space defined
in Eq. (2.86).

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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If one interprets the rays emanating from the small forcing zone in the figure as
traces of isophase surfaces, so that the wave vector is normal to them, Eq. (7.25) with
σk = σ0 gives the angle θ (defined as the angle between k and the rotation axis) in
excellent agreement with the directions of the rays.

It is important to note that if pressure effects are omitted (leading to the definition
of a pressure-released problem) only the horizontal part of the flow is affected by the
circular periodic (with constant frequency 2�) motion, but propagating waves cannot
occur. Hence, fluctuating pressure (through its linkage with the incompressibility
constraint) is responsible both for anisotropic dispersivity and horizontal-vertical
coupling.

Going back to velocity, an equation similar to (7.24) can be found for both poloidal
and toroidal potentials defined in Eq. (2.25). Without forcing and boundary condi-
tions, the specific initial-value linear problem takes the form

∂ûi

∂t
+ 2�Pinεn3 j û j = 0. (7.28)

This equation is simpler than the generic one for the RDT problem addressed
in the next chapter, since x and u in physical space are projected onto the rotating
frame, so that there is no advection by the mean flow, and therefore no time shift in the
wave vector.3 Given the incompressibility constraint û·k = 0, it is easier to project
the equation onto the local frame (e(1), e(2)) normal to k defined by Eq. (2.86). The
solution expresses that the initial Fourier component û(k, 0) is rotated about the axis
k by an angle 2�tk‖/k = σk t . The linear solution for the two-component velocity
vector u(α),α = 1, 2 is

(
u(1)(k, t)
u(2)(k, t)

)
=

(
cos σk(t − t ′) − sin σk(t − t ′)
sin σk(t − t ′) cos σk(t − t ′)

)(
u(1)(k, t ′)
u(2)(k, t ′)

)
. (7.29)

The corresponding linear solution in the fixed frame of reference for the initial
value problem is

ûi (k, t) = Gi j (k, t, t ′)û j (k, t ′), (7.30)

in which the Green’s function is expressed as a function of the two complex eigen-
vectors N = e(2) − ıe(1) and N∗ = N(−k) = e(2) + ıe(1) in the plane normal to
k

Gi j (k, t, t ′) =
∑
s=±1

Ni (sk)N j (−sk)eısσk (t−t ′). (7.31)

3Of course, a strictly equivalent problem is defined by the equations of Sect. 2.1 written in a Galilean
frame of reference, for a pure antisymmetric gradient matrix Ai j = �εi3 j , with k(�t) following
the solid-body rotating motion.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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The diagonal decomposition is particularly useful in the context of pure rotation,
since N and N∗ more generally generate the eigenmodes of the Curl operator, and
directly appear in the (E, Z ,H) decomposition (see Eq. (2.128)).

The main features of the inertial waves are summarized below. An inertial wave
is:

(i) a plane wave which propagates along k,
(ii) a transverse wave, since û(k, t) ⊥ k,

(iii) a dissipative wave. The damping factor associated with û(k, t) is equal to e−νk2t ,
as deduced from a trivial extension of the inviscid linear analysis discussed
above.

Complete linear solutions are often referred to as RDT solutions. Even if the above
mentioned Green’s function is a particular case of the ones defined in the general
RDT theory, the terminology RDT is misleading in the case of rotating turbulence.
First, there is no space-distortion: even in the Galilean frame of reference, strictly
circular characteristic lines (i.e. mean trajectories) are found in physical space. This
is easily seen writing the equation for these lines: xi = Qi j (�t)X j . A similar result
is obtained in the spectral space, since ki = Qi j (�t)K j , where Q, which is equal to
F in Eq. (7.1), is an orthogonal matrix. Therefore, the transformation has isometric
properties. Second, the linear solution can be valid for a very long time, since the
appearance of a significant nonlinear cascade is delayed with respect to the non-
rotating case. The occurrence of phase mixing due to interactions between dispersive
inertial waves is the best explanation for this depletion of non-linearity (recall that
nonlinear effects do vanish in some DNS results, but keeping in mind limitations in
terms of Reynolds number and in terms of elapsed time �t).

The linear régime of inertial waves has interesting properties, which can be dis-
cussed independently of any statistical treatment:

• the dispersion frequency is modulated by the angle-dependent term cos θ. This
modulation reflects the role of fluctuating pressure in connection with k·û = 0,
with a variation of σk from 0 (wave plane normal to �) to 2� (wave vector parallel
to �). This wide range of dispersion frequencies allows for parametric resonances,
either for linear processes (as for elliptical flow instability with weak additional
strain discussed in Chap. 11) or for weakly nonlinear interactions (e.g. the wave-
turbulence approximation, discussed in Sect. 7.6).

• the zero frequency is found for the wave plane normal to �: this illustrates the fact
that the sole steady mode (i.e. zero frequency mode) is the two-dimensional mode
(k‖ = 0 corresponds to ∂/∂x‖ = 0 in the physical space), in agreement with (our
restricted use of) the Taylor–Proudman theorem.

• the fact that the dispersion frequency depends on the orientation but not on the
modulus of the wave vector is a very particular situation, encountered in other cases
of purely transverse pressure and vorticity waves, like the internal gravity waves

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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addressed in Chap. 10. As a consequence, phase velocity and group velocity are
orthogonal to each others. In the same way, the group velocity is found maximal and
in the axial direction, when the phase velocity is near zero, close to the waveplane
normal to �.

7.5.2 Analysis of Statistical Moments. Phase-Mixing
and Low Dimensional Manifolds

Linear equations can be used to compute various statistical moments of the solution.
For instance, the linear solution for the second-order spectral tensor equation is

E(k, t) = E(k, t0), H(k, t) = H(k, t0), Z(k, t) = e4ıσk (t−t0) Z(k, t0) (7.32)

As a first consequence, an initially anisotropic flow is altered, with b(dir)
i j and b(pol)

i j
being conserved and damped, respectively, as illustrated in Fig. 7.10. In counterpart,
these equations yield no evolution for isotropic initial data, with Z = H = 0.

The concept of phase-mixing can be understood from Eqs. (7.30) and (7.31) in
which the initial data term û(k, t ′) could be replaced by a new slow time-evolving
variable, U(k, εt, t ′). The impact of the basic Green’s function, for instance in break-
ing 3D isotropy, depends on the order and on the degree of complexity of statistical
moments (purely initial values or slowly evolving ones) to which it is applied.

Throughout this book, manifold means a sub-space of the spatial configuration
space. The configuration space is defined in the 3D Fourier space for mathematical
convenience. For instance, the 2D manifold (also referred to as the slow manifold
because σk = 0 for modes belonging to this manifold) corresponds to the waveplane
k‖ = 0 embedded in 3D Fourier space (all k). The manifold of resonant triads
represents the subspace defined by (±σk ± σp ± σq = 0, k + p + q = 0), which is
embedded in the space of all triads (k + p + q = 0) in 6D (all k, p) Fourier space.

7.5.2.1 Single-Time Second-Order Statistics

Looking at single-time second-order statistics, isotropy is essentially conserved in
the linear limit, since time dependency can cancel out by multiplying eıσk t by its
complex conjugate. This result is often considered as too general, saying that phase
information is lost in homogeneous turbulence (Davidson et al. 2006).

A refined analysis can be derived from Eq. (7.32). Both kinetic energy and di-
rectional anisotropy b(dir)

i j are conserved in the linear inviscid limit, whereas the
polarization anisotropy, given by

2K(0)b(pol)
i j (t) =

∫∫∫

 (

Z(k, x, 0)e4ı�xt Ni N j
)

d3k with x = cos θ, (7.33)

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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is essentially damped. This damping is a general effect obtained by summing up
terms affected by different oscillations, here from 0 (x = 0) to 2� (x = 1). If initial
data are axisymmetric with mirror symmetry, for instance, the relevant integral which
illustrates the damping of b(pol)

i j is

I (k,�t) =
∫ 1

0
C(k, x) cos(4�xt)dx,

which always tends to zero as the nondimensional time �t becomes large (C(k, x)

is taken equal to (1 − x2)
(Z(k, x, 0)) in Eq. (7.33) for i = j = 3). The only
exception is found when C(x) has a non-integrable singularity: a simple instance
is given by 2D-2C (i.e. two-dimensional two-component) initial data such that
Z(k, 0) = −[E(k)/(2πk)]δ(kx). It is clear from our very simple example that the
phase-mixing, induced by the x-weighting term in the integrand via the frequency
4�x , is responsible for damping, whereas x = 0 may characterize a low-dimensional
manifold which escapes the damping effect if it is singular.

Unexpected behavior of the Reynolds stress tensor results from the selective damp-
ing of the initial polarization anisotropy b(pol)

i j , as shown in Fig. 7.10.
Useful dynamical properties, however, are recovered for two-time (t, t ′) second

order statistics, with interesting applications to Lagrangian diffusivity as discussed
in Kaneda and Ishida (2000) and Cambon et al. (2004), since time dependency
cannot cancel out when multiplying e±2ı�xt by e±2ı�xt ′

. These applications are briefly
discussed in Sect. 11.2.5.

7.5.2.2 Single-Time Third Order Statistics

In this case the linear operator generates a product of three phase terms, e±2ı(k‖/k)�t ,
e±2ı(p‖/p)�t and e±2ı(q‖/q)�t , which are related to the triad (k, p, q).

Triple velocity correlations which govern the nonlinear energy and anisotropy
transfers in related Lin-type equations are considered in the next subsection: the effect
of phase mixing, considered as linear if applied to triple correlations, is interpreted
as nonlinear via the impact of transfer on energy distribution.

Triple correlations undergoing phase mixing can also be studied per se, as the
triple vorticity correlations revisited in Sect. 7.8. Let us mention that in any cubic
correlation, which is generated from triadic components 〈ûm(q, t)ûn(k, t)û( p, t)〉
with k + p + q = 0, the phase-mixing is induced by the term

exp

[
ı2�t

(
s

k‖
k

+ s ′ p‖
p

+ s ′′ q‖
q

)]
,

which results from the above-mentioned product of three phase terms, the zero value
of its phase corresponding to the manifold of resonant triads.

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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7.6 Nonlinear Theory and Modeling: Wave Turbulence
and EDQNM

7.6.1 Full Exact Non-linear Equations. Wave Turbulence

Simplified equations projected on the local basis of eigenmodes N and N∗ can be
used for discussing both linear and nonlinear operators, as well as to develop closure
theories for rotating turbulence. The starting point is the same as in Chap. 4. Using
the associated amplitudes ξs, s = ±1, which are defined by

û(k, t) = ξ+(k, t)N(k) + ξ−(k, t)N(−k), (7.34)

one obtains the following evolution equation

⎡
⎢⎢⎢⎣

∂

∂t
+ νk2 − ıs

(
2�

k‖
k

)

︸ ︷︷ ︸
σk

⎤
⎥⎥⎥⎦ ξs =

∑
s ′,s ′′=±1

∫
k+p+q=0

Mss ′s ′′(k, p)ξ∗
s ′(p, t)ξ∗

s ′′(q, t)d3p, (7.35)

in which a diagonal form of the linear operator appears, and the nonlinear term
Mss ′s ′′(k, p) is given by Eqs. (4.275) and (4.276). The linear inviscid solution is

ξs(k, t) = exp

(
2ıs�t

k‖
k

)
ξs(k, 0), s = ±1.

Replacing4 the initial condition by a new function as such that

ξs(k, t) = exp

(
2ıs�t

k‖
k

)
as(k, t), s = ±1 (7.36)

one obtains an equation for as in which linear operators are absorbed in the nonlinear
one as integrating factors:

ȧs =
∑

s′,s′′=±1

∫
k+p+q=0

exp

[
2ı�

(
s

k‖
k

+ s′ p‖
p

+ s′′ q‖
q

)
t

]
Mss′s′′ (k, p)a∗

s′ ( p, t)a∗
s′′ (q, t)d3p.

(7.37)

Note that the quantities as can be interpreted as amplitudes of slow variables,
since the contribution of rotation has been removed. This problem can be analyzed

4This change of variables is referred to as the Poincaré transform.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 7.12 Visualization of
resonant surfaces of inertial
waves, given by Eq. (7.39),
for a given orientation of k.
The locus of p is seen in the
plane p2 = 0, for θk = 1.1.
Complex loops appear for
π/3 < θk < π/2. Courtesy
of F. S. Godeferd

using a multiple (two) time-scale technique, by setting as = as(k, εt), where ε is a
(really) small parameter for asymptotic expansion which can be related to a Rossby
number. Incidentally, it should be more convenient to consider as = as(k, t) and the
phase as exp(2ıs� k‖

k
t
ε
), also in agreement with the theory of Lifschitz and Hameiri

discussed in Chap. 17. Such a refined analysis is not needed here, and we will just
retain from Eq. (7.37) the importance of resonant triads. These triads are defined by
the relation

sσk + s ′σp + s ′′σq = 0 (7.38)

and correspond to a zero value of the phase term in the right-hand-side of Eq. (7.37),
leading to

s
k‖
k

+ s ′ p‖
p

+ s ′′ q‖
q

= 0 with k + p + q = 0. (7.39)

These resonant or quasi-resonant triads are found to dominate the nonlinear slow
motion, since the effect of the phase term in the left-hand-side of Eq. (7.37) is a
severe damping of the nonlinearity by phase mixing. The complexity of the resonant
surfaces is illustrated by Fig. 7.12. The detailed helicity conservation property yields
the following additional relationship for resonant triads:

skσk + s ′ pσp + s ′′qσq = 0. (7.40)

In that case, why not to obtain a simplified model by solving Eq. (7.37) with an in-
tegral restricted to the resonant triads? Because the resonant surfaces are sufficiently
complex to require very accurate interpolation, rendering the resulting computation
efficient for a smooth distribution of the slow amplitudes as in Fourier space only.
Such a smooth distribution cannot represent turbulence, so that one has to resort to
describing naturally smooth quantities like statistical moments instead of the instan-
taneous solution. It is not forbidden, however, to try to isolate resonant triads in DNS:
some related studies are discussed in Sect. 7.7.

http://dx.doi.org/10.1007/978-3-319-73162-9_17
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A qualitative analysis of resonant triads (Waleffe 1993) deserves attention, before
addressing quantitative issues dealing with statistical moments. Going back to the
analysis presented in Sect. 4.8, and introducing the selection rules of resonant triads
(7.38) and (7.40), one obtains

cos θk

s ′q − s ′′ p
= cos θp

s ′′k − sq
= cos θq

sp − s ′k
. (7.41)

Applying the instability principle of Waleffe introduced in Sect. 4.8.4, but re-
stricting the analysis to resonant triads, the equality (7.41) shows that the transfer of
energy always goes from a less slanted leg of the triad (with respect to the rotation
vector) to a more slanted one. This result comes from the fact that the unstable mode
is also the mode whose pulsation σk has the larger amplitude and opposite sign with
respect to the two other modes of the triad under consideration. Let us consider the tri-
ad (k, p, q) and assume that k is the unstable mode. Then, one has |σk | > |σp|, |σq |,
which leads to | cos θk | > | cos θp|, | cos θq |. Accordingly, a drain of energy is pre-
dicted towards the wave plane orthogonal to � as illustrated in Fig. 7.13. Waleffe,
however, points out that the rate of energy transfer vanishes exactly when the wave
vector reaches the equatorial orientation characterized by k·� = 0. The latter wave
plane is exactly both the slow and the 2D manifold. Its meaning is very different in
the discrete case and in the continuous case: for instance, extension of the resonance
condition to the exact slow manifold is only valid in the discrete case, and related
issues are further discussed in Sect. 7.7.2.

Wave turbulence is a key concept in other fields, e.g. plasmas physics, with a very
large literature which influenced the “Russian School”, although it also addressed
turbulence in classical fluids (Zakharov et al. 1992). Applications can be found even
in physics of solids: random weakly interacting acoustic waves are considered as
a gas of phonons in the latter case. Several recent studies address vibrating plates

Fig. 7.13 Schematic view of
kinetic energy transfer
according to Waleffe’s
instability assumption
among resonant modes in
rotating turbulence

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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and surface waves, but much less deal with internal waves. In fluid mechanics, the
turbulent flow is seen as a sea of random spatio-temporal wave-modes, whose non-
linear interactions can be considered as weak in the limit of a small parameter. The
deterministic ingredient is the dispersion law, which gives a straightforward link of
a ‘rapid’ temporal frequency σ to the spatial wave-vector k. All other variables of
the flow, such as the amplitudes A of the wave-modes and/or some phase terms ϕ in
any generic wave-mode of motion a exp[ı(k·x −σ(k)t +ϕ)], are treated as random
variables. Even k could be considered as random, in some models, ranging from
linear Kinematic Simulation (Cambon et al. 2004) to weakly nonlinear ones, e.g.
Monte-Carlo methods for solving statistical closures. The possibility of applying a
weakly nonlinear theory relies on a time-scale separation: amplitudes a are assumed
to slowly evolve in time with respect to the rapid temporal oscillations induced by
σ(k)t . Phase-terms ϕ are removed here, or absorbed in a, such as aeıϕ → A. In this
sense, wave-turbulence is a theory for the evolution of slowly evolving envelopes
which modulate high frequency oscillations.

Rapidly rotating turbulence is an almost perfect case to apply such a theory: the
inertial wave-modes form a complete basis (they are identical to the helical modes,
which are even useful for studying “strong” turbulence), the small parameter which
controls the “weak” nonlinearity is not artificial: this is a Rossby number.

In the recent experimental study by Yarom and Sharon (2014), the relevance of
the dispersion law is confirmed in wave turbulence for spatio-temporal realizations
of a forced, rotating flow, at least for larger scales. For this purpose, spectra in terms
of both the wave vector k and the temporal frequency ω are considered, with for
instance

Es(k,ω) ∝ 1

2
a∗

s (k,ω)as(k,ω),

extending the definition of amplitudes from Eq. (7.36). Spectral data are plotted in
terms of ω and θ, and are found to collapse on the curves given by the dispersion
relation, especially at the largest Rossby numbers and the larger k’s.

It is important to notice that to bridge between a small Rossby number and a weak
nonlinearity seems to be trivial and tautological at first glance (this argument is used
in RDT, for instance, without any refined analysis of the nature of nonlinearity); more
important is the fact that the phase-mixing induced by “rapid” oscillations yields a
severe damping of nonlinear interactions, so that nonlinearity concentrates on a low-
dimension manifold: among all the triads called into play in the absence of waves,
only very few survive in the long-term limit, forming quasi-resonant triads. Finally,
when transferring the EDQNM (Orszag 1970) machinery from velocity (spatial)
Fourier modes to slow amplitudes, in agreement with an exact Poincaré transform
(7.36), the limit of wave turbulence (e.g. Benney and Newell 1969) is recovered at
vanishing eddy-damping, as we will see in the following subsections.
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7.6.2 Second Order Statistics: Identification of Relevant
Spectral Transfer Terms

Second-order correlations are entirely generated by the quantities E , Z , H, or
equivalently by 〈a∗

s as ′ 〉, s = ±1, s ′ = ±1. Without any assumption, second order
correlations are governed by the following system of equations

(
∂

∂t
+ 2νk2

)
E(k, t) = T (E)(k, t), (7.42)

(
∂

∂t
+ +2ıσk + 2νk2

)
Z(k, t) = T (Z)(k, t), (7.43)

(
∂

∂t
+ 2νk2

)
H(k, t) = T (h)(k, t), (7.44)

in which the nonlinear terms T (E)(k, t), T (Z)(k, t) and T (h)(k, t) are defined starting
from the transfer tensor Ti j given by Eq. (2.119), as

T (E) = 1

2
Tii , T (Z) = 1

2
Ti j N ∗

i N ∗
j , T (h) = −ı

2
εi jn

ki

k
Tjn

in full agreement withE = (1/2)R̂ii , Z = (1/2)R̂i j N ∗
i N ∗

j andH = −ı(1/2)εi jn(ki/k)

R̂ jn .
It appears that the Coriolis force does not affect the (linear) left-hand-sides, except

for the polarization parameter Z(k, t). Replacing Z by ζ, where ζ is such that

Z(k, t) = e2ıσk tζ(k, t), (7.45)

and T (Z)(k, t) by e2ıσk t T ζ(k, t), only the left-hand-side terms, which are linked to
triple correlations and mediated by nonlinearity, are possibly rotation-dependent.
Contribution from triple velocity correlations are therefore gathered into the gener-
alized spectral transfer terms T (E,Z ,h), which derives from Eqs. (7.42)–(7.44). If the
above system of equations is initialized with 3D isotropic initial data, i.e. by setting
E(k, 0) = E(k)/(4πk2) and Z = H = 0 at initial time, then the anisotropy which
should reflect the transition towards 2D structure can be created by the nonlinear
spectral transfer terms only. This anisotropy consists of axisymmetry without mirror
symmetry, leading to E = E(k, cos θ = k‖

k , t) and Z = Z(k, cos θ = k‖
k , t), with

Z = 0 if k is parallel to the vertical axis, in agreement with the symmetries of rotating
Navier–Stokes equations, which ought to be satisfied by the closure theory.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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7.6.3 Towards a Rational Closure Using EDQNM

A complete anisotropic EDQN model can be built in terms of the Green function G

and the spectral tensor R̂, using products of G to solve the linear operators which
appear in the equations for third order correlations (Cambon 1982; Cambon and Scott
1999), from the generic Eq. (2.117) in Chap. 2. On the ground of these equations, it
is possible to discuss an optimal way to treat the Markovianisation procedure, i.e.
to simplify the time-dependency in the integrands that connect the transfer term to
second order correlations. Closed equations display three kinds of time-dependent
terms:

(i) Viscous, or viscous + damping, terms

exp

(∫ t

t ′
μdt ′′

)
→ V (t, t ′),

(ii) Terms involving the RDT Green’s function

G(t, t ′) → exp[±ıσ(t − t ′)],

(iii) Terms from the second-order spectral tensor (through quasi-normal assumption)

R̂(t ′) → (E, Z ,H)(t ′).

According to the Markovianization procedure in classical EDQNM, we can as-
sume that V (t, t ′) is so rapidly decreasing in terms of time-separation τ = (t − t ′)
that it is only concerned by the time integral in the closure equations, whereas the
other terms take their instantaneous value, at t ′ = t , so that they are replaced by
G(t, t) and R̂(t), respectively. In other words, one considers that the only rapid term
is V (t, t ′), the other terms being assumed to be slow ones. This procedure, referred
to as EDQNM1, is not relevant for rotating turbulence, since the presence of G(t − t ′)
in the closure relationship is responsible for the breakdown of the initial isotropy.
Using EDQNM1 with isotropic initial data, isotropy is maintained, and no effect of
system rotation can appear. It is possible, however, to take into account the effect of
rotation in incorporating the rotation rate � in the eddy damping term

η� = A

√
(2�)2 +

∫ k

0
p2 E(p, t)dp (7.46)

in the basic EDQNM for isotropic turbulence, in Chap. 4, from Eq. (4.336). This is
consistent with the interpretation of the eddy damping as the turnover time of largest
eddies, and had suggested Eq. (7.19), as discussed in Cambon et al. (1997).

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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A second step, referred to as EDQNM2, consists of simply “freezing” the
(E, Z ,H) terms by setting t ′ = t in them, whereas the complete ‘readjusted’ response
function, with both V (t, t ′) and G(t, t ′) terms, is conserved in the time-integrand
with its detailed time-dependency. An interesting result is that the time integral of
the three-fold product of response functions yields a generic closure relationship of
the form

T (E,Z ,h) =
∑

s=±1,s ′=±1,s ′′=±1

∫
Sss ′s ′′

(E, Z ,H)

μkpq + ı(sσk + s ′σp + s ′′σq)
d3p. (7.47)

Results dealing with the rise of directional anisotropy and the description of the
transition from 3D isotropy to 2D structure obtained using EDQNM2 are illustrated in
Fig. 7.14, in which they are compared with high-resolution (in 1997!) 528×128×128
Large-Eddy Simulation data. It should be borne in mind that the development of
angular dependency in E(k, cos θ = k‖

k , t), which amounts to a concentration of
energy towards the 2D slow manifold (sketched in Fig. 7.17), results from nonlinear
interactions mediated by T (E) in Eqs. (7.42) and (7.47).

The latter procedure can be questioned, in spite of its excellent numerical results,
since it is not completely consistent with the basic rapid-slow decomposition sug-
gested by Eq. (7.36). All the terms in the set (E, Z ,H) which generate R̂ should not be
considered as “slow” terms according to the RDT solution (7.32). Therefore, it is nec-
essary to use the decomposition defined by Eq. (7.45), so that only ζ appears as a slow
variable, in complete agreement with Eq. (7.36). The resulting optimal procedure,
referred to as EDQNM3, yields freezing E(t ′) = E(t), H(t ′) = H(t), ζ(t ′) = ζ(t)
while keeping the t ′ dependency under the integral for Z(t ′) = exp(2ıσt ′)ζ(t),
V (t, t ′) and G(t, t ′), as before. This EDQNM3 version only slightly differs from
EDQNM2, but presents decisive advantages. It is completely consistent with build-
ing EDQNM in terms of slow amplitudes using relation (7.36). Another advantage is
that an asymptotic expansion can be obtained in the limit μkpq � 2�, which exactly
coincides with the Eulerian wave-turbulence theory (see Galtier 2003). It is proved
that realizability is enforced in this limit, while it is not in the EDQNM2 version.

7.6.4 Recovering the Asymptotic Theory of Inertial Wave
Turbulence

Ignoring the H and ζ contributions for the moment, EDQNM3 (or equivalently
EDQNM2 (Cambon and Jacquin 1989; Cambon et al. 1997) since the two versions
differ only in treating Z ) yields the following closure for the Lin equation:
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Fig. 7.14 Isolines of kinetic energy E(k, cos θ, t) for 512 × 128 × 128 LES computations (a) at
� = 0 at time t/τ = 427, (b) EDQNM2 with � = 0; (c) LES with � = 1 at t/τ = 575; and (d)
EDQNM2 calculation with � = 1 at time t/τ = 148. The vertical axis bears cos θk (from 0 to 1
upwards) and the horizontal one the wave number k. Reproduced from Cambon et al. (1997) with
permission of CUP

T (E) =
∑

s ′,s ′′=±1

∫∫∫
A(k, s ′ p, s ′′q)

μkpq + ı(σk + s ′σp + s ′′σq)

× E(q) (E( p) − E(k)) d3 p, (7.48)

where the exact from of A and μkpq are given in Chap. 18.
The denominator reflects the time-integration of a product of three ‘eddy damped’

Green’s functions derived from Eq. (7.31).
In the limit of very high rotation rate, or at vanishing Rossby number, the asymp-

totic version of this equation is obtained using the following Riemann–Lebesgue
relationship for distributions (also sometimes referred to as the Plemelj or Sokhot-
sky formula)

1

μ + ı x
→ πδ(x) − ıP

(
1

x

)
when μ → 0,

in which P holds for the principal value in the complete integral expression (such as
(7.48)).

The resulting Asymptotic Quasi-Normal Markovian (AQNM) closure is expressed
as

T (E) =
∑

s ′,s ′′=±1

∫ ∫
Ms′s′′

π
A(k, s ′ p, s ′′q)

s ′Cg( p) − s ′′Cg(q)

× E(q) (E( p) − E(k)) d2 p (7.49)

http://dx.doi.org/10.1007/978-3-319-73162-9_18
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in which Ms ′s ′′ is the family of resonant surfaces and Cg(k) the group velocity of
inertial waves. The damping factor μ no longer appears in the final equation, while
the denominator accounts for the fact that the reduction from a volume to a surface
integral brings in the gradient of resonant surfaces, whence the occurrence of the
group velocity. The reader is referred to Cambon et al. (2004) for a presentation
of the full EDQNM3 equations (without H) and to Bellet et al. (2006) for AQNM
equations for E , ζ, H.

Starting from isotropic initial data, with a narrow-band energy spectrum, an in-
ertial zone is constructed solving AQNM equation for E(k, θ) at vanishing Rossby
number and infinite Reynolds number, until the inertial range reaches the maximum
wave number. At this stage of the computation, the laminar viscosity is reintroduced,5

and a self-similar spectrum is obtained. The spherically averaged energy spectrum
E(k) is constructed with a k−3 slope, as shown in Fig. 7.15, but the prefactor is
E(k) ∼ �

t k−3. Axisymmetric shape, with strong directional anisotropy, is found for
the angle-dependent spectrum 4πk2E(k, cos θ, t), as shown in Fig. 7.16. This direc-
tional anisotropy, only mediated by nonlinear transfer, is consistent with the sketch
displayed in Fig. 7.17, and with all previous theoretical and numerical studies by
Cambon and Jacquin (1989), Waleffe (1993), Cambon et al. (1997). That illustrates
a transition from a 3D (E equidistributed on spherical shells) to a 2D structure (E con-
centrated on the horizontal wave plane). Nevertheless, the two-dimensionalization
is limited to large k, and is never fully achieved. The k−3 slope for E results from
the averaging of various slopes for 4πk2E , ranging from k−2 (for quasi-horizontal
wave-vectors) to k−5 (for quasi-vertical wave-vectors). The relevance of this asymp-
totic result is perhaps marginal, since the time τ needed to obtain the inertial zone
built via weak wave-turbulence dynamics is very high, since �τ ∼ O(Ro−2) at very
small Rossby number Ro. In this context, it is interesting to note that a similar result
was obtained by a high resolution (5123) DNS, therefore at moderate Ro, Re and
elapsed time, as shown on Fig. 7.18.

7.7 Fundamental Issues: Solved and Open Questions

7.7.1 Eventual Two-Dimensionalization or Not

It is clear that the trends towards two-dimensional structure saturate at very long
time, at least in the continuous case. The anisotropic state, which eventually be-
comes self-similar, is consistent with power-law decay for single-point statistics.
The turbulent kinetic energy is observed to decay as K(t) ∼ t−0.86 in AQNM. Full

5Unfortunately, it is not possible to continue the computation at infinite Reynolds number at this
stage, as it was done in the isotropic case without rotation in Chap. 4, because the eddy damping is
no longer present in the AQNM equation, and especially because accumulation of spectral energy
at kmax is no longer possible, due to typical oscillations emanating from largest wavevectors as
numerical instabilities.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 7.15 Construction of the spherically averaged spectrum in AQNM. The straight line gives the
k−3 slope. Reproduced from Bellet et al. (2006) with permission of CUP
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Fig. 7.16 Asymptotic angular dependent spectra from AQNM. Spectral energy density for different
angles, from bottom to top, θ/(π/2) = 1/300 (what we call the vertical mode), θ/(π/2) = 51/300,
θ/(π/2) = 101/300, θ/(π/2) = 151/300, θ/(π/2) = 201/300, θ/(π/2) = 251/300, and
θ/(π/2) = 299/300 (the ‘horizontal’ mode). The straight line gives the k−2 slope. Reproduced
from Bellet et al. (2006) with permission of CUP

two-dimensionalization requires very strong conditions of axisymmetric angular dis-
tribution for E :

E(k⊥, k‖) = E(k⊥)

2πk⊥
δ(k‖), (7.50)
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Fig. 7.17 Top: schematic view of the net energy spectral transfers in the pure rotation case. Bottom:
sketch of emerging large-scale coherent structures. Notice that the conical region in which the energy
concentrates remains finite, even if the size of the quasi-2D manifold tends to zero at vanishing
Rossby number

Fig. 7.18 Angular
dependent spectra of purely
rotating turbulence. A
comparable isotropic
spectrum of the same
quantity is shown as a black
dotted line. Data from
Liechtenstein et al. (2005)
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or equivalent conditions expressed using k =
√

k2
⊥ + k2

‖ and cos θ = k‖/k, where

δ denotes the Dirac delta function. An additional condition possibly brings in the
polarization anisotropy Z , leading to
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Z(k⊥, k‖) = − E(k⊥)

2πk⊥
δ(k‖) (7.51)

in order to ensure that the contribution to vertical velocity is identically zero. The
first equation characterizes a 2D (two-dimensional) state only, whereas both charac-
terize a 2D-2C state (two-dimensional and two-component) (Cambon et al. 1997).
In contrast, the asymptotic state of weak inertial turbulence predicted by AQNM is
consistent with an integrable singularity at k‖ = 0 for E(k⊥, k‖), and with a zero Z .
Near the two-dimensional manifold, the distribution is consistent with

E(k⊥, k‖) ∼ k−7/2
⊥ k−1/2

‖ , or E(k, θ) ∼ (π/2 − θ)−1/2k−4, (7.52)

as analytically obtained by Galtier (2003). The k−4 law at smallest cos θ’s is consistent
with the AQNM result (Fig. 7.16), or k−2 slope after multiplication by k2.

Things can be different in the discrete case, for instance when the velocity field is
chosen to be periodic with finite wave length in one, two or three directions. On the
one hand, some mathematical theorems can predict decoupled dynamics and eventual
dominance of the slow manifold. Such a “nonlinear Proudman theorem” relies on
smoothness assumptions about the initial velocity field and emphasizes the role of
purely 2D particular resonant triads which are sometimes referred to as catalytic
triads. On the other hand, some under-resolved DNS or LES (for instance DNS with
hyperviscosity) discussed in Sect. 7.7.4 seem to predict two-dimensionalization, in
agreement with essentially decoupled dynamics of the slow manifold, in which the
energy is eventually concentrated.

7.7.2 Meaning of the Slow Manifold

Both the definition and relative weight of the slow manifold depend on the discretiza-
tion in conventional pseudo-spectral DNS and LES. In any case, the underlying as-
sumptions of weak turbulence are no longer valid in the domain k‖/k = O(Ro),
because the time-scale separation between “slow” amplitudes a±1 and “rapid” phases
exp(±2�tk‖/k) no longer holds. In DNS and LES, k‖/k cannot be smaller than a
typical mesh-ratio �k/k, so that the apparent thickness of the slow manifold is fixed
independently of the Rossby number, which questions any calculation at too small
Rossby number (See also Smith and Lee 2005).

Even if EDQNM3 and AQNM equations deal with the continuous case, their
numerical resolution needs dicretization in Fourier space, but the angular step can
be much smaller than in DNS/LES. The exact limit k‖ = 0 cannot be afforded by
AQNM equations in any case, and the AQNM numerical code is only used until the
smallest nonzero value of this parameter.
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The consequence is twofold:

(i) The contribution of the neighborhood of k‖ = 0 is singular. But, since this
singularity is integrable, any quantity which involves an integral over the whole
angle-dependent wave space can be accurately computed. Examples of such
quantities are the spherically averaged energy spectrum E(k) and the Reynolds
stress components.

(ii) The system of AQNM equations has to be complemented in order to take into
account the slow manifold per se. This is needed to evaluate statistical quantities
which only involve the k‖ = 0 wave plane, as the 2D energy components:

u2
3 L(3)

33 = 2π2
∫ ∞

0

(E(k⊥, k‖ = 0) + Z(k⊥, k‖ = 0)
)

k⊥dk⊥ (7.53)

and

u2
1 L(3)

11 = u2
2 L(3)

22 = π2
∫ ∞

0
(E(k⊥, 0) − Z(k⊥, 0)) k⊥dk⊥. (7.54)

These quantities are very important. They were measured in Jacquin et al. (1990)
and accurately predicted using DNS and EDQNM2 in Cambon et al. (1997). The
strong difference in the evolution of these quantities suggests that the polariza-
tion anisotropy Z = 
Z is important in the exact slow manifold k‖ = k3 = 0.
Generally, E + 
Z and E − 
Z give the spectral energy of the poloidal and
toroidal modes, respectively. In the equatorial wave plane (k‖ = 0), they con-
tribute to both horizontal and vertical energy. A refined statistical model ought
to match AQNM outside the vicinity of the slow manifold, with Z = 0, and full
EDQNM3 in the vicinity of the 2D manifold (Cambon et al. 2004). An interest-
ing related problem is that the eddy damping cannot be ignored in the vicinity
of the slow manifold, as it is in classical wave turbulence theory, so that a fully
nonlinear statistical theory is needed.

7.7.3 Wave Turbulence Theory for a Confined Rotating Flow

This recent study by Scott (2014) extends the application of wave turbulence theory
to rapidly rotating turbulence confined by two infinite, parallel walls perpendicular to
the rotation axis. This flow configuration is similar to the one addressed by Godeferd
and Lollini (1999) using DNS if the local forcing is removed. The flow is modeled as
a combination of inertial waveguide modes, continuous in the transverse (horizontal)
directions and discrete in the axial (vertical) one. This leads to a spectral covariance
matrix Mmn(k⊥, t) whose diagonal elements m = n are related to the distribution of
energy over modes and whose off-diagonal m �= n elements represent correlations
between modes of different orders. The 2D manifold corresponds to n = 0, with
k‖ = nπ/L in terms of the distance 2L between the walls: It recovers its meaning of
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true, non-singular, “vortex” mode, in contrast with wave turbulence in the unbounded
case L → ∞. It is shown to evolve as in a classical two-dimensional non-rotating
flow, but with wall friction due to Ekman pumping by the boundary layers. As in
unbounded wave turbulence theory, energy is transfered between wave modes (n �=
0) via resonant triadic interactions. Energy transfer takes place at times O(Ro−2)

multiple of the rotational period. Despite playing no role in wave-mode energetics,
the two-dimensional mode n = 0 induces the decay of the off-diagonal elements of
the spectral matrix on a time-scale that is small compared with O(Ro−2) rotation
periods. Equations for Mmn(k⊥, t) are closed in an analytical way, their numerical
solution is in progress, as well as DNS in a rotating channel with unprecedented
resolution with respect to Godeferd and Lollini (1999).

7.7.4 Are Present DNS and LES Useful for Theoretical
Prediction?

DNS and LES results have also shown the tendency of rotating turbulence to become
anisotropic by spectral transfer towards the horizontal waveplane (Cambon et al.
1997; Morinishi et al. 2001), not to mention qualitative results dealing with the
development of vortices elongated in the vertical direction (Bartello et al. 1994;
Biferale et al. 2016). Nevertheless, it is difficult to decide, based on these results,
whether the flow becomes two-dimensional in the long time-limit, for several reasons.
Spatial periodicity of the flow, which is assumed in numerical models, implies that
the size of the periodic box must be sufficiently large in order to avoid spurious
confinement effects. In particular, the turbulent correlation length and Cgt must
remain small compared to the box size, where Cg is the inertial wave group velocity
given by Eq. (7.27). The latter condition is very stringent for long-time simulations,
since the evolution time scales as Ro−2�−1 at small Rossby number.

Regarding Reynolds stress tensor anisotropy with directional/polarization split-
ting, the exact equation

2K(t)b33(t) =
∫∫∫ (

E − E

4πk2

)
sin2 θd3k

︸ ︷︷ ︸
b(dir)

33 (t)

+
∫∫


 (
ζe−2ı cos θt

)
sin2 θd3k

︸ ︷︷ ︸
b(pol)

33 (t)

,

(7.55)
along with Eq. (7.42) allows to discuss some results. DNS/LES (Cambon et al. 1997;
Morinishi et al. 2001; Yang and Domaradzki 2004) yield results similar to those of
AQNM (Bellet et al. 2006) dealing with the time history of b(dir)

33 . A monotonic in-
crease from about 0 (initial isotropy) to a maximum value is observed. This maximum
value is never larger than 0.08, and therefore remains far below the theoretical two-
dimensional limit which is equal to 1/6 (obtained in injecting Eq. (7.50) in Eq. (7.55)
(Cambon et al. 1997)). In AQNM, the b(pol)

33 term remains equal to zero, so that
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b33 = b(dir)
33 . The vanishing of b(pol)

33 seems to be a very general result, also valid in
the nonlinear case if ζ evolves slowly and has integrable singularity at k‖ = 0. In
almost all under-resolved DNS (or LES), a rapid evolution of b(pol)

33 with negative
value can yield a strong departure of b33 from b(dir)

33 , resulting eventually in a negative
value of b33 about −0.2. The latter effect, e.g. Bartello et al. (1994), which means
that two-componentalization is much more important than two-dimensionalization,
is probably due to the numerical confinement (finite-box effect). This discrepancy
yields distinguishing the continuous case from the discrete one. In the continuous
unbounded case, it is clear that Z can have a physically relevant negative value in
the slow manifold, allowing a large increase of the ratio u2

1 L(3)
11 /u2

3 L(3)
33 , according to

Eqs. (7.53) and (7.54) and Cambon and Jacquin (1989), Jacquin et al. (1990), Cam-
bon et al. (1997), but its integral contribution to b(pol)

33 must vanish by phase-mixing
under the conditions mentioned above on ζ in Eq. (7.55). Finally, Eq. (7.55) illus-
trates the fact that directional and polarization anisotropy can have opposite effects
on the RST anisotropy. Using the terminology introduced by Kassinos et al. (2001),
one should say that “dimensionality” (anisotropy of the dimensionality tensor cor-
responds to −2b(dir)

i j ) and polarization have opposite effects on “componentality”
(conventionally measured by bi j ).

7.7.5 Is the Pure Linear Theory Relevant?

Restricting the analysis to single-time second-order statistics in homogeneous tur-
bulence, it is clear that anisotropic structuration is only possible through non-linear
mechanisms. As pointed out by Davidson et al. (2006), this does not exclude that
formation of organized structures can be mediated by linear mechanisms.

On the one hand, single-time second order statistics are particular cases, since
phase information is essentially lost when combining eıσk t and its conjugate in the
definition of the second order spectral tensor R̂, at least looking at its trace. Phase
information is recovered considering more complex correlations, even in the homo-
geneous case. Not to mention two-times second order statistics with relevant “linear”
(so-called RDT) applications (Kaneda and Ishida 2000), third-order correlations are
affected by these phase effects. It is because the linear operator has a deep influence
on third order correlations that the transfer terms T (E,Z ,h) become rotation-dependent
and anisotropic in Eq. (7.42), breaking the initial isotropy.

On the other hand, it is suggested that inertial waves propagating from a
blob of vorticity can generate elongated structures in the pure linear —but non-
homogeneous— case. This illustrates the fact that the lowest frequencies are linked
to the fastest group velocity, which is close to the axial direction. In addition, a very
interesting analysis of the angular momentum, with different time-scalings depend-
ing of the angle of ray propagation, is performed in Davidson et al. (2006). It is also
suggested that the strong but transient anisotropy of integral lengthscales observed
in the intermediate range of Rossby numbers by Jacquin et al. (1990) reflects this
linear mechanism. Incidentally, this intermediate range was very clearly delineated
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in the Jacquin’s experimental study, as discussed below. First, several parameters
were defined to describe the flow dynamics: a macro Rossby number RoL = u′

2�L

with L = L(3)
33 and u′ =

√
u2

3 (from the observation that the axial components were

the less altered by rotation) and a micro Rossby number Roλ choosing the axial Tay-
lor lengthscale for λ with Roλ ∼ ω′/(2�). Second, in the free decay experiments,
both Rossby numbers were initialized with Roλ > RoL > 1, and then decrease
together, so that two transitions were successively observed. The first one is for
Roλ > RoL = 1 and the second one for Roλ = 1 > RoL , respectively. These two
transitions delineate the intermediate range of Rossby numbers, in which anisotropy
was observed to develop. A very clear collapse of quantities combining Reynolds
stresses and integral lengtscales from Figs. 7.1 and 7.2 was found in terms of the
macro-Rossby number, showing that anisotropy of these quantities is triggered at a
macro-Rossby number close to one. Nevertheless, these features were well repro-
duced by pure homogeneous EDQNM-type models and DNS/LES, in which RDT for
single-time second order statistics give no anisotropy at all, if started with isotropic
initial data.

Based on a very large and old experience on rotating flows, we consider that
the different viewpoints can be reconciled. Instead of opposing linear to nonlinear
dynamics, or homogeneous to inhomogeneous flows, we prefer to say that linear and
nonlinear processes interact in a subtle way. As also discussed in the last section, it
is more important to specify the order and the nature of the correlations to which
the linear operator is applied. The fact that these correlations do or do not exhibit
quasi-Gaussian properties is perhaps more important than their degree of statistical
inhomogeneity.

7.7.6 Provisional Conclusions About Scaling Laws
and Quantified Values of Key Descriptors

The kinetic energy decays more slowly in homogeneous rotating turbulence, with
an exponent (e.g. −0.86 in AQNM) about one-half of the one observed in the non-
rotating case (Squires et al. 2000; Bellet et al. 2006; Morize et al. 2005). This situation
seems to correspond to high Reynolds and very low Rossby number limits, so that
different decay laws can be found in DNS and experiments, such as a purely vis-
cous decay law linked to negligible nonlinearity. On the other hand, a faster decay
can be explained by inhomogeneous effects, dissipation of energy carried by inertial
waves near the Ekman boundary layers (Ibbetson and Tritton 1975), and more non
local effects of Ekman pumping on organized eddies (Morize et al. 2005). Direc-
tional anisotropy reaches a value of about b(dir)

33 ∼ 0.07−0.08 (Cambon et al. 1997;
Morinishi et al. 2001; Yang and Domaradzki 2004; Bellet et al. 2006), whereas po-
larization anisotropy b(pol)

33 remains zero (Bellet et al. 2006), weak (Cambon et al.
1997; Morinishi et al. 2001),or reaches a large negative value, so that b33 ∼ −0.2
(DNS and LES with long elapsed time and low resolution) (Fig. 7.19).
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Fig. 7.19 Isovorticity
surfaces from high resolution
DNS. Dominant cyclonic
structures are in gray.
Courtesy of L. Liechtenstein

The spherically averaged energy spectrum is assumed to scale as E(k) ∼ √
�εk−2

(Zhou 1995), in agreement with an energy transfer scaling as �−1 but completely
ignoring the anisotropy. In the same way, an isotropic scaling of the second order
structure function in terms of r (and not r2/3 as in the usual Kolmogorov theory) is
invoked by Baroud et al. (2003) and directly connected to a k−2 energy spectrum.
We consider this proposal as not fully consistent, also because the authors claimed
that they have quasi-2D dynamics with an inverse energy cascade. More generally,
however, the “anomalous” scaling of the nth-order structure function as rn/2 seems
to be supported by both (Baroud et al. 2003; Simand 2002), see Fig. 7.20.

A complete scaling of E(k⊥, k‖) for any wavevector modulus and direction is
possible from the AQNM numerical database (Bellet et al. 2006), or even from
DNS/LES with convenient post-processing (Cambon et al. 1997; Liechtenstein et al.
2005), but it is not yet available. It may generalize the scaling law (7.52) given in
Galtier (2003).

7.7.7 Deriving Effective Diffusivities and Atmospheric
Spectra from a QNSE Theory

A promising approach is developed by Sukoriansky and Galperin (2016) (and ref-
erences therein) in line with QNSE (Quasi-Normal Scale Elimination). In contrast
with QNM approaches discussed at length in this chapter, the eddy-damping is not
vanishing (asymptotic wave turbulence limit) or empirically fitted as in HIT, but is
derived from successive coarsening of a flow domain, only assuming weak rotation.
Accordingly, the emphasis cannot be put on the most detailed anisotropic structure,
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Fig. 7.20 ζq (q) exponents
for structure functions at
positions d closer and closer
to the core of an intense
vortex (‘French washing
machine’ with co-rotative
discs at 30 Hz): d = 4.5 cm �,
d= 3.5 cm �, d= 2.5 cm �,
d= 1.5 +, d = 0.5 ◦, K41
model (full line), K62 model
(dashed line) (Simand 2002)
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but the QNSE theory yields scale-dependent eddy viscosities and diffusivities.
These scale-dependent effective viscosities and diffusivities affect both direction-
al anisotropy and polarization anisotropy. Four different viscosities are investigated
and one-dimensional energy spectra are calculated. Incidentally, the scale expected
for a re-isotropization of the flow, that is the rotational analogue of the Ozmidov
scale in stably stratified flows, is recovered as a Woods scale (see Woods 1980.) The
related threshold wavenumber, called k�, is given by Eq. (7.62), and its effect on
anisotropy is addressed in Sect. 7.9.

On the one hand, these scalings show a combination of k−3 and k−5/3 slopes for
the energy spectrum E(k), that is a result common to different models based on weak
anisotropy, e.g. in stratified turbulence, as reported in Chap. 10. More originally, the
procedure gives access to a spectral tensor in terms of temporal frequency ω

R̂i j (ω, k) = 2Dk−3 |G(ω, k|2
|D(ω, k)|2

[
A(ω, k)Pi j (k) + B(ω, k)Qi j (k) + C(ω, k)P3i (k)P3 j (k)

]
,

(7.56)
from which it is easy to recover the polarization (related to C) anisotropy and the
contribution from helicity (related to B). The reader is referred to Sukoriansky and
Galperin (2016) for details. The angle-dependent axisymmetric spectral coefficients
derive from renormalized expansions of both the Green tensor (e.g. G) and the
solenoidal velocity. The steady (ω = 0) energy spectra obtained in rotating tur-
bulence are:
the k-dependent (spherically-averaged) spectrum

E(k) = 1.458ε2/3k−5/3 + 0.564 f 2k−3 = 1.458ε2/3k−5/3

(
1 + 0.387

(
k

k�

)−4/3
)

,

(7.57)

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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the horizontal 1D (plane-averaged) longitudinal spectrum

E1(k1) = 0.47ε2/3k−5/3
1 + 0.0926 f 2k−3

1 = 0.47ε2/3k−5/3
1

(
1 + 0.197

(
k1

k�

)−4/3
)

,

(7.58)

and the horizontal 1D (plane averaged) transverse spectrum

E1(k2) = 0.62ε2/3k−5/3
2 + 0.240 f 2k−3

2 = 0.62ε2/3k−5/3
2

(
1 + 0.385

(
k2

k�

)−4/3
)

.

(7.59)

Due to axisymmetry (called horizontal isotropy by the authors) E1(k1) = E2(k2).
On the other hand, these scalings were recently used by Galperin and Sukori-

ansky (2017) to revisit the Nastrom–Gage spectra in atmospheric turbulence. This
new interpretation completely questions the interpretation by Lindborg, reported in
Chap. 10. It is in agreement with the recent analysis from global high-resolution
simulation by Skamarock et al. (2014), with two essential points: (i) The scaling
of the k−3 part of the spectrum is associated with the Coriolis frequency, f in
Eq. (7.57), and one recovers the fact that the spectra are latitude-dependent; as said
by Skamarock et al. (2014): Hence, the results do not support recent conjecture that
stratified turbulence explains the mesoscale portion of the kinetic energy spectrum.
(ii) Both longitudinal and transverse energy spectra can be computed from the gen-
eral axisymmetric scaling (7.56). Figure 7.21 from Galperin and Sukoriansky (2017)
compares the QNSE spectrum by Eq. (7.58) (red lines) with the “canonical” spectra
by Nastrom and Gage (1985). The data are the longitudinal spectra of the zonal and
meridional winds. Due to the isotropy in the horizontal plane (axisymmetry of the
model), both spectra are very close in the data (the meridional spectrum is shifted
one decade to the right in Fig. 7.21) and they coincide in the theory. The canonical
spectra were latitudinally averaged between 25 and 50◦ North thereby masking the
dependence on f. The QNSE spectra were computed for 30◦ North. The factor of 2
difference between the transverse and longitudinal spectra on large scales was con-
sidered later (Callies et al. 2014). Other than QNSE, Eqs. (7.58) and (7.59), no other
analytical theory so far was able to account for this difference.

7.8 Coherent Structures, Description and Dynamics

Emergence of “cigar-shaped” vortex structures has been observed in several DNS
and LES studies. A recent visualization is shown on Fig. 7.19. At least in DNS ini-
tialized with conventional “almost Gaussian” realizations with random phase terms,
they do not emerge if the nonlinear terms are cancelled. This is consistent with the

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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Fig. 7.21 Comparison of the canonical spectra of Nastrom and Gage (1985) with QNSE Eq. (7.58)
(red lines). The “canonical”meridional spectrum is shifted one decade to the right. Courtesy of
Boris Galperin and Sukoriansky (2017)

hypothesis of “non-linear formation of structures”, supported by the anisotropic sta-
tistical approach of Cambon’s team, but relevant criticisms by Peter Davidson must
be accounted for. The appearance of these structures depends on the range of Rossby
and Reynolds numbers, and also on the resolution and effective confinement of the
numerical simulation.

A more realistic confinement is present in the DNS by Godeferd and Lollini
(1999) on a plane channel rotating about the vertical direction. In addition to a
realistic numerical approach to vertical confinement (pseudo-spectral Fourier-Fourier-
Chebishev code with no-slip boundary conditions), another motivation was to repro-
duce the main results of the experiment by Hopfinger et al. (1982), briefly introduced
in Sect. 7.1.1. Identification of vortices is illustrated in Fig. 7.22 (top) using both hor-
izontal sections of iso-surfaces (noisy spots in the bottom plane of the figure) and
isovalue surfaces of a normalized angular momentum, which is defined in the caption.
The latter criterion (Normalized Angular Momentum) was suggested by experimen-
talists (Marc Michard, Lyon) in PIV for obtaining smooth isovalues. Asymmetry in
terms of cyclones-anticyclones is mainly induced by the Ekman pumping near the
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Fig. 7.22 Top: Vortex
structures identified by NAM
iso-values (tubes) and
horizontal cross-section of
vorticity iso-values (noisy
spots in the bottom plane).
NAM value at point M is
obtained by averaging
| MP × u(P) | /(| MP ||
u(P) |) over point P in a
small domain surrounding
M. Bottom: Selected pair of
cyclonic-anticyclonic eddy
structures, identified by
NAM = 0.7 isosurfaces.
Helical lines along them
correspond to instantaneous
streamlines in close vicinity
of isosurfaces. Reproduced
from Godeferd and Lollini
(1999) with permission of
CUP

solid boundaries, yielding helical trajectories. This is illustrated in Fig. 7.22 (bottom),
in which a cyclone-anticyclone pair is isolated. Even if the Ekman pumping generates
a three-component motion, the presence of the horizontal walls, and the presence of
the forcing in the horizontal plane between them, are essential for enforcing coherent
vortices. Nevertheless, and in contrast with the experimental results, no significant
asymmetry between cyclonic and anticyclonic structures was observed in terms of
number and intensity. In the same way, the typical distance between adjacent vortices
is of the same order of magnitude as of their diameter, and the Rossby number in
their core is close to one. It was expected that for a given symmetric distribution of
more intense and concentrated vortices, the centrifugal and the elliptic instabilities
could act in preferentially destabilizing the anticyclones, so that the cyclone could
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emerge. It seems that the unsufficiently high Reynolds number is responsible for the
lack of intensity and concentration of cigar vortices.

7.8.1 More on Cyclone/Anticyclone Asymmetry

There is now a general agreement about the fact that cyclonic vertical vorticity is
dominant, i.e. ω3 > 0 on the average, at sufficiently high Reynolds number, and
in an intermediate range of Rossby numbers. The intermediate range is not the
same, according to the definitions by Jacquin et al. (1990) or by Bourouiba and
Bartello (2007). Anyway, the latter definition only deals with micro-Rossby numbers
significantly smaller than 1, as in Bartello et al. (1994).

It is perhaps puzzling that the approach by Bartello et al. (1994), and more recently
by Chen et al. (2005), is essentially supported by low resolution LES (not DNS
because of hyperviscosity), whereas the dynamics of vorticity is emphasized. It is well
known that LES cannot accurately capture the small scales which contribute to the
enstrophy, except if a sophisticated subgrid-scale model is used to explicitly represent
the continuation of scales. The fact that the skewness of axial vorticity in Bartello
et al. (1994) seems to grow with positive value until a reasonable level is reached is
corroborated by recent experiments (Morize et al. 2005) (see Fig. 7.23). This suggests
that, even if the dimensional value of 〈ω3

3〉 is likely strongly underestimated in a low
resolution LES, the nondimensional ratio

Sω = 〈ω3
3〉

〈ω2〉3/2
(7.60)

is probably captured with an acceptable order of magnitude.
In addition, the study by Morize et al. (2005) of decaying rotating turbulence

shows the relevance of the linear time-scale to compare different cases with the same
scaling: the vorticity skewness grows as tα with α ∈ [0.7; 0.75] in Fig. 7.23(top).
In this figure, the final rapid collapse is attributed to the rise of non-homogeneous
mechanisms, such as Ekman pumping. DNS by van Bokhoven et al. (2008) yield
similar results (Fig. 7.23(middle)). The late-time collapse in Fig. 7.23(middle) can be
interpreted as a final stage of linear “triadic” phase-mixing, because of the absence
of strong enough nonlinearity in decaying turbulence at moderate initial Reynolds
number.

Since a significant part of the vorticity statistics, informative for the above men-
tioned issue of asymmetry in terms of cyclonic and anticyclonic axial vorticity, deals
with triple correlations, statistical theory can be revisited and confronted to arguments
from stability analysis, as discussed below.

Triple vorticity correlations are found as

〈ω3
‖〉(t) =

∑
s,s ′,s ′′=±1

∫
R6

exp

[
ı2�t

(
s

k‖
k

+ s ′ p‖
p

+ s ′′ q‖
q

)]
Tss ′s ′′(k, p, εt)d3kd3p.

(7.61)
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Fig. 7.23 skewness of the
vertical vorticity distribution,
experiment (top) (Morize
et al. 2005), DNS (middle)
(van Bokhoven et al. 2008),
DNS run at the largest
Rossby number plotted with
experimental results
(bottom) (Staplehurst et al.
2008, with permissions of
CUP)
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This equation is exact in the linear (RDT) limit, with ε = 0 in the contribution from
slowly evolving amplitudes denoted Tss ′s ′′ , even if applying RDT to cubic statistical
moments is not usual. It exactly reflects the consequence of the Poincaré transform
(7.36) at the level of cubic moments if ε is not zero.
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In order to compute this integral, it is necessary to know the contribution from
initial, or slowly evolving, triple correlations for all triads.6 But the problem is much
better documented than in physical space since robust spectral theories such as
EDQNM provide a systematic way to express initial, isotropic, Tss ′s ′′ in terms of
the initial scalar energy spectrum E(k). More generally, more advanced EDQNM2,3

versions can be used to solve the full nonlinear problem, not only for generating
isotropic initial data in Eq. (7.61) with ε = 0. Common to the linear and nonlinear
formulations, the phase term controlling phase-mixing appears in Eq. (7.61), and is
zero when triads are in exact resonance.

As another result of statistical theory, it can be shown that the triple vorticity
correlation 〈ω3

3〉 is necessarily produced with a positive value (corresponding to net
production of cyclonic vertical vorticity) when 3D isotropic turbulence is suddenly
set into solid body rotation (Gence and Frick 2001). This result comes from the Euler
equations written in the rotating frame

d

dt
〈ω3

3〉 = 3〈ω2
3ω j S3 j 〉 + 6�〈ω2

3 S33〉 with Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
,

since the specific rotation-induced “production” term 6�〈ω2
3 S33〉 is essentially pos-

itive, as is the classical “nonlinear vortex stretching term” 〈ωiω j Si j 〉. The reader is
referred to van Bokhoven et al. (2008) for the statistical analysis and its discussion,
supported by both DNS and experimental results.

7.8.2 Is Bulk Helicity Everywhere or Nowhere?

Although rotating flows are often considered to be helical, this is not necessarily the
case for homogeneous turbulence with supporting arguments based on a rigorous
statistical analysis. Of course, patches, or special realizations containing helicity are
often observed in several DNS studies of homogeneous rotating turbulence. Nonethe-
less, the rise of statistically significant helicity spectrum, such as H(k, t), is never
found in the absence of ad hoc initialization or forcing. Even when considering weak
turbulence propagating from a local blob, or cloud, of vorticity, coexisting pairs of
inertial waves with opposite polarity yield exactly zero helicity. We do not think
that there is a mechanism capable of breaking symmetry between helical modes of
positive and negative polarity in homogeneous turbulence, and even in unbounded
turbulence. On the other hand, net helicity is created near a wall in rotating turbulence,
and then could be transported towards the core of the flow. A very good example
is given in the DNS database by Godeferd and Lollini (1999), but was hardly men-
tioned in that article. As illustrated by Fig. 7.22, it is found that the sign of helicity is

6Or equivalently, in physical space, for any triple correlation at three points, information which
cannot be provided by the third-order structure function alone.
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Fig. 7.24 Left: Diagram of angular (ring by ring) energy distribution. Right: Angle-dependent
energy spectrum obtained without rotation. Reproduced from Delache et al. (2014) with permission
of AIP

correlated with the motion of an eddy with axis normal to the wall and axial motion:
helicity of two such eddies, with up and down opposite axial motion is additive.

Breaking of mirror symmetry is induced by solid-body rotation but is not sufficient
to create net (in the statistical sense) helicity without boundaries. In the presence
of coupled effects, such as in rotating stably stratified turbulence, helicity is not a
conserved quantity, and the rise of helicity is expected without artificial forcing, even
in homogeneous turbulence. In this case, helicity is linearly coupled with the toroidal
buoyancy flux (also related to the correlation of axial vorticity with buoyancy), and
both can break mirror symmetry. Unfortunately, no significant statistical value of one
quantity or the other can emerge in DNS, at least if strict homogeneity (no finite box
effect) is fulfilled. This is rediscussed in Chap. 12, Sect. 12.8.1. The reader is referred
to several recent DNS studies with system rotation and artificial helical forcing, such
as Mininni et al. (2012).

7.9 Scale-by-Scale Anisotropy

In spite of the peculiarity of purely rotating turbulence, some recent results have con-
firmed general trends found in other shear-driven or buoyancy-driven flow cases. One
of them is the re-isotropization of rotating turbulence for scales smaller than a typical
Zeman’s, or Hopfinger’s scale (Hopfinger et al. 1982; Zeman 1994), anticipated by
Woods (1980) as well.

The corresponding threshold wavenumber is defined as

k� =
√

�3

ε
, (7.62)

with possible variants in multiplying by π or in using 2� instead of �. Anyway, the
phenomenological interpretation of this threshold is not supported by an analytical

http://dx.doi.org/10.1007/978-3-319-73162-9_12
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Fig. 7.25 Top: Angle-dependent spectra with rotation, at two different initial large-scale Rossby
numbers, Ro = 0.074 and Ro = 0.022. Bottom: Visualization with vapor of the enstrophy distri-
bution of the computational box. Reproduced from Delache et al. (2014) with permission of AIP

theory. Scale by scale distribution of both directional anisotropy and polarization
anisotropy are analysed by Delache et al. (2014). Results are only given for the
former, for the sake of simplicity. For this purpose, angle-dependent energy spectra
E(k, θ, t) are derived from a 6-bands distribution of energy for each (half) spherical
shell, as shown in Fig. 7.24. Without rotation, contributions from different bands
collapse, except for the smallest wavenumbers, for which angular resolution is very
sparse (same figure, right). When rotation is present, as shown in Fig. 7.25, directional
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anisotropy develops with the scattering of spectra from different angles at all
scales (wavenumbers). We recover that this anisotropy first increases with increasing
wavenumber, from the smallest, and that energy concentrates from polar to equatorial
bands. This is also consistent with results of Figs. 7.16 and 7.18. But the direction-
al anisotropy reaches a maximum when the wavenumber continues to increase and
tends to decrease towards values close to k�. This non-monotonic scale-by-scale
distribution of directional anisotropy qualitatively confirms the role of the Zeman’s
scale, even if a complete re-isotropization is not found for k > k�. The monotonic
increase of directional anisotropy with increasing wavenumber means that k� → ∞
in the limit of wave turbulence, and that k� is larger than the largest wavenumber kmax

in DNS of Fig. 7.18. All these results are consistent with the experimental analysis of
Pierre Philippe Cortet and Frédéric Moisy (private communication). A clear effect
of re-isotropization at wavenumbers larger than k� is also found in DNS by Mininni
et al. (2012), but the directional anisotropy is monotonically decreasing from the
forcing wavenumber. We think that the strong helical forcing used in the latter study
imposes the maximum anisotropy at large scale, and that it is not possible in this case
to disentangling anisotropic helicity from directional and polarization anisotropies
(see also Sect. 7.8.2).
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Chapter 8
Incompressible Homogeneous Anisotropic
Turbulence: With Strain

The presence of mean strain allows for a direct production of energy and anisotropy
by linear terms, and such a production is in contrast with the case of purely rotating
turbulence in the previous chapter. But, given its importance in many applications,
the particular case of turbulence subjected to pure plane mean shear deserves a ded-
icated chapter, see Chap. 9. As discussed in Chap. 2, the case of the pure plane shear
delineates two classes of mean flows with space-uniform gradients, those dominated
by strain with hyperbolic streamlines, and those dominated by (mean) vorticity, with
elliptic ones. In addition to the linear regime, which is displayed by the RDT approx-
imation, more details are given on fully nonlinear calculation and modeling. Finally,
the dynamics of return-to-isotropy is addressed after relaxation of the strain.

8.1 Main Observations

This chapter is devoted to the dynamics of homogeneous turbulent flows submitted
to mean velocity gradients, with pure strain as a first step. More general combination
of the effects of mean strain and mean vorticity, or rotational strain, are addressed
later in in this chapter. The pure strain case is defined as the case in which the mean
velocity gradient matrix A is symmetric. As discussed in the rest of this chapter,
several experimental setups have been designed during the last decades, which lead
to different forms for A. Kinematic aspects, from the design of ducts in experiments
to a first insight to RDT, are also introduced in the general case in which A combines
a symmetric and an antisymmetric part (mean vorticity), in order to characterize in
the simplest way what is the specificity of an irrotational straining process.

Both experiments and numerical simulations lead to the following observations
dealing with the dynamics of homogeneous turbulence subjected to pure strain:

• The initially isotropic turbulence becomes anisotropic in the presence of a mean
strain, and the principal axes of the Reynolds stress tensor become identical to
those of the A, the axis of contraction for A corresponding to the direction of
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404 8 Incompressible Homogeneous Anisotropic Turbulence: With Strain

Fig. 8.1 Time evolution of anisotropy in the pure strain case with isotropic initial field. Top:
evolution of the three components of the total kinetic energy (solid lines: linear RDT prediction;
symbols: experiments). Bottom: evolution of the structural anisotropy indicator in different exper-
iments. Reproduced from Tucker and Reynolds (1968) with permission of CUP
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Fig. 8.2 Time evolution of turbulent kinetic energy in the pure strain case with isotropic initial
field, illustrating the production phenomenon. The turbulent kinetic energy K is denoted q2 here.
Reproduced from Tucker and Reynolds (1968) with permission of CUP

maximum amplification for the Reynolds stress tensor. If the strain is applied for
a long enough time, anisotropy reaches an asymptotic state. Typical results are
displayed in Fig. 8.1.

• The turbulent kinetic energy K(t) is a growing function of time at large non-
dimensional time St (see Fig. 8.2), where S is related to a norm of A. This produc-
tion of turbulent kinetic energy is related to the growth of anisotropy. For initially
isotropic turbulence, an initial period of decay is observed, which corresponds to
the transient phase during which the anisotropy starts raising from zero.
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Fig. 8.3 Time evolution of turbulent kinetic energy in the pure strain case with anisotropic initial
field, illustrating the negative production phenomenon. α is the angle of rotation between two
successive coplanar strains. α = 0 corresponds to a constant strain rate without rotation of the
strain direction. Reproduced from Gence and Mathieu (1979) with permission of CUP

• Negative production, i.e. destruction of K(t) by the mean flow, can be observed
over transient phase for some initially anisotropic turbulent flows (see Fig. 8.3). It
is important to note that this phenomenon is not related to a dissipative mechanism
involving the molecular viscosity, or nonlinear cascade. It is due to the same phys-
ical mechanisms that are responsible for turbulence production in other cases. The
negative/positive character of turbulence production by pure strain is determined
by the angle between the principal axes of the Reynolds stress tensor and those
of A. In addition, the temporal memory of the straining process, identified by the
Cauchy matrix F related to A, plays an essential role for explaining the response
of turbulence to time-dependent processes A(t).

8.2 Experiments for Turbulence in the Presence of Mean
Strain. Kinematics of the Mean Flow

In most wind-tunnel experiments, turbulence was generated by a grid and trans-
ported along the tunnel by the mean flow. Distorted ducts located downstream the
grid were used to impose the desired strain on the initially isotropic turbulence. The
principle is the following: The distorted duct is designed so that its internal surface
is coincidental with a streamtube surface of the desired mean flow, leading to the
imposition of the target mean velocity gradient field. The Lagrangian formalism intro-
duced in Sect. 2.1.9 is particularly useful. It provides a simple and elegant framework
to describe the geometry of streamtubes and to recover a kinematic interpretation
of the mathematical operators that appear in the Rapid Distortion Theory (RDT).
Accordingly, the kinematic description of the mean “distorting flow” makes use of
the Lagrangian and mixed Lagrangian/Eulerian formalism introduced in Chap. 2, but

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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the quantities related to Lagrangian features of the solution, such as the Lagrangian
coordinates Xi , the trajectories, and mixed Eulerian/Lagrangian quantities such as
the Cauchy matrix Fi j , will be restricted to the sole mean flow.

8.2.1 Pure Irrotational Strain, Planar Distortion

The decay of HIT is well reproduced in wind-tunnel experiments, in which turbu-
lence created by a grid is advected downstream without significant distortion (see
Sect. 4.1.1). In this case, an equivalent elapsed time is estimated thanks to the Taylor

frozen turbulence hypothesis (see Sect. 4.1.1) as t = x3−x0
3

U0
, where x3 denotes the

streamwise coordinates. Here, x0
3 is a typical ‘initial’ distance from the grid, needed

to homogenize the wakes of the rods (about 40 mesh-sizes in practice), and U0 the
mean velocity, which is considered as uniform in the duct, outside the boundary
layers.

The additional straining process is obtained using a distorting duct, whose trans-
verse sections have a constant area, in order to conserve U0, but are more and more
elongated as the distance from the grid increases. Rectangular transverse sections
were used by Maréchal (1970), Tucker and Reynolds (1968), while elliptical sec-
tions were used by Gence and Mathieu (1979). In all cases, the contour lines have
an hyperbolic design in order to reproduce a mean strain with constant rate.

As a typical feature of the experiment by Gence and Mathieu, the initial section of
the distorting duct is elliptical with its large axis in the vertical direction, so that the
aspect ratio of the ellipse first decreases to reproduce a compression in the vertical
direction (say x2) and a dilatation in the spanwise (x1) direction. Continuation of the
process yields recovering an increasing aspect ratio, with elongation of the elliptical
section in the spanwise direction. The change from decreasing to increasing the
aspect ratio implies that a circular section is obtained at a particular downstream
position. Accordingly, the distorting duct is split into two parts, before and after the
circular section, so that a sudden change of the principal axes of the straining process
can be reproduced by only rotating the second part of the duct with respect to the
first part from an angle α (see Fig. 8.4). For instance, in the case of the continuous
strain, a rotation of π/2 allows to revert the strain, so that the initial section is exactly
recovered at the end of the duct.

Moreover, a duct with constant section can be added at the end of the distorting
one, in order to study the expected return-to-isotropy of turbulence, at least when the
distortion results in a large anisotropy of the turbulent flow.

All these experiments illustrate the generation of the mean velocity gradients A
in a cross section normal to the uniform streamwise velocity, denoted U0 and chosen
along the direction 3, so that the mean trajectories can be defined by:

xi = Fi j (t, t0)X j + U0tδi3. (8.1)

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 8.4 Sketch of the duct used by Gence and Mathieu to obtain plane straining of turbulence.
Reproduced from Gence and Mathieu (1979) with permission of CUP

The initial time, t0, will be omitted or denoted by 0, in the following.
The corresponding mean gradient matrix A and mean displacement matrix F are

(see. Sect. 2.1.9)

A = A0 =
⎛
⎝

−S 0 0
0 S 0
0 0 0

⎞
⎠ , and F = F0(t) =

⎛
⎝

e−St 0 0
0 eSt 0
0 0 1

⎞
⎠ (8.2)

for a constant straining process, or the first part of the duct in the Gence’s experiment,
and

A = Q̃A0Q, F = F0(t1) + Q̃F0(t − t1)Q for t1 < t < 2t1 (8.3)

with

Q =
⎛
⎝

cos α − sin α 0
sin α cos α 0

0 0 1

⎞
⎠ , (8.4)

for the second part of the duct with t1 = L/U0 corresponding to the location of the
circular section at half the length 2L of the full Gence’s distording duct.

The distorting duct is built by materializing a stream-tube, corresponding to an
initial cross-section, chosen rectangular (Maréchal 1970; Tucker and Reynolds 1968)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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or elliptical (Gence and Mathieu 1979). True streamlines are expected to be homo-
thetic and to follow the geometry imposed by the duct, in agreement with previous
equations, an expectation which appeared to be reasonable in a large part of the duct
not too close to solid boundaries.

More recently, the experiment by Chen et al. (2006) used a piston to apply plane
straining and destraining on turbulence generated by active grids. The mean-velocity
gradient matrix in the experiment is of the form

A =
⎛
⎝

S(t) 0 0
0 −S(t) 0
0 0 0

⎞
⎠ , (8.5)

where the temporal evolution of S(t) is given by the Fig. 8.9. Initially, the mean flow
corresponds to plane straining (S(t) > 0), until t/τ0 ∼ O.5. After a relaxation phase
(0.5 ≤ t/τ0 ≤ 0.7), destraining is applied to the turbulence. In this experiment, the
Taylor-microscale-based Reynolds number at the beginning of the straining cycle is
Reλ ∼ 400, larger than in previously mentioned experimental facilities. This experi-
ment is re-discussed when the temporal return-to-isotropy is addressed (Sect. 8.7) —
because of the presence of a relaxation phase —, with results compared with those
of a spectral model.

8.2.2 Axisymmetric (Irrotational) Strain

This case presents particular interest since axial symmetry is the simplest anisotropy.
The corresponding mean flow can be reproduced by means of an axisymmetric dis-
torting duct, convergent or divergent. As also discussed in the next subsection, the
mean velocity is not constant in the streamwise — and axial — direction, and it
is not constant in a given cross-section with increasing (divergent duct) or decreas-
ing (convergent duct) surface. Flow separation and specific instabilities can appear,
especially in the divergent case, but also in the convergent case (Leclaire 2006). In
spite of the complexity of these experimental issues, this flow will be considered as
a reference case, at least from a theoretical and numerical viewpoint.

The configuration of axisymmetric strain is approached in convergent and diver-
gent ducts, and only the vicinity of the centerline (axis) is considered for the sake of
simplicity. Mean velocity gradient matrix is

A =
⎛
⎝

−S/2 0 0
0 −S/2 0
0 0 S

⎞
⎠ (8.6)

with S possibly time-dependent, S > 0 corresponds to the case of axisymmetric
convergent duct. As previously, the axial direction is chosen as ni = δi3 without lack
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of generality, the non-trivial components in the Cauchy matrix are

F33(t) = exp

(∫ t

0
S(t ′)dt ′

)
= C(t), F11(t) = F22(t) = 1√

C(t)
. (8.7)

8.2.3 The Most General Case for 3D Irrotational Case

On the other hand, three-dimensional irrotational strain characterized by A having
three eigenvalues, S1, S2, S3, with zero sum (incompressibility), and possibly time-
dependent, has little interest from the viewpoint of homogeneous turbulence and
related experimental approaches. Some specific RDT solutions were initially pro-
posed by Courseau et Loiseau (1978), but can be easily generalized and simplified,
using the formalism introduced by Cambon (1982), Cambon et al. (1985), using
both a reduced Green’s function and the Cauchy matrix. For any analytical result
subsequently given, we will specify if it applies to the 3D general irrotational case
or not.

8.2.4 More General Distortions. Kinematics of Rotational
Mean Flows

A different kind of experimental procedure was initially proposed to obtain a pure
mean shear flow. For instance in Rose (1966), Champagne et al. (1970), the shear
gradient is created in the vertical direction (here x1) by a pile-up of plates, without
distortion of the duct. Even if a constant mean velocity gradient ∂u2/∂x1 is obtained
throughout the duct, the consistency with statistical homogeneity of turbulence is
much more problematic than in the experiments for irrotational strain presented in the
preceding section. The streamwise velocity is no longer uniform in a cross-section,
so that the mean advection time (x3 − X3)/U3(x1) varies with x1; it is shorter near
the top (largest U3) than near the bottom (smallest U3) of the duct. As a consequence,
A21 = S can be considered as constant in a current cross-section, but not F21 = St .

In order to obtain a pure shear flow in a more satisfactory way (regarding homo-
geneity of turbulence), and especially to generalize it to an arbitrary combination
of vorticity and strain, a general procedure was defined at ONERA, in close col-
laboration with the LMFA team (Leuchter et al. 1992). The principle is to gener-
ate a solid body rotation in a cylindrical duct, and then to superimpose a conve-
nient irrotational process by a subsequent distorting duct. The Jacquin’s experiment
(Jacquin et al. 1990) for pure rotation, presented in the previous chapter, was used
for this purpose, replacing the cylindrical duct after the rotation generator (a rotating
honeycomb) by a duct designed in exact accordance with Eq. (8.1). Current cross-
sections of the distorting duct do correspond to a single advection time (x3− X3)/U0.
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Fig. 8.5 Sketch of the distorting ducts in the experiment by Leuchter et al. (1992). Top: side view
of the experimental facilities, ‘periodic’ case with ω = �/S = 2. Bottom: front view of the duct
for different values of ω = �/S

They are ellipses of constant area with both their aspect ratio and the orientation of
their axes varying continuously with the streamwise position. In Eq. (8.1), F (with
corresponding A) is easily calculated as follows
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A =
⎛
⎜⎝

0 S − � 0

S + � 0 0

0 0 0

⎞
⎟⎠ , F =

⎛
⎜⎝

cosh σ0t (S − �) sinh σ0t
σ0

0

(S + �) sinh σ0t
σ0

cosh σ0t 0

0 0 1

⎞
⎟⎠

(8.8)
with

σ2
0 = S2 − �2. (8.9)

The hyperbolic case S > � is given here as an example, but the elliptical case
S < � is straightforwardly derived by changing σ0 into ıσ0, yielding a periodic F.
The analytical solution Fαβ = δαβ cosh σ0t + Aαβ

sinh σ0t
σ0

results from Aαγ Aγβ =
σ2

0δαβ , so that F̈αβ = σ2
0 Fαβ , excluding the value 3 for Greek indices. The particular

case of the pure shear S = �, whose associated shear rate is equal to � + S = 2S,
is consistently recovered in the limit σ0 → 0.

Elliptical cross-sections are analytically derived from the initial (circular) section
of the distorting duct, i.e. Xα Xα = R2, so that

F−1
αβ (t)F−1

αγ (t)xβxγ = R2, t = x3 − x0
3

U0
. (8.10)

Typical streamlines, such as those sketched in Fig. 2.1, are recovered in the plane
(1, 2) of the mean distortion as the envelope of the moving ellipses. They are hyper-
boles for σ2

0 > 0, straight lines for σ0 = 0, and ellipses for σ2
0 < 0. Only in the last

case, the duct is periodic, a typical sketch is shown on Fig. 8.5.

8.3 First Approach in Physical Space to Irrotational Mean
Flows

8.3.1 Governing Equations, RST Balance and Single-Point
Modelling

8.3.1.1 Planar Strain

The evolution equations for Reynolds stresses associated with the gradient matrix A
defined in Eq. (8.2) are

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk
= S

⎛
⎝

2u′
1u′

1 0 u′
1u′

3

0 −2u′
2u′

2 −u′
2u′

3

u′
1u′

3 −u′
2u′

3 0

⎞
⎠ + �i j − εi j . (8.11)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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The corresponding equation for the turbulent kinetic energy is:

∂K
∂t

= S
(

u′
1u′

1 − u′
2u′

2

)
− ε. (8.12)

It is seen that the production of kinetic energy by explicit linear effects is due
to the anisotropy, and more precisely to the difference between the two diagonal
Reynolds stresses u′

1u′
1 and u′

2u′
2. This production can be either positive or negative,

depending on the signs of S and
(

u′
1u′

1 − u′
2u′

2

)
. The possible occurence of a negative

production term corresponds to the existence of flows in which the mean irrotational
strain will destroy the turbulent kinetic energy. A direct consequence is that the
production mechanism escapes the isotropic two-equations turbulence models, in
which the differences between the diagonal Reynolds stresses are neglected. The
errors committed on turbulent kinetic energy production in the vicinity of stagnation
points in non-homogeneous flows are directly related to this problem.

Of course, negative production occurs in the Gence’s experiment, and this is
further discussed at the end of this section.

8.3.1.2 Axisymmetric Irrotational Strain

For axisymmetric strain with A given by Eq. (8.6), one has

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk
= S

⎛
⎜⎝

u′
1u′

1 u′
1u′

2 − 1
2 u′

1u′
3

u′
1u′

2 u′
2u′

2 − 1
2 u′

2u′
3

− 1
2 u′

1u′
3 − 1

2 u′
2u′

3 −2u′
3u′

3

⎞
⎟⎠ + �i j − εi j . (8.13)

The corresponding equation for the turbulent kinetic energy is:

∂K
∂t

= S

2

(
u′

1u′
1 + u′

2u′
2 − 2u′

3u′
3

)
− ε. (8.14)

It is seen that the production mechanisms is still governed by anisotropy in this
configuration, but this time it involves the three diagonal Reynolds stresses.

8.3.1.3 More General Rotational Strains

In the general case corresponding to Eq. (8.8), one has

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk
= −

⎛
⎜⎜⎝

2(S − �)u′
1u′

2 (S − �)u′
2u′

2 + (S + �)u′
1u′

1 (S − �)u′
2u′

3

(S − �)u′
2u′

2 + (S + �)u′
1u′

1 2(S + �)u′
1u′

2 (S + �)u′
1u′

3

(S − �)u′
2u′

3 (S + �)u′
1u′

3 0

⎞
⎟⎟⎠

+ �i j − εi j (8.15)
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Fig. 8.6 Couplings between
the different non-vanishing
Reynolds stresses in the
general strain case. Arrows
indicate the production
process, their color being
related to the physical
quantity at play (mean strain,
pressure, viscosity)

and

∂K
∂t

= 2Su′
1u′

2 − ε. (8.16)

Considering the case of an initially isotropic field, one has u′
αu′

3 = u′
3u′

α = 0,α =
1, 2 so that Eq. (8.15) simplifies as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du′
1u′

1

dt
= 2(� − S)u′

1u′
2 +�11 −ε11

du′
2u′

2

dt
= −2(� + S)u′

1u′
2 +�22 −ε22

du′
3u′

3

dt
= �33 −ε33

du′
1u′

2

dt
= �(u′

2u′
2 − u′

1u′
1) + S(u′

2u′
2 + u′

1u′
1) +�12 −ε12

. (8.17)

The different couplings are illustrated in Fig. 8.6. This case is rediscussed from
the viewpoint of RDT, first in Sect. 8.4.1, then in Chap. 11.

8.3.2 General Assessment of RST Single-Point Closures

The most general irrotational flow case, with time-dependent and even three-
dimensional (i.e. with three different nonzero eigenvalues) A is now considered.

Full Reynolds stress models work satisfactory to predict the effect of irrotational
strain. For instance, the Reynolds stress component in the direction of mean com-
pression is shown to increase, the one in the direction of mean dilatation is shown to
decrease, so that increasing anisotropy is created by a monotonic strain.

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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In addition, directional and polarization anisotropies defined in Chap. 2 seem to
be closely related, at least at the level of single-point statistics, via:

b(dir)
i j = −1

2
bi j , b(pol)

i j = 3

2
bi j . (8.18)

This relationship was quoted in Kassinos et al. (2001) as “dimensionality” (measured
by −2b(dir)

i j ) equals to “componentality” (measured by bi j .) Such relationship will
be shown to be consistent with RDT, but only for very short times and starting from
isotropic initial data in Sect. 8.7.1.

On the other hand, K − ε modelling is questioned if the straining process is time-
varying. This can be explained by the fact that even a crude “pressure-released”
equation like Eq. (8.21) given in the next subsection is much better for predicting
RST anisotropy than the so-called Boussinesq approximation bi j (t) ∝ Ai j (t). Since
the instantaneous Boussinesq relationship used in K − ε models, and even in its
so-called non-linear variants, cannot take into account the time history of A, they
completely miss the quasi-reversible behavior observed in the Gence’s experiment.
Similar conclusions can be drawn for time-periodic strains (relevant for reciprocating
engines, for instance) for both full Reynolds stress models and K−ε variants (Hadzic
et al. 2001).

8.3.3 Linear Response of Turbulence to Irrotational Mean
Strain

The role of mean vorticity is easily understood linearizing the vorticity equation:

ω̇′
i = ∂ui

∂x j
ω′

j + ∂u′
i

∂x j
ω j .

Only in the absence of mean vorticity, this equation is similar to Eq. (2.30) in
Chap. 2, and admits the solution

ω′
i (x, t) = Fi j (X, t, t0)ω

′
j (X, t0) (8.19)

which is now a true solution, since F and X are only related to the irrotational mean
flow, and therefore are external given data. Similarly, a linearized Weber equation
can be written, leading to

u′
i (x, t) = F−1

j i (X, t)u′(X, t0) + ∂φ′

∂xi
. (8.20)

The last two equations, which are directly useful in Rapid Distortion Theory, are
no longer valid if the mean flow is rotational.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Generalization to rotational mean flows is possible, using Clebsh potentials, but
the method is much less tractable; it is touched upon by Hunt (1973), Goldstein
(1978) and used by Nazarenko and Zakharov (1994) in the case of pure plane shear
flow.

Interpretation of results from experiments of distortion is easy in the irrotational
case. From the vorticity equation, with F given by Eq. (8.2), it is seen that the vorticity
component is decreased in the direction of compression (direction x1 here) and
increased in the direction of elongation of the mean constant strain. More generally,
the RDT solution for vorticity correlations is

ω′
iω

′
j (t) = Fim(t)Fjn(t)ω′

mω′
n(0).

Such a solution is not very realistic, since enstrophy involves the smallest scales,
and it is much more constraining than for the RST to exclude nonlinearity in the
response of turbulence to the mean strain. The basic process suggested by Eq. (8.19),
however, yielded a qualitative argument to interpret the effect of the strain on veloc-
ity fluctuations (Gence and Mathieu 1979), as schematized in Fig. 8.7: vorticity is
amplified if a vortex tube is elongated, so that it rotates faster and the velocity com-
ponents are amplified in the two directions normal to the axis of the elongated vortex
tube. Conversely, a compressed vortex tube rotates slower and the velocity com-
ponents are decreased in the two directions normal to the axis of the compressed
vortex tube. This effect is sketched starting from two similar vortex tubes (a situa-
tion which mimics initial isotropy) with axes in directions x1 and x2, the first being
compressed and the second being elongated. Accordingly, it is suggested that the
velocity fluctuation is amplified in the direction of compression, with u′2

1 increas-

ing, and is decreased in the direction of elongation, with u′2
2 decreasing. Of course,

Fig. 8.7 Cartoon using two individual vortices aligned with compression/dilatation axes to predict
anisotropic trends induced by a mean strain. Left: Two straight vortices with equal diameters and
circulation. Right: vortices after compression/dilatation assuming preservation of (i) volume of each
vortex and (ii) angular momentum of each vortex. It is seen that velocity component in the plane
normal to the strain is left unchanged, while velocity is increased (resp. decreased) in the direction
of the compression (resp. dilatation)
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this simple reasoning accounts for the fact that F is present in Eq. (8.19) whereas
its inverse F−1 is present in Eq. (8.20), but does not account for the fact that the
linear velocity dynamics is also dependent on a “rapid” pressure effect, mediated by
the scalar potential term in Eq. (8.20). However, the qualitative prediction remains
correct, and the “pressure-released” equation

u′
i u

′
j (t) = F−1

mi (t)F−1
nj (t)u′

mu′
n(0), (8.21)

for the Reynolds stress tensor is consistent with the qualitative development of
anisotropy.

If the mean strain is irrotational, but with the principal axes of A possibly moving
with time, as in the Gence’s experiments, it is possible to use the previous equations
with F given by Eq. (8.2) for 0 < t < t1 and by Eq. (8.3) for t1 < 0 < 2t1. The
quasi-reversibility of the flow anisotropy when α = π/2, which is associated to
Fi j (2t1) = Fi j (0), reflects the dominant role of F, which returns to its initial value,
as the final elliptical section returns to its initial position. Note that F is no longer
symmetric in the second phase (see Eq. (8.3)), even if A is, because of the history
of A. As a consequence, it is convenient to distinguish between Fi j and Fji in the
general equations, even for irrotational mean flows. The matrix F is continuous in
time, generating continuous mean trajectories, even if A is discontinuous due to a
sudden change of principal axes. The same reversible behavior might be obtained
at the end of the more complex distorting duct in the elliptic flow case, “forgetting”
to rotate the honey comb. This experiment is just mentioned here as a “gedanken
experiment” since it has never been performed. The design of the distorting duct
accounts for a given � rate, and makes it possible — in principle — to reproduce
the elliptical flow instability at given S, with S < � (see Chap. 11); this possibility
appeared as more exciting than producing a new reversible irrotational strain with
continuous motion of its principal axes.

8.4 The Fundamentals of Homogeneous RDT

Background for homogeneous RDT is introduced in Chap. 2. The present section
aims at providing the key elements of this method which are necessary to understand
the physical analysis given below in this chapter.

The simplest multi-point closure consists of dropping all nonlinear terms in Eq.
(2.50) before applying the statistical average operator. Also dropping the viscous
term, one obtains the Rapid Distortion Theory (RDT), introduced by Batchelor and
Proudman (1954). The RDT model is assumed to be a relevant model for the large
scales of turbulence, which are not directly governed by viscous effects at very high
Reynolds number. This approach was further developed by Townsend (1976), Hunt
(1973). Useful reviews were given by Hunt and Carruthers (1990) and more recently
by Cambon and Scott (1999). An effort was made in the latter review to bridge
between the RDT basic concepts and equations and some studies carried out in the

http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2


418 8 Incompressible Homogeneous Anisotropic Turbulence: With Strain

fields of applied mathematics and hydrodynamic stability by Craik and Criminale
(1986), Bayly (1986) and other authors.

In neglecting nonlinearity entirely, the effects of the interaction of turbulence with
itself are supposed to be small compared with those resulting from mean-flow distor-
tion of turbulence. One often has in mind flows such as weak turbulence encountering
a sudden contraction in a channel or flows around an airfoil. The underlying implicit
assumption is that the time required for a significant distortion by the mean flow to
develop is short compared with that for the turbulent evolution in the absence of dis-
tortion effect. The linear theory can also be relevant, at least over short enough times,
if physical influences leading to linear terms in the fluctuation equations dominate
turbulent flows, such as in strongly stratified or rotating fluid or a conducting fluid in
a strong magnetic field. For such cases, the term ‘rapid distortion theory’ is probably
a little bit misleading.

Thanks to the linearity assumption, the time evolution of u′
i may be formally

written as

u′
i (x, t) =

∫∫∫
Gi j (x, x′, t, t ′)u′

j (x
′, t ′)d3x′ (8.22)

where Gi j (x, x′, t, t ′) is a Green’s function matrix expressing the evolution from time
t ′ to time t . Whereas u′

i is a random quantity, which varies from one realization to
another realization of the flow, Gi j is deterministic and can in principle be calculated
for a given ui (x, t). From Gi j and the initial turbulence, Eq. (8.22) may be used to
predict the time evolution.

Another simplifying assumption which is often made is that the size of turbulent
eddies, L , is small compared with the overall length scales of the flow, �, which
might be the size of a body encountering fine-scale free-stream turbulence (see e.g.
Hunt and Carruthers 1990). In that case, one uses a local frame of reference convected
with the mean velocity and approximates the mean velocity gradients as uniform, but
time-varying. Thus, the mean velocity is approximated by Eq. (2.67) in the moving
frame of reference. In the example of fine-scale turbulence encountering a body,
one may imagine following a particle convected by the mean velocity, which sees a
varying mean velocity gradient, Ai j (t), even when the mean flow is steady.

For the sake of simplicity, the following equations are derived in the case of an
extensional mean flow, with mean velocity gradients uniform in the whole space.1

This is referred to ‘homogeneous RDT’ since statistical homogeneity (invariance by
translation of all fluctuating flow statistics) holds for the fluctuating flow, provided
some additional conditions of admissibility be imposed to A, as introduced in Chap. 2.
Recall that the mean flow is a particular solution of Euler equations and is not itself
invariant by translation (only its gradient is). In the linear limit, the fluctuating fields
(u′

i , p′) satisfy the modified Eq. (2.50) with the advection-distortion parts written in
terms of Ai j (t):

1One has to keep in mind that essentially the same equations can be used in more realistic flow
cases, following Hunt and coworkers, and Lifschitz and Hameiri (1991).

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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∂u′
i

∂t
+ A jk xk

∂u′
i

∂x j︸ ︷︷ ︸
advection

+Ai j u
′
j + ∂ p′

xi
= 0. (8.23)

Its solution is most easily obtained via Fourier analysis, with elementary compo-
nents of the form

u′
i (x, t) = ai (t) exp (ı k(t) · x) (8.24)

p′(x, t) = b(t) exp (ı k(t) · x) . (8.25)

Evolution equations for both the wavevector and the amplitudes are easily obtained
from Eq. (8.23). They can be written as follows, under simple ODE:

dki

dt
+ A ji k j = 0 (8.26)

and
dai

dt
= −

(
δin − 2

ki kn

k2

)
Anj

︸ ︷︷ ︸
Mi j

a j . (8.27)

Given the pioneering study of Lord Kelvin, quoted and extended by Keith Moffatt
in Moffatt (1967), the two Eqs. (8.26) and (8.27) are referred to as Kelvin-Moffatt
equations.

General solutions which are valid for arbitrary initial data are expressed as follows
in terms of linear transfer matrices

ki (t) = F−1
j i (t, t0)k j (t0), (8.28)

ai (t) = Gi j (t, t0)a j (t0), (8.29)

in which the Cauchy matrix appears under a transposed and inversed form2 and
corresponds to the solution for the gradient of a passive scalar (see Chap. 17). The
use of a Green’s function G allows us to get rid of particular initial data for the
fluctuating field. In the equations above, it is perhaps clearer to specify the wavevector
dependency in a and v, especially if we combine elementary solutions of the form
given by Eq. (8.24) via Fourier synthesis. As a consequence, the RDT solution can
be expressed as follows:

ûi [k(t), t] = Gi j (k, t, t0)̂u j [k(t0), t0], (8.30)

2This is a general solution for any Eikonal-type equation, see Eq. (8.26).

http://dx.doi.org/10.1007/978-3-319-73162-9_17
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in which the Green’s function is eventually determined by the (universal, not flow-
dependent) initial conditions

Gi j (k, t0, t0) = δi j − Ki K j

K 2
, Ki = ki (t0). (8.31)

At this stage, it may be noticed that homogeneous RDT gathers enough features
for solving two problems:

• A deterministic problem, which consists in solving the initial value linear system
of equations for ai , in the most general way. This is done by determining the
spectral Green function, which is also the key quantity requested in linear stability
analysis.

• A statistical problem which is useful for the prognostic of statistical moments of
u′ and p′. Interpreting the initial amplitude û(k(t0), t0) as a random variable with
a given dense k(t0)-spectrum, relation (8.30) yields the prediction of statistical
moments though products of the basic Green’s function.

A useful reduced (using the minimum number of components) Green’s function
can be used in the Craya–Herring frame of reference, as

u(α)(k(t), t) = gαβ(k, t, t ′)u(β)(k(t ′), t ′). (8.32)

A Green’s function is then expressed in terms of only four components, solving the
two-component linear system in (2.104). Using helical modes is less useful, except
near the limit of pure rotation or purely antisymmetric A.

8.4.1 Qualitative Trends Induced by the Green’s Function

Considering a mean flow given by Eq. (8.8), qualitative RDT results are presented
below, before being discussed with more details in Chaps. 9 and 11.

Irrotational mean flows, with Ai j = A ji yield simple RDT solutions in which
both F and G display dominant exponential growth (if A is not time-dependent),
reflecting pure stretching of vorticity disturbances, in accordance with the existence
of the hyperbolic instability.

Rotational mean flows yield more complicated linear solutions, and only the
steady case has received much attention (Craik and Coworkers, Bayly and coworkers
performed recent developments in unsteady cases, see e.g. Bayly et al. 1996).

The steady, rotational, case, when axes are chosen appropriately, corresponds
to constant S,� ≥ 0, generating steady plane flows, which combine vorticity 2�

and irrotational straining S. The related streamfunction is sketched in Fig. 2.1. The
problem with arbitrary S and � was analysed in Cambon (1982), Cambon et al.
(1985) with the purpose of extending classical RDT results, which were restricted
to pure strain and pure shear. For S > �, the mean flow streamlines are open and

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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hyperbolic, and RDT results are qualitatively close to those of the pure strain case
� = 0. For S < �, the mean flow streamlines are closed and elliptic about the
stagnation point at the origin. This case is the most surprising one, in which F is
periodic in time while G is capable of generating exponential growth of fluctuations
for k-directions concentrated about special angles (k3/k ∼ ±1/2 if S 	 �). The
Rapid Distortion Theory can therefore be relevant for explaining the mechanism
of elliptical flow instability (Bayly 1986) (details are discussed in Chap. 11). The
limiting case S = � corresponds to pure shearing of straight mean streamlines. The
RDT solutions by Moffatt (1967), Townsend (1976) reflect algebraic growth in the
parlance of stability analysis (see Chap. 9).

8.5 Final RDT Results for Mean Irrotational Strain

8.5.1 General RDT Solution

A complete analytical solution for the velocity in Fourier space can be obtained from
its counterpart in term of vorticity, using Eq. (8.19). An easier way is to use the
linearized Weber equation (8.20)

Gi j (k, t, t ′) = Pin(k)F−1
jn (t, t ′). (8.33)

This solution is valid for any irrotational straining process, even three-dimensional
and time-dependent. The Cauchy matrix appears as the only explicit time-dependent
tensor in the solution; an implicit time-dependency is mediated by k, but it is again
governed by the Cauchy matrix, according to the Eikonal solution (8.28). Accord-
ingly, this solution is completely time-reversible if the history of F is. This shows that
the complete RDT solution shares qualitative properties with the pressure-released
oversimplified one introduced in Sect. 8.3.3. Only the additional viscous factor, which
is very easy to add, not to mention nonlinear effects, can break the reversibility of
such a solution.

In this case, the use of the Craya–Herring frame does not simplify the solution
significantly, except if the straining process is axisymmetric, as considered just below.

8.5.2 Linear Response of Turbulence to Axisymmetric Strain

The mean velocity gradient matrix is given by (8.6), the general equations (8.33) —
any irrotational strain — and (8.26) — any RDT case — are valid, and characteristic
lines in Fourier space are

kα = KαC1/2, k3 = K3C−1. (8.34)

http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_9
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The parameter C , which is given by Eq. (8.7), is directly related to the contraction ratio
of the streamtube, or to the ratio A(t)/A(0) of the area of a current circular section to
the initial one in the corresponding axisymmetric duct, since C−2(t) = A(t)/A(0).
The linear inviscid solution in the Craya–Herring frame is

u(α)(k, t) = e(α)
i (k)F−1

i j (t)e(β)

j (K )︸ ︷︷ ︸
gαβ

u(β)(K , 0)

and finally a very simple form of gαβ is obtained

gαβ =
(

C1/2 0
0 C−1/2 K

k

)
. (8.35)

For instance, solutions for the spectral tensor of double correlations are equal to

�11(k, t) = C(t)
E(K )

4πK 2
, �22(k, t) = C−1(t)

E(K )

4πk2
, (8.36)

starting from isotropic initial data. Only two non-trivial components are needed, �11

related to toroidal energy and �22 related to poloidal energy, taking into account
simplifications from axisymmetry (with mirror symmetry), yielding

E = 1

2

(
�11 + �22

)
, Z = 1

2

(
�22 − �11

)

in the expression of the general spectral tensor R̂. As a consequence, toroidal and
poloidal contributions to the kinetic energy are found equal to

K(tor)(t)

K(0)
= 3

2
C(t),

K(pol)(t)

K(0)
= C−1(t)

∫ 1

0

K⊥K 2

k4
dx .

These results use a minimal number of components for generating RDT solutions,
and they are consistent with those of Sreenivasan and Narasimha (1978), Lee (1989),
Ribner (1953). In addition, Lee (1989) provided complete useful analytical solutions
for the Reynolds stress tensor which has only two non-trivial axial and transverse
components:

u′2
3 = K(0)

C4s/3

2(1 − C2s)

[−1 + (2 − C2s)σ′] (8.37)

u′2
1 = u′2

2 = K(0)
C4s/3

4(1 − C2s)

[
2 − C2s

C2s
− C2sσ′

]
, (8.38)

with s = ±1 being the sign of S, and
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σ′ = 1

2
√

1 − C−2
Ln

1 + √
1 − C−2

1 − √
1 − C−2

if S > 0,

and

σ′ = arctan(
√

C2 − 1)√
C2 − 1

if S < 0.

Expressions for various terms in the RST budget equations can also be found.

8.6 Towards a Fully Nonlinear Approach

A “first loop” of nonlinear iteration was offered by Kevlahan and Hunt (1997) for
pure irrotational constant strain.

Issues linked to triadic closures are discussed below, from the general introduction
in Chap. 2, from Eqs. (2.116) and (2.117) in Sect. 2.5.7.

Before examining the simplest and most interesting applications of linear and
nonlinear theory, it is worthwhile to anticipate the difficulties for passing from (linear)
RDT to generalized quasi-normal (nonlinear) closure for homogeneous anisotropic
turbulence, in the presence of mean flows given by (8.8).

8.6.1 Qualitative Discussion

In the “hyperbolic” and “elliptic” cases, with 0 �= S �= � in (8.8), the RDT Green’s
function can display exponential growth, at least for particular angles of k (k3/k ∼
1/2 in the case S 	 �). If the bare zeroth-order response function is only modified
by eddy damping, convergence is not ensured for the time integral of the three-fold
product G(N L)G(N L)G(N L) in the generic closure relationship (2.117).

A less critical situation occurs when S = � (pure plane shear), since the inviscid
RDT Green’s tensor yields only algebraic growth, so that the viscous term ensures
convergence of the time integral involved in the closure. Nevertheless, it is very
cumbersome to develop, and especially to solve numerically with enough accuracy,
a complete anisotropic EDQNM model in this case. Recall that even calculation of
single-point correlations resulting from viscous RDT at high St is not easy (Beronov
and Kaneda, private communication), the asimptotic analysis being even complex
for inviscid RDT (Rogers 1991). Direct Numerical Simulations suggest that fully
nonlinear effects yield exponential growth for the turbulent kinetic energy, but com-
putations are very sensitive to cumulated errors (remeshing, low angular resolution at
small k). Such a transition from algebraic growth (linear dynamics at small time) to
exponential growth (nonlinear dynamics) is not completely described and explained,
but very simple single-point closure models can mimic it. In addition, interesting scal-
ing laws for possible exponential growth follow from an approach by Julian Scott

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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(private communication), which is itself a refinement of Oberlack’s approach dealing
with symmetries of the Navier–Stokes equations. All these issues are addressed in
the devoted chapter (Chap. 9).

Only for pure rotation, or S = 0,� �= 0, the most general EDQNM versions
were carried out towards complete achievement. In this case, the zeroth order state
consists of superimposed oscillating modes of motion, with no amplification and no
interaction: they correspond to neutral dispersive inertial waves. Time integral of a
three-fold product of Green’s functions converges, provided an infinitesimal viscous
(or eddy damping) term is added. In the limit of small interactions, two-point closures
and theories of wave-turbulence were reconcilied (Chap. 7).

This preliminary discussion justifies, to a certain extent, to discriminate flows
dominated by production from flows dominated by waves, a distinction which is
revisited in Chaps. 10, 11 and 17. The first class is illustrated by classical shear
flows, in which a nonzero “production term” is displayed in the equations governing
the Reynolds Stress tensor. This production is often related to growth of instabilities,
when stability analysis is addressed. The second class is illustrated in Chaps. 7, 10
and 11, as the more relevant area to apply spectral closures. It is worth noting that
the dynamics can be dominated by dispersive waves, which are neutral but for a
small part of the configuration space, in which exponential amplification occurs. In
the latter case, e.g. for flows with weak ellipticity (S 	 �), production of energy
is nonzero, but classic single-point closure models are of poor relevance, since only
particular orientations in wave-space are subjected to parametric instability.

8.6.2 Generalized Lin Equation, and Derivation of Simpler
Quantitative Models

Exact Lin-type equations for the set energy -polarization - helicity, which is equiva-
lent to the second-order spectral tensor, are derived from the so-called Craya equation,
see Chap. 2. Equations obtained for the state vector (E, Z ,H) are

˙(kE) + 2νk3E(k, t) + � (
k Z(k, t)Si j Ni (α)N j (α)

) = kT (E)(k, t), (8.39)

˙(k Z)+2νk3 Z+kE(k, t)Si j Ni (−α)N j (−α)−2ık Z(k, t)

(
1

2
W · α − �E

)
= kT (Z)(k, t),

(8.40)

and

Ḣ + 2νk2H = T (H), (8.41)

in which Si j is the symmetric part of the mean velocity gradient matrix, and Wi =
εi jn Anj refers to its antisymmetric part (mean vorticity vector).

http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_17
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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The “overdot” represents the advection operator by the mean flow, inherited from
RDT:

˙(· · · ) = ∂

∂t
− Amnkm

∂

∂kn
. (8.42)

The linear term related to mean vorticity in the Z -equation reflects the stropholy-
sis effect, identified in structure-based single-point models by Kassinos et al. (2001).
Geometric anisotropic coefficients display projection along the already defined heli-
cal modes and �E is the rotation vector for switching from the fixed system of
coordinates of k to the Craya–Herring one with time-dependent wave vector

�E = − k

| k × n | Ampnme(1)
p − Amne(2)

m e(1)
p (8.43)

(e.g. from Mons et al. 2016.)
Equations (8.39) and (8.40) for E and Z are presented and discussed in different

papers, e.g. Mons et al. (2016), but a special form is used here, in order to absorb the
shear-induced diagonal linear terms (left-hand-side, except the stropholysis term) as
integrating factors, working on a slightly modified state vector (kE(k, t), k Z(k, t))
multiplied by k-modulus. We have no general explanation for the fact that the multi-
plication by k simplifies linear couplings, but at least in the case of pure plane shear
addressed in Chap. 9, this is directly related to the relevance of Orr-Sommerfeld-
Squires variables, in close connection with toroidal/poloidal decomposition seen in
Fourier space. It is worth reminding that H is not the exact helicity spectrum, but the
3D, possibly angle-dependent, spectrum of helicity divided by k. One recovers that
this reduced helicity spectrum is not affected by the mean flow gradient, except a pos-
sible advection, represented by the ‘overdot’. The helicity spectrum, if initially zero,
remains zero, as rediscussed in general for homogeneous turbulence. Accordingly,
it will be ignored in the following.

The dedicated contribution from two-point third-order correlations is identified in
the left-hand-side of preceding equations for the optimal state vector which represents
two-point second-order correlations. T (E) is the generalized energy transfer and is
conservative, with zero integral in k-space. The generalized polarization transfer
T (Z) gathers a conservative part, with zero integral, and the nonlinear contribution
from pressure -strain rate correlations. Both parts are disentangled in Mons et al.
(2016).

8.6.3 A Model from EDQNM in Terms
of Spherically-Averaged Descriptors Only

The case of purely rotating turbulence is recovered, by discarding the strain term
in Eqs. (8.39) and (8.40), which only couples their linear parts, but in the Galilean
frame of reference. Fortunately, equations are eventually completely consistent with

http://dx.doi.org/10.1007/978-3-319-73162-9_9
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the ones of the previous chapter, seen in the rotating frame, and the stopholysis
term displays twice the dispersion law in both cases, with �E = −(1/2)Wmαm and
Wm = 2�m . Is it possible to derive a more flexible and versatile nonlinear model for
T (E) and T (Z) in all other cases of turbulence subjected to arbitrary mean velocity
matrix Ai j , which is not purely antisymmetric? Because energy production exists,
the need for a very complex closure for nonlinear transfer and pressure-redistribution
terms is less pressing. For such flows, the EDQNM1 version yields a satisfactory level
accuracyy, which is sufficient to deal with the complexity of turbulence dynamics.
In addition to the fact that the explicit effect of the mean gradient is not essential
in the dynamics of triple correlations as it is in purely rotating turbulence, without
production, two reasons prevent the use of most complicated EDQNM versions such
as EDQNM2 and EDQNM3:

• Such versions render the structure of the EDQNM model much more complicated,
via a three-fold product of tensorial Green’s functions and explicitly dependent on
the type of mean shear, preventing easy further projection of angular harmonics.

• They are not correct when the (direct) linear effect of the mean shear/strain yields
exponential growth, with a lack of convergence of the time integral of the above-
mentioned three-fold product (Cambon and Scott 1999).

EDQNM1 equations can be written for arbitrary anisotropy, and yield
closed expression of generalized transfer terms T (E) and T (Z) (Cambon et al. 1981;
Cambon et al. 1997; Mons et al. 2016) in terms of E and Z , and therefore close
Eqs. (8.39) and (8.40). Faced with the high computational cost for solving these equa-
tions for all wavevector directions, a second step was applied to restrict the descrip-
tion to spherically averaged descriptors only. This step, purely technical, amounted
to replace fully anisotropic E and Z terms by their following truncated expansion:

E(k, t) = E(k, t)

4πk2

(
1 − 15H (dir)

mn (k, t)αmαn
)

(8.44)

and

Z(k, t) = 5

2

E(k, t)

4πk2
H (pol)

mn (k, t)N ∗
m(α)N ∗

n (α). (8.45)

These expansions involve the non-dimensional deviatoric tensors H (dir)
mn and H (pol)

mn

which are given by spherically averaging R̂i j (k, t), with its three contributions,
isotropic, directional anisotropy and polarization anisotropy, so that

ϕi j (k, t) =
∫∫

Sk

R̂i j (k, t)d2k = 2E(k, t)

(
1

3
δi j + H (dir)

i j (k, t) + H (pol)
i j (k, t)

)
.

(8.46)

On the one hand, it is possible to extract from an arbitrary anisotropic spectral tensor
R̂i j the set of spherically-averaged descriptors (E, H (dir)

i j , H (pol)
i j ), in which direc-

tional anisotropy and polarization anisotropy are disentangled. On the other hand, it
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is possible to reconstruct a part of the full spectral tensor by means of these descrip-
tors using Eqs. (8.44) and (8.45). Of course, only a part of the anisotropic structure
is restored, because angular harmonics of degree larger than 2 are ignored (see also
Chap. 2). It is consistent to express the generalized transfer terms using the same
truncated expansion, or

T (E)(k, t) = T (k, t)

4πk2

(
1 − 15S̃N L(dir)

mn (k, t)αmαn

)
(8.47)

and

T (Z)(k, t) = 5

2

T (k, t)

4πk2
S̃N L(pol)

mn (k, t)N ∗
m(α)N ∗

n (α). (8.48)

Finally, a closed system of equations is found for the set (E, H (dir)
i j , H (pol)

i j ), in
which linear terms in the left-hand-side of Eqs. (8.39) and (8.40) give contribu-
tions SL

i j , SL(dir)
i j and SL(pol)

i j , whereas nonlinear contributions yield the above-

mentioned T , S̃N L(dir)
i j and S̃N L(pol)

i j terms (more precisely, their dimensional form

SN L(dir)
i j = T

4πk2 S̃N L(dir)
i j and SN L(pol)

i j = T
4πk2 S̃N L(pol)i j . In short, a model using

only spherically-averaged descriptors is exactly derived from the first-step EDQNM1
model in k-vector, using second-order truncated expansions.

The simplified model by Mons, Cambon and Sagaut (MCS) is much more flexible,
versatile and tractable than the first-step model. Looking at Table 8.1, the first-step
nonlinear closure addresses the expression of T (E)(k) and T (Z)(k) in terms of E and
Z , whereas it reduces in MCS to the expression of T (k), S̃N L(dir)

i j (k) and S̃N L(pol)
i j (k)

in terms of E , H (dir)
i j and H (pol). Accordingly, its nonlinear part reduces to calcu-

lations similar to what is made for isotropic EDQNM, because integration over the
direction of the plane of the triads can be performed analytically, and the orienta-
tion of the wave vector is eventually removed analytically as well. Final equations
are given in Chap. 17, Sect. 17.9. This model began to be validated in Mons et al.
(2016) for several flow cases, including effects of irrotational straining processes
(Ai j symmetric, possibly time-dependent), plane shear, and return-to-isotropy when
mean flow gradients are relaxed. On the other hand, the rapid distortion limit, which
was preserved in the first-level model by cancelling the nonlinear terms, is no longer

Table 8.1 Description of anisotropy for both second-order spectral tensor and its counterpart for
third-order contributions, using k-vectors descriptors and their corresponding spherically-averaged
contributions

. Spherically averaged descriptors

k-vectors descriptors Isotropy Directional anisotropy Polarization anisotropy

E(k, t) E(k, t) H (dir)
i j (k, t) 0

Z(k, t) 0 0 H (pol)
i j (k, t)

T (E)(k, t) T (k, t) S̃N L(dir)
i j (k, t) 0

T (Z)(k, t) 0 0 S̃N L(pol)
i j (k, t)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_17
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exact in the MCS model, because the very strong anisotropy induced by RDT calls
into play higher degree angular harmonics. For the sake of brevity, we will not report
calculation in which the mean strain is sustained, but only results for temporal relax-
ation of initial anisotropy.

8.7 Return to Isotropy

This general behavior can be understood from two different investigations. In the
first one, the mean strain (irrotational or not) is sustained, but we try to delineate a
range of scales in which the isotropy is possibly restored. This amounts to explore
the degree of penetration of anisotropic structure in the space of scales. In the second
approach, the strain is suddenly relaxed, and we look at the further temporal evolution
of turbulence statistics, with possible recovery of isotropy.

8.7.1 Scale by Scale Analysis, Towards Recovering
an Universal State at Sufficiently Small Scale?

Assuming that weak anisotropy results from a linear response to turbulence pertur-
bated from a fully nonlinear quasi-isotropic state, scaling laws are found by Ishihara
et al. (2002), Yoshida et al. (2003). The domain of valididy is given by a very small
local interaction parameter, or k2/3ε1/3/S � 1, with S ∼ √

Amn Amn and ε is the
dissipation rate. This condition is equivalent to choose the wavenumber k as much
larger than the threshold one, inverse of the Corrsin’s scale (Corrsin 1958), (which
amounts to a Hopfinger’s scale, also used by Zeman for purely rotating flow, see
Chap. 7.), or k � kS , with

kS =
(

S3

ε

)1/2

. (8.49)

In this wavenumber range, the scalings laws recover the classical Kolmogorov inertial
range for the energy spectrum E(k), whereas the anisotropic spherical descriptors
defined in Chap. 2 are

H (dir)
i j (k) = 1

15
(B − A)ε−1/3k−2/3Si j , H (pol)

i j (k) = 2

5
Aε−1/3k−2/3Si j , (8.50)

in which A and B are constants, assumed to be universal, with a satisfactory agree-
ment between DNS for pure plane shear flow and LRA. Accordingly, a kind of
universality is restored, but in the limit of small scales and vanishing shear (or strain)
rate. General solutions only depend on the symmetric part of the mean strain, and
therefore are the same for the three different cases (elliptical, hyperbolical, rectilin-
ear), a result which is at odds with our main approach here.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Note also that a direct relationship of anisotropic descriptors to the strain tensor is
also recovered from RDT at short time. As recalled in Cambon and Rubinstein (2006),
the first significant terms of RDT solution for single-time second-order statistics at
short time, started from 3D isotropic initial data, only involve the symmetric part S
of A, yielding

E(k, t) = 1

2

[
k
∂E
∂k

|t=0 + E(k, 0)

]
t Si j

ki k j

k2
,

and

Z(k, t) = 1

2
E(k, 0)t Si j N ∗

i (k)N ∗
j (k),

with E(k, 0) = E(k)/(4πk2).
Spherical integration gives

H (dir)
i j (k, t) = − 1

15

(
−1 + k

E

d E

dk

)
Si j t and H (dir)

i j (k, t) = −2

5
Si j t,

for the spherically averaged spectra of b(dir)
i j and b(pol)

i j , given eventually by

b(dir)
i j = 2

15
Si j t, b(pol)

i j = −2

5
Si j t, bi j = − 4

15
Si j t.

One recovers that “componentality” is equal to “dimensionality” (see Eq. (8.18)
and related discussion), but this results does not persists at long time. One can see
that the time-scale in short-time RDT is simply the elapsed time t , whereas it is a
turbulent time-scale in the linear response theory by the Kaneda’s group. Given the
values of “constants” A and B, which are evaluated from LRA theory and from DNS
data, no simple relationship between b(dir)

i j and b(pol)
i j similar to Eq. (8.18) is shown.

8.7.2 Temporal Evolution After Relaxation of the Mean
Strain

The experiment by Gence and Mathieu is considered again, with its additional duct
in which the mean strain is relaxed (Gence and Mathieu 1980). The case of straining
without rotation in the second part of the distorting duct (α = 0), followed by a
relaxation phase, is illustrated here in Fig. 8.8. The MCS model properly captures
the evolution of the anisotropy indicators bi j and that of the turbulent kinetic energy,
both in the region dominated by linear effects and in the purely nonlinear one.

We now consider the experiment of Chen et al. (2006) where turbulence is
subjected to a nonstationary straining-relaxation-destraining cycle. Both linear and
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Fig. 8.8 Evolution of (left) the anisotropy indicators b11 (�), b22 (�) and b33 (◦) and (right)
that of the turbulent kinetic energy K versus the position in the distorting duct of length Ld for
the experiment in Gence and Mathieu (1980) without rotation in the second part of the distorting
duct (α = 0). Symbols correspond to experimental data and lines are obtained with the system of
governing equations. From Mons et al. (2016) with permission of CUP

nonlinear phenomena come into play in the response of turbulence to this particu-
lar straining. Figure 8.9 illustrates the temporal evolution of the anisotropy indicator
b̃11(t) defined by

b̃11(t) = u2
1(t)/u2

1(t0)

u2
1(t)/u2

1(t0) + u2
2(t)/u2

2(t0)
− 1

2
, (8.51)

where t0 refers to the time at which strain starts.
Experimental and numerical values obtained with the present model are reported,

along with the RDT prediction, provided by Chen et al. (2006), corresponding to the
mean flow defined by Eq. (8.5) and Fig. 8.9 (left). The temporal evolution of b̃11(t)
shows good agreement between the experiment and the present model. From the
comparison with RDT results, it appears that nonlinear phenomena are significant
on a quantitative level. This is partly due to the presence of a relaxation phase in the
straining cycle. Thus, the validity of both linear and nonlinear contributions in the
system of governing MCS equations can be confirmed by the comparison with this
experiment.

The relaxation of an axisymmetric turbulence obtained by applying an axial com-
pression/dilatation over a finite time to an initially isotropic turbulence is analyzed
in Mons et al. (2014) thanks to an anisotropic EDQNM model (Cambon et al. 1981).
The initial anisotropic state after the release of the strain is characterized by the
coefficient γ, which measures the ratio between the axial Reynolds stress and the
two other ones:

R11(t) = γ(t)R22(t) = γ(t)R33(t). (8.52)
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Fig. 8.9 (left) Temporal evolution of the strain S(t) applied to the turbulence; (right) experimental
values (◦), numerical values obtained with the present model (solid line) and RDT prediction (dashed
line) for the temporal evolution of the anisotropy indicator b̃11(t) in the experiment of Chen et al.
(2006). From Mons et al. (2016), with permission of CUP

Long time evolution of γ starting from an initially very high Reynolds solution
is displayed in Fig. 8.10 (left), for different values of the infrared kinetic energy
spectrum slope at initial time σ. It is seen that the anisotropy exhibits three stages. In
the first one, the anisotropy decreases thanks to the return to isotropy of small scales
via non-linear mechanisms, while large scales remain anisotropic. The second stage
corresponds to a plateau for σ �= 4, which corresponds to the destruction of small
isotropic eddies via viscous effects. The last stage consists of a dramatic growth of the
anisotropy coefficient, associated to the decay regime at asymptotically low Reynolds
number, except for σ = 4 at which the very large scale have been isotropized thanks
to the breakdown of the permanence of large eddies. In other cases, the growth of γ
is due to the fact that all small scales have been dissipated and that the field is only

Fig. 8.10 Time evolution of the anisotropy coefficient γ in strain-released axisymmetric turbulence.
Left: very long time evolution starting from initially high-Reλ turbulence for different values of the
infrared slope σ. Right: Evolution for σ = 2 and different initial Reλ. From Mons et al. (2014)
with permission of AIP
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made of large anisotropic scales that now obey an almost linear diffusive dynamics.
This results show that there is now relaxation toward a fully isotropic state, whatever
is the evolution time under consideration and the initial infrared slope σ.

The sensitivity of the evolution of γ to the initial Reynolds number is illustrated in
Fig. 8.10 (right). It is observed that at initially low- to very-low Reλ anisotropy may
grow from the very beginning or exhibit a non-monotonic behaviour, due to Finite
Reynolds Number effects.

Therefore, the concept of return to isotropy should be taken with care, since it is
observed over finite times only and for large initial Reynolds numbers.

8.8 Nonhomogeneous Flow Cases. Coherent Structures
in Strained Homogeneous Turbulence

The RDT for irrotational strain can be extended to analyse the vicinity of stagnation
points, in connection with the hyperbolic instability. Application to modeling of
turbulence impinging on bluff bodies was given by Hunt and coworkers (see Hunt
1973). The mean flow is a potential 2D inviscid flow, hence strictly irrotational, and
equations very similar to the ones found in the homogeneous case are recovered
following mean flow trajectories for short-wave disturbances.

8.8.1 Strained Turbulence in a von Kármán Flow

Recent unpublished results have been obtained using the experimental setup by
Machicoane et al. (2013). It is nicely confirmed that the flow near the stagnation
point in a von Kármán flow, with exactly co-rotating discs (see Fig. 8.11), consists
of quasi-irrotational strain.

Such a setup allows to reach high Reynolds numbers (Reλ = 200 in the present
case) and it was often alledged in the past that “quasi-isotropic” turbulence is gener-

Table 8.2 Parameters of the flow. �, rotation rate of the discs; ε, dissipation rate obtained from
the power consumption of the motors. The rms velocities are obtained at the geometrical centre of
the flow using data points situated in a ball with a 1 cm radius. The Taylor-based Reynolds number

is estimated as Reλ =
√

15u′4/νε with u′ =
√

(u′
x

2 + u′
y

2 + u′
z

2)/3. The large scale Reynolds

number is Re = 2πR2�/ν. The kinematic viscosity of the water-UconTM mixture is ν = 8.2 10−6

m2s−1 with a density ρ = 1000 kg m−3. Courtesy from Romain Volk

State � u′
x u′

y u′
z u′ τη η ε Rλ Re

– Hz m.s−1 m.s−1 m.s−1 m.s−1 ms µm W.kg−1 – –

x-dominant 5.5 0.58 0.39 0.33 0.45 2.1 130 1.9 200 21200
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Fig. 8.11 Set-up of the experiment on the von Kármán flow. a general facility; b optical set-up;
c Typical trajectories obtained by both cameras (cam1 and cam2). Courtesy from Romain Volk

ated in the center region. Here, the flow is bistable, so that both directions x or y can
alternatively characterize the direction of (large-scale) contraction. Results below
concern only the case with x related to the axis of contraction. Lagrangian measure-
ments are made in a cubic box around the stagnation point. Parameters of the flow are
gathered in Table 8.2. The measured mean velocity gradient, non-dimensionalized
with respect to the rotation rate � of the discs (see Table 8.2), and the non-dimensional
Reynolds stress tensor, are

1

2π�
A =

⎛
⎝

−0.90 0.18 0.00
0.00 0.31 0
0.08 0.00 0.60

⎞
⎠ 1

3
δi j + bi j =

⎛
⎝

0.54 0.00 0.00
0.00 0.27 0.02
0.00 0.02 0.18

⎞
⎠ .

(8.53)
Both are almost diagonal, reflecting a pure straining process, with the principal

axes of the mean velocity gradient matrix almost aligned with the (x, y, z) directions
of Fig. 8.11. The mean flow is given in two cross-sections in Fig. 8.12; it ressembles
the pattern of two impacting jets in x-direction.

8.8.2 Structures in Numerical Studies

A theoretical and numerical study was performed by Leblanc and Godeferd (1999),
on the ground of the zonal short-wave analysis introduced by Lifschitz and Hameiri
(1991). Further theoretical insight to the hyperbolic instability is found in a “non-
homogeneous” case, in which the “mean” flow is a cell of 2D Taylor-Green vortices
(the Taylor’s four roller mill). Stretching of the vorticity perturbation along the prin-
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Fig. 8.12 Results from the experiment on the von Kármán flow. Mean flow. Courtesy from Romain
Volk

cipal axis of strain leads to the formation of spanwise counter-rotating vortices ( also
sometimes referred to as ribs or braids) in the irrotational stagnation point region.
Beautiful rib (or braid) structures obtained in a DNS with 1283 grid points are visu-
alized in Fig. 8.13.

Only a very few DNS studies have been devoted to the analysis of coherent
structures in homogeneous strained turbulence, since the topology of the flow is
simpler than the one observed in other cases (see Chaps. 7 and 9) and that flow
dynamics is relatively well understood. Using low-Reynolds DNS, Rogers and Moin
(1987) also observed that vorticity tends to be statistically aligned with the direction
of positive strain. Vorticity occurs in coherent elongated vortex tubes that are stretched
and strengthened by the mean strain. Vortex tubes submitted to a compressive effect
buckle rather than decrease in strength. The absence of mean flow rotation is observed
to prevent the occurence of hairpin vortices (which are observed in the pure shear
case, see Sect. 9.8).

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_9
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Fig. 8.13 Isosurface of the
vorticity magnitude of the
perturbed flow in the
non-linear regime.
Reproduced from Leblanc
and Godeferd (1999) with
permission of AIP

A look at instantaneous fields yield the following observations:

• Axisymmetric-contraction flows develop elongated vortex tubes in the stretching
direction.

• Axisymmetric-expansion flows develop no unique structure, and a number of ring-
like structures are observed.

• Plane strain flows exhibit a combination of structures observed in the two previous
cases.
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Chapter 9
Incompressible Homogeneous Anisotropic
Turbulence: Pure Shear

9.1 Physical and Numerical Experiments: Kinetic Energy,
RST, Lengthscales, Anisotropy

Mean shear flows are ubiquitous in turbulence. In a real flow, the shear is always
created by the no-slip condition on solid walls, except in shear-free boundary layers
where there is no tangential velocity thanks to the use of a belt moving with the same
velocity as the flow. Shear flows are therefore intimately connected with near wall
turbulence dynamics. Nevertheless, many features can be understood in the idealized
case of an uniform mean shear in the absence of boundaries, in the context of HAT
(Homogeneous Anisotropic Turbulence). The relevance of this idealized model flow
was discussed by W.C. Reynolds, among many others. The effect of the wall is to
induce a mean shear and to block the vertical motion. The arbitrary imposed uniform
shear in the HAT framework is also responsible for a reduction of vertical velocity
fluctuation (as we shall see with all details in this chapter). Therefore, the presence
of the wall is not mandatory.

The emphasis will be put in this chapter on the departure from isotropy due to the
application of a constant shear. The main reasons are that it contains all the physical
mechanisms present in homogeneous shear flows and that it is the most extensively
analyzed flow in this family. The mean flow ū = (Sy, 0, 0) is characterized by the
following space-uniform mean velocity gradient matrix A and Cauchy (or displace-
ment gradient) matrix F

A =
⎛
⎝

0 S 0
0 0 0
0 0 0

⎞
⎠ , F(t) =

⎛
⎝

1 St 0
0 1 0
0 0 1

⎞
⎠ (9.1)

and components i = 1, 2, 3 classically will be referred to as streamwise, cross-
gradient (or vertical) and spanwise directions, respectively. In other chapters, per-
mutation of the indices 2 and 3 will be used, but the intrinsic nomenclature
streamwise/cross-gradient/spanwise will be kept unchanged.

© Springer International Publishing AG 2018
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It is important noticing that the shear rate S in Eq. (9.1) is equal to twice the
rotation rate � and the strain rate S defined in Eq. (8.8), since the pure shear rate is
defined as � = S. Therefore, in the present chapter, the rotation rate and the strain
rate are equal to S/2.

9.1.1 Experimental and Numerical Realizations

Many experiments were designed to reproduce the mean flow gradient given in Eq.
(9.1) while preserving a quasi-homogeneous turbulent state. The experimental setups
combining a piling-up of plates in the vertical direction and grid-generated turbulence
are the most known and documented (Rohr et al. 1988; De Souza et al. 1995). As
discussed in Chap. 8, in which older experimental studies are also mentioned, they
suffer the significant drawback that they do not ensure uniformity of the Cauchy
matrix in the whole cross-section, or in a simpler way they do not to ensure the
uniformity of the mean streamwise velocity. As a consequence, the equivalent elapsed
time St is not uniform in a cross section, yielding spurious diffusion effects. The
specific experimental facility developed at ONERA by Leuchter and coworkers (see
Chap. 8), which combines a mean rotation generator with an angular velocity S/2
in the direction normal to the plane of the shear and an additional distorting duct to
create the additional straining process in the cross-sections is much more satisfactory,
but the length of the distorting duct severely limits the maximum elapsed time St ∼
1.5. Finally, some relevant experiments aim at reproducing a planar Couette flow,
using a moving belt, but ‘initial’ turbulence cannot be created independently, so that
such experiments are more devoted to study hydrodynamic stability than developed
turbulence dynamics. They will be touched upon in Chap. 11, when the rotating shear
will be addressed.

Some relevant DNS have been performed. Most of them were based on the Rogallo
(1981) method, which uses a pseudo-spectral scheme to evaluate nonlinear terms and
the mean-Lagrangian system of coordinates to capture the linear effects in an optimal
way. Among these numerical studies, many useful results and analyses can be found in
the rather old study by Lee et al. (1990), whereas the numerical study by Brethouwer
(2005) provides one of the most reliable and accurate database for both homogeneous
rotating and non-rotating shear flows, at least for single-point statistics. Additional
spectral information was recently obtained by Salhi et al. (2014), as discussed in
Sect. 9.4 (Fig. 9.1).

9.1.2 Main Observations

Looking at the time-development of Reynolds stresses, physical and numerical
experiments provide a consistent picture which consists in three phases (see
Figs. 9.2 and 9.14):

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_11


9.1 Physical and Numerical Experiments: Kinetic Energy,… 441

Fig. 9.1 Evolution of
turbulent kinetic energy, K
(top) and streamwise
turbulence intensity
(bottom), measured in
different laboratory
experiments. In all cases, the
production phenomenon is
clearly observed after the
initial decay phase.
Reproduced from Rohr et al.
(1988) with permission of
CUP

(i) Initial data, or upstream data in a grid-generated turbulence, being quasi
isotropic, the Reynolds stress tensor is nearly spherical with no significant
cross-correlation u′

1u′
2, so that the first phase of the evolution is close to the

decay of unsheared turbulence.
(ii) In a second phase anisotropy develops, so that the production of turbulent kinetic

energy (which is proportional to u′
1u′

2) becomes larger than its dissipation rate,
and turbulent kinetic energy begin to increase. It is worth noting that, if the
initial turbulent kinetic energy is too low, the viscous damping may be so high
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Fig. 9.2 Evolution of
turbulence characteristic
scales in different
experiments. Top part:
integral scale, medium part:
Taylor scale, bottom part:
Kolmogorov scale. The ratio
L/η is observed to increase,
showing that the spectrum is
filled by the production
mechanism. Solid lines are
related to isotropic decay.
Reproduced from Rohr et al.
(1988) with permission of
CUP

that the flow will be dominated by linear viscous effects, resulting in a monotone
decay until all fluctuations have been suppressed.

(iii) In the final stage, an asymptotic régime is reached, in which the turbulent kinetic
energy growth rate can become exponential, but this point is more subtle than it
is generally admitted. The exponential growth is associated to constant values of
the components of the anisotropy tensor, bi j . Both numerical and experimental
data indicate that the following non-dimensional quantities exhibit constant (but
flow-dependent!) values in the asymptotic régime:

SK
ε

,
Su′

1u′
2

ε

which are the shear rapidity (which compares the nonlinear time scale τN L =
K/ε to the shear time scale S−1) and the ratio of the production of turbulent
kinetic energy to the dissipation rate. Combining these two quantities, one finds
that u′

1u′
2/K is also constant. There is no universal value of the exponential

growth coefficient. Typical values are reported in Table It is worth noting that
the exponential growth régime can not be sustained for arbitrary long times,
since turbulent kinetic energy must remain finite in physical systems. The kinetic
energy growth can be estimated as Rohr et al. (1988)

K(t) = K(0)eσSt , σ =
(

−u′
1u′

2

K

)(
1 − Su′

1u′
2

ε

)
(9.2)

where the damping factor σ is constant, flow-dependent and positive. Typical
values reported in the literature are displayed in Table 9.1.
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Table 9.1 Summary of measured global quantities in existing DNS and experiments for shear flows,
classified by date. For experiments, Reλ(0) and (SK/ε)(0) refer to estimated values throughout
the measurements. When two results from the same work are presented, they correspond to lowest
shear and highest shear cases

Authors Type Reλ(0) (SK/ε)(0) (SK/ε)(final) b12 σ (St)max

Tavoularis and Corrsin
(1981)

Exp 245 12.5 / −0.14 0.12 11.6

Shirani et al. (1981) DNS 20 3.3 16.328 −0.147 / 7

Tavoularis and Karnik
(1989)

Exp 160 5.6 / −0.149 0.08 8

Tavoularis and Karnik
(1989)

Exp 310 8.4 / −0.165 0.09 8

Lee et al. (1990) DNS 40 33.5 36.2 −0.1 / 12

Clark and Zemach (1995) Spectral
model

0.3

De Souza et al. (1995) Exp 1050 11.9 / −0.121 0.07 12

De Souza et al. (1995) Exp 1010 21.8 / −0.093 0.10 9

Ferchichi and Tavoularis
(2002)

Exp 253 / / / 0.0846 23

Schumacher (2004) DNS 55 0.8 8.2 / / 10

Brethouwer (2005) DNS 32 36 / −0.14 0.178 12

Isaza and Collins (2009) DNS 26 3 26.6 −0.165 0.10 9

Isaza and Collins (2009) DNS 26 27 10.3 −0.126 0.18 9

Sukheswalla et al. (2013) DNS 50 3 7.14 −0.19 0.12 20

Sukheswalla et al. (2013) DNS 50 27 21.43 −0.135 0.13 20

Weinstock (2013) Spectral
model

0.17

Briard et al. (2016) EDQNM 0.33

This expression is very useful: it shows that St is not the only parameter which
describes the flow and that σ must be taken into account, and that, for low
values of σSt , a first-order Taylor series expansion makes it possible to recover
the turbulent kinetic energy linear growth rate (see Sect. 9.3) reported by some
authors.

We now discuss the asymptotic régime in more details. Anisotropy of the Reynolds
stress tensor develop too, with the streamwise component becoming largely dom-
inant with respect to the two other diagonal ones, and the vertical one being the
smallest. Exact values of the components of the anisotropy tensor bi j are difficult to
infer from available data, since a non-negligible dispersion among data is observed.
Plausible target values given by Piquet (2001) are displayed in the first column of
Table 9.2. It is worth noting that the asymptotic value of b12 is observed to be flow-
dependent, but that the true asymptotic value may be equal to 0. Other values may be
in fact intermediate plateau values found in experiments and numerical simulation
at moderate St .

It is worth noting that bi j is only one descriptor of anisotropy among many others.
Interesting anisotropy indicators also are provided by the integral lengthscales L(n)

i j ,
which are defined as follows:
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Table 9.2 Asymptotic behavior of homogeneous shear turbulence for large St . The asymptotic
value given between parentheses for b12 in the first column is the one given in Piquet (2001), which
is a plateau value observed for a finite range of St , while zero is presumably the true asymptotic
value for St � 1

Quantity DNS and experiments RDT Pressure-released RDT

K(St � 1)/K(0) ∝ eσSt ∝ St ∝ (St)2

b11(St � 1) 0.203 2/3 2/3

b22(St � 1) –0.143 –1/3 –1/3

b33(St � 1) –0.06 –1/3 –1/3

b12(St � 1) 0. (–0.15) 0 0

u′
i u

′
j L(n)

i j =
∫

u′
i (x)u′

j (x + r a(n))dr with a(n)
m = δmn, (9.3)

with no summation over repeated i, j subscripts, i, j, n = 1, 3.1

The longitudinal integral scale L(1)
11 becomes very large and dominates all other

components at large St . Among various components, the (large) ratio L(1)
11 /L(3)

11 is
particularly informative since it is directly linked to the aspect ratio (streamwise
length to spanwise spacing) streak-like structures (this point will be further developed
in Sect. 9.3.2). Incidentally, one can notice that appearance of streaks is found in
the homogeneous shear case, even if their dynamics and topology is significantly
different from the ‘true’ near-wall streaks. Analysis of structures will be addressed
with much more details in Sects. 9.3.2 and 9.9.

9.2 Reynolds Stress Tensor and Analysis of Related
Equations

The equation governing the Reynolds stress tensor is

du′
i u

′
j

dt
= −S

⎛
⎜⎝

2u′
1u′

2 u′2
2 u′

2u′
3

u′2
2 0 0

u′
2u′

3 0 0

⎞
⎟⎠ + �i j − εi j , (9.4)

in which the structure of the production term (first term in the right hand side) has
been detailed. Reynolds stress components involving the vertical, or cross-gradient,
u′

2 component are present in this term.

1In isotropic turbulence, all these quantities reduce to a single one, say L f , with L(n)
nn = L f (any

n, no summation on it), L(n)
i i = L f /2 if n �= i (no summation on i) and L(n)

i j = 0 if i �= j .
Accordingly, departure from this simple relationship reflects anisotropic structure too.
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Now considering the case of an initially isotropic field, this system simplifies as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du′
1u′

1

dt
= −2Su′

1u′
2 +�11 −ε11

du′
2u′

2

dt
= �22 −ε22

du′
3u′

3

dt
= �33 −ε33

du′
1u′

2

dt
= −Su′

2u′
2 +�12 −ε12

(9.5)

The different couplings are illustrated in Fig. 9.3. The associated evolution equa-
tion for the turbulent kinetic energy is

dK
dt

= −Su′
1u′

2 − ε (9.6)

which shows the importance of the cross-correlation u′
1u′

2 for the kinetic energy
growth rate.

Reynolds stress models with conventional closure techniques perform satisfacto-
rily in the shear flow case. One reason is historical and not really rational: adjustable
constants in the closure models were fitted with maximum care on this case only!
Another reason is that the dynamics is dominated by a simple production to dissipa-
tion balance (or partial imbalance), and it is not very sensitive to the modeling of the
pressure-strain rate tensor, especially to its rapid part, whose single-point modelling
is the most difficult task.

Fig. 9.3 Couplings between the different non-vanishing Reynolds stresses in the pure shear case.
Arrows indicate the production process, their color being related to the physical quantity at play
(mean strain, pressure, viscosity)
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For instance, the exponential growth of turbulent kinetic energy obtained at suf-
ficiently large elapsed time and at large Reynolds number can be predicted, even if
not really explained. Equation (9.6) can be rewritten as

1

SK
dK
dt

= −u′
1u′

2

K − ε

SK (9.7)

leading to 1
SK

dK
dt = Constant in the asymptotic régime. A reasonable asymptotic

value of the shear rapidity term is obtained from both the previous equation and the
modelled corresponding ε equation

1

Sε

dε

dt
= Cε1(−2b12) − Cε2

ε

SK (9.8)

provided a correct asymptotic value is assumed for b12. The dependence of the pre-
diction on the two empirical constants will not be discussed here. The reasonable
asymptotic value for the nondimensional term −2b12 given above is obtained con-
sidering the pressure-strain rate modeling and distinguishing between the rapid (or
linear) and the slow (or nonlinear) pressure terms, respectively denoted �

(r)
i j and

�
(s)
i j . In the pure shear case, the rapid and slow time scales are S−1 and K/ε, respec-

tively. Assuming that the dissipation is nearly isotropic for the sake of simplicity, the
equation for the cross-stress can be rewritten as

du′
1u′

2

dt
= −Su′2

2 + �
(r)
12 + �

(s)
12 (9.9)

where u′2
2 is governed by

du′2
2

dt
= �

(r)
22 + �

(s)
22 − 2

3
ε (9.10)

It immediately appears that the growth rate of u′
1u′

2 is firstly driven by the vertical

correlation u′2
2 , this effect being modulated by both rapid and slow pressure strain

rate correlations terms. The effect of the linear term �
(r)
12 is modelled to reduce the

production, and is perhaps not so important, at least qualitatively. In contrast, the
conventional return-to-isotropy effect of the modelled nonlinear term:

�
(s)
22 = −C(r ti)εb22 (9.11)

is essential for allowing an exponential growth rate in a fully nonlinear régime.
Simple explanation can be offered as follows. In the absence of nonlinear terms
(and without significant dissipation), Reynolds stress equations, even if they cannot
reproduce the RDT behavior (see Sect. 9.3), at least are consistent with an algebraic
growth of the turbulent kinetic energy: K(St) ∝ (St)n , 1 ≤ n ≤ 2. In this régime, u′2

2
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remains very small. The presence of the nonlinear pressure-strain rate, modelled in
agreement with the return-to-isotropy principle, will redistribute the energy between
the diagonal components of the Reynolds stress tensor, therefore feeding the smallest
component u′2

2 . This effect will reinforce the production term −Su′2
2 through a strong

positive �
(s)
22 term in Eq. (9.10). Even if the term �

(s)
12 , being positive, will contribute

to damp the growth of u′
1u′

2, the effect of �
(s)
22 will be the most efficient ‘nonlinear’

one to enhance u′2
2 and therefore to allow a dramatic increase of production, consistent

with an eventual exponential growth.

9.3 Rapid Distortion Theory: Equations, Solutions,
Algebraic Growth

Linearized inviscid equations in physical space are

∂u′
i

∂t
+ Sx2

∂u′
i

∂x1
+ Sδi1u′

2 = −∂ p′

∂xi
. (9.12)

The pressure (here divided by the mean reference density) term is identified by taking
the divergence of the previous equation as

∇2 p′ = −2S
∂u′

2

∂x1
(9.13)

so that the vertical (cross-gradient) component of the velocity is evidenced as the
key component. Combining linearized Navier–Stokes and Poisson equation, it can be
easily found that the Laplacian of the vertical velocity fluctuation is simply advected
by the mean flow

˙(∇2u′
2

) =
(

∂

∂t
+ Sx2

∂

∂x1

)
∇2u′

2 = 0. (9.14)

The fact that ∇2u′
2 obeys a decoupled equation, and may be chosen as one of

the basic variables to study linear solutions in the presence of mean shear, is not
surprising since in the analyses of Orr-Sommerfeld and Squire, ∇2u′

2 and ω′
2 (vertical

vorticity fluctuation) are the two basic variables. Accordingly, it is not too difficult
to find complete solutions in physical space for these variables. Nevertheless, these
solutions displays non-local operators and involve an integro-differential Green’s
function in physical space, so that the RDT problem is much more easily solved in
Fourier space.
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Using the general formalism introduced in Chap. 8, RDT equations can be recast as

˙̂ui + S

(
δi1 − 2

k1ki

k2

)
û2 (9.15)

and

k̇i + Sk1δi2 = 0. (9.16)

The latter equation generates the following characteristic lines in Fourier space

k1 = K1, k2 = K2 − St K1, k3 = K3 (9.17)

which are related to the mean trajectories in physical space

x1 = X1 + X2St, x2 = X2, x3 = X3. (9.18)

It is worth noting that Eqs. (9.17) and (9.18) are a special case of the solution of the
Eikonal equation, ki = F−1

j i (t)K j , and the mean trajectory equation, xi = Fi j (t)X j ,
using Eq. (9.1). Taking advantage of the decoupling of the equation for û2

˙̂u2 − 2S
k1k2

k2
û2 = 0 (9.19)

and using k̇i ki = k̇k = −Sk1k2 from Eq. (9.16), one obtains

D

Dt
(k2û2) = 0 (9.20)

which is the exact counterpart of Eq. (9.14). The solution is

û2(k, t) = K 2

k2
û2(K , 0). (9.21)

Finally, the full solution is expressed as (e.g. Townsend 1976; Piquet 2001)

⎛
⎝

û1(k, t)
û2(k, t)
û3(k, t)

⎞
⎠ =

⎛
⎝

1 G12 0
0 K 2

k2 0
0 G32 1

⎞
⎠

⎛
⎝

û1(K , 0)

û2(K , 0)

û3(K , 0)

⎞
⎠ (9.22)

where the two extra-diagonal terms are given by

G12 = −S
∫ (

1 − 2
K 2

1

k2

)
K 2

k2
dt, G32 = 2S

K1 K3

K 2

∫
K 4

k4
dt, (9.23)

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_9
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in which the time dependency is induced by k2(t) following Eq. (9.17). Analytical
integration is not difficult but rather tedious (a whole page would be needed only to
write the analytical solutions with various algebraic and tan−1 terms), see Townsend
(1976), Piquet (2001).

For K1 = 0, the solution drastically simplifies, leading to K/k = 1, G12 = −St
and G32 = 0.

This solution can be found with the minimum number of components in the
Craya-Herring frame of reference, from Eq. (2.86). Choosing the polar axis of the
decomposition n in the vertical direction, the two modes u(1) and u(2) are related
to vertical vorticity and Laplacian of vertical velocity, respectively. Therefore, they
appear to be the spectral normalized counterparts of Orr-Sommerfeld-Squire vari-
ables which are commonly used within the linear instability theory framework. The
resulting system of two equations is

u̇(α) + Se(α)
1 e(β)

2 u(β), α,β = 1, 2 (9.24)

since the terms ė(α)
i e(β)

i identically vanish, although k itself if time-dependent.
As for the solution in the fixed frame of reference, the equation for the poloidal

component u(2) is decoupled from the one for the toroidal component, since

u̇(2) − S
k1k2

k2
u(2) = 0

The evolution equation for the toroidal component u(1) reduces to

u̇(1) + S
K3

k
u(2) = 0

so that the complete solution is
(

u(1)(k, t)
u(2)(k, t)

)
=

(
1 g12

0 K
k

)(
u(1)(K , 0)

u(2)(K , 0)

)
, (9.25)

in which the unique extra-diagonal term is

g12 = −S
K3

K

∫
K 2

k2
dt = K K3

K1 K⊥

(
tan−1 k2

K⊥
− tan−1 K2

K⊥

)
(9.26)

with

K⊥ =
√

K 2
1 + K 2

3 (9.27)

so that a complete solution (e.g. in Salhi and Cambon 1997) is generated, which is
much simpler than the Townsend’s one in the fixed frame of reference. As before,
the particular case K1 = 0 yields K/k = 1 and g12 = −St k3

k .

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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9.3.1 Some Properties of RDT Solutions

The role of fluctuating pressure is clearly to reduce the vertical velocity component,
and therefore to diminish the production of turbulent kinetic energy. This point is
illustrated looking at the growth rates reported in the first line of Table 9.2. Ignoring
the pressure term in the linearized equation, the vertical velocity component is just
advected. More generally the pressure-released RDT solution is

u′
2(x, t) = u′

2(X, 0), u′
3(x, t) = u′

3(X, 0), u′
1(x, t) = u′

1(X, 0) − Stu′
2(X, 0).

(9.28)
Of course, this oversimplified solution is not divergence-free. The pressure-

released RDT solution for the departure from isotropy problem is

u′
1u′

1(t) = 2

3
K(0)

(
1 + (St)2

)
, (9.29)

u′
2u′

2(t) = u′
3u′

3(t) = 2

3
K(0), (9.30)

u′
1u′

2(t) = −2

3
StK(0), (9.31)

yielding a quadratic (St)2 growth rate for the kinetic energy. Corresponding asymp-
totic values of the anisotropy tensor components are presented in Table 9.2.

But it must be borne in mind that this is the Laplacian of the vertical velocity
component that is advected in the full RDT solution, so that

∂2u′
2(x, t)

∂xi∂xi
= ∂2u′

2(X, 0)

∂Xi∂Xi
,

leading to a decrease of the vertical component. This effect is quantified in Fourier
space by the factor K 2/k2(t), which tends to zero at large St if K1 is nonzero. For
instance

u′2
2 =

∫∫
K 4

k4
R̂22(K , 0)d3k,

which can be evaluated from isotropic initial data

R̂i j (K , 0) = E(K )

4πk2

(
δi j − Ki K j

K 2

)
,

with d3k = d3 K coming from incompressibility constraint,2 so that

2It is recalled that in this case one has det F = 1.
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u′2
2 = 2K(0)

3

1

4π

∫∫
|K |=1

K 2 K 2
⊥

k4
d2 K , (9.32)

where the surface integral on the initial wave-number K has to be performed on a
spherical shell of radius unity. A system of polar-spherical coordinates can be used
for further calculations. The decay with time of the integral results from the growth
of k4(t) for almost all K -directions, except K1 = 0.

All the Reynolds stresses can be obtained in a similar way. Let us just mention
the general solution for the kinetic energy, as

u′
i u

′
i =

∫∫∫
R̂ii (k, t)d3k

and

R̂ii (k, t) = E(K )

4πK 2
gαβ(k, t)gαβ(k, t)

if the initial field is isotropic. Finally, the RDT amplification rate of kinetic energy
is found as

K(t)

K(0)
= 1

2

1

4π

∫∫
|K |=1

| g |2 d2 K , (9.33)

where the integral of the square of the norm of g has to be calculated on a spherical
shell of radius unity, for the initial wavevector.

Despite the simplicity of the latter integral and the fact that gαβ is analytically
expressed from Eqs. (9.25), (9.26), the final derivation of the kinetic energy history
is not an easy task. The problem comes from the existence of two different solutions,
one for K1 = 0 and one for K1 �= 0, even if continuity holds. An expansion for high
values of St yields a result which is not uniformly valid over the angular domain in
k: a substantial contribution to the integral comes from a narrow region of thickness
O[(St)−1] near K1 = 0 as St increases. This difficulty yielded Rogers (1991) to
use matched asymptotic expansions to recover the large St behavior of the turbulent
kinetic energy. Only the final result is discussed here for the sake of brevity: the growth
rate is linear K(St)/K(0) ∼ St . Such a linear growth rate is satisfactorily recovered
in the DNS of Brethouwer (2005), discarding nonlinear terms. More generally, large-
time contributions were derived for all Reynolds stress components as

u′
1u′

2

2K(0)
→ − ln 2, (9.34)

u′2
1

2K(0)
→ (2 ln 2)St, (9.35)

u′2
2

2K(0)
→ 4(St)−1 ln(4St), (9.36)
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u′2
3

2K(0)
→ π2

8
ln(St) − 1.419. (9.37)

The corresponding asymptotic values of the components of the anisotropy tensor
are given in Table 9.2.

As a last result, it is interesting to calculate some statistical quantities with very
simple RDT solutions.

Let us first consider statistical quantities which are defined looking at the sole plane
K1 = 0 This plane corresponds to 2D (two-dimensional) structures averaged in the
streamwise direction, so that u′

i u
′
j L(1)

i j (without summation over repeated indices)
are immediately found from a RDT integral restricted to K1 = 0, e.g.

u′2
1 L(1)

11 = 2K(0)

3
L f

(
1 + (St)2

3

)
.

The plane K3 = 0 corresponds to two-dimensional structures averaged in the
spanwise direction, and similarly simple RDT solutions can be derived for u′

i u
′
j L(3)

i j

u′2
1 L(3)

11 = 2K(0)

3

L f

2
= Constant.

The ratio of the two latter quantities illustrates the fact that a simple RDT analysis
can predict an increasing streaky aspect ratio L(1)

11 /L(3)
33 . The idea of evaluating the

integral lengthscales, or more precisely their product by related Reynolds stresses
referred to as “2D energy components” by Cambon and Salhi, was introduced by
Townsend but only applied to RDT for irrotational mean strain. Applications to pure
shear and to rotating shear cases are reported in Salhi and Cambon (1997). The
Fig. 9.4 shows the excellent agreement between RDT predictions and DNS results if
the shear rate is high enough.

9.3.2 Relevance of Homogeneous RDT

RDT can predict qualitative trends, and even quantitative ones for single and
two-point statistical quantities, which are often dimensionless and characterize
anisotropy. Most usual quantities are Reynolds Stress components u′

i u
′
j , with nondi-

mensional deviatoric tensor bi j , and integral lengthscales L(n)
i j for different velocity

components (subscripts i and j) and different directions of two-point separation
(superscript n) for them. The anisotropy reflected in the latter lengthscales can be
very different from the Reynolds Stress anisotropy, and therefore cannot be derived
from the knowledge of bi j . Qualitative relevance of RDT solutions can appear even
for particular realizations (snapshots) of the fluctuating velocity field, when compared
to full DNS. This is illustrated in Fig. 9.5, which compares instantaneous velocity
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Fig. 9.4 Inviscid and viscous RDT compared to high shear rate and low shear rate DNS. DNS
came from a joint exploitation by C. Cambon and M. J. Lee of the CTR database in 1990 (the same
database was used by Lee et al. 1990). Time history of the streamwise two-dimensional energy

components u′2
1 L(1)

11 are plotted. Reproduced from Salhi and Cambon (1997) with permission of
CUP

Fig. 9.5 Contours of streamwise fluctuating velocity from a direct numerical simulation (DNS),
and b rapid distortion theory (RDT) calculations for uniformly sheared homogeneous turbulence,
and c direct numerical simulation of plane channel flow near a wall horizontal plane y+ ∼ 10.
The streamwise elongation of turbulent structures resulting from shear appears clearly, as does the
strong similarity between RDT and DNS results. From Lee et al. (1990) with permission of CUP

fields obtained in the case of pure plane shear and plane channel flow near the wall.
It is concluded that the tendency to create elongated streaky structures by a strong
mean shear is inherent to this “homogeneous RDT” operator, independently of the
presence of a wall and non linear effects.
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A detailed analysis of the vortical structures dynamics will be given in Sect. 9.8.
We will just summarize here the results of Iida et al. (2000), who performed a detailed
analysis of subtle discrepancies which exist between vortex tubes predicted by RDT
and those observed in DNS for a medium shear 0 ≤ St ≤ 6.

Direct numerical simulations reveal that these longitudinal vortices are inclined
in the (x, y) plane and tilted in (x, z) plane. Vortices with positive (resp. negative)
longitudinal vorticity tend to tilt at a positive (resp. negative) angle, while they are
all inclined at a positive angle. An important result is that RDT is able to predict
the inclination of longitudinal vortices, but not their tilting. Therefore, the tilting
appears to be a non-linear phenomenon. This subtle kinematical difference on the
vortices topology has a very large impact on the non-linear dynamics. To measure
this effect, Iida and coworkers have computed non-linear terms using both DNS and
RDT velocity field as an input. Their main observations are the following:

• In DNS, the kinematics of longitudinal vortices is deeply affected by the instan-
taneous strain rate tensor. They are stretched in the streamwise and spanwise
direction, and compressed in the vertical direction. These local strains yield the
existence of spiral streamlines in the streamwise direction and the production of
non-zero instantaneous local Reynolds stress u′

2u′
3. The streamwise fluctuations

generated at the sides of the longitudinal vortex are wrapped around it, leading to
the existence of negative values of the local fluctuating strain (∂u′

1/∂x2+∂u′
2/∂x1)

inside the vortex. This phenomenon, referred to as vortex wrapping, is absent in
RDT fields.

• The vortex wrapping phenomenon and its effect on the kinematics of longitudinal
vortices have a strong impact on nonlinear energy transfers. RDT fields lead to a
vanishing transfer function in the Fourier space for the vertical Reynolds stress
u′

2u′
2, while it contributes to an inverse energy cascade in the DNS field. RDT

fields also yield to an underestimation of the forward energy cascade associated
with the non-linear transfers of u′

1u′
1 and u′

3u′
3. This underestimation is tied to the

misprediction of the instantaneous values of u′
2u′

3.

9.4 Nonlinear Spectral Analysis, Simplified Closure
and Self-similarity

Some attempts exist to reproduce both linear and fully nonlinear régimes by an unified
spectral theory. Anisotropic EDQNM approach by Cambon et al. (1981) was limited
to moderate anisotropy, and was unable of covering a very large St domain. Theo-
retical derivations from LRA by Ishihara et al. (2002) are even more limited to weak
anisotropy and small structures. The general formalism, called EDQNM(1-2-3), is
valid in principle, but no complete solution, with arbitrary degree of anisotropy, was
numerically computed. Recently the model by Mons et al. (2016) (referred to as MCS
model, in order to distinguish several versions of anisotropic EDQNM) presented
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in Chap. 8 offered a way to calculate second-order statistics of any homogeneous
shear-driven turbulent flow, as illustrated in the next subsection.

A different approach was proposed by Nazarenko and Zakharov (1994), who use
a kind of “first loop” for evaluating the impact of nonlinearity. On the one hand,
this approach includes an interesting formalism relying Clebsh potentials, allowing
to derive a Hamiltonian operator.3 On the other hand, the basic RDT solution is
completely missed, since the authors consider that the asymptotic value of kinetic
energy is a non-zero constant in inviscid RDT, ignoring all the subtle effects cor-
rectly accounted for by Rogers (1991). This last point unfortunately invalidates their
main result, which is that turbulent kinetic energy grows as (St)2 in their particular
nonlinear régime.

Simple results for the coexistence of linear and nonlinear effects can be inferred
from the numerical and theoretical study of Salhi et al. (2014), as shown in Fig. 9.6.
The evolution of the radial energy spectrum E(k) is shown in left. Large scales
contribution (small wavenumber range) continuously evolve, whereas small scale
reach an almost steady state after a transient phase of viscous decay (St ≤ 3).
Looking at viscous RDT, the behavior of largest scales is almost the same as the
DNS one, whereas smallest scales continue to evolve and never reach a steady state.
It is possible to analyse separate terms in the equation for E(k, t)

∂E

∂t
+ T L(k, t) − P(k, t) = T (k, t) − 2νk2 E(k, t), (9.38)

in which T L denotes the linear transfer by mean shear advection, P corresponds
to the radial spectrum of production, whereas T (k) and 2νk2 E(k) holds for the
nonliner transfer term and the dissipation spectrum, inherited from the Lin equation
for THI. Looking at Fig. 9.6-right, it is confirmed that the quasi-steady shape of the
energy spectrum at large scale corresponds to an almost balance, k by k, of positive
nonlinear transfer term and dissipation spectrum, with an almost zero contribution of
the right-hand-side of Eq. (9.38), together with a negligeable contribution from the
linear terms (T L − P) to the unsteadiness of E in this range. This situation is very
close to what happens in decaying HIT at very high Reynolds number, in connection
with the asymptotic recovery of the 4/5 Kolmogorov law. It is found, however, at
moderate Reynolds numbers permitted by DNS.

9.4.1 Results in Term of Spherically-Averaged Descriptors

The model by Mons et al. (2016) gives direct access to the 11 independent spherically
averaged descriptors (energy spectrum, 2 trace-free symmetric deviatoric spectral
tensors for directional anisotropy and polarization anisotropy). They are governed
by closed equations, in which a truncated expansion in terms of angular harmonics of

3Hamiltonian formalism is also very important in the “Russian” school of wave turbulence theory.

http://dx.doi.org/10.1007/978-3-319-73162-9_8
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Fig. 9.6 Left: Time-development of radial energy spectrum E(k, t) by DNS in pure shear case.
Right: Time-development of the term T (k) − 2νk2 E(k). The initial time (St = 0) corresponds to
a shearless precomputation (full line). Adapted from Salhi et al. (2014) with permission of APS

k-vector spectra is injected in both linear terms (inherited from RDT) and nonlinear
ones from EDQNM1. From the Eq. (8.46)

ϕi j (k, t) = 2E(k, t)

(
1

3
δi j + H (dir)

i j (k, t) + H (pol)
i j (k, t)

)
,

valid for any anisotropic flow subjected to mean velocity gradients A, four com-
ponents are nonzero in the case of pure plane shear with isotropic initial data. The
spherically averaged spectrum ϕ12 — with P = Sϕ12 in Eq. (9.38) — of the off-
diagonal Reynolds stress component obtained at St = 20 is plotted on Fig. 9.7, with
its two contributions, in log-log coordinates (to show the slopes, left) and in linear-log
coordinates (to show the change of sign of the directional anisotropy term, right). The
rise of a −7/3 slope, as suggested by several authors since Lumley (1967), is found
for wavenumbers larger than the threshold wavenumber (recalled below) with an
inprecedented range, permitted by the high Reynolds number. Given the weak value
of anisotropy at larger wavenumbers, the ratio H (dir)

12 /H (pol)
12 is plotted in Fig. 9.9.

Looking at the diagonal streamwise component ϕ11, similar results are found, but
a better plateau is recovered for the abovementioned ratio, with a positive value of
about 0.6. In addition to the −7/3 slope for both E H (dir)

11 and E H (pol)
11 , the classical

Kolmogorov slope is recovered for the total contribution, because of the dominance
of the energy spectrum E .

9.4.2 Local Isotropy in Homogeneous Shear Flows

A threshold wavenumber was identified in both rotating turbulence (Zeman’s scale,
also referred to as Hopfinger’s scale or Woods’ scale) and stratified turbulence (Ozmi-
dov scale). In the shear case, one has the Corrsin’s scale (Corrsin 1958) whose asso-
ciated wavenumber is

http://dx.doi.org/10.1007/978-3-319-73162-9_8
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Fig. 9.9 Ratios
H (dir)/H (pol) for both
off-diagonal (dashed line)
and diagonal (full line)
components. Log-linear
plotting. Courtesy from
Vincent Mons
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kS =
√

S3

ε
. (9.39)

As a general result for any shear-driven turbulent flow, S is the shear rate here,
but could be proportional to the norm of an arbitrary A mean flow gradient matrix,
or S = √

Ai j Ai j as well. The trend to restore isotropy for wavenumbers larger than
kS (or scales smaller than the Corrsin’s lengthscale k−1

S ) is shown in Figs. 9.7, 9.8
and 9.9 for both the off-diagonal component ϕ12 and the streamwise one ϕ11.

The existence of a threshold wavenumber is not so obvious in turbulence with-
out production. On the other hand, it is expected that in flows with produc-
tion, the maximum anisotropy induced by linear RDT operators will be found at
largest scales/smallest wavevectors, whereas it can only decay monotonically as the
wavenumber increases, until a classical quasi-isotropic Kolmogorov range is recov-
ered.

The question of the validity of Kolmogorov’s local isotropy hypothesis in homo-
geneous shear flows has been addressed by several authors, using both experimental
and simulation data. A first observation is that, as expected, the mean shear induces a
breakdown of global isotropy. Looking at p.d.fs of velocity increments (see Fig. 9.10),
one can see that the effect of the shear is scale-dependent. Its influence on small scale
anisotropy is strong, leading to a noticeable departure from the isotropic turbulence
case, while the effects at larger scales is weaker. There is no contradiction with the
expected scale-by-scale distribution of anisotropy: Departure from Gaussianity is
weaker in the largest scales, anisotropic and dominated by RDT, than in the smallest
scales, dominated by intrinsic nonlinearity.

In addition, experimental data suggest that the threshold wavenumber kS given by
Eq. (9.39) delineates two ranges for the energy spectrum E(k), with k−1 and k−5/3

slopes, as follows

E(k) ∝
{

k−1 k < kS

k−5/3 k > kS
(9.40)

As a crude interpretation, one can say that for scales larger than L S = k−1
S the

dynamics is dominated by linear shear effects, while scales much smaller than L S

should be governed by nonlinear effects. Local isotropy may hold for the latter range
of scales.

The subtle but straightforward linear RDT analysis of Hanazaki and Hunt (2004)
confirms the rise of the k−1 slope. This slope can be found in near wall turbulence
as well, with a rather recent experimental evidence by Nickels et al. (2005). Such a
slope cannot be seen in Fig. 9.8, because the spectral range between the peak of the
energy spectrum and the kS wavenumber is too small. This is a generic remark for
other cases of spectral distribution given in this book: No information for a Bolgiano
range in stably stratified turbulence, no information for a spectrum “nothing like” the
Kolmogorov spectrum in unstably stratified turbulence. Only when kS is far larger
than the wavenumber of the peak, slopes very different from Kolmogorov’s one are
observed, as in rapidly rotating or in strongly stratified turbulence.
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Fig. 9.10 Probability
density function of the
velocity increment in
isotropic turbulence (black
circle) and homogeneous
shear turbulence (white
circle) for r/η = 8 (top) and
r/η = 30 (top), where η is
the Kolmogorov scale. The
dashed line is related to the
Gaussian distribution.
Reproduced from Gualtieri
et al. (2002) with permission
of AIP

Experimental data suggest that the bifurcation between the two “inertial” ranges
(but probably the range at largest scales is not inertial) occurs for kL S ∼ 0.5−1. Such
a transition in the slope of E(k) can be hardly identified in Fig. 9.11, in which the
spectrum computed thanks to the anisotropic EDQNM model detailed in Sect. 17.9
in the pure shear case at very high Reynolds number.

The above criterion is not sufficient to account for the full complexity of the
problem, since viscous effects are neglected and that these effects can preclude
the occurence of the quasi-isotropic inertial range. One needs to define two non-
dimensional parameters, Si and Sd , to describe the full problem. The first one
measures the relative importance of nonlinear inertial mechanisms and linear shear
effects:

http://dx.doi.org/10.1007/978-3-319-73162-9_17
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Fig. 9.11 Energy spectrum
in the homogeneous pure
shear case computed via
anisotropic EDQNM (MCS
model). Courtesy of V.
Mons and A. Briard
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The second one is defined as the ratio of the dissipative and shear effects:

Sd = S

√
ν

ε
=

(
η

L S

)2/3

(9.42)

One can expect to observe a pseudo-isotropic inertial range for small values of
Sd only. For large values of Si , most of the scales in the inertial range are dominated
by the mean shear effects, precluding the existence of scales compatible with local
isotropy. A consequence is that true local isotropy, if it exists, can be recovered at
very high Reynolds number only. Such high values have not been reached up to now,
and available data only makes it possible to identify trends. Available results suggest
that, increasing the Reynolds number, small scales in homogeneous turbulence come
closer to isotropy, but that some anisotropy persists, even at Reλ = 660 (Ferchichi
and Tavoularis 2000). An open issue is the existence, even at very high Reynolds
number, of a pseudo-isotropic state of the small scales, in which some anisotropy
would remain.

9.4.3 Exponential Growth from Self-similarity

Exponential growth is reproduced by the model (Mons et al. 2016), but with a rate
probably overestimated. Even single-point closures satisfactorily work for that, pro-
vided that constants are appropriately chosen, as discussed in Sect. 9.2.

We will discuss now how to introduce a self-similar argument in the spectral
theory, following a very relevant approach proposed by Julian Scott (private com-
munication) as follows. A reminiscent approach applied to the Lin equation was
proposed in George and Gibson (1992).
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Large-scale self-similarity can be expressed very similarly as in Eq. (4.137) for
the shearless flow case, as

R̂i j (k, t) = u2 L3�i j (kL), (9.43)

where u(t) and L(t) are velocity and length scales characterizing the self-similar
evolution of turbulence, respectively, and �i j is a dimensionless tensor. The Reynolds
stress tensor is therefore given by

u′
i u

′
j = u2

∫∫∫
�i j (q)d3q, (9.44)

showing that its different components are proportional to the same function, u2, of
time. Thus, the ratio of different components is constant, as observed asymptotically.
Using Eq. (9.43), the Craya’s equation (2.102) becomes

α2

(
qm

∂�i j

∂qm
+ 3�i j

)
− α1�i j+

α3

(
Mim�mj + M jm�im − Almql

∂�i j

∂qm

)
= �i j , (9.45)

where q = kL is the similarity variable, Ti j = u2 L3�(q), and the quantities α1, α2

and α3 are given by

α1(t) = L

u3

du2

dt
, α2(t) = 1

u

d L

dt
, α3 = L

u
. (9.46)

Given the fact that we are concerned with the large scales, the viscous term in Eq.
(2.102) is dropped out. From Eq. (9.46), it follows that the αi are related by

dα3

dt
= α2 + 1

2
α1. (9.47)

Presuming that the given mean flow does not permit self-similar solutions of RDT
(which is the case for the pure plane shear, but also for all but the pure rotation case),
the only possible large-scale self-similarity, allowing for nonlinearity, has constant
α’s. From Eq. (9.46) this implies the following exponential behaviour

u(t) ∼ exp

(
α2

α3
t

)
, L(t) ∼ exp

(
α2

α3
t

)
, (9.48)

using α1 = −2α2. A positive value of α2/α3 is consistent with experimental and
numerical DNS results.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Of course, we have not shown that large-scale self-similarity occurs, merely that,
if it does, it must respect (9.48). The previous analysis has something to do with the
Oberlack’s approach, in the sense that no closure theory is needed, but the discussion
of the admissible values for the constants α’s relies on a very subtle analysis of
asymptotic RDT (not reported here for the sake of brevity).

We also take from Julian Scott the following remark. Exponential growth of L
means that, in practice, the large scales in turbulence increase rapidly in size until
they encounter inhomogeneities or boundaries of the flow, at which point the above
model, assuming homogeneous turbulence in an infinite domain, no longer holds.

Finally, the exponential growth appears as generic for shear-driven flows domi-
nated by production, in which A is not purely antisymmetric, but may result from
different histories. For strain-dominated flows, exponential growth is first induced
by linear effects of vortex-stretching-type; then nonlinear dynamics can reduce the
growth rate but cannot saturate the hyperbolic instability, so that the linear exponen-
tial growth is eventually altered but not suppressed. In the case of pure shear flow
only, the exponential growth does not result from the linear (algebraic) growth, but
needs a complex interplay between linear and nonlinear effects.

9.5 Return to Isotropy in Shear-Released Homogeneous
Turbulence

The return to isotropy of homogeneous shear turbulence is classically addressed
considering an initially isotropic turbulence experiencing an homogeneous constant
shear during a finite. Anisotropy growths during the first stage, and then evolves
freely in a second time.

A typical evolution of the anisotropy tensor bi j is displayed in Fig. 9.12. It is
observed that the solution doesn’t converge toward an isotropic final state, but toward
a state with constant bi j . This is due to the fact that anisotropy at very large scales
is almost frozen, the decay of anisotropy observed just after the shear-release time
being due to the return of isotropy of small scales. The scale-by-scale structure of
anisotropy during the final stage of evolution is illustrated in Fig. 9.13, which displays
both polarization and directional component of anisotropy during the final stage
of evolution. It is observed that small scales are fully isotropic, while very large
scales are not: the shear-induced anisotropy at such scales remains unchanged by
the nonlinear cascade mechanisms. The relaxation of very large scales is observed
to be sensitive to the infrared slope of the initial kinetic energy spectrum σ such
that E(k → 0, t = 0) ∝ kσ. In the case σ = 4 (initial Batchelor turbulence), the
permanence of large eddies is broken by inverse cascade mechanisms and large scales
exhibits a significant evolution associated to a reduction of anisotropy. For smaller
values of σ (e.g. Saffman turbulence with σ = 2) large scales and their associated
anisotropy are almost frozen.
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Fig. 9.13 Scale-by-scale decomposition anisotropy in homogeneous shear-released turbulence dur-
ing final stage of evolution computed via anisotropic EDQNM. Left: poloidal and toroidal compo-
nents. Right: influence of the infrared kinetic energy spectrum slope at initial time. Same remark on
the sign of the off-diagonal component as in Fig. 9.12. Adapted from Briard et al. (2016). Courtesy
of A. Briard

Decay laws for integral quantities such as kinetic energy, K(t), and the non-zero
extra-diagonal Reynolds stress R12 can be obtained using an extended version of the
Comte-Bellot – Corrsin theory. The analysis performed in Briard et al. (2016) shows
that the decay exponent of kinetic energy is the same as in the pure isotropic case, i.e.

K(t) ∝ tn, n = σ − p + 1

σ − p + 3
, p =

{
0 1 ≤ σ ≤ 3

0.55 σ = 4

while R12(t) exhibits the following algebraic decay law:

R12(t) ∝ tm, m = σ − pS + 1

σ − p + 3
, p =

{
0 1 ≤ σ ≤ 3

0.279 σ = 4
(9.49)
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where p is the same as for K(t). Values of p and pS are tuned thanks to anisotropic
EDQNM results, leading to a very good agreement in all cases.

9.6 Models for Space- and Space-Time Correlations

9.6.1 Models for Single-Time Velocity Spectral Tensor

This section is devoted to explicit models for the spectral tensor R̂(k).
Most existing models are based on the use of the Rapid Distorsion Theory has

been used to develop models for the velocity spectral tensor. A hierarchy of models
with increasing complexity and theoretical consistency can be identified:

• Models based on inviscid RDT, e.g. Mann (1994). The key idea is to use the ana-
lytical solution given by RDT for the time-evolution of the spectral tensor starting
from an initially isotropic field, and to assume that eddies cannot be stretched over
a duration larger than their lifetime. The spectral tensor is therefore defined as a
kind of equilibrium value reached at a time equal to the lifetime, for which linear
RDT effects are counterbalanced by nonlinear effects. It is important to emphasize
here that such models are time-independent, which is not fully consistent with the
fact that homogeneous shear turbulence is an genuinely unsteady flow that does not
exhibit a steady state. As a matter of fact, these models are mostly used to predict
the spectral tensor in turbulent parallel or quasi-parallel shear flows (jet, mixing
layer, boundary layer, channel flow ...) at equilibrium or close to equilibrium. A
weak time-dependency is still present thanks to the fact that such model scalar
inputs, e.g. turbulent kinetic energy K(t) are time-evolving quantities. Therefore,
the use of such models should be restricted to the exponential growth phase in
which anisotropy is assumed to have reach en equilibrium state.

• An improvement of previous models, in which (i) damping or saturation of
anisotropy via non-linear effects is taken into account continuously modifying
the RDT Green function in an ad hoc way and (ii) the generation of new eddies
via the mean shear at all times is taken into account (De Mare and Mann 2016).

• Models with full modelling of non-linear effects and pressure effects, models
being defined in such a way that analytical integration can be carried out, yielding
explicit models that can be rewritten in a formalism close to the one of RDT, being
based on a Green function. A recent example was given by Weinstock (2013).

We first illustrate the first class of models, i.e. models associated to a steady state.
Denoting R̂eq

i j (k) the associated solution, one takes R̂eq
i j (k) = R̂i j (k, τli f e(k)), where

τ (k) is the lifetime of the eddy with characteristic size 1/k. Several estimates have
been proposed, which are summarized in Table 9.3. The important point is that all
the scale-dependent models lead to τli f e(k) ∝ k−2/3 for small scales located within
the inertial range. Results obtained using atmospheric boundary layer data seems to
show that Mann’s expression is the most accurate one. It is worth noting that taking
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Table 9.3 Models for the eddy lifetime to be used in the expression for the velocity spectral tensor
in incompressible homogeneous shear flows. S denotes the mean shear. Asymptotics are obtained
considering the von Karman model spectrum for E(k)

Source τli f e(k) τli f e(kL � 1) τli f e(kL � 1)

Maxey (1982) ∼1/S ∼1/S ∼1/S

Mann (1994) ∼k−1
(∫ +∞

0 E(p)dp
)−1/2 ∼k−1 ∼k−2/3

Comte-Bellot and
Corrsin (1971)

∼k−2
(∫ +∞

0 p2 E(p)dp
)−1/2 ∼k−2 ∼k−2/3

Lesieur (1987) ∼ (
k3 E(k)

)−1/2 ∼k−7/2 ∼k−2/3

a scale independent lifetime as in Maxey’s model yields a failure in the prediction in
the slope of the non-zero velocity cross-spectra in the inertial range.

The resulting model expressed in the classical frame of reference is (a compact
form can also be written using the local frame used in Sect. 9.3):

R̂eq
i j (k) = R̂i j (k(τli f e(k)), τli f e(k)) = G(0)

im (k, τli f e(k), t0)G
(0)
jn (k, τli f e(k), t0)R̂mn(K , t0)

(9.50)

where G(0) denotes the Green function of the inviscid pure shear problem, k =
(k1, k2, k3), K = (K1 = k1, K2 = k2, K3 = k3+β(k)k1) and with β(k) = Sτli f e(k),

and R̂(K ) is the isotropic spectral tensor used as an initial condition at time t0. In
the present case, the spectral tensor can be written in the following explicit form:

R̂eq
11 (k) = E(K )

4πK
(K 2 − k2

1 − 2k1 K3ξ1 + (k2
1 + k2

2)ξ
2
1) (9.51)

R̂eq
22 (k) = E(K )

4πK
(K 2 − k2

2 − 2k2 K3ξ2 + (k2
1 + k2

2)ξ
2
2) (9.52)

R̂eq
33 (k) = E(K )

4πk4
(k2

1 + k2
2) (9.53)

R̂eq
12 (k) = E(K )

4πK 4
(−k1k2 − k1 K3ξ2 − k2 K3ξ1 + (k2

1 + k2
2)ξ1ξ2) (9.54)

R̂eq
13 (k) = E(K )

4πK 2k2
(−k1 K3 + (k2

1 + k2
2)ξ1) (9.55)

R̂eq
23 (k) = E(K )

4πK 2k2
(−k2 K3 + (k2

1 + k2
2)ξ2) (9.56)
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along with

ξ1 =
(

C1 − k2

k1
C2

)
, ξ2 =

(
C2 + k2

k1
C1

)
(9.57)

and

C1 = β(k)k2
1(K 2 − 2K 2

3 + β(k)k1 K3)

k2(k2
1 + k2

2)
(9.58)

C2 = k2 K 2

(k2
1 + k2

2)
3/2

arctan

(
β(k)k1(k2

1 + k2
2)

1/2

K 2 − K3k1β(k)

)
. (9.59)

This model is observed to accurately predict the velocity spectra and cross-spectra
in neutral atmospheric boundary layer when supplemented by an ad hoc term to
account for wall effects and local, altitude-dependent tuning of the energy spectrum.

The extension of this model to account for both continuous nonlinear eddy damp-
ing and generation of new eddies proposed in De Mare and Mann (2016) leads to

R̂eq
i j (k) =

∫ t

−∞
Gim(K , t − t ′)G jn(K , t − t ′)

1

τli f e(K )
R̂mn(K )dt ′, (9.60)

where G is the modified Green function given by:

G(K , t − t ′) = exp
(−(�(K , t − t ′) − �(K , 0))

)
G(0)

(k, S(t − t ′), t ′), (9.61)

where G(0) is the original RDT Green function mentioned above and �(K , t − t ′)
accounts for the continuous damping effect. The latter is solution of the following
equation:

∂

∂t
�(K , t − t ′) = 1

2τli f e(k(t))
. (9.62)

The model by Weinstock (2013) is based on an actual closure of the Craya equa-
tion, in which nonlinear effects are present via spectral transfer terms and pressure-
strain rate spectral tensor. With respect to the general Equations. (8.39) and (8.40)
under their most compact form, the nonlinear closure amounts to

T (E)(k, t) = T (k, t)

4πk2 − ϕRT I (k, t)

(
E(k, t) − E(k, t)

4πk2

)
, T (Z)(k, t) = −ϕRT I (k, t)Z(k, t).

This closure combines purely isotropic (conservative) energy transfer T (k, t) and
explicit return-to-isotropy term, as a spectral Rotta’s effect, that is mediated by the

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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relaxation coefficient ϕRT I (k, t). It is perhaps useful to report the original equations,
component by component, in the Cartesian frame:

[
∂

∂t
− k1S

∂

∂k2
+ 2νk2 + ϕ(k, t)

]
R̂i j (k, t)

= −S

[(
δi1 − 2

ki k1

k2

)
R̂ j2(k, t) +

(
δ j1 − 2

k1k j

k2

)
R̂i2(k, t)

]

+2π2

k2

[
T (k, t) + ϕRT I (k, t)E(k, t)

]
Pi j (k), (9.63)

up to a strange factor 1/(8π2) in the definitions of E and T versus the definitions used
in the rest of the book, where T (k, t) is closed by isotropic EDQNM, see Sect. 4.8.7.
The relaxation coefficient used to model return-to-isotropy effects due to pressure
effects is given by4

ϕRT I (k, t) = 1

5π

∫ +∞

0
p2dp

∫ π

0
θkpq

k4 E(p, t)E(q, t)

p2q2 E(k, t)

(
1 − (k · q)2

k2q2

)
sin θpdθp.

(9.64)
The expression for the characteristic time θkpq is the same as for isotropic

EDQNM, see Sect. 4.8.7. In the inertial range, it is expected that ϕ(k, t) = 2η(k, t) ∼
k2/3ε2/3. The formal explicit solution to the previous equation is found as in the inte-
gral form of the Craya equation in Eq. (2.116) with mean-flow Lagrangian approach
already described for modified RDT. It appears as the sum of a damped RDT solution
and a fully nonlinear contribution:

R̂i j (k, t) = R̂ R DT
i j (k, t) exp

(
−

∫ t

0
ϕ(k(t ′), t − t ′)dt ′

)

+2π2

k2

∫ t

0
Ai j (k, t") [T (k(t"), t − t") + ϕ(k(t"), t − t")E(k(t"), t − t")]

× exp

(
−

∫ t"

0
dt ′[νk2(t ′) + ϕ(k(t ′), t − t ′)

)
dt". (9.65)

The expressions of the dimensionless coefficients Ai j (k, t") are very cumbersome
and will therefore not be reported here for the sake of brevity. The full equations
were never solved numerically in the original paper, because of the very complex

4Confusing notations in the original paper have been corrected here, as far as possible; the EDQNM-
like integral uses a polar-spherical system of coordinates for p with polar axis k. Formulation in
terms of the bipolar system of coordinates (as in Chap. 4) is easily recovered from

∫∫∫
(...)d3 p = 2π

∫ ∞

0
p2dp

∫ π

0
(...)sinθpdθp = 2π

∫∫
�k

pq

k
(...)dpdq.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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computation of the sole EDQNM equations for T (k, t) and ϕRDT (k, t). Assuming
simplified given forms of these terms, however, numerical integration yields a sat-
isfactory agreement with existing DNS and experimental results (within 15% errors
about Reynolds stresses and anisotropy). It is observed to recover the existence of
a regime with exponential growth of kinetic energy Since the full solution appears
as a pretty complex ones, it dramatically simplifies looking at large wave number
asymptotics, i.e. inertial range scales:

R̂i j (k, t) = R̂(iso)
i j (k, t)

−2Sπ2

k2

[(
δ j1 − 2

k1k j

k2

)
Pi2(k) +

(
δi1 − 2

ki k1

k2

)
Pj2(k)

]
E(k, t)

2νk2 + ϕ(k, t)
.

(9.66)

The effect of the mean shear appears as a perturbation of the isotropic solu-
tion R̂(iso)

i j (k, t). The predicted inertial range spectrum for the extra-diagonal term
obtained via spherical integration is

ϕ12(k, t) = − 4

15
S

E(k, t)

2νk2 + ϕ(k, t)
 −1

2
Sε1/3(t)k−7/3, (9.67)

in agreement with EDQNM and DNS results, where the molecular viscous term νk2

has been neglected and the following approximation have been made: E(k, t) =
1.5ε2/3(t)k−5/3 and ϕ(k, t) = 0.8ε1/3(t)k2/3.

9.6.2 Models for Space-Time Correlations

9.6.2.1 Elliptic Model for Space-Time Longitudinal Correlation

The Elliptic model discussed in Sect. 4.3.5 can be extended to shear flows (Zhao and
He 2009). Restricting the analysis to the longitudinal correlation function computed
along the direction of the mean velocity, i.e. R(r, τ ) = u(x, t)u(x + r ex , t + τ ) in
the present case in which the mean flow is given by ū = Syex , the second-order
expansion (4.96) still holds, but the expression of the non-zero coefficients need to
be adapted.

These new expressions are found inserting the full Navier–Stokes equations in
the definition of the coefficients5 and assuming that higher-order statistics are nearly
isotropic, i.e. coefficients will be evaluated considering isotropic expressions for the
spectral tensor R̂i j (k). Such an approximation can be understood as a weak anisotropy

5A similar procedure is used in Kaneda (1993), Kaneda et al. (1999) to compute coefficients of the
Taylor-series expansion of both Lagrangian and Eulerian velocity correlations.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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restriction at all scales, or a small scale analysis with arbitrary anisotropy at large
scales.

One has

∂2 R

∂r2
(0, 0) = u(x, t)

∂2u

∂x∂x
(x, t) = −∂u

∂x
(x, t)

∂u

∂x
(x, t)

= −
∫

k2
1 R̂11(k, t)d3k

= −2

3

∫ +∞

0
k2 E(k)dk, (9.68)

which is identical to the expression found in the isotropic case. The mixed derivative
term leads to

∂2 R

∂r∂t
(0, 0) = u(x, t)

∂2u

∂x∂t
(x, t) = −∂u

∂x
(x, t)

∂u

∂t
(x, t)

= 2

3
ū
∫ +∞

0
k2 E(k)dk + ı S

∫ (
δi1 − 2

ki k1

k2

)
k2

1 R̂1i (k, t)d3k

= 2

3
ū
∫ +∞

0
k2 E(k)dk (9.69)

and

∂2 R

∂t∂t
(0, 0) = u(x, t)

∂2u

∂t∂t
(x, t) = −∂u

∂t
(x, t)

∂u

∂t
(x, t)

= −2

3
ū2

∫ +∞

0
k2 E(k)dk − 2

3
S2

∫ +∞

0
E(k)dk − 2

3
v2

0

∫ +∞

0
k2 E(k)dk,

(9.70)

where v2
0 = 2

∫ k
0 E(k)dk is the energy of the large scales responsible for the random

sweeping phenomenon.
Substitution into the Elliptic model relation

R(r, τ ) = R

(√
(r − Ucτ )2 + V 2

c τ 2, 0

)
(9.71)

makes it possible to identify the convection velocity Uc and the diffusion velocity Vc:

Uc = ū, V 2
c = S2λ2 + v2

0, (9.72)

where λ is the Taylor microscale. Looking at the model, it appears that the main effect
of the shear is to increase the diffusion velocity. The Elliptic model has been reported
to yield accurate results in a wide class of free shear flows and wall bounded flows
at steady equilibrium state. An estimate for the wave-number longitudinal frequency
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spectrum is obtained inserting this new expression for Vc into Eq. (4.94), leading to
an y-dependent expression:

E(k,ω, y) = E(k)√
2πk2V 2

c

exp

(
− (ω − k · ū(y)ex )

2

2k2V 2
c

)
. (9.73)

Such an expression has recently been proposed for turbulent boundary layers, e.g.
Wilczek et al. (2015).

It is worth pointing out that these models are a priori well suited for turbulent
shear flows once an equilibrium steady state has been reached. There relevance to
described the unsteady development of homogeneous shear turbulence has not been
definitely assessed up to now.

9.6.2.2 A Model for the Two-Point Two-Time Spectral Tensor

A model for the full two-point two-time spectral tensor was proposed by De Mare
and Mann (2016), by modifying (9.60) to account for random sweeping by large
scales. The resulting model is:

R̂eq
i j (k, τ ) =

∫ t

−∞
e− 1

2 �2(k,τ )Gim(K , t −t0)G jn(K , t −t0)
1

τ (K )
R̂mn(K )dt0. (9.74)

The exponential form of the random sweeping term arise from the hypothesis that
this mechanisms can be considered as a Gaussian process, as for the Linear Random
Advection model and the resulting Elliptic model. The key idea here is to model an
eddy at wave number k as a sphere of radius Rk ∼ 1/k in which the fluid has a
uniform velocity uRk (x, t) defined as the mean value of velocity within this sphere.
The standard deviation of the velocity of the eddies with radius Rk in the direction
k is therefore

σ(k) =
(

ki k j

k2
u Rk

i u Rk
i

)1/2

(9.75)

and the resulting random sweeping effect is characterized in the Lagrangian frame-
work by

�(k, τ ) =
∫ t+τ

t
σ(k(t ′))k(t ′)dt ′, (9.76)

which is assumed to obey a Normal distribution.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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9.7 Pressure Field: Theory and Models

9.7.1 Exact Expression for Fluctuating Pressure
and Its Two-Point Correlations

The pressure field associated to homogeneous sheared turbulence can be analyzed
extending the analysis displayed in Sect. 4.9 for the isotropic case. Removing the
mean flow contribution, the Poisson equation for the fluctuating pressure is

1

ρ
∇2 p′ = −∂Ui

∂x j

∂u j

∂xi
− ∂ui

∂xi

∂u j

∂x j
, (9.77)

where u and U denote the fluctuating and the mean velocity field, respectively, for
the sake of simplicity. The solution is expressed as

1

ρ
p′(x, t) = −

∫ (
∂Ui

∂y j

∂u j

∂yi
+ ∂U j

∂yi

∂ui

∂y j

)
G(x, y)d3 y

−
∫

∂2

∂yi∂y j

(
ui u j − ui u j

)
G(x, y)d3 y, (9.78)

where G(x, y) = 1/4π|x − y| denotes the three-dimensional Green function asso-
ciated to the Poisson equation in unbounded domains. The first term in the right
hand side is related to the interaction between the mean flow gradient (which van-
ishes in the isotropic case) while the second one arise from self-interactions between
velocity fluctuations. The two-point single-time pressure correlation Rpp(x, x′) =
p′(x, t)p′(x′, t) in a general free shear flow is given by

1

ρ2 Rpp(x, x′) =
∫∫ (

∂Ui

∂y j

∂U ′
l

∂y′
m

∂2u j u′
m

∂yi ∂y′
l

+ ∂Ui

∂y j

∂U ′
m

∂y′
l

∂2u j u′
l

∂yi ∂y′
m

+ ∂U j

∂yi

∂U ′
l

∂y′
m

∂2ui u′
m

∂y j ∂y′
l

+∂U j

∂yi

∂U ′
m

∂y′
l

∂2ui u′
l

∂y j ∂y′
m

)
G(x, y)G(x′, y′)d3 yd3 y′

+
∫∫ (

∂Ui

∂y j

∂3u j u′
l u

′
m

∂yi ∂y′
l∂y′

m
+ ∂U j

∂yi

∂3ui u′
l u

′
m

∂y j ∂y′
l∂y′

m

+ ∂U ′
l

∂y′
m

∂3u′
mui u j

∂y′
l∂yi ∂y j

+ ∂U ′
m

∂y′
l

∂3u′
l ui u j

∂y′
m∂yi ∂y j

)
G(x, y)G(x′, y′)d3 yd3 y′

+
∫∫ (

∂4ui u j u′
l u

′
m

∂yi ∂y j ∂y′
l∂y′

m
− ∂2ui u j

∂yi ∂y j

∂2u′
l u

′
m

∂y′
l∂y′

m

)
G(x, y)G(x′, y′)d3 yd3 y′,

(9.79)

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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where primed quantities are evaluated at position y′. The first two terms in the right-
hand side are related to second- and third-moment interactions between the mean
shear and the fluctuating field, while the third arise from non-linear self-interactions
of the fluctuating field.

In the case of a constant-mean-shear homogeneous turbulence with U =
(Sy, 0, 0), and taking y′ = y + r the above expression simplifies as

1

ρ2 Rpp(ξ) = 4S2
∫∫

∂2 R22(r)

∂r2
1

G(x, y)G(x + ξ, y + r)d3 yd3r

+ 2S
∫∫

∂3

∂r1∂rl∂rm
(R2lm(−r) − R2lm(r)) G(x, y)G(x + ξ, y + r)d3 yd3r

+
∫∫

∂4 Ri j,lm(r)

∂ri ∂r j ∂rl∂rm
G(x, y)G(x + ξ, y + r)d3 yd3r, (9.80)

where the following notations have been used for the velocity correlations:

Ri j (r) = ui ( y)u j ( y + r), Rilm(r) = ui ( y)ul( y + r)um( y + r)

along with

Ri j,lm(r) = ui ( y)u j ( y)ul( y + r)um( y + r) − ui ( y)u j ( y) ul( y + r)um( y + r).

The associated exact expression for the pressure spectrum E pp(k) = 1
(2π)3

∫∫∫
exp(ı k · r)Rpp(r)d3r is

1

ρ2
E pp(k) = S2

(
k2

1

k4
R̂22(k)

)
+ S

2
ı
k1klkm

k4

(
R̂∗

2lm(k) − R̂2lm(k)
)

+ki k j klkm

k4
R̂i j,lm(k), (9.81)

where the hat symbol denotes the Fourier transform. The term on the right hand side
are commonly referred to as the second-moment turbulence-shear interaction, the
third moment turbulence-shear interaction and the turbulence-turbulence interaction,
respectively.

The three-dimensional spectrum is then obtained by integrating E pp(k) over
sphere with radius k, yielding

E pp(k) = Es2
pp(k) + Es3

pp(k) + Et
pp(k), (9.82)

where the three components are related to the three terms in Eq. (9.81).
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9.7.2 Inertial Range Scalings and Models

The three components of E pp(k) can be easily estimated using dimensional analysis,
keeping S, ε and k as analysis parameters, yielding:

Es2
pp(k)

ρ2
∝ S2ε2/3k−11/3,

Es3
pp(k)

ρ2
∝ Sεk−3,

Et
pp(k)

ρ2
∝ ε4/3k−7/3. (9.83)

The last expression is identical to the one found for isotropic turbulence, see
Sect. 4.9.2. These expressions are assumed to be valid within the inertial range, if the
Reynolds number is large enough to allow for the existence of such a range.

The components of the pressure spectrum can be further analyzed assuming that, in
the inertial range, the kinetic energy spectrum is almost isotropic. Assuming that the
third-moment shear-turbulence interaction term is negligible,6 the shear-turbulence
interaction simplifies as

S2

(
k2

1

k4
R̂22(k)

)
= 1

π
S2 k2

1

k6
E(k)

(
1 − k2

2

k2

)
(9.84)

yielding

Es2
pp(k) = ρ2 16

15
S2 E(k)

k2
, Es3

pp(k) = 0. (9.85)

The turbulence-turbulence term expression is the same as in the isotropic case.
Therefore, invoking the Quasi-Normal hypothesis the evaluate the fourth-order
moment terms, one obtains:

ki k j klkm

k4
R̂i j,lm(k) = 1

8π2

∫
E(k′)E(k − k′)

sin4 φ

|k − k′|4 d3k′, (9.86)

where φ is the angle between k and k′, along with Et
pp(k) ∝ ρ2ε4/3k−7/3 by spherical

integration.
The scalings for the amplitude of each component was evaluated in George et al.

(1984) via analytical integration using a model spectrum for E(k). The main results is
that the amplitude of the turbulence-shear terms scales as S2�3K, where � = K3/2/ε,
while the turbulence-turbulence term amplitude is proportional to K2�. The net pres-
sure spectrum results from the combination of the three components, whose relative
weights depends on both the wave number and the ratio S�/

√K. The turbulence-

6Such a simplification can be obtained in several ways. First, assuming that velocity fluctuations
are nearly Gaussian, third-order moments are identically null. Second, looking at the structure of
this term, it is seen that the difference between the two third-moment terms vanishes in isotropic
turbulence. Then, assuming that we are dealing with weak departure from isotropy in the inertial
range, this term can be assumed to be small in front of the other ones.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 9.14 Components of the pressure spectrum in homogeneous shear turbulence computed via
anisotropic EDQNM. Adapted from Briard et al. (2017). Courtesy of A. Briard and T. Gomez.
Left: spectra in log-log scales; Right: compensated spectra

shear term is expected to dominate at large scales, i.e. at largest scales in the inertial
range, while the turbulence-turbulence term will dominate at smaller scales. The
transition between the two solutions takes place at a wave-number which depends
on the ratio mentioned above.

Both Es2
pp(k) and Et

pp(k) can be computed thanks to the anisotropic EDQNM
model developed by Mons et al. (2016) (see Sect. 17.9 for details). The expression
for the isotropic part associated to self-interactions of turbulent velocity fluctua-
tions is exactly the same as for the pure isotropic case. It is therefore given by Eq.
(4.347). For the shear-turbulence component, one obtains (Briard et al. 2017) using
the anisotropic decomposition of the spectral tensor introduced in Sect. 2.6.1 the
following expression:
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E(k)
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3
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)]
, (9.87)

where A+ and A− denote the symmetric and anti-symmetric part of the mean flow
velocity gradient tensor A, respectively. The reader is referred to Sect. 2.6.1 for exact
definitions components of R̂(k), H (dir)

i j (k) and H (pol)
i j (k). Results are displayed in

Fig. 9.14. It is observed that George’s theoretical predictions dealing are perfectly
recovered.

http://dx.doi.org/10.1007/978-3-319-73162-9_17
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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9.7.3 Physical Space Analysis

Scaling laws for both pressure fluctuation variance and fluctuating pressure gradient
variance can be obtained from previous results.

Pressure variance can be split into two contributions:

p′2 = p′2
s + p′2

t =
∫ +∞

0
(Es2

pp(k) + Es3
pp(k))dk +

∫ +∞

0
Et

pp(k)dk, (9.88)

where p′2
s and p′2

t are the shear-turbulence and the turbulence-turbulence parts,
respectively. Direct integration using the von Karman model for E(k) leads to George
et al. (1984)

p′2
s = 1

3
ρ2S2�2K, p′2

s = 0.42ρ2K2. (9.89)

A similar work leads to

(∇ p′)2 = (∇ p′)2
s + (∇ p′)2

t =
∫ +∞

0
k2(Es2

pp(k) + Es3
pp(k))dk +

∫ +∞

0
k2 Et

pp(k)dk

(9.90)
and, for high-Reynolds number flows,

(∇ p′)2
s = 8

5
ρ2S2K, (∇ p′)2

t = 214ν
K3/2

λ3

(
1 − 16.94

Reλ

)
, (9.91)

where λ is the Taylor microscale.
It is worth noting that all models presented in this section are still to be validated in

the case of strict homogeneity. Satisfactory qualitative agreement has been observed
in free shear flows such as jets and mixing layers.

9.8 Vortical Structures Dynamics in Homogeneous
Shear Turbulence

The statistical behavior of homogeneous shear turbulence described above can be
explained as being the consequence of the growth and collapse of vortical structures.
It is worth noting here that these structures govern the dynamics of the flow, while it
has been seen in Sect. 4.10 that their influence on the dynamics of isotropic turbulence
is weak.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Using numerical simulations, Kida and Tanaka (1994) identify the following sce-
nario for the departure from isotropy:

(i) Uncoherent vorticity blobs initially present in isotropic turbulence are trans-
formed into coherent elongated vortex tube by the imposed mean shear via the
vortex stretching process. This linear mechanism, well recovered by the Rapid
Distortion Theory, yields the formation of longitudinal vortex tubes. These
structures are aligned with the directions of maximal extension of the mean
shear flow (i.e. they are inclined at 45◦–225◦ to the downstream direction). The
distance between the longitudinal vortex tubes is determined by the initial field
and has not been observed to depend on the mean shear rate.

(ii) Longitudinal vortex tubes experience the mean shear, and are inclined more and
more toward the streamwise direction with further increase in their vorticity.
This two trends are easily understood considering a rectilinear vortex filament
which makes an angle θ with the streamwise axis and with axial vorticity �.
Neglecting viscous effects and assuming that the vortex filament remains rec-
tilinear, one obtains (Brasseur and Wang 1992)

d�

dt
= 1

2
S� sin(2θ) (9.92)

dθ

dt
= −S sin2(θ). (9.93)

Due to non-linear effects, vorticity vectors inside the longitudinal vortex
tubes are less inclined (by about 10◦) than the vortex tubes themselves, leading
to the vortex wrapping phenomenon.

(iii) Longitudinal vortex tubes induce a swirling motion which leads to the forma-
tion of vortex sheets with a spanwise component. These sheets are generated
in planes nearly parallel both to the longitudinal vortex tube axes and to the
spanwise axis.

(iv) The vortex sheets are linearly unstable and roll up through the Kelvin–
Helmholtz instability, leading to the growth of vortex tubes in the spanwise
direction. These new vortex tubes are usually referred to as lateral vortex tubes.

(v) Lateral vortex tubes are subject to the mean shear effect in the presence of fluc-
tuations, yielding the generation of hairpin-like vortices, whose legs correspond
to streamwise vortices.

(vi) All vortical structures present in the flow interact and are subjected to the mean
shear, and break down into a disordered field with weak enstrophy.

(vii) The continuous action of the mean shear leads to the occurence of a large oblique
stripe structure, which inclines at 10◦−15◦ with the downstream direction. The
growth of this structure leads to a very large decrease of vertical velocity and
vorticity fluctuations.
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Fig. 9.15 Schematic view of
the time histories of global
turbulent kinetic energy and
enstrophy in DNS of
homogeneous shear
turbulence. One cycle of the
self-sustaining process is
shown

9.9 Self-sustaining Turbulent Cycle in Quasi-homogeneous
Sheared Turbulence

The asymptotic long-time behavior of homogeneous shear turbulence discussed
above in this chapter can not be sustained for arbitrary long-time, since turbulent
kinetic energy and characteristic length scales must remain bounded. The very-large
St behavior of homogeneous sheared turbulence is usually not observed in wind-
tunnel experiments, due to experimental set-up characteristics.

Some calculations in tri-periodic box were performed in successive phases: In the
first phase, some elongated structures reach the size of the box, and therefore collapse;
after their collapse, a new phase of growth takes place, and so on. Accordingly,
there is violation of statistical homogeneity in this process, in which the finite size
of the box is essential. A cyclic behavior of global turbulent kinetic energy and
enstrophy associated to a kind of unsteady equilibrium solution has been observed
in such numerical simulations at very large St (typically for St ≥ 30) (Pumir 1996;
Gualtieri et al. 2002). This turbulent cycle involves the existence of a self-sustaining
turbulent mechanism (also referred to as self-regenerating or autonomous cycle,
or self-sustaining process). Typical evolution of global turbulent kinetic energy and
enstrophy are displayed in Fig. 9.15. A typical cycle is composed of a spike of energy
followed by a spike of enstrophy. These global quantities are observed to exhibit very
large relative fluctuations within 40–50%. The period of the cycle is observed to be
of the order of 10–20 S−1.

As stated by Pumir (1996), let us first note that an additional arbitrary lenghthscale
must be prescribed in the simulation to allow for the existence of an equilibrium
solution.7 From Eq. (9.7), it is seen that a steady statistical equilibrium is reached if

− Su′
1u′

2 = ε. (9.94)

Now using the usual scaling laws ε ∝ K3/2/L and u′
1u′

2 ∝ √K, where L is
a characteristic lengthscale, one sees that an equilibrium is possible if and only if
K ∝ SL , leading to the constraint that L must be finite. In very-large St simulations,

7It is recalled here that an external length scale, other than those related to the fluctuating flow
statistics, is missing in strictly homogeneous turbulence.
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the lengthscale L is imposed by the size of the computational domain, which is
always finite and represent an upper bound for the large-scale size. But is worth
noting that in such simulations large-scales interact with themselves via the periodic
boundary conditions, resulting in a breakdown of ergodicity.

Numerical simulations have shown that the kinetic energy production is mainly
governed by the interaction of the mean shear with the spanwise mode kS =
(0, 0,±1). The energy extracted by this mode from the mean flow is then transferred
to other modes by the non-linear kinetic energy cascade process, the frequency of the
cycle being determined by the dynamical balance between these two processes. Due
to the incompressibility constraint, the associated velocity field is û(kS) = (û, v̂, 0).
The linear interaction mechanism is described by the following system:

dû

dt
= −Sv̂ − νk2

Sû (9.95)

d v̂

dt
= −νk2

S v̂. (9.96)

The vertical component v̂ is monotonically damped by the viscous effects, while
the streamwise component û is amplified if

S
(
Re(û)Re(v̂) + Im(û)Im(v̂)

)
< 0. (9.97)

The corresponding physical scheme is the following: the growth of energy results
from the one of streamwise velocity fluctuations, which is due to the advection of fluid
blobs of high streamwise velocity toward regions of lower velocity by the normal

Fig. 9.16 Sketch of the self-sustaining turbulent cycle in homogeneous shear flows
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Fig. 9.17 Vortical structures
at different stages of
self-sustaining turbulent
cycle in homogeneous shear
flows. Top: during the kinetic
energy growth phase;
Middle: after the energy
burst; Bottom: when kinetic
energy reaches a minimum
before a new burst.
Reproduced from Gualtieri
et al. (2002) with permission
of AIP

velocity v. This scenario is reminiscent of the ejection/sweep mechanism observed
in turbulent boundary layers.

The different phases of the self-sustaining cycle are fully compatible with the
vortical structure dynamics observed by Kida and Tanaka (1994) and described in
the previous section. The energy burst is observed to occur when the legs of the
hairpin vortices (i.e. longitudinal vortex tubes) interact with large negative Reynolds
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stresses, while the minimum of kinetic energy is observed at the beginning of the
cycle when randomly distributed vorticity blobs experience the mean shear action. A
sketch of the full cycle is displayed in Fig. 9.16. Typical vortical structures at different
stages of the cycle are displayed in Fig. 9.17.

Recent studies keep using this quasi-homogeneous way of simulating bursts, e.g.
Cardesa et al. (2015), Sekimoto et al. (2016). A less empirical approach could result
from the explosive transient growth permitted by RDT solution, with its non-modal
property related to time-dependent wave-vector, combined with regeneration mech-
anisms ensured by nonlinearity. The reader is referred to the discussion in Chap. 11,
more precisely sections dealing with the seminal analysis by Chagelishvili et al.
(2003) devoted to transient growth and bypass transition to turbulence in Keplerian
disc (see also Orr 1909.)

9.10 Self-sustaining Processes in Non-homogeneous
Sheared Turbulence: Exact Coherent States and
Travelling Wave Solutions

The self-sustaining process (SSP) in homogeneous shear flows described in the pre-
ceding section has been identified in numerical simulations only. It existence seems
to rely on a numerical trick, namely the possibility to enforce an upper bound for the
turbulent integral scale via the use of periodic boundary conditions in the simulation.
In these simulations, the length scale which is missing because of the homogene-
ity assumption is recovered defining the computational box. Nevertheless, previous
results show that some self-sustaining processes may exist in turbulent shear flows.
This phenomenon is found in the inner region of turbulent boundary layers, and mod-
ern analyses dealing with turbulence control and turbulent drag reduction in these
flows rely on the SSP concept.

Because of the huge importance of shear flows in all fields of application, recent
theoretical results dealing with self-sustaining processes in wall-bounded shear flows
will be briefly surveyed in this section. The main goal here is to characterize the
near-wall turbulence in terms of nonlinear exact solutions to incompressible Navier–
Stokes equations for Couette, Poiseuille and Couette-Poiseuille flows. All these
solutions look qualitatively similar: a wavy low-velocity streak flanked by staggered
streamwise vortices of alternating signs. According to Jimenez and coworkers (2005),
these solutions, which correspond to permanent stationary or travelling waves and
to limit cycles in autonomous flows, can be classified into upper- and lower branch
families. The upper branch family consists of weak streaks with strong streamwise
vortices, while the lower branch solutions have much stronger streaks and weaker
vortices.

The emphasis will be put on the theory proposed by Waleffe and coworkers (see
Hamilton et al. 1995; Waleffe 1996, 2003 and references given therein), since it
is fully consistent and closed from the theoretical point of view and that its results

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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correlate satisfactorily with wind tunnel experiments and numerical simulation. The
main discrepancy with the self-sustaining turbulent cycle in homogeneous shear
flows discussed in the previous section is that the SSP in non-homogeneous shear
flows involve a local change in the mean flow due to a feedback of the fluctuating
field. It is worth recalling here that such a feedback is by definition precluded in
homogeneous turbulent flows.

The original purpose of Waleffe and coworkers was to explain the regeneration of
turbulent structures observed in the near wall region in turbulent wall bounded flow.
An important finding is that the results discussed below have been proved to hold
for a large variety of shear flows: Couette flow, Poiseuille flow and the continuum of
Couette–Poiseuille solutions. Since the theoretical analysis reveal that the SSP is not
sensitive to the boundary conditions imposed on the fluctuations (either free-slip or
no-slip conditions can be used), it can be conjectured that the main role of the solid
boundary is to sustain a mean shear, and that similar SSP might develop in free shear
flows.

Waleffe’s SSP theory is essentially a weakly nonlinear theory of a
three-dimensional process about a base shear flow that has an O(1) spanwise modu-
lation U (y, z), but it is not weakly nonlinear about a one-dimensional laminar base
flow U (y). It relies on exact traveling wave solutions of the incompressible Navier–
Stokes equations of the form u(x, t) = u(x − ctex , 0), where c and ex are the
constant wave velocity and the unit vector in the streamwise direction, respectively.
The full velocity field, including the base shear flow, is decomposed via a Fourier
transform in the streamwise direction, leading to

u(x, t) = u0(y, z) + (
eıαζ u1(y, z) + c.c.

) + . . . (9.98)

where u0(y, z) = (u0(y, z), v0(y, z), w0(y, z)) is the base shear flow and ζ = x −ct .
The base shear flow can be decomposed as the sum of a one dimensional mean shear
flow u(y) (defined as the streamwise velocity averaged over the periodic x and z
directions) and streaky structures responsible for the modulation u0(y, z) − u(y).
These streaky structures are assumed to represent elongated streamwise blobs of
rapid and slow fluid observed in the near wall region of turbulent wall-bounded
flows. They are modeled via streamwise rolls, which are longitudinal vortices with
alternating streamwise vorticity sign and low O(Re−1) amplitude. The SSP theory
consists of three main steps (see Fig. 9.18):

(i) Formation of the streaky flow. The existence of weak streamwise rolls
(0, v0(y, z), w0(y, z)) redistribute the streamwise momentum, leading to large
spanwise fluctuations in the streamwise velocity, (u0(y, z), 0, 0). If the rolls are
strong enough, an inflexional streamwise velocity profile can be generated.

(ii) Instability of the streaky flow. The existence of a locally inflexional stream-
wise velocity profile lead to wake-like instability in which a three-dimensional
disturbance develops.

(iii) Nonlinear feedback on the rolls. The streak eigenmode
(
eıαζ u1(y, z) + c.c.

)
is the first harmonic in the streamwise direction of the disturbance. Its quadratic
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Fig. 9.18 Schematic
representation of Waleffe’s
self-sustaining process (SSP)
in non-homogeneous shear
flows

self-interaction
(
e2ıαζ u1(y, z)u1(y, z) + u∗

1(y, z)u1(y, z) + c.c.
)

generates a
second harmonic

(
e2ıαζ u2(y, z) + c.c.

)
. But, more importantly, the nonlinear

self-interaction term u∗
1(y, z)u1(y, z) is observed to extract energy from the

streak and to reenergize the original streamwise rolls, leading to the definition
of a closed nonlinear feedback loop.

Therefore, the three necessary ingredients of the SSP are: streamwise rolls, streaks
and streak eigenmode. An additional element is the mean shear, which provides the
overall energy. It is worth noting that the streak instability extracts energy from the
streaks, and then cannot directly sustain them. It sustains the rolls, which sustain the
streaks. The destruction of one of these key elements would lead to a breakdown
of the SSP, and therefore to a possible deep modification of turbulence, as done in
several turbulent drag reduction strategies.
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Chapter 10
Incompressible Homogeneous Anisotropic
Turbulence: Buoyancy Force and Mean
Stratification

10.1 Observations, Propagating and Non-propagating
Motion. Collapse of Vertical Motion and Layering

Turbulent flows can transport passive scalars, such as temperature or concentration.
In important applications, such scalar (e.g. temperature, salinity) fluctuations gener-
ate a buoyancy force in the presence of gravity, which directly affects the velocity
field. In addition, the transport of such “active” scalars by turbulence is altered by
a mean density gradient — intimately related to a mean scalar gradient — in many
applications, especially in atmospheric and oceanic research.

A first sketch of what stable and unstable stratification are can be understood from a
simple displaced-particle argument, as follows. Considering a vertical negative mean
density gradient (the heaviest flow is at the bottom), as in the scheme in Fig. 10.1, if
a fluid particle is displaced upward, keeping its density and initially in hydrostatic
equilibrium, it must experience a lighter fluid environment : the imbalance between
(smaller) buoyancy — or Archimedean — force and (same) weight will result in a
downward force. The opposite situation occurs if the particle is moved downward, the
imbalance buoyancy/weight will result in a upward force. Accordingly, the buoyancy
force acts as a restoring force in this situation of negative mean density gradient.
Vertical oscillations with a typical frequency N (rediscussed below) are expected.

The same reasoning holds for explaining unstable stratification. The mean velocity
gradient is now positive: a particle which is displaced upward will experience a heav-
ier fluid environment, so that the buoyancy will result in a upward force, forcing the
particle to continue to move up. This case of unstable stratification, which includes
important instances of thermal convection, makes it possible to integrate RDT for
linear dynamics and fully nonlinear generalized EDQNM. In addition, some clues
are offered to go beyond the strict statistical homogeneity restricted to fluctuations,
and to address a more realistic mixing layer. More generally, the simplest sketch of
Fig. 10.1-left can be more complex and more general, if the displaced particle is
affected by other mechanisms, such as moisture, weak compressibility, and other
effects, ignored in our simplified context of Boussinesq approximation. For more
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Fig. 10.1 Sketch of basic
oscillations, vertical
displacement in stable
stratification (left),
horizontal displacement in
rotating flow case (right)

general applications, the gravitational acceleration can be replaced by, or superim-
posed to, an acceleration related to a whole convective motion of the mixing layer.
The typical stratification frequency, or Brunt–Wäisälä frequency in the stable case,
is directly connected to the mean density gradient in our sketch, as

N 2 = − g

ρ0

∂ρ

∂x3
, (10.1)

with g the modulus of gravitationnal acceleration and ρ = ρ0+ ∂ρ
∂x3

x3 the mean density
gradient. Slightly different definitions in terms of other mean buoyancy gradients are
recalled in this chapter.

Stable stratification is first considered in this chapter. This situation is common in
the ocean, except in a neutral mixing layer located near the surface. All cases, stable,
unstable and neutral, are encountered in the atmosphere, with persistent case of the
inversion of temperature gradient which yields a stable case in the tropopause and
low stratosphere.

The above-mentioned vertical oscillations are the simplest mechanism for genera-
tion of internal gravity waves. Gravity waves have strong analogy with inertial waves
introduced in Chap. 7. On the one hand, since the velocity field remains divergence-
free, pressure fluctuations are responsible for both anisotropic dispersivity and ver-
tical/horizontal interchange of motion by the gravity waves, in a way very similar
to what occurs for inertial waves. Similar “Saint-Andrew” cross-shaped structures
are found in both rotating and stratified cases. On the other hand, it is possible to
define a potential energy for gravity waves only, as we will see further: the wave
kinetic energy is essentially the poloidal kinetic energy, whereas the potential energy
is proportional to the variance of density or buoyancy fluctuations. In this sense,
buoyant flows with stable stratification illustrate another case of flow dominated by
wavy effects with zero energy production, as introduced in Chap. 7. For pure rotating
turbulence, there is zero production of kinetic energy and for stratified and stratified
rotating turbulence there is zero production of total energy, the latter being defined
as the sum of kinetic energy and potential energy.

The essential difference between the rapidly rotating case and the strongly strat-
ified one is the existence of an important non-propagating mode of motion in the
latter case. The toroidal part of the motion is unaffected by the gravity waves in the
linear limit of small Froude number. It is perhaps useful to recall the definition of
Froude numbers, which are very similar to macro-Rossby numbers in Chap. 7, only

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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Fig. 10.2 Experimental illustrations of the zig-zag instability. Courtesy from J.-M. Chomaz and
P. Billant

replacing 2� by N , e.g. in Eq. (10.1), and using either large horizontal L⊥ or vertical
L‖ lengthscales

Fr⊥ = u′

N L⊥
; Fr‖ = u′

N L‖
. (10.2)

More generally, the Ertel theorem yields a nonlinear definition of the non-
propagating mode which will be rediscussed in Chap. 11, in agreement with general
definition of potential vorticity. In the geophysical community, this mode is referred
to as the quasi-geostrophic (QG) mode which is generally defined in the presence of
additional Coriolis effects (see Chap. 11). Many wave-vortex decompositions exist
in the literature, which are often neither intrinsic nor general, so that a particular care
will be put in this book on the very definition of the modes of motion. For instance
the wave-vortex decomposition by Riley and coworkers (1981) is only meaningful
in the absence of additional rotation. The same decomposition was recently coined
“vortical-divergent” by Brethouwer et al. (2007): this terminology is more confus-
ing than the former, because the whole velocity field is divergence-free. It would be
relevant, however, in connection with the true Helmholtz decomposition for com-
pressible flows introduced in Sect. 2.1.5. The “vortex” (Riley et al. 1981) or “vortical”
(Brethouwer et al. 2007) mode is better qualified as the toroidal one anyway.

The main effect of stable stratification is to inhibit the vertical motion. Never-
theless, this stabilizing effect is not necessarily true for the horizontal motion, as
recently shown in several studies devoted to the zig-zag instability, following Billant
and Chomaz (2000). Considering vertical columnar vortices, strong stratification
partly inhibits elliptical and/or centrifugal instabilities (touched upon in Chap. 11)
but breaks the vertical coherence of the columns by creating alternate, tangling,
horizontal motion via zig-zag instability (Fig. 10.2).

http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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This instability is even invoked to explain the horizontal layering of strongly
stratified flows: we think that this is only a part of the full answer. In the same
way, the scaling of the vertical length scale as U/N , where U (or u′ in Eq. (10.2))
is a typical horizontal velocity scale and N the gravity wave typical frequency, is
suggested by the zig-zag instability (Billant and Chomaz 2001) but also by many
other arguments disconnected from it.

Finally, the morphology of a strongly stratified flow is essentially a pilling-up
of velocity and density horizontal “pancakes” which can be observed in Fig. 10.6.
A similar topology was reported looking at instantaneous iso-vorticity surfaces by
Kimura and Herring (1996).

The flow is really quasi-horizontal but far from being two-dimensional. Even with
a random forcing of two-dimensional modes, DNS by Herring and Métais (1989)
exhibit a clear tendency of forming horizontal layers, with a limited vertical thickness.

Gravity waves are present in the layered flow, but perhaps only in the limit of low
frequencies (low dispersion frequency at given high frequency N is obtained in the
limit of quasi-vertical wave-vectors, forming a Vertically Sheared Horizontal Flow
—VSHF from Smith and Waleffe 2002 — mode, as shown below). A clear analysis
of such flows cannot be made without a rigorous terminology, avoiding the confusion
between horizontal, 2D and toroidal motions. In addition to an accurate description
of the morphology, dynamical arguments must be discussed: what is the mechanism
which controls the thickness of the “pancakes”?

In addition to the mathematical/numerical decomposition by Riley et al. (1981),
another related aspect are the scaling arguments for small (horizontal) Froude num-
ber, which supports the idea of almost vertically decorrelated thin horizontal pancake
layers. The scaling by Riley et al. (1981) seems to hold for laboratory experiments,
for internal waves (since the vertical scale of U/N is generally not of importance),
and possibly for larger-scale flows (if their dynamics are not controlled by the vertical
scale U/N ). Note that strongly stratified flows (low Froude numbers in either sense)
can exhibit waves over a broad range of frequencies. They are not limited by scaling
or dynamical arguments to vertical scales of order U/N . There can be significant
vertical motion associated with the waves.

Applications are very important for flows in the atmosphere and the ocean, in
which the stable stratification limits the vertical motion and makes the flow mainly
horizontal. The problem of the sense of the kinetic energy cascade (forward or back-
ward) in such flows is still controversial, even if a global consensus is now emerging
against the idea of a classical 2D inverse cascade. On the one hand, the analogy
between quasi-geostrophic and 2D dynamics, with conservation of potential vor-
ticity, was investigated by Charney (1971); this analogy was revisited by Bartello
(1995) with a refined analysis of pure QG interactions, also in the line of the Wal-
effe’s instability principle. Regarding applications, Lilly (1983) has proposed that the
kinetic energy spectra observed in the atmosphere at mesoscales (i.e. very low wave
numbers) are a manifestation of this two-dimensional mechanism. In spite of this
questionable speculation about upscale energy transfer, Lilly (1983) was probably
the first to suggest that vertical layering and instabilities would result from strong
stratification (at low Froude number). At the bottom of page 755 and the top of page
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756 of his paper he states: “the second and more difficult problem is concerned with
the continuing validity of the RMW (Riley et al. 1981) scale analysis over a long
period of time. The predicted decoupling of the dynamics at adjacent vertical levels
can be maintained only as long as the local Richardson number is large. Both the
inherent instability of turbulent flows and the existence of any mean vertical shear
will decorrelate the vertical flow structure and produce locally small Richardson
numbers. The subsequent regeneration of small-scale three-dimensional turbulence
then modifies the stratified turbulence evolution to a yet uncertain degree.”

Recently, Lindborg and Cho (2001), Cho and Lindborg (2001) deduced from
analysis of third order statistical moments that the energy cascade is in the direct
sense, i.e. from small to large wave numbers. This observational evidence was fur-
ther supported by a dimensional analysis related to the zig-zag instability (Billant
and Chomaz 2001), showing that the vertical scale is necessary limited by a local
buoyancy length scale L B = U/N , where U is the horizontal velocity scale and N
the Brunt–Väisälä frequency. Several DNS (or rather LES because of the use of an
hyperviscosity instead of the classical molecular viscosity) were carried out by Lind-
borg and coworkers to investigate such a forward cascade. In these computations, the
2D-2C modes, and only them, are randomly forced, and the horizontal lengthscales
are a priori chosen much larger than the vertical ones, using flattened boxes. Even
if these studies present interest for atmospheric flows, their contribution to a bet-
ter conceptual understanding of turbulence is limited by both geometric constraints
and artificial forcing: no refined analysis of the anisotropy of the flow is performed,
as it was done in the case of rotating turbulence. Even more importantly, no new
mechanism of triad interactions is derived from such LES.

10.2 Simplified Equations, Using Navier–Stokes and
Boussinesq Approximations, with Uniform Density
Gradient

Navier–Stokes equations, with buoyancy force b = bn within the Bousinesq assump-
tion, are given below in the presence of a uniform mean density (more generally
buoyancy) gradient. For the sake of simplicity, the mean flow is restricted to a “sta-
bilizing” uniform vertical gradient of density, whose strength is given by N , the
Brunt–Väisälä frequency:

(∂t + u · ∇) u + ∇ p − ν∇2u = bn (10.3)

(∂t + u · ∇)b − κ∇2b = −N 2n · u (10.4)

∇ · u = 0. (10.5)
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Dependent variables are the fluctuating velocity u, the pressure p divided by a
mean reference density, and the buoyancy force b. The vector n denotes the vertical
unit upward direction aligned with the gravitational acceleration g = −gn. The
Boussinesq approximation (Boussinesq 1876) (the reader is referred to the large
literature in geophysics) preserves the solenoidal property for the velocity, but allows
the density to fluctuate. In the basic continuity equation ρ̇ + ρui,i = 0, it amounts to
consider separately ρ̇ = 0 and ui,i = 0. The first condition generates the b-equation
(10.4), while only the right-hand-side of the momentum equation (10.3) calls b into
play.

Since a large literature is devoted to the turbulent transport of the passive scalar, a
short discussion of this case cannot be avoided. Let us consider first that the fluctuating
concentration of a passive scalar, say c, is addressed, instead of b, and that a vertical
mean gradient (∂C/∂x3)n exists for scalar concentration. The classical advection-
diffusion equation, with additional ‘mean production’ is

(∂t + u · ∇)c − κ∇2c + ∂C

∂x3
u · n = 0, (10.6)

which is the same as Eq. (10.4). The only difference with the passive scalar equation
is the presence of the right-hand-side in (10.3) which reflects an “active” feed-back
from scalar concentration to velocity field.

The use of the buoyancy variable b allows us to have the same equations, with
the unique frequency N , for a liquid or for a gas. For a liquid, b = gρ′/ρ0, where
ρ′ denotes a small fluctuation and ρ0 is the mean reference density. The definition
N = √

g�/ρ0, see Eq. (10.1), with � the absolute value of the mean vertical gradient
of density, presents a strong analogy with the frequency of a pendulum, (�/ρ0)

−1

playing the role of the length of the pendulum. For a gas, b is proportional to the
fluctuating potential temperature τ , as b = βgτ , with β the thermometric expansivity.
Accordingly one has N = √

gβγ with γ the mean vertical gradient of temperature.
Finally, the different flow cases are only discriminated by the diffusivity coefficient

for b. Since there is no meaning for a diffusive density, κ must be considered as the
diffusivity of the stratifying agent, for instance the temperature for a gas —κ/ν is a
Prandtl number— or the salinity for a liquid — κ/ν is a Schmidt number—. Without
loss of generality the fixed frame of reference is chosen below such that ni = δi3.
Therefore, u3 is the vertical velocity component.

10.2.1 Reynolds Stress Equations with Additional Scalar
Variance and Flux

As for the case of a passive scalar, single-point second-order correlations include not
only the Reynolds stress tensor ui u j (there is no mean velocity here, so that u = u′),
but also the scalar variance b2 and the scalar flux bui . Transport equations for the
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latter correlations are standard passive scalar in the presence of a mean gradient of
passive scalar of magnitude N 2. The Reynolds stress equations must be affected by
the active buoyancy term, yielding

dui u j

dt
= bu jδi3 + buiδ j3 + �

(s)
i j + �

(r)
i j − εi j .

All Reynolds stresses with a vertical component are therefore altered by buoyancy
fluxes. Buoyancy fluxes bui are themselves governed by

dui b

dt
= N 2ui u3 + �

(r)
ib + �

(s)
ib − εib,

whereas the buoyancy variance b2 satisfies

db2

dt
= 2N 2bu3 − εb.

Similarly to the pressure terms appearing the equations for the Reynolds stress ten-
sor discussed in Chap. 2, �(s)

ib and �
(r)
ib denote the linear “rapid” and nonlinear “slow”

pressure-buoyancy gradient cross-correlations, respectively. In the absence of mean
velocity gradient, the “slow” term �

(s)
i j remains in the equation for the Reynolds stress

tensor, and a similar “rapid” one, �(r)
i j is now related to two-point pressure-buoyancy

correlations. These equations immediately result from combining basic equations
(10.3) and (10.4). They can be found in Craft and Launder (2002) up to slightly
different notations, with additional nonhomogeneous diffusive terms, and replacing
d/dt by D/Dt (i.e. considering full convective term). Even in strictly homogeneous
turbulence, some additional contributions from triple correlations, neglected in con-
ventional modelling, may appear. They result from the fact that conservation laws
(with zero contribution of related nonlinear transfer terms) are valid for separately
considered toroidal and wave (poloidal + potential) energies, but not for horizontal,
vertical and potential energies (those which are only tractable in RSM framework,
with potential energy proportional to b2). This will appear looking at generalized Lin
equations in Sect. 10.5.

Craft and Launder (2002) developed one of the most sophisticated full Reynolds-
Stress Model, whose details are not given here for the sake of brevity, with application
in the Two-Component Limit, which must not be confused with 2D limit. This Two-
Component model is relevant here, but also (for different reasons) for near-wall tur-
bulence. In particular cases, such as the pure decay of homogeneous stably-stratified
turbulence, the model mimics the damping of oscillations induced by gravity waves,
without significant dissipation (see Fig. 10.3). The damping effect results from phase-
mixing of dispersive waves, and this physical effect cannot be directly incorporated
in a single-point closure model: The correct behavior of the model is even more sur-
prising, and is probably due to the high complexity of the linear pressure-strain rate

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 10.3 Normalized
vertical buoyancy flux u3b.
Realizable Ri j − ε means the
sophisticated
Two-Component Limit
model. EDQNM is
essentially RDT here, the
damping of oscillations
reflects the phase mixing due
to anisotropic dispersivity of
gravity waves. Courtesy of
L. Van Haren

tensors, such as �
(r)
3b , along with strong constraints imposed, such as realizability.

It is important to remind that in similar conditions, all single-point closure models
miss the effects of inertial waves.

10.2.2 First Look at Gravity Waves

Analysis of the linear limit, mathematical treatment of equations in terms of eigen-
modes, and closure methods for statistics in homogeneous anisotropic turbulence,
can be developed as in the case of pure rotation discussed in Chap. 7.

In the absence of pressure fluctuations, the additional buoyancy and stratification
terms yield oscillations for vertical velocity and buoyancy term at frequency N . This

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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simple motion shows that the buoyancy force acts as a restoring force in the case
of stable stratification. As for the case of pure rotation, the pressure term in (10.3)
is needed to satisfy (10.5), and its role in the complete linear solution consists of
coupling vertical and horizontal motion and of generating dispersive inertia-gravity
waves.

The counterpart of Eq. (7.24) for inertial waves is

∂2

∂t2

(∇2 p
)+ N 2∇2

⊥ p = 0. (10.7)

It is only needed to replace 2� by N and to replace the vertical component ∇‖
of the Laplacian operator by its horizontal ∇⊥ counterpart. The same treatment (i.e.
normal mode decomposition and derivation of the dispersion relation) shows that the
threshold value to trigger Saint-Andrew-cross shaped structures with a local harmonic
forcing σ0 (Mowbray and Rarity 1967) is σ0 = N . The dispersion frequency in an
unbounded domain is defined as

σk = N
k⊥
k

= N sin θ. (10.8)

As for the case of rapid rotation, a zero frequency mode exists for gravity waves,
but it corresponds to the vertical wavevector direction, forming the one-dimensional
VSHF mode, instead of the two-dimensional Taylor-Proudman mode linked to k‖ = 0
for inertial waves. As said before, another even more important difference with the
rotating flow case is that a part of the horizontal motion remains steady in the linear
limit, and therefore decoupled from 3D wave motion.

10.3 Eigenmode Decomposition. Physical Interpretation

In the unbounded case, or for periodic boundary conditions, the different modes,
wavy and steady, are easily found in Fourier space, and a tractable RDT solution is
found in terms of them. Pressure fluctuation is removed from consideration in the
Fourier-transformed equations by using the local Craya-Herring frame of reference
in the plane normal to the wave vector, taking advantage of Eqs. (10.5) and (2.86),
or

û(k, t) = u(1)(k, t)e(1)(α) + u(2)(k, t)e(2)(α), α = k/k,

so that the problem with five components (u1, u2, u3, p, b) in physical space is
reduced to a problem with three components in Fourier space, namely two solenoidal
velocity components (u(1), u(2)) and a component for b̂. The three-component set
(u(1), u(2), b̂) is not a true vector, and this can complicate further mathematical
developments in terms of its eigenmodes and statistical correlations. So it is more
convenient to gather these three components into a new vector v̂, whose inverse 3D

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fourier transform, v, is real. v̂, can be written as1

v̂ = û + ı
1

N
b̂

k
k

(10.9)

so that its three components are u(1), u(2), and u(3) = ı 1
N b̂ in the Craya-Herring

frame, using also its third direction e(3) = k/k, even if it is more usually related to a
divergent part of the velocity flow. The scaling of the contribution of the buoyancy
force allows one to define twice the total spectral energy density as

v̂∗
i v̂i = û∗

i ûi + N−2b̂∗b̂ (10.10)

Linear inviscid equation are easily found as

⎛

⎝
u̇(1)

u̇(2)

u̇(3)

⎞

⎠ =
⎛

⎝
1 0 0
0 0 −N k⊥

k
0 N k⊥

k 0

⎞

⎠

⎛

⎝
u(1)

u(2)

u(3)

⎞

⎠ . (10.11)

Linear — improperly called RDT — solutions are easily found, with constant u(1)

and oscillating u(2)-u(3). In any orthonormal frame of reference, linear solutions can
be found in terms of the three eigenmodes

v̂ = ξ(0) N (0) + ξ(1) N (1) + ξ(−1) N (−1), (10.12)

or
v̂ =

∑

s=0,±1

as(k, t) exp(ısσk t)N (s), (10.13)

in which the eigenmodes N (s), s = 0,±1 are simple linear combinations of the vec-
tors in the Craya-Herring frame of reference. (N (0) reduces to the toroidal mode e(1)

here.) The reader is referred to Chap. 11 and to Cambon (2001) for a more general
QG-AG decomposition, also valid in the presence of additional rotation. Essentially
the same decomposition was introduced by Bartello (1995) in the geophysical con-
text. Of course, the as are constants given by initial data in the strict linear limit. A
Green’s function similar to (7.31) is derived as

Gi j (k, t, t0) =
∑

s=0,±1

N s
i (k)N−s

j (k) exp[ısσk(t − t0)], (10.14)

and the nonlinear equations can be expressed in terms of the eigenmodes, as in
Chap. 7, if time-dependency is re-introduced in the as, s = 0,±1, as in the more

1The term ı kb̂ corresponds to the gradient of the fluctuating buoyancy term in physical space. As
in other studies dealing with the passive scalar, it can be better to use the scalar gradient than the
scalar itself, e.g. Gonzalez (2009).

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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general version of (10.13). The new element, with respect to (7.37) is the presence of a
“strong” nonlinearity, related to a term M(000), which does not reduce to “weak” wave-
turbulence, as the other coupling terms such as M(00±1), M(0±1±1) and M(±1±1±1)

(only the latter being present in rotating turbulence). Because of the form of the
eigenvectors and of the dispersion law, the structure of G in (10.14) is consistent
with axisymmetry around the axis of reference (chosen vertical here), with mirror
symmetry, and where k‖ and k⊥ hold for axial (along the axis) and transverse (normal
to the axis) components of k, respectively.

Anisotropy can be significantly broken through axisymetrical response function
for triple correlations only, or possibly for two-time second order statistics (whose
analysis is beyond the scope of this book, except the new subsection in Chap. 11),
but the linear limit exhibits no interesting creation of structural anisotropy in classic
RDT for predicting second order single-point statistics. However, in practice there
is a partial two-dimensionalization in rotating turbulence and a horizontal layering
tendency in the stably stratified case. In other words, RDT only alters phase dynam-
ics and exactly conserves the spectral density of typical modes, namely full kinetic
energy for the rotating case and total energy and toroidal energy for the stably strat-
ified case, so that two-dimensionalization or ‘two-componentalization’ (horizontal
layering), which affect the distribution of this energy, are pure nonlinear effects.

Nevertheless, the eigenmodes of the linear regime form a useful basis for expand-
ing the fluctuating velocity-buoyancy field, even when nonlinearity is present, and
nonlinear interactions can be evaluated and discussed in terms of triadic interactions
between these eigenmodes. Accordingly, the complete anisotropic description of
two-point second order correlations, can be related to spectra and cospectra of these
eigenmodes.

Finally, it is important to recall that the spectral mode related to the first vector
e(1) of the Craya-Herring frame of reference is linked to the toroidal mode in phys-
ical space, only if the wavevector direction differs significantly from n. This mode
matches the VSHF mode if k is vertical. The same property holds for the second vec-
tor e(2), which corresponds essentially to poloidal motion but also matches the VSHF
mode for vertical k. The VSHF mode, or u⊥(x‖, t) in physical space, is not really a
wavy mode, even if it corresponds to the zero frequency limit of gravity waves. In
addition, the coupling with buoyancy, which is the main characteristic of linear grav-
ity waves (poloidal velocity coupled with buoyancy) vanishes for this mode, so that b
is again a passive scalar in the VSHF limit, and strong departure from equipartition in
terms of kinetic and potential wave-energy is possible. Regarding vorticity, the VSHF
mode has no contribution to vertical vorticity and contributes to horizontal vortic-
ity, while the toroidal mode (sometime called ‘vortex’ or ‘vortical’ mode) generates
the vertical vorticity component. The Craya-Herring decomposition allows us to
incorporate in a very tractable geometrical way the toroidal/poloidal decomposition,
with very different limits given by 2D Taylor-Proudman modes (horizontal wavevec-
tors) and 1D VSHF modes (vertical wavevectors). Near the 2D limit, the toroidal
mode corresponds to horizontal velocity and vertical vorticity, and vice-versa for the
poloidal mode. More generally, toroidal velocity corresponds to poloidal vorticity

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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and vice-versa (the Craya-Herring frame is also a useful cyclic basis, see Eq. (10.17)
below). Only near the VSHF limit, both vorticity and velocity are quasi-horizontal.

The main nonlinear mechanism in quasi-homogeneous unsteady stratified flows
consists of concentrating energy towards more and more vertical wave-vectors, as
shown in the cartoon from Godeferd and Cambon (1994) in Fig. 10.5. This anti-2D
(compared to the case of rotation, see Fig. 7.17 in Chap. 7) trend can be explained
by the toroidal cascade, independently of wave-turbulence “weak” nonlinearity, and
without invoking specific instabilities to preexisting and/or forced coherent vertical
vortices.

10.4 The Toroidal Cascade as a Strong Nonlinear
Mechanism Explaining the Layering

Looking at the velocity equation, under the slightly different form (the inviscid case
is considered for the sake of simplicity),

∂u
∂t

+ ω × u + ∇
(

p + 1

2
u2

)
= bn, (10.15)

projection onto the e(1)-mode removes both the “divergent” term (total pressure here),
because of solenoidal property, and the b-term because it is vertical. The toroidal (or
toroidal + VSHF) equation is therefore

∂u(1)

∂t
+ e(1) · ω̂ × u = 0,

and it is possible to extract the pure toroidal contribution in the nonlinear term as

∂u(1)(k, t)

∂t

+ ı
k

2

∑

�

e(1)(k) ·
(

e(2)( p) × e(1)(q) + e(2)(q) × e(1)( p)
)

u(1)∗( p, t)u(1)∗(q, t) + CCC,

(10.16)

using
û = u(1)e(1) + u(2)e(2), ω̂ = ık

(
u(1)e(2) − u(2)e(1)

)
. (10.17)

The “CCC” term denotes the contribution of other quadratic terms, those which
correspond to u(1)∗u(2)∗ and to u(2)∗u(2)∗. Some are identically zero because, for
instance, the triple scalar product in terms of e(1) for k, p, q is zero (e(1) being always
horizontal). More generally the decomposition in terms of eigenmodes shows that
any u(2) contribution in “CCC” involves a “rapid” phase factor eıσt , as seen from
Eq. (10.13). These rapid factors result in an efficient damping of the nonlinearity

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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by anisotropic phase mixing, except if their time-dependency is cancelled out via
resonance conditions. Accordingly, in the limit of strong stratification, “CCC” terms
survive only through “weak” resonant wave interactions, exactly as for rotating tur-
bulence in Chap. 7. The new fact is that all triads involving u(1) only have a non-
vanishing contribution without any wave resonance constraint. On the other hand,
resonant wave interactions represent a low dimensional manifold, so that magnitude
of the “CCC” contributions can be considered as being of the order of the Froude
number. Discarding “CCC” terms is therefore relevant if the Froude number is very
small (but with very high Reynolds number in order to allow significant nonlinearity,
purely toroidal here) and the elapsed time not too high, with in addition a special
care to investigate the VSHF limit.

The relevance of pure toroidal cascade, or of pure QG cascade revisited in
Chap. 11, deserves further discussion in the geophysical context. But let us note
that this study can be almost disconnected from the context of geophysical appli-
cations, since it deals with the basic nonlinearity of Euler equations, seen via triad
interactions in 3D Fourier space. Given the success of the Waleffe’s triad instability
principle for predicting the energy cascades, a similar approach is now applied to
Eq. (10.16) neglecting the “CCC” term.

Restricting this equation to a single triad, one obtains

u̇(1)
k = (p2

⊥ − q2
⊥)Gu(1)∗

p u(1)∗
q , (10.18)

u̇(1)
p = (q2

⊥ − k2
⊥)Gu(1)∗

q u(1)∗
k , (10.19)

u̇(1)
q = (k2

⊥ − p2
⊥)Gu(1)∗

k u(1)∗
p , (10.20)

where

G = ı

2
Ckpq

kpq

k⊥ p⊥q⊥
k × p

| k × p | · n (10.21)

and

Ckpq = | sin ̂( p, q) |
k

= ...sym(k, p, q). (10.22)

New detailed conservation laws can be identified in the present case. The factor G
is invariant with respect to any even permutation of the vectors k, p, q of the triad and
changes its sign for an odd permutation. Therefore, it is clear that triadic interactions
within a single triad conserves toroidal energy, since u̇(1)

k u(1)∗
k +u̇(1)

p u(1)∗
p +u̇(1)

q u(1)∗
q =

0 and vertical contribution to toroidal enstrophy, since

k2
⊥u̇(1)

k u(1)∗
k + p2

⊥u̇(1)
p u(1)∗

p + q2
⊥u̇(1)

q u(1)∗
q = 0. (10.23)

The analogy with the 2D case is very strong (see also Waleffe 1992, and especially
his Appendix A, and pioneering papers by Fjortoft 1953 and Kraichnan), but it must
be noticed that 2D-2C limit requires the additional condition that k‖ = p‖ = 0
in Eq. (10.20). Without further quantitative statistical analysis (next section), it is

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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immediately shown that only (R) triads are concerned, but in terms of k⊥ only.
Compared with the instability principle expressed in terms of helical modes for 3D
isotropic or rapidly rotating turbulence, the analogy of (10.20) with the stability of
a solid rotating around its principal axes of inertia (Euler problem), is even more
striking. In contrast with the helical case, in which terms sk, s ′ p, s ′′q play the role
of (positive) principal inertia moments I1, I2, I3, with the additional difficulty linked
to various signs (polarities of helical modes s = ±1, s ′ = ±1, s ′′ = ±1), now really
positive terms (k2

⊥, p2
⊥, q2

⊥) play these roles.
In short, the presence of only reverse interactions could suggest an inverse cas-

cade, at least in term of k⊥ wavevector components and therefore in terms of cylin-
ders. Strong anisotropy allows for very rich modalities of cascade, with various
senses depending on shell-to-shell (direct), cylinder-to-cylinder or angle-to-angle
(see Fig. 10.10) spectral energy transfer. Statistical theory is needed to derive such
informations in a quantitative way.

10.5 The Viewpoint of Modelling and Theory: RDT,
Wave-Turbulence, EDQNM

The case of stably stratified turbulence is different from the one of pure rotation,
even if the gravity waves present strong analogies with inertial waves. An additional
element is the presence of the toroidal mode, which is steady and decoupled from
gravity wave modes, at least in the linear limit.

As for the case of rotating turbulence, exact generalized Lin equations are easily
found:

(
∂

∂t
+ 2νk2

)
E (tor) = T (tor), (10.24)

(
∂

∂t
+ 2νk2

)
E (w) = T (w), (10.25)

(
∂

∂t
+ 2νk2 + 2ı N

k⊥
k

)
Z ′ = T (z′), (10.26)

in which abridged definitions

E (tor) = 1

2
u(1)u(1)∗, E (pol) = 1

2
u(2)u(2∗), E (pot) = 1

2
u(3)u(3)∗ (10.27)

are sufficient for recovering the structure of the system (10.24)–(10.26), but ought to
be replaced by more rigorous relationship (e.g. for the closure of the right-hand-sides)
such as

1

2
〈u(1)∗( p, t)u(1)(k, t)〉 = E (tor)(k, t)δ3(k − p),



10.5 The Viewpoint of Modelling and Theory: RDT … 499

and so on, as in the whole book.
The total energy of gravity waves (in the linear limit of the eigenmode decompo-

sition) is given by
E (w)(k, t) = E (pol)(k, t) + E (pot)(k, t). (10.28)

The Z ′ term quantifies the imbalance between the kinetic contribution to gravity
waves (E (pol)) and their potential contribution (E (pot)) as

Z ′(k, t) = (1/2)(E (pot)(k, t) − E (pol))(k, t) + ı�(k, t),

in which the poloidal buoyancy flux � is given by

〈u(2)∗( p, t)u(3)(k, t)〉 = �(k, t)δ3(k − p). (10.29)

Because of mirror symmetry, all cross-correlations among the set (u(1), u(2), u(3))
are not present: The toroidal buoyancy flux related to 〈u(1)∗u(3)〉 remains zero, as the
helicity spectrum (More details are given in Godeferd and Cambon 1994; Godeferd
and Staquet 2003).

EDQNM closure for the transfer terms (rhs of Eqs. (10.24)–(10.26)) are found
in terms of the basic set of abovementioned spectra, depending on both k⊥ and
k‖ (or on k and cos θk = k‖/k) in the simplest statistical way consistent with
the symmetries (axisymmetry with mirror symmetry) of the dynamical basic equa-
tions. As an example, the contribution to T (tor), which is related to purely toroidal
triple correlations 〈u(1)(k, t)u(1)( p, t)u(1)(q, t)〉 under an integral, involve a term
θkpqE (tor)(q, t)(a(k, p)E (tor)( p, t) − b(k, p)E (tor)(k, t)) once closed by the
anisotropic EDQNM procedure.

In order to bridge shear-driven flows and buoyancy-driven flows with the most
unified formalism, the previous equations can be recast as:

(
∂

∂t
+ 2νk2

)
E(k, t) + 2N

k⊥
k

� = T (E)(k, t), (10.30)

(
∂

∂t
+ 2νk2

)
Z + 2N

k⊥
k

� = T (Z)(k, t), (10.31)

(
∂

∂t
+ 2νk2

)
E (pot)(k, t) − 2N

k⊥
k

� = T (pot)(k, t), (10.32)

(
∂

∂t
+ 2νk2

)
�(k, t) + N

k⊥
k

(
1

2
(E + Z) − E (pot)

)
= T (F)(k, t). (10.33)

With respect to Lin equations for shear-driven flows, the problem is simplified
because axisymmetry with mirror symmetry can be consistently applied, resulting
in an angular dependence of spectra and co-spectra restricted to the polar angle only,
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denoted θk from now on, and no imaginary part for the polarization term Z , nor
helicity H. On the other hand, second-order statistics involve two new terms: The
spectrum of (buoyancy) scalar variance, resulting in potential energy E (pot), and the
co-spectrum of poloidal buoyancy flux � from Eq. (10.29).

About global and detailed conservation laws, it is important to stress that
Eqs. (10.24) and (10.25) are always exact, provided that their r-h-s are properly
expressed from two-point triple correlations. The total energy (kinetic + potential),
is conserved in the inviscid limit, so that T (E) + T (pot) has zero integral. On the
other hand, detailed conservation laws per triad, for both toroidal kinetic energy
and for vertical enstrophy are valid only if the poloidal contribution to the velocity
field is discarded. Removal of poloidal components in the detailed triadic budget for
the toroidal mode amounts to neglect weak gravity-wave turbulence with respect to
strong turbulence, a conjecture which is reasonable at very small Froude number and
moderate elapsed time.

Discarding the rhs in the above system of equations (and viscosity, even if it is
easily accounted for) yields the so-called RDT limit for second-order single-time sta-
tistics. Integrating the spectra and co-spectra over Fourier space, toroidal energy is
strictly conserved, as is E (tor) at any k, whereas poloidal and potential energy compo-
nents asymptotically equilibrate after a transient phase made of damped oscillations
with opposed phases (see, e.g. Salhi and Cambon 2007 for details, and Fig. 10.4).
The damping originates in phase mixing, since the integral of Z ′ over the polar angle
sin θ = k⊥/k tends towards zero because of the weighting factor e2ı N t sin θ coming
from RDT.

Detailed equations and DNS/EDQNM comparisons, including the angle-
dependent spectra, are given in Godeferd and Staquet (2003). More details are pro-
vided in Sect. 10.7.7. The EDQNM2 model in Godeferd and Cambon (1994) yielded
the angular drain of energy which condenses the energy towards vertical wave-
vectors, in agreement with collapse of vertical motion and layering (see the sketch
on Fig. 10.5). Recall that, because of the incompressibility constraint (k · û = 0),
both contributions to velocity and vorticity become almost horizontal if the spectral
density of energy is concentrated near the vertical wavevectors. In terms of direc-
tional and polarization anisotropy, polarization becomes marginal and all anisotropic
features depend on the sole directional anisotropy, including the collapse of vertical
motion.

The latter effect is reflected in physical space by a pancake structure, sketched
in Fig. 10.5-(bottom) and illustrated in Fig. 10.6, in which isovalues of velocity gra-
dients are obtained from a snapshot of instantaneous DNS data. This layering can
be statistically quantified by the development of two different integral length scales,
as shown in Fig. 10.7 (from EDQNM2) and Fig. 10.8 (from DNS), with excellent
agreement. The integral lengthscale related to horizontal velocity components and
horizontal separation L(1)

11 is shown to develop similarly to isotropic unstratified tur-
bulence, whereas the one related to vertical separation L(3)

11 is blocked. In the same
conditions, with initial equipartition of potential and wave energy, linear calculation
(RDT) exhibits no anisotropy, i.e. L(1)

11 = 2L(3)
11 .
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Fig. 10.4 Stable stratification, purely linear inviscid calculation, isotropic initial data with initially
unbalanced poloidal/potential energy of ratio χ; The toroidal component remains constant and equal
to the initial poloidal component. Reproduced from Salhi and Cambon (2007) with permission of
APS

The EDQNM2 procedure was made as simple as possible in Cambon et al. (2007),
in order to focus on pure toroidal interactions and to reach very high Reynolds
numbers Re, at low Froude numbers Fr and long elapsed times, a range of parameters
not presently accessible to DNS. More details on the equation governing three-point
third-order correlations are given in Sect. 10.7.7.
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k⊥ = 0

k = 0

k⊥ = 0

k = 0

Fig. 10.5 Stable stratification, sketch of the nonlinear cascade (top, angular drain in Fourier space)
and (bottom) corresponding layering effect in physical space

Fig. 10.6 Isovalues of
vertical gradient of
horizontal velocity
fluctuation. Pure
stratification. DNS with 2563

grid points and isotropic
initial data. Reproduced
from Godeferd and Staquet
(2003) with permission of
CUP

A typical shape of strongly anisotropic transfer related to T (tor)(k, cos θ) in
Eq. (10.26) is shown in Fig. 10.9.

Cartoons for different type of interactions, and related cascades, are displayed for
sphere-to-sphere and cylinder-to-cylinder energy transfers in Fig. 10.10. Our analysis
may suggest an apparent inverse cascade in terms of purely transverse (k⊥) wave
vectors, but the fact that the cascade is globally direct is ascertained from different
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Fig. 10.7 Development of
typical integral lengthscales
from EDQNM2. L(1)

11 (top)

and L(3)
11 (bottom), where

indices 1 and 3 denote
horizontal and vertical
directions, respectively.
(Initial) isotropy implies
L(1)

11 = 2L(3)
11 . Reproduced

from Godeferd and Staquet
(2003) with permission of
CUP

Fig. 10.8 Same as Fig. 10.7,
from DNS with 2563 grid
points. Reproduced from
Godeferd and Staquet (2003)
with permission of CUP

Fig. 10.9 Angle-dependent
toroidal transfer term. Each
figure displays its
k-dependence at a given
polar angle θ = ̂(k, n).
EDQNM2 results in stably
stratified decaying
turbulence at initial
Reλ = 145. Data taken from
Cambon et al. (2007)
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Fig. 10.10 Top: isotropic energy drain in spectral space. Direct (left) and inverse (right) cascade.
Bottom: cylinder to cylinder cascade

studies. A similar result was recently supported by forced DNS (Marino et al. 2014)
and is further discussed in Chap. 11. Finally, the nonlinear energy transfer in stably-
stratified turbulence reconciles the three cartoons: The angular drain in Fig. 10.5, the
sketch of “isotropized” cascade in Fig. 10.10-top-left, and the sketch of apparently
inverse cascade for horizontal wave vectors in Fig. 10.10-bottom-right.

10.6 Coherent Structures: Dynamics and Scaling of the
Layered Flow, “Pancake” Dynamics, Instabilities

10.6.1 Simplified Scaling Laws

Ignoring the detailed anisotropy of the flow, simplified scaling laws seem to be
valid looking at results of various numerical and physical experiments. For instance,
Lindborg (2006) reported a conventional scaling in DNS/LES in flattened boxes with

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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Fig. 10.11 Spectral scalings in (presumably) stratified flows. Reproduced from Nastrom and Gage
(1985) and Lindborg (2006) with permission of CUP

the strongest stratification for both horizontal kinetic and potential energy spectra:

E⊥(k⊥) = C1ε
2/3k−5/3

⊥ , E (pot)(k⊥) = C2εpε
−1/3k−5/3

⊥ , (10.34)

where ε and εp are the dissipation rate of kinetic and potential energy, respectively.
These scaling laws are consistent with a vertical Froude number close to the unity,
equipartition in terms of potential and kinetic energy,2 and classical estimates by Tay-
lor for lengthscales, as in isotropic flows without stratification. The spectral scalings
are apparently consistent with the ones by Nastrom and Gage (1985), as shown in
Fig. 10.11. This interpretation was recently radically questioned by high-resolution
global DNS (Skamarock et al. 2014), and Coriolis-dependent related scalings by
Galperin and Sukoriansky (2017), as discussed in Sect. 7.7.7 in Chap. 7.

2The equipartition of kinetic and potential energy is not imposed by dynamical equations, except
for linear internal waves.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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Keeping the focus on stratified flows only, the numerical method can be ques-
tioned, because of under-resolution in the vertical direction (use of a hyperviscosity)
and artificial forcing of purely 2D horizontal modes, but the very different simulation
by Riley (2003), rediscussed in the next subsection, gives a similar scaling. Such a
scaling was expected but not observed in a recent experiment by Praud et al. (2005),
— Adam Fincham attributes this to the Reynolds number being too low — carried out
in the large Coriolis tank filled of salted water (without rotation here, the cases with
additional rotation are addressed in the next chapter), turbulence being generated by
a moving rake.

10.6.2 Pancake Structures, Zig-Zag and Kelvin–Helmholtz
Instabilities

The fact that conventional scaling laws are recovered, in a very similar way to what
is found in isotropic turbulence without stratification, seems to contradict the highly
anisotropic organisation of the strongly stratified flow. This anisotropic organisation
can be quantified using various statistical indicators, from single-point correlations to
two-component spectra such as the ones presented in Godeferd and Staquet (2003),
Liechtenstein et al. (2005). It is linked to anisotropic structures which are identified in
DNS snapshots, via iso-velocity-gradient surfaces. Pancake structures were identified
from a long time in pseudo-spectral DNS (Kimura and Herring 1996). More recently,
it was shown that the horizontal layering with pancake structures essentially modifies
the toroidal part of the flow, whereas the poloidal part remained apparently almost
isotropic, regarding its angular dependence. Angle-dependent spectra E (tor)(k, cos θ)
and E (pol)(k, cos θ) calculated from DNS give a consistent, more quantitative, infor-
mation. The whole result, in both physical (see Fig. 10.13) and spectral space (see
Fig. 10.12), confirms the cartoon displayed in Fig. 10.5, but restricted to the sole
toroidal component of the flow.

It is worth noting that in actual flows internal waves would not be expected to be
isotropic. The reason why is that some of them are generated by the adjustment of
the toroidal modes (cyclostrophic adjustment), some can be affected by the toroidal
shear, while others can undergo the resonant wave/vortex interaction (see Lelong
and Riley 1991). The latter was reported to be important in numerical simulations in
Bartello (1995).

Another type of more specific structures results from the zig-zag instability. Such
instabilities were firstly identified in the presence of vertical columnar structures
moving horizontally in a stratified tank. A typical tangling motion develops in the
horizontal direction perpendicularly to the main motion of eddies, with typical veloc-
ity U , breaking their vertical coherence with a typical length scale U/N . In addition
to the case of a pair of counter-rotating eddies, advancing with almost constant veloc-
ity due to mutual induction, the case of co-rotating eddies was investigated (Otheguy
et al. 2006). In the latter case, mutual induction results in circular motion and tangling
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Fig. 10.12 Angle-dependent spectra, toroidal (left) and poloidal (right) energy. High resolution
DNS of strongly stratified flow. Courtesy of L. Liechtenstein

Fig. 10.13 Iso-enstrophy surfaces (snapshot), using only the toroidal (left) and the poloidal (right)
contribution from the fluctuating velocity field. High resolution DNS of strongly stratified flow.
Courtesy of L. Liechtenstein

zig-zag motion develops in the radial direction. This instability was proposed as a
generic mechanism to create the layering with an universal scaling U/N in strongly
turbulent stratified flow (Billant and Chomaz 2001). This assumption is probably too
simple. On the one hand, the zig-zag instability requires the presence of prexisting
coherent vortices with vertical length much larger than U/N : in some experiments, in
which a moving rake favours 2D structuring, the zig-zag motion is recovered (Praud
et al. 2005), but it is not found in other ones with smaller dimension (Peter Davidson,
experimental study in progress), in which turbulence is generated by a grid with not
a too large mesh. On the other hand, even in the presence of an array of vertical 2D
vortices, significant horizontal velocity U must result from translational or rotational
motion of eddies: for instance, the zig-zag instability is inhibited if the base flow is
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the 2D Taylor-Green flow, or Taylor’s “four rollers mill”, in which all degrees of
freedom are blocked by mutual induction of vortices.

A more promizing type of instability is of Kelvin–Helmholtz type and can result
from the intense vertical shearing between pancake layers. Such structures do not
appear in the fully 3D DNS (in cubic boxes) of decaying stratified turbulence by
Liechtenstein et al. (2005) because the moderate Reynolds number probably limits
the shearing process. For a different reason, because of the unsufficient vertical
resolution, they hardly appear in the DNS/LES with flattened computational domains
(Lindborg 2006).

Only in the DNS by Riley and coworkers, significant occurence is found for such
Kelvin–Helmholtz instabilities, as shown in Fig. 10.14.

The resolution of these DNS (which can be considered as really 3D) is comparable
to the ones by Liechtenstein et al. (2005), but largest structures are initialized by a
network of 3D Taylor-Green vortices, allowing for a much larger Reynolds number.

Fig. 10.14 Top panel shows part of a horizontal slice through the w field. The white dashed line
gives the orientation of a vertical slice through the horizontal plane. The bottom panel shows ρT on
that vertical slice. Reproduced from Riley (2003) with permission of AIP
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It has been suggested for a long time that a stability criterion, such as the one
of Miles (1961), i.e. Ri = N 2/S2 ∼ 1/4, can control the “efficient” local shear S.
More generally, Riley (2003) introduced the nondimensional number

Rb = F2
r Re,

referred to as the buoyancy efficiency parameter, to identify a régime of strongly
turbulent and strongly stratified flows characterized by Rb > 1, capable of devel-
oping strong inter-layer shearing. The latter threshold was recently rediscovered by
Brethouwer et al. (2007), with relevant application to their DNS, even if probably
under-resolved in the vertical direction. In Fig. 10.15, several DNS results are plotted
on a diagram in terms of both Reynolds number and inverse of the horizontal Froude
number from Eq. (10.2).

The parameter Rb is almost equivalent to the parameter ε/(νN 2), which is called
the activity parameter or the buoyancy Reynolds number by oceanographers. Bill
Smyth and Jim Riley (private) suggest that this parameter must be greater than about
20 for the flow to sustain turbulence.

Fig. 10.15 Different domains for weakly statified and strongly stratified turbulent flows, in term
of the Reynolds number (horizontal axis) and the inverse of the vertical Froude number (vertical
axis). Fh on the figure denotes the horizontal Froude number, or Fr⊥ in Eq. (10.2). Scheme adapted
from Brethouwer et al. (2007). Courtesy from Alex Delache
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10.7 Unstable Stratified Homogeneous Turbulence

10.7.1 Generals

10.7.1.1 From Stable to Unstable Quasi-homogeneous Turbulence

There are several studies of stable stratification with geophysical applications, and
less in the unstable case. The context of baroclinic instability can be found with a
stabilizing mean buoyancy gradient, but, as revisited in Chap. 11, the presence of
combined effects of rotation and mean shear can yield an additional horizontal mean
buoyancy gradient: In this case the mean isopycnes are no longer horizontal and their
tilting induces an exponential instability, called baroclinic- or symmetric-instability
depending on the context. But the simplest pattern for the unstable stratification is
obtained with horizontal isopycnes in changing the sign of the vertical mean buoyancy
gradient, e.g. in Fig. 10.1-left. This configuration is found in the turbulent mixing
layer resulting from the Rayleigh–Taylor instability, when a heavy fluid is suddenly
placed above a light one. The development of such a mixing zone is illustrated by
DNS in Fig. 10.16. In other words, mean horizontal isopycnes are recovered after a
complete turnover of the mean flow pattern (vs. the stable case), corresponding to a
tilting of 180 degrees, whereas a rather low tilting angle (vs. horizontal direction) is
sufficient for triggering a baroclinic-type instability.

The multiform physical context is illustrated by different observations and applica-
tions: Atmospheric context, local convection under mammatus clouds; astrophysical
context, with collapse of star and supernova (Cook and Cabot 2006); oceanographic

Fig. 10.16 Visualization of
the instantaneous mixing
layer from R-T instability, by
iso-concentration surfaces.
DNS from the TRICLADE
numerical code. Reproduced
from Cambon and Gréa
(2013) with permission of T
and F

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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context, with sinking of cold waters in thermo-hyaling circulation; nuclear fusion by
inertial confinement. A good overview is given by Sharp (1984).

10.7.1.2 The Framework of Unstably Stratified Homogeneous
Turbulence, at Fixed N

Basic equations for velocity, buoyancy and reduced pressure fluctuations are derived
from Eqs. (10.3) and (10.4), by only changing the sign of the square of the stratifi-
cation parameter N . As for the stable case, only the Prandtl or Schmidt number χ/ν
distinguishes cases with different stratifying agents (density, temperature, salinity):
it will be taken equal to 1 in the following. Equations for two-point second-order
correlations are derived for a state vector in four components, by virtue of axisym-
metry with mirror symmetry: The second-order spectral tensor of velocity correla-
tions reduces to toroidal 1

2 (E − Z)) and poloidal 1
2 (E + Z) energy spectra, Z being

purely real, the spectrum of the buoyancy variance reduces to a spectrum of potential
energy E (pot), and the cross-correlation between velocity and buoyancy reduces to a
co-spectrum of poloidal buoyancy flux �.

Equations (10.30), (10.31 ), (10.32) and (10.33 ) are modified in the unstable case
by changing the sign of N in the first two ones and in changing the sign of the poloidal
term 1

2 (E + Z) in the latter. Examples of evaluation of N in geophysical flows are
obtained by changing the sign of the mean gradient, be density (liquid) or temper-
ature (gas). A very recent application of USHT (Unstably Stratified Homogeneous
Turbulence) addressed the dynamics of the mixing zone induced by Rayleigh–Taylor
instability, when turbulence is sufficiently developed to permit a quasi-homogeneous
approach, with a given value of N (Burlot et al. 2015a). As in the stable case, N
is still called stratification frequency, even if temporal oscillations are replaced by
an exponential growth. The buoyancy variance, divided by N 2, is again coined as
potential energy, even if this terminology is less obvious than in the stable case. In
the linear inviscid limit, it is found that both poloidal and potential energy spectra
are affected by the same exponential growth exp(2Nt k⊥

k ). Even if the total energy is
not conservative, we conserve the zero integral over k of the sum T (E) + T (pot). The
nonlinear flux term T (F) has not zero integral; it is possible, however, to disentangle
in it a conservative part (with zero integral) and a part of pressure-strain rate type, as
for T (Z) in the shear-driven flow case.

10.7.1.3 Dynamical Trends, Dominant Modes

Development of two-dimensional structures is very different of what it is found in
rotating or in quasi-static Magnetohydrodynamics flows, because the velocity field
is organized into up and down vertical “jettal” (as a crude sketch), rather than ver-
tical “vortical” structures, in the mixing zone. More precisely, these structures have
vorticity, but it is rather horizontal than vertical. Density structures are elongated
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Fig. 10.17 Visualization of results from 20483 pseudo-spectral DNS in tri-periodic box with con-
stant N at three different elapsed times, started with isotropic initial data. Top: Cross-section in
an horizontal plane, showing apparent isotropy (axisymmetry) and growth of structures. Bottom:
Cross-section on a vertical plane, showing the increasing elongation of structures in the vertical
direction. Details of DNS (but without this figure) are in Gréa et al. (2016). Courtesy from Benoît-
Joseph Gréa and Alan Burlot

in the vertical direction as well. They consist in physical space of “spikes” for the
downward heavy fluid and “bubbles” for the upward light fluid. Asymmetry between
spikes and bubbles is only significant at large Atwood numbers (see Sect. 10.8). In
our homogeneous approach (USHT), velocity structures are shown in Fig. 10.17,
from high resolution DNS, with a dramatic growth of the large-scale Reynolds num-
ber, from about 20 initially to about 5000 at the final time. Their typical anisotropic
signature is reflected by dominant poloidal component rather concentrated at small
k‖/k spectral directions, at largest scales. Directional anisotropy is therefore qualita-
tively similar to what is found in rotating or in Quasi-Static Magnetohydrodynamics
flow cases, but polarization anisotropy is opposite, as shown in Fig. 10.18.

This corresponds to the two spectral sketchs of Fig. 2.5 giving a “cigar” contri-
bution to the Reynolds stress tensor, and is quantified by Fig. 10.23 for directional
anisotropy.

10.7.2 Description and Modelling of Anisotropic USHT

All the rest of the present Sect. 10.7 is devoted to results from statistical models
matching RDT and EDQNM. USHT gives the best illustration of the strategy by

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 10.18 Sketch of the anisotropy created in USHT for the velocity field. A similar trend is found
for the scalar field, but only directional anisotropy (top-left) is relevant

Table 10.1 Description of anisotropy at the velocity, scalar and scalar flux levels, using k-vectors
descriptors and their corresponding spherically-averaged contributions.

Spherically averaged descriptors

k-vectors descriptors Isotropy Directional anisotropy Polarization anisotropy

E(k, t) E(k, t) H (dir)
i j (k, t) 0

Z(k, t) 0 0 H (pol)
i j (k, t)

E(pot)(k, t) E (pot)(k, t) H (pot)
i j (k, t) 0

Fi (k, t) 0 0 E (F)
i (k, t)

Burlot et al. (2015a), Burlot et al. (2015b), that is to cross-validate DNS and gener-
alized EDQNM at the highest Reynolds numbers permitted by DNS, and then to use
only EDQNM at far higher Reynolds numbers and elapsed times. The problem of
anisotropic description of two-point second-order statistics is addressed at two dif-
ferent levels of description, as recalled in the Table 10.1. The anisotropic description
of shear-driven flows and the one of buoyancy-driven flows are unified, following
(Cambon et al. 2017).
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This table extends the preceding one for the velocity (2.5) to the coupled flow
case with scalar, passive (e.g. Briard et al. 2016) to active (buoyancy Briard et al.
2017).

For any angle-dependent potential energy spectrum E (pot) and related scalar flux,
it is possible to extract the related spherically-averaged descriptors E (pot), H (pot)

i j

and E F
i . ∫∫

Sk

E (pot)(k, t)d2k = E (pot)(k, t), (10.35)

∫∫

Sk

sin2 θE (pot)(k, t)d2k = 2

3
E (pot)(k, t) + 2E (pot)(k, t)H (pot)

33 (k, t), (10.36)

and ∫

Sk

F3(k, t)d2k = E F
3 (k, t). (10.37)

Conversely, it is possible to reconstruct a part of the fully anisotropic spectral tensors
by means of these spherically-averaged descriptors, with

E (pot)(k, t) = E (pot)(k, t)

4πk2

(
1 − 15

2

(
3 cos2 θ − 1

)
H (pot)

33 (k, t)

)
. (10.38)

Note that polarization has no meaning for a scalar, so that H (pot)
33 only characterizes

directional anisotropy. Finally, a similar expansion applied to the flux term yields

F3(k, t) = − sin θ�(k, t) = 3

2
sin2 θE F

3 (k, t), (10.39)

in which F3 denotes the vertical component of the buoyancy flux, in agreement with
a general (non-axisymmetric) scalar flux vector Fi used in Briard et al. (2016) as
well.

Only the axisymmetric case is considered in former expansions, that are truncated
in terms of the first relevant angular harmonics, because their application will be
restricted to USHT consistent with axisymmetry. For the sake of completeness, their
counterpart is given for E and Z as follows (see Eqs. (8.44) and (8.45) for more
general non-axisymmetric expansions).

E(k, t) = E(k, t)

4πk2

(
1 − 15

2

(
3 cos2 θ − 1

)
H (dir)

33 (k, t)

)
(10.40)

and

Z(k, t) = 15

4

E(k, t)

4πk2
sin2 θH (pol)

33 (k, t), (10.41)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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from Hi j = 1
2

(
3δi3δ j3 − δi j

)
H33, with θ the polar angle of k versus the vertical

direction, referred to index 3.
About closure strategy, two successive models were applied. The first one is

applied to the system of equations for E,Z, E (pot), �, without assumption on the
angular dependence of spectra and co-pectra. As in the system of Eqs. (10.30)–
(10.33), their linear left-hand-sides are exact, and their nonlinear contributions are
closed by the generalized EDQNM1 model, with details in Sect. 10.7.7. This model is
referred to as USHT-EDQNM (Burlot et al. 2015a). In line with the strategy by Mons
et al. (2016), a simpler model (with reduced cost and memory-size) in terms of the
spherically-averaged descriptors only is readily derived by reinjecting Eqs. (10.38)–
(10.41) in the previous model. This model is referred to as USHT-EDQNM-S (S for
spherically-averaged descriptors). To do justice to the model by Briard et al. (2017),
it can extend the one by Mons et al. (2016), incorporating effects of mean velocity
gradients as well, and it is not restricted to axisymmetry, even though only shearless
axisymmetric applications will be considered in the present Sect. 10.7.

10.7.3 Time-Evolution of Global Quantities and Exponential
Growth Régime

Both DNS and generalized EDQNM at the highest Reynolds numbers predict the
existence of a régime characterized by an exponential growth of turbulent kinetic
energy, as in the pure shear case (Burlot et al. 2015a). The transient stage before
this regime is reached depends on the initial condition. Typical time evolution of
the turbulent kinetic energy K(t), the Froude number Fr(t) = ε(t)/NK(t) and the
mixing parameter �(t) = K(pot)(t)/K(t) are displayed in Fig. 10.19. The rise of
the expected self-similar state is clearly seen, and a very good agreement between
DNS and anisotropic EDQNM is observed. Much more results are found in Burlot
et al. (2015b), including a parametric analysis of the influence of the infrared slope

Fig. 10.19 Time evolution of turbulent kinetic energy K(t), Froude number Fr(t), and ratio of
kinetic to potential energy, from DNS and USHT-EDQNM using the N -correction of Eq. (10.57),
denoted EDQNMc. Reproduced from Burlot et al. (2015a) with permission of CUP
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σ of the initial energy spectrum (E(k → 0, t = 0) ∼ kσ). The simple relationship
by Soulard et al. (2014) for the corrected exponential growth eα′ Nt of the kinetic
energy is

α′ = log K(t)

Nt
= 4

σ + 3
. (10.42)

It is worth noting that, even though both homogeneous shear turbulence and
unstable stratified homogeneous turbulence exhibit an asymptotic exponential growth
of turbulent kinetic energy, there is an important difference between these two cases.
The exponential growth rate does not depend on the infrared slope σ in the former,
it is governed by this parameter in the later.

Both the Froude number and the mixing coefficient converge toward constant
asymptotic values during the exponential growth regime, whose values depend on
the infrared slope σ. It is observed that an increase in σ leads to an increase in Fr
and a decrease in � and in the growth rate α′. Asymptotic values of these parameters
do not depend on N .

10.7.4 Spectra in the Exponential Growth Régime

Universal inertial ranges appear in spectra during the exponential growth regime if the
Reynolds number is large enough. Typical results are displayed in Fig. 10.24 for the
turbulent kinetic energy spectrum E(k, t), the scalar variance spectrum E (pot)(k, t)
(scaled as a potential energy) and the vertical buoyancy flux spectrum F3(k, t).

Both E(k) and E (pot)(k) exhibit an inertial range with a –5/3 slope, while a
–7/3 slope is detected for the cospectrum F3(k). These results are in agreement
with a classical Kolmogorov-type analysis. An interesting result is that the peaks
of the three spectra evolve as k−3 with increasing Nt (Briard et al. 2016, 2017).
This can be recovered using the following heuristic rationale. Denoting Emax (t)
the maximum value of E(k, t), dimensional analysis yields Emax (t) ∼ K(t)L(t)
along with L(t) ∼ K3/2(t)/ε(t). In the asymptotic exponential growth regime, one
has K(t) ∝ exp(α′Nt) and ε(t) ∝ exp(α′Nt), leading to L(t) ∝ exp(α′Nt/2).
Therefore one obtains Emax (t) ∝ exp(3α′Nt/2). Now assuming that Emax (t) occurs
at wave number kL ∼ 1/L , time t can be eliminated since t ∼ −2 log(kL)/α′N ,
yielding

Emax (t) ∼ k−3
L .

The slope of spectrum of the polarization-induced anisotropic correction to the
vertical Reynolds stress spectrum R̂33(k) is still controversial. Both –3 and –7/3 val-
ues have been proposed in Burlot et al. (2015b) and Briard et al. (2017), respectively.
DNS results are still not accurate enough to make a final conclusion (Fig. 10.20).
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Fig. 10.20 Spectra in
high-Reynolds Unstable
Stratified Homogeneous
Turbulence at different times.
Top: kinetic energy spectrum
E(k, t) represented via the
turbulent Reynolds number
Re = K2/νε; Middle: scalar
variance spectrum
E (pot)(k, t); bottom: vertical
buoyancy flux cospectrum
F(k, t) = F3(k, t).
USHT-EDQNM-S model.
Reproduced from Briard
et al. (2017) with permission
of APS
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10.7.5 Anisotropy in the Exponential Growth Régime

Anisotropy can be first investigated looking at Reynolds stress anisotropy b33 and
the scalar anisotropy indicator b(pot)

33 , where b(pot)
i j (t) is defined as

b(pot)
i j (t) = 1

K(pot)

∫ +∞

0
E (pot)(k, t)H (pot)

i j (k, t)dk. (10.43)
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Fig. 10.21 Vertical Reynolds stress anisotropy b33 in high-Reynolds Unstable Stratified Homo-
geneous Turbulence. Left: time evolution of b33(t), its polarization component b(pol)

33 (t) and its

directional component b(dir)
33 (t); Right: Time evolution of b33(t) for different values of the initial

infrared slope σ of E(k, t = 0). USHT-EDQNM-S model. Adapted from Briard et al. (2017) with
permission of APS. Courtesy of A. Briard

It is worth noting again that H (pot)
i j (k, t) reflects directional anisotropy only

(Table 10.1). Results dealing with b33 and its polarization and directional compo-
nents are displayed in Fig. 10.21. The large-scale anisotropy is contributed by large
positive polarization and directional component, which is the footprint of vertically
elongated structures with a dominance of the vertical velocity component. Such
structures can be referred to as vertical jets or vertical plumes. It is observed that
b33 converges toward a constant value during the exponential growth stage, which
is dominated by the polarization anisotropy and whose exact value depends on the
kinetic energy spectrum infrared slope σ. Similar results are obtained for b(pot)

33 : an
asymptotic constant value is observed, that depends on the features of the initial
condition at very large scales. As a matter of fact, asymptotic values of both b33 and
b(pot)

33 are decreasing values of σ and are not sensitive to N .
A deeper insight can be gained looking at scale-by-scale anisotropy. This is first

done looking at the spectral anisotropy descriptors H (pol)
i j and H (dir)

i j . It is reminded
that

ϕi j (k, t) =
∫∫

Sk

R̂i j (k, t)d2k = 2E(k, t)

(
δi j

3
+ H (pol)

i j (k, t) + H (dir)
i j (k, t)

)
.

Results for H33(k, t) = H (pol)
33 (k, t)+ H (dir)

33 (k, t) and its two components are dis-
played in Fig. 10.22. It is seen that anisotropy is governed by polarization anisotropy
at all scales, and is almost null for scales smaller than the Taylor microscale.
Anisotropy at the Ozmidov scale (further Eq. (10.47)) is very small, but not neg-
ligible.

Fully directional anisotropy can be better understood considering the
scale-by-scale distribution of directional parameters, using the angle-dependent
USHT-EDQNM model. Directional anisotropy for the fluctuating velocity field is
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Fig. 10.22 Spectral
decomposition of
scale-by-scale anisotropy of
the vertical Reynolds stress
anisotropy in high-Reynolds
Unstable Stratified
Homogeneous Turbulence.
Adapted from Briard et al.
(2017) with permission of
APS. USHT-EDQNM-S
model. Courtesy of
A. Briard 10
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characterized by the global angular coefficient (to be compared to the angular term
by Moreau or Shebalin in MHD, see Chap. 12)

sin2 γu =
∫∫∫

sin2 θkE(k, t)d3k
∫∫∫ E(k, t)d3k

. (10.44)

Its scale-by-scale distribution, expressed as sin2 γu(k), exactly corresponds to

sin2 γu(k, t) = 2

3
+ 2H (dir)

33 (k, t). (10.45)

A similar parameter is calculated for the directional anisotropy of the scalar spec-
trum of the variance of concentration,

sin2 γ =
∫∫∫

sin2 θkE (pot)(k, t)d3k
∫∫∫ E (pot)(k, t)d3k

, (10.46)

with its scale by scale distribution calculated as well.
The asymptotic values for the directional parameter, sin2 γu or sin2 γ, is 1 for 2D

structure, 0 for 1D structure (as for the VSHF mode that is the relevant limit for the
stable case, see also Fig. 10.5), and 2/3 for 3D isotropy.

Typical results, at very high Reynolds number unreachable by DNS at their high-
est resolution 20483 and highest elapsed time are plotted in Fig. 10.23 for various
values of infrared slope of the initial energy spectrum, σ. The role of the Ozmidov
wavenumber

kO = 2π

√
N 3

ε
, (10.47)

as a threshold for restoring isotropy (dashed line, right) at smallest scales is con-
firmed, especially for the velocity. Note that the complete re-isotropization shown
in top-right is found only at huge Reynolds numbers, whereas anisotropy persists for
wavenumbers larger than kO at smaller (but large anyway) Reynolds numbers, with

http://dx.doi.org/10.1007/978-3-319-73162-9_12
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Fig. 10.23 Distribution of the parameter of directional anisotropy for both velocity and concen-
tration. Left: Temporal evolution of the global parameter sin2 γ (top) and sin2 γu (bottom). Right:
scale-by-scale distribution. Reproduced from Burlot et al. (2015b) with permission of AIP

complete accordance between DNS and EDQNM. The persistence of anisotropy for
the velocity at k’s larger than the Ozmidov’s threshold, and not the buoyancy, is
not completely explained. On the other hand, the dependence with respect to s and
the distribution of largest scales is completely consistent for velocity (bottom) and
buoyancy (top). The tendency to reach the 2D limit is found for the large scales,
only for the smallest σ, in agreement with a dominant effect of RDT. In the other
cases, especially with non-monotonic distribution of largest scales, nonlinear effects,
probably of backscatter-type, compete with RDT mechanisms.

10.7.6 Pressure Field

The pressure field can be computed in the same was as for previous incompressible
flows cases, e.g. the homogeneous shear case discussed in Sect. 9.7, i.e. starting from
the Poisson equation derived from the momentum equation. In the present case, it
reads

http://dx.doi.org/10.1007/978-3-319-73162-9_9
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− ∇2 p′ = ∂2

∂xi∂x j
(ui u j ) + λi

∂c

∂xi
, (10.48)

where λi = ∂C
∂xi

denotes the mean scalar gradient, as in Eq. (10.6). Following the same
procedure as in Sect. 9.7 and still using the Quasi-Normal hypothesis to close the
fourth-order velocity correlation term, one obtains for the three-dimensional pressure
spectrum defined as

Ep(k, t)δ(k − p) = p̂(k, t) p̂∗( p, t), (10.49)

which appears as the sum of an isotropic and an anisotropic component (Briard et al.
2017)

Ep(k, t) = 2
ki k j klkm

k4

∫∫∫

k= p+q
R̂im( p, t)R̂ jl(q, t)d3 p

︸ ︷︷ ︸
isotropic

+ ki k j

k4
λiλ jEb(k, t)

︸ ︷︷ ︸
anisotropic

,

(10.50)

where Eb(k, t) denotes the scalar variance spectrum (or N 2E (pot)(k, t). It is not
rescaled as an energy spectrum here, as it should be for a special choice of λi ). The
isotropic part is identical to the one found in the pure incompressible isotropic case
discussed in Sect. 4.9.2. The associated spherically-averaged pressure spectrum is

E p(k, t) = 16π2
∫∫

�k

kpq(1 − y2)(1 − z2)E0(p, t)E0(q, t)dpdq

︸ ︷︷ ︸
isotropic

+ Eb(k, t)
λiλ j

k2

(
δi j

3
− 2H (pot)

i j (k, t)

)

︸ ︷︷ ︸
anisotropic

= Et
pp(k, t) + E N

pp(k, t), (10.51)

where the domain of integration �k , the cosines y and z of the triangle formed by
the triad, and the rescaled energy spectra E0(k) = E(k)

4πk2 are defined consistently with
the rest of the book. Dimensional analysis yields Et

pp(k, t) ∝ k−7/3 and E N
pp(k, t) ∝

k−11/3 in inertial ranges at very large Reynolds number during the exponential growth
regime, in very good agreement with EDQNM results displayed in Fig. 10.24.

http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 10.24 Pressure spectra in high-Reynolds Unstable Stratified Homogeneous Turbulence. Left:
isotropic and anisotropic components in log-log scales; Right: compensated spectra. Adapted from
Briard et al. (2017) with permission of APS. Courtesy of A. Briard

10.7.7 Generalized EDQNM Approach with both Linear and
Nonlinear Dynamics, from Stable Case to Unstable
One

In this section, the most general equations to be closed and the crucial assumptions are
given for the most elaborate (angle-dependent spectra) EDQNM-SSHT (stable case
with internal waves) and EDQNM-USHT (unstable case without waves) procedures.

As for the shear-driven flow case, the generalized transfer terms T (E), T (Z), T (pot),
T (F) are not directly expressed in terms of the state-vector (E, Z , E (pot), �), but the
triadic closure is performed at the level of three-point third-order correlations.

Because the full equations for three-point third-order correlations were not dis-
cussed above, we go back on them for both the stable case and the unstable one. In
the stable case, the general EDQN equation for three-point third-order correlations is

Sss′s′′ (k, p, t) = exp
[
−ν(k2 + p2 + q2)(t − t0)

+ı N

(
s

k⊥
k

+ s′ p⊥
p

+ s′′ q⊥
q

)
(t − t0)

]
Sss′s′′ (k, p, t0)

+
∫ t

t0
exp

[

−
∫ t ′

t0
μkpq (t ′′)dt ′′ + ı N

(
s

k⊥
k

+ s′ p⊥
p

+ s′′ q⊥
q

)
(t − t ′)

]

× τ
(QN )
ss′s′′ (k, p, t ′)dt ′. (10.52)

For the sake of mathematical convenience, a diagonal form of the RDT Green’s
function in Eq. (10.14) is used, projecting the correlation tensor on the eigenmodes
of the linear regime, mixing toroidal (“vortex”) mode and gravity wave modes. This
equation corresponds to the generic equation in Chap. 2 for shear-driven flows: The
spectral tensor of three-point third-order correlations is given by

〈ξ(s ′′)(q, t)ξ(s)(k, t)ξ(s ′)( p, t)〉 = ı Sss ′s ′′(k, p, t)δ(3)(k + p + q), (10.53)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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in terms of the eigenmodes in Eq. (10.12). Accordingly, the signs s, s ′, s ′′ take not
only the value ±1, for waves (gravity waves here), as in purely rotating turbulence, but
also the zero value, for the toroidal mode. Another difference with the case of purely
rotating flow is that the explicit linear operator in the previous equation involves the
dispersion frequency of gravity waves (10.8) instead of the dispersion frequency of
inertial waves. The contribution from three-point fourth-order correlations, that is
called into play by quadratic nonlinearity in the equation governing Sss ′s ′′ , or

τss ′s ′′(k, p, t) = τ (QN )
ss ′s ′′ (k, p, q, t) + τ (I V )

ss ′s ′′ (k, p, t), (10.54)

is split as the sum of its quasi-normal counterpart, τ (QN )
ss ′s ′′ (k, p, t), expressed in terms

of sums of products of second-order correlations as for a normal law (symboli-
cally 〈uuuu〉(QN ) =∑〈uu〉.〈uu〉), and the contribution from fourth-order cumulants
τ (I V )

ss ′s ′′ (k, p, t) that originates in the departure from Gaussianity at this level of three-
point fourth-order statistics. The detailed expression of S(QN )

ss ′s ′′ is not given here for
the sake of brevity. On the other hand, we recall that the only physical problem of clo-
sure is the replacement of the “bare” Green’s tensor by a “dressed”, or renormalized
version, that accounts for the departure from Gaussianity via τ (I V )

ss ′s ′′ . The extension
of the original procedure by Orszag (1970), with an eddy-damping coefficient added
to the purely viscous term, yields the damping term μkpq . As a last reminder, two
levels of Markovianization are eventually applied: EDQNM1 if only the exponential
damping term is considered as “rapid”, so that the temporal integral is applied to it
only, and all the other terms are fixed at their instantaneous value, forcing t ′ = t in
the integral, as for a fading memory; EDQNM2 if both the damping term and the
explicit linear term (in N here) are considered as rapid. A third version, EDQNM3,
in which “rapid” and “slow” terms are distinguished in τ (QN )

ss ′s ′′ may be used for recov-
ering the strict asymptotic limit of wave turbulence theory, as in Chap. 7, but it does
not yield significant improvement for quantitative results. In the stable (SSHT) case,
EDQNM2, in which the linear N -operator, which reflects the three-fold product of
inviscid RDT Green’s function, is much more suited than the EDQNM1 version, in
which this term is neglected, with t ′ = t (Godeferd and Cambon 1994; Godeferd
and Staquet 2003).

Passing from stable case to unstable one, the EDQN equation is now

Sss′s′′ (k, p, t) = exp
[
−ν(k2 + p2 + q2)(t − t0)

−N

(
s

k⊥
k

+ s′ p⊥
p

+ s′′ q⊥
q

)
(t − t0)

]
Sss′s′′ (k, p, t0)

+
∫ t

t0
exp

[

−
∫ t ′

t0
μkpq (t ′′)dt ′′ − N

(
s

k⊥
k

+ s′ p⊥
p

+ s′′ q⊥
q

)
(t − t ′)

]

× τ
(QN )
ss′s′′ (k, p, t ′)dt ′. (10.55)

The essential difference with the stable case is now the presence of real terms, instead
of purely imaginary ones, that account for the explicit effect of N . Accordingly, as

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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expected in Cambon and Scott (1999), the EDQNM2 version cannot be applied as
in the stable case, because the temporal integral of the term with N factor diverges
at large t − t ′. Consequently, a strict EDQNM1 version, which amounts to making
N = 0 in the above integral, was first checked when the full numerical code used in
the stable case has been adapted to the unstable one.

The related model and numerical code adapted to USHT gave satisfactory results
compared to high resolution DNS, but the accumulated energy transfers appeared
a bit overestimated with respect to their DNS counterpart. Much more accurate
EDQNM1/DNS agreement was finally obtained by reintroducing N in a global quasi-
isotropic way. This procedure is consistent with a heuristic way to close of the EDQN
Eq. (10.55) for USHT:

−τ (I V )
ss ′s ′′ (k, p, t) − N

(
s

k⊥
k

+ s ′ p⊥
p

+ s ′′ q⊥
q

)
Sss ′s ′′(k, p, t) =

= (ηN (k, t) + ηN (p, t) + ηN (q, t)
)

Sss ′s ′′(k, p, t), s, s ′, s ′′ = 0,±1, (10.56)

with

ηN (k, t) = a0

(∫ k

0
p2 E(p, t)dp

)1/2

+ a1 N . (10.57)

Burlot et al. (2015a) provide no justification that the additional term in Eq. (10.57)
represents a global isotropized estimate of the explicit linear anisotropic N -term
in EDQN equations, or a specific contribution from fourth-order cumulants τ (I V )

ss ′s ′′ .
However, it is possible to show that a reasonable fitting of the constant a1 gives
excellent overall results, as shown in Fig. 10.25.

Interestingly, the analogy with similar adjustments in wave turbulence, as in
Eq. (7.46) for purely rotating turbulence, is not really convincing. It is sure that
the effect of interacting dispersive waves results in a global damping of triple corre-
lations. On the other hand, we cannot explain why the explicit linear operator related
to N yields amplification of second-order correlations, but seems to induce opposite
global damping of triple correlations. Two perspectives can help us for a rational
explanation and perhaps an improved modelling:

(i) As done long time ago in rotating turbulence (e.g. Fig. 11 in Cambon and Jacquin
1989), it is possible to calculate the impact of the transient term, first line, in
Eq. (10.55), which gives the rapid distortion of triple correlations from the initial
value problem. For consistency, initial isotropy can be assumed at t = t0. This
transient contribution was not calculated in almost all related EDQNM versions,
whenever the versions, because either t0 was taken at its far past value or the
initial contribution of third-order correlations was neglected, in order to isolate
the secular term only (second line in Eq. (10.55). The optional calculation of the
transient term, which is present in EDQNM2 codes for both rotation and stable
stratification, can be reactivated in the USHT code, derived from the EDQNM2
SSHT one.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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Fig. 10.25 Kinetic energy evolution for different runs from DNS, and EDQNM with (denoted
EDQNM-c) and without N correction from Eq. (10.57). Reproduced from Burlot et al. (2015a)
with permission of CUP

(ii) As suggested by Julian Scott (private communication), the problem of the lack of
convergence of the temporal integral for a three-fold product of Green’s functions
with possible exponential growth, can be treated using a temporal integral from
past to future, with non-causal Green’s function.

10.8 Extension to the Mixing Zone Resulting from
Rayleigh–Taylor Instability and Beyond

The USHT with its modeling by generalized EDQNM is a useful canonical model
for the mixing zone resulting from the Rayleigh–Taylor instability (Rayleigh 1882;
Taylor 1950), once turbulence is well developed, but strict homogeneity cannot
describe a realistic unsteady growth rate of the mixing zone.
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The Rayleigh–Taylor instability is the interfacial instability which develops when
the heavy fluid, with density ρ2, is suddenly placed above the light fluid, with density
ρ1 (see, e.g. Chandrasekhar 1981). The dispersion frequency of this instability is

σ2
RT = −Agk, (10.58)

in terms of the gravitational acceleration g, the wavenumber k, and the Atwood
number

A = ρ2 − ρ1

ρ2 + ρ1
. (10.59)

Exponential instability is then found for positive Atwood numbers, and its strength
is proportional to k, so that small scales are preferentially instable. Incidentally, the
stable case is recovered for negative Atwood numbers, and disturbances consist of
surface gravity waves at the interface.

Accordingly, the first stage of the development of the mixing zone crucially
depends on the form of the initial perturbation of the surface, with high sensitiv-
ity to small scale corrugations. We no longer consider this stage here, in order to
address a sufficiently thick mixing zone, in which turbulence is well developed. In
the following, Rayleigh–Taylor Turbulence (RTT) illustrates such a developed tur-
bulence. It is worth noting that its development can keep a memory of the initial
stage of the Rayleigh–Taylor instability, via initial modes with moderate growth rate
but with very slow saturation in time.

10.8.1 Simple Models for the Growth Rate of the Mixing
Layer

In the strict context of statistical homogeneity restricted to fluctuations, a mean flow
with space-uniform gradients is a priori given, it includes a time-scale, N , as well
as the inverse of the shear rate for shear-driven turbulence but no lengthscale. The
typical vertical lengthscale of the mixing zone, denoted L(t), is the first unsteady
“mean” quantity to be predicted.

Useful definitions allow us to bridge between Rayleigh–Taylor turbulence (RTT)
and USHT. The buoyancy parameter is chosen as the concentration C , that is linked
to the density of the mixture by

1

ρ
= C

ρ1
+ 1 − C

ρ2
, (10.60)

in which ρ1 and ρ2 denote the density of the light fluid and the one of the heavy fluid
respectively. C is split into a mean contribution C obtained by horizontal averaging,
and a fluctuating one denoted c. The frequency N and the fluctuating buoyancy term
b used in USHT are given by
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N =
√

−2Ag
dC

dx3
and b = 2Agc, (10.61)

where the Atwood number A is assumed to be small.
When the mixing zone becomes fully turbulent, it is expected that its typical width

L eventually reaches an asymptotic self-similar state (Youngs 1984)

L = 2αAgt2. (10.62)

No definite value, other than the order of magnitude, was found for the semi-empirical
nondimensional parameter α, in spite of a wealth of numerical (DNS,LES) and
experimental data. In turn, a way to define a time-dependent α is

α(t) = L̇2

8AgL
. (10.63)

A popular buoyancy-drag model equation was proposed for the temporal evolution
of L(t) as

L̈ = −Cd
L̇2

L︸ ︷︷ ︸
drag

+ CbAg︸ ︷︷ ︸
buoyancy

, (10.64)

with two arbitrary parameters, Cb and Cd , to be tuned. The two terms represent
physical effects, with a kind of “ballistic” inter-penetration of the heavy and light
fluid for the latter, and a turbulent friction between up and down jettal structures for
the former. To which extent is it possible to replace tuned constants by terms related
to the anisotropic structure of the mixing zone? An answer was given by Gréa (2013),
with

Cb = sin2 γ(1 − �) and Cd = 2/Cb, (10.65)

where the dimensionality parameter sin2 γ quantifies the angular structure, or direc-
tional analysis, of the spectrum of concentration variance and � is the global mole-
cular mixing introduced by Youngs (1994)

� =
∫ +∞
−∞ C(1 − C)dx3
∫ +∞
−∞ C .(1 − C)dx3

, (10.66)

where the overbar holds for horizontal averaging (see also Poujade and Peybernes
2010 for the second relationship.)

The crucial equation which represents a feedback from fluctuating flow to mean
flow, ignored in the strict homogeneous context is
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∂C

∂t
+ ∂u3c

∂x3
= ν

∂2C

∂x2
3

. (10.67)

The vertical concentration flux u3c plays the role of the Reynolds stress tensor in
shear-driven flows, with its gradient affecting the mean flow. If we do not retain all
the information from the vertical dependence of averaged quantities, considered as
slowly varying in the vertical direction, a simplified quasi-homogeneous model can
be derived from an explicit linkage of N to L , from

dC

dx3
= β/L , (10.68)

with the parameter β specified below. A unique value of the vertical mean concentra-
tion gradient is evaluated at the center of the mixing zone for practical applications.

Some essential features of the inhomogeneous RTT case are first gathered in
Fig. 10.26, from DNS, before addressing typical statistical models. Evolution from
the α parameter is shown (bottom) from the initial case, in which a simple inter-
face separates heavy (top) fluid and light one (bottom) to the quasi-steady, quasi-
homogeneous, flow case. At initial time, both α and � given Eq. (10.66) are taken
equal to zero. During the quasi-steady state, a clear inertial −5/3 slopes are recovered
(top of the figure.) This is in complete agreement with all numerical calculations for
USHT, from DNS and EDQNM extended towards very high Reynolds numbers. The
recovery of Kolmogorov law is controversial, however, from the study of Poujade
(2006): To be more careful, all calculations presented here in USHT and RTT support
the Kolmogorov law, but at rather small scales; nothing excludes a different, a bit
steeper, law in the spectral domain delineated by the peak of the energy spectrum and
the Ozmidov’s wavenumber, domain which is not very large in the these simulations.

In addition, the scale by scale parameter of directional anisotropy is extracted:
With respect to the “isotropic” value, sin2 γ = 2/3, the higher value which charac-
terizes largest scales is similar to what is found in USHT, as the signature of a trend
towards two-dimensionalization. The value slightly smaller than 2/3 found in small-
est scales is not completely interpreted, due to remaining explicit inhomogeneity or
numerical artefact.

10.8.2 A Rapid Acceleration Model and Beyond

The RAM (Rapid Acceleration Model) by Gréa (2013) used all the definitions and
concepts for RTT in the previous subsection. It illustrates a system approach to
turbulence, in which a Reynolds decomposition is used, with three characteristics,
related to three following interactions:

(i) Mean-to-fluctuating: The linear operator that expresses the action of the mean
flow on the fluctuating one is not calculated as a disturbance to a given particular
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Fig. 10.26 Numerical DNS results for RTT. Spherically averaged (radial, in k) spectrum of the
dimensionality parameter sin2 γ. Top: Related development of the radial spectrum of the variance
of concentration. Bottom: Development of the α parameter. Reproduced from Cambon and Gréa
(2013) with permission of T and F

solution of basic equations, as it is done in conventional linear stability analysis
(and in homogeneous RDT). This linear operator takes into account the fact that
the mean flow is not a priori known, because it is subjected to the feed-back
from the fluctuating flow via generalized Reynolds stresses. No approximation
of “weak” disturbance, with respect to the given base flow, is needed.

(ii) Fluctuating-to-mean: The above-mentioned feed-back is accurately accounted
for.

(iii) Fluctuating-to-fluctuating: This effect is generally considered as less important
than the preceding two ones. It is ignored, or mimiced by effective diffusivities,
that replace laminar diffusivities.

This approach extends the conventional stability analysis. It is also much more
elaborate than the RANS modeling, even if RANS addresses the three interactions
as well, because a spectral, multiscale or multimodal description of the fluctuating
flow is sought, and/or its dominant modes are investigated.

In the RAM, the mean flow is characterized by an unsteady N (t) stratification
frequency, directly related to the thickness L(t) of the unsteady mixing layer by
Eq. (10.68). The two-way coupling between the mean field and the fluctuating one,
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Fig. 10.27 α parameter in terms of the global molecular mixing �, and parameterized by the
directional anisotropy term sin2 γ, from the RAM. Several results from DNS and experiments are
plotted. The gray zone is delineated by the two extreme values, sin2 γ = 1 (2D) and sin2 γ = 2/3
(3D isotropic). Reproduced from Gréa (2013) with permission of AIP

with the feedback given by the vertical gradient of the vertical buoyancy flux, yields
new eigenmodes and new eigenvalues, different from the ones of the basic linear
solution at constant N . Starting from the complete state-vector (E, Z , E (pot), �) in
both k and θk , that describes the fluctuating flow, one conserves the angle-dependence,
whereas the scale-dependence is removed from consideration by averaging over k
(Fig. 10.27).

10.8.3 Towards a Fully Nonlinear, Very High Reynolds Model

Models that illustrate the system approach to turbulence with the abovementioned
characteristics were developed in very different contexts. Examples can be given for
calculations of the global planetary circulation, in which the mean flow is obtained by
zonal averaging, and thus reduces to a profile of meridional velocity, only depending
on the latitude. Another promising context is near-wall turbulence, with classical
Reynolds averaging for extracting the mean flow. A detailed survey of these models
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is outside the scope of this book, and we will only refer to Beverley McKeon and
Brian Farrell as internationally well-known specialists of this domain. Because it
is geometrically much simpler, the case of RTT permits one of the most elaborate
treatment: It is possible to combining the strategy of RAM and the fully anisotropic
EDQNM-type model for USHT. Unsteady N (t) and feed-back from the gradient of
the vertical buoyancy flux is now implemented in both pseudo-spectral DNS and
generalized EDQNM. Accordingly, the fully nonlinear model is rendered consistent
with a realistic calculation of the α coefficient, towards a plateau. The model can even
reproduce alternance of unstable phases and stable phases, in which the sign of N 2 is
changed. With respect to the RAM approach and with respect to the system approach
to planetary circulation or to wall turbulence, the new ingredient is a complex model
for nonlinear fluctuation-to-fluctuation coupling. It is possible to extend the value of
a typical large-scale Reynolds number, say 5000 in 20483 DNS, to values of 109 in
generalized EDQNM (B.-J. Gréa, private communication).
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Chapter 11
Coupled Effects: Rotation, Stratification,
Strain and Shear

Combination of system rotation and stable stratification is essential for geophysical
applications, even if the former effect is significantly smaller than the latter in 3D
flows, e.g. for scales much smaller than the synoptic ones in the atmosphere. As for
pure rotating turbulence in Chap. 7 and purely stably stratified turbulence in Chap. 10,
linear analysis, i.e. RDT (Rapid Distortion Theory), describes neutral stability and
will lead to the definition of both the wave-vortex eigenmode decomposition and
dispersion frequencies of inertia-gravity waves in the present chapter. Prediction of
statistics by RDT in this case with waves without production is poorly accurate for
single-time second-order correlations, but is more relevant for two-time statistics, as
discussed in Sect. 11.2.5, and, of course, for triple correlations. On the other hand,
nonlinear dynamics is pivotal, and allows us to revisit a quasi-geostrophic cascade,
which generalizes the toroidal cascade discussed in Chap. 10 with additional Coriolis
effects.

Other coupled effects investigated in this chapter, after the first section, can gen-
erate linear instabilities which can be analyzed within the RDT framework. These
instabilities are associated to turbulence production mechanisms, which are the main
striking new physical phenomena when compared to other flows discussed in this
book. In the presence of mean shear, barotropic instabilities occur, with a strong anal-
ogy between the rotating shear flow case and the stratified shear flow. A special case
combining the three ingredients, namely the mean shear, system rotation and stable
stratification is shown to give a new insight into the baroclinic instability. Finally, the
very important elliptical flow instability is investigated, which results from a coupled
effect of mean vorticity with weak additional mean strain. This instability can trigger
nonlinear cascade and turbulence in physical systems with large strained vortices.

A general conclusion about linear stability theory is provided at the end of the
chapter, in order to delineate the domain of relevance of homogeneous RDT, and of
its natural extension via WKB (Wentzel–Kramer–Brillouin) RDT.

The present Chapter includes recent results on nonlinear mechanisms and quan-
tification of cascades, mainly from DNS. In addition to applications to geophysics,
atmosphere or ocean far from topography, and engineering, astrophysics is addressed,
with the dynamics of accretion discs. We illustrate the fact that the rotating shear

© Springer International Publishing AG 2018
P. Sagaut and C. Cambon, Homogeneous Turbulence Dynamics,
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flow, as a simple model for turbomachinery, is also a model for an accretion disc via
the shearing sheet approximation. Finally, the case of rotating flow with precession
gives a special occurrence of elliptical flow instability coming from shear-rotation
interaction.

11.1 Governing Equations for the Dynamics of Coupled
Effects

We consider in the present Chapter homogeneous turbulent flows subjected to vari-
ous, possibly coupled, external effects, with the three parameters N (for stratification
frequency, as in Chap. 10), S (for the mean shear rate, as in Chap. 9) and f , or 2�

(system vorticity as in Chap. 7.) In addition, for elliptical flow instability, we consider
an additional strain rate D or a precessing system vorticity 2�C . Accordingly, it is
useful to give, or remind, basic equations, that are used in the different sections, in
order to show how the chapter is organized at a glance (Table 11.1).

Within the Boussinesq approximation framework, the equation for the solenoidal
velocity field u(x, t) in a rotating frame displays two additional terms, reflecting
both Coriolis and buoyancy forces, the intensity of the latter being denoted b.

Table 11.1 N-S-f framework at a glance

. Parameters for linear stability/typical nonlinear structuring

External
N − S − f
parameters

Stable Linearly unstable
(exponential
growth)

Typical structures

Chapter 7 f (or 2�) Inertial wave None 2D - 2C state

Chapter 10 N (N 2 > 0) Gravity wave and
toroidal

None 1D - 2C (VSHF
mode)

Chapter 10 N (N 2 < 0) Toroidal Poloidal and
potential

2D - 1C (jettal)

Section 11.2 N and f See Table 11.2 None Inverse QG
cascade if
f/N ∼ 1

Chapter 9 S Algebraic None 2D-1C (streaks)

Section 11.3.1 f and S If B ≥ 0 If B < 0 Many types

Section 11.3.2 N and S If Ri = N 2

S2 ≥ 0 If Ri < 0 Many types

Section 11.4.1 N and S and
spanwise- f

Ri , R = f
S See Fig. 11.13 Many types

Section 11.4.1 N and S and
vertical- f

Ri , ε = S f
N 2 Baroclinic Many types

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_9
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Fb = 2� × u − bn (11.1)

The use of the buoyancy scalar b allows us to get rid of the different formulations
in terms of temperature or density. Let us just recall that b is related to the density ρ
by the relation b = ρg/ρ0 in a liquid, where g is the gravitational acceleration and
ρ0 the constant density of reference (its definition for a gaz is given in Chap. 10, for
instance in terms of potential temperature and thermal expansivity). The vector n is
the vertical unit upward vector such that g = −gn. Before splitting the field into
mean and fluctuating components, the momentum equation is recast as follows

∂ui

∂t
+ u j

∂ui

∂x j
+ 2�nεin j u j = − 1

ρ0

∂ p

∂xi
+ bni (11.2)

and the mass conservation equation ρ̇ + ρ∂ui
∂xi

= 0 yields

∂b

∂t
+ u j

∂b

∂x j
= 0,

∂ui

∂xi
= 0. (11.3)

Except for the case without mean motion (in addition to the sole solid-body
rotation) discussed in Sect. 11.2, specific notations from the Reynolds decomposition,
i.e. u for mean velocity and u′ for fluctuations, will be used in the following. A similar
distinction will be made for the buoyancy scalar, introducing b and b′.

The extensional mean flow, with uniform gradients, is given by

ui = Ai j x j + u0, b = Bi xi + b0, (11.4)

in which u0 has no effect and can be removed from consideration, due to Galilean
invariance, and b0 is generally related to a mean density of reference, denoted ρ0.
Equations for fluctuating quantities are

∂u′
i

∂t
+ Amn xn

∂u′
i

∂xm
+ Ai j u

′
j + u j

∂ui

∂x j
+ 2�nεin j u j + ν∇2u = − 1

ρ0

∂ p

∂xi
+ b′n,

(11.5)
for u′, and

∂b′

∂t
+ Amn xn

∂b′

∂xm
+ u′

j

∂b′

∂x j
− ν Pr∇2b′ = −Bi u

′
i , (11.6)

for b′, reintroducing the diffusivity of the stratifying agent for generality, via the
Prandtl (or Schmidt) number Pr .

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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Fig. 11.1 Definition and
meaning of the Coriolis
parameter f in geophysics

Ω

g
= Ω cosλλ

11.2 Rotating Stratified Turbulence

In the absence of mean shear, it is possible to consider that both the system angular
velocity and the mean buoyancy gradient are vertical in Eq. (11.4), yielding

2�i = 2�ni = 2�δi3, Bi = N 2δi3, (11.7)

so that the Brunt–Väisälä frequency N appears as the characteristic frequency of
buoyancy-stratification. The vertical mean vorticity can be replaced by the Coriolis
parameter

f = 2� cos λ, (11.8)

where λ is the co-latitude (see Fig. 11.1).1

With respect to general Eqs. (11.5) and (11.6) used throughout this chapter, we
have Ai j = 0 along with Eq. (11.7), so that we will keep u = u′ and b′ = b in this
first section only, for the sake of simplicity.

Only neutral stability can be described using inviscid RDT in this case, from
linearized equations, as in the cases of purely rotating and purely stratified flows,
separately considered. The linear inviscid solution for velocity/buoyancy fluctuations
consists of superimposed steady and oscillating modes, as for the purely stratified
flow case. The former corresponds to the Quasi-geostrophic mode (which is equal

1Projecting the angular velocity onto the local vertical axis, which yields the angle-dependent factor
cos λ, is analogous with projecting the angular velocity on the wave-vector direction, which yields
the angle-dependent dispersion frequency of inertial waves with cos θ. This projection reflects a
dominant role of the Coriolis force in the tangent plane of the rotating spheroid (our Earth), whereas
it reflects pure solenoidal motion looking at a sphere in 3D Fourier space. In the geophysical
community, the angle of latitude is commonly used, and therefore a sine often appears instead of a
cosine.
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to the toroidal mode in the absence of rotation) and the latter, referred to as the
AGeostrophic modes, are related to inertia-gravity waves. This decomposition is
commonly referred to as the QG/AG decomposition (e.g. Pedlowsky 1987.) RDT
yields very simple behavior, in which single-time velocity/buoyancy correlations are
possibly affected by damped oscillations, the damping resulting from the dispersivity
of wave motion. The poloidal-toroidal-like decomposition, closely related to the
QG/AG one, was shown to simplify the RDT prediction. For instance, the total
turbulent kinetic energy is conserved in pure rotation, and damped oscillations yield
an asymptotic equidistribution of poloidal and toroidal turbulent kinetic energy. In
pure stable stratification, both total (kinetic + potential) and toroidal kinetic energy
are conserved, whereas poloidal kinetic and potential energies asymptotically reach
equilibrium after damped oscillations (see Fig. 10.4). In these cases, linear dynamics
— if restricted to single-time, two- or single-point correlations — are of poor interest,
since relevant structuring effects result only from the nonlinear terms. In the present
case, RDT suggests to build a full nonlinear model in terms of the slowly varying
amplitudes of QG/AG modes, which are constant in the pure linear inviscid limit.

As for the purely stratified case (see Eq. (10.13)), a single vector w can gather
both velocity and buoyancy fluctuations, with the following decomposition

ŵ =
∑

s=0,±1

a(s)(k, t) exp(sıσrs(k)t)︸ ︷︷ ︸
ξ(s)(k,t)

N (s)(k), s = 0,±1, (11.9)

It is important to note that both the eigenmodes N (s), s = 0,±1 and the (unsigned)
dispersion frequency of inertia-gravity waves

σrs(k) =
√

N 2 sin2 θ + f 2 cos2 θ (11.10)

are explicit functions of the ratio f/N (Pedlowsky 1987; Cambon 2001). Here, s = 0
is related to the QG mode, which is also referred to as the non-propagating mode,
while s = ±1 corresponds to the AGeostrophics modes, which are propagating
inertia-gravity waves.

As shown in Fig. 11.2, the QG/AG (or wave-vortex) decomposition is dependent
on f/N : the inertia-gravity wave contribution to the velocity field is the poloidal part
of the flow without rotation, and includes an increasing part of the toroidal component
when the rotation (via the ratio f/N ) increases. In the case of pure rotation, the inertial
wavemode includes the entire velocity field, and the non-propagating (QG) part of
the flow identically vanishes.

When the QG mode, with amplitude a(0) in Eq. (11.9), has a significant contri-
bution, the cascade related to triadic interactions including QG modes only can be
expected to be dominant with respect to the other resonant or quasi resonant wave
interactions. It is recalled that using the nomenclature used in other chapters these
pure QG triadic interactions are denoted (0, 0, 0). This purely QG cascade is dis-
cussed in the next subsection.

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
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Fig. 11.2 Cartoon of the ‘wave-vortex’ (or linear QG-AG) decomposition from the Craya–Herring
decomposition, or related toroidal-poloidal one in physical space. The toroidal mode is the part
of the horizontal velocity fluctuation with zero divergence in terms of horizontal coordinates; it
corresponds to (velocity contribution to) the QG mode only without rotation; (velocity contribution
to) the QG mode is only a fraction of this toroidal mode at a given f/N ratio, and identically
vanishes at N = 0 (pure rotation)

Discarding a priori the QG mode, it can be shown that resonant inertia-gravity
waves can play a role in concentrating energy towards larger scales and quasi-VSHF
(Vertically Sheared Horizontal Flow) mode, at least if f/N is small. This was found
by Smith and Waleffe (2002), for instance, by forcing isotropically the small scales
without putting energy at large scale at the initial time.

At least two radically different mechanisms of concentration of energy towards
the VSHF mode are thus possibly present:

• the toroidal cascade, already investigated in Chap. 10 for the pure stratification
case; toroidal mode is the limit of the QG mode in the absence of system rotation.
This mechanism plays a dominant role and leads to a rapid layering of the flow if
a significant large-scale toroidal part of the flow exists initially and if f/N is not
too large.

• the transfers induced by the resonant inertia-gravity waves.

The relevance of the quasi-geostrophic model was expected by Smith and Waleffe
(2002) to prevail when 1/2 < N/ f < 2, since triadic ‘wave’ resonances are forbid-
den in this range of parameter, as seen looking at the dispersion law (11.10).

http://dx.doi.org/10.1007/978-3-319-73162-9_10


11.2 Rotating Stratified Turbulence 541

11.2.1 Basic Triadic Interaction for Quasi-geostrophic
Cascade

If the flow is described in a rotating frame of reference with angular velocity ( f/2)n,
f being the Coriolis parameter for geophysical applications, only the basic momen-
tum equation for u is affected by the additional Coriolis force f n×u. The associated
evolution equation for b is identical to the one obtained in the pure stratification
case, see Eq. (10.4). In agreement with Eq. (11.9) and with the cartoon displayed
in Fig. 11.2, the non-propagating mode now combines toroidal kinetic energy and
potential energy

ξ(0) = a(0) = σs

σrs
u(1) + σr

σrs
u(3), (11.11)

with

σs = N
k⊥
k

, σr = f
k‖
k

, σrs =
√

σ2
r + σ2

s . (11.12)

and where ξ(0) is related to the quasi-geostrophic energy. The two other terms
ξ(±1) deal with inertia-gravity waves whose dispersion frequency σrs is given by
Eq. (11.10). All details are gathered in Table 11.2.

Let us now investigate detailed properties of the interactions within a single iso-
lated triad. Following the same procedure as for the toroidal cascade in Chap. 10, i.e.
removing all nonlinear interactions involving wave modes in order to retain only the
quasi-geostrophic ones, one obtains a set of equations similar to (10.20).

Table 11.2 Linear eigenmodes, vortex-wave-type and dispersion law for different flow cases. The
case of the acoustic regime, addressed in Sect. 13.2, is added to contrast very different waves effects;
of course u(3) is a true dilatational mode in the latter case, coupled with the pressure mode u(4),
whereas it is a buoyancy mode in this chapter, as in Chap. 10

. Propagating/non-propagating modes

Flow configuration Non-propagating
mode(s)

Wave mode(s) Dispersion law

Purely rotating None u(2) ± ıu(1)

︸ ︷︷ ︸
inertial w.

σr = f
k‖
k

Purely stratified u(1)

︸︷︷︸
toroidal

u(3) ± ıu(2)

︸ ︷︷ ︸
gravity w.

σs = N k⊥
k

Rotating and
stratified

σs

σrs
u(1) + σr

σrs
u(3)

︸ ︷︷ ︸
quasi-geostrophic

− σr

σsr
u(1) + σs

σsr
u(3) ± ıu(2)

︸ ︷︷ ︸
inertia-gravity w.

σrs = √
σ2

r + σ2
s

Weakly
compressible

u(1), u(2)

︸ ︷︷ ︸
solenoidal

u(4) ± ıu(3)

︸ ︷︷ ︸
acoustic w.

σc = c0k

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_10
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ξ̇(0)
k = (p2σ2

rs( p) − q2σ2
rs(q))G ′ξ(0)∗

p ξ(0)∗
q , (11.13)

ξ̇(0)
p = (q2σ2

rs(q) − k2σ2
rs(k))G ′ξ(0)∗

q ξ(0)∗
k , (11.14)

ξ̇(0)
q = (k2σ2

rs(k) − p2σ2
rs( p))G ′ξ(0)∗

k ξ(0)∗
p , (11.15)

which involves a modified factor G ′(k, p, q). This new geometrical factor is fully
symmetric in terms of (k, p, q) (Cambon et al. 2007). One finds from this system
of equations that detailed conservation holds for both quasi-geostrophic energy and
potential enstrophy, i.e.

ξ̇(0)
k ξ(0)∗

k + ξ̇(0)
p ξ(0)∗

p + ξ̇(0)
q ξ(0)∗

q = 0

and
k2σ2

rs(k)ξ̇(0)
k ξ(0)∗

k + p2σrs( p)p2ξ̇(0)
p ξ(0)∗

p + q2σ2
rs(q)ξ̇(0)

q ξ(0)∗
q = 0,

These two detailed conservation laws are analogous to those for toroidal energy
and vertical enstrophy associated with the pure toroidal cascade for purely stratified
flows and to those for the total energy and total enstrophy in two dimensional isotropic
turbulence. The linkage to potential enstrophy comes from

k2σ2
rs(k)

N 2
ξ(0)ξ(0)∗ = κ2

⊥u(1)u(1)∗ +
(

f

N
k‖

)2

u(3)u(3)∗, (11.16)

using Eq. (11.11). This result is to be compared to vertical enstrophy, which is recov-
ered if f = 0. These two conservations laws were already quoted by Bartello (1995),
his eigenmode decomposition being essentially the same2 as the one deduced from
Craya–Herring decomposition, and its geometric factor N (000) is similar to the above
one (but it does not display the factor p2σ2

rs( p) − q2σ2
rs(q) explicitly).

An important remark must be made here. Equation (11.16) gives the spectral
density of the variance of the linearized absolute potential vorticity (APV). The
fluctuating linearized APV can be defined as

n·ω + f

N 2

∂b

∂x‖
, (11.17)

in the physical space, and as

ık⊥u(1) + ı
f

N
k‖u(3), (11.18)

2The geometrical decomposition used in Godeferd and Cambon (1994), Cambon (2001) has the
only advantage that a true pseudo-compressible vector can be defined in physical space, by inverse
Fourier transformation of the single ‘true’ vector ŵ = û + ı(k/k)(b̂/N ) = ∑

i=1,3 u(i)e(i) =∑
s=0,±1 ξ(s) N(s) with all related simplifications due to orthonormality. Mixing a true vector û and

a scalar b̂ is less tractable in general.
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also equal to ı kσrs
N ξ(0) from Eq. (11.11) and Table 11.2, in Fourier space. Its fully

nonlinear counterpart is defined as the scalar product of the absolute vorticity (mean
f n + fluctuating ω) by the gradient of buoyancy (mean N 2n + fluctuating ∇b), and
is eventually divided by N 2 for keeping the dimension of vorticity

1

N 2
( f n + ω) · (

N 2n + ∇b
)
. (11.19)

In short, from the above equation, one can derive an additive threefold decompo-
sition in terms of

• a ‘mean’ contribution f ,
• the linearized fluctuation given by Eq. (11.17),
• a nonlinear quadratic contribution ω·(∇b/N 2).

11.2.2 About the Case with Small but Non-negligible
f/N Ratio

Especially in oceanography, one encounters f/N ratios of the order 10−1−10−2 at
mesoscales. Nevertheless, even with such a weak f/N ratio, the effect of the Cori-
olis force cannot be ignored. The dominant structures are pancake structures, as in
strongly stably stratified turbulence without rotation, but their scaling and dynam-
ics are influenced by the Coriolis force. For instance, the contribution from gravity
wave dispersion frequency (σs = N sin θ) is assumed to be of the same order as the
contribution from the inertial wave frequency, or

N
k⊥
k

∼ f
k‖
k

. (11.20)

The latter relation is consistent with a Burger number,

Bu =
(

f

N

Lh

Lv

)2

,

close to one, if the ratio of typical vertical Lv and horizontal Lh lengthscales, is
related to the inverse of the ratio k‖/k⊥.

11.2.3 The QG Model Revisited. Discussion

The QG model discussed by Charney (1971) was already touched upon in Chap. 10.
Conservation of full nonlinear absolute potential vorticity defined by Eq. (11.19)
is a direct consequence of the Ertel theorem (see also Staquet and Riley 1989).

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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Fig. 11.3 Visualization by PIV of vortex structures, N/ f = 1.2, from Praud et al. (2006) with
permission of CUP

Roughly speaking, this amounts to replace the vertical direction by the local normal
to isopycnal surfaces in the toroidal/poloidal decomposition, the QG motion being
along these surfaces and AG motion being across them.

Of course, if these surfaces are weakly undulated and therefore close to horizontal
surfaces, linearization of APV is physically justified.

Too strong properties are often attributed to QG motion, in an analogous way
to the unjustified use of the Proudman theorem to explain the transition toward a
two-dimensional state, yielding some wrong statements:

• QG motion is analogous to 2D motion, with dual energy cascades, so that a direct
cascade is expected for APV and an inverse cascade is for QG energy,

• In spite of the strong anisotropy of QG motion, a simple rescaling in terms of f/N
can restore an apparent isotropy.

The experimental study by Praud et al. (2006), which made use of the very large
Coriolis platform in Grenoble, contributed to support this point of view, at least for
values of f/N ranging from 0.8 to 1.2. Beautiful cigar vortices are created just behind
a moving rake, looking very similar to 2D structures, and then evolve towards less
elongated structures (Fig. 11.3), in the rotating tank full of brine. The use of the PIV
technique allowed almost 3D velocity and vorticity measurements.

In principle, vertical variability is captured in this experimental study. Even if
the horizontal dimension greatly exceeds the vertical dimension of the layer, this
does not reduces to the shallow water case in which “2D”, “QG” and “horizontal
motion” concepts collapse. On the other hand, the use of a rake with only vertical
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Fig. 11.4 Enstrophy isosurfaces a f/N = 0.1, b f/N = 1, c f/N = 10. 2563 unforced DNS
results from Liechtenstein et al. (2005) with permission of T and F

sticks favours and even generates pure 2D motion, with respect to the use of a square
grid.

In a DNS without any forcing, it is possible to switch from “pancake” to “cigar”
structures by increasing the ratio f/N , as shown in Fig. 11.4, for instance. Inciden-
tally, the fact that an apparently isotropic structure is found for f/N = 1 is possibly
misleading: this case is very different from pure isotropic turbulence. It is also worth-
while to note that “structures”, identified by iso-vorticity surfaces in high resolution
DNS, are much more scrambled than the ones visualized by PIV techniques in physi-
cal experiments: cigars are very different from smooth Taylor columns in such DNS !
A bit paradoxically, under-resolved DNS and LES can show apparently smoother
structures, but this is a numerical artefact.

Neglecting wall effects and anisotropic forcing, a more subtle QG model could
be written for the new Lin equation

(
∂

∂t
+ 2νk2

)
E (QG)(k‖, k⊥, t) = T (QG)(k‖, k⊥, t), (11.21)

with
1

2
〈ξ(0)∗( p, t)ξ(0)(k, t)〉 = E (QG)(k, t)δ(3)(k − p) (11.22)

extending Eqs. (10.24)–(10.26) for the toroidal cascade in purely stratified flows to
various f/N ratios. The generalized transfer term T (QG)(k‖, k⊥, t) can be constructed
from triadic contributions strictly preserving detailed conservation of both QG energy
and (linearized) APV. Depending of f/N , a very complex and multiform anisotropic
cascade is expected in terms of the full distribution of the transfer term expressed
as a function of k⊥ and k‖. As for the model of toroidal cascade in Chap. 10 for
f/N = 0, the strong dependence of the term G ′ in Eq. (11.13) with respect to k‖
can induce a dynamical cascade process very different from the one observed in 2D
turbulence, in spite of the conservation of APV. Only the case of pure rotation cannot
be recovered this way, since the QG mode vanishes in this case and that only inertial
wave-turbulence is relevant. Nevertheless, the case of pretty large f/N ratios — as

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
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the highest ratios addressed by Praud et al. (2006)— remains of interest. Note that
Herring (1980) proposed a first QG model based on a Lin equation with a transfer
term closed by an EDQNM technique, but its relevance was limited by additional
quasi-isotropic assumptions.

A very different angle of attack is to try to generalize the Kolmogorov 4/5 law
using both velocity and APV increments for building third order structure functions
(Kurian et al. 2006). The advantage of working on structure functions in physical
space is avoiding a too strict limitation to quadratic nonlinearity (a fully nonlinear
APV variable can be used), whereas cubic and quartic nonlinearities are very diffi-
cult to handle in Fourier space (even the classical convolution product mediated by
quadratic nonlinearity is not so simple!). A drawback is that a complete solenoidal
description, with exact removal of explicit pressure terms from the very beginning,
is very complicated in physical space; removal of mixed pressure-velocity terms in
the 4/5 Kolmogorov law is a very marginal case, for instance.

Of course, a more complete analysis may be developed on the ground of the most
general set of spectra and cospectra consistent with axisymmetry without mirror
symmetry. In this more general case, another Lin equation is written for the spectrum
of total (kinetic + potential) inertia-gravity wave energy, E (w), defining an other
“true” conservative transfer term3 T (w). The system must be supplemented by two
additional terms similar to Z in Eq. (10.26) characterizing the imbalance between
potential and kinetic energy of waves, together with poloidal and toroidal buoyancy
fluxes exchanged between them. Only these Z -terms are affected by linear (rapid)
factors ıσrs(k)t , and they are not associated to global conservation laws. This is
a complete generalization of the (E, Z) system for pure rotation, and the system
(E (tor), E (pol+pot), Z ′) for pure stratification, see Eq. (10.26).

It is important to note that the vanishing integral for T (QG) + T (w) reflects global
conservation laws, whereas the detailed conservation of both QG energy and poten-
tial vorticity is only found when discarding inertia-gravity wave modes in triads.
Such a removal can be made a priori, or invoking the physical context of very small
Rossby and Froude numbers.

11.2.4 Quantification of the Inverse Cascade for Rotating
Stratified Turbulence

A wealth of conventional pseudo-spectral DNS in tri-periodic boxes were published
in the recent past for stably-stratified flows with and without rotation, and for purely
rotating flows. We prefer not to list all of them, because they often suffer from classical
drawbacks of these numerical studies: under-resolution with respect to the concept
of homogeneous turbulence, with finite-box effects, lack of angular resolution at

3Let us recall that a nonlinear term in a Lin-type equation is referred to as a true transfer term if its
integral over all wavenumbers is zero, i.e. if it is associated with a global conservation law.

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_10
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Max

Fig. 11.5 Quantification of the inverse cascade by means of the growth rate of the kinetic energy
dK/dt in DNS of rotating stratified flows with different N/ f , including the purely statified case
(N/ f ∼ ∞). The gray band highlights runs in which the kinetic energy growths faster. Adapted
from Marino et al. (2013)

smallest wavenumbers, artificial forcing of largest scales, and so on. Among them,
the quantification of the inverse cascade at various N/ f by Marino et al. (2013) is a
useful complementary study to the theoretical study of quasi-geostrophic cascade.

With a similar forcing of large scales, the rapid growth of kinetic energy is related
to the growth of largest scales, as an indicator of dramatic inverse cascade of energy.
This effect is “rapid” in terms of a time scale τN L = √

kF E(kF ), where kF is the
forcing wavenumber: After an initial adjusting phase, the inverse cascade is observed
after t/τN L ∼ 5 in DNS of rotating stratified flows forced at small scale, with the
growth rate of kinetic energy dK/dt being maximal in the range 1/2 ≤ N/ f ≤ 2
(see Fig. 11.5).

A dual cascade of kinetic energy is thereby ascertained in this case of rotating
and stratified turbulence by Marino et al. (2015). It has also been shown that the
following scaling relationship in terms of both Rossby and Froude numbers

R� ∼ (Fr Ro)−1 (11.23)

holds for the ratio of the inverse to the direct kinetic energy transfer rate in simulations
forced at intermediate scales, see Fig. 11.6. Incidentally, all these results at largest
N/ f are consistent with the vanishing of inverse cascade for purely (stably) stratified
turbulence, as discussed in Chap. 10, with recent investigation by Marino et al. (2014).
On the other hand, the inverse cascade in purely rotating flows, if it exists, is confirmed
to be very small, or appearing at much larger t/τN L times than for N/ f close to one.
The reader is referred to the active debate on the inverse cascade in purely rotating
turbulence in Chap. 7.

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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Fig. 11.6 Scatter-plot of R� as a function of Fr.Ro in log-log coordinates. Points refer to high-
resolution DNS of rotating stratified flows (forced at intermediate scales) where a dual cascade of
kinetic energy is observed. A linear scaling prediction holds for each group of points with the same
color (thus similar values of f/N ) indicating that the scaling is modulated by N/ f . Adapted from
Marino et al. (2015)

11.2.5 Lagrangian Diffusion in Rotating Stably Stratified
Turbulence

It is possible to use purely linear dynamics, as emphasized in the beginning of the
present Chapter, but either to use RDT for two-time correlations or to address the
equation for a passive scalar advected by the rotating stratified fluid. For instance,
in Cambon et al. (2004), two methods were used to predict the single-particle dis-
placement, or absolute Lagrangian diffusion, in addition to DNS.

11.2.5.1 RDT for Two-Time Velocity and Buoyancy Correlations

The method originates from Kaneda (2000). Mean square Lagrangian displacement,
or

�2
i j (t, t ′) = 〈xi (X, t)x j (X, t ′)〉 (11.24)

is obtained by time-integrating the two-point velocity correlation matrix 〈û∗
i (k, t)

û j (k, t ′)〉 derived by inviscid RDT from isotropic initial data. In addition to the
assumption of purely linear motion, a simplified Corrsin hypothesis amounts to
identify Lagrangian two-time velocity correlations to their Eulerian counterparts.
In Cambon et al. (2004), RDT calculations for 〈ŵ∗

(k, t) ⊗ ŵ(k, t ′)〉 in rotating
and stratified flows derive from Eq. (11.9). A sketch of the displacement vector
�(X, t, t ′) = x(X, t ′) − x(X, t) is shown in Fig. 11.7. Results from two-time RDT
are shown in Fig. 11.8, left. To give a single analytical result among many other ones,
the vertical mean square displacement is found as
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Fig. 11.7 Sketch of a particular trajectory and related displacement �, three directions. Reproduced
from Liechtenstein et al. (2005) with permission of T and F

Fig. 11.8 Vertical mean square displacement for single particle diffusion, for rotating and stratified
turbulence, α = f/N . From RDT using SCH (Simplified Corrsin Hypothesis) (left), KS (center)
and DNS (right). Reproduced from Liechtenstein et al. (2005) with permission of T and F

�2
33(0, t) = 2K(t = 0)

∫ 1

0

(
1 − x2

) 1 − cos(σrs(x)t)

σ2(x)
dx, (11.25)

with x = cos θk = k‖
k , so that the vertical diffusivity is found as a functional of the

dispersion law of dispersive inertia-gravity waves.

11.2.5.2 Kinematic Simulation Incorporating RDT

Kinematic Simulation is very briefly introduced in Chap. 2. For solenoidal velocity
fields, it is better formalized using. The Craya Herring frame of reference for the
synthetic field, chosen as

u(K S)(x, t) =
∑

α=1,2

(
∑

nm

a(α)
mn (km) exp (ı(km·x − ωnt))

)
e(α)(kn). (11.26)

Under this form, this is only a discretization in terms of spatial Fourier modes
(discrete wave vectors km) and temporal Laplace frequencies ωn , but the summation

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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is done over a very large number of randomly chosen spatio-temporal (km,ωn)

parameters, and the amplitudes a(s)
mn can be seen as random variables. In this sense,

generalized KS is a Lagrangian stochastic model, but very different from the classical
Langevin stochastic models, touched upon in Chap. 2.

Trajectories are calculated from

ẋi = u(K S)
i (x, t), (11.27)

as for any Lagrangian model, in which “particles” are fluid elements.
From Eq. (11.9), it is easy to move from the general KS model for u to the one

for w with additional buoyancy mode, in exactly incorporating linear wave effects,
by means of

w(K S)(x, t) =
∑

s ′=0,±1

(
∑

mn

a(s)
nm(km) exp

(
ı(km·x − [s ′σrs(kn) + ωn]t)

)
)

N (s)(kn).

(11.28)

Accordingly, the total frequency s ′σrs(km) + ωn appears as a sum of the deter-
ministic dispersion law (for s ′ = ±1) and the random one.

KS results are found in performing statistics from a huge number of realizations

for Eq. (11.27) (in which u(K S)
i is the contribution of w

(kS)
i removing the spectral

component along k), and Eq. (11.28). Typical results are shown in Fig. 11.8, center.

11.2.5.3 Discussion of Typical Results

In isotropic turbulence (HIT), the RDT method only recovers the ballistic régime
�2 ∼ t2, resulting from a constant velocity correlation matrix. The KS method
recovers a correct transition from the ballistic régime, at smaller times, to the Brow-
nian régime �2 ∼ t , at larger times. The advantage of KS lies in the model of
“turbulent” trajectories, using both Eq. (11.27) and a simplified form of Eq. (11.26)
in which a phenomenological scaling of ωn is incorporated to mimic nonlinear decor-
relation. In rotating stratified flows, the operators that reflect dispersive waves give a
dramatic change in both two-time RDT and KS. A ballistic t2 law is found again at
small time, but isotropy is broken and new scalings appear at a threshold time close to
one period of wave motion: A plateau is found for horizontal mean square displace-
ment in the purely stably stratified case; it is delayed but it persists at larger f/N
ratios, as soon as N is nonzero. In the same conditions, the horizontal mean square
displacement continue to grow, hence an increasing anisotropy is found. Because
the plateau for vertical diffusion can be predicted from simpler phenomenological
arguments in flows dominated by stable stratification, the most surprizing result is
found in the case of pure rotation: An apparent ∼t Brownian law is found after the
ballistic ∼t2 one, but the threshold is found at a much smaller time than the classical
transition from ballistic law to “nonlinear” Brownian law. Finally the most striking

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 11.9 Typical trajectories obtained by DNS (top) and KS (bottom), for purely (stably) stratified
(left) and purely rotating (right) flows. Courtesy of L. Liechtenstein

results are given by the analytical law from Eq. (11.25) and a similar one for horizon-
tal diffusion. KS and DNS, as shown in Fig. 11.8, give some refinements but do not
question the results from two-time RDT. As a final remark, we have a clear illustration
that RDT, even if poorly relevant for predicting single-time second-order statistics,
is useful for predicting two-time statistics. Indeed, the phase term eıσt cancels out
when multiplied by its complex conjugate (single-time case), whereas the product
of eıσt by e−ıσt ′

alters the dynamics in terms of t − t ′. A similar reasoning can be
made for the prediction of third-order correlations, in which the linear wave operator
eı(±σk±σp±σq )t alter all triads and suggest the role of resonant ones (Fig. 11.9).

11.3 Rotation or Stratification with Mean Shear

From now on, turbulence is subjected to a mean motion as well. The mean buoyancy
gradient is vertical as before, and the mean velocity gradient matrix in Eq. (11.4) is
given by
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Ai j = Sδi1δ j3,

where the indices 1, 2, 3 refer to streamwise, spanwise and vertical directions of the
pure plane shear mean motion, respectively, with ni = δi3, as in Fig. 11.14c.

This mean flow is an exact solution of Eqs. (11.2) and (11.3) if the system rotation
axis is in the spanwise direction i.e. �i = �δi2. In this case, Eqs. (11.5) and (11.6)
become

∂b′

∂t
+ Sx3

∂b′

∂x1
+ u′

j

∂b′

∂x j
− ν Pr∇2b′ = −N 2u′

3,

and

∂u′
i

∂t
+ Sx3

∂u′
i

∂x2
+ Sδi1u′

3 + u j
∂ui

∂x j
+ 2�s

nεin j u j + ν∇2u = − 1

ρ0

∂ p

∂xi
+ b′ni ,

(11.29)

In the absence of the mean buoyancy gradient, i.e. if N = 0, one can get rid of
b′ and the rotating mean shear flow is a particular solution of the Euler equations in
the rotating frame.

The main RDT results are now revisited in the presence of pure plane mean shear,
system rotation and/or mean density stratification/buoyancy.

Equations for the fluctuating fields are written in Fourier space. The corresponding
variables are denoted û and b̂ as before, the ‘prime’ being omitted since there is no
ambiguity with the mean flow, never considered in Fourier space.

In all cases addressed below, including the baroclinic context, the linear advection
process is only induced by a mean shear, so that the time dependency of the wave
vector is always

k1 = K1, k2 = K2, k3 = K3 − K1St, (11.30)

choosing S = ∂u1/∂x3. In a polar-spherical system of coordinates for the initial
wavevector K in Eq. (11.30), the polar angle, θ, and the azimutal angle, ϕ, are defined
by

sin θ =
√

k2
1 + k2

2/K , cos ϕ = k1/

√
k2

1 + k2
2, (11.31)

using the usual relationship
k1 = K1 = K sin θ cos φ, k2 = K2 = K sin θ sin φ, K3 = K cos θ.
Inviscid RDT governing equations are

dûi

dt
= −

[
Sδ j3

(
δi1 − 2

ki k1

k2

)
+ 2�Pinεn2 j

]

︸ ︷︷ ︸
Mi j

û j + Pi3b̂, (11.32)
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in which contributions from pure shear, Coriolis force and buoyancy effects are taken
into account, and

db̂

dt
= −N 2û3. (11.33)

As in previous RDT studies, a system of equations is derived in the Craya–Herring
frame of reference

⎛

⎝
u̇(1)

u̇(2)

u̇(3)

⎞

⎠ =
⎛

⎜⎝
0 (2� + S) k2

k 0

−2� k2
k S k1k3

k2 −N k⊥
k

0 N k⊥
k 0

⎞

⎟⎠

⎛

⎝
u(1)

u(2)

u(3)

⎞

⎠ , (11.34)

with k⊥ =
√

k2
1 + k2

2 . One can recover easily the terms identified in the pure shear
(with S factor), pure rotation (with the dispersion frequency 2�k2/k) and in pure
stratification (with the dispersion frequency Nk⊥/k) cases. But the main difficulty
remains the time dependency of k3, also reflected on k, which is induced by the pure
shear according to Eq. (11.30).

11.3.1 The Rotating Shear Flow Case

The rotating shear flow, with angular velocity aligned with the spanwise direction
(i = 2 here) and without stratification (N = 0) is well documented. The homo-
geneous case was studied by single-point closure methods, RDT and DNS/LES.
Competition between linear and nonlinear effects is analysed by DNS in Salhi et al.
(2014) from a multiscale (spectral) anisotropic viewpoint, with many references.

11.3.1.1 Engineering Context

The mechanisms of stabilization and destabilization by rotation, identified in the
homogeneous case, can explain what happens in rotating channels and blade cascades
in turbomachinery. As a general result, the production of turbulence increases near
the pressure-driven (or intrados) wall, in agreement with an anticyclonic rotation with
respect to the rotation induced by the mean shear. On the opposite side, the turbulence
is damped (relaminarization is even possible) near the succion side (or extrados) wall,
in agreement with a cyclonic rotation. Near the middle of the channel, the flat profile
corresponds almost exactly to zero absolute vorticity for the mean flow, with the
anticyclonic constant shear rate S, with vorticity −S in this system of coordinates,
balancing the system vorticity 2�. (permutating axes 2 and 3, as in all the equations
here, S is the mean vorticity (Fig. 11.10).)
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Fig. 11.10 Scheme of the stabilizing/destabilizing effect of rotation in a rotating channel

The asymmetry in terms of cyclonic and anticyclonic spanwise system rotation is
not reproduced by a basic k − ε model, which completely misses the Coriolis force
effects. It could be recovered, however, by some more sophisticated “nonlinear”
versions, which are close to Algebraic Stress Models. Any RSM model can work
more satisfactorily, the key-point being to have an exact “production” tensor. The
basic effect of production can be understood thanks to the very simple analysis based
on a particle-displacement argument introduced by Bradshaw (1969) and revisited
in a slightly different way by Tritton (1992).

The starting point is the following system of equations for the planar fluctuating
flow, which corresponds to oversimplified pressure-released inviscid RDT

d

dt
u′

1 + (S + 2�)u′
3 = 0,

d

dt
u′

3 + 2�u′
1 = 0, (11.35)

the spanwise component u′
2 being constant in the same conditions. The dynamical

behavior of this system is governed by the Bradshaw number (or rotational Richard-
son number, in order to avoid a confusion with the “true” Richardson number intro-
duced in the stably-stratified shear case)

B = 2�

S

(
1 + 2�

S

)
, (11.36)

An exponential growth is obtained for B < 0, and exponential damping for B > 0
and a neutral behavior is recovered for B = 0.

This effect of the Bradshaw number is confirmed by much more sophisticated
analyses, such as RDT and even “non-homogeneous” stability analyses in more
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complex flows. One of the most popular is the one by Pedley (1969), which deals
with rapidly rotating pipes.

As pointed out by J. Riley (private communication, see also Yanase et al. 1992),
this was almost fortuitously that this oversimplified analysis based on Eq. (11.35)
gave the same criterion of instability as the rigorous stability analysis performed
by Pedley. A relevant explanation was given by Leblanc and Cambon (1997): in
the simplified system (11.35), u′

1 and u′
3 must be replaced by the amplitudes of

solenoidal disturbance modes with very high spanwise wavenumber, which are nat-
urally pressure-less, and are not the primitive fluctuating velocity components in the
mean shear plane. The term “very high spanwise wave number” is related to modes
such that k2 � 1/L , where L is a typical lengthscale of the horizontal motion and
k2 is the wavenumber of the disturbance in the direction normal to the plane of the
2D base flow.

Such modes, like v = A(x)eσt eık2 , with vectors A and x lying in the plane of the
base flow, have dominant contributions to exponential instability with respect to all
other modes. This result is valid for the stability of any 2D base flow in a rotating
frame subjected to 3D disturbances. The system (11.34) gives a simple illustration
in “homogeneous” RDT, where u(1) (toroidal mode) and u(2) (poloidal mode) satisfy
the same system as the two-component pressure-less one if k1 = k3 = 0, k2 = k.
In contrast, the pure 2D contribution (no variability in the spanwise direction) is
recovered at vanishing k2, for which the Coriolis force has no contribution.4 A related
point is that only exponential instability is governed by the Bradshaw number B
whereas different dynamics are given for the parameters R = 2�/S and −(1 +
R), having the same B, as investigated by Salhi and Cambon (1997). The simplest
example is the case without rotation and the case with zero absolute vorticity (R =
−1), which are very different despite they both correspond to B = 0.

Looking more closely at RDT solutions, an Ince equation (1956) can be written
for both the poloidal and toroidal velocity components. The simplest way is to start
from the first two equations in (11.34), so that

1

S2

d

dt

[
k2(t)

du(1)

dt

]
+ k2

2 Bu(1) = 0 (11.37)

1

S

du(1)

dt
=

(
1 + 2�

S

)
k2

k(t)
u(2). (11.38)

The first one gives the typical Ince equation, and displays only the Bradshaw (or
rotational Richardson) number.

Typical RDT results for the turbulent kinetic energy are shown on Fig. 11.19, and
rediscussed in Sect. 11.5.

4The mode of planar motion, which is relevant for explaining the stabilizing/destabilizing effect of
rotation, is very close to the VSHF mode emphasized in stably stratified turbulence, replacing the
vertical direction by the spanwise direction; as the VSHF mode, it is completely different from a
2D mode.
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Fig. 11.11 Illustration of accretion discs. Courtesy from François Rincon

11.3.1.2 Astrophysical Context

The homogeneous case of rotating shear flow is used as a toy-model for the dynamics
of accretion discs, with an apparently different viewpoint.

The accretion disc, with several examples illustrated by Fig. 11.11, is considered as
a cylindrical Taylor–Couette flow, with circular streamlines and differential rotation.
A typical distribution of the radial rotation rate is �(r) ∼ r−q . The classical Rayleigh
stability criterion for circulation extremum can be written

d
(
r2�(r)

)

dr
< 0 with � = �0

(
r

r0

)−q

(11.39)

for (centrifugal) instability, and yields 2 − q < 0.
The differential rotation rate yields a radial shear, or S(r) = rd�(r)/dr , so that

S(r)

2�(r)
= − 2

q
with � = �0

(
r

r0

)−q

. (11.40)
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Fig. 11.12 Sketch for the SSA

The abovementioned Bradshaw -Richardson criterion amounts to

B = 2�

S

(
1 + 2�

S

)
= 2

q2
(2 − q),

therefore the same criterion of instability as the Rayleigh’s one is found.
About nomenclature, the approaches by the engineering community and by the

astrophysical one, even if they use similar concepts, seem at first glance almost
disconnected, especially from their terminology and the fact that they are published
in different journals. But all can be reconciled, of course (Fig. 11.12).

The Shearing Sheet Approximation (SSA), introduced by Balbus and Hawley
(1998), consists of considering a single circular sheet in the rotating disc around r =
r0. Once “unrolled”, the rectilinear band resulting from the circular band corresponds
to a fluid domain with constant S = S(r0) and constant � = �(r0). The peripheral
direction yields the streamwise direction x1, the axial direction holds for the spanwise
one x2, and the radial one holds for the cross-gradient, or vertical, one. This explains
why the mode k1 = 0, or two-dimensional manifold in the streamwise direction,
is called the (axi)symmetric mode in the astrophysical community. In addition, the
frequency

√
2�(2� − S), equal to S

√
B (in terms of the Bradshaw number, e.g.

chosen positive), is called the epicyclic frequency. Finally, the numerical method by
Rogallo was recovered by Lesur in 2005, resulting in a “Snoopy” numerical code,
very popular among astrophysicists.
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11.3.2 The Stratified Shear Flow Case

This case is less documented than the previous one, but a good survey of available
results can be found in Hanazaki and Hunt (2004) along with RDT analyses. The
analogy between the two cases, rotating and stratified shear flows, was discussed
by Bradshaw (1969), but only on the ground of very simple arguments. This anal-
ysis suggested a quasi-complete analogy between the number in Eq. (11.36) (called
Richardson number in Bradshaw 1969 !) and the true Richardson number, which is
defined by

Ri = N 2

S2
(11.41)

in the stratified shear flow case.
In this case, RDT equations yield the following Ince equation for b found by

Hanazaki and Hunt (2004)

k2(t)
d2b̂

dt2
− 2Stk1k3(t)

db̂

dt
+ (k2

1 + k2
2)N 2b̂ = 0, (11.42)

which suggested new analytical solutions based on Legendre functions of complex
order. Without shear, the time-dependency of the coefficients vanishes in Eq. (11.42),
and the periodic solutions are immediately recovered, with a frequency equal to the
dispersion frequency of gravity waves: σs = N sin θ. Of course, since this equation
corresponds to the last one in Eq. (11.34), it can be rewritten as

1

S2

d

dt

[
k2(t)

db̂

dt

]
+ (k2

1 + k2
2)Ri b̂ = 0, (11.43)

which displays the Richardson number.
About nonlinear effects, a comprehensive DNS study was given by Jacobitz et al.

(1997). The case of homogeneous stratified shear is stable, from linear analysis, for
any positive Richardson number. Note that negative Richardson numbers correspond
to N 2 < 0, that yield unstably stratified turbulence, with exponential growth, in the
second part of Chap. 10. The domain of stability with threshold Ri = 0 in the linear
limit, is shown to extend to Ri ∼ 0.1 in the DNS, looking at a marginally constant
turbulent kinetic energy.

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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11.3.3 Analogies and Differences Between the Two Cases

When k1 = 05 the time dependency of the wave vector vanishes, and RDT solutions
with exponential growth (if B < 0 or Ri < 0) or periodic behavior (if B > 0 or
Ri > 0) are immediately recovered. In the latter case, the typical frequency is the
dispersion frequency of gravity waves in the stratified shear case, σs = N sin θ, and
the dispersion frequency of inertial waves in the rotating shear case, σr = 2� cos θ.
In the general case (k1 �= 0), the solutions of the gi j -equations were found in terms
of hypergeometric functions (Salhi and Cambon 1997), and then in terms of Leg-
endre functions of complex order (Salhi 2002), generalizing the solutions given by
Hanazaki and Hunt (2004). This complex order was denoted μ in the rotating case
and γ in the stratified shear case (Salhi 2002), where

μ = 1

2
(−1 +

√
1 − 4B tan2 ϕ ),

γ = 1

2
(−1 +

√
1 − 4Ri/ cos2 ϕ ).

(11.44)

According to these new RDT solutions, it can be confirmed that the exponential
instability is only governed by the Bradshaw (or rotational Richardson) number, or by
the Richardson number, with detailed analogy between rotating and buoyant/stratified
cases. Algebraic instability, however, does not scale with neither the Bradshaw nor
the Richardson number alone, as stated above by comparing the rotating shear cases
at R = 2�/S and at R = −(1 + 2�/S).

11.4 Shear, Rotation and Stratification. Approach
to Baroclinic Instability

Two cases with the three nonzero external parameters N , S and f (or 2�) are con-
sidered in this section. The first one is a natural combination of rotating shear and
stratified shear, already addressed separately. The second case yields a toy model
for baroclinic instability, introduced by Salhi and Cambon (2006), when considering
the angular velocity of the rotating frame aligned with the vertical (cross-gradient)
direction of the shear, instead of the spanwise one.

5This mode corresponds to an infinite streamwise wavelength, or 2D manifold in the streamwise
direction, or symmetric mode in astrophysics.
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Fig. 11.13 Stability diagram in the (R,φ) plane, for three values of the Richardson number. The
angle ϕ in the plane of the mean shear flow is given by Eq. (11.31). The region indexed by b
corresponds to the stable modes that undergo a power law decay, while the region indexed by a
corresponds to the stable modes that exhibit a damped oscillatory behavior. The neutral limit is
given by the full line, with recovery c of the classical case of rotating shear without stratification.
Reproduced from Salhi and Cambon (2010) with permission of APS

11.4.1 Case with Spanwise System Rotation and Vertical
Mean Stratification

The general RDT solutions are generalized to the shear case with both spanwise
system rotation and vertical stratification by Salhi and Cambon (2010), and at least
the solutions at k1 = 0 were addressed by Kassinos et al. (2006). Typical results
for linear stability are shown in Fig. 11.13. The case of rotating shear without mean
stratification is found at Ri = 0, whereas it is shown how the unstable domain is
extended at Ri = −0.1 and reduced at Ri = 0.1.

11.4.2 Physical Context, the Mean Flow for Baroclinic
Instability

We now consider the same homogeneous turbulent shear flow having mean velocity
in the x1 direction in a Cartesian reference frame, but rotating with angular velocity
� about the x3 (vertical) axis (see Fig. 11.14). The absolute mean vorticity is
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Fig. 11.14 Sketch of the mean flow, including system vorticity (a), vertical stable stratification (b)
and mean shear (c). Tilting of isopycnal surfaces can trigger the baroclinic instability, if a–b–c are
simultaneously present

�a
i = Sδi2 + f δi3 (11.45)

with f = 2�. As in the previous section, the mean flow is subject to a vertical
stratification, with uniform density gradient

ρ = ρ0 − Sρx3, (11.46)

where ρ0 is a constant reference density. Sρ is chosen positive in the stabilizing case.
Equivalently, one has

b = −N 2x3. (11.47)

This mean flow is not an exact solution of the Euler equations, which reduces to

∂ui

∂t
+ u j

∂ui

∂x j
+ f εi3 j u j = − 1

ρ0

∂ p

∂xi
+ bδi3 (11.48)

The corresponding equation for the vorticity is found by taking the Curl of this
equation, leading to

dWi

dt
+ u j

∂Wi

∂x j
− ∂ui

∂x j
(W j + f δ j3) = −εi j3

∂b

∂x j
(11.49)
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This equation is satisfied by Eq. (11.45) in both vertical and spanwise directions,
but not in the streamwise direction, for which

dW1

dt
− S f = − ∂b

∂x2
. (11.50)

Without an additional spanwise component of the mean density (or buoyancy)
gradient, mean vorticity is created in the streamwise direction. Accordingly, in order
to remove W1, the following density gradient component ought to be accounted for

∂b

∂x2
= S f = − S f

N 2
︸︷︷︸

ε

∂b

∂x3
with N 2 = Sρ

g

ρ0
. (11.51)

In other words, the tendency for the horizontal density gradient ∂b
∂x2

to generate
vorticity, see Eq. (11.50), in the streamwise direction is exactly balanced by twisting
the background vorticity associated to the S f term. This is often called the geostrophic
adjustment of fronts in the geophysical community (Drazin and Reid 1981).

With respect to the case of unstable stratification addressed in Chap. 10, our
toy-model consistent with homogeneous turbulence restricted to fluctuations is a
first step towards linearly unstable buoyancy-driven flows. The tilting angle ε, often
small, is replaced by an angle of 180 degree when the sign of the vertical mean buoy-
ancy gradient is changed, from stable to unstable, recovering again mean horizontal
isopycnes.

Then, the linearisation of mass and momentum conservation equations yields

∂u′
i

∂t
+ Sx3

∂u′
i

∂x1
+ Sδi1u3

︸ ︷︷ ︸
Shear

+ f εi3 j u
′
j + 1

ρ0

∂ p

∂xi
= b′δi3 ; ∂u′

i

∂xi
= 0 (11.52)

∂b′

∂t
+ Sx3

∂b′

∂x1︸ ︷︷ ︸
Shear

= −N 2

⎛

⎝u′
3 − εu′

2︸︷︷︸
H DG

⎞

⎠ . (11.53)

Viscous/diffusive terms are ommitted for the sake of brevity: in the b-equation,
the diffusivity κ∇2b would be related to the kinematic diffusivity κ of the stratifying
agent, salt or temperature in an experimental or observational case (of course, diffu-
sion of ρ has no sense in the mass conservation equation). New terms induced by the
shear are underlined. They consist of direct distortion terms (Shear) and horizontal
density gradient (HDG) effects. Equation (11.50) is a consequence of the basic flow
admissibility constraint, which requires that the mean flow must be a particular solu-
tion of Euler or Helmholtz equations, as the admissibility condition (dA/dt + A2

symmetric) in the pure kinematic non-buoyant case with arbitrary Ai j (t). The slope

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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ε = b,2/b,3 of the mean isopycnal (constant density) surfaces with respect to the
horizontal direction is due to the coupling between shear and rotation since ε = 0
without shear or without the Coriolis force (the latter cases were addressed in the
previous section).

The mean flow with three parameters S, f and N is shown on Fig. 11.14. Two
independent non-dimensional numbers can be chosen among the Rossby number,
the Richardson number and the baroclinic coefficient

Ro = S

f
, Ri = N 2

S2
, ε = S f

N 2
. (11.54)

Let us emphasize that the present case with nonzero ε, which corresponds to the
baroclinic instability, can be considered as a model for an important problem in
meteorology that is the large-scale instability of the westerly winds in mid-latitudes
(Drazin and Reid 1981).

11.4.3 Advanced RDT Equations in Fourier Space

The equation for the velocity Fourier mode is derived from (11.32), only changing
2�εn3 j into f εn2 j , whereas the new equation for b̂ is found as

db̂

dt
= −N 2 (−εû2 + û3

)
. (11.55)

For the sake of convenience, a new scaling is used to define the third buoyancy-
related mode, keeping unchanged the two solenoidal modes: u(3) = (S/N 2)b̂. After
some tedious algebra, a new system of equations, very similar to (11.34) is obtained:

⎛

⎜⎝
u̇(1)

u̇(2)

u̇(3)

⎞

⎟⎠ =
⎛

⎜⎝
0 k2+εRi k3

k 0

−εRi
k3
k

k1k3
k2 −Ri

k⊥
k

−ε k1
k⊥

k⊥
k + ε k2k3

kk⊥ 0

⎞

⎟⎠

⎛

⎜⎝
u(1)

u(2)

u(3)

⎞

⎟⎠ (11.56)

A possible viscous factor modified only by mean shear at Pr = 1 (Prandtl number)
is not recalled for the sake of brevity (see Salhi and Cambon 1997; Hanazaki and
Hunt 2004; Salhi 2002.)

Simple analytical solutions of the system (11.56) are obtained when considering
the k1 = 0 mode that corresponds to an infinite streamwise wavelength. In this case,
the wave vector is no longer time-dependent, since the shear advection vanishes.
Accordingly, the coefficients of the system of RDT are constant, and analytical
solutions are easily found.
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For k1 = 0, on obtains

u̇(1) = k2 + εRi k3

k
u(2) (11.57)

u̇(2) = Ri

(
εk3

k
u(1) − k⊥

k
u(3)

)
(11.58)

u̇(3) =
(

k⊥
k

+ ε
k2k3

kk⊥

)
u(2) (11.59)

leading to the following equation for the poloidal component

ü2 + Ri

(
(ε

k3

k
+ k2

k
)2 − (1 − Ri )ε

2 k2
3

k2

)

︸ ︷︷ ︸
σ2

0

u(2) = 0 (11.60)

These solutions exhibit an oscillating behaviour (stable case) when σ2
0 > 0, an

exponential growth (unstable case) whenever σ2
0 < 0, and a linear (algebraic) growth

if σ0 = 0, where

σ2
0 =

[(
cos θ

R0
+ sin θ

)2

− (1 − Ri ) sin2 θ

]
. (11.61)

Neutral curves drawn in the (Ri , θ = ̂(k, n)) plane for k1 = 0 for different values
of Ro (left) and ε (right) are displayed in Fig. 11.15. For the latter case, a zoom is
made on small values of ε, which are more relevant for geophysical applications.

It is shown that the threefold coupling between shear, rotation and stratification
allows to extend the band of instability until Ri = 1. Without system rotation, the
instability essentially concerns negative values of the Richardson number, and is
limited by rather small positive values of Ri : Ri ∼ 0.1 from DNS (Jacobitz et al.
1997) and LES studies, while Ri = 1/4 is recovered from the analysis of Miles
(1961)6

About the occurence of baroclinic instability in the geophysical context, the pio-
nering approach by Eady (1949) seems to be radically different at first glance, but
numerical solution of the general RDT equations at k1 �= 0 yields amplification rates
which are comparable to those found by Eady for small values of the parameter ε
(such values are illustrated in the left part of Fig. 11.15). Typical DNS results, carried
out for extending the RDT results are shown in Fig. 11.16. Another recent approach
by Mamatsashvili et al. (2010) yields extension of the analysis by Salhi and Cambon
(2006) towards transient growth. More details are given in Sect. 11.7.1.

6The stability analysis of Miles, however, is different, since it accounts for a possible inflexion point
of the mean shear profile for an horizontal slab limited by two horizontal walls.
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Fig. 11.15 Neutral curves (exponentially instable zone are in the part of the surface delineated by
the concave side of the curve), or σ0 = 0, for k1 = 0, at different values of ε (top) and Ro (bottom)

The particular approach to baroclinic instability with extensional shear flow and
statistical homogeneity restricted to fluctuations, was continued by a comprehensive
linear analysis of the role of potential vorticity (Pieri et al. 2012), then by DNS (Pieri
et al. 2013). The latter study contributes to disentangle what is called “symmetric
instability”, only induced by the presence of negative background potential vorticity,
from the general baroclinic context.
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Fig. 11.16 Isosurfaces for
the buoyancy fluctuation in
the zonal spanwise-vertical
plane, from DNS. ε = 0.2,
Ri = 0.99, Reλ(t = 0) =
66. Courtesy of Guillaume
Simon

11.5 The Elliptical Flow Instability from “Homogeneous”
RDT

11.5.1 General Case, Rotation Coupled with Additional
Small Strain

This instability is very generic and occurs in many flow configurations. The reader
is referred to Kerswell (2002) for a detailed review. A sudden interest arised when
Pierrehumbert discovered its characteristic properties by a conventional normal mode
analysis approach, whereas at the same time (Bayly 1986) found the same results
using a much simpler and more elegant method, which is essentially equivalent to
RDT (e.g. Cambon 1982; Cambon et al. 1985).

Ellipticity in the core of large vortices is very general. It can originate in mutual
interaction of adjacent vortices, whereas an isolated vortex can remain circular. As
proposed by the authors previously mentioned, it is not necessary to study the stability
of a pair of vortices, but to study the stability of a single vortex, getting rid of the
mutual-interaction origin of the ellipticity.7 One just has to assume, in addition, that
the typical wavelength of the instability is small with respect to the dimension of the
core of the vortex. In this sense, elliptical instability is a local instability in actual
flows, in contrast with cooperative instabilities (e.g. the Crow instability in a vortex
pair) which involve the whole pattern of adjacent eddies.

7A similar reasoning is made when the mean shear is considered a priori, getting rid of its origin,
like solid wall effects.
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Going back to RDT, one has to imagine that the mean flow given by Eq. (8.8) with
S < � represents an infinite elliptical eddy. In this case, no mean lengthscale may
appear, and dynamics of initial disturbances depends only on the orientation, but not
on the modulus, of their wave-vector. The effect of a viscous cut-off in viscous RDT
can be easily accounted for, but it will not be discussed here for the sake of brevity.
Of course, it is more realistic to consider that the elliptic core has a finite size, and
that RDT (or WKB RDT, or short-wave asymptotics) is only valid for disturbances
with wavelengths much smaller than this size, but equations are essentially the same.

RDT calculations carried out by Cambon (1982), Cambon et al. (1985) for S < �

foreshadowed the Bayly’s analysis. Such calculations contributed to motivate the
experimental study by Leuchter and coworkers, with the design of a very complex
distorting duct capable of reproducing an elliptical flow case with S = �/2, as dis-
cussed in Chap. 8. Observation of a clear elliptical flow instability was problematic,
given the limited length of the duct. The emphasis was put on the complex evolution
of Reynolds stress components, related spectra and integral lengthscales, for statis-
tical modelling purpose. In order to avoid confusion with the notations used in this
chapter, the strain rate will be called D (and not S, kept for the shear rate only) and
the vorticity of the elliptical eddy will be called W (and not 2�, kept for the system
vorticity in the rotating frame). Expressed in terms of the solenoidal modes u(1) and
u(2), the general RDT equations are

(
u̇(1)

u̇(2)

)
=

(
2aD − k3

k (W + 2�)

2bD + k3
k (W + 2�) k̇

k − aD

) (
u(1)

u(2)

)
, (11.62)

with a = e(1)
1 e(1)

1 and b = e(2)
1 e(1)

2 + e(2)
2 e(1)

1 (Cambon 1982; Cambon et al. 1994),
choosing the axial vector n along the direction of mean vorticity (n normal to the
plane of the 2D mean flow here). Choosing n in the (cross-gradient) direction of
the shear is interesting too, but not discussed here (see Salhi et al. 1997). For more
generality, and anticipating the study by Craik (1989), an additional Coriolis effect
is accounted in the previous equation, the case of the basic elliptical instability in a
Galilean frame being recovered for � = 0 and D < W/2. As a very simple term,
the matrix exhibits the projection of the absolute vorticity 2� + W onto the wave
vector, as the unique contribution from rotational terms.

Solving analytically this system of two equations is difficult because k is periodic
in time according to the Eikonal equation (17.28), so that all coefficients a, b and
k̇/k are periodic as well. Computation of the Green’s functions gαβ and G must
therefore be performed through numerical integration. The main result is displayed
in Fig. 11.17.

This figure has the merit to suggest the mechanism of resonant amplification by a
periodic forcing, which is more accurately captured by Bayly (1986) using a Floquet
analysis.

The Floquet analysis takes advantage of the fact that the coefficients in the linear
system of equations are periodic with a frequency

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_17
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Fig. 11.17 Figure
reproduced from Cambon’s
thesis (1982) in Godeferd
et al. (2001): Maximum
eigenvalue of the symmetric
Green’s function GG̃ as a
function of the direction θ of
the wavevector measured
from the polar axis (Taken at
a period t = 2π/σ0, this
eigenvalue differs only from
the actual Floquet parameter
because of the use of a
symmetric form of the
Green’s matrix). Curves
labelled 1, 2, 3, 4, are
obtained at times
t/T = 1.3, 2, 2.5, 3 in terms
of the period T = 2π/σ0,
W/(2D) = 3

σ0 =
√(

W

2

)2

− D2. (11.63)

It is therefore possible to compute the Green’s function only for a single period
T = 2π/σ0, and to extract its eigenvalues once for all. The Green’s function given
by an arbitrary number p of periods is obtained by simply calculating the power
p of the one-period matrix. Exponentiation of the one-period matrix amounts to
exponentiation of its eigenvalues, so that the amplification rate is easily calculated
from a single-period run.

The instability band was found to correspond to

W
k3

k
∼ ±W/2,

at very small D: one recovers in the left-hand side the intrinsic frequency of inertial
waves, which is also the dominant term in Eq. (11.62) at small D, whereas the right-
hand side is the frequency of the external forcing following mean elliptical stream-
lines at small D. One can imagine a scheme where the wave-vector direction describes
a periodic trajectory (with frequency W/2 at vanishing D), whereas the Fourier
component rotates in the plane normal to it with frequency W cos θ = W k3/k: res-
onance is found when cos θ = ±1/2. The subharmonic conditions with cos θ given
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Fig. 11.18 Typical
instability band in the θ- e
plane,
e = (W/2 − D)/(W/2 + D)

being the ellipticity.
Reproduced from Salhi et al.
(1997) with permission of
AIP

by a rational number other than ±1/2 yield no significant amplification here. The
location of the instability peak near k3

k = cos θ = ±1/2 in Fig. 11.17 is therefore
explained. The maximum growth rate at the leading order in terms of D/W is found
as

σ = 9

16
D,

for the particular wavenumber orientation cos θ = 1/2. On time-average, this means
that the vorticity ω̂ aligns itself with the underlying stretching direction.

Using the rigorous Floquet analysis, it is shown how the instability band, which
emanates from the point θ = π/3 at vanishing ellipticity, expands at larger ellipticities
(see Fig. 11.18).

Among a lot of results not given here for the sake of brevity, one can mention
the analytical study of an Ince equation by Waleffe (1990). Such an equation can be
obtained by deriving a single second-order ordinary differential equation from the
system (11.62), as we have seen other examples in the previous sections. Transition
to turbulence was further investigated using LES/DNS by Lundgren and Mansour
(1996) (Fig. 11.19).

Let us also mention the shift of the instability band when the elliptical flow is seen
in a reference frame rotating at angular velocity � (Craik 1989): it is simply found
using

(2� + W )
k3

k
∼ ±W/2.

This illustrates that the system vorticity and the relative (mean) vorticity do not act
in the same way: they are simply added in the left-hand side, displaying the absolute
vorticity in the dispersion frequency, but W is kept in the right-hand side. Typical
results from inviscid and viscous RDT for the rotating elliptical flow are shown in
Fig. 11.20. As shown by Cambon et al. (1994), Salhi et al. (1997), four flow cases
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Fig. 11.19 Inviscid (a) and
viscous (b) RDT results for
the four cases R = 2�/W ,
pure shear flow in the
rotating frame. Reproduced
from Cambon et al. (1994)
with permission of CUP

Fig. 11.20 Inviscid (a) and
viscous (b) RDT results for
the four cases, R = 2�/W ,
elliptical flow case with
D = W/4 in the rotating
frame. Reproduced from
Cambon et al. (1994) with
permission of CUP
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are very relevant among all possible 2D mean flows with rectilinear D = W/2,
hyperbolical D > W/2, or elliptical D < W/2 streamlines in the frame rotating
with angular velocity �:

• the reference case without system rotation,
• the case with zero mean tilting vorticity, 2� + W/2 = 0, which gives always the

most destabilizing one,
• the case with zero mean absolute vorticity, 2� + W = 0 which is always the only

unconditionally stable one, even if subject to some algebraic growth. (see also
Craik 1989),

• a cyclonic case, with 2� = W/2.

Viscous RDT is only given here as a reference, in order to show the effect of a viscous
cut-off, and therefore to select only the most robust exponential growths.

11.5.2 Precessing Rotational Flows with Additional Shear

The case of precessing rotational flow offers an example of elliptic instability, in
which the ellipticity of mean trajectories results from an additional mean shear. In
our simplified context of extensional mean flow and homogeneity restricted to fluc-
tuations (Salhi and Cambon 2009), the additional shear is induced by the gyroscopic
torque, that results from the misalignment of a main rotation and a secondary one,
treated as an external Coriolis force.

We consider a flow subjected to pure solid-body rotation, of angular velocity
�, and seen in a frame rotating with an additional angular velocity �c. As for the
baroclinic case, the mean flow only given by solid body rotation is no longer a solution
of Euler equations if � and �c are not aligned. The mean vorticity is not conserved
due to the term � × �c. It is suggested from the general analysis of Kerswell, who
revisited the Poincaré’s study of spheroidal container, that the effect of an additional
mean shear flow can exactly balance the abovementioned gyroscopic torque. This
additional mean shear flow scales with the Poincaré number, or �c/�, denoted ε. Of
course, this parameter is very small in the geophysical context (∼10−7, known from
Ptolemeus!), but significant values up to 0.2 are displayed in typical experimental
studies to trigger instability and turbulence.

Considering the case in which � and �C are perpendicular, superposition of
solid-body rotation and additional shear yield two cases

U = �

⎛

⎝
0 −1 0
1 0 0
0 −2ε 0

⎞

⎠ x and U = �

⎛

⎝
0 −1 0
1 0 −2ε
0 0 0

⎞

⎠ x, (11.64)

with �i = �δi3 and �C
i = ε�δi1. Both cases corresponds to planar elliptic trajec-

tories, but in a different plane. The first one corresponds to the analysis of Mahalov,
and is referred to as MBF (Mahalov Base Flow) (Mahalov 1993), and the second one
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is KBF (Kerswell Base Flow) (Kerswell 1993). In addition to details to be found in
Mahalov (1993), Kerswell (1993), Salhi and Cambon (2009), new instability tongues
are presented in Chap. 12 for magnetized precessing flow.

11.6 Axisymmetric Strain with Rotation

Axial strain, as the one obtained near the centerline of a convergent axisymmetric
duct, was addressed in Chap. 8. An interesting case was obtained by Leuchter and
Dupeuble (1993), when adding an axisymmetric convergent duct after the generator
of rotation illustrated in Fig. 7.3. In close connection with what was observed when
rapid rotation is suddenly applied to axisymmetric initial data (see Fig. 7.10), the
anisotropy of the flow is dramatically modified. This effect is completely missed
by any RSM model, since it is linked to the selective rapid damping of polarization
anisotropy by phase-mixing, the directional anisotropy being conserved. This linear
effect can be reproduced by the structure-based model of Kassinos and Reynolds, as
discussed in Cambon and Scott (1999).8

A more sophisticated study was carried out by Leuchter and Cambon (1997), with
access to both linear and subtle nonlinear effects of rotation in the straining geometry,
using RDT, DNS and EDQNM-2. The anisotropy parameter A/(2K), with

A = b33 − (b11 + b22)/2,

is plotted in Figs. 11.21 and 11.22. This parameter is the unique one needed to
characterize bi j with axial symmetry, since bi j is diagonal with b11 = b22 = −b33/2.
A RSM model can reproduce the rise of A with negative value due to the axisymmetric
strain, reflecting the rise of a ‘pancake-type’ Reynolds stress tensor b11 = b22 > 0,
but not the effect of additional rotation, which partly counterbalances this production.

The case of axial compression with rotation can be considered as another case of
“compressed”, not compressible, turbulence, as discussed in Sect. 14.3 of Chap. 14.
If the compression is periodic — this could be illustrated in a reciprocating engine
with swirl – specific instabilities can be shown using homogeneous RDT, very closely
to the elliptical flow case. After a first numerical RDT computation by C. Cambon,
a complete Floquet’s analysis was performed by Mansour and Lundgren (1990),
showing different bands of instability similar to the one displayed in Fig. 11.18.
A mechanism of parametric resonance of inertial waves by the external periodic
compression is displayed. This mechanism was further investigated in the more
realistic configuration of an axially rotating cylindrical vessel, with small-amplitude
periodic compression (Duguet et al. 2005).

8The damping of polarization anisotropy was referred to as ‘rotational randomization’ in the
structure-based model.

http://dx.doi.org/10.1007/978-3-319-73162-9_12
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_14
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Fig. 11.21 A-parameter
(which characterizes the
RST anisotropy in the case
of axial symmetry) with
q2 = 2K. ω0 is the
rotation-to-strain-rate ratio.
RDT calculation, data taken
from Leuchter and Cambon
(1997). Courtesy of
O. Leuchter

Fig. 11.22 Same quantities
and parameters as in
Fig. 11.21. DNS and
EDQNM-2 results, data
taken from Leuchter and
Cambon (1997). Courtesy of
O. Leuchter

11.7 Relevance of RDT and WKB RDT Variants
for Analysis of Transient Growth and Exponential
Instabilities

Recent literature on algebraic instability, consistent with transient growth of dis-
turbances, offers a modern continuation of what was called “RDT” in Cambridge.
Applications address the dynamics of accretion discs. Going back to the toy-model
derived from the Taylor–Couette flow in Sect. 11.3.1, the case of self-gravitating
disc, or Keplerian disc, is particularly important. In this case the gravitational force
balances the centrifugal force, or �2(r)r ∼ r−2, resulting in q = 3/2. According
to the simple stability criterion, from Rayleigh or from Bradshaw via the shearing
sheet approximation, the Keplerian disc is stable (S/(2�) = −4/3 < −1). From the
observation that a Keplerian disc is probably turbulent, several alternative explana-
tions were proposed. Recourse to exponential instability, as the Magneto-Rotational
Instability (MRI) is well known for magnetized discs (see Chap. 12). Additional
density stratification, possibly both in axial and radial direction, as in Salhi et al.
(2013), is invoked as well. Among them, one of the most promising approach is the
role of transient growth, that can trigger a transition to turbulence. Transient growth,
connected to algebraic instability, is addressed by a non-normal or nonmodal linear

http://dx.doi.org/10.1007/978-3-319-73162-9_12
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analysis (Schmid 2007), usually looking at the continuous spectrum of temporal
complex amplification rates in classical hydrodynamic stability analysis. Because
linear RDT can address algebraic growth as well, it is the simplest model to be used.
In all the simplified mean flows considered from now on in this chapter, transient
growth is induced by modes k1 �= 0, for which the wave vector is time-dependent,
from Eq. (11.30).

Another useful variant of homogeneous RDT is its extension to inhomogeneous
flows, for zonal analysis, via a WKB approximation.

11.7.1 Transient Growth and Generalized Wave-Vortex
Dynamical Analysis

Linear stability of the extensional pure shear flow offers the guidelines for explain-
ing strong algebraic growth of disturbances. In the language of astrophysicists who
rediscovered RDT, the Fourier modes with possibly time-dependent wave vector are
called SFH (Spatial Fourier Harmonics) or Kelvin modes, but the latter nomenclature
is confusing (two many Kelvin’s modes and Kelvin’s waves!). The k1 = 0 mode,
or 2D mode in the streamwise direction, is called the symmetric (or axisymmetric)
mode, and particular emphasis is put on the asymmetric mode k1 �= 0, which gen-
erates the time-dependent k3(t) wavenumber in the cross-gradient direction, which
is the key for the simplest analysis of the non-normal (or nonmodal, see Schmid
2007) stability. Following Chagelishvili et al. (2003), several publications are now
dedicated to transient growth and bypass transition to turbulence in sheared flows. A
simple scheme of the bypass scenario in Keplerian disc flow is given in the wavenum-
ber plane (kx (= k3), ky(= k1)) of the mean shear in Fig. 11.23. Viscous dissipation

can be neglected in an “active domain” of sufficiently low value of k =
√

k2
1 + k2

3 .
The point 1 in the figure corresponds to k3/k1 < 0: According to Eq. (11.30), the
velocity Fourier mode drifts in the direction marked by the arrows. Initially, as | k3 |
decreases, the energy of the velocity Fourier mode grows. this grows lasts until the
wave vector crosses the line k3 = 0 (point 2). Then, while undergoing attenuation,
the velocity Fourier mode continues its drift until it reaches the point 3, where it
is dissipated through viscous friction. The same will occur with all other Fourier
modes. Consequently, if the nonlinear interaction between different Fourier modes
is inefficient, the perturbation disappears eventually. Permanent extraction of shear
energy by the perturbations is necessary for their maintenance, which is possible
when quadrants II and IV where k3/k1 < 0 are being repopulated through nonlinear
interactions between Fourier modes of quadrants I and III that have reached sufficient
amplitude. An example of triadic nonlinear process k1 + k2 → k is presented in the
Fig. 11.23, process that contributes to the regeneration of a velocity Fourier mode
in the amplification area, transferring perturbation energy to it from the attenuation
areas.
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Fig. 11.23 Sketch of the bypass scenario applied to Keplerian disc flows, in the wave vector plane
of the mean shear. Here, kx (for k3) is the wavenumber in the radial direction (or cross-gradient
using SSA) and ky (for k1) in the azimuthal direction (or streamwise using SSA). The wave vector
k(t) of the velocity Fourier mode û(k, t) drifts from its initial position 1, û(k, t) is amplified in
quadrant II, reaches maximum amplitude in 2, is attenuated in quadrant I, and undergoes viscous
dissipation in 3. But the amplification quadrant II is repopulated through nonlinear interaction from
velocity Fourier modes located in the attenuation quadrants I and III (see text for more details).
Reproduced from Chagelishvili et al. (2003), with permission of A and A

The following conclusions are drawn from this preliminary 2D analysis of
Chagelishvili et al. (2003):

• the onset of turbulence and the turbulent state itself in smooth spectrally stable
shear flows is supported energetically by the linear transient growth of vortex mode
perturbations;

• nonlinear processes do not contribute to any energy growth, but regenerate vortex
mode perturbations that are able to extract shear flow energy;

• the non-orthogonal nature of linearized Navier–Stokes equations is the formal
basis of the transient growth;

• the non-orthogonal nature increases with increasing Reynolds number; thus the
operators are highly nonnormal for the huge Reynolds number of Keplerian discs
(Re > 1010).

A second important ingredient for a simpler analytical treatment is the use of
invariants, as linear combinations of the components of disturbances. The rank of the
linear system of equations can be reduced, leading to nonhomogeneous differential
equations. This is called generalized wave-vortex decomposition in the astrophysical
community, following Chagelishvili et al. (1997). The first example discussed below
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is the case of rotating stratified shear flows, in which the linearized potential vorticity
is the invariant and provides the “vortex” mode of the decomposition.

In the presence of mean shear, the linearized APV mode given be Eq. (11.18) is
extended as

k⊥u(1) + f + S

N
k2u(3). (11.65)

This amounts to replace the system vorticity f by the total absolute vorticity f + S,
with the mean shear vorticity. From Eqs. (11.18)–(11.65), the possible change of
wavenumber direction comes from the fact that system vorticity is along x3 in the
former equation and along x2 in the latter.

Accordingly, the linear system of rank 3, for toroidal- poloidal - buoyancy -type
modes (u(1), u(2), u(3)) in Eq. (11.34) reduces to a system of two equations.

11.7.2 Zonal Variant of RDT for More Complex
Inhomogeneous Base Flows

The short-wave asymptotic theory introduced by Lifschitz and Hameiri (1991) is
presented in Chap. 17. It can be seen as a WKB (Wentzel–Kramer–Brillouin) variant
of RDT. It is used in the following for identifying localized elliptic, centrifugal and
hyperbolic instabilities (Godeferd et al. 2001).

The Coriolis force alters the stability of 2D vortex flows subjected to 3D distur-
bances. As an illustration, it is possible to consider 2D base flows more complex than
those of homogeneous RDT illustrated in Fig. 2.1. For instance, the Taylor–Green
flow in a rectangular cell (see Fig. 11.24) has an elliptic point in the core of each eddy,
and an hyperbolic point in the corner of the four cells. The Stuart flow (see Fig. 11.25)
is elliptic in the core region with hyperbolic points inserted between adjacent vortices
(only a single vortex is shown, but one has to consider periodicity in the horizontal
direction). The stability of these flows can be revisited in a rotating frame, using the

Fig. 11.24 The
Taylor–Green flow:
iso-values of the vorticity.
Case E = 2. Reproduced
from Sipp et al. (1999) with
permission of AIP Ω

x/a

y/
a

-W

-π

0

π0-π/2 π/2

π/E

-π/E

+W

+W

-W

http://dx.doi.org/10.1007/978-3-319-73162-9_17
http://dx.doi.org/10.1007/978-3-319-73162-9_2


11.7 Relevance of RDT and WKB RDT Variants … 577

Fig. 11.25 The Stuart flow.
Isovalues of the
streamfunction. Core
ellipticity parameter ρ = 1/3

short wave WKB theory developed by Lifschitz and Hameiri (1991), which amounts
to a zonal RDT analysis. Such an analysis allows for the identification of the role
of elliptic and hyperbolic points in 3D instabilities altered by system rotation, but
also to capture the centrifugal instability that may affect anticyclonic vortices (Sipp
et al. 1999; Godeferd et al. 2001). The three kinds of instability and their possible
competition were studied by solving the Townsend (or Kelvin–Townsend) equations
along different trajectories. For each closed trajectory, a temporal Floquet parameter
can be calculated from the zonal RDT Green’s function. This parameter, denoted
σ(x0, θ), depends on both the space coordinate x0, that labels the trajectory, and
on the angle θ which gives the orientation of the wave-vector. A typical pattern of
σ(x0, θ) in the case of the rotating Stuart flow is shown in Fig. 11.26. The domi-
nant instability is the centrifugal one in the particular anticyclonic case illustrated
here. In addition, a typical elliptical instability branch emanates from the core (left
part of the figure). One should point out that the local WKB RDT for short wave
disturbances can provide real insight into the nature of instabilities – e.g. elliptical,
hyperbolic, and centrifugal – that occur in non-parallel flow, with and without system
rotation. Classical massive eigenvalue problems provide little or no such insight. In
such studies, for instance by Peltier and coworkers, different kinds of instabilities,
called “core”, “braid” and “edge”, were identified, but the local analysis allowed to
substitute “elliptical”, “hyperbolical” and “centrifugal” to this terminology.

Finally, it is perhaps worthwhile to mention the instabilities which cannot be
captured by RDT (possibly extended towards WKB RDT). A very important one is
the inflexional shear instability. Even if every point of a linear profile is an inflexional
point, the case of change of concavity cannot be recognized by RDT as such. The
reason is that only the gradient of the mean velocity is accounted for in the local
theory, but not the curvature. A related point is that the inflexional instability in
actual flows is not a short-wave, very local, one.

The case of the baroclinic instability is more subtle and surprizing. On the
one hand, the baroclinic instability is a long-wave instability in many geophysical
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Fig. 11.26 Floquet amplification parameter σ (plotted onto the vertical axis) as a function of the
trajectory, indexed by the position x0 (on the left), and the orientation θ (on the right) of the local
wavevector to the spanwise (normal to the plane of the base flow) axis. x0 varies from 0 (core) to
π (periphery), and θ varies from 0 (pure spanwise modes) to π/2 (pure two-dimensional modes).
Anticyclonic system rotation: the dimensionless vorticity at the core (x0 = 0) of a Stuart cell is −7
and the related Rossby number is −5. Reproduced from Godeferd et al. (2001) with permission of
CUP

contexts; on the other hand, we hope that the specific section in this chapter could
show a possible relevance of homogeneous and WKB RDT, and at least will generate
a debate in the geophysical community.
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Chapter 12
Incompressible Homogeneous Anisotropic
Turbulence: Magnetohydrodynamic
Turbulence

12.1 Generalities, Analogies and Differences with Respect
to the Purely Hydrodynamic Case

Magnetohydrodynamic (MHD) turbulence is present in electrically-conducting flu-
ids, both in industrial devices and in the core of the earth, and is ubiquitous in
heliophysics and astrophysics. MHD is also the first step to address the physics of
plasmas, with recent studies motivated by the ITER project. Interactions of velocity
and magnetic (or induction) fields yield new coupled effects. These effects can be
mainly described and modelled in our context of homogeneous turbulence, because
the Lorentz (or Laplace) force is a body force, as are the Coriolis force (Chap. 7) and
the buoyancy force (Chap. 10). Limits of our incompressible and “homogenized”
approach are touched upon at the end of this chapter. Incompressibility is not ques-
tioned in a turbulent liquid metal, but it is not suited in many astrophysical situations,
so that we will explore the limits of this approximation as well, and look at some
extensions using the anelastic approximation, or magnetosonic modes.

Analogies and differences with the “hydro” (hydrodynamic hereinafter) case can
be first discussed in the presence of a mean magnetic field, which can appear as
a mean Alfvén velocity using a simple rescaling. Without strong diffusion and in
the presence of a dominant mean field B0, Alfvén waves are easily identified from
background coupled equations, observations, experiments and numerical simula-
tions. With respect to the other wave régimes presented in this book in the “hydro”
case, these plane waves are not dispersive (sometime called semi-dispersive), the
dispersion law displays a typical mean-velocity-scale (the Alfvén velocity) and not a
typical frequency (Coriolis parameter, stratification frequency). In contrast with the
Coriolis force and the buoyancy force (at least within the Boussinesq approxima-
tion), that are linear, the Lorentz force is quadratic, so that it yields cubic correlations
in the equations for kinetic energy and total energy, as for nonlinear transfer terms.
Accordingly, Alfvén waves are well identified in the presence of a dominant external
magnetic field, when the Lorentz force is linearized, but they do exist without mean
magnetic field.
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As another new feature, the basic wave régime is strongly altered when velocity
field and magnetic field are affected by very different values of diffusivity: This is
the case for a liquid metal, with a very low value of the Prandtl magnetic number
(ratio of kinematic viscosity ν to magnetic diffusivity η); a very special quasi-static
régime can be predicted and observed, in which the waves are not only modulated
and selectively damped by viscous effects, but are discarded.

Strong differences appear because the interpretation of the magnetic field, be
entirely fluctuating or with a dominant mean contribution, as an Alfvén velocity,
is only a useful convenience to homogeneize dimensions. The magnetic field is
governed by an equation closer to the one of vorticity than the one of velocity; it
corresponds to a transported vector, but not a passive vector, as should be a bi-point:
It is active via the feed-back of the Lorentz force on the momentum (Navier–Stokes-
type) equations.

As an important consequence, there is no principle equivalent to Galilean invari-
ance applied to the Alfvén “velocity”. For instance, the first version of DIA theory,
recognized as wrong because it violates random Galilean invariance and yields a
−3/2 spectral slope for the energy spectrum (instead of −5/3), is possibly valid
when MHD is considered, replacing the rms “true” velocity by the rms “Alfvén veloc-
ity”. This issue, addressed by Iroshnikov (1964) and Kraichnan (1965), remains
controversial and merits more thinking. Another related point is that in “hydro” the
(space-uniform) mean velocity itself is not relevant, so that only its gradients yield
interesting linear effects, which are emphasized in RDT if considered alone, with
a complex interplay with basic nonlinearity (here Chaps. 7–11). On the other hand,
the mean magnetic field has relevant structuring effects with no need to account for
its gradients. Only in some problems of plasma physics, not considered here, the
dynamics induced by mean magnetic gradients are important.

Wave turbulence is particularly relevant from MHD to plasmas physics, as illus-
trated by the spectrum of magnetic fluctuations in Fig. 12.1 from Kiyani et al. (2016).
As a final general consideration, the development of anisotropy, be a general statistical
mechanism or the reflect of coherent structures, is considered as different in “hydro”
and MHD cases. Re-isotropization of small scales, with a threshold lengthscale close
to Corrsin’s (mean shear), Ozmidov’s (mean stratification) or Hopfinger’s / Zeman’s
(rotation) scale is well supported in the hydro case (this scale-by-scale anisotropy is
better discussed in the new edition of this book from recent results). On the other
hand, a dominant anisotropy at small scales is often expected in MHD, in connection
with the nonlinearity of the Lorentz force: This yields some Alfvén wave packets
at small scale, driven by the magnetic field at largest scale. This asks the problem
of fully anisotropic subgrid scale model in LES, with the recent review by Miesch
et al. (2015).) A typical structure in MHD is the layering of current sheets, which
presents only some qualitative analogy with the layering in stably stratified turbu-
lence (Chap. 10).
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Fig. 12.1 Canonical power spectral density of the magnetic field fluctuations of a plasma in the
ecliptic solar wind, from Kiyani et al. (2016)

12.2 Governing Equations

12.2.1 Basic Equations for Ideal MHD

The magnetic field b(x, t) is an active vector field, transported by the velocity u(x, t):
It is governed by the following equation (the induction equation), which is the same
as the one for a material bipoint, or for the vorticity, up to a specific diffusion term,
with magnetic diffusivity η.

∂b
∂t

− ∇ × (u × b) = η∇2b, ∇·b = 0. (12.1)

This vector is active, having feedback on the velocity field via the Lorentz force,
which is the new term j × b in the modified Navier–Stokes equation

∂u
∂t

+ ω × u − (∇ × b)
︸ ︷︷ ︸

j

×b = −∇(p + u2/2) + ν∇2u, ∇·u = 0, (12.2)

in which p is the pressure fluctuation divided by a reference density ρ0, and j(x, t) is
the current density. The generality of MHD equations is only restricted by the choice
of the simplified equation for the current density j , here j = ∇ × b (simplified



586 12 Incompressible Homogeneous Anisotropic Turbulence …

Ohm equation). The explicit inclusion of typical physical coefficients is avoided
in the preceding equations by scaling b as a velocity (b → b/

√
μ0ρ0 where μ0 is

the magnetic permeability and ρ0 is the density). The basic quadratic nonlinearity
u·∇u in Navier–Stokes equations is replaced by the Lamb vector ω × u, adding to
the pressure fluctuation term p its dynamical part (1/2)u2. Conversely, the Lorentz
force (∇×b)×b could be replaced by b·∇b, adding b2/2 to the pressure fluctuation.
Accordingly, Eq. (12.2) can be written

∂u
∂t

+ u·∇u − b·∇b = −∇(p + b2/2) + ν∇2u. (12.3)

Similarly, the analogy of the induction equation with the classical form of the
Helmholtz equation for vorticity (e.g. in Chap. 2) is complete when rewritting the
left-hand-side of Eq. (12.1) as

∂b
∂t

+ u·∇b − ∇u.b = η∇2b, (12.4)

in which u·∇b is the advection term and −∇u.b is similar to the nonlinear vortex
stretching term.

As in the purely hydro case, the solenoidal (divergencefree) constraint for both
u and b yields an explicit form of the pressure fluctuation, and this amounts to take
the solenoidal projection of both the nonlinear advection term and the Lorentz force,
which are not divergencefree, in Eq. (12.2). Taking the divergence of Eq. (12.3) gives
the following new Poisson equation:

∇2 p = −∂ui

∂x j

∂u j

∂xi
+ ∂bi

∂x j

∂b j

∂xi
. (12.5)

In our set of basic equations, it is convenient to rewrite the Helmholtz equation
for vorticity, taking the Curl of Eq. (12.2) or (12.3) (For the sake of complementarity:
The Poisson equation corresponds to the projection of Navier–Stokes-type equation
on the dilatational subspace, and the vorticity equation gives the projection on the
solenoidal subspace.)

∂ω

∂t
+ u·∇ω + b·∇ j − ∇ j .b − ∇u.ω = ν∇2ω. (12.6)

The Lorentz force has two contributions in the latter equation, b·∇ j , that expresses
the advection of j by b, and the term ∇ j .b, which has the same structure as the
nonlinear vortex stretching term, replacing ω by j and replacing b by ω.

Our last basic equation makes use of the (Elsaesser 1950) variables, that can be
introduced from the very beginning, taking advantage of the symmetry of equations
for u and b.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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zs = u + sb, s = ±1, u = 1

2

(

zs + z−s
)

, b = s

2

(

zs − z−s
)

. (12.7)

Combining the left hand side of Eqs. (12.3) and (12.4), one obtains

(

∂

∂t
+ u·∇

)

zs(x, t) − sb·∇zs,

which is also equal to
(

∂

∂t
+ z−s·∇

)

zs(x, t).

Finally, the equation in terms of Elsaesser variables is

(

∂

∂t
+ z−s·∇

)

zs(x, t) = ∇(p+b2/2)+ 1

2
∇2

(

(ν + η)zs + (ν − η)z−s
)

, (12.8)

with s = ±1. Except for the pressure term and the dissipation term (if the magnetic
Prandtl number ν/η is very different from one), the dynamical MHD equations are
dramatically simplified.

12.2.1.1 First Approach to Energies. Single-Point Statistics

Equations for kinetic energy and magnetic energy are easily found from scalar
product of Eqs. (12.3) and (12.4) by u and b, respectively. The kinetic energy
(1/2)u2 = (1/2)u·u is governed by

1

2

∂u2

∂t
+ ∂

∂x j

(

u2u j
)+ ∂

∂x j

(

ui bi b j
)− ∂ui

∂x j
bi b j = − ∂

∂xi

(

ui (p + b2/2)
)+νu·∇2u,

using ∇.u = 0.

Now performing statistical averaging, one obtains

dK
dt

−

⎛

⎜

⎜

⎜

⎝

∂ui

∂x j
bi b j − ∂

∂x j
(ui bi b j )

︸ ︷︷ ︸

=0

⎞

⎟

⎟

⎟

⎠

+ ∂

∂x j
(ui ui u j )

︸ ︷︷ ︸

=0

= −ε. (12.9)

Of course, statistical homogeneity yields zero value for all gradient terms, but
they are conserved in the above equations in order to anticipate the origin of true, or
conservative, spectral transfer terms: The (zero) contribution of the advection term
is related to a spectral transfer with zero integral. The contribution from the Lorentz
force to energy is twofold, with a conservative part ∂

∂x j
(ui bi b j ) (zero value here, zero
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integral for its spectral counterpart) and a non-conservative part − ∂ui
∂x j

bi b j . Similarly,

the equation for magnetic energy KM = (1/2)b2 is written as

dKM

dt
+ ∂ui

∂x j
bi b j + ∂

∂x j
(bi bi u j )

︸ ︷︷ ︸

=0

= −εM , (12.10)

in which εM is the magnetic dissipation rate. The term ∂ui
∂x j

bi b j is non-zero in general
and appears with opposite sign in the equations for kinetic energy and magnetic
energy.

12.2.1.2 Equations in Fourier Space

Solving the pressure term, so that it no longer appears in equations consistent with
solenoidal constraint, is particularly simple in Fourier space. Rewriting the basic
equations in spectral space, one has

(

∂

∂t
+ νk2

)

ûi (k, t) − ı Pim(k)k j
̂

(

bmb j
) = −Pi j (k) ̂(ω × u) j , (12.11)

and
(

∂

∂t
+ ηk2

)

b̂i − ık j
̂

(

ui b j
) = ık j

̂

(

u j bi
)

. (12.12)

In these equations, as in the whole book, the overhat denotes a three-dimensional
Fourier transform — possibly in the sense of the theory of distributions — k is
the wave vector, and Pi j = δi j − ki k j

k2 is the projection operator. Divergence-free

properties amount to k·û = 0 and k·b̂ = 0.
In order to separate conservative and non-conservative terms in energy-equations,

quadratic nonlinearity in the equation for velocity is split into the solenoidal contri-
bution from the Lorentz force and the advection term. It is important to stress again
that, with respect to body forces already considered, Coriolis force or buoyancy force,
the Lorentz force is nonlinear (quadratic) from the very beginning.

In Eq. (12.11), the right-hand side can be replaced by −ı Pimn(k)ûmun , using the
symmetrized Kraichnan’s projector used in the classical hydrodynamic case. This
type of nonlinearity is recovered for the compact form of both equations in terms of
Elsaesser variables as:

∂

∂t
ẑs

i (k, t) = −ıkm Pin(k) ̂z−s
m zs

n − 1

2
k2

(

(ν + η)ẑs
i + (ν − η)ẑ−s

i

)

, (12.13)
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with ̂z−s
m zs

n(k, t) = ∫∫∫

k=p+q z−s
m ( p, t)zs

n(q, t)d3 p, and possible symmetrization in

terms of p and q, as for ûmun .

12.2.1.3 Reduced Basis of Solenoidal Modes, Craya-Herring, Helical
and Elsaesser

Finally, it is possible to project both û and b̂ onto the basis of helical modes, itself
related to the Craya–Herring frame of reference via

û(k, t) = u(1)(k, t)e(1)(k) + u(2)(k, t)e(2)(k) = u+(k, t)N(k) + u−(k, t)N(−k),

(12.14)
with all definition from Cambon and Jacquin (1989), rediscussed in Chap. 2. The
same decompositions are applied to the magnetic field as

b̂(k, t) = b(1)(k, t)e(1)(k) + b(2)(k, t)e(2)(k) = b+(k, t)N(k) + b−(k, t)N(−k).

(12.15)
Both decompositions can be applied to the Elsaesser variables in Fourier space.

Considering helical Elsaesser variables, one has to use two different types of signs:
The superscript refers to Elsaesser combination of u and b, whereas the index, called
sk and not s in order to avoid confusion, denotes the polarity of the helical mode:

zs
sk
(k, t) = usk (k, t) + sbsk (k, t), s = ±1, sk = ±1. (12.16)

It is recalled that Ni (−k) = N ∗
i (k) (Hermitian property), Ni Ni = 0 and ki Ni = 0.

Both linearized and fully nonlinear dynamical equations will be rewritten in terms
of this reduced basis of solenoidal modes in the following sections. An optimal
description of two-point second order statistics is derived in the next section, in line
with what was done for the “hydro” case.

12.2.2 Fully Anisotropic Second-Order Statistics, with
Cross-Spectra

We consider velocity u and magnetic field b fluctuations, both solenoidal.
The spectral tensor of velocity correlations is written as in (Cambon and Jacquin

1989)

R̂i j (k, t) = E(k, t)Pi j (k) + �[Z(k, t)Ni (k)N j (k)] + iεi jn
kn

2k2
H(k, t), (12.17)

and the scalar spectra are expressed as

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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E = 1

2
R̂ii ↔ 1

2
〈u∗

+u+ + u∗
−u−〉, (12.18)

Z = 1

2
R̂i j (k, t)N ∗

i N ∗
j ↔ 2〈u∗

+u−〉, (12.19)

H = 1

2
εni j kn R̂i j ↔ 1

2
〈u∗

+u+ − u∗
−u−〉, (12.20)

as discussed at length in Chap. 2. To be consistent with the definitions mainly used
in MHD, the kinetic helicity spectrum slightly differs from the one introduced
in Cambon and Jacquin (1989) with Eq. (2.128), in order to recover 〈u·ω〉 =
∫∫∫ H(k, t)d3k, without a prefactor 2k.

It is clear that the spectral tensor related to 〈b̂∗
i b̂ j 〉, denoted RM

i j (k, t) hereinafter,

has exactly the same structure as R̂i j , or

RM
i j = E M Pi j + �[Z M Ni N j ] + iεi jn

kn

2k2
HM , (12.21)

in which the quantities with superscript M are the “magnetic” counterparts of the
“kinetic” ones (energy, polarization, helicity.) The term related to magnetic helicity,
with spectrum HM(k, t) deserves an additional discussion as follows, with respect
to classical litterature: Magnetic helicity is usually defined from the scalar product
of the magnetic field b with the potential vector of induction, a, instead of the Curl
of b itself. From the relationship b = ∇ × a, and applying a Gauge condition which
renders a divergencefree, it is found ∇×b = −∇2a (this relationship is similar to the
one between palinstrophy and velocity.) Accordingly, the term HM(k, t) called into
play in Eq. (12.22) is proportional to the spectrum of classical magnetic helicity, via
a k2 factor. The reader is referred to the seminal study by Matthaeus and Goldstein
(1982) for the context of magnetic helicity in homogeneous turbulence.

The kinetic/magnetic cross-spectral tensor Ci j (k, t) is related to 〈bi u j 〉 and its
structure derives from û∗

i b̂ j . Starting from the decomposition of b̂ and û in terms of
N and N∗ in Eqs. (12.14) and (12.15), one finds

Ci j = 1

2
HC Pi j + Z1 Ni N j + Z2 N ∗

i N ∗
j + 1

2
εin j

kn

k
C , (12.22)

with four pseudo-scalars, probably all complex-valued, except the first one: HC(k, t)
is the spectrum of cross-helicity. Another relevant term is the vector spectrum of the
averaged electromotive force 〈u × b〉; it is given by εimnCmn , which reduces to
εimnεmnj

k j

k C, so that k
k C is the vectoral spectrum of 〈u × b〉. Accordingly

〈u·b〉 =
∫∫∫

HC(k)d3k, 〈u × b〉 =
∫∫∫

k
k
C(k)d3k. (12.23)

It is unfortunately not possible to attribute to the “cross-polarization” complex
pseudo-scalars Z1 and Z2 more specific physical meaning. Z1 corresponds to 〈u∗−b+〉,

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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and Z2 to 〈u∗+b−〉 in term of helical modes. On the other hand, it is clear that all the
information for second-order two-point statistics can be generated by the following
list:

(E, Z ,H, E M , Z M ,HM ,HC , Z1, Z2, C) (12.24)

The decomposition above was initially proposed by Cambon et al. (2012); another,
less general, decomposition can be found by Oughton et al. (1997) in line with
Chandrasekkhar and restricted to axisymmetry, but it does not involve the helical
modes, and does not address the dynamical equations for the two-point second-order
statistics.

12.3 Alfvén Waves and Ohmic Damping Linear Régime

Basic equations are first linearized around a mean magnetic field B0, without mean
motion, and diffusivities are neglected, so that:

∂u
∂t

− B0·∇b + ∇ p = 0 (12.25)

∂b
∂t

− B0·∇u = 0. (12.26)

Because the linearized Lorentz force remains divergencefree, with space-uniform
B0, the pressure term can be cancelled in the first equation. In view of the symmetric
role played by u and b, their combination under the form of Elsaesser variables, or
z± = u ± b yields a simpler diagonal solution, with

(

∂

∂t
− B0·∇

)

z+ = 0,

(

∂

∂t
+ B0·∇

)

z− = 0.

As the well-known dynamics of non-dispersive waves, one recovers apparent advec-
tion of basic variables by the Alfvén velocity, but the existence of two different
directions with opposite signs is a crucial difference with a simple effect of advec-
tion.

Finally expressed in terms of Fourier coefficients, the linear solution is written as

(

û + s b̂
)

(k, t) = exp(ıs B0·kt)
(

û + s b̂
)

(k, 0), s = ±1. (12.27)

The dispersion frequency of Alfvén waves is found as

σa = B0·k = Vak‖, (12.28)
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where k‖ is the component of the wave vector along the mean magnetic field, whose
magnitude, scaled as a velocity, is the Alfvén velocity Va .

The important case of liquid metal, or any case with magnetic Prandtl number
very far from one, is now addressed, so that we reintroduce different values of the
kinematic viscosity ν and of the magnetic diffusivity η. Linear solutions with diffu-
sivities were investigated by Moffatt (1967), using a classical description in Fourier
space, taking advantage of the solenoidal property of both velocity and magnetic field
fluctuations. A slightly different method is used here, introducing the two solenoidal
components of b, b(1) and b(2), in the Craya–Herring frame of reference, as for the
velocity vector. In terms of the four dependent variables, the linearized system of
Eqs. (12.25) and (12.26) with added diffusivities is rewritten as

∂

∂t

(

u(α)

b(α)

)

+
(

νk2 −ıσa

−ıσa ηk2

)(

u(α)

b(α)

)

=
(

0
0

)

, (12.29)

with α = 1, 2. The dispersion law (Eq. 12.28) σa of Alfvén waves appears in the off-
diagonal term of this matrix, so that, without diffusivity, a classical wave-equation
is recovered for u(α) ± b(α), α = 1, 2, corresponding to Elsaesser’s variables. The
differential diffusivity (difference of the diagonal terms) is responsible for a very
important effect: Waves are not only modulated by a diffusive effect, as they would
if ν = η, they are completely suppressed outside the specific dumbell-like spectral
subdomain shown in Fig. 12.2. Indeed, diagonalizing the matrix in the preceding
linear system yields a complete analytical solution, with eigenvalues

σ±1 = ν + η

2
k2 ±

√

(

ν − η

2
k2

)2

− σ2
a, (12.30)

so that the circles (spheres in this axisymmetric pattern) corresponds to the zero value
of the term inside the square-root of Eq. (12.30).

Fig. 12.2 Domain in Fourier
space for delineating wave
effects (inside the circles)
and pure Ohmic damping
without waves (outside the
circles), in the
(k‖ = k cos θk ,
k⊥ = k sin θk)) plane. The
circles are of diameter K0
and correspond to equation
k2 = 4K 2

0 cos2 θk , with
K0 = Va/(η − ν), from
Eq. (12.30.) Adapted from
Moffatt (1967)

θ

Β

k
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The quasi-static limit is found when the magnetic Reynolds number is small, so
that the induction equation reduces to B0·∇u = η∇2b. An explicit form of b in
terms of u is thereby found, and readily closes the Lorentz force, linearized around
the mean magnetic field. Consequently, the Lorentz force amounts to a sole, highly
anisotropic, Ohmic damping, as follows:

F̂(k, t) = −η−1 B2
0 cos2 θk û(k, t) = −M2

0 cos2 θk û(k, t), (12.31)

under an algebraic form using Fourier transform, where θk is the angle between
the wave vector and B0. Vertical (axial) Fourier modes, aligned with the imposed
magnetic field, are rapidly dissipated whereas horizontal (transverse) ones remain
unchanged.

12.4 The Quasi-static Régime, from Linear to Nonlinear
Dynamics

The very low value of the Prandtl magnetic number PrM = ν/η (e.g. PrM = 10−7

in liquid sodium) allows us to consider that only the velocity field is turbulent, with
possibly very high (kinetic) Reynolds number, while the magnetic Reynolds number
is small (usually smaller than one). In this limit, the contribution to dynamics inside
the dumbell diagram of Fig. 12.2 can be ignored. Accordingly, we can get rid of the
induction equation and the Lorentz force reduces to the explicit (in terms of velocity)
form (12.31) given above.

Homogeneous quasi-static MHD was investigated by Moreau (1968), who intro-
duced the angle that characterizes directional anisotropy, via

cos2 γu =
∫∫∫

cos2 θkE(k)d3k
∫∫∫ E(k)d3k

, (12.32)

in complete accordance with the parameter sin2 γu (= 1 − cos2γu) used in USHT
(Unstably Stratified Homogeneous Turbulence, Eq. (10.44, Chap. 10.) A similar
angle, introduced later, is known as Shebalin’s angle, but it is related to smaller
structures, replacing E by k2E , or energy by enstrophy, in Eq. (12.32). An experi-
mental approach followed with the seminal studies in mercury tank (e.g. Capéran et
Alemany 1985.) Quasi-static MHD gives an excellent toy-model to study the full
transition from three-dimensional to two-dimensional structure, as recently revisited
and investigated by Favier et al. (2011a) using pseudo-spectral DNS and generalized
EDQNM, following the first anisotropic EDQNM approach to QS-MHD by Cambon
(1991).

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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Two-point second-order velocity correlations are governed by

(

∂

∂t
+ 2νk2 + M2

0 cos2 θk

)

E(k, t) = T (E)(k, t), (12.33)

and
(

∂

∂t
+ 2νk2 + M2

0 cos2 θk

)

Z(k, t) = T (Z)(k, t), (12.34)

that only differ from their right-hand-sides, spectral transfer contributions mediated
by triple velocity correlations.

Some basic mechanisms can be unterstood on the ground of single-point statistics,
possibly introducing structure-based modeling. The equation for kinetic energy is

dK
dt

+ M2
0 cos2 γuK = −ε. (12.35)

12.4.1 Linear Dynamics

In the linear, or viscous RDT limit, the basic spectra E and Z , which describe two-
point second-order velocity correlations evolve as

E(k, t) = exp
(−νk2t − M2

0 cos2 θk t
) E(k, 0)

4πk2
, Z = 0, (12.36)

from isotropic initial data.
The inviscid time development of all single-point statistical quantities is derived

analytically, in terms of the error function erf. The dominant terms in the evolution
yield the following simple scalings: The kinetic energy decays as M2

0 �(∞)(2t)−1/2,
as well as the Reynolds stress components, integral length scales with axial separation
behave as M0 L0t1/2. Upon introduction of viscosity in the integrands, the viscous
RDT solution is found, but this time depending on the explicit shape of the initial
energy spectrum E(k, 0) in Eq. (12.36). For example, the viscous RDT evolution
leads to a linear evolution, in t , instead of t1/2, for the abovementioned integral
length scales.

It is clear that the spectral energy is more and more concentrated towards the
transverse waveplane k‖ = 0, and without any polarization, by the linear solution.
This yields asymptotically a 2D-3C state, characterized by

b(dir)
33 = 1

6
, b(pol)

33 = 0, b33 = 1

6
,
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for the relevant (axial) components of the deviatoric part of the Reynolds stress
tensor in axisymmetric configuration. Counter-intuitively, this state corresponds to
u2‖/u2⊥ = 2, or the axial Reynolds stress component larger than, twice, the trans-
verse one (see also Moffatt 1967.) The same ratio is found for the components of
vorticity correlations, as ω2‖/ω2⊥ = 2. This behavior is related to the fact that a rel-
ative depletion of energy around k in the axial direction, where velocity contribution
is transverse (û ⊥ k), means relative reduction of transverse (versus axial) Reynolds
stress component, in the absence of polarization.

It is well known, however, from experiments and DNS, that the typical state of
Quasi-Static MHD is 2D-2C, with the ratio u2‖/u2⊥ tending to zero. Accordingly,
the nonlinearity is crucial for altering both componentality and dimensionality, using
the parlance of Kassinos et al. (2001), or directional and polarization anisotropy, both
considered throughout this book.

For a slightly different approach, we can consider the following equation for
transverse vorticity fluctuation:

ω⊥ = ∇u‖ − ∂u
∂x‖

. (12.37)

Hence, the two trends u‖ → 0 (2C) and ∂u
∂x‖ → 0 (2D) have to be found simultane-

ously in order to ensure the 2D-2C state, seen as a one-component state for vorticity
(only axial).

12.4.2 Fully Nonlinear Dynamics for Quasi-Static MHD

As shown by DNS and generalized EDQNM, the nonlinear dynamics, through
spectral transfer terms in the right-hand-side of Eqs. (12.33) and (12.34), moder-
ately reduce the directional anisotropy, and create a crucial polarization anisotropy.
This polarization anisotropy is particularly relevant in the 2D manifold, or k‖ ∼
0, cos θk ∼ 0, in favoring the transverse mode of velocity with respect to the axial
mode. The nondimensional magnetic interaction parameter

Nm = B2
0�0

ηu0
, (12.38)

compares the magnetic time scale to a turnover time scale �0/u0 in MHD; it is equal
to M2

0 �0/u0 in the quasi-static limit.
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Fig. 12.3 Sketch of the creation of anisotropy and 2D-2C eventual structure in QS-MHD

A scenario of complete two-dimensionalization is ascertained: In a first stroke,
almost linear, the spectral energy is more and more concentrated towards the 2D
manifold, but this effect is less and less efficient as cos2 γu in Eq. (12.32) is closer
and closer to zero. In a second stroke, almost nonlinear, the flow state is close to a
purely 2D flow for the transverse mode of velocity (or toroidal mode in the 2D limit)
and to a passively advected scalar for the axial mode of velocity (or poloidal mode in
the 2D limit). Accordingly, the energy of the axial velocity mode is rapidly damped
by the direct cascade, as for a scalar advected by a 2D flow, whereas the energy of
the transverse flow is enhanced by the classical inverse energy cascade. A sketch of
this scenario is given on Fig. 12.3. It was recently recovered by the mathematical
analysis of Gallet and Doering (2015).

Note that this scenario was invoked for more complex flow cases, as purely rotat-
ing turbulence. We think that it is erroneous, or at least oversimplified, when the
dynamics are purely nonlinear. Here, the linear “forcing” via anisotropic Ohmic
dissipation is both simple and efficient to create the 2D-3C state (two-dimensional
three-components), from which classical 2D nonlinear dynamics naturally moves
from 2D-3C to 2D-2C (second stroke above).

This transition from 3D isotropic turbulence to a 2D-3C state, then to a 2D-2C
one, is reflected by single-point statistical descriptors as follows.

Looking at the Reynolds stress anisotropy, the growth of b(dir)
33 is monotonic from

0 to the 2D value 1/6, and the curves satisfactorily collapse in terms of the linear
time scale M2

0 t . Meanwhile, b(pol)
33 departs from zero after a delay and becomes more

and more negative, when the polarization induced by nonlinear dynamics becomes
dominant, so that it is found asymptotically
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b(dir)
33 = 1

6
, b(pol)

33 = −1

2
, b33 = −1

3
,

The latter value corresponding to 2 C axisymmetric flows. Meanwhile, the evolu-
tion of the ratio u2

‖/u2
⊥ is not monotonic, first increasing, as in the linear regime, and

then decreasing towards 0.
It is possible to extract (dir) and (pol) contributions in the Reynolds stress tensor

from DNS or from two-point or spectral closure models, but not from experiments. On
the other hand, two statistical quantities are measurable and quantify the polarization
really restricted to the 2D manifold. There are

u2
3 L(3)

33 , and u2
1 L(3)

11 + u2
2 L(3)

22 , (12.39)

or two-dimensional energy components, for axial direction (index 3) and transverse
direction, respectively. Because the integral length scales L(3)

i j are related to axial
separation (superscript (3)), the quantities in Eq. (12.39) quantify the 2D-1C mode
and the 2D-2C mode, respectively. Their difference, or

ζ(t) =
(

u2
1 L(3)

11 + u2
2 L(3)

22

)

− u2
3L(3)

33 = −4π2
∫ ∞

0
Z(k, cos θk = 0)kdk, (12.40)

therefore quantifies the polarization in the 2D manifold. It is initially zero, as in 3D
isotropic turbulence, and remains exactly zero in linear (RDT) evolution. Its strong
increase in DNS and EDQNM quantifies the nonlinear stoke, with decrease and

eventual vanishing of u2
3 L(3)

33 and increase of
(

u2
1 L(3)

11 + u2
2 L(3)

22

)

.

We conclude this section by a direct quantitative comparison between DNS and
EDQNM results. In Favier et al. (2011a), both EDQNM1 and EDQNM2 versions
are used in order to close T (E) and T (Z) in Eqs. (12.33) and (12.34) in terms of
E and Z . The EDQNM2 model was derived from the one used in purely rotating
turbulence (Cambon and Jacquin 1989; Cambon et al. 1997) (see also Chap. 7) by
replacing the triadic, purely imaginary, term 2ı�(s k‖

k + s ′ p‖
p + s ′′ q‖

q ), with s, s ′, s ′′ =
±1 by M2

0 (
k‖
k )2 + (

p‖
p )2 + (

q‖
q )2). The angle-dependent structure of spectral energy

is shown in Fig. 12.4. We note a very good overall agreement between DNS and
EDQNM2. Results from DNS are very scrambled and inaccurate in the “infrared
range” of smallest wavenumbers, due to the sparsity of angular discretization. Energy
is systematically underestimated in EDQNM with respect to DNS in the highest
wavenumbers. These characteristics are generic of all quantitative EDQNM/DNS
comparisons surveyed in this book.

http://dx.doi.org/10.1007/978-3-319-73162-9_7


598 12 Incompressible Homogeneous Anisotropic Turbulence …

Fig. 12.4 Angular energy spectra for Nm = 5 (N on the figure). Comparison of DNS to EDQNM2
results. Adapted from Favier et al. (2011a) by Alexandre Delache

12.5 A First Statistical Approach, Kolmogorov–Monin
Laws, Without Mean Magnetic Field

From the equations of incompressible ideal MHD, it is possible to derive a Kármán–
Howarth equation for the two-point counterpart of total (kinetic + magnetic) energy
as

1

2

∂

∂t
〈ui (x, t)ui (x + r, t) + bi (x, t)bi (x + r, t)〉
︸ ︷︷ ︸

Rii (r,t)+RM
ii (r,t)

=

= 1

4
∇r ·〈(δu·δu + δb·δb) δu〉 − 1

2
∇r ·〈(δu·δb) δb〉

+ ∂

∂rk∂rk
〈νui (x, t)ui (x + r, t) + ηbi (x, t)bi (x + r, t)〉, (12.41)

in which the contributions from triple correlations are recast in terms of third-order
structure functions, with two-point increments for velocity δu = u(x+r, t)−u(x, t)
and magnetic field δb = b(x + r, t) − b(x, t) (Galtier 2013).

Of course, the x-dependence vanishes by statistical homogeneity, as does the
explicit contribution from pressure fluctuation by incompressibility, and the contri-
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bution from the Lorentz force. The Fourier-transform of this equation with respect
to r gives the Lin equation for total energy E(k, t) + E M(k, t) (see Eq. (12.24).)

Assuming a global forcing for the sake of steadyness and a mean rate of injection
for total (kinetic + magnetic) energy εT , the following relationship is proposed by
Galtier (2013) for high Reynolds steady turbulence in the core of the inertial range
(r much larger than dissipative scales and much smaller than the largest scale)

1

4
∇r ·〈(δu·δu + δb·δb) δu〉 − 1

2
∇r ·〈(δu·δb) δb〉 = −εT . (12.42)

The so-called “4/3 exact law for MHD” (Politano and Pouquet 1998) is then
derived as

− 4

3
εT r = 〈(δu·δu + δb·δb) δuL〉 − 2〈(δu·δb) δbL〉, (12.43)

in which δuL and δbL denote the longitudinal increments, i.e. projected along the
direction of the r-vector. Due to the symmetry of Elsaesser variables z± = u ± b, a
more compact form is found as

− 4

3
ε±r = 〈(δz±·δz±)

δz±
L 〉. (12.44)

We consider that the role of external forcing together with the introduction of εT

may be somewhat misleading. The rate εT is already implicitly present in Eq. (12.41),
via

lim
r→0

1

2

(

Rii (r, t) + RM
ii (r, t)

) = K(t) + KM ,

so that

εT = lim
r→0

∂

∂rk∂rk
〈νui (x, t)ui (x + r, t) + ηbi (x, t)bi (x + r, t)〉. (12.45)

One recovers the same duality as for ε in “hydro”, that is both the injection rate of
kinetic energy and the “true” dissipation rate. As for the “hydro” case, we recommend
to avoid external forcing and external injection rate, and to derive from Eq. (12.41)
an isotropic equation with both instationary term and dissipation rate. As shown
in Chap. 4, in the hydro case, it is possible to recover such a law without forcing,
and to evaluate the conditions for which the unsteady term in Kármán–Howarth
or in Lin equation becomes negligeable: The Reynolds number is really huge, as
Rλ ∼ 5.104. In astrophysics, we are sure that these conditions are fulfilled. An
interesting application is to evaluate εT in the solar wind: There is no possible direct
evaluation, but third-order structure functions can be estimated.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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12.6 Refined Analysis: Triadic Interactions in MHD
Without Mean Magnetic Field

Isotropic EDQNM model was applied to MHD for a quantitative prediction, after the
use of DIA by Kraichnan (1965), and a good survey is given by Biskamp (2003).
More insight to the nature of triadic interaction can be found using helical modes,
from hydro to MHD turbulence, as done in Chaps. 2 and 7.

12.6.1 Isotropic, or “isotropized” Models Using EDQNM

From the general set of statistical descriptors for two-point second-order correlations
(12.24), polarization-type terms vanish in isotropic turbulence, whereas helicity-type
terms can be kept, provided that isotropy be considered without mirror symmetry. The
relevant set to be considered in MHD-HIT is therefore E(k, t), E M(k, t), H(k, t),
H M(k, t). The spectrum of the electromotive force is not considered in general.

MHD equations were proposed in HIT by Pouquet et al. (1976) and Grappin et al.
(1982); Grappin et al. (1983). The role of cross-helicity, even in an “isotropized”

study, H C(k, t) was found very important by Grappin et al. (1983).
The new technical aspect with respect to the “hydro” case is to incorporate the

vector b̂ in third-order and fourth-order correlations, with a more tedious calculation
of quasi-normal terms; very simple and compact relationship is found, however, in
using Elsaesser variables. But the most important new phenomenological aspect is
to generalize the eddy damping term in the presence of magnetic field. The proposal
by Pouquet et al. (1976) is

ν̃(k, t) = (ν + η)k2+

+ as

(∫ k

0
p2

(

E(p, t) + E M(p, t)
)

dp

)1/2

+ aAk

(

2
∫ k

0
E M(p, t)dp

)1/2

.

(12.46)
(η being the magnetic diffusivity in this chapter, the new notation ν̃ from Biskamp
(2003) is used for the Eddy–Damping term, denoted η from Chap. 4.) The first term
comprises the laminar collisional dissipation effects. The second term represents
the nonlinear eddy-distortion rate analogous to the eddy damping used in HIT. The
third term corresponds to the Alfvén effect, which leads to relaxation of the triple
correlations within an Alfvén time due to propagation of Alfvén waves along the
large-scale field. As in the “hydro” case, aS is related to the Kolmogorov constant,
while an explicit calculation of the triple correlations for a Gaussian large-scale
field gives aA = 1/

√
3. The EDQNM closure model consists of the equations for

the five quantities E(k, t) E M(k, t), the kinetic and magnetic helicities H(k, t) and
H M(k, t), and the cross-helicity HC(k, t).

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Stationary spectra E and E M are found by numerically solving EDQNM equations
in forcing the kinetic energy at large scale. Both spectra exhibit the k−3/2 law in the
inertial range. While the kinetic energy is larger in the forcing range, there is a slight
excess of magnetic energy in the inertial range.

The isotropic Iroshnikov–Kraichnan (IK) energy spectrum is therefore recovered
as

E(k) = CI K
√

εvAk−3/2, (12.47)

with the constant CI K of order one. The phenomenology invoked is the decorrelation
effect of small-scale Alfvén wave packets propagating in the opposite sense along
lines of almost constant (large-scale) magnetic field. In the isotropic EDQNM model,
the IK scaling mainly results from the third term in Eq. (12.46).

Solutions of EDQNM equations with injection of both H and H M in large scales
yield an inverse cascade for the magnetic helicity with a slope close to k−2 for wave
numbers smaller than the forcing one.

12.6.2 On the 2D Limit

Some analogies between rotating turbulence and MHD turbulence may be invoked,
but the 2D limit is very different. The effect of the Coriolis force vanishes in this
limit. On the other hand, the Lorentz force is always present in the 2D MHD case
and profoundly affects the vortex dynamics.

In the 2D limit, all variables become independent of one coordinate, say x‖.
The vectors ω and j reduce to ω = ω‖ and j = j‖. More precisely, in the more
restricted 2D-2C limit, there is no axial, space-uniform, component for u and b, and
purely transverse velocity vector and the magnetic field vector derive from scalar
streamfunctions

u = n × ∇φ, b = n × ∇ψ, (12.48)

which are 2D (independent of x‖) toroidal potentials as well (see Chap. 2). ψ is minus
the axial component of the vector potential, or (magnetic) flux function. Accordingly

ω = ω‖ = ∇2φ, j = j‖ = ∇2ψ.

The two relevant equations for 2D MHD are

(

∂

∂t
+ u·∇

)

ω − b·∇ j = ν∇2ω, (12.49)

which, with respect to its 3D counterpart Eq. (12.6), is without vortex stretching (by
velocity) term and without stretching of b by j , and

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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(

∂

∂t
+ u·∇

)

ψ = η∇2ψ. (12.50)

Note incidentally that these equations represent a physical case, e.g. for elongated
toroidal modes in the cross-section of an annular tore in a idealized tokamak, in the
presence of a strong axial magnetic field of intensity B0, referred to as the “lowest
order reduced MHD equations” (Kadomtsev and Pogutse 1974; Biskamp 2003)

(

∂

∂t
+ u·∇

)

ω − b·∇ j = B0
∂ j

∂x‖
+ ν∇2ω,

(

∂

∂t
+ u·∇

)

ψ = B0
∂φ

∂x‖
+ η∇2ψ.

(12.51)
We will no longer consider the case with mean magnetic field in this section, and

only use the system of 2D MHD equations (12.48, 12.6 and 12.50.) With respect to the
hydro case, the contribution of the Lorentz force is crucial in the vorticity equation.
It can amplify the enstrophy even in the absence of nonlinear vortex stretching. This
system has three quadratic ideal invariants, the total energy, the cross-helicity and
the mean-square magnetic potential, with corresponding k-spectra given here by

E(k) + E M(k) ← 1

2
k2

(

〈φ̂(k)φ̂∗(k) + ψ̂(k)ψ̂∗(k)〉
)

, H C(k) ← k2〈φ̂(k)ψ̂∗(k)〉,

and
A(k) ← k2〈ψ̂(k)ψ̂∗(k)〉. (12.52)

The abridged notation, with ←, is used to avoid the full notation with Dirac distri-
butions, as k2〈ψ̂(k)ψ̂∗( p)〉 = A(k)δ(2)(k − p) for the latter equation.

At first glance, the results of DNS and EDQNM seem not to be different from
the 3D case. The IK spectrum with Eq. (12.47) is recovered for the total energy
spectrum, with CI K ∼ 1.8, and a direct cascade. An inverse cascade is found for
the mean-square potential A(k) as it is found for the magnetic helicity in 3D. For
wavenumbers larger than the forcing one, a law A(k) ∼ ε

2/3
A k−7/3 prevails, whereas

a law in k−7/2 corresponds to A(k) ∼ k−2 E(k) for smaller wavenumbers.

12.6.3 Anisotropic Equations. Triadic Interactions in Terms
of Helical Modes

Lin equations for both kinetic and magnetic energy are

(

∂

∂t
+ 2νk2

)

E(k, t) + L(k, t) = T (E)(k, t) (12.53)

and
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(

∂

∂t
+ 2ηk2

)

E M(k, t) + S(k, t) = T (E M )(k, t). (12.54)

We recover the exact spectral counterpart of Eq. (12.41) for the sum E + E M . Triple
correlations appear in L via −〈û(k)· ̂( j × b)〉 (or k j 〈û∗

i
̂(bi b j )〉, 〈ubb〉-type), and in

T (E) via −〈û(k)· ̂(ω × u)〉 (or k j 〈û∗
i
̂(ui u j )〉, 〈uuu〉-type). Triple correlations appear

in S via k j 〈b̂∗
i
̂(ui b j )〉 and in T (E M ) via −k j 〈b̂∗

i (k)·̂(u j bi )〉 (or 〈ubb〉-type). The equa-
tion for the kinetic energy spectrum is not conservative: Only T (E) has zero integral,
but not the cubic contribution L from the Lorentz force. In accordance with Eq. (12.9)

∫∫∫

L(k, t)d3k = −∂ui

∂x j
bi b j − ∂

∂x j
(ui bi b j )

︸ ︷︷ ︸

=0

. (12.55)

Conversely, in the equation for the magnetic energy spectrum, only T (E M ) has zero
integral, but not S which is similar to the nonlinear vortex stretching term in enstrophy
equation, in the “hydro” case. In accordance with Eq. (12.10), one has

∫∫∫

S(k, t)d3k = ∂ui

∂x j
bi b j . (12.56)

On the other hand, the total energy is conservative, so that the sum L+S has zero
integral. This is consistent with the fact that only the gradient of cubic correlations
is present in the Kármán–Howarth equation (12.41) for the two-point contribution
to total energy.

Helical modes are particularly suited to express the basic nonlinear equations.
They are derived from û as

us(k, t) = 1

2
û(k, t)·N(−sk), s = ±1,

so that Eq. (12.11) is rewritten as

(

∂

∂t
+ νk2

)

us(k, t) − 1

2
N(−sk) ̂( j × b) = −1

2
N(−sk) ̂(ω × u), (12.57)

and the basic nonlinear terms are expressed with the same variables, so that

̂(ω × u) =
∑

s ′,s ′′=±1

∫∫∫

p+q=k
s ′ pus ′( p, t)us ′′(q, t)N(s ′ p) × N(s ′′q)d3 p,

using ı p × N(s ′ p) = s ′ pN(s ′ p) (the helical modes diagonalize the Curl operator).
The Lorentz force is expressed in the same way, as
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̂( j × b) =
∑

s ′,s ′′=±1

∫∫∫

p+q=k
s ′ pbs ′( p, t)bs ′′(q, t)N(s ′ p) × N(s ′′q)d3 p.

Finally, the nonlinearity in the induction equation is written as

̂(u × b) =
∑

s ′,s ′′=±1

∫∫∫

p+q=k
us ′( p, t)bs ′′(q, t)N(s ′ p) × N(s ′′q)d3 p.

In the convolution products, there is the same triadic coefficient ıg = 1
2 N(sk)·

(

N(s ′ p) × N(s ′′q)
)

. This product comes from Eq. (2.107), and from the relationship

1

2
N(−sk)·

(

ı k × ̂(u × b)
)

= 1

2
sk N(−sk)· ̂(u × b)

in the induction equation.
This coefficient is simplified by means of the last change of local frames

e(2)(k) − sıe(1)(k)
︸ ︷︷ ︸

N(sk)

= eısλ (β + sıγ)
︸ ︷︷ ︸

W(s)

, (12.58)

e(2)( p) − s ′ıe(1)( p)
︸ ︷︷ ︸

N(s ′ p)

= eıs ′λ′ (
β′ + s ′ıγ

)

︸ ︷︷ ︸

W ′(s ′)

, (12.59)

e(2)(q) − s ′′ıe(1)(q)
︸ ︷︷ ︸

N(s ′′q)

= eıs ′′λ′′ (
β′′ + sıγ

)

︸ ︷︷ ︸

W ′′(s ′′)

. (12.60)

The three helical modes W , W ′ and W ′′ related to k, p and q are now defined with
respect to a unit polar vector which is the unit vector normal to the plane of the triad,
instead of a fixed one. Accordingly, γ is normal to the plane of the triad, and the
three unit vectors β, β′, β′′ are all located in the (same) plane of the triad. It is found

ıg = W(s)· (

W(s′) × W(s′′)
)

eı(sλ+s′λ′+s′′λ′′) = ı(s sin α + s′ sin β + s′′ sin γ)eı(sλ+s′λ′+s′′λ′′),

and using the triangle equality

Ckpq = sin α

k
= sinβ

p
= sin γ

q
,

2ıg = N(sk)· (

N(s ′ p) × N(s ′′q)
) = ıCkpq

(

sk + s ′ p + s ′′q
)

eı(sλ+s ′λ′+s ′′λ′′).

(12.61)
Changing the sign of p and q in the convolution integrals in order to recover the

completely symmetric relationship k + p + q = 0, and symmetrizing these integrals
in terms of p and q, one finds

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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(

∂

∂t
+ νk2

)

us(k, t) = ı
∑

s ′,s ′′=±1

∫∫

k+p+q=0

(

s ′ p − s ′′q
)

g(sk, s ′ p, s ′′q)×

× (

u∗
s ′( p, t)u∗

s ′′(q, t) − b∗
s ′( p, t)b∗

s ′′(q, t)
)

d3 p, s = ±1, (12.62)

and
(

∂

∂t
+ νk2

)

bs(k, t) = ı
∑

s ′,s ′′=±1

∫∫

k+p+q=0
(−sk) g(sk, s ′ p, s ′′q)×

× (

u∗
s ′( p, t)b∗

s ′′(q, t) − b∗
s ′( p, t)u∗

s ′′(q, t)
)

d3 p, s = ±1. (12.63)

One recovers the single-triad expression of Waleffe (1992), extended to the ideal
MHD (Lessines et al. 2009).

The latter authors used this system of equations to improve helical shell models,
but much more work can be done. For instance it is possible to display all reduced set
of triple correlations for the whole set of second-order correlations in Eq. (12.24), in
line with Eqs. (12.17), (12.21) and (12.22). Anisotropic EDQNM could be derived by
calculating the exact quasi-normal counterpart of all these sets of triple correlations,
so that the role of a semi-empirical eddy-damping, as in Eq. (12.46), could be reduced
with respect to isotropic EDQNM models. It is worth reminding that the eddy-
damping term can vanish in the limit case of wave turbulence theory.

But two difficulties are found when trying to further mimic Waleffe’s analysis of
triadic interactions performed in the hydrodynamic case.

Firstly, it is not possible to derive in general the sense of cascade from a single
triad, as done by Waleffe (1992), using his triad instability principle. Indeed, it is not
possible to disentangle 〈uuu〉-type contributions from 〈ubb〉-type ones, for instance
in contributions to energy, u∗

s us , u∗
s ′us ′ , u∗

s ′′us ′′ . A much more complicated analysis
of stability must be done.

A second difficulty comes from the possible use of Elsaesser variables. It is pos-
sible in principle to use compact variables such as

zs
sk
(k, t) = usk (k, t) + sbsk (k, t), sk = ±1, s = ±1,

in which two different signs are used: sk (index) holds for the polarity of helical
modes in terms of k, denoted s in the equations above, and s (superscript) holds for
the Elsaesser combination. Notations can be extended to dependence in terms of p
and q, as zs ′

sp
( p, t) and zs ′′

sq
(q, t). This should allow to have a more diagonal form,

combining re-arrangement in terms of Curl operators and basic symmetry in terms
of u and b. The relationship

z−s
n

∂zs
i

∂xn
= z−s

n

∂zs
n

∂xi
− εi jn(∇ × zs) j z

−s
n ,
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allows to display the term −(∇ × zs) × z−s , well suited for expression in terms
of helical Elsaesser modes, but the second term cannot be expressed as a purely
gradient term, eventually removed with the pressure term, because of the different
signs s and −s. Only for a symmetric form, z−s·∇zs + zs·∇z−s can be replaced by
−(∇ × zz) × z−s − (∇ × z−z) × zs, because the second term amounts to a pure
gradient ∇(z−s·zs), ... but only the kinetic equation (12.62) is recovered. Incidentally,
we recommend to use Ricci relationship in order to address the latter calculations,
as in all calculations in which it is dangerous to use ∇ as a “true” vector.

12.7 MHD Turbulence and Interactions with Other Body
Forces and Mean Gradients

We will first survey the case in which a mean velocity magnetic field is present, with
b → B0 + b. A new case of wave turbulence theory is found when |u|, |b| � |B0|.
Then more complex cases are defined considering combination with other (linear)
body forces, namely Coriolis and buoyancy effects, i.e. extending results discussed
in Chap. 11 The next step consists of introducing of mean shear in addition to the
above body forces, yielding a simple model for magnetized accretion discs, with the
Magneto Rotational Instability (MRI) and beyond.

12.7.1 Wave Turbulence in the Presence of a Dominant
Mean Magnetic Fluid

As done in purely rotating turbulence, wave turbulence theory is relevant when domi-
nant Alfvén waves are generated by an external, constant, magnetic field B0, whereas
weak nonlinearity is considered. Isotropy is broken and axisymmetry (around B0)
is the simplest statistical symmetry to be fulfilled. Accordingly, spectra depend on
two coordinates: E(k‖, k⊥) using cylindrical coordinates (as in Fig. 12.2) or E(k, θk)

using a polar-spherical system of coordinates. The phenomenological argument used
for deriving the Iroshnikov–Kraichnan energy spectrum is adapted in the presence
of the dominant magnetic field, yielding

E(k‖, k⊥) ∼ √

εB0k−4
⊥ k−1/2

‖ .

Because of its definition, multiplied by k2, the related contribution in Galtier (2013)
is k−2

⊥ . This law seems to recover the same integrable singularity at k‖ = 0 near
the 2D manifold, as in inertial wave turbulence. But the role of the 2D manifold
is very different in rotating turbulence and in Alfvénic MHD turbulence, as shown
in Sect. 12.6.2, and eventually only the scaling for the transverse component of the
wave vector is confirmed by the rigorous application of wave turbulence theory by

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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Galtier et al. (2000), discussed below. As for rotating turbulence in Chap. 7, a purely
nonlinear equation for the “slow” amplitudes of Alfvén waves is found:

∂as
i

∂t
= −ıkm Pin(k)

∫∫∫

p+q=k
a−s

m (q, t)as
n( p, t) exp(−ıst (σa(k) − σa( p)

+ σa(q))d3 p, s = ±1, (12.64)

with σa given by Eq. (12.28), and

zs(k, t) = as(k, t) exp[ısσa(k)]. (12.65)

Discussion of slightly different forms using more symmetrization in terms of p and
q is unimportant. The most important difference with rotating turbulence is the fact
that only one sign is displayed (the full phase term sσr (k) + s ′σr ( p) + s ′′σr (q) is
called into play in the rotating case, in terms of the polarities of interacting helical
modes.) At this stage, there is no assumption, and the use of amplitudes as instead
of variables zs is only a way to render implicit the explicit linear effects of Alfvén
waves induced by B0.

Only when considering the asymptotic limit of really slow amplitudes, or instead
really rapid phases (see the discussion in Chap. 7 and Bellet et al. 2006), with

zs(k, t) = as(k, t) exp[1

ε
ısσa(k)]

where ε is an arbitrarily small parameter, the wave turbulence theory holds, so that
the effective nonlinearity reduces to the three-wave resonant condition

k‖ = p‖ − q‖ with k = p + q.

The simple constraint
q‖ = 0 (12.66)

is derived, with k⊥ = p⊥ + q⊥. This means that the weakly nonlinear cascade
is restricted to transverse wave vectors. At last, the complete calculation yields the
following expression for the energy spectrum Es(k‖) without helicity and in the limit
k‖ � k⊥:

Es(k⊥) = C
√

�B0k−2
⊥ . (12.67)

This result raises the question of what happens with the dependence in terms of k‖.
The sole solution is Es(k‖, k⊥) = Es(k⊥)gs(k‖), in which gs is an arbitrary function,
whose form is for instance given by initial data.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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12.7.2 Rotating MHD

There have been only few studies on rotating MHD since the seminal theoretical
studies by Lehnert (1954, 1955), and Moffatt (1970), but impressive experimen-
tal facilities have been developed to get a better understanding of the geodynamo
(Schmitt et al. 2008 in Grenoble, Stefani et al. 2006; Ruediger et al. 2014 in
Dresden). This topic is illustrated here by simple analytical results on linear dynam-
ics, with combination of inertial and Alfvén waves, leading to magneto-inertia, or
Magneto-Coriolis (MC), waves. In addition, recent DNS results give a first insight
into nonlinear dynamics.

In the absence solid-body rotation, it is not necessary to use the Craya–Herring
frame for studying the linear solutions for Alfvén waves. On the contrary, when
rotation is present, the Coriolis force breaks the symmetry between poloidal and
toroidal velocity components, so that a fourth-order linear system is required:

∂

∂t

⎛

⎜

⎜

⎝

u(1)

u(2)

ıb(1)

ıb(2)

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

νk2 σr σa 0
σr νk2 0 −σa

−σa 0 ηk2 0
0 σa 0 ηk2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

u(1)

u(2)

ıb(1)

ıb(2)

⎞

⎟

⎟

⎠

= 0. (12.68)

where the contributions from the magnetic field are multiplied by ı with respect to
the linear system (12.29), as done in Salhi et al. (2012). This allows for the recov-
ery of a real matrix (e.g., ıσa in Eq. (12.30) becomes σa), that is more tractable,
whereas the components b(α) being probably complex-valued anyway, are not sig-
nificantly more complicated. The superposition of rotation and an imposed magnetic
field leads to a competition between Coriolis and Lorentz forces. Note that without
rotation, the poloidal and toroidal components of both velocity and magnetic fields
are independent. The corresponding dispersion law is

σ2
mc = 1

2
σ2

r + σ2
a ±

√

(

1

2
σ2

r + σ2
a

)2

− σ4
a, (12.69)

in the absence of diffusivities. Looking at Fig. 12.5, the very different shapes of
wavepackets are shown, from purely Alfvén waves (left) to purely inertial waves
(right), with intermediate cases of magneto-inertia waves.

Both linear and nonlinear dynamics have been investigated by Favier et al. (2011b)
using pseudo-spectral DNS without forcing, starting from isotropic initial data. Rel-
evant non-dimensional numbers are the magnetic interaction number Nm , already
introduced in the particular case of Quasi-Static MHD, and the Rossby number Ro.
Their product defines the Elsaesser number �

Nm = B2
0�0

ηu0
, R0 = u0

2��0
, � = B2

0

2�η
, (12.70)
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Fig. 12.5 Visualization of magneto-inertia wave packets. Reproduced from Favier et al. (2011b)
with permission of IOP

in which �0/u0 is a typical turnover time. The increasing effect of rotation is quantified
by the decreasing Elsaesser number. It is found that the development of magnetic
energy is more and more inhibited as � decreases, as shown in Fig. 12.6.

The dramatic breakdown of equipartition is related to a re-orientation of velocity
fluctuations with respect to magnetic field fluctuations. The normalized probability
density function of the cross-correlation parameter

ρ(x) = 2(u(x)·b(x))

u2(x) + b2(x)
(12.71)

is plotted on Fig. 12.7a. Without rotation, the pdf is very flat, whereas it is sym-
metrically peaked at ρ = ±1 in the linear régime of pure Alfvén waves, meaning
alignment of u and b. As the Elsaesser number decreases, the pdf becomes more and
more peaked at ρ = 0, indicating a trend toward orthogonality of u and b fluctua-
tions. The large scale fluctuations are dominated by inertial waves so that Alfvénic
fluctuations (characterized by an equipartition between kinetic and magnetic ener-
gies, and by ρ ∼ ±1) are damped. On Fig. 12.6b, one can see that the horizontal
component of the magnetic field is dominant and less Gaussian in rotating cases than
in non-rotating case.

The last result chosen to illustrate rotating MHD deals with nonlinear transfer
spectra obtained from DNS. With respect to nonlinear equations (12.9) and (12.10)
for kinetic energy and magnetic energy, additional second-order linear terms account
for the linearized Laplace force, which are equal to u· ((∇ × b) × B0)) in Eq. (12.9)
and b (∇ × (u × B0)) in Eq. (12.10), respectively. The Coriolis force, that produces
no energy, has no explicit contribution in Eq. (12.9). Similarly, second-order terms
with B0 are added to spectral equations (12.53) and (12.54). Important cubic terms
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Fig. 12.6 a Development of kinetic energy K (denoted K ) and magnetic energy KM (denoted M)
versus dimensionless time t∗ = tu0/�0. b ratio K(t∗)/KM (t∗). Reproduced from Favier et al.
(2011b) with permission of IOP

Fig. 12.7 a Normalized pdf of the correlation coefficient ρ(x) at t∗ +5. b Normalized pdf of b/σb,
where σb is the variance of b. The symbols correspond to horizontal components, and solid lines
to vertical ones. Reproduced from Favier et al. (2011b) with permission of IOP

in these equations are now related to nonlinear transfer spectra. The kinetic energy
spectrum in Fig. 12.8a corresponds to spherically averaging T (E)(k, t) in Eqs. (12.9)
and (12.10), and the total transfer term in Fig. 12.8b corresponds to T (E) + T (E M ).
Given the fact that the figures are plotted in semi-log scale, the spectra are multiplied
by k in Fig. 12.8, in order to display zero-integral-property, when it holds (according
to

∫

kT (k)d ln k = ∫ ∞
0 T (k)dk = 0). Both kinetic energy transfer and total, kinetic

+ magnetic, transfer, are plotted: We note that the property of zero integral is well
reproduced, and that the effect of rotation significantly reduces the strength of the
transfer spectrum. The whole contribution of cubic nonlinearity to the magnetic
energy equation yields the last spectrum plotted in Fig. 12.8c, that corresponds to
spherically integrating T (E M )−S in Eq. (12.10). This term is no longer a true interscale

transfer term, and its integral is equal to the term − ∂ui
∂x j

bi b j . It is however also reduced
by rotation.
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Fig. 12.8 a Shell-averaged kinetic energy transfer spectrum T (k, t∗); the dashed thick line cor-
responds to the initial (t∗ = 0) energy transfer spectrum after isotropic precomputation (without
rotation, without mean magnetic field); solid lines correspond to energy transfer at the final time
t∗ = 2, with (� = 0.5) and without (� = ∞) rotation. b Total, kinetic + magnetic, shell-averaged
energy transfer spectrum. c Shell-averaged spectrum of the b·q part of the magnetic transfer. In both
(b) and (c), the dashed line corresponds to the spectrum at t∗ = 2, whereas solid lines correspond
to spectra at t∗ = 2. Reproduced from Favier et al. (2011b) with permission of IOP

12.7.3 Magneto-Archimedes-Coriolis (MAC) Waves

MAC waves are ubiquitously present in several geophysical and astrophysical sys-
tems, like the Earth core, Sun’s interior, solar corona, astrophysical accretion disks. In
this Chapter only, the buoyancy scalar is denoted bu from now on, not to be confused
with the norm of the magnetic field.

It is possible to find a linear system of equations very similar to (12.68) for the
five-rank vector u(1), u(2), b(1), b(2), u(3), in which the three individual dispersion
frequencies are displayed: σr , σa , and σs .

But the five components are not independent. The linearized potential vorticity is
no longer an invariant in the presence of the Lorentz force, as it is in coupled effects
surveyed in Chap. 11. But another invariant of Boussinesq-MHD equations is present:
The so-called induction potential scalar introduced by Salhi et al. (2012), which is
defined as the scalar product of the magnetic field with the gradient of buoyancy.
Reintroducing a Reynolds decomposition, with b (formerly B0) and b′, bu and b′

u ,

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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ωM has three contributions, as the absolute potential vorticity in non-magnetized
fluids (see Eq. (11.9)

ωM = b·∇bu +
(

b·∇b′
u + b′·∇bu

)

+ b′·∇b′
u . (12.72)

The first term is the mean contribution, the second term comprises mean- fluctuating
contribution, and the third term holds for fluctuating - fluctuating one. Conservation
of linearized induction potential scalar allows us to express the buoyancy mode u(3) in
terms of the poloidal magnetic mode b(2) and the invariant π(0). Without diffusivities,
the following system of equations is found

∂

∂t

⎛

⎜

⎜

⎝

u(1)

u(2)

ıb(1)

ıb(2)

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

0 σr σa 0

−σr 0 0 −σ2
a+σ2

s
σa−σa 0 0 0

0 σa 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

u(1)

u(2)

ıb(1)

ıb(2)

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

0
π(0)

0
0

⎞

⎟

⎟

⎠

= 0. (12.73)

In line with the study of coupled effects in Chap. 11, the rank of the linear system
is reduced using the invariant, here from 14 components in physical space (three-
component velocity and magnetic fields, one for pressure fluctuation, one for the
buoyancy scalar), 5 in Fourier space using solenoidal modes, down to 4 in the system
of equations above. Solutions of this system can be studied as in the generalized
“wave-vortex” decomposition, but such a study is richer in the presence of a mean
shear, because it allows a non-modal approach to transient growth.

12.7.4 The Magneto-Rotational Instability (MRI)
and Beyond

In Chap. 11, it is shown how the simple model of rotating shear flow can be used for
studying some aspects of accretion discs in astrophysics, using the Shearing Sheet
Approximation (SSA). It is discussed how a turbulent behavior or a bypass transition
to turbulence is predicted, even if the Keplerian disc is stable under Rayleigh criterion
or Bradshaw / Tritton analysis, with R = 2�/S = −4/3. Extension of the domain
of instability under MHD is sketched on Fig. 12.9, with a simple model of the MRI
(e.g. Balbus and Hawley 1991). Experimental approaches are performed by Stefani
et al. (2006), Ruediger et al. (2014).

As for all cases with pure plane shear flows, the simplest spectral linear solution
for disturbances is found for the zero value of the streamwise component k1 of the
wave vector. This mode corresponds to the so-called symmetric mode in astrophysics
using SSA.

With a mean magnetic field in the spanwise direction (or axial direction before
using SSA), the linear system for b̂ and û yields the equation for the dispersion
frequency as

http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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Fig. 12.9 Scheme of magnetized Shearing Sheet Approximation. Courtesy of François Rincon

σ4 − (

α2S2 B + 2k2
3 B2

0

)

σ2 − k2
3 B2

0

(

2�Sα2 − k2
3 B2

0

) = 0. (12.74)

One recovers the dispersion frequency of inertial waves, 2�α, with α = k3/(k2
2 +k2

3)

the cosine of the angle of the wave vector with the spanwise direction, along with
the one of Alfvén waves B0k3. With respect to the case of rotating shear without
MHD discussed in Chap. 11, one recovers the square of the epyciclic frequency, or
2�(2� + S), also equal to S2 B, with B the Bradshaw number. The solution is

σ2
s = k2

3 B2
0 + 1

2
α2S2 B + s

2

√

α4S4 B2 + 16k2
3 B2

0�2α2, s = ±1. (12.75)

For s = −1, this solution reveals a typical exponential instability, with σ2−1 <

0. Stability is found for k B0 > 2�S. Accordingly, a strong magnetic field yields
stabilization, but a rather weak magnetic field can induce the typical MRI, especially
at small k. If attention is restricted to the case of the Keplerian disc, or 2�/S =
−4/3, B = 4/9, the maximum growth rate is found for k B0 = √

5/12S, α = 1, as

γ =
√

−σ2−1 = S/2. To give an order of magnitude, over a period of rotation, the
amplification is exp(γ.2π/�) = exp(3π/2), or a bit more than 110.

It is possible to extend these results towards a more complete spectral linear
analysis, with k1 �= 0 modes as well. A study gathering all the effects surveyed above,
mean magnetic field, system rotation, mean buoyancy gradient with (Boussinesq)
buoyancy fluctuation, and mean shear is given by Salhi et al. (2012). In order to avoid
a too exhaustive review of all effects, with their detailed combination, we prefer to
finish this section on external effects by an illustration of magnetized rotating and
precessing sheared flows.

Stability of precessing flows is briefly discussed in Chap. 11 without magnetic
field. It is shown how the gyroscopic torque induced by the misalignment of the

http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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“precessing” system rotation of rate �c, or f = 2�c, and the background rotation
of rate � can be balanced by an additional mean shear, so that purely circular mean
trajectories (if �C = 0) are rendered elliptic. A special form of the generic “ellipti-
cal flow instability” is thereby triggered. Two different cases for the additional mean
shear are found when �C and � are perpendicular, say �C

i = ε�δi1 and �i = �δi3,
referred to as the Mahalov base flow (MBF) and the Kerswell base flow (KBF).
Admissibility conditions simply mean that the mean flow ought to be a particular
solution of background equations, invoking either consistency with statistical homo-
geneity restricted to fluctuations (in line with Craya) or consistency with stability
analysis (in line with Craik and Criminale). When the additional mean magnetic field
is added, with dominant component along the system vorticity, these conditions are
fulfilled for

B0i = B0δi3 + 2εB0δi1, Wi = 4ε�, (12.76)

in the KBF case, in which W holds for the mean absolute vorticity. They are

B0i = B0δi3, Wi = 2�, (12.77)

in the MBF case. From this viewpoint, the magnetized KBF case is more com-
plicated, because an additional (horizontal, component 1) component of the mean
magnetic field is generated by the interaction between the horizontal plane shear and
the vertical (component 3) mean magnetic field. The stability problem depends on
three parameters, the Poincaré number ε = �C/�, the characteristic angle α and a
parameter η given by

χ = cos α = k0
√

k2
0 + k2

p

, η = B0

�0

√

k2
0 + k2

p. (12.78)

Specific values of k0 and kp derive from the eikonal equation for the periodic time-
dependent wave vector, and are different for MBF and KBF cases. The parameter
η (not to be confused with magnetic diffusivity, ignored here) is very similar to a
specific Lehnert number.

As for the basic elliptical flow instability surveyed in Chap. 11, instability tongues
emanate from resonance conditions at typical angles of the time-periodic wave vector
and vanishing ellipticity. They appear similar but much more subtle and detailed in
the magnetized precessing case, as show in Fig. 12.10. Both KBF and MBF cases
should coincide at very small ε. The comparison is made for harmonic resonance
until the order O(ε4). The comparison made for several values of η shows that the
hydrodynamic and magnetic harmonic instability bands are larger in the MBF case
than in the KBF one.

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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Fig. 12.10 Magnetized precessing flows. Variation of the growth rate (rescaled Floquet’s parameter)
in terms of the angular parameter χ = cos α, for 0 ≤ ε ≤ 0.4 and η = 1 (from Eq. (12.78.) a The
KBF case, b the MBF case, c a case with geometric ellipticity (hydrodynamic resonance only.)
Reproduced from Salhi et al. (2010) with permission of APS

12.8 Homogeneous Incompressible MHD Turbulence
and Beyond

Even in the case of purely incompressible and homogeneous MHD, work remains to
be done, especially for a better quantitative dynamical and statistical approach to two-
point anisotropy (from which the single-point anisotropy is implied). This study exists
for the very special case of quasi-static MHD, but this case is closer to hydrodynamics,
with additional anisotropic forcing (from Ohmic origin), than to actual MHD. On the
one hand, there are several studies on both anisotropy and internal intermittency, but
they often rely on visualization of snapshots, and therefore are not really quantified
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with reliable statistical tools. Discarding internal intermitency,1 that is very difficult
to integrate in this book, as discussed in Chaps. 1, 4 and 18, and very incidentally
otherwise, the anisotropic substructure of MHD can be advocated as follows.

Spectral anisotropy generates a distribution of excitation in wave vector space
such that perpendicular wave vectors have more energy in average than parallel
wave vectors. This is sometime summarized by k⊥ > k‖ in a very abridged way,
the dominant direction being the one of a large scale local magnetic field, even
in the absence of an external one, denoted B0 here. it is expected that the degree
of anisotropy becomes greater at smaller scales, so, for example, the anisotropy of
j = ∇ × b exceeds that of b.

Another type of anisotropy that arises in plasma turbulence at MHD scales is
polarization anisotropy. In this case one finds that mean square value of each compo-
nent of the fluctuations perpendicular to the (dominant, large-scale) magnetic field
is larger than the mean square parallel component. This condition naturally occurs,
e.g., in Reduced MHD treatment around Eq. (12.51).

On the other hand, present quantitative prediction of statistical theory is very
limited, in spite of the high potential of QNM closure, possibly extended towards
generalized EDQNM. With respect to asymptotic (AQNM) wave turbulence theory
in the purely rotating “hydro” case, no result is given about directional anisotropy in
“weak” MHD, and only a strongly polarized cascade is suggested around Eq. (12.67).
Older EDQNM studies in MHD were carried out in the isotropic, or “isotropized”
case only, excluding again the too peculiar case of QS-MHD. It is strongly suggested
to write rigorous equations for the two-point state vector with ten components in
Eq. (12.24), as a system of Lin equations with given cubic contributions, as done in
Eqs. (12.53) and (12.54) for two energy spectra only. Closure of these cubic contri-
butions by generalized EDQNM is possible in principle. Solution of such equations,
without B0 (or with very weak one if needed for breaking initial isotropy), could be
made for axisymmetry, really breaking isotropy scale-by-scale, towards the small-
est ones. This strategy is ambitious, and offers new perspectives, not expected from
our previous “success stories” in rotating, stably-stratified, and unstably-stratified,
turbulence. The new fact is that the Lorentz force is basically quadratic, as is its

counterpart (e.g. yielding the opposite cubic contribution in the spectrum of ∂ui
∂x j

bi b j )
in the induction equation. In turn, the Coriolis force is linear in purely rotating tur-
bulence, even if anisotropic dynamics (breakdown of 3D isotropy) are relevant only
at the level of third-order correlations, in the absence of “production”.

We do not survey other important effects, as magnetic reconnection, formation of
strong current sheets, because our mold of “homogeneous anisotropic turbulence”
addresses only a part of the problem. Some of mechanisms discussed in this Chapter,
as various wave effects, play an important role in the dynamo theory, with all effects
being present in the Earth’s core (see Roberts and Soward 1972 for a survey.) The
dynamo effect, however, as the spontaneous breaking of mirror symmetry discussed
in the next section, may involve explicit boundaries conditions, so that we prefer not

1The reader is referred to books by Biskamp (2003) and Galtier (2013) for conventional approach
to internal intermittency in both general “hydro” turbulence and MHD turbulence.

http://dx.doi.org/10.1007/978-3-319-73162-9_1
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_18
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to discuss it more in this book. For instance, interpretation of the results of a recent
VKS (Von Kármán Sodium) experimental approach (Monchaux et al. 2007) is not
completely clarified, as resulting from a fluid dynamo action or from a fluid-structure
dynamo action.

12.8.1 More About Helicities, Particularly the So-Called
Cross-Helicity

As in rotating turbulence, the role of helicity is expected to be very important. In
Sect. 7.8.2, however, it is discussed how kinematic helicity, that is seen everywhere
in snapshots, patches or clouds from numerical simulations, cannot yield significant
statistical covariance 〈ω′·u′〉, with its two-point, or spectral, counterpart H(k, t), if
statistical homogeneity is strictly fulfilled in anisotropic hydrodynamic turbulence
(of course in the absence of artificial initialization or, stochastic or deterministic,
forcing). Even more, breakdown of mirror symmetry and related net production of
helicity covariance needs a wall effect, as illustrated by the role of Ekman layers in
rotating turbulence. The situation is different in MHD, particularly for the so-called
cross-helicity. In fact, chirality or breaking of mirror symmetry is less subtle for
the rise of cross-helicity. Net creation of cross-helicity spectrum can be obtained in
purely homogeneous MHD, probably with additional body forces, as suggested by
Favier et al. (2011a) in close connection with alignment properties of u and b. In the
study by Pieri et al. (2014), the purely hydrodynamic case of baroclinic instability,
presented in Chap. 11, was revisited to investigate a statistical quantity very close to
MHD cross-helicity: Following Gibbon and Holm (2010), an analog of the magnetic
field is defined as the cross product between the potential vorticity gradient and the
buoyancy gradient. The resulting vector B is solenoidal and is shown to obey a
stretching equation similar to the vorticity equation. Using this cross-helicity 〈u·B〉,
high-resolution DNS by Pieri et al. (2014) provides a detailed analysis of related pdf.
A net preference for positive cross-helicity is shown to be related to a new alignment
mechanism.

On the other hand, the very accurate calculation of kinematic helicity exhibits
no net creation. This result invalidates the expectation of such a creation in rotating
stratified flows, e.g. by Marino et al. (2013b).

12.8.2 Incorporating Acoustics, Then Large Variations
in Density

Compressibility is a last effect to be discussed. In line with various dispersion laws
in spectral linear analysis investigated in this chapter, there are several solutions
with both “fast” and “slow” frequencies, even in the purely incompressible case

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_11
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or within the quasi-incompressible case consistent with Boussinesq approximation
(the velocity remains divergence-free, but the buoyancy can fluctuate). This is the
case when the solution for σ2 is obtained from a second-order algebraic equation,
as σ2± = S ± √

S2 − P2, in which ± = +1 and ± = −1 give “fast” and “slow”
frequency, respectively (see Eqs. (12.69), similarly for MAC waves, and (12.75).)

A new useful instance is given by the magnetosonic modes, as nicely introduced,
e.g. by Cho and Lazarian (2005). If weak compressibility is accounted for, permitting
propagation of acoustic waves in the “hydro” case, the nature of MHD waves is
much more complicated. This is because we need to consider three restoring forces:
Magnetic tension, magnetic pressure, and gas pressure. For Alfvén waves, magnetic
tension is the sole restoring force. For slow and fast magneto-sonic waves, all three
restoring forces are important. For slow modes, magnetic and gas pressure are out of
phase, and, for fast modes, they are in phase. Another dispersion frequency is found
again as

σ2
f,s = S ±

√

S2 − P2,

with

S = 1

2

(

k2

k2
‖
σ2

a + σ2
ac

)

and
P = σ2

aσ
2
ac,

in which the new ingredient is the dispersion frequency of acoustic waves σ2
ac = k2c2,

with c the sonic speed.
Perhaps few words can be said about the anelastic approximation, in the context

of MHD for astrophysics and heliophysics. Simple equations and numerical schemes
to solve them are given by Lantz and Fan (1999), together with a useful survey (see
references therein.) This approximation suppresses, or filters, the acoustic modes,
briefly mentioned above. In counterpart, it permits larger simulated time steps to be
taken than would be possible in a fully compressible model. Basically, the momentum
ρu is treated as solenoidal (divergencefree), instead of the velocity in the Boussinesq
approximation, but the relevance of extended applications depend on what is the ρ,
“density”, variable in this anelastic approximation. In some cases, ρ can vary other
several order of magnitudes, that is useful in solar and stellar convection zones,
with no counterpart with the “weak” density variation permitted by the Boussinesq
approximation. Variation with depth of the background density is essential in such
convection zones. Thus, a nontrivial depth stratification may be incorporated into
one’s model without resorting to full compressibility. Magnetic nonlinearities may
also be incorporated in this model in a straightforward way, provided that the local
Alfvén speed is small compared to the speed of sound. Other models of convection,
and very different applications, such as to the convection in the Earth’s liquid core,
are possible (of course at very large scale, strict incompressibility being fulfilled
otherwise.)
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Chapter 13
Compressible Homogeneous Isotropic
Turbulence

13.1 Different Régimes in Compressible Turbulence

Numerical experiments and theoretical analyses show that several dynamical régimes
exist in isotropic compressible turbulence, even in the free decay case where no exter-
nal forcing is present. This is a noticeable difference with incompressible decaying
turbulence which exhibits a single behavior. A major difficulty is that these régimes
are very sensitive to a large number of parameters, such as the turbulent Mach num-
ber1 and the initial conditions (i.e. the relative energy of each mode in the Kovasznay
or Helmholtz decomposition). That can be intuitively understood looking at the non-
linear Kovasnay analysis (see Sect. 3.2), which reveals that each physical mode has a
very specific dynamics: changing the initial condition might therefore have a strong
influence on the development of the flow.

Four main régimes have been identified, according to the influence of compress-
ibility effects on the turbulence dynamics2:

• The low-Mach number quasi-isentropic régime, in which the turbulent Mach num-
ber is low and the interactions between the solenoidal and dilatational components
are weak. Moreover, the dilatational component is assumed to obey a quasi-linear
acoustic dynamics. A vast majority of available studies are devoted to the case
where the dilatational mode is restricted to the acoustic mode. Two kinds of the-
ories will be emphasized below: a purely linear one, which basically predicts that
acoustic equilibrium holds at all scales, and a more powerful nonlinear one, which
shows that acoustics equilibrium is restricted to very small wavenumbers only,

1Let us recall that the turbulent Mach number is defined as Mt = √
K/a0.

2A very low-Mach number régime of compressed — but not really compressible — turbulence, is
discussed in Chap. 14. Despite isotropy is assumed for this flow, it is more convenient to include
the corresponding discussion in the next chapter, since the isotropic fluctuating flow is subjected to
an external mechanism of mean spherical compression-dilatation. This case is revisited as well in
Chap. 17.
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while another régime, referred to as pseudo-sound, is observed at large wavenum-
bers. This régime is usually observed for Mt ≤ 0.1, where Mt = √K/a0 is the
turbulent Mach number, if initial conditions and/or external forcing terms are
solenoidal.

• The low-Mach number thermal régime, which includes thermal effects which are
not governed by acoustic phenomena. The base flow is assumed to be solenoidal.
The incompressible Navier–Stokes equations for the momentum are supplemented
by an energy equation without feedback on the velocity field. Several forms of the
energy equations are identified, according to the nature of the heat source.

• The nonlinear subsonic régime, in which the turbulent Mach Mt number is still less
than one, but the fluctuations of the dilatational mode are strong enough to make
non-linear phenomena arising. Two cases are classically identified. In the first case,
dilatational effects are weak and have a negligible influence on the global dynam-
ics, which is similar to those of low-Mach number régimes. In the second case,
dilatational effects are stronger and play a significant role since some turbulence-
induced very small shocks (referred to as shocklets or eddy-shocklets) are detected.
An exact threshold Mach number doesn’t seems to exist, since freely decaying and
forced compressible turbulence may exhibit different features depending on initial
conditions and forcing term. In the case of a statistically steady solenoidal forc-
ing, Jagannathan and Donzis (2016) observed that dilatational effects remain very
weak for Mt ≤ 0.3 and exhibit a very rapid growth at higher Mt . A commonly
reported threshold value for the occurrence of shocklets is Mt = 0.3 − 0.4.

• The supersonic régime, in which the turbulent Mach number is larger than one. In
this case, the dilatational mode is of great importance and shocklets have a large
impact on the full field. It is important noting that flows with large shock waves
may be obtained in theoretically subsonic conditions if a dilatational forcing term
is used, e.g. Wang et al. (2013).

13.2 Quasi-isentropic Turbulent Régime

13.2.1 Quasi-isentropic Isotropic Turbulence: Physical and
Spectral Descriptions

A simplified model is obtained assuming that turbulent fluctuations are isentropic.
The resulting model is widely used to analyze the properties of compressible turbu-
lence in the compressible régime in the absence of significant thermal effects. The
associated set of governing equations is

∂u′
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∂ p′
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in which all nonlinear terms have been put on the right hand side, and where

p′

γP
= p′

ρ̄a2
0

with a2
0 = γ

P

ρ̄
, (13.3)

in which P and ρ̄, which can possibly be time-dependent variables (see Chap. 14),
are chosen constant together with the speed of sound in this section. More general
quasi-isentropic equations can be derived, as discussed in Chap. 14, but additional
assumptions are very useful, such as the low-Mach number assumption, which leads
to γ p/P � 1 and the possible removal of the nonlinear term in the last equation for
the pressure p.

Viscous terms may be omitted, in agreement with the isentropic assumption, but
they have been kept here since they are used in some closure approaches and/or for
numerical convenience (hence, the term quasi-isentropic used for this subsection).
The second viscous term which involve the divergence of the velocity is consistent
with Eq. (2.15) supplemented with the Stokes law 3λ + 2μ = 0, as well as with
Eq. (3.2). Let us also note that the role of viscosity in Kovasznay mode coupling,
which has already been introduced in Sect. 3.2.2, will be rediscussed in a simpler
way below.

The problem can be recast in a much simpler and useful way using the local Craya
basis in the Fourier space.3 The solenoidal and dilatational part of the velocity field,
denoted ûs and ûd , can be decomposed as follows

ûs(k) = u(1)(k)e(1)(k) + u(2)(k)e(2)(k), ûd(k) = u(3)(k)e(3)(k), (13.4)

where e(i)(k), i = 1, 3 are defined as in the incompressible case (see Eq. (2.86)).
Their counterparts in terms of vorticity (ω′ = curl(u′) = curl(us)) and divergence
(d = ∇·u = ∇·ud ) are immediately found

ω̂′ = ık
(
u(2)e(1) − u(1)e(2)

)
and d̂ = ıku(3). (13.5)

The definition of vorticity in terms of the Craya modes is the same as the one
used in the incompressible case. These three velocity modes must be supplemented
by a fourth mode, which accounts for the remaining independent thermodynamic
quantity.4 In order to have a problem with homogeneous dimension, the pressure
fluctuation can be scaled as a velocity, and considered as a fourth component (Simone
et al. 1997):

3This projection onto the local reference frame is valid without any assumption dealing with sta-
tistical symmetries, such as isotropy. Isotropy allows us to use the projectors P⊥

i j and P‖
i j , instead

of, or in addition to the Craya–Herring modes, as extensively discussed in Sect. 2.5.2. This is true
only because of the equipartition in terms of poloidal and toroidal modes which is imposed by 3D
isotropy.
4A single additional degree of freedom is enough thanks to the isentropy assumption.

http://dx.doi.org/10.1007/978-3-319-73162-9_14
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u(4) = ı
p̂

ρ̄a0
. (13.6)

This scaling is similar to the one used in Eckhoff and Storesletten (1978).
Therefore, the governing equations (13.1) and (13.2) are rewritten in terms of the

four variables in the Fourier space as follows:

d
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where all linear terms have been grouped in the left hand side. The non linear terms
are defined as follows:
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, (13.8)

where the hat symbol denotes the Fourier transform, and ω′ = curl(u′) = curl(us).
A more advanced closed form of the nonlinear terms of Eq. (13.7) in terms of
u(1), u(2), u(3) and u(4) is obtained by injecting (13.4) and (13.5) into Eq. (13.8)
(Briard et al. 2017).

It is worth noting that since a simplified isentropic model is used, the computed
solenoidal and dilatational fields are not identical to those obtained by projecting the
solution of the full compressible Navier–Stokes equations. In the present simplified
model, only Kovasznay’s vortical and acoustic modes (characterized by (u(1), u(2))

and (u(3), u(4)), respectively) are retained, while the entropic mode is (almost) dis-
carded.5

Two-point statistical moments are now considered. Because of 3D isotropy, two-
point second order statistics are generated by three independent spectra, namely the
spectrum of the solenoidal kinetic energy Ess(k), the kinetic energy spectrum of the
dilatational component Edd(k) and the pressure spectrum E pp(k)

< u(1)∗( p, t)u(1)(k, t) >=< u(2)∗( p, t)u(2)(k, t) >= Ess(k, t)

8πk2
δ3(k − p),

(13.9)

< u(3)∗( p, t)u(3)(k, t) >= Edd(k, t)

4πk2
δ3(k − p), (13.10)

5As stressed by Rainer Friedrich, private communication, the related model is not strictly isentropic,
because it includes dissipation with ν 	= 0, rather for the sake of further numerical solution. From
this viewpoint, a first-order “entropic” Kovasznay’s mode is implied.
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< u(4)∗( p, t)u(4)(k, t) >= E pp(k, t)

4πk2
δ3(k − p), (13.11)

and the cross-spectrum

< u(3)∗( p, t)u(4)(k, t) >= Edp(k, t)

4πk2
δ3(k − p), (13.12)

whose imaginary part is neglected, consistently with 3D isotropy with mirror sym-
metry.

The pressure variance is recovered as follows:

p′ p′(t) = ρ2
0a2

0

∫ +∞

0
E pp(k, t)dk, (13.13)

while the solenoidal and dilatational kinetic energies, Ks and Kd , are computed
thanks to relation (3.80).

The evolution equations associated to the four spectra are similar to the original
Lin equation (4.38) derived in the incompressible case for the kinetic energy spectrum
E(k):

d
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where nonlinear terms have been grouped in the right hand side. As for the cases
of rotating and/or stratified turbulence, only the transfer terms related to true energy
spectra may have zero integral, i.e. exhibit a global conservation property. This
constraint is almost fulfilled at weak Mach number by Tss (solenoidal energy transfer)
and Tpp + Tdd (transfer of total acoustic wave energy) but not by Tpp − Tdd and
Tdp, which therefore are not true transfer terms. The non-linear terms are related
to the physical mechanisms mentioned in Table 3.2. Neglecting viscous terms, this
system can be recast in the following compact form (see also rotating and/or stratified
incompressible flow cases):

d Ess(k)

dt
= Tss(k), (13.15)

d Ew(k)

dt
= Tw(k), (13.16)

d Z(k)

dt
+ 2ı(a0k)Z(k) = Tz(k), (13.17)

in which
Ew(k) = Edd(k) + E pp(k) (13.18)

http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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is the total turbulent acoustic energy spectrum,6 and

Z(k) = Edd(k) − E pp(k) + 2ı Edp(k) (13.19)

characterizes the inbalance between kinetic and potential energy of waves.

13.2.2 Linear Theory

Theoretical developments for this régime are pivotal from our viewpoint since they all
rely on all the basic exact equations of Sect. 13.2.1. Meaning of the term ‘exact’ must
be taken here in the same sense as for exactness of Eq. (13.2). Pure linear theory allows
us to recover the essentials of the acoustic equilibrium, which is possibly altered by
laminar viscous terms. Regarding nonlinear theories, no less than three versions will
be presented, giving very different results even if they rely on the same ‘exact’ Lin
equations and use similar Quasi-Normal closures which have been improved for
extra-dissipative terms.

The basic equations of the linear theory for compressible turbulence are obtained
in a trivial way, dropping the right hand sides in Eqs. (13.7) and (13.14). It is observed
that the solenoidal and the wavy components of the solution are totally decoupled,
in agreement with the usual linear acoustic theory. The dilatational and the pressure
modes are coupled through acoustic wave dynamics, which induce some exchanges
between the dilatational kinetic energy and the turbulent potential energy.

Let us first consider the linear viscous régime. The solenoidal kinetic energy
decays exactly as in the incompressible case (see Chap. 4), leading to

u(α)(k, t) = e−νk2t u(α)(k, 0),α = 1, 2 Ess(k, t) = e−2νk2t Ess(k, 0) (13.20)

6It is recalled (Chu and Apfel 1983) that the acoustic energy density is usually defined as

ρ0
u′2

2
+ p′2

2ρ0a2
0

in the framework of linear acoustics, where u′ and p′ denote acoustic velocity and pressure distur-
bances, respectively. Acoustic potential energy density and acoustic intensity are defined as

p′2

2ρ0a2
0

and
p′u′

respectively.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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The linear system related to acoustic waves simplifies as

d

dt

(
u(3)

u(4)

)
+

(
4
3νk2 −a0k
a0k 0

)(
u(3)

u(4)

)
= 0, (13.21)

whose solution is governed by the sign of the discriminant

D = [(2/3)νk2]2 − [a0k]2.

A cut-off value kd = 3a0/(2ν) is therefore introduced: for k < kd (i.e. D < 0) the
eigenvalues of the above linear system of equations are complex conjugates, yielding
damped oscillating solutions, whereas only damping without oscillations is found
for k > kd (i.e. D > 0) in relation with real eigenvalues. At low Mach number and
large Reynolds number, the cutoff value kd is very large,7 so that the domain k > kd

is irrelevant, but a renormalized version of this system can be useful, with drastic
modification of kd : this issue is discussed below.

The linear inviscid theory has received much more attention (e.g. Erlebacher et al.
1990; Sarkar et al. 1991; Erlebacher and Sarkar 1993), since it leads to the prediction
of possible equilibrium states. It is handled in a very simple way (Cambon et al.
1993; Simone et al. 1997) using both the local Craya–Herring decomposition and
the pressure rescaling given by Eq. (13.6)8 Dropping all nonlinear and viscous terms,
one can see that the solenoidal component is frozen, while the following conservation
relations hold at all wavenumbers:

u(3)(k, t) + sıu(4)(k, t) = eısa0kt
(
u(3)(k, 0) + sıu(4)(k, 0)

)
, s = ±1 (13.22)

Ew(k, t) = Ess(k, t) + Edd(k, t) = Ess(0, t) + Edd(0, t) = Ew(k, 0), (13.23)

along with

Edd(k, t) = 1

2
Ew(k, 0) + 1

2
(Edd(k, 0) − E pp(k, 0)) cos(2a0kt)

−Edp(k, 0) sin(2a0kt), (13.24)

E pp(k, t) = 1

2
Ew(k, 0) − 1

2
(Edd(k, 0) − E pp(k, 0)) cos(2a0kt)

+Edp(k, 0) sin(2a0kt), (13.25)

7Considering air at common pressure and temperature, one has a0 � 340 m.s−1 and ν �
10−5 m2.s−1, yielding kd ∼ 5.107 m−1.
8It is worth noting that a large number of works dealing with the inviscid linear theory have been
carried out in the physical space, using system (13.1) and (13.2). In this case, a multiple scale
expansion is needed to operate the splitting between the solenoidal and the dilatational component,
while it is trivial in the local spectral frame of reference. It can also yield a premature occurence of
non-dimensional parameters and an artificial unnecessary complexification of the problem.
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Edp(k, t) = 1

2
(Edd(k, 0) − E pp(k, 0)) sin(2a0kt)

+Edp(k, 0) cos(2a0kt). (13.26)

The acoustic equilibrium state is defined as an equilibrium state in which the
kinetic energy of the dilatational mode is equal to the potential energy of the pres-
sure mode. One has to distinguish between two variants of the acoustic equilibrium
assumption.

The first one, referred here to as the strong acoustic equilibrium hypothesis,
assumes that this equilibrium holds at all wave number, yielding

Edd(k) = 1

ρ2
0a2

0

E pp(k) ∀k (strong acoustic equilibrium hypothesis). (13.27)

The second variant, namely the weak acoustic equilibrium hypothesis, deals with
the asymptotic values of global quantities, such as Kd(t) and p′ p′(t) at large time.
Using the analytical solutions given above, one has

lim
t→+∞ Kd(t) = lim

t→+∞

∫ +∞

0
Edd(k, t)dk

= 1

2

∫ +∞

0
Ew(k, 0)dk = 1

2

(
Kd(0) + p′ p′(0)

ρ2a2
0

)

= (Kd)∞, (13.28)

lim
t→+∞ p′ p′(t) = ρ2

0a2
0 lim

t→+∞

∫ +∞

0
E pp(k, t)dk

= ρ2
0a2

0

2

(
Kd(0) + p′ p′(0)

ρ2a2
0

)
= (p′ p′)∞, (13.29)

along with

lim
t→+∞

∫ +∞

0
Edp(k, t)dk = lim

t→+∞

∫ +∞

0
(E pp − Edd)dk = 0. (13.30)

The later relation is comes from the relation (13.19), which leads to

Z(k, t) = eıa0kt Z(k, 0), lim
t→+∞

∫ +∞

0
Z(k, t)dk = 0. (13.31)

This last result is seen to be a consequence of the phase-mixing phenomenon.
Let us recall that phase-mixing was induced by an angle-dependent factor in the
dispersion law for inertia and/or gravity waves, whereas it results from the presence
of the factor k in the integrand in the present case.
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An important conclusion is that, whatever initial condition is considered, the
solution converges toward the following equilibrium state:

(Kd)∞ = 1

ρ2
0a2

0

(p′ p′)∞ (weak acoustic equilibrium hypothesis). (13.32)

It is of course easily seen that strong acoustic equilibrium is a sufficient but not
necessary condition for the weak acoustic equilibrium to be satisfied.

The weak acoustic equilibrium solutions can be represented in a very simple and
elegant way using the ratio of the mean compressible kinetic energy to the total mean
turbulent kinetic energy, χ(t), and the function F(t) introduced by Sarkar

F(t) ≡ ρ2
0a2

0
Kd(t)

p′ p′(t)
= ρ2

0a4
0 M2

t

χ(t)

p′ p′(t)
, (13.33)

with K = Ks + Kd , Mt = √K/a0 and

χ(t) = Kd(t)

Ks(t) + Kd(t)
= Kd(t)

Ks(0) + Kd(t)
. (13.34)

The equilibrium values can be rewritten as

(p′ p′)∞ = 1

2
p′ p′(0) (1 + F(0)) , (13.35)

(Kd)∞ = 1

2
Kd(0)

(
1 + 1

F(0)

)
. (13.36)

A very interesting result obtained inserting equilibrium values into (13.33) is that
the acoustic equilibrium value of Sarkar’s function, F∞, is equal to unity:

F∞ = lim
t→∞ F(t) = 1. (13.37)

This result indicates that at acoustic equilibrium there is an equipartition between
the kinetic (numerator of Eq. (13.33)) and the potential component (half the denom-
inator of Eq. (13.33)) of the compressible energy. The relative weights of the incom-
pressible and compressible parts of the kinetic energy are obtained evaluating the
acoustic equilibrium value of the parameter χ

χ∞ = χ(0)
1 + F(0)

2F(0) + χ(0)(1 − F(0))
. (13.38)

Main features of the weak acoustic equilibrium state are illustrated in Figs. 13.1
and 13.2. It is clearly seen that a low value of F(0) yields a very rapid increase of
the kinetic energy ratio in terms of χ(0), meaning that initial strong non-equilibrium
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leads to very rapid changes in the solution for F(0) � 1. This relaxation is also seen
to yield a dramatic change in the repartition of the acoustic energy. An interesting
conclusion is that the linear dynamics which corresponds to the pseudo-acoustic
régime is compatible with very important changes in the dilatational field.

13.2.3 The Relevant Incompressible Limit for both Spectra of
Solenoidal Energy and Pressure Variance

Before modelling the spectra and co-spectra related to dilatational and pressure com-
ponents, definition of the incompressible reference is the first mandatory task.

At low Mach number, it is possible to neglect the feedback from dilatational and
pressure modes in Eq. (13.15), so that the spectrum of the solenoidal mode, Ess(k),
is given as in strictly incompressible turbulence. Therefore, a closed form for Tss(k)

is obtained by classical isotropic incompressible EDQNM, and Ess(k) exhibits a
classical Kolmogorov inertial range at high Reynolds number. This is consistent
with a selection among all resonant triads, neglecting all resonant triads involving
waves with respect to the pure solenoidal ones (more details are given Chap. 15).
In a similar way, neglecting all triads involving at least one wave mode versus pure
vortex interactions yields selecting the toroidal cascade in Chap. 10 and the Quasi-
Geostrophic cascade in Chap. 11.

Calculation of spectrum of the pure incompressible part of the pressure fluctuation,
denoted Einc

pp , is performed starting from the Poisson equation and using a Quasi-
Normal approximation as in Batchelor’s approach.9 As a result, the following robust
model of Einc

pp (k) as a function of Ess(k) is obtained

Einc
pp (k) = 1

ρ̄2a2
0

.
ρ̄2

2
k
∫∫

�k

(1 − x2)(1 − y2)Ess(p)Ess(q)
dpdq

pq
, (13.39)

using the same notations as for the isotropic incompressible EDQNM transfer term
(see Sect. 4.8.7).

The first prefactor 1/(ρ̄2a2
0) originates in the pressure scaling (13.3) and can be

omitted in order to interpret Einc
pp (k) as the spectrum of the pressure variance with

its original dimension. Even if the integral above cannot be analytically solved in
general, this equation is consistent with a pressure spectrum form at small k and the
scaling k E2(k) ∼ k−7/3, at larger k, for a Kolmogorov energy spectrum.

9The pressure variance is linked to fourth-order velocity correlations via the Poisson equation, and
fourth-order correlations are factorized in term of products of second-order ones via Quasi-Normal
approximation, see Sect. 4.9.

http://dx.doi.org/10.1007/978-3-319-73162-9_15
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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13.2.4 Quasi-inviscid Limit: Towards an Extended
Wave-Turbulence Model

In the low-Mach number case, acoustic perturbations travel at a much higher speed
than hydrodynamic fluctuations, and a two-time-scale problem can be defined. Asso-
ciating the fast time scale to acoustic perturbations and the slow-time scale to hydro-
dynamic fluctuations, a Wave-turbulence-type problem is obtained, whose governing
equations can be expressed in terms of the slow amplitudes a(0)

α ,α = 1, 2 and a(s)

which are defined as

u(α) = a(0)
α (k, t), α = 1, 2 (13.40)

u(3) + su(4) = eısa0kt a(s)(k, t), s = ±1. (13.41)

Here, a(0) denotes the amplitude of the vortical non-propagating mode and
a(s), s = ±1 are related to the amplitudes of wavy acoustic modes. General properties
of the associated nonlinear system of equations are discussed in Chap. 17. Nonlinear
terms, once expressed as functions of these new variables, still involve convolution
products inherited from their quadratic nature. Exact inviscid equation can be written
as

ȧ(s) =
∑

s′=0,±1,s′′=0,±1

∫∫∫
k+p+q=0

Nss′s′′ (k, p)eıa0t (sk+s′ p+s′′q)a(s′)∗( p, t)a(s′′)∗(q, t)d3 p,

(13.42)
up to some formal difficulties: since a(0) is a two-component vector, the index s no
longer refers to the solenoidal part in this particular section, and only the value s = 0
is related to the solenoidal mode. The influence matrix Nss ′s ′′ is derived from (13.8)
in a straightforward — but tedious — way. As in the similar cases of rotating (which
does not involve any s = 0 mode), stratified (in which s = 0 would correspond to
the toroidal+ VSHF mode) and rotating stratified (in which s = 0 would correspond
to the QG mode), an interesting feature is that all products a(s ′)∗( p, t)a(s ′′)∗(q, t)
present in the convolution integral governing a(s)(k, t) are weighted by the following
resonance operator

exp[ıa0t (sk + s ′ p + s ′′q)], s, s ′, s ′′ = 0,±1, k + p + q = 0. (13.43)

Different interactions are only characterized by the set (s, s ′, s ′′):

• pure vortex (solenoidal here) triadic interactions associated with (0, 0, 0),
• pure wavy triadic interactions corresponding to (±1,±1,±1),
• mixed triadic interactions with (0,±1, 0) or (0,±1,±1). This last class is assumed

to be very weak with respect to pure vortex interactions when modelling the non-
linear transfer term Tss .

http://dx.doi.org/10.1007/978-3-319-73162-9_17
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The generation of all transfer terms using asymptotic Quasi-Normal Markovian
theory readily follows, but the absence of a relevant eddy damping term (with van-
ishing eddy viscosity) would generate an inertial range with a k−2 slope and not a
k−5/3 one for Tss . The optimal compromise between ‘strong’ turbulence and ‘weak’
wave-turbulence theory, is to introduce an eddy damping correction in generating
the typical Green’s function (or Kraichnan’s response function) as follows:

∂

∂t

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

η 0 0 0
0 η 0 0
0 0 εacous −a0k
0 0 a0k εacous

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

X (1)

X (2)

X (3)

X (4)

⎞
⎟⎟⎠ (13.44)

The arbitrary vector (X (1), X (2), X (3), X (4))T can be replaced by a Dirac term
(impulsional response) in the most general definition of the Green’s function, but the
same result (identifying the response function once for all) is most easily obtained
from the general initial-value problem with (X (1), X (2), X (3), X (4))T = (0, 0, 0, 0)T

(Cambon and Scott 1999). It is very important to stress that the above system of
equations is only used for generating the nonlinear Green’s function, and only for
solving corresponding equations for triple correlations needed in the integrands of
Tdd , Tpp, and Tpp, or equivalently for Tpp + Tdd and T (z). The eddy-damping term
η can be chosen as in Sect. 4.8.7, and εacous is a formal small parameter, only used
for the sake of mathematical regularization of the resonance operator. Of course, the
very high Reynolds number limit allows us to get rid of detail for the laminar viscous
terms, which are displayed in the next section.

13.2.5 Introducing Relevant Eddy-Damping. Main Results

A first application of EDQNM procedure was performed by Marion coworkers
(1998a, b), with some inaccuracies corrected by Bataille (1994), and new numer-
ical results given in Bertoglio et al. (2001). This procedure follows the one proposed
by Leslie (1973) and invokes Kraichnan’s DIA theory as an intermediate step, using
two-point spectral tensors of the form R̂i j (k, t, t ′), before deriving EDQNM-type
equations.10 One can reinterpret the system generating the nonlinear response func-
tion as

d

dt

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

η 0 0 0
0 η 0 0
0 0 (4/3)νk2 + η −a0k
0 0 a0k η

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

X (1)

X (2)

X (3)

X (4)

⎞
⎟⎟⎠ . (13.45)

10A direct procedure for solving linear operators at the level of triple correlations, however, would
probably be more general and more convenient for mathematical analysis, like the one for deriving
EDQNM1 to EDQNM3, the latter giving wave-turbulence in the limit of inviscid wave-propagator.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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The choice of the eddy-damping term for the compressible nonlinear terms associ-
ated to Edd(k), E pp(k) and Edp(k) has a dramatic influence on the results. The choice
of the same η(k) for all modes amounts to introduce the very simple and unique decor-
relation function as e−η(t−t ′). This procedure is not theoretically grounded and must
therefore be considered as an empirical closure, since it relies on the direct use of
a damping term built for solenoidal modes for the nonlinear interactions involving
dilatational modes, which obey a very different physics.

Two main results are obtained: first, the acoustic equilibrium is recovered in a
strong sense; second, a typical slope for the pressure spectrum is found, as −7/2
(Marion et al. 1998a), then −11/3 (Bataille 1994; Bertoglio et al. 2001), but in any
case the Batchelor’s one −7/3 is not recovered in the incompressible limit Mt → 0.
Another reported problem is that strong acoustic equilibrium, together with the high
level of pressure spectrum in the inertial range yield overestimating the level of Edd .

These results, considered at least as puzzling and somehow unphysical, moti-
vated (Fauchet 1998; Fauchet and Bertoglio 1999a, b) for choosing a new decorre-
lation function. Mentioning some informal proposal made by Kraichnan, Fauchet
and Bertoglio proposed to replace the usual eddy damping factor −η(t − t ′) by
η2(t − t ′)2 for the dilatational and pressure modes. This result can be recast in a
more general way. Instead of renormalizing the pure dissipative laminar term, one
may try to renormalize the dispersion frequency of acoustic waves, so that the relevant
response function would be generated by

∂

∂t

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

η 0 0 0
0 η 0 0
0 0 (4/3)νk2 + εacoust −a0k − r
0 0 a0k + r εacoust

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

X (1)

X (2)

X (3)

X (4)

⎞
⎟⎟⎠ .

(13.46)
In other words, η is not used as an additional nonlinear dissipative effect for dilata-

tional pressure and dilatational modes. It is replaced by a nonlinear correction r(t)
for the purely linear acoustic dispersion frequency a0k. The too simple choice r ∼ η
is not correct, since the decorrelation effect cannot be obtained with a deterministic r ,
and only a modified resonance operator would be generated in Eq. (13.43), changing
a0(t − t ′) into (a0 + r)(t − t ′). As a more subtle interpretation, r is really a random
factor (hence our coining r for random), changing from a realization of (u(3), u(4))

to another one. One must assume that r is a Gaussian process, having zero mean
and variance η. A physical rationale for the existence of the random factor r is pro-
vided by the random oscillator in Sect. 13.2.6. A related scaling of the η term in a
Gaussian response function is given by the randomly swept wave model discussed in
Sect. 13.2.7, in which one assumes that acoustic waves experience random sweeping
by large turbulent eddies. Therefore, their propagation speed is a0 ± u′, where u′ is
the turbulent velocity, leading to r = ku′.

Main results obtained using this improved model are the following (predictions
related to the inertial range are gathered in Table 13.1, and a simplified analytical
model will be exhaustively discussed in Sect. 13.2.8):
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Table 13.1 Two-point closure prediction dealing with inertial range in the low-Mach number
régime (Mt < 0.1). Left and right columns display results given by EDQNM and the improved
Fauchet–Bertoglio model, respectively. Eacous

p′ p′ (k) denotes the spectrum of the acoustic pressure

fluctuation defined as p′ = p − ps , where ps is the pressure field associated to the solenoidal
velocity field us . The last two lines summarize results dealing ratio of solenoidal/dilatational kinetic
energy and dissipation, respectively. Adapted from Fauchet (1998)

Decorrelation function ∼ exp[−η(k)(t − t ′)] ∼ exp[−η2(k)(t − t ′)2]
Edd (k) ∝ M2

t Re1
L k−11/3 ∝ M4

t Re0
L k−3

E pp(k) ∝ M2
t Re1

L k−11/3 ∝ M2
t Re0

L k−7/3

Eacous
p′ p′ (k) ∼ Edd (k) ∝ M6

t Re0
L k−11/3

limMt →0 E pp(k) 	= Einc
pp (k) = Einc

pp (k)

Kd/Ks ∝ M2
t Re1

L ∝ M4
t Re0

L

ε̄d/ε̄s ∝ M2
t Re0

L ∝ M4
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Fig. 13.3 Spectra in the nonlinear equilibrium state predicted using an extended EDQNM-type
closure for compressible flows (the dilational energy spectrum is denoted Ecc instead of Edd ).
Courtesy of G. Fauchet and J.B. Bertoglio

• The strong acoustic equilibrium hypothesis, which states that E pp(k) = Edd(k),
is violated, showing the importance of nonlinear effects. This is seen on Fig. 13.3,
which displays computed spectra in the nonlinear equilibrium state.
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• Strong acoustic equilibrium is now observed at very small k only (and not over
the entire inertial range), at scales really corresponding to acoustic wavelengths
that are much larger than the integral velocity lengthscale given by Ess(k).

• In the inertial range, the E pp(k)(k) spectrum almost collapses with its incompress-
ible counterpart Einc

pp (k), with related −7/3 slope, but Edd(k) is found far below,
with a −3 slope. This last result is consistent with a much smaller magnitude of
the dilatational motion with respect to the evaluation consistent with strong acous-
tic equilibrium (which yields the total collapse Einc

pp (k) ∼ E pp(k) ∼ Edd(k)). The
scaling is now Edd ∼ M4

t k−3 in the inertial range. The corresponding behavior
of the compressibility ratio χ defined by Eq. (13.34) as a function of the turbu-
lent Mach number is therefore χ ∼ M4

t , and not χ ∼ M2
t as suggested by Bataille

(1994). The fact that the potential energy of waves, with E pp(k) spectrum, can so
greatly exceed their kinetic energy, with Edd(k) spectrum, even questions the very
concept of acoustic waves. This observation led many authors, including historical
specialists of aeroacoustics, such as Lighthill, to refer to this state as the pseudo-
sound régime instead of real acoustics. The noise radiated by isotropic turbulence
in the quasi-isentropic régime and the related Lighthill analogy are discussed in
Sect. 13.2.10.

• It is worth noting that previous results hold in the low-Mach number régime only.
For Mt > 0.1, the pseudo-sound régime disappears and the k−3 inertial range is
not observed any more on Edd(k). A k−5/3 is recovered for Mt close to 1 according
to the improved two-point closure, but this result must be considered with care
since several assumptions which underly this theory are not satisfied anymore.

• The ratio ε̄d/ε̄s is observed to scale as M5
t for Mt > 0.2 instead of M4

t at lower
Mach numbers (see Fig. 13.4).

13.2.6 Additional Discussion About the Modified
Decorrelation Function

The use of the modified decorrelation function e−η2(t−t ′)2
is the essential improvement

brought by Fauchet with respect to earlier developments. Now we will show that the
Gaussian form is suggested by the Kraichnan’s Linear Random Advection toy-model,
rediscussed by Leslie (1973) and Orszag (1977), with an excellent survey given by
Kaneda (2007), that was used in Sects. 4.3.4 and 4.3.5 to derive models for two-time
velocity statistics in the incompressible case.

The starting point is the following single-mode model:

d

dt
g(t) = −[ı(b0 + b(t)) + ν0]g(t), g(0) = 1,

in which b0 holds for the acoustic frequency a0k, b(t) for a time-dependent random
contribution to the former taken equal to b(t) = u′(t)k according to the Randomly

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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(denoted εs here) in the nonlinear equilibrium state predicted using an extended EDQNM-type
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Reynolds number. Courtesy of G. Fauchet and J.B. Bertoglio

Swept Wave model and ν0 for a viscous parameter, e.g. proportional to νk2. Exact
solution of this single-mode equation is

g(t) = exp[−(ν0 − ıb0)t − ı
∫ t

0
b(s)ds],

while the solution for its ensemble average is

< g(t) >= exp

[
−(ν0 − ıb0)t − 1

2

∫∫ t

0
< b(s)b(s ′) > ds ′

]
.

In particular, the latter equation reduces to

< g(t) >= exp

[
−(ν0 − ıb0)t − 1

2
σ2t2

]
,

with σ2 =< b2 >, if b is a real time-independent Gaussian process with zero mean.
It is recalled that < exp(ısb) >= exp(−σ2t2/2) for such a process.
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Of course, g(t) is a scalar function here, but the analogy between its equation and
the sub-system (u(3)-u(4)), with X (3) = X (4) = 0 in (13.46) is obvious, considering
u(3) ± ıu(4) and removing the laminar factor (4/3)νk2, with b(t) = r(t).

This simple analysis shows that a Gaussian part of the renormalized response
function can be generated by a random contribution added to the mean frequency
of linear acoustic waves. Going back to our specific problem of weakly nonlinear
compressible turbulence, this suggests that a renormalization of the viscous terms
is likely less crucial — and even less adequate — than a renormalization of the
dispersion frequency. Main conclusions and semi-open questions are listed below:

• Pure acoustic-wave turbulence, corresponding to triadic interactions without
contribution of solenoidal modes, i.e. with (s = ±1, s ′ = ±1, s ′′ = ±1), is a
marginally relevant model. It probably preserves the acoustic equilibrium, without
need to renormalize neither the viscous factors nor the acoustic frequency. One can
expect a strong analogy with inertial-wave rotating turbulence from this point of
view, since damping terms are only needed to regularize the resonance operators
in the high Reynolds number limit.

• Modelling issues not present in pure wave-turbulence occur when strong turbu-
lence (e.g. usual solenoidal turbulence) interacts with wave-turbulence. The con-
cept of waves, which is associated to a balance between potential and kinetic
energy, may even become irrelevant since the compressible state can be very
far from acoustic equilibrium if k is not too small, yielding E pp(potential) �
Edd(kinetic).

• Breakdown of acoustic equilibrium in the closure model seems to be linked to the
introduction of a Gaussian factor in the response tensor, possibly resulting from
the renormalization of the acoustic-wave frequency, rather than from renormalized
viscosity. The Gaussian decorrelation factor can inhibit the time-memory of triple
correlations in a more efficient way than the classical exponential term does. As a
result, typical oscillations in the resonance operator (13.43) are inhibited too.

• There is no physical explanation for choosing the order of magnitude of the renor-
malized dispersion frequency as < r2 >= η2 in Eq. (13.46). It is also suggested
that the extended wave-turbulence models using (13.44) can be of interest too. The
breakdown of the ‘strong’ acoustic equilibrium is also possible in such a model.
This is evidenced by the linearly sheared (with shear rate S) flow model discussed
in Chap. 14, in which there is a source term (∼ Su(2) in the shear case, while Tdd

plays this role in the present case) induced by the coupling with the solenoidal
mode in the equation for u(3). Since this source term has no counterpart in the
equation for u(4), it can break the acoustic equilibrium at sufficiently large values
of the S/(a0k) parameter.

To conclude this section, it is important to note that the interpretation of η as the
standard deviation of a random acoustic frequency r(t) with zero mean does not
imply its scaling as a “straining” or a “sweeping” term. The “straining” scaling is
conserved in Fauchet (1998) for instance. On the other hand, recent models suggest
the sweeping u′k scaling, as re-discussed in the next section. In fact, we know that the

http://dx.doi.org/10.1007/978-3-319-73162-9_14
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sweeping choice at all scale yields the flaw in the original DIA version (Kraichnan
1959), but there is now a consensus on a progressive transition from the straining
scaling at largest scales to the sweeping scaling at smallest scales. This was illustrated
by Favier et al. (2010) using first Kinematic Simulation (see also Favier et al. 2008 for
the noise radiated by rotating turbulence) as a linear stochastic model, in line with the
abovementioned interpretation of r , with application to two-point two-time statistics
and radiated noise. This was confirmed by DNS, so that the scale of transition between
“straining” and “sweeping” is given in this study.

13.2.7 Two-Point Two-Time Velocity Correlations and
Randomly Swept Wave Model

The two-time two-point velocity correlation tensors can be split using Helmholtz
decomposition. Considering the quasi-isentropic linear régime, in which the physics
of the solenoidal modes is modified in a negligible way by dilatational effects, all
results obtained in Sect. 4.3 can be applied immediately to the solenoidal field us and
related statistical quantities.

The case of the dilatational component ud is more difficult since new physical
mechanisms are at play. Restricting the analysis to cases in which ud is associ-
ated with acoustic phenomena, the model developed within the incompressible flow
framework is not relevant since fast and slow acoustic waves propagate at the speed
of sound with respect to the fluid. It must be replaced by a swept wave model account-
ing for random sweeping by large turbulent scales and acoustic wave propagation
(Li et al. 2013). The associated extension of (4.85) is

(
D2

Dt2
− a2

0∇2

)
ud = 0,

D

Dt
=

(
∂

∂t
+ v · ∇

)
(13.47)

where a0 and v denotes the mean speed of sound and the random sweeping velocity
induced by large energetic scales, respectively. The exact wave solution is expressed
as

ud(k, t) = u+(k, 0) exp [−ı(k · v)t − ıka0t]

+u−(k, 0) exp [−ı(k · v)t + ıka0t] (13.48)

where u+(k, t) and u−(k, t), i.e. the fast and slow acoustic waves, are assumed
to be decorrelated. This expression is equivalent to Eq. (2.112), with G(0)

i j (k, t, t0) =
exp [−ı(k · v)t − ıka0t] for fast acoustic waves and G(0)

i j (k, t, t0)= exp [−ı(k · v)t+
ıka0t] for slow acoustic waves. Here, nonlinear and viscous effects have been
neglected, leading to s(k(t), t) = 0 and a simple analytical expression.

Following the same method as in Sects. 4.3.4 and 4.3.5, the two-time correlation
for the dilatational velocity field is

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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R̂d
i j (k, t) = ud

i (k, t)ud
j (−k, t + τ )

= u+
i (k, 0)u+

j (−k, 0) exp [ı(k · v)τ + ıka0τ ]

+u−
i (k, 0)u−

j (−k, 0) exp [ı(k · v)τ − ıka0τ ]

= R̂d
i j (k, 0) cos(ka0τ ) exp

[
−1

2
V 2k2τ 2

]
, (13.49)

where 3V 2 = ‖v‖2 and

R̂d
i j (k, 0) = 2u+

i (k, 0)u+
j (−k, 0) = 2u−

i (k, 0)u−
j (−k, 0)

This swept wave model is observed to be in very good agreement with DNS
data (Li et al. 2013) in the régimes referred to as low-Mach quasi-isentropic régime
and subsonic nonlinear régime, in the absence of dilatational forcing and strongly
dilatational initial conditions, up to Mt = √

3V/a0 � 0.4, i.e. when shocklets do not
play a governing role and that dilatational modes are mostly restricted to acoustic
waves. Relation (13.49) shows that linear wave propagation induces a sinusoidal
modulation, while the random sweeping exponential damping is the same as for
the solenoidal mode. The dependency on the turbulent Mach number is illustrated
rewritting Eq. (13.49) as

R̂d
i j (k, t) = R̂d

i j (k, 0) cos(τa) exp

[
−τ 2

a M2
t

6

]
, τa = a0kτ (13.50)

showing that the random sweeping damping increases rapidly as Mt grows. Again,
one can mention that the typical sweeping time is τa Mt , whence proportional to ku′τ :
this can be indirectly related to the Gaussian response function exp −η2τ 2 used in
Fauchet (1998) . . . but not to the fact that a “straining” scaling is still used for η in
the latter study.

13.2.8 Analytical Fauchet–Bertoglio Model

In the absence of analytical results from the extended wave-turbulence model dis-
cussed above, let us give more details provided by the model proposed in Fauchet
(1998). Carrying out an asymptotic analysis in the limit of very low Mach number
and very high Reynolds numbers, and considering the following solenoidal kinetic
energy spectrum model

Ess(k) =
⎧⎨
⎩

Bkσ k < kL

K0ε̄
2/3
s k−5/3 kL ≤ k ≤ kη

0 k > kη

(13.51)
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where
B = K0ε̄

2/3
s k−5/3−σ

L , (13.52)

Fauchet, Bertoglio and J. Scott obtained analytical models for both non-linear
transfer terms and related spectra. The analysis is restricted to Tdd(k) and Tdp(k),
since Tss(k) is not modified by compressibility effects and there is no feedback of
the dilatational part of the solution on us . The leading order terms for the local and
non-local transfers in Tdp(k) are:

Tdp(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k2(1+σ)

a0︸ ︷︷ ︸
I

+ 8

65

K 2
0

a0
ε̄4/3

s

k3

k13/3
L︸ ︷︷ ︸

I I

(k < kL)

a0k Einc
pp (k)︸ ︷︷ ︸

I I I

+
(

k

kL

)4/3

a2
0k2 Einc

pp (k)

︸ ︷︷ ︸
I V

(k ≥ kL)

(13.53)

where terms I and I I I are related to local interactions, while non-local interac-
tions are grouped in contributions I I and I V . The exact form of the incompressible
pressure spectrum Einc

pp (k) is not known at this stage. One just has to know that
Einc

pp (k) ∝ k−7/3 in the inertial range. A careful analysis of the relative amplitude of
these terms shows that the non-local transfer I V is dominant at small wave numbers
such that k < kP , while the local interaction term I I I is dominant at higher wave
numbers k ≥ kP . The threshold wave number is evaluated by the formula below:

kP =
(

65

16
CG

)3/13

kL � 1.47kL , CG � 1.32. (13.54)

Now using the relation
Tdp(k) = a0k Einc

pp (k) (13.55)

and taking σ = 4 as a slope for the energy spectrum at large scales, one obtains the
following expression for the incompressible pressure spectrum:

Einc
pp (k) =

⎧⎪⎨
⎪⎩

8
65 K 2

0 ε̄
4/3
s

k2

a2
0 k13/3

L

k < kP

CG

2a2
0

K 2
0 ε̄

4/3
s k−7/3 kP ≤ k ≤ kη

0 k > kη

. (13.56)

Therefore, it is seen that the incompressible pressure spectrum and the solenoidal
kinetic energy spectrum do not have their maxima at the same wave numbers, since
kP > kL . It is worth noting that the exact expression for Einc

pp (k) in the inertial range,
i.e. k ≥ kP , is not a direct output of the asymptotic analysis which is supplemented
by an auxiliary model.
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Tdd(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

3
ν

k(4+3σ)

a4
0︸ ︷︷ ︸

V

+ 64

5
β3/2

√
2πK 7/2

0

ε̄
7/3
s

a4
0k7/3

L

Fp

(
k

kacous

)
︸ ︷︷ ︸

V I

+ 64

15
β

4

3
νK 3

0
ε̄2

s

a4
0k3

L

k2

︸ ︷︷ ︸
V I I

(k < kL)

12
4

3
ν

β

a0
k3 Ess(k)Einc

pp (k)

︸ ︷︷ ︸
V I I I

+ k−7/3 exp(−βa2
0k2/3)︸ ︷︷ ︸

I X

+ 4

3
ν

k−7/3

a4
0︸ ︷︷ ︸

X

(k ≥ kL)

(13.57)

with β � 0.2, where the function Fp in term V I is defined as follows:

Fp(x) = �(15/4) − �(15/4, x2)

x7/2
(13.58)

The parameter kacous denotes the wave number associated to the peak of the
acoustic spectrum. It is evaluated as

kacous = 2
√

2β

Cb
Mt kL , Cb =

√
3σ + 5

3(σ + 1)
(13.59)

Here, local interactions are represented by terms V and V I I I , while other terms
are related to non-local contributions.

The analysis of the relative amplitudes reveals the existence of three different
spectral zones:

• The acoustic region, which corresponds to very small wave numbers such that
k < kr1, with

kr1 = 3

4
(10CG)1/3kL � 1.8kL . (13.60)

In this region, the non-local term V I is dominant. It is therefore interpreted as the
production of acoustic wave. The spectrum of acoustic production, Pacous(k), can
therefore be rewritten as follows

Pacous(k) = (V I ) = 256

15

β

C7
b

√
πβ

3
K3/2

s M4
t Fp

(
k

kacous

)
. (13.61)

The total radiated acoustic power, Ptot is then equal to
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Ptot =
∫ kη

0
Pacous(k)dk = 4.2C−5

b ε̄s M5
t (13.62)

which is in very good agreement usual estimates found using the acoustic Lighthill
analogy (see Sect. 13.2.10). Relation (13.61) does not yield the right estimate for
both the value and the location of the peak of the normalized acoustic produc-
tion spectrum P∗

acous(k) ≡ Pacous(k)/P . Using the normalized frequency ω∗ =
a0ku′2/ε̄s , the correct prediction max(P∗

acous(ω
∗)) � 0.1 for ω∗ = ω∗

max � 3.5 is
recovered using a realistic spectrum shape for Ess(k) instead of (13.51). Doing so,
the term V I yields a normalized production spectrum which is very close to the
one proposed by Lilley in 1994:

P∗
acous(ω

∗) = 8

3πSt

ω∗/(2St )
4

(1 + (ω∗/2St )2)3
, St = 1.24 (13.63)

• a transition region, in which both non local transfer terms I X and X play an
important role, term X having the largest amplitude. This region is defined as
kr1 < k < kr2, where

kr2 � 2.5

C5/11
b C2/11

a

, M7/11
t Re2/11

L kL , Ca = 3σ + 5

3σ
(13.64)

• an inertial range region for k > kr2, in which the local transfer term V I I I is now
dominant. This inertial range is associated with the pseudo-sound régime, in which
the dilatational velocity field is in equilibrium with the solenoidal pressure.

This simplified form of Tdd(k) enables a detailed analysis of the dilatational energy
spectrum Edd(k). To this end, the following expression is derived from Eq. (13.14):

2

(
4

3
ν + νacous

t (k)

)
k2 Edd(k) = Tdd(k) (13.65)

where the eddy-damping term νacous
t (k) accounts for cumulated effects of higher-

order terms neglected during the derivation of the simplified form of Tdd(k) given
above. The improved two-point closure suggests that

νacous
t (k) = 1

30

√
2πK0

β

(
ε̄s

k4
L

)1/3

Fν

(
k

kacous

)
(13.66)

with

Fν(x) = 5
1 − e−x2

x2
− e−x2

. (13.67)

The effect of this damping term is to prevent the occurrence of an acoustic
catastrophe in the limit of infinite Reynolds number, i.e. Edd(k) remains bounded.
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Fig. 13.5 Sketch of the dilatational kinetic energy spectrum Edd (k) in the nonlinear equilibrium
state, according to the simplified Fauchet–Bertoglio analytical model derived from the extended
two-point closure for compressible flows

A similar term was introduced by Crow in 1967. This damping term is very small for
wave number larger than kacous , and will therefore be neglected in both the transition
region and the inertial range since it is much smaller than the molecular viscosity at
these scales. Combining the equilibrium relation (13.65) with the simplified form of
the non-linear transfer term, one obtains (see Fig. 13.5):

Edd(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

32

√
2β3/2

C5
b kacous

M3
t Ks Facous

(
k

kacous

)
k < kr1

64

135

β

C6
b

M4
t Re0

LKs
k0

kL
kr1 < k < kr2

2a
CG

C6
b

M4
t Re0

LKsk−1
L

(
k

kL

)−3

k ≥ kr2

(13.68)

where

Facous(x) = 1

x2

Fp(x)

Fν(x)
. (13.69)

The peak of Edd(k) in the acoustic region observed at k = kmax
acous � 1.32 kacous ,

is

Edd(k
max
acous) � 0.046

C7
b

K5/2
s

ε̄s
M2

t Re0
L . (13.70)
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In the acoustic region, further analysis shows that

Edd(k) ∝
{

M0
t Re0

Lk2 k < kr1, k � kmax
acous

M11/2
t Re0

Lk−7/2 k < kr1, k � kmax
acous

. (13.71)

This analytical expression for Edd(k) enables a straightforward evaluation of the
turbulent acoustic kinetic energy

Kacous =
∫ +∞

0
32

√
2β3/2

C5
b kacous

M3
t Ks Facous

(
k

kacous

)
dk ∝ 32

√
2β3/2

C5
b

M3
t Ks

(13.72)
which is in perfect agreement with Crow’s scaling law for this quantity.

The compressible turbulent kinetic energy contained in the inertial range and the
corresponding dilatational dissipation are found to be equal to

Kd =
∫

k≥kr2

Edd(k)dk = 0.25C−6
b Ks M4

t , (13.73)

ε̄d = 4

3
ν

∫
k≥kr2

k2 Edd(k)dk = 1.65CaC−5
b ε̄s M4

t

ln(ReL)

ReL
. (13.74)

13.2.9 Numerical Experiments

Isotropic compressible turbulence has been investigated by several research groups
via direct numerical simulation of the full compressible Navier–Stokes equations.
In most cases, the low-Reynolds number free decay régime is considered. The main
results are summarized below

(i) A statistical equilibrium is observed, which corresponds to the weak acoustic
equilibrium hypothesis with F(t) ≈ 1 = F∞. The function F fluctuates almost
periodically around unity. This result is remarkable, since all couplings with
internal energy are neglected in the theoretical derivation of the linear model for
the pseudo-acoustic régime and that the strong acoustic equilibrium hypothesis
is shown to be violated by both improved two-point closures and numerical
simulations. These slight fluctuations might be explained by an almost periodic
energy exchange between the acoustic mode and the entropy mode (i.e. the
internal energy). This point is further discussed below.

(ii) This weak equilibrium state is very robust: it is has been observed for a very
wide range of turbulent Mach numbers and initial conditions. As a matter of
fact, statistical equilibrium states with F ≈ 1 have been found for turbulent
Mach numbers as high as 0.5 (Sarkar et al. 1991).
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(iii) The theoretical prediction (13.38) for χ∞ was found to be accurate for a large
number of cases simulated in Erlebacher et al. (1990).

The energy balance associated with the statistical equilibrium states has been very
finely analyzed in both decaying and forced isotropic turbulence (Kida and Orszag
1990a, 1992; Miura and Kida 1995). In these studies, the transfers between the
dilatational turbulent kinetic energy Kd , the solenoidal turbulent kinetic energy Ks

and the fluctuating internal energy ẽ have been investigated. The main conclusions
dealing with the global energy transfers at the equilibrium state are the following:

(i) In the acoustic equilibrium state, both Kd(t) and ẽ(t) fluctuate sinusoidally
about a constant mean value (see Fig. 13.6). The two signals are in exact phase
opposition and have similar amplitude, leading to Kd(t) + ẽ(t) � Cst. This is
consistent with the finding that F(t) is nearly constant.

(ii) The solenoidal kinetic energy Ks varies slowly with irregular fluctuations of
small amplitude, and does exhibit phase locking with either Kd(t) or ẽ(t).

(iii) The interactions between the solenoidal and compressive components of the
turbulent kinetic energy are weaker than self-interactions of the respective com-
ponents.

(iv) The pressure-dilatation term (term II in Eqs. (3.104) and (3.106)) governs the
coupling betweenKd(t) and ẽ(t) (see Fig. 13.7). It is also observed to overwhelm
other terms which appears in the evolution equations for Kd(t), the total mean
turbulent kinetic energy K = Kd + Ks and the internal energy ẽ. It exhibits
a periodic behavior with the same period as Kd(t) and ẽ(t), and it is due to
acoustic pressure fluctuations.

This dynamical picture can be further refined looking at energy exchanges at
individual wave numbers. The main findings of Miura and Kida are

(i) The periodic behavior of the compressible kinetic energy and the internal energy
is observed at each wave number in the spectra associated to these quantities,
Edd(k, t) and Ee(k, t), respectively (see Fig. 13.8). The same observation holds
for the compressible pressure spectrum E pp(k, t).

(ii) The period of oscillation τ (k) depends on the wave number and is the same for
the three spectra at each wave number. The measured period corresponds almost
exactly with the one associated to acoustic waves:

τ (k) = π

ω(k)
, ωk ∼ ±a0k. (13.75)

At every wave number, it is found that the phase of oscillation of E pp(k, t) is in
advance those of Edd(k, t) and behind those of Ee(k, t) by a quarter of period.

A schematic view if the energy transfers associated to this régime is displayed in
Fig. 13.9.

http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Fig. 13.6 Computed time history of volume-averaged energies in forced compressible isotropic tur-
bulence. < ET

K >,< E R
K >,< EC

K > and < EI > are the full turbulent kinetic energy, solenoidal
kinetic energy, dilatational kinetic energy and internal energy, respectively. Since a source term is
present the mean internal energy undergoes a constant growth, and is split as the sum of a uni-
form part < EI >0 and a turbulent part < EI >1. Reproduced from Miura and Kida (1995) with
permission of AIP
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Fig. 13.7 Time histories of the volume-averaged budget terms for the dilatational turbulent kinetic
energy (a), the solenoidal turbulent kinetic energy (b) and the internal energy (c). Terms A, D and P
denote the advection, viscous diffusion and pressure terms, respectively. Reproduced from Miura
and Kida (1995) with permission of AIP

13.2.10 Noise Generation by Isotropic Turbulence: Lighthill
Analogy

13.2.10.1 Fundamentals and Governing Equations

We now address in a more detailed way the issue of the noise radiated by a volume of
fluid, V , filled by quasi-isentropic isotropic turbulence, including effects due to the
advection by an uniform mean flow with arbitrary Mach number. Such a case is an
example of one-way coupling, kinetic energy of the vorticity mode being transformed
into acoustic energy, without feedback. Since noise radiated by turbulence is at the
heart of aeroacoustic theories, the present section is devoted to its analysis. The theory
developed in the present Section can be interpreted as a first nonlinear statistical
extension of the nonlinear Kovasznay decomposition discussed in Sect. 3.2.3.

Lighthill’s theory (Lighthill 1952, 1954, 1961) aims at describing the far field
noise radiated by a flow, i.e. on the transfer of energy of vortical fluctuations to
acoustic modes. It is a seminal fully nonlinear theory, which does not rely on any

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Fig. 13.8 Time histories of the wave number spectra of dilatational turbulent kinetic energy (left),
internal energy (middle) and dilatational pressure (right). White (resp. dark) regions are regions
where the instantaneous spectrum coefficients are decreasing (resp. increasing) in time. Reproduced
from Miura and Kida (1995) with permission of AIP

Fig. 13.9 Detailed schematic view of mean energy exchanges in compressible isotropic turbulence
in the quasi-acoustic equilibrium state
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small parameter expansion. It has been extended to include the role of entropy modes
and immersed solid boundaries in noise generation. This theory relies on an analogy:
the flow is modeled by an equivalent set of acoustic sources localized in a bounded
volume embeded in a homogeneous medium at rest.

The first step consists of deriving an exact governing equation for acoustic wave
evolution, which will be simplified in a second step to get an analytical solution. To
this end, one subtracts the divergence of the momentum equation from the material
derivative of the mass conservation equation, leading to:

∂2ρ

∂t2
− ∇2 p = ∇ · ∇ · (ρu ⊗ u − �) , (13.76)

where � is related to viscous stresses. The D’Alembertian operator for wave prop-
agation appears when subtracting a2∞∇2ρ to both sides of the above equation:

∂2ρ

∂t2
− a2

∞∇2ρ = ∇ · ∇ · (ρu ⊗ u − �) + ∇2(p − a2
∞ρ), (13.77)

where a∞ is related to an arbitrary propagation speed for density waves. This equation
is an exact one. The left hand side describes wave propagation operator for acoustic
waves with speed of sound a∞, while the right hand side is interpreted as source
terms, i.e. as terms responsible for the existence of acoustic waves. An equivalent
equation for pressure waves was proposed by Morfey in 1973 and Lilley in 2008:

1

a2∞

∂2 p

∂t2
− ∇2 p = ∇ · ∇ · (ρu ⊗ u − �) − ∂2

∂t2

(
ρ − 1

a2∞
p

)
. (13.78)

Looking at this equation, one can see the Poisson equation (2.18) for pressure
obtained in the incompressible case is the asymptotic limit of the full equation when
the speed of sound is infinite, i.e. a2∞ → +∞.

Additional equivalent expressions have been proposed for other variables:
(p + ρu2/3) (Ffwocs Williams and Hawkings 1969), total enthalpy (h + u2/2)

(Howe 1975) or
[
(p/p∞)1/γ − 1

]
(Goldstein and He 2001). All these formulations

are mathematically equivalent, but each one is best suited to analyze some specific
features of noise generation or noise propagation.

Equation (13.77) is often modified to describe the propagation of density fluctu-
ations in a uniform quiescent fluid with temperature T∞, pressure p∞, density ρ∞
and speed of sound a∞ = √

γ p∞/ρ∞, leading to the following exact equation
(

∂2

∂t2 − a2∞∇2
)

(ρ − ρ∞) = ∇ · ∇ · (ρu ⊗ u + [
(p − p∞) − a2∞(ρ − ρ∞)

]
I − �

)
︸ ︷︷ ︸

T
(13.79)

The source term tensor T in the right-hand-side is referred to as the Lighthill tensor.
It is made of three parts, each part being associated to a specific noise generation
mechanism:

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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• ρu ⊗ u is related to acoustic wave generation by nonlinear self-interactions of
velocity fluctuations. Since Kovasznay decomposition shows that all modes con-
tribute to fluctuating velocity in viscous flows, this quadratic term accounts for all
possible interactions (including self-interactions) between vorticity, acoustic and
entropy modes.

• [
(p − p∞) − a2∞(ρ − ρ∞)

]
I accounts for local instantaneous heterogeneities of

pressure and density (and temperature, because of the equation of state). One can
see here that fluctuations of thermodynamical quantities may generate acoustic
waves, in agreement with the nonlinear Kovasznay decomposition discussed in
Sect. 3.2.3. Such fluctuations can originate in external forcings or in couplings
between entropy and the acoustic field, but also in intense turbulent vortical events.
This term is important in high temperature flows, but is often negligible in practical
applications if intense heat sources are not present.

• � is related to generation of acoustic waves by viscous effects. Such effects may
stem from different physical process, e.g. from temperature-induced viscosity
fluctuations.

13.2.10.2 Integral Solution

Exact analytical solutions to (13.79) may be found under the three following assump-
tions (see also Fig. 13.10):

(i) All acoustic sources are located in a finite bounded domain V , i.e. T is identically
null outside V .

V

(p∞, ρ∞, T∞, a∞

y

)

cU

θ

r

Fig. 13.10 Schematic view of the Lighthill analogy

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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(ii) The medium is homogeneous and at rest outside V . It is characterized by the
temperature T∞, the pressure p∞, the density ρ∞ and the speed of sound a∞ =√

γ p∞/ρ∞.
(iii) The observer is located at position x which is outside V .

An analytical solution of Eq. (13.79) is then obtained using the Green function of
the d’Alembertian operator in unbounded domain:

G(x, t) = 1

4πa2∞
δ

(
t − x

a∞

)
, (13.80)

where δ(t) denotes the Kronecker symbol and (t − x/a∞) is referred to as the
retarded time that accounts for the finite time needed by acoustic waves to travel
from the source to the observer at speed a∞. The solution is

ρ(x, t) − ρ∞ = 1

4πa2∞

∫
V

1

r

∂2Ti j

∂yi∂y j

(
y, t − r

a∞

)
d3 y, r = |r|. (13.81)

It can be simplified in several cases.
A first case is related to the far field approximation, in which the distance between

the observed and the source domain is very large compared to the characteristic size
of the source domain. In this case, one can write |x| � | y|, from which |x| � r and
therefore

ρ(x, t) − ρ∞ = 1

4πa2∞r

∫
V

∂2Ti j

∂yi∂y j

(
y, t − r

a∞

)
d3 y, r = |r|. (13.82)

Applying twice the Green formula to this expression, one obtains

ρ(x, t) − ρ∞ = 1

4πa2∞r

∫
S

∂Ti j

∂y j

(
y, t − r

a∞

)
ni d S

+ 1

4πa2∞r

∂

∂x j

∫
S

Ti j

(
y, t − r

a∞

)
n j d S

+ 1

4πa2∞r

∂2

∂xi∂x j

∫
V

Ti j

(
y, t − r

a∞

)
d3 y,

(13.83)

where S denotes the boundary of V and n is the outward normal unit vector to S.
When V is chosen to be large enough such that boundary terms vanish, the expression
dramatically simplifies to the third term of the right hand side.

An equivalent expression based on time derivatives instead of spatial derivatives
can be derived using the convection operator and the relation
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∂ fi ( y, t = τ )

∂yi
=

(
∂ fi

∂yi

)
τ

+ (xi − yi )

|x − y|
(

∂ fi

a∞∂τ

)
, τ = t − |x − y|

a∞
. (13.84)

The first term in the right hand side leads to surfacic integral terms (thanks to
the Green formula) that vanish when the source domain encompasses all acoustic
sources. Assuming that surfacic terms are null, one has

ρ(x, t) − ρ∞ = 1

4πa2∞r

∫
V

∂2Trr

∂t2

(
y, t − r

a∞

)
d3 y, r = |r|, Trr = xi x j

x2
Ti j

(13.85)
where Trr denotes the source in the direction of the observer. The expression based
on time derivates is observed to be much more accurate in practical applications than
the one based on spatial derivatives.

The solution can be further simplified assuming that the source is a compact
source, which holds when the size of the source domain is small compared with the
wavelength of the acoustic signal under consideration. In this case, it is possible to
neglect retarded time effects and to consider that the waves emitted by all sources at
a given time are received at the same time by the observer. Under this assumption,
the solution is expressed as follows

ρ(x, t) − ρ∞ = 1

4πa2∞r

∫
V

∂2Trr

∂t2

(
y, t − r0

a∞

)
d3 y (13.86)

where r0 is the mean value of the distance between the sources and the observer.

13.2.10.3 Sound and Pseudo-sound

Pressure fluctuations are not due to the sole acoustic mode, since vortical fluctuations
also generate pressure fluctuations. While acoustic waves propagate at the speed of
sound with respect to the fluid, hydrodynamic pressure fluctuations are advected at
local fluid velocity. Therefore, one must distinguish between acoustic and hydro-
dynamic pressure fluctuations. The former constitute the sound while the later are
responsible for the pseudo-sound, which is also received by the observer.

A theoretical and practical issue is to find a way to separate them in a fully general
and accurate way. By applying a time Fourier transform to (13.85), one can get a
deeper insight into the noise generation mechanisms. The resulting expression is

ρ̂(x,ω) = −exp(ıωx/a∞)

4πa4∞x
ω2T̂rr

(
k = ω

a∞
x
x

,ω

)
(13.87)

where the space-time Fourier transform is defined as

f̂ (k,ω) =
∫

f ( y, t)e−ı(k· y−ωt)d3 ydt. (13.88)
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This expression emphasizes the fact that acoustic fluctuations are associated to
the following dispersion relation

ω = ka∞, k = k
x
x

. (13.89)

All pairs (ω, k) that do not satisfy this dispersion law are not associated to acoustic
wave and therefore contribute to the pseudo-sound.

13.2.10.4 Application to the Noise Radiated by Isotropic Turbulence

This section is devoted to the analysis of the generation of noise by isotropic turbu-
lence using Lighthill’s analogy. For the sake of simplicity, the discussion is restricted
to the case in which the uniform mean velocity field can be written as ū = (Uc, 0, 0).

The far field radiated noise is described via the normalized pressure autocorrela-
tion function

Rpp(x, τ ) = 1

ρ∞a∞
(p(x, t) − p∞)(p(x, t + τ ) − p∞). (13.90)

The acoustic intensity is defined as I (x) = Rpp(x, 0). Reminding that consid-
ering the equation of state for a perfect gas the pressure fluctuations, the density
fluctuations and the entropy fluctuations are tied by the following relation

p′ = a2
∞ρ′ + p∞

cv

s ′ (13.91)

and considering cold flows in which entropy fluctuations are negligible, one obtains
p′ = a2∞ρ′. In this case, one can also describe radiated sound in an equivalent way
using the density autocorrelation function:

Rρρ(x, τ ) = 1

ρ∞a−3∞
(ρ(x, t) − ρ∞)(ρ(x, t + τ ) − ρ∞). (13.92)

Also assuming that the Reynolds number is large and that the viscous acoustic
source terms can be neglected, along with density fluctuations, the Lighthill source
term simplifies as

Ti j � ρ∞ui u j . (13.93)

It is worth noting that using this simplification, the problem is now formally
similar to the one of modeling the pressure in incompressible isotropic turbulence
discussed in Sect. 4.9, the main difference being the change from the Green function
of the Laplacian operator in the incompressible case to the one of the d’Alembertian
operator in the compressible case with a finite speed of sound. Now using Eq. (13.85),
one obtains the following far field approximation

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Rρρ(x, τ ) = ρ∞xi x j xk xl

16π2a5∞x6

∫∫
V

∂2

∂t2
ui u j ( y′, t ′)

∂2

∂t2
ui u j ( y′′, t ′′)d3 y′d3 y′′ (13.94)

with

t ′ = t − |x − y′′|
a∞

, t ′′ = t − |x − y′′|
a∞

+ τ . (13.95)

For a statistically steady flow, the following equivalent expression can be used

Rρρ(x, τ ) = A
x2

∂4

∂τ 4

∫∫∫
V

Di jklRi jkl( y, ζ, t)δ

(
t − τ − y · ζ

xa∞

)
d3 yd3ζdt,

(13.96)
where the directivity tensorDi jkl , the amplitude factor A and the two-time two-point
fourth-order velocity correlation tensor Ri jkl are expressed as

A = 1

16π2a5∞ρ∞
, Di jkl = xi x j xk xl

x4
(13.97)

and

Ri jkl

(
y, ζ, τ + y · ζ

xa∞

)
≈ Ti j

(
y, t − |x − y|

a∞

)
Tkl

(
y + ζ, t − |x − y|

a∞
+ τ

)

(13.98)
where the Fraunhofer approximation for retarded time is used:

t − |x − y|
a∞

� t − x

a∞
+ x · y

xa∞
. (13.99)

13.2.10.5 Effects Due to the Advection by the Mean Flow

To further refine the analysis one must account for the advection of the turbulent
fluctuations/sources by the mean flow. For the sake of simplicity, we restrict ourselves
to the case in which all fluctuations are advected at the same uniform speed Ucex . Now
writing the problem in a frame of reference moving with the large scale fluctuations,
one has (FfwocsWilliams 1963):

Rρρ(x, τ ) = A
x2

1

C5

∫∫∫
V

Di jkl
∂4

∂t4
Ri jkl( y, ξ, t)δ

(
t − τ

C

)
d3 yd3ξdt (13.100)

with
Ri jkl ( y, ζ, t) = Ri jkl( y, ζ − Uctex , t) = Ri jkl( y, ξ, t). (13.101)
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The Doppler factor is given by:

C = C(Mc, θ) =
√

(1 − Mc cos θ)2 + α2 M2
c (13.102)

where Mc = Uc/a∞ is referred to as the convective Mach number defined as the
ratio between the advection speed of energetic turbulent large scales and the speed
of sound, θ is the angle between the direction of the mean velocity field, ex , and the
direction of the observer seen from the source, r = x − y, and

α2 M2
c = 4πL2

u

τ 2
u a2∞

. (13.103)

Here, Lu and τu denote an integral length scale and integral time scale of turbu-
lence, respectively.

Equation (13.100) shows that the Doppler C(Mc, θ) has a very strong influence
on the far field radiated noise, since radiated acoustic intensity scales as 1/C5. This
factor introduces non-uniform directivity, i.e. the radiated acoustic intensity depends
on the angle θ.

The advection of turbulent sources at speed Uc also induces another phenomenon:
the range of scales that contribute to far field acoustic field also depends on θ.
This can be understood reminding that acoustic waves received by the observer
are characterized by the dispersion relation ω = a∞k, which defines the sonic line
in Fig. 13.11. In spectral space, a non-zero advection velocity Uc leads to the fact
that the Lighthill source term is maximum when ω = k · Ucex = kUc cos θ, where
Uc cos θ is the advection speed of fluctuations seen by the observer.

This relation defines the convection line in Fig. 13.11, on which T̂rr (k,ω) is
centered.

Therefore, fluctuations that will contribute to the acoustic intensity measured by
the observer are those that fulfill both relations at the same time, i.e. when the advec-
tion speed seen by the observer is equal to the speed of sound. From a geometrical
standpoint, the part of T̂rr (k,ω) that efficiently contributes to the far field noise is
the one located close to the sonic line in the wavenumber-frequency plane (k,ω), as
illustrated in Fig. 13.11.

One may distinguish between two cases:

• The subsonic case (i.e. Uc < a∞): the convection line is always located under the
sonic line. For all values of θ, radiating sources are mainly large scale turbulent
structures and the radiated noise will exhibit a very strong low-frequency compo-
nent. The maximum contribution of small scale turbulent motion is observed for
θ = π/2.

• The supersonic case (i.e. Uc ≥ a∞): the convection line is above the sonic line for
θ = π/2. For small values of the angle θ, only large scale coherent fluctuations
contribute to the far field noise, in a similar way to the subsonic case. But there
exist a critical angle θ0 such that cos θ0 = 1/Mc for which the convection line and
the sonic line are identical. In this case, all coherent turbulent fluctuations at all
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Fig. 13.11 Analysis of the radiated noise in the case where turbulent fluctuations are advocated
at the uniform speed Uc with respect to the observer. Top: subsonic case (Uc < a∞); Middle:
supersonic case (Uc ≥ a∞) at an angle far from the critical angle θ0; Bottom: supersonic case
(Uc ≥ a∞) at an angle close to the critical angle θ � θ0
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scales efficiently radiate acoustic waves, leading to a broadening of the spectrum
of the radiated noise. The radiated waves are referred to as Mach waves. This also
holds for θ ∼ θ0, with a maximum acoustic radiation at angle θ0. The directivity
phenomenon is more important in the supersonic case than in the subsonic case.

13.2.10.6 Modelling of Turbulent Self-noise

It is necessary to model the fourth-order velocity correlation tensor Ri jkl( y, ξ, t) to
obtain a fully explicit expression for the radiated noise. The model retained here
is exactly the same as for the evaluation of the pressure in the incompressible case
discussed in Sect. 4.9. Thanks to the Quasi-Normal hypothesis, the fourth-order cor-
relations are expressed as a combination of two-point two-time second-order corre-
lations. The latter are modeled using the local isotropy hypothesis and also on the
assumptions that the flow is statistically steady and that space and time variable can
be separated, yielding

Ri j ( y, ξ, τ ) = 2

3
K

([
f + 1

2
ξ

d f

dξ

]
δi j − 1

2

d f

dξ

ξiξ j

ξ2

)
G(τ ), (13.104)

where K denotes the turbulent kinetic energy, f is the longitudinal velocity corre-
lation function and G(τ ) is the velocity time autocorrelation function. It must be
emphasized that both f and G are unknown functions, which are open research top-
ics. To obtain a closed reliable expression, it is often assumed that f is a Gaussian
function (Ribner 1963):

f (ξ) = e−πξ2/L2
u (13.105)

where Lu is the integral length scale of turbulence. Several expressions have been
proposed for G(τ ), among which

G(τ ) =
{

e−4π2τ 2/τ 2
u (Ribner 1963)

1
cosh(2πβτ/τu)

(Bailly et al. 1997)
(13.106)

where τu denotes the integral time scale of turbulence and β ∼ 2/5 looking at exper-
imental data. It is worth noting that more complex models for space-time velocity
correlations Ri j ( y, ξ, τ ) might be used to evaluate the noise source term, starting
from the space-time correlation models discussed in Sects. 4.3.4, 4.3.5 and 13.2.7,
but more complex models would prevent a complete analytical integration.

The analytical analysis can be further continued assuming that all statistical quan-
tities related to the turbulent field are uniform in a domain whose volume is equal
to L3

u . Under that assumption the integration with respect to ξ can be performed
analytically, yielding the following expression for acoustic intensity:

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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I (x) = Aρ2∞
x2

∫
V

2L6K2

9
√

2C5

d4G2

dτ 4
(0)d3 y

︸ ︷︷ ︸
self noise

. (13.107)

Dimensional analysis yields the following scaling laws:

I (x) ∝ a3∞
ρ∞

ρ2
∞

(√K
a∞

)8 (
Lu

r

)2

= ρ∞M5
t

√
K3

(
Lu

r

)2

(13.108)

where Mt = √K/a∞ is the turbulent Mach number.
Providing an analytical model for G(τ ) also enables to obtain an expression for

the radiated acoustic pressure spectrum. Applying the Fourier transform to (13.100),
it comes:

R̂ρρ(x,ω) = A
x2

∫
V

Ŝself( y,ω)d y (13.109)

where, according to Bailly’s formula for G(τ )

Ŝself( y,ω) = 4ρ2∞L3K2

9
√

2βτu

ω4 Cωτu/4β

sinh(Cωτu/4β)
. (13.110)

This model is very accurate for subsonic mean flows. Its accuracy diminishes
for θ ∈ [π/2,π], i.e. to predict the radiated acoustic intensity in the downstream
direction when Mc is close or larger than 1. The main reason for that loss of accuracy
is that the Lighthill analogy relies on the hypothesis that acoustic waves propagate in
a medium at rest, which is unrealistic is this case. Another weakness is also observed
in the supersonic case Mc > 1: for θ close to θ0, further refined hypotheses must be
used to account for Mach wave radiations. A last weakness is that the model does
not account for the possible existence of shock waves.

13.2.11 Noise Scattering by Isotropic Turbulence

Wave propagation across random and/or turbulent media has been investigated by
many authors (e.g. see Tatarski 1967 for a detailed discussion including electromag-
netic waves), sound propagation across turbulence being among the most addressed
issue. The emphasis is put below on Howe’s theory (Howe 1973), which accounts
for (i) scattering of sound by spatial fluctuations of turbulence, (ii) spectral broad-
ening of turbulence, also referred to as turbulent diffusion of sound induced by time
fluctuations of turbulent eddies and (iii) the net transfer of energy from the acoustic
field to turbulence.

These phenomena represent new couplings between vortical and acoustic modes.
Here, acoustic waves are not generated by turbulence, but they propagate across a
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volume filled by isotropic vortical turbulence.11 This phenomena can be modeled via
the Lighthill analogy (Lighthill 1953; Ford and Meecham 1960), considering that
velocity, pressure and density fields that appear in the right-hand side of Eqs. (13.79)
and (13.81) come from the sum of the contributions of the base flow and the propagat-
ing acoustic field. Lighthill’s theory for acoustic wave scattering by vortical events
is another nonlinear statistical extension of the nonlinear Kovasznay decomposition
discussed in Sect. 3.2.3.

13.2.11.1 Lighthill Modelling

Restricting the analysis to a quasi-isentropic turbulence, the main effects arise in
the quadratic velocity terms, as for the noise production phenomena. Therefore, the
Lighthill tensor can be written as

Ti j = ρ0(ui + vi )(u j + v j ) (13.111)

where ρ0, u and v denote the base flow density, the turbulent vortical velocity field
and the acoustic wave velocity field, respectively. Quadrupolar source terms ρui u j

and ρviv j are related to the production of noise by self-interactions of turbulence
independently from the propagating acoustic wave (see the preceding section) and
self-modification of the sound wave due to finite amplitude effects, respectively. The
sound scattering by turbulence is related to cross-terms which can be referred to as
scattering quadrupoles. The associated Lighthill tensor considered hereafter is given
by

Ti j = ρ0(uiv j + u jvi ) (13.112)

which can be further refined splitting the turbulent velocity field into its mean and
fluctuating components, ui = ūi + u′

i :

Ti j = ρ0(ūiv j + ū jvi ) + ρ0(u
′
iv j + u′

jvi ) = T̄i j + T ′
i j . (13.113)

The two components T̄i j and T ′
i j are related to refraction by the mean flow and

refraction by turbulent fluctuations, respectively. In isotropic turbulence, one has
T̄i j = 0.

13.2.11.2 Howe’s Theory for Turbulent Multiple Scattering

The associated evolution equation for the density fluctuations associated to the prop-
agating acoustic wave used by Howe is

11Self-sound generated by turbulence and incident sound are assumed to have very different fre-
quency domains. As a matter of fact, the typical frequency of aerodynamic turbulent self-sound is
∼ u′/L , with L the turbulent integral scale, and its wavelength is about L/M , where M = u′/a∞
denotes the turbulent Mach number.

http://dx.doi.org/10.1007/978-3-319-73162-9_3


13.2 Quasi-isentropic Turbulent Régime 661

(
1

a2∞

∂2

∂t2
− ∇2

)
ρ′ = 2ρ∞

a2∞

∂2

∂x j∂x j
(u′

iv j ) + u′
i u

′
j

a2∞

∂2ρ′

∂x j∂x j
, (13.114)

where the term related to noise generation has been omitted and the second order
approximation u′

i u
′
jρ

′ ∼ u′
i u

′
jρ

′ has been used. Based on that equation and using a
two-scale decomposition, Howe derived a Lin-type (kinetic) equation for the spec-
trum β(k,ω) of the Fourier coefficients of the incident acoustic field. This two-scale
approach is based on the observation that when acoustic waves propagate across a
random medium, non-propagating disturbances are generated whose typical length
scale is of the order of the correlation length of the random medium, which is very
different from the incident noise wavelength. These fluctuations are correlated with
random medium/vortical turbulence fluctuations.

Assuming that
β(k,ω) = E(k)δ(k2 − ω2/a2

∞) (13.115)

the Lin-like equation reads

(
∂

∂t
+ a∞ k̂ · ∇x

)
E(k) = 4π

a∞k2

∫ +∞

−∞

∫
(k · p)2

p2
ki k j R̂i j (k − p, a∞k − ω)

× [
kE( p) − pE(k)

]
δ(k2 − ω2/a2

∞)d3 pdω,

(13.116)

where k̂ = k/k and R̂i j (k,ω) is related to the wave number-frequency spectral cor-
relation tensor of the vortical turbulent fluctuations. It is important to notice that this
term frequency-dependent, being interchanges of energy between the acoustic field
and the ambient turbulent field can occur. As a consequence, it is not possible to
derive an acoustic energy conservation equation in the general case.

The integro-differential equation (13.116) can be simplified to get a diffusion
equation, restricting the analysis to short acoustic waves such that Lk/M � 1. For
such waves, the right hand side term in (13.116) can be approximated observing that
only terms involving E(k, a∞(k − p)) will have significant contributions. Expanding
the remaining terms about p = k, one obtains after cumbersome algebra:

(
∂

∂t
+ a∞

∂

∂x‖

)
E(k) = −12Lu′2

a∞�2
E(k)

︸ ︷︷ ︸
transfer

+ 12Lku′2

a∞�2

∂

∂k‖
E(k)

︸ ︷︷ ︸
spectral drift

+ 2Lk2u′2

a∞�2

∂2

∂k2
‖
E(k)

︸ ︷︷ ︸
broadening

+ k2u′2

2a∞�
∇2

⊥E(k)

︸ ︷︷ ︸
scattering

,

(13.117)
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where � is the turbulence lengthscale defined as

1

�
= π

2u′2

∫ +∞

0
k E(k)dk

and parallel and perpendicular components are defined with respect to k. The length-
scale � = a∞τ is related to the two-point correlation time τ which is such that the
two-point two-time kinetic energy spectrum of turbulence is given by

E(k,ω → 0) = τ

2
√

π
E(k)e−ω2τ 2/4. (13.118)

The first term in the right hand side of Eq. (13.117) is negative. It represents the
transfer of kinetic energy from acoustic waves to vortical turbulence. The second term
is related to a steady drift in wavenumber space in the direction of k. The last two terms
represent the diffusion of acoustic energy in wavenumber space. The coefficient of the
first one (parallel diffusion) vanishes in the case of frozen turbulence, i.e. when � →
+∞. This term is associated to length dilatation of k, i.e. for the spectral broadening
of the acoustic spectrum. The second term, related to perpendicular second-order
derivatives, describes rotation of vectors in the wavenumber space, i.e. scattering of
acoustic waves.

13.2.11.3 Single Scattering Asymptotics

The previous theory is referred to as a multiple scattering theory, since it does not rely
on any assumption about the loss of coherence of the acoustic waves due to scattering
effects. This theory can be simplified if the characteristic size of the volume occupied
by turbulence and the correlation scale of inhomogeneities are small compared to the
acoustic wave length and that the amplitude of the turbulent fluctuations are small
enough. In this case, the coherence of the acoustic waves is preserved, and a single
scattering theory can be used (Lighthill 1953; Ford and Meecham 1960).

A first way to simplify multiple scattering theory is to assume that temporal
variations of vortical fluctuations are negligible during the time of passage of an
incident acoustic wave, leading to the use of the frozen turbulence hypothesis. In that
case, one has R̂i j (k,ω) = R̂i j (k)δ(ω) and Eq. (13.116) simplifies as

(
∂

∂t
+ a∞ k̂ · ∇x

)
E(k) = 4π

a∞k3

∫
(k · p)2ki k j R̂i j (k − p)

× [E( p) − E(k)
]
δ(p2 − k2)d3 p.

(13.119)

The symmetry of the integrand in the right hand side shows that acoustic energy
is now conserved, while it is not in the general case.
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Single scattering allows for a deeper analytical analysis. Considering an acoustic
beam made of a wave packet of wavenumber k0, one has

d

dt
E(k0) = 4π

a∞k3
0

∫
(k0 · p)2k0 i k0 j R̂i j (k0 − p)

× [E( p) − E(k0)
]
δ(p2 − k2

0)d
3 p. (13.120)

The acoustic energy is mostly concentrated at wave vector k0 at initial time.
Therefore one can assume that E( p) � E(k0) if p 	= k0, leading to

d

dt
E(k0) = −a∞�E(k0), (13.121)

where the fraction of energy of the incident wave lost per unit length traversed by
the wave packet, �, is given by

� = 4π

a∞k3
0

∫
(k0 · p)2k0 i k0 j R̂i j (k0 − p)δ(p2 − k2

0)d
3 p. (13.122)

This approximation is accurate if the acoustic wavelength is long compared with
the integral scale of turbulence.

The scattered field is recovered considering wave vectors k 	= k0. For small prop-
agation distances the dominant contribution in the integrand comes from the part of
E(k) due to incident waves, leading to

(
∂

∂t
+ a∞ k̂ · ∇x

)
E(k) = 2π I0

a∞k4
0

(k0 · k)2ki k j R̂i j (k − k0)δ(k − k0) (13.123)

where I0 is such that the acoustic beam spectrum is given by

E(k) = I0δ(k − k0). (13.124)

The latter formula yields an unbounded growth of the scattered field, which is
not physical for long propagation distances. As a consequence, this approximation
is not relevant for high frequency/short wave length acoustic waves. In the limit of
high frequencies, the multiple scattering theory is found to be consistent with the
theory of geometrical acoustics, which is beyond the scope of the present book. More
results originating in the single scattering theory can be found, e.g. Lighthill (1953),
Ford and Meecham (1960), which will not be given here for the sake of brevity.
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13.3 Low-Mach Thermal Régimes

The analysis of the quasi-acoustic régime presented above relies on the assumption
that the density and the temperature fluctuations are governed by acoustic waves. This
analysis can be extended by considering flows in which the density and temperature
fluctuations are much larger than those induced by the acoustic fluctuations. In such
flows, the asymptotic analysis presented in the preceding section is no longer valid
and must be extended to describe the low-Mach thermal régime.

13.3.1 Asymptotic Analysis and Possible Thermal Régimes

The low-Mach thermal régime has been investigated by several authors, who pro-
posed leading-order compressible corrections to the true incompressible Navier–
Stokes equations. The discussion presented below put the emphasis on the results of
Bayly and coworkers (1992) and Zank and Matthaeus (1990, 1991).

The complexity of the problem is easily understood recalling that the incompress-
ible Navier–Stokes dynamics is recovered as the limit of the compressible Navier–
Stokes equations when two small parameters are taken equal to zero: a first one, δ,
related to the ratio of the fluid velocity about the speed of sound (i.e. a characteristic
Mach number) and a second one, δ′, related to ratio of thermal energy scales. There-
fore, the problem of the relative size of these two small parameters arise when the
leading-order correction to the incompressible Navier–Stokes equations is sought.
Let us anticipate the discussion given below to say that several régimes can be
obtained, depending on the ratio of these two control parameters.

The first step consists in non-dimensionalizing the full compressible Navier–
Stokes equations and introducing the two small parameters. The resulting system is
Bayly et al. (1992):

∂ρ

∂t
+ ∇ · (ρu) = 0, (13.125)

ρ

(
∂u
∂t

+ u · ∇u
)

= − 1

δ2
∇ p + 1

Re
∇ · � +ρ f , (13.126)

ρcp

(
∂T

∂t
+ u · ∇T

)
= σαT

(
∂ p

∂t
+ u · ∇ p

)
+ 1

2

δ2

Re
� : �

+ 1

RePr
∇ · (κ∇T ) + δ′ρq, (13.127)

where Re = Lr urρr/μr and Pr = μr cp/κr are the Reynolds number and Prandtl
number, respectively. α denotes the thermal expansion parameter, and σ ≡ Trαr .
The subscript r is related to reference scales. The system is supplemented by the
perfect gas law (3.4). The characteristic speed ur is associated to fluid velocity, and a

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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reference thermal speed vr = √
cpTr is introduced. The reference pressure is defined

as pr = ρrv
2
r . Here, q is a non-dimensional thermal forcing term which accounts for

the presence of heat sources/sinks in the flow (e.g. reactive flows). The two small
parameters are defined as follows

δ ≡ ur

vr
= √

γ − 1Mr , δ′ ≡ qr

v2
r

(13.128)

where Mr = ur/ar is the usual reference Mach number and qr is a characteristic heat
production scale.

The existence of these two scaling parameters yields a formal double expansion
problem, whose treatment is cumbersome. The avoid such a complex development,
Bayly and coworkers set δ′ = δ2/ l where l is a positive integer. Using this relationship,
all dynamic quantities are expanded in asymptotic series of the form (here expressed
for a dummy variable φ):

φ = φ(0) + δ2/ lφ(1) + δ4/ lφ(2) + .... (13.129)

Assuming that the fluid fluctuates close to the reference state, the zeroth-order
terms for density and temperature must have their values for that state, yielding
ρ(0) = T (0) = 1. An immediate consequence of the perfect gas law is that the zeroth-
order pressure term p(0) also corresponds to a uniform field. Therefore, the leading
order fluctuating field which accounts for the weak compressible thermal turbulence
is made of u(0), ρ(1), T (1) and p(1).

Two cases can be defined, which correspond to different thermal régimes:

(i) Relatively small external heating with respect to both the viscous heating and the
pressure-induced temperature fluctuations: l = 1. In this case, the lowest-order
nontrivial equations are

∇ · u(0) = 0, (13.130)

∂u(0)

∂t
+ u(0) · ∇u(0) = −∇ p(1) + 1

Re
∇2u(0), (13.131)

∂T (1)

∂t
+ u(0) · ∇T (1) = σ

(
∂ p(1)

∂t
+ u(0) · ∇ p(1)

)
+ 1

2Re
�(0) : �(0)

+ 1

RePr
∇2T (1) + q, (13.132)

supplemented by the linearized equation of state

p(1) = γ − 1

γ

(
ρ(1) + T (1)

)
. (13.133)
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These equations must be interpreted as the incompressible Navier–Stokes equa-
tions for u(0) and p(1) supplemented by a passive scalar equation for T (1) with
several source terms. Therefore, the fluctuating pressure is completely deter-
mined up to an additive function of time through the relation

∇2 p(1) = −∇ · ∇ · (u(0)u(0)) + ∇ · f (13.134)

The time evolution of the density perturbation is deduced from Eqs. (13.132)–
(13.134).

(ii) Strong external heating: l ≥ 2. In this case, the lowest-order non-trivial system
is

∇ · u(0) = 0, (13.135)

∂u(0)

∂t
+ u(0) · ∇u(0) = −∇ p(l) + 1

Re
∇2u(0), (13.136)

∂T (1)

∂t
+ u(0) · ∇T (1) = 1

RePr
∇2T (1) + q, (13.137)

and
ρ(1) + T (1) = 0. (13.138)

The leading-order pressure fluctuation is given by

∇2 p(l) = −∇ · ∇ · (u(0)u(0)). (13.139)

Here again the system appears to be composed of the incompressible Navier–
Stokes equations supplemented by a passive scalar equation. The latter is simpler
than in the weak heating case, since pressure-induced and viscous dissipation
induced temperature fluctuations are now negligible. An important difference
with the previous case is that the density fluctuations are now totally enslaved to
the temperature fluctuations, and are anti-correlated.

These developments are consistent with the presence of acoustic modes of order
δ2. The first dilatational correction to the velocity field is u(1).

13.3.2 Statistical Equilibrium States

We now discuss the features of the statistical equilibrium states associated with the
two weakly compressible thermal models discussed above. For these models, no
exact analytical solutions can be found, and the analysis will be restricted to the
properties of the inertial ranges of the spectra of the fluctuating quantities in a fully
developed turbulent isotropic flow. In both cases, the kinetic energy spectrum and
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the pressure spectrum are expected to be the same as in incompressible isotropic
turbulent flows. Corresponding inertial range scalings are Ess(k) ∝ k−5/3 for the
former and E pp(k) ∝ k−7/3 for the latter.

In the strong heating case, the temperature fluctuations obey the passive scalar
equation. Assuming that the external heating acts at relatively large scales and
neglecting conduction effects, one obtains the usual scaling law for the tempera-
ture spectrum ET T (k) ∝ k−5/3. Since the density and temperature fluctuations are
anticorrelated, they have the same spectrum, yielding Eρρ(k) ∝ k−5/3.

In the weak heating case, it must be remembered that entropy behaves as a passive
scalar and therefore exhibits the usual scaling law in the inertial range Es(k) ∝ k−5/3.
The leading-order entropy fluctuation is given by

s(1) = T (1) − p(1). (13.140)

Comparing the spectral slopes of the entropy spectrum and the pressure spectrum,
one can see that the temperature fluctuations must overwhelm the pressure fluctu-
ations at small scales to recover a −5/3 slope for the entropy spectrum, leading to
ET T (k) ∝ k−5/3 As a consequence, in the inertial range, density fluctuations will
also be governed by temperature fluctuations, leading to Eρρ(k) ∝ k−5/3.

It is seen that both régimes lead to the same scaling laws for the inertial range
spectra. But it is worth noting that these scaling laws differ from those obtained for
a quasi-isentropic flow, in which Eρρ(k) ∝ k−7/3.

13.3.3 Numerical Observations

The existence of the different régimes and the related turbulent statistical equilibrium
states predicted by the theoretical analysis have been checked through numerical
experiments (Bayly et al. 1992; Cai et al. 1997).

The main observations are summarized below

(i) Both weak (l = 1) and strong (l = 2) external heating régimes can be repro-
duced in numerical simulations, and are stable if consistent initial conditions
are prescribed.

(ii) The anti-correlation between density and pressure fluctuations is observed for
almost incompressible initial conditions (χ(0) = 0) at relatively low initial tur-
bulent Mach numbers (Mt ≤ 0.3). In other cases, the growth of the acoustic
mode scrambles the correlation.

(iii) In freely decaying turbulence with consistent initial conditions, the asymptotic
régime, i.e. the value of l at the final stage of the simulation, depends on the
Prandtl number. For low values of the Prandtl (Pr ≤ 1) the density fluctuations
are observed to decay until the l = 1 régime is encountered. For larger values
of the Prandtl number, states with l ≥ 2 are observed.
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(iv) If initial conditions are not fully consistent with the governing equations, the
pressure fluctuations are observed to grow very quickly, corresponding to a
transfer of internal energy toward acoustic energy. The weakly compressible
thermal régimes are then observed to bifurcate toward the pseudo-acoustic or
the nonlinear subsonic régimes.

(v) Despite it was derived neglecting heat conduction effect, the weak equilibrium
relation F(t) = 1 (in which is defined according to Eq. (13.33)) is observed to
hold in simulations with large initial temperature fluctuations after a short tran-
sient phase. But the oscillations of F about 1 are much larger than in simulations
with pseudo-acoustic initial conditions.

13.3.4 Isotropic Turbulence with Frictional Heating

A case of low-Mach number isotropic turbulence with a first coupling between turbu-
lent kinetic energy and internal energy is isotropic turbulence with frictional heating
(De Marinis et al. 2013; Bos 2014; Bos et al. 2015), in which turbulent dissipation of
kinetic energy is retained as a source term in the temperature equation, but without
feedback on the momentum equation. In this one-way coupling problem the dynam-
ics the velocity field is assumed to be strictly incompressible and independent from
the temperature field. Therefore, its dynamics is identical to the one described in
Chap. 4. The turbulent frictional heating mechanisms addressed here correspond to
the generation of entropy by vorticity mode self-interactions in Kovasznay’s weakly
non linear theory, see Sect. 3.2.3.

The temperature (or equivalently internal energy) equation (13.127) is now

∂T

∂t
+ ui

∂T

∂xi
= κ

∂2T

∂xi∂xi
+ ν

cp

(
∂ui

∂x j

∂ui

∂x j
+ ∂ui

∂x j

∂u j

∂xi

)
, (13.141)

and the associated relations for the mean temperature T̄ and temperature fluctuation
variance T ′T ′ in the isotropic case are

∂T̄

∂t
= ν

cp

∂ui

∂x j

∂ui

∂x j
= ε

cp
, (13.142)

∂T ′T ′

∂t
= −2κ

∂T ′

∂xi

∂T ′

∂xi
+ 2

ν

cp

(
T ′ ∂ui

∂x j

∂ui

∂x j
+ T ′ε′

)
, (13.143)

where the local instantaneous fluctuation of dissipation ε′ is defined as

ε′ ≡ ∂ui

∂x j

∂u j

∂xi
− ∂ui

∂x j

∂u j

∂xi
.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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The temperature spectrum ET T (k, t) such that the temperature variance and the
rate of dissipation of the temperature variance are defined as

T ′T ′(t) =
∫ +∞

0
ET T (k, t)dk, εT (t) = 2κ

∫ +∞

0
k2 ET T (k, t)dk, (13.144)

is solution of the following Lin-like equation, which is straightforwardly derived
from the equation for T ′:

(
∂

∂t
+ 2κk2

)
ET T (k, t) = PT (k, t) + TT (k, t), (13.145)

where PT (k, t) and TT (k, t) denote the spectra of the frictional heating term and
the convection-induced transfers, respectively. Both EDQNM and classical differen-
tial closures have been proposed for these two terms. While both approaches yield
satisfactory results for the later, it is observed that EDQNM and other Gaussian-
approximation-based approaches are not able to accurately account for frictional
heating. This is due to the fact that, as seen in Eq. (13.143), the frictional heating
originates in the correlation between fluctuations of temperature and fluctuations of
dissipation. The later is known to exhibit a strong intermittency and therefore a large
departure from Gaussianity. Therefore, a non-Gaussian model for this term should
be used to recover a physical behavior. Numerical experiments show that other terms
can be modeled in a classical way, i.e. by classical EDQNM or differential models.

Such a non-Gaussian model is proposed in Bos et al. (2015), in which the pro-
duction spectrum is made proportional to the spectrum of fluctuations of dissipation
Eε′(k, t) and a time scale τ (k):

PT (k, t) = 1

c2
p

τ (k)Eε′(k, t). (13.146)

The latter stems from the combination of the correlation time of temperature
fluctuations along a Lagrangian trajectory and the correlation time of the fluctuations
of the dissipation rate. Since the correlation is mostly governed by large scales, it is
relevant to use

τ (k) ∼ ε−1/3k−2/3(kL)α, (13.147)

with L being the integral scale. For α = 0 and α = 2/3, one recovers the usual
Lagrangian time scale of the Kolmogorov inertial range theory and the integral time
scale, respectively. The non-Gaussian model for dissipation rate proposed by Yaglom
yields12

12The Kolmogorov theory would yield the inaccurate expression

Eε′ (k, t) ∼ ν2ε4/3k5/3.
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Eε′(k, t) ∼ ε2(t)L(kL)−1+μ (13.148)

where 0.2 < μ < 0.5 is an intermittency parameter. Explicit expression of the tem-
perature spectrum in different steady-state equilibrium cases and associated statistics
can be obtained using the following differential model for TT (k, t), which has been
observed to yield accurate results in many incompressible thermal isotropic turbu-
lence configurations:

TT (k) = ∂

∂k

(
ET T (k)

√
k5 E(k)

)
. (13.149)

Considering inertio-convective range in which viscous diffusion can be neglected,
one has TT (k) = PT (k, t), leading to

ET T (k) ∼ ε−1/3k−5/3
∫ k

1/L
PT (p)dp = ε4/3L2/3k−5/3

c2
p

(
(kL)μ+α−2/3 − 1

)
.

(13.150)
The associated scalings for the temperature variance and the destruction rate of

the temperature variance are respectively

T ′T ′ ∼
∫ 1/η

1/L
ET T (k)dk ∼

{
εν/c2

p (α = 0)

(εL)4/3/c2
p (α = 2/3)

(13.151)

and

εT ∼
∫ 1/η

1/L
PT (k)dk ∼

{
ε5/3 L2/3/c2

p (α = 0)

ε5/3 L2/3 Re3μ/4
L /c2

p (α = 2/3).
(13.152)

DNS results at moderate Reynolds numbers show that the combination with α =
2/3 and μ = 0.37 yields an accurate model, but Finite Reynolds effects do not allow
to conclude that α = 0 should be discarded. But they clearly show that this non-
Gaussian model is much more accurate than Gaussian ones, which totally fail to
predict the inertial range behavior.

13.4 Nonlinear Subsonic Régimes

The two régimes discussed in Sects. 13.2 and 13.3 are expected to occur in the
limit of nearly incompressible turbulence, i.e. Mt � 1. For turbulent Mach numbers
lesser than unity but not negligible, Mt can no longer be used as a small parameter.
Therefore, asymptotic analyses presented above are theoretically no longer valid,
since one expects that the non-linearities arising from the convective terms will
play a major role. Numerical simulations performed for both freely decaying and
solenoidally forced isotropic turbulence show that two subsonic régimes may occur.
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In the first one, corresponding to Mt ≤ 0.3 − 0.4, dilatational effects are very small
and the flow is very similar to low-Mach régimes discussed above. For larger values
of Mt compressibility plays an very significant role. As a matter of fact, numerical
simulations show that very small shocks, referred to as shocklets or eddy-shocklets
develop.

13.4.1 A General View at the Nonlinear Subsonic Case

The occurence of the two nonlinear subsonic régimes in forced isotropic turbulence
has been studied recently via Direct Numerical Simulation by Donzis and cowork-
ers (2013), Jagannathan and Donzis (2016). Performing a set of simulations for a
wide range of Reλ (up to Reλ = 410) and Mt (up to Mt = 0.6) with high resolu-
tion simulations with up to 20483 grid points, these authors have provided the most
detailed results presently available in the open literature. Since forced turbulence
reaches a statistically steady state that is nearly independent from the initial con-
ditions, these results provide a very useful insight into compressibility effects on
turbulence. Of course, they are sensitive on the forcing term used to sustain turbu-
lence. Solenoidal forcing terms are used by most authors, since they are expected to
give rise to compressibility effects induced by the sole nonlinear turbulence dynam-
ics. Much stronger compressibility effects, including occurence of large-scale shock
waves may be obtained if a non-solenoidal forcing is used, e.g. in Wang et al. (2013)
where 1/3 of the energy is injected in u′

d . Such results will be discussed in the section
devoted to the supersonic régime.

A first result is that the classical turbulent scaling laws between characteristic
scales are the same as for incompressible turbulence, e.g.

η ≡
(

μ̄3

ρ̄2ε̄

)1/4

∝ λRe−1/2
λ ∝ L Re−3/2

λ , uη ≡
(

μ̄ε̄

ρ̄2

)1/4

∝ u′ Re−1/2
λ ,

at all considered Mt .
While the perfect gas law holds for instantaneous quantities, it must be sup-

plemented by turbulent contributions when addressing the mean flow quantities.
Applying Reynolds averaging, one obtains

p̄

Rρ̄T̄
= 1 + ρ′T ′

ρ̄T̄
= 1 + ρ�T �, ρ� = ρ′/ρ̄, T � = T ′/T̄ (13.153)

which can be fitted as

p̄

Rρ̄T̄
� 1 +

(
Mt

1.97

)4

or 1 +
(

Mt

1.72

)4.5

, 0.1 ≤ Mt ≤ 0.6. (13.154)
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The exact expression for the pressure fluctuation is

p′ = R
(
ρ′T̄ + ρ̄T ′ + ρ′T ′ − ρ′T ′) (13.155)

from which one obtains straightforwardly the following exact expression for the
normalized pressure variance Y:

Y = p′2(
Rρ̄T̄

)2 = ρ�2 + T �2 + 2ρ�T � + 3ρ�T �
2 + ρ�2T �2 + 2ρ�2T � + 2ρ�T �2.

(13.156)
Numerical results show that only the first three terms in the right hand side are non-

negligible. Using the mean speed of sound ā = √
γRT and assuming ā � √

γ p̄/ρ̄,
one obtains the following theoretical scaling law

Y = A2γ2

9
M4

t , (13.157)

where A = 1.2 yields a good agreement with DNS data for Mt ≥ 0.3. This scaling
is similar to the one found in strictly incompressible flows, i.e. p′2 = A2ρ̄2u′4, as
discussed in Sect. 4.9. But a better match with numerical results is found considering a
steeper scaling law, i.e. Y ∝ M4.4

t showing that dilatational effects lead to a departure
from the incompressible scaling law. This is also illustrated by the fitting of other
second-order correlations of thermodynamic quantities:

ρ�2 ∝ M4.3
t , T �2 ∝ M4.4

t , ρ�T � ∝ M4.5
t . (13.158)

An interesting fact is that, despite the flow is not isentropic, the following isen-
tropic relations13 are observed to fit data for Mt ≥ 0.3:

ρ�2

p�2
= 1

γ2
,

T �2

p�2
= (γ − 1)2

γ2
,

ρ�T �

p�2
= (γ − 1)2

γ2
. (13.159)

It is important to note that this agreement with isentropic relations does not indi-
cate that the flow exhibits an isentropic dynamics. This can be seen introducing the
coefficient B = (p/ p̄)(α−γ)/α. α = γ, 1 and 0 is related to isentropic, isothermal and
isobaric dynamics, respectively. A first-order Taylor series expansion yields

13Isentropic relations are obtained starting from

p/ p̄ = (ρ/ρ̄)γ = (T/T̄ )γ/(γ−1)

which leads to

ρ′2 = ρ̄2((p/ p̄)1/γ − 1)2 = (ρ̄2/γ2)p�2 − (γ − 1)(ρ̄2/γ3)p�3 + O(p�4)

and to take averages after truncating the Taylor series expansion at the leading order.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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√
B′2 � γ − α

α

√
p�2 � γ − α

α

Aγ

3
M2

t . (13.160)

The best fit of DNS data is obtained for α = 1.2 	= γ and A = 1.2, showing that
non-isentropic dilatational effects are non-negligible for Mt ≥ 0.3.

13.4.2 Statistical Equilibrium State and Scaling of
Dilatational Components

Numerical simulations (Jagannathan and Donzis 2016) show that statistical equi-
librium is reached in the nonlinear subsonic case after a short transient phase. The
departure from the equilibrium solutions introduced during the discussion related to
the low-Mach quasi-isentropic régime is measured introducing Fw and Fs(k), that
are defined as

Fw = γ2 M2
t χ p̄2

p′
d p′

d

, Fs(k) = ρ̄2ā2 Edd(k)

E pp(k)
, (13.161)

where p′
d denotes the dilatational pressure obtained thanks to an Helmholtz decom-

position of the field and E pp(k) the associated 3D spectrum. Weak and strong acoustic
equilibrium are recovered if Fw = 1 and Fs(k) = 1 ∀k, respectively.

In freely decaying turbulence, the statistical equilibrium state is very similar to the
one observed in the quasi-acoustic régime: weak equilibrium is observed and Sarkar’s
function fluctuates almost periodically about unity due to energy exchanges between
internal energy and the dilatational field. The period of oscillation corresponds to the
characteristic acoustic time scale, and the amplitude is an increasing function of the
Mach number.

The picture obtained in the forced turbulence case (with solenoidal forcing) is
slightly different. As a matter of fact, Fw exhibits a very strong dispersion for Mt ≤
0.3 while a constant value slightly larger than one is obtained at higher Mt (Fw � 1.1),
showing that a weak equilibrium solution is reached which does not obey exact
equipartition between solenoidal and dilatational modes. The lack of equilibrium
at low Mach number in the forced case may be understood since the dilatational
component has a very small energy, and that, due to the solenoidal forcing, couplings
with the solenoidal component are very weak. In the freely decaying case, these
couplings are much more important since they drive the flow at the beginning of the
decay, leading to occurence of weak equilibrium. Strong equilibrium is observed on
a limited range of scales at Mt = 0.3 while it is observed at all scales at Mt = 0.6,
leading to the conclusion that it takes place in forced compressible turbulence as
soon as dilatational modes are important.

The equilibrium solutions can be further analyzed looking at scaling laws for the
dilatational component. Donzis’ DNS results are summarized in Table 13.2. Evolu-
tion of ratio of the dilatational component to the solenoidal one versus Mt is displayed
in Fig. 13.12.
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Table 13.2 Scaling laws obtained for the dilatational component of the flow in the non-linear
subsonic régime by DNS data fitting in isotropic turbulence with solenoidal forcing in the range
0.1 ≤ Mt ≤ 0.6 (Jagannathan and Donzis 2016)

ε̄d/ε̄s Kd/Ks λd/λs

√
p2

s / p̄
√

p2
d/ p̄

√
p2

d/

√
p2

s

Mt ≤ 0.3 Negligibly
small

∝ M4
t ∝ M−2

t ∝ M2
t ∝ M4

t <0.1

0.3 < Mt ≤
0.6

∝ M4.1
t ∝ M2

t ∝ M1.2
t ∝ M2

t ∝ M2
t 1

Fig. 13.12 Variation of the ratio ε̄d/ε̄s , Kd/Ks and r.m.s of pressure fluctuations versus Mt in
isotropic turbulence with solenoidal forcing. From Jagannathan and Donzis (2016) with courtesy
of D. Donzis

It is observed that the scaling for the ratio of dilatational to solenoidal dissipation
predicted by EDQNM in the quasi-isentropic régime is nearly recovered for Mt ≥ 0.3
(with a slightly steeper exponent equal to 4.1 instead of 4, a difference which may
be due to the fact the EDQNM does not account for the occurence of shocklets).
This ratio cannot be accurately measured in DNS at lower Mt because it is too small.
The EDQNM scaling for the kinetic energy ratio χ is recovered for Mt ≤ 0.3. The
amplification of dilatational kinetic energy for Mt ≥ 0.3 is not predicted by EDQNM,
showing that significant compressible processes are at play. The cross-correlation
between the compressible and solenoidal pressure field is evaluated considering the
decomposition of the full pressure variance:
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p′2

p̄2
= p′2

s

p̄2
+ p′2

d

p̄2
+ 2C p

√
p′2

s

p̄

√
p′2

d

p̄
. (13.162)

A very satisfactory agreement with DNS data is found taking C p = −0.334 M2
t

for 0.1 ≤ Mt ≤ 0.6, showing that the two pressure components are anti-correlated.

13.4.3 Further Investigations of Thermodynamic Quantities

The non-linear subsonic regime can be further investigated looking at the probability
density function of the pressure and its components. The general observation in
freely decaying and solenoidally forced turbulence is that the pressure p.d.f. (see
Fig. 13.13) is negatively skewed at low turbulent Mach number in a similar way to
what is observed in the incompressible case and progressively becomes positively
skewed as Mt increases. The p.d.f. exhibits a positive nearly Gaussian tail at low Mt

and a negative nearly Gaussian tail at high Mt .
An intuitive explanation is that p′2 is a growing function of Mt , but that since it

is a positive thermodynamical quantity, negative pressure fluctuations are bounded,
p′ > − p̄, while positive fluctuations are not, leading to a progressive change in the
p.d.f. shape. The far positive tail of the p.d.f. is observed to exhibit a log-normal
character.

This result is further refined looking at the p.d.f.s of p′
s and p′

d . The p.d.f. of the
solenoidal pressure field is observed to be almost independent of Mt and very similar
to the incompressible case with a negative skewness. The p.d.f. of pd has a negative
part independent of Mt with a Gaussian shape, and becomes positively skewed for
Mt ≥ 0.3. Therefore the changes in the p.d.f. of p′ originate in the combination of
the change in the shape of the p.d.f. of p′

d and the increase of the relative amplitude
of p′

d .
The density p.d.f. is observed to have a nearly Gaussian core with far tails obeying

a log-normal distribution (see Fig. 13.13). This log-normal character is well observed
for positive fluctuations ρ′ > 0, while there is still a Mt dependence of the tail for
ρ′ < 0. An empirical explanation (Donzis and Jagannathan 2013) for the log-normal
distribution of extreme events is that the Lagrangian solution to the mass conservation
equation is ρ(t) = ρ(0) exp(− ∫ t

0 ∇ · udt ′), showing long time evolution can be seen
as a sum of independent random changes induced by uncorrelated shocklets and
dilatation waves. Invocation of the central limit theorem then suggests the existence
of a log-normal distribution. Such a rationale is valid only in a régime in which density
fluctuations originate in shock and rarefaction waves only, i.e. in an asymptotic
supersonic régime with Mt → +∞. In the subsonic régime other events like vortices
or vortex sheets are also present and are responsible for the Gaussian distribution of
weak fluctuations (Fig. 13.14).
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Fig. 13.13 Probability density functions of thermodynamic quantities in solenoidally forced
turbulence in the range 0.1 ≤ Mt ≤ 0.6 and 38 ≤ Reλ ≤ 160. Left column: Reλ = 100 and
0.1 ≤ Mt ≤ 0.6; Right column: Mt = 0.6 and 38 ≤ Reλ ≤ 160. From Donzis and Jagannathan
(2013) with courtesy of D. Donzis

The changes in the thermodynamic quantities are also observed looking at their
spectra, more precisely to their slopes in the inertial range, if the Reynolds number
is large enough for such a range to exist.
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Fig. 13.14 Probability density functions of a) total pressure, b) solenoidal component of pressure
and c) dilatational component of pressure in solenoidally forced turbulence in the range 0.1 ≤ Mt ≤
0.6 at Reλ = 160. From Jagannathan and Donzis (2016) with courtesy of D. Donzis

At low Mach number, the temperature field can be approximated as a passive
scalar, leading to

ET T (k) = Cocε
−1/3εT k−5/3 (13.163)

where Coc is the Obukhov–Corrsin constant for temperature fluctuations and εT the
dissipation rate of the variance of the temperature. This solution is reported by Donzis
for Mt ≤ 0.6.

The density spectrum Eρρ(k) is observed to be accurately deduced from the tem-
perature spectrum in the same Mach number range using the isentropic assumption

ρ′

ρ̄
∼ 1

γ − 1

T ′

T̄
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yielding

Eρρ(k) = ρ̄2

T̄ 2

1

(γ − 1)2
ET T (k) = Coc

ρ̄2

T̄ 2

1

(γ − 1)2
ε−1/3εT k−5/3. (13.164)

The pressure spectrum exhibits a more complex behavior, since the inertial range is
different in the two régimes. For Mt ≤ 0.3 − 0.4 a nearly incompressible solution is
found with E pp(k) ∝ ε4/3k−7/3, showing that the solenoidal component is dominant.
At higher Mt the dilatational part becomes the most important one, and the spectrum
can be deduced from the temperature spectrum thanks to the isentropic hypothesis,
leading to

E pp(k) = Coc
p̄2

T̄ 2

γ2

(γ − 1)2
ε−1/3εT k−5/3. (13.165)

13.4.4 Conditions for Occurrence of Shocklets

Shocklets are small-scale extreme events associated with a strong compression that
satisfy the classical Rankine–Hugoniot jump relations for shocks with possible vis-
cous effects. In numerical simulations they are often detected using Samtaney’s
criterion, i.e. as regions in which d < −3d ′2 where d = ∇ · u.

Before discussing the properties of these shocklets and analyzing their influence
on the dynamics and the statistical properties of compressible isotropic turbulence, it
is worth noting that they can occur at nominally very low Mach numbers depending
on the initial condition. In the case where initial acoustic pressure perturbations
are very strong, the linear theory is no longer relevant to describe the dynamics.
Considering such an initial condition, convective terms will play an important role,
leading to the propensity for occurence of nonlinear acoustic phenomena such as
wave steepening and focusing and shock formation. Therefore, a strong nonlinear
transient phase will be present during which shocklets can form. Shocklets can also
be obtained at low Mt if a dilatational forcing term is used.

In a similar manner, the analyses dealing with the weakly compressible thermal
régime were based on the assumption that both δ and δ′ as defined in Eq. (13.128)
are very small. Since δ ∝ Mr , the asymptotic series expansion is no longer valid
at higher turbulent Mach numbers. Moreover, it has been observed in numerical
experiments that the thermal régimes are very sensitive to the initial conditions, and
that if the initial perturbations are not consistent with the governing equations and are
strong enough, acoustic waves grow and the dynamics bifurcate toward the nonlinear
régime in which shocklets are present.

No exact threshold value for the turbulent Mach number Mt associated to the
occurence of shocklets is known, since this phenomenon also depends on other
parameters. It seems that all simulations carried out for Mt ≥ 0.4 exhibit shock-
lets. But it is important to note that shocklets can appear at lower Mach numbers,
depending on the initial condition.
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13.4.5 Energy Budget and Shocklet Influence

Shocklets are small bow shocks which have been observed to satisfy the Rankine–
Hugoniot jump conditions. Therefore, these events exhibit all properties of usual
shocks. In particular, they induce sharp pressure and density gradients and, because
they are associated with a compression, a negative value of the divergence of the
velocity. As a consequence, one can reasonably expect that they should have a
non-negligible influence on the energy balance. We summarize below observations
retrieved from direct numerical simulations. Since all these simulations were car-
ried out at small Reynolds number, viscous effects are important and they damp the
effect of the shocklets. Therefore, exact values of the quantities given below must be
interpreted as a qualitative description of high-Reynolds number flows rather than
an accurate quantitative one.

Numerical experiments show that the probability density function of the dilatation
(i.e. the divergence of the velocity field) is strongly skewed: about 2/3 of the volume
is associated with an expansion (∇ · u > 0), while only 1/3 corresponds to com-
pression. On the average, the expansion regions are responsible for 80–90% of the
solenoidal dissipation ε̄s and 50–60% of the total dissipation (ε̄d + ε̄s). The global
dilatational dissipation ε̄d is found to be small with respect to the global solenoidal
dissipation ε̄s : Lee and coworkers (1991) report that ε̄d is less or equal than 10%
of the total dissipation for Mt up to 0.6. A maximum value about 4% is reported in
solenoidally forced turbulence at Mt = 0.6 in Jagannathan and Donzis (2016).

The shocklets fill only a few percent of the total volume: Pirrozoli and Grasso
(2004) found that they represent only 1.4% of the volume at Mt = 0.8 while Sam-
taney et al. (2001) report a fraction smaller than 2% in their set of numerical exper-
iments. Nevertheless, the shocklets strongly modify the local relative importance
of the physical mechanisms: near shocklets, the dilatational dissipation is up to 10
times larger than the solenoidal dissipation. Despite they fill only a very small part of
the fluid domain, shocklets are responsible for about 20% of the global dilatational
dissipation.

The shocklets perturb the dilatation field. This perturbation can be roughly esti-
mated looking at the jump condition for the dilatation for a bow shock moving into a
two-dimensional inviscid steady flow provided by Kida and Orszag (1990a, 1992):

[[∇ · u]] � 2

R(γ + 1)

(
(γ − 1)M2

s + 2

(γ + 1)M2
s

− 3M2
s + 1

M2
s − 1

tan2 θ

)
un (13.166)

where R, un , Ms and θ are the radius of curvature of the shock, relative velocity
normal to the shock, shocklet Mach number defined by the ratio of un about the
upstream speed of sound, the angle between the fluid velocity and the shock normal,
respectively. It is seen that the sign of the induced dilatation depends on both R and
θ, and that its amplitude is a function of the square of the normal Mach number.
The use of a two-dimensional simplified model was proved to be qualitatively rele-
vant by Kida and Orszag, since the three-dimensional curved shock can be locally
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Table 13.3 Transfers between turbulent kinetic energy K and fluctuating internal energy ẽ induced
by strong compressions and expansions in isotropic turbulence with solenoidal forcing in the range
0.1 ≤ Mt ≤ 0.6 (Jagannathan and Donzis 2016)

Mt Event type p′d ε Net transfer

Mt = 0.1 Strong compression ẽ → K K → ẽ Negligible

Mt = 0.1 Strong expansion K → ẽ K → ẽ K → ẽ

Mt = 0.6 Strong compression K → ẽ K → ẽ K → ẽ

Mt = 0.6 Strong expansion ẽ → K K → ẽ Negligible

projected on a two-dimensional space. Lee and coworkers observed that the correla-
tion between pressure fluctuations and dilatation fluctuations is large near shocklets,
leading to a local enhancement of the transfers between the internal energy and the
turbulence kinetic energy. These authors also report that the overall effect of the
pressure-dilatation term p′d on the evolution of kinetic energy in freely decaying
isotropic turbulence is comparable to the overall dilatational dissipation ε̄d . This
effect is typical of the presence of the shocklets, since this term is theoretically and
experimentally found to be negligible in the pseudo-acoustic régime.

The energy exchanges due to strong compressions and expansions were further
investigated in forced turbulence in Jagannathan and Donzis (2016). Their main
results dealing with the effects of pressure-dilatation correlation p′d and dissipation
ε are summarized in Table 13.3. The results are observed to be highly sensitive to Mt .
At low Mt , strong compressions have a negligible net effect on energy exchanges,
while strong expansions yields a global transfer of kinetic energy K into internal
energy ẽ. At high Mt , the net global effect is the same, but it is governed by strong
compressions while strong dilatations have a zero net effect. The main difference
between the two cases is the direction of the transfers associated with p′d, which
changes for both compressions and expansions.

13.4.6 Enstrophy Budget and Shocklet Influence

The shocklets also have a large impact on the dynamics of vorticity and enstrophy.
The general jump relation for vorticity derived from the Rankine–Hugoniot will be
discussed in the chapter devoted to the shock/turbulence interaction (Chap. 15), and
the interested reader can refer to it. But it is very important to emphasize that the main
trends and the relative importance of the different physical mechanisms are not the
same in the shocklet case as in the large-scale shock case discussed in Chap. 15. The
main reason for this is a scale effect: shocklets are small shock waves which form
when turbulent eddies allow for the local steepening of pressure waves, and their size
is therefore comparable with those of the turbulent eddies, while large-scale shock
size is much greater than the turbulent vortical structures.

http://dx.doi.org/10.1007/978-3-319-73162-9_15
http://dx.doi.org/10.1007/978-3-319-73162-9_15
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We first recall some estimates related to vorticity creation by a bow shock moving
in a steady, inviscid two-dimensional flow (Kida and Orszag 1990b):

[[ω]] � 4(M2
s − 1) sin θ

R(γ + 1)M2
s

(
(γ − 1)M2

s + 2
) |u|, (13.167)

where the nomenclature is the same as in the previous paragraph. The sign of the
created vorticity is seen to depends on the local shock curvature and the angle of
incidence. The created vorticity is zero for normal shocks (θ = 0) and Mach waves
(θ = ± cos−1(1/Ms)). The effect of the sole baroclinic term −(∇ p × ∇ρ)/ρ2 is
evaluated as

[[unω]] � 4(M2
s − 1)2

R(γ + 1)2 M4
s

u2
n tan θ (13.168)

and is observed to depends on M4
s instead of M2

s for the global vorticity creation.
Numerical experiments show that the volume-averaged enstrophy budget is gov-

erned by the vortex stretching term ω · S · ω and the viscous dissipation. The former
is positive and creates some vorticity, while the latter is strictly negative. The baro-
clinic term is negligible while the compression term �(∇ · u) exhibits an oscillatory
behavior, with a period very similar to those of the compressive kinetic energy and
the internal energy. Therefore, this phenomenon is interpreted as a coupling between
acoustic waves and the vorticity.

A finer analysis can be achieved distinguishing between regions of negative dilata-
tion and regions of positive dilatation. The compression term is observed to be dom-
inant in shocklet areas, while the stretching term is the most important in expansion
region. A careful look at direct numerical simulation data reveals that vorticity is
created on shocklets through the baroclinic interaction and is enhanced in expansion
regions by the vortex stretching phenomenon. The baroclinic production is relatively
small because there is a clear trend for the pressure gradient and the density gradient
to be aligned against each other: the global probability density function of the angle
between these vectors exhibits a peak near 4◦, and is almost null for angles higher
than 10◦, even for values of Mt as high as 0.74. It is also found that increasing the
turbulent Mach number yields a stronger alignement of these vectors. Due to the
weakness of the baroclinic production, Kida and Orszag observed that the barotropic
relation (

p

p̄

)
=

(
ρ

ρ̄

)γ

(13.169)

is valid on the overall.
A last observation is that the vorticity has a statistical preference to align with the

density gradient ∇ρ near the shocklets and to be orthogonal to it outside shocklet
aeras. This influence was observed to be significant up to a distance equal to 72η
downstream the shocklet (Wang et al. 2011). Since the shocklets fill a very small
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fraction of the fluid domain, the overall p.d.f. of the angle between ω and ∇ρ has a
peak at 90◦. As in the incompressible case, the vorticity is observed to be aligned on
the overall with intermediate eigendirection of the velocity gradient tensor.

13.5 Supersonic Régime

The supersonic régime, in which the turbulent Mach number is greater than 1, is
much less known than the other régimes. The main reasons why so little attention as
been paid to this configuration is that it is encountered in astrophysics only, and that
it escapes most theoretical tools since it does not allow small parameter expansion.

Only very few numerical experiments are available (Porter et al. 1992a, b, 1994),
which all reveal the existence of two distinct quasi-equilibrium phases separated by
a short transition phase:

• The quasi-supersonic phase, whose typical duration is of the order of a few acoustic
time scale. During this initial period, nonlinear phenomena yield the formation of a
myriad of small but intense shock waves. No vortical structures are observed during
this period. Then, the shocks interact, leading to the existence of vortex sheets
which roll-up due to Kelvin–Helmholtz-type instabilities, yielding the existence
of vortex tubes. These vortex tubes then experience vortex stretching, leading to the
appearance of the usual kinetic energy cascade phenomenon. During this phase,
which is dominated by shock formation and shock interaction, the evolution of
the vorticity is governed by the baroclinic production and the linear terms (vortex
stretching and dilatation terms), which are of equal amplitude. At the end of the
quasi-supersonic phase, both dilatational velocity spectrum and solenoidal velocity
spectrum exhibit an inertial range with a −2 slope:

Edd(k) ∝ k−2, Ess(k) ∝ k−2. (13.170)

It is worth noting that most of turbulent kinetic energy is contained in the solenoidal
mode once the vortical structures have been created.

• The immediate post-supersonic phase which is governed by vortex interaction
and vortical decay. The main processes involved in subsonic vortex dynamics
are present, but shocks are still present and very active. As a consequence, the
following inertial range scalings are observed:

Edd(k) ∝ k−2, Ess(k) ∝ k−1. (13.171)

The vorticity dynamics is dominated by the vortex stretching and the dilation term
during this phase, the baroclinic production being now much weaker due to the
decrease of the turbulent Mach number.

At much longer times, an equilibrium state similar to the subsonic régime is recov-
ered in which the shocks are much weaker and the solenoidal velocity dynamics is
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decoupled (at the leading order approximation) from the acoustic field. The measured
inertial range behaviors are Edd(k) ∝ k−2 and Ess(k) ∝ k−5/3.

A solenoidally forced supersonic turbulence with Mt = 1.03 − 1.05 and Reλ =
175 − 187 was considered by Wang and coworkers (2013). Shocklets with local
Mach number up to 3 were observed in this case, and both dilatational and solenoidal
velocity components exhibit the same spectrum, with Edd(k) ∝ k−5/3 and Ess(k) ∝
k−5/3.

13.6 Structures in the Physical Space

Compressible isotropic turbulence, like incompressible isotropic turbulence, exhibits
coherent events that can be classified according to some criteria. In the quasi-acoustic
régime at very low Mach number, the solenoidal field is nearly decoupled from the
dilatational field and they evolve almost independently. The kinetic energy being
concentrated in the solenoidal velocity component, the velocity field is almost iden-
tical to the one observed in purely incompressible flows, and all the results dealing
with the velocity field topology given in Sect. 4.10 hold.

The analysis must be modified to account for new configurations in the nonlinear
subsonic and the supersonic régimes. This was achieved by Kevlahan et al. (1992)
who proposed a topological analysis of the velocity field that accounts for compress-
ibility effects. Main elements of this classification are displayed in Sect. 13.6.1. It
has also be seen that shocklets form in this régime. Main known characteristics of
these structures are discussed in Sect. 13.6.2.

13.6.1 Turbulent Structures in Compressible Turbulence

The analysis carried out by Kevlahan and coworkers (1992) relies on the local anal-
ysis of the topology of the velocity field. Introducing the anisotropic part of the
instantaneous strain tensor S∗ = S − (Skk/3)I, it is possible to define three region
types:

• Eddy-dominated regions
W : W > 2S∗ : S∗

, (13.172)

• Shear zones
1

2
S∗ : S∗ ≤ W : W ≤ 2S∗ : S∗

, (13.173)

• Convergence zones

W : W <
1

2
S∗ : S∗

. (13.174)

http://dx.doi.org/10.1007/978-3-319-73162-9_4
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This decomposition is supplemented by a criterion related to the local degree of
compressibility. Defining the sensor C as

C = (∇ · u)2

S∗ : S∗ + W : W
(13.175)

it is proposed that

• C ≤ 0.05: structures behave as incompressible ones
• C > 0.05: structures are compressible

The analysis can be further refined by retrieving some informations about the
structure shape. Denoting λ∗

1,λ
∗
2 and λ∗

3 the three eigenvalues of S∗,14 the structure
shapes can be classified according to the sign of the third invariant of S∗, I I I ∗ =
−λ∗

1λ
∗
2λ

∗
3:

• I I I ∗ < 0: cigar-type structures
• I I I ∗ > 0: pancake-type structures

Regions can also be grouped as focal or compression regions and non-focal or
expansion regions according to the sign of the determinant of S∗, D∗ = det (S∗

):

• D∗ > 0: focal/compression region
• D∗ < 0: non-focal/expansion region.

It is worth noting the D∗ can be computed from the second and third invariants
of S∗ like

D∗ = 27

4
(I I I ∗)2 + (I I ∗)3, I I ∗ = λ∗

1λ
∗
2 + λ∗

1λ
∗
3 + λ∗

2λ
∗
3. (13.178)

Using a wide database including flows with turbulent Mach number up to 0.8,
Pirrozoli and Grasso (2004) observed that several features of isotropic turbulence
are not sensitive to the Mach number and are therefore similar to those of perfectly
incompressible isotropic turbulence. They are listed below:

(i) The eigenvalues of the strain tensor S∗ are in the ratio −4:3:1
(ii) Number of pancake and cigar structures are in the ratio 3:1

(iii) Vorticity has a statistical preference to align with the intermediate eigendirection
of S∗, being either parallel or antiparallel (probabilities are equal)

14One can easily observe that

λ∗
i = λi − (∇ · u)

3
(13.176)

where λ’s are the eigenvalues of S. A direct consequence is

∑
i=1,3

λ∗
i = 0 (13.177)

as in incompressible turbulence.
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(iv) The joint p.d.f. of I I ∗ and I I I ∗ does not depend on the Mach number.

Their analyses also show that focal regions are of great importance for the
solenoidal field: these regions fill about 2/3 of the total volume and account for
80–90% of the enstrophy and 50–60% of the solenoidal dissipation ε̄s . More pre-
cisely:

(i) At low Mt , incompressible structures dominate and the fraction of the vol-
ume filled by shear zones, convergence zones and eddies are 44, 35 and 21%,
respectively.

(ii) Shear regions account for 45% of the enstrophy regardless of the turbulent Mach
number.

(iii) At low Mt , kinetic energy is dissipated nearly equally in focal and non-focal
structures, while at high Mt focal structures are more active than the non-focal
ones

(iv) At high Mt , dilatational dissipation mainly takes place in shear and convergence
zones

(v) Shocklets are rare (less than 2% of the volume) but represent up to 20% of the
global dilatational dissipation.

13.6.2 Probabilistic Model for Shocklets

We now present the main features of the probabilistic model for shocklet derived by
Samtaney and coworkers (2001) on the grounds of direct numerical simulation data.

The initial step consists in parameterizing the probability density function of the
longitudinal velocity increment, which will serve as a basis to evaluate the shocklet-
based Mach number. The p.d.f. is observed to be very similar to those measured in
incompressible isotropic turbulence, leading to the following exponential expression:

P(�u) � 1

σ�u
exp

(
−b(r)

∣∣∣∣ �u

σ�u

∣∣∣∣
)

, (13.179)

where �u is the velocity increment along the direction of u between two points

separated by a distance r and σ�u =
√

(�u)2. The function b can be written like
b(r) = α(r/η)β , where η is the Kolmogorov length scale and α = 1.5 and β = 0.16
are constant parameters.15

The second step deals with the derivation of a model p.d.f. for the shocklet strength,
the shocklet being modeled as a weak shock (i.e. Ms − 1 � 1).

Let �u be the normal velocity difference across the shocklet. Usual jump condi-
tions yield the exact relation

15The value α = 1.5 was measured in low-Reynolds number simulations. High Reynolds number
wind tunnel experiments suggest α � 0.5.
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�u

a
= − 2

γ + 1

(
Ms − 1

Ms

)
(13.180)

where a is the speed of sound in the fluid upstream the shocklet. The shocklet
thickness δs is evaluated using the classical weak-shock theory:

δs � ν

a

3

(Ms − 1)
(13.181)

where ν is related to the viscosity upstream the shock. To get a reliable model,
one must evaluate all quantities using turbulence-related variables. To this end, it is
assumed that the following expression for the dissipation derived in the incompress-
ible case holds

ε = 15ν

(
∂u

∂x

)2

� 15ν

(
�u

r

)2

(13.182)

from which the following leading-order estimates in terms of (Ms − 1) are derived

�u � 4a

γ + 1
(Ms − 1), (13.183)

σ�u � 3√
15a

√
νε

1

(Ms − 1)
, (13.184)

∣∣∣∣ �u

σ�u

∣∣∣∣ � 4
√

15a2

3(γ + 1)
√

νε
(Ms − 1)2. (13.185)

The last expression can be further refined introducing the mean turbulent Mach
number Mt and the Taylor Reynolds number Reλ:

∣∣∣∣ �u

σ�u

∣∣∣∣ � 4

(γ + 1)

Reλ

M2
t

(Ms − 1)2, (13.186)

leading the following expression for the p.d.f. of the shocklet strength (the constant
β is taken equal to zero for the sake of simplicity):

P(Ms − 1) � 8α

(γ + 1)

Reλ

M2
t

(Ms − 1) exp

(
− 4α

(γ + 1)

Reλ

M2
t

(Ms − 1)2

)
. (13.187)

This expression is observed to be in good agreement with a large set of exper-
imental data, with Reλ = 0.32 − 0.43 and Mt = 0.1 − 0.5. In the same manner, a
model p.d.f. can be found for the shocklet thickness:

P(δ/η) �
(

δ

η

)3

exp

(
−12

√
15α

γ + 1

(
δ

η

)2
)

(13.188)
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One can see from Eqs. (13.187) and (13.188) that the most probable shocklet
corresponds to

Ms = 1 + Mt

√
γ + 1

8αReλ
, δ = (15)1/4η

√
8α

γ + 1
. (13.189)

Using above value of α and considering air, one finds that the most probable
shocklet thickness is about 5 η, which is much larger than the mean-free path of the
molecules.

This model was observed to be in satisfactory agreement at moderate Mt cases,
in which shocklet’s strength is not too large. In supersonic isotropic turbulence with
solenoidal forcing, Wang et al. (2011) observed that the super-exponential distribu-
tion (13.187) should be replaced by the following exponential distribution:

P(Ms − 1) � 1.2 exp (−5.1(Ms − 1)) , (13.190)

which is accurate for events such that 0.5 ≤ (Ms − 1) ≤ 2. They also noticed a large
peak in the p.d.f. corresponding to (Ms − 1) = 0.07.
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Chapter 14
Compressible Homogeneous Anisotropic
Turbulence

14.1 Effects of Compressibility in Free Shear Flows.
Observations

To understand and model compressibility induced effects on turbulence is an impor-
tant topic, since these effects are significant in many engineering applications, par-
ticularly in the field of propulsion and supersonic aerodynamics which is concerned
by jets or wakes subjected to large velocity and density gradients. The compress-
ible plane mixing layer is a generic problem for these applications, and explaining
and modelling how compressibility reduces turbulent mixing in a shear layer has
motivated the large research effort devoted to this topic during the 1980 and 1990s.
Mixing usually refers to interpenetration of two streams. It is characterized by two
scales: a lengthscale δ and a velocity scale �U which evaluate the thickness of the
interface and intensity of the fluctuations, respectively. The reduction of mixing by
compressibility is illustrated on Fig. 14.1 in which δ is the above mentioned thickness
and Mc = �U/a is the convective Mach number, with a the average speed of sound.

There is now a consensus in the literature that the “intrinsic compressibility”
(nonzero velocity divergence in Mach number dependent flows) of a turbulent veloc-
ity field tends to reduce the amplification rate of turbulent kinetic energy produced
by mean velocity gradients, with respect to the solenoidal case. These effects were
particularly investigated in shear flows, including both experimental and numerical
studies of the plane mixing layer and DNS of homogeneous shear flows. The reader is
referred to the review by Lele (1994) and the references given therein, and to Sarkar
(1995), Simone et al. (1997) for more recent results.

Two preliminary questions immediately follow:

(i) To what extent homogeneous turbulence is relevant to explain such mechanisms
in inhomogeneous flows?

(ii) Is compressibility always stabilizing (i.e. leading to a decrease in the turbulent
kinetic growth rate) in homogeneous turbulence?
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692 14 Compressible Homogeneous Anisotropic Turbulence

Fig. 14.1 Dependence of shear layer growth rate on convective Mach number. DNS and experi-
mental results from Pantano and Sarkar (2002), with permission of CUP

The answer to the first question is somewhat difficult. The ‘stabilizing’ effect of
compressibility in the mixing layer, for instance, can be attributed to the inhibition
of the Kelvin–Helmholtz instability at a convective Mach number larger than 0.6.
Such an instability escapes homogeneous RDT. Nevertheless, it is expected that our
analysis can exploit strong analogies between the homogeneous shear and the mixing
layer.

The answer to the second question is simple: no.

14.1.1 RST Equations and Single-Point Modelling

Equations for the Reynolds stress tensor are not so different from the one in the
homogeneous incompressible case, at least in the absence of specific additional
production by mean pressure, mean density, or mean temperature gradients. If we
restrict our attention to flows in which the “production” term in the Reynolds stress
tensor equations only results from mean velocity gradients, we must consider that
the pressure-strain rate tensor is no longer trace-free, and that the dissipation tensor
can display an explicit dilatational contribution. Using Eq. (3.102) and taking into
account the homogeneity constraint, one obtains

∂ρ̄Ri j

∂t
= −ρ̄

(
Rik

∂ũ j

∂xk
+ R jk

∂ũi

∂xk

)
+ p′

(
∂u′′

i

∂x j
+ ∂u′′

j

∂xi

)

+u′′
i

(
∂τ̄ jk

∂xk
− ∂ p̄

∂x j

)
+ u′′

j

(
∂τ̄ik

∂xk
− ∂ p̄

∂xi

)

−τ ′
ik

∂u′′
j

∂xk
− τ ′

jk

∂u′′
i

∂xk
. (14.1)
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The corresponding evolution equation for the turbulent kinetic energy K is

dK
dt

= P + �(d) − ε̄s − ε̄d , (14.2)

in which the production term is

P = −ρ̄Rik
∂ũi

∂xk
(14.3)

and ε̄s and ε̄d are the solenoidal and dilatational dissipations introduced in Sect. 3.3.2.
The pressure-dilatation correlation term, denoted �(d) is equal to half the trace of
the pressure-strain rate tensor.

Historically, two kinds of explanation were proposed to account for compress-
ibility effects and used to derive specific turbulence models:

(i) According to the first explanation, the main effect is attributed to the explicit
terms in Eq. (14.2). For instance, a reduction of the growth rate of K is assumed
to result from a significant negative value of �(d) and the negative term −ε̄d .

(ii) According to the second approach, the main mechanism responsible for the
decrease of the turbulent kinetic energy growth rate is an alteration of the dynam-
ics of pressure fluctuations. This modification results in a mollification of the
pressure-strain rate tensor in Eq. (14.1) and an associated depletion of the pro-
duction term P in Eq. (14.2). This effect appears as an implicit one, at least if
one considers the evolution equation for K.

An important issue is how to measure the compressibility. At least two Mach
numbers are relevant in shear flows: the conventional turbulent Mach number Mt =
u′/a, introduced in the previous chapter, and the gradient Mach number

Mg = SL

a0
. (14.4)

The gradient Mach number compares the velocity scale SL to the speed of sound
a0, where S and L are a mean velocity gradient scale and a typical lengthscale
of largest turbulent eddies, respectively. A similar parameter which accounts for
the change of mean flow Mach number accross an eddy, denoted �m, was intro-
duced by Durbin and Zeman (1992). A more general meaning and interpretation was
introduced then by Jacquin et al. (1993) and Sarkar (1995), with slightly different
terminologies (“distortion” and “gradient” Mach number). Despite of the Jacquin’s
precedence, we adopt here the terminology gradient Mach number because it is
the most popular. We think, however, that the RDT equations firstly investigated

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Table 14.1 Reynolds stress anisotropy in compressible and incompressible homogeneous shear
flow at large St . Values given in the two first columns come from DNS and wind tunnel experiments
(if available)

Quantity Incompressible case Compressible case Pressure-released RDT

b11 0.203 2/3 − 0.4e−0.3Mg ± 0.01 2/3

b22 −0.143 −1/3 + 0.17e−0.3Mg ± 0.01 −1/3

b33 −0.06 −1/3 + 0.23e−0.3Mg ± 0.01 −1/3

b12 −0.15(0) −0.17e−0.3Mg ± 0.005 0

by Jacquin and coworkers gave the best interpretation of this parameter, since its
counterpart at a fixed wavenumber, S/(a0k), is the pivotal parameter for separating
different flow regimes.

Looking at DNS results, the implicit alteration of the production is linked to a
significant change in the Reynolds stress anisotropy. To illustrate this point, some
values of bi j are proposed for the compressible homogeneous shear flow case and
compared to their counterparts in the incompressible case (see Chap. 9) in Table 14.1.
Estimates for the compressible shear case presented here were proposed in Heinz
(2004) on the grounds of relatively low-Reynolds DNS performed by Sarkar and
coworkers.

The reduction of b12 in absolute value with respect to the incompressible case is
directly connected to the reduction of production in this case, whereas the increase
in b11 reflects a less efficient redistribution of the kinetic energy among the nor-
mal Reynolds stresses by the pressure-strain rate tensor, which can be interpreted as
an alteration of the so-called return-to-isotropy mechanism. Even if compressibil-
ity correction factors in terms of Mg essentially come from empirical fitting, their
asymptotic values are of interest, since they are observed to differ from both the
incompressible and pressure-released RDT cases.

Even if the “implicit” compressibility effect mentioned above is probably more
relevant than the ‘explicit’ one to explain the decrease in the growth rate of K,
rationales based on single-point statistics, which ignore the detailed consequences
of the Helmholtz decomposition, cannot be fully satisfactory and universal. This is
illustrated by the fact that some flows can be found in which the mollification of
pressure-strain rate correlations at increasing gradient Mach number is not the right
explanation, since it results in an increase of the turbulent kinetic energy growth
rate. These flows include the irrotational strain case and even shear flows at moderate
elapsed time, as shown by Rapid Distortion Theory and DNS results. As discussed
in Chap. 9 in the pure incompressible case, the ‘slow’ (nonlinear) and the ‘rapid’
(linear) contributions to the pressure-strain rate tensor may have opposite effects
on the production of K: reducing the linear term yields increasing the production.
The conventional stabilizing effect of compressibility is recovered in homogeneous
shear flows at larger elapsed times, but the right explanation is different from the

http://dx.doi.org/10.1007/978-3-319-73162-9_9
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one based on the sole reduction of pressure-strain terms (Sarkar 1995; Pantano and
Sarkar 2002). This point will be extensively addressed in this chapter.

14.1.2 Preliminary Linear Approach: Pressure-Released
Limit and Irrotational Strain

Linearizing the Euler equations for velocity and pressure fluctuations (u′
i , p′) around

a mean flow with velocity ūi and discarding the pressure fluctuation term yields the
following pressure-released solution (e.g. Cambon et al. 1985):

u
′(pr)

i (x, t) = Hi j (X, t, t0)u
′
j (X, t0), (14.5)

where x is the position of a fluid particle at time t having the position X at time t0,
following a mean trajectory. The matrix Hi j is closely linked to the Cauchy matrix,
or semi-Lagrangian displacement gradient matrix, F, related to the mean flow (see
Sect. 2.1), so that Hi j and Fi j reflect a time-accumulated effect of mean velocity
gradients. They are obtained solving the following equations:

Ḟi j = ∂Ui

∂xm
Fmj , Fi j (X, t0, t0) = δi j , (14.6)

Ḣi j = − ∂Ui

∂xm
Hmj , Hi j (X, t0, t0) = δi j . (14.7)

One has Hi j = F−1
j i if and only if the mean velocity gradient matrix A is symmet-

ric, i.e. if the mean flow is irrotational. A transposed mean velocity gradient matrix
must be used in Eq. (14.6) to connect Hi j to the modified F in the general rotational
case.

More generally, the linear response to an irrotational mean flow can be expressed
using a linearized form of the Weber equation (2.31), leading to

u′
i (x, t) = F−1

j i (X, t, t0)u
′
j (X, t0) + ∂φ

∂xi
, (14.8)

in which the scalar potential φ accounts for the effects of fluctuating pressure. The
associated equation for the vorticity fluctuation is

ω′
i (x, t) = 1

DetF
Fi j (X, t, t0)ω

′
j (X, t0). (14.9)

Both equations are valid not only in the solenoidal case (u′
i,i = 0), as used in

Chap. 8, but also in various barotropic compressible cases. The vorticity equation
is not valid in the presence of a linearized baroclinic torque, for instance. These

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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equations were used by several authors, including Hunt (1973), Goldstein (1978),
Durbin and Zeman (1992).

As conjectured in Jacquin et al. (1993) and rediscussed in Cambon et al. (1993),
Simone et al. (1997), the solenoidal linear response u′

s obtained by applying the
Helmholtz decomposition to Eq. (14.8), yields the minimum kinetic energy growth
rate, while its pressure-released counterpart leads to the maximum growth rate. This
yields the following evolution equation

u′ = u′
s + f (Mg)

(
u

′(pr) − u′
s

)
︸ ︷︷ ︸

u′
d

, (14.10)

where u
′(pr) is given by Eq. (14.5) with H =T F−1 = e− ∫ t

t0
A(t,t0)dt ′

.
The following simple model can be derived (e.g. Cambon et al. 1993)

K = Ks + f (Mg)
(K(pr) − Ks

)
︸ ︷︷ ︸

Kd

(14.11)

for the linear history of the turbulent kinetic energy, where the weighting factor
f (Mg) is a monotonically increasing function of Mg . For consistency reason, one
has f (0) = 0. This decomposition was successfully assessed for homogeneous
turbulence, using both isentropic RDT and full DNS, as discussed below, and it is
reasonable if the pressure-released limit is more energetic than the solenoidal limit,
as it often does. Incidentally, one can mention that a simple model by Debiève et al.
(1982) for the evolution of the Reynolds stress tensor in turbulence/shock wave
interaction can be derived from Eq. (14.5). The reader is referred to Jacquin et al.
(1993) for a detailed discussion of this approach. A short discussion is also given in
Chap. 15, in the section devoted to the comparison between RDT and LIA.

This preliminary analysis has the advantage that it does not involve detailed
expressions for the Helmholtz decomposition in Fourier space. But the extraction
of u(s) from the solution of Eq. (14.8) requires to solve the Poisson equation

∇2φ = −∂u
′(pr)

i

∂xi
,

which comes from the dilatational balance u′(pr)

d + ∇φ = 0.
More generally, two aspects must be kept in mind:

• The linearized Weber equation is valid for irrotational mean flows without baro-
clinic effects only. Finding the final expression of the scalar potential φ in terms
of initial velocity remains an additional task to do anyway.

• The pressure-released linear limit (14.5) is completely general, and is valid for
a rotational mean flow. But it appears as the limiting case of a linearized Weber
equation for irrotational mean strains only.

http://dx.doi.org/10.1007/978-3-319-73162-9_15
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14.2 A General Quasi-isentropic Approach to
Homogeneous Compressible Shear Flows

Generally, if the Mach number effect is significant, the effects of compressibility
are complex, since both acoustic and entropy modes are called into play, as well as
the vortical mode inherited from the incompressible case (see Sect. 3.2). Irrotational
mean flows have been studied by Goldstein (1978) using an inhomogeneous RDT
formulation (which can be based on Eq. (14.8)), while homogeneous RDT has been
extended to quasi-isentropic compressible turbulence at significant Mach number, in
the presence of either irrotational compression or mean shear flows (Simone et al.
1997). For high speed compressible flows, it is no longer possible to consider the
velocity field as divergence-free. Accordingly, the pressure disturbance can recover
its role of thermodynamical variable. It is no longer a Lagrange multiplier enslaved
to divergence-free constraint, which can be eliminated.

14.2.1 Governing Equations and Admissible Mean Flows

Compressible isentropic equations are

∂ρ

∂t
+ ui

∂ρ

∂xi
+ ρ

∂ui

∂xi
= 0, (14.12)

ρ

(
∂ui

∂t
+ u j

∂ui

∂x j

)
= − ∂ p

∂xi
= 0, (14.13)

1

p

(
∂ p

∂t
+ ui

∂ p

∂xi

)
− γ

1

ρ

(
∂ρ

∂t
+ ui

∂ρ

∂xi

)
= 0. (14.14)

To extend the analysis performed for strictly incompressible flows (including the
special case of buoyant flows addressed in Chaps. 10 and 11), is not a easy task and
can be done in several different ways.

One can at least try to obey the following rules or principles:

• To define a base flow, which could be identified with the mean flow, or ρ̄, ū, p̄, as
a special solution of the governing equations.

• To derive evolution equations for a disturbance flow, ρ′ = ρ − ρ̄, p′ = p − p̄,
u′ = u − ū by subtracting equations for the base flow from governing equations.
The structure of these equations may satisfy some properties of invariance by
translation, which are consistent with statistical homogeneity.

• To restrict the degree of nonlinearity to quadratic terms, neglecting higher-order
nonlinear terms.

http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_10
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As in homogeneous incompressible turbulence, the first and second conditions can
be considered independently of statistical assumptions and treatment. This is done
by Craik and coworkers, who define the first condition as an admissibility condition.
Accordingly, an admissible base flow is also compatible with a wavelike form for the
disturbance flow, and the superposition of both is called ‘a class of exact solutions’
for Euler equations. This is nothing else than a formal rediscovery of RDT, but in
which nonlinearity is rigorously excluded in the equations for the disturbance flow:
only single mode perturbation are considered and non-linearity is zero for a single
Fourier mode in the incompressible case. This is no longer true in compressible
turbulence: nonlinearity does exist even for a single Fourier mode (monochromatic
disturbance). We will try to define, however, a system of simplified equations in
which only quadratic nonlinearities appear.

The condition that the mean velocity gradient must be uniform in space is inherited
from the incompressible case, leading to

∂ūi

∂x j
= Ai j (t).

An admissibility condition for the mean density follows as

∂ρ̄

∂t
+ A jm xm

∂ρ̄

∂x j
+ ρ̄Aii = 0.

This condition is compatible with the existence of a mean density gradient, or
ρ̄ = ρ0(t) + Ci (t)xi , as in the buoyant flow case with the Boussinesq approximation
addressed in Chap. 10. But this case is too complicated if the velocity field is not
solenoidal, so that only

ρ̄ = ρ(t), ρ0 = ρ̄(0) (14.15)

is considered.
As a consequence, the momentum equation for the base flow is very similar to its

incompressible counterpart

ρ̄(t)

(
d Ai j

dt
+ Aim Amj

)
x j = − ∂ p̄

∂xi
,

One recovers the condition that dA/dt + A2 must be a symmetric tensor, taking
the Curl of the equation above, and that ρ̄(t)(d Aii/dt + Aim Ami ) = −∇2 p̄, taking its
divergence. Looking now at the linearized momentum equation for the disturbance
flow:

ρ′
(

d Ai j

dt
+ Aim Amj

)
x j

+ρ̄(t)

(
∂u′

i

∂t
+ A jm xm

∂u′
i

∂x j
+ Ai j (t)u

′
j

)
x j = − ∂ p̄

∂xi
, (14.16)

http://dx.doi.org/10.1007/978-3-319-73162-9_10
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it is observed that the contribution from the left-hand-side is twofold, since it com-
bines both the mean acceleration weighted by the fluctuating density and the fluctuat-
ing acceleration weighted by the mean density. Violation of translational invariance
by the first term is probable, but difficult to prove.1 A simplified class of mean flows
is finally proposed as

dA
dt

+ A2 = 0, p̄ = P(t). (14.17)

Relaxing the assumption of irrotational mean strain is possible for developing at
least linear RDT solutions, but the assumption of statistical homogeneity must be
enforced. Even if this condition is much less stringent than it is generally admitted,
the fact that the mean flow is only characterized by its spatial gradient matrix A has
important consequences. First of all, it is not possible to define a length scale and
a velocity scale for the mean flow (such as δ and �U in the shear layer case), but
only a time-scale. This explains why linearization is not justified, as in conventional
linear stability analysis, by a (small) ratio of disturbance-to-base velocity scale, but
by an assumption of small elapsed time. S, which has the dimension of the inverse
of a time, being a typical scalar scale for A, the linear solution is expected to hold
for small St only. But the maximum St at which it is valid depends crucially on
the initial shear rapidity factor SL/u′, where L and u′ are typical scales for the
disturbance flow, and other features of the flow. Practical experience shows that the
validity of RDT cannot be predicted a priori, considering only St and the initial value
of SL/u′. In some extreme cases, like rotating turbulence with angular velocity �

and low Rossby number Ro = u′/(2�L), the nonlinearity becomes significant only
after a very long time, such that �t = Ro−2 (see Chap. 7). This is partly explained
by the depletion of nonlinearity due to phase mixing by dispersive inertial waves at
small Rossby number. This “rapid” adjective in RDT is even less relevant here since
at least two “rapid” time scales exist, namely 1/S and L/a. In brief, short time is a
sufficient condition to ensure the validity of the linear solution, but not a necessary
one.

A background mean flow is defined by space-uniform density ρ̄(t), pressure P(t)
and mean velocity gradients

Ui = Ai j x j ,

along with Eq. (14.17), and it is possible at least to consider that the fluctuations of
density and pressure are weak with respect to their mean reference values, i.e.

ρ′ � ρ̄(t), p′ � P(t).

1In this case, one could check if a wavelike disturbance form for all the disturbance terms, including
also ρ′, can be consistently defined, without cancelling a priori the mean acceleration term.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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Finally, the following simplified system of two equations is found for the fluctu-
ating flow

D

Dt
u′

i + Ai j u
′
j + 1

ρ̄

∂ p′

∂xi
= −u′

j

∂u′
i

∂x j
(14.18)

D

Dt
(

p′

γP
) + ∂u′

i

∂xi
= −u′

j

∂

∂x j
(

p′

γP
), (14.19)

where

a2
0 = γ

P

ρ̄
(14.20)

is the square of the speed of sound. The symbol D
Dt denotes the material deriva-

tive following the mean flow streamlines. Viscous terms are omitted, in agreement
with isentropic assumption, but they can be added for numerical convenience. These
equations are the starting point for both the nonlinear statistically isotropic approach
in the absence of mean velocity gradient (Fauchet et al. 1997) (see also Sect. 13.2),
and the linear approaches in the presence of A (Jacquin et al. 1993; Cambon et al.
1993; Simone et al. 1997).

14.2.2 Properties of Admissible Mean Flows

A zero mean acceleration in Eq. (14.17) corresponds to

F̈i j (t, 0)X j = 0,

so that the general expression for F is

Fi j (t, 0) = δi j + Si j t, (14.21)

where Si j is an arbitrary constant matrix. The mean velocity gradient matrix is readily
derived, using A = dF

dt F−1, as

A(t) = S(I + S)−1. (14.22)

Using the volumetric ratio

J (t, 0) = DetF(t, t0) = exp

[∫ t

t0

Aii (t
′)dt ′

]
(14.23)

http://dx.doi.org/10.1007/978-3-319-73162-9_13
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and the mean isentropic equation P(t)ρ−γ
0 (t) = Constant , one obtains

ρ0(t) = ρ0(0)

J (t, 0)
, P(t) = P(0)

J γ(t, 0)
, (14.24)

resulting in the definition of a time-dependent speed of sound a(t) if J (t, 0) is time-
varying.

These equations were given in Cambon et al. (1993) to extend the conditions
proposed by Blaisdell et al. (1991), and perhaps are not the most general solution
consistent with the three admissibility conditions mentioned in the previous section.
The search for more complex admissible base flows (e.g. Craik and Allen 1992) is
more a mathematical skilled task than a physically relevant problem.

14.2.3 Linear Response in Fourier Space. Governing
Equations

Equations (14.18) and (14.19) are linearized around a mean flow with space uniform
gradient A, discarding their right-hand-sides. As usual in RDT and in related stability
analyses, the equations are simplified considering Fourier modes

(u′
i , p′)(x, t) =

∫
(ûi , p̂)(k(t), t)eı k(t)·xd3k,

with
k̇i = −A ji k j .

The only difference with incompressible RDT for the treatment of advection is
the occurrence of the term Ann , because the Fourier counterpart of u̇′

i is

∂ûi

∂t
− Annûi − A jmk j

∂ûi

∂km
.

Extending the notation with the overdot to derivatives in Fourier space, the latter
equation can be recast as

˙̂ui − Annûi = ∂ûi

∂t
+ dkm

dt

∂ûi

∂km
− Annûi . (14.25)

The system of Eqs. (14.18) and (14.19) yields

˙̂ui − Annûi + Ai j û j = − ı

ρ0
ki p̂, (14.26)

˙̂p + (γ − 1)Ann p̂ = −γPıki ûi . (14.27)
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An important step in investigating this system is to use the Helmholtz decompo-
sition

û =
(

I − kkT

k2

)
û

︸ ︷︷ ︸
ûs

+ kkT

k2
û︸ ︷︷ ︸

ûd

. (14.28)

In addition, the Craya–Herring frame of reference can be used for specifying the
two solenoidal modes: the third vector is nothing else than k/k and is used to define
the dilatational mode, with a superscript 3, consistently with

e(3) = k
k
, u(3) = û·e(3),

from which it comes

û = u(1)e(1) + u(2)e(2)︸ ︷︷ ︸
ûs

+ u(3) k
k︸ ︷︷ ︸

ûd

. (14.29)

In agreement with the decomposition in physical space discussed in Sect. 2.1.5, the
subscripts ‘s’ and ‘d’ denote solenoidal and dilatational modes, respectively. Since the
Craya–Herring frame of reference is a direct orthonormal frame, vortical (applying
the Curl operator) and dilatational (applying the divergence) velocity contributions
have simple counterpart in this frame:

ω̂(k, t) = ık
(
u(1)e(2) − u(2)e(1)

)
(14.30)

ûi,i (k, t) = ıku(3). (14.31)

In order to recover an homogeneous problem, the pressure fluctuation is scaled
as a velocity, and considered as the fourth component of the solution vector (Simone
et al. 1997):

u(4) = ı
p̂

ρ0a
. (14.32)

This scaling is similar to the one of Eckhoff and Storesletten (1978).
Linear solutions are therefore expressed in terms of u(i), i = 1, 4 components,

solving the following linear system of ODE:

⎛
⎜⎜⎝

u̇(1)

u̇(2)

u̇(3)

u̇(4)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

m11 − Ann m12 m13 0
m21 m22 − Ann m23 0
m31 m32 m33 − Ann +ak

0 0 −ak 3−γ
2 Ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠ = 0

(14.33)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fig. 14.2 Schematic view of
interactions between modes
defined in the local
Craya–Herring frame
according to the RDT
analysis of compressible
homogeneous shear flows.
Dotted lines denote
self-interaction

or equivalently

u̇(i) − Annu(i) + mi j u
( j) = 0, (14.34)

where the coefficient of the RDT matrix m are defined as follows:

mαβ = e(α)
i Ai j e

(β)

j − ė(α)
i e(β)

i ,

= = e(α)
i Ai j e

(β)

j + εα3βe(2)
j Ai j e

(1)
j , (14.35)

mα3 = e(α)
i Ai j e

(3)
j − ė(α)

i e(3)
i = e(α)

i

(
Ai j − A ji

)
e(3)

j , (14.36)

m3α = e(3)
i Ai j e

(α)
j − ė(3)

i e(α)
i = 2e(3)

i Ai j e
(α)
j , (14.37)

m33 = e(3)
i Ai j e

(3)
j , (14.38)

m34 = −m43 = −a0k. (14.39)

As previously, Greek indices take the values 1 or 2 only and refer to solenoidal
modes. The calculation of the “solenoidal block” is made assuming that the polar
axis n of the Craya–Herring frame of reference is one of the eigenvectors of A.

Of course, the four-dimensional problem in physical space (u1, u2, u3, p) remains
a four-components problem in Fourier space. Using the Craya–Herring frame, no
reduction of the number of variables is obtained as in solenoidal cases since the dilata-
tional mode u(3) does not vanish, but the matrix mi j , i = 1, 4, j = 1, 4 has some zero
components and the role of each nonzero component is more easily understood. All
the coefficients in the ‘velocity block’ of the matrix above, or mi j , i = 1, 3, j = 1, 3
depend on A and therefore scale with S, which is a norm of A. The acoustic terms
m34 and m43 scale with the dispersion frequency of acoustic waves, ka0. As a con-
sequence, the parameter S/(a0k) is immediately found to be the pivotal parameter;
of course it is a spectral counterpart of the gradient Mach number Mg. The different
couplings between the solenoidal modes u(1) and u(2), the dilatational mode u(3) and
the pressure mode u(4) are illustrated on Fig. 14.2.
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The solution of Eq. (14.33) is expressed as

u(i)(k(t), t) = J (t, 0)gi j (k, t, 0)u( j)(K , 0), (14.40)

with J given by (14.23). As usual in RDT, the deterministic function gi j , i, j = 1, 4
can be computed analytically or numerically, solving sequentially the system (14.33)
for a set of arbitrary simple initial data, such as u(i) = δi1, δi2, δi3, δi4. Corresponding
solutions for the statistical moments are obtained from the initial values of these sta-
tistical moments through g-products. Simplified forms of these initial values usually
come from isotropy and ‘strong’ acoustic equilibrium assumptions (Simone et al.
1997).

In the general case with time-depending J , new “divergence” and “pressure”
terms can be used, introducing the following new integration variables:

y = J−1 u(3)

k
, z = J−1 u(4)

a0
, (14.41)

and using

k̇

k
= −Ai j

ki k j

k2
(14.42)

a useful “pressure” equation is found

D

Dt

(
ż

k2

)
+ a2

0 z = a2
0 zs, (14.43)

in which

zs = J−1 p̂s

ρ̄a2
0

= ı
J−1

ka2
0

m3αu(α) (14.44)

only involves the solenoidal velocity field and exactly corresponds to the solution of
the Poisson equation found in the strictly incompressible case.

14.2.3.1 Recovering the Acoustic Régime

In the absence of mean flow, i.e. setting A = 0 in Eq. (14.33), the solenoidal mode
is strictly conserved, whereas pressure and dilatational velocity modes are governed
by (

u(3) ± ıu(4)
)
(t) = e±ıa0kt

(
u(3) ± ıu(4)

)
(t = 0) (14.45)

which corresponds to the acoustic regime discussed in Chap. 13.

http://dx.doi.org/10.1007/978-3-319-73162-9_13
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14.2.3.2 Recovering the Solenoidal Limit

The solenoidal limit, also known as incompressible RDT, is found solving only the
block i = 1, 2, j = 1, 2, since u(3) = 0 gives the solenoidal limit (e.g. Eq. (14.31)).
The governing equation for the pressure mode is

u(4) = u(4)
s = m3α

ka0
u(α). (14.46)

This equation gives the counterpart of the solution for the Poisson equation satis-
fied by the fluctuating pressure in this limit, or

p̂ = p̂s = − ı

ρ0
m3αu(α), m3α = 2

ki

k
Ai j e

(α)
j .

14.2.3.3 Irrotational Mean Strain Case

In addition to pure solenoidal coupling terms mαβ , which are the same as in solenoidal
RDT, and to ‘acoustical’ or ‘pseudo-sound’ terms m34 = −a0k, m43 = a0k, discussed
above, very interesting terms are

mα3 = e(α)
i (Ai j − A ji )

k j

k
.

These terms represent a feedback from the dilatational mode to the solenoidal modes,
and they are generated by the rotational part of the mean flow.

As an immediate consequence, the solenoidal flow is decoupled in the presence of
an irrotational straining process. Another less obvious consequence is that the kinetic
energy growth rate is larger in compressible RDT than in solenoidal RDT, since the
kinetic energy of the dilatational mode, which is always positive, is just added to the
kinetic energy of the solenoidal mode, which is independent of compressibility in
this case. The effect of the fluctuating pressure in the solenoidal linear limit is just
to kill this dilatational contribution. Accordingly, as firstly demonstrated by Jacquin
et al. (1993), the kinetic energy growth rate increases monotonically with increasing
gradient Mach number Mg , from solenoidal RDT to “pressure released” RDT, in
full agreement with Eq. (14.11). These results were revisited and confirmed by full
DNS (Cambon et al. 1993), also quoted in Lele (1994) and Simone et al. (1997) for
homogeneous axial compression (Ai j = S(t)δi1δ j1), as shown on Fig. 14.3. For the
sake of convenience, the time advancement parameter is not S(0)t but the inverse of
the mean volumetric ratio J (t), with S(t) = −S(0)/(1− S(0)t) = −S(0)/J (t). The
contribution of the solenoidal mode corresponds to a quasi-linear growth of kinetic
energy in terms of the mean compression ratio J−1, while dilatational contribution
leads to a quasi-parabolic growth. It is worth noticing that compressibility is always
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Fig. 14.3 Turbulent kinetic
energy histories for different
values of the gradient Mach
number Mg , in the axial
compression case. Top: Full
DNS (dots) and linear theory
(lines). Bottom: in addition,
splitting into solenoidal and
dilatational parts.
Reproduced from Simone
et al. (1997) with permission
of CUP

shown to have a destabilizing effect regarding RDT for irrotational mean flow. Of
course, the general relevance of this result can be questioned since it relies on both
the irrotational condition and the short time condition S(0)t < 1 in the case of axial
compression.
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Analytical solutions for solenoidal RDT and pressure-released limit are

K(t)

K(0)
= 1

2

(
1 + J−2 tan−1(

√
J−1 − 1)√

J−1 − 1

)
, (14.47)

yielding a quasi-linear growth in terms of J−1, and

K(t)

K(0)
= 2 + J−2

3
, (14.48)

yielding a parabolic growth if J−1 ≥ 1, respectively. Despite the presence of the
varying mean volumetric ratio, the solenoidal equation is very close to the classical
equation for mean incompressible axial strain given by Batchelor (see also Eqs. (8.37)
and (8.38)), up to a J 4/3 factor. This result was also found by Ribner and Tucker
(1953). The framework of solenoidal turbulence subjected to mean strain with vari-
able volume is also addressed in Cambon et al. (1992), with the particular flow case
addressed in the next subsection.

14.3 Incompressible Turbulence with Compressible Mean
Flow Effects: Compressed Turbulence

An interesting class of solenoidal (i.e. with divergence-free velocity fluctuations)
homogeneous turbulent flows can be considered in the presence of a mean flow with
space-uniform gradients, which takes into account a variation in the mean volume.
Provided that the Mach number is small enough, this set of assumptions is self-
consistent, and it is possible to extend solenoidal RDT to compressed turbulence, i.e.
to divergence-free fluctuating velocity field in the presence of a mean dilatational
flow, neglecting acoustics and thermal effects.

The mean flow is characterized by the volumetric ratio (14.23), which differs from
1 when the constraint Aii = 0 is relaxed. For the sake of brevity t0 will be omitted in
the following, so that abridged notations F(t), J (t) will be now used in this section.
Among different compressing mean flows, the case of isotropic compression deserves
particular attention. In this case, the matrices A and F, and the trajectory equations
write

Ai j (t) = S(t)δi j , Fi j (t) = J 1/3(t)δi j , xi = J 1/3(t)X j , (14.49)

in which S = 1
3

1
J

d J
dt . The fluctuating field is governed by

∂u′
i

∂t
+ Sx j

∂u′
i

∂x j
+ Su′

i + 1

ρ

∂ p′

∂xi
= −u′

j

∂u′
i

∂x j
+ ν∇2u′

i , (14.50)

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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in which explicit nonlinear terms and viscous terms are gathered in the right-hand-
side. Setting the rigth-hand-side to zero, the RDT solution is directly found in physical
space2:

u′(x, t) = J−1/3(t)u′(X, 0).

More interesting is the possibility to derive a rescaling for full nonlinear equation
(14.50), in terms of spatial coordinates, velocity and time. It is expressed as follows

x∗ = J−1/3x, u∗(x∗, t∗) = J 1/3u′(x, t) dt∗ = J−2/3(t)dt. (14.51)

Such a dynamical rescaling can also be used in Boltzmann equations, and applied
to the cosmological gas in order to account for the expansion of the universe. When
substituting it in Eq. (14.50) which governs the primitive unscaled variables, the
rescaled quantities are shown to satisfy the Navier–Stokes equations without the addi-
tional mean terms which depend on S in the left-hand-side. For consistency reason,
the pressure is rescaled as p∗ = J 5/3 p, and the only difference with uncompressed
freely decaying isotropic turbulence for the velocity field u∗(x∗, t∗) is a possible
influence of time-variations of the viscosity ν∗(t). The variation in Reynolds number
follows directly since u′L = u∗L∗. If the Reynolds number is high enough, how-
ever, it is reasonable to expect that all classical results dealing with spatio-temporal
dynamics and statistics of isotropic freely decaying turbulence are still valid for (u∗,
x∗, t∗), so that the corresponding laws for primitive variables (u′, x, t) can be readily
derived using Eq. (14.51). The reader is referred to Cambon et al. (1992) for various
applications.

This scaling deserves attention for two reasons. First, it illustrates a particular
“dynamical” version of the general scale invariance (see e.g. Frisch 1995)

x∗ = λx, u∗ = λh u, t∗ = tλ1−h, ν∗ = λ1+hν, (14.52)

so that λ corresponds to the time-dependent mean density ratio J−1/3, with h = −1.
In the latter invariance group, the viscosity would be left unchanged if h = −1, but it
should be borne in mind that the dynamical rescaling deals with a continuously time-
varying parameter J−1/3(t) in contrast to λ. It is worth noting that taking h = −1
one recovers the scaling law I in Eq. (4.119), while transformation in Eq. (4.120) is
found setting h = 1.

Second, it can be used to check the consistency of any model or theory, ranging
from K − ε to elaborated EDQNM, DIA or LRA versions.

As a simple example, let us start with a classical decay law such as

K(t) = K(0)

(
1 + t

nt0

)−n

, L(t) = L(0)

(
1 + t

nt0

)1−n/2

,

2This is a very special case, in which the nonlocal potential term is zero in Eq. (14.8).

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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consistently obtained for the turbulent kinetic energy, its dissipation rate, and the
single relevant integral lengthscale L , with 1/t0 = −(1/K)dK/dt at t = 0. Applying
the rescaling, which amounts to rewrite the same equations in terms of ’starred’
variables, the following equations are derived for the ‘compressed’ decay:

K(t) = K(0)e2Ct

(
1 + e2Ct − 1

2nCt0

)−n

, L(t) = L(0)e−Ct

(
1 + e2Ct − 1

2nCt0

)1−n/2

,

for a mean compression or dilatation at constant rate S(t) = −C .
These equations show immediately than the domain of relevance of RDT in terms

of elapsed time is more restricted as usually conjectured, with a dominant nonlinearity
having an effect opposite to the linear one. Choosing a spherical compression, i.e.
C > 0, the RDT growth rate factor for K, e2Ct , is always balanced and rapidly
dominated by a nonlinear term given by e−2nCt . This reflects the fact that, when the
velocity u′ is affected by a linear ‘RDT’ factor eCt , the nonlinear term of dimension
u′2/ l is affected by a factor e−3Ct , the full nonlinear effect being finally accounted
for by the time-rescaling dt = dt∗e2Ct .

This flow is particular in the sense that turbulence is not really compressible, but
it offers a very simple way to exactly evaluate the impact of nonlinearity; this is an
unique instance for comparing linear RDT with full nonlinear theory. In contrast,
a depletion of nonlinearity is rather expected in true compressible turbulence, with
respect to the incompressible flow case, but in the anisotropic case, as discussed
further. It is also possible to study the spherical (isotropic) compression or dilatation
applied to really compressible homogeneous turbulence. Very consistent results were
found by Blaisdell et al. (1996) and Simone et al. (1997), using full DNS and isen-
tropic RDT: as a particular result, the strong acoustic equilibrium can be sustained,
as illustrated by the Fig. 2 in Simone et al. (1997).

14.4 Compressible Turbulence in the Presence of Pure
Plane Shear

The background velocity field of the pure plane shear addressed in this section is
identical to the one considered in the incompressible case (see Chap. 9). It is defined
by

A =
⎛
⎝0 S 0

0 0 0
0 0 0

⎞
⎠ , F(t) =

⎛
⎝1 St 0

0 1 0
0 0 1

⎞
⎠ . (14.53)

The associated characteristic lines in the both Fourier and physical (trajectories)
space are given by

http://dx.doi.org/10.1007/978-3-319-73162-9_9
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k1 = K1, k2 = K2 − K1St, k3 = K3 x1 = X1 + St X2, x2 = X2, x3 = X3.

(14.54)
In this case J ≡ 1, so that ρ̄, P and a (= a0) are constant.

14.4.1 Qualitative Results

Even in the pure shear case, the pressure released limit is more energetic than the lin-
ear solenoidal limit. Accordingly, a reduction of pressure fluctuations, in the linear
limit, would yield a monotonic increase of turbulent kinetic energy with increas-
ing Mg, as for the case of irrotational mean straining ! The fact that the pressure-
released growth rate is higher than the solenoidal one, in the linear limit, results from
Eqs. (14.5) and (14.53), which yield a quadratic growth rate for the kinetic energy,
i.e. K(t) ∝ (St)2.3 In the same conditions, the solenoidal RDT predicts only a linear,
growth rate: K(t) ∝ St . Once recast in a relevant non-dimensional form, the kinetic
energy growth rate is characterized by

� = 1

SK
dK
dt

, (14.55)

which is equal to

� = −2

(
b12 + ε̄s + ε̄d − �(d)

SK
)

(14.56)

according to Eq. (14.2). In the pressure-released linear limit with isotropic initial
data, the kinetic energy growth rate is equal to

�(pr) = 2St

3 + (St)2
. (14.57)

This equation gives the upper solid line in Fig. 14.4-bottom. The corresponding
limit of solenoidal RDT is plotted in Fig. 14.4, as the lower solid line. Is there a
simple explanation for this stabilizing effect of pressure in solenoidal RDT, with-
out looking at RDT details? As in all shear flow cases, the answer is given by the
dynamics of the vertical velocity component: u′

2 is passively advected in the pressure-
released linear limit, while it is its Laplacian ∇2u′

2 which is advected in the RDT
solenoidal limit. According to the corresponding RDT complete solution in Fourier
space, D(k2û2)/Dt = 0, leading to û2(k, t) = K 2

k2 û2(K , 0) and a decrease of u′
2

since K/k < 1 for t > 0. Using the Craya–Herring frame with the polar axis paral-
lel to the cross-gradient direction of the mean shear, the complete RDT solution (see
also Chap. 9) is much simpler than the one given by Townsend Townsend (1976) in
the fixed frame. The corresponding equation dealing with u

′(2) is

3The reader is referred to Chap. 9 for a detailed discussion of the incompressible shear case. Results
are summarized in Table 9.2.

http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_9


14.4 Compressible Turbulence in the Presence of Pure Plane Shear 711

Fig. 14.4 Histories of the
nondimensional production
term −2b12, Full DNS (top)
and linear quasi-isentropic
compressible theory
(bottom), so called
(improperly) RDT. Upper
and lower solid lines
correspond to
pressure-released limit and
solenoidal limit, respectively.
Initial Mg (called Md in the
figure) ranges from 4 to 67
for both DNS and RDT,
arrows show trend with
increasing Mg . Reproduced
from Simone et al. (1997)
with permission of CUP

˙(ku(2)) = 0, (14.58)

which is consistent with the pure advection of ∇2u2 in the physical space. Note that
this analysis only confirms that the role of the so-called ‘rapid’ pressure-strain rate
tensor in Reynolds stress equations is a stabilizing one. This result is in qualitative
agreement with crude single-point models, in which the ‘rapid’ pressure-strain rate
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tensor is modelled as reducing the production. Using these simple considerations, a
destabilizing effect of compressibilty is observed, as shown in Fig. 14.4 for St < 4
in both full DNS and quasi-isentropic compressible linear theory. This result is very
similar to what happened in the irrotational mean strain case, with a monotonic
increase of � with increasing Mg, from the solenoidal to the pressure-released case.

14.4.2 Discussion of Results

As shown in Fig. 14.4, the conventional ‘stabilizing’ behaviour of compressibility is
recovered at large times St > 4. It is therefore clear that this stabilizing behaviour
is explained by the presence of the mα3 coupling terms, at least in the linear limit.
Figure 14.4 displays the main part of the turbulent kinetic energy growth rate �

defined in Eq. (14.55), which reduces to −2b12, ignoring other terms, as also justified
by Sarkar (1995).

Equations for the pure plane shear case are rewritten below using Eqs. (14.35)–
(14.37) and the three nontrivial components from the solenoidal Craya–Herring frame

e(1)
1 = − K3

K⊥
, e(2)

2 = − K⊥
k

, e(2)
1 = K1k2

K⊥k
.

It is recalled that the optimal choice for the arbitrary vector n in the definition of
the local frame (see Table 2.2) is to chose the polar axis in the cross-gradient shear
direction: ni = δi2. Further simplifications are obtained using integrating factors to
remove some diagonal coupling terms, in agreement with Eq. (14.42). After some
algebra, one obtains

u̇(1) + S
K3

k(t)
u(2) = S

K3k2(t)

K⊥
u(3)

k(t)
, (14.59)

˙(
ku(2)

) = −S
K1

K⊥
k(t)u(3), (14.60)

˙(
u(3)

k(t)

)
= 2S

K1 K⊥
k4(t)

k(t)u(2) − a0u(4), (14.61)

u̇(4) = a0k(t)u(3), (14.62)

with

K⊥ =
√

K 2
1 + K 2

3 , (14.63)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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as a special case of Eq. (14.33). The counterpart of Eq. (14.43) is

D

Dt

( ˙̂p
k2(t)

)
= a2

0

⎛
⎜⎜⎝2ıρ0S

K1 K⊥
k4

(ku(2))︸ ︷︷ ︸
p̂s

− p̂

⎞
⎟⎟⎠ . (14.64)

Going back to the (generally expected) stabilizing effect of compressibility, it
is commonly accepted, following Sarkar (1995), Pantano and Sarkar (2002), that
the weakening of pressure correlation is the sole explanation. As a matter of fact,
the weakening of pressure can be demonstrated from the solution of Eq. (14.64),
considering the following scalar Green’s function for pressure to velocity coupling:

p̂(k, t) =
∫ t

t0

G(k, t, t ′) p̂s(k, t ′)dt ′. (14.65)

Recently, Thacker et al. (2006) proposed an analytical solution for a similar scalar
Green’s function in the pure shear case, generalizing the form G = sin(a0k(t−t ′))

a0k
recovered in the shearless case (e.g. Pantano and Sarkar 2002). One can point out
that this scalar Green’s function is generated by the equation

¨̂p + a2
0k2 p̂ = a2

0k2 p̂(s), (14.66)

which is simpler and less general than Eq. (14.64). Both Eqs. (14.64) and (14.66)
account for the time-dependency of k via Eq. (14.54), but the removal of the diver-
gence term was not accurately obtained in Thacker et al. (2006). In addition, the
equation of type (14.65) was used to express the ‘rapid’ pressure-strain rate tensor in

terms of the velocity spectral tensor involved in p̂∗û(s)
i : a solenoidal spectral model

for û(s)∗
i û(s)

j was used by Thacker et al. (2006) for this purpose (see also Cambon and
Rubinstein 2006 for a discussion of this model).

It is advocated here that the explanation based on Eq. (14.64), i.e. weakening of
pressure fluctuations, for stabilizing/destabilizing compressibility effects, is only a
partial one. This equation is also a byproduct of the general study based on the
full system of linear equations considered here. The conventional explanation is
valid, for instance to account for the difference between the less compressible fully
nonlinear case in Fig. 14.4-top which corresponds to an almost constant production
rate at largest St , and the pressure released case (upper curve in solid line in Fig. 14.4-
bottom). This ‘explanation’ is irrelevant when the plot of compressible RDT result at
large Mg and large elapsed time lies below the incompressible RDT limit curve (solid
line in Fig. 14.4): in this case the sole argument of mollification of pressure would lead
a destabilizing effect of compressibility. In contrast, the second explanation based
upon the feedback in Eq. (14.60) of the dilatational mode onto the relevant poloidal
mode, which includes the whole vertical velocity component—a key component for
the production by shear in any case—, is valid.
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As a final remark, let us recall that the argument dealing with the weakening of
pressure is always relevant in the irrotational ‘mean’ case, or at St < 4 in the shear
case, but yields a systematic destabilizing effect because the pressure-released limit
is always over the incompressible RDT limit! Of course, looking at the Reynolds
stress equations, the weakening of the nonlinear (so-called slow) pressure-strain rate
tensor yields a stabilizing effect in the pure shear flow case, but this reflects more a
depletion of nonlinearity at increasing Mg than a stabilizing effect of compressibility:
in addition the ratio of gradient to turbulent Mach number Mg/Mt is nothing else
than the shear rapidity factor, and increasing Mg without increasing Mt in the same
proportion means depleting the nonlinearity. The latter remark also holds for DNS
results presented in Fig. 14.4, but not for pure linear theories.

14.4.3 Towards a Complete Linear Solution

As a direct continuation of the study by Simone et al. (1997), some work remains
to be done to retrieve more information from the linear equations in the pure shear
flow case. The existence of the invariant quantity

ξ = ku(2) + S

a0

K1

K⊥
u(4), (14.67)

which is passively advected (i.e. conserved along the characteristic lines (14.54)),
as seen combining Eqs. (14.60) and (14.62), offers new perspectives for analytical
solutions. Analytical solutions by Thacker et al. (2006) for the scalar pressure Green’s
function can be useful for this purpose too.

A single second order equation is found at K1 �= 0 for x = ku(2):

D

Dt

(
ẋ

k2

)
− K 2

1

(
2

S2

k4
+ a2

0

K 2
⊥

)
x = − K 2

1

K 2
⊥

a2
0ξ. (14.68)

As in all RDT cases in the presence of pure plane shear, an analytical solution is
found if K1 = 0, because k = K . In this case the acoustic solution (14.45) for u(3)

and u(4) is valid, whereas the solution of (14.59) and (14.60) is

u(2)(k, t) = u(2)(k, 0), (14.69)

u(1)(k, t) = u(1)(k, 0) − St
k3

k
u(2)(0)

+S
k2

k

(
sin(a0kt)

a0k
u(3)(k, 0) − cos(a0kt)

a0k
u(4)(k, t)

)
. (14.70)
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The feedback from dilatational to toroidal mode is displayed in the latter equation.
The probably more important (for global production) feedback from dilatational to
poloidal is cancelled at k1 = 0, showing the need for a general solution at any K1.

In the line of the latter study, the very complete study by Livescu and Madnia
(2004) gives many useful analytical and numerical results for the homogeneous
turbulent shear flow, with emphasis on the effect of compressibility. Analytical RDT
solutions show very different behavior compared to the incompressible case, with
most of the contributions to second order moments coming from different regions in
the wavenumber space. The analytical solutions predict the decrease of the growth
rate with compressibility and the persistent anisotropy of higher order derivative
moments seen in DNS.

A very important result of the RDT analysis is the derivation of the following
linear third-order in time equation for the pressure fluctuation

∂3 p̂

∂τ 3
= −a2

0

S2

(
k2 ∂ p̂

∂τ
− 4k1k2 p̂

)
, (14.71)

with τ = St . This equation is completely consistent with the system of Eqs. (14.64)
and (14.62), and could be recovered in eliminating the poloidal (or vertical) mode of
fluctuating velocity between them. In addition, a second order in time equation for
p̂ can be find as an integral form of Eq. (14.71), using the invariant ξ in Eq. (14.67).
An equation similar to (14.68), but for the pressure, is found this way.

14.4.4 Noise Radiated by Homogeneous Compressible Pure
Shear Turbulence: Lighthill Analogy

The Lighthill analogy used to evaluate the noise radiated by isentropic compressible
isotropic turbulence in Sect. 13.2.10 can be extended to the case of the noise radiated
by isentropic homogeneous shear turbulence in which the Lighthill tensor is restricted
to

Ti j = ρ∞ui u j (14.72)

The developments are almost the same as in the isotropic case, since the main
difference arises in the expression and modeling of the Lighthill tensor for aeroa-
coustic sources. Therefore, the emphasis is put here on the modelling of source term,
the rest of the procedure, i.e. use of the d’Alembertian Green function along with
simplifications arising from further assumptions dealing with source compactness
and far-field approximation being the same as in Sect. 13.2.10.

In the homogeneous shear case, the expression of the fourth-order correlation
tensor must be split into a purely isotropic part and a second part related to the inter-
actions between the mean shear and velocity fluctuations, exactly as in the incom-

http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_13
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pressible case discussed in Sect. 9.7,4 leading to

Ri jkl( y, ξ, τ ) = ρ2
∞ui u j u′

ku′
l︸ ︷︷ ︸

self-noise

+ 4ρ2
∞δ1 jδ1lui u′

kU jU
′
l︸ ︷︷ ︸

shear-noise

, (14.73)

u( y, t) = U ex + u, u( y + ξ, t + τ ) = U ′ex + u′. (14.74)

The term UU ′ is evaluated writing a Taylor series expansion about the middle
point y + ξ/2:

UU ′  U 2( y + ξ/2) − ξ2
2

4

(
dU

dy
( y + ξ/2)

)2

, (14.75)

which simplifies in the present case of homogeneous shear as

UU ′  U 2( y + ξ/2) − S2 ξ2
2

4
. (14.76)

The two-point fourth-order correlation ui u j u′
ku′

l is modeled thanks to the Quasi-
Normal hypothesis, as in the isotropic case. The two-point second-order velocity
correlations are then evaluated exactly as in the isotropic case, leading to closed
expressions for both shear noise and self-noise components.

The associated expression for the radiated acoustic intensity is

I (x) = Aρ2∞
x2

∫
V

2L6
uK2

9
√

2C5

d4G2

dτ 4
(0)d3 y

︸ ︷︷ ︸
self-noise

+ S2Aρ2∞
x2

∫
V

2L5
uK

6πC5

d4G

dτ 4
(0)Dθd3 y

︸ ︷︷ ︸
shear-noise

(14.77)

where Dθ = (cos4 θ + cos2 θ)/2 is the shear noise directivity. One can see that con-
trary to the self noise which is emitted in an isotropic way, the shear noise intrinsically
exhibits a non-uniform directivity, independently of convective effect.

The radiated acoustic spectrum is now given by

R̂ρρ(x,ω) = A
x2

∫
V

[
Ŝself( y,ω) + Ŝshear( y,ω)

]
d3 y. (14.78)

Using Bailly’s formula for the velocity two-time correlation function G(τ ), one
obtains for the spectra of the two noise components:

Ŝself( y,ω) = 4ρ2∞L3
uK2

9
√

2βτu

ω4 Cωτu/4β

sinh(Cωτu/4β)
(14.79)

4As a matter of fact, the solution in compressible shear case is formally the same as in the incom-
pressible shear case, the Green function of the Laplacian operator being replaced by the one of the
d’Alembertian operator.

http://dx.doi.org/10.1007/978-3-319-73162-9_9


14.4 Compressible Turbulence in the Presence of Pure Plane Shear 717

and

Ŝshear( y,ω) = ρ2∞L5
uKDθ

3βτu
S2ω4 1

cosh(Cωτu/4β)
. (14.80)

As in the isotropic case, this model is observed to be very accurate in subsonic
cases.

14.5 Perspectives and Open Issues

Perspectives for modelling nonhomogeneous and/or nonlinear effects can be briefly
discussed. On the one hand, extending homogeneous RDT towards zonal (localized)
RDT is possible, but the related assumption of short-wave disturbance can disconnect
the acoustic modes in practice. A more promising case is found when disturbances
are localized in the vicinity of rays (along which total energy, including the acoustic
one, propagates), instead of being localized near mean trajectories. More details are
given in Chap. 17.

On the other hand, in the absence of mean velocity gradients, interactions between
solenoidal, dilatational and pressure modes are purely nonlinear and can be analysed
and modelled in pure isotropic homogeneous turbulence. In this context, the model by
Fauchet et al. (1997) gave promising spectral informations, as shown in the previous
chapter. To reconcile both cases, i.e. taking into account both linear distortion by
the mean flow and nonlinearity, is a formidable challenge. At least, the nonlinear
model could be used for initializing in a better way the compressible RDT equations,
replacing a questionable ‘strong’ acoustic equilibrium by a more realistic ‘weak’
one.

Regarding ‘strong’ acoustic equilibrium, even the RDT solution can significantly
break it, independently of initial data, if Mg is sufficiently large, or more precisely if
S/(a0k) is large and K1 �= 0. The linear equation (14.62) is probably always valid,
even in the nonlinear case, and the forcing by the solenoidal term (poloidal mode in
Eq. (14.61)) can play a similar role here as the dominant part of the T (3)

N L term does
in the nonlinear case.

14.5.1 Homogeneous Shear Flows

A critical survey of previous studies has shown that the alteration of pressure equation
by compressibility, without significant change in its source term, is not the correct
explanation for the “stabilizing” effect, at least for homogeneous shear flow. It is
suggested that the alteration mentioned above results from the depletion of non-
linearity, and that this is the nonlinear part of the pressure-strain rate and not the
linear (so called rapid) one which is concerned in this case. In contrast, the subtle

http://dx.doi.org/10.1007/978-3-319-73162-9_17
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coupling between solenoidal and dilatational velocity modes is essential for explain-
ing the stabilizing effect in the linear limit, and especially the feedback from the
dilatational mode induced by the rotational part of the mean flow, as in Eq. (14.60).
Such an analysis escapes the description permitted by Reynolds stress modelling.
A general linear solution such as (14.40) contains a lot of information and it is a
pity to derive from it only conventional single-point statistics: more information can
be obtained about spectral distribution, since the ratio S/(ak) which underlies the
distortion Mach number is wavenumber-dependent, and about specific vortical and
dilatational contributions.

14.5.2 Perspectives Towards Inhomogeneous Shear Flows

In an incompressible mixing layer, the velocity scale is unequally determined by the
difference in the two stream velocities, v0 ∼ �U and variation in the lengthscale
unequally depends on the velocity ratio. Compressibility changes this dimensional
rule by making the speed of sound a relevant parameter with the consequence that
the two above scales now possibly depends on a Mach number (the gradient Mach
number Mg ∼ �U/a or the turbulent Mach number Mt ∼ v0/a with a an aver-
age of the two speeds of sound). As already mentioned, the consensus that emerged
from DNS of compressible mixing layers is that compressibility stabilises a mixing
layer by decreasing its pressure fluctuations, see e.g. Pantano and Sarkar (2002).
This leads in particular to the reduction of the pressure-strain terms which produce
the turbulent shear stress through redistribution among the Reynolds stresses of the
energy provided by the work of the mean shear. Indeed, these DNSs provided us
with decisive results. But, according to our above analyses, the detailed sequence of
mechanisms leading to the mixing layer stabilization still escapes our understanding.
It is important to note that linear analyses of compressible flows are somewhat in
contradiction with the proposed interpretations because given a shear rate �U/δ,
damped pressure fluctuations should make both the kinetic energy and the shear
stress increased instead of decreased, through contribution of dilatational velocity
fluctuations growing with the gradient Mach number. This should remain effective
in the conditions which hold in a mixing layer because one does not expect a strong
imbalance between linear and non linear time scales in such a free flow (actually
δ/�U does not depart so much from δ/v0 and mildly rapid shear conditions must
prevail). This indicates that non-linear compressibility effects should be addressed,
in particular the changes in the mechanism of “isotropisation” of the fluctuations by
pressure which are essential for producing kinetic energy in a shear flow. Evaluation
of the respective impact of compressibility on linear and non-linear pressure terms is
required for understanding and modelling correctly the compressible mixing layer.
Note at last that in this inhomogeneous flow transport terms are also deeply modi-
fied by the drop of pressure fluctuations. Namely, one observes that the decrease in
the production of turbulent kinetic energy is almost compensated by an equivalent
decrease in its transport, letting the dissipation rate ε almost unchanged.
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This last result also deserves attention. Favre averaging and normalization by
�U and by the momentum thickness δ being used in the DNS, the result is that
εδ/(�U )3 depends weakly on compressibility. If at the same time the normalized
kinetic energy v2

0/(�U )2 is reduced by compressibility, basic dimensional analysis
leaves us with the paradox that the rate of dissipation of the turbulent kinetic energy
(which is proportional to (�U )3/δ) exceeds by a factor proportional to (�U/v0)

3

the rate of injection of the kinetic energy into the cascade (proportional to v3
0/δ).

Indeed, this reasoning is very crude, but it indicates that the detailed mechanisms
fixing energetic equilibrium in compressible mixing layers are not yet fully asserted.
This was addressed for instance by the results of Jacquin et al. (1996) who observed
that changing Mg thanks to variations in the total temperature of the interacting
streams had almost no effect on mixing of the total pressure in their flow: weak
variations in the total pressure spreading rate with compressibility were obtained
and were also observed in other experiments. This may be an indication that the
dissipation processes, which set the losses (i.e. the transformation of mechanical
energy into heat), weakly depends on compressibility in free compressible shear
flows. If this were true, this should be integrated into the models. Though it is, it
remains still much to make and to understand on the subject.

Finally, explanations based on the hydrodynamic stability, as the inhibition of
Kelvin–Helmholtz instabilities by compressibility, cannot be ignored, even if our
main theme here is developed turbulence. The reader is referred to Friedrich (2006)
for the problem of compressibility in wall bounded flows.

14.6 Topological Analysis, Coherent Events and Related
Dynamics

Since it is nearly impossible to generate compressible homogeneous flows in wind
tunnels, DNS is the main tool for coherent event eduction and analysis. The case
of compressible homogeneous shear flows has received much less attention than the
incompressible homogeneous shear flow and the compressible isotropic turbulence.
Only very few papers address the issue of the dynamics of coherent events in the
compressible homogeneous shear case, among which Sarkar et al. (1991), Blaisdell
et al. (1993), Erlebacher and Sarkar (1993), Simone et al. (1997) and Hamba (1999).

14.6.1 Non-linear Dynamics in the Subsonic Regime

As in the case of isotropic compressible turbulence, several flow regimes can be
identified, according to the level of compressibility, the relative importance of thermal
versus acoustic mechanisms, etc. Only the subsonic case without strong thermal
effects has been investigated, corresponding to the pseudo-acoustic regime described
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in Sect. 13.2 or the non-linear subsonic regime discussed in Sect. 13.4, in which the
main part of the turbulent kinetic energy is carried by the solenoidal component
of the velocity field. In practice, initial turbulent Mach numbers Mt ranging from
0.1 to 0.5 have been considered in the references cited above. No results dealing
with the supersonic regime and homogeneous shear with strong thermal effects are
available. Only relatively weak shear effects have been investigated, since the final
value non-dimensional time reached in the simulations is typically St  10. A
noticeable exception is found in Blaisdell et al. (1993), in which simulations have
been carried out up to St = 24. The main reason for that is that, due to the production
mechanisms, the turbulent Mach number is monotonically increasing after a transient
phase, leading to the occurrence of shocklets, which are poorly captured by the
spectral methods used for this kind of simulation.

All simulations show that the flow converge toward a state which does not depend
on the initial value of the compressibility ratio χ(0) defined in Eq. (13.34). After a
transient state, the production effects associated with the mean shear seem to lead to
nearly universal behavior, in which a solenoidal field and an acoustic field interacts.
This evolution is illustrated in Fig. 14.5, which displays the evolution of the balance
of the terms in Eq. (14.1) as a function of St , for two values of the initial Mach
number. It is observed that the relative importance of each balance term does not
depends on the turbulent Mach number and St (after the initial transient phase). In
all cases, the dissipation is negligible. For low values of the turbulent Mach number,
the solenoidal and acoustic fields are relatively decoupled in this growth regime.
This is mainly due to the fact that the kinetic energy of the dilatational mode is very
small compared to the one of the solenoidal field. At higher values of the turbulent
Mach number, shocklets are observed, as in the isotropic case. An interesting point
is that this non-linear subsonic regime is reached in all cases if the final value of St is
high enough. When shocklets are present, the dilatational dissipation ε̄d is enhanced.
Even in the presence of shocklets, it is observed in Blaisdell et al. (1993) that, after
the initial transient phase, the relative weights of dilatational and solenoidal kinetic
energy dissipations reach a constant value, with ε̄d/ε̄s = 0.1. This ratio is reached for
Mt ≥ 0.3. In this regime, it is observed that 23% (resp. 58%) of the total dilatational
dissipation is associated to the 1% (resp. 10%) volume of the flow with the most
compressive dilatations.

This relative decoupling was analyzed by Erlebacher and Sarkar (1993) looking
at the balance of budget terms in the equation for the dilatation variance d2 and the
enstrophy variance ω2. In the homogeneous shear case, the corresponding evolution
equations are:

1

2

∂d2

∂t
= −1

6
d3 − SI

i j S I
i j d − SC

i j SC
i j − 2SC

i j S I
i j d

+1

2
ω2d − 2Sd SI

12 − 2Sd SC
12

−Sω3d − d
∂

∂x j

(
1

ρ

∂ p

∂x j

)
− 4

3
ν

∂d

∂x j

∂d

∂x j
, (14.81)

http://dx.doi.org/10.1007/978-3-319-73162-9_13
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Fig. 14.5 Evolution of the budget terms of the Reynolds stresses as a function of St in compressible
homogeneous shear flows. Dissipation is not plotted when it is negligible. From Hamba (1999)
with permission of American Institute of Physics

and

1

2

∂ω2

∂t
= ωi S I

i jω j + ωi SC
i j ω j − 2

3
ω2d + Sω1ω2

+2

3
Sω3d − SSI

3 jω j + SSC
3 jω j

−εi jkωi
∂

∂x j

(
1

ρ

∂ p

∂xk

)
− ν

∂ωi

∂x j

∂ωi

∂x j
, (14.82)

where SC and SI denotes the the dilatational and solenoidal part of the turbulent
velocity gradient tensor S, respectively. Amplitudes of the balance terms which
appear in the rhs of these two equations computed at St = 9 when Reλ = 23.4,
Mt = 0.27 and SK/ε = 6.05 are displayed in Table 14.2. Looking at the dilatation
variance balance, it is clear that interaction terms between solenoidal and dilatational
modes are much smaller than between the dilatational components themselves. The
main production term is −2Sd SC

12, which is related to an interaction of the dilatational
field with the background shear. In a similar way, it is seen that the dilatational mode
has a very weak direct influence on the vorticity variance, but that the total enstro-
phy increase rate in the compressible case is 50% of the one found in the strictly
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Table 14.2 Values of the terms in the budget equations for dilatation and vorticity variance in
compressible homogeneous shear flows at St = 9 and Mt = 0.27, according to Erlebacher and
Sarkar (1993). The terms are sorted from the left to the right in the rhs of the evolution equation.
The third line displays the value of the budget term for the vorticity variance in the incompressible
case at the same value of St and the same Reynolds number as in the compressible case

Equation 1 2 3 4 5 6 7 8 9 10

(14.81) 28 0 96 0 34 0 355 69 33 −292

(14.82) 4124 −26 −45 4555 −46 0 0 1 −6355

(14.82), M = 0 6699 5301 0 −8453

incompressible case. Here, compressibility is observed to reduce both the enstro-
phy variance production by the solenoidal vortex stretching term and the enstrophy
variance dissipation. It is worth noting that the main production mechanism is the
nonlinear vortex stretching, and that the direct production by the background shear
is negligible at St = 9.

14.6.2 Topological Analysis of the Rate of Strain Tensor

The effect of compressibility on the statistical features of the rate of strain tensor was
investigated by Erlebacher and Sarkar (1993). To this end, these authors split the rate
of strain tensor S into a solenoidal component SI and an irrotational component SC ,
which are computed applying the Helmholtz decomposition to the global fluctuating
velocity field.

In the incompressible case, the rate of strain ellipsoid (based on the eigenvalues
of S) has the preferred shape (−4:1:3) in strongly dissipative regions. In the com-
pressible case, with St = 9 and Mt = 0.27, the eigenvalues ratio of the solenoidal
rate of strain tensor are almost identical to those of S in the incompressible case.
The irrotational part exhibits a very different behavior, since pdfs of the eigenvalue
ratios have two peaks. The main peak is associated with an ellipsoid of the shape
(−2.2:1:1.2), while the secondary peak corresponds to (−1:−0.7:1.7). The former
suggests that the structures which are associated with regions of high dilatation are
sheet-like in the x − z plane, the strain rates being extensional in the plane of the
sheet and strongly compressive normal to it. The latter shows that regions with one
large expansion strain are also associated with high dilatation. The exact shape of
the two preferential dilatational rate of strain ellipsoids are certainly Reynolds and
Mach number dependent, but the finding that the two rate of strain components have
very different features is trustworthy.

The same simulation also shows that compressibility (at least in this regime) has
no influence on the relative orientation of the vorticity vector.
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14.6.3 Vortices, Shocklets and Dynamics

The vortical structures observed in available simulations are qualitatively the same
as in the incompressible case discussed in Chap. 9. This is in agreement with the
analysis of the balance of the budget terms of the vorticity variance presented above.
Therefore, it can be concluded than in the pseudo-acoustic regime and in the non-
linear subsonic regime, compressiblity does not result in a qualitative change in the
vortical structures dynamics, and most of the results presented for incompressible
case dealing with vortex dynamics still hold. But is should be mentioned that the
existence of a self-sustaining process in compressible homogeneous shear flows has
not been investigated.

The occurrence of shocklets in compressible homogeneous shear flows has been
reported in several direct numerical simulations (Blaisdell et al. 1993; Sarkar et al.
1991). They appear as elongated ribbon-like structures lying at an angle about 15–
20 ◦ to the x axis in the (x − y) plane. The most plausible scenario is that they
are created by the upwash and downwash mechanisms induced by the streamwise
streaky vortical structures in the direction of the mean velocity gradient (Blaisdell
et al. 1993). This entrainment effect causes high-speed and low-speed fluid pockets to
come into contact, yielding a compression which causes a shocklet. DNS data show
that shocklets do not contribute directly significantly to the dilatational dissipation
rate ε̄d , but they play an important role in the dynamics of ε̄d .

The weak influence of shocklets on the global dynamics is also revealed by the
fact that the thermodynamic fields follow a quasi isentropic behavior, despite the
occurrence of the shocklets, which are entropic phenomena. Looking at the value of
the polytropic coefficient n in the relation

p′ p′

p
= n

ρ′ρ′

ρ
= n

n − 1

T ′T ′

T
(14.83)

n = 1.35 was found in Blaisdell et al. (1993). It is recalled that n = γ = 1.4
corresponds to an isentropic flow, while n = 0 and n = 1 are related to isobaric and
isothermal flows, respectively.
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Chapter 15
Canonical Isotropic Turbulence/Shock
Interaction and Beyond

This chapter is mainly devoted to the analysis of the interaction of an initially isotropic
turbulence with a normal plane shock wave. Eventhough this case, often referred to as
canonical shock/turbulence interaction is very simple from a geometrical viewpoint,
it will be seen that it involves most physical mechanisms observed in more complex
configurations. It also makes it possible to carry out an extensive theoretical analysis,
leading to a deep understanding of the underlying physics. Cases with more complex
physics, namely spherical shock/turbulence interaction, shock/turbulence interaction
a binary mixtures and detonation/turbulence interaction are discussed at the end of
the chapter.

15.1 Brief Survey of Existing Interaction Regimes

Several interaction regimes exist, which can be grouped into two families. The first
one, referred to as the destructive interaction family, encompasses all configurations
in which the structure of the shock wave is deeply modified during the interaction
in the sense that a single well-defined shock wave can no longer be identified, the
limiting case being the shock destruction. The second family, i.e. the non-destructive
interaction family, is made of all cases in which the structure of the shock wave is
preserved during the interaction. It is important noting that in the later case the shock
wave can be strongly corrugated by the incoming turbulence.

15.1.1 Destructive Interactions

The first case of destructive interactions is the one of unstable shocks, in which any
small disturbances will lead to the destruction of the shock wave due to instability
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mechanisms. In such a case, the destruction mechanism is tied to the shock itself and
not to the turbulence dynamics (see Lubchich and Pudovkin 2004 and references
given therein).

According to Dyakov (1954), a shock is absolutely unstable if one of the two
following conditions is fulfilled:

(ρ2u2)
2 ·

(
∂(1/ρ2)

∂ p2

)
H

< −1, (15.1)

or

(ρ2u2)
2 ·

(
∂(1/ρ2)

∂ p2

)
H

> 1 + 2M2, (15.2)

where M is the Mach number and subscripts 1 and 2 refer to the shock upstream and
downstream states, respectively. The index H indicates that the derivative is calcu-
lated along the Hugoniot curve in the pressure-specific volume plane. The absolute
instability regime corresponds to cases in which the solution of the jump conditions
is not unique, and small perturbations trigger the bifurcation toward stable states
made of combinations of discontinuities and simple waves. It can be shown that the
absolute instability cannot occur for plane shocks in perfect gases. It can be observed
in perfect gases for curved shocks or plane shocks with viscous effects such that the
interaction with a boundary layer.

Another shock instability, referred to as the relative instability was identified by
Kontorovich (1957). Here, a perturbation, once having emerged at the discontinu-
ity, stands for arbitrarily long times, emitting acoustic, vorticity and entropy waves
without attenuation and amplification. The criterion for the occurrence of the relative
instability is

1 − M2
2 (1 + (ρ2/ρ1))

1 − M2
2 (1 − (ρ2/ρ1))

< (ρ2u2)
2 ·

(
∂(1/ρ2)

∂ p2

)
H

< 1 + 2M2. (15.3)

It is observed that the range of the relative instability is adjacent to one of the two
ranges of the absolute instability. In the relative instability regime the shock wave is
not destroyed by infinitesimal initial perturbations but it cannot exists alone, since the
downstream solution is made of the superposition of a uniform field and propagating
perturbation waves. For initial perturbations of finite amplitude, the shock wave
disintegrates to a shock wave of essentially different intensity and other elements.

Other cases of destructive interaction are associated to cases where the turbulent
fluctuations are strong enough to yield a local deep modification of the shock wave.
These configurations escape the linear instability theory used to define the preceding
destructive regimes and can therefore be classified as nonlinear destructive interac-
tions. The first case is associated to the case where a turbulent eddy is strong enough
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to render the flow locally subsonic. When it reaches the shock wave, the latter will
be locally annihilated. In the second case, the upstream flow remains supersonic but
the perturbation is strong enough to make a secondary shock appearing.

15.1.2 Non-destructive Interactions

The non-destructive interactions are trivially defined as all the interactions which
are not destructive, meaning that a single well-defined shock wave can be identified
all thorough the interaction process. Two main cases are identified, coined as the
wrinkled shock and the broken shock régime by Larsson and Lele (2009):

• the wrinkled shock régime, in which the shock wave is distorted by turbulent
fluctuations but remains compatible with classical jump relations at all locations.
Two sub-régimes are identified:

– the linear interaction régime (see Sect. 15.2), in which the perturbations are
assumed to be weak in the sense that the mean flow quantities obey the usual
Rankine–Hugoniot jump conditions, while the turbulent fluctuations satisfy lin-
earized jump relations. This régime is well described by the Linear Interaction
Approximation at high Reynolds number, which is a linearized inviscid theory
that will be discussed hereafter. A condition for the LIA to hold proposed by
Ryu and Livescu (2014) is Mt2 ≤ 0.1M2, where Mt2 and M2 denote the down-
stream turbulent Mach number and the downstream mean flow based Mach
number, respectively. This condition ensures that nonlinear effects will remain
small compared to linear ones.

– the nonlinear interaction régime (see Sect. 15.3), in which the turbulent intensity
is so high that the mean flow is modified by the turbulent fluctuations. In this
case, turbulent fluxes must be taken into account when writing jump conditions
for the mean flow.

• the broken shock régime (see Sect. 15.4) in which turbulent fluctuations are so
strong that the upstream flow may happen to be locally subsonic. At such a loca-
tion the shock wave is replaced by a smooth compression wave, and jump relations
are not valid. This régime occurs when Mt1/(M1 − 1) ≥ 0.6, where Mt1 and M1

denote the upstream turbulent Mach number and the upstream mean flow based
Mach number, respectively Larsson and Lele (2009). Another criterion with an
additional dependency on the upstream Taylor scale based Reynolds number Reλ1

is proposed by Donzis (2012a): S = Mt1/Reλ1(M1 − 1) ≥ 0.6. Here, the parame-
ter S is the normalized laminar shock thickness, i.e. S � δl/η where the laminar
shock thickness is given by the classical approximation δl � μ/ρa(M1 − 1) and
η is the Kolmogorov scale. The important fact is that both criteria share the same
dependency on Mt and M .
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15.2 Wrinkled Shock Régime: Linear Interaction

15.2.1 Introduction to the Linear Interaction Approximation
Theory

We now briefly introduce the Linear Interaction Approximation (LIA), which is a
very powerful tool pioneered in the 1950s (Ribner 1953; Moore 1954) to analyze the
non-destructive linear interaction regime. Details of the LIA procedure are given in
Chap. 16. It relies on the following simplified dynamic scheme:

(i) The shock wave has no intrinsic scale, and therefore it is enslaved to incident
perturbations. It will only acts through the jump conditions.

(ii) Both mean and fluctuating parts of the upstream field (i.e. the field in the super-
sonic part of the flow) are arbitrarily fixed.

(iii) The downstream field is fully determined by the upstream field and the jump
conditions. More precisely, it is assumed that the interaction process between
turbulent fluctuations and the shock is mostly linear, so that:

(a) The mean flow obeys the usual Rankine–Hugoniot conditions
(b) The fluctuating field obeys linearized jump conditions.

This physical scheme is illustrated in Fig. 15.1.
Two conditions must be fulfilled to ensure that the linear approximation is relevant:

(i) The fluctuations must be weak in the sense that the distorted shock wave must
remain well defined.

(ii) The time required for turbulent events to cross the shock must be small compared
to the turbulence time scale K/ε (with K and ε the turbulent kinetic energy
and the turbulent kinetic energy dissipation rate, respectively), so that nonlinear
mechanisms cannot have significant effects.

Fig. 15.1 Schematic view of
the Linear Interaction
Approximation for
shock/turbulence interaction

http://dx.doi.org/10.1007/978-3-319-73162-9_16
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The LIA analysis is made more accurate splitting the fluctuating field using the
Kovasznay decomposition: both the upstream and downstream fluctuating fields are
split as sums of individual modes, each mode being characterized by its nature
(acoustic, vorticity or entropy mode) and wave number or frequency. Since linearized
jump conditions are utilized, all cross interactions between modes are precluded, and
the downstream fluctuating field is obtained via a simple superposition of the LIA
results obtained for each upstream fluctuating mode. Let us emphasize here that, as
it will be demonstrated below, the fact that interactions are precluded does not mean
that an upstream perturbation wave is associated to an emitted downstream wave of
the same nature (as a matter of fact, all physical modes are excited in the downstream
region in the general case), but that the interaction process is not sensitive to shock
deformations induced by other upstream fluctuations.

The resulting LIA scheme is the following: one considers two semi-infinite
domains separated by the shock wave. Both the mean and fluctuating fields in
the upstream domain are arbitrarily prescribed. Since the flow is hyperbolic in this
domain, it is not sensitive to the presence of the shock wave. The mean downstream
field is computed using the mean upstream field and the usual Rankine–Hugoniot
jump relations (3.16)–(3.19). The emitted fluctuating field is then computed using
the linearized jump relations as boundary conditions. Using results displayed in
Chap. 16, it is important to note that the wave vectors of the emitted waves are com-
puted using the dispersion relation associated to each physical mode, the frequency
and the tangential component of the wave vector being the same as the upstream per-
turbation. The linearized jump conditions are used only to compute the amplitudes
of the emitted waves.

15.2.2 Vortical Turbulence/Shock Interaction

We first address the case in which the incident turbulence is isotropic and composed of
vorticity modes only. This case was investigated by several researchers, e.g. Lee et al.
(1993, 1997), Larsson and Lele (2009), Donzis (2012a, b), Larsson et al. (2013), Ryu
and Livescu (2014) using LIA and direct numerical simulation (DNS). The trends
found via DNS and LIA are corroborated by wind tunnel experiments, but a strict
quantitative agreement is hopeless since the exact nature of the incident turbulence
in experiments cannot be controlled, due to technological limitations. Full analytical
expressions of amplification ratios for the different modes, including asymptotic
analysis for weak and strong shocks, have been derived in Wouchuk et al. (2009).
These very useful expressions are very cumbersome and will not be reproduced here
for the sake of brevity.

The main observations are the following:

(i) Velocity fluctuations. The streamwise distributions of the kinetic energy of the
three velocity components given by both direct numerical simulation and LIA
are displayed in Fig. 15.2. It is observed that all velocity components are ampli-

http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_16


732 15 Canonical Isotropic Turbulence/Shock Interaction and Beyond

Fig. 15.2 Streamwise
evolution of normalized
Reynolds stresses. Top: DNS
results (lines for (M1 =
2, Mt = 0.108, Reλ = 19.0)

and symbols for
(M1 = 3, Mt =
0.110, Reλ = 19.7));
streamwise component
R11 = u′u′: solid line and
dots; spanwise component
R22 = v′v′: dashed line and
‘x’; spanwise component
R33 = w′w′: dotted line and
‘+’. Bottom: LIA results for
(M1 = 2, Mt = 0.108);
streamwise component R11:
solid line; spanwise
components R22 and R33:
dashed line. Vertical dotted
line show the limit of the
shock displacement region.
From Lee et al. (1997) with
permission of CUP

fied, leading to a global increase in the turbulent kinetic energy. The amplifica-
tion rate is well recovered by the LIA calculation, showing that the amplification
is mainly due to linear mechanisms. In agreement with LIA, the velocity field
behind the shock wave is axisymmetric. Both LIA and DNS predict that the
amplification is Mach number dependent. The amplification level is plotted as a
function of the upstream Mach number, M1, in Fig. 15.3. It is interesting to note
that the amplification of the transverse velocity components is an increasing
monotonic function, while the shock normal velocity component amplification
exhibits a maximum near M1 = 2. The transverse components are more ampli-
fied than the streamwise component for M1 > 2, and the amplification of the
total turbulent kinetic energy tends to saturate beyond M1 = 3. The streamwise
DNS profiles reveal that the velocity field experiences a rapid evolution down-
stream the shock, leading to the definition of two different regions behind the
shock wave. This observation is in full agreement with the LIA analysis, which
predicts the existence of a near field region where the evanescent acoustic waves
emitted during the interaction are not negligible. Comparing the LIA and DNS
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Fig. 15.3 LIA prediction of
far field Reynolds stress
amplification versus the
upstream Mach number.
Solid line: turbulent kinetic
energy; dashed line:
streamwise Reynolds stress
R11 = u′u′; dotted line:
spanwise Reynolds stresses
R22 = v′v′ and R33 = w′w′.
From Lee et al. (1997) with
permission of CUP

profiles (see Fig. 15.2) once again leads to the conclusion that the process is
mainly governed by linear mechanisms. The rapid evolution in the near field
region is due to the exponential decay of evanescent acoustic waves, which are
responsible for the anti-correlation of the (acoustic) dilatational and (vortical)
solenoidal field just downstream the shock. The nature of the relaxation process
that takes place in the near-field region is better understood recalling that the
solution of linearized Euler equations about a one-dimensional mean field is
such that the following acoustic energy balance holds

∂

∂x

(
M2

(
K
a2

2

+ 1

2

ρ′2

ρ̄2

)
+ 1

γ

p′u′′

p̄a2

)
= 0, (15.4)

where

K = 1

2

(
u′′u′′ + v′′v′′ + w′′w′′) , (15.5)

if viscous and entropy-dilatation correlation effects are neglected. A close exam-
ination of DNS data shows that these two contributions are small in the near
field region, and that the near field evolution is associated to an energy transfer
from the acoustic potential energy in the form of density or pressure fluctua-
tions to turbulent kinetic energy. This transfer is done via the pressure transport
term ∇ · (p′u′′). The pressure-dilation term p′∇ · u′′ is observed to be strictly
positive in this region, corresponding to a reversible transfer from the mean
internal energy to the turbulent kinetic energy.
Outside the near-field region, the global behavior results from the competition
between the viscous decay and the return to isotropy process. In low-Reynolds
number DNS,1 the viscous effect is dominant: the turbulent kinetic energy bal-
ance simplifies as an equilibrium between the convection term and the viscous

1The turbulent Reynolds number based on the Taylor microscale Reλ at the inlet plane of DNS
presented in Lee et al. (1993, 1997) range from 11.6 to 21.6.
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Fig. 15.4 LIA prediction of the turbulent kinetic energy amplification factor as a function of M1
and γ. Top: amplification factor A3D ; Bottom: acoustic part Aac

3D . Courtesy of C. Huete. From
Wouchuk et al. (2009) with permission of APS

term, showing that the main effects are convection of turbulent velocity fluctu-
ations by the mean field and their destruction by viscous effects.
The amplification factor of turbulent kinetic energy in the far field, A3D =
K2/K1 is plotted as a function of the upstream Mach number M1 and the poly-
tropic index γ in Fig. 15.4, along with Aac

3D , defined as the ratio of the kinetic
energy of the acoustic velocity field to K1, which measures the contribution of
the acoustic field to A3D . It is observed that the amplification factor response sur-
face exhibits a complex behavior. The maximum amplification is about 2.25 and
is obtained in the limit of strongly compressible gas with γ = 1 for M1 = 3.51.
It is also interesting to note that in the limit M1 → ∞ and γ → 1 turbulence
(very strong shock and highly compressible fluid) is not amplified but damped,
with A3D → 2/3. In this case, the shock corrugation vanish and transverse
velocity components are left unchanged when crossing the shock. In the case
of very-low compressibility fluids, i.e. large values of γ, one has A3D → 1 for
all values of M1. Strong shock asymptotic behavior and highly compressible
fluid asymptotics are displayed in Fig. 15.5. The behavior of the acoustic part
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Fig. 15.5 LIA prediction of asymptotic behavior of kinetic energy amplification factor. Top-
left: A3D(M1 	 1, γ); Top-right: A3D(M1, γ → 1); Bottom-left: Aac

3D(M1 	 1, γ); Bottom-right:
Aac

3D(M1, γ → 1). Courtesy of C. Huete. From Wouchuk et al. (2009) with permission of APS

characterized by Aac
3D is more complex since two peaks are observed in the limit

of weak shocks and highly compressible fluids. The acoustic kinetic energy
remains small compared to the vortical one, since the maximum value of Aac

3D
is about 0.022. Asymptotic behavior are also displayed in Fig. 15.5.
The Reynolds stress anisotropy parameter βv = (R11 − (R22 + R33))/(R11 +
(R22 + R33)) is plotted as a function of M1 and γ in Fig. 15.6. The maximum
value is equal to 1 and is obtained in the limit of strong shocks in highly
compressible fluids, in which the longitudinal motion in the compressed fluid
vanishes. The limit value βv = −1 is never reached. It is worth noting that the
two types of anisotropy, i.e. lateral anisotropy with βv < 0 (pancake-type flow)
and longitudinal anisotropy with βv > 0 (cigar-type flow) can be obtained. The
neutral curve βv = 0, which corresponds to an isotropic Reynolds stress tensor,
is illustrated in the right part of Fig. 15.6. For large values of M1, the neutral
curve is given by γ = γ∗ = 2.36.

(ii) Vorticity field. The vorticity is also strongly affected by the interaction with the
shock wave. The streamwise evolution of the vorticity components computed
in two different simulations are presented in Figs. 15.7 and 15.8. Several typ-
ical features are observed. First, the streamwise (i.e. shock normal) vorticity
component is not affected, in agreement with the conclusion drawn from the
jump condition (3.23). The two other components are amplified, in a symmet-
ric way, leading to the definition of a statistically axisymmetric vorticity field
being the shock wave. This behavior was predicted by the LIA analysis. The
amplification of the transverse component is Mach number dependent, and the

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Fig. 15.6 LIA prediction of the Reynolds stress anisotropy factor as a function of M1 and γ.
Courtesy of C. Huete. From Wouchuk et al. (2009) with permission of APS

Fig. 15.7 Vorticity
amplification across shock
(DNS data,
M1 = 1.2, Ret = 84.8).
Solid line: streamwise
component ω′

1ω
′
1; Dashed

line: spanwise component
ω′

2ω
′
2; Dash-dot line:

spanwise component ω′
3ω

′
3.

From Lee et al. (1993) with
permission of CUP

Fig. 15.8 Vorticity
amplification across shock
(DNS data on two
computational grids,
M1 = 1.2, Ret = 238).
Solid line and ‘+’:
streamwise component
ω′

1ω
′
1; Dashed line and ‘x’:

spanwise component ω′
2ω

′
2;

Dash-dot line and diamonds:
spanwise component ω′

3ω
′
3.

From Lee et al. (1993) with
permission of CUP
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Fig. 15.9 Amplification of
transverse vorticity
components ω′

2ω
′
2 and ω′

3ω
′
3

across shock versus the
upstream Mach number M1:
LIA results. From Lee et al.
(1997) with permission of
CUP

LIA analysis presented in Fig. 15.9 shows that it is a monotonically increasing
function that tends to saturate at very high Mach numbers. Since the vorticity
has no contribution from the acoustic modes, it does not exhibit a near field. But
it is interesting to note that two different behaviors of the streamwise vorticity
component are observed downstream the shock: it is monotonically decreasing
at low Reynolds number, while it has a local maximum at higher Reynolds
number. The explanation for this bifurcation is found looking at the evolution
equation of the vorticity component variances using DNS data. Neglecting the
temperature-induced fluctuations of the viscosity, the evolution equation for
the fluctuating vorticity variances ω′

αω′
α is (without summation over repeated

Greek indices):

ū j
∂

∂x j
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. (15.6)

Inside the shock wave, the transverse component evolution (α = 2, 3) which
leads to the existence of the jump in the LIA theory is dominated by the vorticity-
compression terms (IV + V), the vorticity-mean compression term IV being the
leading term. Downstream the shock region, the vortex stretching mechanism
(II + III) is balanced by the viscous effects (VIII). In all DNS cases, both the
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baroclinic production term (VI) and the turbulent transport (VII) are negligi-
ble. The dynamics of the streamwise component is different. Inside the shock
wave, vortex stretching (II + III) and vorticity compression (IV + V) balance
each other, resulting in a negligible influence of the shock, in agreement with
inviscid jump relations. Downstream the shock wave, the streamwise vorticity
variance ω′

1ω
′
1 is governed by the balance between two dominating mecha-

nisms: turbulent vortex stretching (III) and viscous effects (VIII). In the low
Reynolds number case, the viscous damping overwhelms the vortex stretching
effects, leading to a monotonous decay. At higher Reynolds number, the tur-
bulent stretching is large enough to yield the existence of a local downstream
maximum.
The LIA amplification factor of transverse vorticity Aω2⊥ = ‖ω′

⊥2
‖2/‖ω′

⊥1
‖2

is plotted in Fig. 15.10 as a function of M1 and γ, along with strong shock
and high fluid compressibility asymptotics. It is observed that amplification
increases as γ → 1 and M1 → +∞ and exhibits an unbounded behavior. As
the gas becomes infinitely compressible, one has C2 = (ρ̄2/ρ̄1)

2 ∼ (γ − 1)−2,
showing that the longitudinal wavelength of emitted vorticity waves tends to
zero. The unbounded character of vorticity (with bounded kinetic energy) is

Fig. 15.10 LIA prediction of transverse vorticity amplification ration as a function of M1 and γ
(top), along with large M1 asymptotics (bottom-left) and high compressibility asymptotics γ → 1
(bottom-right). Courtesy of C. Huete. From Wouchuk et al. (2009) with permission of APS
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Fig. 15.11 LIA prediction
of vorticity anisotropy ratio
βω as a function of M1 and
γ. Courtesy of C. Huete.
From Wouchuk et al. (2009)
with permission of APS

due to the inviscid gas approximation used in present LIA developments, since
viscous effects will become very important for small wavelength, introducing
a regularizing effects (Miller and Ahrens 1991).
The vorticity anisotropy factor βω = (Aω2⊥ − 1)/(Aω2⊥ + 1) is plotted versus
M1 and γ in Fig. 15.11. In all cases one has βω > 0 due to the fact that only
the transverse vorticity components are amplified, the normal component being
continuous on the shock front. The maximum value βω = 1 is reach for M1 	 1
and γ → 1, corresponding to an asymptotic case in which the longitudinal
vorticity component becomes negligible compared to the transverse ones.

(iii) Turbulence lengthscales. Characteristic scales of turbulence are observed to be
modified during the interaction in a scale-dependent manner. Let us first discuss
the behavior of the one dimensional spectra Eα(kβ) which are defined such that
(without summation over Greek indices)

u′
αu′

α =
∫ kβ=∞

kβ=0
Eα(kβ) dkβ (15.7)

where u′
α and kβ are the αth component of u′ and the βth component of k,

respectively. Both LIA and DNS results show that:

(a) In the longitudinal spectra Eα(k1), small scales (i.e. large wave numbers)
are more amplified than large scales (i.e. small wave numbers).

(b) The amplification pattern is more complex for transverse spectra: higher
amplification at small scales is found for E1(k2) and E2(k2), while the large
scales are the most amplified for E3(k2).

This complex behavior makes it necessary to carry out a specific analysis for
each characteristic length scale, since they are spectrum-dependent. Defining
the integral scale for the dummy variable φ as

�φ(r, x) =
∫ r=+∞

r=0
Cφφ(r, x) dr (15.8)
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Fig. 15.12 Streamwise
evolution of turbulence
transverse integral scales
(DNS, M1 = 2, Mt =
0.108, Reλ = 19). Dashed
line: �u1 ; solid line: �u2 ;
dotted line: �u3 ;
dashed-dotted line: �ρ.
From Lee et al. (1997) with
permission of CUP

where the transverse two-point correlation Cφφ(r, x) is given by (φ is assumed
to be a centered random variable)

Cφφ(r, x) = φ(x, y, z, t)φ(x, y + r, z, t)

φ(x, y, z, t)φ(x, y, z, t)
, (15.9)

in which the statistical averaging is carried out over time and homogeneous
directions y and z, both DNS and LIA show that (see Fig. 15.12):

(a) �u1 , �u2 and �ρ exhibit a significant Mach-number dependent decrease
across the shock,

(b) �u3 is largely increased by the interaction.

Now looking at the Taylor microscales (see Fig. 15.13), it is observed that
they are all significantly reduced during the interaction, the reduction being
more pronounced in the shock normal direction. It is recalled that the Taylor
microscale λα associated to u′

α and the density microscale λρ are computed
here as

λα =
√√√√ u′

αu′
α

∂u′
α

∂xα

∂u′
α

∂xα

, λρ =
√√√√ ρ′ρ′

∂ρ′
∂y

∂ρ′
∂y

. (15.10)

(iv) Thermodynamic quantities. The thermodynamic properties of the flow down-
stream the shock are also modified by the interaction process. Both DNS and
LIA results show that, for an isentropic incident isotropic turbulence, the down-
stream field remain isentropic for weak shocks such that M1 < 1.2. At higher
upstream wave number, the emitted entropy waves have a significant energy
since their magnitude becomes comparable to that of acoustic waves. This effect
is illustrated plotting the normalized correlation coefficients (see Fig. 15.14):
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Fig. 15.13 Streamwise
evolution of turbulence
microscales (DNS, M1 =
2, Mt = 0.108, Reλ = 19).
Solid line: λu1 ; dashed line:
λu2 ; dotted line: λu3 ;
dashed-dotted line: λρ.
From Lee et al. (1997) with
permission of CUP

Fig. 15.14 Evolution of
normalized correlation
coefficients in the far field
region downstream the shock
versus the upstream Mach
number M1. nρp: solid line
(LIA) and black circles
(DNS); nρT : dashed line
(LIA) and black circles
(DNS); CρT : dotted line
(LIA) and ‘x’ (DNS); is :
dashed-dotted line (LIA).
From Lee et al. (1997) with
permission from CUP

nρp ≡
√

p′ p′

p̄2

ρ̄2√
ρ′ρ′

, nρT ≡ 1 +
√

T ′T ′

T̄ 2

ρ̄2√
ρ′ρ′

, (15.11)

CρT ≡ 1 + ρ̄

T̃

√
ρ′T ′′√
ρ′ρ′

, (15.12)

along with the entropy fluctuation contribution

is ≡
√

s ′s ′

c2
p

ρ̄2√
ρ′ρ′

. (15.13)

It is observed that the entropy fluctuations are more significant than acoustic
fluctuations for M1 > 1.65. But it is worth noting that, downstream the shock,
neither the isentropic hypothesis (which states that the entropy fluctuations are
negligible) nor the Strong Reynolds Analogy proposed by Morkovin for shear
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flows (which says that the stagnation temperature is constant, which amounts to
assume that acoustic waves have a negligible effect on the density fluctuations)
are valid if M1 > 1.2. It is recalled that the latter can be expressed as

ρ′

ρ̄
= −T ′′

T̄
= (γ − 1)M2

1
u′′

1

ũ1
. (15.14)

(v) Far-field radiated noise. The far-field radiated noise is generated by propagating
acoustic waves. The acoustic energy flux vector is defined q = a2 E ka in the
frame of reference in which the fluid is at rest, where the energy density of
the sound wave is related to the amplitude of the emitted acoustic mode by
E = ρ2a2

2 Aa . In the reference frame associated to the shock front, one has q =
(a2ka + (U2 − us)ex ) (M2 − cos αa)E . The existence of the critical angle αc

introduce some preferred directions in the emission of acoustic energy, resulting
in a non-uniform directivity pattern. The directivity is illustrated in Fig. 15.15 in
which a polar plot of the dimensionless angle-averaged streamwise component
of acoustic flux vector is displayed. Normalization is made using the upstream
longitudinal turbulent flux ρ̄1 R11U1/2. In this plot, the modified emission angle
α′ is used for the sake of clarity, with

Fig. 15.15 LIA prediction of radiated far-field noise in the case of a right-facing shock wave, for
M1 = 1.25, 1.5 and 2. Directivity pattern for normalized streamwise acoustic flux q · ex versus
modified emission angle α′. Courtesy of C. Huete. From Wouchuk et al. (2009) with permission
of APS
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Fig. 15.16 LIA prediction of acoustic relative intensity parameter S. Top: S as a function of M1 and
γ. Bottom-left: large M1 asymptotics; Bottom-right: high compressibility asymptotics. Courtesy
of C. Huete. From Wouchuk et al. (2009) with permission of APS

cos α′ = cos αa − M2√
1 + M2

2 − 2M2 cos αa

.

With this change of coordinate, one has α′ = π/2 when α = αc ⇔ cos αa =
M2. It is observed that the directions of maximum and minimum emission are
almost independent from M1 using α′, the maximum amplitude being a growing
function of M1. The global efficiency of the acoustic production mechanisms is
analyzed looking at the relative intensity parameter S = Ia/It (see Fig. 15.16),
where Ia is the acoustic intensity obtained by summing q over all directions and
wavenumbers and It = 5ρ̄1 R11U1/6 is the streamwise turbulent flux intensity.
The maximum value is S = 0.115, which is obtained in the strong shock limit
for γ = 1.06. In the weak shock limit, the Lighthill formula for γ = 7/5 later
corrected by Ribner is recovered within 4% error. In the high compressibility
limit, it is observed that S → 0 as M1 → +∞.
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15.2.3 Acoustic Turbulence/Shock Interaction

The case of an incident purely acoustic isotropic field has been addressed by Mahesh
and coworkers (1995) using both LIA and DNS. Full analytical expressions of ampli-
fication ratios for the physical modes, including asymptotic analysis for weak and
strong shocks, are given in Huete et al. (2012b). These very useful expressions
are very cumbersome and will not be reproduced here for the sake of brevity. It is
observed that this case exhibits very significant differences with respect to the case
of an incident purely vortical isotropic turbulence.

The main results are summarized below:

(i) Velocity fluctuations. As in the case of an incident vortical turbulence, the inter-
action yields an increase of the fluctuating kinetic energy just behind the shock
wave (see Fig. 15.17). For weak shock waves (LIA analysis in Mahesh et al.
1995 is done with M1 = 1.2), the kinetic energy decays monotonically down-
stream the shock, while for strong shocks (M1 = 2 in Mahesh et al. 1995)
it exhibits local extrema behind the shock. In the former case the evanescent
waves are weak an have a negligible impact on the acoustic energy balance, see
Eq. (15.4), while in the latter, the evanescent waves are strong and lead to the
existence of a near field relaxation very similar to the one observed in the case
of incident vortical turbulence. But it is worth noting that increasing the Mach
number yields a decrease of the amplification immediately behind the shock
front.
The behavior of far-field kinetic energy is a bit more complex. Far-field turbu-
lence intensities are plotted versus the upstream Mach number in Fig. 15.18. A
first observation is that the shock normal turbulence intensity is higher than the
two transverse components. The second, more important conclusion is that the
amplification factor of the far field kinetic energy does not respond monotoni-
cally to an increase in the upstream Mach number: the far field kinetic energy is

Fig. 15.17 LIA prediction
of streamwise evolution of
normalized turbulent kinetic
energy K downstream the
shock wave in air. Solid line:
M1 = 1.2; dashed line:
M1 = 2. From Mahesh et al.
(1995) with permission of
CUP
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Fig. 15.18 LIA analysis of
far field normalized turbulent
kinetic energy and Reynolds
stresses versus the upstream
Mach number M1 in air.
Solid line: turbulent kinetic
energy K; long-dashed line:
streamwise Reynolds stress
R11 = u′u′; short-dashed
line: transverse Reynolds
stresses R22 = v′v′ and
R33 = w′w′. From Mahesh
et al. (1995) with permission
of CUP

lower than the incident kinetic energy for 1.25 ≤ M1 < 1.80, while it is higher
for other values. But it is worth noting that the energy of transverse components
of velocity decrease over a wider range of upstream Mach number.
This phenomena can be understood decomposing the far field kinetic energy into
vortical and acoustic contributions and plotting the associated kinetic energy
amplification factor K3D = K rot

3D + K ac
3D . These parameters are plotted as func-

tion of M1 and γ in Fig. 15.19. It is observed that K3D diverges in the limit of
strong shocks and highly compressible fluids. This is a drawback of the inviscid
fluid assumptions, since viscosity and thermal diffusion would regularize the
singularity in this limit which is associated with asymptotically small scales.
The behavior of K ac

3D is more complex, since several extrema are detected on the
response surface. This parameter remains bounded, showing that the emitted
vortical field is responsible for the unbounded growth of kinetic energy. Asymp-
totic behaviors plotted in Fig. 15.20, in which one can see that the strong shock
asymptotic behavior is very sensitive to γ for highly compressible fluids.
The case of air (γ = 7/5) is detailed in Fig. 15.21 It is observed that K ac

3D decays
monotonically in air for M1 > 1.2, while K rot

3D is a strictly increasing function of
M1. The existence of a local minimum is explained by the fact that the solenoidal
kinetic energy exceeds the dilatational one for M1 > 2 and the incident kinetic
energy for M1 > 2.25. The behavior of the far field acoustic kinetic energy is
governed by the competition between two mechanisms: the amplification of the
energy of incident waves, that grows with the Mach number, and the fact that the
range of angles corresponding to evanescent emitted waves also increases with
M1, making less and less emitted waves contributing to the far field. The LIA
analysis shows that, at high upstream Mach number, the energy of all velocity
components scales as M2

1 .
The Reynolds stress anisotropy coefficient βv is displayed in Fig. 15.22. As in
the case of an incident pure vortical turbulence, the response surface exhibits
a complex topology, and it is observed that all states, i.e. βv > 0, βv < 0 and
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Fig. 15.19 LIA prediction of amplification of turbulent kinetic energy as a function of M1 and
γ. Top: full kinetic energy amplification factor K3D ; Bottom: acoustic part K ac

3D . Courtesy of C.
Huete. From Huete et al. (2012b) with permission of APS
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Fig. 15.20 LIA prediction of amplification factor of acoustic part of turbulent kinetic energy K ac
3D .

Left: high gas compressibility asymptotics γ → 1; Right: strong shock asymptotics M1 → +∞.
Courtesy of C. Huete. From Huete et al. (2012b) with permission of APS
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Fig. 15.21 LIA prediction of amplification factor of turbulent kinetic energy in air (γ = 7/5). K l
3D

and K s
3D denote contributions with incidence angle such that α < αc and α > αc, respectively, to

the kinetic energy of the vorticity mode. Courtesy of C. Huete. From Huete et al. (2012b) with
permission of APS

Fig. 15.22 LIA prediction of Reynolds stress anisotropy parameter βv . Left: plot as a function of
M1 and γ; Right: level curve for βv = 0 corresponding to isotropic Reynolds stress tensor. Courtesy
of C. Huete. From Huete et al. (2012b) with permission of APS

βv = 0 (isotropic Reynolds tensor) are possible. The limit βv = 1 (state with
negligible shock-normal kinetic energy) is obtained for M1 → +∞ and γ → 1,
while βv = −1 is never approached.

(ii) Vorticity. In this case, the production of vorticity is mainly governed by the
baroclinic term (term VI in Eq. (15.6)). The jump relations for the vorticity
components show that transverse components will be the most affected, the
streamwise component evolution being governed by other mechanisms, as in
the case of incident vortical turbulence. The shock-normal vorticity component
being left unchanged by jump relations for a planar shock wave, there is no
shock-normal vorticity in the downstream region in the case of a pure irrotational
incident turbulent acoustic field, resulting in a very high vorticity anisotropy.
The normalized (transverse) vorticity generation parameter W3D such that
‖ω′‖2 ∝ (ka2)

2 A2
a W3D , with A2

a the energy of the incident acoustic field, is
displayed in Fig. 15.23. It is observed that the largest generation mechanisms
are observed in the limit of strong shocks in highly compressible fluids, a diverg-
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Fig. 15.23 LIA prediction
of vorticity generation
parameter. Top: W3D as a
function of M1 and γ;
Bottom: W3D as a function
of M1 in air. W l

3D and W s
3D

denote contributions with
incidence angle such that
α < αc and α > αc,
respectively. Courtesy of C.
Huete. From Huete et al.
(2012b) with permission of
APS
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ing behavior being recovered in the absence of viscous effects. In the case of
air, vorticity generation is dominated by incident waves such that α < αc up to
M1 � 9, while waves such that α > αc become more important at higher Mach
number.

(iii) Thermodynamic quantities. The evolution of the thermodynamic quantities in
the far field versus the upstream Mach number is displayed in Fig. 15.24. It is
observed that the downstream fluctuations are nearly isentropic for M1 < 1.5.
At higher Mach numbers the emitted entropy fluctuations are significant relative
to the acoustic fluctuations. The dominance of the entropy mode at high Mach
number originates in two phenomena: the emission of stronger and stronger
entropy waves and the decrease of acoustic energy in the far field.

15.2.4 Mixed Turbulence/Shock Interaction

We now address the cases in which the incident turbulent field is composed of dif-
ferent types of Kovasznay modes: hybrid vortical/acoustic turbulence (Mahesh et al.
1995) and vortical/entropic turbulence (Mahesh et al. 1996, 1997). These cases are
of great interest, since physical turbulence generated in wind tunnels or observed
in natural flows is never strictly vortical or acoustic. It is worth recalling here the
important conclusion that a Kovasnay mode will generate modes of different natures
through non-linear self interactions. Therefore, the sensitivity of the results presented
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Fig. 15.24 LIA prediction
of far field normalized r.m.s.
fluctuations of
thermodynamical quantities.

Solid line:
√

p′ p′/ p̄; dashed

line: γ

√
ρ′ρ′/ρ̄; dotted line:

γ
γ−1 (

√
T ′T ′/T̄ ). From

Mahesh et al. (1995) with
permission of CUP

above for pure incident fields is of major interest to gain a deeper insight into the
dynamics of realistic flows. But since the experimental data exhibit a significant dis-
persion, it can be inferred that their sensitivity must be great (independently from the
fact that such experiments are very difficult to perform for technical and technolog-
ical reasons). Another point is that, in real flows, the distribution of the total energy
among the three Kovasznay modes is unknown and cannot usually be controlled.
Therefore, we will hereafter put the emphasis on the theoretical results dealing with
the sensitivity of the results rather than giving an exhaustive presentation of some
realizations.

Let us begin examining the two-dimensional linearized Euler equation for the
vorticity fluctuation about a one-dimensional mean flow. We will use it as a simple
phenomenological model to describe the amplification of the transverse vorticity
components across the shock. The linearized evolution law is:

∂ω′

∂t
+ U

∂ω′

∂x
= −ω′ ∂U

∂x
− ∂ρ′

∂y

1

ρ̄2

∂ p̄

∂x
+ ∂ p′

∂y

1

ρ̄2

∂ρ̄

∂x
. (15.15)

The usual viscous model (Zel’dovich and Raizer 2002; Landau and Lifshitz 1987)
for the shock front shows that (∂ū/∂x) < 0, (∂ p̄/∂x) > 0 and (∂ρ̄/∂x) > 0 in the
shock region. The first term in the right hand side of the above equation corresponds
to the compression by the mean flow gradient. Since ∂ū/∂x is negative in the shock
region, the net effect of vorticity amplification by the bulk compression is recovered.
The two last terms are related to the baroclinic mechanisms. The second term in
the right hand side of Eq. (15.15) involves the fluctuating density, and is therefore
non zero for both acoustic and entropy fluctuating modes, while the third one is non
zero for acoustic perturbations only. This equation also shows that the baroclinic and
the bulk compression contributions can have the same or opposite signs, depending
on the respective signs of the vorticity, density and pressure fluctuations. If the
contributions have the same sign, the net amplification of vorticity will be increased
by the cooperative interaction, while the two mechanisms will tend to cancel in the
opposite case, yielding a decrease of the net vorticity fluctuation amplification. One
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can see that increased amplification is recovered if ω′ p′ > 0 or ω′ρ′ < 0. The very
important conclusion drawn from that very simple analysis is that the results of the
shock/turbulence interaction will be greatly sensitive to the correlation between the
Kovasznay modes in the incident field.

15.2.4.1 Influence of the Upstream Entropy Fluctuations

Let us first consider the case of an incident field made of vorticity and entropy modes.
We simplify the problem considering a single plane entropy wave with amplitude
As and a single vorticity wave with amplitude Av with the same wave vector k.
According to results presented in Sect. 3.2.2, the upstream field is given by

u′

ū
= Av cos αeı(k·x−ωt),

v′

ū
= −Av sin αeı(k·x−ωt),

s ′

cp
= Aseı(k·x−ωt) (15.16)

leading to

ω′

ū
= −Aveı(k·x−ωt),

ρ′

ρ̄
= −T ′

T̄
= Aseı(k·x−ωt),

p′

γ p̄
= 0. (15.17)

It is seen that ω′ and u′ on the one hand and ρ′ and T ′ on the other hand are in
phase opposition. Therefore, the condition for cooperative interaction ω′ρ′ < 0 is
equivalent to u′T ′ < 0. Introducing the complex ratio:

As

Av

= csveıϕ, (15.18)

cooperative interaction is observed if ϕ ∈] − π/2,π/2[, while partial cancelation
occurs for ϕ ∈]π/2,−π/2[. This discussion is illustrated in Fig. 15.25.

Direct numerical simulation and LIA results dealing with the amplification of
velocity fluctuations in the case of an incident isotropic turbulent are presented in
Fig. 15.26. They show that, in the case where the streamwise velocity component
and temperature fluctuations are strongly anti-correlated (u′T ′/urms Trms ≈ −1), the
amplification of all velocity components is greatly enhanced, the effect being more
important on the streamwise component. The velocity field still exhibits a near field
whose properties are similar to those of the near field generated by a pure vortical
incident field. On the opposite, the amplification is reduced when they are correlated,
i.e. u′T ′ > 0. The evolution of the amplification of the far field velocity variances with
respect to the upstream Mach number is displayed in Fig. 15.27. The LIA predicts that
the amplification saturates for M1 > 2, with a remarkable exception: if the upstream
fluctuations satisfy the Morkovin’s hypothesis given in Eq. (15.14), the amplification
factor does not saturate and keeps growing with M1. The main reason is that, if the
Morkovin’s hypothesis holds in the upstream region, the relative importance of the
entropy modes with respect to the vorticity mode scales like M2

1 .

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Fig. 15.25 Schematic view
of the influence of the phase
difference between velocity
and temperature fluctuations
on the emitted vorticity
fluctuation. Top: velocity and
temperature fluctuations are
in phase, leading to a
decrease of the vorticity
amplification. Bottom: they
are in phase opposition,
yielding a large increase of
the vorticity amplification

Similar conclusions hold for the vorticity field: both DNS and LIA confirm the
predictions drawn from the simplified model. The amplification factor of the trans-
verse vorticity components is plotted versus the upstream Mach number in Fig. 15.28.
Once again, the amplification is enhanced if u′

1T ′ < 0 and exhibits very strong values
if the incident turbulent field satisfy Morkovin’s hypothesis.

An interesting point is that the interaction with the shock results in a breakdown
of the Morkovin’s hypothesis downstream the shock wave, even if it holds upstream
the shock. Recalling that the fundamental assumption in Morkovin’s proposal is that
the stagnation temperature T 0 is constant in the flow. Decomposing the stagnation
temperature like

T 0 = T̄ + T ′ + 1

2

(U + u′)2 + v′2 + w′2

cp
, (15.19)

the Rankine–Hugoniot jump relation for the energy (3.19) yields the continuity of
T 0 across the shock wave:

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Fig. 15.26 Influence of
upstream entropy
fluctuations on the
streamwise evolution of
Reynolds stresses at
M1 = 1.29. Top: DNS data.
Streamwise Reynolds stress
R11 = u′u′ for
u′

1T ′
1/urms Trms = −0.06

(solid line) and −0.84 (black
circles); transverse Reynolds
stress R22 = v′v′ for
u′

1T ′
1/urms Trms = −0.06

(dashed line) and −0.84
(‘x’). Bottom: LIA analysis,
same cases and symbols as
for DNS data. From Mahesh
et al. (1997) with permission
of CUP

T̄1 + T ′
1 + 1

2

(U1 + u′
1 − us)

2 + v′
1

2 + w′
1

2

cp
=

T̄2 + T ′
2 + 1

2

(U2 + u′
2 − us)

2 + v′
2

2 + w′
2

2

cp
, (15.20)

where us is the shock speed associated to the corrugation of the shock front by incident
perturbations. Assuming that fluctuations are small enough, one can linearize (15.20),
yielding

T ′
1 + U1(u′

1 − us)

cp
= T ′

2 + U2(u′
2 − us)

cp
. (15.21)

Now assuming that the upstream flow satisfies the Morkovin hypothesis, one
obtains the following expression for the linearized fluctuation of the stagnation tem-
perature behind the shock wave:

T ′
2 + U2u′

2

cp
= us(U2 − U1)

cp
. (15.22)

Using this expression, one can write:
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Fig. 15.27 LIA analysis of influence of upstream entropy fluctuations on the downstream evolution
of Reynolds stresses versus the upstream Mach number M1. Top: Streamwise Reynolds stress
R11 = u′u′. Solid line: pure vortical incident turbulence; dotted line: u′

1T ′
1 < 0; dashed-dotted line:

u′
1T ′

1 > 0; dashed line: Morkovin’s hypothesis satisfied upstream. Bottom: transverse Reynolds
stress R22 = v′v′, same symbols as above. From Mahesh et al. (1997) with permission of CUP

T ′′
2

T̄2
+ (γ − 1)M2

2
u′′

2

U2
= −(γ − 1)M2(C − 1)

us

ā2
(15.23)

where C is the compression factor defined by U1/U2. Therefore, the Morkovin’s
hypothesis holds downstream the shock wave if and only if the right hand side of
Eq. (15.23) is zero, which is observed to be false in both LIA and DNS results.

The LIA results can be accurately fitted by simple expressions as proposed in
Sinha (2012). Introducing the upstream velocity-temperature correlation coefficient
AuT defined such that

ρ′
1

ρ̄1
= −T ′′

1

T̄1
= AuT

u′′
1

U1
(15.24)

the vorticity amplification factor is approximated as:
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Fig. 15.28 LIA analysis of influence of upstream entropy fluctuations on the far field amplification
of transverse vorticity components ω′

2ω
′
2 = ω′

3ω
′
3 versus the upstream Mach number M1. Solid line:

pure vortical incident turbulence; dotted line: u′
1T ′ < 0; dashed-dotted line: u′

1T ′ > 0; dashed line:
Morkovin’s hypothesis satisfied upstream. From Mahesh et al. (1997) with permission of CUP

(ω′
iω

′
i )2

(ω′
iω

′
i )1

=
(

U1

U2

)cω

, cω = 1.55

(
1 + (1 + e1−M1)

8
AuT

)
. (15.25)

The amplification ratio of solenoidal dissipation is modeled as

ε̄s2

ε̄s1

=
(

T̄2

T̄1

)0.76 (
U2

U1

)cω−1

. (15.26)

These formula are observed to lead to a nearly perfect match of LIA results up to
M1 = 3 in the range −0.58 ≤ AuT < 4.

15.2.4.2 Influence of the Upstream Acoustic Fluctuations

The analysis of the influence of upstream acoustic waves is simpler than the one of
entropy waves, since these waves cannot be correlated with the vortical fluctuations,
their propagation speeds being different.2 Therefore, the emitted far field is obtained
via a simple superposition of the far fields corresponding to the vortical fluctuations
and acoustic fluctuations considered separately.

This is illustrated considering the amplification of the total turbulent kinetic energy
K = Ks + Kd :

2It is to note here that some interactions exist if the upstream field is composed of a single wave
of each type, but these interactions cancel from a statistical viewpoint in fully developed isotropic
turbulent flows.
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K2

K1
= (Ks)2 + (Kd)2

(Ks)1 + (Kd)1
= (1 − χ1)

(Ks)2

(Ks)1
+ χ1

(Kd)2

(Kd)1
(15.27)

where χ1 is the ratio of dilatational acoustic energy to the total kinetic energy (see
Eq. (13.34)) in the upstream state. The amplification factors of the acoustic and
vortical component being different, significant differences in the amplification of the
total kinetic energy can be observed varying the value of χ1.

15.2.5 On the Use of RDT for Linear Non-destructive
Interaction Modelling

The LIA theory has been shown to be a very accurate tool to predict and understand
the linear non-destructive shock/turbulence interactions. The capability of the RDT
theory to account for the same physical effects has also been investigated by many
authors, among which Jacquin et al. (1993) and references given therein.

Within the RDT framework, the planar shock is essentially modelled as an unidi-
rectional irrotational compression with a time-varying mean flow already discussed
in Sect. 14.2.3.3. Therefore, all results presented in this section can be used in a
straightforward way. Therefore, the amplification ratio of turbulent kinetic energy is
lower-bounded by the solenoidal limit given by Eq. (14.47) and upper-bounded by the
pressure-released evolution described by the relation (14.48). These two evolution
laws are compared with LIA results in Fig. 15.29.

Large discrepancies are observed, the two RDT limits yielding much larger ampli-
fication ratio than both the near- and far-field LIA predictions at almost all upstream
Mach numbers. The inaccuracy of RDT for this problem can be understood looking
at Table 15.1 which summarizes the main differences between the RDT and LIA

Fig. 15.29 Comparison of
the turbulent kinetic energy
amplification factor as a
function of the upstream
Mach number according to
different linearized theories
for a pure solenoidal
upstream disturbance field.
Adapted from Jacquin et al.
(1993)

http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_14
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Table 15.1 Main features of shock/turbulence interaction modelling according to linearized
theories

Theory features LIA RDT

Intrinsic timescale None 1/S

Intrinsic lengthscale None (infinitely small) None (infinitely large)

Shock viscous effects Yes (linearized
Rankine–Hugoniot relations)

No

Shock corrugation effects Yes (linearized response) No

Vortical disturbances Yes Yes

Acoustic disturbances Yes Yes

Entropy disturbances Yes No

approaches. Of course, due to the isentropy assumption, RDT cannot account for
entropy effects discussed in Sect. 15.2.4.1. But restricting to the case of a purely
vortical incoming turbulence described in Sect. 15.2.2, one can observe that the main
weaknesses of RDT are:

• The inability to account for the shock corrugation and its feedback on the emitted
turbulent field.

• The inability to predict the existence of evanescent acoustic waves downstream
the shock and the existence of a cutoff incidence angle for incoming disturbances
(see details in Sect. 16.5.2).

• The isentropic assumption, since the entropy fluctuations are more significant than
the acoustic ones for M1 > 1.65 downstream the shock. The isentropic assumption
for the emitted field is found to be realistic for weak shocks only, with M1 < 1.2.

15.3 Wrinkled Shock Régime: Nonlinear Interaction

15.3.1 Turbulent Jump Conditions for the Mean Field

Let us denote the mean and fluctuating velocity components (Ui , Vi , Wi ) and
(u′′

i , v
′′
i , w′′

i ), respectively, where the subscripts 1 and 2 refer to the upstream and
downstream states, respectively. The mean and fluctuating enthalpy are denoted h̃i

and h′′
i . Using the same notations as in previous sections, assuming that a frame of

reference can be found in which the mean shock wave is stationary and that viscous
effects are negligible, Lele (1992) deduced from the Navier–Stokes equations written
in conservative form the following jump relations for the mean flow quantities (the
vector normal to the shock wave is chosen to be along the x direction):

ρ̄1U1 = ρ̄2U2, (15.28)

http://dx.doi.org/10.1007/978-3-319-73162-9_16
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ρ̄1U 2
1 + ρ̄1

˜u′′
1u′′

1 + p̄1 = ρ̄2U 2
2 + ρ̄2

˜u′′
2u′′

2 + p̄2, (15.29)

ρ̄1U1V1 + ρ̄1
˜u′′

1v
′′
1 = ρ̄2U2V2 + ρ̄2

˜u′′
2v

′′
2 , (15.30)

ρ̄1U1W1 + ρ̄1
˜u′′

1w
′′
1 = ρ̄2U2W2 + ρ̄2

˜u′′
2w

′′
2 , (15.31)
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2
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+
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, (15.32)

where the mean turbulent and mean flow kinetic energies are defined as

Ki = ˜u′′
i u′′

i + ˜v′′
i v′′

i + ˜w′′
i w′′

i , Ki = U 2
i + V 2

i + W 2
i , (15.33)

and
˜K′′
i K′′

i u′′
i ≡ 1

ρ̄
ρu′′

i (u
′′
i u′′

i + v′′
i v′′

i + w′′
i w′′

i ). (15.34)

Equations (15.28)–(15.32) show that the mean flow quantities are directly affected
by the jump in the turbulent stresses across the shock, and that they cannot be com-
puted separately. Therefore, closures for the turbulent terms are required to compute
the mean flow downstream the shock front. Only very few attempts to close the jump
conditions are available (Lele 1992; Zank et al. 2002). Since none of them has been
fully assessed, they will not be discussed here.

It is worth noting that the mean flow solutions of the non-linear jump conditions be
very different from those considered within the LIA framework. A striking example is
that if the incident mean flow is normal to the mean shock front (i.e. V1 = W1 = 0),
the mean flow downstream the shock can deviate from a unidirectional flow (i.e.
V2 �= 0 and/or W2 �= 0). The observed effects of turbulence are the following:

(i) Turbulent fluctuations increase the mean shock speed.
(ii) Turbulent fluctuations decrease the efficiency of turbulence amplification across

the shock as the amplitude of incident fluctuations is increased.
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15.3.2 Jump Conditions for an Incident Isotropic Turbulence

General jump conditions given above simplify dramatically in the case of a normal
upstream mean flow advecting an isotropic incident field. In this case, the mean flow
stay unidirectional and one has

Vi = Wi = 0, ˜u′′
i v

′′
i = ˜u′′

i w
′′
i = 0, i = 1, 2. (15.35)

After some algebra, one obtains the following expressions for the mean flow
quantities (to be compared with Eqs. (16.17)–(16.19)):

p̄2

p̄1
= 1 + 2γ

γ + 1

(
(1 − K)γ + (1 + K)

2
M2

1 − K

)
− 1

p̄1

[[
ρ̄˜u′′u′′

]]
, (15.36)

C = ρ̄2

ρ̄1
= U1

U2
= 1

K

(γ + 1)M2
1

2 + (γ − 1)M2
1

, (15.37)

M2
2 = L2

(
1 + γ − 1

2
M2

1
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×
(

(1 + L)γ − (1 − L)

2

(1 − L)γ + (1 + L)

2
M2

1 − γ − 1

2
L2

)−1

,

(15.38)

with

L = K√
1 + [[H ]]

H1

, (15.39)

and

K =
(

1 + U1

U1 − U2

[[H ]]

H1

) (
1 − 2γ

(γ + 1)(U1 − U2)

[[
˜u′′u′′

U

]])−1

, (15.40)

where H = h̃ + U 2/2 is the mean stagnation enthalpy.

15.3.3 Direct Numerical Simulation Results

Theoretical analyses discussed above have been corroborated by numerical simula-
tions dealing with interaction of a purely vortical isotropic turbulence with a normal
shock. It must be emphasized here that a clean capture of nonlinearities requires a very

http://dx.doi.org/10.1007/978-3-319-73162-9_16
http://dx.doi.org/10.1007/978-3-319-73162-9_16
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fine grid resolution since the Kolmogorov scale exhibits a strong decrease through
the shock layer due to the change in the fluid viscosity (Larsson and Lele 2009).
Reminding the very definition of the Kolmogorov scale η and using the relations
ε � μω′2 and μ � T 3/4, one has

η =
(

ν3

ε/ρ

)1/4

∼
(

μ2

ρ2ω′2

)1/4

∼ T̄ 3/8

ρ̄1/2
√

ω′2
, (15.41)

leading to

η2

η1
∝

(
T̄2

T̄1

)3/8 (
ρ̄1

ρ̄2

)
. (15.42)

This approximation is observed to match DNS results within 10% error and
show that η can exhibit up to a 70% drop in the immediate post-shock region (see
Fig. 15.30). This decrease in the smallest turbulent scales requires a very fine grid
resolution to get converged numerical results, too coarse a grid resolution yielding
a reduction in the effects on nonlinearities and an artificial agreement with LIA
predictions. It is important noting that only most recent DNS are grid-converged.

A first footprint of nonlinearity is that jump relations associated to mean flow
quantities are modified by turbulent fluctuations. A general result reported in all
DNSs is that an increase of the upstream turbulent Mach number Mt1 results in a
decrease of the jump on mean flow quantities with respect to the laminar Rankine–
Hugoniot jump relations (Larsson and Lele 2009; Ryu and Livescu 2014; Larsson
et al. 2013). As a matter of fact, the jump on mean density ρ̄ and mean pressure p̄ are
observed to be lower than the ones predicted by laminar jump relations by a factor
about 0.95(Mt1/M1)

2 and γ0.95(Mt1/M1)
2 in all simulations reported in Larsson

et al. (2013), respectively. This behaviour is fully consistent with Eq. (15.37) in

Fig. 15.30 Left: Streamwise evolution of the Kolmogorov scale η normalized by its upstream value
for (M1, Mt1 ) = (1.5, 0.14). Right: Change in η across the shock versus M1; symbols: DNS results
at different (M1, Mt1 ); solid line: relation (15.42). From Larsson et al. (2013) with permission of
CUP
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Fig. 15.31 Streamwise
evolution mean density ρ̄
normalized by its upstream
value for
M1 = 1.28, 1.5, 1.87 and
0.16 ≤ Mt1 ≤ 0.38. Dashed
lines: DNS data; Horizontal
solid line: inviscid
Rankine–Hugoniot jump
relation. From Larsson and
Lele (2009) with permission
of AIP

which the laminar jump relation is modified by the factor 1/K. This is illustrated in
Fig. 15.31, in which the streamwise evolution normalized by its upstream value is
displayed. The sensitivity to Mt1 is observed, along with the fact that the mean field is
not uniform downstream the shock due to the streamwise variations of the Reynolds
stresses. It has been checked that DNS results converge toward LIA prediction in the
limit of small Mt1 in Ryu and Livescu (2014), in which it is reported that deviation
from LIA can be quantified by the ratio

δ

η
∼ 7.69

Mt1

M1 − 1

1√
Reλ1

. (15.43)

The most striking effects of nonlinearity can be observed on the far field character-
istics of the emitted waves. A first important results is that nonlinear effects yield an
inversion in the Taylor scales behavior. While the LIA predicts that the longitudinal
(shock-normal) Taylor scale λ1 must be smaller than transverse one, i.e. λ1 < λ2,
nonlinear DNS results show that λ2 < λ1. This result may seem to be paradoxical
since the shock essentially acts as a compression in the shock-normal direction. A
physically relevant rationale is found recalling the definition of the Taylor scale:

λα =
√

u′
αu′

α

(∂u′
α/∂xα)2

, α = 1, 2, 3 (no summation) (15.44)

and observing that both vorticity and fluctuating stresses relax quickly toward a nearly
isotropic state downstream the shock, while Reynolds stresses do not. Therefore, the
increase in R11 induces the observed behavior of the Taylor scale.

Departure from linear results is also observable on the far-field anisotropy (see
Fig. 15.32). LIA predicts a decreasing anisotropy with increasing Mach number M1

and that the transverse Reynolds stress R22 should be larger than the longitudinal
one, R11. On the contrary, DNS and experimental results consistently show that the
downstream anisotropy is such that R11 > R22, due to nonlinear pressure-strain and
pressure-velocity couplings just downstream the shock.
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Fig. 15.32 Evolution of the
far-field Reynolds tensor
anisotropy versus upstream
Mach number M1. Symbols:
DNS and experimental data;
Solid line: LIA prediction.
From Larsson et al. (2013)
with permission of CUP

Detailed analysis of nonlinear effects available in the open literature is limited
to the case of a purely vortical incoming turbulence. Nonlinear effects of upstream
acoustic and entropic fluctuations remain to be done.

15.3.4 Shock Structure in Wrinkled Shock Régime

A detailed theoretical analysis of the shock structure in the wrinkled shock régime
was proposed in Donzis (2012a), whose key elements are presented hereafter.

The classical estimate for laminar shock thickness δl is

δl � μ1

ρ1a1

1

�M
, �M = M1 − 1, (15.45)

where subscript 1 refers to upstream values. Normalizing this expression by the
Kolmogorov scale, one obtains

δl

η1
� uη1

U1 − a1
≡ S = Mt1√

Reλ1�M
, (15.46)

in which the dimensionless parameter S is defined.
Now introducing the instantaneous turbulent shock thickness δt , one can write:

δt � μ1

ρ1a1

1

�M + m ′ (15.47)

where m ′ denotes a random turbulence-induced fluctuation. Now prescribing a p.d.f.
for m ′, one can recover statistics for δt . After some algebra, one obtains
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δt

η1
= S

[
1 + 1

3

(
Mt1

�M

)2

+ a4

(
Mt1

�M

)4

+ a6

(
Mt1

�M

)6

+ ...

]
(15.48)

where parameters ai explicitly depend on the p.d.f. of m ′. It is important noting that
the leading order quadratic term is universal. In the same way, the variance of the
turbulent shock thickness, σ2

δt
can be expressed as

σ2
δt

η2
1

= S2

[
1 + 1

3

(
Mt1

�M

)2

+ O

(
M4

t1

�M4

)]
, (15.49)

independently of the p.d.f. of m ′. These results are in agreement with those obtained
using an incomplete similarity analysis, giving them an additional value.

Now considering the instantaneous dilatation at the shock, θ, and using the esti-
mate θ ∼ [[u]] /δt , one obtains at the leading order

θ = [[u]]
ρ1a1

μ1
�M, θ2 =

(
[[u]]

ρ1a1

μ1

)2 (
�M + 1

3
Mt1

)
. (15.50)

Therefore, the rms-to-mean ratio of dilatation, �, is approximated as

� � 1√
3

Mt1

�M
+ O

(
M3

t1

�M3

)
. (15.51)

It is important to note that this analysis is based on two key assumptions:

• turbulence does not modify the internal structure of the shock wave, so that the
instantaneous local thickness is accurately approximated using the laminar thick-
ness solution, see Eq. (15.47)

• the quasi-equilibrium hypothesis holds, meaning that the shock is in local equilib-
rium with instantaneous local flow state. This requires the relaxation time associ-
ated to internal shock dynamics to be much smaller than the one associated to the
most disruptive turbulent perturbations. This ratio is found to be proportional to
S2. Therefore, a necessary condition is S2 � 1.

15.4 Broken Shock Régime

The broken shock régime corresponds to cases in which the shock is locally disrupted
by turbulent fluctuations, yielding the occurrence of holes in the shock front which
is locally replaced by regions of smooth gradient, as illustrated in Fig. 15.33.
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Fig. 15.33 Instantaneous 2D slice of DNS showing a shock hole. Greyscale: isovalues of streamwise
momentum. Thick black line: shock front detected via local dilatation. From Larsson and Lele
(2009) with permission of AIP

A first point is that, even at high turbulent Mach number Mt1 , such events are
very rare. Considering a random local turbulent fluctuation m ′ of the Mach number,
the flow becomes subsonic and a hole will appears if �M + m ′ < 0, with �M =
M1 − 1. Assuming that large turbulent energetic scales obey a Gaussian distribution,
Donzis (2012a) evaluates the probability of such an event as

P(m ′ < −�M) =
(

1 − erf

[√
3

2

�M

Mt1

])
. (15.52)

Taking Mt1/�M ∼ 0.6, which corresponds to a high turbulence level, the proba-
bility is about 0.2%. It is grows up to 6% in the supersonic case Mt1/�M ∼ 1.4. This
theoretical analysis is in agreement with DNS data (Larsson et al. 2013) in which it
is observed that about 1% of the shock surface is occupied by holes.

The local change in the flow physics is illustrated in Fig. 15.34 in which the instan-
taneous streamwise evolution of density and dilatation along streamlines crossing
the shock through a hole and through a well-defined front are displayed.

Since the holes occupy only a very small percentage of the total shock surface,
global statistics in the broken shock régime are close to those of the wrinkled shock
régime. This is illustrated by the amplification ratio of turbulent kinetic energy,
which is not affected by the appearance of holes in the shock (Donzis 2012b). Main
differences are observed on tails of the p.d.f.s of physical quantities near the shock
wave.
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Fig. 15.34 Instantaneous streamwise evolution of density ρ normalized by its upstream value and
dilatation normalized by upstream vorticity variance for M1 = 1.5 and Mt1 = 0.38. Solid lines:
streamline crossing the shock front; Dashed line: streamline crossing a shock hole; Dotted line:
time-averaged value. From Larsson and Lele (2009) with permission of AIP

15.5 Beyond Canonical Case. I: Spherical Shock Waves

15.5.1 Case of Diverging Taylor–Sedov Blast Wave

The case of interaction between initially isotropic and a diverging spherical blast
wave was addressed via DNS in Bhagatwala and Lele (2011). In the case of an
inviscid laminar strong blast wave, the radius Rs(t) of the shock wave is assumed to
follow Taylor’s self-similar solution

Rs(t) = A(γ)ρ
−1/5
0 E1/5t2/5, (15.53)

where A(γ) is a function of γ, ρ0 the density of the undisturbed fluid and E the
energy deposited at initial time.

Interaction with a spherical diverging wave is observed to lead to results that
are very different from the planar shock case, at least for small radius of curvature.
At high radius of curvature, the shock is locally nearly planar and results close to
those found above are recovered. An important point is that the strength of the shock
is a decreasing function of time in the spherical case, while it is constant in the
planar case. Therefore, the spherical blast wave case is a transient problem for which
time-averaging is not meaningful.

Typical effects of the blast wave on tangentially-averaged pressure, density and
radial velocity component are displayed at three different times in Fig. 15.35. In the
case of strong blast wave, the shock remains almost spherical and obeys Taylor’s t2/5

law. In the case of a weak shock, strong turbulence-induced corrugation effects with
possible holes similar to those discussed in the planar broken shock régime appear.

Main differences with the planar shock case are the following:
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Fig. 15.35 Instantaneous tangentially-averaged quantities for strong blast wave case at three dif-
ferent times. From Bhagatwala and Lele (2011) with permission of AIP

• Interaction with the shock yields a dramatic decrease in the turbulent Reynolds
number, by a factor up to two orders of magnitude. This is due a huge increase in
fluid viscosity (up to two orders of magnitude also) due to a large increase in the
temperature in the shocked region, also associated with a similar growth of the
dissipation (see Fig. 15.36).

• The Kolmogorov scale is amplified by a factor up to one order of magnitude in the
post-shock region (see Fig. 15.36).

• Post-shock vorticity is decreased (by a factor up to two orders of magnitude) instead
of being amplified. This is mainly due to the dilatation-vorticity correlation, which
acts as a very strong sink term in the post-shock region. This effect is due to positive
dilatation events, which are dominant due to the shock-induced flow. The baroclinic
production term is not large enough to balance this effect. A kink is observed in
tangential vorticity in the shock region, which is very quickly damped.
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Fig. 15.36 Instantaneous tangentially-averaged turbulent dissipation and Kolmogorov scale for
strong blast wave case at three different times. From Bhagatwala and Lele (2011) with permission
of AIP

15.5.2 Case of Converging/Diverging Spherical Shock

The second case analyzed via DNS is related to a converging, then diverging spherical
shock wave (Bhagatwala and Lele 2012). This configuration involves a re-shock
phenomena (turbulence interacts with a shock and a reflected shock after that), which
has been analyzed via LIA in the planar shock case in Huete et al. (2012a). This
phenomena are illustrated in Fig. 15.37 in which time evolution of tangentially-
averaged pressure, density, radial velocity and viscosity are displayed at different
times associated to both converging incident and reflected diverging shock waves.
This flow configuration is observed to yield different results from the previous case
of a single diverging spherical blast wave.

The first shock wave is a converging one whose strength is growing as the radius
is decreasing, which induces a compressive radial velocity field. In the post-shock
region turbulent vorticity fluctuations are strongly amplified since the two main mech-
anisms, baroclinic terms and vorticity-dilatation correlations, act as source terms.
Amplification ratio of ω′

iω
′
i larger than 20 are observed in DNS, along with a very

large amplification of the turbulent Reynolds number by a factor larger than 40.
The second wave is a diverging initially strong blast wave. In the corresponding

post-shock region vorticity-dilatation effects damp the vorticity fluctuations, as in
the Sedov–Taylor blast wave case. But the damping effect is much weaker here, since
turbulent vorticity does not vanish in the post-shock region but exhibits a plateau. This
plateau is due to the balance between dilatation-induced damping and the advection
of very strong vortical events away from the core region (in which the amplification
by the converging wave was maximum) by the outward radial velocity field.

The main differences observed in the post-shock region of the reflected wave and
the Sedov–Taylor blast wave are the following:

• the turbulent Reynolds number is strongly amplified (by a factor up to two orders
of magnitude) instead of being reduced,
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Fig. 15.37 Instantaneous tangentially-averaged quantities for converging-diverging blast wave
case at different times. Black lines: incident converging wave; Blue lines: reflected diverging wave.
From Bhagatwala and Lele (2012) with permission of AIP

• the Kolmogorov scale is decreased (by a factor up to six) instead of being amplified
(see Fig. 15.38). This is due to a very strong reduction induced by the converging
shock, which leads to an increase of the dissipation ε, an increase of viscosity μ
due to an increase in the temperature, but an overall decrease of ν = μ/ρ due to
increasing ρ. The reflected shock yields a slight increase of ν and η after that,
which is not large enough to balance the initial reductions.

As for the Sedov–Taylor blast wave curvature effects lead to a dramatical departure
from the planar shock theory, looking at amplification ratios. Turbulence effects on
the tangentially-averaged mean flow quantities are important, leading to a reduction
in the observed jump with respect to the inviscid laminar theory. This decrease in
maximum compression is larger for initially weak shock wave (up to 35% for density
and 60% for pressure) than for strong shocks (up to 10% for density and 30% for
pressure). But it is observed that the shock radius Rs(t) evolves following the laminar
Gurdeley model for both converging and diverging shocks:
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Fig. 15.38 Instantaneous tangentially-averaged turbulent dissipation and Kolmogorov scale for the
converging/diverging spherical shock case at different times. From Bhagatwala and Lele (2012)
with permission of AIP

Rs(t) =
{

Rs0(1 − t/ts)0.717 converging wave

Rs0(t/ts − 1)0.717 diverging wave
(15.54)

where Rs0 and ts refer to the initial shock radius and the time taken for the converging
shock to reach the origin, respectively.

15.6 Beyond Canonical Case. II: Planar Shock Interacting
with Turbulence in a Non-reacting Binary Mixture

The case of a planar shock interacting with isotropic turbulent fluctuations in a
binary mixture of perfect gas has been addressed via extended LIA (see Sect. 16.9)
in Griffond (2005), Griffond et al. (2010), Griffond and Soulard (2012). Considering
a concentration spectrum of the form

Ecc(k) = 32

3k0

√
2

π

(
k

k0

)4

e−2(k/k0)
2
, (15.55)

the influence of the nature of the incident concentration waves has been investigated.
The extended Kovasznay decomposition coupled to the LIA procedure shows that
incident waves associated with fluctuations in the concentration field c can be of two
types:

• r -waves, or molar mass waves at constant cv ,
• cv-waves, or constant volume specific heat waves at constant molar mass.

http://dx.doi.org/10.1007/978-3-319-73162-9_16
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Fig. 15.39 Evolution of the downstream kinetic energy K2 production/amplification for
shock/isotropic concentration fluctuations in a binary mixture for γ̄ = 7/5 versus the upstream
Mach number M1. F, G and H terms are given in Eqs. (16.243)–(16.245). Comparisons are made
with canonical interaction in a pure fluid for both incident isothermal and incident adiabatic vortical
isotropic turbulence. All results are LIA results. Courtesy of J. Griffond. From Griffond (2005)
with permission of AIP

The effect of the interaction between a pure concentration fluctuating field with a
shock wave in terms of generation of downstream turbulent kinetic energy is plotted
in Fig. 15.39, and compared with results obtained in a pure fluid for an incident
isotropic vortical adiabatic turbulent field and incident isotropic vortical isothermal
turbulent field. It is worth noting that in the case of incident concentration waves the
upstream turbulent kinetic energy is identically null, K1 = 0. It is seen that r -waves
are responsible for most of the creation of downstream kinetic energy, and that this
effect is a monotonous function of the upstream Mach number M1. cv-waves have a
much less important effect, while interactions between these two families of waves
have an negligible effect. It is also observed that the downstream kinetic energy tends
to 0 in the limit of vanishing shock, M1 → 1.

The analysis can be refined looking at the longitudinal, shock-normal Reynolds
stress R11 and the transverse one, Rtt = (R22 + R33)/2. The streamwise evolution of
these two stresses is displayed in Fig. 15.40 (top). The existence of a near field region
is observed as in the canonical case. The decrease is due to the exponential damping
of non-propagating acoustic waves (term Iaa in Eq. (16.237)) and to the fact that
acoustic and non-acoustic waves are decorrelated in the downstream region, leading
to the decay of term Iav in Eq. (16.237). Therefore, the far-field solution is governed
by the sole term Ivv in Eq. (16.237). It is observed that r -waves are more efficient

http://dx.doi.org/10.1007/978-3-319-73162-9_16
http://dx.doi.org/10.1007/978-3-319-73162-9_16
http://dx.doi.org/10.1007/978-3-319-73162-9_16
http://dx.doi.org/10.1007/978-3-319-73162-9_16
http://dx.doi.org/10.1007/978-3-319-73162-9_16
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Fig. 15.40 Evolution of the longitudinal Reynolds stress R11 and the transverse Reynolds stress
Rtt = (R22 + R33)/2 for shock/isotropic density perturbation field in a binary mixture for γ̄ =
7/5. Top: downstream evolution for incident pure r -wave turbulence (circles) and pure cv-wave
turbulence (triangle, with premultiplication by 10) at M1 = 2; dotted lines: R11, solid lines: R11.
Bottom: evolution of the anisotropy ratio Rtt/R11 versus the upstream Mach numberM1 for different
upstream turbulence type. All results are LIA results. Courtesy of J. Griffond. From Griffond (2005)
with permission of AIP
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at generating downstream turbulence looking at both longitudinal and transverse
Reynolds stresses. The anisotropy, measured by the ratio Rtt/R11 is displayed in
Fig. 15.40 (bottom) as a function of M1 and compared with results stemming from
LIA analysis of the canonical case for incoming adiabatic and isothermal turbulence.
It is observed that turbulent mixtures yield a very anisotropic state in the weak
shock case, contrary to vortical turbulence. For M1 > 1.5, the strongest anisotropy
is obtained for cv-wave turbulence.

15.7 Beyond Canonical Case. III: Planar Detonation
Interacting with Turbulence

The case of the interaction of a planar overdriven detonation wave with an isotropic
turbulent field has been addressed by a few authors only (Lasseigne et al. 1991;
Huete et al. 2013, 2014). It is worth noting that detonation waves will remain stable
only if the detonation Mach number is very large compared with the Chapman–
Jouguet Mach number. Otherwise, the detonation front will break into cells, yielding
a destructive interaction in the sense that the topology of the front is deeply modified.

The case of a detonation with zero thickness moving in a gas at rest with an
isotropic perturbation field has been studied by Huete et al. (2013, 2016) via LIA
and the Laplace transform approach (see Sect. 16.10 for technical details). While the
results can be parameterized with respect to two parameters, namely the upstream
Mach number M1 and the gas polytropic index γ in the cold shock case, a third
parameter must be introduced to account for the heat release by chemical reaction in
the detonation case. Therefore, the exothermicity parameter q is defined, with q = 0
corresponding to an inert gas and the classical shock case.

15.7.1 Case of an Upstream Isotropic Density Field

The first investigated case is related to a detonation wave propagating in a gas at
rest with an isotropic density perturbation field. This perturbation field corresponds
to the ρ-waves introduced when discussing the case of the interaction between a
shock and a non-reacting mixture, in the absence of vorticity and acoustic upstream
modes. Downstream turbulent kinetic can be split into a vortical and an acoustic
component, i.e. K2 = Kr + Ka , whose explicit formula are given in the original
reference and are not given here for the sake of brevity. The evolution of values of
the two components (normalized by the downstream speed of sound a2) versus the
Mach number is displayed, in Fig. 15.41 for different values of q for γ = 1.2. As
in the inert shock case, the acoustic kinetic energy is larger than the vortical one

http://dx.doi.org/10.1007/978-3-319-73162-9_16
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Fig. 15.41 LIA analysis of
the evolution of the
normalized downstream
kinetic energy versus the
detonation Mach number for
q = 0 (inert gas, black line)
to q = 10 (strongly
exothermic chemical
reactions, light grey).
Intermediary values are
q = 1, 2, 5. Top: Acoustic
kinetic energy; Bottom:
vortical kinetic energy.
From Huete et al. (2013)
with permission of AIP

(a)

(b)

at low Mach number, the opposite being observed at larger values of M1. Both are
observed to converge toward bounded asymptotic values as M1 → ∞. Heat release
by chemical reactions is observed to damp both components.

The same analysis for downstream normalized vorticity amplitude and density
fluctuation amplitude associated to the entropy mode is illustrated in Fig. 15.42. It is
seen that both are growing functions of M1 and decreasing functions of q, and that
bounded asymptotic values exist at large M1.

15.7.2 Case of an Upstream Isotropic Vorticity Field

Interaction between a strong thin detonation and an isotropic vortical turbulent field
has been investigated thanks to LIA (Huete et al. 2016). In order to analyze the
evolution of anisotropy, both acoustic and vortical downstream kinetic energy com-
ponents, Ka and Kr respectively, can be split into a front-normal and a transverse
component. Therefore, one has for the turbulent kinetic energy amplification factor

K2

K1
= Ka

K1
+ Kr

K1
= Ka + Kr = 1

3
(La + 2T a) + 1

3
(Lr + 2T r ) (15.56)

where L and T factors are related to longitudinal (shock-normal) and transverse
component amplification factors, respectively. Evolution of Lr , Tr and Kr versus
the detonation Mach number for γ = 7/5 (air) and q = 0 and q = 1 is displayed in
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Fig. 15.42 LIA analysis of
the evolution of the
normalized downstream
vorticity (top) and entropic
density fluctuations (bottom)
versus the detonation Mach
number for q = 0 (inert gas,
black line) to q = 10
(strongly exothermic
chemical reactions, light
grey). Intermediary values
are q = 1, 2, 5. From Huete
et al. (2013) with permission
of AIP

(a)

(b)

Fig. 15.43. It is observed that the transverse component dominates at large enough
Mach number. Heat release is observed to damp the transverse component but it
enhances the longitudinal one. A similar analysis for the acoustic component is
displayed in the same figure. It is observed that the longitudinal component is the
most amplified for acoustic waves, and that heat release yields an enhancement of
both longitudinal and transverse kinetic energy components of the acoustic field. As
for inert shock case, one has Ka � Kr at large enough Mach number.

Variations of Lr and Tr in the (M1, q) plane are displayed in Fig. 15.44. It is
observed that isolines are almost vertical for q > 2, indicating that results become
almost insensitive to changes in exothermicity if the heat release is large enough. It
is observed that anisotropy type (pancake-type or cigar-type) may vary, the pancake-
type in which R11 < R22 = R33 being observed at large enough Mach number. The
cigar-type may exist at low-Mach and large heat release. As for the cold shock case,
an isotropic emitted field can be obtained selected ad hoc values of q and M1.

The amplification of vorticity is well understood introducing the amplification
factor of the transverse vorticity component, W⊥. As a matter of fact, the total vorticity
amplification factor is equal to (1 + 2W⊥)/3. W⊥ is plotted in the (M1, q) plane in
Fig. 15.45. The effect of heat release is to increase W⊥ and therefore the vorticity
anisotropy. As for kinetic energy amplification, results become insensitive to heat
release changes for q > 2.



774 15 Canonical Isotropic Turbulence/Shock Interaction and Beyond

Fig. 15.43 LIA analysis of the evolution of the normalized vortical kinetic energy (top) and nor-
malized acoustic kinetic energy (bottom) along with their longitudinal and transverse components
versus the detonation Mach number for q = 0 (inert gas, black line) and q = 1 (light grey). Solid
line: Kr and Ka , dotted line: Lr and La , dashed line: Tr and Ta . Courtesy of C. Huete

Fig. 15.44 LIA analysis of
the evolution of the
longitudinal vortical kinetic
energy amplification factor
Lr (top) and transverse
vortical kinetic energy
amplification factor Tr
(bottom) in the
(M1/MC J , q) plane.
Courtesy of C. Huete
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Fig. 15.45 LIA analysis of
the evolution of the
transverse vorticity
amplification factor W⊥ in
the (M1/MC J , q) plane.
Courtesy of C. Huete
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Chapter 16
Linear Interaction Approximation
for Shock/Perturbation Interaction

This chapter is devoted to a detailed presentation of the Linear Interaction Approxi-
mation (LIA) (Ribner 1953; Moore 1954) theory mentioned in Chap. 15. The main
assumptions which underly the LIA are discussed in Sect. 15.2.1 and will not be
duplicated here. We just recall here that the LIA holds if the following constraints
are fulfilled:

(i) The fluctuations must be weak in the sense that the distorted shock wave must
remain well defined. As a matter of fact, LIA is an asymptotic approximation
that theoretically holds in the limit case Reλ → ∞ and Mt → 0. Numerical
experiments lead Lee and coworkers Lee et al. (1993) to propose the following
empirical criterion for the linear regime:

M 2
t < α(M 2

1 − 1) (16.1)

where Mt and M1 are the upstream turbulent and mean Mach numbers respec-
tively and α ≈ 0.1. This criterion was later refined using DNS with higher
resolution (Ryu and Livescu 2014), yielding

Mt2 ≤ 0.1M2 (16.2)

with Mt2 and M2 the downstream (LIA-predicted) turbulent Mach number and the
downstream mean flow based Mach number, respectively. LIA can be extended
to account for viscous effects (Miller and Ahrens 1991), but this extension has
not been considered by almost all authors and it is therefore not discussed here.

(ii) The time required for turbulent events to cross the shock must be small compared
to the turbulence time scale K/ε (with K and ε the turbulent kinetic energy
and the turbulent kinetic energy dissipation rate, respectively), so that nonlinear
mechanisms cannot have significant effects.
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16.1 Shock Description and Emitted Fluctuating Field

We consider here the interaction of a plane shock with a normal two-dimensional
flow in the (x, y) plane. Let the undisturbed shock normal vector and the mean flow
be oriented along the x axis. The disturbed shock front is defined as

x = xs(y, t). (16.3)

The position of the undisturbed shock is arbitrarily chosen to be x = 0. The local
instantaneous normal and tangential vector, n and t, are equal to

n =
(

1,−∂xs

∂y

)T

, t =
(

∂xs

∂y
, 1

)T

. (16.4)

The shock speed in the reference frame associated with the mean shock location,
is equal to

us =
(

∂xs

∂t
, 0

)T

= (us, 0)T . (16.5)

The upstream and downstream fields are split as follows:

ρi(x, y, t) = ρ̄i + ερ′
i(x, y, t) (16.6)

si(x, y, t) = s̄i + εs′
i(x, y, t) (16.7)

Ti(x, y, t) = T̄i + εT ′
i (x, y, t) (16.8)

pi(x, y, t) = p̄i + εp′
i(x, y, t) (16.9)

ωi(x, y, t) = 0 + εω′
i(x, y, t) = εcurl(u′

i) (16.10)

ui(x, y, t) = Ui + εu′
i(x, y, t) (16.11)

vi(x, y, t) = 0 + εv′
i(x, y, t) (16.12)

along with
xs(y, t) = 0 + εξ(y, t) (16.13)

where subscripts 1 and 2 are related to the upstream (incident) and downstream
(emitted) fields, respectively. The parameter ε is assumed to be a small parameter,
i.e. ε � 1, so that all primed quantities and ξ are of order O(1).

These small perturbations are assumed to obey the linearized Euler equations
upstream and downstream the shock front, leading to the following equations for the
Kovasznay modes:

∂s′
i

∂t
+ Ui

∂s′
i

∂x
= 0, (16.14)
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∂ω′
i

∂t
+ Ui

∂ω′
i

∂x
= 0, (16.15)

(
∂p′

i

∂t
+ Ui

∂p′
i

∂x

)2

− c2
i ∇2p′

i = 0. (16.16)

Since the mean field obeys the classical Rankine–Hugoniot jump conditions
(3.16)–(3.19) which are recovered as the zeroth-order relations inserting Eqs. (16.6)–
(16.12) into jump relations (3.16)–(3.19), the following classical relations hold:

C ≡ ρ̄2

ρ̄1
= U1

U2
= (γ + 1)M 2

1

2 + (γ − 1)M 2
1

, (16.17)

p̄2

p̄1
= 1 + 2γ

γ + 1
(M 2

1 − 1), (16.18)

M2 ≡ U2

a2
=

√
2 + (γ − 1)M 2

1

2γM 2
1 − (γ − 1)

, (16.19)

where M1 and M2 are the upstream and downstream Mach numbers, respectively.
The incident field is composed of superimposed plane propagating waves. Thanks

to the linear approximation, one can restrict the analysis to a single incident wave
for each Kovasznay mode, with the orientation of the incident wave vector as a free
parameter. One can remark that since the shock is assumed to have no intrinsic length
scale, the LIA results will not depend on the wave vector modulus. Let k and ω be the
wave vector and the frequency of the incident plane wave, respectively. Therefore,
all fluctuating quantities tied to the incident wave have the following form:

φ(x, y, t) = Aφeı(k·x−ωt) (16.20)

where φ and Aφ are a dummy variable and the corresponding amplitude parameter,
respectively. Denoting α the angle between k and the x axis, one has k · x = kxx +
kyy = kr with kx = k cos α, ky = k sin α and r = x cos α + y sin α.

Since the shock has no intrinsic scale and is fully enslaved to incident perturba-
tions, its displacement induced by the perturbation wave considered above is

ξ(y, t) = Aξeı(kyy−ωt) = Aξeı(k sin αy−ωt) (16.21)

where the amplitude factor Aξ remains to be computed.

http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Fig. 16.1 Schematic view of the two-dimensional linear interaction approximation for shock/plane
wave interaction

16.2 Calculation of Wave Vectors of Emitted Waves

16.2.1 General

We now address the problem of computing the wave vector of each emitted wave.
The problem is schematized in Fig. 16.1.

A said above, any incident perturbation triggers the generation of a triad of emitted
waves (one wave for each Kovasznay mode) in the downstream region. Continuity at
the shock wave requires that the solution in this region has the same transverse wave
number ky and frequency as the incident perturbation wave. Therefore, all fluctuating
variables behind the shock wave have the generic form

φ(x, y, t) = AφF(x)eı(kyy−ωt) = AφF(x)eı(k sin αy−ωt) (16.22)

where the function F(x) is still unknown and must be such that the emitted fluctuating
field obeys the governing equations of the Kovasznay analysis, i.e. the linearized
Euler equations. Looking for plane wave solution, one can write

F(x) = eık̃xx (16.23)

where the wave vector normal component k̃x is such that the dispersion relation
associated with the Kovasznay mode under consideration is satisfied.
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16.2.2 Incident Entropy and Vorticity Waves

We first address the problem of an incident entropy or vorticity wave, for which
ω = k cos αU1.

16.2.2.1 Emitted Entropy and Vorticity Waves

For the emitted entropy and vorticity modes, the linear analysis yields the following
single dispersion relation

k · ū = ω, (16.24)

where ū is the mean velocity, leading to

ω = kxU1 = k cos αU1 = k̃xU2 (16.25)

from which it follows that

k̃x = U1

U2
k cos α = Ck cos α, (16.26)

where C is the compression factor defined by Eq. (16.17). Fluctuating fields associ-
ated with the entropy and vorticity modes are therefore of the form

φ(x, y, t) = Aφeık(C cos αx+sin αy−U1 cos αt), (16.27)

where it is important to note that k is the modulus of the wave vector of the incident
wave. Since the entropy and vorticity modes obey the same dispersion relation,
emitted waves associated with these two modes have the same wave vector, i.e. they
propagate in the same direction and have the same wavelength. Let ks and αs be the
wave vector of the emitted entropy and vorticity waves and the angle between ks and
the x axis, respectively. Relation (16.27) can be rewritten like follows

φ(x, y, t) = Aφeı(ks·x−ωt) = Aφeı(ks cos αsx+ks sin αsy−ωt), (16.28)

leading to the two relations
cot αs = C cot α, (16.29)

ks

k
= sin α

sin αs
. (16.30)
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16.2.2.2 Emitted Acoustic Waves - Propagative and Non-propagative
Regimes

The dispersion relation for the acoustic mode in the linear approximation is

(ω − k · ū)2 − a2k2 = 0, (16.31)

where a is the mean speed of sound. Using this relation in the domain located behind
the shock, one obtains

(ω − k̃xU2)
2 − a2

2(k̃
2
x + k2 sin2 α) = 0. (16.32)

Reminding that ω = kU1 cos α, this last relation can be recast as

1

C2

(
1

M 2
2

− 1

)
k̃2

x + 2k cos α

C
k̃x − k2

(
cos2 α − sin2 α

1

(CM2)2

)
= 0. (16.33)

The discriminant � of the above quadratic relation determines if k̃x is real or
imaginary. The discriminant being equal to

� = 2k sin α

CM2

√(cos α

sin α

)2 − 1

C2

(
1

M 2
2

− 1

)
, (16.34)

it is seen that k̃x is real if 0 ≤ α ≤ αc where the critical angle αc is such that

cot αc =
√

1 − M 2
2

CM2
(16.35)

and imaginary if αc < α ≤ π/2. Denoting k̃i and k̃r the real and imaginary parts of
k̃x, the emitted acoustic fluctuating field can be expressed as

φ(x, y, t) = Aφe−k̃ixeı(k̃r x+k sin αy−ωt) (16.36)

showing that the emitted acoustic field decays exponentially behing the shock wave
if k̃x is not real, i.e. if the angle of incidence of the incident wave is larger than
the critical angle αc. This threshold angle demarcates two regimes for the emitted
acoustic waves: the propagative regime without damping, and the non propagative
regime with damping. The latter is coined as non propagative since the emitted wave
amplitude is nearly zero at a distance of the order of one wave length downstream
the shock. Therefore, it is possible to identify a near field solution in which the non
propagative perturbations have a significant contribution and a far field solution in
which non propagative perturbations are negligible.
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Elementary algebra yield the following expression for the roots of Eq. (16.33)

k̃±
x =

−2k cos α

C
± �

2

C2

(
1

M 2
2

− 1

) , (16.37)

where � is given by (16.34). It is observed that k̃+
x is the only physically admissible

root, since k̃−
x leads to an exponential growth of the solution behind the shock.

Therefore k̃x = k̃+
x hereafter. The corresponding normalized form is

k̃x

k
= C

M2

1 − M 2
2

(
− cos αM2 + sin α

√
cot2 α − 1

C2

(
1

M 2
2

− 1

))
. (16.38)

In the non propagative regime, the real and imaginary parts of k̃x are equal to

k̃r

k
= −C cos α

M 2
2

1 − M 2
2

, (16.39)

and
k̃i

k
= C sin α

M2

1 − M 2
2

√
cot2 α − 1

C2

(
1

M 2
2

− 1

)
, (16.40)

respectively. The emitted acoustic field can be re-expressed introducing the emitted
wave vector ka which is such that

e−k̃ixeı(k̃r x+k sin αy−ωt) = eı(ka(cos αax+sin αay+iηx)−ωt) (16.41)

where αa is the angle between ka and the x axis. The geometrical characteristics of
the emitted wave are given by

ka

k
= sin α

sin αa
, (16.42)

and ⎧⎪⎨
⎪⎩

C cot α = cot αa + 1

M2 sin αa
(propagative regime)

cot αa

cot αc
a

= cot α

cot αc
(non propagative regime),

(16.43)

while the damping factor is expressed as

η =

⎧⎪⎨
⎪⎩

0 (propagative regime)

| cot αc
a sin αa|
M2

√
1 −

(
cot α

cot αc

)2

(non propagative regime)
(16.44)
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where αc
a is the angle of the emitted acoustic wave when α = αc. It can be shown

that cos αc
a = −M2.

16.2.3 Incident Acoustic Waves

16.2.3.1 Fast and Slow Waves

We now consider the case of an incident acoustic wave, for which we have (ω −
k cos αU1)

2 = a2
1k2. The method is similar to the one presented above for incident

entropy and vorticity waves, but the analysis is made a bit more complex since
incident waves can be classified in two types: the fast waves which propagate in
the direction of the mean flow (i.e. u1U1 > 0) and the slow waves which travel
in the opposite direction (i.e. u1U1 < 0). These two families are demarcated by
the stationary Mach waves with an angle of incidence αM such that cos αM =
−1/M1. Both fast and slow waves can lead to the generation of vorticity, entropy,
and propagating or evanescent acoustic waves.

16.2.3.2 Emitted Entropy and Vorticity Waves

Let us first address the case of emitted entropy and vorticity waves. Using the dis-
persion relations of incident and emitted waves, one obtains

ω = k cos αU1 ± a1k = kU1

(
cos α ± 1

M1

)
= k̃xU2, (16.45)

where k̃x can be computed in the same way as in the case of incident vorticity and
entropy waves. Signs ‘+’ and ‘−’ in the above equation are related to fast and slow
waves, respectively. An elegant way to compute the angle of the emitted waves
is proposed by Fabre and coworkers Fabre et al. (2001), who introduce the angle
α′ ∈ [0,π] such that

cot α′ = cot α + 1

M1 sin α
. (16.46)

The angle αs of the emitted entropy and vorticity waves is given by Eq. (16.29)
as in the case of an incident entropy/vorticity wave, the angle of incidence α being
replaced by α′. The wave vector modulus, ks, is still given by Eq. (16.30). The plane
wave operator associated to emitted fluctuating fields is similar to the one found for
incident entropy/vorticity waves Eq. (16.28), the wave vector ks being defined as
said above.



16.2 Calculation of Wave Vectors of Emitted Waves 785

16.2.3.3 Emitted Acoustic Waves

We now turn to the case of emitted acoustic waves. A difference with the case of
incident entropy/vorticity waves is that fast and slow waves have different threshold
angles, denoted α+

c and α−
c , respectively. These two angles are solutions of

cot α±
c + 1

M1 sin α±
c

= ±
√

1 − M 2
2

CM2
. (16.47)

For fast waves, the propagative regime is associated with α ∈]0,α+
c [ and the non

propagative regime with α ∈]α+
c ,αM [. For slow waves, the propagative and non

propagative regimes correspond to α ∈]α−
c ,π[ and α ∈]αM ,α−

c [, respectively. In
both cases, the damping factor η is given by Eq. (16.44) the angle of the incident
wave α being replaced by the angle α′ defined in Eq. (16.46), while the wave length
ka is still computed solving Eq. (16.42). The angle αa of the emitted wave is defined
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cot αa

cot αa
c

= cot α′

cot αc
− 1

M2

√(
cot α′

cot αc

)2

− 1 αa ∈]0,π[ α ∈]0,α+
c [

cot αa

cot αa
c

= cot α′

cot αc
αa ∈]0,π[ α ∈]α+

c ,αM [
cot αa

cot αa
c

= cot α′

cot αc
αa ∈]π, 2π[ α ∈]αM ,α−

c [
cot αa

cot αa
c

= cot α′

cot αc
+ 1

M2

√(
cot α′

cot αc

)2

− 1 αa ∈]π, 2π[ α ∈]α−
c ,π[

(16.48)

Using these definitions for the damping rate η and the wave vector ka, the emitted
acoustic field is still of the form (16.41).

16.3 Calculation of Amplitude of Emitted Waves

16.3.1 General Decompositions of the Perturbation Field

Utilizing either formulation of the exponential operator and the results given in
Sect. 3.2.2 dealing with the inviscid Kovasznay decomposition, the perturbation field
in the downstream domain associated to a single incident plane wave can therefore
be written under the general form1 given in Table 16.1 where F, G, H , I , K and Q are

1It is chosen is to normalize velocity fluctuations using U2, and not U1. Turning from one formulation
to the other one brings in the compression factor C.

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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amplitude parameters which will be computed thanks to the boundary conditions, i.e.
the linearized Rankine-Hugoniot jump conditions. The full turbulent emitted field is
recovered summing the emitted perturbations associated to all incident waves, i.e.
carrying out the summation over k, α and the wave nature.

It is worth noting that all these parameters are not independent since the fluctua-
tions are solutions of the linearized Euler equations. Substitution into the x momen-
tum equation

∂u′
2

∂t
+ U2

∂u′
2

∂x
= − 1

ρ̄2

∂p′
2

∂x

yields

U2(−ıFk cos αU1) + ıU 2
2 Fk̃x = −ı

p̄2

ρ̄2
Kk̃x, (16.49)

from which it follows that

F = 1

γ

1

CM 2
2

k̃x
k

cos α − k̃x
Ck

K . (16.50)

The y momentum equation

∂v′
2

∂t
+ U2

∂v′
2

∂x
= − 1

ρ̄2

∂p′
2

∂y

leads to

U2(−Hık cos αU1) + U 2
2 Hık̃x = − p̄2

ρ̄2
Kık sin α, (16.51)

which can be rearranged like

H = 1

γ

1

CM 2
2

sin α

cos α − k̃x
Ck

K . (16.52)

A last constraint is that the vortical velocity field is solenoidal, i.e.

∂u′
2

∂x
+ ∂v′

2

∂y
= 0,

which is equivalent to

U2GıkC cos α + U2I ık sin α = 0, (16.53)

leading to
I = −C cot αG. (16.54)
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It is recalled that the entropy, density, pressure and temperature fluctuations are
tied by the two following linearized relations:

ρ′
2

ρ̄2
= p′

2

γp̄2
− s′

2

cp
, (16.55)

T ′
2

T̄2
= (γ − 1)

p′
2

γp̄2
+ s′

2

cp
. (16.56)

The above system is supplemented by the normalized boundary conditions

1

U1

∂ξ

∂t
= Leı(k sin αy−ωt),

∂ξ

∂y
= − L

cos α
eı(k sin αy−ωt), (16.57)

where L is an amplitude factor for the shock displacement. The downstream per-
turbation field is therefore parameterized by four independent parameters, namely
I , K, L and Q. The problem is a priori well-behaved, since there are four unknowns
and four jump conditions. The problem can be recast making the transfer coefficients
ZF , ZG, ZH , ZI , ZK , ZL and ZQ appearing, which are defined as

F = AZF , G = AZG, H = AZH , I = AZI , K = ZK , L = AZL, Q = AZQ, (16.58)

where A is the complex amplitude of the incident wave (A is therefore identical to
the coefficient of the Fourier transform of the incident perturbation field associated
to k).

The decomposition given in Table 16.1 and Eq. (16.57) can also be rewritten
making the amplitude of each Kovasznay mode explicitely appearing. This new
expression is given in Table 16.2 where it is chosen here to use the second form of
the exponential wave operator to illustrate it.

The shock front displacement is now expressed like

ξ(y, t) = Zxeı(k sin αy−ωt). (16.59)

The coefficient ζ is defined as ζ = √
1 − η2 + 2ıη cos αa. The four unknowns are

now Aa, Av, As and Ax, i.e. the normalized amplitudes of the acoustic, vorticity and
entropy modes and shock displacement, respectively. One observes that ζ = 1 in the
propagative regime, while ζ is imaginary in the non propagative regime, showing
that the velocity and pressure fluctuations associated to evanescent waves are not in
phase.

For an incident wave with complex amplitude A the unknown amplitudes are given
by

Aa = AZa, Av = AZv, As = AZs, Ax = AZx, (16.60)

where Za, Zv, Zs and Zx are complex transfer functions associated with the second
decomposition.



16.3 Calculation of Amplitude of Emitted Waves 789

Ta
bl

e
16

.2
Se

co
nd

de
co

m
po

si
tio

n
of

th
e

em
itt

ed
fie

ld
as

so
ci

at
ed

to
a

si
ng

le
pl

an
e

in
ci

de
nt

w
av

e
w

ith
w

av
e

nu
m

be
r

k
an

d
fr

eq
ue

nc
y

ω



790 16 Linear Interaction Approximation for Shock/Perturbation Interaction

The two decompositions are tied by the following equalities:

kaη = k̃i, ka cos α = k̃r, (16.61)

ZF = Za
cos αa + ıη

M2ζ
, ZG = Zv sin αs, ZH = Za

sin αa

M2ζ
, (16.62)

ZI = −Zv cos αs, ZK = Za, ZQ = −Zs. (16.63)

Both incident and emitted fields can be further decomposed to emphasize the
contribution of each Kovasznay mode. The incident field can be expressed as follows

u′
1

U1
= Ai

(
δiv sin α + δia

cos α

M1

)
eı(k·x−ωt) (16.64)

v′
1

U1
= Ai

(
− δiv cos α + δia

sin α

M1

)
eı(k·x−ωt) (16.65)

ρ′
1

ρ̄1
= Ai(−δis + δia)e

ı(k·x−ωt) (16.66)

p′
1

γp̄1
= Aiδiaeı(k·x−ωt) (16.67)

T ′
1

T̄1
= Ai(δis + (γ − 1)δia)e

ı(k·x−ωt) (16.68)

s′
1

cp
= Aiδise

ı(k·x−ωt) (16.69)

where Ai is the complex amplitude of the incident wave. The subscript i is the related
to the Kovasnay mode associated to the incident wave, with i = a, v, s for acoustic
wave, vorticity wave and entropy wave, respectively. The corresponding expressions
for the emitted field are

u′
2

U2
= Ai

(
Ziv sin αse

ı(ks·x−ωt) + Ziae−kaηx cos αa + ıη

M2ζ
eı(ka ·x−ωt)

)
(16.70)

v′
2

U2
= Ai

(
− Ziv cos αse

ı(ks·x−ωt) + Ziae−kaηx sin αa

M2ζ
eı(ka ·x−ωt)

)
(16.71)

ρ′
2

ρ̄2
= Ai(−Zise

ı(ks·x−ωt) + Ziae−kaηxeı(ka ·x−ωt)) (16.72)

p′
2

γp̄2
= AiZiae−kaηxeı(ka ·x−ωt) (16.73)

T ′
2

T̄2
= Ai

(
Zise

ı(ks·x−ωt) + (γ − 1)Ziae−kaηxeı(ka ·x−ωt)
)

(16.74)

s′
2

cp
= AiZise

ı(ks·x−ωt) (16.75)
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where Zij is the transfer function associated to the emission of a wave associated
to Kovasnay mode j = v, s, a by and incident wave of type i. These formula are
supplemented by the one related to the shock wave corrugation:

ξ′ = AiZix. (16.76)

16.3.2 Calculation of Amplitudes of Emitted Waves

Amplitudes of the emitted Kovasznay modes are related to those of the incident
wave through linearized jump conditions. The first step of the procedure consists
in substituting Eqs. (16.6)–(16.12) into the linearized Rankine–Hugoniot relations
(see Sect. 3.1.3) written in a frame of reference that moves at the local instantaneous
speed of the shock wave. Then, normalizing the fluctuating quantities using mean
flow variables, one obtains the following equations which are valid at x = 0:

1

C

(
u′

2 − ∂ξ
∂t

U2

)
=

(
u′

2 − ∂ξ
∂t

U1

)
= (γ − 1)M 2

1 − 2

(γ + 1)M 2
1

(
u′

1 − ∂ξ
∂t

U1

)

+ 2

(γ + 1)M 2
1

(
T ′

1

T̄1

)
, (16.77)

1

C

(
v′

2

U2

)
=

(
v′

2

U1

)
=

(
v′

1

U1

)
+ 2(M 2

1 − 1)

(γ + 1)M 2
1

∂ξ

∂y
, (16.78)

(
ρ′

2

ρ̄2

)
= 4

(γ − 1)M 2
1 + 2

(
u′

1 − ∂ξ
∂t

U1

)
− (γ − 1)M 2

1 + 4

(γ − 1)M 2
1 + 2

(
T ′

1

T̄1

)
, (16.79)

(
p′

2

γp̄2

)
= 4M 2

1

2γM 2
1 − (γ − 1)

(
u′

1 − ∂ξ
∂t

U1

)
− 2M 2

1

2γM 2
1 − (γ − 1)

(
T ′

1

T̄1

)
. (16.80)

Now taking into account the fact that the shock front abscissa ξ(y, t) is proportional
to exp(ı(kyy − ωt)), one has

α′ = dξ

dy
= ıkyξ, u′

s = dξ

dt
= −ıωξ, (16.81)

where it is recalled that the angle α′ is defined as α′ = n · t′, one recovers after some
algebra the following relations :

ρ′
2

ρ̄2
+ u′

2

U2
− ıω

U1
(1 − C)ξ = ρ′

1

ρ̄1
+ u′

1

U1
, (16.82)

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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ρ′
2

ρ̄2
+ 2

u′
2

U2
+ 1

M 2
2

p′
2

γp̄2
= C

(
ρ′

1

ρ̄1
+ 2

u′
1

U1
+ 1

M 2
1

p′
1

γp̄1

)
, (16.83)

v′
2

U2
+ ıky(1 − C)ξ = C

v′
1

U1
, (16.84)

u′
2

U2
+

(
1

M 2
2

+ 1

(γ − 1)M 2
2

)
p′

2

γp̄2
− 1

(γ − 1)M 2
2

ρ′
2

ρ̄2
+ ıω

U1
C(1 − C)ξ =

C2

(
u′

1

U1
+

(
1

M 2
1

+ 1

(γ − 1)M 2
1

)
p′

1

γp̄1
− 1

(γ − 1)M 2
1

ρ′
1

ρ̄1

)
, (16.85)

where all mean flow quantities and incident fluctuating perturbations (subscript 1)
are known.

The second step of the LIA procedure consists in selecting an incident wave, i.e.
chosing its nature and prescribing the incident wave vector k (which is equivalent to
prescribing α, k and ω). A set of linear equations for the amplitudes of the emitted
waves and the shock displacement is then obtained expressing both incident and
emitted fluctuating fields using one of the decomposition presented above (Table 16.1
and Eq. (16.57) or Table 16.2 and Eq. (16.59) ) and its compact formulation (16.64)–
(16.75), in which ks, ka and the damping factor for evanescent waves are computed
thanks to the ad hoc relations.

The second decomposition is used hereafter, since it give a deep insight into
flow physics via a direct access to mode-to-mode transfer function. This case was
exhaustively described by Fabre and coworkers Fabre et al. (2001). The first set of
expressions was historically used in the works carried out at Stanford University
during the 1990s. Thanks to the fact that all exponential terms are identical at the
shock location (x = 0), they can be removed. Therefore, the complex transfer func-
tion vectors Zi = (Ziv, Zis, Zia, Zix)

T , where the subscript i = s, v, a is related to
the nature of the incident wave and where Zix is related to the shock corrugation
amplitude, are solution of a linear system of the form

AZi = Bi, (16.86)

where Bi denotes the associated right-hand side term.
For non-acoustic incident waves, i.e. i = v (vorticity waves) and i = s (entropy

waves), the matrix A is given by

A =

⎡
⎢⎢⎢⎢⎣

sin αs −1 1 + cos αa+ıη
M2ζ

ı(C − 1) cos α

2 sin αs −1 M 2
2 +1
M 2

2
+ 2 cos αa+ıη

M2ζ
0

− cos αs 0 sin αa
M2ζ

ı(1 − C) sin α

sin αs
1

(γ−1)M 2
2

1
M 2

2
+ cos αa+ıη

M2ζ
ıC(1 − C) cos α

⎤
⎥⎥⎥⎥⎦ . (16.87)
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In the case of incident acoustic waves, i.e. i = a, the matrix A should be replaced
by A′, which is obtained replacing α by the angle α′ defined in Eq. (16.46) in the
last column:

A′ =

⎡
⎢⎢⎢⎢⎣

sin αs −1 1 + cos αa+ıη
M2ζ

ı(C − 1) cos α′

2 sin αs −1 M 2
2 +1
M 2

2
+ 2 cos αa+ıη

M2ζ
0

− cos αs 0 sin αa
M2ζ

ı(1 − C) sin α′

sin αs
1

(γ−1)M 2
2

1
M 2

2
+ cos αa+ıη

M2ζ
ıC(1 − C) cos α′

⎤
⎥⎥⎥⎥⎦ . (16.88)

The right-hand side terms are defined as follows

Bs =

⎛
⎜⎜⎝

−1
−C
0
C2

(γ−1)M 2
1

⎞
⎟⎟⎠ , Bv =

⎛
⎜⎜⎝

sin α
2C sin α
−C cos α
C2 sin α

⎞
⎟⎟⎠ , Ba =

⎛
⎜⎜⎜⎜⎝

1 + cos α
M1

C
(

M 2
1 +1
M 2

1
+ 2 cos α

M1

)
C sin α

M1

C2
(

1
M 2

1
+ cos α

M1

)

⎞
⎟⎟⎟⎟⎠ . (16.89)

Fig. 16.2 LIA transfer functions versus the angle of the incident wave α in the case of an incident
plane acoustic wave. Top: Za (left) and Zv (right); Bottom: Zs (left) and Zx (right). Solid line: real
part, dashed line: imaginary part. Courtesy of D. Fabre, IMFT, France
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Fig. 16.3 LIA transfer functions versus the angle of the incident wave α in the case of an incident
plane entropy wave. Top: Za (left) and Zv (right); Bottom: Zs (left) and Zx (right). Solid line: real
part, dashed line: imaginary part. Courtesy of D. Fabre, IMFT, France

A careful examination of these results reveals that the transfer functions depend
only on γ, M1 and α, i.e. they are not functions of the wave vector amplitude k. This
is coherent with the fact that the shock wave is assumed to have no intrinsic length
scale, and that viscous effects are neglected.

The computed transfer functions, angles of emission and damping factor are dis-
played in Figs. 16.2, 16.3, 16.4 and 16.5.

It is seen that transfer functions exhibit a kink near the critical angle αc, which
corresponds to a strong increase of the emitted energy. Therefore, the small perturba-
tion assumption might be partially violated for waves with α ∼ αc, a fact that is used
by several authors to explain some discrepancies between LIA and DNS results. It
is also observed that the imaginary parts are null for α < αc, indicating that incident
and emitted waves are in phase in this case, while they are out of phase for higher
values of α.
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Fig. 16.4 LIA transfer functions versus the angle of the incident wave α in the case of an incident
plane vorticity wave. Top: Za (left) and Zv (right); Bottom: Zx . Solid line: real part, dashed line:
imaginary part. Courtesy of D. Fabre, IMFT, France

Fig. 16.5 Angle of emitted waves and damping parameter η as a function of the angle of the
incident wave. Left: incident acoustic wave; Right: incident entropy/vorticity wave. Dotted line: η,
solide line: αs, dashed line: αa . Courtesy of D. Fabre, IMFT, France
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16.4 Distinguishing Between Poloidal and Toroidal
Vorticity Modes

The previous results can be extended by making the distinction between poloidal and
toroidal vorticity modes (Griffond and Soulard 2012), augmenting the dimension of
the problem with respect to the classical Kovasznay decomposition. To this end, it is
useful to rewrite the problem in cylindrical coordinates, since poloidal and toroidal
modes are easily separated in this reference frame.

Denoting (ex, ey, ez) the Cartesian reference frame, the cylindrical coordinate
unit vectors are (ex, er = eφ × ex, eφ = ex × k/‖ex × k‖) while it is recalled that
the Craya-Herring reference frame is given by (e(1) = k × ex/‖k × ex‖, e(2) =
k × e(1)/‖k × e(1)‖, e(3) = k/k) (with k = ‖k‖) leading to

k =

⎧⎪⎨
⎪⎩

k cos αex + k sin α cos φey + k sin α sin φez (Cartesian frame)

k cos αex + k sin αer + 0eφ (Cylindrical frame)

0e(1) + 0e(2) + ke(3) (Craya-Herring frame)
(16.90)

where α and φ denote the angles between k and ex and ey and er , respectively. Fluc-
tuating velocity fields associated to poloidal vorticity mode (subscript pol), toroidal
vorticity mode (subscript tor) and acoustic modes are given in the Craya-Herring
frame as

u′ =

⎧⎪⎨
⎪⎩

utor = −u(1)e(1)

upol = −u(2)e(2)

ua = u(3)e(3)

(16.91)

where the Craya-Herring amplitudes (u(1), u(2), u(3)) are deduced from the Cartesian
(ux, uy, uz) and cylindrical ones (ux, ur, uφ) according to

u(1) = −uφ = −uy sin φ + uz cos φ

u(2) = ur cos α − ux sin α = uy cos α cos φ + uz cos α sin φ − ux sin α

u(3) = ur sin α + ux cos α = uy sin α cos φ + uz sin α sin φ + ux sin α

The Kovasznay decomposition of both incident and emitted fields can be written
in cylindrical coordinates as follows, in which poloidal and toroidal vorticity modes
are related to pol and tor subscripts, respectively. The upstream velocity field is
expressed as (expressions for other fluctuating quantities are the same as in the
previous case, see Eqs. (16.66)–(16.69)):

u′
x1

U1
= Ai

(
δi pol sin α + δia

cos α

M1

)
eı(k·x−ωt), (16.92)

u′
r1

U1
= Ai

(
− δi pol cos α + δia

sin α

M1

)
eı(k·x−ωt), (16.93)
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u′
φ1

U1
= Aiδi tore

ı(k·x−ωt). (16.94)

Introducing the transfer function vector Zi = (Zi tor, Zi pol, Zis, Zia, Zix), one
obtains for the emitted velocity field (expressions for other emitted fields are the
same as in the previous case, see Eqs. (16.72)–(16.75)):

u′
x2

U2
= Ai

(
Zi pol sin αse

ı(ks·x−ωt) + Ziae−kaηx cos αa + ıη

M2ζ
eı(ka ·x−ωt)

)
, (16.95)

u′
r2

U2
= Ai

(
− Zi pol cos αse

ı(ks·x−ωt) + Ziae−kaηx sin αa

M2ζ
eı(ka ·x−ωt)

)
, (16.96)

u′
φ2

U2
= AiZi tore

ı(ks·x−ωt). (16.97)

The computation of the complex transfer functions is carried out as in the previous
case. A careful examination of this linearized system shows that the toroidal vorticity
mode is decoupled from all other modes, and that only the poloidal component of
the vorticity mode generates entropy and acoustic waves downstream the shock,
along with shock corrugation. The expression of the transfer function for the toroidal
vorticity mode simplifies as

Zi tor = Cδi tor (16.98)

The remaining transfer functions Zi pol, Zis, Zia and Zix are solutions of the same
4 × 4 linear system as the one given in Sect. 16.3.2 (including the treatment for
incident acoustic waves), Ziv being replaced by Zi pol .

16.5 Reconstruction of the Second Order Moments

The general formulation of the fluctuating field behind the shock wave makes it pos-
sible to derive expressions for the second-order statistical moments and to emphasize
some fundamental differences between fields generated by propagating and evanes-
cent waves (Mahesh et al. 1995, 1996). As said above, the existence of evanescent
waves with significant amplitude just behind the shock yields the existence of a thin
region with peculiar behavior, referred to as the near field.

16.5.1 Case of a Single Incident Wave

Let us first consider the case of a single incident wave with wave number k and angle
α. The second-order one-point cross correlation between the fluctuating quantities
ψ′ and ϕ′ at downstream location x is given by
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ψ′ϕ′(x; k,α) ≡ 
(
ψ′ϕ′∗(x; k,α)

)
, (16.99)

where  denotes the real part and ψ′(x) and ϕ′(x) are the complex variables taken
in the lists (16.70)–(16.75) and (16.95)–(16.97). The superscript * and the overbar
denote the complex conjugate and statistical averaging, respectively.

Considering the mean fluctuating kinetic energy associated with the shock normal
velocity component u′

x2
as an illustration, one obtains

u′
x2

2(x; k,α)

U 2
2

= 
([

Ai(Zi pol sin αseı(ks·x−ωt) + Ziae−kaηx
cos αa + ıη

M2ζ
eı(ka ·x−ωt)

]

× [
Ai(−Ziseı(ks·x−ωt) + Ziae−kaηxeı(ka ·x−ωt))

]∗)

= |Ai|2
(

|Zi pol |2 sin2 αs + |Zia|2e−2kaηx cos2 αa + η2

M 2
2 ζ2

)

+2|Ai|2e−kaηx sin αs
(

Zi polZ
∗
ia

cos αa − ıη

M2ζ
eı([ks−ka]·x)

)
.

(16.100)

It is observed that the longitudinal velocity autocorrelation is made of three con-
tributions that appear in the right hand side of the final expression. The first one
is the kinetic energy of the velocity component of the emitted vorticity mode, the
second one is the kinetic energy of the emitted acoustic mode while the last one is the
cross-correlation between emitted acoustic and vorticity modes. The acoustic mode
exhibits the e−kaηx term, which indicates that an exponentially damped near-field
may exist in the non-propagative regime. A similar expression can be derived for
the second poloidal velocity component, u′

r2
. Therefore, in the propagative regime

the emitted poloidal kinetic energy has spatially uniform contributions from both the
poloidal vortical and acoustic modes and an oscillating component whose argument
is equal to the phase difference between them which is related to ([ks − ka] · x). In
the non propagative regime it has a spatially uniform contribution from the vorticity
mode only, an exponentially decaying monotone acoustic component and exponen-
tially damped components due to the correlation between the poloidal vorticity and
the acoustic mode. Temperature and density variances exhibit a similar behavior,
since they are made of a combination of the acoustic and entropy modes.

The emitted toroidal kinetic energy has a much simpler structure, since it depends
on the sole toroidal vorticity mode, which is decoupled from all other modes, leading
to

u′
φ2

2
(x; k,α)

U 2
2

= |Ai|2|Zi tor|2 = C2|Ai|2δi tor (16.101)

It exhibits a spatially uniform distribution without possible near-field structure
or far-field oscillation. The same conclusion holds for the entropy variance, since
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entropy fluctuations depend on the sole entropy mode which has no evanescent
regime. Quantities which depend on the sole acoustic mode such as pressure and
dilatation exhibit dramatic changes when switching from one regime to the other
one. Let us illustrate this point using the pressure variance:

p′
2

2
(x; k,α)

γ2p̄2
2

= |Ai|2|Zia|2e−2kaηx (16.102)

In the propagative regime, the pressure variance is spatially uniform, while in
the non propagative regime it experiences an exponential decay and the pressure
variance totally vanishes outside the near-field region. The width of the near field
region scales like O(1/k), showing that it is very thin.

Variance of shock displacement and shock speed due to shock corrugation are
reconstructed as follows:

ξ′2(k,α) = |Ai|2|Zix|2,
(

∂ξ′

∂t

)2

(k,α) = −|Ai|2|Zix|2k2U 2
1 cos2 α. (16.103)

16.5.2 Case of an Incident Turbulent Isotropic Field

It is important to note that the developments presented above are valid in the case of a
single incident wave. We now address the problem of an incident isotropic turbulent
field made of a single Kovasznay mode, i.e. a purely vortical, acoustic or entropic
isotropic turbulence. The case of a mixed turbulence made of several Kovasznay
modes will be discussed in the next section. The symmetry of the problem leads to
an axisymmetric emitted field.

In the original Cartesian frame of reference, the undisturbed plane shock is
assumed to lie in the y − z plane, while the normal mean flow is parallel to the
x axis.

Let us first consider an isotropic solenoidal velocity field generated by vorticity
modes. The energy spectrum of the incident velocity field is assumed to be of the
form

Eij(k) = E(k)

4πk2

(
δij − kikj

k2

)
, (16.104)

where E(k) is the three dimensional energy spectrum. Since the velocity field is
solenoidal, the velocity vector associated to the wave vector k is orthogonal to k and
may have a component orthogonal to the plane spanned by k and the x axis. There-
fore, the two-dimensional analysis presented above must be extended introducing
cylindrical coordinates (x, r,φ) (see Fig. 16.6).2

2Here, x still refers to the x axis in the original Cartesian frame of reference. Let u′
x and u′

r be the
fluctuating velocity components in the x and r directions, and u′

φ be azimutal component. The latter
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Fig. 16.6 Schematic view of
the Linear Interaction
Approximation for
shock/turbulence interaction:
reference frames for the
treatment of an isotropic
incident field

The change of frame of reference implies

u′ = u′
x (16.105)

u′
r = v′ cos φ + w′ sin φ, u′

φ = −v′ sin φ + w′ cos φ, (16.106)

v′ = u′
r cos φ − u′

φ sin φ, w′ = u′
r sin φ + u′

φ cos φ, (16.107)

while the elemental volumes of integration are tied by the following relation

dk = k2 sin α dα dφ dk (16.108)

with k ∈ [0,+∞],α ∈ [−π/2,π/2] and φ ∈ [0, 2π], along with

k1 = k cos α, k2 = k cos φ sin α, k3 = k sin φ sin α. (16.109)

The two-dimensional analysis presented above obviously holds for the u′
x and

u′
r components, since the x − r plane corresponds to the x − y plane in the two-

dimensional analysis. The angle α is the same in the two coordinates systems. The
method consists therefore in applying the two-dimensional LIA procedure to the u′

x
and u′

r components, while the u′
φ component is left unmodified by the interaction

since it is tangential to the shock wave, according to Eq. (3.18). An important point
is that the amplitude Av(k) of the incident wave with wave vector k which appears
in the two-dimensional analysis (see Eqs. (16.58) and (16.60) ) is now related to the
magnitude of the velocity vector in the x − r plane, leading to

|Av(k)| = |u′
1|

sin α
, |Av(k)|2 = E(k)

4πk2
. (16.110)

is normal to the x − r plane spanned by the x axis and the wave vector k. It is reminded that α and φ
denote the angle between k and the x axis in the x − r plane, while φ is defined as the angle between
k and the y axis in the y − z plane.

http://dx.doi.org/10.1007/978-3-319-73162-9_3
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Now introducing the spectral components of kinetic energy behind the shock
waves in both the Cartesian and cylindrical coordinates systems, Eqs. (16.105)–
(16.107) yield the following relations:

E11(k) = Exx(k), (16.111)

E22(k) + E33(k) = Err(k) + Eφφ(k), (16.112)

E22(k) = cos2 φErr(k) + sin2 φEφφ(k) − sin 2φErφ(k), (16.113)

E33(k) = sin2 φErr(k) + cos2 φEφφ(k) + sin 2φErφ(k). (16.114)

The spectral components are linked to the amplitude factor Av(k) via

|Av(k)|2 = E1
11(k)

sin2 α
= E1

11(k) + E1
rr(k) = E1

nn(k) − E1
φφ(k), (16.115)

where the superscript ‘1’ refers to the incident perturbation field and Enn(k) is the
total kinetic energy density, from which it follows that

E1
φφ(k) = E1

nn(k) − |Av(k)|2 = E(k)

4πk2
(16.116)

and

E22(k) + E33(k) = Err(k) + E(k)

4πk2
. (16.117)

The streamwise kinetic energy behind the shock wave is defined as follows

u′
2

2
(x)

U 2
2

=
∫ +∞

k=0

∫ +π/2

α=−π/2

∫ 2π

φ=0

u′
x2

2(x; k,α)

U 2
2

k2 sin α dα dφ dk, (16.118)

where u′
x2

2(x; k,α)/U 2
2 is the amplitude of the emitted wave associated to a single

incident wave vector computed using the two-dimensional theory (see Eq. (16.100)).
Remarking that this term is independent of φ and that it is symmetric about α = 0,
Eq. (16.118) simplifies as

u′
2

2
(x)

U 2
2

= 4π

∫ +∞

k=0

∫ +π/2

α=0

u′
2

2
(x; k,α)

U 2
2

k2 sin αdα dk. (16.119)

By identification with the definition of the spectrum of the streamwise velocity
component E11(k), one has

∫ +∞

0
E11(k)dk = u′

xu′
x ⇒ E11(k) = 4πk2

∫ +π/2

α=0
u′

x2

2(x; k,α) sin α dα (16.120)
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Equation (16.119) can be simplified emphasizing that cross-correlations between
velocity fields of the emitted vorticity and acoustic waves vanish, because they have
different propagation speeds and therefore cannot be correlated when considering
an incident random turbulent field instead of a single deterministic monochromatic
wave. Therefore, inserting remaining terms of Eq. (16.100), one has

u′
2

2
(x)

U 2
2

=
∫ +∞

k=0

∫ +π/2

α=0
E(k)

(
|Zv pol |2 sin2 αs + |Zva|2e−2kaηx cos2 αa + η2

M 2
2 ζ2

)
sin αdα dk.

(16.121)

Expressions similar to Eq. (16.119) for the transverse components of kinetic
energy are

v′
2

2
(x)

U 2
1

= w′
2

2
(x)

U 2
1

= 1

2
4π

∫ +∞

k=0

∫ +π/2

α=0

(
Err + E(k)

4πk2

)
k2 sin α dα dk. (16.122)

We now consider scalar quantities, such as pressure and entropy. This case is
much simpler since since no projection is needed. As an example, the variance of
the emitted pressure wave is given by

p′
2

2
(x)

γ2p̄2
2

= 2π

∫ +∞

k=0

∫ +π/2

α=0

p′
2

2
(x; k,α)

γ2p̄2
2

k2 sin α dα dk (16.123)

where p′
2

2
(x; k,α)/γ2p̄2

2 is computed using Eq. (16.102) for a single incident plane
wave, i.e.

p′
2

2
(x; k,α)

γ2p̄2
2

= |Av|2|Zva|2e−2kaηx = E(k)

4πk2
|Zva|2e−2kaηx

while the downstream pressure variance three-dimensional spectrum Epp(k) if
expressed as

p′
2

2
(x)

γ2p̄2
2

=
∫ +∞

0
Epp(k)dk ⇒ Epp(k) = 1

2
E(k)

∫ +π/2

α=0
|Zva|2e−2kaηx sin α dα.

(16.124)

Downstream cross-correlations between velocity components, pressure, density,
temperature, entropy and other quantities are obtained in the same way, keeping in
mind that contributions stemming from the acoustic emitted waves are not statistically
correlated with non-acoustical contributions.

The case of an incident isotropic acoustic field is much simpler, since the associ-
ated velocity field is purely dilatational and is therefore parallel to the wave vector.
Consequentely, the velocity vector is entirely contained in the x−r plane in the cylin-
drical coordinates system introduced above, i.e. the azimutal velocity component u′

φ
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is identically zero. The same conclusion is reached considering that the upstream
acoustic field is irrotational, so that both poloidal and toroidal vorticity component
are null upstream the shock wave. Since the toroidal component is decoupled from
other modes, it remains zero downstream the shock wave while poloidal vorticity is
created, leading to the fact that u′

φ is null downstream the shock. Therefore, this case
will not be detailed since it can be directly treated using the two-dimensional LIA
theory, the two-dimensional x − y plane being taken equal to the x − r plane. It is
just recalled that the isotropic spectral tensor is now defined as

E1
ij(k) = E(k)

8πk2

kikj

k2
(16.125)

and not by Eq. (16.104).
General expressions can be obtained for all types of incident fields in a straight-

forward way. This is illustrated by the following expressions for longitudinal (i.e.
shock-normal) and transversal Reynolds stresses:

u′
2

2
(x)

U 2
2

= 4π

∫ +∞

k=0

∫ +π/2

α=0
|Ai(k)|2 {|Zi pol |2 sin2 αs

+ |Zia|2e−2kaηx cos2 αa + η2

M 2
2 ζ2

+ 2e−kaηx
(

cos αs
sin αa

M2ζ∗ ZivZ∗
iaeıx(ks cos αs−ka cos αa)

)}
k2 sin αdα dk,

(16.126)

v′
2

2
(x)

U 2
2

= 2π

∫ +∞

k=0

∫ +π/2

α=0
|Ai(k)|2 {|Zi tor|2 + |Zi pol |2 cos2 αs

+ |Zia|2e−2kaηx sin2 αa

M 2
2 ζ2

− 2e−kaηx
(

cos αs
sin αa

M2ζ∗ ZivZ∗
iaeıx(ks cos αs−ka cos αa)

)}
k2 sin αdα dk.

(16.127)

16.5.3 Case of a Mixed Incident Perturbation Field

We now address the case of an incident field made of the combination of different
Kovasznay modes. The above analysis is extended in a straightforward way by sum-
ming the contribution coming from the different families of incident waves. In this
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case, the phase shift between waves of different nature but having the same frequency
ω may have a deep impact on the emitted field.

Let us illustrate that point considering the emitted pressure field in the case of
a mixed vortical-entropic incident monochromatic field. The downstream pressure
field is

p′
2

γp̄2
= (AvZva + AsZsa) e−kaηxeı(ka ·x−ωt). (16.128)

For the sake of clarity, the complex amplitude of the entropy mode is rewritten as

As = Avcsve−ıφsv , (16.129)

where csv and φsv are real parameters related to the energy ratio and the phase shift
between the two incoming waves, respectively. Therefore, one has

p′
2

γp̄2
= (

Zva + csveıφsv Zsa
)

e−kaηxAveı(ka ·x−ωt), (16.130)

leading to

p′
2

2
(x; k,α)

γ2p̄2
2

= |Av|2e−2kaηx
(|Zva|2 + c2

sv|Zsa|2 + 2csv
(
ZvaZ∗

sae−ıφsv
))

. (16.131)

It is seen that the last term explicitly depends on φsv , showing that the variance
of the emitted pressure fluctuations can be modulated by manipulating the phase
shift. Similar results are obtained in a straightforward way for all emitted fields and
for other combinations of incident waves, including the case of an incident field
containing fluctuations belonging to the three Kovasznay physical groups. In the
later case, two phase shift parameters must be introduced, leading to a much wider
class of possible results.

These analysis is extended to the case of a mixed turbulent incident field writing
the statistical correlation of the complex amplitudes as

AsA∗
v = csv|As|2eıφsv (16.132)

and deriving the associated expression for second-order moments. It is worth keeping
in mind that, when an incident stochastic turbulent field is considered, AvA∗

a =
AsA∗

a = 0 because of the difference in the propagation speeds of the waves. Therefore
a single phase shift parameter must be considered. This is illustrated by the expression
of the pressure variance associated to Eq. (16.131) which is equal to
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p′
2

2
(x)

γ2p̄2
2

= 2π

∫ +∞

k=0

∫ +π/2

α=0

p′
2

2
(x; k,α)

γ2p̄2
2

k2 sin α dα dk

= 2π

∫ +∞

k=0

∫ +π/2

α=0
|Av|2e−2kaηx|Zva|2k2 sin α dα dk

︸ ︷︷ ︸
vorticity-vorticity interaction

+ 2π

∫ +∞

k=0

∫ +π/2

α=0
|Av|2e−2kaηxc2

sv|Zsa|2k2 sin α dα dk
︸ ︷︷ ︸

entropy-entropy interaction

+ 2π

∫ +∞

k=0

∫ +π/2

α=0
|Av|2e−2kaηx2csv

(
ZvaZ∗

sae−ıφsv
)

k2 sin α dα dk
︸ ︷︷ ︸

vorticity-entropy interaction

.

(16.133)

This expression is fully general, and both csv and φsv can be taken as scale-
dependent parameters, i.e. to be functions of k. The cross-correlation can be also
expressed in terms of u′

1T ′
1, since

u′
1T ′

1

U1T̄1
= 2AsA∗

v. (16.134)

Fully general expressions for the Reynolds stresses and other turbulent fluxes
downstream the shock are obtained by summing all possible interactions. A few
examples are given below:

ρ′2
2

ρ̄2
2

=
∑

i

∑
j

∫∫∫
AiA∗

j ZisZ
∗
jsd

3k

+
∑

i

∑
j

∫∫∫
α≤αc

AiA∗
j ZiaZ∗

jad3k, (16.135)

u′2
2

U 2
2

=
∑

i

∑
j

∫∫∫
AiA∗

j Zi polZ
∗
j pol sin2 αsd

3k

+
∑

i

∑
j

∫∫∫
α≤αc

AiA∗
j ZiaZ∗

ja cos2 αad3k, (16.136)

v′2
2 + w′2

2

2U 2
2

= 1

2

∑
i

∑
j

∫∫∫
AiA∗

j

(
Zi polZ

∗
j pol cos2 αs + Zi torZ

∗
j tor

)
d3k

+1

2

∑
i

∑
j

∫∫∫
α≤αc

AiA∗
j ZiaZ∗

ja sin2 αad3k, (16.137)
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ρ′
2u′

2

ρ̄2U2
=

∑
i

∑
j

∫∫∫
AiA∗

j Zi polZ
∗
j s sin αsd

3k + 0, (16.138)

where i, j = pol, tor, s, a. The first term in the right-hand side of above equations is
related to the contribution of emitted poloidal and toroidal vortical fluctuations and
entropy fluctuations to the Reynolds stresses, while the second one represents the
contributions of the radiated acoustic field. Here, only far-field contributions have
been retained (i.e. η = 0, ζ = 1) and scalar k-independent coefficients have been
omitted for the sake of simplicity.

16.5.4 Linearized Jump Relations for Reynolds Stresses and
Turbulent Fluxes

The effect of a shock wave on turbulence is usefully analyzed looking at the transfer
functions for the Reynolds stresses, which is of great importance for researches deal-
ing with the development of RANS turbulence models for shocked flows since they
provide consistency constraints for RANS models at the shock front. Considering
the unknown vector Xm, (m = 1, 2):

Xm =
(

ρ′2
m

ρ̄2
m

,
u′2

m

U 2
m

,
v′2

m + w′2
m

2U 2
m

,
ρ′

mu′
m

ρ̄mUm

)T

(16.139)

the emitted Reynolds stresses can be rewritten as functions of the incident ones under
the form

X2 = SX1 (16.140)

where the 4 × 4 matrix S is the transfer matrix for Reynolds stresses, where Sij

denotes the transfer function between X1j and X2i . Expressions for the components
of S are cumbersome, and the reader is referred to Griffond and Soulard (2012) for
exhaustive detailed expressions of all these terms. Similar expressions can be derived
for any set of second-order statistical moments of fluctuating quantities.

16.6 Further Analytical Work: Exact and Asymptotic LIA
Solutions Based on Laplace Transform

Further analytical work can be performed seeking for analytical solutions of the LIA
equations. Such an analysis has been carried out in a series a of papers for incident
isotropic adiabatic turbulence (Wouchuk et al. 2009), pure incident acoustic turbu-
lence (Huete et al. 2012b), pure indicent isotropic density fluctuations (including
the reshock problem) (Huete et al. 2012a).
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16.6.1 Problem Statement and Formulation

To obtain analytical solutions, the problem is recast as the propagation of a planar
shock wave with constant speed Dex in a static (in the laboratory frame) sinusoidal
perturbation field of vortical, acoustic or density nature. The upstream perturbation
is of the form A cos(kxx) sin(kyy), and the normalized emitted field is assumed to be
like

ρ′
2(x, t)

ρ̄2
= Aρ̃(x, t) cos(kyy), (16.141)

u′
2(x, t)

a2
= Aũ(x, t) cos(kyy), (16.142)

v′
2(x, t)

a2
= Aṽ(x, t) cos(kyy), (16.143)

p′
2(x, t)

ρ̄2a2
2

= Ap̃(x, t) cos(kyy). (16.144)

The associated linearized Euler equation for mass, x-momentum, y-momentum
and pressure are

∂ρ̃

∂τ
= − ∂ũ

∂(kyx)
− ṽ, (16.145)

∂ũ

∂τ
= − ∂p̃

∂(kyx)
, (16.146)

∂ũ

∂τ
= p̃, (16.147)

∂ρ̃

∂τ
= ∂p̃

∂τ
, (16.148)

the last equation being obtained assuming that the flow is adiabatic behind the shock
wave.

These equations can be combined to recover a wave equation for pressure distur-
bances:

∂2p̃

∂τ 2
= ∂2p̃

∂(kyx)2
− p̃, (16.149)

where τ = kya2t is a dimensionless time unit. This equation is a particular case
of the telegraphist equation for lossy transmission line. The boundary conditions
are obtained considering the Rankine-Hugoniot jump conditions. Initial conditions
should also be provided, allowing for the analysis of transient phenomena and impul-
sive start.

To this end, it is convenient to introduce the following change of variables prior
to applying the Laplace transform:
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x = r sinh χ, τ = r cosh χ, (16.150)

leading to

− sinh χh̃ + cosh χ
∂p̃

∂r
+ cosh χ

r

∂ũ

∂χ
− sinh χ

∂ũ

∂r
+ ṽ = 0, h̃ = 1

r

∂p̃

∂χ
(16.151)

− sinh χ

r

∂ũ

∂χ
+ cosh χ

ũ

r
+ cosh χh̃ − sinh χ

∂p̃

∂r
= 0 (16.152)

− sinh χ

r

∂ṽ

∂χ
+ cosh χ

ṽ

r
= p̃ (16.153)

r
∂2p̃

∂r2
+ ∂p̃

∂r
+ rp̃ = ∂h̃

∂χ
(16.154)

for the mass, x-momentum, y-momentum and pressure telegraphist equation, respec-
tively.

16.6.2 Solving the Problem via Laplace Transform

The next step to obtain exact analytical solutions is to introduce the variable change
s = sinh q and to apply the Laplace transform, which is defined for a dummy function
φ(χ, r) as

φ̆(χ, s) =
∫ +∞

0
φ(χ, r)e−srdr

to Eq. (16.154), yielding the set of coupled equations:

∂

∂q
(cosh qp̆) + ∂h̆

∂χ
= 0,

∂

∂χ
(cosh qp̆) + ∂h̆

∂q
= 0 (16.155)

which can be integrated to find the solution

p̆(χ, q) = (q − χ)F1 + F2

cosh q
, h̆(χ, q) = (q − χ)F1 + F2 (16.156)

where the functions F1 and F2 are given by the initial conditions and the linearized
jump relations. They are related to sound waves radiated downstream the shock and
to the incident acoustic perturbations, respectively.

The solution in the physical space for the pressure fluctuations on the shock front
is then obtained using the inverse Laplace transform, which takes the form of the
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following integral in the complex plane (subscript s denotes quantity evaluated at the
shock wave position):

p̃s(rs) = 1

2πı

∫ c+ı∞

c−ı∞
p̆s(s)e

srs ds (16.157)

where c is a real number to the right of the singularities of p̆s(s). The exact expression
of p̆s(s) is obtained combining the jump relations and the initial conditions, and is
therefore case-dependent. This integral is computed selecting a closed integration
path and using the residue theorem, taking care of singularities. For a shock wave
moving in an perfect gas, the only singularities are the branch points at s = ±ı ,
which are associated to the generation of evanescent acoustic waves downstream
the shock that decay asymptotically in time as t−3/2 and poles s = ±ıζ0, which are
related to constant amplitude oscillations, with

ζ0 = CM2√
1 − M 2

2

kx

ky
= CM2√

1 − M 2
2

1

| tan α| (16.158)

The final expression of the general solution is

p̃s(rs) = − 2

π

∫ 1

0
fp(z) cos(zrs)dz + 2ψ

π

∫ 1

0
fp(z)

(
cos(zrs) − cos(ζ0rs)

ζ2
0 − z2

)
dz

(16.159)
where

fp(z) = 4M 4
1 M 2

2 z2
√

1 − z2

4M 2
1 M 2

2 z2(1 − z2) + [(M 2
1 + 1)z2 − M 2

1 ]2
(16.160)

where rs = τ
√

1 − M 2
2 and in which the coefficient ψ depends on initial conditions,

i.e. shock strength, polytropic index γ and incident perturbations. One can distinguish
between long- (ζ0 < 1) and short-wave (ζ0 > 1) contributions, along with constant
and evanescent contributions.

Long-time behavior, i.e. statistically steady regime similar to those analyzed
thanks to the modal analysis discussed in previous sections is associated to con-
stant contributions, which can be computed as asymptotic solutions for t → +∞.
They are found considering the residues at the poles s = ±ıζ0:

lim
t→+∞ p̃s(rs) =

{
el1 cos(ζ0r) + el2 sin(ζ0r) ζ0 ≤ 1

es cos(ζ0r) ζ0 ≥ 1
(16.161)

with

el1 = 2M 2
1 M 2

2 [M 2
1 − (M 2

1 + 1)ζ2
0 ]ψ

4M 4
1 M 2

2 ζ2
0 (1 − ζ2

0 ) + [M 2
1 − (M 2

1 + 1)ζ2
0 ]2

(16.162)
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el2 =
4M 4

1 M 2
2 ζ0

√
1 − ζ2

0ψ

4M 4
1 M 2

2 ζ2
0 (1 − ζ2

0 ) + [M 2
1 − (M 2

1 + 1)ζ2
0 ]2

(16.163)

es = − 2M 2
1 M2ψ

2M 2
1 M2ζ0

√
1 − ζ2

0 − [M 2
1 − (M 2

1 + 1)ζ2
0 ]

. (16.164)

The link with physical variables is easily seen, since ζ0rs = Dkxt.
A companion solution is found for the shock corrugation:

ξ̃(rs) = sin(ζ0rs)

ζ0

√
1 − M 2

2

− (γ + 1)

2πM2

√
1 − M 2

2

∫ 1

0
fp(z)

sin(zrs)

z
dz

+ (γ + 1)ψ

2πM2

√
1 − M 2

2

∫ 1

0

fp(z)

zζ0

(
ζ0 sin(zrs) − z sin(ζ0r)

ζ2
0 − z2

)
dz (16.165)

which can also be split into short- and long-wave contributions and constant and
evanescent contributions. Solutions for other variables are deduced from the jump
relations. Detailed solutions will not be displayed here for the sake of clarity, since
they involve very cumbersome formula that are available in original references.

16.6.3 Structure of the Emitted Field

The existence of propagating and evanescent, non-propagating pressure waves down-
stream the shock (See Sect. 16.2) can also be recovered using the Laplace-transform-
based solutions. Denoting χs = tanh−1 M2 the value of χ at the shock front, the
pressure in the downstream region is given by

p̃(χ, q) = cosh(q + χs − χ)

cosh q
p̃s(q + χs − χ). (16.166)

After some algebra, one can prove that the pressure waves will contribute with
imaginary poles to the solution (i.e. will exhibit non-evanescent contributions) if and
only if

ζ0 +
√

ζ2
0 − 1 ≥ exp(χs − χ), ζ0 > 1 (16.167)

meaning that long-wave contributions such that ζ0 < 1 to the pressure field corre-
spond to non-propagating damped acoustic waves, while short-wave contributions
with ζ0 > 1 are related to constant-amplitude propagating acoustic mode with lon-
gitudinal wave number k̃x given by
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k̃x

ky
=

M2ζ0 −
√

ζ2
0 − 1√

1 − M 2
2

. (16.168)

Therefore, the near-field solution downstream the shock will depend on both short-
and long-wave contributions, while the far-field is governed by the sole short-wave
branch. Thanks to the definition (16.158), the critical value of the incident wave angle
αc associated to ζ0 = 1 is computed as

sin αc = M 2
1

√
γ + 1

2γM 4
1 + (3 − γ)M 2

1 − 2
. (16.169)

For α > αc only evanescent acoustic waves will be emitted, while a far-field
acoustic field will be radiated if α < αc.

For emitted vorticity and entropy modes, it is observed that both long- and short-
wave branches contribute to the far-field solution.

16.6.4 Reconstruction of Statistical Moments of the Emitted
Field

Useful quantities for physical analysis of the emitted turbulent field can be recon-
structed thanks to the analytical solutions found above. An important point is that
all solutions for a perfect gas can be written as explicit functions of the adiabatic
exponent γ and the Mach number M1. A complete analysis of the asymptotic behav-
ior in the case of weak shock (M1 − 1 → 0), strong shock (M1 → +∞) along
with combination with high gas compressibility (γ → 1) and low gas compress-
ibility (γ → +∞) can also be carried out, including the separation between the
contributions of vorticity, acoustic and entropy modes.

16.7 A Posteriori Assessment of LIA in the Canonical
Interaction Case

A said at the beginning of this section, the LIA is observed to compare well to DNS
and experimental data if Mt2 ≤ 0.1M2. Convergence of DNS results toward LIA
prediction is assessed in Ryu and Livescu (2014). But a finer analysis reveals that
some discrepancies arise in predicting the emitted field associated to incident waves
with an angle of incidence close to the critical angle that demarcates propagating
and evanescent waves. The rationale for that is that the energy of the emitted waves
is high near the critical angle is high (the transfer functions exhibit a strong, narrow
peak for α = αc), leading to a breakdown of the small perturbation hypothesis.
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The amplitude of the fluctuations being too high, the linear approximation should be
refined to account for additional non linear effects. It is also observed that the inviscid
approximation may be a problem, since it may leads to diverging amplification ratio
in the limit of strong shocks M1 → ∞ in highly compressible fluids γ → 1. In
such a case, the longitudinal wavelength of emitted waves tends to zero, and viscous
effects should become dominant. Therefore, regularizing effects of viscosity should
be taken into account, as proposed in Miller and Ahrens (1991).

16.8 Extending LIA: I. Interaction with Rarefaction Waves

The LIA theory was originally developed to analyze the canonical interaction
between a planar shock wave and a small disturbance. It can be extended to the
case of the interaction between a rarefaction wave and turbulent fluctuations (Grif-
fond and Soulard 2012). The LIA solution is developed to predict the emitted field in
the downstream region outside the rarefaction wave, given the upstream incident per-
turbation field outside the rarefaction wave and the conservation equation that hold
inside the rarefaction wave. As an output, complex transfer functions for Kovasznay
modes similar to those found for the case of the shock wave will be obtained. The
analysis will be restricted to non-acoustic waves, since results for this waves is much
more complicated than for entropy and vorticity waves and they cannot be cast in the
transfer function form. This is due to the fact that for non-acoustic waves the results
do not depend on the width of the rarefaction wave but only on the compression ratio,
while for acoustic waves the solution explicitly depends on the wave width.

16.8.1 Linearized Governing Equations

The problem is efficiently described considering both vorticity and entropy, which
are governed by the following equations:

(
∂

∂t
+ u · ∇

)
s = 0, (16.170)

(
∂

∂t
+ u · ∇

)(
ω

ρ

)
=

(
ω

ρ
· ∇

)
u + 1

ρ3
∇ρ × ∇p. (16.171)

Inside the rarefaction wave, one has a null base vorticity, i.e. ∇ × u0 = 0 and
a uniform base entropy s0 = cst. Since the base flow is unidirectional, one has
∇ρ0 ×∇p0 = 0. Here, subscript 0 refers to base flow quantities inside the rarefaction
wave. The linearized system associated to small disturbances is
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d

dt
s′ = 0,

d

dt
≡

(
∂

∂t
+ u0 · ∇

)
, (16.172)

d

dt

(
ω′

ρ0

)
=

(
ω′

ρ0
· ∇

)
u0 + 1

ρ3
0

(∇ρ′ × ∇p0 + ∇ρ0 × ∇p′) . (16.173)

Since s0 is uniform, one has ∇s0 = 0 and therefore ∇p0

p0
= γ ∇ρ0

ρ0
, yielding

d

dt

(
ω′

ρ0

)
=

(
ω′

ρ0
· ∇

)
u0 + γp0

ρ3
0

∇ρ0 ×
(∇p′

γp0
− ∇ρ′

ρ0

)
. (16.174)

16.8.2 Case of a Single Incident Wave

The evolution of a single incident wave with wavevector k across the rarefaction
wave is now addressed. To this end, the cylindrical coordinates will be used for the
sake of simplicity. Every fluctuating quantity q′ is expressed as

q′(x, r,φ, t) = q′(x, t)eıkr sin α, (16.175)

where α is the angle between k and ex. Since the base flow is along the direction
ex, the baroclinic term in the right hand side of Eq. (16.174) is parallel to eφ. As a
consequence, the evolution of the three component of fluctuating vorticity are

d

dt

(
ω′

x

ρ0

)
= ω′

x

ρ0

∂u0x

∂x
⇐⇒ d

dt

(
ω′

x

) = 0, (16.176)

d

dt

(
ω′

r

ρ0

)
= 0, (16.177)

d

dt

(
ω′

φ

ρ0

)
= a2

0

ρ2
0

∂ρ0

∂x

∂s̊′

∂x
, (16.178)

where s̊ = 1
γ

ln
(

p
ργ

)
is related to the perfect gas entropy by s̊ = s/cp.

The next step consists of introducing the similarity coordinates classically used
to describe rarefaction wave, i.e. operating the change of variables (x, t) → (ξ =
x/t, t). Using this mapping, the head and the tail of the base rarefaction wave are
associated to constant values of ξ. The upstream and downstream regions are defined
as x/t < ξu and x/t > ξd , respectively. Rewritting the above equations using the
new variables along the characteristic lines given by dξ

dt = (u0x − ξ)/t, one obtains
the following Lagrangian linearized system
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d

dξ
s̊′ = 0, (16.179)

d

dξ
ω′

x = 0, (16.180)

d

dξ

(
ω′

r

ρ0

)
= 0, (16.181)

d

dξ

(
ω′

φ

ρ0

)
= ık sin α

a2
0

ρ2
0

dρ0

dξ
s̊′. (16.182)

This is an autonomous ordinary differential system in ξ, whose solution is self-
similar, implying the dependency of the results with respect to the rarefaction wave
width which will play a role similar to the shock strength in the canonical case.
The downstream fluctuating field is now computed integrating this system along the
characteristic lines, leading to

s̊′
2 = s̊′

1, (16.183)

ω′
x2

= ω′
x1
, (16.184)

ω′
r2

= Cω′
r1
, (16.185)

ω′
φ2

= Cω′
φ1

+ 2ıa1k sin α

γ − 3
(C(γ−1)/2 − C)s̊′

1, (16.186)

where subscripts 1 and 2 refer to states on the characteristic line under consideration
at ξ = ξu (upstream field) and ξ = ξd (downstream field), respectively. The com-
pression ratio C = ρ̄2/ρ̄1 is defined as in the case of shock wave, but it is important
noting that it is lower than 1 for rarefaction waves.

16.8.3 Transfer Functions Associated to Kovasznay Modes

The transfer functions for Kovasznay modes are now obtained considering the inci-
dent upstream fluctuating field as a combination of a poloidal vorticity wave with
amplitude Apol , a toroidal vorticity wave with amplitude Ator and an entropy wave
with amplitude As. The same nomenclature as in Sect. 16.4) will be used hereafter.
The upstream and downstream fields can be written as

• Upstream field: (x/t < ξu)
(

s̊′, ω′
x

a1
,
ω′

r

a1
,
ω′

φ

a1

)
= (

As, Atorık sin α,−Atorık cos α,−Apol ık
)

eı(kx cos α+kr sin α−ktU1 cos α)

(16.187)
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• Downstream field: (x/t > ξd )(
s̊′, ω′

x

a2
,
ω′

r

a2
,
ω′

φ

a2

)
= (As, Atorıks sin αsZtor tor,−Atorıks cos αsZtor tor,

−ıks(ApolZpol pol + AtorZtor tor)
)

eı(ksx cos αs+ksr sin αs−ktU2 cos αs)

(16.188)

where the emitted field wave number ks and angle αs are given by:

ksx = Ckx ⇐⇒ ks cos αs = Ck cos α (16.189)

ksr = kr ⇐⇒ ks sin αs = k sin α (16.190)

yielding C tan αs = tan α as for non-acoustic waves in the case of shock/turbulence
interaction. The associated expressions for the complex transfer functions are:

Ztor tor = C(1−γ)/2 Ztor pol = 0 Ztor s = 0,

Zpol tor = 0 Zpol pol = sin αs
sin α

C(3−γ)/2 Zpol s = 0,

Zs tor = 0 Zs pol = 2 sin αs
γ−3 (C(3−γ)/2 − 1) Zs s = 1.

(16.191)

These results show that, as in the shock wave case, the toroidal vorticity mode
is decoupled from the rest of the system. Conservation of entropy leads to the fact
that vortical modes cannot generate entropy, along with Zs s = 1, but the upstream
entropy mode as an impact on the downstream poloidal vorticity mode.

16.8.4 Transfer Functions Associated with Reynolds Stresses

The effect of a rarefaction wave on turbulence can be analyzed looking at the
changes on the Reynolds stresses. Keeping in mind that the analysis is restricted
to incoming non-acoustic waves, formula identical to those given in Sect. 16.5.4 for
shock-turbulence interactions can be used. Coefficients of 4 × 4 transfer matrix S or
Reynolds stresses are plotted as function of the compression factor C for γ = 7/5 in
Fig. 16.7, where rarefaction waves correspond to C < 1 and shock wave to C > 1.

Several observations can be made:

• Rarefaction waves and shock waves have a comparable efficiency in creating tur-
bulence, since the magnitude of terms S1i is the same for C < 1 and C > 1.

• Rarefaction waves and shock waves yield opposite signs on S23, showing that
they produce turbulent mass fluxes with opposite signs. This can be understood
remembering that the baroclinic vorticity production term is proportional to ∇ρ×
∇p, and that the longitudinal pressure gradients associated with rarefaction and
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Fig. 16.7 Transfer functions Sij associated to Reynolds stresses versus the compression ratio C
for both rarefaction waves (C < 1) and shock waves (C > 1) for γ = 7/5. Vertical lines denotes
the asymptotic limit M1 = +∞. Sijnac

denotes the results obtained neglecting the contribution of
the emitted acoustic field to the Reynolds stresses (but not its effects during the turbulence/wave
interaction). Courtesy of J. Griffond and O. Soulard. From Griffond and Soulard (2012) with
permission of AIP

shock wave have opposite sign, resulting in the generation of tangential vorticity
component and induced shock normal mass flux of opposite sign.

• The emitted acoustic component has a negligible contribution on the emitted
Reynolds stresses, except for specific volume variance in the weak shock case.

16.9 Extending LIA: II. Case of Non-reacting Binary
Mixtures of Perfect Gas

LIA can be extended to the case of the mixture of two perfect gas, accounting for
differences in molar mass and constant volume specific heat (Griffond 2005; Griffond
et al. 2010). This enriched physical system involves two new perturbation waves with
respect to the canonical case, namely molar mass waves and constant volume specific
heat waves. The derivation of the transfer functions is basically the same as in the
canonical case discussed in Sects. 16.1–16.7. Therefore, for the sake of brevity, only
main modifications to the derivation of the transfer functions related to the canonical
case will be given here. A full detailed description is available in Griffond (2005).
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16.9.1 Governing Equations, Linearized System and Jump
Relations

One considers here the non-reacting mixture of two perfect gas, a and b, which is
also to be a perfect gas itself. The associated equation of state is

p

ρ
= M

R T = (γ − 1)e, e = cvT , (16.192)

where R, M, cv and γ are the perfect gas constant, the molar mass, the constant
volume specific heat and the specific heat ratio, respectively. It is important noting
that the later three quantities are not constant as in a pure fluid since they explicitly
depend on the local mixture composition. Let Y and (1−Y ) denote the mass fraction
of the a gas and the b gas, respectively. Two mixture models can be used that lead to
the same LIA results:

• The partial-density partial-pressure isothermal model:

ρ = ρa + ρb, ρa = ρY , ρb = (1 − Y )ρ, (16.193)

T = Ta = Tb, (16.194)

p = pa + pb, pi = ρi
M
Ri

T = (γi − 1)ρicvi T . (16.195)

• The isobaric-isothermal model:

1

ρ
= Y

ρa
+ 1 − Y

ρb
, (16.196)

T = Ta = Tb, (16.197)

p = pa = pb. (16.198)

The mixture molar mass, specific heat ratio and constant volume specific heat are
given by the following relations

M = MaMb

YMb + (1 − Y )Ma
, (16.199)

γ = cp

cv

= Y cpa + (1 − Y ) cpb

Y cva + (1 − Y ) cvb

= Y cvaγa + (1 − Y ) cvbγb

Y cva + (1 − Y ) cvb

, (16.200)

cv = Y cva + (1 − Y ) cvb , cp = Y cpa + (1 − Y ) cpb . (16.201)
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The governing equations for the mixture (mass, momentum and energy conser-
vation) are formally the same as for a pure perfect gas, see Eqs. (3.1)–(3.3) and they
are supplemented by the following evolution equation for the mass fraction Y :

∂ρY

∂t
+ ∇ · (ρY u) = ∇ · (ρD∇Y ) (16.202)

where D is related to the molecular diffusion. It is important noting that the usual
perfect gas equation of state must be replaced by the one for the mixture given above,
with composition-dependent parameters.

The associated Rankine-Hugoniot jump relation systems (3.28)–(3.30) and (3.31)–
(3.34) are also formally the same given that the pure fluid polytropic parameter γ is
replaced by the mixture mean value γ̄, coupled to the additional jump relation for
the concentration Y :

[[ρY (un − us)]] = 0 ⇒ [[
Ȳ
]] = [[

Y ′]] = 0, (16.203)

which shows that both mean and fluctuating concentration field are continuous at the
shock front. The detailed jump relation system (16.82)–(16.85) is supplemented by

Y ′
2 = Y ′

1. (16.204)

Linearizing the mixture equation of state (16.192) and relations (16.199)–(16.201)
yields

e′

ē
= c′

v

c̄v

+ T ′

T̄
= p′

p̄
− ρ′

ρ̄
+ c′

v

c̄v

− r′

r̄
, (16.205)

or equivalently
p′

p̄
= ρ′

ρ̄
+ T ′

T̄
+ ra − rb

Ȳ ra + (1 − Ȳ )rb
c′, (16.206)

with c′
v = (cva − cvb)Y

′, r = R/M = raY + (1 − Y )rb and r′ = (ra − rb)Y ′. The
fluctuating internal energy e′ is defined as

e = (Y cva + (1 − Y )cvb)T =⇒ e′ = c̄vT ′ + Y ′(cva − cvb)T̄ . (16.207)

Taking the continuity of c′ into account, the linearized equation of state can be
coupled to the linearized energy equation (16.85) to get

− 1

(γ̄ − 1)M 2
2

ρ′
2

ρ̄2
+ u′

2

U2
+ 1

(γ̄ − 1)M 2
2

p′
2

p̄2
+ ıω

U1
C(1 − C)ξ =

C2

(
− 1

(γ̄ − 1)M 2
1

ρ′
1

ρ̄1
+ u′

1

U1
+ 1

(γ̄ − 1)M 2
1

p′
1

p̄1

)

+ 1

γ̄(γ̄ − 1)

(
C2

M 2
1

− 1

M 2
2

)(
cva − cvb

c̄v

− ra − rb

r̄

)
Y ′. (16.208)
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http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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16.9.2 Extended Kovasznay Decomposition for a Mixture of
Perfect Gas

The next step consists of defining Kovasnay modal waves for the mixture under
consideration. Since it relies on a first-order small parameter expansion, the first
question is to find criteria that will ensure that the disturbances will remain small
with respect to mean flow quantities. Considering a binary mixture instead of a pure
fluid involves two new conditions. Selecting r and cv as control variables, one has

εr = |r′/r̄| � 1 and εcv
= |c′

v/c̄v| � 1, (16.209)

which can be recast in a more useful way a functions of Y

| (ra − rb)Y ′

raȲ + (1 − Ȳ )rb
| � 1 and | (cva − cvb)Y

′

cva Ȳ + (1 − Ȳ )cvb

| � 1. (16.210)

Now introducing the two Atwood numbers

Ar
t = (ra − rb)

r̄
, Acv

t = (cva − cvb)

c̄v

, (16.211)

the validity condition for LIA is

εr = |Ar
t |AY � 1 and εcv

= |Acv

t |AY � 1, (16.212)

where AY denotes the amplitude of the concentration fluctuations. Keeping in mind
the fact that the two conditions must be fulfilled to obtain relevant LIA results, one
can identify two limit cases:

• Mixtures with small concentration fluctuations, i.e. AY � 1, and O(1) Atwood
numbers, i.e. significant differences in physical parameters of the two components.

• Mixtures with large concentration fluctuations, i.e. AY = O(1) and small difer-
ences in physical parameters, i.e. Ar

t � 1 and Acv

t � 1.

Validity criteria associated to other physical quantities are left unchanged with
respect to the pure fluid case.

The second step consists of identifying the Kovasznay modes for the binary mix-
ture, assuming that all validity criteria are fulfilled. The linearized system (3.39)–
(3.41) for the pure fluid is supplemented by an equation for Y ′, which, in the inviscid
case, is (still considering a uniform constant base flow in a reference frame associated
to the base flow velocity Uex)

∂Y ′

∂t
= 0, (16.213)

http://dx.doi.org/10.1007/978-3-319-73162-9_3
http://dx.doi.org/10.1007/978-3-319-73162-9_3
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showing that concentration fluctuations are not influenced by acoustic, vortical and
entropic waves. Therefore, the pure fluid waves are left unchanged and supplemented
by concentration waves. The full set of Kovasznay modes for monochomatic waves
with wave number k can then be rewritten as follows (in cylindrical coordinates for
the sake of clarity)

u′
x1

U1
= Ai

(
δi pol sin α + δia

cos α

M1

)
eı(k·x−ωt), (16.214)

u′
r1

U1
= Ai

(
− δi pol cos α + δia

sin α

M1

)
eı(k·x−ωt), (16.215)

u′
φ1

U1
= Aiδi tore

ı(k·x−ωt), (16.216)

ω′
1

U1
= ıkAi(δiv sin φ − δi tor cos φ cos α)eı(ks·x−ωt), (16.217)

ρ′
1

ρ̄1
= Ai(−δis + δia − δiY Ar

t )e
ı(k·x−ωt), (16.218)

p′
1

γp̄1
= Aiδiaeı(k·x−ωt), (16.219)

T ′
1

T̄1
= Ai(δis + (γ − 1)δia)e

ı(k·x−ωt), (16.220)

s′
1

cp
= Ai(δis + δiY Ar

t )e
ı(k·x−ωt), (16.221)

Y ′
1 = AiδiY eı(k·x−ωt), (16.222)

where Ai denotes the complex wave amplitude, AY being related to concentration
waves. It is seen that concentration waves induce fluctuations in both mass entropy
and density. The corresponding emitted field is expressed as

u′
x2

U2
= Ai

(
Zi pol sin αse

ı(ks·x−ωt) + Ziae−kaηx cos αa + ıη

M2ζ
eı(ka ·x−ωt)

)
, (16.223)

u′
r2

U2
= Ai

(
− Zi pol cos αse

ı(ks·x−ωt) + Ziae−kaηx sin αa

M2ζ
eı(ka ·x−ωt)

)
, (16.224)

u′
φ2

U2
= AiZi tore

ı(ks·x−ωt), (16.225)

ω′
2

U2
= ıkAi(Ziv sin φ sin αs sin α(1 + cot2 αs) − Zi torC cos φ cos α)eı(k·x−ωt),

(16.226)
ρ′

2

ρ̄2
= Ai(−(Zis + δiY Ar

t )e
ı(ks·x−ωt) + Ziae−kaηxeı(ka ·x−ωt)), (16.227)
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p′
2

γp̄2
= AiZiae−kaηxeı(ka ·x−ωt), (16.228)

T ′
2

T̄2
= Ai

(
Zise

ı(ks·x−ωt) + (γ − 1)Ziae−kaηxeı(ka ·x−ωt)
)
, (16.229)

s′
2

cp
= AiZise

ı(ks·x−ωt), (16.230)

Y ′
2 = AiZiY eı(ks·x−ωt), (16.231)

where Zij with i, j = (a, s, pol, tor, x, Y ) denotes the complex transfer function
associated to the generation of a wave of type j by an incident wave of type i. All
parameters of emitted waves, i.e. wave number, angle and damping factor for non-
propagating acoustic waves are the same as in the pure fluid case (see Sect. 16.2),
all thermodynamical parameters being replaced by mean values in the mixture case.
The continuity of the concentration field Y implies ZYY = 1 and that concentration
is not influenced by vorticity, entropy and acoustic modes, i.e. ZiY = 0, i �= Y .

16.9.3 Transfer Functions

Complex transfer functions are found for the binary mixture case solving the follow-
ing linear problem

AZi = Bi (16.232)

where Zi = (ZiY , Zi tor, Zi pol, Zis, Zia, Zix)
T . Since ZiY = δiY and Zi tor = δi torC they

can be removed from the problem and the initial 6 × 6 system simplifies in a 4 × 4
system whose matrix A is identical to the one of the pure fluid case. Right-hand side
vectors Bi, i = tor, pol, s, a are also the same as for the pure fluid problem. The
vector associated to incident concentration waves is

BY = Ar
t Bcr + Acv

t Bccv
= Ar

t

⎛
⎜⎜⎜⎝

0
(1 − C)

0
1
γ̄

(
C2

M̄ 2
1

− 1
M 2

2

)

⎞
⎟⎟⎟⎠ + Acv

t

⎛
⎜⎜⎜⎝

0
0
0

1
γ̄(γ̄−1)

(
C2

M̄ 2
1

− 1
M 2

2

)

⎞
⎟⎟⎟⎠

(16.233)

It is seen that two families of concentration waves, one for each part of BY can be
defined:

(i) molar mass waves, or r-waves, for which BY = Ar
t Bcr

(ii) constant specific heat waves, or cv-waves, for which BY = Acv

t Bccv
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Fig. 16.8 Transfer functions associated to vorticity mode creation/amplification in a binary mixture
versus the angle of incidence of the incident wave at M1 = 2 and γ̄ = 7/5. Courtesy of J. Griffond.
From Griffond (2005) with permission of AIP

These two wave families have independent amplitudes. These transfer functions
are tied by the following exact relation:

Zcr i + Zccv i = Zs i, i = pol, tor, a, s (16.234)

It is worth noting that the present mixture model can be used to describe two
additional cases:

• Density wave with uniform specific heat ratio γ, which corresponds to the sum of
a r-wave and a cv-wave with equal amplitude. The associated transfer function Zρ

is computed as Zρ = Zcr + Zccv
.

• Pure specific heat ratio wave without temperature, density and pressure fluctuation.
This case is recovered taking Zγ = − γ̄

γ̄−1 Zccv
.

Transfer functions for vorticity associated to vorticity creation/amplification for
incident r-waves, cv-waves and vorticity waves are displayed in Fig. 16.8. It is seen
that for waves normal to the shock front, i.e. α = 0, no vorticity is generated by the
concentration mode. The maximum vorticity generation is observed for an incidence
close to the critical angle αc that separate propagating and non-propagating emitted
acoustic waves. The same behavior was observed for incident entropy, vorticity
and acoustic modes in the canonical case, see Sect. 16.3.2. It is observed that the
imaginary part of transfer functions is zero for α < αc and non-zero for larger
angles of incidence, meaning that emitted propagating waves are in-phase and non-
propagating waves are out of phase.
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16.9.4 Reconstruction of Second-Order Moments: Case of
Isotropic Mixture

Classical turbulence statistical moments in the case of the mixture are recovered in the
same way as in the pure fluid case. Since vorticity and entropy modes are decoupled
from concentration waves, it is interesting to reconstruct the emitted field in the case
of a shock wave travelling in a mixture with isotropic turbulent concentration field.

Considering a concentration fluctuating field Y ′ and the associated three-
dimensional spectrum EYY (k), one has

Y ′2 =
∫ +∞

0
EYY (k)dk. (16.235)

The normalized longitudinal emitted Reynolds stress is equal to

R11(x)

Y ′2U 2
2

= u′2
2 (x)

Y ′2U 2
2

= 4π

∫ π/2

0
(Ivv + Iaa + Iva) sin αdα, (16.236)

where

Ivv = sin2 αs|ZYpol |2
∫ +∞

0
EYY (k)dk, (16.237)

Iaa =
∣∣∣∣cos αa + ıη

M2ζ

∣∣∣∣
2

|ZYa|2
∫ +∞

0
EYY (k)e−2kaηxdk, (16.238)

Iva = 2
[

sin αs
cos αa + ıη

M2ζ
ZYpolZ

∗
Ya

∫ +∞

0
EYY (k)eıx(ks cos αs−ka cos αa)e−kaηxdk

]
.

(16.239)

This expression can be simplified looking at the far-field solution, in which both
Iva and the non-propagating part of Iaa can be neglected.

The far-field expression of the emitted kinetic energy is

K2

Y ′2U 2
2

=
∫ π/2

0
|ZYpol |2 sin αdα +

∫ αc

0

|ZYa|2
γ̄M 2

2

sin αdα (16.240)

= (Ar
t )

2F(M1) + (Acv

t )2G(M1) + Ar
t A

cv

t H(M1), (16.241)

where the terms of the last expression, which displays explicitly the contributions of
r-waves and cv-waves, are defined as

F(M1) =
∫ π/2

0
|Zcr pol |2 sin αdα +

∫ αc

0

|Zcr a|2
γ̄M 2

2

sin αdα, (16.242)
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G(M1) =
∫ π/2

0
|Zccv pol |2 sin αdα +

∫ αc

0

|Zccv a|2
γ̄M 2

2

sin αdα, (16.243)

H(M1) =
∫ π/2

0
2[Zcr polZ

∗
ccv pol] sin αdα +

∫ αc

0

2Re[Zcr polZ∗
ccv pol]

γ̄M 2
2

sin αdα.

(16.244)

Reynolds stress anisotropy, measured as 2R11/(R22 + R33), is expressed in the far
field as

2R11(x)

(R22(x) + R33(x))
=

∫ π/2
0 |ZYpol |2 cos2 αs sin αdα + ∫ αc

0
sin2 αa |ZYa |2

γ̄M 2
2

sin αdα

2
∫ π/2

0 |ZYpol |2 sin2 αs sin αdα + 2
∫ αc

0
cos2 αa |ZYa |2

γ̄M 2
2

sin αdα
.

(16.245)

Far-field pressure and density variance are respectively expressed as

p′2
2

p̄2
2Y ′2 =

∫ αc

0
|ZYa|2 sin αdα, (16.246)

and
ρ′2

2

ρ̄2
2c′2 =

∫ π/2

0
|At

r + ZYs|2 sin αdα +
∫ αc

0

|ZYa|2
γ̄

sin αdα. (16.247)

16.10 Extending LIA: III. Thin Strong
Detonation/Turbulence Interaction

16.10.1 Problem Statement and Associated Linearized
Equations

LIA can also be extended to reacting waves, see Lasseigne et al. (1991), (Huete et al.
2013, 2014, 2016). Realistic models for 1D detonation waves, e.g. the Zeldovich- von
Neumann - Döring (ZND) model, describe finite-thickness reacting waves. Typically,
a non-reactive shock wave is followed by an induction zone in which temperature
rises due to the shock initiated chemical reactions, a reaction zone in which com-
bustion takes place, and finally a region with inert burned gas. The present analysis
is restricted to strong overdriven detonation waves, since it is known that weak pla-
nar detonation wave are unstable to small perturbations (a cellular organization of
the reactive front is commonly observed), resulting in a destructive interaction that
precludes LIA approach.

The analysis is also restricted to the case in which the size of turbulent eddies
is very large compared with the detonation thickness, so that the detonation wave
can be modelled as a discontinuity moving at constant speed D in a region field by
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fresh gas at rest with a prescribed superimposed fluctuating field. The combustion
scheme is simplified in such a way that only exothermicity of the chemical reaction is
taken into account, i.e. both fresh and burned gas are assumed to be perfect gas with
the same thermodynamical parameters γ, cp and cv . The amount of chemical heat
released in the detonation per unit mass is denoted �Q. In this simplified framework,
the jump relation for a 1D detonation travelling at constant speed D read (written in
the detonation reference frame)

ρ1u1 = ρ2u2, (16.248)

ρ1u2
1 + p1 = ρ2u2

2 + p2, (16.249)
1

2
u2

1 + h1 = 1

2
u2

2 + h2, (16.250)

s2 ≥ s1, (16.251)

along with
h1 = cpT1, h2 = cpT2 − �Q. (16.252)

On both side of the reacting shock wave the flow is modelled as a non-reacting flow
of perfect gas. Therefore, linearized Euler equations used to described the flow are
the same as for the canonical case and will not be repeated here. The difference with
the non-reacting case lies in the jump relation for energy, which explicitly depend
on the heat release parameter �Q:

1

2

(
(U1 + u′

1)
2 − (U2 + u′

2)
2
) = −�Q + γr

γ − 1
(T2 − T1). (16.253)

Introducing the detonation Mach number M1 = D/a1, the mean flow quantities
on both sides of the shock are tied by the following relations

ρ̄2

ρ̄1
= C = D

D − U2
= (γ + 1)M 2

1

(γ − κ)M 2
1 + 1

, (16.254)

p̄2

ρ̄1D2
= γM 2

1 (1 + κ) + 1

γ(γ + 1)M 2
1

, (16.255)

M2 = D − U2

a2
=

√
(γ − κ)M 2

1 + 1

γM 2
1 (1 + κ) + 1

, (16.256)

where

κ =
√

(M 2
1 − 1)2 − 4qM 2

1

M 2
1

, q = (γ2 − 1)�Q

2a2
1

. (16.257)
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The dimensionless heat release parameter q is equal to 0 in the case of non-reacting
shock wave, for which κ simplifies as 1 − M 2

1 , leading to the usual jump relation for
planar shock waves.

For detonations, the minimum propagation Mach number is the Chapman-Jouguet
value

MCJ = √
1 + q + √

q. (16.258)

In the present case of strong overdriven detonation, one should have M1 � MCJ

corresponding to κ � 1.
Derivation of linearized jump relations for detonations is performed in a way

identical to the one used to treat the inert shock case. They are identical to those
found for the non-reacting case, since �Q does not depend on upstream fluctuations
in the present model and therefore vanishes during the linearization step. Therefore,
both equations of the linearized problem and the associated solutions of the LIA
problem are the same as in the non-reacting case (see e.g. Section 16.9 to handle the
case of a detonation wave with concentration fluctuations) and will not be reproduced
here for the sake of brevity. The only difference is that the downstream mean flow
quantities are explicit functions of the heat release parameter q.

It is worth noting that the analysis also holds for endothermic shock waves which
can be observed when the shock wave trigger a endothermic phase change or a
radiative loss. The range of validity of the present model is given by physically
admissible values of q, which are such that both C and M 2

2 are real positive numbers:

qmin = 4(1 + γ)(M 2
1 (1 − γ) − 2) < q <

4(1 − M 2
1 )2

M 2
1

= qmax. (16.259)

16.10.2 Solution via Laplace Transform

Normal-mode LIA analysis has been very briefly addressed by Jackson et al. (1993),
while a full detailed study has been carried out more recently (Huete et al. 2013, 2016)
using the Laplace-transform-based methodology discussed in Sect. 16.6. The proce-
dure is exactly the same, the differences arising in the linearized jump conditions,
and therefore in the expression for p̆s(rs).

The general solution for pressure perturbations on the wave front computed for
an upstream fluctuating density field is

p̃s(rs) = 2(1 + σ1)ψ

π

∫ 1

0
fp(z) cos(rsz)dz (16.260)

−M2(C − �)(ζ2
0 − σ2)

π

∫ 1

0

fp(z)

ζ2
0 − z2

[cos(rsz) − cos(ζ0z)] dz
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where ζ0 is unchanged (see Eq. (16.158)) and

fp(z) = z2
√

1 − z2

z2(1 − z2) + (σ2 − σ1z2)2
, (16.261)

with

σ1 = 1 + �

2M2
, σ2 = M2C(1 − �)

2(1 − M 2
2 )

, σ3 = 1+ 1√
1 + M 4

1 − 2(1 + 2q)M 2
1

, (16.262)

� = [(1 − κ)M 2
1 + 1]2

4M 2
1 (1 + q)

, � = 1 − q

1 + q

(
1 + (1 − κ)M 2

1

1 + (γ − κ)M 2
1

)
. (16.263)

The parameter ψ is given by the initial conditions, and is therefore case-dependent.
The companion solution for the shock corrugation length ξ̃ is not displayed here for
the sake of brevity. The method to reconstruct the full emitted field and associated
statistical moments is identical to the inert shock case.

It is seen that the solution explicitly depends on M1, γ and q. As in the cold shock
case, it can be split into short- and long-wave components and constant-amplitude
and evanescent contributions. The analysis is basically the same, since the definition
of ζ0 is not changed in the reacting case (but its value is changed since the values of
both C and M2 depend on q). In the limit of very strong detonation M1 → +∞ with
O(1) values of γ and q, its expression simplifies as

ζ0 ∼
√

γ + 1

γ − 1

(
1 − (γ − 2)(1 + q)

(γ − 1)M 2
1

− 1

2M 2
1

)
kx

ky
.

16.10.3 Amplitude of Emitted Fields for Incident
Monochromatic Density Waves

Variations of the amplitudes of emitted pressure mode, shock corrugation, vorticity
mode and entropic mode versus the angle of incidence α are displayed in Fig. 16.9.
The general shape of the plot is not modified, and the critical angle is still associated
with a strong increase of the amplitude of emitted waves. The main effects of heat
release are the following:

• a small decrease in the value of the critical angle αc,
• a decrease in the amplitude of shock corrugation, emitted vorticity and entropy-

induced density fluctuations,
• an increase of emitted pressure wave amplitude.

The most important effects are observed on vorticity and density.
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Fig. 16.9 Evolution of amplitudes of emitted non-evanescent modes in strong detona-
tion/monochromatic density wave interaction versus the angle of incidence α at M1 = 10 for
different values of heat release parameter q. Color is related to exothermicity, with q = 0 (non-
reacting shock wave) in black and q = 10 in light grey. Top-left: pressure fluctuation, top-right:
shock corrugation, bottom-left: vorticity, bottom-right: entropy-mode-induced density fluctuation.
Courtesy of C. Huete. From Huete et al. (2013) with permission of AIP
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Chapter 17
The Essentials of Linear and Nonlinear
Theories and Models

17.1 Rapid Distortion Theory for Homogeneous
Turbulence

Homogeneous RDT remains a questionable nomenclature, and Spectral Linear
Theory (SLT) is more convenient in recent studies, especially in geophysics and
astrophysics, as reported in Chap. 11. The twofold aspects of this approach can be
reconcilied anyway, as a particular stability analysis or as a model for predicting
evolution of initially existing turbulence, via “rapidly” evolving statistical moments.

With respect to conventional stability analysis, modes of perturbation are sought
as

u(x, t) = a(t) exp(k(t)·x), (17.1)

(e.g. for velocity fluctuations) instead of normal modes

u(x, t) = eωtU(x).

In the classical approach, the time-dependency is prescribed, under the exponential
factor with complex-valued ω frequency. On the other hand, the spatial form of the
fluctuation is prescribed as a Fourier mode in Eq. (17.1), but the time-dependency of
the amplitude a, if affected by the time-dependency of the wavevector, may permit
a simplified non-modal stability analysis, useful for transient algebraic growth and
bypass transition to turbulence. Of course, a general non-modal stability analysis can
be carried out with a continuous spectrum of frequencies ω, using a general Laplace
transform, but this is in general more cumbersome to treat.

As introduced in Chap. 8, the basic equations for inviscid “RDT” disturbances in
the presence of a mean flow gradient A are

dai

dt
+

(
δim − 2

ki km

k2

)
Amj

︸ ︷︷ ︸
Mi j

a j = 0, (17.2)
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with
dki

dt
+ A ji k j = 0. (17.3)

According to the mathematical treatment of partial derivative equations, the latter
equation also gives the characteristic lines of the operator ∂

∂t − Anj kn
∂

∂k j
in Fourier

space. Since the mean trajectories are the characteristics lines of the advection oper-
ator ∂

∂t + A jn xn
∂

∂x j
, it is clear that the eikonal equation (17.3) is the counterpart, in

Fourier space, of ẋi − Ai j x j = 0, changing Ai j into −A ji and x into k. A more
physical interpretation will be given in the following.

More classically, the pressure contribution is removed from consideration using
the incompressibility constraint, which is equivalent to the orthogonality condition
a·k = 0 (see Sect. 2.5.4)

The ordinary differential equations (17.3) and (17.2) are referred to as the Kelvin–
Moffatt equations. In the matrix M, the factor ki kn

k2 reflects the contribution from the
fluctuating pressure term, with a prefactor 2 which takes into account advection in
wave-space. As usual, spectral analysis allows for a straightforward treatment of the
nonlocal dependence of pressure upon velocity. The time dependency of the wave
vector represents the convection of the plane wave exp(ı k(t)·x) by the base flow.
Both the direction and magnitude of k change as wave crests rotate and approach or
separate from each other due to mean velocity gradients.

General solutions which are valid for arbitrary initial data are expressed as follows
in terms of linear transfer matrices

ûi (k(t), t) = Gi j (k, t, t0)̂u j (k(t0), t0) (17.4)

and
ki (t) = F−1

j i (t, t0)k j (t0) (17.5)

in which the Green’s function is eventually determined by the initial conditions1

Gi j (k, t0, t0) = δi j − Ki K j

K 2
, Ki = ki (t0). (17.6)

Of course, G is governed by the same equation as û

Ġi j = −MinGnj ,

in which the overdot is a convenient notation to indicate that k has to be considered
as a time-dependent vector in G(k, t, t0).

The general definition of the Cauchy matrix F for an arbitrary flow has been given
previously.

1A different initialization Gi j = δi j was prescribed in Townsend (1956, 1976). The Eq. (17.6)
presents some advantages, since ki Gi j = 0 can be satisfied at any time, and the RDT Green’s
function can be more easily related to the Kraichnan’s response function.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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When comparing similar characteristics lines for the advection term in both phys-
ical and in Fourier space, i.e. xi = Fi j (t, t0)X j (trajectory) and ki = F−1

j i (t, t0)K j ,
their close analogy is obvious. One recovers the conservation of k·x (= K ·X) along
trajectories, and also conservation of the plane wave exp(ı k(t)·x(t)).

17.1.1 Using Solenoidal Modes for a Green’s Function with
a Minimal Number of Components

For instance, a reduced Green’s function can be used in the Craya–Herring frame of
reference, as

u(α)(k(t), t) = gαβ(k, t, t ′)u(β)(k(t ′), t ′). (17.7)

The reduced Green’s function gαβ , with only four components instead of nine for
Gi j ) can be generated by solving

u̇(α) + mαβu(β) = 0, (17.8)

with

mαβ = e(α)
i Ai j e

(β)

j − ė(α)
i e(β)

i . (17.9)

Here, the Einstein convention of summation over repeated indices is used for both
Latin (varying from 1 to 3) and Greek (taking only the values 1 and 2) indices. The
Craya–Herring frame being orthonormal, it characterizes a solid-body motion when
k is time dependent, so that the entrainment term is simply

ė(α)
i e(β)

i = εα3β�E , �E = −e(2)
i Ai j e

(1)
j − ni Ai j e

(1)
j

k

k⊥
, (17.10)

with k =| k |, k⊥ = √
k2 − (k·n)2. This term contributes to the “stropholysis” effect

that affects the polarization anisotropy in Eq. (8.40).
Equation (17.10) is simplified if the axial vector n is chosen along one of the

eigendirection of A (Cambon et al. 1985), so that

�E = −e(2)
i Ai j e

(1)
j . (17.11)

This condition is always fulfilled in the cases treated in this book, and an optimal
choice of n has been discussed if needed.

Similar equations can be found in terms of helical modes, but they present no
additional interest, except if the mean vorticity, or the mean absolute vorticity in the
presence of an additional Coriolis force, is completely dominant. A first instance is
given in the Chap. 7.

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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17.1.2 Prediction of Statistical Quantities

Throughout this book, we are using an approach which reconcile and simplify two
different approaches:

• The way initiated by Moffatt (1967) in RDT, who addressed the very definition of
a deterministic Green’s function, prior to any statistical calculation, but without
using a local frame of reference. More recent studies (since 1986) in the community
of hydrodynamic stability theory (e.g. Bayly 1986; Craik and Criminale 1986),
have essentially the same starting point, but are disconnected from application to
statistics anyway.

• The way initiated by Craya, who put the emphasis on solving statistical equations
for second-order and third-order spectral tensors, but with a reduced number of
components obtained by projecting these equations and these tensors in the epony-
mous frame of reference. Craya never considered the fluctuating velocity field in
Fourier space, what Herring (1974) did in 1974, recovering the local frame of
reference, but restricting the statistical approach to axial symmetry only.

Recall that the second way yielded several studies (dealing with single-time two-
point and single-point second order statistics) by J.N. Gence and coworkers (mainly
his Ph. D. students), following (Courseau and Loiseau 1978) for pure strain and
pure shear, namely “pure” rotation, rotating shear, buoyant flows (without mean
stratification). Related publications, mainly written in French, can be obtained from
the authors upon request.

About the first way, it is perhaps useful to discuss some points dealing with ter-
minology. The time-dependent Fourier modes given in Eq. (17.1), when recovered
in the hydrodynamic stability community, then in geophysics and astrophysics, were
often referred to as “Kelvin modes”, ignoring their use in RDT (engineering com-
munity) and considering that the first instance of such modes was given by Lord
Kelvin. This may be true, but the terminology is misleading, given the huge num-
ber of Kelvin modes and Kelvin waves called into play in stability analyses. Let us
illustrate this with two examples: For a specialist of aerodynamics, a Kelvin wave is
a localized inertial wave confined in the core of a vortex, whereas for an oceanogra-
pher, it is a much more complex wave, also dealing with the variation of the Coriolis
parameter with latitude, the stable density-stratification and the topology. We hope
to have clarified the point here that ‘mean-Lagrangian Fourier modes’, or ‘Fourier
modes advected by the mean’ would be less confusing than Kelvin modes. It is not
necessary to recall chronologically all the authors who used a similar approach, from
Lord Kelvin to Batchelor and Proudman (1954).

As an example of statistical calculation, the RDT equation for second order statis-
tics is readily derived from Eq. (17.4) using Eq. (2.84), leading to

R̂i j [k(t), t] = Gin(k, t, t0)G jm(k, t, t0)R̂nm[k(t0), t0]. (17.12)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Given an initial solution R̂i j at t = t0, one can compute it at later times using
the relation (17.12), provided that the Green’s function Gi j (k, t, t ′) is known. The
determination of Gi j is thus the main problem in applying homogeneous RDT in
practice.

Applications mainly concern second-order, two-point and one-point correlations,
with many results about the history of the Reynolds stress tensor when the initial
data are chosen isotropic. Similarly, “rapid” pressure-strain rate tensor and dissipation
tensor can be calculated.

It is not difficult to reintroduce a laminar viscous effect, or an efficient modelled
damping effect, as illustrated by Townsend (1956, 1976) and some RDT applications
reported in Chaps. 9 and 11. The viscous factor was calculated in the most general
way by Cambon et al. (1985) as

V0(k, t) = exp

(
−ν

∫ t

0
k2(t)dt

)
,

so that

V0(k, t) = exp

(
−klkn

∫ t

t0

Fli (t, t ′)Fni (t, t ′)dt ′
)

. (17.13)

This equation involves a quadratic form in terms of k, using the group relations of
F (such as F(t, t ′).F(t ′, t ′′) = F(t, t ′′)) and can also be given in terms of the ‘material’
wavevector K .

The Eq. (17.12) can also be extended to any order n, thanks to the existence of the
general solution (17.4), via a product of n Green’s functions: linear solutions for third-
order correlations are considered per se in Chap. 7, for instance, and incorporated in
triadic closures for evaluating nonlinear transfer terms.

Complete inviscid RDT equations for the Reynolds stress tensor and the integral
lengthscales are given below, for isotropic initial data:

u′
i u

′
j = K(0)

4π

∫∫
|K |=1

e(α)
i (k)gαγ(k, t)gβγ(k, t)e(β)

j (k)d2 K (17.14)

and

E (n)
i j = u′

i u
′
j L(n)

i j no summation on i, j

= 1

2

∫ ∞

0

E(k)

k
dk

∫∫
kl=0

e(α)
i (k)gαγ(k, t)gβγ(k, t)e(β)

j (k)d2 K . (17.15)

The latter equation makes use of the additional condition Kl = kl , as for instance
k1 = K1 and k3 = K3 for the pure plane shear flow case in Chap. 9).

http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_9
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17.1.2.1 Initial Value Problem or Forcing?

Instead of considering the initial value problem, one may add a forcing term to the
linear equation, in order to mimic a nonlinear effect and/or a source of noise.

From the general solution for the fluctuating field

û(k(t), t) = Gi j (k, t, t0)û(k(t0), t0) +
∫ t

t0

Gi j (k, t, t ′) f j (k(t ′), t ′)dt ′, (17.16)

it is possible to derive a related statistical solution. The contribution from the initial
value can even be omitted if the Green’s function is rapidly decaying. Interesting
applications can be found looking at the Reynolds stress tensor, or even at its subgrid
scale counterpart in Large-Eddy Simulation. Choosing an isotropic white noise for
the forcing, with

〈 f ∗
i ( p, t) f j (k, t ′)〉 = B(k)

4πk2
δ3(k − p)δ(t − t ′), (17.17)

the Reynolds stress tensor obeys the following linear response solution

u′
i u

′
j (t) =

∫ ∞
0 B(k)dk

4π

∫ t

t0

dt

(∫∫
|K |=1

e(α)
i (k)gαγ(k, t)gβγ(k, t)e(β)

j (k)d2 K
)

(17.18)

Even if the structure of this equation is similar to its counterpart for the initial value
problem, it may be more interesting to have a steady state at large time, forgetting
the intermediate history of the Reynolds stress tensor. For instance, a bounded steady
state u′

i u
′
j (∞) is found in the absence of exponential or algebraic growth for gαβ in

the inviscid case. More interesting, a steady state can be obtained even in some cases
with exponential growth by reintroducing the viscous factor (17.13). For instance,
the convergence of the temporal integral is analyzed in Cambon (1982) for a large
class of flows subjected to strain dominated mean flow, i.e. in the presence of a
hyperbolic instability. Because the mean advection is seen in wave space (K → k),
this asymptotic analysis only depends on the infrared part of the spectrum B(k),
since B(k) ∼ kx when k → 0.

Decomposing Eq. (17.18), or its viscous counterpart, in contributions related or
not (in a local way) to the mean velocity gradient reveals typical coefficients, such as
efficient viscosity and Anisotropic Kinetic Alpha (AKA) coefficients. For instance,
in a quasi-parallel flow dominated by mean shear, one can formally write the Taylor
series expansion of u′

i u
′
2 = Ri with respect to the gradient of the large-scale flow

Ri (∞) = �iU0 − νT Sδi1 . . . ,
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where two coefficients �i and νT appear (N. Le Provost, private communication).
Turbulent viscosity is well known, but RDT can also suggest negative values of
νT , e.g. in rotating shear flows. Some recent applications of RDT to subgrid scale
modelling by B. Dubrulle and coworkers appear to be related to such a calculation
of an eddy viscosity.

The first term with �i is known as the �-effect or AKA-effect (Frisch et al. 1987).
Surprisingly, this term cannot be removed by Galilean invariance. It can only exist
in anisotropic helical turbulence.

17.1.3 RDT for Two-Time Correlations

RDT can be used for evaluating the spectrum of the variance of a passive scalar
concentration s ′, subject to a mean scalar gradient s:

ṡ ′ = ∂s ′

∂t
+ u′

j

∂s ′

∂x j
= − ∂s

∂x j
u j = 0,

in which the material derivative is replaced by a simple Eulerian time-derivative,
whereas linear dynamics is only used for the bearer velocity field u′. Given the strong
analogy of the fluctuating trajectory equation, ẋ = u′

i , with the above-mentioned
scalar’s one, this approach can be used for calculating mean-square displacements,
or single-particle diffusion, the particle being only a fluid element.

A different approach was initiated by Kaneda and Ishida (2000), calculating
two-time velocity correlations via RDT. Homogeneous RDT cannot give access to
the Lagrangian two-time correlations, because the ‘Lagrangian’ Fourier mode can
afford oversimplified ‘mean’ trajectories, but not the ‘fluctuating’ ones. On the other
hand, a simplified Corrsin hypothesis can be advocated for replacing the Lagrangian
two-time velocity second-order correlations by their Eulerian counterpart. The two
ways, either linearizing both scalar and velocity equations to derive second order
single-time mixed correlations, or applying RDT to two-time second order veloc-
ity correlations using the simplified Corrsin hypothesis, yield the same final result
for single-particle dispersion, but the second is much less demanding about physi-
cal assumptions. The simplified Corrsin hypothesis is less stringent than the crude
assumption of equating ṡ ′ and ∂s ′/∂t from the very beginning.

The only advantage of the first way is to illustrate what information is gained
using the following more sophisticated model: To incorporate the linear operators in
a synthetic model of turbulence, usually referred to as Kinematic Simulation (KS),
and to compute individual random trajectories from the synthetic velocity field which
include linear (RDT) dynamics.

Applications to single-particle diffusion by rotating stratified turbulence are per-
formed in Cambon et al. (2004b), with comparison of the statistical RDT model, the
KS + RDT model, and DNS. Results are reported in Chap. 11.

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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17.2 Zonal RDT and Short-Wave Stability Analysis

The condition of extensional mean flow, having a velocity gradient matrix A uni-
form in the whole space, is very stringent, as is the statistical homogeneity (spatial
invariance of any centered multi-point moment related to the fluctuating flow).

It is therefore useful to generalize the linear solutions in the presence of more com-
plex “base” (or mean) flows, either for extending stability analyses, or for modelling
non-homogeneous turbulence.

17.2.1 Irrotational Mean Flows

For irrotational mean flows, for instance potential flows, a tractable form of inviscid
RDT in physical space can be based on the solution of equation that governs the
fluctuating vorticity (ωi = εi jku′

j,k), a particular Kelvin equation for the linearized
case without mean vorticity:

ωi (x, t) = Fji (X, t, t0)ω j (X, t0) (17.19)

As we have seen in Chaps. 8 and 14, the related Weber equation

u′
i (x, t) = F−1

j i (X, t, t0)u
′
j (X, t0) + ∂φ(x, t)

∂xi
, (17.20)

is particularly useful.
The mean flow may involve complex trajectories, which are defined by

xi = xi (X, t0, t) with ẋ = ūi (x, t) (17.21)

in which Lagrangian coordinates X denote the initial position at time t0 of a particle,
which reaches the position x at time t , and the overdot holds for the related ‘mean’
material derivative. The Cauchy matrix F does not need to be defined again. Of course,
the more general solution such as (8.22) requires that the potential term in the right-
hand-side of (17.20) be expressed in terms of initial data. This can be done using
incompressibility condition with relevant boundary conditions, and even applications
to compressible flows are possible (Goldstein 1978), as already discussed in Chap. 14.
Of course, in the general incompressible case, integral nonlocal dependency, as in
(8.22) reappears through the solution for φ in Eq. (17.20).

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_8


17.2 Zonal RDT and Short-Wave Stability Analysis 839

17.2.2 Zonal Stability Analysis with Disturbances Localized
Around Base Flow Trajectories

As soon as the mean flow is rotational, equations such as (17.19) or (17.20) are no
longer valid to tackle inhomogeneous RDT. Assuming weak inhomogeneity, consid-
erable progress can be made without the need for irrotational mean flow, although
simplifications occur in this case. As discussed earlier, turbulence which is fine-scale
compared with the overall dimensions of the flow can be treated under RDT by fol-
lowing a notional particle advected by the mean flow. Thus, the results obtained for
strictly homogeneous turbulence can be extended to the weakly inhomogeneous case,
but with a mean velocity gradient matrix Ai j (t) which reflects the ∂ūi/∂x j seen by
the moving particle.

Even if the Green’s function related to the canonical base flow (2.67) and (2.68)
can give interesting information for linear stability analysis and short-time develop-
ment of turbulence, this problem is somewhat unphysical in the absence of typical
lengthscales for variation of the base flow gradients and disturbances. For instance,
the Green’s function in (17.4) only depends on the orientation, but not on the modulus,
of the wavevector. Rather than to consider perturbations with an arbitrary wavelength
k−1 in the presence of the flow (2.67), it is more physical to consider a base flow
whose velocity gradients vary over a typical lengthscale �, and to restrict the validity
of the zonal stability analysis to perturbations with much shorter wavelengths, i.e.
k−1 
 �. In so doing, the disturbance field should locally experience advection and
distortion effects by the base flow, similarly to the effects of an extensional flow with
space-uniform gradients. Given a priori a lengthscale separation between base and
disturbance flows, one can imagine to look through a mathematical magnifying glass
at the vicinity of real base trajectories. This idea has been formalised in the context of
flow stability (see the short-wave ‘geometric optics’ of Lifschitz and Hameiri 1991)
using an asymptotic approach based on the WKB method, which is traditionally
used to analyse the theoretical ray limit (i.e. short waves) in wave problems. The
perturbation solution is written as

u′
i (x, t) = ai (x, t) exp(ı�(x, t)/ε) (17.22)

with a similar expression for the fluctuating pressure, with amplitude b(x, t), where
� is a real phase function and ε is a small parameter expressing the small scale
of the “waves” represented by Eq. (17.22), while ai (x, t) and b(x, t) are complex
amplitudes which are expanded in powers of ε according to the WKB technique:
ai = a(0)

i + εa(1)
i + . . .. Inserting (17.22) into the linearized equations (2.50) and

(2.51) yields

�̇a(0)
i + b(0) ∂�

xi
= 0,

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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and ki a
(0)
i = 0 at the leading ε−1 order. Consequently, it is found that b(0) = 0 and

that

�̇ = ∂�

∂t
+ u j

∂�

∂x j
= 0, (17.23)

i.e. the wave crests of Eq. (17.22) are convected by the mean flow, whose trajectories
are given by (17.21). It is then apparent that (17.22) is locally a plane-wave Fourier
component of wavenumber

ki (x, t) = ε−1 ∂�

∂xi
. (17.24)

The spatial derivatives of �̇ = 0 yield an eikonal equation:

k̇i = −A ji (t)k j , (17.25)

where, as before, Ai j = ∂ui/∂x j and the dot represents the mean-flow material
derivative ∂/∂t + ui∂/∂xi . Finally, at the next ε0 order, one obtains

ȧ(0)
i = −Mi j (t)a

(0)
j , (17.26)

with Mi j as in (17.2), after elimination of the pressure using the leading-order incom-
pressibility condition ki a

(0)
i = 0.

Equations (17.25) and (17.26) have exactly the same form as the basic equa-
tions of homogeneous RDT (Kelvin–Moffatt equations) and therefore, together with
Eq. (17.21), describe the weakly inhomogeneous case at leading order. The only dif-
ference is that, rather than being related to simple time derivatives, the dots represent
mean-flow material derivatives, implying that one should follow mean flow trajecto-
ries which differ from one to another. In homogeneous RDT, the different classes of
disturbances are only labelled by the direction of the initial wavevector K = k(t0),
and all trajectories, such as ψ = constant in (2.70) are equivalent. In the zonal RDT
approach, it is necessary to add the Lagrangian coordinate vector X for labelling
different trajectories. In agreement with classic continuum mechanics, one has

dxi = Fi j d X j + ūi dt, (17.27)

when differentiating the mean trajectory equation x = x(X, t0, t), so that �̇ = 0 and
(17.25) correspond to

k·δx = K ·δX, ki (X, t) = F−1
j i (X, t, t0)K j , (17.28)

which generalizes Eq. (17.5) together with k·x = K ·X . It is perhaps useful to rewrite
the complete system of equations, exhibiting all parameters and dependent variables
(Godeferd et al. 2001)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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ẋi = ūi (x) (17.29)

k̇i = −∂ū j

∂xi
k j (X, t) (17.30)

ȧi = −
(

δin − 2
ki kn

k2

)
∂ūn

∂x j
a j (X, t), (17.31)

with solutions (17.28) for k, and

ai (X, k, t) = Gi j (X, K , t, t0)a j (X, K , t, t0).

Typical applications are presented in Chap. 11. It is even possible to consider the
base flow as unsteady, and to directly use the Cauchy matrix for solving (17.31)
with (17.28), without need for numerical solution of Eqs. (17.29) and (17.30), as
illustrated by Guimbard and Leblanc (2006).

17.2.3 Using Characteristic Rays Related to Waves
Instead of Trajectories

The WKB method by Lifschitz and Hameiri (1991) is different from those devel-
opments, which lead to ‘geometric optics’ and ‘physical optics’. Accordingly, the
first one (Lifschitz and Hameiri 1991) is referred to short-wave linear stability anal-
ysis, or zonal WKB RDT everywhere in this book, whereas only the second will
be denoted ‘geometric optics’ from now on. The starting point of ‘true geometric
optics’ is similar to Eq. (17.22), but the spatio-temporal evolution is assumed to be
slow, so that x and t in (17.22) ought to be replaced by εx and εt , respectively. In
‘true geometric optics’, the leading order approximation is ε(0), and the inhomoge-
neous dispersion law is exhibited, for instance in injecting Eq. (17.22) with (x → εx,
t → εt) in linearized equations (2.50) and (2.51) so that:

�̇ = ±σ(∇�) − ∇�·ū, (17.32)

in which, for the sake of simplicity of notations, spatial and temporal operators
concern ‘slow’ variables. Stressing, as before, that k = ∇�, an Hamiltonian function
can be defined as

�̇ = H(k, x) = ±σ(k) − k·ū (17.33)

Accordingly, an Hamiltonian dynamical system is derived:

http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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ẋ = ∂H

∂k
(17.34)

k̇ = −∂H

∂x
. (17.35)

Because H includes both the dispersion frequency and the Doppler frequency
due to convection by the mean flow, or k·ū, the right-hand side of Eq. (17.34) is the
sum of group and convection velocities, and the related characteristic line is the ray
along which energy propagates. Applications of the Hamiltonian dynamical system
are used by Galmiche (1999), for instance, in the case of gravity waves propagating
in an inhomogeneous medium. Note that the dispersion law cannot appear at the
leading order in the Lifschitz–Hameiri WKB method, so that the previous system of
Hamiltonian equations reduces to the trajectory equation (17.29) and to the Eikonal
equation (17.24), respectively, with H = −k·ū. The dispersion law is recovered in
Lifschitz and Hameiri (1991) at the next order, via the solution for the amplitude
equation (17.31), similarly to RDT solutions of Chaps. 7 and 10. Using the develop-
ment in terms of slow spatio-temporal variables, in ‘true geometric optics’, the next
order (ε1) leads to the ‘physical optics’ approximation, which yields conservation of
wave action.

In the same context of gravity waves, promising perspectives, with transport of
statistical spectra with nonlinear effects and diffusion, are offered by Carnevale and
Frederiksen (1983). In the latter work, the Hamiltonian function which appears in
Eq. (17.33) is affected by nonlinear dynamics in connection with a simplified version
of DIA, and the role of resonant triad interactions is displayed.

Another interesting field of application is aeroacoustics, since zonal RDT along
trajectories can be applied to a weakly compressible flow: both vortical and entropic
modes can be considered, but the acoustic mode is always missed because it is not
a short-wavelength one at low Mach number. On the other hand, it is possible to
extend the zonal analysis along trajectories (linked to velocity u) by a ray-method
along acoustic rays, which are linked to u + ak and u − ak.

17.3 Application to Statistical Modeling of Inhomogeneous
Turbulence

The stability analysis framework is no longer discussed in the following for the sake
of brevity, and only incompressible turbulence is considered.

Generalisation of the Craya equation can be sought in the presence of an arbitrary
mean flow, in deriving a complete equation for the two-point velocity correlation
tensor with centered position from Eq. (2.50):

Ri j (r, x, t) = u′
i (x − r/2)u′

j (x + r/2). (17.36)

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Fourier transform can be applied with respect to the separation distance r , so
that the equation for the hybrid spectral-physical tensor R̂(k, x, t) can be displayed.
Equations for both R and R̂ are very complicated. Correlations involving the pres-
sure cannot be expressed in terms of velocity only, as in Eq. (2.102), especially if
boundary conditions have to be taken into account. Hence, it is necessary to add
some assumptions, or to introduce some multi-scale approach. The remaining nec-
essary assumption is the separation of spectral and physical space dependencies of
the correlations, for example by treating the statistical inhomogeneity as weak. Even
for homogeneous turbulence, going beyond the isotropic case entails a high com-
putational cost for two-point simulations using classical nonlinear closures, a cost
which is not negligible compared with that of direct numerical simulation. Thus, it is
currently unattractive to solve the full set of equations resulting from closures such
as DIA, TFM or EDQNM in the inhomogeneous case without simplifications.

An alternative approach can take inhomogeneity into account via the basis set
of modes used to express the fluctuations, while, as far as possible, maintaining the
structure of equations of the correlation matrix similar to that of the homogeneous
case. The modes which substitute for Fourier components may, for instance, be
chosen to satisfy the boundary and incompressibility conditions. Accordingly, strong
inhomogeneity due to solid boundaries can be accommodated by the very definition
of the fluctuation modes. This approach is illustrated by the work of Turner (1999),
who considered the problem of channel flow using suitably chosen modes whose
amplitude equations are analogous to those of Fourier modes in the homogeneous
case and which were closed via a random phase approximation. The normal modes
of the linear problem might well be good candidates in this type of approach.

17.3.1 Transport Models Along Mean Trajectories

Simplified equations for R̂(k, x, t) are suggested by the short-wave analysis of
Sect. 17.2.2. In turbulent flows, the fluctuating field is not the single component
(17.22), but instead consists of a random superposition of such components. As
one might expect, given the behavior of the underlying local Fourier components
described above, it can be shown that, at leading order, weakly inhomogeneous tur-
bulence evolves according to

˙̂Ri j + Mik R̂k j + M jk R̂ik = 0, (17.37)

where the dot now represents the operator

∂

∂t
+ ui

∂

∂xi
,−∂u j

∂xi
k j

∂

∂ki
, (17.38)

and expresses both convection by the mean flow and evolution of the wavenumber
of individual Fourier components according to Eq. (17.25). The spectral evolution

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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Eq. (17.37) corresponds to the RDT limit of its homogeneous equivalent, i.e. the
Craya equation, provided that the dot operator is interpreted appropriately. Thus,
following the mean flow, the leading-order, local spectral tensor R̂i j (k, x, t) behaves
as in homogeneous RDT, being given in terms of its initial values and the RDT
Green’s function. The obvious way to incorporate nonlinearity and viscosity into
this description is to use

˙̂Ri j + Mik R̂k j + M jk R̂ik = Ti j − Di j − 2νk2 R̂i j (17.39)

rather than Eq. (17.37) to describe spectral evolution, where Ti j could be modelled
using a homogeneous spectral closure. For the sake of completeness, the tensor Di j

would typically represent inhomogeneous diffusion across the mean streamline.
An interesting alternative, as proposed by Nazarenko et al. (1999), is to derive

weakly inhomogeneous RDT using a Gabor transform and related WKB develop-
ment. A small parameter like ε in Eq. (17.22) appears. It is the ratio of the wave-length
of the Fourier mode to the length of its Gaussian envelope. The interest of this method
is not to derive the equations for the wave vector and the amplitude of the fluctuating
velocity field (the method presented above does the job in a simplest and more gen-
eral way), but to calculate a space-dependent Reynolds stress tensor by integrating
R̂i j (x, k, t) as in Eq. (17.14). Consequently, the nonlinear term which expresses the
feedback from the Reynolds stress tensor in (2.48) can be evaluated (it is zero in pure
homogeneous RDT).

17.3.2 Semi-empirical Transport “Shell” Models

This approach, discussed in Godeferd et al. (2001) is mainly illustrated by semi-
empirical transport models, which treat the dependency with respect to the position
variable by analogy with one-point modelling. These models cannot incorporate all
the information coming from the general Eq. (17.39), but they retain some element
of its structure. They are very far from the ‘shell models’ presented by, e.g. Bohr
et al. (1998), but they share with them the property that the spectral dependency is
only retained through the modulus of the wave vector. Accordingly, it is assumed
that primitive equations for R̂(k, x, t) are integrated over spherical shells of radius k.
Because of spherical averaging, one has to forget the idea of recovering the asymp-
totic RDT limit, even in the homogeneous case, and needs to model the ‘rapid’ terms
comprising distortion and pressure-strain correlations, modelling which is unneces-
sary in the fully anisotropic theory. Transport models for the joint physical/spectral
space energy spectrum E(k, x) have been developed, which describe inhomogene-
ity in a similar way to the diffusive terms in the k − ε model, but allow a better
treatment of dissipation, calculated from the energy spectrum. Examples include the
inhomogeneous EDQNM model of Burden (1991), the SCIT (Simplified Closure for
Inhomogeneous Turbulence) model developed at Lyon (Touil et al. 2000) and the

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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LWN (Local Wave Number) model developed at Los Alamos (Clark and Zemach
1995). These approaches are extensively discussed in Sagaut et al. (2006).

As a useful compromise between RSM and subgrid-scale modelling, with seam-
less transition from RANS to LES, the partially integrated Reynolds stress modelling
by Chaouat and Schiestel (2005, 2007) deserves attention. The underlying spectral
formalism is not based on closures but on heuristic arguments, whereas spatial Taylor
expansions are used for the position coordinates in physical space.

17.4 Other Perspectives in Extended Linearized
Approaches

Some analytical relations are summarized in Fig. 17.1, particularly for displaying the
role of the Cauchy matrix in both homogeneous and zonal RDT (eikonal equation)
in the general case, and its particular involvement for irrotational mean (base) flows.

Application of RDT to subgrid-scale modelling appears to be attractive, but it
is probably premature to report related studies, and large-eddy simulation (LES) is
largely outside the scope of this book. The interested reader is referred to Sagaut
(2005) for an exhaustive presentation.

One can just mention a direct use of the Cauchy matrix for deriving pressure-
released simplified solutions for the transport of the subgrid-scale stress tensor, very
similarly to what is done for the Reynolds stress tensor. This way for improving LES,

Fig. 17.1 Sum of the main useful relations for RDT analysis. It is recalled that F is the solution of
Ḟ = AF. Transposed is denoted as At , instead of Ã in the text
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discussed by C. Meneveau (invited talk, ETC11 conference, Porto, June 2007), is in
the line of the seminal study by Crow (1968), and, of course, is in agreement with
many instances of pressure-released “solutions” given in this book. We think that this
approach is valid for a strain-dominated coarse-grain flow, but is more questionable
in the case of a vorticity-dominated flow. In applying the pressure-released approach
to a rotational coarse-grain flow, it must be born in mind that F must be replaced by
H, whose history involves transposed A, not to mention that the full RDT solution
can be very different from its pressure-released counterpart (one uses Ḟ = AF and
˙̃F−1 = −ÃF̃

−1
).

Other applications deal with the transport of the coarse-grain mean velocity gra-
dient, which is governed by the following equation (as the mean flow gradient for
homogeneous RDT, but with additional diffusive terms, not given explicitly):

Ȧi j + Ain Anj = ∂2 P

∂xi∂x j
+ diffusive and subgrid terms.

A presentation is now (present edition) given in Chap. 4.

17.5 Isotropic Turbulence with Production: Linear and
Nonlinear Dynamics Under Spherical Compression

This case, already addressed in Sect. 14.3, illustrates an optimal interplay between
linear and nonlinear effects, as a watershed between the two parts of this chapter.
One considers an isotropic compressing mean flow, not divergence free, such that

Fi j (t) = J (t)1/3δi j ,

with J (t) = det F(t) the volumetric ratio. On the other hand, the fluctuating velocity
field remains divergencefree. With respect to incompressible irrotational straining,
the “rapid distortion” limit

ui (x, t) = F−1
j i (t)u j (X, t) + ∂φ

∂xi

simply becomes
ui (x, t) = J (t)−1/3ui (X, 0), (17.40)

with x = J 1/3(t)X . Conversely in Fourier space

ûi (k, t) = Pmi (α)F−1
jm (t)û j (K , 0)

yields

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_14
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û(k, t) = J 2/3(t)û(K , 0), (17.41)

with k = J (t)−1/3 K .
The rescaling of both space coordinates and velocity is thereby given by conven-

tional RDT. Less usual is the removal of the ‘production’ term by a rescaling of time,
or dt = J 2/3(t)dt∗. Finally, basic Napier–Stokes equations without production and
advection by the mean flow are recovered in term of the following ‘starred’ variables
(Eq. (14.51))

u∗ = J 1/3(t)u, x∗ = X = J−1/3(t)x, t∗ =
∫ t

0
J−2/3(t ′)dt ′.

But the kinematic viscosity ν ought to be considered as time-varying during the
process of mean compression.

17.5.1 Discussion. Using Nonlinear Dynamical Models
for HIT

A problem of turbulence undergoing spherical compression or dilatation is turned
into decaying HIT with variable kinematic viscosity, that amounts to a Reynolds
number varying in 1/ν since L∗u∗ = Lu. Any robust model for HIT can be used in
terms of starred variables, with results easily recovered in terms of primitive vari-
ables. The example of the K − ε model at high Reynolds number is given in Cambon
et al. (1992) (see also Sect. 14.3). Because the kinematic viscosity decreases (and
the Reynolds number increases) during a compression, as illustrated by pressurised
wind-tunnel experiments, conventional high-Reynolds K − ε are relevant if the initial
Reynolds number is sufficiently high. On the other hand, a very special imbalance
is created between the skewness term and the palenstrophy term: the second one
(viscous destruction of enstrophy) is directly affected by the lessening of kinematic
viscosity, whereas the first one (nonlinear production of enstrophy by vortex stretch-
ing) is affected with some delay. EDQNM for HIT remains an excellent candidate
for exploring such a dynamical, non-conventional, spectral imbalance. Interesting
features of compressed fluid are summarized as follows:

• Because of isotropic straining process, the RDT limit is drastically simplified, with
no need for solving the pressure fluctuation as in the linearized Weber equation.

• A rescaling of the time can account for the nonlinear effect in this type of straining
process, because a single (radial) direction and thereby a single dimension is called
into play.

• Conventional separation into ‘rapid’ (RDT) and ‘slow’ (nonlinear) terms is radi-
cally questioned. For instance even basic equations show that nonlinear terms with
dimension U 2(t)/L(t) can be faster than linear terms in J̇

J U (t) under spherical
compression.

http://dx.doi.org/10.1007/978-3-319-73162-9_14
http://dx.doi.org/10.1007/978-3-319-73162-9_14
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17.5.2 A Recent Application to Plasma Dynamics

The strategy of using EDQNM for decaying HIT, together with the above mentioned
dynamical rescaling was applied recently · · · but to a hot plasma, in line with applica-
tions to confinement. All the formalism is the same as for a fluid until the law for the
time-dependent kinematic viscosity is chosen. At this stage, a very different behavior
is found. For the adiabatic compression of ideal monatomic gas, temperature evolves
as T (t) = T0 J−2/3(t) so that the viscosity is μ = μ0 J (t)−2β/3. Accordingly

ν(t) = μ

ρ
= ν0 J (t)−2β/3+1. (17.42)

In the case of a hot plasma in kinetic regime, β = 5/2, so that ν(t) increases as
J (t)−2/3 instead of decreasing as in a gas. The difference is due to the rapid increase
of the temperature of electrons, when this phase is well dissociated. Accordingly,
turbulent plasmas under compression and entering the kinetic regime can experience
a sudden increase of kinetic energy dissipation due to an abrupt growth of the viscosity
from temperature increase. The reader is referred to Davidovits and Fisch (2016) for
DNS and to Viciconte et al. (2017) for use of both DNS and EDQNM results.

17.6 Generalities on Triadic Closures

Fundamentals of anisotropic triadic closures are given in Chaps. 2, 4, 7, 8 and 12. A
general discussion is offered on various aspects of these closures. Strong anisotropy
is the most original aspect which is emphasized throughout this book, but it is perhaps
useful to recall the role of the characteristic time (e.g. eddy damping in EDQNM)
for the decorrelation of triple correlations in canonical incompressible HIT, and not
only in EDQNM. The closure for compressible quasi-isentropic isotropic turbulence,
which is a very interesting case of interaction of “strong” solenoidal turbulence with
pseudo-acoustical “weak” wave-turbulence, also merits an additional discussion.
Finally, the theory of “linear response” by Kaneda and coworkers, touched upon in
Chap. 8, is rediscussed in connection with an approach to weak anisotropy.

17.6.1 Canonical HIT, Dependence on the “Eddy Damping”
for the Scaling of the Energy Spectrum in the Inertial
Range

All technical details about EDQNM for HIT are given in Chap. 4. In this case, and
only looking at the power-law slope of the single-time energy spectrum E(k) in the
inertial range, all “triadic” theories, including the most sophisticated self-consistent

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_12
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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Fig. 17.2 Map on a single
straight line of the
E(k)-to-η(k) power-law
exponents. Suggested by
W. Bos

ones, from DIA to TFM, LHDIA and LRA, can be analyzed from the following
simple, purely dimensional and local in wavespace, argument2:

F(k) =
∫ ∞

k
T (k)dk ∼ η(k)(−1)k4 E2 → ε,

where η(k) is the Eddy Damping term in EDQNM, or a constant external frequency
in isotropic or isotropized wave-turbulence theory. A link of the exponent of the
power-law for E(k), or E(k) ∼ k−y , to the exponent of the power law for η(k),or
η(k) ∼ kx is immediately derived as a linear law

y = 2 − x/2.

Some important cases are discussed as follows, and summarized in Fig. 17.2 with
0 ≤ x ≤ 2:

• Constant η(k) = f0: x = 0, y = 2, E ∼ k−2. This case is illustrated by some mod-
els, such as the Markovian Random Coupling Model, which amount to EDQNM
with constant ED. They also illustrate oversimplified cases of wave-turbulence, in
which η(k) is not a nonlinear decorrelation time, but instead the time-frequency
of the external linear wave-operator ( f0 = 2� in rotating turbulence, f0 = N in
stratified turbulence, etc.).

• “Eulerian” time-scale: the sweeping effect, or advection of small scales by the
largest ones, seen in the Eulerian framework, suggests η(k) ∼ Uk, yielding x =
1, y = 3/2, and E ∼ k−3/2. The wrong exponent of original DIA is immediately
derived.

2This analysis can be found in existing literature, e.g. in books by Frisch and Lesieur, but it was
suggested by a very concise and pedagogical informal talk, given by W. Bos in the CNRS Summer
School in Cargèse (France), August 13–25, 2007.
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• “Lagrangian” time scale: one of the simplest proposals, by Kraichnan and Orszag,
is η(k) ∼ ε1/3k2/3, yielding x = 2/3, y = 5/3. More sophisticated proposals, as

η(k) ∼ k3/2 E1/2, or η(k) ∼
√∫ k

0 p2 E(p)dp (see Chap. 4) are also consistent with
x = 2/3, y = 5/3 in the inertial range. The correct Kolmogorov law is recov-
ered, as found in EDQNM and in all self-consistent theories correcting DIA with
Lagrangian or semi-Lagrangian approaches, not to mention the very recent self-
consistent EDQNM version by Bos and Bertoglio (2006).

• Pure viscous time-scale, η(k) ∼ νk2: x = 2, y = 1, E(k) ∼ k−1. This correspond
to a late-time of decay, or a transient zone between the inertial range and the
dissipative one.

It is a bit surprising that a complex spectral flux term, which results from the dif-
ference of two large nonlocal terms (e.g. pE(q)(k2 E(p) − p2 E(q)) in Eq. (4.335)),
which are individually high and quasi-balanced, might be so simply evaluated by
k3 E(k)2, using pure dimensional analysis, but this works for our simple purpose of
deriving power laws.

To speak of ‘Eulerian’ or ‘Lagrangian’ time-scales is almost a caricature, without
a profound survey of Lagrangian, semi-Lagrangian and Eulerian theories. We have
chosen not to treat in detail these aspects in this book, but let us mention at least two
points. On the one hand, the Lagrangian or Eulerian origin of the nonlinear decorrela-
tion time-scale of triple correlations can be ignored, as it is done in the Local Energy
Transfer theory by Mc Comb (1974), which is also a self-consistent theory (i.e. which
involves no adjustable parameter dealing with the Kolmogorov constant) giving the
correct point x = 2/3, y = −5/3 in the diagram. On the other hand, it is important to
recall that the parameter η(k) comes from the Kraichnan’s response tensor, which is
an essential ingredient of any triadic spectral closure, and therefore is revisited in the
next section. This response tensor, either random or averaged, is a tangent Green’s
function to a nonlinear state, and therefore is subject to the effects of advection and
deformation by the velocity field. In this sense, the RDT Green’s function (in fact
both G(k, t, t ′) and F(t, t ′) in ‘mean’ Eulerian, G(K , t, t ′) in Lagrangian), illustrates
in an oversimplified way these advection and deformation effects by the mean flow,
even if nonlinear dynamics is essential in the Kraichnan Green’s function. Accord-
ingly, we think that a physical discussion taking into account the different advection
and deformation aspects cannot ignore their different translation in Lagrangian or
Eulerian frameworks.

17.6.2 Anisotropic Triadic Closures at a Glance

In homogeneous isotropic turbulence, all classical closures share a common back-
ground, as discussed in the previous section. Anisotropy, even introduced in the
context of homogeneous anisotropic turbulence, and illustrated by shear-driven or
buoyancy-driven flows, induces new difficulties that are treated with different levels
of approximation. Accordingly, multiple more or less elaborate extensions of closures

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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can be proposed. The Table in Fig. 17.3 is an attempt to gather the versions in which
we have an experience of complete numerical solution, often with comparison to
DNS. Illustration of the results can be found throughout this book.

For these reasons, we emphasize closure models and theories with QNM structure,
from generalized EDQNM versions to their asymptotic limit of wave turbulence
theory, when it is relevant.

Equations for Non-Markovian, two-time, triadic theories and models do exist for
anisotropic and even inhomogeneous turbulence, and are addressed in this book,
but there is no available tractable numerical code to solve them, without strong
additional approximations. For instance, the Kraichnan’s Direct Interaction Approx-
imation (DIA), introduced for HIT (Kraichnan 1958), has been extended towards
inhomogeneous shear-driven and thermally-driven flows (Kraichnan 1964). In addi-
tion to the complexity of equations in the latter cases, the diagonal form of the
nonlinear Green’s tensor is probably a flaw inherited from the HIT case, as dis-
cussed in the next subsection. The simplified context of HAT should have given an
intermediate step between HIT and inhomogeneous shear-driven or thermally-driven
turbulence: Unfortunately, it has never been addressed using DIA; even more, linear
RDT and weakly nonlinear wave turbulence theory in HAT remain outside the scope
of DIA. The same remark holds for other Kraichnan’s theories, Test-Field Model
(TFM) and Lagrangian History Direct Interaction Approximation (LHDIA), and for
the Lagrangian Renormalized Approximation (LRA) (Kaneda 2007) as well.

Going back to the table in Fig. 17.3, the star indicates that a numerical code is avail-
able and has been validated for solving the model equations. Two important classes
of model equations are shown. The first class with angle-dependent 3D description
allows for an accurate resolution of the linear and exact part of equations for second-
order two-point statistics. EDQNM1 version is sufficient for closing the contribution
from third-order correlations, mediated by nonlinearity, when turbulent flows are
dominated by production, in the presence of mean velocity gradients with nonzero
symmetric part or in the unstably stratified case (USHT-EDQNM code). More elabo-
rate EDQNM2-3 versions are needed for flows dominated by interacting waves, and
a code is available for purely rotating turbulence (RHT-EDQNM) and purely stably
stratified turbulence (SSHT-EDQNM). In the case of purely rotating turbulence only,
the EDQNM3 version can match the asymptotic limit of inertial wave turbulence the-
ory, with an Asymptotic Quasi-normal Markovian (AQNM) code (Bellet et al. 2006)
that numerically captures all resonant triads.

In the second class of models, the statistical description of two-point second-order
correlations is restricted to spherically-averaged descriptors. This dramatic simpli-
fication allows to treat arbitrary mean velocity gradients (including a symmetric
part) moving from EDQNM1 to the model by Mons et al. (2016) with EDQNM1-
S name in the table. A similar procedure, using truncation of angular harmonics
at the first non-trivial order, allowed to switch from EDQNM1 (USHT-EDQNM)
to the USHT-EDQNM-S code (Briard et al. 2017), with a possibility to combine
effects of mean velocity gradients and mean buoyancy gradient. On the other hand,
angle-averaged models cannot reproduce linear dynamics for two-point second-order
statistics, so that they partially miss the RDT limit and are restricted to weak or
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moderate (depending on the cases) anisotropy. Finally, the angle-averaged mod-
els can afford any anisotropy, whereas the angle-dependent models (with available
numerical code) are all restricted to axisymmetry.

17.7 Solving the Linear Operator to Account for Strong
Anisotropy

17.7.1 Random and Averaged Nonlinear Green’s Functions

The concept of response tensor is in the heart of all closures inherited from Kraichnan.
The most general definition is obtained from writing the perturbation equation for a
disturbance field δû created by an external disturbance δ f̂ (e.g. from a solenoidal
stirring force):

δûi (k, t) =
∫∫ ∫ t

t0

Gi j (k, k′, t, t ′)δ f̂ j (k′, t ′)d3k′dt ′. (17.43)

It is very important to stress that the perturbation is performed around any partic-
ular random realization of û, which is a solution of the fully nonlinear Navier–Stokes
equations in Fourier space. The nonlinear term ûu leads to the contribution 2̂uδu
in the δû-equation. Accordingly, the response function is also a random variable,
changing from realization to realization of the bearer velocity field û. Therefore, this
relation is not only an integral formulation in time, but also in the wavevector space.
In this sense, the response tensor before averaging is a tangent Green’s function
related to a random and nonlinear state.

Only the statistical counterpart of G,3 obtained from statistical ensemble averag-
ing, becomes local in wavespace assuming spatial homogeneity, i.e.

〈Gi j 〉 = G(N L)
i j (k, t, t ′)δ3(k − k′). (17.44)

One can just recall that the eddy damping term in the previous section can be
related to G(N L) by η(k)−1 ∼ ∫

G(N L)(k, t, t ′)dt ′.
Considering a homogeneous turbulent velocity field, but subjected to a mean

flow which is not itself homogeneous but with uniform velocity gradients, the above
equation must be modified as follows

〈Gi j 〉 = G(N L)
i j (k, t, t ′)δ3(k − F̃

−1
(t, t ′)k′). (17.45)

A purely diagonal form is recovered in terms of mean-Lagrangian wave-vectors,
yielding a term δ3(K − K ′).

3G must be not confused with the linear Green’s function in physical space in Eq. (8.22).

http://dx.doi.org/10.1007/978-3-319-73162-9_8
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From these general considerations, we consider that the confusion between G and
〈G〉 → G(N L) is highly misleading, even without mean flow. Identification of the
random response function with its averaged counterpart is made in Leslie (1973),
for instance, and by many other authors. Such oversimplifications do not lead to an
incorrect final form of DIA equations, for instance, but this is only because these
equations are consistent with a “first loop” iterative expansion around a deterministic
zeroth-order state for G(N L). The same procedure performed in the presence of a mean
flow, using (17.44) instead of (17.45) is nothing but wrong.

Introducing a perturbative expansion in terms of the basic nonlinear term in
Navier–Stokes equations, the zeroth-order response function naturally appears as
the viscous linear Green’s function, which is really deterministic (or “statistically
sharp” in Leslie’s parlance). In the case of HIT without mean flow, the linear oper-
ator reduces to the viscous term, so that the basic Green’s function, or zeroth order
response tensor is simply

G(0)
i j (k, t, t ′) = Pi j (k) exp[−νk2(t − t ′)].

17.7.2 Homogeneous Anisotropic Turbulence with a Mean
Flow

For HAT in the presence of a distorting mean flow, the linear operator inherited from
Rapid Distortion Theory must be accounted for: it is an essential building block for
constructing the nonlinear theory, and it can generate the relevant nontrivial zeroth
order response function of any ‘triadic’ closure, including DIA, EDQNM, etc.

In the presence of an additional right-hand-side term fi (k, t) in the basic spectral
equation

˙̂ui + Mi j û j + νk2ûi = fi , (17.46)

which represents nonlinearity and possibly random forcing, the basic “RDT” solution
can be generalized as

ûi (k(t), t) = G(0)
i j (k, t, t ′)û j (k(t ′), t ′)

+
∫ t

t ′
G(0)

i j (k, t, τ ) f j (k(τ ), τ )dτ . (17.47)

It is necessary to include the viscous term, so that G(0) is the viscous Green’s
function given by

G(0)
i j (k, t, t ′) = Gi j (k, t, t ′)V0(k, t, t ′), (17.48)
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where G (in pure inviscid RDT) and V0 are defined in Eq. (17.13) in Sect. 17.1.2. The
latter equation is generic, and similar forms can be found for the equations which
govern the statistical moments of û at any order.

For instance, the equation for the second-order spectral tensor, or Craya equa-
tion (2.102), is formally solved as

R̂i j (k(t), t) = G(0)
im (k, t, t0)G

(0)
jn (k, t, t0)R̂mn(k(t0), t0)

+
∫ t

t0

G(0)
im (k, t, t ′)G(0)

jn (k, t, t ′)Tmn(k(t ′), t ′)dt ′, (17.49)

and similarly for the third order, with a three-fold product

G(0)
(k, t, t ′) ⊗ G(0)

( p, t, t ′) ⊗ G(0)
(q, t, t ′), k + p + q = 0,

called into play (see Eq. (2.117), revisited in the next section).
In a slightly different form, one can introduce a new variable a defined as

ûi (k(t), t) = G(0)
i j (k, t, t0)a j (k(t0)︸︷︷︸

K

, t), (17.50)

which replaces the initial data in the linear solution, and can be considered as slowly
varying in time, where the initial time is fixed at t ′ = t0. The Green’s function can
be used for deriving a new equation for the slow variable without any assumption
from the exact, Navier–Stokes-type, û- equation:

ȧi = G(0)−1
i j (k, t, t0)Pjmn(k(t))

∫∫∫
G(0)

ms ( p, t, t0)as(P, t)︸ ︷︷ ︸
û( p)

G(0)
nr (q, t, t0)ar ( Q, t)︸ ︷︷ ︸

û(q)

d3 p,

(17.51)

with q = k − p. The latter equation suggests a systematic way to derive a suitable
closure. For instance, the idea in applying generalized EDQNM is to transfer the
‘machinery’ of EDQNM procedures/assumptions from the û to the slow variables
a. A cartoon of the optimal procedure, called EDQNM3, and successively applied
to the pure rotation case in Chap. 7, can be given as follows:

• Quasi-normal (QN) procedure is the same, working with û or with a variables.
Fourth-order correlations at three points are expressed in terms of products of
second-order correlations.

• Markovian (M) procedure consists in freezing the time dependency of the slow
variables, and of the slow variables only, in the time integral which links third-order
to second order correlations, once the QN assumption used.

• Eddy-Damping consists of replacing the “bare” viscous RDT Green’s function by
a possibly renormalized one as

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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G(N L)
i j (k, t, t ′) = Gi j (k, t, t ′)V (k, t, t ′), (17.52)

where the term V , which is substituted to V0 in Eq. (17.48), will be specified later
on. This way is suggested by Eq. (2.117) as well.

In view of the “exact” Eq. (17.51), however, specific difficulties linked to the
advection term appear, and a unique system of dependent variables has to be chosen.

Time-dependence of the wave-vectors reflects the advection by the mean flow.
The general relation

ki (t) = F−1
j i (t, t ′)k j (t

′), (17.53)

is always valid, but for any operator depending on (k, t, t ′), one can ask the question
whether a fixed wavenumber of reference, such as K = k(t0) is useful or not. In
addition to the renormalization of G by a scalar term, the related question of renor-
malizing the Cauchy matrix in Eq. (17.53) can be raised, together with the two-time
aspect in general: in spite of some proposals for modelling parallel shear flows with
a saturated accumulated mean shear (F12 here), e.g. by Maxey and Hunt, we prefer to
keep Eq. (17.53) unchanged here: in the presence of solid-body rotation or dominant
mean vorticity, for instance, to saturate �t is meaningless.

In order to avoid any ambiguity, ‘mean-Lagrangian’ wavevectors will be used,
such as K = k(t0), P = p(t0), Q = q(t0), when ‘slow’ variables are concerned, and
the time argument, e.g. t or t ′ will be specified in k, p, q.

As far as possible, eigenmode decomposition must be used to diagonalize G. At
least, a drastic reduction of the number of variables can be obtained in working with
the components in the Craya–Herring frame or in similar frames of reference, as
used in Cambon (1982), Cambon et al. (1985) and in all subsequent papers from the
same team.

17.8 A General EDQN Closure. Different Levels
of Markovianization

Using the three-fold product of Green’s functions to express triple correlations in
terms of fourth-order ones, the most general Eddy-Damped Quasi-normal closure
for the transfer tensor Ti j in the Craya’s equation leads to:

τi j (k(t), t) = Pjml (k(t))
∫ t

−∞

∫∫∫
k+p+q=0

G(N L)
in (k, t, t ′)G(N L)

mr ( p, t, t ′)G(N L)
ls (q, t, t ′)

R̂vs(q(t ′), t ′)
[

1

2
Pnvw(k(t ′))R̂wr ( p(t ′), t ′) + Prvw( p(t ′))R̂wn(k(t ′), t ′)

]
d3 pdt ′,

(17.54)

with

http://dx.doi.org/10.1007/978-3-319-73162-9_2


17.8 A General EDQN Closure. Different Levels of Markovianization 857

Ti j (k, t) = τi j (k, t) + τ ∗
j i (k, t). (17.55)

If the factor V in Eq. (17.52) is generated only by adding to the ‘laminar’ viscous
factor νk2 a damping term η(k, t), the result can be written as

V (k, t, t ′) = exp

[
−

∫ t

t ′
νk2(t ′′) + η(k(t ′′), t ′′)dt ′′

]
. (17.56)

The exponential decay factor in Eq. (17.56) is related to the cumulative viscous
and eddy damping between t ′ and t . Notice that, although eddy damping formally
appears by means of the revised Green’s function G(N L)

i j , unlike viscosity it is really
a nonlinear effect, modifying the expression of the third-order moments in terms of
the second-order ones.

The time integral in Eq. (17.54) expresses memory of the third-order moments,
represented by τi j , for the fourth-order moments, written as products of R̂. This
memory is too long-lasting in the QN model, but eddy damping suppresses memory
by progressive attenuation of the Green’s function with increasing t − t ′ by way of the
η part of the exponential factor in Eq. (17.56). This will to decrease the importance
of third-order memory is taken to its logical conclusion by the Markovianization
process. First, the integrand in Eq. (17.56) is approximated by its value at t ′′ = t to
obtain

Ṽ (k, t, t ′) = exp
[−(νk2(t) + η(k(t), t)(t − t ′)

]
. (17.57)

17.8.1 EDQNM2 Version

Next, the spectral tensors in Eq. (17.54) can be replaced by their values at t ′ = t , and
the wavevectors too, leading to the following form (Cambon and Scott 1999)

τi j (k(t), t) = Pjml(k(t))
∫∫∫

k+p+q=0
�iml;nrs R̂ns(q, t)

[
1

2
Pnvw(k)R̂wr ( p, t) + Prvw( p)R̂wn(k, t)

]
d3 pdt ′ (17.58)

where

�iml;nrs =
∫ t

−∞
G(N L)

in (k, t, t ′)G(N L)
mr ( p, t, t ′)G(N L)

ls (q, t, t ′)Ṽ (k, t, t ′)Ṽ ( p, t, t ′)Ṽ (q, t, t ′)dt ′.

(17.59)



858 17 The Essentials of Linear and Nonlinear Theories and Models

Equation (17.58) yields an EDQNM model, for which the nonlinear transfer term
in Eq. (2.102) is determined by R̂ at the current instant of time, rather than by the
entire past history of the spectral tensor. This is the essence of Markovianization. This
version was a rather logical generalization of the classical approach of Orszag (1970),
allowing for mean flow effects, and was successfully applied to rotating (Cambon
and Jacquin 1989)4 and to stably stratified turbulence (Godeferd and Cambon 1994).
On the other hand, it is not the optimal EDQNM version: depending on the mean
flow features, a simpler or a more sophisticated version can be used.

17.8.2 A Simplified Version: EDQNM1

It is tempting to push the Markovianization one step further and set t = t ′ in the
RDT Green’s functions of Eq. (17.59), in which case one obtains equations for the
spectral transfer as if there were no mean flow. This amounts to replace G by the
identity matrix, so that

�iml;nrs = δinδmrδlsθkpq(t), (17.60)

with
θkpq = ν(k2 + p2 + q2 + η(k, t) + η(p, t) + η(q, t).

The only effect of the mean flow on the spectral evolution then appears through
the linear operators in the left-hand-side of Eq. (2.102). This version is also valid for
anisotropic turbulence without mean flow, the isotropic case addressed in Chap. 4
being derived setting the isotropic form for R̂. Finally, a more tractable form of
the transfer term is derived from the E/Z decomposition of the anisotropic spectral
tensor, in term of T (E) and T (Z) (Cambon et al. 1997)

T (E) = 1

2
Tii (k)

=
∫∫∫

θkpq2kp
[
(E ′′ + X ′′)[(xy + z3)(E ′ − E) − z(1 − z2)(X ′ − X)]] d3 p

+
∫∫∫

θkpq2kp
[�X ′(1 − z2)(x�X − y�X ′)

]
d3 p (17.61)

T (z) = 1

2
Ti j (k)Ni (−k)N j (−k)

4Time-dependency of the wave-vectors was not considered in the EDQNM2 version for “pure”
rotation, because the formalism was developed in the rotating frame, but if the same procedure is
applied to equations in the Galilean frame, in the presence of a solid-body ‘mean’ motion, time-
shifting cannot be neglected, as discussed at the end of this section.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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=
∫∫∫

θkpq2kpe−2ıλ
[
(E ′′ + X ′′)[(xy + z3)(X ′ − X) − z(1 − z2)(E ′ − E)

+ ı(y2 − z2)�X ′]] d3 p

+
∫∫∫

θkpq2kpe2ıλ
[
ı�X ′(1 − z2)(x(e + X) − ı y�X ′)

]
d3 p, (17.62)

with E = E(k, t), E ′ = E(k, t), E ′′ = E(q, t), X = Z(k, t)e2ıλ, X ′ = Z( p, t)e2ıλ′
,

X ′′ = Z(q, t)e2ıλ′′
. Angles λ, λ′ and λ′′ are defined in Eq. (4.283), and further in

(17.87). Geometric terms that only depend on the shape of the triangle related to
k + p + q = 0, denoted x , y and z are defined as for the isotropic case, in Eq. (4.332).

With respect to arbitrary anisotropy, only the helicity spectrum and the helicity
transfer are omitted, considering that these terms cannot be created and are only
present if introduced in initial data. Absence of helicity spectrum is generally justi-
fied in homogeneous turbulence, despite the interest of (random) helical modes for
investigating nonlinear interactions. Notice that the latter equations are most easily
obtained from the sophisticated versions EDQNM2 and EDQNM3 for rotating tur-
bulence, given in the next section, by setting � = 0. This way to derive equations
can appears as paradoxical, but, again, it follows from the fact that helical modes
give the best basis for both rotating and non-rotating turbulence.

Of course the conventional EDQNM model for 3D isotropic turbulence is
recovered using E = E(k)/(4πk2), Z = 0, and

∫∫∫
d3 p = 2π

∫∫
�k

(pq/k)dpdq in
Eq. (17.61), whereas the averaging on λ yields T z = 0 in the same conditions.

17.8.2.1 Recovering the Conventional 2D Case with Additional “Jetal”
Mode

Another interesting result is the derivation of an extended isotropic 2D version,
setting k⊥ = k, k‖ = 0, and using

∫∫∫
d3 p = ∫∫

�k
(1 − x2)−1/2dpdq, e2ıλ = e2ıλ′ =

e2ıλ′′ = −1. In this case, the expression of T (E) − T (Z) in terms ofE − Z is exactly the
2D EDQNM equation used by Leith (1971).E − Z at k‖ = 0 is the limit of the toroidal
energy spectrum, directly linked to vertical vorticity. In addition, the expression of
T (E) + T (Z) in terms of both E − Z and E + Z in this limit, is exactly the EDQNM
equation of a passive scalar advected by a 2D flow. E + Z is the limit of poloidal
energy which represents a purely vertical mode, which is referred to as the jettal mode
by Kassinos and Reynolds), and plays the role of the spectrum of the variance of
the passive scalar (see also Cambon and Godeferd 1993). One recovers the fact that
a 2D-3C (two-dimensional with three velocity components) flow, characterized by
both E − Z (toroidal = vortical) and E + Z (poloidal = jetal) energy spectra, evolves
towards a pure vortical flow, since the energy E − Z is conserved by the inverse
cascade, whereas the energy E + Z is rapidly damped (our best application is the
case of quasi-static MHD in Chap. 12.)

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_12
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17.8.3 The Most Sophisticated Version: EDQNM3

In all cases in which the linear “RDT” effect is shown to be important on the dynamics
of triple correlations, it is not possible to use EDQNM1, and EDQNM2 is potentially
more relevant. Nevertheless, the Markovianization in EDQNM2 is not completely
consistent with the decomposition in terms of slow and rapid terms from the very
definition of slow variables in Eqs. (17.50) and (17.51). The most straightforward
Markovianization consist of setting t = t ′ in the slow terms and in the slow terms
only. On the other hand, this version appeared as not the most relevant one in EDQNM
cases with “production” and is really restricted to bridging wave turbulence theory.
All details are given in Sect. 17.10, for purely rotating turbulence only.

17.9 Detailed Equations from EDQNM1 in the Model
by Mons, Cambon and Sagaut

The model by Mons et al. (2016) is introduced in Chap. 8. The state-vector, extracted
from the second-order spectral tensor, consists of spherically averaged descriptors
with 11 (in the most general case) components: The classical “radial” energy spec-
trum E(k, t) and two deviatoric tensors for directional anisotropy and polarization
anisotropy, having 5 independent components each one (symmetric trace-free rank-3
tensors.) This state-vector is governed by the following equations:

(
∂

∂t
+ 2νk2

)
E(k, t) = SL(k, t) + T (k, t), (17.63)

(
∂

∂t
+ 2νk2

)
E(k, t)H (dir)

i j (k, t) = SL(dir)
i j (k, t) + SN L(dir)

i j (k, t), (17.64)

(
∂

∂t
+ 2νk2

)
E(k, t)H (pol)

i j (k, t) = SL(pol)
i j (k, t) + SN L(pol)

i j (k, t), (17.65)

with

2

(
δi j

3
T (k, t) + SN L(dir)

i j (k, t) + SN L(pol)
i j (k, t)

)
= Si j (k, t) + Pi j (k, t). (17.66)

The tensors SL(k, t), SL(dir)
i j (k, t) and SL(pol)

i j (k, t) account for the linear terms

corresponding to the interactions with the mean flow, whereas T (k, t), SN L(dir)
i j (k, t)

and SN L(pol)
i j (k, t) correspond to nonlinear transfer terms. The tensor Pi j (k, t) is

the spherically integrated spectral counterpart of the slow pressure-strain rate ten-
sor, to which a return-to-isotropy is conventionally attributed. The tensor Si j (k, t)
corresponds to a ‘true’ transfer tensor with

∫ ∞
0 Si j (k, t)dk = 0 ∀t .

http://dx.doi.org/10.1007/978-3-319-73162-9_8
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17.9.1 Closure for the Linear Terms Induced by
Mean-Gradient-Effects

These terms are exact and linear in the equation governing the full spectral tensor, or
equivalently E(k, t) and Z(k, t). Taken independently with zero contribution from
third-order correlations, they reflect the RDT limit for the evolution of two-point
second-order velocity correlations. In order to obtain the corresponding, spherically
averaged terms SL(k, t), SL(dir)

i j (k, t) and SL(pol)
i j (k, t), one has to analytically solve

the spherical averaging of tensorial products of vectors α = k/k. This is done fol-
lowing the procedure described in Cambon et al. (1981) and Mons et al. (2016).
Performing the spherical integration of the linear terms in Eq. (2.102) or that of
the linear terms in Eqs. (8.39) and (8.40) with the representation (8.44) and (8.45)
leads to:

SL(k, t) = −2Slm
∂

∂k

(
k E H (dir)

lm

) − 2E Slm

(
H (dir)

lm + H (pol)
lm

)
, (17.67)

SL(dir)
i j (k, t) = 2

15
Si j E − 2

7
E

(
Sjl H (pol)

il + Sil H (pol)
jl − 2

3
Slm H (pol)

lm δi j

)

+ 2

7

(
Sil

∂

∂k

(
k E H (dir)

l j

) + Sl j
∂

∂k

(
k E H (dir)

li

) − 2

3
Slm

∂

∂k

(
k E H (dir)

lm

)
δi j

)

− 1

7
E

(
Sjl H (dir)

li + Sil H (dir)
l j − 2

3
Slm H (dir)

lm δi j

)
+ E

(
A jn H (dir)

ni + Ain H (dir)
jn

)

− 1

15
Si j

∂

∂k

(
k E

)
,

(17.68)

SL(pol)
i j (k, t) = −2

5
E Si j − 12

7
E

(
Sl j H (dir)

li + Sil H (dir)
l j − 2

3
Slm H (dir)

lm δi j

)

− 2

7

(
Sjl

∂

∂k

(
k E H (pol)

il

) + Sil
∂

∂k

(
k E H (pol)

l j

) − 2

3
Sln

∂

∂k

(
k E H (pol)

ln

)
δi j

)

+ 1

7
E

(
Sil H (pol)

l j + Sjl H (pol)
li − 2

3
Slm H (pol)

lm δi j

)
− 1

3
E

(
Ãil H (pol)

l j + Ã jl H (pol)
li

)
,

(17.69)
with E = E(k, t), H (dir)

i j = H (dir)
i j (k, t), H (pol)

i j = H (pol)
i j (k, t), Si j = (Ai j + A ji )/2,

Ãi j = (Ai j − A ji )/2.
Incidentally, The consistency with the linear system in Cambon et al. (1981) is

checked, and the following equivalence is established:

H (dir)
i j (k, t) =

(
1 + 2

5
a(k, t)

)
Hi j (k, t), H (pol)

i j (k, t) = −2

5
a(k, t)Hi j (k, t),

(17.70)

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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so that the adjustable parameter a(k, t) previously used in Cambon et al. (1981)
can be interpreted as a partition parameter prescribing a direct linkage of H (dir)

i j and

H (pol)
i j to the total deviatoric tensor Hi j .

17.9.2 Closure for the Terms Mediated by Third-Order
Correlations

The transfer terms T (k, t), SN L(dir)
i j (k, t) and SN L(pol)

i j (k, t) are obtained from the
spherical integration of the expressions of the transfer terms T (E)(k, t) and T (Z)(k, t)
closed by the EDQNM procedure (17.61) and (17.62) and using the representation
(8.44) and (8.45) for E(k, t) and Z(k, t). It is consistent to retain only linear con-
tributions from the tensors H (dir)

i j (k, t) and H (pol)
i j (k, t) in the terms present in the

right-hand-sides of the system (17.63)–(17.65). In anisotropic triadic closure, the
new difficulty is to solve the integral over the orientation of the plane of the triad,
which is performed analytically. Final results are:

T (k, t) =
∫∫
�k

θkpq16π2 p2k2q(xy + z3)E ′′
0(E

′
0 − E0)d pdq, (17.71)

SN L(dir)
i j (k, t) =

∫∫
�k

θkpq4π2 p2k2qE ′′
0

[
(y2 − 1)(xy + z3)(E ′

0 − E0)H (pol)′′
i j

+ z(1 − z2)2E ′
0 H (pol)′

i j

]
dpdq

+
∫∫
�k

θkpq8π2 p2k2q(xy + z3)E ′′
0

[
(3y2 − 1)(E ′

0 − E0)H (dir)′′
i j

+ (3z2 − 1)E ′
0 H (dir)′

i j − 2E0 H (dir)
i j

]
d pdq,

(17.72)

SN L(pol)
i j (k, t) =

∫∫
�k

θkpq 4π2 p2k2qE ′′
0

[
(xy + z3)

(
(1 + z2)E ′

0 H (pol)′
i j − 4E0 H (pol)

i j

)

+ z(z2 − 1)(1 + y2)(E ′
0 − E0)H (pol)′′

i j + 2z(z2 − y2)E ′
0 H (pol)′

i j + 2yx(z2 − 1)E0 H (pol)′′
i j

]
dpdq

+
∫∫
�k

θkpq 24π2 p2k2qz(z2 − 1)E ′′
0

[
(y2 − 1)(E ′

0 − E0)H (dir)′′
i j + (z2 − 1)E ′

0 H (dir)′
i j

]
d pdq,

(17.73)

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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Pi j (k, t) =
∫∫
�k

θkpq16π2 p2k2q(yz + x)

× E ′′
0

[
E ′

0

(
y(z2 − y2)

(
6H (dir)′′

i j + H (pol)′′
i j

) − (xz + y)H (pol)′′
i j

)

− y(z2 − x2)E0
(
6H (dir)′′

i j + H (pol)′′
i j

)]
d pdq,

(17.74)
with E0 = E(k,t)

4πk2 , E ′
0 = E(p,t)

4π p2 , E ′′
0 = E(q,t)

4πq2 , H ()
i j = H ()

i j (k, t), H ()′
i j = H ()

i j (p, t) and

H ()′′
i j = H ()

i j (q, t), where H ()
i j may refer to either H (dir)

i j or H (pol)
i j . The integrals over

p and q are performed over the domain �k so that k, p and q are the lengths of
the sides of the triangle formed by k, p and q. The expression of the “true” (zero
integral, corresponds to a conserved statistical quantity in the inviscid limit) transfer
Si j (k, t) can be deduced from Eqs. (17.66) and (17.71)–(17.74).

The structure of these equations is very close to the one for EDQNM in the
isotropic case. Equation (17.71) for T (k, t) is exactly the same, and geometric coef-
ficients x, y, z as well, defined in Eq. (4.332).

Application of this model are reported in both Chaps. 8 and 9.

17.10 Application of Three EDQNM(1-2-3) Versions
to the Rotating Turbulence

The most general EDQNM versions were carried out towards complete achievement
for pure rotation only. In this case, the zeroth order state consists of superimposed
oscillating modes of motion, without amplification and interaction: They correspond
to neutral dispersive inertial waves. Time integral of a three-fold product of Green’s
functions converges, provided an infinitesimal viscous (or eddy damping) term is
added. In the limit of small interactions, two-point closures and theories of wave
turbulence share an important background. Even if the latter are developed in the
inviscid case, a vanishing damping term is also added, as a mathematical convenience,
in order to regularize the resonant operators.

The EDQNM1 version presents little relevance since the isotropy is broken by the
Green’s function only at the level of triple correlations: started with isotropic initial
data, EDQNM1 equations conserve isotropy and are not at all affected by rotation.
Equations (17.61) and (17.62), however, remains of interest in some situations, as
discussed in Sect. 17.8.2, illustrating the interest of the (E/Z ) decomposition. In
addition, one can recall the interest of an “isotropized” simplified model, in which
the rotation rate � is simply incorporated in the eddy damping term, in Eq. (7.46).

Detailed EDQNM2 and EDQNM3 equations are written below in terms of E and
Z (without initial helicity).

In EDQNM3 equations recalled below from Cambon et al. (2004a) ((17.79) and
(17.80)), T (E,Z ,h) are given by volume integrals close to the ones found in the
appendix of Cambon et al. (1997)(CMG hereafter). Helicity is ignored here as in

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_7
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CMG, for the sake of brevity. The integrands are completely expressed in terms of
(E, Z) through quadratic terms involving triads. The most laborious calculation is
for deriving five geometric factors, denoted A1(k, p, q), . . . A5(k, p, q). Fortunately,
these factors were calculated once for all, and play the same role in EDQNM2 and
EDQNM3.

The way to simply move from EDQNM2 to EDQNM3, in the absence of helicity,
is found as follows.

The only explicit (in addition to the time dependence of the e and Z variables
themselves) time-dependent term in the EDQNM2 integrand of T (E,Z) is

exp[−zkpq(t − t ′)] = exp[(−μkpq − ı�kpq)(t − t ′)], �kpq = sσk + s ′σp + s"σq ,

(17.75)
and its integral gives

∫ t

−∞
e−zkpq (t−t ′)dt ′ = 1

zkpq
. (17.76)

The polarization anisotropy is now denoted ζ in order to avoid confusion with its
slow counterpart, which is only relevant here, Z , with the relationship:

ζ(sk, t ′) = Z(sk, t ′)e−2ısσk t ′
. (17.77)

Only Z has to be considered as “slow”, so that it has to be frozen to t ′ = t in
the temporal integral over t ′ resulting from EDQN. Accordingly, the related phase
term in ζ will give an additional (versus EDQNM2) contribution to the temporal
integrand, with the following modifications:

(i) There is no modification for the terms which do not include ζ in T (E)

(ii) Terms containing ζ in T (E) are altered in replacing 1/zkpq by

∫ t

−∞
e−zkpq (t−t ′)−ı�z t ′

dt ′ = e−ı�z t

zkpq − ı�z
, (17.78)

with �z = 2s ′′σq for Z ′′-type term, �z = 2sσk for Z -type term, �z = 2s ′′σq +
2sσk for Z Z ′′-type terms, and �z = 2s ′′σq + 2s ′σp for Z ′ Z ′′-type terms.

Consequently, the EDQNM3 version without helicity of T (E) becomes

T (E) = 1

23

∑
ss ′s ′′

∫∫∫
C2

kpq

[
A1(sk, s ′ p, s ′′q)

μ + ı(sσk + s ′σp + s ′′σq)
E ′′(E − E ′)

]
d3 p

+ 1

23

∑
ss ′s ′′

∫∫∫
C2

kpq

[
A2(sk, s ′ p, s ′′q)

μ + ı(sσk + s ′σp − s ′′σq)
e2ıs ′′(λ′′−σq t)E Z(s ′′q)

]
d3 p
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+ 1

23

∑
ss ′s ′′

∫∫∫
C2

kpq

[
A3(sk, s ′ p, s ′′q)

μ + ı(−sσk + s ′σp + s ′′σq)
e2ıs(λ−σk t)E ′′ Z(sk)

]
d3 p

− 1

23

∑
ss ′s ′′

∫∫∫
C2

kpq

[
A5(sk, s ′ p, s ′′q)

μ + ı(sσk + s ′σp − s ′′σq)
e2ıs ′′(λ′′−σq t)E ′ Z(s ′′q)

]
d3 p

+ 1

23

∑
ss′s′′

∫∫∫
C2

kpq

[
A4(sk, s′ p, s′′q)

μ + ı(−sσk + s′σp − s′′σq )
e2ıs′′(λ′′−σq t)+2ıs(λ−σk t) Z(s′′q)Z(sk)

]
d3 p

− 1

23

∑
ss′s′′

∫∫∫
C2

kpq

[
A4(sk, s′ p, s′′q)

μ + ı(sσk − s′σp − s′′σq )
e2ıs′′(λ′′−σq t)+2ıs′(λ′−σpt) Z(s′′q)Z(s′ p)

]
d3 p,

(17.79)
where the geometric factors A1 to A5 are given in CMG appendix, and are recalled
below. Equations are very symmetric. With respect to EDQNM2, the presence of a
Z , or Z ′, Z ′′ factor results in changing the corresponding sign in the term ±σk ±
σp ± σq , and to add the specific time-oscillating phase factor e−2ıσt . T (E) being real,
it is possible to only retain s = 1 and to replace complex contributions by twice their
real part. As in Eqs. (17.61) and (17.62), E = E(k, t), E ′ = E( p, t), E ′′ = E(q, t).

The EDQNM3 version of T (Z), given just below, is derived from its EDQNM2
counterpart in a similar way, except that the whole term is multiplied, in addition, by
the oscillating term e2ıσk t :

T (Z) = 1

23

∑
s ′s ′′

∫∫∫
C2

kpqe2ı(σk t−λ)

[
A3(k,−s ′ p,−s ′′q)

μ + ı(σk + s ′σp + s ′′σq)
E ′′(E ′ − E)

]
d3 p

+ 1

23

∑
s ′s ′′

∫∫∫
C2

kpqe2ı(σk t−λ)

[
A4(k,−s ′ p,−s ′′q)

μ + ı(σk + s ′σp − s ′′σq)
e2ıs ′′(λ′′−σq t)E Z(s ′′q)

]
d3 p

+ 1

23

∑
s ′s ′′

∫∫∫
C2

kpqe2ı(σk t−λ)

[
A1(k,−s ′ p,−s ′′q)

μ + ı(−σk + s ′σp + s ′′σq)
e2ı(λ−σk t)E ′′ Z(k)

]
d3 p

− 1

23

∑
s ′s ′′

∫∫∫
C2

kpqe2ı(σk t−λ)

[
A5(k,−s ′ p,−s ′′q)

μ + ı(σk − s ′σp + s ′′σq)
e2ıs ′(λ′−σpt)E ′′ Z(s ′ p)

]
d3 p

+ 1

23

∑
s′s′′

∫∫∫
C2

kpq e2ı(σk t−λ)

[
A2(k, −s′ p, −s′′q)

μ + ı(−σk + s′σp − s′′σq )
e2ıs′′(λ′′−σq t)+2ı(λ−σk t) Z(s′′q)Z(k)

]
d3 p

− 1

23

∑
s′s′′

∫∫∫
C2

kpq e2ı(σk t−λ)

[
A2(k, −s′ p, −s′′q)

μ + ı(σk − s′σp − s′′σq )
e2ıs′′(λ′′−σq t)+2ıs′(λ′−σp t) Z(s′′q)Z(s′ p)

]
d3 p.

(17.80)



866 17 The Essentials of Linear and Nonlinear Theories and Models

Accordingly, all explicit time-dependent oscillating terms cancel for the T (Z) term
which depends on the third one, Z(k).

Let us recall the definition of geometric coefficients5:

Ckpq = sin(p, q)

k
= sin(k, q)

p
= sin(k, p)

q
(17.81)

and
A1(k, p, q) = −(p − q)(k − q)(k + p + q)2 (17.82)

A2(k, p, q) = −(p − q)(k + q)(k + p + q)(k + p − q) (17.83)

A3(k, p, q) = (p − q)(k + q)(k + p + q)(−k + p + q) (17.84)

A4(k, p, q) = (p − q)(k − q)(k + p + q)(k − p + q) (17.85)

A5(k, p, q) = −(p − q)(p + q)(k + p + q)(k + p − q) (17.86)

The other geometric coefficients which depend not only on the triad geometry
(via moduli k, p, q), but also on the orientation of its plane, are only λ,λ′,λ′′ terms.
Following Cambon (1982), Cambon and Jacquin (1989), Waleffe (1993) they are
displayed by substituting to the local frames related to the helical (or complex Craya–
Herring) decomposition (N(sk), N(s ′ p), N(s ′′q)) alternative ones having their polar
axis normal to the plane of the triad rather than to the plane of rotation, so that:

N(sk) = esıλ (β + ısγ)︸ ︷︷ ︸
W(s)

, , N(s′ p) = es′ıλ′
(β′ + ıs′γ)︸ ︷︷ ︸

W ′(s′)

, N(s′′q) = es′′ıλ′′
(β′′ + ıs′′γ)︸ ︷︷ ︸

W ′′(s′′)

,

(17.87)

in which γ is the unit vector normal to the plane of the triad, whereas β, β′, β′′ are
unit vectors all located in the plane of the triad, and normal to k, p, and q respectively.
Accordingly, the scalar products in terms of k, p, q, W , W ′, and W ′′ depend only
on the moduli k, p, q. These scalar products generate all the A1-A5 terms.

The last equations, derived from the previous one, which are used in general
EDQNM equations (e.g. (17.79) and (17.80)), are

cos θp = p‖/p = −z cos θk +
√

1 − z2 sin θk cos λ, (17.88)

cos θq = q‖/q = −y cos θk −
√

1 − y2 sin θk cos λ, (17.89)

with y = cos(k, q), z = cos(k, p), sin(k, q) = Ckpq p, sin(k, p) = Ckpqq, with
x, y, z, Ckpq given in Eqs. (4.286) and (4.332). Accordingly,

5The additional factor 2p/k was a mistake in CMG appendix.

http://dx.doi.org/10.1007/978-3-319-73162-9_4
http://dx.doi.org/10.1007/978-3-319-73162-9_4
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p cos θp = −q cos θq = pqCkpq sin λ (17.90)

at k‖ = 0.
The asymptotic limit of wave-turbulence in terms of E, Z , H is (Bellet et al. 2006)

T (E) = π

4

∑
s′,s′′

∫∫
Ms′s′′

C2
kpq

A1(k, s′′q, s′ p)

s′Cg( p) − s′′C(q)

[E ′(E ′′ − E) + s′H′(s′′H′′ − H)
]

d S,

(17.91)

T (h) = π

4

∑
s′,s′′

∫∫
Ms′s′′

C2
kpq

A1(k, s′′q, s′ p)

s′Cg( p) − s′′C(q)

[
s′H′(E ′′ − E) + E ′(s′′H′′ − H)

]
d S,

(17.92)
and

T (z) = −Z
π

4

⎡
⎣∑

s′,s′′

∫∫
Ms′s′′

C2
kpq

A1(k, s′′q, s′ p)

s′Cg( p) − s′′C(q)
E ′d S + ı

∫∫∫
C2

kpq
A1(k, s′′q, s′ p)

s′Cg( p) − s′′C(q)
E ′d3 p

⎤
⎦ ,

(17.93)

in which Ms ′s ′′ is the family of resonant surfaces and Cg is the group velocity of
inertial waves.

Equations (17.91) and (17.92) are fully consistent with the ones in Galtier (2003).
The last equation, and Z in general, is ignored in conventional wave-turbulence theory
(Waleffe 1993; Galtier 2003). The transfer term T (Z) is linear in Z , and it is the only
term which does not reduce to a surface integral (

∫∫
d S) over surfaces of resonant

triads: the integral
∫∫∫

d3 p in Eq. (17.93) denotes a principal value integral in the
vicinity of the resonant surface. Much more complex quadratic interactions terms
which involve Z in volumetric (Eqs. (17.79) and (17.80) are discarded in AQNM
when removing rapidly oscillating terms.

In the case of MHD (Magneto-Hydro-Dynamics) flows addressed in Chap. 12, the
use of similar two-point closure/ wave-turbulence theories is particularly relevant (see
Galtier et al. 2001 for flows dominated by Alfvén waves).

Because purely rotating flows perfectly illustrate how to bridge from anisotropic
EDQNM to wave turbulence theory, some last comments on the latter theory are prob-
ably useful. In addition to reviews (Newell and Rumpf 2011 and book by Nazarenko
2011), a wealth of experimental and theoretical studies appeared in the last decade, but
much more for surface waves and vibrating plates than for deep rotating or stratified
flows, with internal waves. The terminology inherited from Zakharov et al. (1992)
is dominant and does not contribute to clarify the linkage of AQNM (Asymptotic
QNM) to wave turbulence theory: “kinetic equations” and “Random phase Approx-
imation” refer more to the Boltzmann distribution equation, for which the use of the
central limit theorem is obvious; accordingly, the recourse to a QNM approximation
is often implied, and not even discussed. On the other hand, to consider “kinetic equa-
tions” as a relevant limit of Lin equations, used in developed turbulence, is clearer;
accordingly, the QN ingredient is not a trivial byproduct of a central limit theorem,
and it must be investigated with care. This was done by Benney and Newell (1969)
and in following studies by the same team.

http://dx.doi.org/10.1007/978-3-319-73162-9_12


868 17 The Essentials of Linear and Nonlinear Theories and Models

17.11 Other Cases of Flows with and Without Production

Throughout this book, we have distinguished between flows dominated by production
and flows dominated by waves. The first class is illustrated by classical shear flows,
in which a nonzero production term is displayed in the equations governing the
Reynolds Stress tensor. This production is often related to growth of instabilities,
when stability analysis is addressed. The second class is illustrated in Chaps. 7, 10
and 11 as being the most relevant area to apply spectral closures. Note that the
dynamics can be dominated by dispersive waves, which are neutral but for a small
part of the configuration space, in which exponential amplification occurs. In the
latter case, e.g. for flows with weak ellipticity (i.e. S 
 �) the production of energy
is nonzero, but classic single-point closure models are of poor relevance, since only
particular orientations in wave-space are subjected to parametric instability.

17.11.1 Effects of the Distorting Mean Flow

17.11.1.1 Hyperbolic and Elliptic Cases

In the hyperbolic and elliptic cases, with 0 �= S �= � in Eq. (8.8), the RDT Green’s
function can display exponential growth, at least for particular angles of k (k3/k ∼
1/2 in the case S 
 �0). If the bare zeroth-order response function is only modified
by eddy damping, with exponential decorrelation as in Eq. (17.57), convergence is
not ensured for the time integral of the three-fold product GGG in the generic closure
relationship. Another type of nonlinear decorrelation operator, e.g. a Gaussian one,
could be used.

17.11.1.2 Pure Shear

A less critical situation occurs when S = � (pure plane shear), since the RDT Green’s
function yields only algebraic growth, so that the viscous term ensures convergence
of the time integral involved in the closure. Nevertheless, it is very cumbersome
to develop, and especially to solve numerically with enough accuracy, a complete
anisotropic EDQNM model in this case. Recall that even calculation of single-point
correlations resulting from viscous RDT at high St is not easy (Beronov and Kaneda,
private communication). Direct Numerical Simulations suggest that fully nonlinear
effects yield exponential growth for the turbulent kinetic energy, but computations
are very sensitive to cumulated errors (remeshing, low angular resolution at small
k, etc.). Such a transition from algebraic growth (linear, small time) to exponential
growth (nonlinear) is mimicked by simple models but not reproduced with suffi-
cient accuracy by spectral models. Interesting scaling laws, however, for possible
exponential growth, follow from self-similarity arguments, as discussed in Chap. 9.

http://dx.doi.org/10.1007/978-3-319-73162-9_7
http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_11
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_9
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17.11.2 Flows Without Production Combining Strong
and Weak Turbulence

A particular class of flows “without production” involves both wavy and non-
propagating modes, the latter being constant in the linear limit. Their dynamics
can mix strong and weak turbulence. On the one hand, strong turbulence is con-
cerned only when nonlinear interactions in terms of the non-propagating modes are
considered: that includes the “toroidal turbulence” for pure stratification, the QG
turbulence for the stratified rotating case, and the pure solenoidal case for the weakly
compressible flow case.

Principal features of flows without production, which are addressed in this book
are collected in Fig. 17.4.

Investigation of interactions with waves is a second step in the study of such flows:
we are firstly faced with the problem of interacting acoustic waves in the latter case
only, because the solenoidal problem is essentially solved (e.g. using conventional
isotropic EDQNM consistent with a Kolmogorov energy spectrum).

17.11.2.1 Buoyant Flows in a Stably Stratified Fluid

In the purely stratified case, gravity wave turbulence is crucial only if the non-
propagating mode, i.e. the toroidal part of the velocity field, is a priori discarded.
This removal is generally unphysical, and oversimplified wave-turbulence studies,
such as the one by Caillol and Zeitlin (2000), are only marginally relevant. The
claim of explaining the horizontal layering in the latter paper is highly misleading.
In contrast, emphasis on rather strong turbulence is much more relevant, at least
at moderate times, looking at the “toroidal cascade”, and the transition from a 3D
isotropic unstructured flow to a strongly anisotropic, horizontally layered, flow can
be described by the statistical theory.

17.11.2.2 Weakly Compressible Isotropic Turbulence

The case of weakly compressible turbulence is not present in Fig. 17.4. In this case,
the solenoidal mode plays a role similar to the toroidal mode in stratified turbulence
and to the QG mode in the rotating and stratified case — see Table 11.2 —, but
the pseudo-acoustic mode is not necessarily a wave-mode: true acoustic waves are
observed at very low wave numbers, while the pseudo-sound régime may hold at
higher wave numbers. As for the case of buoyant turbulence in a stratified fluid, the
basic equations in terms of ‘slow’ amplitudes are

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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∂as

∂t
=

∑
s ′,s ′′=0,±1

∫
k+ p+q=0

exp
(−ı

(
sσk + s ′σp + s ′′σq

)
t
)×

× Nss ′s ′′(k, p)a∗
s ′( p, t)a∗

s ′′(q, t) d3 p (17.94)

Diffusive terms can be neglected for a preliminary discussion of couplings. Of
course, the coupling coefficients Nss ′s ′′ completely differ from their counterparts in
the solenoidal buoyant case subjected to stable stratification, and a0 is two-component
(solenoidal mode) in the compressible case. A similar cartoon, however, can be
discussed in both flow cases, depending on the signs (s, s ′, s ′′), or triad polarities, as
follows:

(i) Non-propagating slow mode, s = 0. It is clear that the nonlinear dynamics is
dominated by interactions between slow modes only, so that the leading terms
may correspond to s ′ = s ′′ = 0: one recovers the ‘toroidal turbulence’ for the
stratified flow case and pure incompressible dynamics for the weakly compress-
ible flow case. The main difference is that incompressible isotropic turbulence
is well understood, at least regarding energy spectrum and energy transfer,
whereas toroidal turbulence is still under investigation. Consequently, a large
Reynolds number Kolmogorov energy spectrum can be specified and fixed for
the solenoidal mode, as in Fig. 13.3.

(ii) Our main interest in this subsection is the mode related to s = ±1, generating
“dilatational velocity” and “pressure” contributions, which are closely connected
together or not via a possible acoustic equilibrium. It is very difficult to rank a
priori the three kinds of interactions (±1, 0, 0), (±1,±1, 0) and (±1,±1,±1)

for (s, s ′, s ′′). The first one is never resonant, but cannot be completely removed
from consideration if the order of magnitude of a0 is much larger than the one
of a±1. The second one will select resonant ‘dyads’, like k ± p = 0. Only the
third one will select resonant triads, as k ± p ± q = 0.

It is clear that Wave turbulence is only a part of the whole story, which is even
irrelevant in some cases, like the toroidal turbulence in the stably stratified case. A
simplified EDQNM3 closure strategy is applicable, but the study by Fauchet (1998)
has shown the importance of a non-conventional eddy-damping term denoted V in
this chapter, or, more generally of the nonlinear part of the Kraichnan’s response
function.

Finally, we have illustrated closure theories for weakly compressible flows in
Chap. 13 by a peculiar study. This viewpoint, which may appear as idiosyncratic, is
mainly motivated by the existence of detailed asymptotic laws which were derived,
with practical interest. There exist an important literature on this topic, from wave
turbulence for nonlinear sound (Zakharov et al. 1992), to absolute equilibrium in
truncated Euler equations. For instance, a generalized k−5/3 law can be inferred from
Kraichnan (1955) for both solenoidal and acoustic modes, even in the viscous case,
but radiation to infinite is excluded in this study.

http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_13
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17.11.3 Role of the Nonlinear Decorrelation Time-Scale

When comparing strong turbulence without production and wave-turbulence, it is
important to stress significant differences:

• Conventional isotropic EDQNM works well, at least for predicting energy spectra
and transfers, but we do not know really why! The role of the eddy damping is
crucial, and even the QN structure only results from a heuristic closure strategy.
In any case of strong turbulence less documented, as the toroidal turbulence in
stably stratified flows, the conventional isotropic eddy damping probably needs
refinement, especially in the spectral region where energy concentrates (quasi-
VSHF 1D modes). Recourse to more sophisticated self-consistent closure theories
may be useful.

• The“pure” wave turbulence theory, which appears as a limiting case of QNM
closure, also works well, but we know why! QN structure can be supported by
mathematical analysis (Benney and Newell 1969) or by physically relevant random
phase approximation. Markovianization results from a rigorous rapid/slow time
scale decomposition, and ED is unimportant in the asymptotic limit. In this limit,
there is no need for a significant nonlinear renormalization of the bare dispersion
frequency, too.

• The role of the eddy damping appears to be very subtle in the “mixed” case, when
wave-turbulence coexists with strong turbulence. In stably-stratified turbulence, a
quasi-perfect agreement was found between DNS results and EDQNM2 results
(Godeferd and Staquet 2003), keeping the same eddy-damping (inherited from
HIT) for all interactions, but only the relatively low Reynolds number range, which
was allowed in DNS, was investigated. In the case of very high Reynolds number
and very Low Froude number, with large ReFr2 parameter, which is discussed at
the end of Chap. 10, a refined analysis will be needed. The case of quasi-isentropic
isotropic turbulence offers a very good example: Keeping the same eddy-damping
for all interactions yields poor results. Very striking results are found by choosing
a Gaussian kernel for V , as in the Table 13.1 instead of a exponential one. As
discussed in Chap. 13, this cannot be obtained by replacing the acoustic wave-
frequency by a renormalized nonlinear one. A relevant explanation, given in this
book but not in the original reference Fauchet (1998), is to add a random part to the
linear dispersion frequency, in agreement with the Kraichnan’s random oscillator.
A related problem is the possible need for a “renormalized” wave frequency
in wave-turbulence. For instance, a nonlinear shift in Rossby wave frequency
is demonstrated from statistical theory and DNS (Kaneda and Holloway 1994;
Ishihara and Kaneda 2001), whereas such a shift seems to be useless in 3D rotat-
ing turbulence (inertial wave turbulence) and in MHD turbulence (Alfven wave
turbulence). The study of Galtier et al. (2001) had the merit to show that even
non-dispersive (or semi-dispersive) waves can generate ‘weak’ wave turbulence,
against a well-established prejudice. Of course, phase-mixing results from dis-
persivity, and naturally damps nonlinearity. The ‘prejudice’, however, is possibly
linked to a confusion between a pure advection term by a velocity, V , yielding

http://dx.doi.org/10.1007/978-3-319-73162-9_10
http://dx.doi.org/10.1007/978-3-319-73162-9_13
http://dx.doi.org/10.1007/978-3-319-73162-9_13
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exp(ı k·V ) in Fourier space, and the phase term ±ı k·V of non-dispersive waves,
…forgetting the sign ±1 ! Because of the sign, which allows propagation in oppo-
site directions (generally coming from second order in time, Dalembertian-type,
operator), wave operators affect the triple correlations — even in the absence of
dispersive effects, whereas pure advection terms do not. Rossby waves are char-
acterized by a first order in time operator, and therefore propagate only in one
direction. We do not question here the ‘wave’ terminology, even if Rossby waves
could be called ‘westward advected oscillations’ instead of ‘waves’. This is a ques-
tion of definition of waves, but one can point out a very different nature of inertial,
Alfven and Rossby waves. The Rossby waves could be less efficient in damping
nonlinearity, so that a nonlinear shift would reveal not too “weak” turbulence.

17.12 Connection with Self-consistent Theories:
Single-Time or Two-Time?

The Kraichnan’s DIA, in spite of some drawbacks, played a crucial role in the long
history and progressive generation of “triadic closure” theory. The two-time aspect
is essential in the first version, as well as in its Lagrangian or semi-Lagrangian
more sophisticated subsequent variants (see Kaneda 2007 for a review). The aim
of such two-time and two-point (or even three-point) statistical theory is to derive
a consistent set of close equations for both the response tensor, corresponding to
G(N L)

(k, t, t ′) in this chapter, and to the two-time spectral tensor, which generalizes
our R̂ as R̂(k, t, t ′).

A theory formulated in terms of two-time statistical tensors can be converted
in its single-time counterpart using a so called fluctuation-dissipation theorem. For
instance

R̂i j (k, t, t ′) = G(N L)
in (k, t, t ′)R̂nj (k, t ′, t ′), (17.95)

ignoring the possible time-dependency of the wavevector for the sake of simplicity. In
conventional applications, the two-time dependency of the response tensor is a priori
specified (for instance exponential (t − t ′)-decorrelation). EDQNM can be presented
as a byproduct of DIA by this way, but we think that it is a rather complicated and
indirect way to proceed. Few applications of DIA or EDQNM were made in the
context of HAT. One can mention the return to isotropy from a (weak) anisotropic
(axisymmetric) case by Herring (1974), and the weakly axisymmetric QG EDQNM
model by the same author mentioned in Chap. 11. More sophisticated anisotropic
models were developed by Sanderson et al. (1986), using a small number of spherical
harmonics. None of this studies was able of incorporating as a building block the
RDT Green’s function as a natural zeroth order response tensor, if we exclude Wave
Turbulence, of course.

http://dx.doi.org/10.1007/978-3-319-73162-9_11
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A general formulation of two-time DIA yields a single Green’s function in the
nonlinear closure of the equation for the two-time correlation spectral tensor, and
the two other factors then appear by means of the above fluctuation-dissipation
relationship, leading to essentially the same form as Eq. (2.117) with a threefold
product of response tensors. Of course, solving (inverting?) the modified response
tensor operator for third-order single-time correlations is simpler and more direct,
the three-fold product even appearing in the basic equation for velocity fluctuation,
rewritten in Eq. (17.51). The final DIA-type evolution equation for the two-time
spectral tensor therefore contains an integral whose structure is much the same as
the EDQN expression (2.117), with terms such as Glq(q, t, t ′)R̂qn(q ′, t ′) replaced
by the two-time spectral tensor R̂ln(q ′, t, t ′), leaving one remaining Green’s function
from the threefold product, which is replaced by the response tensor.

A more streamlined procedure could be based on generalized EDQNM, using DIA
and subsequent self-consistent theories for improving the Eddy Damping factor only
without excluding other variants. This strategy can be used for deriving complete
two-time statistics, as illustrated in RDT by Kaneda and Ishida (2000), in order to
have access to R̂(k, t, t ′). The way of solving operators linked to any product of
response tensors is applicable. The only difficulty could result from a very complex
equation for the response tensor G(N L)

(k, t, t ′), with no explicit simplified solution
in terms of R̂(k, t, t ′) (such as G(0)

(k, t, t ′)V (k, t, t ′)).

17.13 Applications to Weak or Moderate Anisotropy

Applications to weakly anisotropic flows have been mentioned previously: Herring
(1974), Sanderson et al. (1986). In addition, some recent applications of LRA to the
response of turbulence to a weak linear operator in the presence of strong nonlinearity
deserves attention, with a first survey in Chap. 8.

17.13.1 A Self-consistent Representation of the Spectral
Tensor for Moderate Anisotropy

The most general decomposition of the spectral tensor (e.g. the E/Z/H decomposi-
tion introduced and discussed in Chap. 2), which holds for arbitrary flow anisotropy,
involves never more than four real scalars. In addition to the very existence of the
polarization anisotropy Z , anisotropy is reflected by angle-dependence of these basic
scalars. Looking at the trace of the spectral tensor, it is clear that E(k)/(4πk2) is only
the zeroth-degree angular harmonic of E(k) and gives no information on its angular
distribution in wave-space. Nevertheless, some information about this angular dis-
tribution can be obtained by spherically averaging all the components of the spectral
tensor R̂, because some weighting factors, such as the projector Pi j (for E) or the
polarization deviator Ni N j (for Z ) generate angular harmonics until the degree 2.

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_2
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As a result, the following self-consistent decomposition is found

R̂i j (k, t) = E(k)

4πk2

[(
1 − 15H (dir)

pq
k pkq

k2

)
Pi j + 5

(
Pin Pjm H (pol)

nm + 1

2
Pi j H (z)

pq
k pkq

k2

)]
,

(17.96)

in which one can identify the contribution from the directional anisotropy as

R̂(dir)
i j =

(
E − E

4πk2

)
Pi j = −15H (dir)

pq (k)
kpkq

k2

E(k)

4πk2
Pi j (k), (17.97)

and the contribution of polarization anisotropy6 as

R̂(pol)
i j = 5

E(k)

4πk2

[
Pin(k)Pjm(k)H (pol)

nm (k) + 1

2
Pi j (k)H (pol)

pq (k)
kpkq

k2

]
, (17.98)

in addition to the purely isotropic part

R̂(iso)
i j = E(k)

4πk2
Pi j (k).

This decomposition, introduced by Cambon and Rubinstein (2006), can generalize
many other similar tensorial expansions. It is self-consistent in the sense that it
does not involve any adjustable parameter: Given an arbitrary anisotropic R̂, it is
possible to derive from it the spherically averaged spectra H (dir)

i j (k) and H (pol)
i j (k)

defined in Chap. 2, and then to reconstruct its angle-dependent form, up to a given
degree of angular harmonics, using Eq. (17.96). The difference between the original,
arbitrarily anisotropic, R̂, and its weakly anisotropic approximation generated by
H (dir)

i j (k) and H (pol)
i j (k) is the contribution from higher degree harmonics which

cannot be reconstructed from H (dir)
i j and H (pol)

i j alone. The general decomposition in
Eq. (17.96) is strictly equivalent to Eqs. (8.44) and (8.45) for E and Z .

Going back to the approach of linear response by Ishihara et al. (2002), Yoshida
et al. (2003), Eq. (17.96) is only used for translating the main results in the presence
of a weak shear, as already touched upon in Chap. 8. This approach is very different
from the one dedicated to strongly anisotropic turbulence, since the linear response is
sought with respect to a weak perturbation (the linear “RDT” operator) to a nonlinear
state in statistical equilibrium. In this sense, the tangent response function can be
also weakly anisotropic and therefore far from the RDT linear limit G(0), which is
generally very anisotropic for large t − t ′. A decomposition of G(N L) in terms of a
pure isotropic factor and a weakly anisotropic one is found consistently.

6This form is strictly equivalent to its counterpart in terms of Z , (Z Ni N j ), with Z =
(5/2)E/(4πk2)H (z)

i j N∗
i N∗

j , without using the helical mode vector N .

http://dx.doi.org/10.1007/978-3-319-73162-9_2
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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The linear response has some analogies with the general laws which connect
fluxes and forces in statistical theory for continuum media, with similar symmetry
properties as the ones prescribed by Onsager. The main equation for the response to
a weak mean flow with Ai j velocity gradients is

R̂(aniso)
i j = Qi jnm(k)Anm,

and because of the symmetry of the Qi jnm tensor, only the symmetric part, Snm , of

Anm is eventually displayed. Translated in our own formalism, this yields R̂
(aniso) =

R̂
(dir) + R̂

(pol)
, and, using Eqs. (17.97) and (17.98),

H (dir)
i j (k) = 1

15
(B − A)

(
k

k0

)−2/3

ε−1/3k−2/3
0 Si j , (17.99)

H (pol)
i j (k) = 2

5
A

(
k

k0

)−2/3

ε−1/3k−2/3
0 Si j . (17.100)

For the basic state, a classical Kolmogorov inertial range is recovered, with E(k) =
Ckε

2/3k−5/3, so that the dimensional spectra of deviatoric tensors, E(k)H (dir)
i j and

E(k)H (pol)
i j , exhibit a classical scaling like ε1/3k−7/3, as suggested by Lumley (see

also Chap. 9). In the above equations, k0 is identified with the wavenumber at which
the inertial range can be considered to begin, probably of the same order of magnitude
as the threshold wavenumber kS , or inverse of a Corrsin’s scale, used in Chap. 9.

Accordingly, k−2/3
0 ε2/3 is the typical time scale, and k−2/3

0 ε2/3Si j is the relevant
non-dimensional strain tensor. Finally, A and B are universal constants, obtained in
a satisfactory agreement both by DNS for homogeneous pure plane shear and LRA
theory (Ishihara et al. 2002; Yoshida et al. 2003).

17.13.2 Brief Discussion of Concepts, Results, and Open
Issues

Given the strong constraints given by weak anisotropy, with a spectral tensor which
is necessarily of the form (17.96), and dimensional analysis “à la Lumley”, there
are very few degrees of freedom, and the main results can be obtained by much
simpler, even wrong, ways. The merit of LRA in this case, is to find the result in a
rigorous and self-consistent way, avoiding useless oversimplifications. Even if the
specific shear-advection term inherited from the linear operator has no significant
effect on the tensor H (dir)

i j , which expresses the linear response as in the short-time
RDT limit (see Chap. 8), this shear-advection effect is correctly accounted for in the
intermediate theoretical steps, so that the confusion between relations (17.44) and
(17.45) is avoided from the beginning.

http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_8
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One could expect, at least in the case of pure plane shear, to reconcile an approach
to strong anisotropy, more restricted to large scales, and the linear response theory,
limited to very small scales.

Not even mentioning the case of combined effects of irrotational strain and vor-
ticity, which leads to elliptical or hyperbolical instabilities with exponential growth
in the linear limit, the case of solid-body rotation deserves some attention. It appears
that the Coriolis force has no impact on the linear response. This is consistent with
an objectivity principle satisfied in continuum mechanics. Nevertheless, it is well
known that Chapman–Enskog-type developments for Boltzmann equations can ques-
tion such objective laws if they are carried out at a sufficient order. The constitutive
laws, or fluxes-to-forces relationship could become explicitely Coriolis-dependent
in this situation. In the same way, the effect of solid-body rotation can be recovered
at a further order (quadratic dependency on �?) using LRA.

Another point is the fact that strong anisotropy induced by the Coriolis force at
sufficiently low Rossby number is found to be dominant at small scale, as shown
by both wave turbulence theory and DNS results. The classical picture of strong
anisotropy restricted to largest scales is radically questioned. In this situation, it
seems to be difficult to match both low-Rossby and high-Rossby limits.

17.14 Open Numerical Problems

The numerical cost of solving EDQNM equations, as well as those issued from
similar single-time or even two-time “triadic” theories, is very low in the isotropic
case. This cost, and the complexity of the numerical procedure, can blow up, not
only in an inhomogeneous configuration, as it is often said, but even in the case of
strong anisotropy. The numerical solution of the equations of wave-turbulence was
demanding in terms of numerical resources, with a particular care for accurately
capturing the resonant surfaces with complex shapes.

Reaching very high Reynolds numbers and even asymptotic limits, e.g., vanishing
Rossby numbers, is not a problem in solving these statistical model equations, in
contrast with DNS. This is the number of angular variables in interaction which
is responsible for the high cost, especially because the classical pseudo-spectral
scheme is difficult to apply: A factorization like A(k)

∑
û( p)û(q), which is very

simple for basic Navier–Stokes equations, yielding A(k)ûu is very cumbersome
looking at typical equations in terms of spectral tensors and response functions. A
higher accuracy, however, can be obtained in statistical closures, for accounting for
typical triads, such as the resonant ones but also the quasi-exact cancellation between
some of them. Even very simple quantities affected by phase-mixing, e.g. in Chap. 7,
whose history consists of damped oscillations with a smooth envelope, are found
to exhibit chaotic wrong envelopes after a finite integration time, in any classical
pseudo-spectral DNS, because of limited accuracy in terms of �k/k, k‖/k, etc. It is
therefore pertinent to try to solve costly statistical models. Attempts to reduce this

http://dx.doi.org/10.1007/978-3-319-73162-9_7
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cost, using — despite the cumbersome factorization — pseudo-spectral techniques,
or Monte-Carlo methods, do exist but are outside our scope.

Since the first edition of this book, progresses were made in numerically solving
elaborate anisotropic EDQNM models, even with detailed angular discretization, for
both the orientation wave vector k and the orientation of the plane of triads. This
permitted quantitative comparisons with high resolution DNS, then extrapolation of
DNS results towards unprecedented Reynolds numbers, as reported in Sect. 10.7.7.
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Chapter 18
Conclusions and Perspectives

Description and knowledge of turbulent flows is advancing well, particularly with
the increasing development of numerical ressources (Moore’s law) and detailed mea-
surements using more and more PIV, SPIV and PTV. Well documented databases
are created, which can support techniques of data-compression using a dramatically
reduced number of modes (POD, wavelet coefficients, master-modes, ...).

Behind this attractive show-window, however, the advance of our conceptual
understanding of turbulent flows is much less satisfactorily. Advances in numer-
ics, experiments, data-compression schemes, are firstly beneficial to applied stud-
ies, for instance those using smart combination of techniques (often referred to as
multiphysics, with hybrid RANS-LES methods, and many others). Turbulent flows
are well reproduced in the vicinity of a well documented design-point, but this
modeling is questioned far from it (“far” in the parameter’s space, or simply in
elapsed time for unsteady processes). Efficiency of data-compression schemes, for
instance, is ellusive since a low-dimension set of modes, identified and validated near
the “design-point”, can lose its relevance far from it.

We hope that this book will contribute to a honest and up-to-date survey of turbu-
lence theory, with the special purpose of reconciling different angles of attack. In this
sense, the atomization of the community into competing, and/or too (deliberately)
self-isolating, chapels, is perhaps one of the main impediment for advancing theory.
Difference of parlances or jargons is a related aspect, despite the universality of the
mathematical formalism.

18.1 Homogenization of Turbulence. Local or Global
Homogeneity? Physical Space or Fourier Space?

One may go back to the theory of homogeneous turbulence (or ‘homogenization of
turbulence’) by George Batchelor (1920–2000), following a very interesting essay
by Moffatt (2002). It is usefully recalled that Batchelor was aware from the very
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begining of the importance of the Kolmogorov’s approach, including the celebrated
4/5-law. He published a deep analysis of the theory as early as 1946 and 1947, having
read the four-page seminal article in Doklady (Proceedings of USSR Academy of
Sciences). It is therefore irrelevant to oppose a Batchelor’s approach to turbulence
to a Kolmogorov’s one. One may evoke the meeting held in Marseille (1961), which
is often mentioned as the ‘Solvay meeting’ of turbulence, quoted as a ‘watershed for
turbulence’ by K. Moffat: “Kolmogorov was there, together with Obukhov, Yaglom,
and Millionshchikov; von Karman and G.I. Taylor were both there — the great fa-
ther figures of prewar research in turbulence — and the place was humming with all
the current stars of the subject — Stan Corrsin, John Lumley, Phillip Saffman, Les
Kovasznay, Bob Kraichnan, Ian Proudman, and George Batchelor himself, among
many others.” Finally, it is recalled how Kolmogorov himself questioned the validity
of his K41 theory, opening the Pandora box with scale-dependent, intermittent dis-
tribution of ε(r). This resulted in both a large interest for internal intermittency, and
a frustration that afflicted Batchelor and many others from 1960 onward. After the
publication of our first edition, a new meeting took place in Marseille, in 2011, as a
follow-up of the one in 1961, and the introductory talk on homogeneous turbulence
by Moffatt (2012) again presents a special interest.

We think that very important progresses in the theory were made following Kraich-
nan’s approach, even before the early sixties, not to mention linear theory such as
RDT, and that it is a pity to underestimate related studies, as it is often done in the
“intermittency and scaling” community, especially after the publication of Frisch’s
book. In addition, development of practical models, mainly based on single-point
closures, in RANS and (more recently) in LES, was very useful for turbulence in
engineering and environment, with almost no impact of new developments of theory
of internal intermittency, but often strong connection with spectral approach. Un-
justified?1 reluctancy to look at a formalism in Fourier space, and strong (justified)
interest for a statistical approach in terms of velocity (or vorticity, pressure, etc.)
increments can explain partly such an underestimation.

As a first example, it can be shown (e.g. Chap. 4) that the Kolmogorov law
〈δu3

‖〉(r)/r = −(4/5)ε is as ‘exact’ as its counterpart in Fourier space
∫ ∞

k T (k)dk =
ε is. In the same way, more general (not only valid at very high Reynolds number)
laws were given by von Karman and Howarth in 1938 in physical space, and in
Fourier space by Lin and von Karman in 1949.

The concept of local homogeneity raises very important questions. On the one
hand, use of increments (e.g. velocity increments) for defining two-point statistics
allows for a better approach to local homogeneity, eventhough “local homogeneity”
is almost an oxymoron, since homogeneity means translational invariance. In addi-
tion, structure functions of order 2 and 3 can be obtained from measurements more

1Even the more that studies about scaling and intermittency are often supported by conventional
pseudo-spectral DNS!
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easily than second-order spectra and transfer spectra,2 and spectral approach has less
interest for higher order statistical moments (higher than 4). From this viewpoint,
local homogeneity (and very often isotropy) is assumed at relatively small scales in
exploiting physical and numerical experiments in rather complex flows; the assess-
ment that “the flow is considered as homogeneous and isotropic in the center of a von
Karman flow, in the centerline of the plane channel, near the centerline of a jet, ... etc”
... can be found in many recent papers ... whereas the same assessment would have
been considered as ridiculous twenty to thirty years ago. This viewpoint, getting rid
of inhomogeneous-anisotropic large scales in rather complex flows, and focusing on
small scales, considered as homogeneous-isotropic-intermittent, is not wrong, partly
thanks to the use of incremental statistics. This is questionable, however, from a
dynamical viewpoint: Apparent local isotropy can result from quasi-balanced inho-
mogeneous flux terms which are present in the transport equations. More generally,
we have shown from a dynamical approach that the universality of small scales,
independently of the way of injecting energy at large scale, is really questioned in
many cases, even at very high Reynolds number. Despite of significant advantages,
the conventional viewpoint has some negative results:

• Not to encourage the building of smart experimental facilities, in which homo-
geneity can be really assumed in a very large spatial domain, following the ones
presented in Chaps. 7– 11.

• To consider as marginally relevant the theoretical approach to flows, such as those
studied in Chaps. 7, 10–12, which can be really considered as homogeneous, but
strongly anisotropic, at almost any scale.

In this context, the recent analysis of the vicinity of the stagnation point in a von
Kármán flow, from the viewpoint of HAT, deserves attention (see Sect. 8.8.1) and
allows us to moderate the abovementioned too pessimistic considerations.

Other arguments, which illustrate the interest of considering Fourier space (modal
decomposition related to the Helmholtz decomposition, treatment once for all of
pressure fluctuations, giving the minimal number of dynamical modes) are presented
in Chaps. 1 and 2. Regarding the description of energy cascades, it is important
to stress that triadic spectral description, not even mentioning “closure”, carries
on much more information than third-order structure functions do. It accounts for
triple correlations at three-points, and not only at two point, and allows to identify
exact operators which underly detailed conservation laws, such as Eqs. (4.299) and
(4.301) for detailed conservation of both energy and helicity, Eqs. (4.401)–(4.403)
for detailed conservation of energy and enstrophy, Eqs. (10.18)–(10.20) for detailed
conservation of toroidal energy and vertical enstrophy, and Eqs. (11.13)–(11.15) for
detailed conservation of QG energy and potential vorticity. Another point which
deserves to be emphasized is the power of Waleffe’s instability hypothesis which,
starting from the exact detailed conservation laws and the stability analysis of a low-

2Some measurements, however, give direct access to spectral information, and even to anisotropic
one, such as scattering of ultrasound waves (C. Baudet, S. Fauve) or light (D. Grésillon) ....
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dimensional system, leads to accurate predictions dealing with triadic tranfers and
induced cascades, even in nonhomogeneous cases.

In addition, one can expect a convergence between some studies of cyclic regen-
eration processes discussed at the end of Chap. 9 and the analysis, performed by the
astrophysical community, of transient growth and bypass transition (see the end of
Chap. 11).

18.2 Linear Theory, ‘Homogeneous’ RDT, WKB Variants,
and LIA

It is usually said that the ‘problem(s) of turbulence’ come(s) from the nonlinearity of
basic Navier–Stokes-type equations. This is only partially true, since ‘burgulence’
(i.e. pseudo-turbulent behavior exhibited by the solution of the Burgers equations),
not to mention its 3D generalization to the cosmological gas, is essentially solved
and understood. The quadratic advection term is probably always involved in the
problem, but the projection onto a solenoidal subspace, in connection with the pres-
sure term, is another important ingredient, at least in the nearly incompressible flow
case. As a slightly different illustration (from basic dynamical equations, again), the
advection term is completely removed in a pure Lagrangian alternative to Navier–
Stokes equations, but nonlinear complicated operators rear their ugly head through
pressure and diffusive terms.

As another trivial remark, the validity of a linear approach depends on the defini-
tion of the base state about which one performs the linearization.

Linear theories addressed here retain at least a part from exact dynamical equa-
tions, and include a straightforward treatment of the pressure term, together with
the Helmholtz decomposition for purely incompressible and weakly compressible
fluctuatings flows.

Homogeneous RDT offers interesting possibilities to reconcile stability analysis
and statistical approach, when it is consistent with exponential instability (hyper-
bolical instability in Chap. 8, barotropic instability for rotating shear, its baroclinic
extension, and elliptical flow instability in Chap. 11). Related destabilizing effects
are mimicked by much simpler single-point RSM models, such as for the shear flow
rotating around the spanwise direction, but only RDT or more sophisticated linear
stability analyses really explain why, in connection with dominant pressure-released
modes. In other cases, when the destabilizing effect comes from a narrow band of
angular modes in wave-space, with the ‘rapid’ fluctuating pressure allowing a reso-
nant amplification to periodic ‘production’, the ‘rapid’ response of any RSM is poor
(e.g. elliptical flow instability and periodic compression with swirl).

Even when RDT gives very few results about the evolution of statistics, it could
suggest a good choice of eigenmodes for improving fully nonlinear theories, as illus-
trated in Chaps. 7–11. Identification of a deterministic Green’s function, possibly ex-
pressed in terms of a minimal number of solenoidal modes, from the basic linearized
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equation which governs the fluctuating field, is shown to be the best way for using
linear theory: it is possible to predict the impact of the linear operator on any statisti-
cal moment, showing for instance a poor relevance of RDT dealing with single-time
second-order moments, in contrast with interesting information given for two-time
second-order statistics and third-order statistics (see Chaps. 7, 10–12).

WKB variants allows us to relax the assumption of homogeneity in the linear
theory, or suggest at least a nice illustration of what could be “local homogeneity”
from a dynamical viewpoint. In contrast with homogeneous RDT, it is possible to
identify localized unstable zones in a base flow, which is smooth but more realistic
than the admissible mean flows of homogeneous RDT, and to quantify their contri-
bution: example of competing centrifugal, elliptical and hyperbolical instabilities is
given in Chap. 11 for simple non-parallel flows with adjacent eddies.

It is important to point out some limitations. A generic instability as the Kelvin–
Helmholtz one cannot be afforded, even if homogeneity is relaxed. Despite a very
promising extension of RDT to stratified flows with shearing effects, and possi-
ble prediction of baroclinic mechanisms, and to compressible shear (Chap. 14), this
drawback cannot be ignored. For compressible shear flows, a possible depletion of
nonlinearity (with respect to the incompressible case) can explain an unexpected
relevance of linear theory, at least in the homogeneous case.

Among the canonical flow cases addressed in this book, only the case of the
incompressible shear flow is a bit disappointing restricting the approach to RDT:
the important mechanism of redistribution of energy between RST components by
nonlinear pressure terms, which is of course discarded, can be mimicked by very
simple single-point closures.

WKB RDT can be applied to compressible flows, but its implicit ingredient of
short-wave disturbance yields discarding the acoustic mode. Some extensions can be
found in replacing the base-flow trajectories by the acoustic rays, as it is touched upon
in Chap. 17. On the other hand, LIA has much in common with a purely homogeneous
linear theory. Because there is no lenghtscale given by the base flow, there is no
restriction of wavenumber range for the disturbance flows. One can say that the
typical lengthscale of the mean flow is infinite in homogeneous RDT (or equivalently
for the extensional base flow in stability analysis), whereas it is zero (the shock-wave
thickness) in LIA. As in RDT, a transfer matrix can link upstream and downstream
modal amplitudes of the disturbance field, but an entropic disturbance mode can
be accounted for. Some wavelike response of the shock-wave and its linkage to the
full linear transfer matrix for the disturbance field is another useful feature, with
no equivalent in RDT. A very striking result of LIA, beyond statistical results, is
the possibility to advect a temperature spot across the shock-wave and to give rise
to a pair of co-rotating vortices. In addition to a mathematical transfer term from
upstream entropy mode to downstream vortical mode via the baroclinic torque, a
nice formation of structure is found!
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18.3 Multi-point Closures for Weak and Strong Turbulence

An assessment of multi-point closures can be proposed. It was written in our former
edition that their use for “production-dominated” flow was probably a too compli-
cated task, given the “return of investment” that one can expect. This too pessimistic
assessment is now questioned by some “success stories”: On the one hand, the sim-
plified spectral model in terms of spherically averaged descriptors (Mons et al. 2016)
used in Chaps. 8 and 9 is now satisfactorily working with little computational cost. On
the other hand, the case of Unstably Stratified Turbulence, in Sect. 10.7.7 illustrates
how a rather costly anisotropic EDQNM model can be quantitatively compared with
very high resolution DNS, and then used for investigation at much higher Reynolds
numbers.

Application to flows “without production”, which only consist of non-propagating
neutral modes and wave-modes in the linear eigenmode decomposition, remains
promising.

The latter case includes incompressible HIT as the simplest, the whole velocity
field being a trivial neutral mode in the linear inviscid limit.

In the particular case of turbulence subjected to pure rotation, the complex struc-
tural anisotropy is created by the nonlinear cascade, with the angular dependence of
energy in wave-space reflecting the loss of dimensionality. Such a behavior occurs in
other flow configurations in which the presence of dispersive waves is more impor-
tant than the classic ‘production’ mechanisms. Even without additional mean strain
(such as the elliptical flow instable case), pure rotation induces complex “rapid” and
“slow” effects, for which even the basic principles of single-point closures are ques-
tionable. Single-point closures look particularly poor since there is no production by
the Coriolis force, whereas the dynamics is dominated by waves whose anisotropic
dispersivity is induced by fluctuating pressure.

This suggests discriminating “turbulence dominated by production effects” from
“turbulence dominated by wavy effects”. In short, single-point closures are well
adapted to simple turbulent flow patterns of the first class in rather complex geometry,
whereas multi-point closures are more convenient for complex turbulent flows in
simplified geometry, as illustrated by the second class.

18.3.1 The Wave Turbulence Limit

Mathematical developments in the area of wave-turbulence theory (WT), have re-
cently renewed interest in flows that consist of superimposed dispersive waves, in
which nonlinear interactions drive the long time behaviour. Individual modes are of
the kind

u′
i (x, t) = ai (t) exp[ı(k · x − σk t)] (18.1)

http://dx.doi.org/10.1007/978-3-319-73162-9_8
http://dx.doi.org/10.1007/978-3-319-73162-9_9
http://dx.doi.org/10.1007/978-3-319-73162-9_10


18.3 Multi-point Closures for Weak and Strong Turbulence 887

with a known analytical dispersion law for σk = σ(k). Similar averaged nonlinear
amplitude equations can be found using either WT or Multi-Point Closures (MPC),
the advantages and drawbacks of which are briefly discussed below.

In the case of wave turbulence, statistical homogeneity and quasi-normal assump-
tion have equivalent counterparts, obtained by assuming a priori Gaussian random
phases for the wave fields. In addition, isotropic dispersion laws such as σk = |k|α
in Eq. (18.1) are almost exclusively treated in WT for deriving Kolmogorov spec-
tra, with the key hypothesis of constant and isotropic energy fluxes across different
scales associated with a wavenumber |k|. By contrast, in geophysical flows, disper-
sion laws are anisotropic, with for instance σ = βkx/k2 in the case of Rossby waves,
σ = ±2�k‖/k for inertial waves and σ = ±Nk⊥/k for gravity waves (kx , k‖ and k⊥
are the components of the associated wavevector respectively in the zonal direction,
and the directions parallel or perpendicular to the rotation/gravity vectors). In the
latter two 3D cases, this anisotropy is reflected by the strange conical — “St Andrew
cross” — shape of iso-phase surfaces in typical experiments with a localized point
forcing (see views of this type in Fig. 7.11) and by angular-dependent energy drains
when looking at nonlinear interactions, as illustrated in Chaps. 7, 10 and 11.

At least if Eulerian correlations are considered, The MPC and WT theories share
in general an important background. Kinetic equations for mean spectral energy den-
sities of waves are found in WT, similar to homogeneous MPC. Their slow evolution
is governed by similar energy transfer terms, which are cubic in terms of wave am-
plitudes (triads). There is also a possibility that these transfers involve fourth-order
interactions (quartets) in WT when triple resonances are forbidden by the disper-
sion laws (e.g. rotating stably stratified turbulence with f/N close to 1 in Chap. 11)
and/or by geometric constraints (e.g. shallow waters). Resonant quartets seem to be
particularly relevant when resonances are seen in a Lagrangian description. They
are naturally called into play when the nonlinearity is cubic and not quadratic, as,
for instance, for quantum turbulence governed by Gross-Pitaievskii equation. When
triple resonances are allowed, for instance in cases of rotating turbulence, stably
stratified turbulence and MHD turbulence, Wave Turbulence (WT) kinetic equations
have exactly the same structure as their counterpart in elaborate Multi-Point Closures
(MPC). Hence, WT and MPC have a common limit at very small interaction param-
eter (e.g. Rossby number, Froude number, magnetic interaction number in MHD).
Of course, interactions between neutral modes, if they are present, and wave modes,
cannot be investigated by the pure theory of wave turbulence.

18.3.2 Coexistence of Weak and Strong Turbulence, with
Interactions

When eigenmodes consist of both non-propagating, neutral, and wavy modes, one
can expect very complex cascade processes. Wave turbulence, dominated by resonant
triads, is the only modality in the absence of the non-propagating mode. Accordingly,
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inertial wave turbulence in 3D rotating turbulence is really relevant if the Rossby
number is sufficiently small3 When strong nonlinearity mediated by interactions
which only involve the non-propagating mode, and weak nonlinearity involving at
least a wave mode are face to face, the former can be considered as dominant. Both
toroidal cascade and Quasi-Geostrophic cascade are therefore of interest in stratified
and rotating turbulence. Note that the emergence of toroidal (idem QG) cascade
is found in neglecting wavy modes in triadic interactions; this does not mean that
waves have no effect; in contrast, this is because gravity waves (idem inertia-gravity)
waves severely damp nonlinear contributions other than the pure toroidal (idem QG)
ones by angle-dependent phase-mixing that toroidal (idem QG) cascade emerges.
For weakly compressible flows addressed in Chap. 9, the solenoidal turbulence is
already well known, so that a pseudo-acoustical cascade appears as a relevant theme.

Magnetohydrodynamics in Chap. 12 offers a new domain of application for MPC
far beyond previous “isotropized” EDQNM models. The Lorentz force can be lin-
earized around a dominant mean magnetic field, and yields linear Alfvén waves, that
affect weak turbulence as well. On the other hand, the Lorentz force is intrinsically
nonlinear (quadratic), in contrast with Coriolis force or buoyancy force in the purely
hydrodynamic case, so that cubic interactions, that affect the second-order ones for
energetics and anisotropy, are mediated by both conventional spectral transfers and
contributions from the Lorentz force. It is premature to propose a fully anisotropic
MPC, as anisotropic EDQNM — except in the very particular case of quasi-static
MHD — but all technical building blocks are given for this purpose. Especially,
combined helical-Elsaesser modes are the best solenoidal modes for constructing
advanced MPC, and coupled Lin equations can be derived in terms of the set of
spectra and co-spectra in Eq. 12.24.

18.3.3 Revisiting Basic Assumptions in Multi-point Closures

Derivation of statistical equations of MPC is often a very formal skill, so that these
theories can be considered as opaque and complicated. Let us mention (Moffatt 2002)
again: “and the new approaches, particularly Kraichnan’s (1958) DIA, were of such
mathematical complexity that it was really difficult to retain that essential link be-
tween mathematical description and physical understanding, which is so essential
for real progress”. In the same vein, A. Craya, in early sixties, evoked about DIA
the Mona Lisa’s (La Joconde) smile, having his strange beauty but some ambiguity.
As a very interesting survey, Y. Kaneda proposed not less than 7 different ways to
derive DIA equations. The essential ingredient is a formal development around a
Gaussian field, but the effective second-order spectral tensor and response tensor are
only eventually defined by the final set of coupled equations which govern them,

3The 2D manifold appears as the limit of the wavy inertial mode at vanishing dispersion frequency,
it is therefore a low dimension slow mode, but not at all a 3D non-propagating mode, filling all the
space, as the toroidal mode is in stably-stratified turbulence.
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so that they cannot be specified a priori, and they can significantly differ from their
zeroth order counterpart. Derivation of EDQNM is less subtle, but the conventional
presentation is often too close to a cooking recipe, with heuristic procedures (Eddy
Damping - ED, Markovianization - M) called into play in order to correct an initially
too crude Quasi-Normal (QN) model. To derive EDQNM from DIA, using a speci-
fied form for the response tensor, and a so-called fluctuation-dissipation theorem to
translate two-time correlations into single-time ones, may give information about ED
and Markovianization; but this is really a too complicated and indirect way. Compar-
ing EDQNM to WT theory, especially using the profound analysis of zero cumulant
assumption by Benney and Newell (1969) quoted in Chap. 7, is really enlighting. It
is firstly possible to understand why QN closure can be an intrinsic (exact?) closure
in WT, getting rid of ED because the damping by phase-mixing of dispersive waves
is a very efficient and physical process, whereas Markovianization is enslaved to the
natural separation into rapid phases terms and slowly evolving amplitudes of waves.
It is perhaps necessary to think in a more physical way to the use of cumulants, and
to a more convincing link between the fourth-order cumulants and the third-order
ones, yielding the basic concept of ED for strong turbulence. Nth-order Cumulants
at N points represent the difference between statistical moments of order N and their
factorized expression in terms of products of moments of smaller order. In this sense,
a convergence to zero is ensured, which is not valid for the moments themselve, as
soon as the points in the configuration space are sufficiently separated. Instead of s-
peaking of a quasi-Gaussian distribution, which is often questioned in turbulent flow,
one may address a pdf at four points, which reduces to almost a product of pdf’s
for sufficient separation lengths. The QN assumption, or more generally the EDQN
one, could be more physically funded by an argument of maximum factorization of
four-point pdf’s, or maximum decorrelation between the different points, which is
less constraining and does not use the word “Gaussian”. Of course, this is a very
preliminar proposal: we have in mind a four-point distribution without specifying
more the configuration space (physical, Fourier, other ?). As a simple illustration,
factorization would be achieved for any tetrad including at least a long leg: very large
tetrads with more than one long leg, flat tetrads with only one long leg.

18.4 Structure Formation, Structuring Effects and
Individual Coherent Structures

The two-point anisotropic description is more powerful, even if homogeneity is
assumed, than is generally recognized. In rotating and stratified turbulence the
anisotropic spectral description, with angular dependence of spectra and co-spectra in
Fourier space, allows for quantification of columnar or pancake structuring in phys-
ical space. Among various indicators of the thickness and width of pancakes, which
can be readily derived from anisotropic spectra, integral length scales L(n)

i j related
to different components and orientations are the most useful. As another illustration
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(see Fig. 9.5), the streak-like tendency in shear flows can be easily found by calcu-
lating with RDT both the L(1)

11 component, which gives the streamwise length of the
streaks, and L(3)

11 , which gives the spanwise separation length of the streaks (as usual,
1 and 3 refer to streamwise and spanwise coordinates, respectively). In pure homo-
geneous RDT at constant shear rate, both length scales can be calculated analytically
and their ratio (elongation parameter) is found to increase as (St)2, S = ∂U1/∂x2

being the shear rate. Of course, more realistic quantitative aspects of the true streaky
structures found in the near-wall region, are not captured, as discussed in Chap. 9.

It is often said that phase information is lost in homogeneous turbulence, but
this is only true for single-time second-order statistics, and even does not exclude
dynamical phase mixing, as illustrated by damped oscillations towards equiparti-
tion (equipartition in terms of poloidal and toroidal energy components for rapid
rotation, with nontrivial transient evolution from initial unbalance if initial data are
anisotropic, equipartition in term of poloidal and potential energy components for
strong stratification, and similar evolution from initial unbalance). More informative
and surprising phase mixing is found for two-time second-order statistics, even in the
pure linear régime: this illustrates that dispersive waves can drive the Lagrangian dif-
fusion (passive tracers, single-particle displacement), a role which is often attributed
to purely spatial structures, such as coherent vortices, in the turbulence community.
Finally, nonlinear formation of structures in rotating and stratified flows, which is
emphasized in this book, means formation of vortex structures, — waves are struc-
tures too but are spatio-temporal (delocalized in space) coherent events —. In fact,
a subtle interplay of linear and nonlinear effects is called into play.

As a final remark, statistical indicators in homogeneous anisotropic turbulence
can quantify some average characteristics of structures (e.g. aspect ratios of cigar-
shaped and pancake-shaped structures, vorticity skewness for quantifying asymmetry
in terms of cyclonic and anticyclonic vorticity for cigar-shaped structures), whereas
information on their dynamics can be given by statistical equations. In addition, some
individual coherent structures, localized in space (and in time?), if not really obtained
in statistical model equations, are found in snapshopts from DNS, as realizations of
homogeneous turbulence.

18.5 Anisotropy Including Dimensionality, a Main Theme

This is emphasized throughout this book, except in Chaps. 4, 5, 6 and 13. It appears
as a multifold and rich property of turbulent flows, even those without production,
and affects both the multiscale energy distribution and the cascade process, possibly
until smallest scales. Our viewpoint contrasts with what is currently admitted in the
turbulence community. In the engineering community, the anisotropy is considered as
only characterized by the deviatoric part of the Reynolds stress tensor (bi j is “THE”
anisotropy tensor), despite the more general investigation introduced by Reynolds and
Kassinos in their structure-based modelling approach. In the physicist community,
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inhomogeneity-anisotropy is considered only for largest scales, generally out of in-
vestigation, whereas scales which merit attention are seen as homogeneous-isotropic-
intermittent. If attention is paid to anisotropy, with studies using the SO(3) symmetry
group, this concern only the small anisotropy identified by a very small number of
angular harmonics.

Finally, this book includes the material to revisit a general theory of axisymmet-
ric turbulence. Axial symmetry with and without mirror symmetry is the simplest
symmetry for an exhaustive statistical and dynamical approach to strong anisotropy,
in both spectral and physical space, using all the theoretical tools used herein, in-
cluding the most sophisticated ones. Application to MHD flows with external strong
magnetic field could be the next step. This step can be useful for a collaboration
between specialists of turbulence in fluid and specialists of turbulence in plasmas.
The existence of the ITER world-wide project critically needs such a collaboration.
Problems of turbulence, such as the “anomalous” heat and mass (for ions) transfer in
the radial direction, is expected to be a severe problem in the future huge Tokamak.
Geodynamo and astrophysical turbulence are other instances.

18.6 Deriving Practical Models

Finally, one may anticipate some criticisms against this book: Too many equations,
too little practical results! A striking feature of several homogeneous flows discussed
in this book is that they escape turbulence models used in engineering applications.
The test is fair, since we have considered the best adapted mathematical formalism
to deal with the subtleties of the problem, from K − ε models to anisotropic MPC,
with a lot of intermediate links...

The way to derive more practical applications, from useful simple scaling laws
to once-for-all calculation of parameters (eddy diffusivity, anisotropic ratios, etc.),
must be discussed.

The terms appearing in the rate equations for Reynolds stress models in homoge-
neous turbulence can be exactly expressed as integrals over Fourier space of spectral
contributions derived from the second order spectral tensor R̂i j , which is the Fourier
transform of double correlations at two points, and from the third-order ‘transfer’
spectral tensor Ti j . All one-point quantities in the equation that governs u′

i u
′
j can

be expressed as integrals over wavenumber space, as for Eq. (2.83). The equation
for the dissipation rate ε = νωiωi (in quasi-homogeneous and quasi-incompressible
turbulence), can be derived from the exact equation that governs the fluctuating vor-
ticity field ωi . It should be borne in mind that the practical procedure for deriving the
ε-equation hardly uses the latter exact equation and consists of basing the equation
for ε̇/ε on the equation for K̇/K with adjustable constants.

About single-point closures, one may recall that the knowledge of the mean
(Reynolds averaged) flow together with the Reynolds stress tensor at every point

http://dx.doi.org/10.1007/978-3-319-73162-9_2
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(with a possible limited time-dependence4) would have been the Holy Grail in turbu-
lence modelling twenty or thirty years ago. More information can be required now.
In this sense the criticism against single-point closure techniques deals less and less
with their incorrect closure assumptions, and more and more with the unsufficient
information carried out by them. More information about low-probability events,
dramatic unsteadiness, coherent structures, for predicting hazards, is needed in engi-
neering and in environmental flows. Two-point two-time statistics can be useful for
predicting dispersion processes and radiated noise (e.g. applying acoustic analogies
to quasi-incompressible vortical flows). Looking at passive and reactive scalar fields,
information on pdf is needed too.

As a last point, we hope to render more conversant the domain of engineering
closures and the main domain of this book. A recent article, or essay, by Spalart
(2015) on “philosophies and fallacies in turbulence modeling” addresses more the
engineering domain with single-point closures, but it suggests a similar assessment
for multi-scale approches, using RDT and MPC as well. RDT for calibrating con-
stants in RSM models is now past history, since its advancing application moves to
geophysics and astrophysics, with new challenges (transient growth, bypass transi-
tion, regeneration cycles). Investigation of non-local dynamics for improving RSM
by Mishra and Girimaji (2017) is given here as a single recent example of incorporat-
ing RDT concepts. In addition, the whole study about unstably stratified turbulence
(around Sect. 10.7.7) illustrates a more and more integrated area of research from
k − ε to elaborate spectral closures, with full support of very high resolution DNS.
An advanced “system approach to turbulence” is in progress, that incorporates all
interactions between the mean flow and the fluctuating one, with a scale-by-scale
nonlinear model for fluctuating/fluctuating interactions.
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