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 PREFACE 

         This book was prepared in response to a realization by the authors that many stu-
dents and practicing professionals accept as valid, and use with confi dence, equa-
tions describing multiphase fl ow and transport in porous media, although they have 
little knowledge of the underlying physical - chemical processes and simplifying 
assumptions implicit in these equations. The purpose of this text is to build the 
mathematical equations describing porous media processes from fi rst principles, in 
a stepwise, coherent, rigorous, and comprehensive manner. 

 Experience gained in teaching the physics of fl ow through porous media over a 
35 year period provides the pedagogical approach refl ected in the structure of the 
book. Chapter  1  introduces intuitive and fundamental concepts that must be con-
sidered in porous media systems. These serve to provide a framework within which 
the careful study of porous media must be structured. This framework is fi lled in 
later chapters using concepts borrowed from the study of continuous media. Chapter 
 2  provides information about conservation of mass. The equations are developed 
for species within a phase and for the entire phase itself. The initial presentation is 
for point and system equations for a single phase where the other phases present 
will defi ne the boundary of the volume being studied. At this scale, the phases are 
juxtaposed. The mathematical tools for changing the equations in these forms to 
appropriate forms at a larger scale are presented. At this larger scale, the phases are 
modeled as overlapping continua each occupying a fraction of the space. The mass 
conservation equations are then developed at this larger scale. One might expect a 
conservation of momentum equation to be posed in conjunction with the mass 
balance equations. However, porous media study typically replaces a theoretically 
derived momentum conservation equation with the experimentally based correla-
tion known as Darcy ’ s law. This equation is the topic of Chapter  3 , wherein the 
nuances of using Darcy ’ s law for single - phase fl ow as well as for multiphase fl ow 
are examined. Chapter  4  expands on the material presented in Chapter  2  by con-
sidering the transport equations for chemical species in detail. Supplementary con-
ditions needed to account for species transport, such as expressions for dispersion, 
chemical reactions, and interphase transport, are developed for incorporation into 
the equations of chemical species movement. These equations can be solved in 
conjunction with the conditions for total mass conservation and Darcy ’ s law to 
obtain velocity and concentration fi elds. As we have stated, the main objective of 
this text is to provide information on the underpinnings of simulation models that 
account properly for system physics. Chapter  5  demonstrates the implementation 
of some of the developed equations for simulation of a variety of porous media 
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systems. The goal here is not to develop numerical codes but to demonstrate how 
the various terms that appear in the governing equations contribute to modeled 
system behavior. Indeed, this text does not consider problems involving heat trans-
fer and does not provide insights into the development of numerical solution algo-
rithms. The objective of the book is to provide insights into the essential elements 
that must be accounted for in quantifying the behavior of fl ow and chemical trans-
port in porous media. 

 The resultant text is a presentation that is designed to meet the needs of a student 
at the senior undergraduate or graduate level who has a fundamental knowledge 
of fl uid mechanics. Those who model subsurface systems will also benefi t from the 
careful examination of the features of the fl ow and transport equations that are 
foundational to their simulations. A background in groundwater hydrology, soil 
mechanics, soil physics, or oil and gas reservoir engineering will provide context for 
the reader motivated by a desire to learn more about the elements of the theoretical 
description of porous media systems.  

   George F. Pinder 
 William G. Gray 
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SETTING THE STAGE 

1

1.1 INTRODUCTION

 The purpose of this text is to introduce the fundamental concepts that underlie the 
physics of multiphase fl ow and transport through porous media. This fi rst chapter 
introduces some of the qualitative physical characteristics of porous media. Param-
eters are introduced that provide quantitative measures of the characteristics that 
arise in modeling fl uid fl ow and chemical transport in the system of interest. Some 
simple elementary equations are employed that are helpful in initiating the transla-
tion of a qualitative understanding to a quantitative description. In the second 
chapter, the equations of conservation of mass are developed. In Chapter  3  appro-
priate constitutive relationships 1  are introduced that provide information needed to 
complete the mathematical defi nition of the physical systems involving fl uid fl ow. 
Chapter  4  is dedicated to developing the equations that describe mass transport. 
Finally, in the fi fth chapter, example physical problems involving multiphase fl ow 
and transport through porous media are detailed. 

 The approach of this presentation is to progress from observations of system 
behavior and characteristics to a mathematical description of those observations. 
This approach involves three steps: (i) description of experiments that reveal various 
phenomena; (ii) development and presentation of the governing equations; and (iii) 
application of the resulting equations to physical systems of interest.  

1   Constitutive, or closure, relationships are typically correlations between fl uxes and physical variables. 
The correlations are motivated by experimental observations or from simplifi ed theoretical consider-
ations. They are not universal principles but are appropriate for some systems under certain operating 
conditions. Constitutive relations provide specifi c information that makes it possible to apply conserva-
tion equations to problems. 
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1.2 PHASES AND POROUS MEDIA 

 A    phase    is a liquid, solid, or gas that is separated from another solid, liquid, or gas 
by an identifi able boundary. An example is an oil bubble or oil globule submerged 
in water, where the oil and the water are each phases and the physical demarcation 
between the two liquid phases is an interface. Some transfer of material, momentum, 
and energy may occur between phases; a phase need not have a homogeneous 
composition or temperature. Thus, although gradients of properties may exist within 
a phase, sharp discontinuities in composition at an identifi able boundary are con-
sidered to be interfaces between phases. A second example of a two - phase system 
is raindrops falling through air. A raindrop is a liquid phase while the air is a gas 
phase, and transfer of water to the air may occur by evaporation across the bound-
ary of the raindrop. Because of evaporation, gradients in humidity may exist in the 
gas. An important attribute of this system is that the gas phase is continuous in that 
every point in the gas phase may be reached by a physical path without entering 
into the liquid phase. On the other hand, the liquid phase, comprised of raindrops, 
is an assemblage in which the properties of each drop may be distinctly different 
from those of a nearby drop. Modeling of a discontinuous phase as a unit requires 
some approximations or simplifi cations that are not needed when describing a con-
tinuous phase. As a third example, dry sand is actually a mixture of solid sand grains 
and air. The behavior of this two - phase mixture will be very different when air is 
pumped through a packed column of essentially immobile sand from when the air 
entrains the sand grains, imparting momentum and energy to them and causing them 
to move at signifi cant velocity in a cloud. Thus identifi cation of the components of 
a system is not suffi cient for determining how to model it. Multiphase models must 
be formulated to account for the modes of transfer of chemical constituents, momen-
tum, and energy within each phase and across the phase interfaces. 

Porous media    are considered herein to exhibit a specifi c set of physical attributes 
that distinguish them from general multiphase systems. The most notable of these 
are the requirements that more than one phase exist within a specifi ed control 
volume, that one of these be a relatively immobile solid, and that at least one of 
these phases be fl uid (either a liquid or a gas). Furthermore, the defi nition of a 
mixture of phases as a porous medium requires that the solid phase contain 
multiply - connected spaces that are accessible to the fl uid. 

 Although the defi nition of a porous medium requires that the solid be  “ rela-
tively ”  immobile, a precise specifi cation of the degree of solid mobility or deforma-
tion that is allowable by this defi nition is not possible. At one extreme, an immobile 
solid, such as well - consolidated sand or a block of granite, may form the solid phase 
of a porous medium. At the other extreme, a solid such as sand scoured from the 
bottom of the ocean and carried in the waves or grain fl owing out of a grain elevator 
is a solid phase mixed with fl uid in a system that is not a porous medium. For a 
porous medium, the velocity of the solid phase with respect to the boundary of the 
system is much less than the velocity of the fl uid that can fl ow within the porous 
system.

 In natural porous media systems, some consolidation of the solid phase may occur 
as fl ow moves through the pore space. This can be accounted for under the theoreti-
cal framework of porous media fl ow. Infi ltration of rainwater into a soil and move-
ment of subsurface water through a geologic formation are examples where porous 
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medium considerations apply. Situations where the withdrawal of water from the 
subsurface causes the ground to subside over a period of years may also be analyzed 
within a porous medium framework because the movement of the solid is very slow 
in comparison to the water movement. A system composed of snow, air, and melt-
water may be studied as a porous medium consisting of a solid and two fl uids if the 
rate of melting is small enough that the snow particles respond as a unit, are rela-
tively immobile, and are not carried off as solid particles within the fl owing water. 
The precise specifi cation of the conditions under which a fl uid - solid system cannot 
be studied in a meaningful way as a porous medium is elusive. The study of fl ow of 
water in a sponge is another system that may or may not fall under the umbrella of 
traditional porous media studies depending on the degree of deformation of the 
solid structure for the conditions of interest. 

 Despite the fact that it is not possible to defi ne precisely a porous medium, 
we will persevere and identify additional attributes of porous systems under study 
here. To be amenable to porous media fl ow modeling, the pore space within the 
solid must, in general, be continuous. For example, Styrofoam is composed of a solid 
phase in which air bubbles are encapsulated and separated. These air pockets are 
disconnected, and thus the behavior of the air in the Styrofoam cannot be studied 
under the guise of porous media analysis. At a larger scale, Swiss cheese is composed 
of both gas and solid phases. However, the gas phase is contained in isolated, gener-
ally disconnected void spaces within the cheese. Gas in one void space cannot 
readily travel to another void space. Although the absence of a connected void 
space precludes the scientifi c study of Swiss cheese as a porous medium, experimen-
tal sampling of this system remains a highly rewarding and widely practiced 
endeavor.

 In porous media to be studied here, the individual fl uid phases must, under suit-
able conditions, have the potential to be continuous. That is, the possibility must 
exist for fl uid to fl ow from one location to another within the porous medium. Thus 
the structure of the pore space within the solid must be such that pathways exist 
that connect the regions of the system. For a single fl uid phase in such a system, the 
fl uid region will certainly be connected. However, when more than one fl uid is 
present in the connected pore space, one of the fl uids may divide into a number of 
separate disconnected elements. Systems in which a phase becomes disconnected 
are very diffi cult to model as the physics of each disconnected region of fl uid must 
be accounted for. 

 The study of porous media typically assumes that the solid phase is connected. 
However, the defi nition of    “ connection ”    for the solid is imprecise and the discussion 
can disintegrate to what it means for grains of sand to be  “ touching. ”  Nevertheless, 
we can make the somewhat satisfying observation that for the solid in a porous 
medium to possess the necessary degree of immobility, any individual grains must 
be in contact with other grains with points of mechanical interaction between grains 
changing very slowly relative to the rate of change of fl uid molecules that interact 
with a particular point on a grain. This observation does not preclude the possibility 
that grains will reorganize or deform in response to various stresses placed on the 
solid system, although it does suggest that treatment of consolidated media, in which 
the grains are essentially cemented together, may be somewhat more straightfor-
ward. Cases where the solid deforms more quickly and chaotically, as in grain fl ow 
or an avalanche, cannot be modeled as porous media. 
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 As an illustration that reveals some of the fundamental concepts that arise in 
porous media, consider the following simple experiment. Into a graduated cylinder 
of 2.0   cm diameter and a height of 30   cm pour sand until the top of the sand is located 
at the 10.0   cm mark (see Figure  1.1 ). The sand - air mixture in the graduated cylinder 
constitutes a porous medium because the air phase that is intermixed with the sand 
is continuous, identifi able interfaces exist between the air and sand phases, and the 
sand is essentially immobile relative to the bounding walls of the cylinder. Of course, 
shaking the cylinder can mobilize the sand and invalidate the porous medium 
assumption, but this will not be the situation in this example.   

 The portion of the sample that is not sand is called the    pore space   . In the present 
case, the pore space is occupied completely by air, and the air - sand mixture consti-
tutes a porous medium. 

 From a device capable of measuring the amount of fl uid dispensed, add water to 
the graduated cylinder until the water level is located at the 15.0   cm mark, 5.0   cm 
above the top of the sand surface. Assume that the experimental technique employed 
is such that the sand in the cylinder is not disturbed by the addition of water and 
that all of the pore space in the sand is fi lled with water with no air being trapped. 
Under these conditions, the porous medium is said to be saturated with water. We 
note that achievement of saturation is diffi cult as air tends to become trapped in 
the system. Nevertheless, taking advantage of the fact that this is an illustrative 
example, we happily discount this experimental complication. Assume the water 
dispenser indicates that the total volume of water added to the graduated cylinder, 
  V w

T , is 25.0 cubic centimeters (cm 3 ). The cylinder is now occupied by a sand - water 
mixture that is a porous medium, and this porous medium is overlain by a water 
phase that is connected to the water in the medium. 

    Figure 1.1:     Diagrammatic presentation of experiment to show concepts of phase and porous 
media.  



PHASES AND POROUS MEDIA   5

 The fraction of the porous medium that is pore space can be determined by 
analyzing this experiment. First, determine the total volume of the porous medium 
consisting of the fl uid and solid mixture. Based on the equation for the volume of 
a cylinder of radius  r  and height  h , the volume of the porous medium in the cylinder 
with radius of 1.0   cm and a height of 10.0   cm is:

    V V V r hs w= + = = × ( ) × =π π2 2 31 0 10 0 31 4. . .cm cm cm     (1.1)  

where  V  is the total volume of the porous medium composed of sand and water,  V s   
is the volume of sand in the porous medium, and  V w   is the volume of water in the 
porous medium. In this case, where water completely fi lls the pore space,  V w   is also 
the volume of pore space. Although we have calculated the total volume of porous 
medium, the distribution of this volume between sand and pore space is not yet 
known. Consideration of the total amount of water dispensed will lead to this 
information. 

 The 25.0   cm 3  dispensed into the cylinder fi lls the pore space and the volume that 
extends 5.0   cm above the sand. The water volume in this 5 - cm   region within the 
cylinder,   V w

C , is easily calculated from the equation for a cylinder as:

    V r hw
C cm cm cm= = × ( ) × =π π2 2 31 0 5 0 15 7. . .     (1.2)  

Thus the volume of water in the pore space of the sample is:

    V V Vw w w= − = − =T C cm cm cm25 0 15 7 9 33 3 3. . .     (1.3)  

Combination of equations  (1.1)  and  (1.3)  also provides the volume of sand in the 
system:

    V V Vs w= − = − =31 4 9 3 22 13 3 3. . .cm cm cm     (1.4)  

The fraction of the porous medium that is pore space,   ε  , is thus obtained as:

    ε =
+

= =V
V V

w

s w

9 3
31 4

0 30
3

3

.
.

.
cm
cm

    (1.5)  

This fraction   ε   is called the    porosity    or    void fraction    of the sample. In general, for a 
sample of porous medium of size  V , the porosity is defi ned in terms of the size of 
the volume sample and the volume of solid in the sample as:

    ε = −




∫1

1
V

V
V s

d     (1.6)  

Realize that the porosity calculated in this experiment provides a value that is 
characteristic of the entire sample. It provides no information as to how the pore 
volume is distributed within the sample. If half the sand were removed from cylin-
der, the value of porosity obtained from the remainder of the sample could be dif-
ferent from that for the entire sample. Certainly if one removes sand such that there 
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are only a few grains left in the cylinder, the porosity for that sample could be quite 
different from that for the full sample, or even meaningless as a quantity intended 
to characterize the system. These observations introduce the notion that when one 
is studying porous media, the length scale at which observations are made can be 
an important factor that infl uences the values of variables measured. 

 Furthermore, although the total volume of pore space within a sample can be 
measured, in general the geometry and volume of individual pores cannot be mea-
sured. Some specifi c information at this small scale can be obtained for samples of 
size on the order of 1   cm 3  using advanced imaging techniques, but, at best, only sta-
tistical distributions of the pore sizes of larger samples can be determined. Despite 
the fact that no single accepted physical measure of the size of a single pore exists, 
the concept of pore size is widely used. Each naturally occurring pore will have a 
variable cross section, and    grain size    is commonly used as a surrogate for the size 
of the pore. Methods for describing the distribution of grain sizes and pore sizes are 
discussed in the next section.  

1.3 GRAIN AND PORE SIZE DISTRIBUTIONS 

 While the volume of a pore does depend upon the size of the grains in some sense, 
the relationship can be complex because of the infl uence of    grain packing   . For 
example, the packing of spherical grains of uniform size in Figure  1.2  is referred to 
as    cubic    and the porosity is 0.48. On the other hand the packing of the same grains 
in Figure  1.3  is    rhombohedral    and has a porosity of 0.26. The pore space is fully 
connected in both cases, and the pore space can be identifi ed as the region between 
adjacent spheres. Although the precise specifi cation of what constitutes a pore is 
not obvious, the pore space does illustrate the channels of fl uid fl ow. If any consistent 
measure of a pore is selected in both fi gures, the volume and pore diameter of an 
individual pore in Figure  1.2  is larger than that in Figure  1.3 . A random    packing    of 
uniform spheres will result in different values of porosity depending on the loose-
ness and organization of the spheres. A loose random packing of spheres will gener-
ally generate porosities from 0.32 to 0.35  [8] . Addition to this mix of solid spherical 
particles with a range of sizes and of nonspherical, arbitrarily shaped grains adds 
complexity to the identifi cation of  “ pore size ”  and to the range of porosities that 

Figure 1.2: Cubic packing of spheres generates a porosity of 0.48 [6].



can be achieved. In nature one is not likely to fi nd spheres of the same size or, for 
that matter, spherical particles at all. Normally one will fi nd a variety of grain sizes 
with the smaller grains occupying the spaces between the larger grains as concep-
tualized in Figure  1.4 .       

 Because of the diffi culty in characterizing pore space, the   grain size   distribution 
is used as a surrogate. For unconsolidated media, grain size is easily measured 
through the use of    sieves   . A classical sieve is composed of a metal cylinder approxi-
mately 5   cm in length and approximately 20   cm in diameter. It is open at one end 
and contains a metal screen at the other. Sieves are normally stacked with the sieve 
with the smallest screen size opening, or    mesh size   , at the base of the stack. Below 
the last sieve is a pan to collect those grains smaller than the smallest screen size 
(see Figure  1.5 ).   

 Sieve sizes are designated in two principal ways. Some sieves provide the sieve 
diameter in inches or millimeters. Others designate the sieve by a standard number 
that is not directly related to the mesh size but indicates the number of openings 
per inch. For example, a number 20 sieve has 20 openings per inch, or 400 openings 
per square inch. Typical sieve sizes are shown in Table  1.1 .   

 To sieve a sample of soil, a known weight of the soil is placed in the uppermost 
sieve. This sieve is covered and a shaking apparatus is used to vibrate the column 

Figure 1.3: Rhombohedral packing of spheres generates a porosity of 0.26 [6].

Figure 1.4: Small grains tend to occupy spaces left between larger grains to yield smaller 
porosities.

GRAIN AND PORE SIZE DISTRIBUTIONS 7
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of sieves while it remains approximately vertical. The grains smaller than the opening 
in the top sieve eventually pass to the next lower sieve. This sieve, in turn, retains 
those grains with a diameter larger than its mesh size and smaller than the mesh 
size of the upper sieve. This process continues until the grains retained in the con-
tainer at the bottom of the column are smaller than the diameter of the sieve with 
the smallest mesh. Each soil fraction is then weighed and the results plotted as 
weight vs. sieve size. 

 Soils are classifi ed as coarse - grained when they are composed of sand and gravel. 
Typically, less than 50% of coarse - grained material will pass through the No. 200 
mesh. Fine - grained soils are composed of silt and clay. Fifty percent or more of a 
fi ne - grained soil will pass the No. 200 mesh. 

 Normally, solid material with components smaller than those captured by the No. 
200 mesh screen is very diffi cult to screen further and is therefore analyzed via a 
 “ wet ”  method that exploits the dependence of the settling rate of a small particle 
in a quiescent fl uid on its size. Wet methods make use of Stokes ’  law, which states 

    Figure 1.5:     Screens are stacked sequentially from the fi nest mesh at the bottom to the coarsest at 
the top.  

 Table 1.1:     Typical sieve sizes 

  U.S. Standard Test Sieves (ASTM)  [1]     

  Sieve Designation    Nominal Sieve Opening  

  Standard    Alternative    Inches    Millimeters  

  25.0   mm    1   in    1    25.7  
  11.2   mm    7/16   in    0.438    11.2  
  4.75   mm    No. 4    0.187    4.76  
  1.70   mm    No. 12    0.0661    1.68  
  0.075   mm    No. 200    0.0029    0.063  



that the diameter of a spherical particle falling through a fl uid is related to the 
velocity according to 2 :

    D
v

g s f

=
−( )

18µ
ρ ρ

    (1.7)  

where  D  is the particle diameter,   µ   is the dynamic viscosity,   ν   is the settling velocity, 
 g  is gravity,   ρ  s   is the solid particle density, and   ρ  f   is the density of the fl uid. In the 
analysis,   ρ  s   is assumed to be a constant independent of particle size, and the velocity, 
 v , is considered to be reached as soon as settling begins. The general idea in employ-
ing a wet method is to begin with a mixture of particles uniformly distributed in a 
fl uid consisting of water and a dispersing agent, such as hexametaphosphate, added 
to the mixture to ensure that the particles do not aggregate. The maximum size 
particle will be the largest size that passes through a number 200 sieve,  D  200 , approxi-
mately 70     µ  m based on Table  1.1 . Then measurement of the evolution of the density 
profi le of the mixture due to the different settling rates of the particles provides 
information concerning the distribution of particle sizes. Two principal    wet methods    
are employed. One is the    pipette method    while the second is the    hydrometer 
method   . 

 The pipette method involves collection of samples of the solid - fl uid mixture in 
a cylinder at various times and depths. Initially, the distribution of particles in the 
fl uid is uniform with a mass per volume of  m  0 . If the solution is dilute enough so 
that collisions between particles are not signifi cant, at a depth  L  at time  t , all parti-
cles with diameter greater than that given by equation  (1.7)  with  v  replaced by  L/t  
will have settled to a depth below  L . Suppose a small sample of the mixture col-
lected at this time and location using a pipette has a mass of sediment per volume 
of  m ( L, t ). Then 1    −     m / m  0  is the mass fraction of particles with diameter,  D , in the 
range:

    
18

200
µ

ρ ρ
L

g t
D D

s f−( )
< <     (1.8)  

Collection of samples at various times and depths in the mixture allows the distribu-
tion of particle diameters to be constructed. 

 The hydrometer method also exploits the differential settling characteristics of a 
dilute mixture of particles. By this approach, a hydrometer is inserted into the set-
tling solution at various times and the depth of fl otation as well as the density of 
the mixture associated with that fl otation are recorded. If the density of the solid 
fl uid mixture as would be measured by the hydrometer is initially   ρ  h   0  and the density 
reading obtained at some later time is   ρ  h  ( L, t ), then:

    
m L t

m
h f

h f
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0 0

ρ ρ
ρ ρ

    (1.9)  

 2  An important assumption that is made in Stokes ’  law is that the grains are spherical. While this may be 
appropriate for sand particles, clay particles tend to be platelike and some calibration of the procedure 
may be necessary  . 
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where m/m0  is the mass fraction of particles with diameter less than  D  calculated 
using equation  (1.7) . The distribution of particle sizes may be constructed using this 
data collected at a sequence of times. 

 Although the methods outlined above are conceptually very simple, they are 
complicated by the need to compensate for temperature effects, for the time inter-
vals for insertion of the pipette into the solution, the initial concentration of particles 
in the solution, the method of obtaining the initial uniform particle distribution in 
the fl uid, and other protocols. Details of implementation of these methods have 
been standardized, for example in  [1]  and  [5] . For purposes of subsequent discussion 
here, an example of a set of data that could be obtained from the pipette or hydrom-
eter method is provided in Table  1.2 .   

 The information gained from sieve and wet method analyses reveals more than 
just the range of grain sizes. It can help to classify the soil as to its type, e.g., sand, 
silt, silty sand, etc. Particle sizes smaller than 0.002   mm are considered to be clay or 
clay - sized fractions. In addition the data reveal the degree of sorting of the soil. A 
course - grained soil for which all the grains are approximately the same size is called 
well sorted (or poorly graded). A soil that exhibits a wide range of grain sizes is 
designated as poorly sorted (or well graded). The shape of the resulting    grain size 
distribution curve    can also reveal information regarding the history of the soil. 3

 The grain size distribution curves for two soil samples are plotted in Figure  1.6 . 
Along the horizontal axis is plotted the grain size. On the vertical axis is plotted the 
percent weight fi ner than the indicated grain size. For example, the percent by 
weight of grains with diameter smaller than 0.01   mm in the clayey sandy - silt sample 
is approximately 40%. Similarly, in the case of the silty fi ne - sand sample, approxi-
mately 25% of the grains have diameters smaller than 0.1   mm. It should be kept in 
mind that the process of sieving measures the smallest cross - sectional diameter of 
the grain. A needle - shaped grain will be categorized as having a size equal to its 
width rather than its length, assuming of course it does not get lodged crosswise in 
the sieve. Thus only spherical particles that have the same measure of size regardless 
of orientation are uniquely identifi ed by sieving. Nevertheless sieving is applied 
widely to soils containing grains of all shapes.   

 Figure  1.6  demonstrates that the clayey sandy-silt sample is fi ner grained than 
the silty fi ne - sand sample. In fact, by referring to the soil classifi cation found beneath 
the distribution curve, it is evident how these samples received their classifi cation. 

Table 1.2: Experimental results from a wet method experiment for determining fi ne grain 
size distribution 

  Grain Size  D  (mm)    Weight with Diameter    <     D  (g)    Mass Ratio  m / m0

  0.070    150.0    1.00  
  0.040    147.0    0.98  
  0.010    127.5    0.85  
  0.005    91.5    0.61  
  0.002    42.2    0.28  
  0.001    22.5    0.15  

3   We will consider this in more detail in the next chapter. 



 Additional information may be obtained from the shape of the distribution 
curves. Note that the largest slope of the silty fi ne - sand curve is much steeper than 
that of the clayey sandy - silt curve. This indicates that the silty fi ne sand has a more 
uniform size distribution. In other words, the silty fi ne sand is considered to be better 
   sorted    or more poorly    graded    than the clayey sandy silt. 

 Two measures have been developed to describe the range in grain sizes of a soil 
sample. One is called the    coeffi cient of uniformity    and is defi ned as:

    C
D
D

u = 60

10

    (1.10)  

where  D  n  refers to the grain size greater than or equal to n% of the grains by weight. 
For example, 60% of the grains by weight are smaller than  D  60 . The denominator 
designated as  D  10  is also known as the    effective grain size   . The second measure is 
the    coeffi cient of curvature    calculated as:

    C
D

D D
c = 30
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10 60

    (1.11)  

A well - graded soil has a coeffi cient of curvature between 1.0 and 3.0. Additionally, 
the   coeffi cient of uniformity   is greater than 4.0 for a well - graded gravel and greater 
than 6.0 for sands. A soil whose   coeffi cient of uniformity   is less than 2.0 is a    uniform 
soil   . A poorly graded soil violates at least one of these criteria, and a soil is said to 
be uniform if its coeffi cient of uniformity is less than or equal to 2.0  [7] . For the data 
of Figure  1.6 , the coeffi cients of uniformity and curvature of the clayey sandy - silt 
sample are, respectively:

    C
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    Figure 1.6:     The grain size distribution indicates the soil classifi cation of a sample and its degree of 
gradation.  
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For the silty fi ne sand, these coeffi cients are calculated as:
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The fact that  C  u  for clayey sandy silt is greater than  C  u  for silty fi ne sand confi rms 
the previous observation that the clayey sandy silt is a better graded, or less uniform, 
soil 4   

  1.4   THE   CONCEPT OF SATURATION   

 Consider again the experimental apparatus consisting of a graduated cylinder con-
taining 10   cm of a porous medium composed of sand and water covered by 5   cm of 
water. Suppose that a tap at the base of the graduated cylinder covered by a piece 
of glass wool is opened to allow the water to drain out while preventing the sand 
from escaping. The water that drains out is collected in a glass beaker. When the 
water has drained suffi ciently such that no water remains above the porous medium, 
what remains in the bottom 10   cm of the graduated cylinder is a mixture of air, water, 
and sand. This is a three - phase porous media system. The fraction of pore space 
occupied by the water phase is called the    saturation   . Mathematically, the water satu-
ration is defi ned as:

    s
V

V
V
V

w
v

V

w

v
w

= =∫
1

d     (1.16)  

where  V v   is the pore volume within the sample volume of porous medium,  V , and 
is defi ned as:

    V V Vv s= −     (1.17)  

Notice that in equation  (1.16)  the size of the sample is important. For example, 
if the entire porous medium is used, a single average value of saturation is obtained 
for the medium at any time. If smaller subvolumes within the porous system are 
considered, one may produce a spatially variable saturation fi eld that characterizes 
the system at any instant. If the sample size is too small, the value of  s w   calculated 
will change with small changes in the sample size. The saturation can take on values 
ranging from 0, when no water is present in the sample such that the void space is 

 4     See the Earth Manual  [3]  for more information regarding grain size distributions and soil 
classifi cation. 



occupied completely by air, to 1, when the water occupies all of the void space and 
no air phase is present in the porous medium sample. From equation  (1.15) , the 
porosity is the pore volume divided by the total volume occupied by the porous 
medium such that   ε    =   V v /V.  Substitution of this expression into equation  (1.16)  to 
eliminate  V v   and multiplication by the porosity yields:

    εs
V

V
V
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V

w

w

= =∫
1

d     (1.18)  

This relation motivates defi nition of the  water content  as the ratio of the volume of 
water to the total volume denoted by   θ  , such that:

    θ ε= =s
V
V

w
w

    (1.19)  

After a suffi ciently long period of time (where the defi nition of  “ suffi ciently ”  is itself 
an interesting question usually answered as being somewhere from minutes to 
several hours), the drainage from the sand will stop, although some water will 
remain held in the sand. This water is called the    residual saturation   , and it exists as 
isolated droplets, is immobile, and will not normally drain. 

 While the concept of   residual saturation   is useful in theory, it is actually an 
imprecise quantity that is diffi cult to defi ne unambiguously either physically or 
mathematically. In fact, if the graduated cylinder with the sample is kept in a low 
humidity environment for a number of days after residual saturation has been 
reached, the sand will continue to dry out gradually, and the saturation will decrease 
below residual. The reason for this is that the water will evaporate into the air in 
the pore space and then move out of the sand, primarily by vapor diffusion. The 
transfer of vapor from the liquid water phase to the vapor phase is a    phase trans-
formation   . Water changes from liquid to gas as it moves across the interface from 
the liquid to the gas phase. Residual saturation will be encountered again when the 
topic of   constitutive relationships   is explored. 

 Consider, again, the drainage of the sand saturated with water. Suppose that while 
the drainage is occurring, some olive oil is poured onto the sand such that it seeps 
into some of the space between the grains. For this scenario, four phases comprise 
the porous medium: solid grains, water, the vapor, and oil. Although identifi able 
interfaces exist between each pair of phases, some material will transfer across the 
interfaces. Over time, some of the oil will dissolve into the water, and some of the 
water will dissolve into the oil. This transfer of molecules between phases is an 
example of    interphase transfer    or    interfacial transport    between two liquid phases 
across their interface. Despite this interphase transfer, the distinct interface remains 
as a location where material properties undergo a sharp transformation.  

  1.5   THE   CONCEPT OF PRESSURE   

    Pressure   , by its defi nition, is the magnitude of a force acting normal to a surface per 
unit area. It is also a measure of energy per unit volume. The concept is most easily 
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understood for a static system. Consider the simple case of a graduated cylinder 
fi lled to the point where the water depth is 15   cm as shown in Figure  1.7 . As a refer-
ence defi ne the pressure at the top of the water column to be zero, and defi ne a 
coordinate axis  z  that is positive downward and also equal to zero at the top of the 
water column. For this small system, the water density can be considered constant 
throughout the column. The force due to water acting downward at any cross section 
of the cylinder is equal to the weight of water above the cross section. This weight, 
 W , is equal to the density of water times the gravitational acceleration times the 
volume. Thus, at a distance  z  from the top of the water column, the downward force 
exerted by the water is:

    W gV g r zw w= =ρ ρ π 2     (1.20)  

where   ρ  w   is the density of water and  r  is the radius of the cylinder. Pressure is the 
force per unit area; thus division of equation  (1.20)  by the cross - sectional area,   π r  2 , 
gives the water pressure,  p w  , as:

    p
W
A

gzw w= = ρ     (1.21)  

The pressure is independent of the size or shape of the cross section of the cylinder; 
it depends only on the distance from the water surface. At the bottom of the cylinder, 
under 15   cm of water, the pressure is:

    p gz
g

w w= = × × = ×ρ bot
cm

cm
cm

dynes
cm

1 0 980 15 1 47 10
3 2

4
2

.
sec

.     (1.22)  

Pressure is also energy per volume. Thus the energy in the cylinder due to water, 
 E p  , can be calculated by integrating the pressure over the cylinder of fl uid. Since the 
cross - sectional area is constant, this integral is:

    Figure 1.7:     Defi nition sketch for discussion of pressure. Note that the axis is positive downwards with 
a value of zero at the top of the water column.  
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where  z  bot  is the coordinate of the bottom of the cylinder (15   cm in the present 
example) and  z  top  is the coordinate of the top of the cylinder (0   cm in the present 
example). Since the volume of the fl uid in the cylinder is   π r  2 ( z  bot     −     z  top ), the energy 
per volume is a pressure denoted as  p w   such that:
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2
    (1.24)  

Thus  p w  , the pressure obtained as energy per volume is equal to the pressure calcu-
lated as force per area using equation  (1.21)  if the area is located at the mid - height 
of the water column, the centroid.   

 The quantity  p w   is also seen to be a volume - averaged pressure for the region of 
interest. For the cylindrical geometry considered here, the pressure obtained by 
averaging over the cylindrical volume of water can easily be shown to be equal to 
the pressure obtained by averaging the pressure over the surface of the cylinder. 
For an arbitrarily shaped region, and even for a cylinder whose axis is not aligned 
with the direction of gravity, this is not the case. This observation introduces the 
important concept that even if the point values of a quantity are well - described, 
average values of the quantity can be different depending on the averaging proce-
dure used. 

 The preceding discussion of pressure is relatively transparent because the water 
is static and the geometry is simple. Most important, one can measure pressure in 
a fl uid,  p w  , based on the above concepts whenever a static column of water (or any 
other liquid of known density) can be created and placed in contact with a location 
where it is desired to measure the pressure. To demonstrate this fact and to provide 
a foundation for a subsequent presentation of constitutive theory, another experi-
ment is discussed next based on the design illustrated in Figure  1.8 .   

    Figure 1.8:     Apparatus used to demonstrate the concept of pressure measurements and later to 
describe the measurement of hydraulic conductivity.  
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 In this experiment, the water moves parallel to the cylinder axis through the sand; 
as it does so, it loses energy. One measure of this loss of energy is the pressure 
decrease. While it is quite challenging to measure the pressure of the moving water 
in the sand directly, the pressure can be easily measured indirectly by creating a 
static column of water that accesses the moving fl uid. The two vertical standpipes, 
or    manometers   , that are attached to the experimental apparatus in Figure  1.8  facili-
tate the measurement of the pressure in the moving water. Water rises in the 
manometers to the level consistent with the pressure at the access point at the base 
of the manometer tube. Given the height of the water in the tube, one can determine 
the pressure at the base of the tube using equation  (1.21)  and therefore in the 
moving fl uid at that point of entry into the manometer. 

 If there were no fl ow occurring in the apparatus depicted in Figure  1.8 , the water 
levels in the manometers would be equal such that ∆h    =   0. One must be careful to 
note that this observation does not mean that the pressure at the bases of the two 
manometers are equal. In fact, when there is no fl ow the pressures at the bases of 
the two manometers differ by ρg   ∆zbot . A pressure difference between two points 
will cause fl ow to occur only if it is suffi cient to overcome the force of gravity. The 
reservoir serves to provide this additional force. For the case indicated when fl ow 
is occurring, the water height in the right manometer is less than that in the left by 
∆h . This indicates that accompanying the fl ow is a loss of energy between the two 
points where the manometers contact the fl uid. This energy loss is related to the 
viscous character of the fl uid and its interaction with the sand; it is not related to 
the fact that the fl uid is fl owing  “ uphill. ”   

1.6 SURFACE TENSION  CONSIDERATIONS 

 While the physical effects of pressure on fl ow of a single fl uid in a porous medium 
are rather straightforward to describe, the relation between the pressures in adja-
cent fl uid phases separated by an interface is more complex. This situation arises 
when more than one fl uid phase is present. Before discussing the impact of this situ-
ation within a porous medium, we consider a simple experiment wherein the behav-
ior of a bead of water on a waxed surface is observed, such as a raindrop resting on 
the hood of a recently waxed car. The drop surface has the geometry of an oblate 
spheroid (squashed sphere), perhaps approaching spherical if it is small enough that 
gravitational effects are negligible. A circle of contact area exists between the 
spherical shape and the waxed surface with the radius of the contact area being 
somewhere between 0 and the radius of the droplet. If the same bead of water were 
placed on an unwaxed hood, it would spread over the surface as a thin fi lm. Of 
interest is an explanation of the factors that infl uence the interactions between fl uids 
and of fl uids with surfaces. 

 The explanation of fl uid - solid interactions lies in the molecular structure of the 
fl uid comprising the drop and the way that structure relates to the molecules at the 
surface of the solid. In general, water molecules attract one another. At the bound-
ary of the drop, however, the attractive forces of molecules within the drop are not 
balanced by the attractive forces of molecules outside the drop. The result is a 
modifi cation of the structural arrangement of the molecules at the drop surface. 
Although the resulting molecular arrangement cannot be formally considered as a 



skin, it has characteristics often identifi ed with a membrane under tension, such as 
the surface of a balloon fi lled with air. 

 The change in energy of a volume of static fl uid due to an infi nitesimal decrease 
in its volume is equal to −p d V . This expresses the fact that work must be done on 
the volume (i.e., it must be compressed by an external force per unit area) for its 
energy to increase. Similarly, a change in the surface area bounding a material is 
accompanied by a change in energy. Expansion of the surface requires that the 
attractive forces among the molecules be overcome. The change in energy will be 
designated γ  d A , where  A  is the surface area. For an interface between two different 
fl uids,  γ  is referred to as the    interfacial tension   . In the case of an interface between 
a liquid and its own vapor, γ  is called the    surface tension   . In many instances, these 
terms are used less precisely and interchangeably. 

 We emphasize that the change in energy of a surface is positive when the surface 
expands because work must be done to stretch that surface. On the other hand, the 
energy of a volume is increased by compressing that volume. The quantity, γ , has 
units of force per unit length, or energy per unit area. Mechanically, this can be 
understood by realizing that stretching a membrane may be accomplished by apply-
ing a force per unit length along the curve that bounds the membrane. Analogous 
to the fact that a force per unit area causes a change in volume, a force per unit 
length is needed to cause a change in area. 

 A droplet of water in air will attempt to minimize its surface area in response to 
the surface tension. The minimum surface area for a specifi ed volume of fl uid is a 
sphere. Thus one infl uence on the shape of a drop of water tends to cause the drop 
to be spherical. Gravity can cause deviation from the spherical shape, but in the 
immediate discussion, this force will be neglected. When the droplet is placed in 
contact with the solid, the force of interaction between the fl uid and solid and the 
fact that the solid is rigid will infl uence the drop shape. The interface between the 
water and air tends to be spherical. If the water molecules are more attracted to 
each other than to the solid, as is the case for a waxed surface, the drop will minimize 
the area of contact with the solid. In the limit of no attraction to the solid, the droplet 
would be a sphere sitting on the solid. An increased attraction between the water 
and solid will cause the area of contact between the fl uid and solid to increase. In 
the limit where the attraction to the solid is much stronger than the attraction 
between water molecules, the droplet will spread as a fi lm over the solid. At inter-
mediate levels of attraction, the surface area of contact between the fl uid and solid 
will take on values intermediate between a complete sphere and a fi lm. The forces 
acting on the surface of the droplet are the fl uid pressures. At the curve at the edge 
of the water droplet where the solid, water, and air phases come together, the 
common line   ,   interfacial tension   and   surface tension   forces are operative. If the 
droplet surface or the common line contain signifi cant mass, gravitational forces will 
also be operative. 

 To quantify the relationship between surface tension and the fl uid pressures 
consider the simple geometry involved in the rise of water in a capillary tube (Figure 
 1.9 a). If the water in the tube is in static equilibrium, then there must be a balance 
of forces acting on the interface between the air and the water phases. The forces 
that act on the interface are the pressure of the air acting on the concave side of 
the interface, the pressure of the water acting on the convex side, and the   interfacial 
tension   effects that act tangent to the surface. The fl uid on the concave side, in this 
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case air, is referred to as the   nonwetting fl uid   because it is less attracted to the solid 
than the other fl uid. This pressure will be signifi ed as  p n  , where the subscript  n  indi-
cates  “ nonwetting. ”  The fl uid on the convex side of the interface, in this case water, 
is referred to as the   wetting fl uid   since it preferentially wets the the solid. The 
wetting phase pressure is indicated as  p w  , where  w  indicates the  “ wetting ”  phase. 5  
In addition to the pressure acting on the interface, at the edge of the interfacial 
surface forces are applied by the interfacial tension,   γ  wn  , and the surface tensions, 
 γ  ws  and  γ   ns  . These forces are exerted on the common line, the curve where the three 
phases come together. In addition, a lineal tension of the common line can contrib-
ute to a force balance. At equilibrium, the forces that act on the interface must be 
balanced, as must the forces that act on the common line.   

 To analyze the total force balance on the interface, integrals are formulated, each 
of which accounts for one of the forces summed over its geometric region of appli-
cation. The forces acting on the  wn  interface include the fl uid pressures that act on 
the surfaces and the surface tension along the common line. Analogously with a 
membrane, the pressures on the two sides will infl uence the shape of the interface 
while the tensions on the edge pin the location of the boundary or allow for slippage. 
The total force from the pressure is obtained as the integral of the pressure over 
the complete surface of the interface. The force from the surface tension is obtained 
as an integral over the common line. 

 The force on the  wn  interface due to the nonwetting air phase acts in a direction 
normal to the surface and in the direction pointing out from this phase. If this normal 
at any point on the surface is designated as  n   n  , the total force due to the nonwetting 
phase may be calculated as the vector:

    F nn
n n

S

p S
wn

= ∫ d     (1.25)  

where  S wn   is the surface of the interface. On the other side of the interface, the 
wetting phase exerts a force normal to the interfacial surface in the direction tangent 

    Figure 1.9:     Defi nition sketch of the force balance between pressure and tensile forces at the static 
water - gas interface in a capillary tube: (a) the capillary tube; (b) forces acting on the interface.  

 5     Note that regardless of the chemical makeup of the two fl uids in contact with the solid, the one that is 
more attracted to the solid is called the wetting phase. This can be confusing, for example, in the case of 
an oil and water mixture in contact with a plastic such that the oil is the  “ wetting ”  phase while water is 
referred to as  “ nonwetting. ”  



to  n   w  , the unit vector normal to the surface that points outward from the wetting 
phase. This force may be obtained as the integral:

    F nw
w w

S

p S
wn

= ∫ d     (1.26)  

Finally, the force exerted by the interfacial tension along the bounding line is in a 
direction tangent to the unit vector  n   wn   that points outward from the interface in a 
direction that is normal to the bounding line and tangent to the surface. The total 
force exerted by the interfacial tension is therefore:

    F nwn
wn wn

C

C
wns

= ∫ γ d     (1.27)  

where  C wns   is the bounding curve where the wetting, nonwetting, and solid phases 
come together. Since the total force acting on the interface must be zero for the 
static case, the sum of the three forces in equations  (1.25) ,  (1.26) , and  (1.27)  must 
be zero, or:

    p S p S Cn n

S

w w

S

wn wn

Cwn wn wns

n n nd d d∫ ∫ ∫+ + =γ 0     (1.28)  

The formulation of the total force in equation  (1.28)  has intuitive appeal on 
physical grounds. However, besides the total force balance for the interface, the 
forces at each point on the interface must also balance at equilibrium. Direct for-
mulation of this balance is not intuitive. Nevertheless, application of mathematical 
theorems, that may require the user to leave intuition behind, to the physical equa-
tion  (1.28)  will lead to the desired result. The mathematical expression that is useful 
in this analysis converts the integral over the curve bounding the surface to an 
integral over the surface. This relation is the    divergence theorem    for a surface and 
has the general form  [7] :

    f C f S f Swn

C S

n

S

n
wns wn wn

n n nd d d∫ ∫ ∫= ′∇ − ′∇ ⋅( )     (1.29)  

where  ∇  ′  is the two - dimensional del operator acting in the surface. Application of 
this relation to the last term on the left side of equation  (1.28)  with  f  replaced by 
  γ  wn   yields:

    p S p S S Sn n

S

w w

S

wn

S

n n wn

Swn wn wn wn

n n n nd d d d∫ ∫ ∫ ∫+ + ′∇ − ′∇ ⋅( ) =γ γ 0  

or, after collection of the terms in the integrands:

    p p Sn n w w wn n n wn

Swn

n n n n+ + ′∇ − ′∇ ⋅( )[ ] =∫ γ γ d 0     (1.30)  

Since this relation must hold, regardless of the size or portion of the interfacial 
surface over which the integration is performed, the integrand in equation  (1.30)  
must be zero at every point on the surface so that:
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    p pn n w w wn n n wnn n n n+ + ′∇ − ′∇ ⋅( ) =γ γ 0     (1.31)  

This equation is a vector equation and has components in each of three orthogo-
nal coordinate directions. The fi rst, second, and fourth terms are vectors normal to 
the surface. The third term involves the gradient in the surface and thus is a vector 
tangent to the surface. Since equation  (1.31)  must be valid in any direction, 
the component of the equation in the directions tangent to the surface surface is 
obtained as:

    ′∇ =γ wn 0     (1.32)  

Equation  (1.32)  indicates that at equilibrium, the surface tension of an interface 
between two fl uids will be constant, independent of position, since its gradient is 
zero. 

 The balance of forces in the direction normal to the interface is obtained as the 
dot product of equation  (1.31)  with the unit vector normal to the surface,  n   n  . Note 
that  n   n     =    −  n   w   such that  n   n      ·     n   n     =   1 and  n   n      ·     n   w     =    − 1. Thus the normal component of 
the force balance at any point on the interface is:

    p pn w n wn− − ′∇ ⋅( ) =n γ 0     (1.33)  

For the case where the interface is fl at, the orientation of  n   n   does not change with 
position on the surface, and the divergence of this normal will be zero. Thus for a 
fl at interface, equation  (1.33)  simplifi es to the condition that the pressure across the 
interface will be continuous with  p n    =   p w  . This is the condition that is typically 
imposed on large - scale systems where the curvature is small, such as the surface of 
a bucket of water or at the top of a swimming pool. In general, the quantity  ∇  ′     ·     n   n   
is equal to the sum of the curvatures of the surface in any two orthogonal directions. 
If the  curvature of the surface  is denoted as 2 /R c  , where  R c   is the  geometric     mean , 
the  radius of curvature    6  is calculated as:

    ′∇ ⋅ = = +



nn

cR R R
2 1 1

1 2

    (1.34)  

where  R  1  and  R  2  are the radii of curvature of any two orthogonal curves on the 
surface and  ∇  ′     ·     n   n   is called the    mean curvature   . Each of the radii of curvature is 
positive when the corresponding curve is concave on the  n  side and negative when 
the corresponding curve is concave on the  w  side. Then equation  (1.33)  can be 
rewritten in the form:

    p p
R

n w
c

wn− = 2 γ     (1.35)  

The    capillary pressure   ,  p c  , is now defi ned, in general, as the product of the mean 
curvature and the interfacial tension:

 6     For a spherically shaped surface,  R c   is equal to the radius of the sphere; for a fl at surface,  R c   is 
infi nite. 



    p
R

c
c

wn= 2 γ     (1.36)  

Thus, equation  (1.35)  expresses the fact that at equilibrium:

    p p pn w c− =     (1.37)  

Equation  (1.35)  is known as the    Laplace equation for capillary pressure   . Note 
that  p n     ≠    p w   whenever | R c  |    ≠     ∞ . Thus, when the surface tension is zero, the equilibrium 
pressure drop across an interface will be zero only if the interface is fl at or at points 
on the interface where the radii of curvature are equal in magnitude and opposite 
in sign. Equation  (1.35)  is similar to that which describes the pressure difference 
across a physical membrane, such as for a balloon. If the surface tension 
of the membrane is inadequate to sustain the pressure difference, the balloon will 
burst. 

 Before illustrating the balance of forces on an interface between phases with an 
example calculation, we will develop the expression for the balance of forces on the 
  common line  . This expression provides information about the relationships among 
the interfacial tensions. Because the common line is located on the surface of the 
solid where the two fl uid phases and the solid contact each other, the balance equa-
tion must account for the forces exerted by the interfaces. Consider the situation 
presented in Figure  1.10  where a drop   of liquid is sitting on a solid surface, for 
example a drop of water on the hood of a car. The drop is a cap with spherical shape. 
A magnifi cation of the region in the vicinity of the common line is provided as part 
(b) of the fi gure, and various unit vectors are illustrated there. The force exerted by 

    Figure 1.10:     (a) Drop of water on a horizontal surface with angle of contact   θ   and circle of contact 
with radius  r . (b) Enlargement of region where three phases meet with the unit normal vectors  n   wn  , 
 n   ws  , and  n   n s  indicated at a point on the common line  .  
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each interface on the common line is tangent to the interface and exerts a force on 
the common line trying to displace it. The total force exerted on a segment of the 
common line by the interfaces is therefore given as the sum of the integrals of each 
of the three interface forces over the common line:

    F n n ninterfaces d d d= − − −∫ ∫ ∫γ γ γwn wn

C

ws ws

C

ns ns

C

C C C
wns wns wns

    (1.38)  

where each of the unit vectors is normal to the common line  C , tangent to its cor-
responding interface, and points outward from the interface at the common line. In 
addition to these forces, the mechanical behavior of the solid and its surface rough-
ness exert an attractive force on the common line with magnitude  f s   normal to the 
smooth representation of the surface in the direction pointing into the solid. This 
force is  −  f s   n   s  . Finally, the common line has its own tension that acts along its axis, 
much like a rubber band or a spring. Thus forces are exerted at the ends of the 
common line segment by the line tension,   γ  wns  , in a direction tangent to the common 
line and pointing outward. These additional forces may be expressed as:

    F n n nline d= − + ( ) + ( )∫ f Cs s

C

wns wns wns wns
wns

γ γ1 2     (1.39)  

where the subscripts  “ 1 ”  and  “ 2 ”  refer to the two ends of the segment being studied 
and  n   wns   is the outward directed tangent vector at each end. If a curve being studied 
is a closed loop, the full circle of contact in the present case, the forces due to line 
tension will not appear as there are no ends. At equilibrium, the total force acting 
on the common line segment will be zero. Thus, addition of equations  (1.38)  and 
 (1.39)  yields:
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(1.40)
  

The expression for the balance of forces at a point on the common line may be 
obtained by making use of the divergence theorem for a curve to relate the terms 
evaluated at the ends of the segment to integrals over the segment. This theorem 
has the form  [7] :

    f f f C f Cwns wns

C

wns wns

Cwns wns

n n n n( ) + ( ) = ′′∇ + ⋅ ′′∇( )∫ ∫1 2 d d     (1.41)  

where  ∇  ″  is the one - dimensional del operator acting along the curve. Application 
of equation  (1.41)  to equation  (1.40) , with  f  replaced by   γ  wns  , to eliminate the terms 
at the ends of the curve then provides:
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(1.42)
  



or, after collection of the integrands:
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(1.43)
  

This equality must hold regardless of the length of common line segment over 
which the integration is performed. Therefore, the integrand itself must be zero 
or:

    − − − − + ′′∇ + ⋅ ′′∇( ) =γ γ γ γ γwn wn ws ws ns ns s s wns wns wns wnsfn n n n n n 0     (1.44)  

The term in parentheses in this equation is the vector known as the    curvature    
of the common line. It may be expressed in terms of two orthogonal vector 
components as:

    n n n nwns wns n s g ws⋅ ′′∇ = +κ κ     (1.45)  

where   κ  n   is the    normal curvature    and   κ  g   is the    geodesic curvature     [4] . Substitution 
of this relation into equation  (1.44)  yields the force   balance on the common line   
as:

    − − − − + ′′∇ + + =γ γ γ γ κ γ κ γwn wn ws ws ns ns s s wns n wns s g wns wsfn n n n n n 0     (1.46)  

This equilibrium balance of forces at a point on the common line is a vector equa-
tion that states the balance of forces in any coordinate direction. Important balance 
expressions may be obtained by calculating the dot product of equation  (1.46)  with 
each of the three orthogonal vectors  n   wns  ,  n   s  , and  n   ws  .   

 The dot product of  n   wns   with equation  (1.46)  yields:

    nwns wns⋅ ′′∇ =γ 0     (1.47)  

where use has been made of the fact that all the unit vectors that appear explicitly 
in equation  (1.46)  are orthogonal to  n   wns  . This equation expresses the equilibrium 
requirement that   γ  wns   be a constant along the common line in that its spatial deriva-
tive taken in the direction along the common line is zero. 

 The dot product of  n   s   with equation  (1.46)  gives the balance of forces in the 
direction normal to the solid surface:

    − ⋅ − + =γ κ γwn s s n wnswn fn n 0     (1.48)  

The angle between the  wn  interface and the  ws  interface at the common line is 
called the    contact angle    and is designated as   θ  . Therefore:

    n nwn s⋅ = − sinθ     (1.49)  

and equation  (1.48)  may be written:
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    γ θ κ γwn s n wnsfsin − + = 0     (1.50)  

This equation indicates that the force exerted on the common line by the  wn  inter-
face that tends to pull the common line away from the solid is balanced by an 
attractive force of the solid and a tendency of the curved common line to expand 
(or contract) due to the lineal tension. Note that if the common line has no curvature 
in the direction normal to the solid (such that   κ  n     =   0 as in Figure  1.10 ), the lineal 
tension will not result in a force in the direction normal to the solid. 

 Finally, the component of balance equation  (1.46)  in the direction tangent to the 
solid surface and normal to the common line (i.e., in direction  n   ws  ) is obtained from 
the dot product of equation  (1.46)  with  n   ws  :

    − − + + =γ θ γ γ κ γwn ws ns g wnscos 0     (1.51)  

where use has been made of the facts that  n   wn      ·     n   w s    =   cos     θ   and  n   ws      ·     n   w s    =    −  n   ws      ·     n   ns    
 =   1. This equation expresses the balance of forces in the direction tangent to the 
solid surface. When an imbalance exists, the common line will be displaced as one 
fl uid spreads onto the surface. Equation  (1.51)  may be rearranged to the form:

    cosθ γ γ
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= − +ns ws
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g wns

wn

    (1.52)  

Typically, either from historical precedent or because the line tension and geodesic 
curvature are small, the last term in this expression is excluded so that the force 
balance becomes:

    cosθ γ γ
γ

= −ns ws

wn

    (1.53)  

Equation  (1.53)  is known as    Young ’ s equation   . 
 The contact angle   θ   plays a very important role in multiphase fl ow. If the angle 

is less than 90 degrees, then the fl uid  w  in Figure  1.10  is the   wetting fl uid  . The fl uid 
for which the wetting angle is greater than 90 degrees, the fl uid  n  in the fi gure, is 
the   nonwetting fl uid  . If |  γ  ns     −     γ  ws |    >     γ  wn  , then no equilibrium is possible as |cos   θ   | 
would have to be greater than 1 for equation  (1.53)  to be satisfi ed. In this case, the 
wetting phase will spread until it completely coats the solid surface. 7  

 In light of this theoretical analysis, we return to the question of why water will 
bead on a waxed car surface but not on an unwaxed surface. The explanation lies 
in the magnitude of the contact angle between the water and the painted surface as 
opposed to the contact angle between the water and the waxed surface. Water beads 
on the waxed solid surface because the contact angle between the water and the 
wax is greater than 90 degrees such that the air is the  “ wetting fl uid ”  in this case. 
On the other hand, the contact angle between water and the unwaxed surface is less 
than 90 degrees such that the water tends to wet this surface. When the magnitude 

 7     The wettability of various fl uids can be infl uenced by additives that affect the surface tension of 
the fl uids. 



of the right side of equation  (1.53)  is greater than 1, as is the case for a poorly waxed 
car in need of a new paint job, the water tends to spread in sheets over the surface. 
In this comparison the    wettability    of the painted surface is said to be greater than 
that of the waxed surface. 

 Consider an experiment whereby a 0.10   cc droplet of water is placed on the hood 
of a car at a place where the hood is horizontal. Assume that the drop is small 
enough that its shape may be considered spherical. The contact angle between the 
water and solid phase is observed to be 100    °  such that the size of the droplet is 
more than half a sphere. The volume of the drop may be related to the radius of 
the  ws  circle of contact,  r , and the contact angle,   θ  , according to:

    V
r= ( ) −( ) +( )π

θ
θ θ

3
1 2

3
2

sin
cos cos     (1.54)  

For this system, where the surface is concave in the wetting phase, the mean radius 
of curvature is the negative of the radius of the drop cap:

    R
r

c = −
sinθ

    (1.55)  

If two variables from among  V, r,  θ  , and  R c   are observed, then the remaining vari-
ables may be calculated from the last two equations. If more than two of the vari-
ables are observed, the equations can serve as measures of the accuracy of the 
measurements. For the present case with  V    =   0.1   cc and   θ     =   100    ° , rearrangement of 
equation  (1.54)  yields:

    r
V= ( ) −( ) +( ) =3 1

1
1

2
0 331

1 3 2 3 1 3
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cos cos
sin . cm     (1.56)  

and equation  (1.55)  provides  R c     =    − 0.336   cm. At room temperature, the surface 
tension of an air water interface 8  is approximately   γ  wn     =   72.5 dynes/cm  [2] . Thus, 
from equation  (1.36)  the capillary pressure of the  wn  interface is:

    p p p
R

n w c
c

wn− = = = − ×2
4 32 102 2γ . dynes cm     (1.57)  

where  n  refers to the air phase,  w  to the water phase, and the difference in the pres-
sures is negative since the air preferentially  “ wets ”  the solid as indicated by the fact 
that the air - solid contact angle is less than 90    ° . For context, it may be helpful to note 
that this pressure is the same as the decrease experienced at the bottom of a glass 
of water if the depth of water is decreased by 0.44   cm. Although this magnitude of 
capillary pressure is small, it should seem reasonable that for fl ow in porous media 
where the curvatures can be orders of magnitude higher, capillary pressure is 
important. 

 8     Surface tension for an air - water interface is approximately   γ  wn     =   75.6    −    0.15    T  dynes/cm, where  T  is 
temperature in degrees Celsius. 

SURFACE TENSION CONSIDERATIONS   25



26   SETTING THE STAGE

 With the information obtained thus far, we can also make use of equation  (1.53)  
to determine the difference in interfacial tensions between the fl uids and the 
solid:

    γ γ γ θns ws wn− = = ° = −cos . cos .72 5 100 12 6
dynes

cm
dynes

cm
    (1.58)  

Although this result provides the magnitude by which   γ  ws     >     γ  ns   for this system, 
no information is obtained about the values of each of these interfacial tensions. 

 Also, the result neglects the effects of common line tension. In fact, values of 
common line tensions involving a solid and a pair of fl uids vary depending on the 
way the solid is prepared. The common line effects are considered to be small in 
porous media applications relative to other diffi culties involving heterogeneity and 
scale. Nevertheless, one should be aware that this approximation is employed. 

 The  wn  interfacial tension exerts a force normal to the solid surface that is coun-
tered by the attraction of the solid to the common line. This attraction may be cal-
culated using equation  (1.50) . Because the surface is fl at and the force we are 
investigating acts normal to the surface on the curve, the normal curvature is zero. 
Therefore, the lineal tension does not affect the results for geometric reasons, and 
not by assumption. Equation  (1.50)  thus provides the attraction force per unit length 
of common line as:

    fs wn= = ° =γ θsin . sin .72 5 100 71 4
dynes

cm
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cm
    (1.59)  

The preceding discussion and examples involve the effects of surface tension and 
capillary pressure at the microscale. The study of these phenomena in porous media 
columns or in the fi eld is undertaken at the macroscale. At this scale, rather than 
looking at a particular interface or the points on an interface, the aggregate effects 
of interfacial processes within a representative region of the medium are accounted 
for. The term    capillarity    is commonly employed to refer to the fact that one fl uid 
is preferentially drawn into a porous medium. This phenomenon is attributable 
to   surface tension   infl uences. Some aspects of this effect will now be examined 
briefl y. 

 Generally, when water is brought into contact with dry soil, it is drawn into the 
soil. If the soil is above the water, the elevation to which the water will be drawn 
against gravity depends on the material that composes the soil and the pore sizes 
and geometry. To some degree, water will exist in soil above a saturated region and 
will be hydrodynamically connected to that region. The    water table    is the location 
in the subsurface where the water saturates the medium and where the pressure is 
equal to atmospheric. In fi ne - grained soil, water tends to be found at elevations 
higher above the water table than under similar conditions in more coarse soil. To 
demonstrate the reason this occurs, another simple experiment is considered. 

 The ends of two vertical clean glass tubes (   capillary tubes   ) with inside diameters 
of 0.5   mm and 1.0   mm, respectively, are dipped into a beaker of water as depicted 
in Figure  1.11 . The glass tubes are the solid phase, indicated as material  s g  . After a 
short time, water is observed to have entered the tubes and risen above the level of 



the water in the beaker. Moreover, the water level in the 0.5   mm diameter tube is 
approximately twice as high as in the 1.0   mm tube.   

 This experiment demonstrates that the rise in the water level is roughly linearly 
inversely proportional to the radius of the tube. Also, at a horizontal observation 
level below the surface of the water in the beaker, the pressure in the water will be 
constant. Therefore if a mathematical plane is located such that it intersects a capil-
lary tube, the water pressure in the tube at that position should be equal to the water 
pressure on the outside of the tube. 

 From this observation, the pressure of the water in the capillary tube at elevations 
above the water surface in the beaker can be calculated. Since the pressure differ-
ence between the air and the atmosphere across a fl at surface will be zero according 
to equation  (1.35) , the water pressure at the water surface in the beaker is atmo-
spheric. Therefore, the pressure in the capillary tube above this surface will be less 
than atmospheric. Pressure relative to atmospheric is called    gauge pressure   , and thus 
the pressure in the capillary tube is referred to as being    negative pressure   . Further-
more, since the water in the tube is static, the pressure decreases in direct proportion 
to elevation in the tube according to equation  (1.21)  in the form:

    p p gZw = −atm ρ     (1.60)  

with a change in coordinate such that  Z  is the distance above the water level in the 
beaker and  p  atm  is atmospheric pressure. The higher the elevation above the water 
surface, the more negative will be the   gauge pressure   of the water. Since the density 
of air is very small, the pressure in the air may be considered to be constant in the 
study region (i.e., gravitational effects on the air pressure are negligible). At the top 
of the water column in the capillary tube, a jump in pressure takes place between 
the water and air phases. This jump is accounted for in equation  (1.35) . If the height 
of water in the capillary tube is designated as  Z   =   h , combination of equations  (1.35)  
and  (1.60)  gives:

    Figure 1.11:     A suite of experiments demonstrating the relative wettability of glass and plastic in contact 
with air, water, and mercury.  
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wn= 2 γ     (1.61)  

This equation indicates that    capillary rise    can occur in a capillary tube only if the 
surface tension between the two fl uids is nonzero and the interface between the 
fl uids is curved with the interface being convex (i.e., bulging outward) from the air 
side. If the interface is concave from (i.e., bulging into) the air side, the capillary rise 
will be negative such that the liquid level will decrease in a    capillary depression   . 
Equation  (1.61)  will be discussed further subsequently. 

 Now extend the experiment by dipping into the water a tube made of plastic 
material, denoted  s p  , and with an inside diameter equal to that of the smaller glass 
tube, 0.5   mm (as indicated in Figure  1.11 ). Despite the equality of the tube diameters, 
the water does not rise as high in the plastic tube as in the glass tube. The interfacial 
tension of the air - water interface is unchanged, so based on equation  (1.61) , the 
lower rise in the plastic tube must be accompanied by a larger value of the radius 
of curvature of the interface,  R c  , refl ective of different interaction between the tube 
materials and the water. 

 As a fi nal element of this experiment, dip a smaller diameter glass tube into a 
beaker of mercury (fl uid  m  in Figure  1.11 ). In this case, the mercury does not pene-
trate the bottom of the tube and fl ow into the tube unless one pushes the tube 
deeper into the beaker. Indeed, the air displaces the mercury slightly as the mercury 
level in the tube is lower than that outside. In addition, the curved meniscus between 
the air and the fl uid, that has thus far been convex from the air side, is now 
concave. 

 The explanation of the behavior of the water and mercury interactions with the 
tubes is found in the concept of    wettability   . In the air - water - solid systems, water 
preferentially   wets   the sides of the capillary tubes relative to air, and wets glass more 
enthusiastically than it wets plastic. The water is drawn up in the capillary tube 
because of its affi nity for the sides of the tube and its ability to sustain a pressure 
jump across its interface with air. 

 The height of capillary rise is determined from the balance of forces as indicated 
in equation  (1.61)  at the meniscus between the water and the air. The   contact angle   
between the meniscus and the tube wall,   θ   in Figure  1.11 , is generally considered 
to be a property of the three phases. Although the roughness of the solid surface 
can impact the value of the contact angle, this effect will be neglected here. For 
the small capillary tubes under consideration, assume that the interface is essentially 
spherical such that the radius of curvature,  R c  , is related to the tube radius,  r , 
according to:

    r Rc= cosθ     (1.62)  

Substitution of this equation into equation  (1.61)  and rearrangement yields the 
height of the capillary rise as:

    h
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    (1.63)  



Equation  (1.63)  demonstrates that the smaller the tube radius, the higher the 
meniscus will be drawn into the tube. As long as the tube is small enough that the 
approximation of a spherical interface applies, the capillary rise is linearly propor-
tional to the inverse of the radius. Similarly, in naturally occurring fi ne - grained 
material, which would typically have smaller diameter pores than coarse - grained 
material, water is more easily held in the region above the water table. The observa-
tion that water does not rise as high in the plastic tube as in the glass tube suggests 
that the wettability of water relative to air on plastic is less than on glass. Finally, 
the observation that there is a depression rather than rise of mercury in the glass 
tube indicates that mercury does not wet glass relative to air. 

 While a capillary tube can, to a limited degree, be a surrogate for the channels 
in a porous medium, the analogy has some serious limitations. The pores in a porous 
medium are irregular in geometry and variable in shape. The cross - sectional char-
acteristic length of a pore will vary over at least a couple of orders of magnitude. 
Pores are also connected to each other and allow fl ow to follow a complex, multi-
directional path. 

 To obtain some insight into how a variable pore diameter might affect the behav-
ior of multiphase fl uids, consider yet another simple experiment. Figure  1.12  depicts 
a capillary tube with a small, but variable, diameter that is a simple surrogate for 
pores. The experiment begins by immersing the lower, fl anged end of the capillary 
tube into a beaker of water. The tube is lowered very slowly until the water has just 
entered the tube up to point  “ 1 ”  in Figure  1.12 b, the minimum constriction. This 
process is the    imbibition     stage , as water moves into the tube displacing the air that 
fl ows upward to leave the tube. If the capillary tube is lowered further into the water, 
for example by a distance δ , the water level in the capillary will increase only by an 
amount between 0 and δ . The reason the capillary rise is not sustained in this process 
is that the capillary forces are less effective because of the increased diameter of 
the tube. This difference will be minimized when the tube has been lowered such 
that the water just rises to point  “ 2 ” . If the tube is lowered further, the height of the 
water level in the capillary relative to the level in the beaker once again increases. 
This is due to the decrease in capillary diameter that gives rise to an increase in the 

Figure 1.12: The constriction in the capillary tube tends to retain water at a higher elevation on drain-
age ( a) and to preclude the water level from reaching a higher elevation on imbibition ( b).
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capillary force. Once location  “ 3 ”  is reached, the process continues in the same 
fashion as the tube is immersed further.   

 Let us now immerse the capillary tube to the location marked 4 in Figure  1.12 a. 
Now slowly raise the capillary tube so the water moves downward in the capillary. 
In this, the    drainage     stage , the minimum cross section of the capillary tends to infl u-
ence the behavior of the fl uid by maintaining it at a level above the larger pore. 
Note that maintaining this higher level depends on the radius of the pore, the surface 
tension, and the wettability. The capillary forces are not infl uenced by the larger 
cross - section geometry of the capillary below the neck where the interface is 
established.

 On the other hand, during imbibition the wider opening associated with the 
larger pore (or a large pore in a network in a natural soil) does not provide as 
attractive a region for water fl ow as does a small opening. 9  From another perspec-
tive, with all other factors being equal, the air - water interface tends to remain where 
the radius of the pore is the smallest. Thus water is precluded from advancing until 
the pressure is suffi cient to overcome the impediment of the larger pore. 

 From this example it is evident that the physical behavior of the modifi ed capil-
laries shown in Figure  1.12  is infl uenced by whether the water is draining or imbib-
ing. In the macroscale study of porous media, the capillary pressure is related to the 
saturation. Thus it is not surprising that the equilibrium relationship between satura-
tion and capillary pressure is not single - valued. The equilibrium relation depends 
on whether imbibition or drainage has occurred prior to examination of the state 
of the system. This situation is described by saying that the capillary pressure is a 
hysteretic  function of saturation, that is, the relationship is dependent upon the 
history of the porous media system. Thus different equilibrium states (that is, dis-
tributions of fl uid) may be obtained for the same external pressure conditions, 
depending upon the path taken to get to the new state. There are other reasons 
for hysteresis, and these will be considered in the chapter on constitutive 
relationships.

 In summary, it is fair to say that the description of a porous media system com-
posed of two or more fl uids and a solid is complicated in comparison with the case 
of a single fl uid and a solid by the presence of the interface between the fl uids. The 
interactions between the fl uids and between each of the fl uids and the solids must 
be considered to obtain a complete description of the physical processes. Capillary 
effects allow for discontinuity of pressure across the fl uid - fl uid interfaces that is an 
important factor in modeling multiphase fl ow.  

1.7 CONCEPT OF CONCENTRATION 

 One fi nal basic concept, the    concentration    of a chemical species in a fl uid phase, will 
be introduced here to conclude this chapter. The relatively short length of this 
section does not imply that the study of concentrations of species is simple, unim-

9   Recall that water rises more readily in a small diameter capillary than one of large diameter. 



portant, or straightforward. In fact, the study of the transport and reaction of chemi-
cals within a phase and their transfer between phases is a challenging and timely 
problem that is seldom easy. As with saturation, porosity, and pressure, concentra-
tion is one of the primitive variables in mathematical simulation. Its evolution is 
described by a conservation equation, and properties of a fl uid depend on the con-
centrations of its chemical constituents. Additionally, the concentration of a material 
is refl ective of its amount in the total solution. Thus, issues of scale involving the 
size of the sample in which a concentration is measured are important. An average 
concentration of a contaminant in a groundwater system does not indicate whether 
hot pockets of concentration threaten water supply wells. In this section measures 
of the concentration of constituents dissolved in a fl uid are explored. If the chemi-
cals are dissolved in a water phase, they are referred to as the solutes in the water 
solvent, and the phase is referred to as an aqueous solution. 

    Concentration    is generally expressed in terms of mass of solute per unit volume 
of solution. If, for example, one had a mass of 10   g of salt in a solution of one liter, 
the concentration could be expressed as a concentration of 10   g/1000   cc, or 0.01   g/cc. 
Alternatively, one could express the concentration as the number of grams of salt 
per given weight of solution. In the above example this would yield 10   g/1010   g, 
or 0.01. For dilute solutions, the difference between these two measures is 
insignifi cant. 

 In fi eld situations, one normally works with concentration in terms of parts per 
million (ppm) defi ned as the dimensionless ratio:

    ppm
mass of solute

mass of solution
= × 106     (1.64)  

Alternatively, the concentration is sometimes expressed as parts per billion (ppb) 
where:

    ppb
mass of solute

mass of solution
= × 109     (1.65)  

For the case of ten grams of salt in a liter of water, the concentration is ten thousand 
parts per million or ten million parts per billion. Concentrations in terms of parts 
per billion are often used in studying organic contamination of water. Some chemi-
cals are considered to be health hazards in concentrations on the order of 1   ppb. At 
such a low concentration, the dissolved chemical may have minimal impact on the 
fl ow properties of the phase. Nevertheless, the movement of the chemical relative 
to the phase is important to study. 

 Concentrations are also expressed in terms of moles of a constituent per volume. 
However, in this text, all references to concentration will be on a mass basis. When 
a contaminant adheres to a solid phase, its concentration relative to the solid may 
also be expressed as mass per mass of solid. Material attached to subsurface solids 
is immobile unless it dissolves into the fl uids in contact with the solid. The scope of 
this text is primarily limited to subsurface fl uid phases. However, it is not possible 
to completely isolate interacting components of environmental problems.  
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1.8 SUMMARY

 The purpose of this chapter is to introduce the reader to the basic concepts that 
must be considered in studying fl ow in porous media. After introduction of several 
fundamental porous media properties, current methodology for quantifi cation of 
porosity and grain - size distribution was presented. 

 Pressure has been described and defi ned for both saturated (single - phase fl ow) 
and unsaturated (multiphase, air - water) fl ow.   Capillarity  , a multiphase phenomenon, 
was introduced to demonstrate how negative gauge pressure can arise in water in 
air - water fl ow. The importance and behavior of the interface between fl uid phases 
was presented along with the infl uence of surface tension, curvature, common lines, 
and hysteresis. Commonly used measures of solute concentration were briefl y 
discussed.

1.9 EXERCISES

1.   Indicate whether each of the following items exists at the microscale or the 
macroscale. For items that exist at both scales, propose a relation between the 
microscale and macroscale measures: (a) pressure; (b) velocity; (c) density; (d) 
porosity; (e) saturation; (f) capillary pressure; (g) chemical species concentra-
tion; (h) temperature.  

2.   Find the minimum pore diameter in a cubic packing of equal - sized spheres of 
radius R .  

3.   For the soil described by the data provided in Table  1.2 , determine the coeffi -
cient of uniformity, Cu , the coeffi cient of curvature,  Cc , and the possible soil 
type.

4.   A porous medium is made up of grain particles with a density of 2.65   g/cc, water 
with a density of 1.0   g/cc, and air. A 1   cc sample taken from the medium has a 
mass of 2.05   g. If the porosity of the sample is 0.3, determine the water saturation 
and the water content.  

5.   A porous medium is constructed that is a collection of hollow spheres. A second 
porous medium is constructed using a similar collection of spheres except that 
these spheres are not hollow. Which medium has a higher porosity? Justify your 
answer.

6.   The    void ratio    is defi ned as the volume of voids (i.e., the volume not occupied 
by solid particles) divided by the volume of solid particles in a sample of porous 
medium. Obtain a mathematical relation between the void ratio, e , and the 
porosity, ε .  

7.   Consider a 20   cm vertical column of water in a right circular cylinder. The 
pressure in the water is hydrostatic. Calculate the average pressure in the 
water obtained by averaging over the volume of the water. Compare this result 
with the average pressure in the water calculated by averaging over the surface 
that bounds the water. Can any general conclusions be drawn from this 
result?



8.   Now consider a container that is a cylindrical column with radius  R1  for the 
bottom 10   cm and radius  R2  for the next 10   cm. Note that if  R1    =    R2 , the system 
is the same as in the last problem. Calculate the average pressure of a 20   cm 
column of water in this cylinder based on averaging over the volume and then 
based on averaging over the surface that bounds the water. What are the impli-
cations of this result in relation to a porous media system in which the water 
content is not constant.  

9.   A capillary tube is constructed as an alternating sequence of water - wet and air -
 wet materials. Suppose that the air - wet material is the fi rst (bottom) segment. 
Describe the behavior of the system as the tube is dipped into a beaker of water, 
pushed into the water, and withdrawn from the water. How would the behavior 
be different if the bottom segment were water - wet?  

10.   Consider a cone with the point on the bottom and with the angle at the tip des-
ignated as φ . Suppose the cylinder is fi lled to a depth of water  b  such that the 
radius of the common line circle is R . Provide expressions for the curvature of 
the common line, the normal curvature, and the geodesic curvature. Also provide 
a sketch that illustrates these quantities.     
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MASS CONSERVATION 
EQUATIONS

2

2.1 INTRODUCTION

 Modeling of physical phenomena is most useful when it is based on a description 
of the underlying processes that produce an observed behavior rather than on cor-
relations of observed data. If processes are described well, one may be able to 
predict how a system will react when subjected to a new or different stress. On the 
other hand, if a model is based on correlation of data, then when a system changes 
beyond the range of the data used in the correlation, the correlation will fail to 
describe it. For example, suppose one develops correlations for the fraction of rain-
water that infi ltrates into a fi eld, as opposed to running off, as a function only of the 
rainfall intensity, duration, temperature, and the amount of rain in the preceding 
week. Such data could be collected over a period of years and used to predict con-
tributions of the fi eld to fl ood events. However, if one year the fi eld is turned into 
a shopping mall, its response to a rainfall event will be radically different. Paving 
over a natural fi eld greatly reduces infi ltration and increases runoff. Therefore, the 
data and correlations developed for the fi eld in the natural state are of no enduring 
value. Alternatively, if a model of the fi eld is based on principles that refl ect univer-
sal behavior, the model may also apply after the system has been modifi ed dramati-
cally, for example by covering soil with relatively impermeable asphalt. 

 One such principle is conservation of mass, which states that mass is neither 
created nor destroyed. Although the chemical composition of the mass in a region 
under study may undergo transformation due to chemical or biological reactions, 
the only way to alter the amount of mass in the system is by fl ow across the system 
boundaries. This principle applies to any region in space including the fi eld discussed 
above, whether it is packed soil, newly plowed, overgrown with grass, or paved. 
Thus a model of a physical system that employs the principle of conservation of 
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mass will have more generality than a mere correlation, and that part of the model 
will have applicability even if the properties of the system undergo considerable 
change.

 In addition to the principle of   conservation of mass  , the principles of conservation 
of momentum and conservation of energy also must be satisfi ed. Problems can be 
posed in terms of these principles expressed mathematically as equations, but these 
equations alone are not capable of describing system behavior. The number of 
unknowns that arise is greater than the number of conservation equations, so the 
equations must be supplemented by correlations, or    constitutive relations   , that 
describe some system dynamics in terms of other system variables (e.g., mass density 
as a function of temperature and pressure, or stress as a function of strain). The 
need for constitutive relations certainly complicates efforts to model systems, but 
the situation is even more complex than might be realized at fi rst glance. 

 The diffi culties arise from the fact that depending on the temporal and spatial 
scales at which a system is to be described, the constitutive equations needed are 
different. For example, suppose one is interested in the weathering of a granite rock 
subjected to natural effects and uses a time scale of observation such that only the 
initial and fi nal states are considered. The description of the process would be far 
different if a time scale of one second is of interest, where a fantastic model would 
indicate that the rate of weathering is zero, as opposed to a time scale of 10 millen-
nia, where the changes due to physical and chemical effects would have to be taken 
into account. The difference in these time scales is ten orders of magnitude. Various 
investigators might consider problems with time scales ranging from less than the 
period of atomic motion (10 − 15    sec) to the age of the oldest rocks on earth (10 16    sec). 
Very little imagination is required to conclude that constitutive relations describing 
processes of interest must be tailored to the the time scale of interest. Although the 
constitutive approximations will be scale dependent, the fundamental conservation 
principles will apply regardless of scale. Spatial scales of observation also may range 
over many orders of magnitude in that, for example, the radius of an electron is 
10− 15    m while the diameter of the earth is 10 7    m. Although earth dynamics could, in 
theory, be modeled by accounting for each electron, as well as other elemental par-
ticles, such an approach is infeasible from a practical perspective and unwarranted 
for the description of environmental processes of actual interest. 

 Faced with the need to enhance quantitative understanding of the environment, 
the modeler is always forced to work with average values of parameters. Still, a 
judicious decision must be made in the selection of the time and space scales that 
will provide useful information. For example, average precipitation rates differ 
depending on whether one is interested in a particular calendar day, a season, or an 
annual measure. Additionally, the average precipitation values for a city are differ-
ent from those for an entire state. The forms of constitutive relations describing 
spatial variation of precipitation will vary depending on the distances between 
points of interest. Furthermore, the average values of precipitation employed in 
those correlations will also be different and based on corresponding temporal and 
spatial scales. 

 Depending on the problem to be studied, one must select the temporal and 
spatial scales that are appropriate. One does not plan a ski vacation based on the 
average annual snowfall in a state. Such time and space scales are too coarse to lead 
to a reasonable schedule for the vacation. Instead, a particular month and mountain 
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have to be analyzed to provide a better prediction. Even with this more refi ned data, 
however, the avid skier can end up in poor ski conditions because of variations 
around the averages at a scale smaller than the averages considered. Such variations 
are called subgridscale variations . If these subscale variations could be modeled 
perfectly, in addition to a perfect model at the scale of observation, the skier would 
be able to plan for optimal conditions. 

 In summary, modeling makes use of conservation equations, correlations or con-
stitutive relations, and variables and parameters averaged over appropriate time 
and space scales. Multiphase fl ow modeling in porous media also is developed con-
sidering these factors. The traditional approach to these models develops the equa-
tion of conservation of mass for each of the phases of interest and then expresses 
them at the appropriate scales. Although a full derivation of conservation of momen-
tum would seem to be the next step in obtaining a description of porous media fl ow, 
this approach has not been followed for historical reasons. In 1856, Henry Darcy 
published his equation for steady fl ow of a single fl uid phase in a column packed 
with a homogeneous sand  [3] . The equation derived states that the steady volumetric 
fl ow rate per unit cross - sectional area in a column fi lled with a homogeneous sand 
is proportional to the head drop across the column. This correlation of experimental 
data was found to model fl ow in porous media well enough that its general form, 
with more complex coeffi cients of proportionality, has been extended to heteroge-
neous media, anisotropic solids, transient fl ow, and multiple fl uid phases. The 
correlations, referred to as Darcy ’ s law in all their incarnations, remain in near - 
universal use today in lieu of a derived momentum equation. The long history of 
collection of experimental data to support Darcian approaches and the fact that a 
full derivation of a general momentum equation is very complex have contributed 
to maintenance of the status quo. Innovative new experimental studies to support 
constitutive forms that arise in general momentum equation derivations are needed 
to advance the state of the art. 

 The study of multiphase fl ow that is the subject of this text will be based on the 
conservation of mass equation, Darcy ’ s equation, and additional closure relations 
that complete the set of equations such that they can be solved. In particular, this 
chapter deals with the derivation of mass conservation equations that can be used 
in describing fl ow and chemical species transport in porous media. 

 The initial formulation of an equation of mass conservation will be at the most 
commonly employed    continuum scale   , referred to here as the    microscale   . Although 
real materials are composed of atoms and molecules that occupy only a small 
portion of space, with intermolecular regions being empty, the microscale views 
materials as continuous substances that occupy every point of a continuous region 
of space. The microscale averages the presence of molecules within a region such 
that they are considered to fi ll the space in some uniform fashion. The length scale 
of averaging is much greater than the mean free path in gases for molecular colli-
sions, on the order of 10 − 7    m at standard pressure and temperature. This measure is 
used because the intermolecular distance in a solid and the mean free path for 
molecular collisions in a liquid are much smaller. The stipulation that the length 
scale be  “ much greater ”  than the mean free path ensures that enough molecules are 
included in the averaging region that the average value measured does not change 
with small changes in the size of the averaging region. The formulation of governing 
equations at the microscale has a rich tradition in fl uid and solid mechanics. It 
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has been possible to develop constitutive relations at this scale to supplement 
the conservation equations such that a wide array of problems of interest are 
well - described. 

 Modeling of fl ow in porous media at the microscale views the fl uids and solids 
as being adjacent to each other and separated by sharp interfaces. Because the 
actual geometry of a natural porous solid phase is unknown, modeling of the evolu-
tion of the distribution of fl uid phases within the pore space would be extremely 
diffi cult. The application of boundary conditions at interfaces of unknown location 
is an insurmountable challenge. For this reason, and also because a complete descrip-
tion at the microscale is more precise than what is required in many situations, 
multiphase fl ow is commonly modeled at the    macroscale   , a length scale that is much 
greater than a pore diameter but much less than the scale at which larger hetero-
geneities are observed. A commonly used estimate of the macroscale is on the order 
of ten to one hundred pore diameters. The averaging region is called a    representative
elementary volume    (REV) and must produce averages that are insensitive to small 
changes in its size. At the macroscale, phases are considered to share a location and 
to each occupy a fraction of the averaging region. This is quite different from the 
microscale perspective with the phases adjacent to each other. In this chapter, 
methods will be developed that facilitate the systematic transformation of the 
microscale mass conservation equations to the macroscale. The assumptions that 
accompany this transformation will also be examined in some detail.  

2.2 MICROSCALE MASS CONSERVATION 

 The equations of mass conservation can be applied to a chemical species within a 
solution or to the solution as a whole composed of various chemicals. In either case, 
at the microscale, the material under consideration is treated as a continuum. The 
following example, involving brewing of a cup of tea, provides an indication of the 
issues involved. This example is selected because the experimental setup is simple 
and can be easily reproduced. What is lacking in elegance and rigor is made up for 
by accessibility. 

 The experiment depicted in Figure  2.1 , begins with a cup fi lled to a predetermined 
level with hot water. A tea bag containing some tea leaves is then immersed in the 
water. The tea bag is permeable to liquid, but the tea leaves are confi ned to the bag. 

Figure 2.1: A permeable tea bag contains tea leaves. Although the leaves cannot leave the bag, hot 
water and tea dissolved in the water move easily through the bag surface. 



A hot beverage is made when the liquid moves into the bag, dissolves some of the 
chemicals in the tea leaves and then carries those chemicals out of the bag and into 
the liquid in the cup. For the purposes of this discussion and the subsequent deriva-
tion, the fl uid system will be idealized as composed of two chemicals, water and tea, 
although the  “ water ”  may initially contain chemical additives, such as fl uoride, and 
the  “ tea ”  is actually a mixture of chemicals. The process of dissolving the tea can be 
infl uenced by stirring the liquid, if desired; and stirring will ensure that the distribu-
tion of tea in the water is uniform. However, whether or not the system is stirred, 
the equations of mass conservation must still apply. Mixing of water and tea occurs 
due to differences in the velocities of these species.   

 In this example, consider the fl uid as residing in two different regions, within the 
tea bag (indicated as  “ bag ” ) and outside the bag (indicated as  “ cup ” ). The total fl uid 
in the tea cup is the sum of the fl uid in the bag and the cup (indicated as  “ bag+cup ” ). 
Some general observations can be made about the fl uid in the tea cup. In the absence 
of evaporation, pouring water into the cup, or drinking the liquid, the amount of 
bag+cup water is constant. Neither the amount of bag water nor the amount of cup 
water is necessarily constant, but their sum will be. The tea in bag+cup is constant, 
as long as no tea is consumed or spilled, even if some additional water is poured 
into the cup. Initially, some of the tea is in a solid phase. With time, the amount of 
tea in the fl uid phase will increase, both in the bag and in the cup. 

 The processes of transfer of tea from the solid to the bag water, fl ow of the water 
and tea mixture between the bag and the cup, and mixing of portions of the solution 
containing high tea concentration with portions containing lower tea concentrations 
can be described by mass conservation equations. The equations express changes 
that occur over time and space due to dissolution of tea, changes of the mass frac-
tion of tea in the solution, and the velocities at which the water and tea move. The 
equations are formulated here in terms of microscale variables integrated over a 
study region. Subsequently, they will be applied to the problem of brewing tea.  

  2.3     INTEGRAL FORMS OF MASS CONSERVATION   

 This derivation is concerned with the mass conservation equation for a chemical 
species in a mixture of other chemicals inside a volume of interest. For example, it 
could refer to the tea dissolved in water in the bag region, in the cup, or in the 
cup+bag depending on which volume is selected. Alternatively, the equation 
could refer to the water species. The derivation will involve microscale continuum 
quantities. The principle of mass conservation can be formulated for a chemical 
species  i :

   

rate of change of
mass of species

in volume

net rate of loss
i













+
oof mass

of species due to flow
across volume boundary

rat
i













−
ee of increase of species

mass due to transformation
from other spec

i

iies













= 0

   (2.1)   

 The objective of the derivation is to convert this statement of mass conservation 
into an equation by obtaining mathematical analogs to each of the three terms. 
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 To begin development of the expressions, denote the mass per volume of fl uid at 
a microscale point in the volume as   ρ   and the fraction of the mass at this point that 
is species  i  as   ω  i  . The index  i  can take on values that correspond to each of the 
chemical constituents present. If there are  N  such different species, the sum of the 
mass fractions of all the species must be 1, or:

    ω i
i

N

=
∑ =

1

1     (2.2)   

 Thus, the mass of species  i  per unit volume at a microscale point, also called 
the  concentration  of species  i  on a mass basis, is indicated as   ρ  i   and can be calculated 
as:

    ρ ρωi i=     (2.3)   

 The mass of species  i  at a point is therefore the concentration of  i  multiplied by the 
differential volume,   ρ  i   d v . Therefore, the total mass of dissolved  i  in a large study 
volume is the sum of the mass of  i  at all points in the volume. This is the integral 
over the volume, i.e.:

    mass of species in volume di i

V

= ∫ ρ ν     (2.4)   

 The fi rst term in equation  (2.1)  is the rate of change of the mass of species as cal-
culated in equation  (2.4)  such that:
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 The second term in equation  (2.1)  is concerned with the fl ow of the chemical 
species across the boundaries of the volume of interest. This boundary is a closed 
surface. For example, if we are interested in the cup portion of the tea brewing situ-
ation, the boundary consists of the solid that is wet by the water - tea mixture, the 
surface of the mixture that is in contact with the air, and the tea bag membrane. The 
only way a chemical species could cross the boundary of the volume would be by 
fl owing in a direction normal to the boundary. Flow tangent to the boundary remains 
in the volume. We designate the microscale velocity of species  i  at a point as  v   i   and 
the normal direction outward from the volume at a point on the surface as  n . There-
fore the normal velocity of the chemical species  i  at a surface of the volume will be 
 v   i      ·     n , where both the velocity and the normal are evaluated at the same point on the 
boundary. The value of the species velocity and the normal direction will change 
depending upon the point on the boundary being considered. 

 Now suppose that, with reference to the tea problem, one is walking with the tea 
cup, being careful not to spill. Since the cup is moving, all the fl uid in the cup is 
moving. However, none of the water - tea mixture is leaving the cup. This highlights 
the fact that for mass to leave a volume at a point on the boundary of the volume 
under study, it must not only have a velocity normal to the surface, but that velocity 



must be different from the normal velocity of the surface itself. Designate the veloc-
ity of a microscale element of the surface of a volume as  w . The normal velocity of 
the surface at that point is then  w    ·    n . The volume of species  i  leaving the cup on the 
element of surface d s  is ( v   i      −     w )    ·     n  d s . The mass per time leaving the volume is 
obtained by multiplying this expression by the mass of  i  per unit volume,   ρ  i  , and 
summing over all elements of the bounding surface, i.e., integrating over the com-
plete surface of the volume to obtain:
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 It is important to perform the integration specifi ed in equation  (2.6)  over the entire 
surface of the volume being analyzed. For example, if one is interested in the cup 
region of the tea brewing problem, surface integration is over the complete bound-
ary of the cup region. This surface includes the solid cup walls, the top surface of 
the fl uid, and the boundary that separates the cup region from the bag region. The 
integral over the part of the surface where the fl uid is in contact with the solid cup 
material is zero since no tea is moving through that surface or depositing on the 
surface. If no tea is being consumed or poured out of the cup, the integral over the 
surface of the fl uid in contact with air will also be zero. Thus, the only way that tea 
can move out of the cup is by fl owing into the tea bag through its surface. For the 
most part, the tea will be leached from the leaves into the fl uid in the bag and then 
fl ow into the cup through the bag membrane that forms the fi nal part of the cup 
boundary. Rather than this fl ow causing a loss of tea from the cup, there will be a 
gain of tea such that the term will be negative. This is accounted for by the fact that 
the normal vector  n  is oriented pointing out of the cup into the tea bag. Thus the 
fl ow term provided by equation  (2.6)  accounts for transfer across the entire bound-
ary of a volume under study and correctly indicates whether the transfer results in 
gain or loss of material through the dot product of the velocity vector with the out-
wardly directed normal. 

 The third term in equation  (2.1)  accounts for the production of species  i  due to 
chemical or biological reactions within the fl uid in the volume. Let the rate of mass 
production of  i  per unit volume per unit time at the microscale be designated as  r i  . 
Multiplication of this quantity by the differential volume yields  r i   d v , which is the 
rate of mass production per unit time in the differential volume. This quantity is 
summed over all points in the volume, i.e., integrated over the volume, to yield the 
desired expression:
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 The chemical reaction term is one that, in general, must be approximated 
using a constitutive form. Typically, the approximations would provide the chemical 
reaction rate as a function of pressure, temperature, and the concentrations of the 
various chemical species in the system under study. For the tea brewing problem, 
the system is viewed as consisting of two species, tea and water, with no reaction 
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occurring that transforms tea to water or vice - versa. Therefore the rate of change 
of tea mass in the cup due to chemical reaction is zero. However, in a general 
derivation, the reaction rate term must be carried along in its general form 
in anticipation of the potential study of systems where a chemical reaction is 
occurring. 

 Substitution of the terms developed in equations  (2.5) ,  (2.6) , and  (2.7)  into equa-
tion  (2.1)  provides the equation of conservation of species  i  in a volume,  V , with 
boundary,  S :
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iρ ν ρ ν∫ ∫ ∫+ −( )⋅ − =v w n 0     (2.8)   

 This is the    integral form  of   the  species     conservation of mass     equation  expressed in 
terms of microscale variables for species  i  in a volume. Note that the volume studied 
can be a physical space, such as the cup of tea, or a mathematical region, such as a 
cubic centimeter of space within the cup selected as being worthy of analysis. As 
long as the integrals are properly evaluated over the volume and the boundary of 
the volume, the analysis will be correct. The conservation of mass equation for 
species  i  may also be expressed in terms of the microscale solution density multi-
plied by the mass fraction of species  i  by substitution of equation  (2.3)  into equation 
 (2.8)  to obtain:
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 Equation  (2.8)  or equation  (2.9)  provides the mass balance equation for each 
species in a solution. Therefore, summation of the species balance equation over all 
the species will provide a conservation equation for the total mass. Summation of 
equation  (2.9)  over the  N  chemical species in the solution yields:
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 This equation is readily simplifi ed making use of several defi nitions and observa-
tions. First, the sum of the mass fractions must be 1, as previously stated in equation 
 (2.2) . Thus equation  (2.10)  becomes:
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 Second, since the chemical reaction terms account for the rate of mass production 
of species at a point, they must sum to zero even if the terms are not individually 
zero. If the rates of mass production did not sum to zero, this would indicate that 
mass is being created or destroyed when species are transformed from one chemical 
to another, which is not physical in the absence of nuclear reactions. The sum of the 
reactions over all species is therefore zero whether or not each of the individual 
reactions is zero. This reduces the total mass balance equation further to:
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 Finally, defi ne the    barycentric       velocity   ,  v , of the fl uid as a mass fraction weighted 
velocity summed over all species:

    v v=
=
∑ω i i
i

N

1

    (2.13)   

 If this identity is employed in equation  (2.12) , the total mass conservation equation 
for the fl uid in a volume in terms of microscale variables is:
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 This is the conservation equation used if one is interested in modeling the total 
amount of fl uid in a volume without being concerned about the composition of that 
fl uid. 

 Now that the barycentric velocity has been defi ned, it is useful to make a few 
comments about the velocity of the chemical species or, in particular, the velocity 
of a chemical species relative to this velocity. Modify equation  (2.9)  by adding and 
subtracting the barycentric velocity in the second integral and then regrouping 
terms to obtain:
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 In this form of the equation, the second term accounts for species  i  that leaves the 
volume across its boundary due to fl ow moving at the barycentric velocity. This part 
of the fl ow is referred to as    convection   . The next integral accounts for the fl ow of 
species  i  across the boundary of the volume due to its velocity relative to the mean 
velocity of fl ow. When the fl uid is not being stirred and not fl owing relative to a 
volume of fi xed shape and size, it is quiescent and the relative movement of constitu-
ent  i  is spreading due to random collisions between molecules of different types. 
This process of spreading is referred to as    diffusion   . 

 If one observes a tea bag sitting in a cup of quiescent liquid, tea can be seen to 
move slowly into the cup from the bag. Typically, more tea will exist at the bottom 
of the cup than towards the top. Also, more will be close to the bag than away from 
it. To distribute the tea uniformly through the cup by diffusion, one can wait a long 
time, much longer than it takes the hot water to cool. As an alternative to the patient 
approach, one may stir the fl uid. Stirring causes the water and tea to mix more 
completely to the point where the velocities of the water and tea will quickly 
become equal and their concentrations will be uniform. Thus a brewed cup of tea 
can be produced within a time frame that the liquid is hot, while assuring the quality 
of the concoction is uniform. 

 This process of mixing that makes use of mechanical intervention or induces 
turbulence to eliminate concentration gradients is called    dispersion   . Both diffusion 
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and dispersion are measures of fl ow relative to the barycentric velocity. Thus they 
can be designated for the species  i  as  j   i  , where  [2] :

    j v vi i i= −( )ρω     (2.16)   

 Substitution of this expression into equation  (2.15)  yields:
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 For this equation to be employed in the solution of a species transport problem, a 
constitutive relation will have to be introduced for the diffusive/dispersive transport 
term,  j   i  . An observation that will prove useful in hypothesizing a constitutive 
equation is to note that species  i  will have a velocity different from that of the 
mixture only if its concentration is not uniform. This observation will be exploited 
subsequently. 

 The primary results of this section are two integral equations that express 
mass conservation. The fi rst is the integral expression for the conservation of a 
chemical species measured as a microscale property in a system whose length scale 
is much greater than the microscale. The most commonly used form is given as 
equation  (2.17) , which generally must be supplemented with constitutive expres-
sions for the chemical reaction rate and the diffusion or dispersion vector. Use of 
equation  (2.17)  in a modeling exercise does not produce information about the 
distribution of the chemical species of interest within the study region. This equation 
only provides representative values obtained as integrals over the system. The 
second equation that is of particular importance is equation  (2.14) , which expresses 
total mass conservation for a material that occupies a volume of interest. This equa-
tion also is not capable of providing information about the distribution of density 
or velocity within a system as it makes use of average values or totals obtained by 
integrating over the system. Additionally, equation  (2.14)  does not distinguish among 
species that may be present in the fl uid. This has the advantage of not requiring 
constitutive expressions for chemical reactions and diffusion/dispersion to proceed 
with calculations, but it has a disadvantage if the composition of the mixture is of 
interest. 

 Note that if a system is composed of  N  chemical constituents, a species equation 
similar to equation  (2.17)  can be written for each of the constituents. The resulting 
 N  equations can be summed to obtain equation  (2.14) , making the total number of 
equations  N    +   1. However, only  N  of these equations are independent in that given 
any  N  of the equations, the remaining equation in the set of  N    +   1 equations may 
be derived. Typically, equation  (2.14)  is solved in conjunction with  N     −    1 of the 
species mass balance equations.  

  2.4     INTEGRAL THEOREMS   

 In some instances, it is desirable to employ a mass conservation equation that pro-
vides the ability to model the variation of concentrations, density, and velocities at 
the microscale within a volume. Such an equation can be obtained from the corre-



sponding integral conservation form by employing two classical mathematical theo-
rems that relate integrals of a function over a volume to the integral of the function 
over the surface of the volume. These integral theorems will only be stated here, not 
derived, as they can be found in basic calculus texts. 

  2.4.1     Divergence Theorem   

 The fi rst integral theorem is known as the    divergence theorem   . In fact the one -  and 
two - dimensional forms of this theorem were employed in the last chapter when 
assessing a balance of forces on an interface or common line. The form of interest 
here relates the integral over a volume of the divergence of a vector to the integral 
over the volume surface of the normal component of the vector according to:

    ∇⋅ = ⋅∫ ∫F F nd dν
V S

s     (2.18)  

where  V  is the volume of interest,  S  is the boundary surface of the volume,  F  is a 
vector function with continuous fi rst spatial derivatives within the volume, and  n  is 
the unit vector normal to the surface oriented to be positive pointing outward from 
the volume. With regard to the derivation of mass conservation equations,  F  may 
be any of the fl ux vectors that appear in the integral equations. For example, for  F   
 =     ρ  ω  i   v   i  , the   divergence theorem   provides:

    ∇⋅( ) = ⋅∫ ∫ρω ν ρωi i
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 Physically, the divergence of a vector can be thought of as the extent to which the 
vector behaves as a source or sink. If we consider equation  (2.19) , it says that the 
net increase of mass per time, as expressed on the left side of the equation as 
the integral of the divergence over the volume, is equal to the net fl ux over the 
boundary of the volume. This interpretation applies to a volume that is fi xed in 
space.  

  2.4.2     Transport Theorem   

 The second theorem that will be employed is the    transport theorem   . This equation 
states that a rate of change of the integral of a function over a volume is related to 
the change in the value of the function in the volume and any change in the size of 
the volume due to the movement of its boundaries. For a scalar quantity  f  with a 
continuous fi rst derivative with respect to time, the   transport theorem   is:
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where  V  is the volume of interest,  S  is the boundary surface of the volume,  f  is a 
function with a continuous fi rst derivative in time within the volume,  w  is the veloc-
ity of the boundary of the volume, and  n  is the unit vector normal to the surface 
oriented to be positive outward from the volume. If, for example, this theorem is to 
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be applied to the integral of the partial time derivative of the mass of species  i  per 
unit volume,  f    =     ρ  ω  i  , the transport theorem states:
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 This equation states that the sum over the volume of the rate of change of the 
density of species  i  at all points in the volume is equal to the rate of change of 
the mass of species  i  in the volume minus the rate of gain of mass of species  i  
due to the expansion of the volume into regions that contain additional amounts of 
species  i .   

  2.5     POINT FORMS OF MASS CONSERVATION   

 The divergence and transport theorems can be applied to the equation of conserva-
tion for the total fl uid as given in equation  (2.14)  to obtain an expression for mass 
conservation that is valid at all points in the fl uid. If  f    =     ρ   and  F    =     ρ   v , the surface 
integrals can be eliminated from equation  (2.14)  to obtain:
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 Inherent in equation  (2.22)  are the constraints that   ρ   is continuous in time and   ρ   v  
is continuous in space. Neither of these conditions is necessary for the more general 
equation  (2.14)  to be valid, but the constraints are applied by virtue of the condi-
tions necessary for the divergence and transport theorems to be applicable. 

 Equation  (2.22)  expresses the mathematical fact that the average value of the 
integrand is zero, although the integrand itself is not necessarily zero. However, from 
a physical perspective, note that this equation applies to any subregion of the 
volume that could be selected for analysis. Therefore equation  (2.22)  must apply for 
integration over  V  as well as if the integral were taken over  V     −      δ V , where   δ V  is 
a small portion of the region with characteristic length on the order of the microscale. 
In other words, the volume of integration is arbitrary such that equation  (2.22)  
applies for integration over any volume of size ranging from the microscale to 
the full extent of the system of interest. For this to be the case, the integrand 
itself must be zero at each microscale point such that the point equation for mass 
conservation is:
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 This equation describes the conservation of total mass at a microscale point with 
the fi rst term accounting for the rate of change of mass at the point while the second 
term is the net outward fl ow of mass per unit time from the point. 

 The divergence and transport theorems may also be applied to the species mass 
balance equation  (2.17)  as an important step toward obtaining the point form of 



this equation. The transport theorem is applied to the fi rst term to provide the 
partial time derivative while the divergence theorem is applied twice to eliminate 
the surface integrals. The result of these manipulations is:
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 By the argument that this equation must apply for an arbitrary volume, the inte-
grand itself must be zero so the microscale point species concentration equation is 
obtained as:
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 Often the second and third terms in this equation are grouped together for simplic-
ity of interpretation in the form:
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 The fi rst term is the rate of change of mass of species  i  at a point, the divergence 
term is the net loss of species  i  due to fl ow from the point, and  r i   is the rate at which 
species  i  is formed due to chemical transformation from other species. 

 Recall that equation  (2.16)  provided the decomposition of the fl ow term with

    ρω ρωi i i iv v j= +     (2.27)   

 Thus the net outward fl ux of the chemical species with its velocity  v   i   is equal 
to the fl ux due to the barycentric velocity of the fl uid  v  plus a dispersion or diffusion 
term that accounts for the fact that when there are gradients in concentration, 
a species may fl ow at a velocity different from the average. Equations  (2.26)  
and  (2.27)  can be combined to obtain the microscale species conservation 
equation without dispersion indicated explicitly but with the velocity being that of 
constituent  i :
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 Equations of the form  (2.26)  and  (2.28)  may be written for each of the species in a 
mixture regardless of their concentrations. As was done with the integral form of 
the species balance equation, the point form may be summed over all species to 
provide an expression for the conservation of total mass at the point. Summation 
of equation  (2.26)  over the  N  species that comprise the solution yields:
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 Equation  (2.2)  indicates that the sum of the mass fractions of all species present 
must equal 1. Additionally, since mass cannot be created by the reaction term, 
although the species can be converted from one to another by reaction, the sum of 
the rate of mass generation terms,  r i  , must be zero. With these conditions employed, 
equation  (2.29)  becomes:
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 Finally, the sum of the dispersion terms is the sum of the deviations of the species 
velocities from the barycentric fl ow velocity of the fl uid. Inherent in the defi nition 
of a mean velocity is the fact that the sum of deviations must be zero. Therefore:
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 Application of this last condition to equation  (2.30)  produces the simplifi ed 
form:
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which was derived previously by considering the total fl uid system as equation 
 (2.23) . 

 The derivation of the point forms of the microscale equations has been shown 
to follow directly from the integral forms written in terms of microscale variables. 
It should be no surprise that the sum of mass conservation equations for all the 
species present at a microscale point gives rise to the microscale mass conservation 
equation for the fl uid. This summation result applies whether one considers the 
integral or the point forms. The point form of the species conservation equation 
offers the opportunity to calculate the distribution of the species within the fl uid at 
the microscale while the integral form expresses the relation for the entire system. 
The integral form applies for any system, while the reduction to the point form 
requires that the fi rst time and space derivatives of the quantities under consider-
ation exist.  

  2.6     THE MACROSCALE PERSPECTIVE   

 In the preceding section, the integral and point conservation of mass equations were 
derived in terms of microscale variables. The properties of the fl uid or solid at a 
microscale  “ point ”  are obtained as averages over a large number of molecules com-
prising the substance of interest in the vicinity of the point. For the study of porous 
media, the same philosophy applies to the calculation of  “ point ”  values, but the 
region of averaging is much larger than that used to obtain microscale values. 
The scale of study is referred to as the    macroscale   , and its characteristic length is 
on the order of tens to hundreds of pore diameters. 



 There are at least two possible approaches to the calculation of macroscale vari-
ables. The fi rst is to determine macroscale quantities directly from molecular behav-
ior. This approach is similar to that followed in obtaining microscale variables with 
the difference between microscale and macroscale average quantities attributable 
to the much larger size of the averaging region for the macroscale. The second 
approach involves starting with the variables obtained at the microscale and averag-
ing them over a volume of interest to obtain macroscale average values. This second 
approach is employed here. However, it should be noted that if changes of scale are 
carried out in a mathematically consistent fashion, different methods used to effect 
the change should lead to the same results. In fact this observation suggests the 
further conclusion that study of a problem using theoretical, experimental, and 
computational methods should lead to the same conclusions if all methods are 
perfect. The differences in results obtained using these methods provide fertile 
ground for research studies about the systems under study and the methods 
themselves.

 In the previous section, the microscale mass conservation equations for a single 
phase, possibly composed of a number of chemical species, were obtained. Phases 
were considered to be adjacent to each other and separated by sharp interfaces. In 
this section, the concepts are extended to the macroscale case wherein phases are 
viewed as overlapping with each occupying a fraction of the volume of the mac-
roscale  “ point. ”  The averaging of the microscale quantities is performed over a 
region known as the    representative elementary volume   , or    REV   . This concept is dis-
cussed in the next subsection. Subsequently, macroscale theorems analogous to the 
divergence and transport theorems for microscale variables are introduced. Then, 
after average quantities are defi ned, the mass conservation equations are obtained 
expressed in terms of macroscale variables. 

2.6.1 The Representative Elementary Volume 

 The transformation of microscale equations to the macroscale requires that the 
microscale quantities be averaged over a macroscale volume. To understand this 
process, consider a sphere that may be located with its centroid at any point in the 
region of interest. The characteristic length of the sphere, i.e., its diameter, must be 
much larger than the microscale but much less than the dimension of the system 
under study. Envision that an average value of some microscale property is obtained 
by computation of an average for the sphere. This macroscale value is then associ-
ated with the location of the centroid of the sphere. The sphere can be moved 
around through the system and averages can be calculated to be associated with 
every centroid point. The spheres may overlap. It should be clear that average values 
of a property can be calculated and associated with every point in the system except 
those closer to the boundary than the radius of the sphere. This procedure provides 
averages that vary in space and time. The goal of a systematic transformation from 
the microscale to the macroscale is to develop equations that are expressed in terms 
of the macroscale fi eld. In particular, for mass conservation, the macroscale density 
and velocity are variables of importance in the governing equations. 

 For averaging of microscale variables to the macroscale, the volume of averaging 
is considered to be independent of the location of its centroid, of its orientation, 
and of time. For convenience, a sphere of constant size will be used as the averaging 
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volume. The size of the averaging volume is selected such that average values cal-
culated are invariant with respect to small changes in the size of the averaging 
volume. There has been much debate over whether or not such an averaging volume 
exists for a porous medium, but we will simply note that in many cases such a volume 
can be identifi ed. This volume is the REV. As long as it exists, its precise size is 
unimportant.

 We note that the equations to be developed here do not require that the average 
values be independent of the size of the REV. However, if the averages did depend 
on the size of the REV, then quantities describing the system would be diffi cult to 
measure in an unambiguous way.  

2.6.2 Global and Local Coordinate Systems 

 One of the most useful concepts in the development of equations for porous media, 
or for any system, at the macroscale is the introduction of a    local coordinate system
whose origin is located at the centroid of the macroscale volume or REV. As a pre-
liminary exercise to the formal introduction of this coordinate system, consider the 
following scenario. 

 The weekend has arrived and a student at the University of Vermont decides to 
leave Burlington to go off into the mountains to contemplate porous media fl ow. 
The student extracts a Vermont Vacation atlas from under the front seat of her car, 
where it has been conveniently stored, along with some loose change and a variety 
of crumbs of unknown origin, and begins to plan the trip. The area around Camels 
Hump mountain is of interest, particularly the town of Duxbury, and the location 
map in the front of the atlas provides direction to the page depicting a detailed map 
of the Camels Hump area. 

 The location map consists of the entire state of Vermont subdivided into twenty -
 nine rectangular areas with a number associated with each rectangle. The number 
on the rectangle corresponds to the page number where the detailed map of the 
area indicated is found. The Camels Hump area is indicated as being on page 18. 
The town of Duxbury is clearly presented on the detailed map on this page at a 
scale much larger than that provided on the index map. Page 18 provides good 
information for travel in the Camels Hump area, but to determine the route to this 
area, it is necessary to refer back to the index map as well as maps on other pages 
that show the intermediate roads of travel from Burlington to Duxbury. 

 The location of Duxbury can be found in two ways. One is to locate it directly 
on the index map at the front of the atlas. The second is to locate it on page 18 and 
then locate rectangle 18 on the index map. The former approach uses one coordinate 
system, the latter uses two. The two - coordinate system includes a local coordinate 
system associated with page 18 and a second global coordinate system that locates 
the local coordinate with respect to the global coordinates. 

 Each of the twenty - nine pages can be located using the single global coordinate 
system, but each page has its own local coordinate system. Note that it is possible 
to set up the atlas such that each of the twenty - nine pages is overlapping. This 
creates no additional complication. However, one would then have options for locat-
ing Duxbury using the global coordinate system to get to the appropriate page and 
then the coordinate system of the page selected to fi nd this town. The relative loca-
tion of the town on the two pages will be different (i.e., the town will have different 



local coordinates) because of the different global coordinates (i.e., page numbers 
providing windows of regions of Vermont). 

 In the development of the macroscale mass conservation equation, a global 
coordinate system will locate the centroid of the REV while a local coordinate 
system will be set up relative to the REV centroid. Thus all microscale points in the 
domain of study can be identifi ed by using a global coordinate system directly. This 
location will be indicated as point  r . Alternatively, one can use the global coordinate 
system to locate the centroid of an REV, denoted as  x , and then fi nd the point of 
interest by using a local coordinate system,    ξ   , relative to that centroid. 

 Associated with each REV in the porous medium is a    local coordinate system     ξ     . 
The origin of this coordinate system is at the centroid of the REV. Any point in 
space can be located using this coordinate system. For example the vector    ξ    1  in 
Figure  2.2  locates a point uniquely relative to the center of the REV 1 ,  x  1 . Besides 
being the centroid of REV 1 ,  x  1  is also the location of the origin of the local    ξ    coor-
dinate system. In comparison to the mapping exercise, the local coordinate system 
is analogous to the letters and numbers along the perimeter of the local map that 
facilitate fi nding a specifi c location.   

 When the location of the origin of a local coordinate system is known relative to 
the location of the origin of the global coordinate system, any point in space may 
be described relative to the origin of the global coordinate system. For example, for 
point  “ 2 ”  in the fi gure, this fact is expressed as:

    r x2 2 2= + x     (2.33)  

where these vectors are found in Figure  2.2 . Thus the point  “ 2 ”  is located by the 
global vector  r  2  or by the equivalent sum of the two vectors  x  2  and    ξ    2 . Note also 
that point  “ 2 ”  may be located as the sum of  x  1  and a local vector with respect to 
the origin of REV 1  even though the local vector will extend to a point outside 
REV 1 . 

 In summary, one can locate a point in the porous medium by either using global 
coordinates directly, or by using global coordinates to locate the origin of a local 

    Figure 2.2:     Use of the equivalent position vectors  r  and  x    +      ξ    to locate a point within an REV. The 
vector  x  locates the centroid of the REV while    ξ    is the position relative to the centroid   [4]  .  
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coordinate system and then locating the desired point in the local coordinate 
system. 

 Once an averaging volume for a physical system has been selected, it is useful to 
discuss a coordinate system that can be used to describe the averaging volume and 
its properties. Consider an averaging volume such as depicted in Figure  2.2 . The 
global coordinate system is indicated as being the  r  system such that the location 
of any point in space is indicated as  r . Let the centroid of an REV be indicated as 
 x . Thus if a coordinate system,    ξ   , is established with its origin at the centroid of the 
REV, any point in space can be located either directly using the main coordinates 
or relative to the centroid of the REV since:

    r x= + x     (2.34)   

 The attractive feature of this coordinate specifi cation is that since the REV ’ s are all 
spheres of the same size, the space occupied by an REV of radius  R , regardless of 
the location of its centroid, is given by:

    0 < ≤x R     (2.35)   

 Note that if one moves an increment of space d r  in the global coordinate system, 
this is equivalent to an incremental change in the location of the REV centroid plus 
a change in the local system coordinate obtained as the differential of equation 
 (2.34) :

    d d dr x= + x     (2.36)   

 According to this expression, if the REV being considered does not change such 
that the location of the centroid is fi xed,  x  will be constant and the change in global 
position  r  is equivalent to a change in the local coordinate   ξ   such that:

    d d with constantr x= x     (2.37)   

 Alternatively, movement of an increment in space d r  can be made by holding the 
local coordinate (i.e., the position relative to the centroid) constant but moving the 
location of the centroid. The incremental motion satisfi es the relationship:

    d d with constantr x= x     (2.38)   

 A fi nal case is to examine a fi xed position in space such that d r    =   0. Although the 
actual global position does not change, the position can be viewed by changing the 
REV centroid as long as an appropriate change is made in the local coordinate rela-
tive to that centroid. If infi nitesimal changes in these two coordinates are made 
while holding the absolute position constant, then, based on equation  (2.36) :

    0 = +d d with constantx rx     (2.39)   

 Of additional importance is the behavior of spatial derivatives taken with respect 
to the coordinate system  r , the REV centroid coordinate  x , and the coordinate 



system relative to the centroid    ξ   . Consider a function of interest, such as the 
microscale species mass fraction,   ω  i  , that is a function of space and time. In terms 
of a global coordinate system in space, the functional dependence of the mass frac-
tion is expressed as:

    ω ωi i t= ( ), r     (2.40)   

 However, equation  (2.34)  provides the relation between the  r  coordinate system 
and the specifi cation of position using the local coordinates relative to the centroid 
of the averaging volume. Therefore:

    ω ω ωi i it t= ( ) = +( ), ,r x x     (2.41)   

 It is important to observe that the functional dependence of   ω  i   on  x  and    ξ    is of the 
particular form involving the sum of these two variables, a less general form than 
dependence on the two variables  x  and    ξ    independently. For this special case, spatial 
derivatives of   ω  i   taken with respect to the  r  coordinates is equivalent to the spatial 
derivative taken with respect to the centroid coordinate,  x , while holding the local 
coordinate,    ξ   , constant and also equivalent to the spatial derivative taken with 
respect to local coordinate,    ξ   , while holding the centroid position,  x , constant. In 
other words, since the function   ω  i   satisfi es the functional dependence on spatial 
coordinates as given in equation  (2.41) :

    ∇ = ∇ = ∇r xω ω ωi i ix     (2.42)  

where  ∇   x   is taken holding the    ξ    coordinates fi xed and  ∇     ξ     is taken while holding the 
centroid  x  fi xed. For a vector, such as velocity  v , that is a function of  r  or  x    +      ξ   , the 
divergence obeys a similar relation with:

    ∇ ⋅ = ∇ ⋅ = ∇ ⋅r xv v vx     (2.43)    

  2.6.3     Macroscopic Variables   

 To this point, a formal defi nition of a    macroscopic variable    has not been provided. 
  Macroscopic variables   are consistent with a larger length scale on the order of tens 
to hundreds of pore diameters and are the quantities observed in most porous media 
experiments. To model macroscale processes, it is convenient to defi ne macroscale 
variables in terms of their microscale counterparts and then introduce theorems 
that facilitate the transfer of the mass conservation equation forms from the 
microscale to the macroscale. 

 Earlier the concept of porosity in a porous medium was introduced. This idea 
may be generalized to the concept of  volume fraction , the fraction of space in an 
REV occupied by a phase. Consider an REV with centroid located at position  x . 
Assume that contained in the REV are a number of fl uid and solid phases separated 
by distinct interfaces. Arbitrarily designate one of the fl uid phases as the   α   phase, 
where   α   may refer to a wetting phase, a nonwetting phase, or a solid. A microscale 
element of volume is indicated as d v  ξ   , where the subscript   ξ   indicates that this is a 

THE MACROSCALE PERSPECTIVE   53



54   MASS CONSERVATION EQUATIONS

microscale element in the local coordinate system. The volume of the   α   phase 
is therefore the sum of these elements over the volume of   α   phase in the REV 
according to:

    δ α
ξ

δ α

V t v
V t

, d
,

x
x

( ) =
( )
∫     (2.44)   

 The volume of the   α   phase in an REV may be a function of time since the mix of 
phases within the REV may change during dynamic processes. The value of   δ V  α    
may be a function of the location of the REV since materials can be distributed 
differently at different positions. Although the volume occupied by a phase in an 
REV can change, the total volume of the REV does not vary with time or position. 
Note also that since integration is performed over the microscale local coordinate 
system, the microscale distribution of the phase is not provided by knowledge of 
  δ V  α   . The volume of   α   phase is a function of the location of the centroid of the REV 
rather than the distribution within the REV and is therefore a macroscale 
quantity. 

 A conceptually and mathematically helpful way to consider the distribution 
of phases within an REV is to make use of the    phase - distribution function   . This 
function will be denoted as   γ   α   ( t ,  r ), where the subscript   α   denotes the phase associ-
ated with with the phase distribution function. For a system composed of wetting 
phase,  w , nonwetting phase,  n , and a solid,  s,  α   can be  w, n , or  s , depending on which 
phase is under discussion. The phase distribution function is defi ned such that, for 
example,   γ  w  ( t ,  r ) will equal 1 at any microscale point within the  w  phase and will 
equal 0 at microscale points in all other phases. The distribution function is a 
microscale function whose value is determined at every point in space except at an 
interface where its value changes from 1 to 0. Since   γ  w   (or more generally   γ   α   , where 
  α   refers to any phase of interest), is a function of global position  r , it may also be 
expressed as a function of the centroid coordinate plus a local coordinate such 
that:

    γ γα αt t, ,r x( ) = +( )x     (2.45)  

subject to:

    γ
α

α t,
at microscale points in the phase

0 at microscale point
x +( ) =x

1

ss in all other phase{     (2.46)   

 The remaining prickly issue is to designate the way in which a distribution function 
transitions from a value of  “ 1 ”  to a value of  “ 0 ”  at an interface. We will consider the 
function to undergo this change of value smoothly, such that the derivative is 
defi ned, but nevertheless over an infi nitesimal distance such that for purposes of 
integrating this function over the REV, the distance is negligible. Although a more 
rigorous statement of this situation can be provided, for the purposes here, this 
statement is adequate. 

 One of the uses of the distribution function is to move the functional dependence 
on the macroscale coordinate  x  from the limits of the integration in equation  (2.44)  
to the integrand. This is accomplished by noting that integration over the   α   phase 



within   δ V  α    is equivalent to integration over   δ V  if the integrand is zero except within 
the   α   phase. The distribution function provides this assurance such that equation 
 (2.44)  can be extended further to read:

    δ γα
ξ

δ

α ξ
δα

V t v t v
V t V

, d , d
,

x x
x

( ) = = +( )
( )
∫ ∫ x     (2.47)   

 It is redundant, but nevertheless worthwhile, to emphasize that this integration 
moves the scale of observation from the microscale of the integrand to the macro -
 scale of the evaluated integral whereby a function takes on a value associated with 
the REV that has its centroid at  x . After the integration is performed, information 
about microscale behavior is lost in favor of a description on the average. Integra-
tions over a phase with in an REV are facilitated by the use of the distribution 
function to change the scale of description from the    microscopic    to the    macroscopic  
level of observation  . 

 The expression given in equation  (2.47)  is useful for defi ning the    volume 
fraction    of a phase   α ,  ε   α   , as the fraction of the REV space occupied by phase   α   
according to  :

    ε δ
δ δ

γα
α

α ξ
δ

t
V t

V V
t dv

V

,
,

,x
x

x( ) =
( )

= +( )∫
1 x     (2.48)   

 The sum of the volume fractions of all phases present in the REV must be 1. Thus, 
for a system composed of a solid,  s , a wetting fl uid phase,  w , and a nonwetting fl uid 
phase,  n , the following volume fractions exist, respectively:

    ε
δ

γ ξ
δ

s
s

V

t
V

t v, , dx x( ) = +( )∫
1 x     (2.49)  
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V

t
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t v, , dx x( ) = +( )∫
1 x     (2.50)  
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δ

γ ξ
δ

n
n

V

t
V

t v, , dx x( ) = +( )∫
1 x     (2.51)  

and they satisfy the condition:

    1 = + +ε ε εs w n     (2.52)   

 Also, the porosity,   ε   is the fraction of the REV not occupied by solid. 
Therefore, it can be calculated from the wetting and nonwetting fl uid fractions 
according to:

    ε ε ε= +w n     (2.53)  

or from the solid fraction as:

    ε ε= −1 s     (2.54)   
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 These relations describe the fraction of the REV occupied by each phase, but the 
microscale information that would describe in detail how the phases are distributed 
through the REV is not provided by these macroscale quantities. 

 While the defi nition of volume fraction is straightforward, the integration of 
other microscale variables to obtain their macroscale forms requires some addi-
tional discussion. Several criteria are adopted for the calculation of macroscale 
variables to assure there is consistency between the defi nitions across scales and 
that the macroscale quantities correspond to some physical reality. These   criteria   
are as follows: 

  1.    The macroscopic quantities shall exactly account for the total amount of the 
corresponding microscopic quantity.  

  2.    Only an additive form of a thermo - mechanical quantity may appear in the 
argument of an averaging operator.  

  3.    The primitive concept of a physical quantity, as fi rst introduced into the 
microscale conservation equations, must be preserved by proper defi nition of 
the macroscopic quantities.  

  4.    The average value of a microscopic quantity must be clearly related to its 
measurement in the fi eld.    

 The fi rst of these criteria simply says that a quantity may be neither created nor 
destroyed through the averaging process. Thus, for example, the total mass in a 
system obtained based on microscale observations must be the same amount 
obtained if macroscale observations are employed. 

 The second criterion says that the microscale quantities that are summed, or 
integrated, to obtain macroscale quantities must be extensive variables, variables 
with values proportional to the quantity of material being considered. Mass, energy, 
and momentum, for example, are    extensive quantities    (see  [1] ) and can be added to 
obtain their total amounts in a system. Mass density, pressure, and temperature, on 
the other hand, are examples of    intensive variables   , properties of a system that do 
not add to form any meaningful quantity. 

 The third criterion states that one cannot create new physical quantities through 
the averaging process. It would not be acceptable, for example, to average the 
amount of mass present at the microscopic level and redefi ne this macroscopic 
average quantity as physically different from mass defi ned at the microscopic level. 
Similarly velocities at the macroscale must be related to their microscale counter-
parts. For intensive variables, such as temperature, assuring that this criterion is 
satisfi ed requires that the macroscale temperature be defi ned in some consistent 
manner such that it relates to the microscale temperature. 

 The fourth criterion recognizes the importance of defi ning quantities that are 
measurable. For example, the defi nition of the macroscale mass density must not be 
just a mathematical construct for convenience but must also be a quantity that is 
generally measurable at the macroscopic level.  

2.6.4 Defi nitions of Macroscale Quantities 

 With the above defi nitions and criteria in hand, we can now proceed to defi ne the 
macroscale quantities needed for the derivation of the macroscale mass conserva-



tion equations. In the microscale development, the only microscale quantities that 
appear are mass density (  ρ  ), mass fraction (  ω  i  ), species velocity ( v   i  ), barycentric 
phase velocity ( v ), dispersion or diffusion vector ( j   i  ), and the chemical reaction 
rate ( r i  ). The subscript  i  denotes the chemical species. Use of  i  as a subscript, rather 
than a superscript, indicates that the quantity it adorns is a microscale variable. By 
criterion 3 above, these microscale variables must be systematically transformed to 
the macroscale. That task will be accomplished here. 

 The mass density is the fi rst item to be considered. To satisfy criterion 1, fi rst 
multiply the microscale mass density, the intensive quantity   ρ  ( t ,  x    +      ξ   ), by the 
microscale element of volume to obtain the mass at the microscale point,   ρ   d v   ξ    . 
The mass of the   α   phase within the REV is then equal to the sum of the mass at all 
the points within the   α   phase, or, in other words, the integral of the density over the 
  α   phase volume within the REV:

    mass in phase , d
,

α ρ ξ

δ α

= +( )
( )
∫ t v

V t

x
x

x     (2.55)   

 This integral over   δ  V   α    may be expressed   as an integral over the entire REV if the 
distribution function is introduced into the integrand:

    mass in phase , , dα ρ γ α ξ
δ

= +( ) +( )∫ t t v
V

x xx x     (2.56)   

 The change from equation  (2.55)  to equation  (2.56)  moves all dependence on the 
macroscale coordinate  x  into the integrand, and the region of integration does not 
now depend on the location of the REV being considered. 

 The macroscale density of the   α   phase at a point is now defi ned as the mass of 
  α   phase divided by the volume of the   α   phase within the REV and is indicated as 
  ρ   α   , with the superscript indicating a macroscale quantity such that:

    ρ
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 The average defi ned in this manner is often referred to as the    intrinsic phase average    
which has the property that when the microscale quantity being averaged is constant 
in a phase, the macroscale average is equal to the microscale value. Another form 
of the average that is helpful to employ is obtained by multiplying equation  (2.57)  
by   δ V  α  / δ V  and then making use of equation  (2.48)  to obtain:

    ε ρ
δ

ρ γ να α
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δ

t t
V

t t
V

, , , , dx x x x( ) ( ) = +( ) +( )∫
1 x x     (2.58)   

 The preceding equation converts the microscale mass per volume to the macroscale 
mass of   α   phase per REV. When only the   α   phase is present in the REV, such that 
  ε   α      =   1, and the REV length scale is the same as the micro length scale, the microscale 
and macroscale densities will be equal. This is a reassuring observation, although 
not of particular utility in modeling porous media fl ow, that points to the consistency 
between the microscale and macroscale defi nitions. 
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 The next quantity to be considered at the macroscale is the mass fraction. The 
mass fraction is an intensive quantity in that the addition of the mass fraction at a 
number of points is meaningless. Multiplication of the microscale mass fraction by 
density and the differential element of volume, however, is equal to the amount of 
mass of the chemical species at the point. This is an extensive quantity and can be 
added. Therefore:

    mass of species in phase , , d
,

i t ti

V t

α ρ ω νξ
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= +( ) +( )
( )
∫ x x

x

x x     (2.59)   

 In this equation, the density is actually a weighting function for averaging of the 
mass fraction. The distribution function for the   α   phase may be used to change the 
integral such that it is over the entire REV:

    mass of species in phase , , , di t t ti

V

α ρ ω γ να ξ
δ

= +( ) +( ) +( )∫ x x xx x x     (2.60)   

 The macroscale quantity obtained after division by   δ V  α    provides a defi nition of the 
macroscale mass fraction as follows:
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or:
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 Although the preceding equation provides a formal defi nition of the 
macroscale mass fraction, it is important to ensure that this quantity is meaningful 
and maintains the same character as its microscale counterpart according to crite-
rion 3. To gain insight into the properties of the macroscale mass fraction, begin by 
summing both sides of equation  (2.62)  over the species present. If there are  N  
species, then:
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where rearrangement is facilitated by the fact that   ε   α  ,  ρ   α  ,  ρ  , and   γ   α    can be removed 
from the summation since they do not depend on the species index. By defi nition, 
the sum of the microscale species mass fraction is 1 so that equation  (2.63)  
simplifi es to:
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 The right side of this equation is known from equation  (2.58)  to be equal to   ε   α   ρ   α   . 
Therefore, division of both sides of equation  (2.64)  by   ε   α   ρ   α    yields:
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1     (2.65)   

 The following facts argue that the mass weighted macroscale mass fraction is a 
useful quantity: (i) it equals the microscale value when the microscale value is con-
stant in the   α   phase in the REV; (ii) it is calculated from an extensive quantity as 
required in criterion 1 above (see the end of Subsection  2.6.3 ); (iii) it is the value 
typically measured when collecting a sample; (iv) it satisfi es the constraint that the 
sum of fractions of a whole is equal to 1. Indeed, the macroscale defi nition of the 
mass fraction is consistent with the microscale defi nition and thus satisfi es criterion 
3 as well. 

 The macroscopic value of the velocity of a chemical species is calculated from 
averaging of the species momentum. Velocity is an intensive variable. Multiplication 
of the species velocity by the mass per volume, that is, the species density, gives the 
momentum per volume. Then integration over the volume of the phase in the REV 
gives the total momentum of the species in the phase under consideration in the 
REV. The microscale point momentum of a chemical species is   ρ  ω  i   v   i  d v  ξ   . Summation 
of this quantity over the   α   phase proceeds by integration, as in the preceding cases, 
to obtain:

    momentum of species in phase di i i

V

α ρω γ να ξ
δ

= ∫ v     (2.66)   

 For economy of space, the dependence of each of the four quantities in the integral 
on  t  and  x    +      ξ    is not listed explicitly but is understood. Division of equation  (2.66)  
by   δ V  provides the macroscale expression for the momentum of species  i  in the   α   
phase per unit of system volume:
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 The only quantity on the left side of equation  (2.67)  that has not been defi ned previ-
ously is the macroscale species velocity. Therefore, this equation provides the defi ni-
tion of the macroscale species average velocity. In the interest of compact notation, 
the explicit dependence of the macroscale quantities on  t  and  x  will not be indicated 
in subsequent manipulations but will be understood. Consider the summation of 
equation  (2.67)  over all the species in the system. If there are  N  of these species, 
then:
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 Substitution of equation  (2.13) , the defi nition of the microscale barycentric velocity, 
into the right side of this equation provides the relation:
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THE MACROSCALE PERSPECTIVE   59



60   MASS CONSERVATION EQUATIONS

which suggests the defi nition of the barycentric macroscale phase velocity for the   α   
phase as:

    v vα α αω=
=
∑ i i

i

N

1

    (2.70)   

 Simple combination of the last two equations also provides the direct defi nition of 
the macroscale intrinsic average of the phase velocity:
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ρ γ να α α
α ξ

δ

v v= ∫1
V V

d     (2.71)   

 The average velocities obtained are consistent with the requirements of the criteria 
listed in the previous subsection. Because the phase velocity is a sum of the species 
velocities weighted with respect to the macroscale mass fractions, it is a barycentric 
velocity. 

 The macroscale dispersion vector is defi ned by analogy with the microscale dis-
persion vector in equation  (2.16)  as:

    j v vi i iα α α α αρ ω= −( )     (2.72)   

 This defi nition satisfi es the necessary condition that summation of the dispersion 
vector over all species is zero since it accounts for deviations of species velocities 
from the average. 

 Some additional insight into this equation may be gained by multiplying by the 
volume fraction and expanding the right side such that:

    ε ε ρ ω ε ρ ωα α α α α α α α α αj v vi i i i= −     (2.73)   

 Now substitute equations  (2.67)  and  (2.71)  into this equation to replace two of the 
products of macroscale quantities with integral expressions such that:
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VV V
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d d     (2.74)   

 At this point, it is useful to recall that the macroscale velocity  v    α    does not depend 
on the microscale coordinate    ξ   . Therefore, it may be moved inside the integral that 
involves integration over the    ξ    coordinates without error. Thus equation  (2.74)  may 
be written:

    ε
δ

ρω γ να α α
α ξ

δ

j v vi
i i

VV
= −( )∫

1
d     (2.75)   

 The microscale dispersion involves  v   i      −     v  and this term can be introduced into equa-
tion  (2.75)  by adding and subtracting  v  in   the term in parentheses. Then splitting 
the resulting integral into two parts yields:
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 The integrand in the fi rst integral is the microscale dispersion times the dis tribution 
function, that is,  j   i  γ   α   . Add and subtract the macroscale mass fraction   ω  i α    to   ω  i   in the 
second integral. This leaves the value of the term unchanged but facilitates rear-
rangement of the form of the equation such that equation  (2.76)  becomes:
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    (2.77)   

 The macroscale variable   ω  i α    may be moved outside the second integral since it does 
not depend on    ξ   , the microscale variable of integration. Then equation  (2.71)  indi-
cates that the remaining integration of the second term is zero. The remaining 
expression provides the macroscale dispersion vector for species  i  consistent with 
defi nition  (2.72)  in terms of integrals from the microscale as:
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δ
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 This expression provides insight into the physical processes that contribute to mac-
roscale dispersion. First, as might be expected, the microscale dispersion is con-
verted to the macroscale by the fi rst integral in equation  (2.78) . The second term in 
equation  (2.78)  indicates that macrodispersion is enhanced further by deviations of 
the microscale mass fractions and velocity from their macroscale averages. The pres-
ence of this extra term is consistent with criterion 3 above in that the deviation 
quantities contribute to mixing within the REV consistent with the physical effect 
of dispersion. 

 The last quantity that appears in the microscale mass conservation equation 
that will be transformed from the microscale to the macroscale is the rate of 
species production per unit volume,  r i  . The microscale rate of production of species 
 i  is  r i  d v  ξ   , which can be integrated (summed) over the   α   phase within the REV to 
obtain:

    rate of mass production of species in phase di ri

V

α γ να ξ
δ

= ∫     (2.79)   

 Division of this expression by the REV leaves the volume fraction multiplied by 
the intrinsic macroscale rate of production of species  i  per volume of   α   phase:
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δ
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V

ri
i
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= ∫1
d     (2.80)    
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  2.6.5     Summary of Macroscale Quantities   

 To facilitate easy access for subsequent use, it seems prudent to summarize the 
macroscale variables that have been developed. These are tabulated here for a 
chemical species  i  in phase   α  . All the macroscale variables are functions of time and 
of the macroscale coordinate that locates the centroid of the averaging volume. For 
reference, the identities are expressed in terms of integrals over the fi xed REV 
making use of the distribution function and as integrals over the volume of   α   phase 
within the REV. 

  Volume Fraction,  ε   α    
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d d     (2.81)    

  Intrinsic Mass Density,  ρ   α    
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  Intrinsic Mass Fraction,  ω  i α    
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  Barycentric Intrinsic Velocity of Species i,  v  i α    
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  Barycentric Intrinsic Velocity of Phase  α ,  v   α    
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  Dispersion Vector for Species i,  j  i α    
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  Chemical Rate of Mass Production for Species i, r i α    
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 All of these defi nitions satisfy the four criteria for defi nition of macroscale 
properties enumerated previously at the end of Subsection  2.6.3 . Furthermore, the 



macroscale quantities are easily seen to be averages of microscale counterparts that 
will be equal to their microscale counterparts for cases where the microscale value 
is constant within the REV or when εα    =   1 and the scale of the REV is equal to the 
microscale. Physical understanding of the relations between microscale and mac-
roscale quantities will prove helpful in navigating the mathematical development 
that follows.   

2.7 THE AVERAGING THEOREMS 

 The macroscale perspective was introduced in the last section, and the defi nitions 
of variables were also provided. These concepts are necessary for transforming the 
mass balance equations in terms of microscale variables to mass balance equations 
in terms of macroscale variables. This transformation is accomplished by averaging 
the point microscale conservation equation over an REV. Besides averaging quanti-
ties, this procedure also involves averaging of the time and space derivatives of those 
quantities. Therefore, additional tools needed to facilitate the transformation to the 
macroscale are two theorems that convert the average of a derivative to a derivative 
of the average. These theorems are extensions of the divergence and transport theo-
rems considered previously; they will be developed here from those microscale 
formulas.

 The averaging theorems, like the divergence and transport theorems, are rela-
tions between averages over volumes and averages over surfaces of the volume. The 
volume to be treated here is that occupied by a phase within an REV of volume 
δ V . If the phase of interest is denoted as the  α  phase, its volume within the REV is 
δ V α . The fact that  δ V  is a constant independent of time or location while  δ V α

depends on both time and the macroscale coordinate is important in the develop-
ment here. 

 The boundary of the  α  phase is composed of two different types of surfaces. The 
fi rst is the interface between the  α  phase and other phases. These surfaces are in 
the interior of δ V  and will be denoted as  Sαβ , where the order of the indices is irrel-
evant and Sαβ  is the interface between the  α  and  β  phases where  α     ≠     β . The second 
part of the boundary of the α  phase is on the exterior of the REV. On this mathe-
matical, rather than physical, surface, the α  phase is in contact with  α  phase. Thus, 
this surface is designated as δ S αα  . It is across this boundary that  α  phase material 
enters and leaves the REV. This boundary is different from the interior boundaries 
between phases because it cannot move in the normal direction since the REV does 
not deform with time and because it is a mathematical surface rather than one 
associated with a boundary between phases. In fact this part of the boundary is 
completely within the α  phase and therefore physical properties do not undergo 
any discontinuity across this boundary. 

 For example, consider the two - phase system as depicted in Figure  2.3  composed 
of a solid, s , and a fl uid phase,  w . The REV is indicated as the spherical region,  δ V . 
The w  and  s  phases within  δ V  occupy volumes of size  δ V w  and  δ V s , respectively. 
Therefore δ V    =    δ V w    +    δ V s . The quantity  Sws  is the total interfacial area within  δ V
between the w  and  s  phases internal to the REV. A portion of this area is highlighted 
in the fi gure with respect to one of the solid grains within the REV. This quantity 
is typically large relative to the external surface of the REV because of the complex 
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interfacial geometry that exists within the REV. This area within the REV may move 
due to movement of the phases. The area   δ S ww   is the portion of the external surface 
of the REV that encounters the  w  phase on both sides. Similarly, the area   δ S ss   is the 
portion of the REV surface that intersects the solid phase. Portions of both of these 
surfaces are indicated in the fi gure. For the two - phase system with a spherical REV 
indicated, the external surface,   δ S , satisfi es the relation   δ S    =     δ S ww     +     δ S ss  . Coincidental 
concurrence of part of the  w s interface with the boundary of the REV is neglected. 
Because an REV is fi xed in space and does not deform,   δ S  is a constant. However, 
as one moves from REV to REV, the fraction of this surface composed of   δ S ss   
interface as opposed to   δ S ww   interface will change due to the heterogeneity of the 
system. Note also that the velocities of the   δ S ss   and   δ S ww   interfaces associated with 
a particular REV are zero because an REV is fi xed in space. However, the relative 
sizes of these interfaces can change due to movement of the materials. If a system 
consisting of more than two phases is of interest, the boundary of a phase consists 
of intersections of the phase with the boundary of the REV plus the boundary of 
the phase with all other phases at interfaces within the REV.   

 With these considerations, we now proceed to extend the divergence theorem 
and the transport theorem to their macroscale counterparts. 

  2.7.1     Spatial Averaging Theorem   

 The   spatial averaging theorem   is developed to allow the average of the divergence 
of a microscale quantity to be related to the divergence of a macroscale (averaged) 
quantity. It is based on the divergence theorem given in equation  (2.18)  and rewrit-
ten here for the case when the volume of concern is the   α   phase within an REV, 
  δ V  α   :

    ∇⋅ = ⋅ +∫ ∫ ∫∑ ⋅
≠

F F n F nd d dνξ

δ

α ξ

δ

α α ξ
β αα αα αβV S S

s s|     (2.88)  

where  F  is a microscale vector that is a function of  t  and  x    +      ξ    and continuous in 
the   α   phase,  n    α    is a unit vector on the boundary of the   α   phase positive outward 
from the   α   phase in the REV, the summation is over all interfaces between the   α   

    Figure 2.3:     An REV,   δ V , for a system composed of  w  and  s  phases. The interface between phases, 
 S ws   and the surfaces that make up the boundary of the REV,   δ S ss   and   δ S ww   are also indicated.  



phase and other phases, designated as   β   phases, within the REV, and, as noted 
earlier,   δ S  α  α    is the portion of the external surface of the REV that intersects the   α   
phase. The notation  F |   α    is employed to indicate that the microscale vector  F  is evalu-
ated in the   α   phase at the interface. 

 Now we make use of a trick! Recall that the phase distribution function   γ   α    is 
nonzero only in the   α   phase, where it is equal to 1. Therefore, if  F  is multiplied by 
  γ   α    in the fi rst integral on the right side of equation  (2.88) , the integration may be 
performed over the entire external boundary of the REV, denoted   δ S . The fact that 
  γ   α    is zero on parts of   δ S  other than   δ S  α  α    preserves the equality written as:

    ∇⋅ = ⋅ + ⋅∫ ∫ ∫∑
≠

F F n F nd d dν γξ
δ

α α ξ
δ

α α ξ
β αα αβV S S

s s( ) |     (2.89)   

 This seemingly minor change is important because it converts the fi rst integral on 
the right - hand - side of equation  (2.88)  from an integration over portions of a surface 
to an integration over a closed surface in equation  (2.89) . Therefore, the divergence 
theorem may be applied to this term to convert the integral over the external closed 
boundary of the REV to an integral over the REV:

    ∇⋅ = ∇ ⋅ + ⋅∫ ∫ ∫∑
≠

F F F nd d dν γ νξ

δ

α ξ
δ

α α ξ
β αα αβV V S
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 Since the quantities in parentheses in this equation are both functions of  x    +      ξ    rather 
than of  x  and    ξ    independently, identity  (2.43)  may be employed to replace the 
divergence operator with respect to    ξ    coordinates with the divergence operator in 
 x  coordinates:

    ∇⋅ = ∇ ⋅( ) + ⋅∫ ∫ ∫∑
≠
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δ
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β αα αβV V S

s|     (2.91)   

 With the equation in this form, since the divergence is taken with respect to the 
macroscale coordinate and the integration is over a volume that is independent of 
this coordinate, the divergence operator may be moved outside the integral. Also, 
multiply by 1 / δ V , which is a constant and may be moved inside the divergence 
operator, to obtain the form:
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 The presence of   γ   α    in the integrand may be removed by restricting the region of 
integration to being over the   α   phase. We thus obtain the    spatial averaging 
theorem   :
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 With  F  replaced by a microscale vector of interest, such as the mass fl ux   ρ  ω  i   v   i   
from the species conservation equation, the defi nitions of averaged quantities may 
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be employed. The term on the left side of equation  (2.93)  is an average of the diver-
gence and it is equal to the fi rst term on the right side, the divergence of an average 
(a macroscale quantity), plus a term that must be evaluated on the interface between 
the   α   phase and the other phases present. This last term will be discussed further 
in the context of the averaged mass conservation equation. 

 The trick of using the distribution function   γ   α    facilitated the derivation from 
equation  (2.88)  to equation  (2.93)  yet it appears in neither the initial nor the fi nal 
form. Thus   γ   α    may be thought of as a  “ mathematical catalyst ”  that enables a trans-
formation but is not, itself, transformed.  

  2.7.2     Temporal Averaging Theorem   

 The   temporal averaging theorem   relates the average of the partial time derivative 
of a microscale quantity to the partial time derivative of an averaged macroscale 
quantity. It follows directly from the transport theorem equation  (2.20) . As a starting 
point for the derivation, the transport theorem is rewritten here for the   α   phase 
volume within an REV,   δ V  α   :

    
∂
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where  f    |   α    is the microscale quantity  f  evaluated in the   α   phase at the interface. Two 
important observations simplify this equation. First, the location of the averaging 
volume is fi xed in macroscale space. Therefore the time derivative in the fi rst inte-
gral on the right side, indicating that the volume is being followed, reduces to a 
partial time derivative. Second, the normal velocity of the surface of the REV is 
zero so that  w     ·     n    α      =   0 on   δ S  α  α   ; and the second integral on the right side must be 
zero. The identity  (2.94)  therefore simplifi es to:
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 To express the terms in this equation as averages, divide by the constant size of the 
averaging volume,   δ V , to obtain the    temporal averaging theorem   :
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 This equation is even more similar to the transport theorem than the spatial averag-
ing theorem is to the divergence theorem. Physically, this equation states that the 
average rate of change of a microscale function multiplied by the volume of interest 
identifi ed with phase   α   is equal to the rate of change of the product of the mac-
roscale average value of the function with the   α   phase volume minus a term that 
accounts for changes due to expansion or contraction of the volume of   α   phase due 
to movement of its boundary within the REV. 

 The derivation of the spatial and temporal averaging theorem completes the 
arsenal of tools needed to transform a mass conservation equation for a phase from 



the microscale to the macroscale. The application of these theorems will be explored 
in the next section.   

  2.8     MACROSCALE MASS CONSERVATION   

 The derivation of the macroscale mass conservation equations proceeds by integrat-
ing the corresponding point mass conservation equation over the phase of interest 
in an REV, applying the temporal and spatial averaging theorems, then expressing 
the integrals that remain in terms of average quantities. The heavy spade work has 
been done in the preceding sections; what remains is to apply the equations and 
interpret the terms that arise. Although the derivation of the microscale conserva-
tion equations proceeded from the integral forms to the point forms, the derivation 
of the macroscale equations fi rst integrates from the microscale to the macroscale 
and then can be integrated from the macroscale to the integral form for the entire 
system. 

  2.8.1     Macroscale Point Forms   

 In this subsection, we seek the form of a macroscale mass conservation equation 
that allows for solution of a fi eld of macroscale quantities within the system domain. 
This is analogous to the microscale point conservation equation which retains partial 
derivatives in both time and space. The starting point for this derivation will be the 
species conservation equation  (2.28) , although any of the forms of the microscale 
species conservation equations is an equally good starting point for development of 
the macroscale conservation equation. We are seeking the mass conservation equa-
tion for species  i  in the   α   phase. Integrate equation  (2.28)  over the   α   phase portion 
of the REV and divide the integral by the REV size to obtain:
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 To most easily treat each of the three terms that appear in the integral, separate the 
single integral into three parts:
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 Now each of these three integrals will be examined in turn with the integrals of 
derivatives being converted to derivatives of integrals using the averaging theorems 
with the defi nitions of averages also being employed. 

 The order of integration and differentiation for the fi rst term in equation  (2.98)  
is exchanged using temporal averaging theorem  (2.96)  with  f  replaced by   ρ  ω  i   to 
obtain:
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 The integral appearing in brackets has been defi ned in terms of macroscopic 
quantities in equation  (2.83) . Substitution of this expression into the equation 
yields:
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 The order of differentiation and integration in the second term in equation  (2.98)  
is reversed using the spatial averaging theorem for the divergence, equation  (2.93)  
with  F  replaced by   ρ  ω  i   v   i  :
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 The quantity in brackets in this case has been defi ned previously in terms of mac-
roscale quantities in equation  (2.84) . The macroscale quantities are substituted in 
and the subscript  x  on the divergence operator is dropped for convenience so that 
equation  (2.101)  simplifi es to:
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 Equations  (2.100)  and  (2.102)  are now substituted into equation  (2.98) . 
Additionally, the defi nition of the macroscale reaction rate term as given by equa-
tion  (2.87)  is employed so that the macroscale species mass conservation equation 
becomes:
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 Examination of this equation reveals great similarity with the form of microscale 
equation  (2.28)  if one accounts for the volume fraction and notes that the quantities 
are macroscale rather than microscale. The main difference in structure between 
the two equations is the integral over the interface between the phases that 
appears in equation  (2.103) . A corresponding term does not appear in the microscale 
equation because there is no internal structure at a microscale point, and there are 
no interfaces between phases. This integral will now be discussed in additional 
detail. 

 The part of the integral in equation  (2.103)  that warrants the most attention is 
the term ( v   i  |   α       −     w )    ·     n    α   . This term is equal to the difference at the phase interface 
between the velocity of species  i  and the velocity of the interface in the normal 
direction. If this term is zero, the normal velocities of the chemical species and the 
interface will be equal such that no species  i  will enter or leave the   α   phase due to 
transfer across the interface. This can be understood, for example, by considering a 
can of soda. If the can is sealed and tossed around, although the fl uid inside has a 



nonzero velocity, no liquid or gas will leave the can, even if the can becomes dented, 
because the normal velocity of the boundary of the can is equal to the normal veloc-
ity of the fl uid at the boundary. If, however, tossing the can around causes it to be 
punctured, fl uid will leave because it will achieve a normal velocity greater than that 
of the boundary surface composed of aluminum plus holes in the aluminum. The 
term ( v   i  |   α       −     w )    ·     n    α    is the  relative microscale normal velocity  of species  i  with respect 
to the   α  β   interface. When this is zero at every point on the interface, there is no 
transfer across the interface; at points where it is positive, species  i  is leaving the   α   
phase and entering the   β   phase; where it is negative, species  i  is being transferred 
to the   α   phase from the   β   phase. In fact ( v   i  |   α       −     w )    ·     n    α   d s  ξ    is the volumetric rate of 
transfer at a point; and multiplication of this by the mass of species  i  per volume, 
  ρ  ω  i  , gives the rate of transfer of mass. Thus the sum over all interfaces of the integral 
over the various interfaces accounts for the net transfer of mass of species  i  out of 
the   α   phase. 

 At the macroscale, it is common to account for the presence of wells that pump 
out or inject a fl uid into a groundwater aquifer or a petroleum reservoir. This process 
can be considered to be transfer between the fl uid in the porous medium, for 
example in the   α   phase, to the  “ well ”  phase. The fl ow occurs across the  “ interface ”  
between the   α   phase and the well. At the macroscale, a well is considered to operate 
at a macroscale point, and the volume of species  i  that leaves the system at that 
point is ( v   i  |   α       −     w )    ·     n    α   d s  ξ   .   Typically, at the well the surface area is very small but the 
velocity is high enough that the amount of fl uid entering or leaving the system is 
large. 

 Based on this discussion, special notation is adopted to account for the mass 
transfer of species  i  between phases, with units of mass of species  i  per unit volume 
per unit time. The exchange term is broken into two main parts: one that accounts 
for mass transfer between phases within the porous medium and a second that 
accounts for transfer at wells. The notation employed is as follows:
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where   ei
αβ
α  is the transfer of species  i  between the   α   and   β   phases in the porous 

medium that is positive when species  i  is being transferred into the   α   phase 
from the adjacent   β   phase;  N  W  is the number of wells in the system;   QW

α  is the 
volume per unit time being pumped into the   α   phase at location  x W  ;   δ  ( x     −     x W  ) is 
the Dirac delta function associated with location  x W  . The Dirac delta   δ  ( x     −     x W  ) is 
zero at all points except  x    =    x W   and has the properties that, if  V   ∞   is the total 
macrospace domain of the system under study and d V  is a macrospace element of 
volume:
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∫ W dV
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1    (2.105)  

and
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 Note that if the macroscale point under consideration is not a location where a 
well exists then the summation over the well terms is zero such that equation  (2.104)  
reduces to:
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 This form is also employed if one chooses to account for wells through boundary 
conditions when solving the point species balance equation. Here, equation  (2.104)  
is selected. 

 One fi nal point worth mentioning is that when   QW
α  is negative such that   α   phase 

is being pumped out of the system at well W, the density and mass fraction are equal 
to the values in the system at point  x W   such that:

   ρ ω ρ ωα α α α
W W

W W, ,i it t= ( ) ( )x x   

 However, if   QW
α  is positive, indicating that material is being pumped into 

the   α   phase, the values of   ρα
W  and   ω α

W
i  for the fl uid being injected must be 

specifi ed. 
 Substitution of equation  (2.104)  into equation  (2.103)  provides the macroscale 

point conservation equation for chemical species  i  in the   α   phase:
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 This equation has units of mass of species  i  in the   α   phase per unit volume of 
REV per unit time. The fi rst term is the rate of accumulation at a macroscale 
point. The second term is the net loss due to fl ow. The three terms on the right 
side are sources due to chemical reaction, phase change, and well injection, 
respectively. Equation  (2.108)  is a form of the species conservation equation that 
can be re - expressed in other equivalent forms and also summed over the chemical 
species and over the phases. Some of these alternative forms will be presented 
next. 

 The velocity of species  i  can be removed from equation  (2.108)  by expressing it 
in terms of the phase velocity and a dispersion term using equation  (2.86)  such 
that:
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 This is the form that is commonly employed in simulating fl ow, and constitutive 
equations are employed for the dispersion and mass transfer terms. 

 The mass conservation equation for the   α   phase as a whole may be obtained by 
summing over the species balance equation for that phase. Summation of equation 
 (2.108)  over all  N  species in the   α   phase gives:



    

∂
∂

ε ρ ω
ε ρ ω

ε

α α α
α α α α

α α
αβ
α

β α

i

i

N
i i

i

N

i

i

N
i

t

r e

( ) + ∇⋅( )

= +

= =

= ≠

∑ ∑

∑ ∑
1 1

1

v

ii

N
i

N

i

N

Q
= ==
∑ ∑∑+ −( )

1 11

ρ ω δα α α
W W W

W

W

W

x x     (2.110)   

 The following fi ve identities are applied to this equation:
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since there is no net mass production by chemical reactiions     (2.113)  
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 With these conditions employed, equation  (2.110)  simplifi es to the mass balance 
equation for the   α   phase:
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 This equation contains terms similar to those in the species equation  (2.108)  except 
for a reaction term. This is consistent since the mass of a phase cannot be generated 
or destroyed by chemical or biological reactions. For a multispecies phase, equation 
 (2.116)  is commonly used as one of the mass conservation equations along with  N  
 –  1 of the conservation equations for the  N  species. Solution of the point equations 
of mass conservation provides the macroscale fi eld of mass fractions throughout the 
study region.  

  2.8.2     Integral Forms   

 Besides existing as   macroscale point forms  , the mass conservation equations may 
be integrated over the entire system of interest. Here, the integral of the macroscale 
species mass conservation equation  (2.108)  will be developed. Then the integral of 
the macroscale equation for the conservation of total mass of the   α   phase, equation 
 (2.116) , will be employed. The results will be compared with the   integral forms   based 
on the microscale quantities. 

 The integral of the species conservation equation  (2.108)  over a volume 
with length scale much greater than the macroscale length scale of the REV is 
obtained as:
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 At the macroscale, the system is viewed as containing all phases at all points. The 
interfaces between phases in the interior of the system are not boundaries. There-
fore the transport and divergence theorems, equations  (2.20)  and  (2.18) , respec-
tively, may be applied to the fi rst two integrals in equation  (2.117) . This will give 
rise to surface integrals over the external boundary of the system,  S , with outwardly 
directed unit normal  n  ext . The result is:
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 An alternative form of this equation is obtained by making use of the dispersion 
vector as given in equation  (2.86) . This form is typically employed with the species 
velocity replaced by the phase velocity plus the velocity of the species relative to 
the phase:
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 Equation  (2.118)  may be compared to equation  (2.9)  that involves the integration 
of microscale quantities. Equation  (2.9)  will now be written in notation that indi-
cates we are concerned with the   α   phase such that integration is only over that 
phase. The boundary of the   α   phase as viewed from the microscale perspective 
includes the internal interfaces with other phases and that portion of the external 
boundary of the system that cuts through the   α   phase. The global equation in terms 
of microscale variables is therefore:
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 This equation has been written to facilitate term - by - term comparison with equation 
 (2.118) , the species mass balance equation written in terms of the macroscale prop-
erties. The main difference is that the macroscale version is somewhat  “ smeared ”  in 
that corresponding integrals use a volume fraction in the integrand along with inte-
gration over the entire domain whereas integration over the   α   phase based on the 



microscale variables sharply defi nes the microscale surface and volumes under 
study. 

 Summation of equations  (2.118)  and  (2.120)  over the  N  species comprising the 
phase is equivalent to integration of the total mass equations over the volume. The 
results are, respectively:
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and:
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 Comparison of these equations reveals that, as with the species forms, the 
differences relate to scale effects while the equations describe the total system 
comparably.   

  2.9     APPLICATIONS   

 The derivation of the mass conservation equations in the last section has involved 
quite a bit of mathematics. This mathematics has carried us from a physically based 
statement of the conservation of mass in equation  (2.1) , to the mathematical expres-
sion of mass conservation as given in equation  (2.9) , through an examination of 
microscale and macroscale integral theorems, and fi nally to the macroscale species 
conservation equation at a point given by equation  (2.110) , the macroscale conser-
vation equation for a phase at a point given in equation  (2.116) , and the integral 
forms of these equations over a system given respectively as equations  (2.119)  and 
 (2.121) . At the end of this mathematical journey, it is useful to look at the equations 
we have obtained and to relate them to physical problems. This exercise will also 
be enlightening in indicating where supplemental information is needed so that 
these equations can be applied to problems of interest. 

 Our focus is on the macroscale description of multiphase fl ow in porous 
media. We will therefore restrict the applications considered here to the macroscale. 
For our purposes, we have started from the physical description of the problem, 
passed through the microscale, and arrived at the macroscale. Although we will be 
describing problems only from a macroscale perspective, it will be helpful to keep 
in mind the microscale roots of our equations and the relations between microscale 
and macroscale quantities as given by equations  (2.81)  through  (2.87)  and the 
interface transfer terms as defi ned in equation  (2.104) . With a fi rm grasp on 
these concepts, we proceed to a relatively simple application that will add further 
insight. 
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 Consider the system depicted in Figure  2.4 . Suppose that in what follows we are 
concerned with the subsurface region consisting of the unsaturated zone above the 
water table and the saturated zone above some confi ning geologic formation. The 
system contains four phases: air( a ), water( w ), organic fl uid( n ), and solid ( s ). Because 
of interaction among the phases, we will assume that each phase is a mixture of 
chemical constituents. We will address here the effectiveness of integral and point 
models based on the mass conservation equation in simulating this system.   

  2.9.1     Integral Analysis   

 Using equation  (2.119) , we can analyze a chemical constituent,  i , in phase   α  . For 
purposes of discussion here, suppose that the organic chemical that has been spilled 
is benzene which makes up the bulk of phase  n  but is a constituent dissolved in the 
water phase designated as component  i . In this   integral analysis  , let the volume 
studied,  V , be the unsaturated plus the saturated zone indicated in Figure  2.4 . The 
bounding surface of this region,  S , is the land surface, the confi ning bed at the 
bottom, the interface with the river, and the vertical surfaces that defi ne the lateral 
extent of the system. For the water phase, therefore, the integral equation  (2.119)  
can be expressed:
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where  M iw   is the mass of benzene species in the water phase defi ned as:

    Figure 2.4:     A subsurface region that contains air, water, and a contaminant phase. A slightly soluble 
liquid with a density greater than that of water enters the subsurface and moves vertically downwards 
through the water table to contaminate both an upper and a lower aquifer  (from EPA  [5] ) .    
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and  F iw   accounts for the remaining terms in equation  (2.119) :
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 Expression of the integral conservation equation in this form indicates several 
points: 

   •      The integral species balance equation is used to solve for the total mass of the 
species in the system under consideration as a function of time,  M iw  ( t ). It is not 
able to provide information concerning the distribution of the species within 
the system. It provides information as to how the amount of species  i  within 
phase  w  changes with time.  

   •      Solution of equation  (2.123)  requires an initial condition that specifi es the 
initial total amount of species  i  in phase  w . We will designate this as   Miw

0 .  
   •      Equation  (2.123)  cannot be solved unless  F iw   can be expressed as a function 

only of  M iw   and  t  or unless some additional equations, for example involving 
other variables of importance, are available.    

 The fi rst and third item present particular limitations on the integral analysis. 
In fact, they imply that the integral equation can be solved only if it is supplemented 
by experimental data or with relations capable of expressing the integrals that 
comprise  F iw   in terms of time and total mass of benzene in the  w  phase. For 
example, if water is being pumped from the system at various wells, the value of   ωW

iw 
must be known at each well. Because this is unknown, it could be measured and 
inserted in the equation. However, the integral model could not be used for predic-
tions without knowledge of the concentrations that will result at the wells. Only 
if the concentration is uniform in the aquifer such that   ω ωW

iw iw=  will the con-
centration be known. This would be the case if the water were uncontaminated, 
but otherwise would not be encountered in a physical situation. Furthermore, 
expressions are needed in terms of  M iw   and  t  for the fl uxes at the boundary of 
the system, for the reaction rates, and for the exchange of benzene between 
phases if the equation is to be solved. In essence, the integral equation for conserva-
tion of a chemical species in the subsurface is not useful for modeling the amount 
of that species because the species is not distributed uniformly in the region 
modeled. 

 The mass balance equation is useful for modeling a phase that does not exchange 
mass with other phases. This equation is the sum of a species equation over all the 
species in the phase such that the chemical reactions sum to zero and with the 
exchange terms,   eαβ

α , between phases set to zero. The differential equation to be 
solved for the  w  phase is based on equation  (2.121)  with   α     =    w :
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where  M w   is the mass of the water phase defi ned as:
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and  F w   accounts for the fl ow in and out of the system:
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 Equation  (2.126)  can be used to model the amount of water in an aquifer that is 
subject to withdrawal of water through wells, recharge from rainfall and rivers, and 
leakage exchange with other geologic units. Its primary utility arises in long term 
resource assessment. The initial condition and the fl uxes must be specifi ed. Of 
course, if a subsurface region is specifi ed as being saturated, changes in the mass of 
water stored would require that the storage space be modifi ed, through consolida-
tion of the solid phase, or that the density of the water be changed in reaction to 
changes in pressure and/or temperature. These changes either have to be specifi ed 
through monitoring of the system or obtained as part of the model through other 
equations. Thus, it should be clear that modeling of a multiphase system requires 
information about the behavior of the other phase as well. The interaction between 
phases, indeed, is what makes multiphase systems so much more complex than 
single - phase systems.  

  2.9.2     Point Analysis   

 Equation  (2.109)  provides a good starting point for the analysis of the movement 
of chemical constituent  i  in phase   α   from the local macroscale perspective. To make 
the discussion more concrete, let us again frame this for the case of benzene dis-
solved in a water phase. The overall system consists of the solid phase,  s , a benzene 
organic phase,  n , a vapor phase,  a , and the water phase,  w . With reference to Figure 
 2.4 , we are considering the subsurface region composed of both saturated and 
unsaturated zones. The conditions at a point are refl ected by the macroscale proper-
ties of the REV associated with that point. The species equation for benzene in the 
water phase based on equation  (2.109)  is:
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 It is desired to use this equation to solve for the evolving distribution of the benzene 
mass fraction,   ω  iw  , as a function of time and position. In theory, this can be accom-
plished if the initial distribution of benzene in the water phase is known, if some 



appropriate boundary conditions are specifi ed (where  “ appropriateness ”  depends 
on the mathematical character of the equation), and if the other quantities appear-
ing in the equation are known as functions of   ω  iw  ,  x , and  t . This fi nal stipulation 
carries with it the following diffi culties: 

   •      The volume fraction of water phase,   ε  w  , will vary with time and position even 
if the solid phase is homogeneous because the volume fraction of the benzene 
and air phases will be functions of time and position. This observation implies 
that solution of equation  (2.129)  cannot be accomplished in isolation without 
considering the movement of the other phases.  

   •      The density of the water phase,   ρ  w  , is a function of pressure in the water phase, 
temperature, and the composition of that phase. In cases where the temperature 
is uniform and the constituents dissolved in the water are present in small 
concentrations, it may be possible to consider the density as depending only on 
pressure. However, in general, this simplifi cation is not possible and thus knowl-
edge of the distribution of all chemicals is needed.  

   •      The macroscale velocity of the water phase has to be somehow specifi ed if 
equation  (2.129)  is to be solved. Note that since v  w   is a vector, it has three 
components at every point. In general, this velocity will be highly variable. For 
a very simple problem, such as steady fl ow through a column of homogeneous 
porous medium saturated with water, it may be possible to specify the fl ow fi eld 
based on the rate at which water fl ows out of the system. However, in general 
additional conditions that describe the velocity fi eld are needed. Although, 
from physical considerations, we might anticipate that an appropriate mac-
roscale equation can be derived based on the principle of conservation of 
momentum, in fact such an equation is complex in form. As will be discussed 
in the next chapter, the description of the fl ow fi eld is typically based on a cor-
relation extracted from experimental observations.  

   •      Specifi cation of the diffusion/dispersion vector  j   iw   as a function of the mass 
fraction, time, and position is also needed. This has proven to be a diffi cult task 
as the correlation most commonly used typically involves a coeffi cient whose 
magnitude depends on the scale at which the problem is studied.  

   •      Any reactions involving benzene will depend on the presence of other chemical 
species and their distribution in the system. Thus additional information is 
needed to specify the chemical reaction fi eld within the system.  

   •      Knowledge is needed of the interphase exchange of benzene. This will also be 
a function of time, position, and the properties of the phases present at a point. 
Specifi cation of the exchange term   ew

iw
β  is therefore complicated.  

   •      Finally, knowledge of the pumping rates and of the composition of water phase 
being injected into the system is needed. Fortunately, the equation provides the 
composition if water is being extracted, but the individual well pumping rates 
must be specifi ed.    

 A masochist could, at least in theory, set up a monitoring program to measure 
all the variables needed to supplement equation  (2.129)  and provide an opportunity 
to solve it for the distribution of benzene in water. However, this could only be done 
in conjunction with an active experiment. Use of the model for predictive purposes, 
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where values of quantities that would need to be measured are not known, is impos-
sible. Furthermore, as an alternative to setting up a complex monitoring program 
to support an indirect method of providing the concentration distribution as the 
solution to a differential equation, it certainly would be more sensible and cost -
 effective to simply measure the concentrations! At this point, we are unable to use 
the mass conservation equation for any constructive purpose. We desperately need 
additional equations or conditions for the variables. The approaches to obtaining 
that information are provided in the next chapter. 

 Before heading to the next chapter, perhaps discouraged by the volume of sup-
plementary information needed to employ point species balance equations in any 
meaningful way, it is encouraging to note that if we are interested in only the behav-
ior of a phase and not in the distribution of species in the phase, then the mass 
balance equation used is equation  (2.116) . This equation is the sum of the species 
equations within a phase or the equation for a phase composed of a single species. 
If, in addition, we assume that the exchange of chemical species with adjacent phases 
is negligible for purposes of modeling the fl ow of a  w  phase, the phase balance 
equation becomes:
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    (2.130)   

 Equation  (2.130)  can be used to model the distribution of mass of  w  phase 
per REV, the product   ε  w  ρ  w  , if the velocity fi eld and pumping rates are specifi ed. 
When used to model groundwater with only a single fl uid phase, the quantities 
 v   w  ,   ρ    w  , and   ε  w   are typically expressed as functions of pressure or, more generally, 
stress. Then if the velocity can be determined as a function of the pressure, the 
equation will be solvable (with the pumping rates specifi ed). When employed 
with more than one fl uid phase, equation  (2.130)  is often expressed in terms of 
saturation as:
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    (2.131)  

where   ε  w     =     ε s w   and   ε   is the porosity. In cases when the changes in porosity are small 
in comparison to the changes in saturation that occur, equation  (2.131)  is solved for 
saturation, provided the velocity is specifi ed in suffi cient detail. 

 The diffi culties that arise in modeling a multiphase system using a point macro -
 scale perspective are different from those that appear when using the integral, or 
system, equation. The possibility of solving the equation to obtain a distribution of 
mass fractions or saturations throughout a system of interest is attractive, but the 
task of specifying enough unknowns to make the equation solvable appears to be 
daunting. Nevertheless, we know that if we make approximations to terms that 
appear in the mass conservation equations in a way such that the equality specifi ed 
by the equation is violated, the information we glean from the analysis will not 
be correct. Subsequently, we will search for relations that allow us to use the mass 
conservation equations in a predictive mode not simply as regulations that must not 
be violated.   



  2.10   SUMMARY 

 In this chapter, we have derived species and phase mass balance equations at the 
microscale and then applied averaging theorems to convert them to the macroscale. 
These equations are suitable for use in modeling multiphase fl ow in porous media. 
Unfortunately, the number of unknowns that appear in the equations is greater than 
the number of equations. Therefore additional conditions are needed for the problem 
to be completely specifi ed. In multiphase fl ow modeling, the classical approach is to 
obtain the additional conditions from examination of correlations of experimental 
data and from insightful approximations. In the ensuing chapter, we will make some 
inroads into this problem by providing approximations for the parameters that have 
proven, in hindsight through their utility in applications, to be useful.  

  2.11   EXERCISES   

   1.     Show that if a mixture contains only chemical species, equation  (2.9)  is identical 
to equation  (2.14) .  

   2.     Instead of writing an equation of conservation of mass of a chemical species, 
it is possible to work with an equation that expresses the conservation of moles. 
If  c  is the number of moles per volume and  x i   is the mole fraction, develop the 
molar conservation equation for species  i  that is analogous to mass conservation 
equation  (2.9)  in the form:
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 Explain the meaning of each term and obtain the relation between  r i   and  R i  .  

   3.     Start with equation  (2.132)  and show that the integral form of the molar con-
servation equation for a solution is:
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where  v   c   is the molar average velocity of the mixture.  

   4.     Show that a dispersion vector defi ned as:

    J v vi i i ccx= −( )     (2.134)  

may be employed to obtain a point molar conservation equation in the form:
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   5.     The notation D/D t  is used to indicate a    material derivative   , a time derivative that 
follows the function it acts on. Thus, for example, D f /D t  assesses the time rate 
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of change of function  f  associated with a fi xed part of material. At the microscale, 
this derivative is defi ned as:
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v     (2.136)   

 This expression indicates that the change in property  f  of material moving at 
velocity  v  is caused by both the change  f  at a point fi xed in space and the changes 
in  f  within the fi eld. For example, a particle can be heated both by being situated 
at a point where the temperature is increasing and by moving into regions of 
higher temperature. 

 Show that if a fl uid behaves such that the densities of fl uid particles (i.e., fl uid 
associated with a microscale point) do not change with time as they fl ow through 
a system of interest, the fl uid may be said to be  incompressible  and its mass 
conservation equation can be expressed as:

    ∇⋅ =v 0     (2.137)    

   6.     Explain the difference between a constant density fl uid and an incompressible 
fl uid.  

   7.     Justify the fact that if a volume does not deform or move through space, the 
transport theorem for that volume may be written:
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   8.     A special form of the transport theorem is known as the  Reynolds transport 
theorem . This theorem is applied to a volume that distorts such that no fl uid 
crosses its boundary. Show that the Reynolds transport theorem may be 
expressed:
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   9.     If a closed volume is studied that allows no fl uid to enter or leave, justify the 
statement of conservation of mass as:
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 Make use of the Reynolds transport theorem, equation  (2.139) , to obtain the 
point mass conservation equation. Explain differences and similarities between 
the form you derive and equation  (2.23) .  

  10.     Derive the macroscale point equation of conservation of moles of species 
 i  starting from equation  (2.135) . Defi ne all macroscale average values 
explicitly.  



  11.     Use the spatial averaging theorem, equation  (2.93) , to show that:
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  12.     Use the temporal averaging theorem, equation  (2.96) , to show that:
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  13.     Show that summation of species conservation equation  (2.109)  over all chemical 
species  i  present in a solution leads to the mass balance equation for the   α   phase 
identical to equation  (2.116) .  

  14.     Discuss the term - by - term correspondence of equations  (2.121)  and  (2.122) .  

  15.     In equation  (2.107) , the term that accounts for mass transfer of species  i  into 
the   α   phase from the   β   phase is denoted as   ei

αβ
α  and is defi ned:
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 Explain/prove the fact that:

    e ei i
αβ
α

αβ
β+ = 0     (2.144)  

for any two adjacent phases   α   and   β  .     
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FLOW EQUATIONS 

3

3.1 INTRODUCTION

 The mass conservation equations derived in the previous chapter describe the trans-
port of chemical components between and within phases as the phases fl ow and 
intermingle within a porous medium. However, mass conservation equations alone 
are insuffi cient to describe the system behavior. They can be solved for the distribu-
tion of chemical species only if additional information is provided concerning the 
velocity fi eld, dispersion vector, chemical reaction rate expressions, and interphase 
transport relations. 

 Two general approaches can be employed to specify this additional information. 
One involves working with species - based conservation equations for mass, momen-
tum, and energy and obtaining relations for all the supplementary information 
needed (e.g., values for coeffi cients that arise and some relations among variables) 
such that the equations can be solved for species concentrations, velocity fi elds, and 
temperature distributions. For the case where the phase is composed of a single 
species, or we are interested only in the behavior of the phase as a whole, the species -
 specifi c terms will drop out, and the conservation equations will model the density 
of the phase as a whole. This method of working with an array of conservation 
equations related to each species may be appealing because of its generality and 
because nothing is neglected. However, it is a brute force approach that requires a 
very large amount of measured information and insight about mechanisms that 
infl uence behavior for the equations to be solvable. This method also suffers because 
it includes the overhead cost of solving for possible complexities, even when they 
are insignifi cant, at the cost of obliterating opportunities for clever equation devel-
opment. The second approach is to simplify the general equations in light of various 
special cases of interest. Then effort can be expended in providing information that 
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makes the conservation equations for those special cases solvable. As experience is 
gained in dealing with the special cases, confi dence can be built to tackle the more 
general forms insightfully. 

 Both approaches start with the same equation sets. As long as all important pro-
cesses are modeled with the same accuracy, they will yield the same results. The fi rst 
approach is analogous to using a sledgehammer to drive a wedge or a thumb tack. 
The second is analogous to matching the size of the hammer to the task. It requires 
having more hammers in the tool box, but matches the effort needed to complete 
the job with the job at hand. The second approach will be employed in this and 
subsequent chapters. 

 In the present chapter, the focus is on the equations that describe the behavior 
of a phase as a unit and the mechanical interactions between the phases present. 
Analyses involving individual chemical species that comprise the phase are post-
poned to the next chapter. Although the phases may be composed of a mixture of 
chemical species, we will here consider the behavior of each phase without concern 
for the distribution of the chemicals that comprise the phase. Phases may exchange 
mass. Chemical reactions that might occur within the phase will alter the composi-
tion of the phase but do not alter the total amount of mass in the phase. Although 
the chemical composition typically alters the property of a phase, we will not con-
sider this effect since we are not modeling compositional changes. Furthermore, 
chemical diffusion and dispersion are not modeled since those are processes that 
involve chemical species within a phase. 

 For a phase designated as   α   the    mass balance equation    is equation  (2.116) :
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 The diffi culty we encounter in trying to solve this equation is that, while we have 
one equation for each phase, the number of unknowns in each phase mass conserva-
tion equation is more than one. For solution of an equation set, we require the same 
number of equations as unknowns, as well as conditions at the boundary of the 
system, and initial conditions for transient problems. If the well pumping rates,   QW

α  
are specifi ed at each well,   ρα

W  is specifi ed for injection processes, and   eαβ
α , the mass 

exchange term between   α   and   β   phases, is negligible, the left side of equation  (3.1)  
still contains fi ve unknowns for each phase (  ρ   α  ,  ε   α   , and three components of the 
vector  v    α   ). Four additional conditions are therefore needed if the equation is to be 
solved for any phase. 

 One set of sources of these additional conditions is the momentum and energy 
conservation equations. Although these are attractive because they express funda-
mental conditions that must not be violated, they are problematic because they also 
introduce new variables (e.g., stress tensor, heat conduction vector, interphase 
momentum and energy exchange terms, and internal energy) that must be accounted 
for. The number of variables grows faster than the number of equations. Although 
approaches to overcoming this problem are an active topic of research, a theoreti-
cally derived momentum equation is traditionally not employed in solving porous 
media problems, and the energy equation is only invoked when heat transfer pro-
cesses are important. 
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 To overcome the defi cit of information, the mass conservation equation is supple-
mented instead with    constitutive equations   . A constitutive equation is a relation 
among system variables that is based on experimental observation or mathematical 
conjecture other than a conservation equation. Constitutive relations vary from 
material to material, are only approximations of material behavior under certain 
conditions, and are subject to revision and improvement as new insights are gained. 
Thus, the character of a constitutive equation is quite different from the fundamen-
tal inviolacy of a conservation equation that must apply exactly to any material. 
Constitutive equations include relationships such as equations of state for an equi-
librium system (e.g., the ideal gas law), dynamic expressions for diffusive fl uxes in 
terms of gradients of system variables (e.g., mass diffusion related to gradients in 
mass fractions via Fick ’ s law or heat conduction related to temperature gradients 
using Fourier ’ s law), and chemical reaction rate and equilibrium expressions. We 
will invoke constitutive equations in this chapter to obtain the additional conditions 
needed to specify mathematically the behavior of solid and fl uid phases in a porous 
medium.

 Three additional observations are warranted at this point. As noted above, the 
mass conservation equation for a phase contains fi ve unknowns and nominally 
requires four additional conditions to be applied if it is to be solved. However, in 
practice additional variables to those that appear in equation  (3.1)  are introduced 
so that more than four conditions are needed. For example, the pressure will be seen 
to be a very useful variable, but its introduction into the problem requires that it be 
related to the variables that appear in the mass conservation equation; additionally, 
some parameters that appear in the new equation must be specifi ed. Second, the 
solution of the mass balance equation for one phase cannot be achieved indepen-
dently of some information about the behavior of the other phases in the system. 
This coupling is particularly important when the phases exchange signifi cant amounts 
of mass and is more complex the more phases that are present. Third, all supple-
mentary relations must be expressed in terms of macroscale variables. Caution must 
be exercised in applying an expression derived in terms of microscale variables at 
the macroscale because systems behave differently when viewed from the perspec-
tives of different scales. However, in some instances this kind of direct extension 
may be employed. 

 In this chapter the additional conditions used to model the phases in a porous 
medium system are presented. Historically, the fi rst condition has been based on 
the experiments of Henry Darcy. These experiments and their interpretation will be 
considered in the next section following the presentation in  [22] .  

3.2 DARCY’S EXPERIMENTS 

 Flow in porous media is important in a wide range of applications including geologi-
cal formations (e.g., groundwater aquifers, petroleum reservoirs), near surface soils 
(e.g., infi ltration of water, pollutant leakage from landfi lls), biological materials 
(e.g., the spinal disk) and engineered materials (e.g., composites, mortar, catalysts, 
woven materials). Quantitative descriptions of fl ow and transport processes in 
porous media date from the experimental studies of   Henry Darcy   in 1856  [12, 13] . 
Darcy ’ s studies involved packing a vertical column with sand as depicted in Figure 
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 3.1 . U - shaped tubes, called    manometers   , tapped into fl uid reservoirs at each end of 
the column and were open to the atmosphere. Consider that the lower manometer 
has been cut off in the fi gure such that it actually extends upward to the same eleva-
tion as the upper manometer. In the same way that the water level in a straw inserted 
into a cup containing a beverage will be independent of how far the straw is inserted 
into the drink, the water levels in the two manometers will be equal when there is 
no fl ow in the column. These water levels are referred to as    hydraulic head   , or simply 
head, which is the height above some reference datum to which water will rise in a 
manometer. Darcy ’ s experiments involved observing the difference in the head in 
the manometers for the case when water completely fi lls the pore space and is 
fl owing through the packed column at a steady fl ow rate. The column was packed 
with sand to four different heights. The sand used in each packing differed primarily 
by the degree of washing employed.   

 The idea was to maintain a constant water level in the reservoir at the top of the 
column that would cause water to fl ow downward through the column. The head 
measured at the top reservoir is denoted as h2  while that for the bottom reservoir 
is h1 . No fl ow occurs when  h2    =    h1 ; fl ow is downward when  h2     >     h1 ; and fl ow would 
be upward for h2     <     h1 . 

 Despite diffi culties in obtaining a constant water source, the experiments dem -
 onstrated that the volumetric fl ow rate down through the porous medium,  Q , is 
proportional to the head difference across the sand column, h2     −     h1 , and the cross -

Figure 3.1: Apparatus intended to determine the law of the water fl ow through sand  [12].
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 sectional fl ow area,  A , and is inversely proportional to the packed height of the 
column,  L , such that:

    Q KA
h h

L
=

−2 1     (3.2)   

 In this algebraic expression,  K  is referred to as    hydraulic conductivity    and it is a 
function of both the porous medium and the fl uid properties. Darcy found that  K  
was essentially constant for a particular packing that he employed and did not 
change when the fl ow rate in the column changed. 

 It is important to note that Darcy ’ s experiments actually provide no direct infor-
mation about any properties within the packed column. All data was collected at 
locations external to the packed column, and Darcy ’ s algebraic expression provides 
effective information for the column as a whole. In equation  (3.2) , the hydraulic 
conductivity is characteristic of the column and provides no indication of the degree 
of homogeneity of the packing in the column or of any dependence of  K  on position 
within the column. Neither the volumetric fl ow rate,  Q , nor the volumetric fl ow rate 
per area,  Q / A , indicates the speed of the water fl owing within the pores since they 
consider the total column cross section, not just the fraction of the column actually 
available for fl ow due to the solid. The area,  A , is a property of the column that was 
packed and does not relate to the effective cross - sectional area of fl ow. The length 
parameter,  L , is the distance between the sampling points of the manometers and 
does not indicate the travel distance for fl uid moving through the porous medium, 
which is infl uenced by the tortuous path created by the medium. Finally, as noted 
earlier, even the head values,  h  1  and  h  2 , are obtained from measurements taken in 
reservoirs outside of the column. 

 In reporting his experimental results, Darcy was careful not to overstate their 
utility and implications. However, the need for scientists to model fl ow and transport 
in porous media systems has led to general acceptance of equations similar to 
Darcy ’ s expression  (3.2) , with the state of the art reported in references such as 
 [4, 5, 10, 14, 16] . These extended expressions are used to account for multiple fl uid 
phases, inhomogeneous and anisotropic systems, and changes of  h  with position 
within the porous medium. 

 Despite their utility, these extended equations cannot be justifi ed based exclu-
sively on Darcy ’ s experimental data. Indeed, if examined carefully, even the simplest 
differential form of Darcy ’ s equation for single - phase fl ow in a porous medium is 
highly restricted. Subsequent extensions to multiphase fl ow are even more prob-
lematic (e.g.,  [20] ). 

 This situation has arisen because systematic procedures for the derivation of 
equations for fl ow in porous media, such as averaging theory, began to develop 
approximately 100 years after Darcy ’ s experiments. The need to model porous 
media systems in the intervening years produced heuristic equations with variables 
and parameters that are not precisely related to measurements. Evolving theoretical 
understanding, beyond the scope of the present work, is beginning to make it pos-
sible to relate experimental measurements to equation variables, thus facilitating 
transfer of data between scales. Here we will make note of the Darcy equation 
and will develop some extensions of this equation that are used as constitutive 



88   FLOW EQUATIONS

expressions that supplement equation  (3.1)  such that the porous medium fl ow is 
fully described.  

  3.3     FLUID PROPERTIES   

 The formulation of equations that govern the fl uid fl ow can be accomplished by 
fi tting curves through data to obtain parameters, as was done in analyzing the Darcy 
experiment. However, if one fi rst identifi es some properties of the materials being 
studied that can impact the system behavior, the equations obtained will be more 
robust in that the values of parameters obtained can be adjusted based on the 
system and not just arbitrarily based on the system behavior. The important concept 
to understand here is that the fl uid properties must be quantifi able in terms of 
thermo - mechanical variables that we can measure, and about which we have, or can 
obtain, information. For the fl uid, the important properties are the mass density (  ρ  ), 
composition (  ω  i  ), pressure ( p ), dynamic viscosity (  µ  ), and temperature ( T ). These 
are indicated here as microscale quantities because that is the scale at which most 
handbooks provide values and relations among these variables. However, since our 
interest is in porous media fl ows, we note that these quantities must be transferred 
to the macroscale. 

 The    macroscale density      ρ   α    is the mass of   α   - phase fl uid per volume of   α   phase and 
has previously been defi ned in equation  (2.82) . The macroscale mass fraction of 
species  i  in the   α   phase,   ω  i α   , was defi ned in equation  (2.83) . Pressure, with dimen-
sions [ M /( Lt  2 )], can be considered to be either a force per area or an energy per 
volume. The former suggests that a defi nition of macroscale pressure might best be 
obtained by averaging over a surface within an averaging volume; the latter suggests 
defi ning average pressure based on an intrinsic phase average. Here, we will make 
the assumption that the difference between these two defi nitions is negligible and 
choose the macroscale pressure as the volume average:
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 The microscale   dynamic viscosity     µ   with dimensions [ M /( Lt )] is a coeffi cient of 
proportionality between the shear stress and the rate of strain. We will designate an 
appropriate macroscale version of this coeffi cient as some sort of average of   µ   over 
the   α   phase within the REV and designate it as   µ   α   . However, it is important to note 
that the macroscale dynamic viscosity defi ned in this manner is not the proportional-
ity coeffi cent between macroscale stress and macroscale rate of strain defi ned in 
terms of the macroscale velocity. Commonly, the fact that a macroscale measure of 
the dynamic viscosity is needed for a macroscale equation is overlooked, and the 
microscale value is used directly. However, because equations should be formulated 
at a single scale, we will explicitly recognize that we are using a macroscale coeffi -
cient. Of course, when   µ   is constant within an REV,   µ   α     =    µ .  

 The fact that equality of temperature of two bodies is used as a measure of equi-
librium complicates the defi nition of macroscale temperature for the situation when 
the temperature is not uniform within the averaging volume. The question of whether 
to use a volume average temperature or some weighted average temperature, where 



the weighting function might be a quantity such as entropy or heat capacity, could 
be important if the temperature variation within an averaging volume is great. In 
the present discussion, we are not going to consider energy transport, so we can 
avoid further consideration of this issue using the galling statement that the defi ni-
tion of average temperature is beyond the scope of this book. We will designate the 
macroscale temperature as Tα , but we will not provide a precise defi nition of this 
quantity. In fact, in all the developed equations in this book, we will consider the 
temperature in a system to be independent of space and time. We will point out 
instances where nonconstant temperature complicates the analysis. When the tem-
perature within an REV is constant, the defi nition of temperature will not change 
with scale such that T   =   T α . 

 Although we have identifi ed  ρα , p α ,  ωiα , and  µα  as fl uid properties of interest, we 
cannot specify each of them independently of the others. Equations that relate these 
parameters are known as    equations of state   , and these form the topic of the next 
section.

3.4 EQUATIONS OF STATE FOR FLUIDS 

 Equations of state, or state constitutive equations, provide relations among the 
properties of a material. Although these state equations apply strictly only at equi-
librium, they are generally considered to hold in most dynamic situations when the 
deviations from equilibrium or the rates of change of properties are  “ small ”  (where 
smallness is defi ned, using the circular argument, as pertaining to the situation where 
the equilibrium relations can be employed with accuracy). 

 Equations of state for fl uid properties are typically developed experimentally 
using well - mixed systems such that the values of the parameters being studied do 
not vary with position. Then the relations are expressed in terms of microscale 
variables. When working with porous media, the fact that we are dealing with mac-
roscale quantities complicates the specifi cation of the state equations. 

 The fact that a microscale quantity is not necessarily uniform in an REV can 
introduce errors into the state equation if one simply assumes that the form devel-
oped in terms of microscale variables is appropriate when written in terms of mac-
roscale variables. For cases where the gradients in the variables within an REV are 
small, this issue is not important. For our purposes, we will develop constitutive 
equations in terms of macroscale variables recognizing that lack of correspondence 
between microscale and macroscale quantities could be a source of error in the 
analysis of a system. 

 We now turn to the equations of state that are employed for study of a fl uid 
phase.

3.4.1 Mass Fraction 

 If a fl uid phase  α  is composed of  N  chemical species, only  N     −    1 of them can be 
specifi ed independently because the sum of the mass fractions must be 1. If, for 
convenience, we designate the N th species as the one that is dependent, the equation 
of state or constitutive formula is:

EQUATIONS OF STATE FOR FLUIDS 89
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    (3.4)   

 Similar equations may be written for each phase with one species in each phase 
selected to be the dependent species. This selection need not be the same for each 
phase, and the number of species in the different phase can be different. 

 We see that equation  (3.4)  states that if we know the mass fractions of species 1 
through  N     −    1, we know the mass fraction of species  N . This equation happens to 
be an exact expression that holds for any fl uid phase. As we shall see, such a precise 
relationship is not available for the other variables of interest. Also we note that 
equation  (3.4)  eliminates the need for independent information about only one of 
the  N  mass fractions in a phase. When we deal with a fl uid composed of a single 
component, equation  (3.4)  confi rms that the mass fraction of that species must 
be 1.  

  3.4.2     Mass Density and Pressure   

 A general postulate of the dependence of the mass density of fl uid phase   α   com-
posed of  N  chemical species would include dependence on the mass fractions, pres-
sure, and temperature such that:

    ρ ρ ωα α α α α= ( ) = −p T i Ni, , , . . . ,1 1     (3.5)   

 Note that dependence is indicated on only  N     −    1 of the species mass fractions rather 
than on all  N  because, as shown in equation  (3.4) , only  N     −    1 mass fractions are 
independent. Additionally, we will not be considering changes in or distributions of 
temperature within the system under study. Thus, with the temperature treated as 
a constant, we can differentiate equation  (3.5)  to obtain:
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 Defi ne the   α   phase    compressibility    at fi xed composition as:
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 The compressibility,   β   α   , is positive since the density will increase as the pressure 
increases. The inverse of the compressibility is called the    bulk modulus    and is com-
monly designated as   κ   α    for an   α   phase. The    concentration compressibility    for species 
 i  is defi ned as:
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 This change in density with mass fraction of component  i  is at fi xed pressure and 
other mass fractions except the  N th. For this reason, the  N th species is usually 



chosen as the one with the largest mass fraction. Because changes in the composi-
tion of the fl uid phase can either increase or decrease the density, the sign of   β  i α    for 
any species could be positive or negative, depending on the fl uid solution. Next 
divide equation  (3.6)  by the density and substitute in the defi nitions for the com-
pressibilities to obtain:
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 When the compressibility coeffi cients are approximately constant over a 
range of change in density, pressure, and concentrations, equation  (3.9)  may be 
integrated to:
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where the subscript  “ 0 ”  is used to indicate some reference value. Equation  (3.10)  is 
a special case of the more general form given by equation  (3.5) . 

 In general, the    compressibility of a fl uid   ,   β   α   , will depend on the composition of 
the fl uid. When the changes in concentrations of the various species in a phase are 
small or when the compressibility effects due to concentration are unimportant, the 
concentration compressibilities may be neglected. Even if they are important for a 
particular fl uid phase composed of many species, it is likely that only one or two of 
the concentration changes will be large enough that the concentration compress-
ibility will have to be considered. If one is modeling fl ow of water containing small 
amounts of contaminant, it may be appropriate to use the    compressibility of pure 
water   ,   β  w     =   4.65    ×    10  − 10    m 2 /N   =   4.65    ×    10  − 8    mbar  − 1 . Although this compressibility is 
small, approximately four orders of magnitude smaller than the compressibility of 
a gas, the physical behavior of large natural aquifers can be infl uenced by the com-
pressibility of water. 

 In some instances, it may be useful to have expressions for pressure in terms of 
density, temperature, and mass fraction, or:

    p p T i Niα α α α αρ ω= ( ) = −, , , . . . ,1 1     (3.11)   

 This equation is not independent of equation  (3.5)  but is a rearrangement, or inver-
sion of the variables. Equation  (3.1)  may be rearranged to obtain a particular con-
stitutive form of equation  (3.11)  that applies at constant temperature:
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 This inversion is possible because the density of any real fl uid always increases with 
pressure such that   β   α      =   1/  κ   α    is always positive. If an idealized case of an incompress-
ible fl uid is considered such that density does not change with pressure, a constitu-
tive equation for pressure as a function of density, temperature, and composition 
does not exist because   β   α      =   0.  
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  3.4.3     Fluid Viscosity   

 The    dynamic viscosity    of a fl uid   α   phase,   µ   α   [ M /( TL )], is a measure of a fl uid ’ s resis-
tance to deformation when subjected to shearing. It relates to the interaction of the 
molecules within a fl uid. For high viscosity fl uids, the molecules do not easily slide 
by each other when a shear stress is applied (e.g., molasses), but for a low viscosity 
fl uid, the molecules have limited interaction (e.g., acetone). 

 The viscosity of a fl uid is generally taken to be a function of pressure, tempera-
ture, and composition (see  [34]  and  [40]  for specifi c examples), such that:

    µ µ ωα α α α α= ( ) = −p T i Ni, , , . . . ,1 1     (3.13)   

 Experimental studies, backed by some theoretical studies in simplifi ed cases, have 
shown that viscosity is rather insensitive to pressure, except at very high pressures. 
Furthermore, the viscosity of a liquid tends to decrease with temperature while the 
viscosity of a gas increases with temperature. Thus the temperature of the system is 
important to selecting the viscosity value while the changes in pressure are relatively 
unimportant. The viscosity of pure water at 293    ° K is   µ   α      =   1.0    ×    10  − 3    N   sec/m 2    =   1.0 
centipoise. This is about 3 times the viscosity of acetone, but roughly from 1% to 
0.01% of the viscosity of machine and motor oils. The viscosity of water is 72% less 
at 372    ° K than at 293    ° K. 

 The composition of the fl uid is of importance in determining the viscosity, and 
the change in viscosity with composition must be considered. If we neglect the 
dependence of viscosity on pressure and consider a fi xed temperature:
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 We may defi ne the    viscosity - composition coeffi cient    with respect to species  i  as:
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where all mass fractions are constant except those of species  i  and  N . Then equation 
 (3.14)  is expressed as:
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 If the coeffi cients   βµ
αi  are treated as constants over the range of mass fractions being 

considered, this equation may be integrated to obtain:
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where the subscript  “ 0 ”  refers to some reference situation. Equations of this form 
for each phase, tabulated data, or some other expression based on experimental 



data can be used to provide values of the fl uid viscosities to be used in a modeling 
exercise.   

3.5 HYDRAULIC POTENTIAL 

 In addition to the quantities defi ned in the last section, we need an understanding 
of the mechanisms that cause fl ow in porous media to occur. A general approach 
to obtaining this quantity would be to formulate a momentum balance on a small 
element of fl uid. The momentum of the fl uid would be altered whenever the sum 
of the forces acting on the fl uid is not zero. This approach shares some of the char-
acteristics of the analysis that was performed in the last chapter to obtain an equa-
tion for mass balance. However, the momentum equation is conceptually and 
mathematically more diffi cult. Therefore, the approach that has been traditionally 
applied for fl ow modeling is to infer the equation of fl ow from consideration of 
Darcy ’ s experiments as described in Section  3.2 . 

 The most useful observation from Darcy ’ s experiment is that fl ow occurs when 
the water levels, or head, in the manometers are not equal. The head is thus a poten-
tial for fl ow that causes fl uid to move from regions of higher potential to regions 
of lower potential. This concept is similar to the observation that temperature dif-
ferences in a wire cause heat to be conducted from high temperature to low 
temperature.

 The Darcy experiment is very simple in that the properties of the water are 
essentially constant. If we are going to defi ne a hydraulic potential for fl ow, it will 
generally be necessary to consider the infl uence of variations in density, composi-
tion, temperature, and pressure. Here, we will develop an expression for the hydrau-
lic head based on an examination of the balance of forces at equilibrium. Then these 
considerations will be extended in light of Darcy ’ s experiment to obtain an approxi-
mate equation that describes the fl ow velocity when the forces acting on the fl uid 
do not balance. This extension is not the development of a conservation equation 
but, rather, involves hypothesizing an expression that seems to have possibilities for 
being useful in describing the fl ow. If subsequent experimental studies indicate that, 
indeed, the hypothesis has merit in some instances, it can be used in those instances. 
Fortuitously, the simplest sort of expressions that can be hypothesized in the context 
of porous media turn out to have a wide range of applicability. But this is getting 
ahead of the story. The fi rst step is to derive an expression for hydraulic potential 
or hydraulic head. 

 In standard terminology, the hydraulic potential has dimensions of energy per 
mass. Division of the hydraulic potential by gravity yields a quantity with units of 
length called the hydraulic head. Since the head and the potential differ by a con-
stant factor, these terms can be used interchangeably without confusion. 

3.5.1 Hydrostatic Force and Hydraulic Head 

 Although we are concerned with fl ow in a porous medium, we can develop the 
concept of the hydraulic head by fi rst considering fl uid  w  in a column without the 
solid material. For our discussion, consider the cylinder with cross - sectional area  A
containing a fl uid at rest as in Figure  3.2 . Assume that the fl uid properties do not 
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vary in a horizontal cross - section. We are interested in the force exerted on the fl uid 
at two different levels in the column designated as  z  1  and  z  2 , where the  z  coordinate 
is chosen as positive upward and the unit vector in the  z  direction is  k . Note that 
we will be analyzing physical phenomena, and such phenomena are not affected by 
the coordinate system used in the analysis. Thus, the  z  coordinate could be chosen 
as positive downward if one wished.   

 The magnitude of the force exerted at any level in the cylinder is the pressure at 
the level multiplied by the cross - sectional area. The pressure at  z  2  will be less than 
that at  z  1  because the fl uid between the two positions does not contribute to  p w   at 
 z  2 . We can therefore write the hydrostatic relation between the two pressures as:

    p A p A A z zw w w1 2 2 1= − ⋅ −( )ρ avgg k     (3.18)  

where   ρ  w  | avg  is the average fl uid density in the volume between  z  1  and  z  2  and  g  is 
the gravity vector. Thus the difference in magnitude of the forces acting at  z  1  and 
 z  2  is the weight of the fl uid contained in the region between  z  1  and  z  2 . The cross -
 sectional area may be eliminated from the equation which can be rearranged to:
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= ⋅ρ avgg k     (3.19)   

 In the limit as the distance between  z  1  and  z  2  becomes small, the left side of this 
equation is a derivative, and the average value of density simply becomes the density 
at the location being studied such that:
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w= ⋅ρ g k     (3.20)   

 This equation applies at any location in the column and can be rearranged and 
integrated from a vertical location  z  0  where the pressure is equal to  p  0  to an arbitrary 
vertical location  z  to obtain:

    Figure 3.2:     Cylinder containing fl uid with levels  z  1  and  z  2  indicated.  
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where the primes have been employed to indicate the variables of integration 
whereas the limits of the integration are not primed. The second integral may be 
evaluated easily since the integrand is a constant. 

 To evaluate the fi rst integral, we need an equation of state for density in terms 
of pressure. For illustrative purposes, we will use a general form as provided by 
equation  (3.5)  written in terms of microscale variables in phase  w . Substitution of 
this form with implicit understanding that the subscript  i  implies dependence on 
 N     −    1 of the mass fractions yields:
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 In considering fi eld problems, it is convenient to introduce a    reference pressure   , 
 p  ref , that might be encountered rather than  p  0 , which is based on some thermody-
namic reference condition. We can introduce a reference pressure by changing the 
pressure integral into a two - part integral, one from  p  0  to  p  ref  and a second from  p  ref  
to  p w  :
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 Now introduce a fi xed reference elevation datum  z  ref  and rearrange the components 
of this expression to obtain:
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    (3.24)   

 We previously indicated that  z  0  is an arbitrarily selected location in the column 
and  p  0  is the pressure at that elevation. Equation  (3.24)  indicates that, regardless of 
the location  z  0  with its corresponding pressure, the value of the expression on the 
left will always equal the right side of the equation. Subject to the constraint that, 
at equilibrium, the head will have the same value at every point in the system, this 
observation suggests defi nition of the hydraulic head as:
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 The integral term is commonly referred to as the    pressure head    while the second 
term is called the    elevation head   . 

 Although equation  (3.25)  provides a concise mathematical defi nition of the 
hydraulic head, it still presents some problems. First, the derivation applies for 
microscale properties. The relation will apply for a connected fl uid within a porous 
medium as well as to a pool of fl uid with no solid phase present. Modeling of porous 
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media systems involves formulation of the equations at a macroscale, however. 
To this end we will assume that defi nition  (3.25)  applies when written in terms of 
macroscale quantities. Thus, the macroscale head relation employed is:
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 In this equation, the error involved in replacing microscale quantities with 
macroscale counterparts is small. An instance where this approximation might be 
important is if the fl uid distribution in the averaging volume is not uniform such 
that  z w  , the vertical coordinate of the centroid of phase  w , is signifi cantly difference 
from the vertical coordinate of the centroid of the total averaging region. This dif-
ference is typically small and will be neglected here such that we can write equation 
 (3.26)  as:
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 A second problem lies in the fact that expressions for density in equation  (3.25)  
or in equation  (3.27)  are equations of state. Equations of state do not involve spatial 
locations but simply express equilibrium relations among variables, in this case, 
density, pressure, temperature, and the mass fractions. If the density depends only 
on pressure, the pressure head integral may be evaluated. However, in a more 
general equation of state for use when the temperature or the mass fractions are 
not constant, the density will be impacted as will the value of the integral. In other 
words, a value of the integral, and therefore for the head, may be obtained only for 
the cases where the density is constant or is a function only of the pressure. When 
the density in a system of interest depends, for example, on a nonconstant tempera-
ture as well as pressure, the integral would be impacted. 

 It is important, though perhaps somewhat confusing, to note that the integral in 
equation  (3.27)  involves integration of an equation of state and not of the actual 
distribution of density, temperature, and concentration in a physical system of inter-
est. However, for the special cases where the temperature and mass fractions are 
constant or their variation is small enough that they do not impact the fl uid density 
in a study system, the dependence of the equation of state on these variables may 
be neglected such that the expression for the head may be written:
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 The head given in this form can be calculated uniquely when the state 
equation for density as a function of pressure, the reference pressure, and reference 
elevation are selected. For air - water systems in soil, the reference pressure in equa-
tion  (3.28)  is typically selected to be the atmospheric pressure. In this case,  Φ   w   is 
called the    Hubbert potnetial   . For instances when the density may be assumed to 
be constant, the integral in the defi nition for head may be evaluated directly to 
obtain:
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 This last expression is worth considering in light of Darcy ’ s experiment. In his 
study, the changes in pressure were small enough that the density of the fl uid was 
essentially constant. Now consider the conditions at the top of the manometer. The 
pressure is atmospheric so that at this location  p w    =   p  atm . Selection of the reference 
pressure to be atmospheric then eliminates the pressure term. Also, with the  z  - 
coordinate pointing upward,  g    ·    k    =    −  g . Substitution of these relations into equation 
 (3.29)  provides the expression for the head at the top of the manometer:

    h z zw = −top ref     (3.30)   

 This expression confi rms that in the simplest case, the head is the elevation of the 
fl uid in a manometer above a reference datum. When the system is at equilibrium, 
this value of head applies at any point in the system as evidenced by the fact that 
the fl uid will rise to the same level in the manometer regardless of where it is 
inserted into the system. The important observation from Darcy ’  experiments is that 
when the fl uid is not at equilibrium, the fl uid level in manometers in different parts 
of the system are not necessarily equal. Changes in head with time and space are 
important for describing systems not at equilibrium. Expressions for these deriva-
tives will be obtained next.  

  3.5.2     Derivatives of Hydraulic Head   

 The fact that the hydraulic head defi ned in equation  (3.26)  cannot be evaluated 
generally when temperature and concentration effects are important means that for 
purposes of fl ow modeling, hydraulic head is best used directly only when these 
effects are unimportant. 

 At equilibrium,  h w   is constant throughout phase  w . Away from equilibrium,  h w   
will vary with time and space. It will be useful to take the time derivative and the 
gradient of head. To do this, we will make use of the   Leibnitz rule   for differentiation 
of an integral:
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where  a  and  b  are limits of integration that may depend on independent variables, 
 f  is an integrand,   ζ   is the variable of integration, and the derivative is being taken 
with respect to another independent variable,   ξ  . If, for example,   ξ   is a spatial coor-
dinate, equation  (3.31)  states that the derivative of an integral with respect to that 
coordinate is equal to the integral of the derivative of the integrand plus terms 
involving the integrand evaluated at the limits of integration and the derivatives of 
those limits. A second form of the Leibnitz rule that follows directly involves the 
gradient operator such that differentiation is with respect to the three spatial coor-
dinates. In this instance, the Leibnitz rule extends to:
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 The upper limit of the integral in equation  (3.27) ,  p w  , may depend on time 
and spatial coordinates while the lower limit,  p  ref , is a constant. The integrand is 
independent of space and time since it is a constitutive equation. The quantity  z  is 
the vertical spatial coordinate. Thus the expressions for the partial time derivative 
and for the gradient of  h w   may be obtained, respectively, from equations  (3.31)  and 
 (3.32)  as:
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and:
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 In these equations,   ρ  w   is evaluated at the same location as  p w  . Since a location is 
involved, the temperature and mass fractions at that location can be measured so 
that the density is specifi ed unambiguously. For notational convenience, the vertical 
bar indicating density is evaluated at the location where  p w   is assessed will not be 
employed so that the expressions for the gradient and time   derivative of hydraulic 
head   are:
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and:
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 These expressions will be useful subsequently as we hypothesize equations for 
fl ow.   

  3.6     SINGLE - PHASE FLUID FLOW   

 The simplest case of fl ow in porous media is fl ow of a single homogenous fl uid phase 
through a porous solid. At the beginning of this chapter, we stated the point con-
servation of mass equation for this situation as equation  (3.1) . In fact, since this is 
a mass conservation equation for a phase, it can be particularized to both the fl uid 
phase, indicated as  w , and the solid phase, designated as  s . The mass conservation 
equations for the fl uid and solid phases are, respectively:
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and:

    
∂

∂
1

1
−( )[ ] + ∇⋅ −( )[ ] =

ε ρ
ε ρ

s
s s

ws
s

t
ev     (3.38)  

where   ε   is the   porosity  , the single fl uid phase  w  occupies the entire pore space such 
that   ε  w    =    ε  , the solid phase volume fraction,   ε  s  , is equal to 1    −      ε  , and the assumption 
is made that no solid phase is removed from or added to the system though the 
wells. The mass exchange terms   ews

w  and   ews
s  account for dissolution of the solid phase 

or adsorption of fl uid onto the solid. Because these exchanges do not produce mass, 
they must satisfy the constraint   e ews

w
ws
s+ = 0. The specifi cation of these terms typi-

cally requires that one consider chemical species interaction or melting/freezing 
phenomena. If the phases are treated without study of the chemical interactions and 
in the absence of heat effects, these terms would have to be specifi ed as known 
quantities. We will not consider thermal effects here and will postpone chemical 
interactions until the next chapter. We will thus assume that the exchange terms are 
specifi ed. When conditions at the wells are also specifi ed, equations  (3.37)  and  (3.38)  
contain nine unknowns (  ρ  w ,  ρ  s ,  ε  , and the three components of each of the two veloc-
ity vectors  v   w   and  v   s  ) which must be accounted for in trying to solve the equations. 
Darcy ’ s experiments and the defi nition of hydraulic head provide us with some 
insights that will be used to eliminate some of the variables. The objective here is 
to make use of the information developed in the preceding sections to close the 
mass conservation equations, i.e., to provide enough supplementary information to 
make the equations solvable. The information we will develop for single phase fl ow 
and the approach to obtaining that information will be useful later in the discussion 
of multiphase fl ow. 

  3.6.1     Darcy ’ s Law   

 From Darcy ’ s experiments, we have the observation that fl ow occurs when the head 
in a system is not constant. In fact, equation  (3.2) , a correlation obtained from 
Darcy ’ s experiments, suggests that the fl ow is proportional to a difference in head 
divided by the distance between the locations where the head is measured. Note, 
however, that the movement of fl uid we are discussing is movement relative to the 
solid. For example, one could have water within a rock core with the head being 
constant. Picking up this core and carrying it across a laboratory causes the fl uid to 
have a velocity relative to the laboratory fl oor, but it has no velocity relative to the 
rock. Thus if we are going to be precise we should say that fl uid velocity relative to 
the solid phase in a porous medium is related to head differences within the porous 
medium. In his experiments, Darcy did not have to consider the solid motion 
because the experimental column was small. However, in large subsurface systems, 
or in the study of soil deformation such as encountered in soil mechanics, the move-
ment of the solid can be important to the description of the system. 
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 The next order of business is to extend the results of Darcy by making some 
plausible mathematical hypotheses. In Darcy ’ s experiments,  Q  is the volumetric fl ow 
rate of the fl uid through the column. This fl ow occurs only in the pore space. Thus 
the effective area of fl ow is not the entire column cross section,  A , but is this area 
multiplied by the porosity,   ε A . Note that although the porosity   ε   is a volume fraction, 
it is also useful in determining an average effective area of fl ow. Thus the average 
speed of the macroscopically one - dimensional fl ow in a cross section of Darcy ’ s 
column relative to the solid grains is:

    v v
Q
A

w s− =
ε

    (3.39)   

 We are now going to extend the algebraic equation proposed by Darcy to a dif-
ferential form. We consider that as the column length is reduced, the results of the 
experiment are unchanged. We therefore propose that:

    lim
L

h h
L

h
L→

−
=

0

2 1 d
d

    (3.40)   

 Substitution of equations  (3.39)  and  (3.40)  into equation  (3.2)  yields the form:

    ε v v K
h
L

w s w− =
d
d

    (3.41)  

where the hydraulic conductivity,  K w  , has been adorned with a superscript  w  in 
comparison to its presence in equation  (3.2)  to emphasize that in a particular 
medium, its value will depend on the properties of the fl uid phase. With respect to 
Figure  3.2 , the differential element d L  may be replaced by a differential element 
denoted d z  in the  z  direction. Since fl ow occurs from the location of higher head to 
lower head, we see that when d h /d z  is positive, the fl ow will be downward (negative 
velocity) while when d h /d z  is negative, the fl ow will be upward (positive velocity). 
Therefore, the absolute value signs in equation  (3.41)  can be removed if d L  is 
replaced by d z  and a negative sign is judiciously included such that:

    ε v v K
h
z

w s w−( ) = −
d
d

    (3.42)   

 Now as fi nal steps, we assume that the head at a location,  h , may be replaced by 
the averaged head for the location,  h w  , as given by equation  (3.27) . Further, we 
assume that the spatial gradients in head in a particular direction give rise to fl ow 
in that direction only. Thus equation  (3.42)  may be written in terms of a partial 
derivative in the  z  direction, in a system where head changes as a function of all 
three dimensions, and the velocity component in that direction:

    ε v v kw s w
w

K
h
z

−( )⋅ = −
∂
∂

    (3.43)   



 Corresponding equations may also be written in the  x  and  y  directions, and the three 
components of the equation may be combined to yield:

    ε v vw s w wK h−( ) = − ∇     (3.44)   

 Implicit in this form of the equation is the assumption that the medium is    isotro-
pic    in the sense that the hydraulic conductivity,  K w  , is the same in all directions. In 
other words, the response to the fl uid in light of a head gradient in the porous 
medium is independent of the direction of the gradient. Furthermore, fl ow occurs 
in the direction of the gradient only, such that the fl ow velocity vector and head 
gradient vector are    collinear   . A more extensive discussion of the hydraulic conduc-
tivity is in the next subsection. 

 The quantity on the left side of equation  (3.44)  is referred to as the    specifi c dis-
charge    or    Darcy velocity    and is designated as  q   w  , where:

    q v vw w s= −( )ε     (3.45)  

such that for the isotropic medium, the vector form of Darcy ’ s law can be 
expressed:

    qw w wK h= − ∇     (3.46)   

 In cases when temperature or species gradients make defi nition of the hydraulic 
head ambiguous, we may use equation  (3.36)  to obtain Darcy ’ s law explicitly in 
terms of the gradient of pressure and elevation heads as:

    q gw
w

w
w wK

g
p= − ∇ −( )

ρ
ρ     (3.47)   

 In the interest of full disclosure, we emphasize that the alternative forms of 
Darcy ’ s  “ law ”  given as equations  (3.46)  and  (3.47)  are not actually laws. They are 
approximations based on observation of system behavior. We know that the equa-
tions are accurate when the head gradient is zero or when the pressure gradient is 
balanced by gravitational forces. For these equilibrium states, the Darcy velocity is 
zero. The equations propose that for a  “ small ”  imbalance in the gradients that drive 
the fl ow, the Darcy expressions reasonably describe the velocity. Confi rming experi-
mental evidence indicates that Darcy ’ s correlation is a useful expression in describ-
ing fl ow, despite the fact that its ancestry is not nearly as distinguished as that of a 
full conservation equation. 

 Equation  (3.45)  makes it clear that the Darcy velocity is not a true velocity of 
the fl uid but represents an effective fl ow rate through the porous medium. Chemical 
species carried with the fl ow move only in the pores and thus are transported rela-
tive to the solid at an average pore velocity  v   w      −     v   s  . The difference in an average 
pore between the Darcy velocity and what is called the    pore velocity    will be impor-
tant if one is interested in transport of heat or a chemical species due to fl ow within 
a porous medium. Species transport is the subject of the next chapter. For the 
present, we turn to a discussion of the value of  K w   in terms of the physical proper-
ties of the porous media system.  
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  3.6.2     Hydraulic Conductivity and Permeability   

 The hydraulic conductivity,  K w  , that appears in the various manifestations of Darcy ’ s 
law in the last subsection is a measure of the ease with which a fl uid will travel 
through a pore space. Inherent in the use of a scalar to represent the hydraulic 
conductivity is the assumption that at any point within the medium, the fl ow proper-
ties of the medium are the same in all directions (i.e., the medium is isotropic), 
although the properties may vary from point to point (i.e., the medium may be 
heterogeneous). The hydraulic conductivity is a function of the properties of the 
solid medium as well as of the fl owing fl uid. It would be convenient if the functional 
dependence of  K w   on the fl uid and the solid phases were known explicitly. In fact, 
a signifi cant effort has gone into this problem. Experimental evidence has provided 
the insight that the hydraulic conductivity is proportional to the fl uid weight per 
unit volume,   ρ  w g , and inversely proportional to the dynamic viscosity of the fl uid, 
  µ  w  . Thus we can defi ne the    intrinsic permeability    (Table  3.1   ), denoted as  k s  , as a 
property of the solid phase according to the relation:

    K
k gw

s w

w
=

ρ
µ

    (3.48)     

 Note that  K w   has dimensions of  L / t,  ρ  w g  has dimensions of  M /( L  2  t  2 ), and   µ  w   has 
dimensions  M /( tL ). Therefore, for dimensional consistency, the   intrinsic permeabil-
ity   has dimensions of  L  2 . The intrinsic permeability is only a function of the proper-
ties of the porous medium. The important macroscopic properties of the soil that 
control the value of  k s   would seem to be both the porosity,   ε  , and some measure of 
pore structure. For example, if two soils have the same porosity, but one has many 
small pores while the other has a lesser number of large pores, it seems reasonable 
that the second soil would have a higher intrinsic permeability. In fact, the more 
contact a fl uid has with the solid surface of the porous medium, the more resistance 
to fl ow it will encounter. 

 From this perspective, the question arises as to what characteristics of a solid 
matrix or soil impact the amount of surface area that a fl uid will encounter as it 

 Table 3.1:     Approximate range of values of intrinsic 
permeabilities for various materials. For unit conversion, 
1 Darcy   =   10  − 8    cm 2 . To obtain hydraulic conductivity ( K w     =  
   ρ gk s / µ  W  ) of water at 60    ° F (15.6    ° C) use   ρ  W g /  µ  W   

  Material     k s     cm 2   

  Well - sorted gravel    10  − 3     −    10  − 4   
  Fractured rock    10  − 3     −    10  − 6   
  Well - sorted sand    10  − 5     −    10  − 7   
  Peat    10  − 7     −    10  − 8   
  Fine sand, loam    10  − 8     −    10  − 11   
  Layered clay    10  − 9     −    10  − 11   
  Limestone    10  − 12     −    10  − 13   
  Roof tile    10  − 12     −    10  − 13   
  Granite    10  − 14     −    10  − 15   
  Concrete    10  − 14     −    10  − 16   



fl ows in the porous medium. We note that we are searching for relations that may 
help describe parameters and are not bound by a stringent requirement of rigor. 
Thus, we envision the porous media fl ow as occurring in tubes of diameter  d  p . As 
the fl ow takes place through the tubes it may wind through a complex path. To travel 
a macroscale distance  L  p , it may actually travel a distance at the microscale of  L  p . 
In colloquial terms, fl ow from point to point in a porous medium does not take place 
 “ as the crow fl ies ”  but follows a tortuous path dictated by the pore distribution and 
the ease with which the fl uid can fl ow through the various pores when subjected to 
a head gradient. Note that the fl ow responds to the head gradient imposed only 
along the path it follows. Thus in traveling between two points, the head gradient 
along the direct path would be higher than that along the actual fl ow path. 1  We can 
defi ne a dimensionless parameter,   τ  , as  the     tortuosity   , which provides a measure of 
the directness of the path the fl uid may take:

    τ =
L

L
p

p
    (3.49)   

 The tortuosity defi ned in this manner will always have a value greater than 1, and 
can be greater than 2 or even larger. Larger values of tortuosity would decrease the 
intrinsic permeability. We also know, even if just from sucking a drink through a 
straw, that the resistance to fl ow in a tube decreases as the diameter of the tube 
increases. Therefore, we can hypothesize that an expression for the intrinsic perme-
ability that is consistent in having dimensions of  L  2  would be proportional to the 
square of the pore diameter,   Dp

2 . Indeed, if our speculation is correct, a promising 
empirical relation would have the form:

    k C
Ds = p

2

τ
    (3.50)   

 Although this relation provides insight into intrinsic permeability, it does not 
provide a relationship that can be employed directly without error. A problem with 
this relation lies in the fact that the fl ow paths are not tubes with a single diameter. 
In fact, the cross - sectional area of a fl ow path changes with position along the 
microscale fl ow, and the cross - sectional geometry is not circular. The actual fl ow 
path is very diffi cult to estimate and any tortuosity eventually employed would 
have to represent some average value. Nevertheless, the functional form provided 
gives some insight into the continuing search for reliable relations for intrinsic 
permeability. 

 A family of correlations for intrinsic permeability that seems to underlie current 
thinking is based on the work of   Kozeny    [29] , who proposed in 1927 the form:

    k C
a

s
s

=
3ε
2

    (3.51)  

 1     The concept of reducing the gradient by increasing the path length is used in switchbacks, where a 
winding road is used to permit vehicles to ascend a steep grade such as found in mountainous terrain. 
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where  a s   is the solid area per volume and  C  is assigned the value 0.5, 0.562, or 0.597 
depending on whether the pore shape is circular, square, or an equilateral triangle, 
respectively. Carman  [9]  improved on Kozeny ’ s equation by eliminating the tunable 
parameter  C  to obtain:

    k
Ds m=

−( )

32

2180 1

ε
ε

    (3.52)  

where  D m   is some characteristic particle diameter, and thus still may require some 
fi tting. In fact, the diffi culty in identifying a single characteristic length — whether 
that be volume per area, some representative grain size, or some pore diameter —
 makes general use of the correlation for accurately determining the intrinsic perme-
ability diffi cult. Information on grain size distributions for various soil types was 
presented in Section  1.3 . 

 One approach to incorporating the dependence of intrinsic soil permeability on 
the full range of grain diameters is the formula of Fair and Hatch  [18] , which can 
be applied to a soil with its grain sizes separated using a sieve set:

    k a
w
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ii
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= 



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







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2 1

2β
ε

ε
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    (3.53)  

where   β   is a    packing factor    (shown by experiment to be about 5),  a  is a    sand shape 
factor    (varying from 6 for spherical grains to 7.7 for angular grains),  N  int  is the 
number of intervals between sieves (i.e., the number of sieves minus one) used to 
sort the soil sample,  w i   is the fractional weight of sand in the interval between diam-
eters of sieve  i  and sieve  i    +   1, and  D i   is the geometric mean of the grain size of 
sieve  i  and sieve  i    +   1. 

 Besides the challenges of determining a value for the scalar intrinsic permeability, 
the problem is further complicated when a medium has a preferred direction of 
fl ow. Pore structure can impart directional dependence on permeability. For example, 
sediments deposited in a fl uvial (or river) environment are deposited in horizontal 
layers with the soil grains oriented with the longest axes in the horizontal plane. 
This implies a different effective pore structure in the horizontal and vertical direc-
tions. One can also imagine that if holes are drilled in one direction into a rock 
sample, the permeability of the sample in that direction will be increased. The direc-
tional - dependence is called    anisotropy   . 

 To account for anisotropy, the intrinsic permeability scalar is generalized to a 
second rank tensor, a 3    ×    3 matrix, denoted by  k   s  , the components of which are 
dependent on the physical system as well as the orientation of the pore structure 
relative to the coordinate system. For the anisotropic case, the Darcy equations in 
terms of hydraulic head and in terms of pressure and elevation may be written 
respectively as:

    qw
w s

w
wg

h= − ⋅∇
ρ

µ
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    (3.54)  

and:



    q gw
s

w
w wp= − ⋅ ∇ −( )k

µ
ρ     (3.55)  

where the intrinsic permeability is:
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    (3.56)   

 Without going into the mathematical intricacies of how this tensor was developed, 
we can make the following statements: 

  1.     The matrix entry   ks
ξζ  is the intrinsic permeability that allows for fl ow to occur 

in coordinate direction   ξ   as a result of a gradient in head in coordinate direc-
tion   ζ  .  

  2.     The matrix  k   s   is symmetric such that   k ks s
ξζ ζξ=  for all coordinate subscript 

pairs   ξ    ζ  .  
  3.     A coordinate system used for a study of a porous medium may be rotated such 

that all the off - diagonal elements of the matrix  k   s   are zero. For this case, the 
coordinate axes are said to be aligned with the principal directions of fl ow.  

  4.     When the off - diagonal elements of  k   s   are zero and   k k kxx
s

yy
s

zz
s= = , the system 

is isotropic and a scalar intrinsic permeability may be used.    

 Some of the implications of these statements, particularly as they affect equation 
 (3.54) , will be explored further in the exercises at the end of the chapter. Here we 
note that if the unit vectors in Cartesian coordinate directions  x, y , and  z  are denoted 
respectively as  i ,  j , and  k , expansion of equation  (3.54)  into its component parts 
yields:
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 When the coordinate directions are aligned with the principal directions of fl ow, the 
off - diagonal elements of the intrinsic permeability tensor are zero and the compo-
nent equations simplify to:
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 Furthermore, as noted above, if   k k k kxx
s

yy
s

zz
s s= = = , the porous medium is isotropic 

and these last three equations may be combined into vector form equivalent to 
equation  (3.46) 

    qw
w s

w
wgk

h= − ∇
ρ

µ
    (3.59)   

 This   isotropic   expression is identical to equation  (3.54)  for the special case where 
 k   s     =    k s   I  and  I  is the unit tensor (matrix) with 1 ’ s on the diagonal and 0 ’ s in all the 
off - diagonal locations. 

 At this point in our excursion toward closed single phase fl ow equations, we have 
the mass conservation expressions for the fl uid phase, equation  (3.37) , and for the 
solid phase, equation  (3.38) ; we have the equations of state for phase  w  presented 
in Section  3.4 ; and we have the Darcy correlations that relate fl uid velocity to gra-
dients in head. To complete the derivation of the fl ow equations, we need to combine 
these disparate elements and also introduce some state equations and approxima-
tions relating to the behavior of the solid phase. This will be accomplished in the 
next subsection.  

  3.6.3     Derivation of Groundwater Flow Equation   

 In this subsection, we will combine the mass conservation equations and Darcy ’ s 
law to obtain the expression that describes subsurface fl ow in a slightly deforming 
medium. To accomplish this, we need to rearrange the mass conservation equation 
for the fl uid phase so that it is expressed in terms of the Darcy velocity,  q   w   rather 
than the pore velocity,  v   w  . Rearrangement of equation  (3.45)  yields:

    ε εv q vw w s= +     (3.60)   

 This may be inserted into equation  (3.37)  to eliminate   ε    v   w  :
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 Now apply the product rule to the fi rst and third terms to expand this equation to 
the form:
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 Defi ne the macroscale    material derivative    of some property  f  moving with the solid 
phase as:
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 This material derivative provides the time rate of change of a property  f  measured 
while moving at velocity  v   s  . The property of interest may be any property of the 
system, fl uid or solid; the defi nition simply provides an expression indicating the 
motion experienced as the time rate of change is evaluated. We can use this defi ni-
tion and collect terms in equation  (3.62)  to obtain:
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 This equation for the fl uid phase requires information about the solid phase velocity, 
some of which can be obtained from the mass balance equation for the solid, equa-
tion  (3.38) . 

 We can apply the product rule to the divergence term in equation  (3.38)  to 
obtain:
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 Terms in this expression may be collected by making use of the defi nition of the 
material derivative given in equation  (3.63) :
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 Common practice in single - phase subsurface fl ow studies is to model the move-
ment of the solid phase only implicitly. That is, rather than trying to obtain detailed 
information about movement of the solid phase, only its compression is considered. 
This approach is consistent with conditions for many groundwater fl ow problems. 
Of course, if one is concerned primarily with geotechnical questions such as slope 
stability or subsidence, the solid phase movement may become the predominant 
phenomenon of interest. However, in the study of subsurface fl ow and transport, 
equations  (3.64)  and  (3.66)  may be combined such that   ∇⋅v s  is eliminated between 
them. To achieve this goal we rearrage equation  (3.66)  to yield:
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which we now introduce into equation  (3.64)  to eliminate   ∇⋅v s . The result is:
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 Consider now the fi rst term in equation  (3.68)  which can be rewritten as:
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 Now use the product rule to expand the last term as:
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and introduce equation  (3.70)  into equation  (3.69)  to obtain:
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 Next combine equations  (3.71)  and  (3.68)  to yield:
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 Rearranging the fi rst term in equation  (3.72)  one obtains:
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 Substitution of the defi nition of the fraction of total mass at a macroscale point that 
is  s  phase, that is:
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into equation  (3.73)  one obtains the following extremely important general formula 
that may subsequently be simplifi ed for special cases:
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 Next we will make use of state equations to convert   the material derivatives   of 
(1    −      ε  )  ρ  s ,  ρ   w  , and   ρ   s   into material derivatives of pressure. For this derivation, we will 



consider the case where effects of temperature and chemical composition on the 
density are negligible. Therefore, the mass density is a function only of pressure with 
  ρ   α     =    ρ   α   ( p  α   ). For the fl uid phase, we make use of equation  (3.7)  with superscript   α   
replaced by w to obtain:
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where   β   w   is the    fl uid compressibility   . Consider the solid to respond elastically and 
isotropically to the pressure, and note that the pressure exerted on the solid material 
is the pore pressure, the pressure of fl uid  w  in the pore space within the medium. 
Thus, the state equation for the solid is   ρ   s    =    ρ   s  ( p w  ) and we will use the functional 
form similar to equation  (3.7) :
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which may be integrated to:
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when the compressibility of the solid phase,   β   s  , may be considered constant over 
the range of pressures considered and the subscript  “ 0 ”  denotes a reference state. 
The material derivative of   ρ   s   in equation  (3.75)  may therefore be expanded using 
the   chain rule  :
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 Additionally, we need an equation of state that relates the change in volume of 
the bulk solid material (i.e., the volume occupied by the porous medium) when the 
matrix is subjected to a stress. This stress will change the mass of solid per volume 
of the medium, the quantity (1    −      ε  )  ρ   s  . If we consider the stress exerted on the bulk 
solid to be the pressure of phase  w , that the matrix is elastic, and also note that the 
fractional volume occupied by the solid will decrease as the pressure of the fl uid 
increases, we can defi ne the    bulk compressibility   ,   α    b , as:

    α
ε ρ

ε ρb = −
−( )

−( )[ ]1
1

1
s

s

wp

∂
∂

    (3.80)   

 If   α    b  is approximately constant over the range of pressures examined, this expres-
sion integrates to:
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where the subscript 0 refers to some reference situation. With condition  (3.80) , 
application of the chain rule to the material derivative of the solid mass per volume 
of porous medium in equation  (3.75)  provides:
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 The transformation of the material derivatives in equation  (3.75)  to material deriva-
tives of pressure is completed by substitution of the equations  (3.76) ,  (3.79) , and 
 (3.82)  and collection of terms:
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 The group of terms multiplying the time derivative account for changes in the 
amount of water that an aquifer stores due to compressibility effects. We can defi ne 
the    specifi c storage   ,  S s  , with dimensions of 1/ L  according to:

    S gs
w w s= + + −( )[ ]ρ α εβ ε βb 1     (3.84)   

 The specifi c storage is conceptually the volume of water released from or taken into 
a unit volume at a location in the porous medium due to expansion or contraction 
of water, the matrix, and of the solid when the   pressure head    p w  /(  ρ  w g ) changes by 
a unit amount. For sand,   α    b  ranges from 10  − 7  to 5    ×    10  − 8    m 2 /N. This is 2 to 3 orders 
of magnitude larger than the compressibility of water, and more than 3 orders of 
magnitude larger than the solid compressibility. Thus, the greatest contribution to 
storage is reorganization of the matrix structure. Because it is relatively small, the 
solid phase compressibility is typically neglected in determining the value of the 
specifi c storage. 

 We use the defi nition of specifi c storage in equation  (3.83)  and also eliminate the 
Darcy velocity in favor of the pressure by making use of equation  (3.55) :
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where the anisotropic form of the intrinsic permeability is retained for generality. 
Two terms in this equation are further simplifi ed by making use of the fact that some 
of their elements are small. First, the solid velocity is taken to be small so that the 
material derivative of pressure may be approximated using:
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 Also, the density gradient is small enough that the second term in equation  (3.85)  
may be approximated as:
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 Application of these approximations and division by   ρ  w   fi nally yields the ground-
water fl ow equation in terms of pressure:
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 When the pumping is out of a well, such that   Qw
W is negative, the mass density 

of the pumped water will be the same as the mass density of the water in the 
aquifer so that   ρ ρ =W

w w 1. However, if water is being injected into the aquifer, its 
density may be different from that in the aquifer so that the density ratio is different 
from 1. In most cases, the total amount of mass being transferred between phases 
is small enough that   ews

w  is negligible in the groundwater fl ow equation. However, 
in the next chapter when we consider transport of the chemical species that com-
prise a phase, the exchange of mass between phases is important in the equations 
that describe the distribution of the various chemical constituents within each 
phase. 

 The groundwater fl ow equation may alternatively be expressed in terms of 
hydraulic head rather than pressure by employing equations  (3.35)  and  (3.36)  to 
eliminate the derivatives of pressure from equation  (3.88) :
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where the   hydraulic conductivity   tensor  K   w     =     ρ  w g  k   s  /  µ  w   has been introduced for 
convenience. This equation may be solved for the hydraulic head after appropriate 
specifi cation of boundary and initial conditions. 

 The goal of this derivation has been to obtain an equation that can be solved 
for the pressure or head distribution. The fl ow velocity can then be calculated 
from a Darcy equation. The goal has been reached with the alternative equations 
 (3.88)  in terms of pressure or  (3.89)  in terms of the head. The derivation has been 
somewhat involved. Thus, rather than proceeding directly to a consideration of 
boundary and initial conditions, we will recapitulate the important elements of the 
derivation that have led to the governing equations. In the same way that  “ instant 
replay ”  from different camera angles is employed to enhance viewing of a sporting 
event, the following subsection will examine the derivation from a different 
perspective.  

  3.6.4   Recapitulation of the Derivation 

 The derivation of the single - phase fl ow equation began with the mass conservation 
equations for the fl uid and the solid, equations  (3.37)  and  (3.38) , respectively. These 
equations describe the fundamental concept that mass can be neither created nor 
destroyed. The two equations are combined to form the single equation  (3.75) , a 
general conservation expression for subsurface fl ow written in terms of the Darcy 
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velocity. This equation contains nine unknowns described by three scalars and two 
vectors ( ε ,  ρ w ,  ρs ,  qw , and  vs ) that must be accounted for in the derivation because a 
single equation can be solved for only a single unknown. The number of unknowns 
is reduced by a set of constitutive relations (Darcy ’ s law) and equations of state that 
inter - relate the variables and their derivatives, and by recognizing that some of the 
terms in the equation are small and can be neglected. 

 The simplest assumption is that the elastic solid deforms very slowly relative 
to the fl uid motion so that the three components of  vs  can be set to zero in the 
material derivatives. This assumption reduces the number of unknowns in the single 
governing equation to six: ε ,  ρw ,  ρ s , and  qw . The  “ trick ”  that makes this situation 
manageable is to introduce the pressure, pw , thus raising the number of unknowns 
to seven, but then fi nding expressions for each of the other six variables in terms of 
this single new variable. The actual expressions used are subject to experimental 
verifi cation. We used some standard forms of these functional expressions. For  ε ( pw ), 
the governing expression is equation  (3.81) , which indicates how the elastic 
matrix compresses. We used the equation of state for the fl uid density as a function 
of pressure as given by equation  (3.10)  without the terms involving dependence on 
chemical constituents. The equation of state used for ρ s  is equation  (3.78) . 2  Finally, 
we relate the Darcy velocity qw  to the gradient in  pw  through the Darcy equation 
 (3.55) . When we make use of all these relations in the fl ow equation, we arrive at 
equation  (3.88) . 

 At fi rst glance, it may seem that our manipulations have been for nought. We 
may have eliminated some of the extra variables, but we now have specifi c storage, 
Ss , fl uid viscosity,  µw , and the intrinsic permeability,  ks . If the system is isotropic, the 
intrinsic permeability involves a single parameter; however, if the medium is aniso-
tropic, fi ve parameters must be specifi ed. Of course, the pumping rates and the 
density of any fl uid being injected must be specifi ed. Despite the new parameters, 
equation  (3.88)  is preferable to equation  (3.75)  because it can be solved if the 
parameters are specifi ed and the parameters are characteristic of the system. They 
may vary with location in the system, primarily due to system structural heteroge-
neities. The specifi c storage is directly related to the equations of state for the densi-
ties and the solid matrix; the intrinsic permeability is a function of the geometry of 
the pore space through the solid phase. Thus equation  (3.88)  actually does represent 
a signifi cant advance over its precursors. When the system is homogeneous, the 
parameters will be constants. Expressing the fl ow equation in terms of head, as in 
equation  (3.89) , is not simpler than the form in terms of pressure; however, the 
hydraulic head is intuitively attractive since it relates directly to the level of the 
water in a manometer inserted into the system. 

 Let us emphasize, yet again, that the mass conservation equations are fundamen-
tal principles while the additional relationships employed here are approximations 
subject to revision and improvement based on experimental observation or the need 
to adequately describe the study region. Although we have developed the single -
 phase fl ow equation, we also need to specify initial and boundary conditions if it is 
to be solved. This will be the topic of the next subsection.  

2   This is a somewhat simplifi ed form as the solid density is more generally taken to be a function of the 
effective stress exerted on the particles which is only approximated as pw . Nevertheless, for our purposes, 
the equation of state presented here is suffi cient. 



  3.6.5     Initial and Boundary Conditions   

 Equations  (3.88)  and  (3.89)  are differential equations in pressure and head, respec-
tively, that provide alternative descriptions of the physics that govern single - phase 
fl ow. Since they are written in terms of derivatives, they describe how the pressure 
or head changes from point to point in the system as a function of time or position. 
This is not enough information, however, to determine the value of pressure or head 
at a location. The equations indicate the changes, but they do not indicate from what 
values the changes are. For example, if we fi ll a jug of known volume by pouring 
water into it at a set rate, we will not know the time it will take for the jug to be 
fi lled unless we know how much water was in the jug when the fi lling process began. 
Similarly, knowing the rate of change of head in a porous medium, either in time 
or in space, does not mean we know the value of head at any location unless we 
have some information about a starting value. Furthermore, going back to the 
example of a jug, if there is a crack in the wall of the jug such that some water 
escapes at that boundary, we will need to take that into account in calculating the 
progress toward fi lling the jug. To solve a single - phase fl ow equation we need both 
a specifi cation of the initial state of the system, for a time - dependent problem, and 
some information about what is happening at the boundary of the system. We will 
not delve into the theory of differential equations to determine the necessary infor-
mation needed but will specify the conditions based on consideration of the physical 
system. 

 It should not come as a surprise that since the time and space rate of changes of 
head and pressure are related, respectively, by equations  (3.35)  and  (3.36) , the condi-
tions needed to solve the fl ow equations in terms of head or pressure are also similar. 
Therefore, the following discussion will be applicable to both the pressure equation 
 (3.88)  and the head equation  (3.89)  although it will be framed in terms of pressure. 
The specifi c auxiliary conditions that are needed will be stated explicitly in terms 
of both head and pressure. 

 If the fl ow equation is to be solved, the coeffi cients and forcing functions appear-
ing in the equation must be specifi ed as functions of time and location. These coef-
fi cients include, depending on the form of the equation being considered,   ρ  w ,  µ  w , S s  , 
 k   s  , and  K   w  . Some of these parameters, for example   ρ  w  , may be specifi ed as functions 
of pressure so that the change in density as the solution to the fl ow equation evolves 
is accounted for. Additionally, it is necessary to specify the mass of fl uid per time,   
ρ W W

w wQ , being injected into or extracted from each well and the locations of the 
wells,  x  W . 

 Consider, next, the implications of describing a    transient    fl ow problem, one in 
which the pressure at a location in the system is a function of time. Solution of 
equation  (3.88)  for the pressure requires that an initial value of the pressure be 
specifi ed at all locations in the domain. Then the differential equation describes 
changes from this initial distribution. Therefore, solution of equation  (3.88)  requires 
the initial condition for the pressure fi eld  p w  ( t ,  x ):

    p t Pw
0 , x x( ) = ( )     (3.90)  

where  t  0  is the initial time and  P ( x ) is the specifi ed pressure distribution at all points 
in the domain. For equation  (3.89) , the required initial condition is:
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    h t Hw
0 , x x( ) = ( )     (3.91)  

where  H ( x ) is the initial head distribution. However, recall the defi nition of hydrau-
lic head given by equation  (3.27)  and the subsequent discussion. The head can only 
be determined unambiguously if   ρ  w   is either constant or a function only of pressure. 
If this stipulation is not satisfi ed, then  H ( x ) cannot be specifi ed, and one is only able 
to solve the pressure form of the fl ow equation. 3  If the problem being solved is at 
   steady state    such that the pressure distribution in the system is independent of time, 
no initial condition is specifi ed. 

 A boundary condition must be specifi ed at each point on the spatial boundary 
of the system under consideration. We will designate the spatial coordinates of the 
boundary as   xb

w. At the boundary several alternative boundary conditions may be 
specifi ed, and different conditions may be specifi ed on different parts of the bound-
ary. Only one boundary condition is specifi ed at a boundary location for the ground-
water fl ow equation. 

 The simplest condition is specifi cation of the dependent variable at a boundary 
location. This specifi ed value may be a function of time. For the pressure equation, 
this condition is expressed:

    p t P tw w b w, ,x xb b( ) = ( )     (3.92)  

where   P tb w, xb( ) is some specifi ed function of time and location on the boundary. 
Conditions of this form are known as    fi rst type conditions    or    Dirichlet conditions   . 
For a steady state problem, either a Dirichlet condition or a third type condition 
(to be discused shortly) must be specifi ed at at least one point on the boundary. In 
terms of head, the Dirichlet condition takes the form:

    h t H tw w b w, ,x xb b( ) = ( )     (3.93)  

in cases where the head can be determined. 
 A different condition that may be specifi ed is commonly referred to as a    fl ux 

condition   . With this condition, the fl uid fl ux through the boundary is specifi ed. This 
fl ux is the Darcy velocity,  q   w   in the direction normal to the boundary,  n , where  n  is 
a unit vector normal to the boundary and oriented pointing outward from the 
boundary. The    normal fl ux    is  n · q   w   so that this condition is:

    n q xx⋅( ) = ( )w b w
w q t
b

b,     (3.94)  

where   q tb w, xb( )  is the specifi ed fl ux at the location being considered. Since Darcy ’ s 
law provides the expression for  q   w   in terms of the pressure, the condition is written 
in terms of the pressure as:
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 3     When density dependence on other state variables, such as temperature or chemical species concentra-
tions, is important, differential equations for these quantities must also be solved. Species equations are 
considered in the next chapter, but heat transfer is beyond the scope of this text. 



 When   q tb w, xb( ) = 0 , the boundary is a    no fl ow boundary    because no fl uid enters or 
leaves the system across the boundary. For the particular case where the medium is 
isotropic such that  k   s     =    k s   I , this equation may be rearranged to:
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 In this instance, the boundary condition specifi es the gradient of pressure in the 
direction normal to the boundary. The gradients in directions tangent to the bound-
ary do not appear in the expression. This is called a    second type boundary condition    
or    Neumann condition   . Written in terms of head, the conditions corresponding to 
equations  (3.95)  and  (3.96)  are, respectively:
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and:
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 Flux conditions may be specifi ed at any point on the boundary   xb
w, but for a steady 

state problem, the pressure (head) must appear in the boundary condition at at least 
one point on the boundary, for example in a Dirichlet boundary condition. 

 A boundary condition other than a Dirichlet condition that invokes the pressure 
at the boundary is employed where the fl ux at the boundary of the system is pro-
portional to the difference between the pressure at the boundary and some other 
external pressure. For this case, the condition would take the form:

    n q x xx⋅( ) = ( ) − ( )[ ]w w w w
w p t P t
b

b
b ext bκ , ,     (3.99)  

where   κ    b  is a measure of the permeability of the boundary to the fl ow. When 
  κ    b    =   0, the boundary is impermeable and the boundary condition is a Neumann 
condition for a no fl ow boundary. When   κ    b  is very large, this condition degenerates 
to a Dirichlet form with   p t P tw w w, ,x xb ext b( ) = ( ) . For intermediate values of   κ    b , however, 
this condition written in terms of pressure is:
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 When the medium is isotropic, this condition becomes:
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 This is called a    third type boundary condition    or    Robin condition   . This sort of bound-
ary condition is useful, in practice, for portions of the boundary where leakage 
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between an external geologic formation and the system under study is important. 
The head difference determines the rate of exchange of fl uid between the two for-
mations. Written in terms of head, the leakage boundary conditions corresponding 
to equations  (3.100)  and  (3.101)  are, respectively:
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and:
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where   H t w
ext b, x( )  is a measure of the head external to the region of study at the 

boundary that infl uences the fl ow at time  t  at location   xb
w. 

 Although the governing equation with the auxiliary conditions is suffi cient to 
describe a single - phase fl ow problem, the equation cannot be solved analytically 
except for some special cases. Major factors complicating the solution process are 
heterogeneity of the hydraulic conductivity and the specifi c storage, modeling a 
region whose boundaries are not parallel with coordinate directions, the time depen-
dence of the pumping at the wells, the mix of fi rst, second, and third type boundary 
conditions, and the time and space dependence of the boundary conditions. Never-
theless, the ability to properly formulate the differential equation and auxiliary 
conditions that describe a problem of interest is essential. Computational methods 
can be employed to obtain approximate solutions. However, if the problem formula-
tion does not describe the physics, neither an analytic nor a numerical solution can 
be used to provide anything more than an attractive looking set of graphics depict-
ing the solution to the wrong problem.  

  3.6.6     Two - Dimensional Flow   

 One special case of the single fl uid subsurface fl ow problem that is of practical 
importance is when the vertical fl ow within the study region contributes negligibly 
to the system dynamics. For this case, the groundwater fl ow equation may be inte-
grated through the vertical to obtain a problem description that depends on time 
and the two lateral spatial coordinates. The derivation of the equation is presented 
here starting from equation  (3.89)  with equation  (3.46)  substituted in. Because it is 
typically negligible, the mass exchange term between the fl uid and solid is neglected. 
Integration over the vertical is thus:
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where  z  B  and  z  T  are the bottom and top of the fl ow region respectively. 
 The simplifi cation to two dimensions is useful for analysis of essentially horizon-

tal fl ow in an aquifer. This is often a useful approximation in light of the large areal 
extent of an aquifer in comparison to its vertical thickness. When the fl ow within 



the system is negligible in the vertical direction,  h w   may be considered to be inde-
pendent of the vertical coordinate, designated here as the  z  coordinate, but will vary 
with the horizontal coordinates,  x  and  y . The assumption of essentially horizontal 
fl ow is known as the    Dupuit assumption   . 

 Although the fl ow is considered to be horizontal, the thickness of the aquifer 
may be a function of position. This fact is incorporated into the approximate two -
 dimensional equation by integrating the fl ow equation through the vertical rather 
than just eliminating derivatives with respect to  z . Furthermore, the specifi c storage, 
 S s  , hydraulic conductivity,  K   w  , and the lateral Darcy velocity,  q   w  , are all considered 
to be independent of vertical position to the degree that they can be well - repre-
sented by their vertical averages. 

 The theorems for vertical integration needed are  [21] :
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and:
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where  b   =   z  T     −     z  B ; the superscript  ′  indicates that the operator or vector is two -
 dimensional in the lateral directions;  k  is the unit vector in the  z  direction, positive 
upward;  w  is the velocity of the upper or lower boundary of the fl ow region, as 
indicated; and  n  is the outward unit normal vector. 

 We can simplify this equation by noting that  h w   and  q   w   ′  are approximately con-
stant with changes in  z  and thus can be removed from the integrals on the right 
sides. Also, when the slope of the top (bottom) of the fl ow region is small,  n     ·     k     ≈    1 
( n     ·     k     ≈     − 1). Thus the theorems used simplify to:
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and:

    ∇⋅ = ′∇ ⋅ ′( ) + ⋅( ) + ⋅( )∫ q q n q n qw

z

z
w w

z
w

zz bd
B

T

T B
    (3.108)   

 The last term in equation  (3.107)  accounts for the change in the thickness of the 
region being studied and involves the dot products of the outward unit normal 
vectors with the velocity of the top and the bottom surfaces of the region. Therefore, 
we can make the approximation:

    n w n w⋅( ) + ⋅( ) ≈z z

b
tT B

∂
∂

    (3.109)  

so that equation  (3.107)  reduces to:
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 The last two terms in equation  (3.108)  account for fl ow at the top and bottom of 
the study region. These terms will be discussed further after the fi nal equation is 
obtained. 

 Application of the equations  (3.108)  and  (3.110)  to the fl ow equation  (3.104)  
when  S s   can be considered independent of  z  yields:
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 The horizontal Darcy velocity maybe eliminated by using Darcy ’ s equation in the 
form   qw w wh′ = − ′′ ⋅ ′∇K  which recognizes that the head is independent of  z  and the 
lateral head gradients are also independent of  z . Equation  (3.111)  may then be 
written:
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where  S   =   S s b  is the    storativity    or    storage coeffi cient   ,  T   w   ″    =    b  K   w   ″  is the two - 
dimensional    transmissivity   :
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and   Qw
W′ is the pumping volume per unit time per cross - sectional area at a 

location:
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 The expansion of   ′∇ ⋅ ′′ ⋅ ′∇( )Tw wh  in both Cartesian and cylindrical coordinates is 
given in Table  3.2 . The   cylindrical coordinate   form is convenient when a pumping 
well is located at the origin.   

 The last term on the left side of equation  (3.112)  accounts for the exchange of 
fl uid at the bottom surface of the aquifer and is positive when fl uid leaves the aquifer 
but negative when fl uid is added from the underlying formation. When the region 
being analyzed is a    confi ned aquifer    and its hydraulic head is above the base of 
the overlying formation,   n q⋅( )w

zT
 is positive when leakage occurs from the study 

region into the overlying formation and is negative when leak age is from the over-
lying formation into the study aquifer. 

 For an unconfi ned system, the upper surface location is equal to the head. This 
surface is called a    water table    and is also the location where the pressure is atmo-
spheric. For an unconfi ned system,   n q⋅( )w

zT
 corresponds to the fl ow at the upper 

surface. Whether this fl ow is addition or subtraction of fl uid to or from the aquifer 



depends on the magnitude of this fl ow velocity relative to the normal velocity of 
the water table. The fl uid moves in the pore space. However, since some of the fl uid 
may be held in the formation against gravity and some air may occupy the pore 
space, the upward or downward fl ow may not occur in the entire pore space. There-
fore, we approximate the movement of the water table as:
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where   ε   eff  is the    effective porosity   , the porosity through which the water fl ows at the 
upper surface of the aquifer, with   ε   eff     ≤      ε  , and   n w v⋅ −( )[ ]s

zT
 is the normal velocity 

of the upper surface of the system, i.e., of the water table, relative to the grains. Thus 
gain or loss of fl uid at the top surface may be expressed in terms of   n q⋅( )w

z*
T

, 
where fl ow out of the   unconfi ned aquifer   occurs if   n q⋅( ) >w

z*
T
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0 , with:
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 Table 3.2:     Expansions of the vector quantity   ′∇ ⋅ ′′ ⋅ ′∇( )Tw hw  in both Cartesian ( x  and  y  are 
areal coordinates) and cylindrical coordinates ( r  is the radial coordinate and    θ    is the angular 
coordinate) 
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  Expansions of   ′∇ ⋅ ′′ ⋅ ′∇( )Tw hw   
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 After substitution of equation  (3.115)  into this equation to express the velocity of 
the top surface in terms of change in head we obtain:
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    (3.117)   

 This equation can be used to eliminate   n q⋅[ ]w
zT

 from equation  (3.112)  to obtain 
the equation for the unconfi ned case:
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where  S y    =   S    +     ε   eff  is called the    specifi c yield   . 
 Although the vertically integrated equation  (3.118)  for an unconfi ned aquifer has 

a term - by - term correspondence with the form of equation  (3.112)  that can be 
applied directly for the confi ned case, there are two subtle differences. Both of these 
differences stem from the fact that the upper surface of the fl ow region may move 
substantially for the unconfi ned case while it is relatively fi xed for the confi ned case. 
The implication of this observation is that a change in head causes upward move-
ment of the top surface of the fl ow region for the unconfi ned case so that the specifi c 
yield,  S y  , which is approximately equal to the porosity, replaces the storativity,  S , in 
the equation. Both  S y   and S are dimensionless and physically account for the volume 
of fl uid released by a system per unit cross section of area per unit drop in head. In 
the unconfi ned case, this release is due primarily to fl ow in the pores; in the confi ned 
case, the release comes exclusively from the compressibility of the fl uid, solid, and 
matrix. Thus  S y   is several orders of magnitude larger than  S . The other difference is 
the presence of the superscript asterisk  *  in the vertical fl ow term for the unsatu-
rated case. This accounts for the fact that fl ow which leaves or enters the system at 
the top surface must be relative to the velocity of the top surface rather than just 
relative to the solid grains, as with the confi ned case. For use in applications, the 
differences in the equations basically reduce to specifi cation of different values for 
parameters. We note, additionally, that the assumption has been made that vertical 
fl ow within the region is negligible such that the vertical head gradient can be 
neglected. This assumption may be inapplicable for the unconfi ned case when the 
slope of the water table can be signifi cant, such as in the vicinity of a river, or as a 
consequence of pumping. 

 Solution of the vertically averaged fl ow equation requires the specifi cation of 
boundary conditions at the lateral boundaries. The discussion of needed conditions 
corresponds essentially to that for the fully three - dimensional equation in Subsec-
tion  3.6.5 . The effect of the integration procedure through the vertical is to replace 
the need for boundary conditions at the top and bottom of the region with incor-
poration of those conditions directly into the equation as leakage terms for the 
confi ned case and a bottom leakage term and specifi cation of the specifi c yield for 
the unconfi ned case. The vertically integrated equation is often used for the study 
of essentially horizontal fl ow to a pumping well in an aquifer. Some aspects of the 
two -  and three - dimensional formulations for single - phase fl ow will be explored in 
the problems at the end of the chapter.   



3.7 TWO-PHASE IMMISCIBLE FLOW 

 Modeling the fl ow of two immiscible fl uids in a porous medium requires that the 
concepts employed in the previous section be extended. We will have mass conser-
vation equations for each phase as described by equation  (3.1) . However, to solve 
the equations, we will again need additional conditions that will lead to having the 
same number of unknowns as equations. Conceptually, there are two major differ-
ences between two - phase fl ow and single - phase fl ow that must be accounted for by 
the closure relations. 

 First, with single - phase fl ow, a single fl uid,  w , occupies all the pore space such that 
its volume fraction is equal to the porosity, εw    =    ε . Because the porosity,  ε , changes 
only slightly with time, the volume fraction of the single fl uid phase at a point in 
the porous medium will be approximately constant. With two - phase fl ow, the total 
fl uid fraction will again change only slightly with time, but the relative amounts of 
each fl uid can change. One of the phases can range from completely fi lling the pore 
space to being completely absent. This observation causes us to make use of the 
concept of saturation, as introduced in Section  1.4 . 

 The fraction of pore space occupied by phase  w  is designated as the saturation, 
sw . Therefore,  εw    =   s wε . For single - phase fl ow,  sw    =   1. For the two - phase case being 
considered here 0    ≤     sw     ≤    1. Also if the second fl uid phase is designated as phase  n , 
its saturation, sn    =   1    −     sw  and  εn    =   s nε . 4  In the present discussion, we will assume that 
phase w  preferentially wets the solid, while phase  n  is referred to as nonwetting in 
that it has a lesser attraction to the solid. Within an REV, the solid phase surface 
can have contact with both phases. In some real systems with a heterogeneous solid, 
a particular fl uid phase may be wetting in one part of the region and nonwetting in 
the other. This situation will not be considered here. In modeling two - phase fl ow in 
a porous medium, the constitutive equations employed must account for the time 
and space variability of the saturation. 

 A second feature of two - phase fl ow is the fact that each fl uid phase interacts with 
another fl uid phase in addition to interacting with the solid phase. The dynamics of 
the fl uid - fl uid interface must be accounted for in describing the system. The issues 
of surface tension and capillary pressure at the interface between fl uids has been 
presented at the microscale in Section  1.6 . These phenomena must be accounted for 
in the macroscale closure conditions for two - phase fl ow. 

 In this section, we will fi rst examine the extensions that arise in the mass conser-
vation equations for the two fl uid phases as opposed to a single phase. Then condi-
tions will be developed for closure of the equations so that they may be solved. 

3.7.1 Derivation of Flow Equations 

 The macroscale point conservation of mass equation for a phase in a porous medium 
has been derived as equation  (3.1) . Here we will work with the forms of this equa-
tion that apply to the solid phase, designated as the s  phase, and the two fl uid phases, 
designated as the w  and  n  phases. For the fl uid phases, we will also make use of the 

4   When a system contains more than two fl uid phases, the constraint on the fl uid saturations is that their 
sum over all fl uid phases must equal 1. The two - fl uid - phase case is a special case of this more general 
situation.
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saturation times the porosity to account for the volume fraction of the phase. There-
fore, for the two - fl uid system, the mass conservation equations for the  w, n , and  s  
phases are, respectively:
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and:
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 The equation for the solid phase is identical to that used for single - phase fl ow, 
equation  (3.38) , including the assumption that no solid phase is pumped into or from 
the system. The mass exchange between the solid and each of the fl uid phases is 
designated separately. The equations for both fl uid phases are similar in form; they 
differ from the single fl uid phase fl ow equation  (3.37)  only in the presence of the 
saturation. To streamline the subsequent derivation, we will write the two fl uid 
equations using the superscript   α  , which can refer to either phase, according to the 
single formula:
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 When convenient, we can replace  s n   with 1    −     s w  , and this emphasizes the fact that 
 s w   and  s n   are not independent of each other. 

 However, the three equations for the three phases contain 14 unknowns (  ρ  w ,  ρ  n , 
 ρ  s ,  ε , s w  , and the three components of each of the velocity vectors  v   w  ,  v   n  , and  v   s  ). 
We are in need of 11 conditions that relate these variables, as well as initial and 
boundary conditions, if we are to be able to use these equations to describe a par-
ticular two - phase fl ow system. We will make use of state equations and constitutive 
assumptions to obtain the conditions needed. Parts of the derivation that are similar 
to that in Subsection  3.6.3  for single - phase fl ow will be abbreviated, hopefully 
without loss of clarity, in favor of providing details of the new issues that arise. 
Additionally, even though Darcy ’ s experiments were employed for single - phase 
systems, considerations from those experiments will be applied to this more complex 
case. 

 We can defi ne a   Darcy velocity   for each of the fl uid phases relative to the solid 
that accounts for the volume fraction of each phase as:

    q v vα α αε α= −( ) =s w ns ,     (3.123)   

 Substitution of this expression into equation  (3.122)  to eliminate  v    α    yields:
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 Next we apply the product rule to the fi rst and third terms, collect terms, and intro-
duce the   material derivative   with respect to the velocity of the solid phase to 
obtain:
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 We can eliminate   ∇⋅v s  between this equation and the mass balance equation for 
the solid phase, equation  (3.121) , to obtain:
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where:
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is the ratio of the fractions of the total mass that are   α   and  s  phase. 
 When dealing with single - phase fl ow, we made the approximation that the force 

acting on the solid phase could be approximated as the pressure of the fl uid acting 
on the solid surface. However, when two fl uids are present in the pore space, the 
force will be due to some combination of the fl uid pressures. A detailed derivation 
of the force acting on the solid may be found in  [23] , but here we adopt a more 
classical approach. Use the symbol  p s   to represent the force per area exerted on the 
solid by the two fl uids and stipulate that:

    p p ps w n= + −( )χ χ1     (3.127)  

where   χ   is called the    Bishop parameter    and is considered to be a function of satura-
tion that satisfi es the condition 0    ≤      χ      ≤    1 so that  p s   has a value between  p n   and  p w  . 
From a physical perspective, the Bishop parameter is a measure of the fraction of 
the solid phase surface in contact with phase  w  while 1    −      χ   is a measure of the frac-
tion of the phase  s  surface in contact with the  n  phase. Thus   χ    =   s w   when  s w   equals 
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0 or 1, but at intermediate saturations we need a relation between   χ   and  s w  . Since 
 w  refers to the wetting phase, it seems reasonable that  s w     ≤     χ      ≤    1. If the nonwetting 
phase is not in contact with the solid,   χ     =   1; in many cases, for lack of an easily 
implemented alternative, the assumption is made that   χ    =   s w  . 

 We now defi ne the    solid     and     matrix compressibility    at fi xed composition and 
temperature, respectively, as:
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and:
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 Substitution of these defi nitions back into equation  (3.126) , evocation of the condi-
tion that the matrix deforms slowly such that the material derivatives may be 
replaced by partial derivatives, and collection of terms provides:
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 It is reassuring to note that when  s w     =   1 such that there is only a single phase present, 
this equation becomes identical to equation  (3.83) , the equation derived previously 
for the single - phase case. 

 We also recall that we began this derivation with three mass balance equations 
(one for each phase) and 14 variables. In eliminating   ∇⋅v s  from the problem, we 
also reduced the number of equations we are studying to two, the mass balance 
equation for each fl uid. The parameters   α   b ,   β   w ,  β   n  , and   β   s   must be specifi ed. Also, 
the equations of state for   ρ  w  ( p w  ) and   ρ   n  ( p n  ) must be available, e.g., from a handbook 
or from integration of the compressibility equation. The Bishop parameter must be 
specifi ed as a function of  s w  . Thus the variables for which we need to solve are 
reduced to nine:  s w , p n , p w  , and the three components of the Darcy velocity vectors 
 q   w   and  q   n  . We are still in need of seven conditions that relate the nine unknown 
variables in order to have a solvable set of equations. 

 The search for the seven additional conditions fi rst turns to Darcy ’ s experiments. 
Although these involved only single - phase fl ow, we might imagine that each fl uid 
phase in a multiple - phase fl ow would respond roughly the same way. We are in a 
search for useful conditions. Darcy ’ s work may be a good place to start. After all, if 
what is tried does not work, we can try something else. Thus, let us propose that 
each fl uid phase satisfi es a Darcy equation similar to equation  (3.55)  according to:

    q gα
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α
α α
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ρ α= − ⋅ ∇ −( ) =

k s

p w n,     (3.131)   



 The difference between this equation and the single - phase form is the presence of 
 k   s α    rather than the intrinsic permeability,  k   s  . The extra superscript,   α  , is appended 
to designate the idea that the apparent intrinsic permeability for each phase in two -
 phase fl ow will depend on more than just the solid properties; it may also depend 
on the properties of the other fl uid and certainly on the fact that the presence of 
the other fl uid decreases the space available for fl ow of each phase. Of course, when 
 s  α      =   1, only the   α   phase is present and  k   s α      =    k   s  . When  s  α       <    1, the pore space available 
to the   α   phase is less than for the single - phase case and  k   s α       <     k   s  . 

 Sometimes, this last condition is expressed as   k ks skα α= rel  where   krel
α  is called the 

   relative permeability    and is a function of  s  α    that ranges from 0 to 1. However, this 
representation fails to account for the fact that the anisotropy of the fl ow region 
may be altered by a change in  s w   (i.e., the directional dependence of  k   s α    can change) 
in addition to its elements being scaled down. The relative permeability concept is 
appropriate when the fl ow region is isotropic and remains so after the fl uids are 
introduced such that  k   s α      =    k s α    I . For a two - fl uid system, the   relative permeability     krel

α  
depends on  s w   and is defi ned:

    k k k w ns sα α α= =rel ,     (3.132)  

subject to:

    0 1≤ ( ) ≤ =k s w nw
rel
α α ,     (3.133)   

 Also,   k srel
α α=  when  s  α      =   0 or 1. 

 Substitution of equation  (3.131)  into equation  (3.130)  yields:
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 These two equations now contain only three unknowns,  p w , p n  , and  s w   (with  p s   given 
by equation  (3.127) ); one more condition is needed that relates these three variables. 
This additional condition is chosen as the capillary pressure,  p c  , which is taken to 
be a function of  s w   and is also equal to the pressure difference between the nonwet-
ting and wetting phases:

    p s p pc w n w( ) = −     (3.135)   

 This equation should be compared with equation  (1.37) , which is its microscale 
counterpart. The microscale version involves pressure at the interface and the inter-
face curvature while the macroscale version involves pressures averaged over the 
phase volumes and uses saturation as a surrogate for the curvature. Because of this, 
one might guess that this macroscale representation of capillary pressure may not 
be as robust as the microscale version. Additionally, the microscale result was 
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obtained by examining an interface at equilibrium. Equation  (3.135)  will be used in 
modeling systems away from equilibrium, and the lack of equilibrium may also 
detract from the accuracy of this assumed relation. 

 In some instances it is convenient to make use of what is called the    capillary head    
defi ned, based on equation  (3.135)  as:

    h
p p

g
c

n w

w
=

−
ρ

    (3.136)   

 This quantity is particulary useful when studying air - water systems where the air 
phase pressure is essentially constant. It is extremely important to remember that 
although capillary pressure is defi ned in terms of phase pressure differences,  h c     ≠    h n   
  −    h w   where the heads in each phase are given, for example, by equation ( 3.29 ) unless 
  ρ  w    =    ρ  n  . 

 This completes the derivation of the general two - phase fl ow equations. Equation 
 (3.134)  is applied to each of the two fl uid phases to solve for  p w   and  p n  . These two 
equations are supplemented by equation  (3.135)  that relates the difference in these 
pressures to the saturation. Additionally, we have equation  (3.127) , which relates  p s   
to the fl uid pressures with the requirement that we make a reasonable specifi cation 
of   χ  ( s w  ). Also, we must specify   α   b ,   β   s  ,  β   w  , and   β   n  . Lastly, we specify state equations 
for   ρ   s  (1    −      ε  ) as a function of  p s ,  ρ  w  ( p w  ),   ρ  n  ( p n  ),  k   sw  , and  k   sn  . Indeed, this is a signifi cant 
amount of information that must be specifi ed to determine the differential equa-
tions of multiphase fl ow. Boundary conditions for each phase, with similar consid-
erations to those for single - phase fl ow, must be specifi ed as well as the pumping 
information. The requirements of information plus the fact that the Darcy - type fl ow 
equation and the capillary pressure equation are approximate suggests that a solu-
tion to the equations that matches a physical system might be more serendipitous 
than scientifi c. However, before examining the merits of such a determination, as 
will be done in Chapter  5 , it is useful to gain understanding of three of the important 
aspects of approximations that are employed: the  p c  ( s w  ) relation and the permeabil-
ity functions  k   sw   and  k   sn  . 

 In the subsections to follow, we will fi rst examine the constitutive relationships 
for capillary pressure as a function of saturation (referred to herein as the  p c   -  s w   
model but most commonly verbalized as a  “ p, c, s ”  model). The impact of saturation 
changes on a tensorial permeability is very diffi cult to quantify. For this reason, if 
the medium is anisotropic the permeability is typically modeled as   k ks skα α≈ rel  
despite the limitations of this approach. When the solid is isotropic, the permeability 
is modeled using   k k ks sα α= rel . Thus, for both isotropic and anistropic systems, the 
additional complication is the relative permeability. We will examine the constitutive 
relations that provide   krel

α  as a function of  s w   and will refer to these as   k sw
rel-α  models 

(commonly verbalized as  “ k, s ”  models). 
 The relationships to be covered here are strictly applicable only to    granular soils   : 

those soils which contain few or no clay particles. Granular soils result from deposi-
tion in an active geologic environment, e.g. glacial, fl uvial, coastal beach, and wind 
generated deposits. These soils typically have a high percentage of quartz grains 
which are rounded and are more or less chemically inert (they do not interact with 
the soil fl uids). The rounded nature of the grains is responsible for the correlation 
between soil texture and soil structure. 



 On the other hand, a high clay content in a soil indicates deposition in a geologi-
cally quiet environment, e.g., a lake bottom. These soils tend to have a high organic 
content and the clay particles have a complex mineralogy and a large surface area. 
These attributes combine to create a porous medium which is chemically active. As 
a result, some of the assumptions inherent in what follows, such as uniform structure 
and degree of preferential wetting by one of the fl uids, do not apply. In these 
instances, relations for  p c   and   krel

α  as functions only of  s w   do not apply. Further infor-
mation on the behavior of clay may be found, for example, in  [26]  or other soil 
physics references.  

  3.7.2   Observations on the    p c   -  s w   Relationship   

 Let us emphasize that the search for a macroscale  p c   -  s w   relationship has its roots in 
observations of the behavior of fl uids in capillary tubes and in common observations 
of water interacting with soil. These observations typically involve water as a wetting 
phase and air as the nonwetting phase, but variations can occur by changing the 
material used for the capillary tube or by changing the fl uid from water to mercury 
or oil. In any event, our objective is to convert the basic observations of behavior 
of an immiscible fl ow of two fl uids in a porous medium into a quantitative statement 
that relates capillary pressure to the saturation. There is a large heuristic element 
to this conversion, and a need for improved understanding and relationships still 
exists. Thus, one must realize that this is an area for fruitful additional research; the 
relations to be presented are constitutive approximations that do not carry the same 
cachet of authority as do mass conservation equations such as equations  (3.1)  or 
 (3.130) . The reliability and robustness of the  p c   -  s w   relations in considering real 
systems with heterogeneous soils and undergoing cycles of wetting and drying is 
one of the weak links in the development of good models. With this disclaimer fi rmly 
in place, we proceed to considerations that have informed and support the current 
state of  p c   -  s w   relations. 

 In Chapter  1   , we examined microscale capillary pressure. Equation  (1.63)  pro-
vided quantitative confi rmation of the observation that if one inserts the tips of glass 
capillary tubes into a pool of water, the water will rise higher in tubes of smaller 
diameters. The capillary pressure at the interface between the water and air is 
greater in the smaller tubes and the curvature of the interface in these tubes is also 
greater. This is an example of wetting fl uid moving into pores of smaller diameters. 
A wetting fl uid will be drawn from one capillary tube into a tube of smaller 
diameter. 

 Now consider the case where a  w  phase and an  n  phase are both present in a 
porous medium made up of sand grains. In such a medium, there is a distribution 
of the diameter of the pores depending on how the grains pack together. One issue 
of interest is how the two fl uids distribute in this medium. Based on the preceding 
observations, we would expect that phase  w  will be drawn into the smaller pores. 
When phase  w  is in these pores, the interfacial curvature will be greater than when 
it is in the larger pores, so that the capillary pressure will be higher. The smaller the 
relative amount of phase  w  in the medium, the more high - curvature interfaces there 
will be between the two fl uid phases. Thus, from a macroscopic perspective, we 
expect that as  s w   decreases, the macroscale measure of capillary pressure,  p c  , will 
increase. The basis of this understanding is depicted in Figure  3.3 .   
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 From a slightly different point of view, the preceding suggests that the preference 
of the wetting phase to exist in smaller pores, tends to draw the solid grains together. 
This phenomenon is what allows one to build a sand castle. If one tries to build an 
elegant structure at the beach using dry sand, frustration will soon set in. Also, trying 
to build a structure in a quiescent pool of water such that the sand is fully saturated 
will also be futile. Having the right mix of air and water in the sand is crucial to 
developing just the right capillary and surface adsorptive forces to hold the sand 
grains together so that a beach construction project can be sizable and well 
sculpted.

 Another aspect of multiphase fl ow in porous media can be observed by dipping 
the edge of a lump of sugar into a cup of tea. We are interested here in the fl ow that 
takes place and not in a longer observation that would include dissolution of the 
sugar and deterioration of the structure of the solid phase, although that is a fasci-
nating problem. The surface of the cup of tea is large such that it is fl at (except at 
the edges where the tea meets the cup wall). Thus the pressure at the surface is 
atmospheric, equal to the pressure of the air that is in the sugar cube. Nevertheless, 
as soon as the cube touches the surface, the tea will fl ow upward into the cube. This 
happens because when the small pores of the solid cube are put in contact with the 
wetting tea, a curved interface forms such that, to reach a new equilibrium state 
where the microscale interface equilibrium condition, pw     +    pc     =    pn , is satisfi ed, phase 
w  will move upward into the solid. The movement of a phase  w  into a dry porous 
medium occurs as soon as it is put in contact with the medium. 

 On the other hand, if the  “ sugar cube ”  in the previous example were actually 
made of some hydrophobic material, the tea would not move into the cube at fi rst 
contact. The cube would have to be pushed down into the tea to a depth such that 
the pressure in the tea is high enough to overcome preference of the cube material 
for the air phase. The tea would enter fi rst into the larger pores, where capillary 
forces are smaller, and would enter into smaller pores only if the cube were sub-
merged deeply enough into the cup to overcome the capillary forces in those pores. 
These observations give rise to the concept of    entry    or    threshold pressure   . The entry 
pressure is the macroscale pressure difference, pn     −    p w , that is required to enable a 
nonwetting phase to begin to invade a porous medium saturated with the wetting 

Figure 3.3: At increased capillary pressure, the wetting phase, w, is pulled into smaller portions of 
the pore space and the curvature of the interface between the fl uids increases. The  w phase is held 
in the pore space by capillary forces as well as adsorption and spreads over the solid phases, forming 
a thin fi lm (after  [26]).



phase, i.e., a porous medium with sw    =   1. The entry pressure is related to the largest 
pore diameter since invasion will take place fi rst into the largest pores where capil-
lary pressure effects will be smallest. 

 Based on the preceding, we list the following conditions that a macroscale  pc  -  sw

relation must satisfy: 

 •   The onset of drainage of a porous medium saturated with a phase  w  occurs 
only when an entry pressure pn     −    p w     >    0 is applied. The magnitude of the entry 
pressure is related to the largest diameter pore.  

 •   Imbibition of a phase  w  into a medium with  sw    =   0 occurs as soon as the medium 
is placed in contact with the wetting phase and does not require an entry 
pressure.

 •   At intermediate saturations at equilibrium, phase  w  tends to occupy the small-
est pores with highest capillary pressures. Therefore, the functional form of pc

should decrease as sw  increases.    

 These expectations have been uncovered through very basic considerations. 
However, they also raise additional questions. We know that if we take a single glass 
capillary tube with a constant diameter and dip its tip into a reservoir of water, the 
water will rise into the tube to the same height each time we perform the experi-
ment. Furthermore, no matter how far we lower the end of the tube into the reser-
voir, the height of the water in the tube above the reservoir surface will not change. 
If the diameter of the tube were to change along the tube axis, however, the height 
of water rise above the reservoir surface would depend on how far the tube is 
inserted. Furthermore, the level in the tube would depend on whether the tube 
is being inserted into the reservoir, with imbibition into the tube taking place, or is 
being withdrawn, with drainage of water taking place. We can discuss the infl uence 
of a spatially varying pore diameter in the context of the experiment depicted in 
Figure  3.4 .   

 The fi gure depicts a capillary tube with a diameter that depends on axial position 
x . The capillary tube is oriented horizontally for convenience so that the effects of 
gravity do not have to be considered. Seven axial positions along the tube are indi-
cated corresponding to important locations where the tube radius is changing. 
Additionally, the diameter of the tube is indicated at four locations of importance. 
The tube is connected on the left side to a reservoir containing wetting phase w  and 
on the right to a reservoir containing nonwetting phase n . Below the tube is a rough 
sketch of the value of pc  as a function of  sw  that is expected from this system. Here, 
pc    =   p n     −    p w  and  pn  and  pw  are each constant at any equilibrium state of the system. 
The saturation, sw  is the fraction of the tube volume between  x1  and  x7  fi lled with 
fl uid  w . 

 Let the tube be initially fi lled with fl uid phase  w . We want to examine how the 
system responds during drainage caused by sequential incremental increases of 
the pressure of fl uid  n , i.e., how the system behaves as  pc  at the interface between 
the fl uids is changed. Let us stress that we will only be examining equilibrium states 
of the system, the states that are achieved after the system readjusts following a 
small incremental change in pressure. The system will initially be at equilibrium 
when pc  is suffi cient to prevent fl uid  w  from draining. When this value of  pc  is 
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exceeded by a small increment, the meniscus will move into the tube as fl uid  n  will 
displace fl uid  w . Since the tube diameter is decreasing, a new equilibrium location 
of the  wn  interface will be established between  x  6  and  x  7 . A series of incremental 
increases in  p c   will lead to the interface reaching position  x  6 . The double - segment 
arrow in the graph captures this behavior. In the fi rst segment  p c   increases from 0 
to the entry value with no change in saturation from  s w     =   1. Then in the second 
segment the saturation decreases as the pressure increases to achieve equilibrium 
with the interface at  x  6 . 

 Between  x  5  and  x  6  the capillary tube diameter is constant. Therefore, once the 
interface reaches position  x  6  any infi nitesimal increase in  p c   will shift the interface 
to location  x  5 , where the diameter of the tube again decreases. In this situation,  x  6  
is an unstable equilibrium location, as are all the locations between  x  5  and  x  6 . No 
stable equilibrium exists between these two locations. The phenomenon whereby 
the interface jumps from  x  6  to  x  5  is called a    Haines jump    corresponding to a locally 
abrupt change in saturation. Further incremental increases in  p c   will drive the  wn  
interface to location  x  4 , where the tube diameter reaches value  D c   and remains at 
this value until position  x  3 . Thus, a Haines jump occurs to move the interface  x  4  to 
 x  3 . Since the tube diameter is greater than  D c   between  x  3  and  x  1 , the interface will 
continue through this bulging section of the tube to  x  1  if no adjustment is made to 
 p c  . 5  The schematic curve indicated by the solid line in the fi gure is a    drainage curve   . 
The saturations associated with the horizontal parts of the drainage curve for the 
capillary tube considered here are not equilibrium states. For a porous medium, 
rather than just a capillary tube, all locations on the drainage curve are equilibrium 

    Figure 3.4:     Schematic diagram of  p c   -  s w   relation based on equilibrium states achieved during drainage 
(solid line) and imbibition (dashed line) for a horizontal capillary tube with nonconstant diameter 
 [25] .  

 5     If  p c   is decreased after the interface has cleared location  x  2 , it is possible to establish an equilibrium 
state prior to the interface reaching  x  1 . This is not considered here as we develop the drainage scenario 
by allowing only sequential increases in  p c  . 



points. Haines jumps occurring at an individual pore generally do not signifi cantly 
impact the effort to obtain equilibrium saturations involving a large number of 
pores. However, if the porous medium is composed such that it has a narrow distri-
bution in pore sizes, the drainage curve will have a relatively fl at section with large 
changes in sw  resulting from small changes in  pc . 

 With the capillary tube drained so that  sw    =   0, let us reverse the drainage process 
by decreasing pc  starting with the  wn  interface at  x1 . Small incremental decreases in 
pc  will allow the interface to reach equilibrium locations between  x1  and  x2 . At  x2 , 
the capillary tube diameter reaches its largest value. Thus the equilibrium capillary 
pressure at this location is the smallest in the tube. Therefore an infi nitesimal 
decrease in pc  will allow the  wn  interface to jump to the right, all the way to the 
exit. The fact that we are running this experiment by only allowing incremental 
decreases in pc  constrains the system so that no equilibrium locations of the interface 
are found between x2  and  x7 . 

 The schematic curve for this experiment is an    imbibition curve    and is indicated 
as the dashed line in Figure  3.4 . For this simple experiment, the positions on the 
sloped part of the imbibition curve are equilibrium locations. The locations on the 
fl at part of the curve are not equilibrium positions. For a complex porous medium 
with a distribution of pore sizes, an equilibrium imbibition plot of pc  vs.  sw  may be 
developed over the range of saturations. 

 The fact that the plots of  pc  vs.  sw  are different for imbibition and drainage is 
called    hysteresis   , where this term refers to different behavior of the process depend-
ing on the direction in which the process is occurring. The difference occurs because 
the small diameter pores control drainage events while the larger diameter regions 
control imbibition. The result is that, for a particular value of sw , the capillary pres-
sure is greater for drainage than for imbibition. The paths of drainage and imbibition 
from two end points are different, and the path of the full cycle is called a    hysteresis
loop    (the path defi ned by letters A and B in Figure  3.4 ). We note, also, that it is 
possible to stop a drainage process at intermediate values of sw  by decreasing the 
capillary pressure. In such an experiment, the full loop depicted in Figure  3.4  would 
not be traversed. Rather, some path cutting across the loop would be followed 
depending on where on the upper curve the drainage process is halted. Similar 
behavior is observed when reversing an imbibition process at an intermediate value 
of saturation by increasing the capillary pressure, although the route across the 
middle of the loop would be different. These  “ shortcuts ”  across the hysteresis loop 
are referred to as    scanning curves   . 6  A set of scanning curves is illustrated in Figure 
 3.4 . Hysteretic effects are important, in a practical sense, for the case of water infi l-
tration and removal from soil across intermediate ranges of saturation. 

 The expectation that study of a single capillary tube with varying diameter would 
reveal all the subtleties of two - fl uid - phase fl ow in a porous medium would have to 
be deemed somewhere between naive and optimistic. Nevertheless, it gives us a 
good start. An effect observed in porous media composed of sand or a solid matrix 

6   An everyday example of hysteresis occurs if one drives between home and the store using a network 
of one way streets seeking the shortest route. The path taken between the two destinations would be 
different depending on direction, and the two paths together would form a hysteresis loop. Also, if one 
were to get halfway to the store and then discover that he had left his money at home, the fastest path 
to return home from that point might involve a different route from the one taken if starting from the 
store. This alternative path is a scanning curve. 
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is the fact that some fl uid becomes trapped in the system. It is not possible to drain 
all fl uid  w  from a porous system simply by fl ushing with fl uid  n . This fact can be 
observed, for example, when trying to dry a porous solid simply by passing air 
through it. A sizable fraction of the water may be removed, but some remains 
trapped in small pores and is only released very slowly over large time scales due 
to evaporation of the water into the fl owing air. Also, it is not possible to drain all 
of the  n  phase from a porous medium by fl ushing with a wetting fl uid. This statement 
is confi rmed by studies of organic liquids that have been spilled into the soil. Use 
of water to remove the organics, either by direct action or in letting infi ltration of 
rain fl ush the system, is not effective. The organics persist and slowly dissolve into 
the water over many years thereby existing as continuing sources of contamination. 
Thus, it seems reasonable that a  p c   -  s w   hysteresis loop would not cover the entire 
range of 0    <     s w      <    1 but would operate over some more limited range. Some qualita-
tive aspects of this situation will now be discussed. 

 An attempt to drain completely phase  w  from a porous medium by introduction 
of a phase  n  leaves some residual phase  w  in the pore network at some low satura-
tion called the    irreducible saturation   , denoted   si

w. At the irreducible saturation, 
phase  w  molecules are strongly adsorbed onto the solid surface and the    capillary 
wetting phase    is tightly held in the corners and crevices of the pores such that phase 
 w  will no longer fl ow in respone to a gradient in hydraulic head. Technically, phase 
 w  is considered to remain hydraulically connected as it coats the soil grains with a 
thin fi lm such that a tortuous path for fl ow in the Darcy sense still remains. 7  However, 
the effective conductivity,  k sw  , of the wetting phase is virtually zero at this low satu-
ration given the time scale of natural forcing (for example, the next rainfall event 
or evaporation mass transfer). Therefore, for practical purposes, this volume of 
phase  w  at residual saturation can be thought of as becoming   hydraulically 
disconnected  . 

 To facilitate the ensuing discussion of fl uid entrapment in a sample of porous 
medium, let us defi ne the    trapped - phase volume    of a fl uid as that volume which will 
no longer respond to a gradient in hydraulic potential. We also recognize that in a 
porous medium some fl uid may be hydraulically connected and able to respond to 
a gradient in potential while pockets of the same fl uid are trapped and unable to 
respond. In terms of   α   - phase saturation this distinction is written:

    s s sα α α= +f t     (3.137)  

where the subscripts f and t refer to the free and trapped portions, respectively. At 
the irreducible saturation,   sf

α = 0 . Because the extension of Darcy ’ s law to two - phase 
fl ow is made without making a distinction between free and trapped elements of a 
phase, in essence the trapped portion is effectively part of the solid phase in that it 
helps outline paths available for fl ow. 

 The mechanisms that cause the nonwetting phase to become entrapped are dif-
ferent from those that cause   wetting - phase entrapment  . Two primary mechanisms 
have been identifi ed:    snap - off    and    bypassing     [43] . When a wetting phase is imbibed 
into a porous medium, it tends to fl ow spontaneously along the pore walls as it dis-
places the nonwetting fl uid. The ratio of the large diameter to small diameter in a 

 7     Application of Darcy ’ s law requires that a phase be spatially continuous. 



pore (also referred to as ratio of the pore body diameter to pore throat diameter) 
is called the aspect ratio. When this ratio is small (on the order of 1), phase w  essen-
tially displaces phase n  by pushing it out as depicted in Figure  3.5 a. However when 
the aspect ratio is   high   (e.g., greater than 2)), the advancing wetting phase is able 
to move along the wall, overtaking some of phase n . Thus if one were to look at a 
cross section of the pore, there would be a ring of wetting phase surrounding the 
nonwetting phase. Then, where the pore narrows, phase n  is  “ snapped - off ”  and 
unable to move forward through the constriction since that area is taken up by the 
wetting phase. Thus phase n  becomes segmented with parts of the phase becoming 
isolated blobs. This phenomenon, called snap - off , is illustrated in Figure  3.5 b. Besides 
being infl uenced by aspect ratios, snap - off is impacted by the contact angle of the 
wetting phase with the solid. Snap - off is enhanced when the contact angle is small, 
i.e., when the attraction of phase w  to the solid relative to phase  n  is greatest.   

 Entrapment of phase  n  by the bypassing mechanism is described using the con-
ceptual model referred to as a    pore doublet   . A pore doublet is a fl ow channel that 
splits into two pores of different geometry and then rejoins. Figure  3.6  illustrates 
three scenarios for displacement of a nonwetting phase by a wetting phase for dif-
ferent geometry pore doublets. A pressure differential is imposed such that fl ow 
occurs into the region fully occupied by phase n  in each case. For case (a), the upper 
branch has a smaller diameter than the lower branch; but both branches have a 

Figure 3.5: Illustration of (a) low and (b) high aspect ratio pores and the effect of aspect ratio in 
causing snap -off of phase n during imbibition (after  [43]).

Figure 3.6: Displacement scenarios of a nonwetting fl uid (dark grey) by a wetting fl uid (white) in dif-
ferent geometry pore doublets (after [43]).
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small aspect ratio. Having a smaller diameter, the top pore drains fi rst to the junc-
tion where its radius gets slightly larger than the bottom pore. The bottom pore then 
drains. Since the exit diameters of the fl ow regions are similar at the downstream 
node, the interface is stable and the nonwetting phase drains completely from the 
doublet.   

 The geometry for case (b) is similar to that of case (a) except that the downstream 
pore diameter of the top branch constricts to a very small pore. Therefore, when the 
top pore drainage interface approaches the downstream junction, it continues to 
fl ow through the node leaving phase  n  fl uid trapped in the bottom pore and hydrau-
lically disconnected from any fl owing fl uid  n . Flow in the system bypasses the lower 
pore. Case (c) is similar to case (b) except now the upper pore, also has a high aspect 
ratio. Therefore, in addition to bypassing in the lower pore, snap - off occurs in the 
upper pore, further isolating some of phase  n . 

 While the amount of wetting fl uid remaining in a porous medium subjected to 
drainage is called the    irreducible saturation   , the total amount of nonwetting phase 
that becomes entrapped as a result of imbibition is called the    residual saturation    
and is denoted   sn

r . The magnitude of the residual saturation is a function of the fol-
lowing factors  [43] : 

   •      the geometry of the pore network;  
   •      the properties of the fl uids, primarily interfacial tension, density ratio, and 

viscosity ratio;  
   •      the applied potential gradient causing the displacement process.    

 The effect that these factors have on the displacement process can be incorpo-
rated into two dimensionless quantities, the    capillary number   ,  N  c , and the    Bond 
number   ,  N  b  defi ned, respectively, as:

    N
w w

wnc =
q µ
γ

    (3.138)  

    N
k gs w n

wnb =
−( )ρ ρ

γ
    (3.139)  

where  N  c  is the ratio of viscous to capillary forces, and  N  b  is the ratio of gravitational 
to capillary forces. For   Nc

<≈ −10 4  capillary forces dominate over   viscous forces   
and the trapping phenomenon is enhanced. A residual nonwetting phase saturation 
can be reduced by increasing  N  c , for example by increasing | q  w | or decreasing   γ   wn   
through the use of a surfactant. 

 Another factor that affects the magnitude of entrapped phase  n  is related to what 
is called    incomplete displacement   . In general, during drainage, the entering phase  n  
tends to fi ll the larger pores fi rst. When  s n   becomes large, a wider range of pore types 
will become fi lled thus providing opportunity for entrapment during subsequent 
imbibition of phase  w . An empirical model to quantify this process has been devel-
oped to estimate   sn

r  as a function of fl ow history  [31] . This model is based on the 
assumption that the maximum possible residual saturation,   sn

r max , will result if the 
initial condition of the imbibition process is  s n     =   1. If the maximum value of  s n   
achieved in the porous medium,   sn

max , is less than 1, the value of   sn
r  resulting from 



imbibition will also be less than   sn
r max . Correlation of experimental data for sand led 

to the relation:

    
1 1 1

1
s s sn n n

r max r

= + −
max

    (3.140)   

 The preceding observations provide part of the motivation for the defi nition of 
   effective saturation    of the wetting phase,   sw

e , as:

    s
s s

s
w

w w

we
i

i1
=

−
−

    (3.141)   

 In this expression, the numerator is saturation reduced to the part contributing 
to fl ow, and the denominator is the maximum value of the saturation that con-
tributes to fl ow. With this defi nition, a drainage experiment will start with a fully 
saturated porous medium such that   s sw w= =e 1. The drainage process, if run to 
completion, will lead to   s sw w= i  such that   sw

e = 0 . Subsequent imbibition will not 
return the system to a state where  s w     =   1 because of trapping of phase  n  in the 
imbibition process. 

 The observations and defi nitions presented in this section provide bases for pro-
posing forms of the  p c   -  s w   relationship. In the next subsection, we present some of 
the most commonly employed formulas.  

  3.7.3   Formulas for the    p c   -  s w   Relationship   

 The most common example of two - phase immiscible fl ow in a natural system is the 
case of water and air fl ow in the part of the soil column above the water table. This 
region is called the    vadose zone    (also called the  zone of aeration  or    unsaturated 
zone   ). In the vadose zone,  s w      <    1. Because this problem has been widely studied due 
to its importance for agriculture, much of the work for developing  p c   -  s w   relations is 
based in studies of the unsaturated zone. The discussion presented here will also 
deal explicitly with this case. The discussion, in general, is readily adaptable to any 
two - phase immiscible fl uid system. The correlations developed that express  p c   -  s w   are 
particular to an air - water system. Some suggestions as to how these correlations 
might be scaled to systems containing other fl uids are provided at the end of the 
subsection. 

 Figure  3.7  provides schematic fi gures of the expected  p c   -  s w   relationship for two 
different soil samples. The curves presented are envisioned as being obtained by 
incremental draining of a saturated soil which is allowed to equilibrate between 
each incremental change. The sketched curves correspond to  p c   vs.  s w   values that 
would be encountered in working with the soil.   

 The fi gure illustrates an entry pressure, an increase in the capillary pressure that 
must be imposed to allow phase  n  to begin to enter the soil sample. The difference 
in values of entry pressure corresponds to larger pores for the well - graded soil. For 
the well - sorted soil, a soil that has a narrow range of grain sizes and an implied 
narrow range of pore sizes, the  p c   -  s w   curve is relatively fl at signifying that drainage 
occurs rather sharply over a narrow range of  p c  . The broad distribution of grain sizes 
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for the graded soil yields a mild transition from saturated to unsaturated conditions 
since drainage occurs over a greater range of capillary pressure. Furthermore, the 
graded soil contains more small pores and locations in which the wetting fl uid can 
reside such that the irreducible saturation in that soil is greater. 

 Besides providing typical  p c   -  s w   curve shapes, Figure  3.7  also provides the vertical 
distribution of saturation in a soil column following drainage. This is due to the fact 
that the air pressure can be considered constant (atmospheric) throughout the soil 
column. The water phase pressure will be hydrostatic and a linear function of eleva-
tion. For a system at equilibrium, the wetting phase hydraulic head is constant and 
each change in elevation head will be balanced by a change in pressure head. Since 
the air pressure head is constant, and  p w   is a linear function of elevation,  p c    =   p n     −   
 p w   must also be a linear function of elevation. Thus a plot of  s w   vs.  p c  , in this instance, 
is equivalent to a scaled plot of  s w   vs. elevation and is called a    moisture retention 
curve   . As the elevation increases,  p c   also increases corresponding to an increasing 
curvature of the  wn  interface from the microscale perspective, and a decreasing  s w   
from the macroscale perspective. The key factor in the  p c   -  s w   plot providing the satu-
ration profi le is the assumption that the air phase pressure is constant. For a more 
general case involving two fl uids of comparable density, such an assumption would 
not apply. However, at equilibrium, if both of these fl uid phases were connected, 
hydrostatic conditions would apply in each phase such that a  s w   profi le could be 
derived from the  p c   -  s w   relation. 

 For an air - water system, some particular defi nitions apply. With respect to Figure 
 3.7 , the location where  p c     =   0 such that phase  w  pressure is atmospheric is called 
the    phreatic surface    or    water table   . Water below this region is not bound in capillaries 
and is free to fl ow. In dealing with air - water systems, it is common to designate the 
air phase pressure as being 0, its gauge value, such that  p c    =    − p w  . 8  Immediately above 
the water table is the transition zone between the saturated and unsaturated soil 
region where  s w     =   1, but  p c      >    0. This region is called the    capillary fringe   . The thick-
ness of the capillary fringe is equal to the entry pressure divided by   ρ  w g . 

    Figure 3.7:     Sketches of expected forms of the  p c   -  s w   relationship that would be encountered for a 
drainage experiment in an initially saturated soil.  

 8     The capillary pressure is a positive quantity because  p w     <    p n     =   0 in the unsaturated zone. Note that  p w   
is subatmospheric in the unsaturated region and therefore is negative relative to the gauge atmospheric 
pressure. 



 Each of the moisture   retention curves   depicted in Figure  3.7  is referred to as a 
   primary drainage curve    (PDC) if the porous medium under consideration is homo-
geneous. The PDC represents the  p c   -  s w   relation obtained from draining a porous 
solid in a number of small, sequential, equilibrium steps beginning with a fully satu-
rated system,  s w     =   1 and proceeding to the   irreducible saturation     sw

i . Since the 
moisture retention curve is a function of soil texture and structure, one needs to 
develop a primary drainage curve for each texturally and structurally similar soil 
type. For example, if the soil column in the vadose zone were made up of fi ve dif-
ferent soil horizons, then a primary drainage curve would have to be determined 
for each. Even with this additional information, the primary drainage curve tells an 
incomplete story because the impact of residual saturation,   sw

r , is not included; 
nothing has been said about the curve that results during imbibition; and the hys-
teretic effects discussed previously have not been taken into account. The full rep-
resentation of  p c   -  s w   must be developed experimentally. 

 A PDC for an air - water system is measured by placing a fully saturated soil 
sample in a cell such that it is confi ned on the sides and is in contact with air on the 
top and with water, through a porous plate, on the bottom. The height of the sample 
is small enough that gravitational effects may be ignored. The water pressure is 
decreased by sequential increments while the air phase pressure remains constant 
(i.e., the capillary pressure is increased incrementally). After each incremental 
change, the system is allowed to equilibrate and  s w   is measured. The result is a set 
of  p c   -  s w   data points that can be plotted and interpolated to form the PDC as in 
Figure  3.8 . The interpolation relation is then a quantitative model of primary 
drainage.   

 Experiments may also be performed starting with an initial condition other than 
 s w     =   1 to obtain additional   drainage   and   scanning curves   that illustrate the hysteretic 
behavior expected based on the capillary tube example in Figure  3.4  and the sub-
sequent discussion. Figure  3.8  provides a representative illustration of the hysteretic 
saturation - pressure curve - type relationship for the case when both capillary and 
entrapment effects are included. The nomenclature for the curve - type name describes 
whether the fl ow path is draining (D) or imbibing (I) with respect to the wetting 
phase, and the process that produced the curve. The curves illustrated may be 
summarized: 

   •         Primary :       a curve which begins with only one phase present in the pore space 
(i.e., the initial  s w     =   1 for PDC while the initial  s w     =   0 for PIC);  

   •         Main :       a curve which begins at a saturation for which only one phase is mobile 
(i.e., the initial values of saturation that apply are:   1 1− < <s sn w

r  for MDC * ,   
s sw n= −1 r  for MDC,   0 < <s sw w

i  for MIC * , and   s sw w= i  for MIC);  
   •         Scanning :       a curve that begins at a value of saturation for which both phases 

are mobile (i.e.,   s s sw w n
i r< < −1  for both SDC and SIC).    

 These curve types may be examined with respect to both capillary effects and 
entrapment. 9  

 9     It is important to remember, but easy to overlook, the fact that all curves are created by interpolating 
equilibrium data obtained from a sequence of incremental changes in  p c   followed by allowing the system 
to reach a new equilibrium state. 
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 The closed loop made by the combined MDC and MIC curves is called the 
   bounding loop    and it can be retraced over and over again by cyclically imbibing 
until   s sw n= −1 r  and draining until   s sw w= i . Cyclic changes in operating strategies 
often lead to closed and reproducible hysteretic loops such as the scanning loop 
formed by SDC 5 in conjunction with 4 in part (b) of the fi gure. Finally, note that 
scanning curve 4 indicates that phase  n  being displaced will reduce to a residual 
saturation less than the residual indicated on the bounding loop. This attribute can 
be checked against the   Land trapping model   equation  (3.140)  for phase  w  with   sw

max  
occurring at the intersection of curves 1 and 4,   sw

r max  being the value of  s w   when the 
MIC intersects with  p c     =   0, and   sw

r  being the value where curve 4 intersects with 
 p c     =   0. 

 Based on this discussion of the six different curves, it is easy to see that the labo-
ratory work required to fully characterize the  p c   -  s w   relation for a soil could be 
daunting. Besides having to fi ll in the drainage and scanning curves within the 
bounding loop, one must wait for the system to equilibrate before taking any mea-
surements. The time commitment alone to characterize a single soil could be weeks 
or months, depending on the level of detail required. Therefore, based on the obser-
vation that some correlation between soil texture and structure with the hydraulic 
properties of soils exists, one might ask the question,  “ Is there an empirical relation-
ship that can represent the primary drainage curve or other aspects of the  p c   -  s w   
relation using routinely measured soil data such as   a grain - size distribution  ,   bulk 
density  , and   grain density  ? ”  

    Figure 3.8:     Defi nition plot of the hysteretic relationship between saturation and capillary pressure. 
Curve position and shape are governed by the mobility of the phases, the initial phase saturations 
when the process begins, and whether the wetting phase is draining (D) or imbibing (I). The curve - type 
numbering is such that odd numbers relate to drainage and even numbers to imbibition. Primary (P) 
and Main (M) curves are designated as  “ 1 ”  for drainage processes begun with   1 1− ≤ ≤s sn w

r  and  “ 2 ”  
for imbibition processes begun with   0 ≤ ≤s sw w

i . Scanning (S) curves indicate behavior after a drainage 
process is reversed (curves  “ 4 ”  and  “ 6 ” ) or an imbibition process is reversed (curves  “ 3 ”  and  “ 5 ” ) such 
that the initial saturation of the new process is   s s sw w n

i r< < −1   [25] .  



 The answer is a qualifi ed,  “ Yes, ”  provided the pore - size distribution of the soil 
can be determined and one focuses on the PDC. Consider the following statistical 
model of a porous medium that relies on the assumption that the soil can be char-
acterized by one variable, the    pore - size distribution function   . From this perspective, 
a porous medium is assumed to be composed of a set of randomly distributed inter-
connected pores analogous to a bundle of capillary tubes of various radii, that are 
cut into many thin slices and randomly reassembled. The pores are characterized 
by a length scale, typically taken to be the    pore radius   ,  r . The pores are described 
in statistical terms by the pore - size distribution function,  f ( r ), where  f ( r )d r  is the 
ratio of the volume of pores with radii between  r  and  r    +   d r  to the total pore volume. 
This distribution function satisfi es the constraint:

    f r r( ) =
∞

∫ d
0

1     (3.142)  

which states that the sum of pore volume fractions over pores of radii ranging from 
0    ≤     r     ≤     ∞  is 1. Equations  (1.36)  and  (1.62)  can be combined to obtain the pore radius 
that supports a particular value of microscale capillary pressure as:

    r
p

c
c

wn=
2 γ θcos     (3.143)  

where   θ   is the contact angle. We then make the assumption that all pores larger than 
 r c   will be fi lled with phase  n  and that the ideas supporting equation  (3.143)  can be 
extended by the assumption that microscale capillary pressure is approximately 
equal to macroscale capillary pressure,  p c     ≈    p c  , such that  r c    =   r c  ( p c  ). 

 These defi nitions allow us to relate the effective saturation,   sw
e , defi ned in equa-

tion  (3.141)  to  r c   by:
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    (3.144)  

where  r  max  and  r  min  are the maximum and minimum pore radii contributing to fl ow, 
respectively. The combination of equations  (3.144)  and  (3.143)  with the assumption 
that macroscale capillary pressure can be used without loss of accuracy establishes 
the relationship between pore - size distribution,  f ( r ), and   s pw c

e ( )  since  p c   has been 
inversely related to  r c  . 

 In natural soils a similarity between the   cumulative grain - size distribution curve   
and the   moisture retention curve   is often observed  [3, 2] . This situation can be used 
as a basis for developing an empirical model that translates the grain - size distribu-
tion curve into an equivalent pore - size distribution model. This method produces 
qualitatively good results for relatively coarse - grained soils. 

 Despite efforts to put the derivation of  p c   -  s w   relations on fi rm theoretical footing, 
complex pore - geometry and adsorption effects make prediction of the moisture 
retention properties from basic soil properties very diffi cult. An alternative approach 
is to simply correlate measured  p c   -  s w   data with a parametric model that seems to 
have potential for fi tting the data well. These    parametric models    have the key attri-
bute that they are continuous over the span of saturation and can therefore be 
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differentiated or used in other equations to develop other properties of interest. 10  
While many such parametric models have been proposed, two stand out as being 
the most popular for application to air - water systems: the models of   Brooks and 
Corey    [7]  and of   van Genuchten    [42] . These relations are typically written in terms 
of the capillary pressure head,  h c    =   p c  /  ρ  w g . 

 The Brooks - Corey relationship  [7]  may be written:

    s
ah ah

ah
w

c c

ce = ( ) >
≤





−λ
1

1 1
    (3.145)   

 The parameter  a  [1/ L ] is a fi tting parameter equivalent to the inverse of the   entry 
pressure   head, and   λ   is a dimensionless fi tting parameter related to the soil   pore - size 
distribution   that affects the slope of the retention curve. Buried in the defi nition of 
the effective saturation, equation  (3.141) , is specifi cation of the   irreducible satura-
tion  ,   sw

i . In fact,   sw
i  is diffi cult to measure since water continues to drain, even if 

extremely slowly, at very low saturations. As a result, when using equation  (3.145) , 
  sw

i  is actually treated as a fi tting parameter without much physical meaning. An 
example of the function defi ned by equation  (3.145)  is shown in Figure  3.9 . Equation 
 (3.145) , with its three fi tting parameters,  a,  λ  , and   sw

i , has been shown to provide 
accurate results for relatively coarse - textured soils characterized by narrow grain -  
(or pore - ) size distributions (large values of   λ   and a well - defi ned entry pressure). 
The model is less accurate for fi ne textured and undisturbed fi eld soils, as these soils 
do not have a well - defi ned entry pressure.   

 The van Genuchten model  [42]  has one parameter in addition to the Brooks -
 Corey model and takes the form:

    s hw c N M

e = + ( ) 
−

1 α     (3.146)  

 10   Subsequently, we will see that the link between a parametric  p c   -  s w   model and the pore - size distribition 
model allows one to generate a   k sw

rel-α  model. 

    Figure 3.9:     Schematic diagram of soil moisture retention curves as predicted by the Brooks - Corey 
model (left) and the van Genuchten model (right).  



where   α   [1/ L ]is related to the inverse entry pressure head,  N  is a dimensionless 
parameter related to the pore - size distribution, and  M  is usually expressed in terms 
of  N , e.g.,  M    =   1    −    1/ N . As with the Brooks - Corey model,   sw

i  is treated as a fourth 
fi tting parameter. An example of the function defi ned by equation  (3.146)  is shown 
in Figure  3.9 . In general, equation  (3.146)  has a broader range of applicability than 
equation  (3.145)  because it has one additional fi tting parameter, and because it is 
continuously differentiable over the span of saturations. 

 Thus far we have considered the relationship for saturation - pressure resulting 
from a monotonic drainage event, specifi cally   primary drainage  . For purposes of 
modeling, we need an extended  p c   -  s w   relation that is capable of modeling curves 2 
through 6, as well as curve 1 in Figure  3.8 . Such a model can be proposed by making 
empirical changes to a parametric form that has proven useful for primary drainage. 
Unfortunately there has been no consensus on the best procedure for obtaining 
these additional curves. Thus, rather than presenting a single form, we note that the 
search for effective rules for modeling hysteresis is an active and important research 
area. 

 Once a  p c   -  s w   relation has been determined, it would be useful to be able to apply 
that information to a system composed of different fl uid and different solid material. 
Ideally, this can be done through some scaling of the data; however a consistent and 
workable approach to scaling the data must be uncovered. Here we present a scaling 
procedure recognizing that we seek a compromise between rigorous incorporation 
of all effects and simplicity in an equation that can be employed with reasonable 
accuracy. 

 We begin our hunt for a   scaling relation   with Darcy equation  (3.54)  for single 
fl uid fl ow for an isotropic system:

    ε ρ
µ

v vw s
w s

w
wgk

h−( ) = − ∇     (3.147)  

where the Darcy velocity has been expressed explicity in terms of the fl uid and solid 
velocities. Take the magnitude of this vector equation and rearrange to:
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    (3.148)   

 This equation has the interesting feature that the quantities on the left depend on 
the solid matrix while the quantities on the right involve fl uid properties and fl uid 
fl ow in response to a gradient in fl uid head. This observation suggests that  k s  /  ε   
accounts for all the solid phase properties and is a good candidate parameter to 
include in a scaling operation. 

 As a next step, recall that equation  (3.50)  gives a relation for  k s   as a function of 
  pore diameter  . We invoke this equation to obtain:

    
k C

D
s

ε ετ
= p

2     (3.149)   
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 Continuing, we turn to equation  (3.143) , the    Laplace equation for capillary pressure   , 
and rewrite it in terms of pore diameter rather than radius and with the assumption 
that macroscale capillary pressure and   surface tension   can be used in place of their 
microscale counterparts:

    D
pc

wn
p =

4 γ θcos     (3.150)   

 Eliminate  D  p  between the last two equations to obtain:
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 The next assumption to be made is that the quantity on the left depends primarily 
on saturation and is called the    Leverett J - function    such that the scaling equation is 
 [33] :
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    (3.152)   

 The capillary pressure on the right is a function of  s w   and the other quantities 
are functions of the solid and fl uid. Therefore, the magnitude of  J  is proportional 
to  p c  . 

 Leverett plotted the retention data for different sands in terms of  J  vs.  s w   and 
found that the data points fell, essentially, on a single curve. Thus the utility of this 
scaling method lies in the fact that it works. Certainly many other efforts to obtain 
good scaling relations have been made and are still being made. Some of these serve 
no useful purpose and are discarded; others make their way into the literature. The 
 J  - function is perhaps the most widely used scaling function. 

 In theory, use of the  J  - function to scale capillary pressure allows one to use  p c   -  s w   
data measured for one particular soil type with parameters   ks

1  and   ε   1  and the fl uids 
 w  1  and  n  1  with interfacial tension   γ 1

wn , to predict the  p c   -  s w   retention curve for other 
similar soil types and fl uid pairs. For example, if the second system is differentiated 
from the fi rst by use of  “ 2 ”  in the subscripts, equality of the  J  - function between the 
two systems provides capillary pressure as a function of saturation for the second 
system as:
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    (3.153)   

 Capillary pressure scaling is very useful when data is lacking, for example 
when modeling fl ow in a heterogeneous soil where only a few of the soil types 
have been tested. It is also useful when one wants to model capillary pressure 
dependence on fl uid - phase composition by including the appropriate constitutive 
model for   γ   wn  . 

 The discussion of retention curves indicates some of the challenges that must be 
faced in obtaining  p c   -  s w   relations needed to facilitate use of equation  (3.134)  for 



modeling multiphase systems. The methods employed to fi t available data are some-
what heuristic. Dealing with the complexities of hysteresis remains a challenge, both 
in obtaining data sets and in using the data in numerical simulations. Unfortunately, 
we are also in need of information concerning the relative permeabiliity,   krel

α , if we 
are to model a system. The subsequent section explores this problem.  

  3.7.4   Observations of the   k sw
rel
a -  Relationship 

 The   relative permeability   defi ned in equation  (3.132)  is a scaling factor,   0 1≤ ≤krel
α , 

which accounts for the fact that the pore space is not entirely fi lled with the   α   phase 
in multiphase fl ow. Thus the permeability of the medium to the   α   phase is reduced 
from  k s   when  s  α       <    1. This defi nition assumes that   krel

α  is a function of saturation 
only. 

 Since   krel
α  is a scaling factor for Darcy ’ s law, it is not surprising that measurements 

of this quantity are based on an extension of Darcy ’ s experiment to multiple phases. 
The simplest method, though not the fastest, for determining relative permeabilities 
is a steady state procedure (e.g., described in  [1] ). A homogeneous, isotropic soil 
sample is placed in an apparatus of length  L  and cross - sectional area  A  so that fl ow 
through the sample can be facilitated. Initially, the soil is saturated with phase  w . 
Then, fl ow through the sample is induced by imposing a head difference across the 
sample. After the system reaches steady state, the intrinsic permeability can be cal-
culated from Darcy ’ s law based on the measured volumetric fl ow rate  Q w   and head 
difference  ∆  h w   as:

    k
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w w

w w
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    (3.154)   

 The infl ow is then changed so that it contains phase  w  plus a small amount of phase 
 n . Again the system is allowed to reach a steady state such that the fraction of 
wetting phase in both the infl ow and outfl ow streams is the same. The constant value 
of  s w   in the column is measured. With constant saturation, the capillary pressure is 
constant and the pressure drop across the fl ow channel for each phase will be the 
same (i.e.,   ρ  w g  ∆ h w    =    ρ  n g  ∆ h n    =    ∆ p w    =    ∆ p n  ). Writing Darcy ’ s law for each phase, we 
obtain:
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which provides the   relative permeability   for the specifi ed saturation. Sequential 
incremental adjustments can be made to the proportional mixture of phases  n  and 
 w  to obtain values of relative permeability at equilibrium along a drainage cycle 
and then for an imbibition event to see if hysteretic effects have to be accounted 
for. 

 Figure  3.10  shows typical relative - permeability curves that would be obtained for 
a pair of immiscible fl uids. From this fi gure several qualitative attributes regarding 
the behavior of the relative permeability can be identifi ed  [5, 4] : 
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  1.     When both phases are present the sum of the relative permeabilities is usually 
less than 1. This phenomenon can be attributed to several factors: the presence 
of static  wn  interfaces that block fl ow channels which may otherwise contrib-
ute to fl ow; the pathways that each fl uid takes are more tortuous than for the 
single fl uid case; the fl uids interfere with each other as they move due to dif-
ferences in viscosity and fl uid - solid interfacial friction.  

  2.     The relative permeabilities of the two phases are not symmetric such that at 
a given saturation  s w  :

    k kn
s

w
sw wrel rel1− >     (3.156)  

Asymmetry occurs because the wetting phase preferentially occupies the small 
pores. This behavior also explains why, as  s w   decreases from 1 during primary 
drainage,   kw

rel  is characterized by a rapid decline while   kn
rel  is characterized by 

a rapid increase, and:

    k kn
s

w
sw nrel rel

i r
> −1     (3.157)    

  3.     The relative permeability of a phase goes to zero for values of saturation 
greater than zero. This coincides with the defi nitions of   irreducible saturation   
for phase  w  and   residual saturation   for phase  n . As a phase loses hydraulic 
connection, its permeability goes to zero.  

  4.     The relative permeability for the nonwetting phase ( n ) exhibits hysteresis 
while hysteresis in the wetting phase ( w ) relative permeability is negligible. 
The lack of hysteresis in   kw

rel  implies that phase  w  fi lms left behind during 
drainage allow former fl ow channels to be effi ciently re - established when  s w   
is subsequently increased. The fact that   kn

rel  is higher for phase  w  drainage than 
for phase  w  imbibition implies that much of phase  n  trapping and re - connec-
tion processes occur soon after a fl ow reversal.      

 To the preceding comments relating to the features of the   k sw
rel-α  curves, we add 

a series of items relating to the fact that although   krel
α  may be predominately a func-

    Figure 3.10:     Typical relative permeability curves for drainage and imbibition.  



tion of saturation, other factors can be signifi cant as well. These factors include fl uid 
properties, soil properties, and the system forcing that causes fl ow  [5, 4] . We note, 
in particular, the following properties of importance: 

  1.        Viscosity Ratio   ,   µ  w / µ  n :      There are indications that a transfer of viscous forces 
across the  wn  interface in the pore may occur where the magnitude of the 
force depends on the viscosity ratio. When phase  w  coats the solid grains and 
phase  n  is thus in contact only with fl uid  w , phase  n  velocity at the  wn  interface 
may not be zero (a lubricant effect).  

  2.        Interfacial Tension   ,   γ   wn , and the     Contact Angle     between the w and s Phases, 
 θ :      These parameters together impact the magnitude of the capillary pressure, 
and the contact angle determines phase wettability (see Section  1.6 ). The 
contact angle   θ   varies from 0    °  (strongly wetting) to 90    °  (neutral wetting) 
depending on the interaction forces among the phases. Phase distribution with 
respect to pore class will correspondingly vary from all the wetting fl uid being 
in the small pores and the nonwetting fl uid in the large pores at   θ     =   0    ° , to no 
preferred distribution whatsoever when   θ     =   90    ° .  

  3.     Correlation between Pore - Size Distribution and Relative Permeability:     This 
implies that the model describing the   k sw

rel-α  relation should be infl uenced by 
the  p c   -  s w   relation since, in theory, the  p c   -  s w   relation refl ects pore - size distribu-
tion. In fact, as will be seen, when   k sw

rel-α  data is unavailable, the   k sw
rel-α  model 

is predicted from the  p c   -  s w   model.  
  4.     Pressure Gradients:     Experimental evidence suggests that values of   kn

rel  will be 
higher at higher fl ow rates. This may occur because an increased fl ow rate 
increases the ratio of viscous to capillary forces (i.e., increases the capillary 
number) such that fl ow - path segregation due to capillarity is minimized result-
ing in less tortuous fl ow paths.    

 This subsection is intended both to give an overview of the features of relative 
permeability for porous media fl ow of two immiscible fl uids and to identify some 
of the complications that make use of relative permeabilities in fi eld situations chal-
lenging. Anisotropic systems have not been considered. For modeling an inhomo-
geneous system, relative permeability curves have to be generated for each type of 
solid. When three fl uid phases are present (for example with gas, water, and oil), 
three relative permeabilities are required, data sets relating capillary pressures for 
each of the three fl uid pairs as a function of phase saturations are needed, and the 
ancillary variables that are neglected may also add errors. In addition, if there is 
some miscibility of the phases (e.g., small amounts of an organic contaminant that 
might dissolve in water), the compositional change of the phases will alter curves 
employed assuming complete immiscibility. Furthermore, we should not forget that 
the  p c   -  s w   curves are generated for equilibrium systems with no fl ow. System dynam-
ics can alter these curves. Many outstanding issues concerning multiphase fl ow 
require additional research, and it is important to be cognizant of model approxima-
tions as possible sources of simulation errors. However, when applied to systems 
that satisfy the approximations on which they are based, relative permeability rela-
tionships are useful and important modeling tools. In the next subsection, we provide 
a brief overview of some of the formulas used to correlate   krel

α  data for fl ow of 
immiscible wetting and nonwetting phases in a porous medium.  
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  3.7.5   Formulas for the   k sw
rel
a -  Relation 

 Visual inspection of Figure  3.10  suggests that a useful model of relative permeability 
might be based on a power law form. Note that the relative permeabilities are 
greater than zero only for   s sw w≥ i , and recall that the relative permeability satisfi es 
the constraint   0 1≤ ≤krel

α . Thus we propose for the wetting phase:
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 The quantity in parentheses was defi ned in equation  (3.141)  as the effective satura-
tion,   sw

e , so it is often convenient to re - express this equation in the equivalent 
form:

    k s sw w m w
rel e e= ( ) ≤ ≤0 1    (3.159)   

 For the nonwetting phase, even if the hysteresis loop is neglected, the behavior of   
krel

α  for   s sw n≥ −1 r  depends on whether primary drainage or main drainage/imbibi-
tion is occurring. Therefore we propose two parts to the power law model for   kw

rel. 
First, for the   primary drainage curve  :

    k k
s
s

s sn
w

w

m
w w

p

rel primary maxp
i

i=
−
−





 ≤ ≤

1
1

1     (3.160)   

 For the   secondary drainage curve  :
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 In these equations, the exponents  m, m p  , and  m m   are obtained from fi tting 
the data while the coeffi cients  k  maxp  and  k  maxm  are the maximum values of relative 
permeability obtained when   s sw w= i  on the respective curves. Experimental 
results  [36]  indicate that for a system composed of water and air,  m  is generally 
positive in granular porous media but is negative for unstructured soils of fi ne 
texture. 

 In addition to simply fi tting relative permeability data with particular functions, 
some effort has been expended to fi nd ways to predict relative permeabilities. The 
methods range from (1) characterizing a porous medium as a bundle of capillary 
tubes of different radii and examining the fl ow through these tubes algebraically 
based on Darcy ’ s law and considerations of capillary pressure to (2) statistical 
models that make use of the pore - size distribution function developed in equation 
 (3.142)  for use in deriving  p c   -  s w   models. The statistical approach has been used 
widely for air - water fl ow in porous media. Here, we will outline one of the most 
common statistical approaches to this problem  [35] . 

 The model fi rst conceptualizes the porous medium as a collection of intercon-
nected cylindrical pores with radii ranging in size from  r  min  to  r  max  and lengths pro-
portional to their radii. Laminar Poiseuille fl ow is considered to be occurring in each 
pore such that it can be described by the parabolic fl ow profi le in a tube. An assump-



tion is made about the correlation of pore sizes as a function of the distance of 
separation of the pores, and a factor is introduced to account for the change in cor-
relation due to the effects of saturation and for tortuosity. With these assumptions, 
the relative permeability for the water phase is obtained as:
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where   κ   is a pore connectivity parameter related to tortuosity that may be positive 
or negative. Based on the defi nition of  f, f ( r )d r    =   d s w  . Also, since  p c    =    −  ρ  w gh c   is 
inversely proportional to a tube radius, the equation may be rewritten in terms of 
saturation and capillary head as:
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    (3.163)   

 By an analogous development as used to derive equation  (3.163) , the relative per-
meability of the nonwetting phase can be obtained as  [7] :
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    (3.164)  

where   ς   is a   pore connectivity parameter   for the nonwetting phase, and the integra-
tion in the numerator is over all the pores whose radii are large enough that they 
are fi lled with the nonwetting phase. 

 At this point, if  h c  ( s w  ) is given in appropriate analytical form, then a closed - form 
expression for the relative permeabilities may be obtained from equations  (3.163)  
and  (3.164) . For example, introduction of the Brooks - Corey  p c   -  s w   model of equation 
 (3.145)  gives:

    k s sw w w
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    (3.165)  
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rel e e e( ) = −( ) − ( ) 
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 Note that equation  (3.165)  is a power law expression for the wetting phase 
relative permeability and is identical to equation  (3.159)  when  m   =    κ     +   2   +   2/  λ  . 

 Introduction of the van Genuchten  p c   -  s w   model as given by equation  (3.146)  into 
equations  (3.163)  and  (3.164)  with the restriction that  N    =   1/(1    −     M ) gives:
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    k s s sn w w w M M
rel e e e( ) = −( ) −[ ]1 1 1 2ς

    (3.168)   
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 Two important issues that limit the utility of obtaining relative permeability func-
tions from pore - size distributions and  p c   -  s w   relations  [11]  are: 

  1.     Derived expressions are valid only for  s w   less than about 0.85, because the 
water - retention data does not refl ect the pore - size distribution at high satura-
tions since phase  n  is blocked from moving into all parts of the medium during 
drainage at high saturations.  

  2.     The relative permeability coeffi cients were derived for cases of an isotropic 
medium. The scalar relative permeability does not account for anisotropy since 
the moisture - retention data does not refl ect the directional properties of the 
medium. This issue was discussed at the end of Subsection  3.7.1 .    

 The two pore connectivity fi tting parameters,   κ   and   ς  , must be selected when 
fi tting experimental data to the models of relative permeability presented above. 
These parameters refl ect the impact of both the correlation between pore sizes and 
the tortuosity of the fl ow path. Based on the results obtained from water displace-
ment of experiments for over fi fty soils, Mualem  [35]  concluded that   κ     =   0.5 provides 
the best fi t of the data, and this value should be used as a fi rst guess when fi tting 
wetting - phase data. In addition, it is reasonable to assume that the tortuous path 
followed by a nonwetting phase will be somewhat less than that followed by the 
wetting phase since it does not have an affi nity for following the solid boundary or 
moving into the smallest pores. Therefore,   ς   is expected to be smaller than   κ  . For 
the air - water system,   ς     =   0.33 is proposed as a fi rst guess  [39] . Marked deviation of 
the fi tted parameters from these values is an indication that the  p c   -  s w   model is not 
an adequate predictor of pore - size distribution. As a result, the remaining parame-
ters in the model can be used as fi tting parameters rather than requiring they be 
obtained from the  p c   -  s w   model. 

 We now turn to the fact that hysteresis has not been included in any of the models 
of relative permeability presented. Recall from previous discussion that hysteresis 
in the  p c   -  s w   relationship is caused in part by fl uid entrapment effects. Also, inherent 
in Darcy ’ s law is the requirement that any fraction of a phase isolated from the 
coherent bulk phase must be considered, hydraulically, as part of the solid matrix 
because this fraction does not fl ow but participates in defi ning the fl ow channels. 
This attribute was the motivation for differentiating between free and trapped phase 
components in equation  (3.137)  and for defi ning the effective saturation in equation 
 (3.141) . 

 Hysteresis in the     k sw
rel-α  relationship   is generally accepted as being due, in large 

part, to fl uid entrapment effects  [31, 38, 32] . Therefore, if   st
α  could be quantifi ed and 

subsequently assigned to the correct pore sizes, hysteresis in the   k sw
rel-α  relationship 

should be quantifi able using known theory (for example by using the statistical 
approach introduced earlier). This process would involve taking out of play the 
pores where fl uid is trapped and thus working with a revised fl ow channel 
structure. 

 A straightforward approximate way to try to include the effect of fl uid entrap-
ment on the   k sw

rel-α  relationship is to redefi ne the   effective saturations   as follows:
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and:
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such that   s sn w
e er r

= −1 . The parameters   sw
t  and   sw

t  are functions of saturation and fl ow -
 path history. They are determined from the hysteretic  p c   -  s w   model. 

 For example, consider an air - water displacement experiment whereby a soil 
sample is initially saturated with water. Incremental increases in  h c   followed by 
relaxation to equilibrium will produce data points on a primary drainage path, PDC 
in Figure  3.8 . As the system drains, air forms a continuous phase, that is,   s sn n− f  (and 
  sn

t = 0) along the PDC. If part - way along the full PDC the fl ow were reversed by 
beginning to lower  h c  , a scanning curve would be traced, such as curve 4 in Figure 
 3.8 . At the saturation where the reversal began, let ’ s call it   s f

n
left( ) , we know that   

sn
t = 0 . Then from the empirical Land equation  (3.140)  we know that phase  n  will 

be displaced to a residual saturation of   sn
r0, and this location at  p c     =   0 will be the 

end of the scanning curve. To fi ll in the estimate of the trapped phase  n  along the 
scanning path from the start point to this end point, an empirical linear relation is 
generally used:
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 This procedure, and a corresponding one for trapped wetting phase, is used to 
predict the trapped saturations in equations  (3.169)  and  (3.170) . 

 The new defi nitions of effective saturation,   ser

α , may now be used directly in the 
predictive model. For example, with the van Genuchten model of equations  (3.167)  
and  (3.168)  and with the revised effective saturations, the resulting   k sw w

rel ( ) and   
k sn w

rel ( ) curves for the data presented in Figure  3.8  are shown graphically in Figures 
 3.11  and  3.12 , respectively.      

  3.7.6     Special Cases of Multiphase Flow   

 We return, now, to general multiphase fl ow equation  (3.134)  to examine two special 
cases. As was stated previously, solution of the fl ow equation requires support in the 
form of a  p c   -  s w   relation and the expression of the relative permeability as a function 
of  s w  . Since these have been obtained, we can now formulate some specifi c problems. 
For these problems, the transfer of mass between phases is considered negligible 
such that the exchange terms   ews

w ,   ewn
w ,   ens

n ,   ewn
n ,   ews

s , and   ens
s  are all ignored. 

 The fi rst case involves a two - fl uid phase system composed of a wetting and non-
wetting phase. For this case, we will assume that the solid grains are coated by the 
wetting phase. This allows us to state that  p s    =   p w   (i.e.,   χ     =   1 in the formula  p s    =    χ p w    
 +   (1    −      χ  ) p n  ) since there is no direct contact between the  n  and  s  phases). With this 
assumption, equation  (3.134)  for the wetting phase becomes:
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    Figure 3.11:     Hysteresis in the   k sw w
rel-  functionals for the wetting phase as a result of fl uid entrapment 

effects only. The curves were generated using the data defi ning the  p c   -  s w   relationship in Figure 3.8. 
Note that the curves for MDC and MIC, shown as dashed lines, are practically coincident, and that 
the scanning curves, shown as dashed lines, are group - labeled because for the predictive model 
chosen they are coincident  [25] .  

    Figure 3.12:     Hysteresis in the   k sn w
rel-  functionals for the nonwetting phase as a result of fl uid entrap-

ment effects only. The curves were generated using the data defi ning the  p c   -  s w   relationship in Figure 
3.8. Note that the curve labeled MIC *  is obtained upon reversal from a PDC where no nonwetting 
phase was previously trapped. Subsequent reversals follow the MDC and MIC curves which are practi-
cally coincident. Also note that the scanning curves are group - labeled because by model defi nition 
they are coincident  [25] .  



 We also make the assumption that if the   product rule   is applied to the third term, 
the gradient in   ρ   may be neglected (see equation  (3.87)  for the corresponding 
assumption with single - phase fl ow). Assume, also, that the medium is isotropic so 
that   k sw s wk k= rel l . After division by   ρ  w   we obtain:
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 Application of the same assumptions to equation  (3.134)  for phase  n  yields:
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 We can use the relation  p n    =   p c     +    p w   to eliminate  p  n  from this equation and also 
make use of the fact that  s n     =   1    −     s w   to eliminate  s n  :
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 Equations  (3.173)  and  (3.175)  together is called a    mixed formulation    because they 
are written in terms of derivatives of both  p c   and  s w  . One can differentiate  p c   with 
respect to  s w   to eliminate derivatives of  p c   since:
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and:
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 Substitution of these relations into equation  (3.175)  would provide the    saturation 
formulation   . Alternatively, one can eliminate derivatives of  s w   by using the following 
relations:
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in equation  (3.173)  and  (3.175) , and:
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in equation  (3.175) . This would result in    capillary pressure formulation   . Having an 
analytic expression for the  p c   -  s w   relation, such as the Brooks Corey equation  (3.145)  
or van Genuchten equation  (3.146) , makes evaluation of d p c  /d s w   easier than if one 
had to numverically differentiate and interpolate from data points. Regardless of 
the formulation selected, the equations are too complex and nonlinear to solve 
analytically. Mathematically, the mixed, saturation, and capillary forms of the equa-
tions are equivalent and should provide the same solutions. However, numerical 
solution introduces errors, and the propagation of those errors is different with the 
three equation forms. Additionally, the boundary conditions needed to solve this 
problem are of the same types as discussed for the single phase equation in Subsec-
tion  3.6.5 . Depending on the problem, it may be easier to express the boundary 
conditions in terms of  p c , s w  , or some mixture of the two. Initial (for transient prob-
lems) and boundary conditions also must be specifi ed for  p w  . In any event, it should 
be obvious that, regardless of the formulation, solving two differential equations in 
conjunction with the  p c   -  s w  ,   k sw w

rel- , and   k sn w
rel-  constitutive equations is a formidable 

task. Inclusion of features such as hysteresis, inhomogeneity, and anisotropy serve 
to add to the challenge. 

 As a second special case, we will consider a natural air - water system used to study 
water infi ltration into a soil in the unsaturated zone. This is classic problem, and we 
will obtain the classic form of the equations. This case is simplifi cation of the previ-
ous system because of one key approximation: the pressure in the air phase is con-
sidered to be constant and atmospheric. This approximation ignores the pressure in 
any trapped air bubbles but indicates that the free air phase in the soil has pressure 
negligibly different from atmospheric so that the water phase may be modeled 
without need to explicity model the air phase. With this assumption, equation  (3.134)  
does not need to be solved for the air phase pressure, which is already known. We 
will make the additional assumptions that the medium is isotropic and that the term 
involving   ∇ρw that arises from applying the product rule is negligible. Also, for 
convenience, we will assume that there is no pumping. Therefore, equation  (3.134)  
for   α    =   w  simplifi es to:
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 Now the assumption is made that the fl uid and solid compressibilities are negligible 
in comparison to the matrix compressibility. Quantitatively, this condition is imposed 
by setting   β  s      ≈    0 and   β  w      ≈    0. Additionally, the matrix compression is considered to 
be very small so that:
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 These conditions allow the term in braces to be dropped from equation  (3.180) . 
With the change in porosity with time being very slow,   ε   may be moved inside the 



time derivative. Also,   ρ  w   g  can be factored out of the last term on the left of equation 
 (3.180)  so that we obtain:
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 It is standard notation in soil physics to designate   ε s  w  by   θ  , the    water content    which 
is the volume of water per volume of porous medium. The hydraulic conductivity 
was defi ned in equation  (3.48)  as  K  w    =    k s  ρ  w g /  µ  w  . Equation  (3.36)  also indicates that 
the term in brackets is equal to the gradient in the water phase head. With these 
two notational modifi cations introduced, we obtain:

    
∂
∂
θ
t

K k hw w w− ∇⋅ ∇( ) =rel 0     (3.183)   

 This formula is known as    Richards ’  equation   . 11  More specifi cally, it is called the 
   mixed form of Richards ’  equation    because there are two primary unknowns,   θ   and 
 h w  , in this single equation. 

 An alternative form of the mixed Richards ’  equation may be obtained as follows. 
In equation  (3.136)  we defi ned the capillary head as  h  c    =   ( p n     −    p w  )/(  ρ  w g ). For the 
current problem,  p  n  and   ρ   w  are essentially constant. Therefore:

    ∇ = − ∇h
g

pc
w

w1
ρ

    (3.184)   

 It is common to defi ne the    suction head   ,   ψ  , as the negative of the capillary head (i.e., 
  ψ    =    − h c  ). Thus equation  (3.182)  can be written in an alternative mixed form involv-
ing water content and suction:

    
∂
∂
θ ψ
t

K k
g

w w− ∇⋅ ∇ −



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





=rel
g

0     (3.185)   

 By the defi nitions employed,  p c    =    −  ρ  w g ψ   and  s w    =    θ  /  ε  . Therefore the functions  p c  ( s w  ) 
and   k sw w

rel( )  can be readily converted to   ψ  (  θ  ) and   kw
rel θ( ) or   kw

rel ψ( ), respectively. 
Making use of these expressions, we can convert the mixed form of Richards ’  equa-
tion into forms with dependence only on   θ   or dependence only on   ψ  . 

 First, we will derive the    water content form of Richards ’  equation   . This is most 
easily accomplished by fi rst expanding out the divergence term in the mixed form 
of equation  (3.185) :

    
∂
∂
θ ψ
t

K k
g

K kw w w w− ∇⋅ ∇( ) + ⋅∇( ) =rel rel
g

0     (3.186)   

 11     Sometimes, the form of this equation with the spatial derivatives in the horizontal direction ignored is 
called Richards ’  equation. This is because the equation is often applied to the case of vertical infi ltration 
over a large surface area such that the lateral movement of the infi ltrating water can be neglected. 
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 Since   ψ   may be expressed as a function only of   θ  , we can write:

    K k K kw w w w
rel rel∇ = ∇ψ ψ

θ
θ∂

∂
    (3.187)   

 Introduce the    soil water diffusivity   ,  D w  (  θ  ), defi ned as:

    D K kw w wθ ψ
θ

( ) = rel
d
d

    (3.188)  

so that equation  (3.186)  is written in the water content form:

    
∂
∂
θ θ
t

D
g

K kw w w− ∇⋅ ∇( ) + ⋅∇( ) =
g

rel 0     (3.189)   

 For solution of this equation both  D w   and   K kw w
rel are expressed as functions of   θ  . 

Thus, this equation contains a single unknown   θ   and can be solved subject to bound-
ary conditions and being able to track the nonlinearities in the soil water diffusivity 
and relative permeability. 

 Next, we derive the    suction head form of Richards ’  equation    by eliminating the 
soil moisture content. We have the function   ψ  (  θ  ) or, conversely   θ  (  ψ  ). Therefore, we 
defi ne the    water capacity function   ,  C w  , as:

    Cw ψ θ
ψ

( ) =
d
d

    (3.190)   

 This function is useful for converting the time derivative of   θ   to a time derivative 
of   ψ   according to the equality:

    
∂
∂

∂
∂

θ ψ
t

C
t

w=     (3.191)   

 This is substituted into equation  (3.186)  to obtain the suction head Richards ’  
equation:

    C
t

K k
g

K kw w w w w∂
∂
ψ ψ− ∇⋅ ∇( ) + ⋅∇( ) =rel rel

g
0     (3.192)  

where both  C w   and   K kw w
rel are expressed as functions of   ψ  . This equation may be 

solved subject to specifi cation of the appropriate boundary conditions for   ψ  . 
 As examples of the functions  C  w  and  D  w  we adapt the notation in van Genuchten 

equation  (3.146)  to what is used in the Richards equation and obtain:

    
θ θ
θ θ

α ψ−
−

= + ( ) 
−r

s r

1 N M
    (3.193)  



where   θ  r   is the    residual water content    and   θ   s  is the    saturated water content   . The left 
side of this equation is obtained by multiplying both the numerator and the denomi-
nator of the expression for effective saturation by the porosity. The derivative d  θ  /d  ψ   
can be calculated from equation  (3.193)  to provide the water capacity:

    C MNw N N M Nψ θ θ α α ψ ψ( ) = −( ) + ( ) 
− − −

s r 1
1 1     (3.194)   

 Also, equation  (3.193)  can be used to obtain   ψ   as a function of   θ  :
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    (3.195)   

 Differentiation to obtain d  ψ  /d  θ   allows us to evaluate the   soil water diffusivity  :
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    (3.196)   

 The complex form of these equations, the fact that they do not account for hys-
teresis, and the nonlinearities they bring to the governing differential equation point 
to the fact that solution of Richards ’  equation, one of the simplest equations describ-
ing a case of two fl uid phase fl ow in porous media, is diffi cult. Signifi cant effort has 
been made, and continues to be made, to develop numerical algorithms that provide 
effi cient and accurate solutions. Although the alternative forms of the equation are 
mathematically equivalent, the numerical challenges of the suction form revolve 
around problems in assuring that mass is conserved; the water content form is dif-
fi cult to apply at low saturations because as   θ   approaches   θ   r ,  D  w  tends toward infi nity. 
These issues revolve around the general modeling challenges of parameterizing 
data, obtaining robust constitutive equations, and accurately representing the physics 
of a problem of interest at an appropriate scale.   

  3.8   THE   BUCKLEY - LEVERETT ANALYSIS   

 One approach to modeling two fl uid phase fl ow makes use of some simplifying 
assumptions that lead to what is known as the  Buckley - Leverett equation . Arguably, 
the Buckley - Leverett approach is the best known analytical approach to investiga-
tion of this topic. The key attribute of this approach is that the problem is formulated 
in terms of the fl ow of only one phase, the wetting phase, while the dynamics of the 
other phase are not totally neglected. The derivation of the Buckley - Leverett form 
fi rst requires that we consider the fractional contributions to a Darcy velocity by 
each phase. Subsequently, this concept of fractional fl ow will be used in the deriva-
tion of the Buckley - Leverett equation. 

  3.8.1     Fractional Flow   

 Underpinning the Buckley - Leverett equation is a representation of the fl ow equa-
tion for the wetting phase in terms of fractions of each phase velocity contributing 
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to the fl ow. We will consider the case of the fl ow of two immiscible fl uids, a wetting 
phase ( w ) and a nonwetting phase ( n ). Compressibility effects and solid phase 
deformation are neglected. For fl ow in a horizontal column, Darcy ’ s law for the  w  
and  n  phases is expressed, respectively, as:

    q
k k p

x
w

s w

w

w

= − rel

µ
∂
∂

    (3.197)  

and:

    q
k k p

x
n

s n

n

n

= − rel

µ
∂
∂

    (3.198)   

 The wetting phase pressure in equation  (3.197)  can be eliminated in favor of  p n   
and the capillary pressure  p c   since  p w    =   p n     −    p c  . Then we obtain:

    q
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∂
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    (3.199)   

 Next we eliminate  ∂  p n  / ∂  x  between equations  (3.198)  and  (3.199)  and rearrange the 
result to the form:
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 A combined velocity in the column is given as a simple sum of the Darcy veloci-
ties for each phase. Note that this is not a total fl ux but is merely a mathematical 
construct. This quantity is designated as  q  B  and is defi ned as:

    q q qw n
B = +     (3.201)   

 Using this defi nition, we now introduce the idea of fractional fl ow of the water phase, 
 f w  , which is defi ned as:

    q f qw w= B     (3.202)   

 Thus for the nonwetting phase we obtain:

    q f qn w= −( )1 B     (3.203)   

 The quantity  f  w  is the fraction of the linear sum of the two phase velocities that is 
due to the water phase. Note that since  q  B  is not weighted in any way by the volume 
fractions of the two phases, it has limited physical signifi cance while being mathe-
matically convenient. 

 We now substitute equations  (3.202)  and  (3.203)  into equation  (3.200)  to 
obtain:
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or, after multiplication by   k k qs n n
rel Bµ( )  and some rearrangement:
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 If the magnitude of the term in the numerator involving the gradient of  p c   is much 
smaller than 1, equation  (3.205)  reduces to:
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    (3.206)   

 Figure  3.13  shows two typical relative permeability curves for an oil nonwetting 
phase and water. Figure  3.14  shows the corresponding fractional fl ow curve for the 
water phase, a plot of  f w   vs.  s w   as described by equation  (3.206) .      

  3.8.2     Derivation of the Buckley - Leverett Equation   

 The development of the Buckley - Leverett equation begins with a statement of the 
conservation of mass for the wetting phase. For the  w  phase in the horizontal column 
the macroscale mass balance at any location along the column axis is:

    
∂

∂
∂

∂
ε ρ ρs

t

q

x

w w w w( ) + ( ) = 0     (3.207)   

    Figure 3.13:     Typical oil - water relative permeability curves (from  [2] ).      
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 If   ε ,  ρ  w  , and  q  B  are considered to be constant, the substitution of equation  (3.202)  
into equation  (3.207)  yields:
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q
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t

f
x

w w

B

∂
∂

∂
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+ = 0     (3.208)   

 However, since  f w   is a function only of  s w  , we can use the chain rule in differentiating 
equation  (3.208)  to obtain:
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which is the Buckley - Leverett equation  [8] .  

  3.8.3     Solution of the Buckley - Leverett Equation   

 Before solving the Buckley - Leverett equation, we note that we could follow the 
movement of the saturation front into the column in any number of ways. If we 
decide to monitor the position of a particular unchanging value of saturation, we 
are specifying that we are interested in:
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∂
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where d x /d t  is the velocity of the movement of the value of saturation of interest. 
A comparison of this equation with Buckley - Leverett equation  (3.209)  indicates 
that we can achieve this situation if we follow a value of saturation with:

    
d
d

d
d
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t

q f
s

w

w
=

ε
    (3.211)   

    Figure 3.14:     Fractional fl ow curve for the water phase based upon the relative permeability curves 
shown in Figure 3.13.  



 For a fi xed value of  s w  , the right side of equation  (3.211)  is a constant. An example 
curve d f w  /d s w   is given along with function  f w  ( s w  ) in Figure  3.15 . With this information, 
we can integrate equation  (3.211)  to obtain:

    x s x s
q f

s
t tf

w w
w

w f( ) − ( ) = −( )0 0
B d

dε
    (3.212)     

 Thus the value of  s w   that is at location  x  0  at time  t  0  will translate to position  x f   at 
time  t f  . Using this functional form, Kleppe  [30]  evaluated equation  (3.212)  and 
obtained the saturation distribution shown in Figure  3.16 . This plot shows that, for 
all locations, two different values of  s w   are calculated. Of course, this is not physically 
possible but is the result of the simplifying assumptions used to derive Buckley -
 Leverett equation  (3.209) . This anomaly arises because of the dependence of d x /d t  

    Figure 3.15:     Fractional fl ow curve and its derivative (from  [30] ).  

    Figure 3.16:     Computed water satuation profi le (from  [30] ).  
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on saturation that allows a fast - moving saturation to overtake a slow - moving 
saturation.   

 To eliminate this contradiction we impose the requirement that there must be a 
shock front at which there is a discontinuity in the  s w   function. We locate the shock 
such that the velocity of the front is increasing with increasing saturation. Designate 
the value of  s w   where d f w  /d s w   begins to decrease as the saturation increases as   sw�. 
The shock front is then located at the location in the column where this saturation 
exists. We note that   sw�  is simply the value of  s w   for which d 2  f w  /d s w   2    =   0. The velocity 
of the shock front is:

    d
d

d
dshock

Bx
t

q f
s

w

w
sw

=
ε �

    (3.213)   

 The resulting function employed as the Buckley - Leverett solution is shown in 
Figure  3.17 . Upstream of the shock, the saturation profi le is evolving, while down-
stream of the shock, the initial saturation profi le is preserved.   

 Finally, we note that the appearance of a shock in the Buckley - Leverett solution 
is a product of the assumptions and simplifi cations that have gone into the formula-
tion of the Buckley - Leverett equation. In fact, if one observes the physical problem 
or solves the mass conservation equations for each fl uid phase subject to Darcy ’ s 
law, the sharp front does not appear. Nevertheless, the simplicity of the Buckley -
 Leverett solution in comparison to the full problem makes it a useful tool for 
approximating system behavior.   

  3.9   SUMMARY 

 The focus of this chapter was the development of the equations that describe 
the fl ow of multiphase fl uids through porous media. We introduced the classic 
experiment carried out by Henry Darcy in 1856 which fi rst quantifi ed the relation-

    Figure 3.17:     Final water saturation profi le (from  [30] ).  



ship between fl uid fl ux and fl uid potential gradient. Next we discussed fl uid proper-
ties, followed by a general discussion of their equations of state. A discussion of the 
concept of hydraulic potential, especially as it pertains to hydraulic head, was then 
presented. The subsequent two sections were devoted to a discussion of single - phase 
fl uid fl ow and two - phase fl uid fl ow respectively. In each section the constitutive 
equations (experimental relationships) and the balance equations are discussed and 
their integration presented. Particular attention is focused on the multiphase fl ow 
relationships. The last section is devoted to a presentation of the classic Buckley -
 Leverett problem, arguably the most often quoted analysis of multiphase fl ow in 
porous media available in the literature.  

  3.10   EXERCISES   

  1.     Show that if Darcy had performed his experiments in columns sloped at an angle 
rather than in a vertical column, he still would have obtained the result given 
as equation  (3.2) .  

  2.     An ideal gas,  g , composed of a single chemical species with molecular weight  M  
obeys the ideal gas law:

   p V nRTg =  

where  p g   is the pressure of the gas,  V  is the volume of the container contain-
ing the gas,  n  is the number of moles of gas in the container,  R  is the   ideal gas 
constant  , and  T  is the temperature. Obtain the expression for the gas phase 
compressibility,   β     g  .  

  3.     Calculate the expression for the Hubbert potential of an ideal gas. Comment on 
the relative importance of the pressure head vs. the elevation head.  

  4.     Consider single - phase fl ow of water in the subsurface. Using representative 
parameter values for the soil and fl uid properties, determine the head gradient 
needed to develop the following Darcy velocities. Also, indicate fi eld situations 
when such a velocity could arise. (a)  q w     =   30   m/day in a sandy aquifer; (b)  q w     =  
 0.5   m/day in a sandy aquifer; (c)  q w     =   30   m/day in clay; (d)  q w     =   0.5   m/day in 
clay.  

  5.     Consider two - dimensional fl ow in an aquifer in the horizontal direction where 
 x  and  y  correspond to the principal horizontal coordinate axes of the intrinsic 
permeability tensor (such that for these coordinates,  k xy    =   k yx     =   0). Assume that 
 k xx  / k yy     =    R , where  R  is a constant. If a uniform head gradient is applied in the 
direction 30    °  from the x - axis, what will be the ratio of the fl ow in the  x  direction 
to that in the  y  direction.  

  6.     Suppose a single well that fully penetrates a large, homogeneous, isotropic, 
confi ned aquifer pumps water at a rate  Q w  . Also, assume that the background 
natural fl ow need not be considered. What form of the single - phase fl ow equa-
tion would you use to describe this problem. Indicate how you would simplify 
a general form.  
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  7.     Suppose that one is interested in modeling single - phase fl ow in an aquifer. The 
fl uid phase compressibility, solid phase compressibility, and matrix compress-
ibility are small, such that one is tempted to neglect them. Describe the differ-
ence in predicted behavior of a large confi ned aquifer subjected to pumping if 
these terms are neglected.  

  8.     When we discussed microscale capillary pressure,  p c  , there was no reference to 
hysteresis. However, for macroscale capillary pressure,  p c  , hysteresis is impor-
tant. Indicate the features of macroscale analysis that account for this additional 
complication.  

  9.     Consider the capillary tube depicted in Figure  3.4 . Flip it horizontally, keeping 
the fl uid reservoirs at the same places, and generate the hysteresis loop starting 
with primary drainage. Distinguish between parts of the curve associated with 
Haines jumps and parts associated with equilibrium states.  

  10.     Consider the special case of multiphase fl ow in an isotropic medium when the 
fl uid and solid densities can be considered constant, but the matrix compaction 
is important. Obtain the particular form of equation  (3.134)  that applies to the 
phases  w  and  n  and fi nd a mixed form in terms of  h w , h c  , and  s w  .  

  11.     Determine how the  p c   -  s w   relationship relates to the soil moisture profi le above 
a water table obtained by draining from full saturation to equilibrium.  

  12.     Data obtained from an experiment with a silty loam soil has been analyzed to 
obtain the van Genuchten soil moisture profi le. For this soil,   θ  r     =   0.19,   θ  s     =   0.41, 
  α     =   0.47   cm  − 1 ,  M    =   0.33, and  N    =   1/(1    −     M ). Plot the the soil moisture profi le 
(  ψ   –   θ   or  p c   –  s w  ), relative permeability (  kw

rel-θ  or   k sw w
rel- ), soil water capacity 

( C w   –   ψ  ), and soil water diffusivity( D w   –   θ  ). Identify portions of these curves where 
a small change in one parameter can signifi cantly alter the value of the other 
parameter. These portions of the curves are where complex numerical algo-
rithms are needed to ensure accurate solution to the equations.                    
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   MASS TRANSPORT 
EQUATIONS        

4

  4.1   INTRODUCTION 

 The last chapter was concerned with the equations that describe the fl ow of a phase 
as a whole. The mass conservation equation of the phase in conjunction with supple-
mentary conditions among variables, such as Darcy ’ s law,  p c   -  s w   and   k sw

rel-α  relation-
ships, and appropriate boundary conditions provide closed sets of equations that 
describe the distribution of the velocities, pressures, and densities of the fl uid 
phases. 

 In the present chapter, we are going to examine additional conditions that will 
enable us to also describe the distribution of chemical constituents within each 
phase. These equations are based on the mass conservation equations for each con-
stituent and are referred to as the    mass transport equations   . The consideration of 
the equations will be informed by the fact that the description of the behavior of 
these constituents must be consistent with the description of the phase as a whole 
provided in the last chapter. 

 In one sense, the transport equations may be viewed as a refi nement of the 
description of the fl ow of a phase. From another perspective, the transport equations 
might be considered as some conditions added to the fl ow equations. However, in 
cases where composition signifi cantly impacts the density of the fl uid phase, the 
description of the fl ow of a phase must account for this effect. No modifi cation of 
the fl ow equations of the last chapter is required; however, the state equation for 
fl uid phase   α   as given by   ρ   α   ( p  α   ) must be extended to a form   ρ   α   ( p  α  , ω  i α   ) for  i    =   1,  . . .  , 
 N     −    1. 1  

 1     If we were to also consider heat effects, the dependence on temperature would have to be incorporated 
into the equation of state; and an energy equation that describes heat transport within the phase would 
also be needed. Our focus here is on isothermal systems, however, so the impact of temperature is not 
covered explicitly. 
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 In general, the problem of transport of chemical species begins with equation 
 (2.109)  from Chapter  2 :
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It is possible to ignore Chapter  3  and develop a strategy for solution of this 
equation for each species in each phase. However, the approach we will adopt is to 
make use of the information from the last chapter that provides overall phase 
behavior and additionally solve for  N  α       −    1 of the species equations for each phase. 
This is possible because the mass fractions in a phase are constrained by equation 
 (2.65) :

    1
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w n s, ,     (4.2)  

and the dispersion vectors for the species that comprise a fl uid phase, as defi ned in 
equation  (2.72)  satisfy the condition:
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Equation  (4.2)  indicates that only  N  α       −    1 of the species mass fractions are indepen-
dent, because if  N  α       −    1 are known, the  N  α   th may be calculated directly as:
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Likewise, if  N  α       −    1 of the species dispersion vectors are known, the dispersion vector 
of the  N  α   th species is obtained as:
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The overall mass exchange term between adjacent phases is equal to the sum of the 
exchange of species between the phases so that:
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Although the preceding makes the case for the number of species equations that 
need to be considered, there are four important issues that must be addressed before 
the description of species transport can be considered complete. First, equation  (4.1)  
contains the phase velocity,  v    α   . To apply this equation to the fl uid phases, a deriva-
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tion must be performed that allows this velocity to be replaced with the Darcy 
velocity and terms that account for the solid phase deformation, as in the last 
chapter. 

 Second, although equations for fl ow of the solid phase were not developed in 
Chapter  3 , the solid phase may exchange mass with the fl uids. Therefore, species 
balance equations for the solid are needed that do not explicitly contain  v   s  . 

 Third, the value of  N  α    may be different for each phase. Not all species will neces-
sarily appear in each phase. Therefore, the  N  α   th species, the species not considered 
explicitly using a mass transport equation, will usually be different in each phase. 
In fact, it is typical to consider a fl uid phase as being composed primarily of one 
chemical constituent and to work with the transport equations for the species dis-
solved in that constituent. For example, in modeling a wetting phase composed pri-
marily of water with some organics dissolved in the water, the species transport 
equations would be applied to those dissolved constituents. The corresponding 
model for an organic phase would make use of a species transport equation for the 
small amount of water that might dissolve in that phase. This observation is not 
particularly complex  , but it does point to the importance of keeping track of the 
chemical constituents being modeled. 

 Fourth, in solving the species transport equations, we are faced with the need to 
have the same number of equations as unknowns. This means that some constitutive 
forms will have to be developed for the    dispersion vectors   ,  j   i α   , the    chemical reaction    
expressions within a phase,  r i α   , and the    interphase transfer terms   ,   ei

αβ
α. Additionally, 

all pumping rates,   QW
α , will have to be specifi ed along with the composition of any 

injected fl uid. 
 The remainder of this chapter is devoted to addressing these issues, in turn, so 

that useful mass transport equations that complement the phase fl ow equations 
result. Because the presence of two fl uid phases, as opposed to a single fl uid phase, 
does not signifi cantly complicate the derivation of the transport equations, the deri-
vations will be performed for a three - phase  w ,  n ,  s  system. Simplifi cation to a single -
 fl uid system follows directly from the two - fl uid equations.  

  4.2     VELOCITY IN THE SPECIES TRANSPORT EQUATIONS   

 For equation  (4.1)  applied to each species to be solvable in conjunction with 
the fl ow equations, the total number of unknowns must be equal to the number of 
equations. Each species equation may therefore introduce one unknown to the set 
of unknowns beyond those accounted for by other conservation, constitutive, 
and state equations. This additional unknown is the    mass fraction   ,   ω  i α   . Therefore, we 
need to perform some manipulations to express other quantities in this equation, 
which have not appeared in the fl ow equations, in terms of solution variables (e.g., 
 q    α   ,  s w    ,  p  α   , etc.) and state variables discussed in the last chapter. In this section, we 
will concentrate on the    advective term    of the transport equation,   ε   α   ρ   α   ω  i α    v    α   , with the 
goal of eliminating the phase velocity,  v    α   , in terms of other variables. Although 
fl ow equations were developed in the last chapter, the fl ow quantity of interest 
was the Darcy velocity, which, strictly speaking, cannot be used to obtain the fl ow 
velocity without knowledge of the solid velocity because the Darcy velocity is 
defi ned as:
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    q v vα α αε α= −( ) =s w ns ,     (4.7)  

where   ε s  α     =    ε   α   . Thus, the problem of replacing the fl uid velocity with the Darcy 
velocity is complicated when  v   s   is nonzero. In the previous chapter, the need to solve 
directly for  v   s   was replaced by the incorporation of the effects of solid deformation 
in the specifi c storage coeffi cient. With  v   s   unavailable, we need strategies for account-
ing for its impact on the transport equations for the fl uid phases. Also, since species 
may be exchanged between the solid and fl uids, the solid phase must be considered 
explicitly in transport problems, and the velocity of the solid phase will thus appear 
(i.e.,   α    =   s  in equation  (4.1) ). 

 The three subsections that follow provide alternative approaches for incorporat-
ing the Darcy velocity into the transport equations without creating the need to 
calculate the solid phase velocity. The three approaches are called, respectively, the 
direct approach, the rigorous approach, and the species distribution approach. These 
approaches to the velocity are the fi rst step in reducing the number of unknowns 
in the transport equations. Subsequently, we will also provide expressions for the 
dispersion vector, the interphase exchange terms, and the chemical reactions within 
the phase. The way these latter expressions are handled is independent of the 
approach used to modify the velocity term. 

  4.2.1     Direct Approach   

 The essence of this approach is that the velocity of the solid is deemed to be negli-
gible when considering the transport equation. Thus from equation  (4.7)  for the 
purpose of use in the transport equation:

    v
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αε
α≈ =

s
w n,     (4.8)  

For the fl uid phases, the equations formulated for the mass fraction are thus obtained 
from equation  (4.1)  in light of equation  (4.8)  as:
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For the solid phase transport equation, both the solid velocity and dispersion 
within the solid phase are considered unimportant in the   direct approach  . Addition-
ally, pumping of the solid phase is negligible so that the transport equations are:
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where use has been made of the fact that   ε  s     =   1    −      ε  . Although we have set the solid 
phase velocity to zero such that the solid matrix does not deform in response to 
mechanical stress, this equation still accounts for changes in porosity due to dissolu-
tion of, or deposition on, the surface of the solid. 



VELOCITY IN THE SPECIES TRANSPORT EQUATIONS   169

 Equations  (4.9)  and  (4.10)  are general forms of the direct method that can be 
solved for the mass fraction   ω  i α    after additional closure conditions are developed. 
In practice, we would solve these for all but one of the species in the phase, and 
couple these equations to the phase fl ow equation. We note here that in some appli-
cations, the solution may be conveniently developed in terms of the mass of species 
 i  in phase   α   per unit volume of phase   α ,  ρ  i α     =    ρ   α   ω  i α   . 

 Also, the concentration of  i  is alternatively expressed as moles of species  i  in 
phase   α   per unit volume of phase   α   as  c i α     =    ρ  i α   /M  i  , where M  i   is the molecular weight 
of  i . For example, to obtain the form of the transport equation in terms of molecular 
concentration, divide equations  (4.9)  and  (4.10)  by M  i   and make use of the defi nition 
of molar concentration to obtain, respectively:
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and
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At the conclusion of the chapter, after all the needed constitutive forms have 
been presented, the various forms of the direct transport equations, as well as of the 
other forms derived, will be collected for easy comparison. For now, we simply note 
that the direct forms of the equations follow as a result of neglecting the solid phase 
deformation. The main problem with the direct forms is that when the transport 
equations for all species are added together, the equation that describes the phase 
behavior as a whole, as derived in Chapter  3 , should be recovered. However, since 
the solid deformation has been neglected, the equations will not be the same as 
those of the last chapter which included the storage effects due to both solid com-
pressibility and matrix deformation. Despite this drawback, the direct equations can 
be very useful in many situations. For example, if a  w  phase is contaminated with a 
small amount of a pollutant, the direct transport equation for the pollutant will be 
appropriate since most of the effects of solid deformation will apply to the chemical 
constituent present in the far greater amount. In other words, when the amount of 
contaminant is small, the contaminant transport will not affect the behavior of the 
phase as a whole, described by the phase fl ow equations, and will also not be affected 
signifi cantly by the small solid phase deformations that contribute to phase storage. 
Some careful thought will lead to the conclusion that this is reasonable. Additionally, 
this observation can be confi rmed by doing a more rigorous mathematical analysis, 
as in the next subsection.  

  4.2.2     Rigorous Approach   

 With this approach, we do not neglect the solid phase velocity but incorporate it 
into the equation of species transport in much the same way it was incorporated 
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into the phase equation of the last chapter. The objective of this approach is to 
incorporate the Darcy velocity into the species transport equations in the fl uid 
phases while taking into account the deformation of the solid. Within this approach, 
we do not explicitly derive a simplifi ed balance equation for a species in the solid 
phase. Rather, the equation used for the solid phase is either that obtained from the 
direct method (which can be used when the species being modeled by the transport 
equation are at small concentration such that the changes in concentration are more 
important than solid motion) or using the distribution method of the next subsection 
(which takes account of the solid motion). 

 If we use the defi nition of the   Darcy velocity   as given by equation  (4.7)  to elimi-
nate  v    α    from equation  (4.1) , we obtain:
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The objective is to eliminate  v   s   by combining this equation with that for the solid 
phase. We can apply the product rule to the fourth term and make use of the defi ni-
tion of the    material derivative    with respect to the  s  phase. This allows for rearrange-
ment of the equation to:
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Equation  (3.121)  describes the    mass conservation of the solid phase    and may be 
rearranged to:
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Elimination of  ∇     ·     v   s   between these last two equations yields:

    

ω ε ρ
ε ρ

ε ρ ε ρ
ε ρ

ε ρ
ε ρ

α
α α α α α α

i
s

s s

s ws
s

s n
t

e e−
−( )

−( )[ ] +
−( )

+
−( )1

1

1 1

D

D
ss

s

s i
i i

i
wn
i

t

r e









+
( ) + ⋅( ) + ⋅( )

= + +

D
D

ε ρ ω
ρ ω ε

ε

α α α
α α α α α

α α α

∇ ∇q j

ee Q

w n i N

s
i i

N

α
α α α α

α

ρ ω δ

α

+ −( )

= =
=

∑ W W W
W

W

W

x x
1

1, ; , . . . ,     (4.16)  



VELOCITY IN THE SPECIES TRANSPORT EQUATIONS   171

The fraction of the total mass at a point associated with a phase is designated   
xmass

α  for   α    =   w ,  n ,  s . Also, consistent with the previous chapter, we make the assump-
tion that the advective part of the material derivative associated with the  s  phase is 
so small that D  s  /D t     ≈     ∂ / ∂  t . Therefore, equation  (4.16)  simplifi es to:
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The expression in braces is the only difference between this equation and equation 
 (4.9) . Therefore, this term must account for the   solid phase deformation   that was 
ignored in the direct approach. The fact that this term is multiplied by the mass 
fraction confi rms the observation that when the mass fraction of a chemical species 
is small, the solid phase deformation has negligible impact on the transport equation 
for that species. 2  

 For the moment, we will continue on with the rigorous derivation by introducing 
the fl uid saturations into equation  (4.17)  via the identity   ε   α     =   s  α   ε   and also applying 
the product rule to the partial time derivative after the braces. With a bit of algebra, 
we can obtain:
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Substitution of this identity into equation  (4.17)  and then collection of terms mul-
tiplied by  ω   i α    yield:

   

ω ερ ρ
ε ρ

ε ρ ρ ε
ρ

ρα α
α α α α α

i
s

s

s

ss
t

s
t

s
t

x∂
∂

−
−( )

∂ −( )[ ]
∂

+
−( ) ∂

∂




+
1

1 1 maass

mass

mass

mass

α α

α
α α

α α αε
ρ ω

ρ ω

x
e

x
x

e

s
t

s ws
s

s ns
s

i
i

+ }
+

∂( )
∂

+ ⋅(∇ q )) ⋅( )

= + + + −( )

=
=

∑

+ ∇ ε

ε ρ ω δ

α

α α

α α α
α
α α α α

j

x x

i

i
wn
i

s
i i

N

r e e Q

w

W W W
W

W

W

1

, nn i N; , . . . ,= 1 α     (4.19)  

 2     Some transport problems of importance, for instance of chlorinated hydrocarbons dissolved in water, 
involve mass fractions of a few parts per billion. Transport equations for these species can be specifi ed 
just as well with the direct and rigorous methods. 
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We can make use of the relations for the solid and matrix compressibility 
given, respectively, by equations  (3.128)  and  (3.129)  so that the equation reduces 
further to:
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This equation accounts for the effects of solid matrix deformation and compression 
in the transport process for each species  i  in a fl uid phase   α  . Summation of this 
equation over the  N  α    species in the phase gives equation  (3.130)  without use of the 
fl uid phase compressibility defi nition. Usually, equation  (4.20)  is simplifi ed by using 
the observation that:
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This approximation applies except at the high and low ends of the saturation range 
(  sw

i  and   sn
r ). At these end locations, the change in pressure required to produce a 

change in saturation can be large. We thus obtain the form of the rigorous mass 
conservation commonly employed:
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As with the direct method equation, this equation is also sometimes expressed in 
terms of the mass of species  i  per volume of   α   phase,   ρ  i α     =    ρ   α   ω  i α   , or the moles of 
species  i  per volume of   α   phase,  c i α     =    ρ   α   ω  i α  / M  i  . For example, in terms of moles per 
volume, this equation is:
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  4.2.3     Distribution Approach   

 The objective of the direct and   rigorous approaches   is to obtain mass conservation 
equations for the chemical species in a phase with the Darcy velocity appearing in 
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the equations. If the approximations made in the derivation are perfectly satisfi ed, 
the sum of the derived equations will describe the mass conservation for the phase 
as a whole. The   distribution approach  , on the other hand, leads to an equation that 
describes the distribution of mass fractions within the phase. Summation of the dis-
tribution equations over all species provides no information in addition to the fact 
that the sum of the species mass fractions must be 1. From a mathematical perspec-
tive, the distribution and conservation equations are identical. However, implemen-
tation of approximate solution procedures on the computer introduces different 
errors into the concentration fi elds obtained. 

 The derivation of the    distribution form of the species conservation equations    
proceeds from the rigrous method equation  (4.19) . The product rule is applied to 
each of the fi rst two terms following the braces to obtain:
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and:

    ∇ = ∇ ∇⋅( ) ⋅ + ⋅( )ρ ω ρ ω ω ρα α α α α α α α αi i iq q q     (4.25)  

Substitution back into equation  (4.19)  and rearrangement of terms yields:
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Comparison of the term in braces with equation  (3.126)  in light of the usual 
assumption that the advective part of the solid phase material derivative is negligi-
ble (i.e., D  s  /D t     ≈     ∂ / ∂  t ) provides the identity that allows the terms in braces to be 
replaced by phase exchange terms and a pumping term so that we have:
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Lastly, the mass exchange and pumping terms are collected so that the fi nal form 
of the distribution equation is:
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Note that the sum of each term in this equation over all species  i  in fl uid 
phase   α   is zero. This characteristic makes the distribution form distinct from 
the previous forms in that it is not a statement of conservation of species mass 
which, when summed over all species, would give a statement of    total mass 
conservation   . 

 An alternative procedure for obtaining the distribution equations for the fl uid 
phases and for the solid is relatively straightforward. Start with equation  (4.1)  and 
apply the product rule to the fi rst two terms in a fashion analogous to equations 
 (4.24)  and  (4.25) . Then regrouping of terms provides:
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We can invoke mass conservation equation  (2.116)  for a phase to replace the term 
in brackets with mass exchange and pumping terms:
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Terms in this equation may be gathered together so that the result is the same as 
equation  (4.28)  with the exception of the appearance of   ε   α    v    α    instead of  q    α    and the 
fact that the equation applies to the solid phase as well as the two fl uid phases:
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Because  v   s      ·     ∇   ω  i α    is negligible compared to  v    α       ·     ∇   ω  i α    for the fl uid phases, 3    ε   α    v    α    may 
be replaced with  q    α    for   α    =   w ,  n  with negligible error to reproduce equation 
 (4.28) . 

 For the solid phase, we neglect the advective, diffusion, and pumping terms in 
equation  (4.31)  to obtain:
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This last equation is the distribution form of the species equation for the solid phase 
and is an alternative to the conservation form given by equation  (4.10)  derived using 
the direct approach. Consistent with the property of the distribution result for the 
fl uid phases, the sum of any of the four terms in the distribution equation for the  s  
phase over all species in that phase is zero.  

  4.2.4   Summary 

 This section has been concerned with obtaining forms for the transport equation 
that make use of the Darcy velocity. Even in working through to some particular 
forms using three different approaches, we still have not provided simplifi cations to 
the forms that apply under some particular limiting cases. Some of the important 
and commonly encountered limiting cases include constant phase density   ρ   α   ; no 
mass exchange between phases such that   ei

αβ
α = 0; moles per volume of phase,  c  α   , 

constant; and no chemical reactions within phase   α   such that  r i α      =   0. Additionally, 
cases occur where only some of the species transfer between phases or participate 
in intraphase reactions. It is therefore important to understand the general assump-
tions that have been applied in the direct, rigorous, and distributional methods and 
to be able to apply additional restrictions. The efforts in this section have focused 
exclusively on the terms involving phase velocities. The equations developed still 
need to be supplemented with information for modeling dispersion, interphase 
transport, and intraphase reactions. In this summary, we provide a synopsis of the 
features of each of the three derivations. 

 All of the derivations share the approximation that the movement of the solid 
phase is so slow that terms involving  v   s      ·     ∇  are negligibly small. The direct approach 
involves the assumption that all movement of the solid phase, including deforma-
tion, can be neglected. The direct approach results are equations  (4.9)  for the fl uid 
phases and  (4.10)  for the solid phase. The rigorous approach incorporates the defor-
mation of the solid phase into the derivation by making use of the mass conservation 
equation for the solid and expressions for the solid and matrix compressibilities. The 
result of this approach is equation  (4.20)  for the fl uid phases. No explicit equation 
for the solid phase is obtained. 

 The distribution form of the equation follows from use of the mass conservation 
equation for the fl uid phases in conjunction with the rigorous equation result. The 
distributional form for fl uid phase transport of a chemical species is equation  (4.28) , 

 3     This may alternatively be justifi ed by noting that   ∂  ω  iα   / ∂ t     ≈    D  s  ω  iα    /D t . 
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which may also be obtained from a simpler path starting with the species conserva-
tion equations without passing through the rigorous form. This latter approach also 
provides the distributional form for a chemical species in the solid phase as equation 
 (4.32) . We comment that both the direct and distributional forms of the solid phase 
species equations assume that dispersion and pumping are negligible in addition to 
solid phase advection. The distributional form is mathematically as complete an 
expression of species transport as the rigorous form. However, because it describes 
how species distribute within and between phases while the rigorous form describes 
how mass is conserved, they may provide different solutions when subjected to 
additional assumptions or to the errors that are introduced by computational efforts 
to solve the equations. 

 A large array of assumptions can be applied that result in the alternative forms 
reducing to a single form. Many of these assumptions are reasonable descriptions 
of actual behavior encountered and should be applied when appropriate. By employ-
ing these approximations and studying their impact on the equation forms, one can 
gain insights into the relative importance of the various term sand make a prudent 
selection of the actual equation employed in a numerical solver. 

 In Figure  4.1  we provide a summary of the various strategies that can be used to 
derive the transport equation.     

  4.3     CLOSURE RELATIONS FOR THE DISPERSION VECTOR   

 The vector  j   i α   , referred to as the    mass dispersion vector   , actually accounts for both 
   diffusion    and    dispersion   . Thus, to aid our discussion, we write the overall dispersion 
vector in terms of its two mechanisms as:

    ε ε ε αα α α α α α
αj j ji i i w n s i N= + = =dif dis , , ; , . . . ,1     (4.33)  

where   jdif
iα  is the diffusion of species  i  in phase   α   and   jdis

iα  is the dispersion of species 
 i  in the   α   phase. 

 Diffusion is typically described as occurring when a dissolved chemical species 
moves within a phase from a region of higher concentration to a region of lower 
concentration due to random motion of molecules. Although diffusion within solids 
does occur, it is a very slow process and will not be considered here. We will thus 
employ the constitutive assumption:

    ε s is
si Nj = =0 1, . . . ,     (4.34)  

Additionally, diffusion of mass can be enhanced or induced by large temperature 
or pressure gradients. These effects will be neglected here. The sum of all the diffu-
sion vectors within a phase is zero such that the spreading of a species within a 
phase is balanced by the spreading of other species. The theory of diffusion in a fl uid 
phase modeled at the microscale is based on    Fick ’ s law   . The microscale generalized 
form of this law  [1]  indicates that diffusion depends on the gradients of chemical 
potential of each of the species in the phase. For simplicity, and consistent with the 
form commonly used in studying multiphase fl ows, we will replace the chemical 
potential with the mass fraction and assume that the macroscale diffusion of species 



 i  depends only on the gradient of the mass fraction of this species in the phase of 
interest. By analogy with the microscale situation, we write:

    ε ε ρ ω αα α α α α α
αjdif dif

i i iD w n i N= − = =∇ , ; , . . . ,1     (4.35)  

where   Di
dif
α  is the    diffusion coeffi cient    of species  i  in the   α   phase and the negative 

sign is included to refl ect the fact that diffusion will occur from regions of high mass 
fraction to low mass fraction. 

 When this equation is written for a microscale system, the diffusion coeffi cient is 
on the order of 10  − 5    cm 2 /sec in a liquid and 10  − 2    cm 2 /sec in a gas. However, at the 
macroscale, two features serve to decrease this coeffi cient. First, diffusion is repre-
sented as being driven by gradients of macroscale mass fraction to achieve mac-
roscale homogeneity of concentration. This does not account for some microscale 

    Figure 4.1:     Alternative methods for obtaining the transport equation form used in simulations. All 
methods make use of the assumption that terms involving  v  s     ·     ∇  are negligible.  
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variations which would increase the mathematical driving force (i.e., a system can 
have macroscopically uniform concentration while having a microscopically non-
uniform concentration). Second, the presence of the solid grains restricts the spread-
ing of the chemical such that it must follow the tortuous path provided by the pore 
structure. This slows the apparent movement of the material between two macro-
scopic points. In fact, for an anisotropic pore space distribution, the solid phase may 
inhibit the spreading of a chemical species differently in different directions. This 
situation would require that the diffusion coeffi cient be replaced by a diffusion 
tensor so that:

    ε ε ρ ω αα α α α α α
αjdif dif

i i i w n i N= − ⋅ = =D ∇ , ; , . . . ,1     (4.36)  

where   Ddif
iα  is a 3    ×    3 symmetric tensor. Since anisotropy of the diffusion tensor is 

caused by the solid structure, it seems reasonable that the directional properties of 
the diffusion tensor would be the same as for the intrinsic permeability such that   
Ddif

iα  would be proportional to  k   s  . At the microscale, the diffusion coeffi cient depends 
only on the chemical species present. At the macroscale, it depends on the chemical 
species as well as the macroscale length and the structure of the porous medium. 
Modeling diffusion in a porous medium is not an easy problem. 

 However, in comparison to modeling dispersion, diffusion is straightforward. 
Whereas diffusion is due to movement of molecules relative to each other, disper-
sion is caused by nonuniformities in fl ow that cause mixing of the chemical species 
in a fl uid. In a porous medium, the magnitude and distribution of fl uid velocity, 
concentration inhomogeneities, and pore size distribution contribute to phase 
motion that causes the chemical species to mix. Dispersion is sometimes referred 
to as    mechanical dispersion    because it is the mechanical interaction of the fl uid with 
the porous medium that causes mixing to occur. 

 The relative importance of diffusion and dispersion is related to the velocity 
of the fl ow. When the fl uid is at rest, microscopically, no dispersion occurs and 
diffusion is the dominant cause of spreading of a contaminant. When a phase is 
fl owing, the relative contribution of dispersion to mixing can render diffusion to be 
unimportant. 

 Dispersion is a mixing process. Thus, it seems reasonable to assume that when no 
concentration gradient exists, a chemical species will not mix further such that dis-
persion, like diffusion, is dependent on the concentration gradient. 

 These considerations suggest that from a mathematical perspective dispersion is 
similar to diffusion, except that the coeffi cient that accounts for the mixing is dif-
ferent. Thus, by analogy with equation  (4.36)  we propose:

    ε ε ρ ω αα α α α α α
αjdis dis

i i i w n i N= − ⋅ = =D ∇ , ; , . . . ,1     (4.37)  

We expect, also, that   Ddis
iα  will depend on the velocity of fl ow, with dispersion being 

zero when there is no fl ow. The dispersion coeffi cient   Ddis
iα  is given in tensor form 

because dispersive mixing can depend on the direction of fl ow, even in an isotropic 
medium. 

 Based on some theoretical reasoning and experimental work, the dispersion coef-
fi cient is usually given the form:



    ε α α α αα α α
α α

α αD ldis T L T
i w n i N= + −( ) = =q

q q
q

, ; , . . . ,1     (4.38)    

  where   α   T  and   α   L  are called the    transverse    and    longitudinal    dispersivity, respectively, 
because they account for mixing in the directions normal to and aligned with the 
direction of fl ow, respectively. The longitudinal dispersivity is usually from 3 to about 
80 times the size of the transverse dispersivity indicating that mixing in the direction 
of fl ow is greater than mixing orthogonal to the fl ow. Also note that the proposed 
functional form for   εα αDdis

i  is the same for all chemical species. This implies that the 
mechanical mixing process impacts all species similarly. In fact, acquisition of data 
to support a more detailed model with species -  or phase - dependent coeffi cients 
  α   L  and   α   T  cannot be justifi ed based on any expected improved accuracy of this 
model. 

 If we examine equation  (4.38)  carefully, we see that the tensorial nature of   Ddis
iα  

is obtained solely due to the fact that the Darcy velocity can be different in each of 
the fl ow directions. The form proposed does not take into account anisotropy of the 
medium. The problem of modeling dispersion in an anisotropic medium presents 
serious theoretical and experimental challenges. We note that the anisotropy will be 
due to both the structure of the solid medium and the properties of the fl ow fi eld. 
Here, we will not consider a dispersion coeffi cient more complex than that pre-
sented in equation  (4.38) . 

 The diffi culties inherent in parameterizing a more complex correlation and deter-
mining an appropriate dependence on the velocity fi eld have precluded wide spread 
use of such a representation. Usually, then, the dispersion vector employed is that 
for an isotropic medium obtained as the sum of equations  (4.35)  and  (4.37)  such 
that:

    ε ρ ε ω αα α α α α α
αji i i w n i N= − ⋅ = =D ∇ , ; , . . . ,1     (4.39)  

where the diffusion/dispersion coeffi cient,  D   i α   , is approximated as:
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  The requirement that the dispersion vectors in a phase sum to zero is usually 
imposed by default. Typically, a phase is modeled using  N  α       −    1 of the species balance 
equations (therefore requiring only  N  α       −    1 values of   Di

dif
α ) in conjunction with the 

mass balance equation for the entire phase. This latter equation, developed in the 
previous chapter, inherently requires that the sum of the dispersion vectors be zero. 
Therefore, the constitutive form of the dispersion vector for species  N  α    is not 
obtained from equation  (4.39)  with  i   =   N  α    but is, by default, obtained from equation 
 (4.5) :
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The different character of this equation reinforces the idea that the  N  α       −    1 species 
to be modeled using the species balance equation are those present in the smallest 
amounts. The mass fraction of the dominant phase is then obtained from equation 
 (4.4) . When the diffusive part of the diffusion/dispersion coeffi cient is negligible in 
comparison to the dispersive part, the diffusion/dispersion coeffi cient is indepen-
dent of the chemical species and the dispersion model for the  N  α   th species is the 
same as for all other species in the   α   phase. 

 When the diffusive mixing is much less than that of dispersion, the diffusion 
coeffi cient,   Di

dif
α , may be neglected without signifi cant error. The model of the disper-

sion vector still requires specifi cation of the two parameters   α   T  and   α   L . The values 
of these parameters for fi eld simulations (e.g.,   α   L  typically on the order of tens of 
meters and   α   T  / α   L  typically on the order of 0.1) are actually dependent on the scale 
of the problem. Thus these coeffi cients can be approximated by fi ts of measured 
data to simulated concentration profi les. Also, perhaps as an indication that the 
theoretical models of dispersion are not particularly reliable or robust, some simula-
tions are performed using a constant, scalar value for the diffusion/dispersion coef-
fi cient to simulate spreading. 

 We recall, also, that   ρ   α   ω  i α     =   c i α   M  i   where  c i α    is the moles of species  i  pervolume of 
  α   phase and M  i   is the molecular weight of  i . When the spatial dependence of   ρ   α    can 
be neglected, the dispersion vector may be written in terms of molar concentrations 
for use in equations  (4.11)  or  (4.23)  as:
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  4.4     CHEMICAL REACTION RATES   

 The quantity  r i α    that appears in the species transport equation is the rate of produc-
tion of mass of chemical species  i  due to chemical reactions occurring within phase 
  α  . Because the reactions considered involve only species within a single phase and 
not exchanges between phases or processes occurring at the interface between 
phases,  r i α    is sometimes called the    homogeneous reaction rate   . Because these reac-
tions cannot create mass, they are governed by the constraint:

    r w n si
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, ,     (4.43)  

In many instances, it is convenient to work with chemical reactions expressed as 
rate of production of moles of a chemical species. The    molar rate of production   ,  R i α   , 
is related to the    mass rate of production    by:

    R
r

w n si
i

i
α

α

α= =
M

, ,     (4.44)  

Because chemical reactions do not necessarily conserve the number of moles in the 
system, the sum of the molar reaction rates is not zero. Rather, the sum of these 



reactions weighted by the molecular weight of each species will be zero, as can be 
seen by substitution of equation  (4.44)  into equation  (4.43) :

    Mi i

i

N

R w n sα
α

α
=
∑ = =

1

0 , ,     (4.45)  

Chemical reaction rate expressions are most often determined from experimen-
tal studies and involve a rate parameter, or parameters, and the concentrations of 
the chemical constituents involved in the reaction. The experimental studies are 
typically done on well - mixed systems such that the chemical reaction expressions 
are obtained in terms of microscale quantities and are most often expressed in terms 
of   molar concentrations  . For example, a fi rst order decay reaction of a chemical 
species has the form:

    R k ci i iα α α= −     (4.46)  

which can be transformed directly to the mass rate form by multiplying by M  i   to 
obtain:

    r ki i iα α α αρ ω= −     (4.47)  

If the temperature is essentially constant within an averaging region such that  k i α    
may be treated as a constant, this microscale reaction rate expression can be inte-
grated directly to:

    r ki
i

iα
α

α αρ ω= −     (4.48)  

The scripting on  k  is left as a subscript to emphasize that this coeffi cient is obtained 
from experiments that provide a microscale value. For a fi rst order reaction, the 
expression of the reaction is such that the microscale coeffi cent applies directly. We 
note that the decay rate indicated here depends on the phase being considered, as 
the decay rate in phase  w  may be different from that in phase  n , although radio active 
decay has a rate constant that is independent of the phase. 

 If all rate equations were fi rst order (i.e., the product of a constant coeffi cient 
and a chemical concentration), the challenge of modeling chemical reactions in 
porous media would be greatly simplifed. However, this is not the case. Consider, 
as a simple example, a reaction that is found to obey second order kinetics by labo-
ratory experiments such that:

    R k ci i iα α α= − 2     (4.49)  

Conversion of this expression to the mass based form yields:

    r
k

i
i

i iα
α

α αρ ω= − ( )
M

2     (4.50)  

Although  k i α  / M  i   is constant, the   mass fractions   may not be constant in the 
REV. When the mass fraction is not constant within the REV, the average of the 
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mass fraction squared will be less than the square of the average mass fraction 
because:

    ρ ω
δ

ρ ωα α
α α α ξ

δ α

i
i

V
V

v( ) ≤ ( )∫2 21
d     (4.51)  

where the equality applies only if   ρ   α    ω   i α    is uniform within the integration region. 
Therefore, if one assumes the macroscopic version of equation  (4.50)  has the 
form:

    r
ki i

i
iα α α αρ ω= − ( )

M
2

    (4.52)  

the predicted rate of decay will actually be less than what would be observed if the 
microscale fi eld is not uniform. 

 Despite this fact, options for improved representation of nonlinear reactions are 
diffi cult to prescribe, for the most part because they require understanding of the 
state of mixing at the microscale. When the REV size is large, errors introduced by 
not accounting for variations in the concentration within the REV can be signifi cant. 
In some instances, a high value of pH at a microscopic point could cause precipita-
tion of a solid phase. However, this pH spike could be missed if one describes the 
system using only macroscale, spatially averaged, values of pH. At the very least, 
one needs to be alert to errors that can arise when working with macroscale expres-
sions for chemical reactions and cognizant of the fact that sub - scale variations can 
dramatically alter system behavior. 

 The purpose of this section has not been to identify the range of possibilities of 
forms of chemical reactions. Besides decay reactions, one needs to consider genera-
tion of species. Also, the forms of the reaction rate expressions may depend on more 
than one species such that species transport equations become coupled (i.e., mass 
fractions of more than one species appear in the equation) and must be solved as 
a set rather than independently. The large number of chemical species that can be 
present in a subsurface system, the inherent diffi culties in modeling reactions, issues 
of scale that impact the closure relation for dispersion, and the coupling of species 
equations are all issues that lead one to describe modeling of subsurface transport 
with confi dence as either a nearly impossible exercise or as an area ripe for an infl ux 
of creative research ideas. We, of course, support the latter view.  

  4.5     INTERPHASE TRANSFER TERMS   

 The last process described in the species transport equation that we have to para-
meterize is the transfer of material between phases. Even when the phases are 
modeled as  “ immiscible ”  some small exchange of chemical species between the 
phases occurs. Thus, an oil spill contaminates water, and some water molecules will 
be transferred into the oil even if an interface between these phases can be identi-
fi ed. Transfer of mass between the solid and fl uid can take place by dissolution of 
the solid, adsorption of a layer of chemical species from the fl uid onto the solid 
surface, or desorption of species from the solid into the fl uid. 



 These processes are all accounted for in the transport equations by terms of the 
form   ei

αβ
α  which describe the  transfer of species i in phase  β  into phase  α  , or more 

precisely transfer from the   α  β   interface. We will model systems here characterized 
by transfer between phases with no accumulation of material at the interface such 
that   e ei i

αβ
α

αβ
β+ = 0. This indicates that the fl ux of species  i  into the   α   phase is exactly 

equal to its fl ux out of the   β   phase. To model this fl ux, we will make use of approxi-
mations that relate fl uxes to concentrations in the phases. 

 There are two different conceptual models that can be used to model the inter-
phase transfer. The fi rst, the more complicated model, is the    kinetic formulation    
or the    rate - limited model   . In this approach, the transfer of chemical species 
between phases is modeled as a rate process with the driving force for the process 
being the difference between the actual concentration and some equilibrium con-
centration. The system behaves in such a way that it moves toward equilibrium 
concentrations in each phase, but the rate at which it approaches equilibrium must 
be accounted for. The second model is the    equilibrium formulation   . This method 
considers the rate of transfer between phases within an REV to be so fast that at 
any point the concentrations of a chemical species are distributed between phases 
according to some equilibrium relation. Although the concentration need not be 
uniform within such a system, such that it can vary from location to location, the 
dynamics of interphase transfer are modeled as being instantaneous so that local 
equilibrium of concentration between phases exists. The advantage of this second 
approximation, from a computational perspective, is that if a concentration is solved 
for in one phase, the corresponding concentration in an adjacent phase is immedi-
ately known without having to solve a transport equation for concentration in that 
phase. The disadvantage is that equilibrium between phases is not achieved in many 
cases. 

 Both the kinetic and equilibrium models require that information be available 
concerning the    partitioning    of a chemical species among phases at equilibrium. In 
complicated mixtures of phases, the concentrations of each species in a phase impact 
the equilibrium concentrations of all species in that phase. Thus the equilibrium 
relations could be very complex functions. Additionally, equilibrium information 
is needed about each species in each phase. The development of equations for 
transport between phases is an active research area as efforts continue to account 
for the rate of interphase transfer as it is impacted by features such as the amount 
of interfacial area between phases, the coeffi cient describing the rate of transfer, 
dispersion processes that move species to an interface so that they are available 
for transfer to an adjacent phase, and surfactants that impact the surface tension 
between phases. We will not develop such complex functions, as the approach 
to modeling interphase transfer can be illustrated in the context of a simpler 
model. 

  4.5.1     Kinetic Formulation   

 The objective of this subsection is to provide a constitutive form for   ei
αβ
α  that can be 

used in modeling   interphase transport  . This quantity accounts for transport at the 
macroscale; thus it incorporates the impact of two microscale processes: (1) trans-
port of material from the phase to the interphase between phases, and (2) transport 
across the interface. At the interface, the chemical species concentration can be 
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considered to be at equilibrium with its concentration in the adjacent phase at the 
interface. However, the macroscale perspective is not able to describe the microscale 
interface concentrations. Thus, the transfer expression must be based on concentra-
tions within the adjacent phases and equilibrium expressions involving those bulk 
concentrations. 

 The exchange term   ei
αβ
α  is positive when transfer is from the   β   phase to the   α   

phase. In fact, such a transfer will take place when the chemical potential of species 
 i  is higher in the   β   phase than in the   α   phase. However, because modeling of chemi-
cal potential at the macroscale is complex and would require thermodynamic closure 
relations, concentration is typically used as a surrogate. Let us defi ne   ω β

α
eq
i  as the 

concentration of species  i  in the   α   phase that would be in equilibrium with the actual 
concentration,   ω  i β   , of  i  in the   β   phase. If we consider this concentration to be inde-
pendent of other chemical species present in the system, the equilibrium relation 
may be expressed in terms of a function,   f i i

eqβ
α βω( )  as:

    ω ωβ
α

β
α β

eq eq
i i if= ( )     (4.53)  

Then the   exchange term   is approximated as:

    e fi i i i i i i i
αβ
α

αβ
α α

β
α β

αβ
α α

β
ακ ω ω κ ω ω= − − ( )[ ] = − −[ ]eq eq     (4.54)  

where the    coeffi cient of mass transfer   ,   καβ
αi , will, in general, be a function of the Darcy 

velocity, dispersion coeffi cient, species concentrations, temperature, and amount of 
interfacial area between the   α   and   β   phases per REV  [2] . If this functional depen-
dence is very complex, the use of equation  (4.54)  simply replaces one complicated 
function,   ei

αβ
α , with two others,   f i i

eqβ
α βω( )  and   καβ

αi . This situation could not be described 
as progress. However, the form provided by equation  (4.54)  has the property that 
the exchange term goes to zero when the concentrations in the phases are in equi-
librium with respect to each other. Also, the coeffi cient of transfer can be approxi-
mated as a constant for some applications when the interfacial area in the system 
does not vary signifi cantly with space and the distance from equilibrium of the 
concentration fi eld is small. 

 In the preceding, transfer of the chemical species is viewed from the perspective 
of the   α   phase. We can also write corresponding formulas based on mass transfer 
behavior in the   β   phase. Equations similar to equations  (4.53)  and  (4.54)  with the 
superscripts and subscripts modifi ed to describe the   β   phase are, respectively:

    ω ωα
β

α
β α

eq eq
i i if= ( )     (4.55)  

and:

    e fi i i i i i i i
αβ
β

αβ
β β

α
β α

αβ
β β

α
βκ ω ω κ ω ω= − − ( )[ ] = − −[ ]eq eq     (4.56)  

Because no mass accumulates at the interface, the fl ux across the interface must 
be the same, regardless of which phase is referenced to describe the process. 
Therefore:

    e e f fi i i i i i i i i i
αβ
α

αβ
β

αβ
α α

β
α β

αβ
β β

α
β ακ ω ω κ ω ω= − = − − ( )[ ] = − ( )[eq eq ]]     (4.57)  



Utilization of the preceding equation requires that a form of the equilibrium 
function be obtained. If we consider the case of unsaturated fl ow where one phase 
is water and the nonwetting phase is air, a relation such as Henry ’ s law may used 
as the equilibrium relation for the oxygen species with:

    ω ω ρ
ρ

ωeq eqn
iw

n
iw in

iwn n

w
inf

H= ( ) =     (4.58)  

where  H iwn   is the Henry ’ s law constant and is approximately 2    ×    10  − 2  for oxygen in 
an aqueous system. Thus if we model the  w  phase, the exchange term is:

    e
H

wn
iw

wn
iw iw

iwn n

w
in= − −



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κ ω ρ
ρ

ω     (4.59)  

A linear expression of this form is often employed when modeling the mass exchange 
between two fl uids where the parameter  H iwn   is used to describe a linear equilibrium 
relation. More complex equilibrium relations may also be employed that fi t data 
obtained over a range of values of mass fractions of interest. 

 Modeling the exchange of a chemical species  i  between the solid and one of the 
fl uids, for example the  w  phase, typically makes use of:

    e e fws
is

ws
iw

ws
is is

w
is iw

ws
is is

w
is= − = − − ( )[ ] = − −( )κ ω ω κ ω ωeq eq     (4.60)  

Then an    adsorption isotherm    is employed to relate the equilibrium values of   ω  is   and 
  ω  iw  . Here we will mention three isotherms that are in common use. We note that 
the forms of the isotherms, and particularly the values of the coeffi cients in the iso-
therms, take on different values depending on whether one expresses them in terms 
of mass fractions, mole fractions, mass per volume, or moles per volume. It is impor-
tant that the values of parameters be adjusted between the different formulations 
to obtain consistency. Here, we will formulate all the isotherms in terms of mass 
fractions. 

 A    linear isotherm    is expressed:

    ω ωeqw
is iws iwK=     (4.61)  

where  K iws   is a dimensionless constant and is the constant slope of a plot of   ω  is   vs. 
  ω  iw  . One standard notation for this expression involves replacing  K iws   by   Kd

iws wρ , 
where   Kd

iws  is called the    distribution coeffi cient   . Over a range of values of mass frac-
tion where this isotherm is applied,   ρ   w  is usually considered to be constant. If con-
centrations vary over a wide range, it may not be possible to use a single value of 
 K iws   (or   Kd

iws ) to fi t the data. In that case a piecewise linear fi t may be used for a 
more complex isotherm. The linear isotherm is attractive because of its particularly 
simple functional form. 

 The    Freundlich isotherm    is more general than the linear isotherm and is given 
by:

    ω ωeq
F

w
is iws iw n

K= ( )1
    (4.62)  
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where  K iws   and  n  F  are constants. When  n  F    =   1, the Freundlich isotherm reduces to 
the linear isotherm. This isotherm typically applies over a range of values of mass 
fraction of interest to the problem at hand. One must be careful not to apply it 
beyond the range of measured data used to parameterize the expression. 

 The    Langmuir isotherm    is a relation describing the adsorption process that is 
physically based, rather than just a curve fi t. It relies on the idea that chemical 
species adsorb in a single layer onto available sites on the solid. At low concentra-
tions, the adsorption process is linear as there is no competition for adsorption sites. 
However, when the concentration of a chemical species becomes large, the sites on 
the solid become fi lled and species must compete for these locations. Thus the 
amount of adsorbed species approaches a constant limit. These ideas are incorpo-
rated into the Langmuir isotherm by the relation:

    ω ω ω
ωeqw

is
iws is iw

iws iw

K
K

=
+

max

1
    (4.63)  

where  K iws   and   ωmax
is  are constants. When the mass fraction in the fl uid is small such 

that  K iws  ω  iw      �    1, the Langmuir isotherm simplifi es to the linear isotherm:

    ω ω ωeqw
is iws is iwK= max     (4.64)  

When   ω  iw   is large such that  K iws  ω  iw      �    1, the Langmuir isotherm indicates that the 
amount of species  i  adsorbed does not depend on   ω  iw   but approaches a constant 
value with:

    ω ωeqw
is is= max     (4.65)  

Although the Langmuir isotherm is attractive because it incorporates the fact 
that there is a limit to how much chemical species can be adsorbed on a solid, it 
does have some shortcomings. First, as it has been expressed, if there are multiple 
species dissolved in the  w  phase they can compete for available adsorption sites. 
Solutes that do not adsorb or react are called    conservative species    because their 
amount in the fl uid phase changes only due to mass fl ux into and out of a region. 
Solutes that react or adsorb are referred to as    nonconservative species   , and it is the 
competition among the nonconservative species that changes the value of   ωmax

is  for 
each species. As long as the concentrations of all nonconservative species are small 
such that the Langmuir isotherm behaves linearly for each solute, this issue does 
not arise. 

 A second problem in modeling adsorption on a solid in multiphase fl ow is that 
the Langmuir isotherm does not refl ect the fact that all fl uid phases can be sources 
of constituents that can adsorb on the solid. Thus the equilibrium amount of  i  
adsorbed on the solid could depend on the mass fractions of species  i  in all fl uid 
phases. If we are studying a situation where the wetting phase completely coats the 
solid such that no other fl uid phases are in contact with the solid, this problem will 
not arise. However, it will be important to model the mass exchange between the 
fl uids accurately. 

 Although the discussion of shortcomings of the Langmuir isotherm is more 
extensive than that for the Freundlich isotherm, this does not necessarily imply that 
the Langmuir isotherm is inferior. Because it is based on assumptions about the 
physical and chemical behavior of the solid, we can identify situations when those 



assumptions break down such that the Langmuir isotherm may not model equilib-
rium adsorption well. On the other hand, the coeffi cients of the Freundlich isotherm 
are developed by curve fi tting data. The isotherm applies only for the conditions 
under which the data was collected. It is not possible to speculate about the limits 
of validity of the fi t since no physical insight is involved. When one tries to incor-
porate physical understanding into the development of coeffi cients for constitutive 
equations, the opportunity arises to consider limits of the equations when other 
physical situations exist. Thus the fact that we can identify situations in which 
the Langmuir isotherm may break down is helpful in that it identifi es the need 
for research into other situations where more general isotherms need to be 
developed. 

 Modeling of the exchange of multiple species between phases is complicated 
when a large number of species is involved and relations are needed for equilibrium 
distributions of species among phases. Additionally, when modeling the kinetic 
transfer between phases, coeffi cients of mass transfer,   καβ

αi , are also needed for each 
species. We note, however, that the condition   καβ

αi = 0  implies that there is no transfer 
of species  i  between the   α   and   β   phases such that there is no need for an equilibrium 
function   f i

eqβ
α . We can simply impose   e ei i

αβ
α

αβ
β= = 0 . At the other extreme, when   καβ

αi  is 
very large, the mass transfer rate will be fi nite only if   ω ωβ

α α
eq
i i≈ . This indicates that 

the concentrations in adjacent phases are essentially at equilibrium and equation 
 (4.53)  reduces to:

    ω ωα
β

α βi i if= ( )eq     (4.66)  

This simplifi cation defi nes the equilibrium formulation as the special case of the 
  kinetic formulation   that forms the topic of the next subsection.  

  4.5.2     Equilibrium Formulation   

 Besides being a special case of the kinetic formulation, the   equilibrium formulation   
leads to a simplifed set of equations that have to be solved. Rather than solving the 
transport equation for species  i  in each phase, we only have to solve the transport 
equation for that species in one phase. Then the mass fraction in the adjacent phase 
is obtained from equilibrium equation  (4.66) . 

 The simplifi cations of the equilibrium formulation are not only convenient, they 
are also sometimes necessary. The necessity follows from the fact that modeling the 
rate of transfer   ei

αβ
α  as a product of a very large mass transfer coeffi cient and a very 

small difference between the actual and equilibrium mass fractions in the phase is 
diffi cult. The equilibrium formulation considers the mass transfer coeffi cient to be 
essentially infi nite, and the difference between the actual and equilibrium concen-
trations in equation  (4.54)  is essentially zero. To manage this situation, we make use 
of the constraint that   e ei i

αβ
α

αβ
β+ = 0 rather than treating each of the exchange terms 

in this sum separately. We also use the fact that the sum of the exchange of species 
is equal to the total mass exchange between phases as expressed in equation  (4.6) . 

 Complicating the situation is the fact that although one species in adjacent phases 
may partition between the phases according to the equilibrium relation, that species 
may distribute according to a kinetic formulation with another phase. Thus a truly 
comprehensive formulation of a multispecies, multiphase system would involve 
identifying each interphase exchange as kinetic or equilibrium and formulating that 
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exchange appropriately. We have discussed formulation of kinetic exchanges in the 
last subsection; here we focus on equilibrium exchanges. 

 The basic maneuver in formulating transport equations to accommodate the 
equilibrium formulation for a species  i  in phases   α   and   β   is to add the transport 
equations for that species in those two phases together so that the mass exchange 
terms sum to zero. This can be employed using equations based on the direct, 
rigorous, or distribution forms of the transport equations. Here, by way of example, 
we will use the distribution form. We will consider the case where one species, 
species  k , distributes itself between the  w  and  n  fl uid phases according to the equi-
librium model. We will also assume that no other species are exchanged between 
the  w  and  n  phases, that adsorption of species  k  onto the  s  phase, if any, must be 
modeled using a kinetic formulation, and that other species may be exchanged by 
the fl uids and the solid. Thus we can write equation  (4.28)  for the  w  and  n  phases, 
respectively as:
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and:

    

ε ρ ω ρ ω ε

ε ω

n n
kn

n n kn w kn

n kn
wn
kn kn

wn
n

ns
kn

t
r e e e

∂
∂

+ ⋅ + ⋅( )
= + −( ) +

q j∇ ∇

−−( )
+ −( ) −( )

=
∑

ω

ρ ω ω δ

kn
ns
n

n kn kn n
N

e

QW W W
W

W

W

x x
1

    (4.68)  

Since we know that the sum of the mass exchange terms between phases is zero 
and have specifi ed that the only mass exchanged between the fl uid phases is species 
 k , the mass exchange terms in this example are related by:

    e e e ewn
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kw= = − = −     (4.69)  

These conditions can be used in conjunction with equations  (4.67)  and  (4.68)  to 
eliminate all the terms involving mass exchange across the  wn  interface and obtain 
the single transport equation for species  k :
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The equilibrium relation that describes the distribution of species  k  between the 
 w  and  n  phases is the general form of equation  (4.66) :

    ω ωkn
w

kn kwf= ( )eq     (4.71)  

Differentiation to obtain the time derivative and gradient of   ω  kn   provides:
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and:
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The last three equations can be used to eliminate   ω  kn   from equation  (4.70) :
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    (4.74)  

In the interest of having a complete formulation, let us substitute the constitutive 
forms for the dispersion vector given by equation  (4.39)  and again make use of 
equation  (4.73)  to eliminate  ∇   ω  kn   from the dispersion equation for  k  in phase  n  to 
obtain:
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Equation  (4.75)  can be solved for the distribution of species  k  in the  w  phase. 
Then the distribution in the  n  phase can be obtained from the equilibrium relation. 
In cases where the chemical reaction terms are nonzero and where exchanges with 
the solid phase are important, it may be necessary to solve this equation in conjunc-
tion with the transport equations for the species that are involved in chemical reac-
tions that consume or produce  k  and with adsorption equation  (4.32)  for species  k  
in the solid. 

 Despite its rather complex appearance, equation  (4.75)  can be explored to 
give some insight into the impact of the equilibrium exchange of mass on perceived 
system performance. This will be an approximate analysis motivated by the 
desire for insight rather than rigor, although the main approximation relates to the 
form of the equilibrium function   f w

kn
eq . We will consider the case where   ρ  n   and   ρ  w   

may be considered constant. Also, use a linear distribution relation so that   
f Kw

kn kwn kw
eq = ω . We will neglect the pumping terms since these do not contribute to 

the observations we will be making. Implementation of these stipulations in equa-
tion  (4.75)  yields:
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In the interest of our exploratory study, 4  we will consider the situation that the 
mass fractions are small so that:
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    (4.77)  

Thus the transport equation becomes:

 4     Remember that as long as we know what assumptions we are making and conditions we are imposing, 
we can go back and re - examine our system under less stringent assumptions in order to gain more insight 
or generality. 
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We can divide by the term in parentheses that multiplies the time derivative so 
that the time derivative term is identical to that in the original transport equation 
 (4.67)  for   ω  kw   obtained prior to applying the equilibrium formulation assumption. 
The resulting equation suggests that if we run an experiment to observe the move-
ment of the chemical species, a conservative species that moves without exchange 
of mass will seem to advect with Darcy velocity  q   w  , while species  k  will apparently 
advect at Darcy velocity   qapp

kw  where:
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Therefore, the apparent fl ow velocity of a species in the  w  phase will depend on 
both the magnitude of the equilibrium partitioning coeffi cient and the magnitude 
and direction of fl ow of the  n  phase. We can obtain an approximate expression for 
the effective dispersion coeffi cient,   Dapp

kw , by comparison of the dispersion terms in 
equations  (4.67)  and  (4.78)  of the form:
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where the approximation comes in because we have considered spatial variation 
of the fi rst term on the right to be small. When | D   kn  |    <    | D   kw  |, the effects of 
dispersion will be decreased so that spreading of species  k  will be decreased from 
that obtained in the absence of equilibrium exchange. Spreading will be enhanced 
when | D   kn  |    >    | D   kw  |. 

 As an additional study, let us consider the case where the transfer of species  k  
among all three phases is an equilibrium process. We will only need one transport 
equation for this species along with two equilibrium expressions. To obtain the 
required form, we will combine equation  (4.75)  with equation  (4.32)  to eliminate 
the exchange term for species  k  between the  w  and  s  phases. For simplicity, we will 
consider that  k  is the only species that is exchanged among the phases. An equilib-
rium isotherm describing the partitioning of species  k  between the  w  and  s  phases 
is employed in the general form:

    ω ωks
w

ks kwf= ( )eq     (4.81)  

Typically this function would describe a linear, Freundlich, or Langmuir isotherm. 
The algebra required to complete the derivation is a straightforward extension of 
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the manipulations employed in obtaining equation  (4.75) . The additional algebra 
leads to:
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Examination of this equation indicates that there are no changes to the coeffi -
cients of the terms involving advection, dispersion, and pumping in comparison to 
equation  (4.75) . This should not be surprising as these processes are considered 
unimportant to modeling the species transport in a solid. The coeffi cients of the time 
derivative and the chemical reaction have been altered by using equilibrium parti-
tioning with the solid phase. We will examine these quantities. 

 We identify the quantity in brackets multiplying the time derivative in equation 
 (4.82)  as the    total retardation factor    for species  k  in the  w  phase,   Rkw

T , so that:
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This is referred to as a  “ retardation ”  factor be cause it acts as a factor that impacts 
the apparent velocity (i.e., it retards the apparent velocity). Retardation is most 
commonly considered in the context of a single fl uid and the interaction of the 
species in that fl uid with the solid. The key element in reducing the total retardation 
factor to the    standard retardation factor   ,   Rkw

S , is the assumption that species  k  is 
either insoluble in the  n  phase or must be modeled using the kinetic approximation 
in its exchanges from the  w  or  s  phases with the  n  phase. In either case, the standard 
retardation factor is obtained as:
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Also, processes associated with the  n  phase will not appear in the combined trans-
port equation for species  k  obtained from the  w  and  s  transport equations except 
for some terms involving exchanges with the  n  phase. These terms will be zero in 
some instances (e.g., no  n  phase is present, or mass exchanges of all species with the 



 n  phase are unimportant) but otherwise will have to be modeled using the kinetic 
formulation. Thus, equation  (4.82)  simplifi es to:
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The retardation factor accounts for the fact that if the Darcy velocity of the fl ow is 
 q   w  , the adsorption and desorption of species  k  on the solid behave as if it is actually 
traveling only at a Darcy velocity of   qw kwRS . 5  Interaction with only the essentially 
immobile solid retards the fl ow, whereas interaction with the  n  phase when the 
equilibrium formulation for mass exchange is appropriate indicates that movement 
of that phase may either retard or advance the fl ow. 

 In the most common form of   Rkw
S  a linear isotherm, as in equation  (4.61) , is 

employed with:

    f Kw
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Then the standard retardation factor becomes:
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Usually, the factor (1    −      ω  kw  ) / (1    −     K kws  ω  kw  ) is overlooked in formulating the standard 
retardation factor. However, the fact that the mass fractions studied are typically 
very small means that the factor is close to 1 in any event. Introducing the distribu-
tion coeffi cient   Kd

kws  by setting   K Kkws
d
kws w= ρ , we then obtain:
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More complex forms of the retardation coeffi cient result when the Freundlich 
and Langmuir isotherms are employed. With these nonlinear forms, the expression 
for the retardation factor will be dependent on the species mass fraction so that the 
magnitude of the retardation will depend on the concentration. 

 The fact that this section on the equilibrium formulation made use of the distri-
bution forms of the species conservation equations is not an essential part of the 

 5     This behavior is the basis for chromatography whereby a solvent containing a mixture of solutes fl ows 
through a column and the various species separate along the column because they have different appar-
ent velocities of fl ow along the column due to differences in their respective retardation coeffi cients. 
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derivations. The same conclusions are reached using the direct and rigorous forms 
of the equations. The defi ning feature of the equilibrium formulation is the use of 
partitioning relations between fl uids or isotherms for fl uid - solid interactions to 
eliminate the need to solve a transport equation for a species in each phase. When 
distributional equilibrium is quickly achieved, knowledge of concentration in one 
phase provides knowledge of the concentration in another phase through the equi-
librium relation. The method simplifi es computation; however if an averaging region 
is large, the equilibrium assumption may not apply so that simulation must employ 
the kinetic approach. Systems composed of many species can make use of the kinetic 
approach for some and the equilibrium approach for others. The issues of scale, the 
need for appropriate kinetic and equilibrium constitutive expressions, and the need 
to support whichever model is chosen with accurate coeffi cients remains a challeng-
ing area of research.  

4.5.3 Summary: Kinetic vs. Equilibrium Formulations 

 The mathematics in the preceding subsections indicates the quite different implica-
tions arising from the application of the   kinetic and equilibrium formulations  . The 
mathematics is important. However, the mathematics is employed to describe what 
is observed physically. The mathematical descriptions will improve as the observa-
tions improve, and vice - versa. Here, we present some of the physical observations 
regarding the behavior of nonaqueous phase liquid   (NAPL) in the subsurface that 
inform the selection and use of the alternative mass exchange formulations. 

 The subsurface environment of NAPLs involves four phases: solid, water, NAPL, 
and a gas phase. The addition of a third fl uid phase complicates the simulation 
problem because an additional set of conservation equations is needed, and the 
closure relations tend to become more complex. 

 When modeling NAPL in near surface granular soils, the following interphase 
exchange mechanisms must be considered: 

 •   dissolution from the NAPL phase into the water phase;  
 •   evaporation from the NAPL phase into the gas phase;  
 •   evaporation of NAPL that has dissolved in the water phase into the gas 

phase;
 •   adsorption of the NAPL dissolved in the water phase onto the solid.    

 The assumption is also made that primarily the water phase makes direct contact 
with the solid so that adsorption directly from the NAPL phase or from the gas 
phase can be neglected. 

 Choices must be made concerning modeling of the transfer processes kinetically 
or using the equilibrium formulation. The following considerations are useful: 

 •   The kinetic formulation of mass transfer provides predictive fl exibility, as local 
equilibrium conditions can be simulated by increasing the mass transfer 
coeffi cient.  

 •   The kinetic formulation is more accurate than the equilibrium formulation for 
heterogeneous soils, inhomogeneous residual NAPL distribution, inhomoge-
neous blob size distribution, and high fl uid fl ow rates.  



   •      Modeling pump - and - treat remediation of NAPL - contaminated soils must be 
based on the kinetic formulation of mass transfer to mimic both bench - 
scale experimental and fi eld - scale data, specifi cally effl uent concentration 
tailing.  

   •      When the desorption transport path of NAPL is from soil to water and then 
from water to gas, data suggests that only one of the mass transfer processes 
needs to be modeled kinetically as the slower kinetic process will allow for 
equilibrium to be achieved for the other transfer process.  

   •      A linear equilibrium formulation making use of the Henry ’ s law constant is 
usually used to defi ne NAPL transport between the gas and water phases.  

   •      The maximum NAPL mass fraction that can be adsorbed onto the soil is usually 
defi ned using an organic carbon - based model.    

 Based on these factors, the interphase transfer relations for the organic NAPL 
are formulated. Transport equations are combined, as allowed, when the mass 
exchange is modeled as an equilibrium process. When the NAPL is present as a 
mixture of organic chemicals, decisions have to be made as to whether an accurate 
simulation can be achieved without modeling each organic, but rather, for example, 
by grouping the chemicals by molecular weight. We emphasize that the preceding 
items are observations that help inform the modeling process. The actual process 
involves making decisions and selections based on available data, computational 
power, the simulation code being employed, and the questions to be answered by 
the simulation. Theory, experiments, fi eld observation, and computational power are 
best employed synergistically to obtain useful simulations.   

  4.6   INITIAL AND BOUNDARY CONDITIONS 

 After the species transport equation is closed through use of constitutive equations 
for the dispersion vector, homogeneous chemical reactions, and interphase transfer, 
initial and boundary conditions on the mass fractions must be specifi ed. The govern-
ing species transport equation is actually similar in form to the groundwater fl ow 
equation, and thus considerations of the auxiliary conditions are similar to those in 
Subsection  3.6.5 . 

 If the distributions of the contaminants are varying with time such that they are 
described by the species transport equation with the time derivative included, the 
distribution at the beginning time of the modeling process,  t  0 , must be specifi ed. This 
condition is:

    ω αα α
α

i it w n s i N0 1, , , ; , . . . ,x x( ) = ( ) = =Ω     (4.89)  

where  Ω   i α    is the specifi ed distribution. For modeling movement of contamination in 
the past, such as the previous evolution of a gasoline spill at a service station, this 
condition requires that an initial distribution of contamination can be specifi ed. 
Thus, for example, if a contaminant plume is detected today and distribution of the 
contamination in the subsurface is to be simulated for the last fi ve years, it is neces-
sary to know the contaminant distribution existent fi ve years ago. If this data is not 
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available, as it typically would not be, it is necessary to try to estimate a possible 
initial distribution from some earlier time. This is not easy, as such estimates are 
often unreliable. Errors in the initial condition can seriously degrade the accuracy 
of the simulation of plume movement. 

 At all points on the boundary of the domain, one condition on the mass transfer 
must be specifi ed for each species in each phase for which a transport equation must 
be solved. Recall that if an equilibrium distribution between phases for a species 
exists, a single transport equation for that species is formulated that takes into 
account the interaction. Alternatives for the conditions to be specifi ed at a point on 
the boundary,  x  b   , are a fi rst type condition:

    ω αα α
α

i it t w n s i N, , , , ; , . . . ,x xb b( ) = ( ) = = −Ω 1 1     (4.90)  

a second type condition:
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or a third type condition:
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where the quantities on the right side of each of these conditions are specifi ed. 
 The fi rst type condition is the specifi cation of the species concentration at the 

boundary of the domain. The second type condition is the normal gradient at the 
boundary. For a situation where no fl ow occurs at the boundary and the species is 
not reacting at that boundary, the normal gradient will be zero (i.e.,  Ω   i α    ′ ( t ,  x  b )   =   0). 
The third type condition is the specifi cation of the normal fl ux of concentration at 
the boundary due to advection and dispersion. The total fl ux is equal to the specifi ed 
quantity  F i α   ( t ,  x  b ). 

 For a transient problem, initial conditions must be specifi ed throughout the 
domain, and one of the three optional boundary conditions must be specifi ed at 
each point on the boundary. For a steady state problem, no initial condition is 
needed; any one of the three boundary condition types may be specifi ed at each 
point on the boundary although a fi rst or third type condition must be specifi ed at 
least at one point.  

  4.7   CONCLUSION 

 For simulation of a past fi eld contamination problem, the specifi cation of boundary 
conditions that are consistent with what were the actual boundary conditions impact-
ing the system is diffi cult. Excellent historical records are needed, but are seldom 
available. It is uncommon for an illegal dumper of toxic waste to keep precise 
records of the times, locations, and magnitudes of fl uxes of contamination applied 
at the boundary of an environmental system. Specifi cation of exchanges of contami-
nation with adjacent streams at the boundary of a domain of interest are also 



dependent on knowledge of historical additions of contamination to the stream. 
Simulations also require information on pumping rates and the addition and removal 
of chemical species through wells. Uncertainties in all these important elements 
coupled with uncertainties in specifi cation of expressions for dispersion fl uxes, inter-
phase mass exchange, and chemical reaction rates suggest that simulation of chemi-
cal transport is a diffi cult business. 

 We would also be remiss if we did not note that in the case of density dependent 
fl ow, changes in fl uid density due to changes in fl uid chemical composition can 
impact the fl ow fi eld of the phase. In those instances, one cannot solve the fl ow 
equations and then examine the distribution of chemicals in the phase. Transport 
feeds back to the fl ow fi eld. Therefore an approach to solving the fl ow and transport 
equations simultaneously must be employed.  

  4.8   EXERCISES   

  1.     The direct approach led to transport equation  (4.9)  for a chemical species in a 
fl uid phase. The rigorous approach led to equation  (4.22) . By examining the 
assumptions involved in their derivations, indicate situations where one form 
might be preferable to the other for a simulation problem.  

  2.     The rigorous approach led to transport equation  (4.22)  for a chemical species in 
a fl uid phase. The distribution approach led to equation  (4.28) . Compare the 
assumptions that went into these alternative forms of the equation and identify 
situations where one might be theoretically preferable to the other for a simula-
tion problem.  

  3.     The closure equation for the dispersion vector is equation  (4.39) . Obtain the 
expressions for each component of the dispersion vector by expanding this 
expression so that the elements of the  D   i α    and of  ∇   ω   i α    appear explicitly.  

  4.     Derive the standard retardation factor for the case where the equilibrium distri-
bution between the fl uid and solid follows a Langmuir isotherm.  

  5.     Consider equation  (4.85)  which expresses the transport equation for use when 
exchange of mass between the  w  and  s  phases may be considered an equilibrium 
process. Assume the species of interest,  k , is a radioactive isotope that decays 
according to:

   r w sk k kα αω αλ ρ α= − =d ,  

where   λd
k is a constant decay coeffi cient that is the same in both the  w  and  s  

phases. We have seen that the standard retardation factor causes a decrease in 
the apparent velocity of species  k . Does this factor also cause an apparent decrease 
in the reaction rate? Explain this answer on physical grounds.  

  6.     Comment on or correct the following statement: The retardation factor multiplies 
the time derivative in a transient problem. Therefore, if one considers a steady 
state problem, the retardation factor does not appear; and the species of interest 
experiences no decrease in apparent velocity.              
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SIMULATION

5

     In this chapter we will expand, through   simulation  , on various porous - medium fl ow 
and transport mathematical - physical concepts introduced in the previous chapters. 
The examples will illustrate porous medium fl ow systems of varying degrees of 
complexity. We begin, in Section  5.1  and Section  5.2  with one - dimensional, two -
 phase fl ow problems. In Section  5.3  we extend this work to two space dimensions. 
The concept of phase dissolution and mass transport is examined in Section  5.4 . In 
Section  5.5  we look at the impact that seven different model attributes have on the 
behavior of fl ow and mass transport in a single - phase, water saturated system. In 
this section we also illustrate the importance of using three - space - dimensional 
models to simulate problems involving vertical fl ow. In the fi nal section in this 
chapter, we extend our studies to include three - phase fl ow and also provide a com-
parison between simulated and physical model results.  

5.1 1-D SIMULATION OF AIR -WATER FLOW 

 In this section we introduce    multiphase simulation    using a one - dimensional example 
fi rst presented by Guarnaccia  [1]    depicted in Figure  5.1 . The physical system consists 
of a column that is 67   cm long and 2   cm in diameter. The boundary at the top is open 
to the atmosphere. The usual procedure in modeling such a system is to treat the 
air phase as being passive and at a constant pressure. Here, we will model both the 
air and water phases.   

 For this simulation the column is initially fully saturated with water such that the 
initial water saturation  is  sw    =   1.0. The air pressure is set to a constant value of zero 
at the top with a no - fl ow condition on the water phase. At the beginning of the fi rst 
simulation, which is described below in Subsection  5.1.1 , the pressure of water at 
the bottom of the column is set to 31.5   cm of water so that the water begins to drain 
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from the column (drainage phase).A no - fl ow condition on the air phase exists at 
the bottom of the column. After a specifi ed period of time water is again introduced 
at the top of the column, and we examine the saturation change behavior during 
secondary imbibition. 

 The conservation of mass equation governing fl ow in each fl uid phase of the 
system is given by equation  (3.122) :

    
∂

∂
s

t
s e e Q w ns wn

Nα α
α α α

α
α α α αερ

ερ ρ δ α( ) + ∇⋅( ) = + + −( ) =
=

∑v x xW W
W

W

W

,
1

    (5.1)  

where  α    =    w  for the water phase and  α    =    n  for the nonwetting gas phase,  s  α    is the 
   saturation    of the a phase,   ρ   α    is the  α     phase density   , and   ε   is the    porosity   . If we assume 
that no mass is being exchanged between phases and note that there is no pumping, 
the terms on the right side are zero. Also, the only velocity component is in the  z  
direction so the equation simplifi es to:

    
∂

∂
∂

∂
s

t
s v

z
w nz

α α α α αερ ερ α( ) + ( ) = =0 ,     (5.2)   

 The fl ow equation is based on equation  (3.131) :

    q
kα

α

α
α α

µ
ρ α= − ⋅ ∇ −( ) =

s

p g w n,     (5.3)   

    Figure 5.1:     One - dimensional porous - medium fi lled column used in example problems discussed in 
this chapter. Note that the vertical axis is positive downward. Note that  p a   and  p w   are the pressure 
values of air and water, respectively.  
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 This equation is simplifi ed to its one - dimensional form with the movement of solid 
grains deemed negligible and with the isotropic form of the intrinsic permeability 
as given by equation  (3.132)  so that   k ls sk kα α= rel . Therefore, we obtain:

    s v
k k p

z
g w nz

s
α α

α

α

α
αε

µ
ρ α= − −



 =rel ,

∂
∂

    (5.4)   

 The solution to equations  (5.2)  and  (5.4)  requires constitutive relationships for   
krel

α  and a relation for the pressure difference between phases as a function of satu-
ration (as discussed in regard to equation  (3.135)  with  p c  ( s w  )   =    p n      −     p w  ). The model 
will be formulated in terms of the effective saturation of water,   sw

e , as introduced in 
equation  (3.141)  and the capillary head,  h c  , as defi ned in equation  (3.136) . The  p c   -  s w   
model to be employed is the van Genuchten form given by equation  (3.146) , which 
can be rearranged to give:

    h sc w M N
= ( ) − 

−1
1

1 1

α e     (5.5)   

 Here the parameter   α   is assigned a value   α   d  for the wetting phase drainage and   α   i  
for wetting phase imbibition. The parameter  N  is related by curve fi tting to the pore 
size distribution, and we will make use of the usual expression for  M  in terms of  N, 
M    =   1    −    1 /N . Hysteresis exists in the  p c   -  s w   relation because of fl uid entrapment and 
contact angle effects. Besides altering the value of   α   depending on whether drainage 
or imbibition is occurring, we make use of an effective, albeit complicated, strategy 
for moving along scanning curves. The details of this procedure are beyond the scope 
of this presentation. The interested reader can fi nd the specifi cs of this protocol 
in  [2]   . 

 The   k sw
rel-α  model parameters are defi ned by equations  (3.167)  and  (3.168)  based 

on the Mualem porosity distribution function and the van Genuchten capillary 
pressure relationship:

    k s s sw w w w M M

rel e e e( ) = ( ) − − ( ) { }κ
1 1

1
2

    (5.6)  

    k s s sn w w w M M

rel e e e( ) = −( ) − ( ) 1 1
1 2ζ

    (5.7)   

 Other physical constants that are required are found in Table  5.1 . For convenience, 
plots of   k sw

rel e-α  and   p sc w- e  based on the parameter values in the table are given in 
Figures  5.2 ,  5.3 , and  5.4  respectively.         

  5.1.1     Drainage in a Homogeneous Soil   

 The fi rst problem we consider is water drainage from the fully saturated column 
shown in Figure  5.1 . As noted, the boundary conditions are zero air pressure (zero 
pressure head) and no fl ow of water at the top of the column and a water pressure 
of 31.5   cm of water and no fl ow of air at the lower end. Although the air - water 
system has been described mathematically, the complexity of the system requires 
that the governing equations be solved using numerical methods. In the following 
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 Table 5.1:     Parameter values used in drainage and imbibition 
of water example 

   Fluid Properties   

    ρ  w     =   0.9982   g/cm 3       ρ  n     =   0.000129   g/cm 3   
    µ  w     =   0.01 poise      µ  n     =   0.0015 poise  

   p c   -  s  w   Model Defi nition   

    α   d    =   0.04   cm  − 1  
   sw

i = 0 12.   
    α   i    =   0.06   cm  − 1  
   sn

r = 0 02.  
  N    =   10   =   1/(1    −     M )  

    k sw
rel-α  Model Defi nition   

    s s s s sw w w n w
e i r i= −( ) − −( )1       κ     =    ζ    =   0.5  

   Field Properties   

    ε     =   0.37     k s     =   5.0    ×    10  − 7    cm 2   

    Figure 5.2:     Relationship between relative permeability of water and effective water saturation (data 
from  [2] ).  

    Figure 5.3:     Relationship between relative permeability of nonwetting phase and effective water satura-
tion (data from  [2] ).  
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multiphase fl ow examples a    collocation fi nite element method    is employed. The 
comcomitant computer program that does the calculatons is called NAPL, is fully 
documented, and is available free of charge at   http://www.epa.gov/ada/csmos/models/
napl.html  . 

 The NAPL code models both the water and air phases, in contrast to a standard 
Richards ’  model that would treat the air aerostatically. Nevertheless, we will discuss 
the results of the computation in terms of the pressure difference between the 
phases, the capillary pressure. The simulated changes in capillary pressure and satu-
ration as a function of time and of depth below the land surface are shown in Figures 
 5.5  and  5.6 . Consider, for example, the curve denoted as 200 in Figure  5.5 . The curve 
tells us that after 200   sec of simulated time the capillary pressure at the top of the 
column has increased from 0.0 to 27   cm of water (2.65   mbar). The water pressure 
has decreased by this amount since the air pressure remains near atmospheric. The 
water pressure has decreased the most at the top of the column. The magnitude of 

    Figure 5.4:     Saturation - capillary pressure function used in one - dimensional drainage simulation (data 
from  [2] )  

    Figure 5.5     Capillary pressure expressed in terms of centimeters of water plotted agains depth for fi ve 
time values expressed in seconds.  
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the vertical gradient of water pressure is smaller in the top 4   cm than it is in the 
next 10   cm. Below this depth, the pressure is essentially unchanged from its initial 
value.     

 As time proceeds up to 2000   sec, the capillary pressure increases at all spatial 
locations. At 1000   sec the capillary pressure head is 34   cm at the land surface and 
decreases with depth for a distance of about 20   cm. Under ideal conditions, at steady 
state, there should be no vertical gradient in total head, so the water pressure head 
increase with depth (capillary pressure head decrease) should balance the elevation 
head decrease. Thus the water pressure should increase linearly from the land 
surface to a depth of 35.0   cm, which is the location consistent with the boundary 
condition for water pressure of 31.5   cm at the base of the model. Note that the rate 
of change in capillary pressure is decreasing as the simulation proceeds. To the left 
of these curves the capillary pressure is not defi ned since  s w     =   1. 

 Figure  5.6  shows the early - time change in saturation with depth at 10 - sec intervals 
between 0 and 100   sec. Figure  5.7  is a plot of the saturation over the total 2000 - sec 

    Figure 5.6:     Water saturation plotted against depth for drainage over the period 0 to 100   sec.  

    Figure 5.7:     Water saturation plotted against depth for drainage over the period 0 to 2000   sec.  
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simulation period. The saturation is initially at unity and drops to 0.74 at the end of 
10   sec at the top of the column as can be seen in Figure  5.6 . Since the saturation and 
the pressure are related via the pressure - saturation curve found in Figure  5.4 , the 
saturation changes in lock - step with the pressure shown in Figure  5.5 . Note that the 
relationship in Figure  5.4  shows that there will be pressure intervals where a con-
siderable change in saturation for a relatively small change in capillary pressure will 
be observed.    

5.1.2 Drainage in a Heterogeneous Soil 

 We now consider the complicating issue of a variable value of permeability. Using 
the preceding example we replace a layer at the base of the column with a layer of 
thickness approximately 12   cm which has a permeability that is two orders of mag-
nitude greater ( ks    =   5.0    ×    10 − 5    cm 2 ) than the value ( ks    =   5.0    ×    10 − 7    cm 2 ) that exists in 
the rest of the column. The constitutive curves are the same as those used in the 
preceding example. With an initial saturation of unity, a specifi ed air pressure of 
zero, no fl ow of water at the top, and a specifi ed pressure of water of 31.5   cm and 
no fl ow of air at the bottom, we begin to drain the column of water. The resulting 
saturation profi le is shown in Figure  5.8 .   

 The behavior presented in this fi gure can be compared with that in Figure  5.6 . 
Note that the time scale is different so that not all curves correspond directly. 
However, it is evident that the impact of the high permeability layer is not very 
signifi cant because most of the dynamics of the system occur in the upper 18   cm of 
the column for the time duration considered. 

 We now reverse the situation and place the high permeability layer at the top. 
The low permeability layer at the bottom is about 12   cm. The results of this experi-
ment are shown in Figure  5.9 . Now the impact of the high permeability layer is quite 

Figure 5.8: Saturation distribution when the patterned area below the heavy line has a permeability 
two orders of magnitude higher than the area above the heavy line. The series of curves represent 
elapsed time of drainage in seconds. 
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dramatic. When viewing this fi gure, be sure to notice the change in the depth and 
saturation scales as compared to those in previous fi gures. Additionally, a curve 
representing the state of the system at 1000   sec has been added. Overall, drainage 
is signifi cantly retarded by the low permeability layer such that there is very little 
change in the saturation over the 500 - sec, and indeed over the entire 1000 - sec, 
modeling interval.   

 The conclusion that can be drawn from this experiment is the following: the fact 
that the high permeability layer exists at depth does not impact the behavior at 
shallow depths at early time. At shallow depths and early times the system behavior 
is relatively insensitive to the difference between the pressure at the transition depth 
of about 15   cm and that at the bottom of the column.  

5.1.3 Imbibition in Homogeneous Soil 

 The counterpart of drainage is imbibition. Imbibition is the process of introducing 
wetting fl uid into a multiphase system. Starting from the saturation state of the 
system after drainage has been ongoing for 50,000   sec, the water pressure at the top 
of the column is now increased to 35.5   cm such that the total head is higher than 
the total head at the base of the column ( − 35.0   cm). As seen in Figure  5.10 , the water 
saturation at the top of the column immediately increases and continues to increase 
during the duration of the simulation. A saturation front moves downward causing 
the saturation to increase within the column as well. Simultaneously, drainage 
continues at the initial front (bottom of the profi le), moving the initial saturation 
front further down the column. This is consistent with the imposed water head gra-
dient (from 35.5   cm at the top of the column to  − 35   cm at the base). Although not 

Figure 5.9: Saturation distribution when the patterned area below the heavy line has a permeability 
two orders of magnitude lower than the area above the heavy line. The series of curves represent 
elapsed time of drainage in seconds. 



apparent from the fi gures, upward movement of air is also observed in the model 
output.   

 All of the examples to this point have assumed hysteretic behavior. To see the 
impact of this phenomenon on the solution, we show in Figure  5.11  the same 
problem presented in Figure  5.10 , but without hysteresis. While the plots are similar, 
a difference does exist. Note that the maximum saturation in the  “ no hysteresis ”  
example is greater at late times near the ground surface; the front has propagated 
further; but the satuations at the front are smaller.     

  5.2     1 -  D  SIMULATION OF DNAPL - WATER FLOW   

 In this subsection we consider a second two - phase fl ow example; the case of    dense 
nonaqueous phase (DNAPL) fl ow   . The equations governing fl ow in this system are 

    Figure 5.10:     Water imbibing into a partially drained system. Time is in seconds. The arrow A indicates 
the curves are younger to older moving left to right, and arrow B indicates time evolution from right to 
left.  

    Figure 5.11:     Water imbibing into a partially drained system. Time is in seconds. The simulation differs 
from that of Figure  5.10  only inasmuch as there is no hysteresis.  
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the same as equations  (5.2)  through  (5.7)  where the nonwetting phase is DNAPL 
rather than air. The DNAPL physical constants are   µ  n     =   0.09 poise and   ρ  n     =   1.5   g/cm 3 . 
The constitutive relationships used are the same as those introduced earlier; these 
are the  p c   -  s w   and   k sw

rel-α  curves. In general these curves are unique, depending upon 
the soil type and the nature of the wetting and nonwetting fl uids. However, in this 
case the same   k sw

rel-α  curves were used for the water and DNAPL. 

  5.2.1     Primary DNAPL Imbibition in Homogeneous Soil   

 The boundary condition imposed on the bottom of the column is similar to that 
provided earlier, except that DNAPL, not air, is now the nonwetting fl uid (i.e., a 
pressure of water of 31.5   cm of water and no DNAPL fl ow), but the top boundary 
condition is changed. In the case of   primary imbibition   into a water saturated 
column we use a constant DNAPL pressure of 0.0 and no water fl ow at the top. 
Thus movement is due solely to the gravitational effect. 

 The results of this simulation are seen in Figure  5.12 . The curves represent satura-
tion as a function of depth and time (the curves represent different elapsed times 
in seconds). The DNAPL saturation increases at the top of the column, and, due to 
its greater density, the DNAPL front moves down the column at a rate that decreases 
with time.    

  5.2.2     Density Effect   

 Now let us examine the impact of density on the rate of propogation of the DNAPL 
front. Holding all other aspects of the physical system as in the preceding example, 
we decrease the density from   ρ  n     =   1.5   g/cm 3  to   ρ  n     =   1.2   g/cm 3 . Once again, we simulate 

    Figure 5.12:     Primary imbibition of DNAPL into water saturated porous medium. Curves represent 
elapsed time since initiation of simulation.  



primary DNAPL imbibition. The dashed and solid curves in Figure  5.13  represent 
the time evolution of DNAPL saturation with   ρ  n   of 1.2   g/cm 3  and 1.5   g/cm 3 , respec-
tively. As one would anticipate, the DNAPL with the greater density moves down-
ward faster due to the effects of gravity.    

  5.2.3     DNAPL Drainage in Homogeneous Soil   

 In the next simulation we consider the phenomenon of DNAPL drainage. The intial 
conditions in this example represent the state of the system at the end of the primary 
imbibition phase, that is, at an elapsed time of 1000   sec. The top boundary condition 
is changed from a zero pressure of DNAPL to no fl ow of DNAPL and the pressure 
of water is set to zero. The boundary condition on the bottom of the column remains 
as a water pressure of 31.5   cm of water. 

 The results of the simulation are found in Figure  5.14 . At the top of the column 
the saturation of water increases as the DNAPL drains. As in the air - water example, 

    Figure 5.13:     Primary imbibition of DNAPL into a water saturated porous medium. Curves represent 
elapsed time since initiation of simulation. The dashed curves are generated using   ρ  n     =   1.2   g/cm 3  and 
the solid curves are those appearing in Figure  5.12  where a value of   ρ  n     =   1.5   g/cm 3  is used.  

    Figure 5.14:     Primary drainage of DNAPL coexisting with water. Values associated with DNAPL curves 
indicate time since initiation of drainage cycle in seconds.  
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the arrow denoted by the letter A indicates that the time evolution at the top of the 
column is from right to left; that is, the curve on the right - hand side represents the 
saturation profi le at the earliest time. As time progresses the DNAPL saturation 
decreases along most of the length of the column. However, at the base of the 
column  s n   begins to increase as the DNAPL accumulates due to the imposed water -
 pressure boundary condition. Time evolution of the curves at the base is the oppo-
site to that at the top; that is, curves representing earlier DNAPL saturation profi les 
are on the left.    

  5.2.4     Secondary Imbibition of DNAPL in Homogeneous Soil   

 Using the DNAPL drainage saturation profi le found in Figure  5.14  at 1000   sec, we 
now reverse the situation once again and imbibe DNAPL from the top of the 
column (   secondary imbibition   ). To achieve this we replace the zero pressure of water 
boundary condition with a zero fl ux condition and change the DNAPL condition 
from zero fl ux to zero pressure. The water boundary condition is specifi ed as no 
fl ow. The boundary condition on the bottom of the column remains as a water pres-
sure of 31.5   cm of water and no fl ow of the DNAPL phase. 

 One would expect the saturation of DNAPL to increase, intially at the top, and 
then progressively downward as time increases. Such behavior is observed in Figure 
 5.15 . Once again the arrows identifi ed as A and B indicate the direction of advanc-
ing time at the top and bottom of the column, respectively. We observe that, over 
the period of analysis, the DNAPL saturation increases at the top of the column 
while drainage occurring at the base causes the DNAPL saturation to decrease 
there.   

 It is interesting to compare the state of the system in Figures  5.12  and  5.15  at the 
same point in simulated time (in the sense of time since each simulation began). 
Consider, for example the DNAPL saturation profi les provided in Figure  5.16 . The 
solid and dashed lines represent the time evolution of the primary and   secondary 
imbibition   saturation fronts. The impact of the pre - existing   DNAPL   saturation in 
the case of secondary imbibition is dramatic. Observe, for example, the location of 
the saturation front at a time of 950   sec. It is evident that the secondary imbibition 

    Figure 5.15:     Secondary imbibition of DNAPL coexisting with water in porous medium. Curves are 
time since secondary imbibition started, in seconds.  



    Figure 5.16:     Comparison of primary (solid lines) and secondary (dashed lines).  

front moves much faster than the primary imbibition front due to the effect of the 
saturation distribution of the DNAPL in the drained profi le.    

  5.2.5     Secondary Drainage in Homogeneous Soil   

 Now we turn our attention to secondary drainage, the fi nal simulation in this 
sequence. The secondary imbibition profi le observed at 1000   sec is employed as the 
initial condition for saturation. The constant DNAPL pressure boundary condition 
at the top is replaced with a no fl ux condition, and a zero water fl ux condition is 
replaced with a zero water pressure condition. The boundary condition on the 
bottom of the column remains as a water pressure of 31.5   cm of water and no fl ow 
of the DNAPL phase. Under these conditions we observe the behavior documented 
in Figure  5.17 . The general behavior appears similar to that found in Figure  5.14  
with DNAPL saturations decreasing at the top of the column and increasing at the 

    Figure 5.17:     Secondary drainage of DNAPL coexisting with water in a porous medium. Curves denote 
time since secondary drainage started, in seconds.  
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base. However, it is evident that the dynamics of secondary drainage are different 
in detail from those of primary drainage.    

5.2.6 Primary Imbibition in Heterogeneous Soil 

 We return now to a discussion of the impact of heterogeneity, more specifi cally 
layering, on DNAPL movement. We assume, as earlier, that the column has a low 
permeability layer about 17   cm from the column top. Holding all other conditions 
as in the previous primary imbibition calculation, namely that at the bottom of the 
column the water pressure is 31.5   cm and no fl ow of DNAPL occurs while at the 
top of the column, the DNAPL pressure is 0.0 and no water fl ow occurs, we simulate 
primary imbibition. The results are presented in Figure  5.18 . When compared to 
primary imbibition into a homogeneous sand, the propogation of the saturation 
front is very slow. Compare, for example, the 950   sec profi le in Figure  5.12  with the 
1000   sec contour in Figure  5.18 . It is evident that the lower permeability layer is 
impeding the downward movement of the water which, in turn, impedes the down-
ward movement of the DNAPL. It also appears that there is some pooling on the 
low permeability interface.   

 It is helpful to compare directly the movement of the saturation fronts for the 
cases of homogeneous and layered material. Such a comparison is presented in 
Figure  5.19 , where the solid and dashed lines represent the saturation profi les in 
homogeneous materials and layered materials, respectively. As expected, the satura-
tion front moves more readily through the homogeneous material.     

Figure 5.18: Primary imbibition into a column composed of materials of two different permeabilities. 
The upper portion of the column has a permeability of 5.0 × 10−7 cm2 and the lower portion has a value 
of 5.0 × 10−8 cm2. Notice that the elapsed time has increased to 1500 sec.



  5.3     2 -  D  SIMULATION OF DNAPL - WATER FLOW   

 While a number of interesting multiphase phenomena were illustrated in the pre-
ceding section on one - dimensional fl ow, two - dimensional systems can be used to 
introduce additional ideas. In this section we consider several two - dimensional 
systems, each illustrating an aspect of multiphase - fl ow behavior. 

  5.3.1     DNAPL Descent into a Water - Saturated Reservoir   

 The physical system we will model in this subsection is illustrated in Figure  5.20 . It 
consists of a cross section with a width of 50   cm and a depth of 37.5   cm. The mass 
conservation equations that describe this system are special cases of equation  (5.1)  
written for each fl uid phase. When mass exchange between phases is neglected and 
no pumping is occurring, the equations are
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where   να
x  and   να

z  are the  x  and  z  velocities of the   α   phase, respectively. The fl ow 
equations follow from equation  (5.3)  where we will consider isotropic conditions 
and fl ow in the  x  and  z  directions only such that:
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and

    Figure 5.19:     Imbibition fronts for the case of heterogeneous (dashed curve) and homogeneous (solid 
curve) soils.  
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where the solid grain movement has been considered negligible.   
 The reservoir permeability is that of a sand with  k s     =   5    ×    10  − 7    cm 2  except for a 

less permeable rectangular area of clay where  k  s    =   5    ×    10  − 9    cm 2 . Initially the reservoir 
is fully saturated with water such that  s w     =   1. Other parameters for this problem can 
be found in the following table:   

  Fluid Property    Water    DNAPL      

    µ   α    [viscosity (poise)]    0.01    0.005      
    ρ   α    [density (g/cm 3 )]    1.0    1.5      
    s sw n

i r  [irred./resid. saturation]    0.1    0.15      
    ε   [porosity]            0.34  

 The left side of the region is impermeable, as is the base. The head along the right -
 hand vertical side is set at hydrostatic (no vertical fl ow). Along the section marked 
as B on the top, DNAPL is injected at a rate of 0.02   l 3 /sec and along the segment 
marked as C the rate is 0.04   l 3 /sec. From the rightmost end of the region C to the 
right - hand side boundary the top is impermeable. 

 For this system, DNAPL will enter the reservoir in the top left - hand corner and 
move primarily vertically downward under the infl uence of gravity. It will then 
encounter the lower permeability layer and begin to pool since its vertical move-
ment is retarded. When the saturation of DNAPL has reached a critical level, the 
DNAPL will move horizontally to the right along the top of the lower permeability 
layer. Thereafter it will again move more expeditiously downward under the 
infl uence of gravity. 

 The following three fi gures show the movement of DNAPL over a period of 1500 
seconds. In Figure  5.21  the DNAPL saturation distribution after 300 seconds is 

    Figure 5.20:     Defi nition sketch for the DNAPL vertical transport problem.  



provided. At this point the infl uence of the underlying lower permeability layer 
marked A is not evident. However, after 1000 seconds the   DNAPL   has begun to 
pool on the lower permeability layer as seen by the increased saturation to 0.6 above 
the lower permeability layer A as illustrated in Figure  5.22 . Finally, in Figure  5.23  
we observe that the DNAPL has moved laterally and is cascading down through a 
breach in the low permeability layer B. It is interesting to note that from a practical 
perspective the downward movement may lead to DNAPL penetrating to signifi -
cant depths from which it is diffi cult to remove.       

Figure 5.21: Saturation distribution of DNAPL after 300 seconds of injection. The contours are satura-
tion distribution. 

Figure 5.22: Saturation distribution of DNAPL after 1000 sec of injection. The contours are saturation 
distribution, and the lower permeability region is denoted by the letter A. 
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 In Figure  5.24  the DNAPL velocity is superimposed on the DNAPL fl ow 
fi eld so that the DNAPL movement can be visualized; water velocity is shown in 
Figure  5.25 .       

5.4 SIMULATION OF MULTIPHASE FLOW AND TRANSPORT 

 In this section we present a couple of representative solutions to problems that are 
described by making use of both the fl ow and transport theory presented in the 
preceding chapters, especially Chapters  3  and  4 . Here, again, we will describe the 

Figure 5.23: Saturation distribution of DNAPL after 1500 sec of injection. The contours are saturation 
distribution, and the lower permeability region is denoted by the letter A. 

Figure 5.24: DNAPL velocity at an elapsed time of 1500 sec overlying the saturation profi le of DNAPL. 
The scale for the velocity is found on the fi gure in centimeters per second. 



physical problem, obtain the simplifi ed form of the governing equations, employ any 
needed constitutive relations, and provide solutions along with some observations. 

  5.4.1     1 -  D  Two - Phase Flow and Transport   

 Consider the problem described in Subsection  5.1.3 , imbibition of water into a 
homogeneous soil containing water and air. Let the water that is imbibing enter the 
system with a constant solute mass fraction for species  i  of   ω ωiw iw= 0  at the top of 
the column. Assume that the chemical species is nonreacting, nonvolatile, and non-
adsorbing onto the solid phase. To describe the transport process, we can use one 
of the forms obtained in Chapter  4 . Here, we will select the distribution form, equa-
tion  (4.31) , which for species  i  in the  w  phase with the reaction, interphase transport, 
and pumping terms on the right side neglected, takes the form:

    ε ρ ω ε ρ ω εs
t

s sw w
iw

w w w iw w iw∂
∂

+ ⋅∇ + ∇⋅( ) =v j 0     (5.11)   

 To close this equation, we need a constitutive form for the dispersion tensor. This 
is obtained from Chapter  4  as equation  (4.39) , which for the species of interest here 
in the  w  phase is:

    ε ρ ε ωs sw iw w w iw iwj = − ⋅∇D     (5.12)  

where the diffusion/  dispersion coeffi cient  ,  D   iw  , is approximated, according to equa-
tion  (4.40) , as:

    ε ε ε α ε α αs s D s sw iw w iw w w w
w w

w
D I I= + + −( )dif L TT v

v v
v

    (5.13)  

    Figure 5.25:     Water velocity at an elapsed time of 1500   sec overlying the saturation profi le of DNAPL. 
The scale for the velocity is found on the fi gure in centimeters per second.  
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  where the solid phase deformation has been considered negligible such that 
 q   w     =     ε s w   v   w    . 

 We substitute equation  (5.12)  into equation  (5.11)  to obtain the closed 
equation:

    ε ρ ω ε ρ ω ρ ε ωs
t

s sw w
iw

w w w iw w w iw iw∂
∂

+ ⋅∇ − ∇⋅ ⋅∇( ) =v D 0     (5.14)   

 For the problem of interest, we note that the macroscale velocity has a component 
only in the  z  direction and that there are no gradients of   ω  iw   in the transverse direc-
tions. If we also consider that the concentrations of contaminant are small enough 
that the density of the fl ow may be considered constant, the preceding equation 
simplifi es to:

    ε ω ε ω ε ω
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
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and:

    D D vzz
iw iw

z
w= +dif Lα     (5.16)   

 The value of   νz
w in these expressions is obtained as a solution to the fl ow equation 

 (5.4) . Because of the tortuous fl ow path, the macroscale diffusion coeffi cient,   Diw
dif, is 

typically reduced from its microscale antecedent by tortuosity. Here, we will use a 
value of   α   L    =   1   cm and

    D s s Diw w w
iwdif dif= ( ) ( )ε 1 3 2

    (5.17)  

where   Diwdif  is the microscale diffusion coeffi cient. The value of the microscale dif-
fusion coeffi cient is assumed to be   Diwdif cm sec= × −1 0 10 5 2. . 

 The   propagation of the concentration front is   seen in Figure  5.26 , where   ω ωα αi i
0  

is plotted as a function of depth. The interesting feature of this fi gure is in the com-
parison of the movement of the concentration front relative to the movement of 
the saturation front provided in Figure  5.11 . At an elapsed time of 100   sec one can 
see that both the saturation and the concentration are increasing at a depth of 35   cm. 
However, the concentration increase is not attributable to convection at this depth 
but rather to dispersion and diffusion. The maximum value of   vz

w  in this experiment 
was 0.04   cm/sec. Therefore after 100   sec, the concentration front would have con-
vected no more than about 4   cm.    

  5.4.2     2 -  D  Two - Phase Flow and Transport   

 In this subsection we will model solute transport as related to DNAPL fl ow. While 
DNAPL has slight solubility in water, this solubility can be important when the 
DNAPL solute is transported by the water phase. In general the DNAPL phase will 
dissolve, albeit slowly, into the aqueous phase and can also volatilize into a gaseous 
phase both from the DNAPL phase and the aqueous phase. In the following we add 



the complexity of interphase transport to the DNAPL imbibition problem defi ned 
in Subsection  5.3.1 . Specifi cally we will consider the case when DNAPL exchange 
with the water phase is modeled as a kinetic process. Because water initially fi lls the 
pore space, we will assume that interaction of DNAPL with the solid occurs only 
through the wetting phase. This approximation suggests that the wetting phase 
remains in contact with the solid throughout the system. We will consider that the 
solid movement is negligible and that no gas phase is present. The model therefore 
requires that we consider fl ow of the two fl uid phases and transport of DNAPL 
within the  w  phase. 

 As a starting point for specifi cation of the   transport equation   employed, use 
equation  (4.85)  for species  i  (rather than  k ) with the   reaction terms    r iw   and  r is   set to 
zero since no reactions are occurring and with the pumping term neglected:
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 Since we are neglecting   mass transfer   between the  n  and  s  phases, both   ens
is  and 

  ens
s  are zero. Also, since DNAPL is the only species being transferred between 

the  w  and  n  phases,   e ewn
iw

wn
w= . With these stipulations imposed, equation  (5.18)  

becomes:

    ε ρ ω ρ ω ε ρ ω ωw w iw
iw

w w iw w w iw iw iw
wn
iwR

t
eS

∂
∂

+ ⋅∇ − ∇⋅ ⋅∇( ) = −( )q D 1     (5.19)   

 The transport between the  w  and  n  phases is modeled as a   kinetic process   using the 
linear closure relation of equation  (4.54) :

    Figure 5.26:     Propagation of the normalized concentration due to imbibed water into a drained 
column.  
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    ewn
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where   ωeqn
iw  is the    mass fraction of the solubility limit    of DNAPL in water. As was 

stated, the solid movement is being neglected; thus  q   w     =     ε s w   v   w    . The model to be 
employed is two - dimensional, so we can expand the vector notation of equation 
 (5.18)  to the explicit form:
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 To solve equation  (5.21) , the parameters must be specifi ed. Adsorption of the 
DNAPL from the  w  phase onto the solid phase is modeled making use of a  linear  
   adsorption isotherm    so that the   retardation coeffi cient  ,   Riw

S , is given by equation 
 (4.88) :

    R Kiw
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1
1 ε ρ

ε
    (5.22)  

with the    distribution coeffi cient   , introduced in equation  (4.88)  as: 

   Kd
iws

is

w iw
= ( )

ω
ρ ω

 

assigned the value   Kd
iws = × −1 0 10 6. cm g3 . 

 The diffusion/dispersion tensor is again parameterized using the constitutive 
form of equation  (4.40)  where the elements of the tensor are:
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 For the physical system being considered here, we select   α   L    =   1.0   cm,   α   T    =   0.2   cm, 
and   Diwdif cm sec2= × −1 0 10 5. . 

 The    kinetic rate coeffi cient   ,   κ wn
iw , describes the rate at which DNAPL crosses the 

DNAPL - water interface and is parameterized according to the relationship  [3] :

    κ κ εwn
iw

wn
iw n ws= ( )0

1 2
v     (5.24)   

 This form attempts to account for the infl uence of fl ow velocity and the amount of 
interfacial area present in the system on the rate at which mass is transferred. Here, 



we specify   κ wn
iw

0
11 0 10= ×. g cm3. The  mass fraction solubility limit  of DNAPL in 

water employed here is   ωeqn
iw = × −1 1 10 3. . 

 In this example we are using the same fl ow model as provided in Subsection  5.3.1 . 
Initially the mass fraction of DNAPL is zero in the water phase. The boundary 
conditions for the mass fraction are zero normal gradient (second type  n     ·    
 ∇   ω  iw     =   0) on all sides. The resulting system permits convective, but not dispersive, 
movement across the boundaries. 

 The concentration calculated after 300   sec is provided as the solid lines in Figure 
 5.27 . Also shown on this fi gure are the DNAPL saturation contours. In this physical 
system all of the water movement is generated due to displacement of the water by 
the NAPL. Thus the concentration distribution is due to this convective movement, 
dissolution of the DNAPL, adsorption, and dispersion.   

 In Figure  5.28  the water velocity arrows have been added and only the 0.1 
DNAPL saturation contour is provided. One observes that the water velocity is 
relatively small in the interior of the DNAPL and is higher to the right of the 
DNAPL due to continuing outward motion of the DNAPL saturation front. The 
water velocity is also responding to the lower permeability layer marked A. 
The state of the system after 600   sec of simulation is shown in Figure  5.29   . Note that 
the movement of the DNAPL phase over the end of the low permeability layer is 
causing a corresponding response in the water - phase velocity fi eld.     

 Since DNAPL movement in this example is primarily gravity driven, it is interest-
ing to consider how a sloping aquifer would infl uence its movement. In Figure  5.30  
the movement of a DNAPL phase along an inclined surface is illustrated. The 
problem is the same as presented earlier with two exceptions: (1) the low permeabil-
ity layer is inclined and has a permeability value of 5.0    ×    10  − 11    cm 2  and (2) the left 
vertical boundary has been changed from one allowing no dispersive mass transport 
to one where the DNAPL mass fraction in the water phase is held at zero. The 
resulting impact on concentration after 600   sec of simulation is evident from the 

    Figure 5.27:     Concentration distribution of DNAPL associated with dissolution from the DNAPL plume 
shown in Figure  5.21  which documents the saturation distribution after 300   sec.  
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change in the concentration contours in that area. Note also that the steplike surface 
of the low permeability layer is employed due to rectangular grid - defi nition limita-
tions of the model in describing a sloped surface.   

 We now consider the impact of imposing a groundwater fl ow velocity in a direc-
tion opposite to that in which the DNAPL tends to move due to the sloping low 
permeability layer. All other aspects of the model are the same as those that gener-
ated Figure  5.30 . The water velocity is generated by specifying head on the left side 
of the model to be 5   cm lower than that on the right. 

Figure 5.28: Concentration distribution of DNAPL after 300 sec associated with dissolution from the 
DNAPL plume shown in Figure 5.21. Included are the water velocity vectors. 

Figure 5.29: Concentration distribution of DNAPL after 600 sec associated with dissolution from the 
DNAPL plume. Included are the 0.1 saturation contour and water velocity vectors. 



 Figure  5.31  reveals a consistent water fl ow from right to left. More interesting, 
however, is the fact that this fl ow is suffi ciently strong to inhibit signifi cantly the 
movement of the DNAPL down the slope. It is useful to compare Figure  5.30 , which 
does not have the water fl ow from right to left, with Figure  5.31 , which does. It is 
evident that the counterfl ow of water has a signifi cant impact on the fl ow of DNAPL 
in this system.     

Figure 5.30: DNAPL saturation distribution when the low -permeability layer is sloping. Elapsed time 
600sec.

Figure 5.31: Saturation distribution of DNAPL after 600 sec when there is a pressure head gradient 
in the water phase due to a change in water phase pressure head of 5 cm from right to left. Also shown 
are the water velocity vectors. 
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  5.5     2 -  D  SINGLE - PHASE FLOW AND TRANSPORT   

 In this section we focus on two - dimensional saturated fl ow and mass transport 
where the dependence of the fl uid density on the concentration of the dissolved 
solute is assumed negligible. The objective is to illustrate the infl uence of a range 
of physical processes on species transport behavior. The physical system is shown 
in Figure  5.32  and is a 600    ×    400   ft rectangular horizontal region for which all prop-
erties are considered to be uniform in the vertical.   

 For modeling the two - dimensional fl ow, we will make use of the vertically inte-
grated fl ow equation  (3.112) :
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    (5.25)   

 In developing this equation we have assumed that although transfer of chemical 
species between phases occurs, the amount of mass transferred is not signifi cant 
enough that it impacts the fl ow equation for the  w  phase. We will consider the system 
to be isotropic such that the two - dimensional    transmissivity    is  T   w   ″    =    T w   I  ″ . Then 
expansion of the vector notation into component parts yields:
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    (5.26)   

 The vertically integrated transport equation for species  i  in the  w  phase is obtained 
using the same methods employed in Subsection  3.6.6  for the fl ow equation. 
We start from species transport equation  (4.1)  where the  w  phase is the only fl uid 
phase present such that   ε  w     =     ε  . The result is provided here without the detailed 
derivation:

    Figure 5.32:     Defi nition of problem area considered in the two - dimensional saturated - fl ow and trans-
port problems. The letters A – D defi ne boundary conditions described in the text. The contaminant 
source and location of pumping well are labeled. The fl ow is uniform from side A to side B and the 
units of distance are feet.  
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where the quantities other than those explicitly denoted as being evaluated at 
the top ( z  T ) or the bottom ( z  B ) of the study region are averages over the height ( b ) 
and the  ′  indicates a two - dimensional (in the lateral directions) vertically averaged 
vector. Because advection, dispersion, and pumping for the solid phase can be 
neglected, the vertically integrated transport equation for species  i  in the  s  
phase is:
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 For this study, we will make use of the equilibrium approach to transfer of species 
 i  between the  s  and  w  phases. Therefore, we make use of the fact that   e ews

iw
ws
is+ = 0  

to eliminate this exchange term between equations  (5.27)  and  (5.28)  to obtain:
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    (5.29)   

 The transport may be modeled using this form, or we can reduce the equation 
further by making use of the phase equation obtained by summing equation  (5.27)  
over all species in the  w  phase:
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and summing equation  (5.28)  over all species in the  s  phase:
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 Then, since   e ews
w

ws
s+ = 0 , these last two equations may be combined to:
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 Multiplication of equation  (5.32)  by   ω  iw   and subtraction of the result from equa-
tion  (5.29)  while making use of the product rule yields:
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 The third term in this equation is smaller than the fi rst two because the deformation 
of the solid is very small. We will therefore ignore this term. We will also assume 
that no reaction involving species  i  occurs in the solid phase (i.e.,  r is     =   0) and that 
the dispersion vectors normal to the top and bottom surfaces are zero (i.e., no dis-
persion into or out of the system occurs at the top and bottom of our study region). 
Additionally, the   interphase mass transfer   is considered to occur at equilibrium. We 
will make use of a   linear adsorption isotherm   as given by equation  (4.66)  written 
for the  s  and  w  phases as:

    ω ρ ωis w
d
iws iwK=     (5.34)   

 We will also make use of the closure relation for the   vertically averaged  , two - dimen-
sional dispersion vector analogous to equation  (5.12) :

    jiw w iw iw′ ′′= − ⋅ ′∇ρ ωD     (5.35)   

 With these conditions incorporated, equation  (5.33)  simplifi es to:
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    (5.36)   

 In the present example, we will make use of the common assumption that changes 
in density and porosity are important only insofar as they contribute to the storage 
coeffi cient in equation  (5.26) . Therefore, make the approximation:

    ′∇ ⋅ ⋅ ′∇( ) ≈ ′∇ ⋅ ⋅ ′∇( )′′ ′′ερ ω ερ ωw iw iw w iw iwb bD D     (5.37)   

 Finally, we can expand equation  (5.36)  in terms of the elements of the vector com-
ponents and divide by   ε  ρ  w   to obtain:
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where   Riw
S  is the standard retardation factor as defi ned in equation  (4.88) . 

 The specifi c problem we are going to model is vertically integrated fl ow and 
transport in a system where there is only one well ( N  W    =   1). Flow is out of the well 
with magnitude  Q  (volume per area per time) and therefore the concentration of 
species  i  in the well discharge is equal to the concentration in the system at that 
point   Q Qw iw iw

1 1
′ = − =( )and ω ω . The thickness of the system is constant ( b    =   con-

stant). There is no fl ow out the bottom of the system   n q⋅( ) =( )w
zB

0 ; the fl ow at the 
top could be from leakage from an overlying formation. It is given a positive value 
when fl ow enters the study region   n q⋅( ) = −( )w

z I
T

; and the infi ltrating fl uid contains 
no species   i z

iwω
T

=( )0 . The fl uid density entering the system and porosity at  z  T  are 
equal to their corresponding vertical averages, and species  i  may decay by a    fi rst 
order chemical reaction      r kiw iw w iw= −( )rxnρ ω . With these restrictions, equation  (5.26)  is 
expressed as:
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 Species transport equation  (5.38)  simplifi es to:
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 We will parameterize the dispersion coeffi cients using the usual form analogous to 
equations  (5.23)  with  s w     =   1 and the  y  coordinate replacing the  z  coordinate in those 
expressions. 

 With reference to Figure  5.32 , the left boundary (A) and the right boundary (B) 
of the study domain have specifi ed head values of 120 and 112   ft respectively. The 
top (D) and bottom (C) boundaries are specifi ed as no fl ow. The initial head is 
uniform with  h w     =   120   ft, and initial mass fraction is   ω  iw     =   0.0 throughout the domain. 
The contaminant mass fraction is modeled relative to the value at the contaminant 
source. When a pumping well is employed, it is located as indicated in the fi gure. 
Unless stated otherwise the transmissivity is  T w     =   900   ft 2 /day, the storage coeffi cient 
is  S    =   0.09, the porosity is 0.2, and the aquifer thickness is  b    =   90   ft. The logitudinal 
and transverse   dispersivities   are   α   L    =   5   ft and   α   T    =   0.1   ft. 
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 In Table  5.2  we have summarized additional information regarding the examples 
to be presented below in this section. The fi rst column indicates the fi gure number 
for the problem considered. The row identifi ed with each fi gure number provides 
the information unique to that fi gure. The second column specifi es the time elapsed 
since the beginning of the represented simulation. Column three provides the trans-
missivity values for the blocks of soil used to represent heterogeneous formations. 
The fourth column provides the coeffi cient associated with adsorption. Column fi ve 
provides the pumping rate, column six the net infl ow at  z  T , and column seven the 
reaction rate coeffi cient.   

  5.5.1     Base Case   

 The base case, as described in the fi rst row of Table  5.2 , will be used for making 
comparisons to other examples. The base system consists of a homogeneous medium 
with infl ow at  z  T  and no pumping, reactions, or adsorption. Figures  5.33  through 
 5.35 , corresponding to the fi rst three rows of the table, show the development of the 
contaminant plume emanating from its source and moving, generally, left to right 
across the model domain. Note that around the source area relative mass fraction 
contours between 0.6 and 1.0 have been omitted in the interest of clarity of the 
fi gure.        

  5.5.2     Effect of Infl ow   

 In Figure  5.36  the infl ow at  z  T  is removed. That is the fl ux attributable to this source 
is set to zero (i.e.,  I    =   0). The fi gure documents the plume geometry after 900 days 
of simulation without infl ow from an overlying formation (compare Figure  5.35  and 
Figure  5.36 ). The results are, perhaps, counter intuitive. One might expect, with the 
elimination of infl ow, that the velocity would decrease and the plume would be 
smaller at any given time. The argument would be along the lines that when water 

 Table 5.2:     Tabulation of attributes of fi gures depicting two - dimensional, single - phase 
transport 

  Figure     t  days     T w   (inset) ft 2 /day    (1    −      ε  )  ρ  s K d    −      Q  ft 3 /day/ft 2      I  ft/day      kiw
rxn day  − 1   

  5.33    300    900.0    0.0    0.0    0.0023    0.0  
  5.34    600    900.0    0.0    0.0    0.0023    0.0  
  5.35    900    900.0    0.0    0.0    0.0023    0.0  
  5.36    900    900.0    0.0    0.0     0.0     0.0  
  5.37    900    900.0    0.0    0.0     0.023     0.0  
  5.38    900    900.0    0.0     2000     0.0023    0.0  
  5.39    900    900.0     0.9     0.0    0.0023    0.0  
  5.40    600     180.0     0.0    0.0    0.0023    0.0  
  5.41    1200     180.0     0.0    0.0    0.0023    0.0  
  5.42    1800     180.0     0.0    0.0    0.0023    0.0  
  5.43    300     1800.0     0.0    0.0    0.0023    0.0  
  5.44    600     1800.0     0.0    0.0    0.0023    0.0  
  5.45    900     1800.0     0.0    0.0    0.0023    0.0  
  5.46    900    900.0    0.0    0.0    0.0023    1.5    ×    10  − 4   



enters the system via vertical infl ow, the amount leaving the system would increase, 
and therefore the velocity would also increase relative to the case of no infl ow. If 
the velocity increases, then the plume should get larger. However, the plume, in fact, 
is larger when there is no infl ow. Why this is the case is best illustrated by exaggerat-
ing the infl uence of infl ow.   

 In Figure  5.37  we show the results of increasing the infl ow by a factor of 10 rela-
tive to the base case from 0.0023   ft/day to 0.023   ft/day. In this instance, the plume is 
smaller than the base case with less infl ow at a corresponding time of 300 days (see 
Figure  5.33 ). The reason for this behavior can be discerned from the groundwater 
velocity plot accompanying the concentration contours in Figure  5.37 . The infl ow 
provides water that, throughout the system  , can be a source of outfl ow. Therefore, 
the fl ow from the left side (Boundary A) is diminished. Additionally, the infl ow 
serves to dilute the contaminant.    

Figure 5.33: Concentration after 300 days. Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.

Figure 5.34: Concentration after 600 days. Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.
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5.5.3 Impact of Well Discharge 

 The use of discharging or recharging wells in the design of remediation systems for 
the containment and removal of subsurface contaminants is well established. 

 The concept is to change the groundwater fl ow path such that contaminants are 
 “ hydrodynamically herded ”  to contain the plume or to remove mass from it. In this 
example, we look at the impact of introducing a discharge well within the model 
area. As seen from Figure  5.38 , after 900 days of simulation the perimeter of the 
plume has been modifi ed from that appearing in the base case (see Figure  5.35 ). 
The velocity vector plot shows that the diversion of fl ow from a left - to - right trajec-

Figure 5.35: Concentration after 900 days. Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.

Figure 5.36: Concentration distribution after 900 days when infl ow is removed. 



tory to one that enters the infl uence of the well modifi es the plume topology. In 
essence, the plume has been entirely captured by the well; as long as the well con-
tinues to pump, the plume is essentially contained.    

  5.5.4     Effect of Adsorption   

 The objective of this example is to illustrate the impact on species transport of 
adsorption of species  i  onto the solid phase. In this example, we make use of a linear 
isotherm approximation. If tetrachloroethylene were species  i , (1    −      ε  )  ρ  s K d      ≈    0.9. We 
will use this value for our simulation and note that, since   ε     =   0.2,   Riw

S = 5 5. . 

    Figure 5.37:     The results after 300 days of increasing the infl ow by a factor of 10 relative to the base 
case from 0.0023   ft/day to 0.023   ft/day.  

    Figure 5.38:     Concentration after 900 days with well pumping at 10   gal/min. Contour values from 0.5 
to 1.0 are omitted for clarity of presentation.  
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 Figure  5.39  illustrates the topology of the contaminant plume after 900 days of 
simulation. It is clear that the plume does not move as fast as in the base case. The 
adsorption onto the solid decreases the effective velocity of the fl ow, as was previ-
ously discussed in Chapter  4  following equation  (4.85) . The apparent advective 
velocity is inversely proportional to the retardation coeffi cient,   Riw

S ; thus the effec-
tive velocity for the case depicted in Figure  5.39  is on the order of 20% of that with 
no adsorption depicted in Figure  5.35 . The value of   Riw

S  is very species - specifi c and 
takes on a wide range of values depending on what is being adsorbed and on the 
properties of the solid.    

  5.5.5     Effect of a Low Transmissivity Region   

 Subsurface reservoirs are seldom homogeneous. Typically geologic materials show 
a variety of grain sizes and often zones of high and low permeability materials are 
present within a single region of interest. In this example we embed a rectangular 
zone of low permeability material within the reservoir depicting the base case. More 
specifi cally, the low permeability zone has a   transmissivity   of  T w     =   180   ft 2 /day as 
compared to the surrounding  T w     =   900   ft 2 /day material. 

 The behavior of the contaminant plume for this scenario is shown in Figures  5.40  
through  5.45 . To facilitate an understanding of the resulting behavior, a vector plot 
of the groundwater velocity is provided in each fi gure. The velocity pattern confi rms 
that water moves more slowly in the low transmissivity zone and tends to move in 
the more permeable material around this zone. We observe that the fl ow in the low 
permeability block is not exactly parallel to the  x  axis. Flow that enters the low 
permeability zone at the left side tends to move toward the upper and lower bound-
aries of the zone. As a consequence, the contaminant plume initially expands forming 
a bulbous shape within the low permeability block. Upon moving through the block, 
the plume contracts as would be expected based upon the convergence of the 
groundwater fl ow depicted by the velocity vectors. Thereafter the plume continues 

    Figure 5.39:     Concentration after 900 days assuming a linear adsorption isotherm with a  K d   of 4.53 
typical of tetrachloroethylene. Contour values from 0.5 to 1.0 are omitted for clarity of presentation.  



Figure 5.40: Concentration after 600 days. Rectangular area is of lower hydraulic conductivity (2 ft/day
versus 10 ft/day for remaining area; velocity vector units are ft/day). Contour values from 0.5 to 1.0 
are omitted for clarity of presentation. 

Figure 5.41: Concentration after 1200 days. Rectangular area is of lower hydraulic conductivity (2 ft/
day versus 10 ft/day for remaining area). Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.

Figure 5.42: Concentration after 1800 days. Rectangular area is of lower hydraulic conductivity (2 ft/
day versus 10 ft/day for remaining area). Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.
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its movement beyond the block with a topology similar to the base case. However, 
in viewing these fi gures it is important to note that the elapsed time has increased 
by a factor of 2 from the base case. These plots capture the system at 600, 1200, and 
1800 days.              

5.5.6 Effect of a High Transmissivity Region 

 In this example we look at the case when the imbedded block of soil has a higher 
transmissivity than the surrounding region. The transmissivity of block is Tw    =  
 1800   ft 2 /day while that of the surrounding soil remains at  Tw    =   900   ft 2 /day. The evolu-
tion of the contaminant plume is presented in Figures  5.43  through  5.45 . Once again, 

Figure 5.43: Concentration after 300 days. Rectangular area is of higher hydraulic conductivity (20 ft/
day versus 10 ft/day for remaining area). Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.

Figure 5.44: Concentration after 600 days. Rectangular area is of higher hydraulic conductivity (20 ft/
day versus 10 ft/day for remaining area). Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.



examination of the groundwater velocity vectors provides insight into the mecha-
nisms of plume spreading. Because the transmissivity contrast is relatively low (a 
factor of 2) the impact of the higher permeability layer is not as dramatic as pre-
sented in the example of Subsection  5.5.5  where the transmissivities differed by a 
factor of 5. Nevertheless, the velocity within the high permeability block is higher 
than that in the surrounding soil and the fl ow preferentially enters the high perme-
ability region to fi nd a  “ path of least resistance. ”  After 900 days of simulation the 
lateral spreading of the plume front is less for this case than for the base case. 

 It is noteworthy that the plume has not moved further downstream than for the 
base case, given the existence of the high permeability area. Because the higher 
permeability block is isolated within a lower permeability soil it has little infl uence 
on long - term plume behavior. Although fl ow will move faster through the block 
than in the surrounding area, the contaminant carried by this fl ow at the smaller 
times will be met at the block exit by relatively fresh water and thus will be diluted. 
The 0.1 concentration front will extend approximately the same distance as for the 
base case, or even less depending on time of observation and the transmissivity ratio 
in the two regions.  

  5.5.7     Effect of Rate of Reaction   

 In this instance we consider the impact of a chemical reaction on the concentration 
distribution. We specifi cally consider the case when the species being transported is 
nonadsorbing and decays according to a   fi rst order reaction   (i.e.,   r kiw iw w iw= − rxnρ ω ). 
If the    half - life   ,  t  1/2 , is the time it takes for half the species present to react and the 
reaction is fi rst order, the rate constant is obtained as:

    k
t

iw
rxn = ln2

1 2

    (5.41)   

    Figure 5.45:     Concentration after 900 days. Rectangular area is of higher hydraulic conductivity (20   ft/
day versus 10   ft/day for remaining area). Contour values from 0.5 to 1.0 are omitted for clarity of 
presentation.  
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 For example, tritium is a species that decays in this manner with a half - life of 12.43 
years such that the reaction rate constant is   kiw

rxn day= × − −1 5 10 4 1. . We will use this 
coeffi cient in the present example while recognizing that for other species, rate 
constants will vary by orders of magnitude and that the forms of reaction rate 
expressions can also be very complex. 

 The plume is simulated using the base case situation with the addition of the 
  decay reaction  . After 900 days, the plume topology obtained is as shown in Figure 
 5.46 . For reference, the base plume 0.1 contour is provided as the dashed line in this 
fi gure. As expected, the plume is smaller relative to the base case since species  i  has 
been depleted through the decay reaction.     

  5.6     3 -  D  SINGLE - PHASE FLOW AND TRANSPORT   

 The straightforward single - phase fl ow examples presented in Section  5.5  were based 
on an areal two - dimensional model. The vertical dimension was formally accom-
modated through integration and defi nition of suitable   vertically averaged   param-
eters and state variables. The question naturally arises as to how important the 
vertical dimension is in addressing real world problems. In this section we briefl y 
address this question through consideration of a three - dimensional extension of the 
base problem described in Subsection  5.5.1  augmented by infl ow from above as 
presented in Subsection  5.5.2 . We selected this problem as an example because it 
illustrates the  “   plunging plume   ”  phenomenon very commonly encountered in the 
fi eld. 

 The three - dimensional transient fl ow and transport model was developed using 
columnar fi nite elements with triangular cross - section with each of the fi ve vertical 
layers in the model being discretized into the same triangular mesh while the meshes 
are connected using vertical lines. Thus, in cross section, each element projects as a 
rectangle. The signifi cant difference between this model and that of Subsection  5.5.2  

    Figure 5.46:     The base - case simulation (dashed line) compared with the same simulation but with the 
addition of a decay reaction (solid line) after 900 days.  



is that the aquifer with vertical thickness b    =   90   ft is now subdivided into fi ve layers. 
The top layer is 10   ft thick and the thicknesses of the other four are each 20   ft. A 
second experiment was also conducted which employed fi ve layers for a system with 
b    =   50   ft to demonstrate the importance of aquifer thickness on three - dimensional 
fl ow. 

 The concentration distribution in each of the layers after an elapsed period of 
1000 days for the case of high infl ow (0.023   ft/day) is provided in Figure  5.47 . The 
sequence goes from top layer (A) to bottom layer (E). In this simulation, the con-
centration source is considered to be present only in the top layer.   

Figure 5.47: Plunging plume due to infow with representation of increasing area with depth as one 
moves through panels B, C, D, and E at time of 1000 days. Panel F is the behavior in the bottom layer 
of a fi ve layer model where the thickness is 50 ft.

3-D SINGLE-PHASE FLOW AND TRANSPORT 237



238   SIMULATION

 Examination of Figure  5.47  illustrates the phenomenon of a  “ plunging plume. ”  
The contamination emanating from the source moves, as would be expected, in the 
direction of groundwater fl ow. However, due to the vertical infl ow, there is a signifi -
cant downward velocity component. As a result the plume moves downward provid-
ing a projection of increasing area in panels B, C, D, and E. In panel F we present 
a simulation of the behavior of a plume in the bottom layer of a fi ve layer model 
of an aquifer that has a thickness of 50   ft. Panels E and F can be directly compared. 
As one might expect, the concentration at the bottom of the 50   ft thick aquifer is 
higher than that at the bottom of the 90   ft thick aquifer because (1) the contaminant 
is spread over a smaller vertical interval and (2) less time is required for the con-
taminant to reach the bottom of the thinner region. 

 It is important to keep in mind that the very different results in the two - 
dimensional and three - dimensional models presented here are not due to hetero-
geneity. Both models are homogeneous. However, when the physical system is such 
that vertical variation of properties, such as fl ow or concentration, or vertical fl ow 
infl uences the solution, a two - dimensional model may be unable to capture the 
dynamics correctly. In such a case, a three - dimensional model is required. 

 In a second illustration of the signifi cance of using a three - dimensional simulation 
in lieu of a two - dimensional surrogate, we consider the high infl ow case discussed 
in the preceding example, but using a fully penetrating source; that is, the source is 
assumed to extend the entire depth of the model rather than just extending through 
the top layer. Figure  5.48  shows the concentration distribution after 1000 days, a 
slightly longer period than the 900 days represented in Figure  5.37 , in the top 10   ft 
of the model. The results are comparable to panel A in Figure  5.47 . The results for 
the middle layer, which extends from 30 to 50   ft below ground surface, are shown 
in Figure  5.49 . This fi gure is comparable to panel C in Figure  5.47 . While the results 
are similar, the fully penetrating well example generates a plume that is somewhat 
larger than that created using the source located only in the upper layer.      

    Figure 5.48:     Concentration distribution in top 10   ft of the model using a fully penetrating source after 
1000 days.  



    Figure 5.49:     Concentration distribution in the middle layer of the model (30 to 50 feet below ground 
surface) using a fully penetrating source after 1000 days.  

  5.7     2 -  D  THREE - PHASE FLOW   

 Although the derivations in this text have referred primarily to one -  or two - phase 
fl ow, the extension to three phases is conceptually consistent with the approaches. 
The challenges in obtaining governing equations with appropriate closure relations 
are heightened for the case of two immiscible fl uids plus a gas moving in a porous 
medium, but simulators have nevertheless been developed that attempt to model 
such systems and also provide insights into the mechanisms that require further 
attention if the models are to be useful predictive tools. Here we provide the results 
of such a model. 

 Perhaps the simplest physically meaningful   three - phase fl ow   problem is that 
which involves transient fl ow in a vertical plane. A physical experiment that 
satisfi es these constraints was conducted by M. Fishman of EPA. Tetrachloroethy-
lene (also called   perchloroethylene   PCE), a denser than water nonaqueous 
phase liquid (DNAPL) with a density of   ρ  n     =   1.62   g/cm 3  and solubility limit of   
ρ ωw

n
iw
eq g cm= × −1 5 10 4 3.  (20    ° C), was introduced into an artifi cial aquifer as illus-

trated in Figure  5.50 . As described in  [2] ;

  The inside dimensions of the box (defi ning the volume of the sand) are 67   cm deep, 
49   cm wide and 2   cm thick. The top boundary is open to the atmosphere and the bottom 
boundary is impermeable. The vertical sides are constructed such that water can fl ow 
across the boundary but not air. A constant phreatic surface is defi ned by specifying 
appropriate water source/sink ports along the vertical sides. The box is fi lled with a uni-
form medium - grained sand in a manner which is assumed to result in a homogeneous, 
isotropic porous medium. The soil properties are reported to be:   

  Permeability ( k s  )    3.5    ×    10  − 7 cm 2   
  Porosity (  ε  )    0.37  
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 The sand - fi lled box is imbibed with water to the top and allowed to equilibrate to create 
an initial condition where the system is in static equilibrium and  s w     =   1 throughout. The 
following fl uid properties are provided:   

       w  (water)     n  (DNAPL)     g  (gas)  

  Density (g/cm 3 )    1.0    1.626    0.00129  
  Viscosity (poise)    0.01    0.0093    0.0002  

  Interfacial tension (dynes/cm)      γ   wn      39.5  
    γ   gn      31.74  
    γ   wg      72.75  

 From this initial condition, three sequential displacement   experiments   are run: 

  1.     The phreatic surface is lowered to elevation 35.5   cm from the top of the box and, 
the system is allowed to return to equilibrium conditions.  . . .   

  2.     Given the initial condition from Part 1, the PCE source is applied as shown in 
Figure  5.50 . That is, a 0.5   cm head of PCE is applied uniformly over a 10   cm 2  sur-
face at the center/top of the box until 200   cm 3  enters the domain. Note that for the 
experiment this took 143   sec.  . . .   

    Figure 5.50:     Experimental setup used by M. Fishman of EPA as reported in  [2] . The acronym CF 
refers to capillary fringe and WT denotes watertable.  
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3.   Given the initial condition from Part 2, that is, the data at time   =   143   sec, the PCE 
source is removed and the system is allowed to return to equilibrium for a period 
of 3,452   sec (total elapsed time since the DNAPL was applied is 3,595   sec).  . . .         

 The results of the experiment are shown in Figures  5.51  through  5.54 . The left 
panel presents the experimental observations, and is the relevant information 

Figure 5.51: Distribution of DNAPL 143 sec after source was applied. At this time the source was 
removed [2]. The variable hW is the point at which the pressure is atmospheric. The left panel presents 
the experimental results and the right panel the calculated saturations. 

Figure 5.52: Distribution of DNAPL 283 sec after fi rst introduction and 140 seconds after source was 
stopped [2].
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needed from these fi gures at this time. We will address the panels on the right shortly. 
When viewed in combination with Figure  5.50  one can see from Figure  5.51  that the 
DNAPL moves through the unsaturated zone with limited lateral spread and begins 
to enter the    capillary fringe   . In Figure  5.52  we observe that although the DNAPL 
moves across the top of the capillary fringe, it appears to spread more horizontally. 
In Figure  5.53  one sees movement of the DNAPL through the capillary fringe and 
an apparent decrease in DNAPL saturation. Finally, in Figure  5.54 , the DNAPL has 
passed below the water table and is moving through fully water - saturated porous 

Figure 5.53: Distribution of DNAPL 1195 sec after the source was applied and 1052 sec after the 
source was removed [2].

Figure 5.54: Distribution of DNAPL 3595 sec after the source was applied and 3452 sec after the 
source was removed [2].



media. Note that the saturation of the DNAPL, as indicated by the inequalities, is 
decreasing as time increases. This is to be expected since a fi xed volume of DNAPL 
entered the system and is now spreading over an increasing volume of porous 
medium.         

 The mathematical representation of the DNAPL problem requires us to specify 
the   initial   and boundary conditions. The simulation actually requires the solution of 
three problems. They are described in  [2]  as follows:   

  1.     Starting with the initial condition of full water phase saturation, drop the water 
table to match the experimental condition, and allow the system to approach 
steady - state conditions.  . . .   

  2.     Given the initial conditions from submodel 1, apply the DNAPL source for the 
specifi ed time period (i.e., 143   sec).  

  3.     Given the initial conditions from submodel 2, remove the DNAPL source and 
allow the system to re - equilibrate for 3,452   sec.      

 Boundary conditions for the three sequential simulations (A – C in Figure  5.55 ) 
are specifi ed in this fi gure. In simulation A the objective is to provide appropriate 
initial conditions for simulation B. The DNAPL source is introduced in simulation 
B via the specifi cation of a DNAPL pressure head of 0.5   cm as indicated. Simulation 
C describes the movement of the DNAPL subsequent to discontinuing the source.   

 The   model   used for this simulation is NAPL, an EPA supported collocation – fi nite 
element based computer code. The code documentation is found in  [2] . The results 
of the simulation are provided in the right - hand panels of Figures  5.51  through  5.54 . 
By comparing the left - hand panels with the right - hand side panels in each fi gure, 
a qualitative comparison of the computed and observed DNAPL saturation can be 
achieved. While the fi lamentous nature of the observed DNAPL plume cannot be 

    Figure 5.55:     Identifi cation of boundary conditions used in the three - phase simulation model (modifi ed 
from  [2] ).  
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reproduced numerically using this continuum model, the general behavior of the 
DNAPL is appropriately simulated.  

5.8 SUMMARY

 The equations developed in earlier chapters have been used in this chapter in con-
junction with numerical simulators to illustrate interesting features of porous 
medium fl ow and transport in some simple situations. Initially we considered one -
 dimensional multiphase fl ow examples; air - water and DNAPL - water systems were 
examined.

 Drainage of water from a saturated homogeneous soil (Subsection  5.1.1 ) and, 
subsequently, from a heterogeneous layered soil (Subsection  5.1.2 ) were the fi rst 
two problems to be considered. With the drained soil conditions used as the initial 
system state, water imbibition was examined for both soil systems (Subsection 
 5.1.3 ). 

 The second series of problems involved one - dimensional DNAPL - water fl ow. 
After considering the imbibition of DNAPL into a water - saturated homogeneous 
soil (Subsection  5.2.1 ), the impact of NAPL density was considered (Subsection 
 5.2.2 ). The contrast in behavior of two fl uids with different densities was 
demonstrated.

 Using the simulation results at the end of the primary DNAPL imbibition phase 
as the initial state of the system, DNAPL drainage was next considered (Subsection 
 5.2.3 ). Given the state of the system after this drainage phase, secondary imbibition 
of DNAPL was simulated (Subsection  5.2.4 ), followed by secondary drainage (Sub-
section  5.2.5 ). Primary imbibition into heterogeneous layered soils was also simu-
lated (Subsection  5.2.6 ). 

 Next the sinking of DNAPL introduced at the top into a water - saturated reser-
voir. The downward motion was simulated as well as lateral motion induced by the 
presence of a lower permeability zone (Subsection  5.3.1 ). 

 In Section  5.4  we considered the case of one - dimensional two - phase fl ow and 
transport (Subsection  5.4.1 ) followed by two - dimensional two - phase fl ow and trans-
port (Subsection  5.4.2 ). While one - dimensional problems are illustrative of many 
basic concepts, the extension to two space dimensions reveals behavior that cannot 
be captured in one - dimensional simulations. Movement around areas of lower 
hydraulic conductivity and the representation of irregular sharp - interface pro-
pagation, for example, cannot be viewed using one - dimensional models. The 
classic problem of DNAPL movement from a source of limited areal extent into a 
water - saturated reservoir was used as the physical system of interest in the two -
 dimensional simulations. 

 Section  5.5  focused on single - phase fl ow and transport in two space dimensions 
using a vertically integrated model. The objective was to show the impact of a 
number of factors on contaminant transport behavior. The impact of infl ow from 
above (Subsection  5.5.2 ), well discharge (Subsection  5.5.3 ), adsorption (Subsection 
 5.5.4 ), heterogeneous hydraulic conductivity (Subsections  5.5.5  and  5.5.6 ), and a fi rst 
order chemical decay reaction (Subsection  5.5.7 ) were examined. We note that these 
were simple examples aimed at demonstrating mechanisms rather than complex 
examples designed to demonstrate simulation capabilities. 



 Section  5.6  extends the single - phase fl ow and transport simulations to three 
dimensions. This section demonstrates the utility of modeling the vertical dimension, 
as well as the lateral dimensions, when vertical fl ow occurs or when gradients of 
concentration in the vertical are important. When the source of contamination is 
near the top of the region, fl ow from the top can cause the  “ plunging plume ”  phe-
nomenon whereby the contaminant is transported toward the bottom of the reser-
voir. Such a situation cannot be simulated accurately unless variation in the vertical 
dimension is accounted for. 

 In Section  5.7 , three - phase, three - dimensional fl ow and transport are presented 
for demonstration purposes. A qualitative comparison between computed and 
observed behavior suggests that at least some of the mechanisms that infl uence 
system dynamics are properly parameterized mathematically. 

 As a fi nal disclaimer, it is important to state that the material presented here, 
though perhaps complex in some sense, is indeed introductory in nature. Additional 
work that integrates theory, experiments, and simulation is required to obtain 
increased understanding of the infl uence of heterogeneity, anisotropy, scale, phase 
interactions, chemical reactions, solid phase dynamics, and biological activity on 
mass, momentum, and energy transport in multiphase porous media systems. From 
this point, the research must continue.  
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 SELECT SYMBOLS      

  Roman Letters 

   A     cross - sectional area of column,  L  2   
   a     air phase  
   a     fi tting parameter for Brooks - Corey relationship,  —   
   b     aquifer thickness(=    z   t      −     z   b  ),  L   
   C  c     coeffi cient of curvature,  —   
   C  u     uniformity coeffi cient,  —   
   C w      water capacity function, 1 /L   
   c i α       macroscale moles of species  i  per volume of phase   a , moles/L  3   
   D     particle diameter,  L   
   D i      geometric mean of the grain size of sieve  i  and sieve  i    +   1,  L   

    Diw dif    microscale diffusion coeffi cient for species  i  in phase  w, L  2  /T   
   D i α       dispersion coeffi cient of species  i  in phase   a , L  2  /T   

    D
i
dif
α

    macroscale diffusion coeffi cient of species  i  in phase   a , L  2  /T   

    Ddif
iα

    macroscale diffusion coeffi cient tensor for species  i  in phase   a , L  2  /T   

    Ddis
iα

    macroscale dispersion coeffi cient tensor for species  i  in 
phase   a , L  2  /T   

   D  n     grain size greater than or equal to n% of the grains by weight,  L   
   D  p     pore diameter,  L   
   D w      soil water diffusivity,  L  2  /T   
   d  p     tube diameter,  L   
   e     void ratio,  —   

    eαβ
α

    rate of mass transfer into phase   a   at the   a  β   interface,  M/ ( L  3  T )  

    e
i
αβ
α

    rate of mass transfer of species  i  into the   a   phase at the   a  β   
interface,  M/ ( L  3  T )  

   F     general vector function with continuous fi rst spatial derivatives 
within the volume  V   

   F i α       general macroscale scalar property of species  i  in phase   α    
   F |   α       the microscale vector  F  evaluated in the   a   phase  
   f     an arbitrary scalar function  
   f     pore - size distribution function,  —   
   f  w      fraction of the linear sum of the two phase velocities that is due to 

the water phase,  —   
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   f  |   α       the microscale scalar  f  evaluated in the   a   phase  
   g     gravity vector,  L/T  2   
   g     magnitude of gravity vector,  L/T  2   
   H     initial macroscale head distribution,  L   
   H  b     macroscale head specifi ed on the boundary of the domain,  L   
   H  ext     measure of the head external to the region of study at the 

boundary that infi uences the fl ow,  L   
   H i α  β       Henry ’ s law constant for species  i  in phase   β   in equilibrium with its 

mass fraction in phase   a  ,  —   
   h     hydraulic head,  L   
   h c      macroscale capillary head,  L   
   h i      microscale hydraulic head at location  x   i  ,  L   
   h  α       macroscale head in the   a   phase,  L   
   I     unit tensor,  —   
   J ( s w  )    Leverett  J  - function,  —   
   j   i      microscale diffusive/dispersive transport fi ux of species  i, M/ ( L  2  T )  
   j   i a       macroscale dispersion vector of species  i  in phase   a , M/ ( L  2  T )  
  K    hydraulic conductivity,  L/T   
   K   iw s     constant used in constitutive equations for adsorption isotherms for 

species  i  in fl uid phase  w  on solid  s ,  —   

    Kd
kws

    distribution coeffi cient for species  k  between the  w  and  s  phases, 
 L  3  /M   

   K  w     hydraulic conductivity tensor for the  w  phase,  L/T   
   K w      hydraulic conductivity for the  w  phase,  L/T   
   K   w   ″     two - dimensional hydraulic conductivity tensor in the lateral plane 

for the  w  phase,  L/T   
   k     unit vector in  z  - coordinate direction,  —   

    k
iw
rxn    macroscale rate constant for fi rst order chemical reaction of species 

 i  in phase  w , 1 /T   
   k i α       microscale fi rst order decay coeffi cient for species  i  in phase   a  , 1 /T   
   k  maxm     maximum value of relative permeability obtained with   s sw w= i  on 

main drainage curve,  —   
   k  maxp     maximum value of relative permeability obtained with   s sw w= i  on 

primary drainage curve,  —   
   k  s     intrinsic permeability tensor,  L  2   
   k s      intrinsic permeability,  L  2   
   k sw      effective conductivity of the wetting phase,  L  2   
   k   s α       effective conductivity tensor of the   α   phase   =( )k s

rel
α k ,  L  2   

    krel
α

    relative permeability for the   α   phase,  —   
   L     length of column,  L   
   L p      macroscale distance,  L   
   M     fi tting parameter in van Genuchten  p c     -    s w   relation,  —   
  M  i      molecular weight of chemical species  i, M/mol e  
   M iw      mass of species  i  in the  w  phase,  M   

    M
iw
0     initial total amount of species  i  in phase  w, M   

   M  α       mass of the   α   phase,  M   
   m     mass of solid particles in a volume of fl uid in a hydrometer study, 

 M   
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   m     fi tting parameter in wetting phase relative permeability 
relationship,  —   

   m m      fi tting parameter in main nonwetting drainage curve relative 
permeability relationship,  —   

   m p      fi tting parameter in primary nonwetting drainage curve relative 
permeability relationship,  —   

   m  α       mass of   a   phase,  M   
   N     number of species,  —   
   N     fi tting parameter in van Genuchten  p c     -    s w   relation,  —   
   N  b     Bond number (ratio of gravitational to capillary forces),  —   
   N  c     capillary number (ratio of viscous to capillary forces),  —   
   N  int     number of intervals between sieves,  —   
   N  W     number of wells in the system,  —   
   N    α       number of species in the   α   phase,  —   
   n     nonwetting phase  
   n     unit normal vector outward from a volume at a point on the 

surface,  —   
   n  ext     outwardly directed unit normal to external boundary  S  of volume 

 V ,  —   
   n  F     constant in Freundlich isotherm,  —   
   n    α       outward - directed unit normal to surface of   α   phase,  —   
   n    α  β       outward - directed unit normal at edge of   a   β  interface surface,  —   
   P     specifi ed pressure distribution within a domain,  M/ ( LT  2 )  
   P b      specifi ed pressure distribution on   xb

w , the domain boundary, 
 M/ ( LT  2 )  

   P  ext     external pressure,  M/ ( LT  2 )  
   P     microscale pressure,  M/ ( LT  2 )  
   p  atm     atmospheric pressure,  M/ ( LT  2 )  
   p c      microscale capillary pressure,  M/ ( LT  2 )  
   p c      macroscopic capillary pressure(=    p  n     −     p w  ),  M/ ( LT  2 )  
   p s      macroscale force per unit area exerted on the solid by the adjacent 

fl uids,  M/ ( LT  2 )  
   p  α       microscale pressure in phase   a , M/ ( LT  2 )  
   p a      macroscale pressure in phase   a , M/ ( LT  2 )  

    QW
α

    volumetric pumping rate of phase   α   at well W,  L  3  /T   

    QW
α′    volumetric pumping rate of phase   α   at well W per cross - sectional 

area,  L/T   
   q  B     combined velocity component used in fractional fl ow formulation 

( =     q w      +     q n  ),  L/ T  
   q  b     specifi ed normal fi ux of phase  w  at the boundary location   xb

w ,  L/ T  
   q   w    ′    Darcy velocity of phase  w  in the horizontal plane,  L/T   
   q   w  *      Darcy velocity of phase  w  at the top surface of an unconfi ned 

aquifer,  L/T   
   q    α       specifi c discharge (Darcy velocity) of phase   a , L/T   
   q  α       magnitude of  q    α   ,  L/T   
   R     radius of curvature,  L   
   R c      geometric mean radius of curvature,  L   
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   R i α       molar rate of production of species  i  in phase   α   per unit volume
(=    r i α  / M  i  ),  moles/ ( L  3  T )  

    R
kw
S     standard retardation factor,  —   

    R
kw
T     total retardation factor for species  k  in the  w  phase,  —   

   r     radius of cylinder,  L   
   r     global coordinate system vector,  L   
   r i      microscale rate of mass production of species  i  per unit volume, 

 M/ ( L  3 / T )  
   r i α       macroscale rate of production of species  i  per unit volume of   α   

phase,  M/ ( L  3  T )  
   r  max     maximum pore radius contributing to fl ow,  L   
   r  min     minimum pore radius contributing to fl ow,  L   
   S     boundary surface of a volume,  L  2   
   S     storage coeffi cient (=    S s b ),  —   
   S s      specifi c storage, 1 /L   
   S y      specifi c yield (=    S    +     ε   eff ),  —   
   S  α  β       surface between phases   α   and   β   in the interior of an averaging 

volume   δ V, L  2   
   s     solid phase  

    s
n
r     residual saturation of the nonwetting phase,  —   

    s
n
rmax    maximum value of residual saturation achievable in the porous 

medium,  —   
    s

w
e     effective saturation of  w  phase   = −( ) −( )( )s s sw w w

i i1 ,  —   

    sw
er    revised effective saturation of  w  phase   = −( ) − −( )( )s s s sw w w n

t t t1 ,  —   

    s
w
i     irreducible saturation of  w  phase,  —   

   s  α       saturation of the   α   phase,  —   

    st
α

    trapped saturation of the   α   phase  
   T     temperature,  °   
   T   w   ″     two - dimensional transmissivity tensor for the  w  phase in the lateral 

plane (=    b  K   w   ″ ),  L  2  /T   
   T w      transmissivity of an isotropic medium for the  w  phase,  L  2  /T   
   T  α       macroscopic temperature in phase   a  ,  °   
   t     time,  T   
   V     volume under consideration,  L  3   
   V  α       subvolume of  V  occupied by   a   phase,  L  3   

    VC
α

    volume of   α   phase in a cylinder,  L  3   

    VT
α

    total volume of   α   phase,  L  3   
   V   ∞      total macrospace domain of the system under study,  L  3   
   v     velocity,  L/T   
   v     magnitude of velocity,  L/T   
   v   i      microscale velocity of chemical species  i, L/T   
   v   i  |   α       microscale velocity of species  i  evaluated in the   α   phase,  L/T   
   v   i α       macroscopic velocity of species  i  in the   a   phase,  L/T   
   v    α       barycentric macroscale   α   phase velocity,  L/T   
   w     velocity of the boundary surface of a region,  L/T   
   w     wetting phase  



   w i      fractional weight of sand between diameters of sieve  i  and sieve 
 i    +   1,  —   

   x     macroscale coordinate system, also centroid of an REV,  L   

    xb
w
    spatial coordinates of the boundary of a study region,  L   

   x  w     well location,  L   

    xmass
α

    fraction of total mass at a macroscale point that is   α   phase,  —   
   z     vertical coordinate  
   z i      elevation coordinate,  L   
   z  0     reference elevation,  L   

  Greek Letters 

    α      refers to a general phase  
    α      fi tting parameter for Brooks - Corey or van Genuchten relationship, 

1 /L   
    α   b     matrix compressibility,  LT  2  /M   
   a  L     longitudinal dispersivity,  L   
   a    T       transverse dispersivity,  L   
    β      refers to a general phase  
    β  i α       concentration compressibility for species  i  in phase   a  ,  —   

    βµ
αi

    viscosity - composition coeffi cient with respect to species  i  in phase 
  a  ,  —   

    β   α       compressibility of phase   a , LT  2  /M   
    γ  wns      microscale line/curve tension of common line where  w, n , and  s  

phases meet,  ML/ T  2   
    γ   α       phase distribution function for phase   a  ,  —   
    γ   α  β       microscale interfacial/surface tension for interface between   α   and   β   

phases,  M/T  2   
    δ S  α  α       part of the boundary of   δ V  intersected by the   α   phase,  L  2   
    δ V     volume of representative elementary volume (REV),  L  3   
    δ V  α       volume of the   α   phase in   δ V, L  3   
    δ  ( x     −     x  W )    Dirac delta function acting at location  x  W , 1 /L  3   
    ε      porosity,  —   
    ε   eff     effective porosity,  —   
    ε   α       volume fraction of an REV occupied by the   α   phase,  —   
    ζ      variable of integration  
    ς      pore connectivity parameter for the nonwetting phase relative 

permeability relationship,  —   
    θ      water content (=     ε   s w  ),  —   
    θ      contact angle,  —   
    θ  r      residual water content,  —   
    θ  s      saturated water content,  —   
    κ      pore connectivity parameter in wetting phase relative permeability 

relationship,  —   
    κ   b     measure of the permeability of the boundary to fl ow,  L  2  T/M   
    κ  g      geodesic curvature, 1 /L   

    καβ
αi

    coeffi cient of mass transfer of species  i  between the   α   and   β   phases 
based on conditions in the   α   phase,  M/ ( L  3  T )  
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    κ  n      normal curvature, 1 /L   
    κ   α       bulk modulus of phase   a , M/ ( LT  2 )  
    λ      fi tting parameter for Brooks - Corey relationship,  —   

    λd
k
    radioactive decay coeffi cient for species  k , 1 /T   

    µ      dynamic viscosity,  M/ ( LT )  
    µ   α       macroscale average of the dynamic viscosity of the   α   phase, 

 M/ ( LT )  
     ξ       local coordinate system relative to REV centroid,  L   
    ρ      mass density,  M/L  3   
    ρ  i      mass density of species  i  (=     ρ  ω  i  ),  M/L  3   
    ρ   α       microscale mass density of phase   a , M/L  3   
    ρ   α       macroscale mass density of   α   phase,  M/L  3   

    ρ
α
W    macroscale mass density of phase   α   being pumped at well W,  M/L  3   

    ρ
α
0     macroscale reference density for phase   α  ,  M/L  3   

    τ      tortuosity,  —   
   Φ   w      Hubbert potential for  w  phase,  L  2  /T  2   
    χ      Bishop parameter,  —   
    ψ      suction head,  L   
   Ω   i α       specifi ed macroscale spatial distribution of species  i  in   α   phase,  —   
    ω  i      mass fraction of species  i  at a point in   α   phase,  —   

    ωmax
is

    constant in Langmuir isotherm,  —   
    ω  i α       macroscale mass fraction of species  i  in phase   a  ,  —   

    ω β
α

eq
i

    mass fraction of species  i  in the   a   phase that would be in 
equilibrium with the actual mass fraction,   ω  i β   , of  i  in the   β   phase 
(Note: if the   β   phase is pure species  i , this quantity is the 
solubility limit of  i  in the   a   phase),  —   

    ω
α

W
i

    macroscale mass fraction of species  i  in phase   α   pumped at well W,  —   

    ω
α

0
i

    reference macroscale mass fraction of species  i  in phase   a  ,  —   

  Mathematical Operations 

  D( · )/D t     microscale material time derivative, 1 /T   
  D   α   ( · )/D t     macroscale material time derivative taken with  v    α    as the reference 

velocity, 1 /T   
   ∇     three - dimensional spatial del, 1 /L   
   ∇  x     macroscale spatial derivative operator holding the   ξ   coordinates 

fi xed, 1 /L   
   ∇     ξ        microscale spatial derivative operator holding the centroid  x  of the 

REV fi xed, 1 /L   
   ∇  ′     two - dimensional del operator acting in a surface, 1 /L   
   ∇  ′  ·  n  n     mean curvature of the  n  phase surface, 1 /L   
   ∇  ″     one - dimensional del operator acting along a curve, 1 /L   
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INDEX

1-D simulation of air-water fl ow 277
drainage in a heterogeneous soil 286
drainage in a homogeneous soil 282
imbibition in homogeneous soil 288

1-D simulation of DNAPL-water fl ow 
290

density effect 292
DNAPL drainage in homogeneous 

soil 292
primary DNAPL imbibition in 

homogeneous soil 290
primary imbibition in heterogeneous 

soil 296
secondary drainage in homogeneous 

soil 295
secondary imbibition of DNAPL in 

homogeneous soil 293
1-D two-phase fl ow and transport 305
2-D simulation of DNAPL-water fl ow 298

DNAPL descent into a water-saturated 
reservoir 298

2-D single-phase fl ow and transport 315
base case 323
effect of a low transmissivity region 

329
effect of adsorption 328
effect of infl ow 325
effect of rate of reaction 335
impact of well discharge 327

2-D three-phase fl ow 341
2-D two-phase fl ow and transport 308
3-D single-phase fl ow and transport 337

adsorption 310
adsorption isotherm 257, 310
advective term 232
anisotropy 144

applications of transport 101
integral analysis 103
point analysis 106

averaging criteria 77
averaging theorems 86

spatial averaging theorem 89, 91
temporal averaging theorem 91, 92

balance on the common line 32
Bishop parameter 168
bond number 184
bounding loop 190
Brooks and Corey parametric model 193
Buckley-Leverett analysis 215
bulk compressibility 150
bulk density 191
bulk modulus 125
by-passing 181

capillarity. See surface tension 36
capillary depression 38
capillary fringe 187, 344
capillary head 171
capillary number 184
capillary pressure 27

formulation 210
capillary rise 38
capillary tube. See interfacial tension 36
capillary wetting phase 181
chain rule 150
chemical reaction 232

rates 250
closure relations for the dispersion vector 246
coeffi cient of curvature 15
coeffi cient of mass transfer 255
coeffi cient of uniformity 14
collinear vector 139

Essentials of Multiphase Flow and Transport in Porous Media, by George F. Pinder and William G. Gray
Copyright © 2008 by John Wiley & Sons, Inc.



254 INDEX

collocation fi nite element method 282
common line 23, 28, 29
compressibility 125

of pure water 126
concentration 42
concentration compressibility 125
concept

of concentration 42
of pressure 17
of saturation 15

confi ned aquifer 163
connectivity 4
conservation equations 50
conservation of mass, integral form of 59

See also mass balance 
conservative species 258
constitutive equations 117
constitutive relationships 17, 50
contact angle 32, 39, 199
continuum scale 52
convection. See mass balance 60
cumulative grain size distribution curve 192
curvature 31
cylindrical coordinate system 162

Darcy velocity 139, 167, 236
Darcy’s experiments 118
Darcy’s law 137
decay reaction 336
dense non-aqueous phase (DNAPL) fl ow 290
density effect on DNAPL fl ow 292
derivation

of the Buckley-Leverett equation 218
of fl ow equations 166
of groundwater fl ow equation 146

derivatives of hydraulic head 134
diffusion 61, 246
diffusion coeffi cient 246
direct approach 233
Dirichlet conditions for fl ow 156
dispersion 61, 246
dispersion coeffi cient 306
dispersion vector 232
dispersivity 320
distribution approach 239
distribution coeffi cient 257, 310
distribution form of the species conservation 

equation 239
divergence theorem 26, 63
DNAPL descent into a water-saturated 

reservoir 298
DNAPL drainage in homogeneous soil 292

DNAPL experiment 343
DNAPL pooling 300
drainage

in a heterogeneous soil 286
in a homogeneous soil 282
See also capillarity 40

drainage curve 178, 190
main 190
primary 190
scanning 190

Dupuit assumption 160
dynamic viscosity 122, 127

effect of a high transmissivity region 332
effective porosity 163
effective saturation 185, 205
elevation head 132
entry pressure 176, 193
equation of state 123
equations of state for fl uids 123
equilibrium formulation 254, 260
exchange term 255
extensive quantities 78

Fick’s Law 246
fi rst order reaction 335
fi rst type conditions for fl ow 156
fi rst-order chemical reaction 319
fl ow equations 115
fl uid compressibility 126, 149
fl uid properties 121
fl uid viscosity 127
fl ux condition 157
fractional fl ow 215
Freundlich isotherm 257

gauge pressure 37
geodesic curvature 32
global and local coordinate systems 69
grain and pore size distributions 8
grain density 191
grain size 7, 9

distribution 191
distribution curve 13
effective grain size 15
grading 14
sorting 14
uniformity coeffi cient 14

granular soils 172

Haines jump 178
half life 335
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head, hydraulic 119
Henry Darcy 118
homogeneous reaction rate 250
Hubbert potential 134
hydraulic conductivity 120, 152
hydraulic force and hydraulic head 130
hydraulic head

derivatives 134
and permeability 140

hydraulic potential 128
hydraulically disconnected 181
hydrometer method 12
hysteresis 179
hysteresis loop 179
hysteresis. See capillarity 41

ideal gas constant 223
imbibition, in homogeneous soil 288

See also capillarity 40
imbibition curve 179

main 190
primary 190
scanning 190

incomplete displacement 184
initial and boundary conditions for fl ow 154
initial conditions 348
integral analysis, transport 103
integral forms 99

of mass conservation 55
integral theorems 62

divergence theorem 63
transport theorem 63

intensive variables 78
interfacial tension 22, 23, 199
interfacial transport 17
interphase mass transfer 318
interphase transfer terms 232, 253

equilibrium formulation 260
kinetic formulation 255
kinetic vs. equilibrium formulations 269

interphase transport 17, 256
intrinsic permeability 141
intrinsic phase average 79
irreducible saturation 181, 183, 188, 193, 199
isotropy 139, 146

ka
rel − sw relationship 204

kinetic formulation 254
kinetic process 309
kinetic rate coeffi cient 310
kinetic vs. equilibrium formulations 269
Kozeny relationship 142

Land trapping model 190
Langmuir isotherm 258
Laplace equation for capillary pressure 28 

195
Leibnitz rule 135
Leverett J-function 195
linear adsorption isotherm 257, 318
local coordinate system 69, 71
longitudinal dispersivity 248

macroscale 53, 67
macroscale density 122
macroscale mass conservation 92

integral forms 99
macroscale point forms 93

macroscale perspective 67
defi nitions of macroscale quantities 78
global and local coordinate systems 69
macroscopic variables 74
representative elementary volume 68

macroscale point forms 93
macroscale quantities

defi nitions 78
summary 85

macroscopic level of observation 76
macroscopic variable 74
manometer 21, 119
mass balance equation 116
mass conservation equations 49
mass conservation of the solid phase 236
mass density and pressure 125
mass dispersion vector 246
mass fraction 124, 232, 252
mass fraction solubility limit 309
mass rate of production 251
mass transfer 309
mass transport equations 229
material derivative 110, 147, 149, 167, 236
matrix compressibility 169
mean curvature 27
mean radius of curvature. See capillarity 

27
mechanical dispersion 247
microcopic level of observation 76
microscale 52
microscale mass conservation 53
mixed form of Richards equation 212
mixed formulation 210
moisture retention curve 187, 192
molar concentrations 251
molar rate of production 251
multiphase simulation 277
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NAPL model 349
negative pressure 37
Neumann condition for fl ow 157
no fl ow boundary 157
non-conservative species 258
non-wetting fl uid 24

See also interfacial tension 33
normal curvature 32
normal fl ux 157

packing, cubic, grain packing, rhombohedral 
8

packing factor 143
parametric models 192
partitioning 254
pc−sw relationship 173 
pc−sw relationship formulas 185
perchloroethylene 342
phase 2

density 279
distribution function 75
transformation 17

phases and porous media 2
phreatic surface 187
pipette method 12
plunging plume 337
point analysis, transport 106
point forms of mass conservation 64
pore 5

connectivity parameter  203
diameter 195
doublet 182
high aspect-ratio 182
radius 191
size distribution function 191
size distribution index 193
velocity 140

porosity 7, 136, 279
porous media 2
pressure 17

negative 37
pressure gauge 37
pressure head 132, 151
primary DNAPL imbibition in homogeneous 

soil 290
primary drainage 194

curve 187, 201
primary imbibition

of DNAPL 291
in heterogeneous soil 296

primary-secondary DNAPL imbibition 
comparison  294

product rule 209
propagation of concentration front 

307

rate limited model 254
reaction term 309
reference pressure 131
relative permeability 170, 197
relative permeability-saturation 

relationship 197
Representative Elementary Volume 68
residual saturation 17, 183, 199
residual water content 214
retardation coeffi cient 310
REV 68
Richards equation 212
rigorous approach 235
Robin condition 158

sand shape factor 143
saturated water content 214
saturation 16, 279

formulation 210
residual saturation 17

scaling relation 194
scanning curve 190, 180
second type boundary condtion for fl ow 

157
secondary DNAPL drainage in homogeneous 

soil 295
secondary drainage curve 201
secondary imbibition 293
secondary imbibition of DNAPL in 

homogeneous soil 293
sieve, mesh size 9
simulation 277

of multiphase fl ow and transport 305
1-D two-phase fl ow and transport 305
2-D two-phase fl ow and transport 308

single-phase fl uid fl ow 136
snap-off 181
soil retention curve 187
soil water diffusivity 213, 214
solid compressibility 169
solid phase deformation 237
solution of the Buckley-Leverett equation 

219
spatial averaging theorem 89
special cases of multiphase fl ow 209
specifi c discharge 139
specifi c storage 151
specifi c yield 164
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standard retardation factor 267
steady state fl ow 156
storage coeffi cient 161
storativity 161
suction head 212
suction head form of Richards equation 

213
surface tension 21, 23, 36, 195

considerations 21
capillarity 36
See also interfacial tension 22

temporal averaging theorem 91
third type boundary condition for fl ow 

158
three-phase fl ow 341
threshold pressure 176
tortuosity 142
total mass conservation 241
total retardation factor 266
transient fl ow 155
transmissivity 161, 316, 329
transport equation 309
transport theorem 63
transverse dispersivity 248
trapped-phase volume 181
two-dimensional fl ow 159
two-phase fl ow and transport 305
two-phase immiscible fl ow 165

unconfi ned aquifer 163
uniform soil 15

uniformity coeffi cient 14
unsaturated zone 185

vadose zone 185
van Genuchten parametric model 193
velocity of the species transport equations 232

direct approach 233
distribution approach 239
rigorous approach 235

velocity, barycentric 60
vertical averaging 337
vertically averaged transport equation 318
viscosity ratio 199
viscosity-composition coeffi cient 128
viscous forces 184
void fraction 7
void ratio 44
volume fraction 76

water capacity function 213
water content 212

form of Richards equation 213
See also saturation 16

water table 36, 163, 187
wet methods 12
wettability 34, 39
wetting fl uid 24

See also interfacial tension 33
wetting phase entrapment 181
wetting phenomenon 39

Young’s equation: interfacial tension 33




