Introductory Physics II:

Waves, Acoustics, Electromagnetism, Optics, and Modern Physics

D.G. Simpson, Ph.D.

Department of Natural Sciences
Prince George’s Community College
Largo, Maryland

Spring 2021

Last updated: September 14, 2020



Contents

Acknowledgments 10

| Preliminaries 11
What is Physics? 12
Units 14

21 SystemsofUnits. . . . . . . . . L 14
22 SIUNItS . . . 15
23 CGSSystemsofUnits. . . . . . . .. 19
2.4  BritishEngineeringUnits . . . . . . . . . . . . 19
2.5 Unitsas an Error-Checking Technique. . . . . . . . . . . . .. ... .. .. .. ... 19
26  UnitConversions . . . . . . . . o e 20
27 Currency Units. . . . . . . L 21
28 OddsandEnds. . . . . . . . . .. 22
Problem-Solving Strategies 23
The Calculus 25

4.1 Infinitesimal Numbers . . . . . . . . . . 25
4.2  Differential Calculus — FindingSlopes . . . . . . . . . . . .. ... ... . 26
4.3 Integral Calculus — Finding Areas . . . . . . . . . . .. e 28
4.4  The Fundamental Theoremof Calculus . . . . . . . . . . ... .. ... ... ...... 32
4.5  ApproxXimations . . . . .. .. e e e 32
46 More Examples . . . . . .. e 33
47  Mainldeas. . . . . . . . 37
4.8 GoingFurther . . . . . . L e 37
Il Waves 38
Simple Harmonic Motion 39

51 Energy. . . . . e 41
5.2 TheVertical Spring . . . . . . . . . . e 43
53 Frequencyand Period . . . . . . . .. 43
54  MassonaSpring . . . . . ... 43
55 Moreonthe SpringConstant. . . . . . . . . . . . ... 44



10

11

12

13

Prince George’s Community College Introductory Physics I D.G. Simpson

Damped Oscillations 47
6.1 Underdamped . . . . . . . ..
6.2 Overdamped. . . . . . . .
6.3 CriticallyDamped . . . . . . . . .
Forced Oscillations 49
7.1 Resonance . . . . . . . . . L e e
The Pendulum 51
8.1 Equationof Motion . . . . . . . . .
8.2 Period . . . . . . e e e
8.3  The Spherical Pendulum. . . . . . . . . ...
8.4  The Conical Pendulum. . . . . . . . . . . . e
8.5 The TorsionalPendulum. . . . . . . . . . ..
8.6  ThePhysicalPendulum . . . . . . . . .. . . .
8.7 OtherPendulums . . . . . . . . . . . e
Waves 57
9.1 TypesofWaves . . . . . . . .
9.2  WaveSpeed . . . . . .
9.3 StringWaves. . . . . . .
9.4 Reflectionand Transmission. . . . . . . . . . . . e
9.5  Superposition . . . . .. L L
9.6 Interference . . . . . . L e
9.7  Wave Energy. . . . . . . e e e
9.8  WavelIntensity. . . . . . . . e e
9.9 OceanWaves . . . . . . . e e e
9.10 SeismicWaves. . . . . . . . e e e
Standing Waves 66
10.1 FixedorFreeatBothEnds. . . . . . . . . . . . . .. .
10.2 FixedatOne Endand Free attheOther . . . . . . . . . . . .. ... ... ...,
10.3 Vibrationsof RodsandPlates . . . . . . . . . . ... . L e
Il Acoustics 70
Sound 71
111 SpeedofSound . . . . . . . ..
11.2 Frequency of Sound . . . . . . . ..
The Doppler Effect 75
12.1 RelativisticDoppler Effect. . . . . . . . . . .
Sound Intensity 79
131 Intensity . . . . . . . e
13.2 Decibels. . . . . . e
13.3 NEPers. . . . . e e



14

15

16

17

18

19

20

21

22

Prince George’s Community College Introductory Physics I D.G. Simpson

The Edison Phonograph 81
Music 84
15.1  Pitch. . . . . e e e e
15.2 Musical Scales. . . . . . . . . e e e
15.3 Music Notation . . . . . . . . . . e e e e e
154 TiMING. . . . . o o e e e
155 AnExample . . . . . . e
15.6 Musical Instruments .. . . . . . . . . e e e e e e
IV Electricity and Magnetism 92
Electricity 93
16.1 ElectricCharge . . . . . . . . . e
16.2 Coulomb'sLaw . . . . . . . . e e e e
16.3 Atomic Viewof Electricity. . . . . . . . . . . ..
16.4 Materials. . . . . . . e e s
16.5 Coulomb’sLaw in Twoor Three Dimensions . . . . . . . . . . . . . .. ... ......
The Electric Field 97
17.1 ElectricFieldduetoa PointCharge . . . . . . . . . . . . .. . . .
17.2 ElectricFieldLines . . . . . . . . . . e e
17.3 TheElectricDipole . . . . . . . . .
17.4 ElectricFIux. . . . . . . . e e e e
175 Gauss'sLaw . . . . . . . e e e e
17.6 Electric Fields of Conductors . . . . . . . . . . . . . e
17.7 DielectricBreakdown . . . . . . . . . ..
17.8 Lightning . . . . . . .
Electric Potential 101
18.1 Potential Energy . . . . . . . . L
18.2 Potential. . . . . . .. e e
18.3 Equipotential Surfaces. . . . . . . . . L
18.4 Comparison between Gravity and Electricity. . . . . . . . . . .. .. ... ... ...,
18,5 TheElectronVolt . . . . . . . . . .
The Battery 104
Electric Current 106
Resistance 107
211 ResSiStiVity . . . . . . e
21.2 ResistorsinSeriesand Parallel. . . . . . . . . . ... .. . .
21.3 ConducCtanCe. . . . . . . . . . . e e e e
214 WITE . . . . o e e e
215 BatteryInternal Resistance. . . . . . . . . . . . L
Ohm’s Law 113
22.1 Electric POWEr . . . . . . . e e e e s



23

24

25

26

27

28

29

30

31

Prince George’s Community College Introductory Physics I D.G. Simpson

DC Electric Circuits 114

23.1 SchematicDiagrams. . . . . . . . . . e e e 114
23.2 Kirchhoff Plots. . . . . . . . . . e 114
23.3 ASImpleCircuit. . . . . . . . 114
23.4 CircuitAnalysis Principles. . . . . . . . . 118
Kirchhoff's Rules 120

241 Example Circuit . . . . . . . . . . e 120
Electronic Instruments 123

251 AMMELEr. . . . . . e 123
25.2 Voltmeter . . . . . . e e e 123
253 Ohmmeter . . . . . . . e 123
254 Multimeter. . . . . . . 123
255 Oscilloscope. . . . . . 123
25.6 LogicProbe . . . . . . L 124
Capacitance 125

26.1 Parallel-Plate Capacitor . . . . . . . . . . . 125
26.2 CapacitorsinSeriesand Parallel. . . . . . . .. . ... .. o o 126
26.3 Dielectric Materialsin Capacitors . . . . . . . . . . . . 127
26.4 Energy Storedina Capacitor. . . . . . . . . ... e e e 127
RC Circuits 129

27.1 ChargingRC Circuit. . . . . . . . . . e 129
27.2 Discharging RC Circuit . . . . . . . . . . 130
Other Electronic Components 132
28.1 TheDiode . . . . . . . . 132
28.2 TheTransistor . . . . . . . . . 132
28.3 Integrated CirCuits . . . . . . . . . . L e 132
The Electric Light 133

29.1 The EdisonlIncandescentLamp . . . . . . . ..o 133
29.2 CompactFluorescentBulbs . . . . . . . . ... L 135
29.3 Light-Emitting Diode (LED) Bulbs . . . . . . . . . . . . ... .. o 135
Electronics as a Hobby 136
30.1 AnalogElectronics. . . . . . . . . 136
30.2 Digital Electronics. . . . . . . . ... e 136
30.3 AmateurRadio. . . . . ... 137
30.4 RODOLCS. . . . . . . 138
30.5 Amateur Rocketry . . . . . . . e 138
30.6 Amateur Satellites . . . . . . .. 138
30.7 Sample Electronics Projects . . . . . . . . . . . 139
Magnetism 140

31.1 MagneticPoles . . . . . . . 140
31.2 Atomic Viewof Magnetism . . . . . . . . ... 141



Prince George’s Community College Introductory Physics I D.G. Simpson

37

38

39

The Magnetic Field 142

32.1 MagneticField. . . . . . . . 142
32.2 Magnetic Field due to a Single MagneticPole . . . . . . . . .. .. ... .. ... .. .. 142
32.3 MagneticFieldLines . . . . . . . . 142
32.4 TheMagneticDipole . . . . . . . . . 143
325 MagneticFlux. . . . . . . 143
32.6 Gauss’sLaw forMagnetism . . . . . . .. .. L 144
32.7 Biot-SavartLaw . . . . . ... e 144
32.8 Magnetic FieldduetoalongWire . . . . . . . . . .. o 144
32.9 MagneticFieldofaSolenoid . . . . . . . . ... L 145
32.10 Magnetic Field ofaLooporCoilofWire . . . . . . . .. . .. ... .. 145
32.11 Torque on a Magnetic DipoleinaMagneticField . . . . . . .. .. ... ... .. .... 145
32,12 MagnetiC Pressure . . . . . . . . o o e e e 146
The Lorentz Force 147

331 Plasmas . . . . .. 147
33.2 ForceonaWireinaMagneticField. . . . .. .. .. .. ... ... L. 148
33.3 Magnetic Force between Two LongWires . . . . . . . . . . . . . ... oo 148
33.4 TheHallEffect . . . . . . . . . 149
Geomagnetism 151

34.1 Earth’'sMagneticDipole. . . . . . . . . . 151
34.2 Magnetic Declination . . . . . . . . .. 152
34.3 Magnetic Inclination. . . . . . . . . L 152
34.4 MagneticReversals . . . . . . . . L 154
345 The Magnetosphere . . . . . . . . . 154
34.6 The Aurora . . . . . . . . . i e e e e 154
Magnetic Materials 161

35.1 Diamagnetism . . . . . . . 161
35.2 Paramagnetism. . . . . . . .. e e e 161
35.3 Ferromagnetism . . . . . .. e 161
35.4 PermanentMagnets . . . . . . . . e e e 162
35,5 CurieTemperature . . . . . . . . . o o e e e 162
35.6 Eddy Currents . . . . . . . . . e 163
Ampere’s Law 164
Faraday’s Law 166

37.1 Lenz'sbhaw . . . . . . .. e e

37.2 MotionalEMF. . . . . . .
Maxwell's Equations 169
Inductance 170

39.1 Solenoid Inductor . . . . . . .. e

39.2 Inductorsin Seriesand Parallel . . . . . . . ... ..o Lo

39.3 Magnetic MaterialsinInductors . . . . . . . ...

39.4 Energy Storedinaninductor. . . . . . ...



Prince George’s Community College Introductory Physics I D.G. Simpson

40 LR Circuits 173
41 LC and LCR Circuits 175
41.1 LCCIrcUitS . . . . . o o e e e 175
41.2 LCRCIrCUItS. . . . . . o o e e e e 178
42 AC Circuits 179
42.1 Format Wars of the 19th Century: ACvs.DC . . . . . . . . . . . . . .. 180
43 Memristance 181
44 Electromagnetism 182
44.1 ElectromagneticWaves . . . . . . . . 182
45 Radio 184
45.1 Thelonosphere . . . . . . . . 186
452 TheCrystalRadio . . . . . . . . . . 187
453 The RadioTransmitter. . . . . . . . . . . . . e 190
V  Optics 193
46 Geometrical Optics 194
46.1 LawofReflectio . . . . . . . . . 194
47 Mirrors 195
47.1 RayDiagrams . . . . . . . . 197
47.2 AlgebraicMethod . . . . . . . . L 198
47.3 Segmented MIrTors . . . . . . . . e 198
48 Refraction 200
48.1 Snell'sLaw . . . . . . . e 200
48.2 TotalInternal Reflection . . . . . . . . . . . L 200
49 Lenses 202
49.1 RayDiagrams . . . . . . .. 203
49.2 AlgebraicMethod . . . . . . . . . 204
49.3 The Fresnellens. . . . . . . . . . 205
50 Optical Defects 206
50.1 Spherical Aberration. . . . . . .. 206
50.2 Chromatic Aberration . . . . . . . . . .. 206
50.3 Astigmatism. . . . . . .. e e e 206
504 Coma . . . .. e e 206
51 Optical Instruments 208
51.1 The MagnifyingGlass . . . . . . . . . . . e 208
51.2 TheHumanEye . . . . . . . . . . 208
51.3 TheTrilobiteEye . . . . . . . . . . 210
51.4 TheCamera . . . . . . . . i e e e e 212



52

53

54

55

56

57

58

59

Prince George’s Community College

Introductory Physics I

D.G. Simpson

51.5 TheMicroscope . . . . . . . . ..o
51.6 TheTelescope . . . . . . . . .. .. ... .. .....
51.7 ThePeriscope . . . . . . . . .. .
51.8 TheKaleidoscope . . . . . . .. ... ... ... ...
Photometry

52.1 LuminousFlux. . . . . .. ... ... ... L.

52.2 Luminousintensity . . . . ... ... .. ... ...

52.3 llluminance . . . . .. .. ... oL

52.4 Example: TheSun. . . .. ... ... .. .......
52.5 Example: Incandescent Light Bulb

52.6 Astronomical Photometry . . . . . . . .. ... .. ..

Young’s Experiment

53.1 QuantumEffects. . . . .. ... ... ... L.
Diffraction

54.1 The Rayleigh Criterion. . . . . . .. ... ... .. ..
54.2 FloatersintheEye. . . . . . .. ... .. .. ... ..
54.3 The DiffractionGrating . . . . . .. ... ... .. ..
Optics of the Hubble Space Telescope

55.1 The Hubble Space Telescope. . . . . . .. ... ...
55.2 HST OpticsOverview . . . . . . . .. ... ... ...
55.3 Resolution. . . . ... .. .. ... oL
55.4 Spherical Aberration. . . . .. ...
Dispersion

56.1 CauchyDispersionFormula . . . . . ... ... .. ..
56.2 Sellmeier DispersionFormula . . . . . . .. ... ...
Polarization

57.1 Selective Absorption. . . . .. .. ... oL
57.2 Reflection; BrewstersLaw . . . ... ... ... ...
57.3 Scattering . . . . . .. ..
57.4 Birefringence . . . . . .. ... L
Color

58.1 Lights . . . ... ... . .. ...
58.2 Pigments. . . . . ... ..
58.3 SpectralColors . . . . .. ... ... ...
58.4 The Chromaticity Diagram. . . . . . . . . ... .. ..
The Rainbow

59.1 Colors. . . . .. . e
59.2 ThePrimary Rainbow . . . . .. ... ... ......
59.3 The Secondary Rainbow. . . . . ... .. ... ...
59.4 Location of the Rainbow. . . . . . . ... ... ....

59.5 AlexandersDarkBand . . ... ... ... ......



60

61

62

Prince George’s Community College Introductory Physics Il

D.G. Simpson

59.6 Higher-OrderRainbows . . . . . .. . .. ... ... .......

VI Modern Physics

Special Relativity

60.1 Introduction . . . . . . . . . . . . ...
60.2 Postulates . . . . . ... ..

60.3 TimeDilation . . . . . .. ... . ... . .
60.4 Length Contraction . . . . . .. ... ... ... ... ...,
60.5 AnExample . . . .. .. ... ...
60.6 Momentum . . . . . . .. e
60.7 Additionof\elocities . . . . . . . .. .. ...

60.8 Energy. . . . . . . .
Superfluids

The Standard Model

62.1 Matter. . . . . . . e e e

62.2 Antimatter. . . . . . . . . ...

62.3 FOrces . . . . . . . e e e

62.4 TheHiggsBoson . . . .. ... ... ... ..

Further Reading
Appendices

Greek Alphabet
Trigonometry

Useful Series

Table of Derivatives
Table of Integrals
Mathematical Subtleties
Sl Units

Gaussian Units

Units of Physical Quantities
Physical Constants
Astronomical Data

Unit Conversion Tables

265

266

272

273

275

277

279

282

284

287

288

289



Prince George’s Community College Introductory Physics I D.G. Simpson

Angular Measure 293

M.1  PlaneAngle . . . . . . 293
M.2  SolidAngle . . . . . . 293
Vector Arithmetic 295
Matrix Properties 298
Moments of Inertia 300
The Simple Plane Pendulum: Exact Solution 302
Q.1 Equationof Motion . . . . . . . .. 302
Q.2 Solutionf(t) . . . . . o o e e e 303
Q.3 Period . . . . . e e e 303
CIE Chromaticity Coordinates 307
Calculator Programs 309
Right-Hand Rules 310
The Earth’s Magnetosphere 311
Round-Number Handbook of Physics 314
Short Glossary of Particle Physics 316
Fundamental Physical Constants — Extensive Listing 317
Periodic Table of the Elements 324
References 324
Index 327



Acknowledgments

The author wishes to express his thanks to David Benning, Jay Nelson, and Glenn Snyder for their help with
the material on music in Chapter 15; and also to John McClure of Prince George’'s Community College for
many valuable comments on the notes.

10



Part |

Preliminaries

11



Chapter 1

What is Physics?

Physicsis the most fundamental of the sciences. Its goal is to learn how the Universe works at the most
fundamental level—and to discover the basic laws by which it oper&theoretical physicgoncentrates

on developing the theory and mathematics of these laws, vapidied physicdocuses attention on the
application of the principles of physics to practical problemagperimental physickes at the intersection

of physics and engineering; experimental physicists have the theoretical knowledge of theoretical physicists,
andthey know how to build and work with scientific equipment.

Physics is divided into a number of sub-fields, and physicists are trained to have some expertise in all of
them. This variety is what makes physics one of the most interesting of the sciences—and it makes people
with physics training very versatile in their ability to do work in many different technical fields.

The major fields of physics are:

Classical mechanicis the study the motion of bodies according to Newton'’s laws of motion.

Electricity and magnetismre two closely related phenomena that are together considered a single field
of physics. We’'ll study electricity and magnetism in this course.

Quantum mechaniadescribes the peculiar motion of very small bodies (atomic sizes and smaller).
Opticsis the study of light, and we’ll study it in this course.

Acousticss the study of sound; this is another subject we’ll study in this course.
Thermodynamicandstatistical mechanicare closely related fields that study the nature of heat.
Solid-state physicis the study of solids—most often crystalline metals.

Plasma physicg the study of plasmas (ionized gases).

Atomic, nuclear, and particle physistudy of the atom, the atomic nucleus, and the particles that make
up the atom.

Relativityincludes Albert Einstein’s theories of special and general relati8fyecial relativityde-
scribes the motion of bodies moving at very high speeds (near the speed of light)gemél rela-
tivity is Einstein’s theory of gravity.

The fields ofcross-disciplinary physicsombine physics with other sciences. These inchatephysics
(physics of astronomypgeophysicgphysics of geology)biophysicqdphysics of biology)chemical physics
(physics of chemistry), anshathematical physicgnathematical theories related to physics).

12
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Besides acquiring a knowledge of physics for its own sake, the study of physics will give you a broad tech-
nical background and set of problem-solving skills that you can apply to wide variety of other fields. Some
students of physics go on to study more advanced physics, while others find ways to apply their knowledge
of physics to such diverse subjects as mathematics, engineering, biology, medicine, and finance.
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Chapter 2

Units

The phenomena of Nature have been found to obey certain physical laws; one of the primary goals of physics
research is to discover those laws. It has been known for several centuries that the laws of physics are
appropriately expressed in the languagenatthematicsso physics and mathematics have enjoyed a close
connection for quite a long time.

In order to connect the physical world to the mathematical world, we need to mae&keurementsf the
real world. In making a measurement, we compare a physical quantity with some agreed-upon standard, and
determine how many such standard units are present. For example, we have a precise definition of a unit of
length called amile, and have determined that there are about 92,000,000 such miles between the Earth and
the Sun.

Itis important that we have very precise definitions of physical units — not only for scientific use, but also
for trade and commerce. In practice, we define ali@se unitsand derive other units from combinations of
those base units. For example, if we define units for length and time, then we can define a unit for speed as
the length divided by time (e.g. miles/hour).

How many base units do we need to define? There is no magic number; in fact it is possible to define
a system of units using onlgne base unit (and this is in fact done for so-calleatural unity. For most
systems of units, it is convenient to define base units for length, mass, and time; a base electrical unit may
also be defined, along with a few lesser-used base units.

2.1 Systems of Units

Several different systems of units are in common use. For everyday civil use, most of the worldetises
units. The United Kingdom uses both metric units andraperial system. Here in the United State¢s.S.
customary unitgre most common for everyday use.

There are actually several “metric” systems in use. They can be broadly grouped into two categories:
those that use the meter, kilogram, and second as base units (MKS systems), and those that use the centimeter,
gram, and second as base units (CGS systems). There is only one MKS systemSkcahéd We will
mostly use Sl units in this course.

1In the mid-1970s the U.S. government attempted to switch the United States to the metric system, but the idea was abandoned after
strong public opposition. One remnant from that era is the two-liter bottle of soda pop.

14
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2.2 Sl Units

Sl units (which stands for Syatie International d'unés) are based on tmeeteras the base unit of length,
the kilogram as the base unit of mass, and #erondas the base unit of time. SI units also define four
other base units (thempere kelvin, candelg andmole to be described later). Any physical quantity that
can be measured can be expressed in terms of these base units or some combination of them. Sl units are
summarized in Appendix G.

S| units were originally based mostly on the properties of the Earth and of water. Undefighel
definitions:

» Themeterwas defined to be one ten-millionth the distance from the equator to the North Pole, along a
line of longitude passing through Paris.

» Thekilogramwas defined as the mass of 0.001 of water.
» Thesecondwvas defined as 1/86,400 the length of a day.

» The definition of themperds related to electrical properties, ultimately relating to the meter, kilogram,
and second.

» Thekelvinwas defined in terms of the thermodynamics properties of water, as well as absolute zero.
» Thecandelawas defined by the luminous properties of molten tungsten.
» Themoleis defined by the density of the carbon-12 nucleus.

Many of these original definitions have been replaced over time with more precise definitions, as the need for
increased precision has arisen.

Length (Meter)

The Sl base unit of length, thmeter(m), has been re-defined more times than any other unit, due to the need
for increasing accuracy. Originally (1793) the meter was defined t b&000,000 the distance from the
North Pole to the equator, along a line going through Pafigien, in 1889, the meter was re-defined to be the
distance between two lines engraved on a prototype meter bar kept in Paris. Then in 1960 it was re-defined
again: the meter was defined as the distancke#0,763.73 wavelengths of the orange-red emission line in
the krypton-86 atomic spectrum. Still more stringent accuracy requirements led to the the current definition
of the meter, which was implemented in 1983: the meter is now defined to be the distance light in vacuum
travels in1/299,792,458 second. Because of this definition, the speed of light is epactly299,792,458
m/s.

U.S. Customary units are legally defined in terms of metric equivalents. For lengfbotifi) is defined
to be exactly 0.3048 meter.

Mass (Kilogram)

Originally thekilogram (kg) was defined to be the mass of 1 liter (0.00%)rof water. The need for more
accuracy required the kilogram to be re-defined to be the mass of a standard mass catiezirthgonal
Prototype Kilogran{IPK, frequently designated by the Gothic letf), which is kept in a vault at the Bureau
International des Poids et Mesures (BIPM) in Paris. The kilogram is the only base unit still defined in terms
of a prototype, rather than in terms of an experiment that can be duplicated in the laboratory.

2|f you remember this original definition, then you can remember the circumference of the Earth4@/a0a,000 meters.

15
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The International Prototype Kilogram is a small cylinder of platinum-iridium alloy (90% platinum), about
the size of a golf ball. In 1884, a set of 40 duplicates of the IPK was made; each country that requested one
got one of these duplicates. The United States received two of these: the duplicate called K20 arrived here
in 1890, and has been the standard of mass for the U.S. ever since. The second copy, called K4, arrived later
that same year, and is used as a constancy check on K20. Finally, in 1996 the U.S. got a third standard called
K79; this is used for mass stability studies. These duplicates are kept at the National Institutes of Standards
and Technology (NIST) in Gaithersburg, Maryland. They are kept under very controlled conditions under
several layers of glass bell jars and are periodically cleaned. From time to time they are returned to the BIPM
in Paris for re-calibration. For reasons not entirely understood, very careful calibration measurements show
that the masses of the duplicates do not stay exactly constant. Because of this, physicists are considering
re-defining the kilogram sometime in the next few years.

Another common metric (but non-SI) unit of mass is thetric ton which is 1000 kg (a little over 1 short
ton).

In U.S. customary units, theound-masglbm) is defined to be exactly.45359237 kg.

Mass vs. Weight

Mass is not the same thing agight so it's important not to confuse the two. Theassof a body is a
measure of the total amount of matter it contains;wleéghtof a body is the gravitational force on it due to
the Earth’s gravity. At the surface of the Earth, masand weight are proportional to each other:

W = mg, (2.1)

whereg is the acceleration due to the Earth’s gravity, equal to 9.86 nRmember: mass is mass, and is
measured in kilograms; weight is a force, and is measured in force umiesnabns

Time (Second)

Originally the base Sl unit of time, th&econd(s), was defined to b&/60 of 1/60 of 1/24 of the length of
a day, so that 60 seconds 1 minute, 60 minutes= 1 hour, and 24 hours- 1 day. High-precision time
measurements have shown that the Earth’s rotation rate has short-term irregularities, along with a long-term
slowing due to tidal forces. So for a more accurate definition, in 1967 the second was re-defined to be based
on a definition using atomic clocks. The second is now defined to be the time requirgd$25631,770
oscillations of a certain type of radiation emitted from a cesium-133 atom.

Although officially the symbol for the second is “s”, you will also often see people use “sec” to avoid
confusing lowercase “s” with the number “5”.

The Ampere, Kelvin, and Candela

For this course, most quantities will be defined entirely in terms of meters, kilograms, and seconds. There are
four other Sl base units, though: taepere(A) (the base unit of electric current); thkelvin (K) (the base

unit of temperature); theandela(cd) (the base unit of luminous intensity, or light brightness); andrtoke

(mol) (the base unit of amount of substance).

Amount of Substance (Mole)

Since we may have a use for the mole in this course, let’s look at its definition in detail. The simplest way to
think of it is as the name for a number. Just as “thousand” me&@n8, “million” means 1,000,000, and “bil-
lion” meansl1,000,000,000, in the same way “mole” refers to the numtsé2,214,129,000,000,000,000,000,

16
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0r6.02214129 x 10%3. You could have a mole of grains of sand or a mole of Volkswagens, but most often the
mole is used to count atoms or molecules. There is a reason this number is particularly useful: since each nu-
cleon (proton and neutron) in an atomic nucleus has an average maés38921 x 1024 grams (called
anatomic mass unjior amu), then there arg/(1.660538921 x 10724), or 6.02214129 x 10?3 nucleons per

gram. In other words, one mole of nucleons has a mass of 1 gram. Thereféiis, tHe atomic weight of an

atom, thend moles of nucleons has a massAfyrams. But4d moles of nucleons is the same as 1 mole of
atoms, smne mole of atoms has a mass (in grams) equal to the atomic wéigtther words,

grams

moles of atoms= ——————— (2.2)
atomic weight
Similarly, when counting molecules,
rams
moles of molecules= g (2.3)

molecular weight

In short, the mole is useful when you need to convert between the mass of a material and the number of
atoms or molecules it contains.

It's important to be clear about what exactly you're counting (atoms or molecules) when using moles. It
doesn't really make sense to talk about “a mole of oxygen”, any more than it would be to talk about “100 of
oxygen”. It's either a “mole of oxygen atoms” or a “mole of oxygen molecufes”.

Interesting fact: there is abod mole of stars in the observable Universe.

S| Derived Units

In addition to the seven base units (m, kg, s, A, K, cd, mol), there are a number of soSiadledved units

with special names. We'll introduce these as needed, but a summary of all of them is shown in Appendix G
(Table G-2). These are just combinations of base units that occur often enough that it's convenient to give
them special names.

Plane Angle (Radian)

One derived Sl unit that we will encounter frequently is the Sl unit of plane angle. Plane angles are commonly
measured in one of two unitsiegreesor radians* You're probably familiar with degrees already: one full
circle is360°, a semicircle id80°, and a right angle i80°.

The Sl unit of plane angle is thadian, which is defined to be that plane angle whose arc length is equal
to its radius. This means that a full circle2s radians, a semicircle ig radians, and a right angle is/2
radians. To convert between degrees and radians, then, we have:

. 180
degrees= radiansx — (2.4)
T
and
radians= degrees< T (2.5)
180

The easy way to remember these formulae is to think in terms of units: 180 has units of degreekaand
units of radians, so in the first equation units of radians cancel on the right-hand side to leave degrees, and in
the second equation units of degrees cancel on the right-hand side to leave radians.

3Sometimes chemists will refer to a “mole of oxygen” when it's understood whether the oxygen in question is in the atomic (O) or
molecular (Q) state.

4A third unitimplemented in many calculators is tiad: a right angle is 100 grads and a full circle is 400 grads. You may encounter
grads in some older literature, such as Laplab&sanique €leste Almost nobody uses grads today, though.
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Occasionally you will see a formula that involves a “bare” angle that is not the argument of a trigonometric
function like the sine, cosine, or tangent. In such cases itis understood that the angle muatiizms For
example, the radius of a circle anglef, and arc length are related by

s =rb, (2.6)

where it is understood thétis in radians.
See Appendix M for a further discussion of plane and solid angles.

Sl Prefixes

It's often convenient to define both large and small units that measure the same thing. For example, in English
units, it's convenient to measure small lengths in inches and large lengths in miles.

In Sl units, larger and smaller units are defined in a systematic way by the psefigésto the Sl base
or derived units. For example, the base Sl unit of length is the meter (m), but small lengths may also be
measured in centimeters (cm, 0.01 m), and large lengths may be measured in kilometers (km, 1000 m). Table
G-3 in Appendix G shows all the Sl prefixes and the powers of 10 they represent. You stelntizahe
powers of10 for all the SI prefixes in this table.

To use the Sl prefixes, simply add the prefix to the front of the name of the SI base or derived unit. The
symbol for the prefixed unit is the symbol for the prefix written in front of the symbol for the unit. For
example, kilometer (km}= 103 meter, microseconduS) = 10~¢ s. But put the prefix on thgram(g), not
the kilogram: for example, 1 microgramg) = 10~° g. For historical reasons, the kilogram is the only Sl
base or derived unit with a prefix.

The Future of S| Units

There is currently a proposal to re-define the basis of Sl units, probably starting in 2018. According to the
proposal, instead of the seven base units, we woelithethe values of seven fundamental physical constants

so that they have fixed, unchanging values—in much the same way that the meter is currently defined so that
the speed of light in vacuum is defined to have the value 299,792,458 m/s. The proposed defined constants
are shown in Table 2-1.

Table 2-1. Proposed new Sl base quantities, defining constants, and definitionsX(lddieates extra
digits that have not yet been determined.) (Rehys. Toda7, 7, 35 (July 2014).)

Base quantity Defining constant Definition

133 H i
< -
Frequency Av(*2° Cshy The unperturbed ground-state hyperfine splitting frequency of
the cesium-133 atom is exactly 9,192,631,770 Hz.

Velocity ¢ The speed of light in vacuumis exactly 299,792,458 m/s.
Action h The Planck constaritis exactly6.626X x 10734 J s.
Electric charge e The elementary chargeis exactly1.602X x 107!° C.

Heat capacity k The Boltzmann constattis exactlyl1.380X x 10723 J/K.
Amount of substance N4 The Avogadro constan¥ is exactly6.022X x 1023 mol~!.
Luminous intensity  Kcq The luminous efficacy .4 of monochromatic radiation of

frequency540 x 10'? Hz is exactly 683 Im/W.

50riginally, the metric standard of mass was a unit calledytaee(GRAH-veh, equal to 1000 grams. When the metric system was
first established by Louis XVI following the French Revolution, the ngmaewas considered politically incorrect, since it resembled
the German wor@raf, or “Count” — a title of nobility, at a time when titles of nobility were shunned. Tnavewas retained as the
unit of mass, but under the more acceptable nkilngram The gram itself was too small to be practical as a mass standard.
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2.3 CGS Systems of Units

In some fields of physics (e.qg. solid-state physics, plasma physics, and astrophysics), it has been customary to
use CGS units rather than Sl units, so you may encounter them occasionally. There are several different CGS
systems in useelectrostatic electromagneticGaussianandHeaviside-Lorentmnits. These systems differ
in how they define their electric and magnetic units. Unlike Sl units, none of these CGS systems defines a
base electrical unit, so electric and magnetic units are all derived units. The most common of these CGS
systems is Gaussian units, which are summarized in Appendix H.

Sl prefixes are used with CGS units in the same way they’re used with Sl units.

2.4 British Engineering Units

Another system of units that is common in some fields of engineeriBgitish engineering unitsin this

system, the base unit of length is the foot (ft), and the base unit of time is the second (s). There is no base
unit of mass; instead, one uses a base unit of force callegaitned-forcgIbf). Mass in British engineering

units is measured units sfugs where 1 slug has a weight of 32.17404855 Ibf.

A related unit of mass (not part of the British engineering system) is called the pound-mass (Ibm). At
the surface of the Earth, a mass of 1 Ibm has a weight of 1 Ibf, so sometimes the two are loosely used
interchangeably and called tpeund(lb), as we do every day when we speak of weights in pounds.

Sl prefixes are not used in the British engineering system.

2.5 Units as an Error-Checking Technique

Checking units can be used as an important error-checking technique difledsional analysisIf you
derive an equation and find that the units don't work out properly, then you can be certain you made a
mistake somewhere. If the units are correct, it doesn’t necessarily mean your derivation is correct (since you
could be off by a factor of 2, for example), but it does give you some confidence that you at least haven't
made a units error. So checking units doesn't tell you for certain whether or not you've made a mistake, but
it does help.

Here are some basic principles to keep in mind when working with units:

Units on both sides of an equation must match.

When adding or subtracting two quantities, they must have the same units.

Quantities that appear in exponents must be dimensionless.

The argument for functions like sin, cos, tan, sincos™!, tarr!, log, and exp must be dimensionless.

When checking units, radians and steradians can be considered dimensionless.

o g ~ w N E

When checking complicated units, it may be useful to break down all derived units into base units (e.g.
replace newtons with kg n38).

Sometimes it's not clear whether or not the units match on both sides of the equation, for example when
both sides involve derived Sl units. In that case, it may be useful to break all the derived units down in terms
of base Sl units (m, kg, s, A, K, mol, cd). Table G-2 in Appendix G shows each of the derived Sl units broken
down in terms of base Sl units.
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2.6 Unit Conversions

Itis very common to have to work with quantities that are given in units other than the units you'd like to work
with. Converting from one set of units to another involves a straightforward, virtually foolproof technique
that's very simple to double-check. We'll illustrate the method here with some examples.

Appendix L gives a number of important conversion factors. More conversion factors are available from
sources such as tl@RC Handbook of Chemistry and Physics

1. Write down the unit conversion factor as a ratio, and fill in the units in the numerator and denominator
so that the units cancel out as needed.

2. Now fillin the numbers so that the numerator and denominator contain the same length, time, etc. (This
is because you want each factor to be a multiplication by 1, so that you don’t change the quantity—only
its units.)

Simple Conversions

A simple unit conversion involves only one conversion factor. The method for doing the conversion is best
illustrated with an example.

Example.Convert 7 feet to inches.
Solution.First write down the unit conversion factor as a ratio, filling in the units as needed:

(7 ft) x

in
2.7

- 27

Notice that the units of feet cancel out, leaving units of inches. The next step is to fill in numbers so that the

same length is in the numerator and denominator:

12in

Now do the arithmetic:

12
(7 ft) x 1—f't” — 84inches 2.9)

More Complex Conversions

More complex conversions may involve more than one conversion factor. You'll need to think about what
conversion factors you know, then put together a chain of them to get to the units you want.

Example.Convert 60 miles per hour to feet per second.
Solution. First, write down a chain of conversion factor ratios, filling in units so that they cancel out
correctly:

mile ft hr

60 X — X
hr mile sec

(2.10)
Units cancel out to leave ft/sec. Now fill in the numbers, putting the same length in the numerator and
denominator in the first factor, and the same time in the numerator and denominator in the second factor:

mile o 5280 ft » 1 hr
hr 1 mile 3600 sec

(2.11)
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Finally, do the arithmetic:

mile 5280 ft 1 hr 8 ft (2.12)

60 — x — X =
hr 1 mile 3600 sec sec

Example.Convert250,000 furlongs per fortnightto meters per second.
Solution.We don’t know how to convert furlongs per fortnightdirectly to meters per second, so we’ll have
to come up with a chain of conversion factors to do the conversiond@aow how to convert: furlongs
to miles, miles to kilometers, kilometers to meters, fortnights to weeks, weeks to days, days to hours, hours
to minutes, and minutes to seconds. So we start by writing conversion factor ratios, putting units where they
need to be so that the result will have the desired target units (m/s):
furlong mile km m fortnight week day hr min

250,000 X X X X X X X X

fortnight furlong mile km week day hr min sec

If you check the units here, you'll see that almost everything cancels out; the only units left are m/s, which is
what we want to convert to. Now fill in the numbers: we want to put either the same length or the same time
in both the numerator and denominator:

furlong 1 mile 1.609344 km 1000 m 1 fortnight 1 week 1 day 1hr 1 min
250,000 X X X X X X — X X

fortnight 8 furlongs 1 mile 1 km 2 weeks 7 days 24 hr 60 min 60 sec
= 41.58 m/s

Conversions Involving Powers

Occasionally we need to do something like convert an area or volume when we know only the length conver-
sion factor.

Example.Convert 2000 cubic feet to gallons.

Solution. Let’s think about what conversion factors we know. We know the conversion factor between
gallons and cubic inches. We don’t know the conversion factor between cubic feet and cubic inches, but we
can convert between feet and inches. The conversion factors will look like this:

.03
2000ft3x( '”) . % (2.13)

ft in3

With these units, the whole expression reduces to units of gallons. Now fillin the same length in the numerator
and denominator of the first factor, and the same volume in the numerator and denominator of the second
factor:

12in\? 1 gal
2000 ft3 x x 2.14
( 1 ft ) 231in3 (2.14)
Now do the arithmetic:
12in\* 1gal
2000 ft3 x x = 14,961 gallons 2.15
( 1 ft ) 231in3 g (2.15)

2.7 Currency Units

Money has units that can be treated like any other units, using the same techniques we've just seen. Two
things are unique about units of currency:

21



Prince George’s Community College Introductory Physics I D.G. Simpson

Each country has its own currency units. Examples are United States dollars ($), British pounds sterling
(E), European euross]), and Japanese yen (¥).

The conversion factors from one country’s currency to another’s is a function of time, and even varies
minute to minute during the day. These conversion factors are eadtddinge ratesand may be found,
for example, on the Internetht t p: / / www. xe. conl currencyconverter/.

Example.You're shopping in Reykjak, Iceland, and see an Icelandic wool scarf you'd like to buy. The
price tag says 6990 kr. What is the price in U.S. dollars?

Solution.The unit of currency in Iceland is the Icelandioki (kr). Looking up the exchange rate on the
Internet, you find it is currently $£ 119.050 kr. Then

2.8

$1.00
Kr.x —————— = $58.71 2.1
6990 kr. x o = $58.7 (2.16)

Odds and Ends

We'll end this chapter with a few miscellaneous notes about Sl units:

In a few special cases, we customarily drop the ending vowel of a prefix when combining with a unit
that begins with a vowel: it'snegohm(not “megaohm”); kilohm (not “kiloohm”); and hectare(not
“hectoare”). In all other cases, keep both vowels (enicroohm kiloare, etc.). There’s no particular
reason for this—it’s just customary.

In pharmacology (on bottles of vitamins or prescription medicine, for example), it is usual to indicate
micrograms with “mcg” rather tharylg”. While this is technically incorrect, it is done to avoid mis-
reading the units. Using “mc” for “micro” is not done outside pharmacology, and you should not use it
in physics. Always usg for “micro”.

Sometimes in electronics work the SI prefix symbol may be used in place of the decimal point. For
example, 24.9 M may be written “24M9”. This saves space on electronic diagrams and when print-
ing values on electronic components, and also avoids problems with the decimal point being nearly
invisible when the print is tiny. This is unofficial use, and is only encountered in electronics.

One sometimes encounters older metric units of length callethity®n (., now properly called the
micrometey 10~° meter) and thenillimicron (mu, now properly called theanometer 10 ~° meter).
The micron and millimicron are now obsolete.

At one time there was a metric prefimyria- (my) that meantl0*. This prefix is obsolete and is no
longer used.

In computer work, the SI prefixes are often used with units of bytes, but may refer to powers of 2 that
are near the Sl values. For example, the term “1 kB” may mean 1000 bytes, or it mapihean 024

bytes. Similarly, a 100 GB hard drive may have a capacity06000,000,000 bytes, or it may mean

100 x 23° = 107,374,182,400 bytes. To help resolve these ambiguities, a setinéry prefixeshas

been introduced (Table G-4 of Appendix G). These prefixes have not yet entirely caught on in the
computing industry, though.
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Chapter 3

Problem-Solving Strategies

Much of this course will focus on developing your ability to solve physics problems. If you enjoy solving
puzzles, you'll find solving physics problems is similar in many ways. Here we’ll look at a few general tips
on how to approach solving problems.

At the beginning of a problem stated in S| units, immediately convert the units of all the quantities
you're given to base Sl units. In other words, convert all lengths to meters, all masses to kilograms, all
times to seconds, etc.: all quantities should be in un-prefixed Sl units, except for masses in kilograms.
When you do this, you're guaranteed that the final result will also be in base Sl units, and this will
minimize your problems with units. As you gain more experience in problem solving, you’ll sometimes
see shortcuts that let you get around this suggestion, but for now converting all units to base Sl units is
the safest approach.

Similarly, if the problem is stated in CGS units immediately convert all given quantities to base CGS
units (lengths in centimeters, masses in grams, and times in seconds). If the problem is stated in British
engineering units, immediately convert all given quantities to base units (lengths in feet, masses in
slugs, and times in seconds).

Look at the information you're given, and what you're being asked to find. Then think about what
equations you know that might let you get from what you’re given to what you're trying to find.

Be sure you understand under what conditions each equation is valid. For example, it would be inap-
propriate to use the equations for constant acceleration from kinematics (©.g= %at2 ~+ vot + Xo)

for a mass on a spring, since the acceleration of a mass under a spring footeasstant. For each
equation you're using, you should be clear what each variable represents, and under what conditions
the equation is valid.

As a general rule, it's best to derive an algebraic expression for the solution to a problem first, then
substitute numbers to compute a numerical answer as the very last step. This approach has a number of
advantages: it allows you to check units in your algebraic expression, helps minimize roundoff error,
and allows you to easily repeat the calculation for different numbers if needed.

If you've derived an algebraic equatiocheck the unitef your answer. Make sure your equation has
the correct units, and doesn’t do something like add quantities with different units.

If you've derived an algebraic equation, you can check that it has the proper behavior for extreme
values of the variables. For example, does the answer make sense if #imeo? If the equation
contains an angle, does it reduce to a sensible answer when the aifgte #°?
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» Check your answer for reasonableness—don't just write down whatever your calculator says. For
example, suppose you're computing the speed of a pendulum bob in the laboratory, and find the answer
is 14,000 miles per hour. That doesn’'t seem reasonable, so you should go back and check your work.

* You can avoid rounding errors by carrying as many significant digits as possible throughout your cal-
culations; don’t round off until you get to the final result.

» Write down a reasonable number of significant digits in the final answer—don’t write down all the
digits in your calculator’s display. Nor should you round too much and use too few significant digits.
There are rules for determining the correct number of significant digits, but for most problems in this
course, 3 or 4 significant digits will be about right.

» Don't forget to put the correct units on the final answer! You will have points deducted for forgetting
to do this.

» The best way to get good at problem solving (and to prepare for exams for this coypsajtise—
practice working as many problems as you have time for. Working physics problems is a skillmuch like
learning to play a sport or musical instrument. You can’t learn by watching someone else do it—you
can only learn it by doing it yourself.
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Chapter 4

The Calculus

Some ideas in physics are most naturally expressed in terms of a branch of mathematitsecaliérlilus of
infinitesimalsor simplythe calculus Here we will present a very brief overview of the ideas of the calculus
so that the notation will be familiar when we encounter it. For a more complete, rigorous, and in-depth
understanding of the calculus, the student is referred to courses on the subject.

4.1 Infinitesimal Numbers

Briefly statedthe calculus is the mathematics of infinitesimal numbkrBnitesimal numbers are an exten-
sion to the set of real numbers. Following Leibniz, we will call an infinitesimal number on the number line
(thex axis) by the notatiowx. The symboli/x is to be thought of as one symbol; it daest meand x x.

Here’s another way to think of the infinitesimal numiagr. You've probably encountered thé\" no-
tation before, meaning the difference between two real numbers. For examples=if3 andx, = 7, then
Ax = xp —x; = 7—3 = 4 s their difference. The notatiodx is analogous taAx, but refers to the
difference between two numbers that are “infinitely close together.”

Mathematically, we define the infinitesimal numlr by

ddx : 0<dx <x,¥VxeR (4.2)

In other wordsthe (positive) infinitesimal numbelx is greater than zero, but smaller than any real number
You may wonder how this is possible. The answer is: it's just defined this way. Mathematicians have
determined that infinitesimal numbers can be defined this way without mathematical contradiction.
Intuitively, you can think of the infinitesimal numbér as being “infinitely close” to zero, buiot zero.
Think of dx as avery, very, very, vergmall number — an “infinitely small” number.
Infinitesimal numbers obey many of the expected laws of arithmetic. Addition and subtraction work as
you would expect:

dx + dx = 2dx 4.2)
2dx + dx = 3dx 4.3)
3dx —dx = 2dx (4.4)

Multiplication is also defined:
dx x dx = (dx)* (4.5)
The numbeKdx)? is also an infinitesimal number, but is “infinitely smaller” thén. This is as expected: if

we approximate/x by a very small number liké0=°, then its squarel)~12) is much smaller in comparison.
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Division of infinitesimals leads to some interesting results. In general, dividing one infinitesimal number
by another often leads tofmiteresult, as we’ll see in the next section.

4.2 Differential Calculus — Finding Slopes

One important application of the calculus is that it allows us to determine the slope of a line that is not
necessarily a straight line. You've learned in an algebra class how to find the slope of a straight line:

r
slope= e (4.6)
In other words, pick any two points along the line, and take the changd Ay, the “rise”) divided by the
change inx (Ax, the “run”).
How can you calculate the slope of a line thahat straight — say, for example, the parabgla= x2?
For a curved line, the slope is different at different points along the curve; it is defined to be the slope of the
straight line tangent to the curve at that point. We can calculate the slope of that tangent line by using the
calculus.
As an example, let’s take the parabgfax) = x2 and say we wish to find its slope at= 3. We can
approximate the slope of the tangent line at 3 by finding the slope of the straight line connecting the point
on the parabola at = 3 and a second point very closeto= 3. The closer the second point isto= 3,
the better the approximation to the actual slepe = 3. For example, let the two points be= 3 and
x=3.0l.Thenatt =3,y = f(x) = x2=32=9,and atr = 3.01, y = f(x) = x? = 3.01%2 = 9.0601.
The slope of the line connecting these points is then
Ay 9.0601 -9

slope= — = —— = 6.01 4.7
P Ax 3.01-3 @.7)

Now let's try an even closer second point= 3.001. Theny = x2? = 3.0012 = 9.006001. Then

Ay _ 9.006001 —9
Ax  3.001-3
And yet an even closer second point= 3.0001. Theny = x2 = 3.0001%2 = 9.00060001. Then

A 9.00060001 — 9
slope= = = 2 77 _ 6 0001 (4.9)
Ax 3.0001 —3
The closer the second point is to 3, the closer the slope seems to be getting to 6. In other wordenih the
where Ax gets closer and closer to 0, the slope gets closer and clogt suggesting that the slojg
x = 3 isexactly6. We write this limit as:
Ay S+ A) - fx) L S+ Ax) — f(x)

slope= lim — = Iim = lim 4.10
P Ax—0 Ax  Ax—0 (x + Ax)—x Ax—0 Ax ( )

slope= = 6.001 (4.8)

Since f(x) = x2 in our example,

slope=_ lim AChS AAXX) mPAC) (4.11)
= Jm, (x+ AAX ;2 - (4.12)
_ A'Lrﬂo [x2 + 2xAxA+x(Ax)2] —x2 (4.13)
= A, W (4.12)
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CancelingAx in the numerator and denominator,

slope= lim 2x + Ax (4.15)
Ax—0

and asA x approaches zero,
slope= 2x (4.16)

So for at any point along the curv&(x) = x2, its slope is given b2x. At x = 3, the slope i€ x 3 = 6, in
agreement with our earlier approximations.
The slope is called thderivativeof f(x) with respect toc. As we have just shown, the derivative of
f(x) = x? with respect tox is 2x. We indicate the derivative of = f(x) with respect toc by the notation
dy

d
oo - f(x) (4.17)

Thus the derivative can be thought of as the quotient of two infinitesimal numbers, and is defined as
A AXx) —
Y im &y A=)

= = 4.1
dx  Ax—0 AX  Ax—0 Ax (4.18)
For our exampley = f(x) = x2,
dy d ,
zr -2 =2 4.19
dx  dx X x ( )
More generally, it can be shown that for amy
d
— xh = nxn—l (420)
dx
For example,
d
— x° = 5x* (4.21)
dx
Heren need not necessarily be an integer. For example, sjace= x!/2, we have
d d 1/2 1 —-1/2 1
- == = _ = 4.22
dx v dx 2" 2% (4.22)

Similar results can be worked out for many common functions. Section D gives a short table of deriva-
tives. In conjunction with this table, we note the following propertieafidv are functions of, anda is a
constant):

j_x (au) = a Z—Z (4.23)
j_x(“+”)=%+% (4.24)
dd—x(u—v):Z—Z—% (4.25)
j_x (uv) = Z—Z v+u Z_)li (4.26)
j_x (%) _ v(du/dx)v—zu(dv/dx) (4.27)
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These results will be proved in a more rigorous calculus course.

Now we know how to find the slope of a line that is non necessarily straight: find a formula for the
derivative of the curve, and the slope at any point is the derivative evaluated at that point. Why would we
want to find the slope of a curved line? For one thing, a derivative with respect to time is how we describe
the rate of change of something. For example, velocity is the rate of change of position, so the velocity of a
body is written in terms of the derivative of its position with respect to time: dx/dt — so that if you
have a functionx (¢) that gives the position of a body at any time, you can take the derivative with respect
to ¢ and get a formula that gives the velocityf the body at any time. Another use for the derivative is for
optimization problems: the tangent at the peak of a curve is equal to zero, so to locate the peak of a curve, we
calculate its derivative and set it equal to zero.

Here’s an interesting calculus fact: there’s one function that is equal to its own derivative. That function
ise*:

9 (4.28)

Example.Find the derivative of the functiofi(x) = 4x3 + 7x2 — 5x + 6 with respect tor, and find the
slope of f(x) atx = 3.
Solution.Using the above results,

4 f(x) = 4 (4x3 4+ 7x% = 5x 4 6) (4.29)
dx dx
s Ly 4 4
= () + = (Tx%) = —=(5%) + —=(6) (4.30)
P NP AP NP LS
=4 () + 7= (%) = 57— (x) + —=(6) (4.31)
=4(3x*) +72x) —5+0 (4.32)
=12x% + 14x -5 (4.33)

The slope ak = 3 isthen12(3)? + 14(3) — 5 = 145.

Example.Locate the peaks of the functigf(x) = 4x3 4+ 7x% — 5x + 6.
Solution. The peaks are where the derivative is equal to zero. We found the derivative in the previous
example, so set this derivative equal to zero to find the peaks:

12x2+ 14x—-5=0 (4.34)

By the quadratic formula,

14+ JT# —dx12x(=5) —7+ /109
x= v x12x(=5) _ S = {14534, 02867} (4.35)

2x12 1
This gives the two values of at which the peaks are located.

4.3 Integral Calculus — Finding Areas
Besides finding slopes, another application of the calculus is the firat¢heinder a curve (i.e. between the

curve and the axis). The area undersdraightline is easy to find without the calculus: it's just the area of a
trapezoid. But under eurvedline, we use the calculus to compute the area.
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Figure 4.1: Finding the area under a curve using rectan@esl{t: pleacher.com

To do this, imagine dividing the area under the curve into a number of very thin rectangles (Figure 4.1).
The thinner the rectangles, the more rectangles we have, and the better the approximation to the actual area
under the curve.

If we go to the limit where the rectangles are infinitesimally narrow, then we will have infinitely many
of them, and the sum of the areas of all the rectangles exactly equals the area under the curve. Adding up
an infinite number of infinitesimal numbers is calletiegration and typically results in a finite result. If
we have a curvef (x), then a rectangle at has infinitesimal width/x and finite heightf'(x), so that that
rectangle has area equal to its width times its heighf,(@) dx. We add together an infinite number of them
by integration; the symbol for which is an elongategfor “sum”), [:

f S(x)dx (4.36)
This expression is called dntegral, and the functionf(x) is called theintegrandof the integral. The area

under the curve clearly depends on where the left and right ends of the area are. The area under the curve
f(x) betweeny = g andx = b in indicated by

b
/ f(x)dx (4.37)

Equation (4.36) is called andefinite integral and Equation (4.37) is calleddefinite integral To compute
a definite integral, we evaluate thefiniteintegral at the upper bourid and subtract the indefinite integral
evaluated at the lower bouiad

b
/ f(x)dx:/f(x)dx (atx =b) — /f(x)dx (atx = a) (4.38)

For example, suppose we want to find the area under the parglioja= x2 betweenx = 1 andx = 3.
This would be

3 3 33 13 26
area= 2= (2 = — —_ = = square units 4.39
/1 SR 3 3 3 (4.39)

The vertical bar is used to indicate that we evaluate the expression at the top value (3), then subtract the
expression evaluated at the bottom value (1).
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It is important to note that the area under the curve countegativearea if it lies below ther axis. For
example, consider a sine curvg(x) = sinx. The function sinx has a positive “lobe” above theaxis from
x = 0tox = &, and a negative “lobe” beneath tieaxis fromx = = tox = 2x. If we find the integral
of f(x) = sinx fromx = 0tox = 2x, we're finding the total area under the curve, but counting the part
below thex axis asnegative We get (using Section E):

2w

2w
/ sinxdx = (—cosx)| = —co0s2x — (—cos0) = —1—(—1) =0. (4.40)
0

0

so the positive area of the first lobe is exactly cancelled by the negative area of the second lobe, and the total
area under the curve is zero. If we really wanted to find the total area under the sine curve fofrnto
x = 2m, counting all area as positive, we could find the area under just one positive lobe and double it:

= 2[(—cosm)—(—cos0)] = 2[1—(—1)] = 2x2 = 4 sq units (4.41)

T
area= 2/ sinx dx = 2(— cosx)
0
0

The area under each lobe is 2 square units.
An unexpected result from the calculus is that the derivative (slope) and integration (aréajease
operations of each other:

= [ rwax = s (4.42)

so the integral can be thought of as the “anti-derivative.” This result is calletutftiamental theorem of
calculus

In a rigorous calculus course, you will learn how to work out formulas for a number of simple functions.
For example,

X3
/x2 dx = 3 +C (4.43)
whereC is an arbitrary constant. Alhdefiniteintegrals will include this arbitrary constant, because when
we take the inverse (a derivative), the derivative of this constant is zero. In effect, some information about the
original function is lost when computing its derivative, so that you can't entirely recover the original function
when computing the integral of the derivative. This lost information is expressed as an arbitrary constant
added to the indefinite integral. To find whatis, we would need some additional information, such as what
value the integral is supposed to have at a specific point.

More generally,

xnt1
f x"dx = +C (4.44)
n+1

As with the similar formula for derivatives, need not be an integer. For example, sinde = x!/2, we
have

3/2 2
fﬁdx:/xl/zdx:zﬁjuc:g@juc (4.45)

Similar results can be worked out for many common functions. Section E gives a short table of integrals.
In conjunction with this table, we note the following properti@asand v are functions ofx, anda is a
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constant):

/audx:a/udx (4.46)
/(u+v)dx:/udx+/vdx (4.47)
/(u—v)dx:/udx—/vdx (4.48)

These results will be proved in a more rigorous calculus course. There are no product or quotient rules for
integrals as there are for derivatives.

Since the derivative and integration are inverses of each other, and the funttisrequal to its own
derivative, it is also equal to its own integral (to within an arbitrary constant of integration):

/ex dx =e*+C (4.49)

Example.Find the indefinite integral of the functiofi(x) = 4x3 + 7x2 — 5x + 6 with respect tor, and
find the area undef (x) betweenx = 3 andx = 4.
Solution.Using the above results,

/ f(x)dx = /(4)(3 + 7x% —5x + 6)dx (4.50)

:/4x3dx+/7x2dx—/5xdx+/6dx (4.51)
:4/x3dx+7/x2dx—5/xdx+6/dx (4.52)

x4 x3 x2
:4(T)+C1+7(?)+C2—5(7)+C3+6(X)+C4 (4.53)
o, 13 5,
=X +§x —Ex +6x+C (4.54)

where we have combined all the individual constants of integrafipnC,, C3, C4 into a single constant.
To find the area under the curve betwees- 3 andx = 4, we compute the definite integral

/4 f(x)dx (4.55)
3

We've already found the indefinite integral; all we need to do is evaluate the indefinite integral 4t and
subtract the indefinite integral evaluatedcat 3:

4

area= /3 f(x)dx = (x4 + gx3 — gxz + 6x + C) 3 (4.56)
4, T 3 0 Y A I

= [(4) + 5(4) - 5(4) +6(4) + C} — [(3) + 5(3) — 5(3) +6(3) + C} (4.57)

_ @ (4.58)
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Notice that the constant of integratiGhalways cancels out in a definite integral.

4.4 The Fundamental Theorem of Calculus

Thefundamental theorem of calculstates an unexpected result: the derivative (slope-finding) and integral
(area-finding) are inverses of each other. Thus

= [ reax = s (4.59)

4.5 Approximations

It may sometimes happen that we halaga pointsfor which we need to calculate a derivative or integral.
For example, suppose we have the following data for a moving body:

Timer (s) Positionx (m)

0.0 0.0

1.0 0.34
2.0 1.36
3.0 3.06
4.0 5.44
5.0 8.50
6.0 12.24

What is the velocity of the body at time = 2.5 seconds? By definition, the velocityis found by a
derivative:v = dx/dt. One way toapproximatethis derivative is by finding\x/A¢, for the interval from
2.0to 3.0 seconds,

dx _Ax _3.06m-—1.36m

ax JAX _ -1 4,
ar " Ar 3.05-205 70m/s (4.60)

We could do the same for every time interval in the table, and use the midpoint of the time intervals as the
time. We get the following table:

Timer (s) Velocityv (m/s)

0.5 0.34
15 1.02
2.5 1.70
3.5 2.38
4.5 3.06
5.5 3.74

If the data in the table is “noisy” (has lots of measurement errors), then this kind of computing derivatives
numerically can lead to very noisy results: small measurement errors can lead to a large change in slope from
one point to the next.

Integrals can be computed numerically as well. There are a number of methods for doing this; the simplest
is called therectangular rule in which we imaging drawing a rectangle at each data point, and approximate
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the integral as the sum of the rectangle areas. For example, for the body we've been using for our example,
how far does the body travel from time= 0 to time? = 6 seconds? That can be found as an integral:

6

6
x :fo v()dt ~ Y v(t) At (4.61)

t=0
Using the data from the above table of velocities,

6

X~y v(t) At (4.62)
t=0

= (0.34 m/s)(1.5-0.59) + (1.02m/s)(2.5—1.59) + (1.70 m/s)(3.5 — 2.5 9) (4.63)

+ (2.38m/s)(4.5 —3.59) + (3.06 m/s)(5.5 —4.59) + (3.74 m/s)(6.5 — 5.5 9) (4.64)

=12.24m (4.65)

Numerical integration has a tendency to smooth out noise, so in general it is not as subject to the “noise”

problem as numerical derivatives are. When using the rectangular rule, one may evaluate the function at
the left edge of the horizontal (e.g. time) interval, at the right, edge, or at the center. There are other, more
sophisticated, numerical integration methods that may give better results, such as the trapezoidal rule and
Simpson’s rule. You'll study these in a more comprehensive calculus course.

4.6 More Examples

Area of a Circle

You learned the formula for the area of a circle in elementary schdok 7 R2, whereR is the radius

of the circle. We can use integral calculus to derive this formula. The simplest way to approach this using
rectangular coordinates is to find the area of a quarter circle and multiply by 4. Let's say the circle has radius
R and center at the origin. Then the equation for the circle is

x? 4+ y?=R? (4.66)
or
y = +vVR2 —x2 (4.67)
For the quarter circle in the first quadrant, we use onlytrsign, which corresponds to the upper semicircle:
y=+vR2—x2 (4.68)

as letx go from 0 toR to get the quarter-circle in the first quadrant. The area under this quarter-circle curve
is then

/R ~VR? —x2dx (4.69)
0

This is a fairly complicated integral to work out. Often in cases like this, we consult a published table of
integral$ to find the result already worked out for us. From a published table of integrals, we find the integral

1some well-known tables of integrals are found in @RC Standard Mathematical Tables and Formyl&ables of Integrals and
Other Mathematical Datdy Dwight; and the massivEable of Integrals, Series, and ProdubisGradshteyn and Ryzhik.
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to be
R 1 X K
/0 VR2 —x2dx = 5 [x«/ﬂ+ R*tan! (T—ﬁ)} 0 (4.70)
- % (%RZ _o) - %RZ (4.71)
The area of a circle is then 4 times this:
A=4x %RZ — 7R? (4.72)

and we have derived the famous formula= 7 R?.

It's actually simpler to work this problem in polar coordinates, although it leadsdouble integral
Imagine a circle of radiu®, whose center is at the origin. Now imagine a series of straight lines radiating
away from the origin, and concentric circles around the origin, just as you have with polar graph paper. These
lines divide the interior of the circle up into a series of little “boxes” with curved edges. If you make lots of
lines, these boxes will be very small, and if they're infinitesimally small, you can treat them as rectangles.
A general infinitesimal “rectangle” will have one side of length, and another of (arc) lengthd6. The
infinitesimal area of the little box is then the product of the lengths of the sides; r dr d6. To getthe area
of a circle, we just add together the infinitesimal areas of all the little boxes inside the circle by integrating
from O to R, andintegratingd from 0 to2x:

27 R 27 R
area= / / dA = / / rdrdf (4.73)
0 0 0 0

This is called adouble integral The way to evaluate it is to evaluate the “inner” integral first, then make the
result the integrand for the “outer” integral:

2w R o [ pR
[ [ raran=["[ ,d,] a0 @.74)
0 0 o |Jo
2T _r2 R
=/ — do (4.75)
0 2
| " o
LI'RZ 02
_ /0 ES 7} a6 (4.76)
2T 'RZ
=/ —} do (4.77)
o L2
2 2T
= R do (4.78)
2 Jo
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where in the last step we movétt /2 outside the integral because it's a constant. Now evaluatgititegral:

2w R R2 2w
/ / rdrdf = — do (4.79)
o Jo 2 Jo
2T
RZ
= — 4.
3 0 ) (4.80)
RZ
= 7(271 -0 (4.81)
= nR? (4.82)

And again we have derived the classical formula for the area of a circle.

Area of a Trapezoid

Suppose we have a trapezoid consisting of a side along thes, two parallel vertical sides at= 0 and

x = h, and a slanted top side that is a straight line. Let the vertical side=at0 have length:, and the
vertical side atc = & have lengthb. Then the classical formula for the area of a trapezoid is the mean of the
lengths of the parallel sides times the distance between the parallel sides:

a+b
2

Let's see if we can derive this formula from integral calculus. The slanted top side of the trapezoid passes
through the point§0, a) and(h, b). It therefore has equation

A=

h (4.83)

b—a

—aq) = — 4.84
=)= — =0 (4.84)
or
—da

y=——x+d (4.85)

Using integral calculus, the area of the trapezoid is then the area under this line:

R _ h h
/ (b ax+a)dx:b ¢ xdx+a/ dx (4.86)
0 h h 0 0
h
b—ax?
= ( Y +ax) (4.87)
0
b—ah? b—a0?
=( W 7+ah)—( 7 7+a(0)) (4.88)
=h(b;a+a) (4.89)
b—a 2a

= — 4.90
(505 ) (4.90)
St b (4.91)
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and we have derived the classical formula.

Fence Enclosing Maximum Area

Let’s look at an optimization problem. Say you have a pet dog, and want to make a rectangular fenced-in area
in the back of your house for him to run around in. You get some fencing material, and plan to use the side
of the house for one side of the play area, and the fencing material for the other three sides. Let's say you
bought a total lengtlh of fencing material, and let be the length of the side of the play area that's along the
side of the house. Now i = 0, you'll have folded the fencing in half and set it perpendicular to the side of
the house — you’ll have a rectangle of size zero on one side, and therefore zero area. On the other hand, if
x = L, then you'll have just set the fencing up against the house, and the play area will be a rectangle whose
otherside is size zero, and therefore encloses zero area again. Clearly there’'s some ydlubeifveen 0
and L that musmaximizehe enclosed area. The question is: how do you maximize the total area of the play
area? In other words, what must be the dimensions of the play area that maximizes the enclosed area for a
given length of fencind.?

To solve this, we'll need to find a formula that gives the enclosed area as a functiorsaicex is the
length of the side of the rectangle that’s against the house, then the opposite side must also hawe length
therefore the amount of fencing you have left ovek.is- x. This fencing will be used to make the other two
sides, so each of the other sides of the rectangle will have l€hgthx)/2. The rectangular play area will
therefore be a rectangle whose sides parallel to the side of the housand whose other sides have length
(L — x)/2. The area of the rectangular play area is then

L—x 1

Ax) =x 7 = 5(—)(2 + Lx) (4.92)

This is the equation of a parabola opening downward, so it will have a peak that gives the maximum area. We
can find the value aof at the peak (the maximum) because the slope of this curve is zero at the peak. All we
need to do is compute the derivative (i.e. slope}¢f) with respect toc, then set that to zero.

di Ax) =0 (4.93)
x

% j_x (x> +Lx)=0 (4.95)
1[d 5 d _

3 [E (=x%) + - (Lx)} =0 (4.96)
1 d , d _

% [2x+ L] =0 (4.98)
—x+ % =0 (4.99)
X = % (4.100)
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Therefore, to maximize the play area for your dog, you should make one side (the side parallel to the side
of the house) equal to half the total amount of fencihgZ); the remaining fencing will be divided equally
among the other two sides, so the other sides will have lehgth The total area enclosed — the maximum
possible area for a length of fencing — will be(L/2)(L/4) = L?/8.

4.7 Main ldeas

We won't be doing anything very complicated with the calculus in this course; we’ll leave mathematical rigor
and more complicated problems to a dedicated calculus course. The the purposes of this course, here are the
main ideas:

* The numbe®x is aninfinitesimalnumber—a number on the axis that is ‘infinitely small,” but not
zero.

The notationj—x f(x) (thederivative gives theslopeof the curvef(x) at anyx.

* As a special case, the notati#p f(¢) gives therate of changef f(¢) with respect to time.

The notationfab f(x) dx (theintegral) gives theareaunder the curvef (x) betweent = a andx = b.

» The derivative and integral are inverses of each otﬂgrf f(x)dx = f(x)

4.8 Going Further

In this chapter we've only just touched on a few of the basic ideas behind the calculus. In a multi-semester
course, you'll learn, among other things, how to derive the results presented here; about infinite series and
sequences; how to take derivatives and integrals of more complex functions; advanced techniques; how to
work in polar coordinates; how to work with functions of several variables; finding areas and volumes of
solids of revolution; and how to solve differential equations.

An excellent and brief introduction to the calculus, at about the level of these notdewigo Enjoy
Calculusby Eli S. Pine. A typical college-level calculus textbooKialculus with Analytic Geometityy Earl
W. Swokowski.
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Waves

38



Chapter 5

Simple Harmonic Motion

We begin our study of waves with the study sifnple harmonic motianSimple harmonic motion is the
motion that a particle exhibits when under the influence of a force of the form givelobke'’s law(named
for the 17th century English scientist Robert Hooke):

F=—kx. (5.1)

A force of this form describes, for example, the force on a mass attached to a horizontal spring with spring
constank, wherek is a measure of the stiffness of the spring. In this dasethe force exerted by the spring,
andx is the distance of the mass from &quilibrium positior—that is, the “resting” position at which the
mass can be left where it will not oscillate.

It can be shown using the calculus that when the particle is displaced from the equilibrium position and
released, then this force results in an oscillating motion of the particle about the equilibrium position that
varies sinusoidally with time:

x(t) = Acoswt + §). (5.2)

Herew is called theangular frequencyf the motion, and measures how fast the particle oscillates back and
forth. The constand is called theamplitudeof the motion, and is the maximum distance the particle travels
from its equilibrium positionx = 0. The constand called thephase constanand determines where in its
cycle the particle is at time= 0. A plot of x(¢) is shown in Fig. 5.1.

Since the sine and cosine function differ only by a phase shiffy(sincog0 — /2); cosf = sin(6 +
7/2)), we could replace the cosine function in Eq. (5.2) with a sine by simply adding an-exréo the
phase constat So either the sine or the cosine can be used equally well to describe simple harmonic motion
(Fig. 5.2); here we will choose to use the cosine function.

The calculus may also be used to find the velocity of the particle at any fithe result is

v(t) = —Aw sin(wt + §). (5.3)
Further, it can be shown that the acceleration at any tirme

a(t) = —Aw* coqwt + §) (5.4)
= —w?x(1). (5.5)

Multiplying Eq. (5.5) by the particle mass, we find

ma(t) = F(t) = —mw*x(t). (5.6)
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Simple Harmonic Motion
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Figure 5.1: Simple harmonic motion. Shown are the amplitddeeriodT, and phase constaft The
horizontal linex (#) = 0 is the equilibrium position.
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Figure 5.2: Four common special special cases of simple harmonic motion phase constant. These are physi-
cally identical, and differ only by where the oscillator is in its motion &t 0. (a) A cojw?); (b) —A coqwt);

(c) Asin(wt); (d) —A sin(wt). In Eq. (5.2), these correspond to: gay= 0, (b)6 = 7, (¢)§ = —x/2, (d)

§=m/2.
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Comparing this with Eg. (5.1) we see that

k = mw?, (5.7
or
k

In Eq. (5.2), the amplitudel depends on how far the particle was displaced from equilibrium before being
released; the phase constérjust depends on when we choose time= 0; but the angular frequenay
depends on the physical parameters of the system: the stiffness of theispiidghe mass of the particle
m.

5.1 Energy

The kinetic energyK of a particle of mass: moving with speed is defined to be the work required to
accelerate the particle from rest to speethis is found to be

K = Imv2. (5.9

From Hooke's law, the potential enerdy of a simple harmonic oscillator particle at positiocan be shown
to be

U = Lkx2. (5.10)

-2
The total mechanical energff = K + U of a simple harmonic oscillator can be found by observing that
whenx = + A4, we havev = 0, and therefore the kinetic enerd§ = 0 and the total energy is all potential.
Since the potential energy at= + A4 isU = kA2 /2 (by Eq. (5.10)), the total energy must be

E = JkA%. (5.11)

Since total energy is conserved, the enefigg constant and does not change throughoutthe motion, although
the kinetic energyk and potential energy do change.

In a simple harmonic oscillator, the energy sloshes back and forth between kinetic and potential energy,
as shown in Fig. 5.3. At the endpoints of its motian£ + A), the oscillator is momentarily at rest, and the
energy is entirely potential; when passing through the equilibrium positios (0), the energy is entirely
kinetic. In between, kinetic energy is being converted to potential energy or vice versa.

We can find the velocity of a simple harmonic oscillator as a function of positiofrather than time)
by writing an expression for the conservation of energy:

E=K+U (5.12)
1kA% = tmv? + Lkx? (5.13)

Solving forv, we find

v(x) = :l:A\/g V11— Z—z (5.14)

This can be simplified somewhat by using Eqg. (5.8) to give

v(x) = £Aw /1 — Z—z, (5.15)

whereAw is, by inspection of Eqg. (5.3), the maximum speed of the oscillator (the speed it has while passing
through the equilibrium position).
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Simple Harmonic Oscillator Energy

1 1 1 1 | 1 1 1 1 |

Kinetic |
- — = Potential| [

Energy/E

Time/T

Figure 5.3: Kinetic, potential, and total energy of the simple harmonic oscillator as a function of time. The

oscillator continuously converts potential energy to kinetic energy and back again, but the total Energy
remains constant.
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5.2 The Vertical Spring

If a horizontal mass on a spring is turned to a vertical position, then the spring is stretched by an amount
xo = mg/k, giving it a new equilibrium position. For the vertical spring, the potential energy is still given
byU = %kxz, butx in this case refers to the distance from trginal (horizontal) equilibrium position.

5.3 Frequency and Period

The angular frequency described earlier is a measure of how fast the oscillator oscillates; specifically, it
measures how many radians of its motion the oscillator moves through each second, where one complete
cycle of motion is2x radians. A related quantity is tHeequencyf, which describes how many complete
cycles of motion the oscillator moves through per second. The two frequencies are related by

w=2nf (5.16)

You can think ofw and f as really being the same thing, but measured in different units. The angular
frequencyw is measured in units of radians per second (rad/s); the frequémgyneasured in units of hertz
(Hz), where 1 Hz= 1/sec.

The reciprocal of the frequency is tiperiod 7', and is the time required to complete one cycle of the
motion:

T=—="—. (5.17)

The period is measured in units of seconds. As shown in the plot9f(Fig. 5.1), the period” is the time
between peaks in the motion.

5.4 Mass on a Spring

The discussion so far has applied to simple harmonic motion in general; there are many specific examples
of physical systems that act as simple harmonic oscillators. The most commonly cited example is a mass
m on a spring with spring constakt The spring constari is a measure of how stiff the spring is, and is
measured in units of newtons per meter (N/m). Specificallgescribes how much force the spring exerts
per unit distance it is extended or compressed.

A mass on a spring oscillates with angular frequency

w = \/g (5.18)

and therefore has peridd = 27/ w, or

T =2m \/% (5.19)

It really doesn’t matter whether a mass on a spring moves horizontally on a frictionless surface, or bobs
up and down vertically. The motion is the same—the only difference is that if you take a horizontal spring
and hang it vertically, the equilibrium position will change because of gravity. The period and frequency of
motion will be the same.

The importance of the spring example is not that there are government laboratories filled with researchers
studying springs; rather the spring example serves as an important model and approximation for other prob-
lems. Often even a complicated force candpproximatedas a linear force (Eq. (5.1)) over some limited
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range. In this case one may approximately model the force as a spring force with an “effective spring con-
stant”k, and allow at least an approximate answer to what might otherwise be a difficult problem.

There are several other examples of systems that form simple harmonic oscillators: the torsional pendu-
lum, the simple plane pendulum, a ball rolling back and forth inside a bowl, etc. The simple plane pendulum
will be discussed in more detail in Chapter 8.

5.5 More on the Spring Constant

Itis often not appreciated that the spring constadépends not only on thrggidity of the spring, but also on
the diameter of the spring and the total number of turns of wire in the spring. Consider a vertical spring with
spring constank, and a mas# hanging on one end. Assume the system is in its equilibrium position, and
in this position it has lengtlk o and consists oV turns of wire. Now if you apply an additional downward
force F to the mass, the string will stretch by an additional amougiven by Hooke's lawx = F/k. This
stretching will manifest itself as an additional spacing ¢V between adjacent turns of the spring. It is this
additional spacing per turn that is the true measure of the inherent “stiffness” of the spring.

Now suppose this spring is cut in half and put in its equilibrium position. Its new length will p£2, and
will consist of N/2 turns of wire. When the same additional forEds applied to the mass, the additional
spacing between adjacent turns of the spring will be the same as befave,because the spring still has
the same stiffness. Since the number of turns is Agi&, this means that the additional total stretching of
the spring isx/2, so it will stretch by only half as much as before. By Hooke’s law, the spring constant is
nowk’ = F/(x/2) = 2F/x = 2k, so the spring constant is now twice what it was before. In other words,
cutting the spring in half will double the spring constahikewise, doubling the length (number of turns) of
the spring will halve its spring constant.

Another way to think of this is to consider two springs connected in series or in parallel (Fig. 5.4). If
several springs are connected end-to-endifi.serie3, then the equivalent spring constantof the system
will be given by

1 1

— = — 5.20
ks ki (5.20)
1 1 1
- 44— ... 5.21
kl + kz + k3 + ( )
If the springs are connecteul parallel, then the equivalent spring constént of the system will be
kp =Y ki (5.22)
=ki+ky+ks+... (5.23)

For example, if two identical springs, each of spring constaate connected in series, then the combination
will have an equivalent spring constantof2. If the two identical springs were instead connected in parallel,
then the combination would have an equivalent spring constait,afs shown in Figure (5.4).

Now imagine you have a long spring of spring constantYou can imagine it as being two identical
springs connected in series, each having spring con3targo that the combination has a total equivalent
spring constant of(1/2k) + (1/2k)]~! = k. If the long spring is cut in half, then you are left with only one
of those smaller springs of spring constakt so again we reach the conclusion that cutting the spring in half
will double the spring constant.

It's possible to calculate the spring constant from the geometry of the spring. The forrhula is

_ Gd*
" 8ND3

1see e.ghtt p: // www. engi neer sedge. conl spri ng.conp_cal c k. ht m

(5.24)
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Series Parallel

1 | =

Spring constant =k
Spring constant = 2k

Spring constant = 0.5k

Figure 5.4: Springs in series and parall@tédit: http://spmphysics.onlinetuition.com)my

whered is the wire diameter is the number of active turns in the spring,is the coil diameter (measured
from thecenterof the wire), and5 is called themodulus of rigidityof the spring materiaks is given by

Y
G=——
2(1 +v)
whereY is the Young’s modulusf the material (a measure of how much it stretches when pulled or com-
pressed), and is the material’'sPoisson ratio(a measure of how much it squeezes sideways when com-

pressed). These are properties that are characteristic of the material, and can be looked up in a handbook of
material properties. Values for a few materials are shown in the table below.

(5.25)

Table 5-1. Young's Moduli and Poisson Ratios.

Material Young’s Modulug” (N/m?)  Poisson Ratio
Aluminum 69 x 10° 0.334
Bronze 100 x 10° 0.34
Copper 117 x 10° 0.355
Lead 14 x 10° 0.431
Magnesium 45 x 10° 0.35
Stainless steel 180 x 10° 0.305
Titanium 110 x 10° 0.32
Wrought iron 200 x 10° 0.278

Notice from Eq. (5.24) that if the spring is cut in haW, will be half its original value, and so the spring
constant will be doubled, in agreement with what we've found earlier.

Example.Suppose we make a spring of 1 mm diameter copper wire, the diameter of the springis 1 cm,
and there are 50 turns of wire in the spring. What is the spring constant?
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Solution.From the above table, for coppéf,= 117 x 10° N/m? andv = 0.355. From Eq. (5.25), we
have

Y 117 x10°N/m’

O = 3a+w - 20+ 0353)

=432 x10° N/m?

And the spring constant is found from Eg. (5.24)

Gd*  (43.2x 10° N/m?)(1073 m)*

k = =
8ND3 8(50)(10~2 m)?

=108 N/m
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Chapter 6

Damped Oscillations

If you build a real simple harmonic oscillator by attaching a mass to a spring and letting it oscillate back and
forth, you'll find that it doesn’t oscillate forever, as would be predicted by Eq. (5.2). Instead, the motion will
damp out due to frictional forces, and the oscillator will eventually stop oscillating.

We can model the damping fordg as being proportional to the speeaf the oscillator:

Fy = —bv, (6.1)

whereb is a damping constant (in units of kg/s). There are three different cases of damped moten:
damped overdampegdandcritically damped In the following discussion, the natural oscillation frequency
of the undamped oscillatorlisoy = /k/m.

6.1 Underdamped

In the underdamped case, the damping congtaistsmall ¢ < 2mw,), and the oscillations gradually
decrease in amplitude. In this case, the motion will be described by

x(1) = Ae=®/2M" coqw't + §), (6.2)

whereA is the initial amplitude and is the phase constant. The underdamped oscillator oscillates at a slower
frequencyw’ than if it were undamped, whet is given by

o =on 1= (5 ) (6.3)

2mawy

Fig. 6.1 shows what the motion looks like: itis a cosine curve modulated by an overall exponentially decaying
“envelope”.

6.2 Overdamped

Now imagine that a simple harmonic oscillator is immersed in a thick liquid like honey. In this case the
damping constarit is large (specificallyh > 2mwy), and the motion is said to everdampedIf the mass is

1The quantitywg is customarily pronounced “omega-noughtbughtbeing an old-fashioned term faera
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Damped Oscillations
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Figure 6.1: Damped oscillations.
displaced from its equilibrium position, then it will slowly move toward equilibrium, but will not overshoot
it, so no oscillations will occur. In this case the motion is described by

x(1) = e~ ®B/2mM (41 4 Be™CH, (6.4)

whereC = ,/(b/2m)? — »?, and the constantd and B depend on the initial conditions. This case is also
illustrated in Fig. 6.1.

6.3 Ciritically Damped

In between the underdamped and overdamped case is the aariticaf damping, where the damping con-
stantb = 2muwy. In this case, the mass returns to its equilibrium position as quickly as possible, without
overshooting. The motion in this case is

x(1) = e~ /2™ (41 + B), (6.5)

where again the constamsand B depend on the initial conditions. Fig. 6.1 shows critical damping compared
to the similar-looking overdamped case.
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Chapter 7

Forced Oscillations

Now suppose that we have a harmonic oscillator that is being driveforaed For example, imagine a
spring that has a mass attached to one end, and the other end is connected to a motor-driven piston that
moves back and forth. What happens in this case is that the motion of the oscillator is fairly complicated at
first, then settles down to a “steady-state” motion, where the oscillator oscillates at the same frequency as the
driving force.

Suppose we have a damped oscillator whose natural oscillation frequengy #s /k/m, and the
oscillator is being driven by a force of of the forf(¢r) = F( sinQ2¢, so the driving force has amplitudg
and angular frequenc®. Then after the initial complicated motion has died out, the steady-state motion will
be an oscillatory motion with the same frequency as the driving force,

x(t) = AcogQt + §). (7.1)

Here A is the amplitude of the motion, which will depend on how far the driving frequeédyg from the
natural frequencwy:

A = F()/m
V@ —wd2 + ba/mp

(7.2)

7.1 Resonance

Notice that in Eq. (7.2), the denomonator will be smallest wkeen= w,, so that the oscillator is being
driven at its natural frequency of oscillation. This situation is catkbnanceand can result in very large
oscillations. (Note that in Eq. (7.2) if the damping constart 0 and2 = w,, the denominator is zero and
amplitude becomes infinite!) We're familiar with examples of resonance in everyday life: for example, an
opera singer who sings a loud, high note and is able to shatter a crystal goblet. Engineers have to be careful
in designing things like buildings, bridges, aircraft, spacecraft, etc. that the objects won't be subjected to
being driven at one of the natural frequencies of oscillation of the object. Marching soldiers break step when
crossing a bridge, just in case the cadence of the march is at one of the natural frequencies of oscillation of
the bridge, which could cause the bridge to collapse.

Fig. 7.1 shows a plot of amplitude vs. forcing frequency for a typical forced oscillator. Resonance is
shown by the large increase in the amplitude of the forced oscillations ®hen w,. The smaller the
damping force, the larger the amplitude at resonance.
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Figure 7.1: Amplitude vs. forcing frequency for forced oscillations, for various damping coefficients. The

maximum amplitude occurs when the forcing frequefzys equal to the natural frequeney,, a phe-
nomenon known agesonance
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Chapter 8

The Pendulum

A simple plane pendululifig. 8.1) consists of a masgs attached to one end a light rod of lendththe other
end of the rod is attached to a frictionless pivot. The pendulum is initially displaced from the vertical by an
anglef, and released, causing it to swing back and forth. Is the pendulum a simple harmonic oscillator?

m

Figure 8.1: A simple plane pendulum.

Analyzing the geometry of the pendulum shows that the restoring force—the force acting on the pendulum
directing it back to its equilibrium position (vertical)—isng sinf, whered is the angle from the vertical,
g is the acceleration due to gravity, and the minus sign indicates that the restoring force acts opposite the
direction of angular displacement. We can write the restoring force as

F = —mgsiné. (8.1)

But for a simple harmonic oscillator, the restoring force must be in the #rea —kx, so the pendulum is
nota simple harmonic oscillator.

Suppose, however, that we restrict the pendulusntalloscillations. For small angles, we can make the
approximation si = 6, whered is in radians. Under this approximation, Eg. (8.1) becomes

F ~ —mg0, (8.2)
whichis the form of equation of a simple harmonic oscillator. So while the pendulum is not strictly a simple

harmonic oscillator, it impproximatelya simple harmonic oscillator when the oscillations are small.
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8.1 Equation of Motion

Since the pendulum (in the small-angle approximation) is a simple harmonic oscillator, its motion is given by
(cf. Eq. (5.2))

0(t) = 6y coSwt + §), (8.3)

wheref, is the (angular) amplitude in radians ahis the phase constant. To find the angular frequesncy
note from geometry that the horizontal displacement distance of the pendulugs i& sinf. Writing Eq.
(8.2) as

mg .
F~— (T) (L sinf), (8.4)
and comparing with Eq. (5.1), we can see that the effective spring constant for the pendulum is

kett = - (8.5)

Now for the harmonic oscillator we know = /k/m, and so
o et Mg (8.6)
m mL
r

w= % (8.7)

o

So the small-amplitude motion of the simple plane pendulum is the same as the mass on a spring; but the
angular frequency of the spring system is giverndby= /k/m, and for the pendulumitie = /g/L.

Other simple harmonic oscillators with have other expressions for their angular frequesagh depending

on the physical parameters of the system.

8.2 Period

Since the period of a simple harmonic oscillator is givenlby= 27 /w, we find, using Eq. (8.7), that the
period of the pendulum is

T =2 ,/—. (8.8)
8

Remember that this is just approximateexpression for the period of a pendulum, with the approxima-
tion being better the smaller the amplitu@le An exact treatment requires the peribdo be expressed as
an infinite series. The details require some advanced mathematics that is beyond the scope of this course, but
if you're interested, an exact treatment of the simple plane pendulum is given in Appendix Q.

8.3 The Spherical Pendulum

A spherical penduluris similar to a simple plane pendulum, except that the pendulum is not constrained to
move in a plane; the mass is free to move in two dimensions along the surface of a sphere. Figure 8.2
shows a photograph of the movement of a spherical pendulum.
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Figure 8.2: Trace of the motion of a spherical pendulum, made by the author. A flashlight lens was covered
with a piece of cardboard in which a small hole was punched. The flashlight was then suspended by a string
from the ceiling (lens downward) to create a pendulum. The room was then darkened, the flashlight turned on,
and the flashlight pendulum allowed to swing back and forth for several minutes above a camera which was
on the floor pointing up toward the ceiling. The camera shutter was kept open, allowing this time-exposure

image to be made on the filminfage Copyright © 2011 D.G. Simpsdn.
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8.4 The Conical Pendulum

A conical pendulunis also similar to a simple plane pendulum, except that the pendulum is constrained to
move along the surface of a cone, so that the massoves in a horizontal circle of radius maintaining a
constant anglé from the vertical.

For a conical pendulum, we might ask: what speedust the pendulum bob have in order to maintain
an anglef from the vertical? To solve this problem, let the pendulum have lehgtind let the bob have
massm. A general approach to solving problems involving circular motion like this is to identify the force
responsible for keeping the mass moving in a circle, then set that equal to the centripetatféyoe In
this case, the force keeping the mass moving in a circle is the horizontal component of the Tengioch
is T sinf. Setting that equal to the centripetal force, we have

2
Tsing =
’

(8.9)

The vertical component of the tension is
T cost = mg (8.10)

Dividing Eq. (8.9) by Eq. (8.10),

U2
tanf = — (8.11)
gr

From geometry, the radius of the circle is
L sinf. Making this substitution, we have

U2

tang = — .
gL siné

(8.12)

Solving for the speed, we finally get

v =4/ Lgsinftand. (8.13)

8.5 The Torsional Pendulum

A torsional pendulunfFig. 8.3) consists of a mass
m attached to the end of a vertical wire. The body
is then rotated slightly and released; the body then
twists back and forth under the force of the twisting
wire. As described earlier, the motion is governed
by the rotational version of Hooke’s law,= —«6.

8.6 The Physical Pendulum Figure 8.3: A torsional pendulum. (Ref. [1])

A physical pendulunconsists of an extended body
that allowed to swing back and forth around some
pivot point. If the pivot pointis at the center of mass,
the body will not swing, so the pivot point should be
displaced from the center of mass. As an example,
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Figure 8.4: A physical pendulum. The object has mésand is suspended from poift, % is the distance
betweenP and the center of mass.

you can form a physical pendulum by suspending a
meter stick from one end and allowing to swing back and forth.

In a physical pendulum of magd, there is a force\l g acting on the center of mass. Suppose the body
is suspended from a point that is a distahdeom the center of mass (Fig. 8.4). Then there is a weight force
M g acting on the center of mass of the body, which creates a ter@iigh sinf about the pivot point. Then
by the rotational version of Newton’s second law,

=1 (8.14)
—Mghsinf = Iq, (8.15)

where! is the moment of inertia of the body when rotated about its pivot pointpaisdhe angular accel-
eration. Like the simple plane pendulum, this is a difficult equation to solvé(fgr but it becomes much
easier to solve if we restrict the problem to small oscillatiént 6 is small, we can make the approximation
sinf ~ 6, and we have

—Mghb ~ la. (8.16)
It can be shown, using the theory of differential equations, that this equation has solution
0(t) = Oy coqwt + 95), (8.17)

wheref, is the (angular) amplitude of the motion (in radians)= /M gh/I is the angular frequency of
the motion (rad/s), andlis an arbitrary integration constant (seconds).
The periodl" of the motion (the time required for one complete back-and-forth cycle) is given by

=2~ (8.18)
w

I
T =21 |——-. 8.19
”\/Mgh (8.19)

(See Appendix P for a table of moments of inertia.)

or
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8.7 Other Pendulums

» Double pendulumA double penduluris formed by attaching one pendulum to the bob of another, so
that the two pendulums are attached vertically and both bobs are free to move. The motion of a double
pendulum is a classic exercise in an advanced formulation of Newtononian classical mechanics called
Langrangian mechanics

« Ballistic pendulum.A ballistic pendulunis a type of pendulum used to measure the speed of high-
speed objects like bullets. A bullet is fired into the pendulum bob, and the pendulum is constructed
with a ratchet mechanism that holds the pendulum in place once it reaches its maximum displacement
from the vertical. Knowing the masses of the bullet and pendulum bob, the length of the pendulum,
and the angle the pendulum reaches when the bullet is fired into it, it is possible to deduce the velocity
of the bullet.

» Foucault pendulumA Foucault pendulunis a type of simple plane pendulum that is used to demon-
strate the rotation of the Earth. As the pendulum swings back and forth in a plane, the Earth rotates
underneath the pendulum, causing its trace along the ground to drift with time.
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Chapter 9

Waves

Having examined simple harmonic motion, we are now in a position to examine wavesveis a dis-
turbance in a material medium that propagates itself through the medinma. harmonic wave, each parti-

cle in the medium undergoes simple harmonic motion, but adjacent particles are slightly out of phase with
each other, which results in the wave disturbance propagating through the medium while the particles of the
medium itself simply oscillate in place.

9.1 Types of Waves

There are two major types of waves:

» Transverse wave®articles of the medium moyeerpendicularto the direction of wave motion. Trans-
verse waves can travel in solids only; they cannot propagate in fluids.

* Longitudinal wavesParticles of the medium movgarallel to the direction of wave motion. Longitu-
dinal waves can propagate in both solids and fluids.

You can create a transverse wave in a long string under tension by giving it a quick flip at one end.
The disturbance will propagate down the string, although any point on the string will move up and down,
perpendicular to the string.

You can create a longitudinal wave by stretching a Slinky toy (or other spring) and giving it a quick in-
and-out “pulse” at one end. You'll see the coils of the Slinky be alternately close together and spread apart
as the disturbance propagates down the length of the spring. A region where the coils are close together is
called acompressionand a region where the coils are far apart is callearefaction

Some waves are neither transverse nor longitudinal. For example, if you examine water waves in the
ocean, you will see that particles on the surface move in cycloid-looking paths that have both components
both parallel and perpendicular to the wave velocity—so water waves are a combination of transverse and
longitudinal waves.

You can create a singlgave pulséy giving the medium a single displacement at one end; the resulting
pulse will then propagate through the medium. You can also follow one pulse by another continuously,
resulting in awave train For example, you can displace one end of the medium with simple harmonic
motion, and you will see a continuous wave train propagating through the medium. This will result in a
harmonic wave, which can be represented mathematically as

y(x,t) = AcoSkx — wt +§). (9.1)

1There are some notable exceptions: electromagnetic waves, quantum-mechanical waves, and gravitational waves do not require a
physical medium in which to propagate.
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Wave Motion at a Fixed Time
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Figure 9.1: Wave motion at a fixed tinmre A is the wave amplitude§ is the phase constani, is the
wavelength, and = 2z /A is the wave number.

This looks similar to the equation for simple harmonic motion, only it involveth positionx and timer.
Here y is the displacement of the wave at positioand timez, A is the wave amplitudey is the angular
frequency of the wave, arfdis the phase constant that is determined from the initial conditions. The variable
k is called thewvave numberand is defined as

K= — (9.2)

where}, called thewavelengtiof the wave, is the distance between successive wave érEgis9.1 shows
a “snhapshot” of a harmonic wave at an instant in time, wtls, andA illustrated. As time increases, you
would see this wave move to the right. (This analysis applies equally to transverse and longitudinal waves.)

9.2 Wave Speed

The speed of a wave may be thought of as the speed of a single wave crest as it propagates through the
medium. Since the wave moves by one wavelerigth a time equal to the period, the wave speed is

2Some physicists define the wave numbet A&.
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v=A/T;andsincel’ = 1/f, we can write
v=fA. (9.3)

This equation relates the temporal frequerfcgf the wave to its “spatial frequency”, or wavelengih,

9.3 String Waves

Now let's examine some properties of waves propagating in strings. Although string waves are occasionally
of interest (as in some musical instruments), the reason we're interested in them here is that they form a
simple system that's easy to visualize, yet illustrates many properties that we’ll find later in other kinds of
waves.

First, let's look at a formula for the speedof a wave in a string, in terms of the physical properties of
the string (its tension and density). We'll skip the derivation and just present the resuilt:

Fr
v = m, (94)

wherev is the wave speed;r is the tension in the string (in newtons), amd L is the mass density of the
string (mass per unit length, in kg/m). (We’'ll see later that the speed of sound waves in a fluid follows a
similar formula:v = /B/p, whereB is the bulk modulus angd is the density of the medium. The speed of
sound waves in a solid is= /Y /p, whereY is the Young’s modulus.)

9.4 Reflection and Transmission

Next, let’s look at what happens when a wave pulse hits a boundary—for example, a boundary with a lighter
or heavier string. Generally at the boundary there will beefiected waveshat returns in the opposite
direction as the incident wave, and there will beramsmitted wavéhat continues into the new medium, in
the same direction as the incident wave. The various possibilities are shown in Fig. 9.2.

Note the following points:

* When the incident wave is incident on a “heavier” (denser) medium, the returning reflected wave will
beinverted

* When the incident wave is incident on a “lighter” medium, the returning reflected wave will be right-
side up.

» The transmitted wave will always be right-side up.

* A fixed end may be regarded as an infinitely heavy medium, and may be thought of as an end that is
attached to a heavy wall. In this case there is no transmitted wave.

» A free end may be regarded as a medium of zero density, and may be thought of as an end attached to
a ring that is free to move up and down a vertical pole. In this case there is no transmitted wave.

» The transmitted wave will be largest when both media have the same density; in this case there is no
reflected wave, and all of the incident wave is transmitted.

We might ask: in string waves, how much of the incident wave is reflected, and how much is transmitted?
We can define theoefficient of reflectiorR as the ratio of reflected to incident wave energy, and similarly
define acoefficient of transmissiofi as the ratio of transmitted to incident wave energy. Since both strings
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Figure 9.2: Reflection and transmission of waves in a string. (a) Wave in string incident onto fixed end,;
(b) string wave incident onto free end; (c) wave in light string incident onto heavy rope; (d) wave in heavy
rope incident onto light string. When the incident wave hits a “heavier” medium, the reflected wave will be
inverted.
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are under the same tension, these coefficients depend only on the densities of the two strings. Writing the
string density (mass per unit length) @as= m/ L, the coefficientsk andT turn out to be (Ref. [8])

T — 4./p1p2 (9.6)
(Vp1 + /P2)?

where the subscripts 1 and 2 refer to the two strings. Note the following about these equations:
1. R+ T = 1. (Thisis due to the conservation of energy.)

2. If p1 = pa2, thenR = 0 andT = 1: if both strings have the same density, then all of the incident wave
is transmitted, and none is reflected.

3. If p =0, thenR = 1 andT = 0: for a “free” end, all the wave is reflected and none is transmitted.

4. Similarly, if p, — oo, thenR = 1 andT = 0: for a “fixed” end, all the wave is reflected and none is
transmitted.

The coefficientR andT show how the initial wavenergyis divided among the reflected and transmittted
waves. Theamplitudesof the reflected and transmitted waves,. (and 4;, respectively) are related to the
incident wave amplitudd; by (Ref. [8])

A _ PP o)
PN TN > |
Ao 2V (9.8)
PN N |

9.5 Superposition

What happens when two waves collide? It turns out that while they overlap (a situationstgdkagbositioi,
their displacements will add algebraically. Given two waves, (x, ) andy,(x, t), the total wavey(x, )
will be the sum of the twoy = y; + y».

An example is shown in Fig. 9.3, where two wave pulses are shown colliding with each other. During the
time that the wave pulses overlap, they add algebraically. Afterwards, the two pulses continue, as if they just
passed right through each other.

This ability of waves to pass through each other is fortunate, and we observe it in everyday life. For
example, you can talk with someone directly across from you, at the same time people to your left and right
can talk to each other. The sound waves pass right through each other, and each person is able to hear and
understand his partner without difficulty. The same is true of light waves: each person is able to see the other
three, because the light waves are able to pass through each other.

9.6 Interference

Closely related to the idea of superposition is the concept of wewderence When two waves overlap and
their displacements are in the same direction, the two waves will, by superposition, add together to make
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Figure 9.3: Colliding wave pulses. (a) Before the collison. (b) During the collision, the wave pulses overlap,
and amplitudes add algebraically. (c) After the collision, the wave pulses have passed through each other
unchanged.

a bigger wave. This situation is callednstructive interfereneethe waves add together constructively. On
the other had, if the waves overlap and their displacements are apfiesitedirection, the two waves will
tend to cancel each other out, resulting in a smaller wave (or even no wave at all). This situation is called
destructive interference

An example of wave interference is shown in Fig. 9.4. The figure shows two wave pulses of the same
size and shape headed toward each other. Fig. 9.4(a) shows constructive interference, and Fig. 9.4(b) shows
destructive interference. Notice something interesting that happens in the case of destructive interference:
although the waves momentarily cancel completely and leave no wave at all, the particles in the string are
still in motion, so new waves will emerge from the flat string and continue on their way.

9.7 Wave Energy

Waves carry energy, but not mass. Each particle of the wave medium oscillates in place around its own
equilibrium position, so no mass is transported. The wave disturbance does move, though, and carries energy
with it. How much energy does a wave transport?

Suppose we have a harmonic wave traveling through a medium. Each particle of the medium oscillates
with simple harmonic motion, and has enery= kA2/2, wherek is the spring constant and is the
amplitude. By Eq. (5.7), we know the spring constant is related to the frequenicy=byiw 2. Substituting
this into the expression for energy gives

E = imw* A% (9.9)

Now if the wave has surface ar6aand moves with velocity, then in timer it will sweep out a volumeS vz.
Since the mass: of a small volume of the medium is the mass divided by the volume, werhawepSvz,
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(a) (b)
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Figure 9.4: Interference in two colliding wave pulses. (a) Constructive interference; when the two pulses
overlap, their displacements add constructively, giving a large pulse equal to the sum of the original two. (b)
Destructive interference; when the two pulses overlap, they cancel out and momentarily add to zero.
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wherep is the density of the medium. Substituting this feinto Eq. (9.9), we have
E = 1pSvtw? A% (9.10)

This says that the enerdy carried by the wave is proportional to the square of the ampliticind also to
the square of the frequeney. Thepower P (in watts) is the energy per unit time, or

E
P = = 2pSvw? A2, (9.11)

Now dividing the power by the surface arSagives an expression for the wairgensity/ (watts per square
meter):

P
I= 5= TPV A2, (9.12)

9.8 Wave Intensity

Another issue that often arises is how wave intensitgries with the distancefrom the source of the waves.
The answer is: it depends upon the shape of the waves. The power emitted by the source will be distributed
along a surface at distaneeand the shape of that surface will depend on the shape of the waves.

One common case Bpherical waveswhich are produced by a point source of spherical source. For
spherical waves, the powdt emitted by the source is spread over the surface of a sphere of radléis
the power is radiatetbotropically (that is, equally in all directions), then the intensity in any direction at a
distancer from the source willbd = P/(4nr?), sol o 1/r2. Since the intensity is proportional to the
square of the amplitude, this implies the wamplitudedrops off asA « 1/r. In summary, for spherical
waves,

I x —; Ao —. (9.13)
Another case igylindrical waves which are produced by a line or cylindrical source. In this case the
power is distributed over the surface of a cylinder of radiusnd we have
ol Ao (9.14)
X —; X —. .
r NG

When either of these types of waves is observed very far from the source, they apprgtanateaves
where the wave fronts are planes. For plane waves, the intdnsityl amplituded are both constant and
independent of:

I = const; A = const (9.15)

9.9 Ocean Waves

The speed of ocean waves is a function of their wavelength and the ocean depth. Ocean wave speed is given
by the expressioh

_ st d
v = 3 tanh(ZnA), (9.16)

/4

3N. Mayo, “Ocean Waves—Their Energy and Pow@tysics TeacheB5, 352 (September 1997).
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wherev is the wave speed, the wavelengthd the ocean depth, anglthe acceleration due to gravity. If
the waves are ideepwater @ > A/2), then the hyperbolic tangent in Eq. (9.16) is approximately 1 (i.e.
tanhx ~ 1 for largex), and this reduces to

[gA
RS i— (deep wavesd > 1/2). (9.17)
/]

On the other hand, fahallowwaves ¢ < A/20), the hyperbolic tangentin Eq. (9.16) reduces to its argument
(i.e. tanhx = x for smallx), and we have

v/ gd (shallow wavesd < 1/20). (9.18)

Tsunami waveare waves created by earthquakes. They are unlike normal ocean waves; they have very
long wavelengths (often exceeding 100 km or 60 miles), and they travel at very high speed (typically well
in excess of 500 miles per hour, depending on depth and wavelength) (Eq. (9.16)). The amplitude of a
tsunami wave is very small while the wave is in the deep ocean; a tsunami may pass under a ship without
the passengers even noticing. But when it enters shallow water near shore, a tsunami wave decreases in both
speed and wavelength, resulting in a very destructive wave of very large amplitude.

9.10 Seismic Waves

An example of waves encountered in natureséssmic waveswhich are waves in the Earth’s crust and
interior that are produced by earthquakes. Geologists have observed two types of seismic waves that travel in
the interior of the Earth:

» P waveg(for “primary” or “pressure” waves) are longitudinal waves, and can travel in both the solid
and liquid parts of the interior of the Earth.

» S wavegfor “secondary” or “shear” waves) are transverse waves, and can travel only in the solid parts
of the Earth.

The S waves are the slower of the two; they travel at about 60% of the speed of P waves. This is actually why
they are called “primary” and “secondary” waves: the P waves, being faster, arrive first at a seismic observing
station. P waves travel with a speed that varies from less than 5 km/s at the Earth’s crust to about 13 km/s
through the core. From the time delay between the arrival of the P waves and S waves, a seismic observing
station may infer the distance to the earthquakgicenter(the point on the Earth’s surface directly above

the point of origin of the earthquake). Measurements from several observing stations allow a determination
of the position of the epicenter through triangulation.

Also, since S waves cannot travel through liquids, observing seismic waves has allowed geologists to
infer something about the structure of the interior of the Earth—for example, that there the core consists of a
solidinner core surrounded by a liquiduter core

In addition to P waves and S waves, geologists have observed two types of waves that propagate only at
the surface of the Earth’s cru®Rayleigh wavespple along the Earth’s surface like water waves, bneaves
(or Love wavekare a kind of transverse wave whose displacement is in the plane of the Earth’s surface.

Seismic wave energy is measured on a logarithmic scale calladdh@nt magnitude scalén earth-
guake energy of joules is said to have a magnitude given by

M = %lo0g,, E — 6.0. (9.19)
For small to medium earthquakes, this moment magnitude scale gives numbers close to those on the older

Richter scale that it replaces.
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Chapter 10

Standing Waves

Supposes you attach one end of a string to a wall, and hold the other end in your hand. Now give your end a
quick “flip”, and you will see a wave pulse travel down to the wall, get inverted, and the reflected wave will
come back to you.

Now suppose you set up a continuauave trainat your end. The waves will travel to the wall, get
inverted and reflected back toward you. On the way back, they will interfere with the waves coming in the
opposite direction, and you will get a complicated-looking jumble of interfering waves.

But suppose you time things just right, with just the right frequency, so that the returning reflected waves
interfere constructively with the waves coming the other way. In this case the waves all add together nicely,
and you get a pattern sfanding wavesStanding wave patterns look like the patterns in Fig. 10.1; you'll see
a set of “segments” vibrating up and down, where each segment is a half wavelength. At the points between
segments, the string does not move at all; these points are calleddbe Halfway between the nodes are
the points of maximum displacement; these aregifiinodes

It's important to realize that if you drive one end of the string with simple harmonic motion, you will,
in general, not get standing waves—you'’ll get a jumbled mess at first, that will eventually settle into non-
standing waves that oscillate at the forcing frequency. Only at certain specific frequencies will you get
standing waves.

So what frequencies will give standing waves? That depends on whether the string is fixed at both ends,
or just one end, or if both ends are free.

10.1 Fixed or Free at Both Ends

If the string is fixed at both ends and the ends are a distdnepart, then you can see from examining

Fig. 10.1 that an integer number of segments have to fit into the distan&nce each segment is a half
wavelength, the condition for standing waves in this case is that an integer number of half-wavelengths must
fitinto lengthL:

A
L=n7  (@=1234..) (10.1)

Now since the wave spead= f A, we can substitute fak and solve forf to find an expression for the
frequencies that give rise to standing waves:

fo = n% (n=1,2,34,..) (10.2)

As shown in Fig. 10.1, there is a sequence of standing waves, one pattern for eachvinte@ge?, 3, 4, . . ..
The standing wave is called thefirst harmonic the next one f) is called thesecond harmonijcand so
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n=1 n=3 n=5 n=7

Figure 10.1: The first four standing waves in a string (a) fixed at both ends; (b) free at both ends; (c) fixed on
the left end and free on the right. The stationary points with no displacement aredbgin between them
are the points of maximum displacement, émtinodes
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on, so f, is then-th harmonic. (Sometimes a different nomenclature is uggds called thefundamental
frequency f; is called thdirst overtone f; is thesecond overtonand so on, sg;, is the(n—1)-th overtone.)

It turns out (as you can see from examining Fig. 10.1(b)) that this same condition (Eq. 10.2) also applies
to waves that aréree at both ends: an integer number of half-wavelengths must fit into lehgth

10.2 Fixed at One End and Free at the Other

A different situation occurs when the wave is fixed at one end and free at the other (Fig. 10.1(c)). From
examining the figure, you can see the pattern: an odd number of half-segments has to fit into distance
Since each segment is a half wavelength, this means that an odd number of quarter-wavelengths must fit into
lengthL:

A
L:nz (n=13,57..) (10.3)
Again using the relation = fA and solving forf, we find the condition for standing waves in this case is

:n— n=1,3,57,... 10.4
fo=ngr ) (10.4)

Although we've been talking about string waves, this analysis refers to both transverse and longitudinal
waves (sound waves, for example). As we'll see later, musical instruments work by creating standing sound
waves which satisfy these same conditions.

10.3 Vibrations of Rods and Plates

A rod may be set vibrating (longitudinally) by holding or clamping it at some point and stroking it with rosin.
There will be a node at the point where the rod is clamped, and antinodes at each end. For example, clamping
the rod at its center point will create standing waves free at both ends (where there are antinodes) and fixed
in the center (where the rod is clamped), resulting imas 1 standing wave, as shown in Figure 10.1(b),
n = 1. Clamping the rod a¥, its length from one end again creates a node at the clamped point and antinodes
at the two ends, resulting in an= 2 standing wave (Figure 10.1(b),= 2).

Standing waves can also be created in two-dimensional plates or membranes. Figure 10.2 shows the
standing wave modes of a circular membrane such as a drum head. Notice in this case that the frequencies of
the standing wave modes aretinteger multiples of the fundamental frequencies, so theparbarmonics.

Made 31

OOO0OO0

1.59f, 2.14f 230f 265f 292f
Mode 41 22 03 51

segments 3 16f,  3.50f, 3.60f, 3.65f 4.06f, 4.15f,

are moving
in opposite After Berg and Stork

directions.

Figure 10.2: Modes of vibration of a circular membrane, showing nodal liféguré from D. Livelybrooks,
Univ. of Oregon).
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Jalx) Jax)  1x)

Figure 10.3: Bessel functionk, (x). (Credit: Wolfram MathWorld.

For the circular membrane, the vibration modes are characteriz®ebliytegersyn andn. The frequency
of modemn is given by

Amn
Jot1.
®o1

fmn = (10.5)

wherec,,, is then-th zero of a special function called tiessel functior/,,(x) (Figure 10.3). In other

words,u,,, is the value ofc at then-th time the function/,, (x) crosses the axis forx > 0.
The first few zeros of the first few Bessel functions are given in Table 10-1.

Table 10-1. Zerog,,, of the Bessel functiong,, (x). (Credit: Wolfram MathWorld.

o)  Nix) )  SHx) Jax) J5(x)
2.4048 3.8317 51356 6.3802 7.5883 8.7715
55201 7.0156 8.4172 9.7610 11.0647 12.3386
8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

GO WN RS

Example.The frequency of mode: = 3, n = 2is

Caxm . 97610
2 = Qo Jor = 37048

for = 4.0589 for.
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Chapter 11

Sound

Souncconsists of longitudinal waves that propagate through some medium and may be detected by the human
ear. We often think of sound waves as propagating through the air, but sound waves may also move through
other materials like helium, water, or steel. In this chapter we’'ll examine a few of the basic properties of
sound waves.

11.1 Speed of Sound

First of all, how fast do sound waves travel? You've probably noticed that sound waves have a noticeable
travel time—for example, when you're watching a baseball game far from home plate, there is a definite
delay betweerseeinga batter hit the ball, andearingthe sound. Experimentally, we find the nominal speed

of sound in air to be (&20°C)

Usnd = 343 m/S (lll)

It turns out that the speed of sound is strongly dependent on temperature. An empirical formula that corrects
for this temperature variation gives the speed of sound in air as

Vend & (331 + 0.607,) m/s, (11.2)

whereT, is the air temperature, ffiC. Notice that if7, = 20°C, we get 343 m/s.

If we convert units, we find that this is equal to abdgimile per second. This gives the rule you may have
learned in childhood for estimating the distance of a lightning flash: after you see the lightning, count how
many seconds go by before you hear the thunder, then divide by 5 to find how many miles away the lightning
was. (Light travels about 900,000 times faster than sound, so the lightning reaches you almost instantly, and
you don't need to consider the light travel time.)

What about the speed of sound in other materials? Recall from Eq. (9.4) that the speed of waves in a
string is the square root of the tension divided by the density: / Fr/(m/L). The speed of sound waves
in fluids follows a similar formula, known as tidewton-Laplace equation

B
Usnd = -, (113)
0

where B is called thebulk modulusof the material (a measure of its compressibility), anid the density
of the material. Table 11-1 shows the bulk moduli, densities, and speeds of sound for several different
fluids. (For the speed of sound solids you use theroung’s modulug” in place of the bulk modulus:

Vsnd = /Y /p.)
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Table 11-1. Speed of sound in several fluids. (All data aredécC.)

Medium Bulk modulusB (Pa) Density (kg/m3) Speed of sound

Air 1.42x 10° 1.204 343
Helium 1.69 x 10° 0.1663 1008
SFKs 1.35x 10° 6.069 149
Water 2.2 x10° 1000 1497

A common laboratory demonstration is to inhale some helium gas and then try to talk; the amusing result
is an abnormally high-pitched voice. The opposite effect can be demonstrated by inhaling sulfur hexafluo-
ride (SK), which results in an abnormally low voice. (You shoulot attempt to do this yourself, as both
demonstrations are potentially dangerous.) As you can see from the table, all three gases have similar bulk
moduli; they differ mainly by their densities, which results in different speeds of sound for each gas. Itis
these differences in the sound speed that is responsible for the high and low pitches of one’s voice in each
gas.

The bulk modulus and density of a gas are also functions of temperature. We can find the an explicit
expression for the speed of sound in a gas as a function of temperature as follows: the bulk rBoofidns
ideal gas is given by

B =yp. (11.4)

wherep is the pressure of the gas, ands the ratio of the heat capacity at constant presstigg (o the heat
capacity at constant volume{):

= (11.5)

14

It can be shown from thermodynamics that:
« For a monatomic gag: = 3 = 1.67
» For a diatomic gas, or other gas with linear molecujes: % = 1.40
. . . 4
+ For a gas with nonlinear moleculgg:= 3 = 1.33

Now substituting Eq. (11.4) into the Newton-Laplace equation (11.3), we have

Usnd = Q (116)
V o

Now using the ideal gas law
pV = NkgT (11.7)

(whereV is the volume of gasy is the number of atoms or molecules of ghag, = 1.3806488 x 10723 J
K~ is the Boltzmann constant, afdis the absolute temperature in kelvins) to substitute for the pregsure
we have

NkpT
Usnd = y B . (118)
oV
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Now pV is the total mass of gas, which we’ll call, so we have

NkpT
Usnd = y B . (119)
m

The mass per atom (or moleculeyig = m/N, so we have

[vksT RT
veng = || T2 = /Lo (11.10)
mg M

whereR = kg Ny = 8.3144621 I mol! K—1 is the molar gas constant ai is Avogadro’s number, and
M = m/(N/N,) is the molar mass of the gas (kilograms per mole). Since the molecular (or atomic) weight
is in grams per mole, this mean tht is just the molecular (or atomic) weight divided by 1000.

Using Eg. (11.10), we can see where the empirical relation for the speed of sound in air, Eq. (11.2), comes
from. Air consists of about 78% nitrogen gN 21% oxygen (@), and 1% argon (Ar). Since the gases are
mostly diatomic, we will takey = 1.40. To find the mass per molecule, we’ll compute a weighted average
based on composition. Since;as a molecular weight of 28,,(has a molecular weight of 32, and Ar has
an atomic weight of 40, we compute the weighted average molecular weight of air to be

ma = (0.78 x 28) + (0.21 x 32) + (0.01 x 40) = 28.96. (11.11)

To convert this to mass in kilograms, we multiply this by the atomic massu#itl 660538921 x 10 =27 kg
to getm, = 4.8089 x 1072 kg. Substituting these results into Eq. (11.10), we get

kgT
verg = 1| 2B (11.12)
meg
] ) 1 —23 ko T
_ [(1.40)(1.3806488 x 10~2* J/kg) (11.13)
4.8089 x 102 kg

=20.0472+/T (11.14)

in Sl units. NowT is the absolute temperature, and let'sTgtbe the temperature in degrees Celsius. Since
the two are related by = 7, + 273.15, we have

Veng = 20.0472/T, + 273.15 (11.15)

T,
= (20.0472)«/273.15,/273” T (11.16)
T;
= 331321+ =2 (11.17)

We now use the series expansion (valid|for < 1; see Appendix C)

1 1 1 5 7
1 V24 ox— x4+ —x - x4 —x" - 11.18
(I +x) B R TR T R T (11.18)
1
~1+ 7% (11.19)
and we have

~ 331321+ 1 L (11.20)

Vsnd 2 355 227315 '
= 331.32 + 0.6065T, (11.21)
~ 331 4 0.607, (11.22)

and we have just derived the empirical relation, Eq. (11.2).
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11.2 Frequency of Sound

Sound frequencies may be divided into the following categories, depending on whether or not they are within
the range of human hearing:

* Infrasonic.(f < 20 Hz) These sounds are at frequencies too low to be audible to humans.
* Audible.(20 Hz < f < 20,000 Hz) This is the range of human hearing.
« Ultrasonic.(f > 20,000 Hz) These sounds are at frequencies too high to be audible by humans.

These are only approximate ranges. In particular, there is a strong correlation between the highest audible
frequency and the person’s age; as we get older, we become less able to hear very high-frequency sounds.

Infrasonic sounds are inaudible to humans, but can be heard (and produced) by some animals like whales
and elephants. Some natural phenomena like earthquakes also produce infrasonic sounds.

Ultrasonic sounds are also inaudible to humans, but can be heard by some other animals, like dogs, bats,
and dolphins. The familiar dog whistle produces a high-pitched sound that is inaudible to humans, but can be
heard by dogs. Ultrasound has several practical uses: it is used in some cleansing processes, and for medical
imaging.

Table 11-2 shows the hearing ranges (frequencies) audible to different animals.

Table 11-2. Hearing ranges for various animals. [6]

Species Hearing range (Hz)
Turtle 20-1,000
Goldfish 100-2,000
Frog 100 - 3,000
Pigeon 200 - 10,000
Sparrow 250 -12,000
Human 20 - 20,000
Chimpanzee 100 - 20,000
Rabbit 300 - 45,000
Dog 50 - 46,000
Cat 30 - 50,000
Guinea pig 150 - 50,000
Rat 1,000 - 60,000
Mouse 1,000 — 100,000

Bat
Dolphin (Tursiopg

3,000 - 120,000
1,000 — 130,000




Chapter 12

The Doppler Effect

You have probably noticed that the frequency of sound emitted by a moving source depends on its speed; for
example, when you're standing by the side of a road near fast-moving traffic, the engine sounds decrease in
frequency as the car passes you. (This is especially noticeable at the Indianapolis 500, for example.) This
effect is called th®oppler effectafter Christian Doppler, an Austrian physicist who first described the effect

in the 19th century.

This change in frequency is observed whether the source or the observer is moving. If the source and
observer are getting closer together, the frequenéygiserthan if both were stationary; if they are getting
farther apart, the frequencylswer.

A little thought reveals why this is. If theourceof the sound is moving toward a stationary observer,
then the source will have moved in between emitting wave fronts, causing effective wavelength to be shorter,
resulting in a higher frequency heard by the observer. On the other hand,db#lseverof the sound is
moving toward a stationary source, then the observer runs into the wavefronts faster than if he were stationary,
so he hears a higher frequency.

The frequency shift my be described by the following equation, which covers either the source or the
observer moving (or both):

fl=r (M) (12.1)

Usnd F Vsource,

Here f is the frequency emitted by the source, affds the frequency heard by the observer. Three speeds
go into this equation, and they are all measured with respect to thesgilis the speed of sound (nominally
343 m/s);veps is the speed of the observer, ang,c.is the speed of the source of the sound. All of these
speeds are taken to be positive; the directions are taken into account withahdF signs. The rule for
using these signsiis:

“Top sign toward, bottom sign away.”

In other words, if the source and observer are moving toward each other, we use the tog-digitise
numerator and- in the denominator. If they are moving away from each other, we use the bottom signs:
in the numerator and- in the denominator. To be fully explicit:

* If the observer is movingpwardthe source, use- in the numerator.
* If the observer is movingwayfrom the source, use in the numerator.
* If the source is movingowardthe observer, use in the denominator.

* If the source is movingwayfrom the observer, us¢ in the denominator.
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Source

>
0

VvV COS 0

Observer

Figure 12.1: Doppler shift for a source moving at an angle relative to to the observer. Here the source is
moving along a straight line track with velocity and the observer is standing off to one side of the track.
For the purpose of computing the Doppler shift, the effective speed of the source is the comperietihef
direction of the observer, cosf.

For example, suppose a fire engine emits a sound with a frequency of 2000 Hz, and is moving directly
toward you at 50 m/s. You are stationary. What frequency do you hear? In thisfcase2000 Hz,
Vsnd = 343 M/S, vsource = 50 M/S, andvgps = 0. Since the fire engine is moving toward you, you choose the
top signs, so the frequency you hearfis= (2000 Hz)[(343 + 0)/(343 — 50)] = 2341 Hz.

Eqg. (12.1) covers the case where the source and observer are rdoeicity toward or away from each
other. But what if they are moving at some angle relative to each other, rather than directly toward or away
from each other? In that case, the velocitigg andvseurcethat you use in Eq. (12.1) are tkemponentsf
the velocity along a line connecting the source and the observer. Fig. 12.1 shows an example: a source of
sound is moving along a straight track, and the observer is standing off to one side. At any paint,the
we use in Eqg. (12.1) is the component of the source’s velocity along the line connecting the source to the
observer at that point, arsourceC0s8. If we perform this calculation usingseurce = 50 m/s andd = 10 m
for each point along the track, we get the plot shown in Fig. 12.2.

It is a common misconception that in the case of a moving source, the frequency increases as the object
moves toward the observer, and decreases as it moves away. As you can see from Fig. 12.2, this is not the
case: the frequency decreases monotonically.

12.1 Relativistic Doppler Effect

Light waves exhibit the Doppler effect just as sound waves do, but the analysis is different. We’'ll examine
light waves in more detail later, but for now we can just note that light waves are a type of transverse wave that
can travel through a vacuum. In discussing the Doppler effect for sound, we specified the speeds of both the
source and the observer relative to the reference frame @fithelowever, there is no such reference frame

for light waves. According to Einstein’s special theory of relativity, there is no “universal” reference frame
with respect to which we can measure speeds of bodies—and furthermore, the theory says that the speed of
lightis constant, regardless of the speed of the person making the measurement. So in the case of light waves,
it makes no sense to talk about the speeds of the source or the observer with respect to some fixed reference
frame, since there is no such frame—we can only talk about the speeds of the source and mbatvectio

each other This means that the Doppler shift equation for light has only two speeds in it: the speed of light

¢, and the relative speed between the source and observEhe Doppler equation for light waves (called
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Doppler Effect (Moving Source)
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Figure 12.2: Doppler shift for a moving source. In this example, the source is moving at a speed of 50 m/s
along a straight line, the stationary observer is a perpendicular distance of 10 m from the source’s path at
x = 0, and the frequency of the sound emitted by the source is 2000 Hz.
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therelativistic Doppler equation) is

ctv
cFv’

fl=f (12.2)

where the sign conventions are the same as for the Doppler effect described earlier. This effect means that
if the source are observer of light waves are mouimgard each other, the light waves appdduver than

they would if the source and observer were not moving relative to each other; this effect is daliedlzft

Similarly, if the source and observer are moving away from each other, the light appears redder than it would
otherwise, an effect calledradshift

Astronomers often observe this effect in astronomical bodies. For example, because of the Sun’s rotation,
lines in the Sun’s spectrum are blueshifted on the edge of the Sun moving toward us, and redshifted on the
edge moving away from us.

It was discovered decades ago that all distant galaxies have redshifted light, so they are all moving away
from us. Furthermore, the farther the galaxy, the greater the redshift—meaning that the farther the galaxy,
the faster it's moving away from us. The American astronomer Edwin Hubble first noted this, and postulated
what is now calledHubble’s law; it relates the speed with which a galaxy is moving away from us to its
distanceD from us:

v = HyD, (12.3)

whereH, is a proportionality constant called thieibble constantObservations by several NASA spacecraft
have recently determined the value of the Hubble constant to be akptt 71 (km/s)/Mpc. (Aparsec(pc)
is about 3.26 light-years, or abakib9 x 1016 meters, and so megaparse¢Mpc) is a million times that.)

Why are all the galaxies moving away from us like this? It's because the Universe is expanding, which is
causing every distant galaxy to move away from every other one, much like dots drawn on a balloon moving
farther apart as the balloon is inflated. This expansion began 13.7 billion years ago with the Big Bang, the
huge explosion in which the Universe was created, and is continuing to this day.
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Chapter 13

Sound Intensity

13.1 Intensity

Let's now look at another property of sound: lilsidness The loudness of sound is just the intensity of the
sound waves, in watts per square meter. The sound intehsityhe powerP of the sound source (e.g. a
loudspeaker), divided by the area over which this power is spread. For example, if the source of sound waves
is an isotropic point source, then spherical sound waves are emitted equally in all directions. At a distance
r from the source, the source’s power will be spread over the surface of a sphere ofrrasbuse sound
intensity at distance will be

P P
I=a=% (13-1)
13.2 Decibels

Our ears are capable of hearing sounds over a tremendous range of intensities. It has been said that if our ears
were any more sensitive than they are, we would be able to hear the sound of individual air molecules hitting
our eardrums. But we can also hear very loud sounds, like from a jet engine. In order to accommodate this
large range of intensities, our ears tend to resgogdrithmicallyto sounds; this has motivated the creation
of alogarithmicloudness scale, where sound level is proportional to the logarithm of the intensity.

Simply taking the logarithm of the intensity doesn’t work dimensionally, though—when you take the
logarithm of a quantity, it should be dimensionless. We therefore take the logarithmaid af intensities
to get thesound level

I
B =log,, o (13.2)

whereB is the sound level in units dfels(B) (hamed after Alexander Graham Bell)is the sound intensity,
andlo = 10712 W/m? is called thethreshold of hearingand is roughly the lowest-intensity sound that an
average person can hear. Taetualsoftest audible sound varies from person to person, changes with age,
and is also a function of frequency. But for the purpose of defining the bel, we alway$ usew/m? for
Iy. Also, notice that by convention, tltemmon(base 10) logarithm is used in defining the bel.

In practice, the bel is rarely used; the more common uniiidel, or thedecibel(dB). The sound level
in decibels ) is given by

1
B =10 log,(, —. (13.3)
Iy
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The threshold of hearing = I, corresponds to a sound level of 0 dB. A sound intensity of 1 Waar-
responds to a sound level of 120 dB, and is about where most people start finding the sound to be painfully
loud; 120 dB is called théhreshold of pain

One useful fact to note about decibels is that each timedpaiblethe intensityl (W/m?), youadd3 dB
to the sound level. This is because in going from intensity 27, the sound level becomes

B’ =10 log,,(21/1o) (13.4)
= 10l00,, 2 + 10log,,(1/1o) (13.5)
~ 3.010 + B. (13.6)

Similarly, when youhalvethe sound intensity, yousubtract3 dB from the sound level.

When computing sound levels, you cannot do the computations in decibel units. Instead, you must do the
calculations in intensity units (W/#), then convert to dB at the end. For example, suppose you are 35 meters
away from a 10-watt isotropic sound source. How loud a sound do you hear? You first find the intensity:
I = P/(4nr?) = (10 W)/[47(35 m)?] = 6.496 x 10~* W/m?. Now convert the result to dB to find the
sound level;8 = 101og,,(1/1o) = 1010g,,(6.496 x 10~4/10712) = 88 dB.

13.3 Nepers

A less common unit for measuring sound level isieper(Np). Like the decibel, the neper is a logarithmic
scale; but unlike the decibel, it is a measure of the ratiamplitudegnot intensities), and uses the natural
logarithm instead of the common logarithm. Since the amplitude is proportional to the square root of the
intensity (4 oc +/T), the sound levey in nepers is given by = In \/1/1,, or

11

=-In—. 13.7
y=3nge (13.7)
You may convert between decibels and nepers using the relationship
In10
y (Np) = B (dB) x —-= (13.8)

Every doubling of the intensity (W/m?) corresponds to adding abo# Np to the sound level, and
halving/ means subtracting aboift Np from the sound level.
In terms of nepers, the threshold of hearia@ dB = 0 Np; the threshold of paie- 120 dB = 14 Np.
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Chapter 14

The Edison Phonograph

The 1870s saw the development of not one,thrtgemajor inventions by American inventors in the span of
just four years:

» 1876: thetelephoneby Alexander Graham Bell.
 1877: thephonographby Thomas Alva Edison.
» 1879: theelectric lamp also by Thomas Edison. (Chapter 29.)

In this chapter we will review Edison’s invention of the phonograph.

Prior to 1877, there was no way to record the human voice or other sounds, and to play them back. A few
preliminary devices had been built that would record sounds as lines on paper and the like, but no means for
playing back the recordings was available. One can only imagine, then, what it must have been like to hear a
recording of the human voice played back for the very first time on what was Thomas Edison’s most original
invention, thephonograph

The first words every recorded on the new phonograph were spoken by Edison himself:

Mary had a little lamb,

Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go.

On December 7, 1877, Edison demonstrated his phonograph at the New York City offices of the nation’s
leading technical weekly publicatio8gcientific AmericanSuch a crowd gathered around the device that the
demonstration had to be cut short, out of fear that the weight of the crowd might cause the floor to collapse.

In Edison’s original machine, a brass cylinder was covered with a strip of tinfoil. When a person spoke
into the mouthpiece, it vibrated a diaphragm to which was attached a metal point, which made indentations
in the foil. To play the recording back, another metal point on the opposite side of the machine is run over
the grooves and drives a second diaphragm, reproducing the original sound.

Edison’s demonstration of the new phonograph was described inthe December 22, 187 7Ssseetifit
American

Mr. Thomas A. Edison recently came into this office; placed a little machine on our desk,
turned a crank, and the machine inquired as to our health, asked how we liked the phonograph,
informed us that it was very well, and bid us a cordial good night. These remarks were not
only perfectly audible to ourselves, but to a dozen or more persons gathered around, and they
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Figure 14.1: Thomas A. Edison working on development of the phonogr&phdif: U.S. Department of
the Interior, National Park Service, Edison National Historic Site.

were produced by the aid of no other mechanism than the simple little contrivance explained and
illustrated below.

The principle on which the machine operates we recently explained quite fully in announcing
the discovery. There is, first, a mouth piede Fig. 1, across the inner orifice of which is a metal
diaphragm, and to the center of this diaphragm is attached a point, also of etk brass
cylinder supported on a shaft which is screw-threaded and turns in a nut for a bearing, so that
when the cylinder is caused to revolve by the crafik,it also has a horizontal travel in front
of the mouthpieced. It will be clear that the point on the metal diaphragm must, therefore,
describe a spiral trace over the surface of the cylinder. On the latter is cut a spiral groove of like
pitch to that on the shaft, and around the cylinder is attached a strip of tinfoil. When sounds
are uttered into the mouthpiecé, the diaphragm is caused to vibrate and the point thereon is
caused to make contacts with the tinfoil at the portion where the latter crosses the spiral groove.
Hence, the foil, not being there backed by the solid metal of the cylinder, becomes indented, and
these indentations are necessarily an exact record of the sounds which produced them. ...

No matter how familiar a person may be with modern machinery and its wonderful per-
formances, or how clear in his mind the principle underlying this strange device may be, it is
impossible to listen to the mechanical speech without his experiencing the idea that his senses
are deceiving him. We have heard other talking machines. The Faber apparatus for example is a
large affair as big as a parlor organ. It has a key board, rubber larynx and lips, and an immense

82



Prince George’s Community College Introductory Physics I D.G. Simpson

amount of ingenious mechanism which combines to produce something like articulation in a
single monotonous organ note: But here is a little affair of a few pieces of metal, set up roughly
on an iron stand about a foot square, that talks in such a way, that, even if in its present imperfect
form many words are not clearly distinguishable, there can be no doubt but that the inflections
are those of nothing else than the human voice.

We have already pointed out the startling possibility of the voices of the dead being reheard
through this device, and there is no doubt but that its capabilities are fully equal to other results
just as astonishing. When it becomes possible as it doubtless will, to magnify the sound, the
voices of such singers as Parepa and Titiens will not die with them, but will remain as long as the
metal in which they may be embodied will last. The witness in court will find his own testimony
repeated by machine confronting him on cross-examination—the testator will repeat his last will
and testament into the machine so that it will be reproduced in a way that will leave no question
as to his devising capacity or sanity. It is already possible by ingenious optical contrivances
to throw stereoscopic photographs of people on screens in full view of an audience. Add the
talking phonograph to counterfeit their voices, and it would be difficult to carry the illusion of
real presence much further.
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Chapter 15

Music

Musicis a sequence of sounds created for enjoyment or artistic expression. The sounds may be produced by
the human voice (singing), or by any number of musical instruments. Music is a vast field, and we can only
hope to touch on some of the most basic ideas of music theory here; the interested reader is referred to the
references in Appendix 62.4 for more information.

15.1 Pitch

To begin, music consists of a sequence of sounds of short duration (cate} each of these notes is at a
specific frequency (calleplitch). Not just any frequencies are used, though; musical notes are selected from
a set of discrete frequencies.

We find that if we hear a sound at frequengfy then to our ears a sound at twice that frequergs) (
sounds “similar”, but higher. To get musical notes, the interval between frequérnd?2 /', known as an
octave is divided into twelve equal parts (in a logarithmic sense) so that each note is higher in frequency than
the next lower note by a factor 0R/2 ~ 1.059463. Each factor of's/2 change in frequency is callechalf
step and two half steps makevehole stepThe complete set of 12 notes in an octave (each separated in pitch
by a half step) is called thehromatic scale

Early musicians discovered that musical compositions sounded better when they used only certain subsets
of these 12 notes, rather than all 12. One of the best-known of these subs#alégrconsists of 7 of the
12 notes in an octave; these notes were named (in order of increasing pitch) C, D, E, F, G, A, and B. In this
scale, called th€ major scalenotes B and C (of the next octave) are one half step apart in frequency, as are
notes E and F; the others are a whole step apart.

Each octave contains the 12 notes in the chromatic scale, which are given the following names, in order
of increasing pitch:

Table 11-1. The musical notes.

C Fi/ Gb
Ct/Db G
D Gt/ Ab
DE/Eb A
E At/ Bb
F B
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In this table we find the seven notes of the C major scale, along with the remaining five notes, which are
named using the symbofsandb to indicate that they fall in between the notes of the C major scale. The
symbolf (called “sharp”) indicates a raising in pitch by one half step over the note to which it is attached,;
similarly, the symbob (called “flat”) indicates a lowering of pitch by one half step. For exampleis®ne
half step higher in pitch than C, and B one half step lower in pitch than B. (The symbglandb are
collectively calledaccidentals)

Notice that several notes are known by two equivalent names. For exanided®» refer to the same
note—the one between notes C and D. Also, since notes B and C are separated by just one half step, we have
Bff = C and @ = B; similarly, E and F are separated by one half step,tse-BF and B = E.

When it is necessary to indicate a specific octave, it is written as a subscript after the note. Theg note A
(near the middle of the piano keyboard) is assigned a frequency of exactly 440 Hz. Since the notes in each
octave have twice the frequency of the same note in the next lower octave, we find the frequencies of note A
in higher octaves by repeatedly multiplying by 25 A= 880 Hz, As = 1760 Hz, AA = 3520 Hz, A = 7040
Hz, and A’ = 14080 Hz. Similarly for A in lower octaves, we repeatedly divide 440 Hz by 2:=A220 Hz,

A, =110Hz, A = 55Hz, and A4 = 27.5 Hz. Human hearing covers ten octaves in pitch, going roughly
from note K to E;¢. The piano’s range is 7¥4 octaves, frorg # Cs.

Beginning with the frequency of note,A= 440 Hz, we successively multiply and divide By/2 to find
the frequencies of all the other notes, as shown in Table 15-2.

Table 15-2. Frequencies (in hertz) of all the musical notes that are audible to the human ear. Middle C is
shown in bold, and the musical standargl i& shown in italics.

Octave
Note 0 1 2 3 4 5 6 7 8 9 10
C 32.70 65.41 130.81 261.63 523.25 1046.50 2093.00 4186.01 8372.02 16744.04
Cit / Db 34.65 69.30 138.59 277.18 554.37 1108.73 2217.46 4434.92 8869.84 17739.69
D 36.71 73.42 146.83 293.66 587.33 1174.66 2349.32 4698.64 9397.27 18794.55
Dt/ Eb 38.89 77.78 15556 311.13 622.25 124451 2489.02 4978.03 9956.06 19912.13

E 20.60 41.20 8241 164.81 329.63 659.26 131851 2637.02 5274.04

10548.08 21096.16
F 2183 43.65 87.31 17461 349.23 698.46 1396.91 2793.83 5587.65

11175.30
Ft/Gb | 23.12 46.25 9250 185.00 369.99 739.99 1479.98 2959.96 5919.91 11839.82
G 2450 49.00 98.00 196.00 392.00 783.99 1567.98 3135.96 6271.93 12543.85
Gf/Ab | 25.96 51.91 103.83 207.65 415.30 830.61 1661.22 3322.44 6644.88 13289.75
A 2750 55.00 110.00 220.00440.00 880.00 1760.00 3520.00 7040.00 14080.00
Ag/Bb | 29.14 58.27 116.54 233.08 466.16 932.33

1864.66 3729.31 7458.62 14917.24
B 30.87 61.74 123.47 246.94 493.88 987.77 1975.53 3951.07 7902.13 15804.27

In general, a note half steps above Ahas a frequency of

212 440 Hz, (15.1)

wheren is negative for notes below A

Note G (in the middle of the piano keyboard) is calletdddle C Since it's 9 half steps below A middle
C has a frequency & /12 x 440 Hz = 261.6256 Hz.

15.2 Musical Scales

As mentioned earlier, early musicians discovered that musical compositions sound best when they don't use
all 12 notes of the chromatic scale; instead, restricting the notes to certain subsets of the 12¢edded
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results in more pleasant-sounding music.

In Western music, the most common of these scales are cabgat scalesand the best-known of these
is theC major scale which has already been described: it consists of the notes C, D, E, F, G, A, and B. In this
scale, the first two notes (C and D) are separated in pitch by a whole step, as are the second and third notes (D
and E). The third and fourth notes are separated by a half step. Continuing through the whole scale, we find
that the separations between the notes in pitch are two whole steps, then one half step, then three whole steps,
then another half step at the end when going from B to C of the next octave. For shorthand, let’s write “W”
for a whole-step interval between notes, and “H” for a half-step interval; then the intervals between notes in
the C major scale can be written as WWHWWWH.

There are 11 other major scales besides the C major scale. To get them, we simply start with a different
note in the chromatic scale, then follow the same WWHWWWH interval pattern; the scale is named for the
note we started with. For example, for thg i@ajor scale, we begin withiZthen go up a whole step in pitch
to get the next note in the scaleff.Drhen we go up another whole step to get the next note, F. Then up a half
step to get the next note{J; and so on until we find all seven notes in the scale. Similarly, for the D major
scale, we start with the note D and follow the same WWHWWWH pattern to find the seven notes of the D
major scale. We can repeat the process for all 12 notes in the chromatic scale; the results are shown in Table
15-3.

Table 15-3. The major scales. The last column shows the nhumber of accidentals in that scale.

Major Scale Notes # Acc.

C C D E F G A B 0

G G A B C D E A 14

D D E Fi G A B Ctt 21

A A B Ctt D E H Gt 3

E E F Gt A B Ct Df 44

B (=Cb) B Ct Dg E Fi  Gf Af 54
Ftt (=Gb) Fi Gt Af B Ci Dt Ef(=F) 61
C (=Db) Ct Di  Ef(=F) Fi Gf Af Bi(=C)| 71

F F G A Bb C D E 1b

Bb Bb C D B F G A 2b

Eb Eb F G Ab Bb C D 3b

Ab Ab Bb C Db Eb F G 4b

Db (=C¥) Db Eb F Gb Ab  Bb C 5b

Gb (=Ff) Gb Ab Bb Cb(=B) Db Eb F 6b

Cb(=B) | Cb(=B) Db Eb Fb(=E) G Ab Bb 7b

Notice that 15 scales are listed in this table; several of them (such as BaadeCeally the same scale,
but with the notes “spelled” differently (recall that some notes have two names, sudi+Bs)Aso there
are really only 12 different major scales, each one beginning with a different note in the chromatic scale and
following the WWHWWWH pattern.

Notice also in Table 15-3 that each major scale can be uniquely identified by the total number of acciden-
tals (sharps and flats) of all the notes in that scales, as shown in the last column. (That's actually the reason
for showing the “duplicate” scales in this table, so that this pattern will be clear.) Music written by selecting
notes from one of these scales is said to be written inkeatFor example, a musical composition written
using notes selected from the C major scale is said to be written “in the key of C major”. This selection of
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notes is not strictly adhered to, though; while the notes in a composition are generally selected from the seven
in the key being used, the composer may occasionally use other notes for effect.

Since each major key can be uniquely identified by the number of accidentals, the key in which a compo-
sition may be indicated by writing the appropriate number of sharps or flats immediately after the clef sign.
For example, suppose we wish to write a composition in the key of G major. From Table 15-3, we see that
the key of G major contains only one “sharp” noté, 5o we indicate a key of G major by writing a single
ff sign on the F line immediately after the clef sign; this is calledddesignature The performer who plays
the music will see that the key signature shows a sifigiethe F line, and will know that the key is therefore
G major and that all written F notes should be playedias F

The major scales we've just seen are just one of many such scales, each of which gives a different “feel”
to the music. For example, there are severador scalesmusic written in a minor scale has a distinctively
dark, “sad” sound to it, and may remind the listener of “spooky” or “funeral” music. Thereviscde tone
scalethat is often used for jazz music, and has a whole step between each note in the scplentatanic
scaleis widely used in Eastern music and for many other forms of music around the world.

Table 15-4 shows some of these scales, and their corresponding pitch interval patterns. Remember that
each scale shown represents 12 different keys, each one starting with a different note in the chromatic scale,
and each one having a bit of a different feel to it.

Table 15-4. Several musical scales and modes, and their pitch interval patteatsal{istep, W=whole
step, 3=three half steps.)

Name Pattern Piano white keys
Major scale WWHWWWH
Natural minor scale WHWWHWW
Harmonic minor scale =~ WHWWH3H
Melodic minor scale WHWWWWH
Whole tone scale WWWWWW
Pentatonic scale WW3W3
lonian mode WWHWWWH CtoC
Dorian mode WHWWWHW DtoD
Phrygian mode HWWWHWW EtoE
Lydian mode WWWHWWH FtoF
Mixolydian mode WWHWWHW GtoG
Aeolian mode WHWWHWW Ato A
Locrian mode HWWHWWW BtoB

15.3 Music Notation

Suppose we wish to record a musical composition so that a musician can play it. How do we write out the
notes to be played? We could just list the notes to be playqd [(B, etc.), but musicians would find that
difficult to read. Also, there needs to be some way to showdthationof each note, and to indicate when the
performer should pause while playing the composition. To deal with these issues, musicians have developed
a special graphical system of musical notation to record music and indicate how it should be played.

The notation begins with five horizontal lines (calledtaff), which essentially form a plot of frequency
vs. time, with increasing frequency (pitch) going up, and increasing time to the right. Each note is written
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eitheron one of the lines, or in the spabetweerines. Aclef signis written at the beginning of the staff to
indicate which lines correspond to which notes.

Two clef signs are in common use. theble clefis used when writing music for women'’s voices, or for
instruments that play high notes, generally in the range above middle C. The treble clef sign is a stylized
script letter G that curlicues around the line for the notge Gach of the notes in the C major scale (C, D, E,

F, G, A, and B) is written on or between lines of the staff; the other notes are are writterjj#sidg signs

next to these notes. Fig. 15.1 shows a treble clef symbol on the far left, followed by walke (hotesthat

show how each of the notes is written for one octave. (Notice that for the first two notes, the staff has been
extended downward by a shéetlger lineto write middle C and Gf.)
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Figure 15.1: Treble clef showing the chromatic scale for octave 4 (pl)s The lowest note (far left) is
middle C.

A bass clefis used for men'’s voices, or for instruments that play low notes, generally below middle C.
The bass clef sign is a stylized script letter F, with two dots on either side of the line for the nofggin
every line or space corresponds to one of the notes in the C major scald, avith signs written for the
other notes. Fig. 15.2 shows a bass clef symbol on the far left, along with whole notes showing each note for
one octave.
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Figure 15.2: Bass clef showing the chromatic scale for octave 3, plus middlg)®Ghe far right.

A few other clef signs are in use. For example, viola music is written usirgjtarclef and there is a
tenor clefthat is common in vocal music. The main point of the different clefs is to shift the notes that are
assigned to the lines of the staff in order to minimize the number of ledger lines that are needed. Music is
easier to read if most of the notes lie within the five lines of the staff.

Thedurationof each note in time is indicated by various symbols, as shown in Fig. 15vhote note
drawn as an oval as shown on the far left, is the longest duration. Other notes are fractions of a whole note,
as shown in the figure: balf notehas half the duration of a whole notegaarter notehas one-fourth the
duration of a whole note, and so on. So each written note indicates a specific pitch (by its position on the
staff) and a specific duration in time (by the symbol used).

Similarly, there are symbols for pausesrests Fig. 15.4 shows the various symbols for rests of different
durations. The longest rest (ghole res} is shown on the far left. Next is half rest which has half the
duration of a whole rest, and so on. The rests are always placed on the staff as shown in the figure; they are
not drawn higher or lower on the staff, since there is no pitch to be indicated.

10ne famousavant-gardemusical composition ig'33” by the American composer John Cage. It consists entirely of rests, and
contains no musical notes—it is just 4 minutes and 33 seconds of silence.
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A A N
e h F) )
)
whole half quarter eighth sixteenth thirty-second

Figure 15.3: Note A, showing the symbols for different note durations. The stems may point either up-
ward (as shown here) or downward; generally they point upward for notes near the bottom of the staff, and
downward for notes near the top.

0
b A <
) = = rd 7 < <
Di ' '
whole half quarter eighth sixteenth thirty-second
Figure 15.4: Symbols for different rest durations.
15.4 Timing

When we specified the durations of different notes, we specified them relative to the length of a whole note.
But what is the duration of a whole note, in seconds? That's not necessarily specified—music may be played
faster or slower, so the duration of a whole note is somewhat flexible. But if he wishes, a composer may
indicate a specific rate, @empq at which the music is to be played (typically in units of quarter notes per
minute).

For convenience, musical notes are grouped im@asure®f equal time; these are indicated by vertical
lines dividing the staff. Aime signaturémmediately follows the key signature, and indicates how the timing
of the composition works. The time signature is written as something resembling a fraction of the/iprm
where p is the number of “beats” of music per measure, gniddicates which note represents one beat.
Some common time signatures are shown in Table 15-5.

Table 15-5. Some time signatures.
Time Signature Beats per measure 1 beat

44 (or C) 4 quarter note
% (or € 2 half note
N 2 quarter note
EA 3 quarter note
b 6 eighth note

15.5 An Example

Figure 15.5 shows a simple example of musical notation—the beginning of a populatddidgacDonald
Had a Farm

Let’s break this down and see how it all works. Starting at the far left, you see the treble clef, which
indicates which lines on the staff correspond to which notes. Immediately after the treble clef is the key
signature, which is twg (sharp) signs on the line for note land the space for£ As shown in Table 15-3,
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Old MacDonald Had a Farm

() | | o o

D) ' ' ' [ [
Old Mac-Don - ad had a fam, EE | EE | 0.

Figure 15.5: The first 12 notes 6id MacDonald Had a Farmin D major.

the key with twaff signs is the key of D major, and in that key the sharp notes fené Q. In the key of D
major, all written F notes are to be played ds &nd all written C notes are to be played gs C

After the key signature comes the time signature, whickkis this case—meaning four quarter notes
(or the equivalent) per measure. After the time signature we see the ngtd3; [Ds, A4; By, By, Ag; Fsi,
Fs#t, Es, Es; and Ds. The words fyrics) are written below the staff.

15.6 Musical Instruments

Musical instruments produce musical notes by creating standing waves of some stringrinstruments

(violin, cello, guitar, harp, etc.), a string under tension is caused to vibrate, either by being plucked or having
a bow drawn across it. The string is held fixed at both ends, and standing waves are created in the string,
which produces a sound. Recall that the frequengjesf standing waves fixed at both ends are given by

fo=n— (n=1,2,3,4,..) (15.2)
2L

wherev is the wave speed and s the distance between the ends. Only the first harmanie () standing
wave is played on a string instrument. Recall also that the speed of waves in a string is gives by
v Fr/(m/L) (whereFr is the tension angk/ L is the string density), so the frequency of the first harmonic
will be

1 Fr
fi= 57 Jm. (15.3)

The performer can shorten the effective lengtlof the string, typically by pressing the string against the
neck of the instrument. Sinee/ L is constant, we havg; « 1/L, and shortening the string will increase the
pitch f1 and play a higher note. String instruments will have several strings with different thicknesses; the
thicker strings have a higher mass densityL, so they play a lower pitch. In order to tune the instrument
before playing, a set of knobs allows the player to change the tefigidn each string to make sure it plays
each note at the proper frequency; a higher tension gives a higher pitch.

In brass instrumentée.g. trumpet, trombone, French horn, tuba), the performer sets up standing sound
waves in the instrument by blowing into a mouthpiece. The player’s lips vibrate or “buzz” at a frequency
that produces standing waves; different notes are produced by changing the length of tubing (using valves,
or a slide for the trombone), and by changing the tension in the player’s lips. In some brass instruments,
like the trombone, the player can play the first harmonic by buzzing the lips very loosely in the mouthpiece;
higher harmonics are produced by increasing the lip tension. In other instruments, like the French horn, the
first harmonic cannot be played—only higher harmonics. This makes the French horn a tricky instrument to
play—only slight changes in lip tension will change the note from one harmonic from the next.

In woodwind instrument&.g. clarinet, oboe, bassoon, flute, recorder), as in brass instruments, the player
sets up standing sound waves in the instrument. In this case, the vibrations are often produced with a reed, and
the performer changes notes by opening or closing combinations of holes along the side of the instrument,
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using the fingers or a complex system of keys. Woodwind instruments generally play the first few harmonic
standing waves; which ones can be played depend on the shape of the bore of the instrument.

Percussion instrumentre instruments like drums, which produce a sound when a membrane or other
surface is struck and allowed to vibrate, creating standing waves in the membrane. The timpaniis a drum in
which the tension in the membrane can be changed to produce a few different notes.

Some musical instruments atrnsposingnstruments; for these instruments, the written notes are not
the same as the notes that are actually played. For example, music for the French horn is written seven half
steps higher than it is actually played. So when a French horn player plays a written middlg, @hénote
that actually comes out of the instrument will be seven half steps lowesu€h a horn is said to be “pitched
in F”, and is called air horn. There is a lighter French horn favored by some players that is better for playing
high notes; it plays a Bfor a written C, and is called Bb horn. The horn most commonly seen in orchestras,
with its very complex-looking system of tubing, isdlauble horn The double horn contains tubing footh
an F horn and a Bhorn, and allows the player to switch between the two sides using a thumb valve. The
player will play lower notes on the F side of the horn, then use the thumb valve to switch to HigeBfor
high notes, since they're easier to play on that side. Today there’s an even more ctipfddrorn, which
includes a thirdlescant horrside for playing very high notes.

Transposition is partly for historical reasons, and partly to allow performers to play similar instruments
more easily. For example, a trumpet player can play a French horn or tuba without having to learn a different
fingering for each instrument. However, if a performer wishes to play music written for an instrument other
than the one he is playing (a horn player playing music written for trombone, for example), he may need to
mentally transpose the music while playing in order to play in the same key as the rest of the orchestra.

As mentioned earlier, music is a very large subject, and here we've only barely touched on the very basics
of music theory and musical notation. There’s much more to this subject: chords, harmony, timbre, intervals,
non-Western music, etc.—and there’s much more to musical notation than the bare outlines we've seen here.
The interested reader is referred to books on music theory for more information.
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Part IV

Electricity and Magnetism
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Chapter 16

Electricity

The phenomenon @&ectricityhas been known since ancient times. Long ago people discovered that rubbing
fossilized tree resin (callegimbel) with fur could cause it to attract bits of light material. (In fact, the Greek
word for amberyAektpov, is where we get our word “electricity”.)

Experiments by French scientist Charles du Fay in the early 18th century showed that there were two
types of electricity: one he called “vitreous”, acquired by glass when rubbed with silk; and the other he called
“resinous”, acquired by amber when rubbed with fur. He also discovered that two objects with vitreous charge
repelled each other, as did two resinous-charged objects, but that a vitreous-charged object and resinous-
charged object attracted each other.

Another of many early scientists studying electricity was the American scientist and statesman Benjamin
Franklin. Franklin held the view that electricity was a fluid, and that the two types of electricity were actually
an excess of electric fluid in one material and a deficiency of fluid in the other. But which was which? Franklin
took a 50-50 shot in the dark—and missed! He called the vitreous charge “positive”, and the resinous charge
“negative”, believing these to be an excess and deficiency of electric fluid (respectively). We now know
it's the other way around. What Franklin thought of as an electric fluid is actually a flow of particles called
electronsand itis an excess of electrons that is what we call “negative” charge; positive charge is a deficiency
of electrons. Franklin’s unfortunate choice continues to be a source of some confusion in discussing electric
current, as we'll see later.

Benjamin Franklin is also famous for his (quite dangerous) “kite experiment”, in which he flew a kite into
an electrically charged storm cloud. Electricity from the cloud conducted down the wet kite string to a key at
the other end, and Franklin was able to produce sparks by bringing his knuckle near the key. The experiment
showed that lightning is a form of electricity. (For his contributions to the theory of electricity, the unit of
charge in electrostatic units is named franklin in Benjamin Franklin’s honor.)

16.1 Electric Charge

Our modern understanding of electricity may be summarized as follows:

» There are two types of electricity, callpdsitive(+) andnegative(—).

Like-charged bodies# and+, or — and—) repel; unlike-charged bodieg-(and—) attract.

Electric charge igjuantizedthat is, the charge on a body must always be a multiple of the so-called
elementary charge. No charge can ever be smaller than

Electric charge isonservedthat is, the total charge in a closed system is always constant.
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Figure 16.1: Charles-Augustin de Coulomb.

16.2 Coulomb’s Law

Using a torsion balance, the 18th century French physicist Charles-Augustin de Coulomb (1736-1805, Figure
16.1) discovered the law that determines the amount of force between two charged bodies—a law now called
Coulomb’s law It states that if two point charges, andg, are separated by a distancethen the force
between them will be proportional to the product of the charges and inversely proportional to the square of
the distance between them:

1 q192
F = . 16.1
deg r? ( )

HereF is the force (in newtonsy, is the separation distance (meters), apdndg, are the charges measured
in units of coulombgqC). A coulomb is a very large unit of charge; charges we encounter in the laboratory
will typically be on the order of microcoulombgC) or nanocoulombs (nC).

The constant, in Eq. (16.1) is called thpermittivity of free spagé and is equal t&

g0 = 8.85418781762038985...x 10712 C2N~!m™2. (16.2)

The proportionality constarit/ (4 ¢¢) is called theCoulomb constan ). It is equal to exactly

ke = L _ 8.9875517873681764 x 10° N m? C 2. (16.3)
47‘[80
Coulomb’s law (Eqg. 16.1) implicitly makes use of a property in arithmetic that mirrors the properties of
electric charges. Multiplying two numbers of like sign gives a positive number, and multiplying two numbers
of unlike sign gives a negative number. This property mirrors the behavior of electric charges: two charges
of like sign repel, and two charges of unlike sign attract. So in Coulomb’s law (Eq. (16.1)), we can interpret
apositiveforce as repulsion, andreegativeforce as attraction.

16.3 Atomic View of Electricity

As you will have already learned, all ordinary matter consistatoms At the center of the atom is a tiny,
massivenucleus which is surrounded by shells of very lighliectrons The nucleus consists of electrically

1gq is pronounced “epsilon-nought.”
?Because of the way Sl units are defined, the congtans a transcendental number that may be computed to as many digits as
desired; its exact value i/ (2997924582 x 47 x 10~7) C2 N~ I m—2,
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neutral (unchargedjeutronsalong with positively-chargeprotonsthat carry a charge equal to the elementary
charge,e = 1.6021766208 x 10~1° C. The electrons surrounding the nucleus carnegativecharge, also
equal to the elementary charge. In other words, neutrons have charge 0, protons have ehangkelectrons
have charge-e.

In ordinary matter, it is only thelectronsthat move around and produce electric charge and electric
currents. The protons are massive (about 1800 times heavier than the electrons) and tucked away in the
center of the atom, so they barely move. When we rub a piece of amber with a piece of fur, for example,
we'’re removing a small number of the outermost electrons from atoms in the fur, and depositing them onto
the amber. This leaves the fur with a deficiency of electrons (giving it a positive charge) and the amber with
extra electrons (giving it a negative charge). Very few electrons are involved in this type of charging: if only
one fur atom in aquintillion loses an electron to the amber, it will produce an easily measurable electric
charge, enough to allow the amber to pick up bits of paper, for example.

So keep this in mind: whenever you're charging objects or creating electric currents in the laboratory, it
is always the negatively-chargetectronsthat are moving.

16.4 Materials

Different materials behave differently depending on their ability to allow electrons to flow through them. We
classify materials as follows:

» Conductorsare materials in which electrons can flow very easily. You can think of a conductor as a
lattice of positive ions, surrounded by a kind of “gas” of free electrons that belong to no particular
atom. The free electrons are free to move throughout the conductor. Familiar conductors are metals
such as copper, gold, and silver.

* Insulators(or dielectricg are materials in which each atom holds on to all of its atoms strongly, so
they arenotfree to move through the material. Examples of insulators are rubber, wood, plastics, and
ceramics.

» Semiconductorare between conductors and insulators. They are insulators that can be coaxed into
giving up a conduction electron under the right conditions, such as a sufficiently strong electric field.
Common semiconductors are the elements silicon and germanium.

» Superconductorare exotic materials that form a special class of conductor. While ordinary conductors
always offer some sort of resistance to the flow of electrons, superconductors offer no such resistance.
This means, for example, that if you form a superconductor into a ring and start electrons flowing in
it, they will continue flowing forever. Traditional superconductors are made by cooling an ordinary
conductor like mercury down to very low temperatures; below some critical temperature, the material
will suddenly transition from an ordinary conductor to a superconductor. Experiments in the 1980s
discovered a new class of superconductors cdllgh-temperature superconductdfsat are made of
exotic ceramic-like materials. These still need to be cooled to become superconducting, but not nearly
as much. For example, mercury doesn’t become superconducting untilit's cooled down to 4.1 K, which
requires liquid helium temperatures and is difficult to do. But the high-temperature superconductor
YBa,Cu;O; only needs to be cooled to 90 K, which can easily be achieved by cooling with liquid
nitrogen.

An exotic form of hydrogen calledhetallic hydrogeiis thoughtto exist at the very high pressures (more
than 4 million atmospheres) in the interior of the planets Jupiter and Saturn. Scientists are currently
attempting to create metallic hydrogen in the laboratory, so far without success. Metallic hydrogen is

3Two hydrogen atoms walk into a bar. One says, “I've lost my electron.” The other says, “Are you sure?” The first replies, “Yes, I'm
positive...”
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Figure 16.2: Example of Coulomb’s law in two dimensions. Here chaygeg,, andg; at the vertices of
an isosceles right trianglg; andg, are positive, angs is negative. The total forcE; on chargey; is the
vector sum of the forc&;, ong; due tog, and the forcd=;3 ong; due togs: F; = Fi2 + Fi3.

thought to be either a solid or a superfitjidnd theory suggests it may possibly be a room-temperature
superconductor. Its creation in the laboratory could have significant commercial applications.

16.5 Coulomb’s Law in Two or Three Dimensions

Coulomb’s law in the form shown in Eq. (16.1) works fine for a one-dimensional problem involving two
point charges: the sign of the fordeis sufficient to indicate the direction of the force. But when we work
in two or three dimensions (for example, point charges on the vertices of a triangle) we mustigsto
determine the force in each charge. In vector form, Coulomb’s law is

1 qi92 ,
Mo, 16.4
deg r? 12 ( )

Fi2 =—

whereF, is the force on charge; due to charge,, andf, is aunit vector(a vector of magnitude 1) that
points in the direction from chargg;, to chargeg,. Note the minus sign: if both charges are positive, for
example, then the force poimtppositef ;,—that is, the force og; will be away fromgs,.

If you know the anglé of the unit vectorf ;, (measured counterclockwise from thec direction), then
the unit vector in rectangular (cartesian) form is

f1, = cosfi + sindj, (16.5)

wherei andj are unit vectors in the andy directions, respectively.

If there are multiple charges present, thenttital force on charge; is the vector sum of all the forces
on chargeg;. For example, consider Fig. 16.2, which shows chatges;,, andg; at the vertices of an
isosceles right triangle. The total foréq on chargey; is the vector sum of the fordeé;, on¢g; due tog,
and the forcd=13 ong; due togs: F1 = Fi2 + Fi3.

Appendix N gives a brief review of vector arithmetic.

4See chapter 61.
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Chapter 17

The Electric Field

Except for fairly simple problems involving a few charges, it's usually not particularly convenient to use
Coulomb’s law (Eqg. (16.1)) directly. One would have to compute all the pairs of forces between each of
the charges making up each of the bodies, which could become a fairly complex calculation. Instead, we
introduce the idea of aelectric fieldas a kind of intermediate quantity. We think of one body as producing
an electric field at each point in space; we can then look at how a second body responds to that electric field.
One reason this is convenient is that we often know what the electric field looks like without necessarily
knowing anything about the distribution of charges that produced the field.

Now let’s define the electric field. The electric field ivector field—it assigns a vector to every point
in space. So let's imagine you're standing in a room and wish to find the electric field vector at some point
within the room. You take a smafiositivepoint chargego (say a proton) and place it at that point, and
measure the electric force on it. Then the electric field the forceF divided by the test chargg:

F
E=—. (17.1)
q0
The electric field vector has units of newtons per coulomb (N/C).
A typical situation is that we will already know the electric field by some other calculation; then Eq.

(17.1) indicates that the force on a chagge the electric fielde is F = gE.

17.1 Electric Field due to a Point Charge

The electric field due to a point chargecan be found by using Coulomb’s law. Let's put a small pos-
itive test chargeyo at some distance from the chargey; then by Coulomb’s law, the force agy is
F = (1/4meo)(qqo0/r?). Dividing by ¢ gives us the electric field due to charge

1 ¢
= . 17.2
dreg r? ( )

17.2 Electric Field Lines

To help visualize the shape of the electric field, in can be helpful to draw diagraeieatfic field lines
These lines have the following properties:

» The electric field lines are directed lines (with arrows) that pfsorh positive () chargeto negative
(-) charge.
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Figure 17.1: Electric field lines for an electric dipole. The dipole moment vgrfmwints to the left in this
case. (©GNU-FDL, Wikimedia Commons [11].)

At any point along a field line, the electric field vectis tangent to the field line.

We cannot possibly drawll field lines (because they fill all space), so we draw only a few. The
number of field lines you draw is somewhat arbitrary — we just draw enough to visualize the field
without making the diagram too crowded.

» The number of field lines terminating on a charge should be proportional to the charge.

» The closer together the field lines are, the stronger the electric field.

17.3 The Electric Dipole

As an example, consider Fig. 17.1, which shows two charges of equal magnitude and opposite sign, separated
by a fixed distance; such an arrangement is calleelectric dipole

An electric dipole may be characterized by a quantity calledlthele momentThe dipole momerp of
an electric dipole is defined as

p=gqd, (17.3)

whereq is the magnitude of either of the charges in the dipole, éigla vector whose length is equal to

the distance between the charges, and which points from the negative charge to the positive charge (opposite
the direction of the electric field line between the charges). The dipole moment essentially measures how
electrically “polarized” a pair of charges is, with larger values when more charge is separated by a greater
distance. Electric dipole moment is measured in units of coulomb-meters (C m).

17.4 Electric Flux

Electric fluxmay be thought of as being proportional to the total number of electric field lines passing through
a given area. Given an arebembedded in an electric fielgl, the electric fluxdg passing through plang
of aread is equal to the product @& and the component of perpendicular to the field:

&g = E-AA = EAcosh. (17.4)
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Figure 17.2: Carl Friedrich Gauss. (Painting by Christian Albrecht Jensen.)

Herenf is a unit vector perpendicular to surfaeandA is the total area of . If S is a curved surface instead
of a plane, then the electric flux is more generally

OF :/E-ﬁdA (17.5)
S

whered A is an infinitesimally small piece of area §f and the integral is over the entire areaSofin other
words, we imagine dividing surfacg into many tiny squares, each of which has afea For each square,
we draw a normal unit vectat at that square, and we compue f, which is the component of the electric
field E that is perpendicular to that square. We then multiply that result by the area of the gguerget
the electric flux through ared4. We add each of those fluxes together over the entire Ai&assurfaces.

17.5 Gauss’s Law

One important application of electric flux is its appearand@amniss’s lawnamed for German mathematician
and physicist Carl Friedrich Gauss (1777-1855) (Figure 17.2). Gauss's law is one of the four fundamental
equations of classical electromagnetism knowiMagwell's equations

Gauss's law states that if we draw an imaginelpsedsurface in space, then the total electric flux through
that closed surfac# is proportional to the total amount of charge enclosed inside that surface:

Pp = 56 E-AdA = 2, (17.6)
S &o
Here the circle on the integration sign indicates that the integral is ovetdkedsurfaces.

While Gauss’s law is generally true, one of its important practical uses is that it allows the quick determi-
nation of the electric field of a symmetrical distribution of charges. For example, it allows the electric field
of a spherical or cylindrical charge to be determined very easily.

As a simple example, suppose we wish to find the electric fieltt a distance from a point chargey.

We would imagine drawing an imaginary spherical surface of radaentered omg, so that the sphere passes
through the point at which we wish to calculdie Then on the left-hand side of Eq. (17.6), the electric flux
is the electric fieldE times the area of the spher®@r = ¢ EdA = E $dA = E(4xr?). Since the total
charge inside the spheregsthe right-hand side becomegs,. Gauss'’s law then givesrr2E = ¢/eo, Or

E = q/(4mr2sp), in agreement with Coulomb’s law.

Both Coulomb’s law and Gauss’s law allow us to determine the electric field due to an arbitrary distri-
bution of charge. The difference between them is thatsfonmetricalcharge distributions, Gauss'’s law
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provides a shortcut that allows us to compute the electric field much more easily than using Coulomb’s law.
We can always use Coulomb’s law—Gauss’s law is just much less work when we have a symmetrical charge
distribution. For irregular charge distributions, though, we may have no choice but to “do it the hard way”
and resort to Coulomb’s law.

17.6 Electric Fields of Conductors

If an electrical conductor holds a net charge, then it has a number of important properties. If the conductor is
in electrostatic equilibrium (i.e. all charges have stopped moving), then:

» The electric field inside the conductor is zefde conductor has free electrons throughout its interior.
If there were an electric field inside the conductor, then there would be a force on those free elec-
trons, causing them to accelerate, in violation of the assumption that the conductor is in equilibrium.
ThereforeE = 0 inside a conductor.

» Any excess charge in the conductor must lie on its surfdsgng Gauss's law, draw a Gaussian surface
just below the surface of the conductor. Since the electric field inside the conductor is zero, the electric
flux through this surface is zero. Then by Gauss’s law, the charge inside the surface is zero. Therefore,
any excess charge must lie on the surface. (Another way to think of this is that since the charges repel,
they will want to get as far away from each other as possible, so they will end up on the surface.)

Electric field lines are perpendicular to the surface of the condutttie electric field lines intersected

the surface of the conductor at some angle, then there would be a tangential component of the electric
field present, which would cause the electrons to accelerate parallel to the surface. Therefore electric
field lines must meet the surface of the conductor at right angles.

17.7 Dielectric Breakdown

Itis possible for materials that are normally insulators (dielectrics) to become electrically conducting, if they
are in the presence of a sufficiently large electric field. For example, air is normally in insulator, but the
presence of an electric field of at ledsk 10° N/C creates channels of ionized gas through which electrons
can flow; the resultis the familiapark This phenomenon is calletielectric breakdown

17.8 Lightning

Another example of dielectric breakdownlightning. During a thunderstorm, falling water drops and snow
pellets cause the clouds to acquire a negative charge, while the ground becomes positively charged; this
creates an electric field pointing upward. Electrons from the thundercloud carve a channel of ionized gas
that makes its way to the ground in a series of steps; this channel is callstepied leaderAt the same

time, a number of shorter ionized leader channels reach from the ground to a short distance upward. At some
point the downward-moving stepped leader connects with one of the upward leaders, and forms a complete
conducting path of ionized gas from the cloud to the ground. This causes a powerful ionizing wavefront,
called thereturn stroke to move very quickly from the ground back up to the cloud, producing the flash we
see. The return stroke heats the surrounding air to a very high temperature, causing it to expand at supersonic
speed. This creates a shock wave that produces the sound we hear as thunder. Typically several such strokes
carry current between the ground and the earth during a single flash of lightning.
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Chapter 18

Electric Potential

18.1 Potential Energy

There is a potential energy associated with the electric force. Suppose, for example, that you have a positive
and negative charge right next to each other. Now separate the two charges by some distance; since the two
charges are attracted, they will “want” to come back together. You had to do work against the electric force
to separate the two charges, and now the system has a potential energy that will be released if you allow the
charges to come back together. The foftand potential energyy are related by

dUN AU
dx = Ax’

The same thing happens with the gravitational force. If two masses are separated, the attractive gravitational
force will cause the two masses to want to come together again, so the system of separated masses contains
potential energy. This potential energy can be released by allowing the masses to come back together. In
the case of gravity, the potential energy of two point massesandm, separated by distangeis U =
—Gmymy/r (Where we choos& = 0 atr = oo, soU is always negative). Similarly, with the electric force,

the potential energy of two poishargesy; andg, separated by distanees

F= (18.1)

1
= N2 (18.2)
drreg r

where againU = 0 atr = oo, andU is always negative for attracting charges and always positive for
repelling charges.

Another common situation is the potential energy in a uniform field. For gravity, the potential energy of
a massn in a uniform gravitational fielgg is U = mgh, whereh is the height above some arbitrarily-chosen
level for whichU is taken to be zero. Similarly, the potential energy of a chargea uniform electric field
Eis

U = qEd, (18.3)

whered is the distance from some level at whithis chosen to be zero.

18.2 Potential

Recall how the electric fiel&t was defined: by dividing the force on a small positive test charge by the
magnitude of the test charge, we get the electric field, which is a property of space. We can do something
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similar with potential energy, and find a similar quantity that is a property of space only. This quantity is
called thepotential
Let’s first look at how this would be done with gravity. As we've seen, the gravitational potential energy

of two point masses i&¥ = —Gmm,/r. By dividing by one of the masses, we can get ginavitational
potentialg due to mass: at distance: from the massg = —Gm/r. The gravitational potentig has units
of J/kg.

We can do something similar with the electric force. The electric potential energy between two point
charges idJ = ¢q1q2/(4meor); by dividing this by one of the charges, we get an expression foeldwtric
potentialV due to charge at distance from the charge:

y=_1 4 (18.4)

dregr’

The electric potential is measured in units/ofts (V), named for the Italian physicist Alessandro Volta. One
volt is equal to one joule per coulomb (1% 1 J/C). Electric potential is sometimes catlitage

As with potential energy, it is really onlgifferencesn potential that are physically meaningful. Equiva-
lently, we are free to choose what point in space (or a circuit) is chosen to have a potential of zero volts, and
all other potentials are measured with respect to that. In an electric circuit, there is usually a point called that
groundthat is connected to the Earth and/or to the negative terminal of a power source, and the ground is
taken to be 0 V by convention.

Another common situation is a uniform field. In a uniform gravitational figldhe potential energy is
U = mgh; dividing by the massn we find the gravitational potential € = gh. Similarly, in a uniform
electric fieldE, the potential energy i§ = gEd; dividing by the chargeg we find the electric potential is

V = Ed. (18.5)

Solving this forE, we can see that the electric field can be expressed in units of V/m as well as N/C. You
can check that these are equivalent by breaking everything down into base units (kg, m, s, A) with the help of
Table 2-2.

Because of the similarity between electric potential and gravitational potential, it can sometimes be help-
ful to think of potential as being analogous to height. Positive charge will tend to “fall” from high potential
to low potential.

Just as force and potential energy are related by Eg. (18.1), field strength and potential are similarly

related. The electric field is related to the electric potentilll by
A
E= ——V. (18.6)
AXx
(The corresponding relation for gravitygs= —A§/Ax.)
18.3 Equipotential Surfaces
Imagine drawing a surface in space such that every point on the surface is at the same potential. Such a
surface is called aaquipotential surfaceAn important property of equipotential surfaces is that they always
intersect electric field lines at right angles. (If this were not so, then there would be a compo#geint of
the plane of the equipotential surface and thus a component of the net force in the plane of the surface, in
violation of the assumption that the surface is one of constant potential.)

18.4 Comparison between Gravity and Electricity

The following table summarizes the formulee for field strength, force, potential, and potential energy, both for
a uniform (constant) field and for a field due to a point particle.
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Table 18-1. Comparison of quantities in gravity and electricity.

Quantity | Gravity Electricity
Uniform field
Field strength g = const. E = const.
Force F =mg F =qF
Potential g =gd V=FEd

Potential energyy U = m§ = mgd U=qV =qEd
Point particles

Field strength g=-Gm/r? E = q/(4meor?)
Force F = —-Gmmy/r? F = qi1q2/(4msor?)
Potential g =—-Gm/r V =gq/(mreor)

Potential energyy U = —Gmymy/r U = q1q2/(4meor)

18.5 The Electron Volt

If a particle with an electric charge(such as an electron or proton) is accelerated through a potential differ-
ence of 1 volt, it gains a kinetic energy oklectron volt(eV). Note that the electron volt is a unit efiergy
not voltage. One electron volt is equallt®021766208 x 1019 joules.

Notice that it doesn’t matter how far the charged patrticle travels, or how much time it takes to accelerate:
it only matters that the particle is accelerated through a potential difference of 1 volt. More generally, if a
chargeNe is accelerated through a potential differericethe particle will gain an energy df eV electron
volts.

The electron volt is a common unit of energy in atomic and particle physics. Common multiples are the
kilo-electron volt (keV), mega-electron volt (MeV), and giga-electron volt (GeV).
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Chapter 19

The Battery

There are many ways of creating an electrical potential; one of the simplest attagy in which an
electrical potential is created by a chemical reaction. A battery consists of two strips of dissimilar metal
(calledelectrode} placed in solution called aglectrolyte The electrolyte will preferentially dissolve one of
the electrodes, leaving an electric charge on one of the electrodes and the opposite charge on the other. As
an example, consider the common zinc-carbon battery. Two electrodes—one of zinc and one of carbon—are
placed in an electrolyte of sulfuric acid. The acid dissolves a little of the zinc electrode, placifigars in
solution and leaving extra electrons behind on the zinc electrode, so that it becomes negatively charged. If the
battery is not connected to anything, then the system reaches an equilibrium condition: as the zinc electrode
becomes negatively charged, it will tend to attract th&Zions back to it are restore the zinc again. If the
battery is connected to something, the zinc ions will continue to be produced, and will start to pull electrons
from the carbon electrode, which will become positively charged. As the battery continues to be used, the
electrodes will become more and more dissolved, until one of the electrodes is used up and the battery dies.
The amount of potential difference between the two electrodegdthrénalsof the battery) depends on
the chemistry, and in particular on the two metals present. In the case of a zinc-carbon battery, the potential
between the terminals is 1.5 V. Other types of batteries will have other potential differences, as shown in
Table 19-1.

Table 19-1. Common battery types.

Battery Type + Terminal — Terminal  Potential
Zn-C C Zn 15V
Alkaline MnO, Zn 15V
Silver oxide AgO Zn 155V
Lead acid Pbo® Pb 21V
Ni-Cd NiOOH Cd 12V
Ni-Zn NiOOH Zn 165V
NiMH NiOOH metal alloy 12V

Lithiumion  Licompound Licompound 3.6V

When batteries are connectedsieries(end to end), their voltages add. This is what you're doing when
you put several batteries into a device like a calculator or flashlight+-ttegminal of one battery is connected
to the— terminal of the next. For example, you may put four size AAA alkaline batteries into a calculator,
which provides a total potential dfx 1.5V = 6 V. A 9V battery actually consists of six individual batteries
connected in series in a single casing. A car battery consists of six lead-acid batteries connected in series, for
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a total potential of 12 V. Sometimes a single electrochemical system is catlet] with the word “battery”
being reserved for several cells connected in series.

It's also possible to connect several batteriepanallel, so that all+ terminals are connected together
and all— terminals are connected together. This arrangement will have the same potential as a single battery,
but will be able to delivery more electric current. This is not usually done, since one could simply replace the
multiple batteries with a single larger-sized battery instead.

In a real battery, the potential delivered by the battery is not constant, but varies with the amount of current
delivered by the battery. This is due to the battemrternal resistanceand is discussed further in Section
21.5.

A good way to think of a battery is as a kind of electron “pump”: it pumps current around and electrical
circuit, much like a water pump would pump water.
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Chapter 20

Electric Current

If we place a potential differencié across opposite ends of a conductor (a copper wire, for example), then
there will be an electric fielde = —AV/Ax created inside the conductor. The free electrons will respond
to this electric field, moving opposite the direction of the electric field. This motion of electrons is called an
electric current and is analogous to the flow of water in a stream.

Current is measured as the amount of current passing a fixed point in the conductor per unit time. A
current of 1 coulomb of charge per second is defined to be 1 ampere (A), after the French physiest Andr”
Marie Ampere: 1 A= 1C/s.

By convention, the direction of electric currentis taken toppositehe direction of the flow of electrons.
Another way to think of this is to imagine electric current to be due to the flow of positive charges through
the conductor (even though it’s actually the negative electrons that are moving). (This somewhat confusing
situation is related to Benjamin Franklin’s unfortunate choice of which type of charge to call “positive” and
which to call “negative”.) Conventional current moves in the direction from high potential to low potential.

If a conductor is connected to the terminals of a battery, then conventional current flows fremetminal,
through the conductor, back to theterminal.

Electric current does not flow smoothly through through a conductor. Electrons inside the conductor
are moving around at random, bumping into other electrons in their vicinity. Superimposed on this random
motion is a gradual drift of the electrons opposite the direction of the electric field. This speed of the electrons
through the conductor is called tkeift velocity. If the density of free electrons (electrons per unit volume)
is n, then the total charge per unit volumeiis (wheree is the elementary charge). In timethe volume of
electrons that move through the wireds ;¢, whereA is the cross-sectional area angis the drift velocity.

This means the total charge moving through the wire in tiris(ne)(Av 4¢), and so the current is found by
dividing this byz:

I =neAvy. (20.1)

Here’s an important point to keep in mind: one speaks of the potential difference (or val&égeen two
pointsin an electrical circuit; but one speaks of the electric curagmne poinin the circuit. For example,
you refer to the voltagacrossa resistor, but the curretttrougha resistor.

106



Chapter 21

Resistance

Suppose we apply a potential differeniceacross the ends of a conductor. If the conductor were to allow
the free, unimpeded flow of electrons, then the resulting current in the conductor would be unlimited. But
in a real conductor, there is always some electnieaistanceto the flow of electric current due to the free
electrons constantly bumping into their neighbors. This electrical resistance is measured in ahitssof
(2), after German physicist Georg Simon Ohm. One ohm is defined to be that resistance that produces a
current of 1 ampere in the presence of a potential difference of 1 voit=11 V/A.

Resistance is often introduced deliberately into electrical devices by electronic componentsesiled
tors. Aresistor is typically a small cylindrical device with metal wires protruding from each end. The cylinder
is decorated with color bands, which aredor code(Figure 21.1) that indicates the value of the resistance.
In a four-band color code, the first two bands are the first two significant digits of the resistance, and the
third band is the power of 10 by which the first two bands are to be multiplied. A fourth band indicates the
tolerance—how far the resistor is allowed to be from its marked value.

21.1 Resistivity

Even a plain conductor—like a copper wire—contain some small amount of resistance. The resistance of a
conductor is related to its dimensions and to a quantity callegsistivity If the resistance irR, and the
resistivity isp, then the two are related by

L
R=p—, (21.1)
whereR is the resistanc&d), p is the resistivity £2 m), L is the length of the conductor (in the direction of
the flow of current), andi is the cross-sectional area of the conductor (perpendicular to the direction of the
flow of current). It's important to recognize that the resistivitis an intrinsic property of the material: for
example, you can look up the resistivity of copper in a physics handbook. The resigtathceigh, depends
on the geometry—the length and diameter of the conductor, as well as its resistivity.

It turns out that the resistivity depends on temperature. You can compute the temperature correction using

the equation
p=po [l +a(T—To). (21.2)

Herepg is the resistivity at temperatuf®, p is the resistivity at temperatuf®, ande is called theempera-
ture coefficient of resistivityY¥ou can findog, 7o anda for a particular conductor in a physics handbook (e.qg.
Table 21-1); then for any given temperatdigyou can find the resistivity at that temperature.

107



Prince George’s Community College Introductory Physics I D.G. Simpson

Standard EIA Color Code Table 4 Band: +2%, +5%, and +10%

1st 2nd 3rd 4th
Band  Band Band Band

2nd Band 4th Band
(2nd figure) (tolerance)

Sliver 107 +10%
Chart Paavickd By

Figure 21.1: The resistor color code (4 bands).

Table 21-1. Resistivities and Temperature Coefficient§gat 20°C). [10]

Material Resistivityo (2 m) Temperature coef: (°C)~!

Conductors

Silver 1.59 x 1078 0.0061

Copper 1.68 x 1078 0.0068

Gold 2.44 x 1078 0.0034

Aluminum 2.65x 1078 0.00429

Tungsten 56x1078 0.0045

Iron 9.71 x 1078 0.00651

Platinum 10.6 x 1078 0.003927

Mercury 98 x 1078 0.0009

Nichrome (Ni, Fe, Cr alloy) 100 x 1078 0.0004
Semiconductofs

Carbon (graphite) (3-60910~> —0.0005

Germanium (1-500%1073 —0.05

Silicon 0.1-60 —0.07
Insulators

Glass 10° — 1012

Hard rubber 1013 —10%°

T Values depend strongly on the presence of even slight amounts of impurities.
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Multiplying both sides of Eq. (21.2) bi,/ A, we see the resistance changes with temperature by a similar
formula:

R = Ro [l + (T — To)). (21.3)

Here Ry is the resistance at temperatUig andR is the resistance at temperatdie
For copperwire, a convenient empirical equation is [7]

23454+ T
02345+ Ty

(copper only (21.4)

whereT andT, are in degrees Celsius.
Eq. (21.3) suggests that it would be possible to use a resistor as a thermometer: by accurately measuring
the resistance of a resistor, one can infer the temperature. Solving Eq. (21.3) for the temfératifend

T:To+l(£—1). (21.5)
o Ro
In principle, this equation could be used to measure the temperature of a resistor by measuring its resistance.
A thermistoris a type of resistor specifically designed for this type of temperature measurement. How-
ever, Eg. (21.5) is not really adequate for accurate temperature measurement with a thermistor. Instead, one
uses a more accurate model called $teinhart-Hart equation
1

T = 21.6
a+bInR+c(nR)3’ (21.6)

wherea, b, andc are called th&teinhart-Hart parametersnd are provided by the thermistor manufacturer.

21.2 Resistors in Series and Parallel

Several resistors connected end-to-andéried have an equivalent resistance equal to the sum of the indi-
vidual resistances:

Ry=> R (21.7)
i
— Ry +Ry+ Rs+--- (21.8)

If they are connecteth parallel, the the equivalent resistance is the reciprocal of the sum of the reciprocals
of the individual resistances:

1 1
I o (21.9)
R, - R;
1 1 1
= — 4+ — 4+ — 21.10

A common error in computing parallel resistances is to compute sum of the reciprocals of the individual
resistances, then forget to take the reciprocal of the result at the end. Be careful not to do this!
Note the following points. For resistors conneciederies

» The equivalent resistance will be bigger than the largest resistance in the series combination.

* If one resistor in the series combination is much larger than the others, the equivalent resistance will be
approximately equal to the largest resistance.
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* N equal resistor® connected in series have an equivalent resistand&of
For resistors connected parallel:
» The equivalent resistance will be smaller than the smallest resistance in the parallel combination.

« If one resistor in the parallel combination is much smaller than the others, the equivalent resistance will
be approximately equal to the smallest resistance.

* N equal resistorg connected in parallel have an equivalent resistand@/a¥ .

 For the special case of justo resistors in parallel, Eq. (21.9) becomes the product of the resistances

divided by their sum:
RiR>
R, = ——-—. 21.11
P R+ R, ( )
It may sometimes be handy to use the notation
Xy
x|ly = 21.12
=555 (21.12)
so that the equivalent resistance of two resistors in paralRl{$R> = Ri R2/(R1 + R»).
21.3 Conductance
Related to the resistandeand resistivityp are the conductand@ and conductivity:
G = L _ ! 21.13
-5 o= (21.13)

Conductance is measured in units@EmengS), named for German inventor Ernst Werner von Siemens. The
siemens is also sometimes called thieo (), which is “ohm” spelled backwards. Conductivity is measured
in units of S/m.

The relation between conductance and conductivity is found by taking the reciprocal of Eq. (21.1):

G=o % (21.14)
21.4 Wire

In computing the resistivity or conductivity of wire in Egs. (21.1) and (21.14), you will need to know the
cross-sectional ared of the wire. In the United States, wire is sold in standard diameters that are numbered
according to theAmerican Wire GaugéAWG), as shown in Table 21-2. Wire used in laboratory work is
typically 20-gauge or 22-gauge copper wire.

By definition, AWG 0000 wire has a diameter of 0.46 inches, and AWG 36 wire has a diameter of 0.005
inches. This implies that AW@ wire has a diametef of

d = 0.005 x 9236="/3% inches (21.15)

wheren = —3 for AWG 0000,n = —2 for AWG 000, and: = —1 for AWG 00. This formula was used to
create Table 21-2. (Note thatarger AWG number corresponds tosmallerdiameter wire.)
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21.5 Battery Internal Resistance

A real battery contains ainternal resistanceo the flow of electricity that causes it to have a lower voltage
when delivering current to a circuit than when it isn't. The potential difference across a battery’s terminals
when it'snotconnected to a circuit and doing work is calledatsctromotive forcgor “emf”), &. (Note that
despite the name, thisita force, but a voltage, measured in volts.)

The actual potential difference across a battery’s terminals whedding work on a circuit is called the
terminal voltage The terminal voltagd” may be modeled as

V=6-1Ir (21.16)

wherel is the current being delivered by the battery, arid the internal resistance of the battery. The more
current is drawn from the battery, the smaller its terminal voltage.
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Table 21-2. American Wire Gauge (AWG).

Gauge

Diameter (in)

Area ()

0000
000
00

©Ooo~NOoOOOUTh,~,WNE,O

0.46000
0.40964
0.36480
0.32486
0.28930
0.25763
0.22942
0.20431
0.18194
0.16202
0.14429
0.12849
0.11442
0.10190
0.09074
0.08081
0.07196
0.06408
0.05707
0.05082
0.04526
0.04030
0.03589
0.03196
0.02846
0.02535
0.02257
0.02010
0.01790
0.01594
0.01420
0.01264
0.01126
0.01003
0.00893
0.00795
0.00708
0.00630
0.00561
0.00500
0.00445
0.00397
0.00353
0.00314

1.07219 x 1074
8.50288 x 10~
6.74309 x 107>
5.34751 x 10~
4.24077 x 1073
3.36308 x 107>
2.66705 x 10~
2.11506 x 10~
1.67732 x 1073
1.33018 x 1073
1.05488 x 107>
8.36556 x 107°
6.63419 x 10~°
5.26115%x 10~°
4.17229 x 1076
3.30877 x 107°
2.62398 x 107°
2.08091 x 1076
1.65023 x 107°
1.30870 x 107
1.03784 x 107
8.23047 x 1077
6.52706 x 1077
5.17619 x 1077
4.10491 x 1077
3.25534 x 1077
2.58160 x 10~7
2.04730 x 1077
1.62359 x 1077
1.28756 x 1077
1.02108 x 107
8.09755 x 1078
6.42165 x 1078
5.09260 x 1078
4.03862 x 1078
3.20277 x 1078
2.53991 x 1078
2.01424 x 1078
1.59737 x 1078
1.26677 x 1078
1.00459 x 108
7.96679 x 10~
6.31795 x 10~°
5.01036 x 10~°
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Chapter 22

Ohm’s Law

For many materials and devices (conductors and resisitors, for example), it is found that the greater the
potential difference placed across the device, the greater the resulting current. This i©batlsdaw and
may be stated as

V = IR, (22.1)

whereV is the potential difference (in volts),is the current (in amperes), ailis the resistance (in ohms).
Ohm'’s law, like Hooke’s law, is an example of what is calledesmpirical law something that is found to
be at least approximately correct in many situations, but is not necessarily always true. This is an important
point: Ohm’s law is not always true! Itis just something that is found to work for many things like conductors
and resistors. Ohm’s law doest apply in some cases: lamp filaments, diodes, and solar cells, for example.
Such devices are said to hen-ohmic

Ohm'’s law may be considered the most important principle in the analysis of electric circuits. You'll use
it over and over again as we learn to analyze electric circuits.

22.1 Electric Power
The electric powet® consumed by a resistor is given by
P=1V, (22.2)

whereP is in watts. What this specifically refers to is the rate at which electrical energy is converted to heat.
Commercially made resistors come in several standard power ratingd/4é\g.%, W, % W, 1 W). When
building a circuit, you have to make sure that the product of the current through and voltage across a resistor
does not exceed its power rating.

Using Ohm’s law (Eg. (22.1)) we can write the electric power (Eq. (22.2)) in several equivalent forms:

VZ

P=1V =1I°R 7 (22.3)

You can use any of these to compute the power consumed by a resistor; which one you use depends on which
guantities you know?, V, or R.
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Chapter 23

DC Electric Circuits

Electronic components like batteries and resistors may be combined into closed loopicaliésl An

almost endless variety of such circuits may be used to create useful device: clocks, calculators, radios, etc.
In designing an electronic circuit, an engineer or electronics hobbyist will need to perform some simple
calculations to figure out how much current is going through each part of the circuit, and how much potential
difference there is across each component. We'll look at some of the basic methods of analysis here, using
simple circuits consisting only of batteries and resistors.

23.1 Schematic Diagrams

To show how the components of an electronic circuit are connected together, we sichenaatic diagram

Such a diagram uses symbols to represent the different components (as shown in Fig. 23.1), along with lines

to represent the connecting wires. When two lines in a diagram cross, a dot is used to indicate that the wires

are electrically connected at that point; the absence of a dot means that there is no electrical connection.
Note that in the battery symbol, the end with fbagline is thepositive+ terminal. Groundrefers to

a connection to a large conductor—traditionally to a copper pipe driven into the earth. You will often see

several parts of a circuit connected to a common ground, with-ttexminal of the battery or power supply

serving as the ground.

23.2 Kirchhoff Plots

A good way to visualize what's happening in an electrical circuitis a diagram that has been ¢éliethaff

plot (Ref. [17]). This is a three-dimensional plot in which one draws the circuit irctlpeplane; the potential

(voltage) at any point in the circuit is then plotted on thaxis. (See Fig. 23.2.) The plot helps you to think

of voltage as analogous to elevation: batteries cause an increase in elevation, and resistors cause a drop in
elevation. And just as water always flows downhill, you can use the diagram to help visualize electric current
flowing from high potential to low potential.

23.3 A Simple Circuit

As an example, let’s look at the simple circuit shown in Fig. 23.3, consisting of a battery and three resistors.
Conventional current flows around the circuit clockwise: from-th&erminal of the battery, through the

resistors, then back into the terminal of the battery. (Remember that the electrons actually travel in the

opposite direction, counterclockwise.) The current flowing from the battery through reRistoe labell;;
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Figure 23.1: Some common schematic symbols.
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Figure 23.2: Kirchhoff plots of two simple electric circuitseft: A simple circuit with one loop. The resistor
r is meant to model the battery internal resistar&és the battery electromotive force; amd= & — Ir is
the terminal voltageRight: A more complex circuit. Notice how each battery causes a rise in potential, and

each resistor causes a drop in potential. (From Ref. [17].)

V=6V

Figure 23.3: A simple circuit.
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this currents splits at the fork with the two parallel resistors into two currénts, /3. After passing through
these two resistors, the currents recombine, so cuirenins through the bottom leg of the circuit before
returning to the battery at the terminal.

Our jobis to find the currents through, and voltages across, each of the three resistors. To begin, we’'ll
reduce the three resistors to a single equivalent resistor. The two resistors in parallel are equivalent to a single
resistance of

1
Roy = ——— (23.1)
B TR
1
= (23.2)
sa t3a
= 1.875Q (23.3)

Now we've reduced the circuit to two resisto®; in series withR,3. The equivalent resistance of these
two in series is

Ri23 = R1 + Ras (23.4)
—10Q +1.875Q (23.5)
—11.875Q (23.6)

So now we've reduced all three original resistors to a single equivalent resistaf&8 f2 connected
to the 6 V battery. We can find the curreiitcoming out of the battery using Ohm’s law:

v

I = 23.7
"7 Rixs ( )
6V
_ 23,
11.875 Q (238)
= 0.50526 A (23.9)

This is also the current through resis®r. Since we knowR; and the current througR,, we can use Ohm’s
law to find the potential difference acrogs:

Vi=5LR (23.10)
— (0.50526 A)(10 Q) (23.11)
— 5.0526 V. (23.12)

Now we need to find the currents through and voltages across redist@sd R;. There are a few ways
we could proceed:

1. We can consider the two resistaRs and R3 as equivalent to a single resistBr; = 1.875 2, as
we've already worked out. The current through this equivalent resistar is 0.50526 A. Knowing
the resistance and current, we can find the voltage across the two parallel resistors. Knowing the voltage
across each resistor, you can now work out the individual currents in each resistor using Ohm'’s law.

2. Alternatively, we can note that the sum of the voltage drops for all the resistors must equal the voltage
rise due to the battery. Therefore, the voltage drop across the two parallel resistors riust-be
5.0526 V = 0.9474 V. Knowing this voltage and the resistancks and R3, we can use Ohm'’s law to
solve for the currents.
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3. A third approach would be to use proportions to figure out how the current splits going through the
two parallel resistors. Since the resistors Re= 5Q andR; = 32, we know that¥s of current/,
goes through thé Q resistor, and¥s goes through tha < resistor. (Proportionally more current goes
through the smaller resistor.) In general, fao resistorsk ; and R, in parallel, the currents will be

R
LH=—"-—1 23.13
""" R+ R, ( )

Ry
Lh=——1, 23.14
2T R+ R, ( )

where/ is the current going in to the parallel combination, before it splits int@oing throughR

and/, going throughR,. Knowing the currents through each resistor and the two resistances, we can
use Ohm'’s law to solve for the voltages across each resistor. This proportion method is really only
useful for two resistors in parallel; for three or more in parallel, the formulee become too complicated
to be practical.

Any of these three approaches will give the same results. The currents through and voltages across each
of the resistors of Fig. 23.3 is shown in Table 23-1.

Table 23-1. Results of circuit analysis of the simple circuit of Fig. 23.3.

Resistor R(2) I (A) V (V)

Ry 10 0.5053 5.0526
R, 5 0.1895 0.9474
R3 3 0.3158 0.9474

Note the following from this table:

* V1 4+ Vo = Vi 4+ V3 = 6 V. Looping once around the circuit—taking either the path throRghor the
one throughR ;—gives a total potential drop equal to the battery voltage.

* V> = V3. When resistors are connected in parallel, they all have the same potential drop across them.

» I, + I3 = I;. When the the current splits at a junction, the sum of the currents leaving the junction
equals the current going into the junction.

» I, = 3/gly; I = 5/gl1. When current splits at a junction, it divides in proportion to the resistance in
each branch.

23.4 Circuit Analysis Principles

We can summarize here a few basic principles to keep in mind:

» When making a complete loop around the circuit, the sum of the voltage rises (due to batteries) equals
the sum of the voltage drops (due to resistors). This will be true of any loop you take around the circuit.

» When the current splits at a junction, the sum of the currents leaving the junction equals the sum of the
currents entering the junction.

» Current will split at a junction in proportion to the resistance in each branch, with more current going
through the branch of least resistance.
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* For resistors in series, all resistors have the same current, but there will generally be a different voltage
across each resistor. A series combination is callealtage divider

* For resistors in parallel, all resistors have the same voltage, but there will generally be a different
current through each resistor. A parallel combination is calledreent dividet
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Chapter 24

Kirchhoff's Rules

Examine the circuit shown in Fig. 24.1. You'll note that the techniques we used in the previous chapter are
not suited to analyze this circuit, due to the presence of the 3V battery in the middle of the circuit.
Instead, we must may use of another technique c#llsthhoff’s rules There are two of these rules:

1. Kirchhoff’s voltage rulestates that the sum of the voltage rises and drops around any complete loop in
the circuit equals zero.

2. Kirchhoff’s current rulestates that at each junction in the circuit, the sum of the currents entering the
junction equals the sum of the currents leaving the junction.

24.1 Example Circuit

We'll use the circuit shown in Fig. 24.1 as an example to illustrate how to apply Kirchhoff’s rules.

1. Begin by identifying loops in the circuit. The circuit in Fig. 24.1 consists of three loops: the upper
loop, the lower loop, and the outer loop. We'll need to choose any two of these three loops to work
with—Iet’s choose the upper and lower loops.

2. Next, we choose a direction in which to “evaluate” each loop. This can be either clockwise or coun-
terclockwise; the choice is completely arbitrary, and will not affect the final results. Let's choose to
evaluate both the upper and lower loop in the clockwise direction, as indicated by the arrows in the
center of each loop.

3. Now identify the currents in the circuit. By inspection of the circuit, we can see that there are three
distinct currents: one in the upper branch, one in the middle branch, and one in the lower branch.
We'll label these three currents, 15, and/; (respectively), and choose a direction for each current, as
shown in Fig. 24.1. It doesn’t matter whether we choose the directions for the currents correctly—we
just guess at each direction. If we guess the wrong direction for a current, then that current will come
out negative when we finish the analysis, so the real current flows opposite the direction we guessed.

4. The next step is to apply Kirchhoff’s voltage rule to the upper and lower loops of the circuit. Beginning
at any pointin the loop, we move in the direction chosen in step 2, and write down the terms shown in
Fig. 24.2; the sum of these terms is then set to zero.

For the upper loop, beginning in the upper-left corner, we find:

—IL1Ri —1I1iR, +3V+ LR3+6V =0 (24.1)
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I, R,=2 ohms

]

6V R2=5 ohms

R3:4 ohms

I3T 1, 3V

R4=7 ohms ;

R5=10 ohms

Figure 24.1: Example circuit for analysis using Kirchhoff's rules. As shown by the analysis, the actual
direction of current/, will turn out to be opposite the direction shown here.

\Y%
6H|||“—b +V

\%
ST

Figure 24.2: Terms for use in Kirchhoff’s voltage rule. The evaluation direction is alwaysditorh.
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or, substituting the resistance values,

—LH2Q)-1(5Q2)+3V+ 1L,(4Q2)+6V =0 (24.2)
or, simplifying,
L)+ 1L(42)+9V =0 (24.3)

Similarly, for the lower loop, beginning in the upper-left corner, we find:
—IbR3—3V —I3Rs—I3R4 =0 (24.4)

Again substituting specific resistance values,

—01,(4Q) -3V —-13(10Q) - I5(72) =0 (24.5)
or, simplifying,
—01,(4Q) -3V -13(172) =0 (24.6)

5. We next apply Kirchhoff’s current rule to the junction on the left:

L=1L+1 (24.7)

6. Now Egs. (24.3), (24.6), and (24.7) form a system of three simultaneous linear equations in the three
unknown currents/y, I, and/5. Writing these three equations in matrix form (and ignoring units for
convenience of notation),

-7 4 0 I -9
0 -4 —17 L |=| 3 | (24.8)
11 -1 I 0

Solving for the currents, we find

I 7 4 0 \ '/ -9
L |=| o —4 —17 3 . (24.9)
I 11 -1 0

Evaluating the matrix inverse as the transposed matrix of cofactors divided by the determinant, we find

I L[ 2 4 68 -9
L |=——| =17 7 =119 3 . (24.10)
I 25\ 4 11 28 0

Performing the indicated multiplications, we have

I 177/215 0.82326
L | = -174/215 | = —0.80930 |. (24.11)
I 3/215 0.01395

This tells us the three unknown currenfs: = 823.26 mA, I, = 809.30 mA, and/3 = 13.95 mA.
The signs of the currents tell us that we guessed the directiohsafd /5 correctly, but we guessed
the direction ofl, incorrectly (since/, came out negative). The correct directior/gfis oppositethe
direction shown in Fig. 24.1.
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Chapter 25

Electronic Instruments

In this chapter we’ll examine a few common instruments used to analyze electronic circuits.

25.1 Ammeter

An ammetelis used to measure electric current. To use an ammeter, youoneadithe circuit at the point
at which you measure the current, the insert the ammeter into the circuit (in series).

25.2 \oltmeter

A voltmeteris used to measure the electric potential difference between two points in the circuit. To connect
a voltmeter properly, you connect the voltmeter across the two points in the circuit whose potential difference
you wish to measure (i.e. in parallel).

25.3 Ohmmeter

An ohmmeteis used to measure electrical resistance. You should not connect an ohmmeter to a live circuit;

instead, you should completely remove the component in question, and then connect it to the leads of the
ohmmeter. The ohmmeter will connect the component to its own internal power supply, and use the resulting
current to measure the resistance.

25.4 Multimeter

A common electronic measuring device is theltimeter which is an ammeter, voltmeter, and ohmmeter
combined into a single device. A multimeter may also include capacitance meter, inductance meter, and/or a
frequency meter.

25.5 Oscilloscope

An oscilloscopés an complicated-looking device, consisting of a screen, a probe, and an impressive array of
knobs and controls. The oscilloscope is essentially a device for plotting voltage vs. time. The ground wire
on the probe is connected to the circuit ground (generally-tloé the power supply), and the probe is then
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connected to the point in the circuit whose voltage with respect to ground you wish to measure. If the current
in the circuit is periodic, the oscilloscope can be made to synchronize itself to this signal so that the plot of
voltage vs. time appears “frozen” on the screen.

The oscilloscope often has two or more independent measurement “channels” can also be made to plot
one voltage in the circuit vs. another, by using two probes and two different channels.

25.6 Logic Probe

A logic probeis used in digital circuits to indicate whether a point in a circuit is at a logic “high” or logic
“low” value.
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Chapter 26

Capacitance

Suppose we have a conductor carrying a net char@eand a second conductor carrying a net chargg

and suppose the two charges are separated by a fixed distance. Such a device is aailecitar (or
condenseran old-fashioned term). The more charge is put on the two conductors of the capacitor, the greater
the potential difference between them. In fact, we find that the potential differeqeegsrtional tothe

amount of chargeQ = CV, whereC is called thecapacitance

0
Cc == 26.1
= (26.1)
Capacitance is measured in unitsfafads(F), named for English physicist Michael Faraday. One farad is
equal to one coulomb per volt (1£ 1 C/V), and is a very large unit of capacitance. For most laboratory
applications, we will be working with units of microfaradsK), nanofarads (nF), and picofarads (pF).
The reciprocal of capacitance is called #lastanceS:

S== (26.2)

Elastance has units of £, sometimes called daraf (“farad” spelled backwards).

26.1 Parallel-Plate Capacitor

One common capacitor configuration consists of two parallel plates (each withl greaparated by a dis-
tanced (Fig. 26.1). As you can see in the figure, the electric field between the plates of the capacitor is nearly
uniform, except near the edges where there are some edge effects.

To find an expression for the capacitance of the parallel-plate capacitor, we apply Gauss’s law to an
imaginary pillbox-shaped Gaussian surface that has one flat end ofldarethe region between the plates,
and the other in the region to the left of the left plate. The electric flux through all faces of the surface except
the face between the plates will be zero; for that face the electric flux Wil be- E 4; then by Gauss’s law,

Op = EA = Q. (26.3)
€0

Since the potential difference between the platds is Ed, we have

d
V= 5,7 _ (26.4)
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Figure 26.1: Electric field between the plates of a parallel-plate capacitor. The electric field between the
plates is uniform, except near the edges. (©GNU-FDL, Wikimedia Commons [11].)

To find the capacitance, we divide this into the charge on each glate,

Q goA
C===2", 26.5
Vv d ( )
Note that the capacitance depermigy on the geometry of the capacitor (plate area and spacing), and not
on the charge on capacitor or the voltage between the plates. This is true of other capacitor configurations
as well: C depends only on the geometrical properties of the capacitor. Note also that the parallel-plate

capacitor has a larger capacitance if the plates are larger, or if the plates are closer together.

26.2 Capacitors in Series and Parallel

If several capacitors are connected end-to-émddrie3, the equivalent resistance is equal to the reciprocal
of the sum of the reciprocals of the individual resistances:

1 1
— =Y _ 26.6
Cs C; (26.6)
1 1 1
L 26.7
oot T (26.7)

A common error in computing series capacitances is to compute sum of the reciprocals of the individual
capacitances, then forget to take the reciprocal of the result at the end. Be careful not to do this!

If the capacitors are connecté&d parallel, the the equivalent capacitance is the sum of the individual
capacitances:

q:Za (26.8)

—C GGt (26.9)
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Notice that the formula for capacitors $rieslooks similar to the formula for resistors parallel, and
vice versa.
Note the following points. For capacitors connecirederies

» The equivalent capacitance will be smaller than the smallest capacitance in the series combination.

« If one capacitor in the series combination is much smaller than the others, the equivalent capacitance
will be approximately equal to the smallest capacitance.

* N equal capacitor€ connected in series have an equivalent capacitancy Hf.
For capacitors connectéad parallel:
» The equivalent capacitance will be bigger than the largest capacitance in the parallel combination.

* If one capacitor in the parallel combination is much larger than the others, the equivalent capacitance
will be approximately equal to the largest capacitance.

» N equal capacitor€ connected in parallel have an equivalent capacitancé®f

26.3 Dielectric Materials in Capacitors

As shown by Eg. (26.5), the capacitance of a flat-plate capacitor can be increased by increasing the area of
the plates, or by decreasing the distance between them. Another way to increase the capacitance is to insert a
dielectric material between the plates; this will cause the capacitance to increase by a factor of

€0A
7
where K is called thedielectric constanbf the material. Inserting a dielectric material between the plates
of a capacitor does triple duty: it increases the capacitance by a fackaribgerves to keep the two plates
physicallyseparated by a small fixed distance; and it keeps the the plates electrically insulated from each
other so that they don't short out.
The combination

C=K (26.10)

e = Kegg (26.11)

is called thepermittivityof the material.

26.4 Energy Stored in a Capacitor

A capacitor can be thought of as a device that stores energy in the electric field between the plates of the
capacitor. Using the calculus, it can be shown that the potential eriérgipred in the electric field of a
capacitor of capacitandg, voltagel’, and charge) (on each plate) is given by

1 2
U:%QV:%CVZ——Q

=-=. 26.12
3C (26.12)

Theenergy densityenergy per unit volume) of a capacitor can be found by using the parallel-plate capacitor
as an example. The total potential energy stored in a parallel-plate capacitor (of plateavdaeparation
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d)is
U=3CV? (26.13)
1goA
- ;‘;de)z (26.14)
= LegE*Ad. (26.15)

Since the volume of the space between the platdslisthe energy density = U/(Ad), or

u = 1e0E>. (26.16)
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Chapter 27

RC Circuits

By connecting a resistor and capacitor together in series, we cre®€ aircuit In an RC circuit, energy

is stored in the electric field of the capacitor, and the resistor controls the rate at which charge reaches the
capacitor. The characteristic time scale required to charge the capacitor is callietivenstant, and is

given by

r = RC. (27.1)

If the resistanceR is in ohms and the capacitanc€eis in farads, then the time constanwill have units of
seconds.
There are two basic types of RC circuitftarginganddischarging

27.1 Charging RC Circuit

Figure 27.1 shows a charging RC circuit. The circuit includes a battery, so that when the $Svgtclosed,

current flows through the resistor and charges the capacitor. As charge builds up on the plates of the capacitor,
it becomes more difficult for the battery to add even more charge to the capacitor, so the current begins to
drop. Once an amount of time has gone by that is large compared to the time censtdtit, the capacitor

will be essentially full charged, and the current will be negligible.

R

Figure 27.1: A charging RC circuit. The capacitobegins charging once switchis closed.
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Figure 27.2 shows the resistor voltage, capacitor voltage, circuit current, and capacitor charge in the
charging RC circuit as a function of time. The capacitor is initially uncharged, and s§vihlosed at time
t = 0. Shortly after the switcl§ is closed, a large current flows through the circuit, the voltage across the
resistorR is equal to the battery voltagé, and the voltage across the capacitor is zero. At time RC
after the switch is closed, the voltage across the resistor has decredged=t@.368 of the battery voltage;
the voltage across the capacitor has increaseld-tol /e = 0.632 of the battery voltage; the current has
decreased td/e of its initial value; and the charge on each of the plates of the capacitor has increased to
1 — 1/e of its maximum capacity.

Mathematically, the voltage across the resistgr the voltage across the capaciigs, the current in the
circuit 7, and the charge on each capacitor piatean be shown to be

Vr(t) = VeI (27.2)
Ve(t)y =V(1—e™'/T) (27.3)

1) = (V/R)e™"/" (27.4)
Q) =CV(1—e'/7) (27.5)

As timet — oo, current will stop flowing in the circuit, the capacitor will have reached its maximum
charge, the voltage across the resistor will be zero, and the voltage across the capacitor will equal the battery
voltage.

Vi
V,

Time Time

Time

Figure 27.2: Plots vs. time for a charging RC circu#) Resistor voltage vs. timeb) capacitor voltage vs.
time; (c) circuit current vs. time; anddj charge on the capacitor vs. time. The capacitor is initially uncharged,
and the switchs is closed at time = 0.

27.2 Discharging RC Circuit

Figure 27.3 shows a discharging RC circuit. There is no battery in this circuit; instead, we have a capacitor
C thatis initially fully charged to potentidl that is connected in series with a resisitbrWhen switchS is

closed at time = 0, the voltage across the resistor and capacitor, the circuit current, and the capacitor charge
all decrease exponentially, and redgfa of their initial value in timer = RC. As timet — oo, the current,

all voltages, and the capacitor charge will all dwindle to zero. Mathematically, the voltage across the resistor
VR, the voltage across the capacit@r, the current in the circuif, and the charge on each capacitor pigte
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can be shown in this case to be

Vr(t) = Ve '/ (27.6)
Ve(t) = Ve /™ (27.7)
1(1) = (V/R)e7 /" (27.8)
Oty =CVe™'/® (27.9)
[
R =.C

Figure 27.3: A discharging RC circuit. The initially charged capaditdoegins discharging once swit¢h
is closed.

Vi
V,

Time Time

VIR o

Figure 27.4: Plots vs. time for a discharging RC circu#) Resistor voltage vs. timeb) capacitor voltage
vs. time; €) circuit current vs. time; anddj charge on the capacitor vs. time. The capacitor is initially fully
charged, and the switc$iis closed at time = 0.
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Chapter 28

Other Electronic Components

28.1 The Diode
28.2 The Transistor

28.3 Integrated Circuits
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Chapter 29

The Electric Light

One of the most important inventions of the nineteenth century was the invention of the electric light.

29.1 The Edison Incandescent Lamp

The first practical incandescent lamp was invented by Thomas Alva Edison on October 21, 1879, at his
laboratory in Menlo Park, New Jersey, after two years’ work. Before the invention of the incandescent
lamp, homes were lit using flames from candles, oil or kerosene lamps, or natural gas. These were a fire
hazard, did not give off much light, and consumed materials that had to be constantly replenished. Others had
made attempts to develop an incandescent lamp before Edison, but they were impractical—they were very
expensive to make, and only lasted a short time before the filament burned out or the incandescent material
was consumed. In 1877 large arc lamps did exist and were used for lighting streets, but they were much too
large for use inside the home, and nobody could figure out how to scale down the arc lamps for home use.
This was at the time called the problem of “subdivision of the electric light,” and was thought by some to be
an impossible problem to solve, and perhaps even a violation of the laws of physics.

The main impediment to the development of a usable incandescent lamp was to find a suitable filament
material. Edison spent years searching the world for a suitable material, checking out thousands of possi-
bilities one by one. In October of 1879, he finally found a filament material that worked: carbonized cotton
thread. Later experiments showed even better results using heavy paper formed into a “horseshoe” shape and
carbonized in an oven (Figure 29.1.) The carbonized horseshoe was clamped onto two platinum wires and
placed inside a glass bulb. In order to prevent combustion of the filament, all the air removed from the bulb
using a Sprengel pump, which Edison had improved so that it could create a high vacuum. Edison continued
to experiment with different filament materials, including a bamboo filament that produced a bulb that would
last for over 1200 hours. By the early 20th century, filaments were being made from finely coiled tungsten
wire.

In 2007, the U.S. Congress passed legislation that would have phased out the manufacture of relatively
inefficient incandescent bulbs over time, but this policy was eventually dropped. Incandescent light bulbs
produce a fair amount of infrared light (heat) along with visible light, so a significant amount of the electricity
used to power the bulb is used to create heat. In cold climates especially, the incandescent lamp works just
fine, as it illuminates the home and also helps to heat it. In warmer climates, it's more efficient to have
something that produces more visible light and less infrared light.

The world’s longest-lasting incandescent lamp is the Centennial Bulb, located in a fire station in Liver-
more, Californiat The bulb has been burning almost continuously since 1901. In 2015 the Centennial Bulb
reached the milestone of having burned for over one million hours.

Ihttp: //centenni al bul b. or g/
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EDISON'S LATEST ELECTRIC LAMP.

Figure 29.1: The Edison incandescent electric laripr Scientific American, January 10, 1880.
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29.2 Compact Fluorescent Bulbs

The desire for greater energy efficiency led to the development aiiimpact fluorescent bulb the 1990s,

which was essentially similar to the long fluorescent lamps common in office lighting, but with the tube
twisted into a helix and the bulb designed to work in a standard incandescent light socket. Compact fluo-
rescent bulbs enjoyed only a brief period of popularity — they were expensive, took a few moments to turn
on, contained a small amount of toxic mercury, and consumers were generally dissatisfied with the unnatural
quality of the light produced.

29.3 Light-Emitting Diode (LED) Bulbs

Dissatisfaction with compact fluorescent bulbs led to their being quickly replaced by Light-Emitting Diode
(LED) bulbs that are common today. LED bulbs have a number of advantages over their predecessors:

» Energy efficiencyLED bulbs have greater energy efficiency than incandescent bulbs, meaning that for
a given amount of electric power, the produce more visible light and less infrared light. A typical light
bulb used inthe home produces about 850 luriefsisible light. This requires a 60-wattincandescent
bulb, but only a 9-watt LED bulb. This means that an LED bulb can produce the same illumination as
an incandescent bulb while consuming only 15% of the electric power.

+ Lifetime. Incandescent bulbs typically burn out after about 2000 hours of use, while LED bulbs may
last 30,000 hours before they need to be replaced.

 Cost.Although LED bulbs were at first significantly more expensive than incandescent bulbs, the price
has dropped so that they are now comparable in price.

* Quality of illumination. Consumers have found the quality of light produced by an LED bulb to be
much more “natural” than the light produced by compact fluorescent bulbs.

2A lumenis a measure of the amount of visible light produced. See chapther 52.
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Chapter 30

Electronics as a Hobby

Many people enjoy electronics as a hobby. They enjoy the creative outlet that electronics offers—you imag-
ine some kind of electronic device or gadget, you design it yourself, and build it. Designing and building
something yourself gives you a sense of satisfaction that you simply don't get from buying something ready-
made — plus you can design it to work just the way you want. Sometimes hobbyists skip the design stage,
and just enjoy building devices from kits.

An extensive electronics textbodkessons in Electric Circuitgs available on-line at:

http://ww. al | aboutcircuits.comtextbook/.

Here we’'ll look at a few of the kinds of projects that electronics hobbyists get involved in. Maybe you'll
decide you'd like to try some of these things yourself.

30.1 Analog Electronics

Analog electronics involves building things from parts like resistors, capacitors, inductor, transistors, etc.
You can design analog electronic circuits to do any number of things: build your own light-activated burglar
alarm, a radio receiver, remote weather station, metal detector, electronic organ, computer light pen, electronic
measuring equipment, devices for your car, etc. — you're limited only by your imagination.

One place to start with analog electronics might be to build a simple crystal radio receiver; see:
http://ww. m dni ght sci ence. coni .

30.2 Digital Electronics

Digital electronics typically involves components like microprocessors, microcomputer chips, and field-
programmable gate arrays (FPGAs). These components are are available as integrated circuits that are con-
nected to other digital and analog components to make useful devices. Microprocessor and FPGA training
kits are available to help you learn microprocessor and FPGA programming, and how to interface these de-
vices to external displays or other devices. You might even like to try something like building your own
calculator or computer completely from scratch.

Microcontrollersare very popular nowadays. These are small computers, typically designed to interact
with hardware like motors, sensors, robotic arms, etc. They're surprisingly low cost (typically less than $50),
and can also be configured to work like a a small desktop computer. Some popular microcontrollers are:

* Arduino:ht t p: // www. ar dui no. cc

* Raspberry Piht t p: / / ww. r aspberrypi . org
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NerdKits(ht t p: / / www. ner dki t s. con) sells a good simple microcontroller kit with an informative
instruction manual, along with ideas for a few projects to get started.

Maker Shedht t p: / / www. maker shed. com) is a popular site that containslat of information
about hobby electronics, kits, microcontrollers, etc. Maker Media also publishes a number of books on books
on hobby electronics, such &4ake: ElectronicsMake: More Electronicsand introductory books on the
Arduino and Rasperry Pi microcontrollers.

SparkFun(ht t p: / / www. spar kf un. comj is another site dedictated to electronics hobbyists. They
sell electronics and microcontroller kits and parts.

HackerBoxeght t p: / / www. hacker boxes. conj offers a subscription service, in which they send
out a different box of electronics hobbyist components to subscribers every month.

A field-programmable gate array (FPGA) is a kind of general-purpose logic device that you can design
with any logic circuits you wish. For example, you could program it to be a digital clock circuit or a micro-
processor. An excellent way to learn FPGA programming is with the Papilio FPGA board, available from the
Gadget Factoryht t p: / / www. papi | i 0. cc). You can use this FPGA board alongside the tutonib-
ducing the Spartan 3E FPGA and VHy Mike Field, available as a free e-book on the Internet. FPGAs
are programmed in one of two languages: Verilog or VHDL. This tutorial uses VHDL, which is the more
common language in the United States.

30.3 Amateur Radio

How would you like to try transmitting over the air with your own radio station? That's possible, but you'll
need to earn an amateur radio license first. You'll study radio theory, electronics, and regulations, then take
an exam. If you pass, you'll be assigned your own radio call sign by the FCC, and you can go on the air and
talk to people around the country or around the world by voice or by code.

Radio amateurs are involved in lots of activities today:

» Morse code Many amateurs enjoy traditional radiotelegraphy, where you “talk” to people around the
world using Morse code and telegraph key.

» RadioteletypeThis usually involves a computer, rather than a real teletype these days. You can send
messages via radioteletype at faster speeds than sending telegraphy by hand.

» Packet radio.This is a kind of amateur radio version of the Internet, including a type of amateur radio
e-mail.

» Amateur radio satellitesYou might like to get involved in working with a number of satellites that are
in orbit around the Earth, that are especially for use by radio amateurs.

» Amateur televisionYou can go on the air with your own amateur television station.

» Volunteer work Amateur radio operators are needed to help coordinate events like parades, marathons,
and long-distance bicycle rides.

» Emergency responseDuring an emergency, all normal lines of communications — including cell
phones — may be knocked out. Amateur radio operators are often the only way to get communications
in and out of the emergency area. You can train to be prepared to help in case of an emergency.

 Military work. Some amateurs work with the military to help coordinate radio communications.

» Experimental work. Amateurs are often involved in cutting-edge radio research, including spread-
spectrum transmission, very high- or low-frequency transmissions, or bouncing radio signals from au-
rorae, meteor trails, satellites, or even the Moon. Amateurs may get interested in radiowave propagation
in the ionosphere, and conduct their own research.
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* Build your own equipmentThe Amateur Radio Service is the only radio service that allows you to
design and build your own transmitting equipment.

» Low-power operationsSome amateurs enjoy the challenge of working with simple low-powes (
watt) transmitters that they build themselves, just to see how much can be done with low power. This
is calledQRPoperation.

» ContestsMany amateurs enjoy contests and winning awards, such as those you can win by contacting
another amateur radio operator in each state, or in as many different countries as possible. Some
organizations hold “contest nights”, where you conduct as many (very brief) contacts as possible in
one evening.

For more information on amateur radio, see the American Radio Relay Lelagup: / / www. arr | . org/ .
Exams may be taken in this area from local examiners for free or for a small fee.

30.4 Robotics

Combining electronics with sensors and motorized parts involves the popular fieldatics You might
want to build a robot that wheels itself around your house while avoiding obstacles, or you might want to
build a device that cooks your breakfast for you before you wake up in the morning. The possibilities with
robotics are almost endless. Many robotics kits are available to build specific kinds of robots, or you may
want to try designing and building your own robots.

To get started in robotics, try using Google to search the Internet for “hobby robotics”. You'll find quite a
bit of information and a number of books and kits available. Also, HackerBéneasd(: / / www. hacker boxes. com
offers a Robotics Workshop for beginners.

30.5 Amateur Rocketry

Model rocketry is another hobby that has become popular in the past few years, and amateur rocketeers
have begun building very powerful rockets that approach the power of professional sounding rockets. If
you're interested in this, you can combine this hobby with electronics to build electronic payloads for model
rockets, allowing you to telemeter back to Earth information about the Earth’s atmosphere.

More information on rocketry is available from the National Association for Rocketry:
http://ww. nar.org/.

30.6 Amateur Satellites

One very new hobby is the field afnateur satelliteslt is now actually possible to build your own spacecraft
and have it launched into orbit on a commercial rocket. You design and build the satellite from scratch,
including sensors, science experiments, electric power systems, attitude determination and control systems,
telemetry systems, and radio receivers on the ground. You do the design, building, and testing, then arrange
to have it flown “piggyback” on the same rocket along with a large commercial payload.

One popular amateur satellite configuration is calledd@bhbeSatwhich is constructed of cubical “mod-
ules” of size 10 cmx 10 cmx 10 cm, which is called “1 unit”, or 1U. CubeSat satellites can be made of
several modules connected together in 1U, 2U, 3U, or 6U configurations. One company, Pumpkin Inc., even
sells CubeSat kits to help you get started.

Amateur satellite work can be an expensive hobby. At the time of this writing, building a new satellite
and getting it launched will cost roughly as much as buying a new car.

For more information on amateur satellites, see the series of books by Sandy Antunes.
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30.7 Sample Electronics Projects

Here are a few fun electronics projects that hobbyists have built:
» Radio receivers of all kinds: AM, FM, shortwave, longwave, maritime, TV, police, fire, etc.
» Radio transmitters (requires an amateur radio license).
» An “alarm clock” that automatically opens your curtains in the morning.
* Home weather station.
» Robots to walk or roll around your house, automatically fix your breakfast, etc.
* Home monitoring system.
» Home planetarium.
 Parabolic microphone for amplifying very faint or distant sounds.
* Electronic circuits to disable and auto-locate your car or motorcycle if it is stolen.
* Lie detector.
* Metal detector.
* Circuits powered by fruit.
* Electronic musical instruments.

The Web siteht t p: / / www. i nst ruct abl es. comis a good source of ideas for many more electronics
projects.
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Chapter 31

Magnetism

Magnetism like electricity, has been known since ancient times. The woagnetderives from the Greek
nayvntic Atboc, or “Magnesian stone”; Magnesia was a region of ancient Greece where one could find
lodestonea naturally occurring permanent magheincient mariners were able to construct primitive mag-
netic compasses by placing these lodestones on cork and floating them in water. You're undoubtedly familiar
with magnets yourself, from having seen modern compasses and manufactured permanent magnets.

From the perspective of physics, the phenomena of electricity and magnetism are very closely related, and
are described by a single theoryal&éctromagnetismClassical electromagnetism, which we’ll study in this
course, has at its heart four coupled equations clagwell's equationsnamed for the Scottish physicist
James Clerk Maxwell. (The more modern theory, catladntum electrodynamicgequires mathematics that
is beyond the scope of this course.)

We'll begin by examining both the similarities and differences between electricity and magnetism.

31.1 Magnetic Poles

Just as electricity consists of two kinds of electric charge, magnetism consists of two kindgmétic pole
But while the electric charges are calledand—, the magnetic poles are called (for historical reasavs)
andS. The two kinds of magnetic pole behave similarly to electric charges: like poles\twoles or two
S poles) will repel each other, but unlike poles (&rand anS pole) will attract each other.

The strength of a magnetic pole (analogous to chajge called thepole strengthy *. Pole strength in S
units is measured in units of ampere-meters (A m).

If two magnetic poleg; andq; are separated by a distancehen the force” between the two poles is
given by a magnetic counterpart of Coulomb’s law:

£ Modie
4 r?

(31.1)

wherep is called thepermeability of free spageand is equal to exactlym x 10~7 N/A2. (Mathematically,
in Eq. (31.1), we write arV pole as a positivg*, and anS pole as negative.)

Although electricity and magnetism are similar in many ways, there is one important difference: while
individual electric charges can occur in isolatiomagnetic poles only occur in pairdn other words, we
neversee an isolatey pole orS pole by itself: whenever we have ahpole, there will always be ai pole

1Recent research suggests that lodestone is created when the miagretitds struck by a bolt of lightning. See P. Wasilewski
and G. Kletetschka, “Lodestone: Nature’s only permanent magnet — What it is and how it gets ch@egmatiys. Res. Let26, 15,
2275-78(1999).

2110 is pronounced “mu-nought.”
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to go with it. For example, if you take a bar magnet with/rpole and anS pole and break it in half, you
will get two smaller bar magnets, each of which has its @wpole andS pole.

(There some theories that predict the existence of isolated magnetic poles, which arencajrestic
monopolesThese magnetic monopoles, if they exist, would take the form of subatomic particles. However,
no magnetic monopoles have yet been detected.)

31.2 Atomic View of Magnetism

Fundamentallyall magnetism is due to electric currentOn a macroscopic scale, we can construct an
electromagnein the laboratory by running an electric current through a coil of wire. But even permanent
magnets are due to electric currents: the motion of an electron around an atomic nucleus creates an electric
current, and this electric current creates a magnetic field that ultimately manifests itself as the magnetic field
of the permanent magnet. This is described in detail in the discussion of ferromagnetism (Section 35.3). A
guantitative treatment of the magnetic field produced by an electric current is given in the next chapter.
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Chapter 32

The Magnetic Field

32.1 Magnetic Field

Recall how we defined the electric fiditin Chapter 17: we place a small positive test charge a pointin
space, measure the forBeon it, and then compute the electric field as the force per unit ch&ge:F/q.
We can similarly define enagnetic fieldB by measuring the forcé on a smallV magnetic pole *; then the
magnetic field is defined as the force per unit pole strength:

B— qi*_ (32.1)
In Sl units, the magnetic fiel8 is measured in units deslas(T), named for the Serbian physicist Nikola
Tesla. One tesla is equal to 1 NNAm™!. Atesla is a very large unit; the largest magnetic fields that can
be produced in the laboratory are on the order of a few teslas. A common unit for working with terrestrial
magnetic fields is the nanotesla (nT). Another common uni & the gauss(G), named for the German
mathematician Carl Friedrich Gauss. One gauss is equéltbtesla.

32.2 Magnetic Field due to a Single Magnetic Pole

The magnetic field due to a single magnetic pplecan be found by using magnetic version of Coulomb’s
law. Let's put a smallV pole g; at some distance from the poleg*; then by the magnetic Coulomb’s
law, the force onyg is F = (uo/47)(q*qq/r?). Dividing by ¢ gives us the magnetic field due to a single
magnetic pole™*:

Mo q*
p=221 32.2
47 r? ( )

Remember, though, that magnetic po&veroccur in isolation—they only occur iV-S polepairs.

32.3 Magnetic Field Lines

To help visualize the shape of the magnetic field, in can be helpful to draw diagramegoiketic field lines
similar to the electric field lines we drew earlier. These lines have the following properties:

» The magnetic field lines are directed lines (with arrows) that faint the N poleto the S pole.

At any point along a field line, the magnetic field vedBis tangent to the field line.
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» We cannot possibly drawll field lines (because they fill all space), so we draw only a few. The
number of field lines you draw is somewhat arbitrary — we just draw enough to visualize the field
without making the diagram too crowded.

» The closer together the field lines are, the stronger the magnetic field.

* Unlike electric field lines (which terminate on electric charges), magnetic field fieesrterminate.
They form closed loops, or sometimes may form a pattern that continues indefinitely without repeating
or terminating.

32.4 The Magnetic Dipole

As an example, consider Fig. 32.1, which shows the magnetic field due to a bar magnet; such an arrangement
of two magnetic poles separated by a fixed distance is calledegmetic dipole

2 S

N

Figure 32.1: Dipole magnetic field due to a bar magnet. (©GNU-FDL, Wikimedia Commons [11].)

A magnetic dipole may be characterized by a quantity calledthgnetic (dipole) momentThe magnetic
momentm of a magnetic dipole is defined as

m = ¢*d, (32.3)

whereg* is pole strength of either end of the dipole, ahtd a vector whose length is equal to the distance
between the poles, and which points from theole to theN pole (opposite the direction of the magnetic

field line between the poles). The dipole moment essentially measures how magnetically “polarized” a dipole
is, with larger values when more pole strength is separated by a greater distance. Magnetic dipole moment is
measured in units of A

32.5 Magnetic Flux

Magnetic fluxmay be thought of as being proportional to the total number of magnetic field lines passing
through a given area. Given an ard@mbedded in a magnetic fieRR] the electric fluxdp passing through

A is equal to the product & and the component of perpendicular to the field:

dp =B-A = BAcosf. (32.4)
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HereA is an area vector whose magnitude is equal to the area of the surface, and whose direction is perpen-
dicular to the surface. Magnetic flux is measured in units@ers\Wb), where 1 Wh= 1 T m?. The weber
is named after the German physicist Wilhelm Eduard Weber.

32.6 Gauss’s Law for Magnetism

We've already seen one of the four Maxwell’'s equations, Gauss’s law. Another of Maxwell’s equations is the
analogous equation for magnetism. It has no proper name, but we may@allss’s law for magnetisnit
states:

®p = 0. (32.5)

In other words, the magnetic flux through any closed surface is always equal to zero. This is due to the fact
that there are no magnetic monopoles, so magnetic field lines never terminate.

32.7 Biot-Savart Law

As mentioned in the previous chapter, magnetic fields are produced by electric currentBioFBavart

law' gives the magnetic fieldB produced by an electric currehtrunning through a short length of wire

Al, whereAl is a vector whose length is equal to the length of the wire, and which points in the direction of
the conventional current. The Biot-Savart law states:

Mo IAl x
AB(r) == E r2

(32.6)

Herer is a vector pointing from the current elememl to the field point (the point at which the magnetic
field is being observed). Note the presence of the vector cross product openatihtis equation; the cross
product is described in Appendix N.

The Biot-Savart law is a magnetic counterpart of Coulomb’s law: just as Coulomb’s law gives the electric
field due to a point chargeg, the Biot-Savart law gives the magnetic field due to a curfeifawing through
a short wireAl.

Comparing Eg. (32.2) with Eq. (32.6), we can find the pole streadttiue to a current through a short
wire of lengthA/:

q* = IAl. (32.7)

32.8 Magnetic Field due to a Long Wire

By making use of the calculus, one may use of the Biot-Savart law (Eg. (32.6)) to find the magnet® field
due to a very long wire carrying an electric curréntt a perpendicular distanedrom the wire. The result

B(r) =T (32.8)

Thedirectionof the magnetic field is given by the right-hand rule: if you point the thumb of your right hand
in the direction of the conventional currehtthen the fingers of your right hand curl in the direction of the
magnetic field lines.

IPronounce®@EE-oh sav-ARand named for the French physicists Jean-Baptiste Biot alixd Favart.
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32.9 Magnetic Field of a Solenoid

A solenoids a long coil of wire. Just as a parallel-plate capacitor gives a nearly uniform electric field between
the plates of the capacitor, a solenoid gives a nearly uniform magnetic field inside the coils (Fig. 32.2). Using
the Biot-Savart law, the magetic field in the region inside the solenoid is given by

B = puonl, (32.9)

wheren is the number of turns per unit length in the solenoid, anslthe current in the wire.

The direction of the magnetic field inside the solenoid may be given by another right-hand rule: if you
curl the fingers of your right hand in the direction of the current, then the thumb of your right hand points in
the direction of the magnetic field inside the solenoid.

(eaao)

OAM_AAQAQAO /
% NN

Figure 32.2: Magnetic field due to a solenoid. The solenoid is seen in cross section; current flows out of the
page for the wires at the top of the figure, and into the page for wires at the bottom. (©GNU-FDL, Wikimedia
Commons [11].)

32.10 Magnetic Field of a Loop or Coil of Wire

As discussed earlier, a magnetic dipole can be created by a bar magnet—but it can also be created by a coil
of wire. Given a coil ofN turns of wire carrying a current, the magnetic dipole moment of the coil can be
shown to be

m= NIAR, (32.10)

where A is the cross-sectional area of the coil, @né a unit normal vector, pointing perpendicular to the
plane of the coil. The direction af is given by yet another right-hand rule: if the fingers of your right hand
curlin the direction of the current, then the thumb of your right hand points in the directior{arfid therefore
also in the direction of the magnetic momemx.

32.11 Torque on a Magnetic Dipole in a Magnetic Field

Suppose we put a magnetic dipatein a magnetic fieldB. (The magnetic dipole could be due to a bar
magnet, coil of wire, etc.) Then the magnetic field will exert a torgum the dipole, equal to

T =mxB. (32.11)
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Note again the presence of the vector cross progdiicthis equation: the direction af will be perpendicular
to the plane containingn andB, in a right-hand sense.

Now suppose we put a magnetic dipole (e.g. a bar magnet or wire coil) of magnetic monierd
magnetic field. What will happen? Iin is parallel or anti-parallel t8 (so the bar magnet is aligned with
B, or the plane of the wire coil is perpendicularBd then the torque on the dipole will be zero, and nothing
will happen—the dipole will remain stationary. But if we displace the dipole from this position, then there
will be a non-zero torque on the dipole, in a direction that will rotate the dipole back toward the direction of
B. But once the dipole moment is aligned withB, the dipole’s inertia will make it overshoot and rotate past
B, where it will experience a torque that will make it rotate back tovBuabain, etc. The resulting motion
will be that magnetic dipole will oscillate back and forth aboutBheirection, with simple harmonic motion.
The period of this oscillating motion will depend, in part, on the strength of the magnetic field; in fact, this
method was once used to measure magnetic field strength. One would measure the period of oscillation of a
well-calibrated dipole in a magnetic field, and use the resulting period taBfind

32.12 Magnetic Pressure
The magnetic field can be thought of a producirgessure given by

BZ

P=—
210

(32.12)

where P is the pressure in pascals (Pa; 1 Pa = 1 W/nThis magnetic pressure can be used to relate the
“force” rating of a permanent magnet (which is the maximum weight it is supposed to be able to lift) to the
magnetic field strengtB® at the pole face. Suppogeéis the magnet's force rating, and the pole face has area
A. Then the magnetic pressurelis= F/ A, so

F B?
P=—=__ (32.13)
A 2po

So the force rating” is related to the magnetic field strength at the pole fadzy

AB?
F = .
210

(32.14)

Example.Suppose we have a 100-Ib magnet whose pole face is 25lib in. (The 100-Ib rating means
that the magnet is capable of lifting loads that weigh up to 100 pounds.) What is the magnetic field strength
B at the pole face?

Solution.First, convert everything to Sl units: the pole face is 38.1crhl.43 cm, andF = 444 .8222
N. Then the area of the pole face ist = (0.381 m) x (0.1143 m) = 0.043548 m?. By Eq. (32.14), the
magnetic field at the pole face is given by

B = ,/Z‘Z’F, (32.15)

5 \/ 2(47 x 107 N/A?)(444.8222 N)

or

=0.160T 2.1
0.043548 m? 0.160 (32.16)
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Chapter 33

The Lorentz Force

When we place an electric charge in an electric field, or a magnetic pole in a magnetic field, the resulting
motion is pretty simple: the charge or pole simply accelerates along the direction of the field. But some more
interesting physics goes on when we placelattriccharge in anagnetidield.

Suppose we have an electric chaggeoving with velocityv in a magnetic field8. Then it turns out that
the charge will experience a foréegiven by

F =¢gv xB. (33.2)

Note once again the presence of the cross product operalidris means that the force acting on chagge
perpendicular to both its direction of motierand to the magnetic field.

Note also that since the force is always perpendicular to the direction of motion, the work done by a
magnetic field on an electric charge is always zero.

If both an electric fieldE and a magnetic fieldB are both present, then the net force on the charige
found by combining Egs. (17.1) and (33.1), and is called.iventz force!

F=¢(E+VvxB). (33.2)

33.1 Plasmas

A plasma is essentially an ionized gas. We can gain some understanding of the behavior of plasmas by
examining the motion of charged particles in the presence of electric and magnetic fields.

Suppose, for example, that we have a (negatively charged) electron moving with velpeityendicular
to a magnetic field, and that there is no electric field present. Then there will be Lorentz force acting on the
electron that will eventually cause it to move perpendicular to its original direction. By that time, the Lorentz
force will be in the direction opposite the direction of the direction of motion of the electron, and so on. The
net motion will be that the electron will move in a circle. The direction of motion of a negative charge in a
magnetic field will be given by still another right-hand rule: if you point the thumb of your right hand in the
direction of B, then the fingers of your right hand will curl in the direction of motion of the electron. (If the
magnetic field points into the page, for example, then the electron will move clockwise.)

By similar reasoning, a positively charge (such as a proton) initially moving perpendic@avitomove
in a circle given by deft-hand rule: point the thumb of yoleft hand in the direction oB, and the fingers
of your left will curl in the direction of motion of the positive charge. For example, if the magneticBield
points into the page, then a proton will move counterclockwise.

IHypothetically, if magnetic monopoles exist, then the fdfamn a magnetic monopolg * in an electric fieldE and a magnetic field
B would be given by a similar expressidh:= ¢ *[B — (v/c2)xE].
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What if the initial velocity of the charged particle is not necessarily perpendicular to the magnetic field
B? In that case, the motion will have two components: motion in a circle perpendicular to the magnetic field,
combined with uniform motion parallel to the magnetic field. The net motion will be thattefliac the
particles will spiral around magnetic field lines in helices.

How big are the circles that a charged particle moves in? We can find that by equating the magnetic force
of Eq. (33.1) (withv L B) to the centripetal force:v?/r. We then havejvB = mv?/r; solving for the
radiusr of the circle, we have = muv/(¢gB). More generally, if the particle is moving in a helix, then the
radius of the helix is determined by the component of the particle’s velodityt is perpendicular to the
magnetic field ¢, ). Also, since the radius is always positive, we want to use the absolute value of the charge
q. The general result is that the radius of the helix is

r=t 33.3
1B (339)
This radius is called thgyroradius cyclotron radius or Larmor radius The gyroradius will be larger for a
weaker magnetic field, or for a heavier or faster particle.

Another important quantity is the angular frequency with which the particle gyrates in a circle about the
magnetic field lines. The time it takes the particle to complete one circle (i.e. the period of the motion) is the
total distance divided by the speeéll:= 2z r/v | . Substituting from Eq. (33.3), we hav& = 27wm/(|q|B).

Since the angular frequeney= 25/ T, we have that angular frequency of the motion as

_ lq|B
w=—.
m

(33.4)

This is called thegyrofrequencyor cyclotron frequency A particle will spin around in circles faster for a
stronger magnetic field or a lighter particle.

33.2 Force on a Wire in a Magnetic Field

Now suppose we have a wire carrying in an electric curfeplaced within a magnetic fielB. Within the
wire, the current is being carried by electrons moving with the drift velocity, each of which experiences a
Lorentz force. There will then be a foréeon the wire given by

F=1IlxB. (33.5)

Here! is the current, antlis a vector whose length is equal to the length of the wire and which points in the
direction of the conventional current. Applying this to a current loop, for example, gives the same torque as
given by Eqg. (32.11).

33.3 Magnetic Force between Two Long Wires

If we put two long wires next to each other so that they are parallel, then each wire generates a magnetic field
that envelopes the other wire. By combining Eqg. (32.8) (which gives the magnetic field generated by a wire)
with Eqg. (33.5) (which gives the force on a wire in a magnetic field), we can find the mutual force between
the two parallel wires. The result is

F Mo 11 12

R ek 33.6

L 27 d ( )
where F'/{ is the force per unit length;; and/, are the two currents, antlis the distance between the two
wires.
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<

Figure 33.1: The Hall effect. (Ref. [13])

If the two currents/; and 7, are in thesamedirection, the wires willattract; if the currents are in the
oppositedirection, the wires wiltepel (Thisis in a sense “backwards” from the rule you might expect, based
on the rules the force between two electric charges or two magnetic poles—but this is the way it works out.)

Eq. (33.6) is used in the definition of the ampere: 1 ampere is defined to be that current which, when
passed through each of two long parallel wires 1 meter apart, gives a force per unit legth 1of~’
newtons per meter, as can be verified by substituting I, = 1 Aandd = 1 minto Eq. (33.6).

33.4 The Hall Effect

Suppose we run an electric current though a wire—say the current runs from right to left. Such a current
could be due tgositivecharges moving from right to left, or teegativecharges moving left to right. How
can we tell the actual charge of the carriers of electric current?

An experiment to determine the correct charge of the carriers of electric current was performed in 1895
at the Johns Hopkins University by Edwin H. Hall. If an electric current is run through a conducting strip
in a magnetic field, then opposite sides of the strip will acquire opposite electric charge, and therefore a
potential difference will be created across the strip. @linectionof this potential difference will be different,
depending on whether the current is carried by positive or negative charges. This phenomenon is called the
Hall effect

The principle of the experiment is shown in Figure 26.1. The positive end of a battery is connected to
the right end of the strip, and the negative end to the left end; a magnetic field is directed into the page. If
the current is carried byositivecharges moving right to left, then the Lorentz force on the positive charge
will cause the positive charges carrying the current to move downward toward the bottom of the strip, and the
electric field due to these charges will paipiward

If, on the other hand, the current is carried fggativecharges moving left to right, then the Lorentz
force on the negative charges will cause the negative charges carrying the current to also move downward,
toward the bottom of the strip. In this case the electric field due to the charges carrying the current will point
downward

When Hall performed his experiment in 1895, he discovered that the latter situation is what actually
occurs: the electric field across the strip points downward, so that the carriers of the electric current must
be negative This experiment was done in 1895—the ybaforethe discovery of the electron by British
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physicist J.J. Thompson.

Because of the electric field built up across the conducting strip, there is a potential difference across
the strip. It is straightforward to calculate the magnitude of this potential difference: charges will build up
across the strip until the the magnetic foiee; B is balanced by the electrostatic forg€, wherev, is
the drift velocity,g is the charge on the particles carrying the current, Bnahd E are the magnetic and
electric field strengths, respectively. Since in equilibrium the forces will balanceB = gE, or E = vy B.

The potential differencey across the strip is thesy w, wherew is the width of the strip. Therefore this
potential, called thélall emf is given by

eg = vgBw (33.7)

Besides its historical interest, the Hall effect can be used today as a means of measuring magnetic field
strength. We measure the strip widthand we can determine the drift velocity by calibration in a known
magnetic field. Then Eq. (33.7) can be used to determine the magnetic field stBebgtmeasuring the
Hallemfey .
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Chapter 34

Geomagnetism

34.1 Earth’s Magnetic Dipole

The Earth generates its own internal magnetic field, which is thought to be due to a westward-moving electric
current inside the Earth’s molten outer core. The resulting field approximates that of a magnetic dipole, with
the “poles” of the dipole near (but nat) the Earth’s geographic poles.

There is a bit of confusing nomenclature to be aware of. If you suspend a bar magnet by a string so that is
free to rotate horizontally, it will rotate to align itself with the Earth’s magnetic field, withfhgole pointing
toward geographic north. (That's actually why the poles of a magnet are laNeted S: the N pole is the
“north-seeking” pole and th& pole is the “south-seeking pole”.) But since unlike poles attract, the pole near
the Earth’s geographigorth pole must be a magnetk pole, and vice versa (Fig. 34.1).

Figure 34.1: Schematic represenation of the Earth’s internal magnetic field. This should not be taken literally;
there is no bar magnet at the Earth’s center. This figure is just meant to illustrate that the Earth’s geographic
north pole is a magnetic dipol8 pole, and vice versa. Note that the Earth’s dipole is tilted with respect to
the geographic axis, which is vertical in this illustration. (©GNU-FDL, Wikimedia Commons [11].)

The Earth’s magnetic poles are not located at the geographic poles, but are some distance away; this is
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because the Earth’s magnetic dipole is not aligned with the geographic axis, but is tilted at some angle. The
magneticS pole is currently located in the Arctic Ocean north of Canada, and the maghetide is located
just off the coast of Antarctica. For reasons that are not currently understood, the magnetic poles “wander”
across the Earth’s surface, so the location of the magnetic poles changes from one year to the next.

The strength of the Earth’s magnetic field may be characterized by its dipole moment, which has a value
of m = 7.94 x 1022 A m2. It can be shown that the magnetic fi@df a magnetic dipole at positionfrom
the dipole is given by

&[—m+3(m-f)f}

B(r) =
® 4 r3

(34.1)

Using this equation, we can find the expected strength of the Earth’s magnetic field at the Earth’s surface by
substitutingr = REg, whereRg is the Earth’s radius. Assuming the Earth’s magnetic field to be a perfect
dipole, the magnetic field at the Earth’s equator should be roughly (4 ))(m/R3,), or B = 30,000 nT.

The magnetic field at the poles should be twice this valud er 60,000 nT. The actual values at the equator

and poles differ somewhat from these values because the Earth’s magnetic field is not a perfect dipole. In
fact, it's about 90% dipole, and about 10% higher-order components.

34.2 Magnetic Declination

Because the Earth’s magnetic dipole axis is tilted with respect to the geographic axis, a magnetic compass
will generally not point toward true geographic north; it will point towarelgnetiaorth. The difference (the

angle between the two norths) is called thagnetic declination A map showing lines of equal magnetic
declination (Fig. 34.2) is called dsogonic chart

As you can see from this chart, there i8%aline of magnetic declination (thagonic ling running near
the Mississippi River; along this line, there is no magnetic declination, and a magnetic compass will point
to true north. Maryland is at about ° west declination, meaning that a magnetic compass points abdut
west of true north. To get the compass needle to poigetmgraphicnorth, you would need to adjust the
compass dial by 1°.

Since the magnetic poles are wandering with time, the isogonic lines change from one year to the next. If
you plan on using a magnetic compass for sailing, hiking, orienteering, or similar activities, you should make
sure you have an up-to-date isogonic chart or something similar that shows the current magnetic declination
for your location. Of course, if you're traveling large distances, your magnetic declination will be changing
as you move, so you will need to re-adjust your compass for declination from time to time.

34.3 Magnetic Inclination

We often think of the Earth’s magnetic field as running north-south, but it also has aétgal component:
downward in the northern hemisphere, and upward in the southern hemisphere. This vertical component is
calledmagnetic inclination

Because of magnetic inclination, a compass needle will be correctly balanced only for use in a certain part
of the world. For example, a magnetic compass made for use in the United States will have a needle that's
heavier on theS' side than theV side, to compensate for the downward component of the Earth’s magnetic
field and allow the needle to balance properly. If you take this compass and try to use it in Australia, the
compass needle will not balance properly.
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Figure 34.2: Magnetic declination map for North Ameri€aedit: NOAA.
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34.4 Magnetic Reversals

As mentioned earlier, the Earth’s geographdarth pole is a magneti§ pole. This hasn’t always been the

case, though. The Earth’s magnetic field actually reverses direction at irregular intervals; the last such reversal
was abouf80,000 years ago. Figure 34.3 shows the history of the Earth’s magnetic field reversals going back
to the late Cretaceous period.

Exactly what causes these reversals of the Earth’'s magnetic field is unclear, although they have been
reproduced in computer simulations. It appears that the reversal process is quite sudden in geological terms
— it may take a few decades to a century or so for the magnetic field to reverse, after which it typically stays
fairly stable for thousands of years before reversing again. Since these magnetic reversals occur at irregular
intervals, we have no way of knowing when the next one will be. There is occasional speculation that the
polar wandering may indicate that a magnetic reversal may be going on now, but nobody knows for certain.

How do we know when magnetic reversals have occurred in the past? At the mid-Atlantic ridge in the
middle of the Atlantic ocean, the Earth’s crust is spreading apart, and new crust is formed as magma seeps up
into the crack. As it cools to form rock, this magma “locks in” the direction of the magnetic field at the time
it cooled. The result is a set of bands of magnetism on either side of the mid-Atlantic ridge, which records
the past magnetic field direction in very much the same way a tape recorder works (Fig. 34.4).

It is not clear what effect, if any, magnetic reversals have on life on Earth. The fossil record doesn’t show
any correlation between magnetic reversals and mass extinctions, so we can probably infer that any effect on
life is relatively minor.

34.5 The Magnetosphere

Although the Earth’s magnetic field resembles that of a magnetic dipole near the Earth, further away the
dipole becomes distorted due to the presence dfdker wind a “wind” of charged particles (mostly protons

and electrons) ejected by the Sun. The solar wind compresses the day side of the Earth’s magnetic field, and
draws the night side out into a lomgagnetotail The presence of the solar wind causes the Earth’s entire
magnetic field to be encapsulated into a structure callechtignetospherérig. 34.5).

The Earth’s magnetic field serves a very important biological role: it deflects potentially dangerous
charged particles from the Sun so that they move harmlessly around the Earth. Without the Earth’s magnetic
field, we would be bombarded by high-energy solar radiation, which could lead to severe health problems
and even death.

The magnetosphere is a fairly complex structure, with various plasmas and electric currents interacting
with the Earth’s magnetic field; these in turn produce magnetic fields of their own, etc. One of the goals of the
field of space physicts to investigate this complex structure of the magnetosphere in detail and to understand
how it all works.

34.6 The Aurora

In far northern latitudes, one may see the “northern lights’aunora borealison some nights, especially
during periods of high solar activity (Fig. 34.6). A similar phenomenon is visible in the southern hemisphere,
called theaurora australis

Auroree are produced when charged particles from the Sun reach the Earth’s magnetosphere. If the Sun’s
magnetic field lines are pointing southward at the Earth, they meet the Earth’s northward-pointing magnetic
field lines in an event callechagnetic reconnectiotWhen the Earth’s magnetic field lines reconnect with the
Sun’s magnetic field lines, the Earth’s lines drape back toward the magnetotail, carrying a load of charged
particles with them. A similar reconnection event in the magnetotail causes the magnetic field lines to snap
back like rubber bands, and carry a load of charged particles back toward the Earth, where the enter the polar
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Figure 34.3: History of geomagnetic reversals, going back to the late Cretaceous period. The scale on the
right shows time in millions of years ago. Black indicates the same polarity as the current field, and white is
a “reversed” field [12]. 155
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Figure 34.4: The direction of the past geomagnetic field is recorded in the Earth’s crust on either side of the
mid-Atlantic ridge, in much the same way as information is stored on a magnetic tape by a tape recorder.
(Credit: U.S. Geological Survey.
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Figure 34.5: The Earth’s magnetosphere. The leftmost curve ibdheshock a shock wave in the solar
wind. Themagnetopausghown here is the outer boundary of the Earth’'s magnetic field. The region between
the magnetopause and the bow shock is calledrtagnetosheathirhe Sun is outside the figure, to the left.
(Credit: NASA)
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Figure 34.6: Aurora borealis over Bear Lake, Eielson Air Force Base, near Fairbanks, Al&tedlit:
Joshua Strang, USAF, Wikipedia.
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regions. These energetic particles excite the oxygen and nitrogen atoms in the atmosphere, producing the
green and red lights of the aurora.

Figure 34.7 shows the aurora as seen by NASA's IMAGE spacecraft in ultraviolet light. The images are
taken above the Earth, looking down at one of the poles. You can see that the aurorse &anoralnoval
centered on the pole. The figure shows how the auroral oval grows and then dies out with time.

Similar auroral ovals have been observed on Jupiter and Saturn (Fig. 34.8).

Further information on the Earth’'s magnetosphere and aurorae is given in Appendix U.
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Figure 34.7: The aurora borealis as seen from above, looking down on the Earth. These images were taken
by the IMAGE spacecraft's Far Ultraviolet Imaging Systei@redit: NASA)
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Figure 34.8: Auroral oval at Saturn’s pole, taken in ultraviolet light by the Hubble Space TelesCopdit: (
NASA)
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Chapter 35

Magnetic Materials

Generally every material responds to a magnetic field in one way or another: materials may be weakly
repelled by a magnetiiamagnetisry) weakly attracted to a magneigramagnetisi or strongly attracted to
a magnetferromagnetisi Each of these phenomena is described below.

35.1 Diamagnetism

In adiamagnetienaterial, the atoms of the material have no magnetic dipole moment. The external magnetic
field alters the speed of electrons in their orbits around the atomic nucleus, which induces an internal magnetic
field that repels the external field.

35.2 Paramagnetism

In a paramagnetianaterial, the atoms of the material do have a magnetic dipole moment. The dipole mo-
ments of the atoms align themselves with the external magnetic field to create an internal field that is weakly
attracted to the external magnetic field.

35.3 Ferromagnetism

Ferromagnetic materials are strongly attracted to magnets, and can be made into permanent magnets. The
ferromagnetic elements are iron, cobalt, and nickel, along with the rare earth elements gadolinium and dys-
prosium.

In ferromagnetic materials, the material is divided into a numbenagnetic domainsach of which has
dimensions on the order of 1 mm or so. Within each domain, the atomic dipole moments are aligned in the
same direction. In an unmagnetized ferromagnetic material, each domain has its magnetic moment oriented
in a different (random) direction, so that the dipole moments of the material as a whole tend to cancel out. But
if a ferromagnetic material is exposed to an external magnetic field, the domains will tend to align themselves
with the external field, so that the material as a whole takes on a net dipole moment.

Unlike diamagnetic and paramagnetic materials, ferromagnetic materials respond nonlinearly when placed
in an external magnetic field. When a ferromagnetic material is placed within an external magnetic field, and
the external field is then removed, the field in the ferromagnetic materiahwiltlisappear; a remanent
magnetic field will remain, turning the material into a permanent magnet. The nonlinear response of a ferro-
magnetic material to an external magnetic field is calfigsteresighiss-tuh-REE-sygFig. 35.1).

161



Prince George’s Community College Introductory Physics I D.G. Simpson

Figure 35.1: Hysteresis in a ferromagnetic material. The vertical axis (lali&}ad the internal magnetic
field induced in the material, and the horizontal axis (lab&gdk the external magnetic field. Starting at the
origin (an unmagnetized material in no magnetic field) and following the pathAvititreasing, we find the
induced field in the material increases until it reaches a saturation level, labBglée&/hen the external field
E is removed, though, the path does not return to the origin; instead a remanenbfiglthé remanenck
remains in the material. The point labelgd is called thecoercivityof the material, and is the external field
needed to de-magnetize the materi@edit: Wikipediag ©GNU-FDL, Wikimedia Commons.)

35.4 Permanent Magnets

Permanent magnetse ferromagnetic materials that have a permanent magnetic field. They are manufactured
in a variety of materials; one of the most commoalisico, which is an alloy of aluminum, nickel, and cobalt
(hence Al-Ni-Co, or “alnico”), and has a shiny metallic appearance like steel. Many horseshoe and bar
magnets are made of this material, as well as heavy-duty handle magnets.

Ferrite or ceramic magnets are made of a brownish, brittle ceramic material mixed with ferric oxide
(F&0s). They are sometimes used as components in electronic circuits.

Rare-earthmagnets are made of alloys that include rare-earth elements (basically the “lanthanides” row
of the periodic table). Two kinds of rare-earth magnets are msatearium-cobalfoften used in stereo head-
phones and speakers), amebdymiumNeodymium magnets are made of an alloy of neodymium with iron
and boron (NdFe 4B), and are the most powerful permanent magnets made. Even very small neodymium
magnets are surprisingly powerful, and must be handled with care: two such magnets will attract each other
with a very strong force, and can easily shatter. Once stuck together, two neodymium magnets can be very
difficult to separate.

35.5 Curie Temperature

Once a ferromagnetic material has been magnetized by exposure to an external magnetic field, it may be
de-magnetized by heating it above a temperature callecCthie temperature Above this temperature,

the thermal motion of the atoms is sufficient to re-scramble the magnetic dipole moments of the magnetic
domains, and the material becomes de-magnetized. The Curie temperatures of ferromagnetic elements are
shown in Table 35-1.

162



Prince George’s Community College Introductory Physics I D.G. Simpson

Table 35-1. Curie temperatures for ferromagnetic elements.

Element Curie temperaturéQ)

Iron 770
Cobalt 1115
Nickel 354
Gadolinium 20
Dysprosium —188

35.6 Eddy Currents

A metal like aluminum is not ferromagnetic, so a sample of it cannot be picked up with a magnet the way
iron can. However, it can still be influenced by a magnetic field.

Suppose we put a piece of aluminum at the end of a light rod, so that it forms the bob of a pendulum. If
this pendulum is allowed to swing back and forth in the presence of an external magnetic field, something
surprising happens: the motion will be strongly damped and the pendulum will quickly stop swinging.

What's happening is that as the aluminum metal moves through the magnetic field, electric currents called
eddy currentsare induced in the aluminum; those electric currents in turn produce a magnetic field of their
own, in a direction that opposes the external magnetic field. The interaction of the external and induced
magnetic fields produces the observed damping motion.
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Chapter 36
Ampere’s Law

In Chapter 32 we introduced the Biot-Savart law, which gives the magnetic field produced by a short current
element, and allows us to find the magnetic field due to any arbitrary geometry of electric current. Another
equation that gives the magnetic field produced by an electric currAntjigre’s law, named, like the Sl unit

of electric current, for the French physicist AeeMarie Ampere (1775-1836) (Figure 36.1.).

Given an electric current, imagine drawing a closed curg around the current, so that the current
passes through a surface bounded(hy Now divide the curveC into small segmenta\/, and at each
segment, measure the component magnetic field that is parali¢| twe’ll call that magnetic fieldB . Then
Ampere’s law states that

> ByAl = pol. (36.1)

In other words, when we add together the produbta/ for all the segmenta/ that make up curve’, we
getuo times the current passing through the surface bounded. by

So what? The Biot-Savart law tells us the magnetic field produced by an arbitrary arrangement of electric
current; why do we need another law that tells us the same thing? Recall Gauss's law from Chapter 17: it
allows us to compute the electric field due to an arbitrary distribution of charge, although we could do the
same thing with Coulomb’s law. The difference is that Gauss’s law allows us to compute the electric field for
symmetricaktharge distributions very easily—much more easily than using Coulomb’s law. In these cases,
Gauss's law can save a great deal of work. But if we have an irregular distribution of charge, we may have
no choice but to rely on Coulomb’s law and compute the electric field “the hard way.”

Figure 36.1: Ande-Marie Amgere.
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The relationship between the Biot-Savart law and Anefs law is similar. Although the Biot-Savart
law will always work, it can be difficult to use. In some cases where the distribution of current is highly
symmetrical, Ampre’s law gives us a shortcut for finding the magnetic field that is much less work than
using the Biot-Savart law. For irregular arrangements of electric current, though, we may have no choice but
to “do it the hard way” and resort to the Biot-Savart law.

For example, let’s find an expression for the magnetic field due to a curiarsin infinitely long, straight
wire, at a perpendicular distanedrom the wire. To use Amgre’s law, we imagine drawing a circle of radius
r around the wire, so that the plane of the circle is perpendicular to the wire and the wire passes through the
center of the circle. We already know that the magnetic field due to the wire is in the shape of concentric
circles around the wire, so when we divide the circle into a number of small segiyéntge know the
magnetic fieldB will already be parallel taA/ for each segment. Therefore for an infinitely long, straight
wire,

> ByAl=B) Al =2nrB. (36.2)

Then by Amgere’s law,

27rB = pol, (36.3)
or
I
B = Moo (36.4)
2wr

in agreement with Eq. (32.8). We could have arrived at the same result using the Biot-Savart law, but it would
be much more work.
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Chapter 37

Faraday’s Law

In this chapter we’ll look at Faraday’s law, named for English physicist Michael Faraday (1791-1867) (Figure
37.1). Mathematically, Faraday’s law states that if the magnetictflgithrough a closed loop of wire changes
with time, then there will be an electromotive foré€(i.e. a voltage) induced in the wire given by

Adp
At

Here & is the induced electromotive forcé] is the number of turns of wire in the loop, ardd 5 is the
change in magnetic flux in tim&z. (Recall that the magnetic flux is given by = B - A.

The magnetic flux through the loop(s) of wire can be changed in several ways: the magneti¢ field
can change in magnitude with time; the magnetic field can change direction with time; the loop of wire can
change its orientation with time; the area of the loop can change with time; or some combination of these.

Faraday'’s law forms the basis of teéectric generatorwhich is responsible for producing most of the
electricity we use every day (except for electricity produced by batteries or solar arrays). Loops of wires are
turned inside a stationary magnetic field (or magnets may be turned inside stationary wires); this causes the
magnetic flux through the wires to change with time, creating an electric current. The turning motion may be
created by a water wheel, by geothermal steam, by steam created from burning coal or oil, or by steam created
by heat from a nuclear reaction. In effect, an electric generator converts mechanical motion into electrical
energy.

Faraday’'s law may also be used in reverse: electrical energy may be converted into mechanical motion.

€=-N (37.1)

Figure 37.1: Michael Faraday.
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Figure 37.2: Motional emf.

This creates aslectric motor a device that is familiar in such household appliances as vacuum cleaners and
electric dryers.

37.1 Lenz's Law

Faraday's law gives the magnitude of the induced electromagnetic force (emf) created by a changing magnetic
field. Thedirectionof the induced electromotive force and current may be found from a statement known a
Lenz’s lamnamed for the 19th century Russian physicist Heinrich Lenz):

The emf and induced current are in such a direction as to tend to oppose the change which
produced them.

37.2 Motional EMF

As an example to illustrate both Faraday’s law and Lenz’s law, consider the situation shown in Figure 37.2.
Two parallel conducting rails separated by a distah@e connected on their left end by a resistor. A
conducting bar is placed across the rails, and the entire apparatus is placed in a uniform magnétic field
pointing into the page. Now move the conducting rail to the right with velagithis will increase the area
enclosed by the circuit, which will increase the magnetic flux inside the circuit. By Faraday’s law, this will
induce an electromotive force (voltage) in the circuit. An emf induced in this way is calididnal emf

We can find the magnitude of the induced emf using Faraday’s law. At a given instant, there is dn area
enclosed by the circuit, formed by the rails, resistor, and conducting bar. When the bar is moving at velocity
v to the right, then in a time interval: the area increases by an amolwAz. The rate at which the area
changes is then

AA lvAt
_ . 7.2
A ar W (37.2)

Since the magnetic flubp = BA, we have

=B~ = Blv. (37.3)
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Therefore by Faraday’s law, the magnitude of the induced electromotive force is

_ Adp

= Blv. 37.4
At fv (37.4)

€]

We can deduce thdirection of the induced current by using Lenz’s law, which says that the induced
current must be in such a direction that the magnetic field it produces will tend to oppose the change in
magnetic flux. If the conducting bar moves to the right, then the magneticifpiis increasingwith time.
Therefore the induced current mustdminterclockwisegbecause, by the right-hand rule, a counterclockwise
current will produce a magnetic field inside that circuit that pauiisof the page, which will tend to decrease
the magnetic flux. In other words, the magnetic flux “wants” to remain relatively constant; if the moving bar
increases the magnetic flux through the circuit, then the induced current will be in a direction to decrease it,
so that it tries to stay as constant as possible.

Another way to determine the direction of the induced current is via the Lorentz force. The conducting
bar is full of free (negatively charged) electrons. As the bar moves across the magnetic field, the Lorentz force
on each electron will b& = —ev x B; sincev is to the right and is into the page, this meafswill be
downward so the electrons will move downward. The conventional current moves opposite the direction of
the electrons, so the current in the bamfsvard and the current in the circuit is therefore counterclockwise.
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Chapter 38

Maxwell's Equations

The fundamental equations of classical electricity and magnetism are four equationd/zailedll's equa-
tions named after Scottish physicist James Clerk Maxwell (1831-1879) (Figure 38.1.). The four equations
are:

1. Gauss's law(Chapter 17) describes the electric field created by electric charges.
2. Gauss's law for magnetisf€hapter 32) states that there are no magnetic monopoles.
3. Ampere’s law(Chapter 36) describes how a time-varying electric field creates a magnetic field.

4. Faraday'’s law(Chapter 37) describes how a time-varying magnetic field creates an electric field.

Figure 38.1: James Clerk Maxwell.
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Chapter 39

Inductance

The space surrounding an electric circuit contains a magnetic field due to the electric currents running in the
circuit. By the Biot-Savart law, the magnetic fldxg is proportional to the current:

®p = LI. (39.1)

Here the proportionality constantis called thenductance Of course, the magnetic flux at a given pointin
space depends on a number of factors besides the current: it also depends on the distance from the current,
the permeability of free space, etc. The inductahcean be thought of as all these other factors lumped
together.

The SI unit of inductance is thkenry (H), named for the American physicist Joseph Henry. Since
magnetic flux is measured in webers and current in amperes, Eq. (39.1) indicates that one henry is equal to
one weber per ampere: 1H 1 Wb/A.

39.1 Solenoid Inductor

One very common device for introducing inductance into an electric circuit isalemoid which is a coil of
wire wrapped on an insulating cylinder. As discussed earlier in Section 32.9, the magnet® fislidie a
solenoid carrying a curredtis given by

B = ponl, (39.2)

wheren = N/{ is the total number of turns of wir/ divided by the lengtif of the solenoid. We can
find an expression for the inductanéeof a solenoid by starting with this equation f&r. Let A be the
cross-sectional area of the solenoid, andVebe the total number of turns of wire. Then the magnetic field
passes througN turns, each of which has area The total area through which the magnetic field passes is
thereforeN A, and so the magnetic flux is

®p = B(NA) (39.3)
= uoNnlA (39.4)
= pon’IAL. (39.5)

The inductancd is then found to be

(o}
L= TB (39.6)
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so the inductance of a solenoid is

A
L = pon*Al = MoNZZ- (39.7)

Note that the inductance, like the capacitance, depends only on factors involving the geometry of the inductor:
its length?, cross-sectional are4, and number of turns of wirdy/.
39.2 Inductors in Series and Parallel
Inductors connected in series and parallel follow the same equations as resistors.
Several inductors connected end-to-eimdsgrie3 have an equivalent inductance equal to the sum of the

individual inductances:

L= L; (39.8)

L 4Lyt Lt (39.9)

If they are connecteh parallel, the the equivalent inductance is the reciprocal of the sum of the reciprocals
of the individual inductances:

1 1
— =Y = (39.10)
L, “L
111
L T ST SR 39.11
L LTt ( )

Note the following points. For inductors conneciaderies
» The equivalent inductance will be bigger than the largest inductance in the series combination.

+ If one inductor in the series combination is much larger than the others, the equivalent inductance will
be approximately equal to the largest inductance.

* M equal inductord. connected in series have an equivalent inductandé bf
For inductors connected parallel:
» The equivalent inductance will be smaller than the smallest inductance in the parallel combination.

« If one inductor in the parallel combination is much smaller than the others, the equivalent inductance
will be approximately equal to the smallest inductance.

* M equal inductord. connected in parallel have an equivalent inductande/d#f .

39.3 Magnetic Materials in Inductors

As shown by Eq. (39.7), the inductance of a solenoid can be increased by increasing the cross-sectional area
of the plates, or by increasing the number of turns of wire. Another way to increase the inductance is to insert
a magnetic material inside the solenoid; this will cause the inductance to increase by a facior of

A
L=Kpn MONZZ, (39.12)
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whereK,, is called theelative permeabilityf the material. The combination
p = Kmpto (39.13)

is called thepermeabilityof the material. Since the relative permeabilkly, is typically a number very close
to 1, it is convenient to introduce tmeagnetic susceptibility ,,, defined by

Km =1+ ym. (39.14)

39.4 Energy Stored in an Inductor

An inductor can be thought of as a device that stores energy in the magnetic field between inside the coils of
the inductor. Using the calculus, it can be shown that the potential eldesggred in the magnetic field of
an inductor of inductancé carrying current, is given by

U=3LI (39.15)

Theenergy densitenergy per unit volume) of an inductor can be found by using the solenoid as an example.
From Eq. (39.7), the total potential energy stored in a solenoid (of platedaaea separatiod) is

U=1iLr? (39.16)
= Tuon>ALI? (39.17)

Since the magnetic field inside the solenoidis= ponl, this gives

1 1
U = =(nonl)*(A)— (39.18)
2 Ko
= liBZAe (39.19)
2 po

Since the volume inside the solenoid4$, the energy density = U/(A¥), or
u=—B". (39.20)

Compare this result with the analogous equation for a capacitor, Eq. (26.16):

u=LegE>. (39.21)
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Chapter 40

LR Circuits

By connecting an inductor and a resistor together in series, we creaf aircuit In an LR circuit, energy

is stored in the magnetic field of the inductor, and the resistor controls the rate at which current reaches the
inductor. The characteristic time scale required to create a full-strength magnetic field in the inductor is called
thetime constant, and is given by

r= (40.1)
If the inductancel. is in henries and the resistan®eis in ohms, then the time constantvill have units of
seconds.

Figure 40.1 shows an LR circuit. The circuit includes a battery, so that when the sWitclelosed,
current flows through the resistor and inductor, and begins building up a magnetic field inside the coils of the
inductor. The resulting magnetic field will be in a direction that, by Lenz’s law, will tend to oppose changes
in the direction of the current, so that it becomes harder to increase the current. Once an amount of time has
gone by that is large compared to the time constaat L /R, the magnetic field in the inductor will have
essentially reached its maximum value, and the current will be constant.

Figure 40.2 shows the resistor voltage, inductor voltage, circuit current, and inductor magnetic flux in the
LR circuit as a function of time. The switchi is closed at time = 0. Shortly afterwards, a small current
flows through the circuit, the voltage across the resig@ equal zero, and the voltage across the inductor
is equal to the battery voltagé. Attimet = L/R after the switch is closed, the voltage across the resistor

R

MA—

I+

Figure 40.1: An LR circuit.
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Figure 40.2: Plots vs. time for an LR circui)(Resistor voltage vs. timeb) inductor voltage vs. time]
circuit current vs. time; anddj magnetic flux in the inductor vs. time. The switShs closed at time = 0.

has increased tb — 1/e = 0.632 of the battery voltage; the voltage across the inductor has decreased to
1/e = 0.368 of the battery voltage; the current has increased to1/e of its maximum value; and the
magnetic flux in the inductor has increased te 1/e of its maximum value.

Mathematically, the voltage across the resistgr the voltage across the capaciigs, the current in the
circuit /, and the magnetic flusp in the inductor can be shown to be

Vr(t) = V(1 —e7'/7) (40.2)
V() = Ve 'l (40.3)

I1(t) = (V/R) (1 —e7'/7) (40.4)
Dp(1) = (LV/R) (1 —e7'/7) (40.5)

As timet — oo, current will reach a maximum value = V/R, the magnetic flux in the inductor will
have reached its maximum vallid’/ R, the voltage across the resistor will equal the battery voltage, and the
voltage across the inductor will be zero.
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Chapter 41

LC and LCR Circuits

We've previously looked at the RC circuit (a resistor and capacitor connected to a battery) and the RL circuit
(a resistor and inductor connected to a battery). The two circuits have complementary behavior: in the
RC circuit, the current starts out with a maximum value at the instant the switch is closed and decreases
exponentially toward zero. In the RL circuit, the current starts out small the instant the switch is closed,
increases with time, and eventually levels off to its maximum value.

41.1 LC Circuits

By connecting a charged capacitor and an inductor together, we create something dalledranit (Figure

41.1). In an LC circuit, the complementary behavior of the capacitor and the inductor give some interesting
results. As the capacitor discharges, a current is created in the circuit, which starts to build a magnetic field
in the inductor. As time goes on, the current will increase, but start to level off because the inhibiting effect
of the inductor: the inductor will create magnetic field an induced current in a direction that will oppose the
increase in the magnetic field in the inductor. By the time the capacitor has fully discharged, the magnetic
field in the inductor will have reached its maximum value.

At this point the current would stop, were it not for the presence of the magnetic field in the inductor.
Once the capacitor has fully discharged, it can no longer provide current to the inductor, and the magnetic
field in the inductor begins to collapse. But this change in the magnetic field induces a current in a direction
that opposes the collapse in the magnetic field—in other words, in a diction that will continue the current in
its original direction, so that the capacitor will begin to charge with the opposite polarity that it originally had.
By the time the magnetic field in the inductor has completely collapsed, the capacitor will be fully re-charged
(with opposite its original polarity), and the process begins again in reverse. Current will how begin to flow in
the opposite direction, creating a magnetic field in the inductor whose polarity is opposite what it was before.
The process will continue as before (but in the opposite direction) until the capacitor is fully charged with its
original polarity, and the cycle begins again, repeating over and over.

The result is an electrical form of simple harmonic motion, with energy moving back and forth between
the electric field stored in the capacitor and the magnetic field stored in the inductor. It can be shown that this
oscillation has angular frequency

1
0= (41.1)
whereL is the inductance of the inductor agdis the capacitance of the capacitor. The period of oscillation
is thereforel” = 27 /w,or

T =27xvLC. (41.2)
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Figure 41.1: An LC circuit.
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Figure 41.2: Plots vs. time of LC circuit currefit capacitor voltagd/c, inductor voltagel;,, capacitor
charge@, and inductor magnetic flusg. The current and inductor flux are in phase with each other, as are
the voltage and charge on the capacitor. The voltages on the capacitor and indut8oraret of phase.
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Figure 41.2 shows plots vs. time of the circuit current, voltages across the inductor and capacitor, charge
on the capacitor, and magnetic flux in the inductor. For these platssdi (the instant the switch is closed),
the capacitor in Fig. 41.1 is initially fully charged with the top plate positive. Positive current is taken to be
clockwise. All quantities vary sinusoidally with the same period, but may be shifted in phase with respect to
each other. If the initial charge on the capacito@ig, then the amplitudes for each quantity will be as shown
in the following table:

Quantity Symbol  Amplitude
Current 1 Qo
Capacitor voltage Ve Qo/C
Inductor voltage Vi Lw?Qyq

Capacitor charge 0 Qo
Inductor mag. flux  ®p LwQy

Energy of an LC Circuit

In a simple harmonic oscillator formed by a mass on a spring, energy is continuously sloshing back and forth
between kinetic and potential energy, with the sum of the two (the total energy) being constant. Similarly,

in an LC circuit, energy is continuously sloshing back and forth between electric energy in the capacitor and
magnetic energy in the inductor. The electric energy in the capacitor is given by Eq. (26.12):

1 Q2
U = - 2 41.3
‘T 2cC (41.3)
From Figure 41.2 and the above table, we have the charge on the capacitor (lower plate) as a function of time
is given by

Q(t) = —Q¢ coswt. (41.4)
and so the electric enerdy, as a function of time is
Ue(t) = 9 cos wt. (41.5)
2C

Similarly, the magnetic energy in the inductor is given by Eg. (39.15):
1

Un = 5L12, (41.6)
where the current at timeis
I(t) = wQp Sinwt. (41.7)

Substituting this expression fdft) into the formula forU ,,, gives an expression for the magnetic energy of
the inductor as a function of time:

L 22
Un(t) = Z2°90 girp o (41.8)
2
= ZQ_CO sin? wt, (41.9)
where we have used the fact th#t = 1/LC. The total energy/ is then

U=U,+ Up (41.10)

03 03 o, _ O3
= =0 =0 = =9 41.11
e cog wt + SC Sir et =22, ( )

which is a constant, as expected.
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Figure 41.3: An LCR circuit.

41.2 LCR Circuits

If a resistor is placed in an LC circuit, we have B8R circuit (Fig. 41.3). The effect of the resistor is to
introduce damping into the oscillation of the circuit: while an LC circuit oscillates like a simple harmonic
oscillator, an LCR circuit behaves likedampecharmonic oscillator. Depending on the value of the resistance

R, the current in the circuit may be underdamped, overdamped, or critically damped, just as with the damped
harmonic oscillator.
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AC Circuits

All of the electric circuits we have seen so far dieect current(DC) circuits. This means that the current is
always traveling in the same direction at each point in the circuit. This is in contraietoating current
(AC) circuit, in which the direction of the current alternates back and forth between one direction and another.
Batteries provide direct current; the electric outlets in the walls of your house provide alternating current.
Capacitors and inductors are electrical components that are more typically seen in AC circuits than in DC
circuits. An AC circuit containing resistors, capacitors, and inductors can be analyzed using an interesting
mathematical trick: we simply treat all three components as if they w@mplex-valued resistorshen use
all the methods we used earlier to analyze DC circuits with resistors (but with complex arithmetic). This
complex-valued resistance is callimpedanceand is given the symbdt. Impedance has the same units as
resistance, ohmgy).
The value of the complex impedance for a resistor, capacitor, and inductor is shown in the table below. In
the table, the symbaoj stands for the imaginary unitj.e. j = v/—1. The variablef in the table refers to
the frequency of the voltage source attached to the component.

Component Impedance

ResistanceR Zr =R
Capacitanc& Zc = W

InductanceL Zp = j2nfL

We interpret the final results of the analysis (complex numbers) as giving information about both the
amplitude and phase of the signal at any point in the circuit.

1In most areas of science, mathematics, and engineering, the siiishaed for »/—1. But in electrical engineering,is used for
current; so to avoid confusion, electrical engineers wyitastead ofi for +/—1.
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Example.Suppose a 18 resistor, a 30QF capacitor, and a 4 mH inductor are connected in series to a
sinusoidal voltage source of frequency 60 Hz. Then the equivetgr@danceof the series combination is

Z=Zr+Zc+ ZL

+ j2nfL

1
j27(60 Hz)(300 x 10-6 F)
= (15— 7.3340/) Q

1
=R
+ j2rfC

=(159Q) +

+ j27(60 HZ)(4 x 1073 H)

where we have used the identity; = —;.

42.1 Format Wars of the 19th Century: AC vs. DC

Edison (DC) vs. Westinghouse (AC)
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Memristance

We have seen the three basic components of analog electronics are the resistor, capacitor, and inductor. Let's
arrange the defining equations for resistaR¢ceapacitancé&’, and inductancé. into a2 x 2 table:

R:WI‘L:@MI

c'=v/Q ‘

(We'll use the reciprocal of capacitance (elastance) to make the pattern clear.) Notice the pattern: in
the first row the current is in the denominator, and in the first column the voltage is in the numerator. You
might guess that there could be another combinatiog/ Q, to fill in the lower-right corner. This idea led
American electrical engineer Leon Chua to predict the existencdamfrth analog electronic component in
1971, thememristor ThememristanceM = ®p/Q completes the table:

R=V/I ‘L:@M!

1 =v/Q ‘ M =a3/0

Memristance has the same units as resistance, aftns (

The memristor was finally discovered during experiments with molecular electronics at the Hewlett-
Packard laboratories in 2008. It behaves like a resistor with a “memory” (hence the name): when voltage is
removed from a memristor, it still “remembers” how much voltage was last applied to it, and for how long.
The resistance increases when the current flows through it in one direction, decreases when current flows in
the opposite direction, and remains unchanged when no current flows through it.

Practical applications are still being discussed, but possibilities include applications to non-volatile com-
puter memory, including computers that could remember their previous state when being powered on, thus
avoiding the usual lengthy boot-up process.

1See IEEE Spectrum http://spectrum i eee. or g/ seni conduct or s/ desi gn/ t he- nyst eri ous- nenti st or
(May 2008).
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Chapter 44

Electromagnetism

44.1 Electromagnetic Waves

As mentioned in Chapter 37, the theory of classical electricity and magnetism is based on four equations
calledMaxwell’'s equationsnamed for the 19th-century Scottish physicist James Clerk Maxwell. Around the
time of the American Civil War (1865) Maxwell collected the four equations together, and realized that there
was a crucial term called thdisplacement currenissing from Amgre’s law that was required to make it
self-consistent. After adding this term to Aeme’s law, Maxwell was able to show that the four equations
could be combined to deriveveave equatiopwhich describes a wave moving with speed

! = ¢ =299,792,458 m/s, (44.1)
VEéolo
which is the speed of lightin vacuum. This is a remarkable result: by combining equations that summarized
the results of laboratory experiments on electric and magnetic fields, Maxwell was able to demonstrate that
light is anelectromagnetic wayehus connecting the fields of electromagnetism and optics.

Specifically, the classical view of electromagnetic waves (including visible light) is that it consists of
a transverse electric wave; the electric wave in turn creates a perpendicular magnetic wave, which in turn
produces the electric wave, and so on. In other words, light (and other electromagnetic waves) consist of
electric and magnetic waves that sustain each other as they propagate through space, so that no material
medium is required. (Fig. 44.1.) Light can propagate in a vacuum.

Visible light is just one of many forms of electromagnetic wave. Electromagnetic waves are categorized
(somewhat arbitrarily) according to their wavelength, as shown in Table 44-1. It's important to realize,
though, that all these waves are really the same thing: they differ only in their wavelength, and the different
names we give them are for our own convenience.

Table 44-1. Electromagnetic waves and their wavelengths. Wavelength increases going down the table from
top to bottom; frequency and energy increase going up the table from bottom to top.

Wave Wavelengths
Gamma rays < 0.1 nm (shortest; highestf, E)
X-rays 0.1-10nm
Ultraviolet 10 -400 nm
Visible 400—-700 nm
Infrared 0.7-10Qm
Submillimeter 0L -1 mm
Microwaves Imm-1m
Radio >1m (longest; lowest f, E)
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Figure 44.1: Diagram of an electromagnetic wave. The electric and magnetic vectors are perpendicular, and
they peak together and go to zero together. The wave travels Ehth direction (to the right in this figure).
(Credit: NOAA)

Gamma raysare the shortest-wavelength, highest-frequency, highest-energy waves. They are generally
associate with nuclear processes (such as nuclear fission and fusion), and with other high-energy reactions
such as matter-antimatter annihilation.

X-rays are familiar for their medical uses. Human tissue is transparent in X-rays, but human bone is
opaque. By viewing an image of the human body in X-rays, one may create images of the human skeleton.
X-rays are generally less energetic than gamma rays, and are generally produced by atomic reactions.

Ultraviolet light is light whose wavelength is shorter than can be seen by the human eye (although some
animals can see in ultraviolet light). The Sun emits a significant amount of ultraviolet light, which can cause
sun tans and sunburns in humans.

Visible lightis light whose wavelengths are visible to the human eye. Violet light is the shortest wave-
length (about 400 nm) and highest frequency and energy; red lightis the longest wavelength (about 700 nm)
and lowest frequency and energy. The order of the colors of visible light (from longest to shortest wavelength)
is given by the mnemonic “ROY G. BIV”: Red, Orange, Yellow, Green, Blue, Indigo, Violet.

Infrared lightis light whose wavelength is longer than can be seen by the human eye—although some
animals like the pit viper can see in infrared light. Bodies that we consider “warm” (say, somewhat above
room temperature) emit significant amounts of infrared light. For example, the human body can be seen to
be “glowing” in infrared light, although it does not glow significantly in visible light. This is the principle of
the night-vision scope, which is a device that converts infrared light to visible wavelengths, so that the user
can detect this glowing of warm bodies.

Submillimeter waveare electromagnetic waves whose wavelength is between 0.1 to 1 mm. These waves
are of some astronomical interest, and have a few applications in medicine.

Microwavesare electromagnetic waves whose wavelengths are typically measured in centimeters. Mi-
crowaves are familiar in their use in microwave ovens: the oven emits microwaves designed to resonate with
the water molecules in food, thereby “shaking” the water molecules and heating the food. Microwaves also
find uses in communications (high-frequency radio).

Radio wavesare the longest-wavelength (>~ 1 m), lowest-frequency, lowest-energy electromagnetic
waves. They are used in radio astronomy and in radio communications. These wavelengths includes AM and
FM radio and broadcast television. (FM radio lies between TV channels 6 and 7.)
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Chapter 45

Radio

Electromagnetic waves can beodulatedo carry information; this means that the pure sinusoidal electro-
magnetic wave is modified in some fashion to include information such as voice or music. There are two
common methods for modulating a radio wave:

» Amplitude modulationHere the frequency of the wave is constant, butahmeplitudeof the wave is
modified to carry information. In a sense, the basic sinusoidal radio frequencga(thier wave is
multiplied by the sound wave, and the superposition of the two is transmitted by a device called the
transmitter Another person has a device calletbaeiverthat extracts the audio (sound) information
and sends it to a speaker or headphones.

» Frequency modulationHere the amplitude of the wave is kept constant, butfibguencyis varied
slightly about the carrier wave frequency in order to carry the audio information. Frequency modulation
has the advantage of being less susceptible to noise from phenomena such as lightning discharges, but
requires a more complex transmitter and receiver.

Radio is used in a number of ways:

* AM Radio.So named because it uses amplitude modulation, AM radio is a commercial service that is
used to broadcast music, talk, news, sports, etc. It first appeared around 1920. Stations broadcast on
frequencies between 520 kHz and 1700 kHz, separated by 10 kHz. During the day, AM stations may
travel a few hundred miles, while at night they may travel across the continent by reflecting from the
Earth’s ionosphere.

Some AM stations broadcast at low power, or may broadcast only during the day. A few stations (Table
45-2) broadcast at the maximum allowed power (50 kW) day and night, and may be heard around the
country at night.

* FM Radio.So named because it uses frequency modulation, FM radio is a commercial service whose
content is similar to that of AM radio. Stations broadcast on frequencies between 87.9 MHz and 107.9
MHz, separated by 0.2 MHz. FM radio frequencies are in a gap between television channels 6 and 7.
FM radio is less susceptible to “static” noise than AM, but the signals don't travel far——typically just
a few dozen miles at most.

» ShortwaveMany countries broadcast an international service around the world in various languages.
These stations broadcast on so-called “shortwave” frequencies between 1800 kHz and 30 MHz, and
use amplitude modulation. At these frequencies, radio signals can bounce off of the Earth’s ionosphere
and travel around the world.
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Shortwave broadcast content typically includes news and cultural features from that country, and often
propaganda as well. Shortwave stations are not assigned a single fixed frequency the way our AM and
FM stations are. Instead, they broadcast in blocks of an hour or so in length, with each block at a
specific time and frequency, and in a specific language directed to a particular part of the world. And
the broadcast schedules are often changed throughout the year. For this reason, a printed or on-line

shortwave broadcast guide is helpful for finding times and frequencies of English-language broadcasts
directed to North America.

Some of the best known shortwave stations are:

— Voice of AmericgUnited States)

Radio Canada Internationdl(Canada)

BBC World ServicgUnited Kingdom)

Radio Deutsche Wellgermany)

Radio Sputnik(formerly Radio Moscovand\Voice of RussigRussia)
Radio Australid (Australia)

China Radio Internationgfformerly Radio PekingChina)

Just very recently, a number of these stations (marked with an asterisk) have stopped broadcasting by
radio, in favor of Internet service.

* Television.Television signals are sent in much the same way as radio signals, with information about
the television picture being sent along with the audio. Television signals were encoded by frequency
modulation until the switch to digital television in 2009. Television channels are broadcast in several
contiguous “blocks” of frequencies, as shown in Table 45-1. Each television channel is 6 MHz wide.
Originally, with analog television this was to to allow room for both the video signal (lower part of the
band) and audio signal (upper part of the band). Now with digital television, each channel requires less
“bandwidth”, and so television stations often divide their 6 MHz channel into several sub-channels,
each carrying different programming.

Table 36-1. Television channel frequencles.

Channels Frequencies (MHz)

2-4 54 -72

5-6 76 - 88
7-13 174 - 216
14 - 36 470 - 608
37-61 614 - 764
62 - 64 776 -794

* Cellular telephoneCellular telephone transmissions occur over a range of frequencies lying between
800 MHz and 2700 MHz. At these high frequencies, radio signals do not travel very far, so cellular tele-
phone relies on a nation-wide system of “repeater” transmitters, which receive signals and re-transmit
them until they reach their destination. (The range of each repeater is the “cell” of cellular telephone.)

» Amateur radio.Radio amateurs have access to a number of blocks of frequency all over the radio fre-
guency spectrum. They use these for informal hobby chatting (caltgthewing, emergency commu-
nications, and experimenting with radio technology. Transmitting on the amateur radio bands requires
an amateur radio license from the Federal Communications Commission.

1There is no television channel 1. Channel 1 existed at one time, but was eliminated by the Federal Communications Commission in
1948 as part of negotiating competing interests in the radio frequency spectrum.
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« Citizen’s Band radio.This is a radio service available for use by anyone, with no license required.
Citizen’s Band (or “CB”) radio enjoyed a huge (but brief) boom of popularity during the 1970s, when
it was often used as a mobile radio service by drivers of cars and trucks. Today CB radio is much less
popular, but is still used by truck drivers.

» Other usesVarious other radio services are available for use by police, fire, military, taxicabs, maritime
and aircraft communications, etc.

Table 45-2. Some 50 kW clear-channel AM radio stations that can be heard from the east coast of the U.S.

f (kHz) Call Sign City
640 KFI Los Angeles
650 WSM Nashville
700 WLW Cincinnati
710 WOR New York
720 WGN Chicago
750 WSB Atlanta
760 WJIR Detroit

770 WABC  New York
780 WBBM  Chicago

830 WCCO  Minneapolis
840 WHAS  Louisville

850 KOA Denver

870 WWL New Orleans
880 WCBS New York
890 WLS Chicago

1020 KDKA  Pittsburgh
1030 WBZ Boston

1040 WHO Des Moines
1060 KYW Philadelphia
1090 WBAL  Baltimore
1110 WBT Charlotte
1120 KMOX  St. Louis
1160 KSL Salt Lake City

45.1 The lonosphere

The distance that radio waves can travel depends strongly on their frequency. At some frequencies, radio
waves are able to reflect off of a layer of ionized gas in the Earth’s atmosphere calieddbphere The
ionosphere actually consists of three layers, callgdE, and F.2 The lowest layer is thé layer, above
that is theE layer, and the highest layer 1.3 During the day, sunlight ionizes these three layers, turning
them into a plasma. At night, when the sunlight is gone, the ions irDtteend E layers re-combine with
the free electrons, and these layers become neutral FTlager is high enough that the gas is at a very low
density—Ilow enough that the gas particles do not have time to collide and re-combine with the electrons, and
the F layer remains ionized all night.

Radio waves interact with the ionosphere in different ways depending on their frequency. Shortwave
radio frequencies, for example, are able to travel throughthend E layers to reach thé layer of the

2Layers of the ionosphere were lettered starting wittto allow 4, B, andC to be used for possible other layers that might be
discovered below th® layer. No such layers exist, though.
3The F layer splits into two layersK; andF») during the day, and merges back into a single layer at night.
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ionosphere throughout the day and night. After reachingithayer, the signals the reflect and bounce back
to the ground, where they reflect again back toward the ionosphere, and so on. With multiple “hops,” like
this, the radio waves can travel around the globe.

The interaction of AM radio waves is a bit different. During the night, AM radio waves can readh the
layer and travel like shortwave radio, making multiple hops across the globe. But during the day, AM radio
waves are absorbed by the ionizBdayer and cannot reach tifé layer. In effect, theD layer acts as kind
of a “curtain” that is pulled in front of thé" layer during the day. The net effect is that AM radio signals can
travel great distances at night, but much shorter distances during the day.

45.2 The Crystal Radio

We'll examine the operation of a simple radio receiver by looking in detail at the design of a sirpgial
radio receiver This is one of the first types of radio receiver, and has been in use since the 1920s. A crystal
radio can be built from just a few spare parts—in fact, soldiers during World War Il would often build a
variety of crystal radio called a “foxhole radio” from wire, scrap wood, a razor blade, toilet paper tube, a
safety pin or pencil lead, and headphones.

One remarkable feature of a crystal radio is that it requir@datteries it runs entirely on the power
provided by the transmitter. Once you build a crystal radio, you can run it forever for free.

Tuning Circuit

The crystal radio circuit begins with a tuned LC circuit (Fig. 45.1(a)). The LC combination is designed to
oscillate at the same frequency as the AM radio signal to be received.

Recall from Chapter 41 that an LC circuit with inductarficeand capacitanc€ oscillates with angular
frequency

1

Since f = w/2m, the frequency (in hertz) is

1

f:Zn«/ﬁ.

(45.2)

Antenna and Ground

Now let's add amantenna(or aerial) and ground to the tuned LC circuit (Fig. 45.1(b)). The antenna is
typically just a long wire (50-100 ft.) strung outdoors, up into a tree or other tall structure if possible.
The ground connection is a connection to a long conductor, typically the Earth itself. A traditional ground
connection is a connection to a copper pipe driven into the ground, or a connection to a copper cold-water
pipe (which also goes to the ground).

The antenna is a large conductor that picks up radio signals of all frequencies and feeds them to the LC
circuit. But the LC circuit only resonates with those input signals that are at the frequency given by Eq.
(45.2). The ground connection essentially gives the current someplace to go; without a good ground, the
current would get “backed up” in the circuit, and the radio would not operate.

The Crystal

Now that we have a circuit resonating at the frequency of the carrier wave (the frequency at which the radio
station is transmitting), we need to extract the audio signal. In a crystal radio, this is donedidilieaa
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Figure 45.1: Construction of a crystal radio receiver. (a) Tuned LC circuit. (b) Addition of an antenna and
ground to drive the LC circuit. (c) Addition of a diode to rectify the signal and extract the audio. (d) Adding
headphones completes the radio circuit — the headphones convert the electrical signal from the diode to
sound. (e) Making the inductor or capacitor variable allows the radio circuit to tune different stations. Shown
here is a variable inductor.
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Figure 45.2: A galena crystal with cat’s whisker. (©GNU-FDL,Wikimedia Commons.)

kind of one-way valve that allows current to travel in one direction, but not another. By connecting a diode to
the tuned LC circuit (Fig. 45.1(c)), we get just one-half of the resonating signal. That is, the incoming signal
will cause the LC circuit to oscillate back and forth with an alternating current, where the current sloshes
back and forth, going clockwise, then counterclockwise, then clockwise again, etc. The diode allows only
the current going in one direction to pass, which allows us to pick up the audio signal that is modulated on
the carrier wave.

If we were to connect headphones directly to the LC circuit with no diode, we would hear nothing. The
LC current sloshing back and forth would average out to zero, so we would hear no audio. Adding the diode
leaves a net non-zero signal coming out of the diode, which has the audio signal in it.

In a traditional crystal radio of the 1920s, a simple diode was constructed from a crystal of the mineral
galena which is a heavy silvery metallic mineral consisting of crystalline lead sulfide (PbS). The galena
crystal was touched with a fine wire calle@¢at’s whisker The cat's whisker was attached to a movable arm
so that it could be placed in contact with different areas of the galena crystal surface (Fig. 45.2). At some
point you would find a “sensitive” area of the crystal that would allow the whole assembly to act as a diode,
and conduct current in only one direction.

In building a “foxhole radio,” soldiers found that galena crystals were very difficult to come by. Instead,
they would substitute a razor blade, and used a safety pin or pencil lead as the cat's whisker. This was
somewhat less satisfactory than a galena crystal, but was often adequate for picking up a station or two.

In more modern crystal radios, we often replace the galena crystal and cat’s whisker with a germanium
diode (called @ N34 germanium diode This kind of diode contains a tiny crystal of germanium metal and
tiny cat’s whisker wire already placed so that the device will always conduct current in just one direction.

Headphones

Finally, we connect a set of headphones or crystal earpiece to the circuit (45.1(d)). This takes the signal
coming from the diode and uses it to drive the vibration of a diaphragm that produces sound waves that can
be heard by the ear.

Variable Tuning

The radio built so far can tune only one station, whose frequency is at the resonant frequency of the LC
circuit. By making either the inductor or the capacitor variable (Fig. 45.1(e)), the circuit can be made to tune
different stations. Typically we choose an inductor with= 250 uH and a capacitor witl = 365 pF,

which gives a resonant frequency (Eq. 45.2)fof= 527 kHz, which is at the lower end of the AM radio
band. If the inductor can vary between 0 and 2%0or the capacitor can vary between 0 and 365 pF, then the
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Figure 45.3: Simple radio transmitter for sending Morse code.

resonant frequency of the LC circuit can vary between a lowest frequency of 527 kHz and an upper frequency
of, in theory, infinity (if L or C is zero).

Other Issues

The radio receiver described here is a very simple one, but will allow you to pick up strong nearby signals.
There are many ways to improve on this circuit. For example, a carefully designed antenna can allow the radio
to pick up weaker stations. Adding more sophistication to the circuit can increasdeitsivity allowing you

to separate stations that are close together in frequency.

45.3 The Radio Transmitter

Suppose you were stranded on a deserted island, and needed to build a simple radio transmitter to signal
passing ships or nearby islands so that you could be rescued. How could you do it?

A radio transmitteris a device that creates modulated radio waves that can be picked up by a receiver
such as the crystal radio receiver described earlier. A very simple radio transmitter can be constructed from a
battery, acrystal oscillator and some wire.

A crystal oscillator is a circuit at the heart of which is a small crystal of quartz—a transparent mineral
made of silicon dioxide (Sig). Quartz is chosen because it exhibitpiazoelectric effectmeaning that
applying an electric field to the crystal causes it to flex a bit, and flexing the crystal creates an electric field.
The crystal oscillator circuit is designed to flex the crystal, then feed any resulting voltage back to the crystal
again; this feedback process causes the crystal to oscillate at its natural resonant frequency, and produces an
output signal at a well-defined frequency. A crystal oscillator circuit like this is used as the time basis of a
quartz watch, for example.

Figure 45.3 shows a very simple radio transmitter for sending Morse code signals. The battery powers
the crystal oscillator, whose output is connected to an antenna. The telegraph key is used to turn power to the
transmitter on and off. While the telegraph key is held down, the circuit causes the antenna to emit a radio
wave at a frequency equal to the crystal oscillator’s output frequency. Holding down the key for a short time
transmits a “dot”, while holding it down for three times as long as a dot transmits a “dash”. These dots and
dashes form the elements of Morse code (Figure 45.4).
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International Morse Code

-1dash =23 dots.

-The space between parts ofthe same lefter=1 dot.
-The space between letters = 3 dots.

-The space between words =7 dots.
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Figure 45.4: The International Morse Code.
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Figure 45.5: Simple transmitter with a microphone.

A more sophisticated transmitter can be built by replacing the telegraph key with a microphone (Figure
45.5). The microphone is coupled to the transmitter circuit wimasformer which consists of two separate
coils of wire wrapped around a common core. The transformer also serves to amplify the microphone’s signal

as it is sent to the the rest of the transmitter circuit.
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Optics
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Chapter 46

Geometrical Optics

Opticsis the branch of physics concerned with the study of light. It may be divided into three main areas:

1. Geometrical opticss the study of mirrors, lenses, and the images formed by these devices. Geometrical
optics generally ignores the wave nature of light.

2. Physical opticstudies phenomena related to the wave nature of light: interference, diffraction, polar-
ization, and so on.

3. Photometryis the study of the brightness of light.

We'll begin our study of optics in this chapter with geometrical optics, studying mirrors first, then lenses.

46.1 Law of Reflection

We begin with the simplest of the laws of optics, ther of reflection The law of reflection states that when
a light ray strikes a reflective surface (e.g. a mirror), it will reflect off of that surface at an angle equal to its
incident angle:

9; = 6, (46.1)

Hered; is theangle of incidenceand, is theangle of reflection In optics, all angles are by convention
measured with respect to thermal (perpendicular) to the surface.
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Chapter 47

Mirrors

A mirror is a reflective surface. By using curved mirrors, it is possible to form an optiadeof a real
object. The simplest curved mirror is callecspherical mirror, so called because it can be thought of as
being a circle punched out of a hollow sphere that is silvered on one side. If we punch a circle out of a
hollow sphere that is silvered on tieside we get aconcave mirror If the sphere is instead silvered on the
outside we get aconvex mirror (Figs. 47.1 and 47.2.) The radius of the (imaginary) sphere that the mirror is
“punched out of” is called theadius of curvatureof the mirror. The point that would be at the center of this
sphere is called theenter of curvaturef the mirror.

Ideally, to form a perfect image, the mirror should be in the shape mdraboloid However, spher-
ical mirrors are easier to manufacture, and can be almost as good, although the deviation from the ideal
paraboloidal shape does give rise to an optical defect cakgptharical aberrationto be described later.

A concave mirror causes light to reflect in towards the axis of the mirror, and is caltatargingmirror.
A convex mirror causes light to reflect away from the axis, and is caldigexgingmirror.

Light coming from an object infinitely far away will come together at a single point in a concave (con-
verging) mirror; this pointis called thiecusof the mirror, and the distance between the mirror and the focus
is called thdocal lengthof the mirror. It turns out that the focus is located half-way between the lens and the
center of curvature, so that we have

R
f= 5 (47.1)

where f is the focal length an® is the radius of curvature.
The typical problem in mirror optics is this: we are typically given:

» The distance between the object and the mirror, calledlbiect distanced,, .
» The “height” (size) of the object, called tlobject height#,.

» The focal length of the mirrorf. (If f is not known, it can be determined from the radius of curvature
using Eq. (47.1).

We typically wish to find:
» The distance between the image and the mirror, calle@rbge distanced;
» The “height” (size) of the image, called tiraage height#;

» The magnificationof the image . This is a dimensionless number that indicates how much bigger
the image is than the original object.
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Concave Mirror

Image

Object .~ Optical
- axis

Convex Mirror

Qptical
axis

Figure 47.1: Types of mirrordop: Concave mirrorBottom:convex mirror. Credit: educat i on. con)

Reflection from Convex and Concave Surfaces

Inside

Figure 3

Figure 47.2: Types of mirrors, as illustrated in a table spdaeft: The bottom of a spoon forms a convex
mirror. Right: The top surface of a spoon forms a concave mir@redlit: Florida State University.
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» Whether the image ieeal or virtual. (In a real image, light is present at the image location, and the
image can be projected onto a screen. In a virtual image, there is no light present; a virtual image
cannot be projected onto a screen.)

* Whether the image ispright (rightside-up) otinverted(upside-down).
There are two methods that can be used to solve this type of problem:

» Theray diagram methodk a graphical method. It gives a good intuitive picture of what's going on, but
it can be a bit time-consuming, and is not particularly accurate.

» The algebraic methodises only algebra. It doesn't give a good picture of what's happening, but it's
faster and more accurate. However, the algebraic method requires that you are very careful with the
equations, particularly with regard to getting the signs correct.

We’'ll cover both methods here.

47.1 Ray Diagrams

A ray diagramis used to locate the image produced by a mirror. To create such a diagram we draw the mirror,
its axis, the object, and three light rays, as shown in Fig. 47.3. We also need to locate thg foudisenter
of curvatureC along the mirror’s axis. The three rays we draw are:

1. In parallel to axis, out through the focus.
2. Inthrough the focus, out parallel to the axis.
3. Inthrough the center of curvature, and back out through the center of curvature.

(Only two rays are really needed; the third acts as a check.) The image will be located at the point where the
three outgoing rays meet, as shown in the figure. If the outgoing ray®idneet (i.e. they diverge), then
trace the outgoing rays back behind the mirror; in this case you will have a virtual image.

3

OBJECT

Figure 47.3: Ray diagram for a converging (concave) mirror.
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If a ray diagram is drawn with great care and correctly to scale, it may used to measure (with a ruler)
the image distancé; and image height;. You can tell whether the image is real or virtual, or whether it is
upright or inverted, simply by inspecting the diagram.

47.2 Algebraic Method

An alternative to the ray diagram method is #igebraic methodThis is simpler, faster, and more accurate
than the ray diagram method, but it does not give a good intuitive picture of what's going on. Alseeryis
easy to make a sign error with the algebraic method and get the wrong answer.

Solving a mirror optics problem algebraically involves three equations:

1. Focal length equationif we aren’t given the focal length, we can find it from the radius of curvature
using the equation given earlier:

R
= — 47.2
f=3 (47.2)
2. Mirror equation.This equation relates the image and object distances to the focal length:
1 1 1
— Y —=— 47.3
di do f ( )

Typically one is given the object distance and focal length, and solves this for the image distance
3. Magnification equationThis equation lets us find the image heightand magnificatiom::

m=-—"1=_° 47.4
I a4 (47.4)
Typically, you're given the image object distanégand object height,,, and have found the image distance
d; from the mirror equation. You can then use this equation to find the image hgigind magnificatiom:.
When using these equations, itery important that you give each quantity the corrsigin The sign
convention for mirrors in shown in Table 47-1.

Table 47-1. Sign conventions for mirrors.

Variable + —
do real object virtual object
d; real image virtual image
ho always —
hi, m uprightimage inverted image
f converging mirror  diverging mirror

By inspecting the sign of; (which you find from the mirror equation), you can determine whether the
image is real or virtual. Also, when you computg its sign will tell you whether the image is upright or
inverted. So the equations above give you not only the image distgreed image height;, but theirsigns
give you additional information about the image (real/virtual, upright/inverted).

47.3 Segmented Mirrors
For astronomical telescopes, the bigger the mirror, the more light is collected and the better the resolution—

so generally bigger is better. But there is a limit to how large one may big a mirror in a reflecting telescope:
at some point very large mirrors become too costly impractical to manufacture.
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A relatively new trend in large-mirror technology is to create large astronomical mirrors not as a single
large mirror, but as a collection of segments (typically hexagons) that are fitted together to form one large
mirror. The smaller mirrors are easier to deal with (although they must be formed to complex asymmetrical
shapes), and if one breaks, it can be replaced much more easily than replacing an entire large mirror. A dis-
advantage is that the segments are subjected to various deformations due to temperature changes, mechanical
stress, etc. that can easily place the segments out of alignment with each other. Keeping all the segments
properly aligned requires that each segment’s position be controlled by a computer, in a systeactiated
optics

Several ground-based segmented-mirror telescopes have already been built, and the upcoming James
Webb Space Telescope will incorporate segmented mirrors.
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Chapter 48

Refraction

Light travels fastest (299,792,458 m/s) when it's traveling through a vacuum. If light is traveling through
some other material, it slows down by a factor calledititkex of refraction The index of refractiom is a
dimensionless number defined by

n=2=<, (48.1)
v

wherec = 299,792,458 m/s is the speed of light vacuum andv is the speed of lighh the mediumSince
v < c¢ always, this means > 1; typically n is some number between 1 and 3, and will depend on the
medium.

48.1 Snell's Law

If a light ray travels through some transparent medium and comes to an interface with another transparent
medium, the light ray will be bent as it moves into the new medium. This phenomenon is reditteation

The ray will bendowardthe normal if it moves into a medium of higher index of refraction, angyfrom

the normal if it moves into a medium of lower index of refraction. The angle at which the ray is refracted is
given bySnell's law sometimes called thaw of refraction

ni Sin91 =n; Sin92 (482)

Heren; andn, are the indices of refraction of the two media, ghdand6, are the angles of the incident
and refracted rays with respect to the normal.

In traveling from one medium to another, light will follow the path that takedehst time this idea is
calledFermat’s principle Using the calculus, itis possible to derive Snell’s law from Fermat'’s principle, and
thus show that Snell’'s law gives the path light must follow in order to travel through the two media in the
least time.

48.2 Total Internal Reflection

It may sometimes happen that when light travels from a high-index medium to a low-index medium at a high

angle of incidence, that Snell’s law gives the sine of the angle of refraction to be greater than 1, so that the
angle of refraction is not defined. In this case, light is not refracted into the next medium at all; instead,

the light reflects off of the interface between the two media, and back into the higher-index medium. For

example, if a light ray in waten = 1.33) is headed for an interface with aiz (= 1.00) at an angle of
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incidence of80°, Snell’'s law (Eq. 48.2) gives the sine of the angle of refraction to be 1.31, so the angle
of refraction is undefined. No refraction occurs in this case: instead, the light will reflect off of the water-
air interface (following the law of reflection), and go back into the water. This phenomenon is watéd
internal reflection
The critical angle for total internal reflection is given by
sing, = 22, (48.3)
ni

whereé, is the critical angle, the lightis incident from medium 1, andandn, are the indices of refraction
of the two media; > n,). For example, the critical angle for total internal reflection for an air-water
interface isf, = sin !(1.00/1.33) = 48.75°; this means that any light ray in water headed toward an
interface with air will be reflected back into the water if its angle of incidence is greatedh@h°. If its
angle of incidence is less than this critical angle, the ray will be refracted out into the air.
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Chapter 49

Lenses

A lensis a disk of transparent material (such as glass or plastic), of which one or both surfaces is curved. The
curved surfaces allow the lens to form an optical image of a real object, similar to the way an image is formed
by a curved mirror.

Each side of the lens may be be either concave or convex (Fig. 49.1). If both sides of the lens are convex,
the lens is calledlouble convexif both sides are concave, the lens is caliledible concavelf one side is
convex and the other concave, the lens is calledeaiscudens. If one side of the lens is flat, the lens is
called plano-conver plano-concave In general, if the lens is thicker in the middle than at the edges, the
lens will beconverging and light will be bent toward the axis; if it is thinner in the middle than at the edges,
it will be diverging and light will be bent away from the axis.

Ideally, to form a perfectimage, the lens surfaces should be in the shagpearboloidgof two sheets).
However, spherical surfaces are often easier to manufacture, and can be almost as good, although the deviation
from the ideal hyperboloidal shape does give rise to an optical defect caliptiesical aberrationto be
described later.

Light coming from an object infinitely far away will come together at a single pointin a converging (e.g.
double-convex) lens; this pointis called tloeusof the lens, and the distance between the lens and the focus
is called theocal lengthof the lens.

The typical problem in lens optics is the same as in mirror optics: we are given

» The distance between the object and the lens, calledijeet distanced,.
» The “height” (size) of the object, called tlobject height#,.

» The focal length of the lensf. (If f is not known, it can be determined using tleas maker’s
equation Eq. (49.1).)

We typically wish to find:
» The distance between the image and the lens, calleidthge distanced;
» The “height” (size) of the image, called tiraage height#;

» The magnificationof the image . This is a dimensionless number that indicates how much bigger
the image is than the original object.

* Whether the image ieal or virtual. (In a real image, light is present at the image location, and the
image can be projected onto a screen. In a virtual image, there is no light present; a virtual image
cannot be projected onto a screen.)
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Figure 49.1: Types of lensesa)(Converging lenses, left to right: biconvex, meniscus, plano-convax. (
Diverging lenses, left to right: biconcave, meniscus, plano-concave.

* Whether the image ispright (rightside-up) otinverted(upside-down).
Just as with mirrors, there are two methods that can be used to solve this type of problem:

» Theray diagram methodk a graphical method. It gives a good intuitive picture of what's going on, but
it can be a bit time-consuming, and is not particularly accurate.

» Thealgebraic methodises only algebra. It doesn’t give a good picture of what's happening, but it's
faster and more accurate. However, the algebraic method requires that you are very careful with the
equations, particularly with regard to getting the signs correct.

We’'ll cover both methods here.

49.1 Ray Diagrams

Ray diagrams for lenses are very similar to ray diagrams for mirrors. To create such a diagram we draw the
lens, its axis, the object, and three light rays, as shown in Fig. 49.2. We also need to locate tlfé dumc
the mirror’s axis. The three rays we draw are:

1. In parallel to the axis, out through the focus.
2. In through the focus, out parallel to the axis.
3. Inthrough the centesf the lensout through the center of lens.

Notice one difference between these rays and the rays used for mirror diagrams: for mirrors, the third ray
is through the centesf curvature for lenses, the third ray is through the centéthe lens

A complication arises with lenses that did not occur with mirrors: while mirrors have a single focus,
lenses havéwo foci. So which focus should you use for rays 1 and 2? It depends on whether you have a
converging lens or a diverging lens, as shown in the following table. (Here “near” refers to the focus closer
to the object, and “far” is the focus farther from the object.)

Ray | Converging Diverging
1 far near
2 near far
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IMAGE

OBJECT

Figure 49.2: Ray diagram for a converging (bi-convex) lens.

49.2 Algebraic Method

An alternative to the ray diagram method is #igebraic methodThis is simpler, faster, and more accurate
than the ray diagram method, but it does not give a good intuitive picture of what's going on. Alseeryis
easy to make a sign error with the algebraic method and get the wrong answer.

Solving a lens optics problem algebraically involves three equations:

1. Lens maker’s equatioif.we aren'’t given the focal length, we can find it from the radii of curvature of
the two lens surfaces and the index of refraction of the lens material, usitepthmaker’s equation

1 Mens L L
f (nair 1) (R1 + Rz) (49.1)

where R, and R, are the radii of curvature of the two surfacess is the index of refraction of the lens
material, andi,;; = 1 is the index of refraction of the air.
2. Thin lens equationThis equation relates the image and object distances to the focal length, and is
identical in form to the mirror equation:
1 1 1
= (49.2)
di do f
Typically one is given the object distance and focal length, and solves this for the image distance
3. Magnification equationThis equation (which is the same as it is for mirrors) lets us find the image
height; and magnificatiom:: Magnification equation:

o __ 4 49.3
m= - 4, (49.3)
Typically, you're given the image object distanégand object height,,, and have found the image distance
d; from the thin lens equation. You can then use this equation to find the image hegightl magnification
m.
When using these equations, itery important that you give each quantity the corrsigin The sign
convention for lenses in shown in Table 49-1, and is essentially the same as the sign convention for mirrors.
Sign convention:
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Table 49-1. Sign conventions for lenses.

Variable + —
do real object virtual object
d; real image virtual image
ho always —
hi, m uprightimage inverted image
f converging lens  diverging lens
Ri, R, | convex surface concave surface

49.3 The Fresnel Lens

If you examine the path of a light ray through a lens carefully, you'll notice there is a fair amount of “unused”
glass. The incoming light ray is refracted (bent) when it first hits the surface of the lens, then travels in a
straight line all the way through the lens, then is refracted again on the way out. The surfaces of the lens do
all the work—it seems like all that glass inside the lens is kind of a waste, doing nothing but allowing the
light to travel in a straight line. For a large lens, it might be nice to eliminate all that unused glass; is that
possible?

Yes, we can eliminate all that unused glass, as shown in Fig. 49.3. The result is dalé=mhel lensIts
advantage is that a very large lens can be made very flat—for example, a reading lens can be made the size
of a sheet of paper, with roughly the thickness of a credit card. The disadvantage, as seen from the figure, is
that the process of eliminating the “unused” parts of the lens leaves behind a series of “steps” or ridges that
appear as rings in the lens. A Fresnel lens is therefore not suitable where high-quality optics are needed, but
it can be useful as a reading lens, for an overhead projector, or for making something like a solar furnace that
focuses sunlight to produce heat.

Figure 49.3: Cross section of (1) a Fresnel lens, and (2) the equivalent normal lens. (©GNU-FDL, Wikimedia
Commons.)
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Chapter 50

Optical Defects

A number of defects, oaberrationscan occur with mirrors and lenses that prevent them from forming an
ideal image. A few of these defects are described here.

50.1 Spherical Aberration

If the surface of a mirror deviates from its ideal paraboloidal shape, or the surface of a lens deviates from its
ideal hyperboloidal shape, (for example, if the optical surfaces are sections of spheres), then the mirror or
lens is said to have spherical aberration If a lens or mirror has a spherical aberration, then light rays far
from the axis focus at a different point than light rays near the axis, causing a blurring of the image. (See Fig.
50.1, top.)

50.2 Chromatic Aberration

In lenses, light of different wavelengths will generally focus at different points. This phenomenon (to be
described later) is calledispersionand is the variation of index of refraction with wavelength. This effect in
lenses causes a defect caltdomatic aberrationwhich causes the image to be surrounded by a rainbow-
like halo. It can be corrected by using combinations of several lenses, each made of a material of a different
index of refraction. Chromatic aberration does not occur in mirrors. (See Fig. 50.1, bottom.)

50.3 Astigmatism

Astigmatisms caused by an asymmetrical lens or mirror, and causes light along different axes to be focused
at different points.

50.4 Coma

Another type of optical aberration is calledma Coma does not affect light rays parallel to the optical axis,
but light rays from objectsff-axistend to be smeared into a comet-like shape.
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Figure 50.1: Optical defects in a le®p: Spherical aberration. Rays incident near the edge of the lens focus
closer to the lens4), while rays near the optical axis focus farther from the leBs Bottom: Chromatic

aberration. Red light comes to a focus at pdintwhile violet light comes to a focus at a different poift,
(Ref. [15])
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Chapter 51

Optical Instruments

In this chapter, we’ll examine a number of common optical instruments, both natural and man-made. These
instruments are designed to form and record simple images (the eye and the camera), to make enlarged images
of very small, close objects (the magnifying glass and microscope) or of very distant objects (the telescope),
or to simply shift an image through some distance (the periscope).

51.1 The Magnifying Glass

In its simplest form, amagnifying glasor magnifierconsists of a single converging (convex) lens. The
human eye can normally get as close as about 25 cm from an object and still have it comfortable in focus;
this is called thenear point By placing a magnifying glass near the eye (so the eye is closer to the lens than
the focus), an enlarged virtual image of the object is created. (See Figure 51.1.)

High-power magnifying glasses often contain a compound lens, consisting of two or more single lenses
cemented together. The combination of lenses can help correct unwanted optical defects.

51.2 The Human Eye

The human eyas a naturally occurring optical instrument that gives humans their sense of sight. The active
optical components are tlworneaand thelens Most of the focusing of the image is done by the cornea,
while the lens acts as a secondary optical element. The image produced by the cornea and lens is focused onto
theretinaon the back of the eye. (Figure 51.2.) The image projected onto the retina is actually upside-down;
our brains invert the image so that we seem to see the image rightside-up.

The retina is covered with a grid of two kinds of light detectorsds can detect very faint light, but
produces only black-and-white imageSonesrequire a somewhat brighter light level before they activate,
but they can see in color. There are three types of cones: one type is most sensitive to red light, another
most sensitive to green light, and another most sensitive to blue light. The brain receives signals of different
strengths from each type of cone at each location in the image, and from that is able to infer the color of that
part of the image. (Any color can be formed from combinations of the three primary colors red, green, and
blue; see chapter 58 on color.) From the retina, signals are transmitted to the brainopéi¢hesrve

Things are a bit more complicated than this, though. The eye and brain are able to perceive objects as
having a constant color, even when viewed under widely varying lighting conditions. Itis believed that the eye
views an entire image (by means of cones) in each of the three primary colors, then sends this information to
the brain; the brain then determines the correct color both from the strength of the signals from the different
colors of cones, and also by comparing the perceived brightness of each part of the image with those of
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Figure 51.1: The principle of the magnifying glasgCredit: “Hyperphysics,” Georgia State University,
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html)

Figure 51.2: The human eye. (Ref. [2])
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adjacent parts. Somehow, in a way that is not fully understood, the brain processes this information to deduce
the color of the object, largely independent of the color of the light source. This phenomenon is called the
Land effect and you can see it for yourself: check the color of some object under fluorescent light indoors,
and compare it with the color when seen outdoors in sunlight. Its color will not appear to have changed, even
though fluorescent lights are tinted somewhat blue and sunlight is somewhat redder.

The human eye is capable afcommodatioymeaning that it able to use muscles to automatically focus
images. Sometimes this doesn’t work properly, though. If the image is fobefedereaching the retina, the
person has a condition known exyopia or nearsightednessg-or people with this condition, closeup objects
appear in focus, but distant images are fuzzy and out of focus. This condition may be corrected by placing
diverging (concave) lenses in front of the eye, either with eyeglasses or contact lenses.

If the image has not yet formed when light reaches the retina, then the person has a condition called
hyperopia or farsightednessFor people with this condition, distance objects are clear, but closeup objects
are out of focus. This condition may be correced by placing converging (convex) lenses in front of the eye.

A condition of perfect vision (neither myopia nor hyperopia) is caetmetropia

Many people upon reaching their 40s have difficulty focusing on closeup objects because the eye’s accom-
modation abilities are not as robust as they were during youth — a condition padiglalyopia Older people
often require converging lenses (reading glasses) to see close objects. People who have pessbsitipéa
myopia or hyperopia often wear either reading glasses with contact lenses, or eyeglasbdoasitlenses,
which are shaped so that looking through the top half of the lens corrects for distance vision, while looking
through the lower half corrects for close-up vision. Somewhat less commarifacal lenses, which correct
for distant, mid-range, and close-up vision when looking through the top, middle, and bottom of the lenses,
respectively. A recent innovation being offered by ophthalmologists and optometristmguter glasses
which are similar to reading glasses, but designed to help the wearer focus clearly at the typical distance of a
computer monitor.

51.3 The Trilobite Eye

Trilobitesare an extinct class of arthropods that were among the first living organisms on Earth. Trilobites
pre-dated the dinosaurs; they lived from the early Cambrian period (about 550 million years ago) until the
great Permian extinction of 250 million years ago, which almost wiped out all life on Eér{gee Figure

51.3.) Trilobite fossils can be found in great numbers, and range in size from 1 millimeter to as much as 2
feet long.

Most species of trilobites had a pairadmpound eyesimilar to those found on many species of insects
today. A compound eye consists of a grid of a large number of very small lenses, all spaced very closely
together. Unlike the flexible lens of the human eye, though, trilobite eyes had rigid lenses composed of the
crystalline mineral calcite, and thus lacked the ability of accommodation that human eyes have.

To minimize the effect of optical aberrations, trilobites developed an eye lens in a shape that tended
to minimize spherical aberrations. These shapes bear a remarkable resemblance to minimum-aberration
lens designs developed by French mathematician and philosopheRscartes (Fig. 51.4) and by Dutch
mathematician and physicist Christiaan Huygens (Fig. 51.5).

1The cause of the Permian extinction is not known.

2Some paleontologists believe there may be some small chance that trilobites may still be alive even today, in some unexplored
depths of the oceans.

3The Descartes and Huygens minimum-aberration lens designs are based on a mathematical curve nowosalled Brescartes
See E.N.C. Clarkson and R. Levi-Setti, “Trilobite eyes and the optics of Des Cartes and Huymnss; 254, 663—667 (1975).
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Figure 51.3: A typical trilobite. This is a fossil specimen of the speEieathia kingii, and is 4.2 cm long.

(Credit: www.fossilmuseum.net.)

Figure 51.4: Descartes’ lens design for minimal aberration (above left) is found in the lens of the trilobite
Crozonaspigright). Light ray paths entering the lens from the left come into focus a short distance to the right
of the lens (blue). In the eye @rozonaspisan intralensar body (white) further corrects focus after passing
through the outer lens layer (blu€iCredit: “A Guide to the Orders of Trilobites,” www.trilobites.info. Image
copyright ©1999, 2000 by S.M. Gon Ill, modified from Clarkson and Levi-Setti, 1975.)

0

Figure 51.5: Huygens’ lens design for minimal aberration (above left) is found in the lens of the trilobite
Dalmanitina(right). (Credit: “A Guide to the Orders of Trilobites,” www.trilobites.info. Image copyright
©1999, 2000 by S.M. Gon Ill, modified from Clarkson and Levi-Setti, 1975.)
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Figure 51.6: A simple camera. (Ref. [4])

51.4 The Camera

A camerais an instrument used to record an optical image. Itis similar in design to the human eye: the image
of an object is focused by a lens onto a plane, where the image is recorded (Fig. 51.6). At one time, images
were recorded on chemically-coated glass plates; later, a flexible plastic chemicalfdoatess used. Since
the 1990s, it has become very common to replace the film with a CCD (charge-coupled device) detector that
can record a digital image.

A very simple type of camera is calledpénhole camerain which the lens is replaced by a very small
hole. One could build a very simple, inexpensive camera by placing (in a darkened room!) photographic
film at one end of a lightproof box (a shoebox, for example) that has a covered pinhole at the other end. To
take a picture, the pinhole is uncovered for several seconds; the film is then removed in a darkened room and
developedchemically processed to bring out the image).

If the distance from the pinhole to the film Isand the wavelength of light i&, the it can be shown that
the optimum diameted of the pinhole is given by

d = 2L (51.1)

Most modern cameras use a lens instead of a pinhole, and many have a variety of settings to control
the focus and aperture size. Focusing is accomplished by changing the distance between the lens and the
film plane: the closer the object, the farther the lens must be from the film. This is because of the relation
1/d; + 1/d, = 1/ f: decreasing the object distandg caused /d, to increase; but sinc¢ is constant, that
meansl /d; must decrease to compensate, which means the image digtanast increase. To take extreme
closeups, some cameras can be equipped with a sgtefsion ringshat allow the lens to be placed very far
away from the film. This allows one to take photographs of objects like grains of salt, as if they were being
seen under a microscope.

51.5 The Microscope
A microscopeg(from the Greekuikpoc, “small”’, andokorew, “see”) is an instrument that allows one to

seevery small objects—generally much smaller than can be seen with a magnifying glass. (See Fig. 51.7.)
The optics consist of a short-focal lengihjective lenghat is placed near the object, and eyepiecehat
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Figure 51.7: A compound microscope. (Ref. [3])

essentially enlarges the image produced by the objective lens. In most modern microscopes, there are several
objective lenses mounted on a rotating platform, as well as interchangeable eyepieces, so that the user can
select an appropriate combination for the desired magnification.

The microscope is often used in biology to observe cells and protozoa.

51.6 The Telescope

A telescopdfrom the Greeknie, “far”, andokomew, “see”) is an instrument designed to observe far-away
objects. A small hand-held telescope is calledpgglassor monocular a pair of such small telescopes
mounted side-by-side provide stereo vision and are céiledculars

Larger telescopes are used for astronomical observations. Astronomical telescopes are of one of two

types:
* A refracting telescopé made of lenses: a largdjective lensand a smalleeyepiece

* A reflecting telescopeonsists of one or more curved lenses in place of the objective lens; an eyepiece
lens creates the final image.

Refracting astronomical telescopes were built until around 1900; since then, all large astronomical tele-
scopes have been of the reflecting type. This is because there are a number of problems with refracting
telescopes that are avoided in reflecting telescope designs. First, there is a limit on how large it is practical
to make the objective lens. The lens is made of glass; it is therefore fluid, and will tend to flow. There’s
not much that can prevent this, since the lens can only be supported by the edges. Second, since light must
pass through the lens, it is subject to being scattered by any imperfections (bubbles, etc.) that may be in the
glass, which will cause imperfections in the image. Third, since light has to travel through the lens, there
is a tendency for light to be lost as it travels through the lens, and so very faint objects are difficult to ob-
serve. Fourth, a refracting telescope is subject to chromatic aberration. All of these problems are avoided by
reflecting telescopes.

The largest refracting astronomical telescope still in use is at the Yerkes Observatory in Wisconsin; this
telescope has an objective lens with a 40-inch diameter. In contrast, reflecting telescopes of over 400 inches
diameter have been constructed.
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Figure 51.8: Optical principle of the compound microscofredit: “Hyperphysics,” Georgia State Uni-
versity, http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html)

Reflecting telescopes are made in a number of different designs (Fig. 51.9). The simplesestheian
reflector. In this design, light enters the telescope tube, reflects from a large papaimoéicy mirror, up to
a flatsecondary mirrorand from there out through the side of the tube to an eyepiece.

In a Cassegrain light reflects from a large parabolic primary mirror tdvgperbolicsecondary mirror;
from there it travels back through a hole in the center of the primary mirror to the eyepiece.

An interesting property of reflecting telescopes is that they produdavanted (upside-down) image.
This is not a problem for astronomical observations, but this means that using a reflecting telescope to make
terrestrial observations requires the use ofraage erector— an optical device placed at the eyepiece to
make the image rightside-up.

A number of reflecting telescopes have been placed in space, either in Earth orbit or elsewhere. There are
a number of reasons for placing a telescope in space:

1. The Earth’s atmosphere is a fluid with turbulent air currents that tend to blur images in ground-based
telescopes. By placing the telescope above the Earth’s atmosphere, the telescope no longer need “look”
through the atmosphere, so the images are much sharper and more detailed.

2. The Earth’s atmosphere absorbs many wavelengths of light. A telescope in space can observe at wave-
lengths that are impossible for a ground-based telescope.

3. Since the sky is always dark in space, a space-based telescope can make observations at any time —
unlike a ground-based telescope, which can only make observations at night.

51.7 The Periscope

A periscope(from the Greekrept, “around”, andokomew, “see”) is an instrument designed to allow the
user to observe above or around a barrier. Most famously, periscopes are used in submarines to observe above
the water while the submarine remains submerged. In its simplest form, a periscope consists of two mirrors
mounted a#5° angles: one at the top, and one at the bottom, where the observer is located (Fig. 51.10).

If you have seen a submarine periscope in use (in real life or in a movie), you will notice that in order
to look around, the periscope operator rotates the entire instrument by walking around in a circle. Why not

214



Prince George’s Community College Introductory Physics I D.G. Simpson

PRIME TWiwW Ton TR
Primary
— {1
Prime -<i] D Fat ]
—__ ||
F
b " i Paraboloid

\ '3
1 !

Hyperbolle ‘ ﬂ \ Hyperbalaid =]
1
\

i
secondary J-'

/ Cassegrain

Second branch Ei
of hyperbaola al

CRSSEGRAIW coved

Figure 51.9:Several different designs of reflecting telescopes. Credit: University of New South Wales, Aus-
tralia.

Figure 51.10: Optics of the periscope. The tree is at the upper left, and produces a displaced image at the
lower right. (Credit: Arbor Scientific Co., www.arborsci.com.)
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Figure 51.11: Image observed in a kaleidoscope. (Credit: “Kaleidoscope Optics” at
http://www.4physics.com/pliemo/kaleidoscope/kaleidoscope-0.html. Image copyright © 4physics.com.)

just rotate the top mirror? Because if the top mirror were rotated, objects behind the observer would appear
upside-down. The entire instrument must be rotated to keep the image rightside-up.

51.8 The Kaleidoscope

A kaleidoscopédfrom the Greekcadoc—"beautiful,” e:§oc—"form,” and cxomrew—"see”) is an optical
instrument invented by Scottish physicist David Brewster, whose purpose is to produce varying beautiful,
colorful patterns for the enjoyment of the user. One end of the kaleidoscope has a rotating disk containing
colorful objects like beads or glass. The tube of the kaleidoscope contains mirrors — typically three long
rectangular mirrors fastened together to form a prism whose cross section is an equilateral triangle. The user
holds the kaleidoscope up to a light source and looks through the mirrors toward the colored objects, and sees
the objects reflected multiple times in the mirrors, producing a pleasing colorful design. The design can be
modified by rotating the disk of colored objects, producing an endless variety of patterns.

Different mirror configurations are sometimes used to produce images with different symmetry patterns.
In one type of kaleidoscope, sometimes calledttieidoscopgethe disk of colored objects is replaced by
a lens, so that patterns are formed from images of whatever objects are in the direction the instrument is
pointed.
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Chapter 52

Photometry

A frequently neglected area of optics is the fielppbbtometry—the study of the measurement of the bright-
ness of light. A related field imdiometry where one measures the intensity of electromagnetic radiation at
all wavelengths. In photometry, though, we take into account the physiology of human vision. The goal of
photometry is to measure the brightness of visible lightit appears to the human eye

We begin with a simple mathematical model of human vision. Fig. 52.1 shows such a model, called the
luminous efficiency cury@ models how the eye’s sensitivity varies with wavelength. As shown by the figure,
the human eye is most sensitive to visible light in the green part of the spectrum, at a wavelength of about
555 nm. The eye is much less sensitive to red and violet light, where the curve has values near zero.

52.1 Luminous Flux

We now introduce definitions of some basic photometric quantities. Firstuthimous flux® is the total
amount of visible light emitted by a light source, in all directions. Luminous flux is analogous to the total
amount of electromagnetic radiation emitted by the light source, except that it is “weighted” by the luminous
efficiency curve. For example, electromagnetic radiation with a wavelength near 555 nm is given more
“importance” than radiation with a wavelength near 400 nm. This weighted average is luminous flux.

In Sl units, luminous flux is measured in unitslafmens(im). If you look closely at Fig. 52.1, you'll
see that the vertical axis has units of lumens per watt (Im/W). When we take the intensity of electromagnetic
radiation (in watts) and multiply by this luminous efficiency curve to “weight” different wavelengths accord-
ing to the sensitivity of human vision, we get units of lumens. Note that the peak of the luminous efficiency
curve is ath = 555 nm, where the human eye is most sensitive; at this wavelength the luminous efficiency is
683 Im/W.

You may see the lumen used on packages of light bulbs, where it may be listed as the “light output”. For
example, a typical 60-watt incandescent light bulb may have a luminous flux of 820 lumens. This means that
the bulb consumes electric power at the rate of 60 watts (60 joules of energy per second), while producing
820 lumens of light. High-efficiency light bulbs produce more visible light while using less electric power, at
the expense of producing less electromagnetic radiation at non-visible wavelengths. For example, a compact
fluorescent light bulb may produce 1200 lumens of light, while consuming only 20 watts of electric power.

If you're trying to replace incandescent light bulbs with compact fluorescent bulbs, you should try to find a
compact fluorescent bulb that has a luminous flux (in lumens) similar to that of the bulb you're replacing.
Don't replace it with a bulb that has the same power consumption (in watts). For example, a 60-watt incan-
descent bulb that emits 820 lumens of light should be replaced by a compact fluorescent bulb that emits about
820 lumens of light.
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Figure 1. Luminous Efficiency Function
PR IR T YT Y N VNN YT W S N S S T N T T T WO N W YO T W A SN ST S N YA ST T W N A

700 -

600 — _
500 — _
400 — —
300 — _

200 -

Luminous Efficiency (Im/W)

100 -

04 L
T -

—_—— T
350 400 450 500 550 600 650 700 750
Wavelength, A (nm)

Figure 52.1: The luminous efficiency curve.

52.2 Luminous Intensity

A quantity related to luminous flux isminous intensity , which is the luminous fluxp per unit solid angle
Q:

I = ¢ (52.1)

Q

The Sl unit of luminous intensity is theandela(cd): one candela is equal to one lumen per steradian. A
candela is approximately equal an older unit calledatedlepowerwhich was the light intensity emitted
by the flame of a candle. So a candle flame has a luminous intensity of about 1 candela; by comparison, a
60-watt incandescent light bulb has a luminous intensity of about 65 candelas, while a typical searchlight has
a luminous intensity of about 800 million candelas.

If a light source idsotropic(so it emits light equally in all directions), then there is a simple relationship
between luminous flu® and luminous intensity: I = ®/(4x sr).

The candela is the fundamental photometric unitin Sl units, and is determined as the result of an experi-
ment. Other photometric units (the lumen and the lux) are defined in terms of the candela.

52.3 llluminance

The level of illumination seen by an observer is calledilueninance To find the illuminance, we divide
the luminous flux® emitted by the light source by the ardeover which that luminous flux is spread:

E=— (52.2)
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Figure 2. Solar Irradiance Spectrum
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Figure 52.2: Solar irradiance spectrum.

The Sl unit of illuminance is th&ux (Ix), where one lux is one lumen per square meter. To give a sense of
scale, the level of illumination in a typical office is around 400 lux, while direct sunlightis around 100,000
lux (depending on how high the Sun is in the sky, cloud conditions, etc.).

(An older unit of illuminance, théoot-candleis one lumen per square foot, or about 10.76391 lux.)

52.4 Example: The Sun

As an example of how photometric calculations are done, consider the Sun. To find the illuminance of the Sun
at the Earth, we would begin by measuring the intensity of the Sun’s radiation at different wavelengths; this
gives a plot of thesolar irradiance spectrumFig. 52.2 shows just part of the solar irradiance spectrum—the
part that’s within visible light wavelengths. We multiply this solar spectrum by the luminous efficiency curve
(Fig. 52.1), and find the area under the resulting curve. The result is the illuminance of the Sun’s light at the
Earth, and works out to bE = 133,000 lux.

We can now use Eg. (52.2) to find the luminous flux of the Sun. Hieigthe total area over which the
luminous flux is spread to give illuminandg, so4 = 4xr2, wherer is the distance of the Earth from the
Sun. We find

®=FEA (52.3)
= E(4nr?) (52.4)
= (133,000 lux)[47(1.4959787 x 10" m)?] (52.5)
= 3.75 x 10?8 lumens (52.6)
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From this result, we can compute the luminous intensity of the Sun. Since the Sun emits light equally in
all directions (is isotropic), the luminous intensityof the Sun is

()

I =— 52.7
) (52.7)
3.75x 1028 Im

- 2xx” M (52.8)
41 sr
= 2.98 x 10?’ candelas (52.9)

In summary, for the Sun, we find
 Luminous flux:®; = 3.75 x 10?8 Im
« Luminous intensityZ,; = 2.98 x 10?7 cd

¢ llluminance at EarthE; = 133 kIx

52.5 Example: Incandescent Light Bulb

A 60-watt incandescent light bulb emits a luminous flux of 820 lumens. If this light bulb is isotropic and is
the only illumination in a room, then what is the illuminance at a distance of 80 cm from the light bulb?
Solution.From Eq. (52.2), the illuminanck is

)
E=— (52.10)
A
)
= 52.11
drr? ( )
201
_ _ 820Im (52.12)
477(0.80 m)2
=102 Ix (52.13)

52.6 Astronomical Photometry

In astronomy, the brightness of celestial bodies such as stars and planets is not measured in the photomet-
ric units just described; instead, a logarithmic scalenafgnitudess employed. The magnitude scale was
originally defined so that the brightest stars in the sky are magnitude 0, the dimmest visible to the unaided
human eye are magnitude 5, and a magnitude O star is 100 times as bright as a magnitude 5 star. (Note that
magnitudes measuBmnessnot brightness. The larger the magnitude, the dimmer the star.) The magnitude
scale is logarithmic, so an increase of 1 magnitude corresponds to a decrease in the brightness of the star by
a factor of /100 ~ 2.5119.

There are two types of magnitudes defined: dpparent magnitudes the brightness of a star as seen
from Earth; a star’'s apparent magnitude depends both on its intrinsic brightness and on its distance from
Earth. Theabsolute magnitudis a measure of intrinsic brightness alone: is the brightness a star would have
if it were at a standard distance of 10 parsecs.0857 x 10'7 meters. Itis straightforward to show that the
apparent magnitude is related to the absolute magnitute by

M =m—5(og,, D —1). (52.14)

where D is the distance to the star in parsecs. (Notice thd? it= 10 parsecs, then this formula gives
M = m, as expected.)
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Some examples: the brightest star in the sky, Sirius (in the constellation Canis Major), has an apparent
magnitude of-1.44. Polaris (the North Star) is a variable star that varies in magnitude, but has an average
magnitude of+1.97. The Sun has an apparent magnitude-26.72, and an absolute magnitude-6#.85.

One the brightest stars in the sky is the blue-white supergiant Deneb (in the constellation Cygnus). Most
of the bright stars in the sky are around 50-100 light-years from Earth, but Deneb is some 1500 light-years
away, so it must be intrinsically very bright. Indeed, Deneb has an apparent magnitade26fand an
absolute magnitude 6f7.13.

Itis possible to convert between the magnitude scale and conventional photometric units by using the Sun
as a calibration point. To convert between apparent magnituaed illuminance, the formula can be shown
to be

E = Eg10"30m—my), (52.15)

whereE is the illuminance due to the star (in lu, is the illuminance due to the Sun at the Earfh (=
133,000 lux), m is the apparent magnitude of the star, angdis the apparent magnitude of the Suny(=
—26.72). Similarly, to convert between absolute magnitudeand luminous flux® and luminous intensity
I = ®/(4n sr), the formulae are found to be (using Egs. (52.14) and (52.15))

® = P 10~ 3 MMy (52.16)
[ = I,1075(M—My) (52.17)

where®; = 3.75 x 10%% Im is the luminous flux of the Surl, = 2.98 x 10?7 cd is the luminous intensity
of the Sun,M is the absolute magnitude of the star, ddd = +4.85 is the absolute magnitude of the Sun.

Example.The illuminance at Earth due to light from star Sirius (apparent magnitugde—1.44) is

E =E, 10_%(m_mx)

= (133,000 lux) 10~ 3[-1-44=(-26.72)]
= 10.28 ulx

Example.The luminous fluxd of the star Deneb (absolute magnitudle= —7.13) is

b = CI)Sl()_%(M_Mx)
= (3.75 x 10?3 Im)10—%(—7~13—4.85)
=2.32x10Im

which means Deneb is intrinsically/ ®, = 62,000 brighter than the Sun. We can similarly find the luminous
intensity/ of Deneb:

I = I;10-31=M9)

= (2.98 x 10?7 cd) 103 (-7-13-4.85)
=1.85x10%2cd

or 185nonillioncandelas.
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Chapter 53

Young’s Experiment

We now begin a study gfhysical opticswhich is the study of the physical properties of light, including its
wave nature.

A key experiment in physical optics ¥oung’s experimenfirst performed by British physicist Thomas
Young (1773-1829). In this experiment, one allows a light source to pass through two closely-separated
slits and then be projected onto a screen. The light source shouttbhechromatiqthat is, of a single
wavelength) an@oherent(each wave train is many wavelengths long). In Young's time such light sources
were very faint and difficult to work with, but today we can perform the experiment easily uisgieas a
coherent monochromatic light source.

The significance of Young’s experiment is that it demonstrates that lightviave on performing the
experiment, you find amterference patterof alternating light and dark bands on the screen. At any goint
on the screen, the distance from one slit will be different from the distance from the other slit; this difference
in distances will bef sinf, whered is the separation distance between the slits,éizthe angle from the
midpoint of the slits to the poinP. If the path length difference is an integral number of wavelengths, the
interference will be constructive, andéght fringewill be observed on the screen:

d sinf = mA (m=0,1,2,..) (bright fringes) (53.1)

Herem is called theorder of the fringe. In between the bright fringes, one will skserk fringes

d sing = (m + %) A m=0,1,2,..) (dark fringes) (53.2)

53.1 Quantum Effects

Young'’s experiment may be used to demonstrate some verygoddtum mechanicaffects. Quantum
mechanicss the theory of mechanics that describes particles at very small distance scales — say at the size
of an atom or smaller.) Light is — in some way we don't entirely understand — both an electromagnetic
wave and a particle (calledphotor) at the same time. It's possible to send light through Young’s experiment
one photon at a time, in which case you would expect the interference pattern to disappear. After all, the
interference pattern is caused by light from one slit interfering with light from the other slit, but the photon
goes through only one of the two slits. But if we do this experiment, we discover that the photons, one by
one, will build up the same interference pattern.

Now if we try to determinewhich slit the photon went through (by bouncing another photon off of it
near the slit, for example), the interference pattern disappears: the photon we used to make the determination
messes us the experiment in such a way that it destroys the interference pattern. We might try to fix this by

222



Prince George’s Community College Introductory Physics I D.G. Simpson

using a lower-energy photon that will minimize the disturbance to the photon we’re observing — and if we
do this, the interference pattern does indeed return. But a low-energy photon also has a long wavelength, and
the wavelength is now sufficiently long that it's no longer possible to tell which slit the original photon went
through. It's as though Nature conspires against us to prevent us from determining which slit the photon goes
through.
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Chapter 54

Diffraction

The bending of waves (including light waves) around obstacles is cdifizdction. Light has a very short
wavelength, but it is possible to observe diffraction in light waves without too much trouble.

One such experiment involves a setup similar to Young’s experiment, but usingroedyit. Light from
one part of the slit will interfere with light coming from another part of the slit, creatididfeaction pattern
as the light waves coming from different parts of the slit interfere with each other. This phenomenon is called
single-slit diffraction The positions of theark fringes in single-slit diffraction are given by

asing = ml (m=1,2,3,..) (dark fringes (54.1)

whereuq is the slitwidth,6 is the angle between the midpoint of the slit andsth#h order dark fringe, and
is the wavelength of light.

In a real Young's experiment, you obsetyeththe interference pattern (due to the two slasgsingle-
slit diffraction (due to the finite width of the slits): you will see the interference pattern modulated by an
“envelope” of single-slit diffraction.

A similar diffraction effect may be observed when light is incident @ireular aperture. In this case, the
resulting diffraction pattern is a single central bright circle, surrounded by alternating dark and light rings.
The radius of the first dark ring (which can be taken as the radius of the central maximum) subtends an angle

A
6, = 1222, (54.2)
D

wheref, is in radians 1 is the wavelength of the light, and is the diameter of the apertute.

54.1 The Rayleigh Criterion

Single-slit diffraction limits the resolving power of astronomical instruments: that is, it places limits on how
close two point sources of light can be to each other and still be distinguished as separate points of light.
For example, suppose an astronomical telescope is used to observe two stars that are close together. Each
star is essentially a point source of light, and will produce a single-slit diffraction pattern as seen through
the telescope aperture. If the two diffraction patterns are far apart, you will see two stars. But if the two
diffraction patterns are too close together, they will overlap and the image will blur together and look like a
single star (Fig. 54.1).

There is a threshold where the stars will be as close together as they can be, and still be distinguished
as two separate stars. This threshold is given byRhgeigh criterion It states that theninimumangular

1The coefficient 1.22 in this equation s the first zero of the Bessel fundtidix), divided byr. A closer value is 1.2196698912665.
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Figure 54.1: Overlapping diffraction patterns and the Rayleigh criterion.

separation of two point sources of light that allows the sources to still be distinguished as two separate points
is given by:

A .
1.22 D (circular aperturg

AO=1 (54.3)
= (rectangular apertuye
a

Here Af is the minimum angular separation (in radiaris)s the wavelength of lightD is the diameter of a
circular aperture, and is the width of a rectangular aperture.

54.2 Floatersin the Eye
54.3 The Diffraction Grating
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Chapter 55

Optics of the Hubble Space Telescope

55.1 The Hubble Space Telescope

To illustrate the workings of a real optical instrument, let's examine some of the optical details of the Hubble
Space Telescope (HST). Hubble is arguably the most successful and productive astronomical instrument of
all time, so a study of some of its inner workings will be instructive.

Overview

Hubble is a large astronomical telescope that was placed in orbit around the Earth on April 25, 1990. Itis
about the size of a school bus, and has a mass of about 11,000 kg. Hubble is in a low-Earth orbit (so it can be
serviced by the Space Shuttle), and orbits the Earth about once every 96 minutes. Each orbit is about 1 hour
in sunlight (orbit day) and 1/2 hour in darkness (orbit night).

Hubble is designed to make observations of astronomical objects in visible light, near infrared, and near
ultraviolet wavelengths—it can observe wavelengths in the range of 100—2500 nm. (Visible light lies within
this range, from 400—-700 nm.)

The reason Hubble is in orbit around the Earth, rather than on the ground, is to get above the Earth’s
atmosphere. Turbulence in the Earth’s atmosphere causes blurring of the images, which is avoided when the
telescope is above the atmosphere. Also, the atmosphere absorbs some wavelengths of light, a complication
that is also avoided by being in orbit. Finally, some light is lost when it passes through the atmosphere. By
being in orbit above the atmosphere, Hubble avoids this light loss and can see very faint objects.

The Hubble Space Telescope can see objects fainter than magnitude 30 (see Section 52.6) — which is
very faint.

Instruments

Unlike ground-based amateur telescopes, there is nobody looking at Hubble’s images directly through an
eyepiece. Instead, the images observed by Hubble are sent to a complement of scientific instruments (cameras
and spectrometers), each of which can perform its own analysis and relay the resulting spectra and images to
the ground by radio. The five instruments currently on board Hubble are:

» Wide Field Camera 3 (WFC3)
» Space Telescope Imaging Spectrograph (STIS)
» Cosmic Origins Spectrograph (COS)
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» Advanced Camera for Surveys (ACS)
* Near Infrared Camera and Multi-Object Spectrometer (NICMOS)

55.2 HST Optics Overview

The Hubble Space Telescope’s optics is all baseahiorrs (no lenses). Lenses are generally not suitable for

large astronomical telescopes for a number of reasons. First, a large lens requires a large solid piece of glass,
which are subject to bubbles and other irregularities that degrade the image. Also, some light is always lost
when passing through a lens, no matter how carefully the lens is made. Weight is another issue: large lenses
are very heavy, but they can only be supported from around the edges, which can cause them to sag under
gravity. Finally, lens designers are at the mercy of the optical properties of the glass (such as dispersion)
over which they have little control, except for inserting additional corrective lenses. Nevertheless, some lens-
based astronomical telescopes (cat&fcacting telescopgsare stillin use; the largest is the 40-inch diameter
telescope at the Yerkes observatory in Wisconsin.

Mirrors, on the other hand, have numerous advantages. They have only one optical surface, so the back of
the mirror can be hollowed out to make the mirror lighter. The mirror can be supported along the edges and
along the back, so there are fewer problems with sagging. Also, mirrors don't suffer from some optical issues
like chromatic aberration that plague lens designers, and don’t have the light loss issues that lenses do. For
these reasons, most modern large astronomical telescopes use mirrors; these aefleatiad telescopes

The simplest design of a reflecting telescope Meavtoniartelescope, in which a single parabolic mirror
(the primary mirror) forms an image, which is reflected out of the side of the telescope with aeftat
ondary mirrorand into an eyepiece. A more compact design, used by many larger reflecting telescopes, is a
Cassegrairtelescope. In this design, light first strikes a curved primary mirror, reflects to a curved secondary
mirror, and back through a hole in the primary mirror to the eyepiece. This design allows for a primary mirror
with a long focal length to be placed in a relatively small space, since the optical path is “folded” on itself.

The Hubble Space Telescope is a reflecting telescope that is a variation of the Cassegrain design, called a
Ritchey-Chetien Cassegraidesign. In this design, both the large primary mirror and the smaller secondary
mirror are sections of hyperboloids of two sheets. The two hyperboloids work together to focus an image just
behind the hole in the primary mirror.

Hubble’s primary mirror has a diameter &f = 2.4 meters (94.5 inches), and has a focal length of
f = 57.6 meters. Another parameter often used to characterize astronomical telescopes is the so-called
Jf-number, which is defined to be the ratio of the focal length to the aperture diameter:

_f
Jf-number= ) (55.1)

For Hubble, the primary mirror has gfrnumber of f /24.

55.3 Resolution

Because of single-slit diffraction, any astronomical object observed through a telescope with a finite aperture
will create a diffraction pattern, and this diffraction effect limits the resolution of the image. In general, the
larger the aperture of the telescope, the better the resolution (and also the fainter the objects it can see, since
it can collect more light).

Theresolutionof an astronomical telescope (or other optical device) is defined to be the smallest angular
separation of two point sources of light that will still allow them to be resolved as individual point sources,
despite their overlapping diffraction patterns. The exact point at which two adjacent diffraction patterns are
overlapping “too much” is a bit vague, but one commonly used definition iRéydeigh criterion Under the
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Figure 1. Hubble Space Telescope Optical Resolution
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Figure 55.1: Resolution of the Hubble Space Telescope.

Rayleigh criterion, the smallest angular separaéidhat two point sources can have and still be resolvable
as two individual point sources is

0= 12" (55.2)
D

where@ is the angular resolution in radiank,is the wavelength of the light, anB is the diameter of the
aperture of the instrument. For the Hubble Space Telesddpe,2.4 meters, and varies between 100 and
2500 nanometers. Using equation (2) for the Rayleigh criterion, we can plot the angular resolution of Hubble
as a function of wavelength (Figure 1).

As you can see from the figure, Hubble’s resolution in visible light is about 0.05 arcseconds (where 1
arcsecond = 1/60 arcminute = 1/3600 degree). To give some idea of what this means, if the Hubble Space
Telescope were in Washington DC, it could distinguish two objects in New York City if they were separated
by a distance of just 3 inches:

s = rb
1 deg w rad
= 1321 .
(331321 m) [(O 05 arcseg (3600 arcseC) ( 180 deg)}
= 0.080m
= 3inches
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55.4 Spherical Aberration

Shortly after its launch in 1990, it was discovered that Hubble’s primary mirror tsdharical aberration

in the sense that it had not been ground exactly to the required hyperbolic shape. It turned out that the outer
edges had been made too flat by aboytr@—about 1/50 the thichness of a human hair, but enough to
severely degrade the images. Light striking the primary mirror near the edges focused at a different point
than light striking the mirror near the center, resulting in a significant blurring of the images.

Some mathematical techniques were developed to partially compensate for this, but the real issue was
that the optics needed to be fixed. This was done during the Hubble First Servicing Mission in 1993, when
a set of corrective optics called COSTAR (for “Corrective Optics Space Telescope Axial Replacement”) was
installed. COSTAR consisted of a set of mirrors (one for each instrument) that were curved in such a way that
they corrected for the spherical aberration in the primary mirror. The light path then became one where light
would first strike the primary mirror, then reflect off of the secondary mirror, then down through the hole in
the primary mirror where it would strike a COSTAR corrective mirror, then on to the instruments. Since the
installation of COSTAR, the Hubble Space Telescope has operated right at the theoretical limit of resolution
imposed by single-slit diffraction effects.

Since the First Servicing Mission, all new Hubble instruments that have been installed have included their
own built-in corrective optics. By the time of Servicing Mission 3B in 2002, all the instruments had their
own corrective optics builtin, and COSTAR was no longer required. COSTAR was finally removed during
Servicing Mission 4 in 2009, freeing up room for another scientific instrument to be installed during this
mission, the Cosmic Origins Spectrograph.
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Chapter 56
Dispersion

Recall that the index of refraction of a transparent material is the ratio of the speed of light in vacuum to
the speed of light in the materialt = ¢/v. In general, the index of refraction will vary somewhat with
wavelength; this phenomenon is calldidpersion Dispersion can be an unwanted effect in lenses, since it
causes chromatic aberration. But it can also be useful in prisms, in that it allows “white” light (light of all
wavelengths) to be separated into its component colors. The same phenomenon occurs in Nature, where the
dispersion properties of water allows sunlight to be separated into its component colors by water droplets,
resulting in arainbow.

For example, the

56.1 Cauchy Dispersion Formula

One simple model for dispersion in materials is @auchy dispersion formuia

nQ) = ao+ S5+ T3+ e (56.1)
One often uses just the first two terms of the Cauchy dispersion formula:
a_1
A2’
wherel is the wavelength, and the constamjsdepend on the material.

For water 20°C), ag = 1.31494, a; = 4537.99465 nm?.
Three terms:

n(Ad) = ap + (56.2)

a a
n(h) = a0+ 33 + 35 (56.3)

wherel is the wavelength, and the constamjsdepend on the material.
For water 20°C), ap = 1.32692,a; = 1610.845 nn?, a; = 95402300 nm*.

56.2 Sellmeier Dispersion Formula

A more complex dispersion model is called Bellmeier dispersion formula

B2 B, A2 B3a2 \ /2
: 2 3 ) , (56.4)

=1
n(4) (+Az—cl+12—cz+12—c3
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Figure 56.1: Dispersion in distilled water, showing how the index of refraction varies with wavelength.

wherel is the wavelength and constas, Cy, B>, C,, B3, andC; depend on the material.

For water 20°C), B; = 0.35074, C; = 8725.74686 nm?, B, = 0.04212, C; = 25765.38176 nm?,
B3 = 0.36067, andC; = 8739.18542 nn?.
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Chapter 57

Polarization

In normal white light, the plane of the electric field vector occurs in random directions for different wave
trains; such lightis said to henpolarized In polarizedlight, the electric field vector for all waves is in the
same plane.

Light may be polarized by several different methods:

1. Selective absorption
2. Reflection

3. Scattering
4

. Birefringence

57.1 Selective Absorption

In selective absorbtignunpolarized light is passed though a material callgubkarizer. The polarizing
material has polymers embedded in it that absorb light whose electric vector is parallel to the polymers. The
light that passes through the polarizer has its electric vector in one plane only: the plane perpendicular to the
polymer direction. The direction of the plane of polarization (the plane of the electric vector) is called the
axis of polarizatiorof the polarizer.

If light passing through a polarizer is passed through a second piece of polarizing material (sometimes
called ananalyzej, the amount of light leaving the analyzer depends on the angle between the polarization
axes of the polarizer and analyzer. If the polarization axes are in the same direction, all of the light leaving
the polarizer passes through the analyzer. If the polarization axes are at right angles, the analyzer blocks all
the light from the polarizer, and no light goes through. In general, if the polarizer and analyzer are at at angle
6 with respect to each other, the intensityf light leaving the analyzer is given Byalus’s law

I =1Iycos 0 (57.1)
wherel is the intensity of light leaving the polarizer, before it goes through the analyzer.
The intensity ofunpolarizedight is cut in half after passing through a single polarizer.

57.2 Reflection; Brewster’'s Law

Light may also be (partially) polarized by reflection from a reflecting surface (a linoleum floor or a glass win-
dow, for example). In this case, light will be polarized in a direction perpendicular to the plane of incidence:
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light reflecting from a reflecting floor or swimming pool will be horizontally polarized, and light reflecting
from a window will be vertically polarized.

Reflected light will, in general, be onpartially polarized. At one particular angle of incidence, though,
the reflected light will be not just partially polarized, it will mempletelypolarized. That incidence angle is
called thepolarization angleand is given byBrewster’s law Brewster’s law

tand, = —— (57.2)

Nair
Hered, is the polarization angle; is the index of refraction of the reflecting material, ang = 1 is the
index of refraction of air.
Since lightreflecting from a horizontal surface lighta swimming pool will be at least partially horizontally
polarized, polarizing sunglasses are designed to have their polarization axivartibel direction to block
the reflected light.

57.3 Scattering

Light may be polarized bgcatteringof light. This may be seen by observing a clear blue sky through
polarizing sunglasses; by rotating the sunglasses you can see the sky getting brighter and darker, as the
sunglasses’s polarization direction changes with respect to the direction of polarized skylight.

57.4 Birefringence

Another method of polarization lsirefringence This notably occurs in the mineral Iceland spar, which is a
transparent crystalline form @flcite or calcium carbonate (CaGQ If Iceland spar is placed on top of a
page of printed text, you will see the image of the text is doubled (i.e. there will be two images of each letter).
Each image is polarized in a different direction, as you can verify by rotating a polarizing material in front of
the Iceland spar.

1

Figure 57.1: Birefringence in a sample of Iceland sp&re(lit: Jo Edkins, http://gwydir.demon.co.uk/jo/
minerals/index.htmn
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Chapter 58

Color

The human eye is capable of both color and black-and-white vision. Under conditions of very low illumi-
nation, a set of very light-sensitiveds on the retina of the eye allow us to see in black and white. Under
higher illumination, a different set of light receptors caltzhesbecome active that permit color vision. The
retina contains three types of cones, each of which is mostly sensitive to a different color: red, green, and
blue. Combinations of these three primary colors allow us to see all the other colors.

What we perceive as “white” light is actually a combination of all colors of light. We can split white light
into its component colors using a prism or a diffraction grating; the resulting colors and their approximate
wavelengths are shown in Table 58-1. (The sequence of colors can be remembered from the mnemonic ROY
G.BIV.)

Table 58-1. Approximate wavelengths of colors in the spectrum.

Color  Wavelength (nm)

Red 650
Orange 590
Yellow 570
Green 510
Blue 475
Indigo 445
Violet 400

Our perception of color is a complicated process. It depends partly on the wavelength of light received by
the eye; butalso the brain is able to distinguish colors by comparing the brightness of an object to other nearby
objects, as seen by all three colors of cones on the retina. This complicated process (caltaditbfect
allows us to perceive objects to be the same color, even under very different lighting conditions. (Notice,
for example, that objects appear to have the same color indoors under a fluorescent light as they do outdoors
under sunlight.) This phenomenon is caltsdor constancy

58.1 Lights

There are threprimary colorsof light: red, green andblue Other colors of light can be made by combining
these three primary colors in different proportions. Equal proportions of red and green lightyeike
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Additive (light) Subtractive (paint)

Additive and subtractive color combinations

Figure 58.1: Addition and subtraction of primary colors.

light; equal proportions of green and blue light make a greenish-blue color cgbepand equal proportions
of red and blue light make a purplish color callethgenta All three primary colors combined in equal
proportions makevhitelight (Fig. 58.1).

If one of the primary colors is removed from white light, the remaining colors combine to fareta
ondary colorthat is said to be theomplemenbf the missing color. For example, removing the blue light
component from white light leaves yellow light, so yellow is said to be the complement of blue—in a sense,
blue is “anti-yellow” and yellow is “anti-blue”. Similarly, the complement of green is magenta, and the
complement of red is cyan (Table 58-2).

In summaryfor lights, the primary colors are red, green, and blue; the secondary colors are cyan, ma-
genta, and yellow.

Table 58-2. Complementary colors.

Color Complement

red cyan
green magenta
blue yellow

These properties of light colors are used in devices we encounter every day. For example, if you enlarge
a color television screen or computer monitor with a magnifying glass, you will see that the image is made
up of an array of small, adjacent red, green, and blue pixels which are combined in different proportions to
form different colors. For example, if you enlarge a part of the screen that contains a yellow image, you will
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see the red and green pixels turned on, and the blue pixels turned off. To form orange, the red pixels will be
on and bright, the green pixels on but dim, and the blue pixels will be off.

58.2 Pigments

Coloredpigmentslike paints and inks work differently from lights. If a colored pigment is illuminated
with white light, it will absorb some colors and reflect others; the combination of the reflected light colors
determines the color of the pigment.

Students of art are often taught that the primary colors for paints are red, yellow, and blue, but this
isn't quite right. For pigments like paints, the primary colors are the same astomdarycolors of light:
magenta, yellow, and cyan. Magenta paint absorbs its complementary color (green) and reflects red and blue
light; yellow paint absorbs its complement (blue) and reflects red and green light; and cyan paint absorbs its
complement (red) and reflects green and blue light (Table 58-3).

Table 58-3. Pigment colors.

Made by
Pigment combining Absorbs Reflects
red magenta & yellow green & blue red
green cyan & yellow red & blue green
blue cyan & magneta red & green  blue
cyan cyan red green & blue
magenta magenta green red & blue
yellow  yellow blue red & green
white none none all
black all all none

Likewise, thesecondarnycolors for pigments are the same asphienary colors for lights: red, green, and
blue. In each case, a pigment of one of the secondary colors reflects only that color, and absorbs the others.
The color that results by mixing pigments can generally be predidigcissuming that the mixture will
absorb the colors of its components, and reflect everything else. For example, what happens if we mix cyan
and yellow paint? The cyan pigment absorbs red, the yellow pigment absorbs blue, and so the mixture should
absorb both red and blue, and reflect green; thus cyan and yellow pigments mixed together make green.
Table 58-3 shows the colors resulting by combining coloesgnal amountsOther colors can be created
by combining pigments in ways that reflect the primary light colors in unequal amounts. For example,
suppose we combine red and yellow pigments. The red component of the mixture will absorb green and blue
light, while the yellow component will absorb blue light. The mixture will then absorb some green light, and
lots of blue light — resulting in the reflection of lots of red light and some green light, andeengecolor.

58.3 Spectral Colors

If white light is split into its component colors &pectrunm using a prism or diffraction grating, we observe
the colors listed in Table 58-1, called tepectral colors The spectrum includes the primary colors of light
(red, green, and blue), along with the secondary colors yellow and cyan (located between green and blue).

1Assuming the pigments do not react chemically.
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But the spectrum doewmtinclude the color magenta, which is a combination of two colors on opposite ends
of the spectrum (red and blue). Magenta is an example of a class of colorspaifees that are formed by
combining blue/violet with red in different proportions. Purples@aoespectral colors, and do not appear in
the spectrum of white light.

There is an important distinction betweparple andviolet Purple is anon-spectral color formed by
combining blue/violet light with red light.Violet, however,is a spectral color, and appears at the short-
wavelength end of the spectrum.

58.4 The Chromaticity Diagram

Figure 58.2 shows th@IE chromaticity diagran? Itis a figure upon which may be plotted every color visible
to the human eye. Its unusual shape is because of the way it is defined; see Appendix R for details.

The curved, horseshoe-shaped edge of the chromaticity diagram is where the pure spectral colors lie.
Colors along this edge are the brightest and most vivid that we see them. Moving from the edge toward
the center of the figure, the colors become more and more washed-out, finally becoming white at point
E = (0.3333,0.3333), the equal-energy point.

The straight line fronm(x, y) = (0.17, 0.00) to (0.73, 0.26) is called thdine of purples The non-spectral
colors (magenta and other purples) lie along this line.

Whether you're looking at Figure 58.2 on a color monitor or on paper (printed from a color printer),
you're notreally seeing the diagram the way it actually looks. That's because both color monitors and color
printers are limited in the range of colors they can display. The white triangle in Fig. 58.2 shows the range
of colors visible on a typical color monitor. If you look at the figure on a color monitor, you'll notice the
colors look relatively constant moving along a line the white triangle to the curved edge; this is because of
limitations in the color monitor.

Figure 58.3 illustrates some properties of the chromaticity diagram. Fig. 58.3(a) shows that if you connect
any two points (colors} and B with a straight line, then all points along the line represent colors that can be
formed by combining colord and B in different proportions. Another property is illustrated by Fig. 58.3(b):
choose any color pointon the edge of the diagram, and draw a straight line from that point, through the center
point £, to the edge of the opposite side of the figure. This point at the opposite edge of the figure is the
complemenof the original point.

2CIE is the International Commission on lllumination:; its initials are an abbreviation for its French name, Commission Internationale
de I'Eclairage.
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Figure 58.2: The CIE 1931 chromaticity diagram. The white triangle shows the range of colors that can
be displayed on a color computer monitor. The curved line in the middle shows the color of blackbody
radiation at various temperatures. PoidtsB, C, andD are standard light sourced(tungsten, 2856 KB:
llluminant B; C: llluminant C; D: D65, 6500 K.) Point is the equal-energy point.
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Figure 58.3: Some properties of the chromaticity diagram. (&) #nd B are two points (colors) on the
diagram, then any color along the line connectihgnd B can be formed by combining and B in different
proportions. (b) Complementary colors lie on opposite sides of a line passing through the equal-energy point
E.
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Chapter 59

The Rainbow

Therainbow, one of the most beautiful and striking objects seen in Nature, is typically visible during a late
afternoon rain shower, when the Sun is low in the sky and shining at the same time (Fig. 59.1). Understanding
all of the features of the rainbow requires many different ideas from optics.

59.1 Colors

The most obvious feature of the rainbow is its selection of colors. The phenomenon responsible for the colors
isdispersion(Chapter 56). White light from the Sun enters each raindrop, refracts into the interior of the drop,
reflects once via total internal reflection, and refracts back out of the drop again. The angles of refraction are
determined by Snell's law and the index of refraction. But because of dispersion, the index of refraction (and
therefore the angle of refraction) is different for each color of light (Table 59-1).

Table 59-1. Indices of refraction of water for different colors.

Color  Wavelength (nm)  nyater

Red 650 1.3317
Orange 590 1.3333
Yellow 570 1.3340
Green 510 1.3364
Blue 475 1.3381
Indigo 445 1.3400
Violet 400 1.3436

When you see a rainbow in Nature, you can oftentseebows: a brighprimary rainbow and above it a
faintersecondary rainbowrig. 49.1). The secondary bow is due to light reflecting a second time inside the
raindrop due to total internal reflection.

59.2 The Primary Rainbow

In the brighter primary rainbow, red appears on the outside edge and violet on the inside Bugerimary
rainbow is due to light reflecting a single time inside the raindrops due to total internal reflection.

1The next time you see a drawing of a rainbow, check to see whether the artist put the colors in the correct order, with red on the
outside edge. Drawings have the colors wrong as often as not.
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Figure 59.1: A rainbow. The bright primary bow is over the barn; the dimmer secondary bow is to the right.
Alexander’s dark band is the dark region between the two bd@redft: Pennsylvania State University.
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il L Lo

Figure 59.2: Observation of primary and secondary rainbows by an observer akpdihe Sun is behind
the observer, as indicated by the linfsand S’. R and V' show the locations of the red and violet bands

(respectively) in the primary bow, whike andr show the locations of violet and red in the secondary bow.
(Ref. [5])
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Figure 59.3: Impact parameter and the resulting scattered light rays. (From Nusse8eiggigjfic American
April 1977.)

The rainbow is in the shape of a partial circle, being a larger part of the circle the lower the Sun is in
the sky. The rainbow would, in fact, be a complete circle if the ground weren't in the way; such complete
rainbows may sometimes be seen from airplanes. The center of the rainbow’s circle is directly opposite the
direction of the Sun in the sky, so if the Sun is setting in the west and it's raining, look for a rainbow in the
east.

59.3 The Secondary Rainbow

A fainter secondary rainbow appears above (outside) the primary rainbow, and its colors are reversed (violet
on the outside edge and red on the inside edge). Itis also a bit wider than the primary bow. The secondary
bow is due to light reflectingviceinside the raindrop due to total internal reflection. Some lightis lost during
each reflection, so the secondary bow will be fainter than the primary bow.

59.4 Location of the Rainbow

What determines the location of the rainbow in the sky? The center of curvature of the rainbow is opposite
the direction of the Sun, but what determines the angle from the sunline to the rainbow? By convention, we
measure the angle between the Sun and the rainbow, as seen by the observer; this is caitdzbthangle

The primary rainbow has a rainbow angle of abbk&°, while the for the secondary bow the rainbow angle

is 130°.

What determines these angles? Figure 59.3 shows the path of a light ray through a single (spherical)
raindrop. The perpendicular distance between the light ray and the center of the drop is cailheplattte
parameter as shown in the figure. Of course, light rays are hitting the many raindrops at all different im-
pact parameters, so the outgoing light rays are scattered over a range of angles. But from the principles of
geometrical optics, we can calculate the angle of the outgoing light raggtitering anglas a function of
impact parameter (Fig. 59.4). In the figure, you can see that the curve for the primary bow (upper curve) has
a minimum for an impact parameter that is about 0.86 times the drop radius. Around this impact parameter,
significant changes in the impact parameter result in nearly the same scattering angle — in essence, many
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Figure 59.4: Scattering angle vs. impact parameter for the primary and secondary rainbows. (After Nussen-
zveig, Scientific AmericapApril 1977.)

light rays hitting the drop at around this impact parameter will be scattered in the same direction, and this is
where the rainbow will appear. According to calculations, light rays hitting the drop with an impact parameter
of 0.86 of the drop radius will have a scattering angld 28 °, which is the rainbow angle for the primary
bow.

Similarly, the curve for the secondary bow (two internal reflections) has a maximum at about 0.95 the
radius of the drop. Therefore many light rays light hitting the drop with an impact parameter around 0.95 of
the drop radius will scatter at about the same angle, which is rainbow angle of the secondarytsow,

59.5 Alexander’'s Dark Band

As seen in Figure 49.4, there is no impact parameter for either the primary or secondary bow that will lead to
light being scattered betwedd0° and138°. This results in a dark band between the primary and secondary
bows, known a&\lexander’s dark ban@Fig. 59.1).
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59.6 Higher-Order Rainbows

Both the primary and secondary rainbows are easy to observe in Nature, but what about high-order bows,
corresponding to three or more reflections of light rays inside each raindrop?

Confirmed observations of third- and fourth-order bows in Nature have only very recently been made for
the first time, in 201 2. (See Figures 59.6 and 59.7.) There is at this time also evidence for observation of a
fifth-order rainbow in 2015.

It can be shown (Ref. [16]) that the rainbow angle of h#h order rainbow (corresponding kointernal
reflections in each drop) is given by

Or = k(180°) + 20ix — 2(k + 1)« (59.1)

where thek-th angle of incidencé; is given by

6;; = cos! =1 (59.2)
k(k +2)

and thek-th angle of refractior, . is found from Snell’s law:

O,% = sin! (L sin@ik) (59.3)
nw

Heren,, is the index of refraction of water. Sineg, varies depending on the color of light, these equations

can be used to find the rainbow angle for both red and violet light, and from that deduce the width of each

bow. The results of these calculations through the 20-th order rainbow are shown in Table 59-1, and illustrated

in Figure 59.5. Notice that as the rainbow ordencreases, the rainbows get both fainter and wider.

2SeeApplied Optics50, 28, pp. F129-F141 (2011).
3See Edens, H.E. (2015) Photographic observation of a natural fifth-order raitspplvOpt.54, B26-34.
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Table 59-1. The first 20 orders of rainbows of water, calculated from geometrical optics. This table shows
the rainbow angle8; and bow widthsA§. Also shown are which side of the drop the incident light rays hits
(T=top, B=bottom) and the rainbow “parity” (N“normal” parity, with red on the outside and violet on the

inside; R="reversed” parity, with violet on the outside and red on the insidéjhe 12th order bow is split

at the horizon, with red rays incident on the bottom of the drops and violet rays on the top (see Fig. 59.5).

Rainbow angle),  Width  Drop

k red violet A6 Side Parity
1 137.63 139.3% 1.72 T N
2 129.63 126.52 3.1r B R
3 4247 38.1r 437 B N
4 4276 48.34 5.58 T R
5 127.08 133.86 6.78 T N
6 149.10 141.13 7.9¢ B R
7 6559 5645 9.1%4 B N
8 17.7¢ 28.02 10.32 T R
9 100.86 112.35 11.49 T N

10 176.08 163.43 12.65 B R

11 93.1F 79.29 13.82 B N

12 10.19 479 1499 oy  moed
13 7268 88.83 16.15
14 155.5% 172.82 17.32
15 121.69 103.2F 18.48
16 38.9F% 19.27 19.64
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Figure 59.5: Locations of the first 20 orders of rainbows in the sky. Each order bow is dimmer and wider
than the previous one. Only the 1st and 2nd order bows are visible in Nature, but the higher-order bows may
be observed in laboratory experiments, as described iAnegteur Scientistolumn ofScientific American

July 1977.

Figure 59.6: First ever photograph of a third-order (tertiary) rainbow, taken in southern Germany ind2011. (
Original photograph. Pointd and B are reference positions for image orientatidn). Qomputer-enhanced
version that shows the third-order bow. Arrows show the location of the rainbow image. The Sun is off to the
right. (GroBmann, Schmidt, and HaulRmaApplied Optics$50, 28, F134F141 (2011).)
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Figure 59.7: First ever photograph of a fourth-order (quaternary) rainbow, taken in northern Germany in
2011. @) Original photograph. iy Computer-enhanced version that shows both the third-order bow (left)
and fourth-order bow (right). The Sun is off to the left. (TheusApplied Optics50, 28, F129F133 (2011).)
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Chapter 60

Special Relativity

60.1 Introduction

The classical mechanics described by Sir Isaac Newton begins to break down at very high velocities, i.e. at
velocities near the speed of light= 299,792 .458 km/s. For bodies moving at a significant fraction of the
speed of light, Newton’s mechanics needs to be modified. The necessary modifications were developed by
physicist Albert Einstein (1879-1955, Figure 60.1). in the early 20th century.

60.2 Postulates

Einstein discovered that the necessary modifications to Newtonian mechanics could be derived by assuming
two postulates:

1. Absolute uniform motion cannot be detected.
2. The speed of light is independent of the motion of the source.

The first postulate says that all motion is relative—that there is no reference frame that all observers can agree
to be absolutely at rest. The second postulate says that light does not obey the usual laws of velocity addition.

Figure 60.1: Albert Einstein.
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For example, if someone is moving toward you at 99% of the speed of light and turns on a flashlight in your
direction, you will measure the light's speed to be the same as if that person were at rest.

Although these postulates seem quite reasonable, they lead to some surprising consequences. Let's ex-
amine a few of those consequences.

60.3 Time Dilation

It turns out that one consequence of Einstein’s postulates is that time runs more slowly for someone moving
relative to you; this effect is calletiime dilation If someone is moving at speedrelative to you, then their

clocks will run slower than yours. If a clock measures a time intefugl when it's at rest, then when it's
moving at a speed relative to you, you will measure that time interval to be longer by a factor

At =y A, (60.1)

whereAt¢ is the time interval measured by the moving clogl, is the time interval measured on the clock
when it's at rest, angt is an abbreviation for the factor

1
Y —
V1—v2%/c?
(Note thaty > 1.) The time intervalAz,, measured when you're at rest with respect to the clock, is called
theproper time
This effect means that time travel is possible—at least time travel into the future. One simply builds a

spacecraft and travels close to the speed of light, then turns around and returns to Earth. (Itis not clear whether
time travel into the past is possible, but it might be possible under Einstginisraltheory of relativity.)

(60.2)

60.4 Length Contraction

Another consequence of the postulates is that a moving body will appear to be shortened in the direction of

motion; this effect is calletength contraction The length of a moving body will appear to be shortened by

this same factor of:
14

HereL, is the length of the body when it is at rest, and is calledateper length Sincey > 1, the moving
body will be shorter when it is moving.

L (60.3)

60.5 An Example

As an example, let’s imagine that a spacecraft is launched at high speed relative to Earth toward the nearest
star, Alpha Centauri (which is about 4 light-years away). The ship travels at 80% of the speed of light during
the trip. From Earth, we see that the whole trip takes 5 years. We also see the astronaut’s clocks running more
slowly than ours by a factor gf = 2.78, so that when the astronauts arrive, they are only 1.8 years older.

What do the astronauts see from their point of view on the spacecraft? Their clocks run at what seems a
normal rate for them, but they see that thigtanceto Alpha Centauri has been length-contracted by a factor of
y = 2.78. They're traveling at a speed 6{80c¢, but they only have to travel a distance of (4 light-years)/
1.44 light-years. When they arrive at Alpha Centauri, they're older by (1.44 light-y@z88y/= 1.8 years.

In summary, observers on Earth see the astronaut’s clocks moving more slowly, but the astronauts have
to travel the full 4 light-years. The astronauts see their clocks moving at normal speed, but the distance they
have to travel is shorter. All observers agree that the astronauts are only 1.8 years older when they arrive.
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60.6 Momentum

In Newton'’s classical mechanics, momenturp is mv. Under special relativity, this is modified to be
p =ymv. (60.4)

Relativistically, it is this definition of momentum that is conserved. Newton’s Second Law in the form
F = mais no longer valid under special relativity, but Newton’s original fdfre= dp/dt is still valid, using
this definition of momenturp.
Notice that aa» — ¢, we havey — oo (by Eqg. (60.2)), and so momentum— oco. As a body goes
faster, its momentum increases in such a way that it becomes increasingly difficult to make it go even faster.
This means that it is not possible for a body to move faster than the speed of lightin vacuum,

60.7 Addition of Velocities

Let’s suppose that we have two bodies moving in one dimension. The first is moving atispaed the
second is moving at speed What is the speed of the second relative to the first? In other words, what will
you measure as the speed of the second body if you're sitting on the first body?

In classical Newtonian mechanics, the speedf the second body relative to the first is simply

w="v-—u. (60.5)

For example, if the first body is moving to the right with speeée- 10 m/s, and the second body is moving
toward it to the left with speed = —20 m/s, then an observer on the first body will see the second body
moving toward it with a speed af = 30 m/s.
In the special theory of relativity, this seemingly self-evident equation for adding velocities must be
modified as follows:
V—Uu

= - 60.6
v 1 —uv/c? ( )

This reduces to Eq. (60.5) unless the speeds involved are near the speed of light. For the above example,
whereu = 10 m/s andv = —20 m/s, Eq. (60.6) givesv = 29.99999999999993324 m/s, rather than
w = 30 m/s given by Eg. (60.5). As you can see, for many applications, the difference between the classical
formula (60.5) and the exact relativistic formula (60.6) is not enough to justify the extra complexity of using
the relativistic formula.

But for speeds near the speed of light, using the relativistic formula is important. For example; if
0.99¢ andv = —0.99¢, then the classical formula of Eq. (60.5) would give= 1.98¢ > ¢, in violation of
special relativity; but using the exact expression in Eq. (60.6) gives the correct answe®,9999494975¢.

Eq. (60.6) makes it impossible for the the relative speeds to be greater than the speedcoflifighie
extreme casa = ¢ andv = —c, Eq. (60.6) givesv = ¢, in agreement with the Einstein’s second postulate.

60.8 Energy
Rest Energy

Einstein showed that mass is a form of energy, as shown by his most famous equation,
Eo = mc?. (60.7)
Ey is called therest energyof the particle of mass:. The clearest illustration of this formula is the mutual

annihilation of matter andntimatter(a kind of mirror-image of ordinary matter). When a particle of matter
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collides with a particle of antimatter, the mass of the two particles is converted completely to energy, the
amount of energy liberated being given by Eq. (60.7).

As examples, the rest energy of the electron is 511 keV, and the rest energy of the proton is 938 MeV.
(1 eV is oneelectron volf and is equal td.6021766208 x 10719 J.)
Kinetic Energy

In classical Newtonian mechanics, the kinetic energy is givek By mv2/2. The relativistic version of this
equation is

K = (y — Dmc?. (60.8)

It is not obvious that this reduces to the classical expression until we expiswtala Taylor series:

(1 _1/2_1+1v2+3v4+5v6+35v8+63v1°+231v12+ ©09)
V= 2 T T2 T8 T 16¢6 T 128¢8 T 25610 T 1024 c12 '
Substituting this series expansion fointo Eq. (60.8), we get
1 3 vt 5 8 35 ¥ 63 w0 231 pl?
K= -mv®+ ome + —m— + i + et + 60.10
e T e T 1" e T s s T o e t (60.10)

Unless the speedis near the speed of light all but the first term on the right will be very small and can be
neglected, leaving the classical equation.

Total Energy

If the only forms of energy present are the rest endigyand the kinetic energ¥, then the total energy
will be the sum of these:

E = Ey + K = ymc?. (60.11)

It is often useful to know the total energy of a particle in terms of its momeniuather than its velocity.
It can be shown that the total energy is given in terms of momentum by

E? = (pc)* + (mc?)%. (60.12)

In the case where the total energy is much larger than the rest erfergy £,), we may neglect the second
term on the right, and use

E ~ pc. (60.13)
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Chapter 61

Superfluids

When liquid helium-4 tHe) is cooled below a critical temperature of 2.17 K (called lttmabda poin}, a
sudden phase transition occurs, and the helium becomes an exotic fluidreiled 1.1 Helium Il is the
best-known example of superfluid—a fluid with odd properties that are governed by the laws of quantum
mechanics.

As helium | is cooled toward the lambda point, it boils violently; but when the lambda point is reached,
the boiling suddenly stops. This is due to a sudden increase in the thermal conductivity of the liquid when
it transitions to the superfluid state. The thermal conductivity of superfluid helium Il is more that a million
times greater than that of liquid helium I, and helium Il is a better conductor of heat than any metal.

Superfluid helium Il is perhaps best known for its unusual viscosity. One method for measuring the
viscosity of a liquid is to allow it to flow through a thin tube or channel calledpillary: the more viscous
the liquid, the larger the diameter of the capillary needed to permit the liquid to flow. Helium Il can flow
through capillaries much less tharuin in diameter, and in such experiments behaves as thoughzehas
viscosity. This ability of helium Il to flow through very tiny capillaries is calleaperflow

Another method for measuring viscosity is to rotate a small cylinder inside the liquid; viscosity will cause
the liquid to be dragged along with the cylinder, and a small rotatable paddle placed near the axis of the
rotating cylinder will show whether the rotating cylinder is causing the liquid to rotate. In such experiments,
helium 1l doesexhibit some viscosity. No ordinary liquid exhibits this sort of dual behavior with respect to
viscosity.

A common model to explaining this odd behavior is called tthe-fluid model In this model, liquid
helium 11 is thought of as consisting of two interpenetrating componentsormal (viscous) component,
and asuperfluid(nonviscous) component. In the capillary experiment, only the superfluid component flows
through the tiny capillaries, but in the rotating-cylinder experiment, the normal component is dragged along
with the cylinder, causing circulation in the liquid.

Another unusual phenomenon observed in helium Il is calledahetain effec(Fig. 61.1). A tube with
a porous plug in the bottom is placed inside a bath of helium Il. A superflow of helium is observed to flow
through the tiny & 1 um) capillariestoward the heater; upon being heated, the superfluid component is
converted to a normal component, and the fluid is unable to flow back out through the fine capillaries in the
plug. Pressure builds in the tube until the helium squirts out of the capillary in the top of the tube, creating a
“helium fountain”. Since the second law of thermodynamics states that heat cannot flow from lower to higher
temperatures, this implies that the superfluid component carries no heat: any heat in the helium Il must be in
the normal component.

Yet another interesting property of helium Il is the formation of a very thin film callBd#in filmwhen
the liquid is placed in a container. The Rollin film will creep up the sides of the container, and if the container

1Above 2.17 K, liquid helium is a (mostly) ordinary liquid callbelium L
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FPorous Flug

Heater \

Figure 61.1: The fountain effect in superfluid liquid helium {Trédit: NASA)

Figure 61.2: A Rollin film of helium Il. The film creeps up the sides of the container and back down the
outside, collecting in small drops at the bottonCrédit: Liquid Helium 1I: The Superfluid, University of
Michigan)
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is open, itwill creep back down the outside, so that the helium Il will spontaneously creep out of the container
(Fig. 61.2). The Rollin film is much less thanudm in thickness; its creeping speed is slow just below the
lambda point, but may reach a speed as high as 35 cm/s at lower temperatures.

Finally, helium Il exhibits an unusual way of conducting heat. Normally, substances conduct heat through
diffusion, where the rate of heat flow is proportional to the temperature difference; but in superfluid helium
I, heat is conducted byaves This phenomenon is callestcond soundand no other substance exhibits this
behavior. The speed of second sound is small just below the lambda point; at a lower temperature of 1.6 K, it
is about 20 m/s.

It should be kept in mind that the two-fluid model of helium Il discussed here is simphpdel—a
convenient way of thinking about the behavior of the liquid. Superfluid helium Il is a quantum liquid, and a
complete description of its behavior requires the application of quantum mechanics.
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Chapter 62

The Standard Model

The Standard Modebf particle physics is our current best theory of how the Universe is put together at its
most fundamental level. It describes the fundamental nature of both matter and forces. This is still very much
at the frontier of physics research, so it's not clear how much of our understanding of this is correct.

62.1 Matter

All of (ordinary) matter is found to be made of two types of partickpsarksandleptons There are six types
of quarks (calledup, down charmed strange top, andbottorm) and six types of leptons (thedectron muon
tau lepton and their associatatkeutrinos) (Table 62-1.)

Table 62-1. The basic particles of matter.

Quarks Leptons
Up (u) Electron ¢™)
Down (d) Electron neutrinox?)
Charmed (c) Muong™)
Strange (s)  Muon neutrion{)
Top (1) Tau lepton{™)
Bottom (b)  Tau neutrino?)

Quarks are never observed in isolation: they occur only as a system of three quarks (balfgdr or
as a quark-antiquark pair (calledreeso. (An antiquark is a form céntimatter described below.) Examples
of baryons are thproton(which consists of two “up” quarks and one “down” quark) andrikatron(which
consists of two “down” quarks and one “up” quark). Baryons and mesons together are collectively known as
hadrons so a hadron refers to a collection of bound quarks.

Quarks are held together in hadrons by a very strong force that becomes stronger the farther apart the
guarks are separated. This is why they are not observed in isolation.

Leptons consist of the electron, the muon (which acts like a heavy electron), and the tau lepton (which acts
like a very heavy electron). Each of these particles has a charge.dh reactions in which these particles
are produced, there is generally also a neutrino particle. Neutrinos are very light particles with almost no
mass, and for the most part they pass right through ordinary matter; in fact, there are billions of them passing
through your body right now. Only very rarely do they interact with ordinary matter, but occasionally they
do. Physicists have built neutrino “telescopes” to detect them; these telescopes consist of underground pools
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filled with cleaning fluid surrounded by light detectors. In the rare event that a neutrino interacts with ordinary
matter, it emits a brief flash of light which is detected and recorded.

Both quarks and leptons are, as far as we can observe, point masses. None of them has any internal
structure that we're currently aware of.

62.2 Antimatter

Each quark and lepton has a corresponding mirror-image particle that has the same mass but opposite charge;
such particles are callexhtimatter The antimatter counterpart of the electron is calledpibgtron(e *); for
other particles, you just add the preéirti- (e.g.anti-proton anti-neutron etc.)

Whenever a particle of ordinary matter comes in contact with its antimatter counterpart, the two particles
are destroyed and converted to energy in the form of gamma rays. The amount of energy created is given by
Einstein’s famous formulak, = mc?, wherem is the sum of the particle masses anid the speed of light
in vacuum.

62.3 Forces

We know of four fundamental forces in Nature: tpevitational force the electromagnetic forgeand two

nuclear forceqTable 62-2.) We're all familiar with the gravitational force (which is keeping you attached

to the ground as you read this). Most of the other forces you encounter in everyday life are electromagnetic
in nature. The strong nuclear force is responsible for holding atomic nuclei together against the mutual
electrostatic repulsion of protons, and is also responsible for nuclear fusion reactions that occur in the Sun
and in hydrogen bombs. The weak nuclear force is responsible for a processalésdy in which a

neutron in an atomic nucleus decays into a proton, electron, and anti-neutrino, and the electron escapes from
the atom in the process.

Table 62-2. The four forces.

Force Vector boson
Gravitational Graviton (?)
Electromagnetic Photon
Strong nuclear Gluon
Weak nuclear w, Z

According to the Standard Model, each of these forces is mediated by a particle caietbrabosonin
effect, each force is thought to be caused by the exchange of these particles.

The electromagnetic and weak nuclear forces have been (somewhat) unified into a combined “electroweak
theory”, although this theory is not entirely complete. Many physicists believe that the electromagnetic,
strong nuclear, and weak nuclear forces can be shown to be different aspects of a single underlying force, and
thus all covered by a single “Grand Unified Theory”. No Grand Unified Theory has yet been discovered.

Our best theory of gravity to date is Einstein’s General Theory of Relativity, and has so far been shown
to be consistent with experimental results. However, general relativity says that the gravitational force is due
to the curvature of space-time; this is at odds with the Standard Model view, which is that gravity is caused
by the exchange of particles callgthvitons No experiment has yet detected the existence of gravitons, and
it's uncertain whether or not general relativity is the correct final theory of gravity.

1The gravitational force is not considered to be part of the Standard Model.
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Some physicists believe that it may be possible to showeathfttur forces (including gravity) are aspects
of a single underlying force, and covered by a theory called the “Theory of Everything”. Such a theory
(which is essentially a grand unified theory plus gravity) has not yet been found, nor is it known whether
such a theory even exists. Some theories sudtragy theoryhave been proposed, but are far from being
experimentally verified. These are issues to be worked out by future generations of physicists.

62.4 The Higgs Boson

A key piece of the Standard Model ktiggs field which is responsible for giving particles their mass. The
Higgs field fill all of space, even in places where there would otherwise be a vacuum. The degree to which a
particle interacts with the Higgs field determines its mass: patrticles interacting weakly with the Higgs field
are light, while those that interact strongly with the Higgs field are heavy. Particles that don't interact with
the Higgs field at all, like the photon, are massless.

The Standard Model predicts that fields that fill all space should be associated with a particle — for
example, as we've seen each of the four fundamental forces is associated with a vector bosoR jéicle.
particle associated with the Higgs field is tHeggs boson The Higgs boson was detected experimentally at
the CERN particle physics acceleratam 2015, thus confirming the existence of the Higgs field and giving
increased confidence in the Standard Mddel.

2Except, perhaps, for gravity.

3CERN stands for Conseil Eureph pour la Recherche Neelite, and is a facility located on the border between France and Switzer-
land.

4Seent t p: / / www. nobel pri ze. or g/ nobel _pri zes/ physi cs/ | aur eat es/ 2013/ popul ar - physi cspri ze2013. pdf
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Further Reading

General

» The Feynman Lectures on PhysigsR.P. Feynman, R.B. Leighton, and M.L. Sands (Addison-Wesley,

1963).

This collection of physics lectures was delivered by Nobel laureate Richard Feynman at the California
Institute of Technology in the 1960s, and is known to every physicist. It is regarded by many as one of
the best, clearest surveys of physics ever written. These lectures have recently re-released in a “New
Millennium Edition”, and the audio recordings of the lectures have been released on CD as well.

» Feynman’s Tips on Physics: A Problem-Solving Supplement to the Feynman Lectures on B®hysics
R.P. Feynman (Addison-Wesley, 2005).
Supplementary material for tHeeynman Lectures on Physjda which Feynman gives his advice on
strategies for solving physics problems.

Mathematics

» How to Enjoy Calculudy Eli S. Pine (Geyer Instructional AIDS Co., 1983).
Thebest introduction to the calculus, bar none. Also very brief (150 pages).

Waves (Part I)

* Vibrations and Waveby A.P. French (Norton, 1971).
One of the four volumes of thdIT Introductory Physics Seriethis calculus-based book gives a fairly
detailed presentation of vibrations and waves.

Acoustics (Part II)

» The Physics of Sour(@rd ed.) by R.E. Berg and D.G. Stork (Benjamin Cummings, 2004).
A text on acoustics and music for non-scientists, written by authors from the University of Maryland.

Music (Chapter 15)

» Horns, Strings, and Harmonlyy Arthur H. Benade (Dover, 1992).
A good survey of the physics of music and musical instruments.
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» Good Vibrations: The Physics of Mudiy Barry Parker (Johns Hopkins, 2009).
A recent non-mathematical book on the physics of music.

» Musical Acousticg3rd ed.) by Donald E. Hall (Brooks/Cole, 2002).
An undergraduate textbook on the physics of music.

Electricity and Magnetism (Part IlI)

» Fundamentals of Electric Wavey Hugh Hildreth Skilling (Krieger, 1948).
A brief, very clear book on electric waves (but requires a background in the calculus).

» The Lightning Dischargéy Martin A. Uman (Dover, 2001).
A good book on the science of lightning by a well-known researcher.

* “A Bolt Out of the Blue” by Joseph R. Dwyeg&cientific AmericanMay 2005.
A recent article on some of the latest developments in lightning research.

Electronics (Part 111)

* Getting Started in Electronidsy Forrest M. Mims IIl (Master Publishing, 2000).
This is a very brief (128 pp.), informal, hand-written () book on analog and digital electronics, aimed
mainly at electronics hobbyists. Lots of good information on both theory and practical electronics, and
easy to read.

* Electronic Principleg6th ed.) by Albert P. Malvino (Glencoe McGraw-Hill, 1999).
A standard, well-regarded undergraduate text on electronics, at roughly the level of this course.

» The Art of Electronicg3rd ed.) by Paul Horowitz and Winfield Hill (Cambridge, 2015).
An advanced book on analog and digital electronics, covering basically anything you would ever want
to know about electronics. This book is widely regarded as a standard reference in the field. The book
has a Web site dtt t p: / / www. ar t of el ectroni cs. cont .

* Lessons in Electric Circuitss a free electronic book, available on the Internet at:
http://ww. al | aboutcircuits. com textbook/. This book starts with the basics, yet
covers a lot of material. The entire book is in six volumes, and is over 2700 pages long.

» Bebop to the Boolean Boogigrd ed.) by Clive “Max” Maxfield (Newnes, 2009).
An informal, easy-to-read introductory book on digital electronics.

+ Digital Fundamental§10th ed.) by Thomas L. Floyd (Pearson Prentice Hall, 2009).
A standard undergraduate text on digital electronics, at roughly the level of this course.

Radio (Chapter 45)

» The Science of Radio: With MATLAB and Electronics Workbench Demonstr&iwhed.) by Paul J.
Nahin (Sprinter, 2001).

» The Electronics of Radiby David Rutledge (Cambridge, 1999).

» The ARRL Handbook for Radio Communicatissublished in a new edition each year by the Ameri-
can Radio Relay League, which is the association of radio amateurs in the United States: http://www.arrl.org.
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» The Xtal Set Societyht t p: / / www. mi dni ght sci ence. conjis a society devoted to crystal ra-
dios. They have a number of kits and publications, and issue a newsletter.

Optics (Part 1V)

» Optics(4th ed.) by Eugene Hecht (Addison-Wesley, 2001).
A standard undergraduate text on optics.

* Principles of Opticg7th ed.) by Max Born and Emil Wolf (Cambridge, 1999).
An advanced, graduate-level book on optics.

Color (Chapter 58)

* Light and Color in Nature and Aty Samuel J. Williamson and Herman Z. Cummins (Wiley, 1983).
An excellent book on color—quite readable, yet contains a lot of technical information.

» The Physics and Chemistry of Col@nd ed.) by Kurt Nassau (Wiley, 2001).
A good undergraduate text on color, somewhat more advanced than the Williamson and Cummins text.

» Color Science: Concepts and Methods, Quantitative Data and Fornf2taked.) by G. Wyszecki and
W.S. Stiles (Wiley, 2000).
A standard advanced text on color theory.

The Rainbow (Chapter 59)

» “The Theory of the Rainbow” by H. Moys Nussenzveidg;cientific AmericanApril 1977, 116-127.

» “The Amateur Scientist: How to Create and Observe a Dozen Rainbows in a Single Drop of Water” by
Jearl WalkerScientific AmericanJuly 1977.

* “Multiple rainbows from single drops of water and other liquids” by Jearl D. Walken, J. Phys.
May 1976, 421-433.

* The Rainbow: From Myth to Mathematiog Carl B. Boyer (Princeton, 1987).

Modern Physics (Part V)

» The Road to Realithy Roger Penrose (Knopf, 2004).
A recent survey of modern physics by a famous physicist.

* QED: The Strange Theory of Light and Mattey Richard P. Feynman (Princeton, 1988).
A famous Nobel laureate explains the theory of quantum electrodynamics at a level accessible to the
general public.

262



Prince George’s Community College Introductory Physics I D.G. Simpson

Just for Fun

 Physics of the Impossibley Michio Kaku (Doubleday, 2008). A noted physicist discusses the possi-
bility of time travel, force fields, invisibility cloaks, transporters, etc.

» The Disappearing Spodmy Sam Kean (Little, Brown & Co., 2010). A very entertaining collection of
stories surrounding the periodic table of the elements.

» Mr. Tompkins in Paperbacky George Gamow (Cambridge, 1993). A famous Russian physicist wrote
these stories of a world in which the speed of light is just 30 mph so relativistic effects are visible, and
more stories of a world where Plancks constant is so large that quantum effects are visible. An updated
version has also been writteflhe New World of Mr. Tompkiri€ambridge, 2001).

» Dragon’s Eggby Robert L. Forward (Del Rey, 2000). Physicist Robert Forward wrote this novel about
humans who discover a civilization of creatures living on the surface of a neutron star.
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Appendix A

Greek Alphabet

Table A-1. The Greek alphabet.

Letter Name

Ao Alpha
BB Beta
ry Gamma
A$§  Delta
Ee  Epsilon
Z¢ Zeta
Hn Eta

® 60 Theta
It lota

Kk  Kappa

A A Lambda

Mup  Mu

N v Nu

E& X

Oo Omicron

Iz Pi

Pp  Rho

Yo  Sigma
Tt Tau

T v Upsilon

b Phi

X x Chi

Wy Psi

Qw Omega

(Alternate forms6 = f,e = 6,9 =0, x =k, W =7, 0=p, ¢ =0, P = @.)
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Appendix B

Trigonometry

Basic Formulae

Sif 0 +cogd =1
se¢f=1+tarf6
cséf=1+cotd

Angle Addition Formulae

sin(e + B) = sina cosp + cosa sinf
coju + B) = cosa cosB F sina sinB
tana + tanp
tane + )= ——
e+ p) 1 F tana tanp

Double-Angle Formulee

2tan6

120 — 25 _ _2tanf
sin26 sinf cosf T a0

cos20 = cog 0 —sitfd =1—2siPh =2cos 6 —

2tané

tan29 = m

Triple-Angle Formulee

sin30 = 3sinf — 4sin® 0
cos36 = 4cos 6 — 3 cosh

tan39_3tan9—tan39
T 1—3tarté

o — t
Cothco 6 — 3 coth
3cot2h —1
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Quadruple-Angle Formulae

sindf = 4 cos 6 sinf — 4 coso sin’® 0

cos46 = cos' § — 6cog Osin? O + sin* @
4tanf — 4tar’ 6
1—6tart 0 + tart 4
cot*6 —6co h + 1
cot4d = 4coP § — 4cotd

tan4f =

Half-Angle Formulae

0 1 — cosf
sin— = +
2 2
0 1 + cosf
CoS— =+ ————
2 2
tang _sinB 1—cost
2 1+4cosf  sind

Products of Sines and Cosines

sina cosp = % [sin(@ + B) + sin(a — B)]
cosa sinf = % [sin(e + B) — sin(e — B)]
cose Cosp = % [cos + B) + coga — B)]
Sina sinf = — [cos + ) — cos — )]

Sums and Differences of Sines and Cosines

sine + sing = 2sin

Oth’BcosO[;ﬁ
oa—p
2
a+pB a—f
5 cos—
oa—p
2

. . o .
sine — sinf = 2 cos +ﬂsm

cosx + cosP = 2cos

. o .
COSx — COSf = —2sin +8 sin
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Power Reduction Formulae

si’ 6 = 1 (1 — cos26)
cos 6 = 1 (1 + cos26)

1 —cos26
taf = —————
1 4+ cos20

Other Formulae

tand = cotf — 2 cot20
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Trig Cheat Sheet

Definition of the Trig Functions

Right triangle definition
For this definition we assume that

Oclic%or 0" <@ <90°.

lecnme

h

opposite

Unit circle definition

For this definition @ is any angle.

Facts and Properties

adjacent
sing = _opposite o hypotenuse
hypotenuse opposite
cos = _diaeent g - hapotenuse
hypotenuse adjacent
tang = ommlc coth = adjac !
adjacent opposite
Domain

The domain is all the values of & that
can be plugged into the function.

sin@ , @ can be any angle
cos@, @ canbe any angle

tanfl | 0:[;11—%].'!. n=0£1%2,..
csc@, O#am, n=0.£1£2,..

1

secl ﬂ:[an—i]rr, n=0£1%2,.
cot®, G=nm, n=0xl £2,..,
Range
The range is all possible values to get
out of the function,

~l<sin@ <1 esel 21 andesel) € -1

~l<cosf =1  sect 2] andsect < -1
-m < lanf <o -m <ot <

Period

The period of a funetion is the number,
T.such that f(@+7T)=1(8). So,il w
is a fixed number and @ is any angle we

have the following periods.

sin(wd) - T

csell =

secl =

colf =

e n =

2z

cos(wld) - T=—
wn{w0) > T==
ce(wf) - T="

see(wl) —»

cot(mB) —

© 2005 Paul Dawsins

Formulas and Identities

Tangent and Cotangent Identities

(anf = sing cotf = :?30
cosd sin@

Reciprocal Identities

cscl L sing = L
sinf cscl)

secl = L cosfl = L
cosf) sect

cmﬁ‘:; tanf =——
tan cot®

Pythagorean Identitics
sin® @ +cos*0 =1
an’ @ +1=sec’ 0
I+cot’ @ =csc’ @
Even/Odd Formulas
sin(-8)=-sin@
cos(=f) = cosdl sec(~0) =secd
an(-0)=-tanf  cot(-0)=-cotd

wsc(-0) = —cscl

Periodic Formulas
If 0t s an integer.
sin(@+2xn) =sing  cse(0+2mn) = cscl
cos(@+2zn)=cosf see(f+2an)=sech
wn(@+xn)=tand cot(f+mxn)=cotd
Double Angle Formulas
sin(20) = 2sin @ cos @
cas(20) = cos* 0 —sin’ B

=2cos’ 01

=1-2sin’ @

2tand

tan(20) = —

Degrees to Radians Formulas
If v is an angle in degrees and 1 is an
angle in radians then

LI X
—_—== = f=— and
180 x 180

Credit: tri gi dentities. net,©2005 Paul Dawkins.
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Half Angle Formulas
sin*@ = %(I —cos(20))

cos0 ;%{I +cos(20))
~1-cos(28)
7I+cns(20]

Sum and Difference Formulas
sin(a + B) =sinacos B +cosasin f

tan’ @

cos(ex = ) = cosa cos ff Tsinasin i
anfar £ )= tane  tan f
15 tana tan i

Product to Sum Formulas

sina sin fi = %[cos(oc —B)-cos(a 4—{3)1

cosa cos i —l_,[ms(rz ~ ) +cos(a+ ﬁ)]

sing cos ff = %[uin (e B)+sinfa-F)]

cosasinf = %[:iin (c + B)-sinfe-B)]

Sum to Product Formulas

sina +gin f§ = 25i:1[rz ';ﬁ ]Wb[#]

=g 2o 232 )i 252

cosa+cosff = 2coﬁ[ 2” Jcos[%ﬂj

WSG—CUS!}=—2$lﬂ[“+ﬁ]$iﬂ[“_ﬁ]

Cofunction Formulas

P
\inli- | =cast ms[i

2 ) 2 )

T_6 0 T o)-esco
L el =S¢ SEC| —— = C5C|
~[2 ,| 5 i [2 J-ese

(n 0
tan| —— @ |=cotd cot| ——@ | =tand

\2 2

© 2005 Paul Dawkins
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Exact values of trigonometric functions&t intervals. (Ref. [9])
0 sinf cosf tanf

0° =0m 0 1 0

=& 15 [(VE+v2) (VE-1)—2(Vi-1) s+ 5| | {s[2(V3+1) 5+ vE+(Ve-vE)(vE-1)| | F(v5-vE)(vi-1)(Vio+2E-vE-1)
& = Z L (V30-6v5-v5-1) §(vE+v3+10-205) L (Vio-2v3- T35+ 3)

00 = J §(vio+vI-2/5- 5 § (Vo vZ+25-V5) Vir1-\5+245

12°0= 7% 51{( 10+2J§—Jﬁ+ﬁ) 51{( 30+6 +J§—1) %(3&—@—\/@)

150= 7% 1 (Ve-v2) 1 (Ve+v2) 2-3

18° = % %(\/5—1) /10425 %\/m

20= % | f5[2(VE+1)5-VE-(VE-va) (VE+1)| | 5[(VE+vE)(VEH1)+2(vE-1)5-E| | (V=) (va+1)(Vi0-2v5- vE)
24°=22 (VT3 +v3-10-245 L(3o—6vE+3E+1 L (V50+22v5-3v3— ~/_)

27°= 3% }ggz 5+ V35— VI0+V2) };Ezm+M—J)§) ﬁ(—l—m

0=z |} 33 L3

30 =143 | g5 [(Ve+ vE) (VB 1) 42 (V- 1) 5+ 5] | g [2(vEH 1)+ VA (Ve-va)(vE-1)| | F(vE-VE)(vE-1) (V04254 V5 +1)
36°=Z Iio-2v5 %(\/5+) 5-2.3

39°= 137 | 5 [(vo+vE) (VE+1)-2(Vi-1)\5- V5| | {5[2(vE1)Vs-VEH(Ve-va)(vE+1)| | F(vE+VA)(Vi-1)(Vie-2/5-vE+1)
a0 =% | §(\r0+6/5-v5+1) §(Vio+25+vT5-v3) L (VIS +v3-10+2V5)

so=f | 4va 1 1

aso =4z | L (V104254 vT5-3) §(Va0+65-v5+1) L (3v3- VTS + /50-22.5)

s10=1ZF | 5 [2(Vi+1)5- A+ (Vo-vE) (vE+1)| | [(Ve+vE)(VE+1)=2(vi-1) 5= V5| | (V5= (vi+1)(Vi0-2vE+vE-1)
54° = 3% }((ﬁ+1) {rm %\/Z'S-I—Ts/g

59213 | s [2(/3 )5 VA (Vo= vD)(VF-1)] | Ao[(vo+ v2) (V1) +2(v3-1) V54 VE] | (v VE) (V) (iokavE- vE-1)
w-% | 4 } v

63° = I% %(2 5+f+m—f) %(2 5+J§—Jﬁ+ﬂ) VE—145-2V5

66° = Lz ;1{( 30 6J§+J§+1) %(ﬁ+ﬁ— 10-23 %( 10-2/5+ V15— ﬁ)

o= B | s [(Vo+v2) (V4 1) +2(v3-1) 5 VE] | fg[2(v3H )5 V- (Vo-va) (Vi 1)] | (vEHVE) (V- 1)(Vio-2E A1)
720 = 2% 10425 L(/5-1 54245

75°=§15% ;:((f+\/_) ;{;Eﬁ—jf) 243

780 =13z | L(J30+6vE+vE-1) §(Vio+25-vT5+3) L (V5 + V3t 10+245)

s10= 137 | }(VIo+vZ+2/5-475) §(vio+vi-2/5-15 V1454245

sa0= 32 | }(VI5+E+ 10-245) §(Va0-6vE-v5-1) 1 (V50+22V5 4373+ VT3)

87°= 2% | 5 [2(vE+1) s+ A+ (V- va)(VE-1)| | {[(vE+vE) (VE-1)-2(Vi-1)\s+ VB | §(VE+VE)(VE+1)(Vi042V5+ VB 1)
90° =% 1 0 oo
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0 sech csch cotf
0° = 0x 1 % i
P=Z %(\/ﬁ—ﬁ)(‘/5+2\/§—2+\/§) %(M+ﬁ)(z+ﬁ+Js+TJ§) %(ﬁ+ﬁ)(ﬁ+1)(\/m+zﬁ+ﬁ+1)
6°=Z SI—J5-25 V15+6/54+V5+2 %(\/50+22~/§+3~/§+~/ﬁ)
9= & 1 (3v2+VI0-2/5+5) L (3vZ+ V04 245+ V5) VEH1+5+245
12°= & V15—6/5—v5+2 V5+2vV5+ V3 %(x/ﬁ+~/3+\/10+2~/§)
15°= 7% V-2 Ve+2 2+43
18° = & 1/s0-10v5 V5+1 V5+2v5
210= 2% %(M—ﬁ)(z+ﬁ—\/5—zﬁ) %(m+¢€)( 5—2J§+2—ﬁ) 71;(J§+J§)(J§—1)( 10—2J§+J§—1)
24°=22 | Jfis+6/5-v5-2 V3+y5-25 %( 10—2~/§+~/1_—~/5)
2°=% | 3(2/5-vE-3v2+ M) 1 (2(5- V5 +3va- Vo) VE-1+\5-25
30°=Z /3 2 V3
330 = W | L(VIo-vB)(V5+2vE+2-VE) | §(VIO+VE) (24 V3 \5+2V5) | }(vE+vE)(vi+1)(Vio+2vE-vE-1)
36° =% V51 150+ 1045 Ly25+4+1045
300 = g | L (VIo+ vB) (Vs—2vB-2+4 V3) | F(VIO-E) (24 VE+\5-25) | F(vE-v3)(vE+1)(V10-2VE+ VE-1)
420= 77 5412453 V15—6v54+/5—2 %(3\/3—\/E+ 50—22~/§)
450=Z V2 V2 1
40 =41 1565+ /52 V5+2v5-3 %(/ﬁ+ 3- 10+2~/§)
s1o=17x | L (VIo-v6) (24 v3+\5-245) | L (VIo+E)(V5-2v5-243) | L(v5+3)(vE-1)(Vio-2vF-V5+1)
54° = 3% LJ/50+105 V51 5-2v5
570 = 197 %(m+ﬁ)(2+ﬁ—‘/5+zﬁ) 1 (vio- s)(‘/5+zﬁ+z—ﬁ) 7{r(JE—JE)(JE—l)(\/m+2J§+J§+1)
60°= % 2 ENE) 13
6°=%5 | }(2/5-vE+3v3- Vi) 1 (2(5-5-3v2+ Vo) Vi-1-\5-25
66°= Uz | V3+5-25 V15+6/5—5-2 %( 50+22~/§—3~/§—~/ﬁ)
69°=Zm | 1 (vIo+v6)(Vs—2v5+2-V3) | $(VIO-6)(2+vi-5-2V5) | }(v5-v3)(v3+1)(V10-2/5- V5+1)
720 = 21 Va1 1y/s50-10v3 Ly25-10v5
750 = 3% V6+ 2 V6—+2 2-3
780 = 13z 54254+ 3 Vis—6v/5—5+2 %(3 3- V15— 50—22J§)
81°= 197 | 1(3vZ+ VT0+2v5+3) 1(3vE+VT0-2/5+5 Va1 5425
ge°0=72 | fis+6/5+5+2 V3-\5-25 %(\/10—2\/‘—\/ﬁ+\/§)
§7°= 2% | L(VIo+vE) (24 V3+5+2V5) | 3 (vIo-ve)(Vs+2vE—2+43) | 1(v5-v3)(v3-1) (V104245 vE-1)
9002% (o] 1 0
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Appendix C

Useful Series

The first four series are valid jk| < 1; the fifth is valid forx2 < a?; and the last three are valid for all real
X.

11 1 5 7 21 33 429
1 1/2 =1 Ty 42 3 _ - 4 _ 5 6 7_
(I+x) T T e Tt T 56 T 102t T 2048" T 32768

§4...(C1)

11 1 5 7 21 33 429
1_ 1/2:1__ _ 2__ 3__ 4__ 5_ 6_ 7_ 8_ . C2
(1= 2578 T 16t T 128" T 2567 T 10247 T 2048 T 32768 (€2)
13 5 35 63 231 429 6435
1 —1/2:1__ = 2__ 3 o 4__ 5 6_ 7 8_ . C3
(1+x) 2T T T T 26" Tio2at 2048 T 327687 ©3)
13 5 35 63 231 429 6435
1— —-1/2 =1 _ 2 =~ .3 oY 4 - .5 6 7 8 . (CA4
(1=x) TN Y T Tas6t tiooat T a0as” T3ziest T (G4
1 I x xZ2 x3 x* x°
T I C5
at+x a a2+a3 a4+a5 anL (C.5)
SN G, S AN AR, AN (NI A ST (C.6)
= 2 "6 T 24 7120 T 720 T 5040 © 20320 " 362880 '
X3 XS X7 X9 Xll X13
sSiny =x —— + — — - — Cc.7
X=X T 120 75040 T 362880 39916800 | 6227020800 €7
2 X4 x6 x8 xlO le
cosx =1 — — _— = — — — C.8
o 2 247720 T 30320 ~ 3628800 " 479001600 (C.8)
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Appendix D

Table of Derivatives

d .
— sinx = cosx
dx

d .
— €0Sx = —Sinx
dx

d
— tanx = sec x
dx

d
—— secx = tanx secx

dx

d

— C€SCx = — COtx CSCx
dx

d

— cotx = —cs@ x

dx
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d

Eex = €x (D12)

A (D.13)

dx X

j_xax — 4" Ina (D.14)
d 1

ax 9% ¥ = Tia (15
d . 1

- = D.16

Y (010
d -1

— = D.17

P Y (D.17)
d 1

— = D.1

I tan " x T2 (D.18)
d 1

Zosec'x=— (D.19)

dx |x|vx2—1

d | -1

—csClx = ———— D.20

dx Ix[v/x2 =1 ( )

4 oty = 1 (D.21)

dx 1+ x2

d .

I sinhx = coshx (D.22)
X

d .

Ir coshx = sinhx (D.23)
X

d

o tanhx = sech x (D.24)
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Appendix E

Table of Integrals

In the following table, an arbitrary constafitshould be added to each result.

/ dx =x (E.1)
/a dx = ax (E.2)
" xn+1
/x dx:nle (n #-1) (E.3)
/ﬁdx = %«/x_3 (E.4)
1
/ —dx =In|x| (E.5)
X
/sinx dx = —Cosx (E.6)
/COSX dx = sinx (E.7)
/tanx dx = In|secx| (E.8)
(E.9)
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/ser dx = In|secx + tanx| (E.10)

/CSCX dx = In|cscx — cotx| (E.11)

/cotx dx = In|sinx]| (E.12)

/ex dx =e* (E.13)

/Inxdxlenx—x (E.14)

*ax= 2

/ o dx = £ (E.15)
| —

/Ioga xdx = xnx=x (E.16)
Ina

/sinhx dx = coshx (E.17)

/coshx dx = sinhx (E.18)

/tanhx dx = Incoshx (E.19)
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Appendix F

Mathematical Subtleties

» When taking the square root of both sides of an equatieh,sign must always be introduced. For
example:

x> =ua = X =+4a

Both roots may be valid, or, depending on the problem, it may be that one root or the other may be
rejected on mathematical or physical grounds.

+ Dividing an equation through by a variable may result in losing roots. For example, suppose we have
x> —ax =0

Dividing through by the variable will result in one solutionx = «a; the solutionx = 0 has been lost.
Instead of dividing through by the variabte the proper procedure is factor outanx:

x(x—a)=0

Since the product on the left-hand side is zero, it follows that either0 or x —a = 0, and we retain
both roots.

» The relation

Xy = Jxy (F.1)
is valid only forx, y > 0.
» Some mathematical conventions:

= lisnotconsidered a prime number.

* 0l=1

* 00=1

» Towers of exponents are evaluated from the top dawih:= a®)
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* When taking an inverse trigonometric function, there will in generaimecorrect values; your cal-
culator will give only one value, thprincipal value(P.V.). The other value is found using the table
below.

Function P.V. Othervalue

arcsin 0 T—0
arccos 0 —0
arctan 0 T+ 0
arcsec 0 -0
arccsc 0 T—0
arccot 0 T+ 0

For arctan(y/x), addx to the calculator’s principal value answenif< 0.
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Appendix G

Sl Units

Table G-1. Sl base units.

Name Symbol Quantity
meter m length
kilogram kg mass
second S time
ampere A electric current
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table G-2. Derived Sl units.

Name Symbol Definition Base Units Quantity
radian rad m/m — plane angle
steradian sr m/im*  — solid angle
newton N kgms2 kgms? force
joule J N m kgm s2 energy
watt w J/s kgm s3 power
pascal Pa N/ kgm ! s2 pressure
hertz Hz st st frequency
coulomb C As As electric charge
volt \Y J/C kgn? A—1s=3  electric potential
ohm Q VI/IA kgm2 A=2s3  electrical resistance
siemens S AlV kg! m™2 A2 s® electrical conductance
farad F C/V kg! m2 A2 st capacitance
weber Wb Vs kgmA~!s2  magnetic flux
tesla T Wb/m  kgA~ls? magnetic induction
henry H Wb /A kgnt A=2s2  induction
lumen Im cd sr cd sr luminous flux
lux Ix Im / m? cd srnr? iluminance
becquerel Bg st st radioactivity
gray Gy J/ kg m s2 absorbed dose
sievert Sv J/kg s 2 dose equivalent
katal kat mol /s mol st catalytic activity
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Table G-3. Sl prefixes.

Prefix ~ Symbol Definition English
yotta- Y 1024 septillion
zetta- z 10%! sextillion
exa- E 1018 quintillion
peta- P 10%° quadrillion
tera- T 1012 trillion
giga- G 10° billion
mega- M 10° million

kilo- k 103 thousand
hecto- h 102 hundred
deka- da 10! ten

deci- d 1071 tenth

centi- c 1072 hundredth
milli- m 1073 thousandth
micro- m 1076 millionth
nano- n 10~° billionth
pico- p 10712 trillionth
femto- f 1071 quadrillionth
atto- a 10713 quintillionth
zepto- z 1072t sextillionth
yocto- y 10724 septillionth

Table G-4. Prefixes facomputer use only

Prefix  Symbol Definition

yobi- Yi 280 =1,208,925,819,614,629,174,706,176
zebi- Zi 270 =1,180,591,620,717,411,303,424
exbi- Ei 200 =1,152,921,504,606,846,976

pebi- Pi 250 =1,125,899,906,842,624

tebi- Ti 240 =1,099,511,627,776

gibi- Gi 230 =1,073,741,824

mebi- Mi 220 —=1,048,576

kibi- Ki 210 =1,024
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Appendix H

Gaussian Units

Table H-1. Gaussian base units.

Name Symbol Quantity
centimeter cm length
gram g mass
second S time
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table H-2. Derived Gaussian units.

Name Symbol Definition Base Units Quantity
radian rad m/m — plane angle
steradian sr m/ m? — solid angle
dyne dyn gcms? gcms? force
erg erg dyncm g chs2 energy
statwatt statW erg/s g chs 3 power
barye ba dyn/crh gent!s72 pressure
galileo Gal cm/$ cms? acceleration
poise P g/(cms) gcmt st dynamic viscosity
stokes St crh/s cn?t st kinematic viscosity
hertz Hz st st frequency
statcoulomb  statC 92 cm?/2 57! electric charge
franklin Fr statC d/2cm?/2s7!  electric charge
statampere statA  statC/s UgemP/2 572 electric current
statvolt statvV  erg/statC 2 cm!/2 571 electric potential
statohm stft  statV/statA scm! electrical resistance
statfarad statF  statC/statv  cm capacitance
maxwell Mx  statVcm ¢/2cm/2s71 magnetic flux
gauss G Mx / crh g'/2cm'/2 571 magnetic induction
oersted Oe  statAs/dn g"/2cm /257!  magnetic intensity
gilbert Gb statA d/2cm?/2s72  magnetomotive force
unit pole pole  dyn/Oe Y2cm/2s71 magnetic pole strength
stathenry statH erg/stafA s cm! induction
lumen Im cd sr cd sr luminous flux
phot ph Im / cmt cd sr cnt? illuminance
stilb sb cd/cm cd cn1? luminance
lambert Lb 1/wcd/cn?  cdcent? luminance
kayser K 1/cm cm! wave number
becquerel Bg st st radioactivity
katal kat mol /s mol st catalytic activity
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Units of Physical Quantities

Table I-1. Units of physical quantities.

Quantity Sl Units  Gaussian Units
Absorbed dose Gy ergg
Acceleration m 2 cm s?
Amount of substance mol mol
Angle (plane) rad rad
Angle (solid) sr sr
Angular acceleration rad-s rad s2
Angular momentum Nms dyncms
Angular velocity rad st rad s'!
Area nt cm?
Bulk modulus Pa ba
Catalytic activity kat kat
Coercivity Am! Oe
Crackle m §° cm s>
Density kg nT3 gcn3
Distance m cm
Dose equivalent Sv ergg
Elastic modulus N m? dyn cnt?
Electric capacitance F statF
Electric charge C statC
Electric conductance S sfat!
Electric conductivity Sm!  staR~!cm!
Electric current A statA
Electric dipole moment Cm statC cm
Electric displacement’§) Cm™2 statC cnn?
Electric elastance + statF!
Electric field (£) vm! statV cnt'!
Electric flux vV m statV cm
Electric permittivity Fnr! —
Electric polarization P) Cm2 statC cm?
Electric potential \Y, statV
Electric resistance Q stat2
Electric resistivity Qm staf2 cm
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Table I-1 (cont'd). Units of physical quantities.

Quantity Sl Units  Gaussian Units
Energy J erg
Enthalpy J erg
Entropy JK! erg K™!
Force N dyn
Frequency Hz Hz
Heat J erg
Heat capacity JK! erg K™!
llluminance Ix ph
Impulse Ns dyns
Inductance H statH
Jerk m s3 cms3
Jounce ms* cms*
Latent heat J kgt ergg!
Length m cm
Luminance cd m? sb
Luminous flux Im Im
Luminous intensity cd cd
Magnetic flux Wb Mx
Magnetic induction B) T G
Magnetic intensity {) Am~! Oe
Magnetic dipole momentR convention) Am pole cm
Magnetic dipole moment{ convention) Wb m pole cm
Magnetic permeability H m! —
Magnetic permeance H S
Magnetic pole strengthK convention) Am unit pole
Magnetic pole strengthH{ convention) Wb unit pole
Magnetic potential (scalar) A Oecm
Magnetic potential (vector) Tm Gcm
Magnetic reluctance H st
Magnetization {/) Am! Mx cm—2
Magnetomotive force A Gb
Mass kg g
Memristance Q stat2
Molality mol kg™! mol g~!
Molarity mol m~3 mol cn3
Moment of inertia kg M g cn?
Momentum Ns dyns
Pop m s cms*
Power W statw
Pressure Pa ba
Radioactivity Bqg Bq
Remanence T G
Retentivity T G
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Table I-1 (cont'd). Units of physical quantities.

Quantity Sl Units Gaussian Units
Shear modulus N P dyn cnt?
Snap m s* cms*
Specific heat JK'kg?! ergKlg!
Strain — —
Stress N m? dyn cnt?
Temperature K K
Tension N dyn
Time S S
Torque Nm dyncm
Velocity ms! cms!
Viscosity (dynamic) Pas P
Viscosity (kinematic) ms! St
Volume m cm?
Wave number m! kayser
Weight N dyn
Work J erg
Young's modulus N m? dyn cnt?
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Appendix J

Physical Constants

Table J-1. Fundamental physical constants (CODATA 2018).

Description

Symbol

Value

Speed of light (vacuum)
Gravitational constant
Elementary charge
Permittivity of free space
Permeability of free space
Coulomb constantl(/ (4 gg))
Electron mass

Proton mass

Neutron mass

Atomic mass unit (amu)
Planck constant

Planck constant-27
Boltzmann constant
Avogadro constant

2.99792458 x 10® m/s
6.67430 x 10711 m3 kg~! s72
1.602176634 x 10712 C
8.8541878128 x 1012 F/m
1.25663706212107° N/A2
8.9875517923 x 10° m/F
9.1093837015 x 10731 kg
1.67262192369 x 10727 kg
1.67492749804 x 10727 kg
1.66053906660 x 10727 kg
6.62607015x 10734 J s
1.0545718176461564 x 1073* J s
1.380649 x 10723 J/K
6.02214076 x 1023 mol~?

Table J-2. Other physical constants.

Description

Symbol Value

Acceleration due to gravity at Earth surface g 9.80 m/¢

Speed of sound in ai2(°C)
Density of air (sea level)
Density of water

Index of refraction of water
Resistivity of copperZ0°C)

Vsnd 343 m/s

par  1.29 kg/n?

ow 1 g/cm? = 1000 kg/n?
Nw 1.33

pcu  1.68x1078Qm
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Appendix K

Astronomical Data

Table K-1. Astronomical constants.

Description Symbol Value
Astronomical unit AU 1.49597870 x 10'' m
Obliquity of ecliptic (J2000) e 2394392911
Solar mass Mg 1.9891 x 103 kg
Solar radius Rg 696,000 km

Table K-2. Planetary Data.

Planet  Mass (Yg) Eg.radius (km) Orbit semi-major axis (Gm)

Mercury 330.2 2439.7 57.91

Venus 4868.5 6051.8 108.21
Earth 5973.6 6378.1 149.60
Mars 641.85 3396.2 227.92
Jupiter 1,898,600 71,492 778.57
Saturn 568,460 60,268 1433.53
Uranus 86,832 25,559 2872.46
Neptune 102,430 24,764 4495.06
Pluto 12.5 1195 5906.38
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Appendix L

Unit Conversion Tables

Time

1 day= 24 hours= 1440 minutes= 86400 seconds
1 hour= 60 minutes= 3600 seconds
1 year= 31557 600 seconds = x 107 seconds

Length

1 mile = 8 furlongs= 80 chains= 320 rods= 1760 yards= 5280 feet= 1.609344 km

1 yard= 3 feet= 36 inches= 0.9144 meter

1 foot= 12 inches= 0.3048 meter

linch=2.54 cm

1 nautical mile= 1852 meters= 1.15077944802354 miles

1 fathom= 6 feet

1 parsec= 3.26156376188 light-years 206264.806245 A= 3.08567756703 x 10 1° meters
1 angstom = 0.1 nm= 10° fermi = 107!° meter

Mass

1 kilogram= 2.20462262184878 Ib

1 pound= 16 oz= 0.45359237 kg

1 slug= 32.1740485564304 I 14.5939029372064 kg
1 short ton= 2000 Ib

1longton=22401b

1 metric ton= 1000 kg

Velocity

15 mph= 22 fps
1 mph= 0.44704 m/s
1 knot= 1.15077944802354 mpk 0.514444444444444 m/s

289



Prince George’s Community College Introductory Physics Il

D.G. Simpson

Area

1 acre= 43560 f£ = 4840 y& = 4046.8564224 i
1 mile? = 640 acres= 2.589988110336 kM

1 are= 100 n?

1 hectare= 10* m? = 2.47105381467165 acres

Volume

1liter=1dm® = 1073 m? ~ 1 quart

1m? = 1000 liters

lcm® =1mL

1ft3 = 1728 in’ = 7.48051948051948 gat 28.316846592 liters

1 gallon= 231 in* = 4 quarts= 8 pints= 16 cups= 3.785411784 liters
1 cup= 8 floz = 16 tablespoons- 48 teaspoons

1 tablespoor= 3 teaspoons- 4 fluidrams

1 dry gallon= 268.8025 irf = 4.40488377086 liters

1 imperial gallon= 4.54609 liters

1 bushel= 4 pecks= 8 dry gallons

Density
1 glen? = 1000 kg/m® = 8.34540445201933 Ib/gat 1.043175556502416 Ib/pint

Force

1 Ibf = 4.44822161526050 newtors32.1740485564304 poundals
1 newton= 10> dynes

Energy

1 calorie= 4.1868 joules

1 BTU = 1055.05585262 joules

1 ft-Ib = 1.35581794833140 joules
1 kW-hr= 3.6 MJ
1eV=1.6021766208 x 10~° joules
1joule= 107 ergs

Power

1 horsepowet= 745.69987158227022 watts
1 statwatt= 1 abwatt= 1 erg/s= 10~7 watt

Angle

rad= degx &5 deg= radx 182

1 deg= 60 arcmin= 3600 arcsec
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Temperature

°C=(°F-32)x 3 °F=("Cx2) + 32
K=°C+273.15
°R = °F + 459.67

Pressure

1 atm= 101325 Pa= 1.01325 bae= 1013.25 millibar= 760 torr
= 760 mmHg= 29.9212598425197 inHg 14.6959487755134 psi
= 2116.21662367394 IbAt= 1.05810831183697 tonAt
= 1013250 dyne/ch= 1013250 barye

Electromagnetism

1 statcoulomb= 3.335640951981520 x 10~'° coulomb
1 abcoulomb= 10 coulombs

1 statvolt= 299.792458 volts

1 abvolt= 1078 volt

1 maxwell= 108 weber

1 gauss= 10~* tesla

1 oersted= 250/7 (= 79.5774715459477) Alm
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- GALLON

Figure L.1: Conversion chart for kitchen measuremer@sedit: S.B. Lattin Desigp.
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Appendix M

Angular Measure

M.1 Plane Angle

The most common unit of measure for plane angle isifggee( ° ), which is 1/360 of a full circle. Therefore
a circle is360°, a semicircle id80°, and a right angle i80°.

A similar unit (seldom used nowadays) is a sort of “metric” angle calledjthd, defined so that a right
angle is 100 grads, and so a full circle is 400 grads.

The Sl unit of plane angle is thadian (rad), which is defined to be the angle that subtends an arc length
equal to the radius of the circle. By this definition, a full circle subtends an angle equal to the arc length of a
full circle (2 r) divided by its radiug — and so a full circle i radians.

Since a hemisphere 180° or 7 radians, the conversion factors are:

/]

= M.1

rad 180 x deg (M.1)
180

deg= — xrad (M.2)
/]

Subunits of the Degree

For small angles, a degree may be subdivided intmBlutey ’ ), and a minute into 66econdg ” ). Thus a
minute is 1/60 degree, and a second is 1/3600 délgrargles smaller than 1 second are sometimes expressed
asmilli-arcsecondg1/1000 arcsecond).

M.2 Solid Angle

A solid angleis the three-dimensional version of a plane angle, and is subtended by the vertex of a cone. The
Sl unit of solid angle is theteradian(sr), which is defined to be the solid angle that subtends an area equal

to the square of the radius of a circle. By this definition, a full sphere subtends an area equal to the area of a
sphere 47 r2) divided by the square of its radius¥) — so a full sphere idx steradians, and a hemisphere

is 27 steradians.

1sometimes these units are called thimute of arcor arcminute and thesecond of aror arcsecondo distinguish them from the
units of time that have the same name.

2In an old system (Ref. [14]), the second was further subdivided inthiéfs ( "), the third into 60ourths( "), etc. Under this
system, 1 milli-arcsecond is 3.6 fourths of arc. This system is no longer used, though; today the second of arc is simply subdivided into
decimals (e.g32.86473").
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Figure M.1: Relation between plane angland solid angle2 for a right circular cone.

There is a simple relation between plane angle and solid angle for a right circular cone. If the vertex of
the cone subtends an andld¢the aperture angleof the cone), then the corresponding solid ar@les (Fig.
M.1)

Q=2r (1 - cosg) . (M.3)
Another unit of solid angle is thequare degre¢ded?):
1 2
sg deg = srx (ﬁ) . (M.4)
/]

In these units, a hemisphere is 20,626.48dend a complete sphere is 41,252.96’deg
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Appendix N

Vector Arithmetic

A vector A may be written in cartesian (rectangular) form as

A = A i + Ayj + ALK, (N.1)
wherei is aunit vector(a vector of magnitude 1) in the direction,j is a unit vector in the direction, and
k is a unit vector in the direction. 4, 4,, and4, are called ther, y, andz componentgrespectively) of

vectorA, and are the projections of the vector onto those axes.
Themagnitudg“length”) of vectorA is

Al = A= ,/42 + A2 + A2 (N.2)

For example, ifA = 3i + 5j 4 2k, then|A| = 4 = /32 + 52 + 22 = /38.
In two dimensions, a vector has kaomponentA = A,i + A4,].
Addition and Subtraction
To add two vectors, you add their components. Writing a second vecBbea® (i + B,j + B;k, we have
A+B=(Ax + By)i+ (4y + By)j + (A, + By k. (N.3)

For example, ifA = 3i + 5] + 2k andB = 2i —j + 4k, thenA + B = 5i + 4j + 6k.
Subtraction of vectors is defined similarly:

A—B=(Ax—By)i+ (4, —B))j+ (4, — By k. (N.4)

For example, ifA = 3i 4+ 5j 4+ 2k andB = 2i —j + 4k, thenA — B =i + 6] — 2k.

Scalar Multiplication
To multiply a vector by a scalar, just multiply each component by the scalar. Thus & scalar, then
cA = cAxi+cAyj + cALk. (N.5)

For example, ifA = 3i 4 5j + 2k, then7A = 21i 4 35] + 14k.
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Dot Product

Itis possible to multiply a vector by another vector, but there is more than one kind of multiplication between
vectors. One type of vector multiplicationis called thet product in which a vector is multiplied by another
vector to give ascalarresult. The dot product (written with a dot operator, aé inB) is

A-B=ABcosf = AyBx + Ay B, + A, B., (N.6)

whered is the angle between vectoksandB. For example, iA = 3i + 5j + 2k andB = 2i —j + 4k, then
A-B=6-54+8=0.

The dot product can be used to find the angle between two vectors. To do this, we solve Eq. (X.6) for
and find co® = A - B/(4B). Applying this to the previous example, we gét= /38 andB = /21, so
cost = 9/(+/38+4/21), and thug) = 71.4°.

An immediate consequence of Eq. (N.6) is that two vectors are perpendicular if and only if their dot
product is zero.

Cross Product

Another kind of multiplication between vectors, called thess productinvolves multiplying one vector by
another and giving anotheectoras a result. The cross product is written with a cross operator,AaxiB.
Itis defined by

AxB = (4ABsinf)u (N.7)
i ]k
=| Ax A, A; (N.8)
Bx. By B;
=(AyB; —A;By)i—(AxB; — Az By)j+ (Ax B, — Ay Bx) k, (N.9)

where agaird is the angle between the vectors, ani a unit vector pointing in a direction perpendicular
to the plane containing andB, in a right-hand sense: if you curl the fingers of your right hand from
A into B, then the thumb of your right hand points in the directiorAok B (Fig. N.1). As an example, if

A = 3i+5j+2k andB = 2i—j + 4k, thenA x B = (20— (—2))i — (12—4)j + (-3 —10)k = 22i—8j —13k.

Rectangular and Polar Forms

A two-dimensional vector may be written in eithrectangular formA = A i + A,j described earlier, or in
polar formA = AZ6, whereA is the vector magnitude, arétlis the direction measured counterclockwise
from the+x axis. To convert from polar form to rectangular form, one finds

Ay = Acosf (N.10)
A, = Asinf (N.11)

Inverting these equations gives the expressions for converting from rectangular form to polar form:

A= [A2 1+ A2 (N.12)

tanf = % (N.13)

X
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Figure N.1: The vector cross produetx B is perpendicular to the plane &fandB, and in the right-hand
sense. Credit: “Connected Curriculum Project”, Duke Universiy.
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Appendix O

Matrix Properties

This appendix presents a brief summary of the properti@so? and3 x 3 matrices.

2x2 Matrices
Determinant
The determinant of 2 x 2 matrix is given by the well-known formula:

det( Z Z ) =ad — b. (0.1)

Matrix of Cofactors

The matrix of cofactors is the matrix of signed minors; f& & 2 matrix, this is

cof(z Z ): ( _db _ac ) (0.2)

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
2 x 2 matrix,

(CcZ Z)_lzadl—bc(—dc _ab) (0.3)
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3x3 Matrices

Determinant

The determinant of & x 3 matrix is given by:

det(

Matrix of Cofactors

o AR

b
e
h

N.\Q

) =alei — fh)—b(di — fg) + c(dh — eg). (©.4)

The matrix of cofactors is the matrix of signed minors; fér a 3 matrix, this is

a b ¢ ei— fh fg—di dh—eg
cof|l d e f |=| ch—bi ai—-cg bg—ah (0.5)
g h i bf —ce c¢d—af ae—bd

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
3 x 3 matrix,

a
d
8

b ¢\ | ei — fh ch—bi bf —ce
e = - - fe—di ai—cg cd—af
h { alei — fh) = b(di — fg) + c(dh —eg) dh—eg bg—ah ae—bd

(0.6)
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Appendix P

Moments of Inertia

The table below shows the moments of inertia of several common uniform bodies. A very helpful theorem
to be used in conjunction with this table is tharallel axis theoremwhich relates the moment of inertlan,

about an axisA passing through the center of mass to the moment of inEwiaout another axis parallel to

A. If the two rotation axes are separated by a distanttesn

I = Iem+ Mh? (P.1)

whereM is the mass of the body.
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Figure P.1: Table of moments of inertia of uniform bodi&3edit: University of Pennsylvanipg.
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Appendix Q

The Simple Plane Pendulum: Exact
Solution

The solution to the simple plane pendulum problem described in Chapter 8 is only approximate; here we
will examine theexactsolution, which is surprisingly complicated. We will begin by deriving the differential
equation of the motion, then find expressions for the afigl®m the vertical and the periofl at any time
t. We won't go through the derivations here—we’ll just look at the results. Here we’ll assume the amplitude
of the motionfy < 7, so that the pendulum doest spin in complete circles around the pivot, but simply
oscillates back and forth.

The mathematics involved in the exact solution to the pendulum problem is somewhat advanced, but is
included here so that you can see that even a very simple physical system can lead to some complicated
mathematics.

Q.1 Equation of Motion

To derive the differential equation of motion for the pendulum, we begin with Newton’s second law in rota-
tional form:
d?6
t=la=1——, 1
dr? (Q.1)

wherert is the torque/ is the moment of inertiay is the angular acceleration, afds the angle from the
vertical. In the case of the pendulum, the torque is given by

T = —mgL sing, (Q.2)
and the moment of inertia is

I =mL>. (Q.3)
Substituting these expressions foand! into Eq. (Q.1), we get the second-order differential equation

d?0
H _ 2

—mgL sing = mL ﬁ’ (Q4)
which simplifies to give the differential equation of motion,

d?o g .

ﬁ = —z sing. (Q5)
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Q.2 Solution,d(z)

If the amplituded, is small, we can approximate sin 6, and find the positiod(z) at any timer is given
by Eqg. (8.3) in Chapter 8. But when the amplitude is not necessarily small, the afrglen the vertical at
any timet is found (by solving Eq. (Q.5)) to be a more complicated function:

6(t) = 2sin! {k sn[\/%(t —to);k}é , (Q.6)

where sifx; k) is aJacobian elliptic functiorwith modulusk = sin(6/2). The timez, is a time at which
the pendulum is verticab(= 0) and moving in thet6 direction.

The Jacobian elliptic function is one of a number of so-called “special functions” that often appear in
mathematical physics. In this case, the functiofxshk) is defined as a kind of inverse of an integral. Given
the function

u(y: k) = Q.7)

/y dt

o VA —12)(1—k2?)

the Jacobian elliptic function is defined as:
sn(u; k) = y. (Q.8)

Values of sifx; k) may be found in tables of functions or computed by specialized mathematical software
libraries.

Q.3 Period

As found in Chapter 8, the approximate period of a pendulum for small amplitudes is given by

To = 27 \/Z (Q.9)
g

This equation is really only ampproximate=xpression for the period of a simple plane pendulum; the smaller
the amplitude of the motion, the better the approximationefactexpression for the period is given by

L ! dt
R , 10
! g /0 VI =12)(1 —k2t2) (210

which is a type of integral known ascamplete elliptic integral of the first kind
The integral in Eqg. (Q.10) cannot be evaluated in closed form, maritoe expanded into an infinite
series. The resultis

_ L 2 [@n— 1! L (o

T =2 \/; +n§[ T } sin? (7)} (Q.11)
B L 1 en)! 1”6
= \/; 1+n;[22n( ')2} sir? (7» (Q.12)
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We can explicitly write out the first few terms of this series; the result is

L 1 . 6o 9 | 6o 25 6o
T=2n,=|1+-sit|—|+ =sin*[ = —sin® [ =
”Vg[ *3 (2)+64 (2)+2% (2
122 6 3969 | 6 53361 . 6 184041 . 6
+ 1225 sirf [ 2 )+ " sinto( 2) + sin2 [ 2) + sint4 [ 2
16384 2 65536 2 1048576 2 4194304 2
4140922 14774402 2133423721 . 6
41409225 i (Do) | 14773405 (9—0) 2133423721 ;0o (—0) +oee ]
1073741824 2 4294967296 2 68719476736 2

(Q.13)

If we wish, we can write out a series expansion for the period in another form—one which does not
involve the sine function, but only involves powers of the amplitdgeTo do this, we expand (6 /2) into
a Taylor series:

] 90 B e (_1)n+193n—1
gmf_Ejﬁ%wm—n!
6 6, 8% 8 0 !

2 48 ' 3840 645120 ' 185794560 81749606400
Now substitute this series into the series of Eq. (Q.11) and collect terms. The resultis

L 1 11 173 22931 1319183
T=2n\/;(1+geé+ 03 + 05 + 08 + ———— 1"

(Q.14)

n=1

4o (Q.15)

3072 737280 ° " 1321205760 °© ' 951268147200 °

233526463, 2673857519 »

2009078326886400 ° 265928913086054400 ° (Q.16)
39959591850371 16 8797116290975003 18

+ 44931349155019751424000 ° + 109991942731488351485952000 °
4872532317019728133 0 )

20 DY
668751011807449177034588160000 ° +
An entirely different formula for the exact period of a simple plane pendulum has appeared in a recent

paper (Adlaj, 2012). According to Adlaj, the exact period of a pendulum may be calculated more efficiently
using thearithmetic-geometric meay means of the formula

L 1
T=2r \/; X agn(l. coxf/2)) Q17)

where agnix, y) denotes the arithmetic-geometric meancatndy, which is found by computing the arith-
metic and geometric means ofand y, then the arithmetic and geometric mean of those two means, then
iterating this process over and over again until the two means converge:

an + &n

p+1 = 5 (Q18)
8n+1 = +/An&n (Q.19)

Herea, denotes an arithmetic mean, agida geometric mean.

Shown in Fig. Q.1 is a plot of the ratio of the pendulum’s true pefiotb its small-angle period”
(T/@2r+/L/g)) vs. amplituded, for values of the amplitude between 0 atRD®, using Eq. (Q.17). As
you can see, the ratio is for small amplitudes (as expected), and increasingly deviates fréon large
amplitudes. The true period will always be longer than the small-angle pEgiod
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Pendulum: Ratio of True to Small-Angle Period
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Figure Q.1: Ratio of a pendulum’s true periddto its small-angle period’y = 27 /L/g, as a function of
amplitudedy. For small amplitudes, this ratio is near 1; for larger amplitudes, the true period is longer than
predicted by the small-angle approximation.
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Appendix R

CIE Chromaticity Coordinates

In this appendix, we'll look at some of the details of the CIE chromaticity diagram (Fig. 58.4) and how
coordinates on the diagram are computed. The mathematics involves the integral calculus, so is outside the
usual scope of this course.

Suppose we have a colored object, and we wish to find its coordifrates on the CIE chromaticity
diagram. We begin by measuring theectral power distributiod (1) of the object: this is the fractioh of
light reflected from the object at each wavelendth (iInder some standard illumination conditions. We also
need a set of “weighting” functions called ti#E color matching functionéx, y, 7); these are defined as
shown in Figure R.1. Then theastimulus valueg X, Y, Z) are given by

X:/MHMYMMA (R.1)

0

Y:i/ I0)F(A) dA (R.2)
0

Z = / 1) Z(A)dA (R.3)
0

Roughly speakingX measures the “redness” of the objeEt,ts “brightness” (oluminancg, and Z
its “blueness.” Normalizing these tristimulus values gives us the coordifaiesz) on the chromaticity
diagram:

X

TXyv+z (R4)
~ Y
YT Xyv+z (R5)
Z
Z=m:1—x—y (R6)
(R.7)

Because of the normalization condition, knowingndy automatically giveg = 1 — x — y; therefore only
x andy are needed as the chromaticity coordinates.
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Figure R.1: CIE color matching functiongl), y(4), andz(d).
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Appendix S

Calculator Programs

On the class Web site you will find several physics-related programs for a variety of electronic calculator
models. The programs are available at:

http://ww. pgccphy. net/ 1020/ sof t war e. ht m

Contents

Projectile Problem

Kepler's Equation
Hyperbolic Kepler's Equation
Barker’'s Equation

Reduction of an Angle
Helmert's Equation

Pendulum Period

© N o g bk~ 0w NP

1D Perfectly Elastic Collisions
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Appendix T

Right-Hand Rules

 Vector cross product. Curl the fingers of your right hand from one vecfoto a second vectds; then
your right thumb points in the direction of the cross prodict B.

» Magnetic field in a long wire. Point the thumb of your right hand in the direction of the current; then
the fingers of your right hand curl in the direction of the magnetic field.

» Magnetic field in a solenoid. Curl the fingers of your right hand in the direction of the current; then
the thumb of your right hand points in the direction of the magnetic field inside the solenoid.

» Magnetic moment of a coil. Curl the fingers of your right hand in the direction of the current flowing
around the coil; then the thumb of your right hand points in the direction of the magnetic moment.

» Gyro motion of a negative charge in a magnetic field.Point the thumb of your right hand in the
direction of the magnetic field; then the fingers of your right hand curl in the direction of gyro motion
of anegativecharge.
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Appendix U

The Earth’s Magnetosphere

The following pages on the Earth’s magnetosphere were written by Dr. Sten Odenwald as part of the public
education for NASA's IMAGE mission. IMAGE (Imager for Magnetopause-to-Aurora Global Exploration)
was an Earth-orbiting spacecraft designed to produced images of various parts of the Earth’s magnetosphere.
The figures labeled 5-2, 5-3, and 5-4 were taken by the IMAGE spacecraft.

Sourcehtt p: // sol arb. msf c. nasa. gov/ f or _educat ors/ | ear n/t ext books. ht m
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9.0 Earth's Magnetism

An ordinary compass works because the Earth is itself a giant
magnet with a north and a south pole. Navigators have known
about the pole-seeking ability of magnetized compass needles and
lodestone for thousands of years. During the last two centuries,
much more has been learned about the geomagnetic field and how
it shapes the environment of the Earth in space.

The geomagnetic field is believed to be generated by a magnetic
dynamo process near the core of the Earth through the action of
currents in its outer liquid region. Geologic evidence shows that it
reverses its polarity every 250,000 to 500,000 years. In fact, the
geomagnetic field is decreasing in strength by 5% per century,
suggesting that in a few thousand years it may temporarily vanish
as the next field reversal begins. Although the geomagnetic field
deflects high-energy cosmic rays, past magnetic reversals have
not caused obvious biological impacts traceable in the fossil
record. Earth’s atmosphere, by itself, is very effective in shielding
the surface from cosmic rays able to do biological damage. The
location of the magnetic poles at the surface also wanders over
time at about 10 kilometers per year. Mapmakers periodically
update their maps to accommodate this drift.

The domain of space controlled by Earth’s magnetic field is
called the magnetosphere. The geomagnetic field resembles the
field of a bar magnet; however, there are important differences
due to its interaction with the solar wind: an interplanetary flow
of plasma from the Sun. The magnetosphere is shaped like a
comet with Earth at its head. The field on the day side is
compressed inwards by the pressure of the solar wind. A boundary
called the magnetopause forms about 60,000 kilometers from
Earth as the solar wind and geomagnetic field reach an
approximate pressure balance. The field on the nightside of Earth
is stretched into a long geomagnetic tail extending millions of
kilometers from Earth. Above the polar regions, magnetic field
lines from Earth can connect with field lines from the solar wind
forming a magnetospheric cusp where plasma and energy from
the solar wind may enter. Ionized gases from Earth’s upper
atmosphere can escape into the magnetosphere through the cusp
in gas outflows called polar fountains. The magnetosphere is a
complex system of circulating currents and changing magnetic

Geomagnetic Tail

Magnetopause
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often affected by distant events on the Sun called “space weather.”
The conveyor belt for the worst of these influences is the ever-
changing solar wind itself. Space weather “storms” can trigger
changes in the magnetospheric environment, cause spectacular
aurora in the polar regions, and lead to satellite damage and even
electrical power outages.

9.1 Trapped Particles and Other Plasmas

Within the magnetosphere there are several distinct populations
of neutral particles and plasmas. The Van Allen Radiation Belts
were discovered in 1958 during the early days of the Space Age.
The inner belts extend from an altitude of 700 up to 15,000 km
and contain very high-energy protons trapped in the geomagnetic
field. The outer belt extends 15,000 to 30,000 km and mostly
consists of high-energy electrons. Geosynchronous satellites orbit
Earth just outside the outer belt. Human space activity is confined
to the zone within the inner edge of the inner belt. Space-suited
astronauts exposed to the energetic particles in the Van Allen Belts
would receive potentially lethal doses of radiation. The particles
that make up the Van Allen Belts bounce along the north- and
south-directed magnetic field lines to which they are trapped like
water flowing in a pipe. At the same time, there is a slow drift of
these particles to the west if they are positively charged, or east if
they are negatively charged. There are also three additional
systems of particles that share much the same space as the Van
Allen Belts, but have much lower energies: the geocorona, the
plasmasphere, and the ring current.

Extending thousands of kilometers above Earth is the
continuation of its tenuous outer atmosphere called the geocorona.
It is a comparatively cold, uncharged gas of hydrogen and helium
atoms whose particles carry little energy. In the geocoronal region,
there is a low-energy population of charged particles called the
plasmasphere, which is a high-altitude extension of the
ionosphere. Unlike the geocorona, the plasmasphere is a complex,
ever-changing system controlled by electrical currents within the
magnetosphere. These changes can cause this region to fill up with
particles and empty over the course of hours or days.

Figure 5-1 Earth’s Magnetic Field.

The geomagnetic field resembles the field of an
ordinary bar magnet. The north magnetic pole of Earth
is located near the south geographic pole, while the
south magnetic pole of Earth is located near the north
geographic pole. The figure also shows the major
regions of Earth’s magnetosphere. The filled region
shown in red is called the plasmasphere. The dotted
region contains the Van Allen Radiation Belts and the
ring current. The region shown in green just outside of
the ring current zone contains the plasmasheath.

D.G. Simpson
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Figure 5-2 The Plasmasphere.

A view from above the North Pole
of the plasmasphere illuminated by
ultraviolet light from the Sun. The Sun is

Figure 5-3 The Ring Current.
From above the North Pole, the current
is seen flowing around the equatorial
regions of the Earth.

11:35:32

11:53:56

Figure 5-4 The Auroral Oval.
From space, the aurora borealis appears
as a ring of light that changes its
appearance from minute to minute.

located beyond the upper right corner.

During severe storms, compasses display incorrect bearings as
the surface geomagnetic field changes its direction. In the
equatorial regions, an actual decrease in the strength of the
geomagnetic field can often be measured. This is generally
attributed to the existence of a temporary river of charged
particles flowing between 30,000 and 60,000 kilometers above
ground: the ring current. These particles have energies between
those within the plasmasphere and those in the Van Allen Belts.
They appear to originate within the geomagetic tail as charged
particles that are injected deep into the magnetosphere. Most of
the time there are few particles in the ring current, but during
severe storms, it fills up with a current of millions of amperes,
which spreads into an invisible ring encircling Earth. Just as a
flow of current through a wire creates its own magnetic field, the
ring current generates a local magnetic field that can reduce some
of Earth’s surface field by up to 2% over the equatorial regions.

In addition to these families of particles, there are also powerful
currents of particles that appear during especially stormy
conditions and lead to visually dramatic phenomena called the
aurora borealis and the aurora australis: the northern and
southern lights.

9.2 The Aurora

For thousands of years humans have been able to look up at the
northern sky and see strange, colorful glows of light. By the
early 1900’s, spectroscopic studies had shown that auroral light
was actually caused by excited oxygen and nitrogen atoms
emitting light at only a few specific wavelengths. The source of
the excitation was eventually traced to currents of electrons and
protons flowing down the geomagnetic field lines into the polar
regions where they collide with the atmospheric atoms. However,
aurora are not produced directly by solar flares. Radio
communications blackouts on the day side of Earth are triggered
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by solar flares as these high-energy particles disturb the
ionosphere. When directed toward Earth, expulsions of matter by
the Sun called coronal mass ejections contribute to the
conditions that cause some of the strongest aurora to light up the
skies. At other times, a simple change in magnetic polarity of the
solar wind from north-directed to south-directed seems to be
enough to trigger aurora without any obvious solar disturbance.

Because of the existence of the magnetospheric cusp on the day
side of Earth, solar wind particles can, under some conditions,
flow down this entryway into the polar regions. This causes
daytime aurora, and the diffuse red glows of night time aurora.
This is, virtually, the only instance where solar wind particles can
directly cause aurora. It is not, however, the cause of the
spectacular nightime polar aurora that are so commonly
photographed. To understand how these aurora are produced, it is
helpful to imagine yourself living inside a television picture tube.
We don’t see the currents of electrons guided by magnetic forces,
but we do see them paint serpentine pictures on the atmosphere,
which we then see as the aurora. The origin of these currents is in
the distant geomagnetic tail region, not in the direct inflow of
solar wind plasma.

When the polarity of the solar wind’s magnetic field turns
southward, its lines of force encounter the north-directed lines in
Earth’s equatorial regions on the dayside. The solar wind field
lines then connect with Earth’s field in a complex event that
transfers particles and energy into Earth’s magnetosphere. While
this is happening near Earth, in the distant geomagnetic tail, other
changes are causing the geomagnetic field to stretch like rubber
bands and snap into new magnetic shapes. This causes billions of
watts of energy to be transferred into the particles already trapped
in the magnetosphere out in these distant regions. These particles,
boosted in energy by thousands of volts, then flow down the field
lines into the polar regions to cause the aurora, like the electrons
in a television picture tube that paint a pattern on the phosphor
screen.



Appendix V

Round-Number Handbook of Physics

The one-pag&ound Number Handbook of Physasthe following page is by Edward M. Purcell of Harvard
University, and appeared in the January 1983 issue oftherican Journal of Physicdt is intended as a
brief reference for doing quick “back of the envelope”, order-of-magnitude calculations.
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ROUND-NUMBER HANDBOOK OF PHYSICS

CONSTANTS

c=3x10"cms™
fi=10""ergs
N, = 6x10* mole™!
ny=23x%10"cm™?

1

g=10cms?
e=4.8x10""esu
=1.6x107"C

k=14x10""ergdeg™’

a = é*/fic =1/137

(/€)' 2 =37102
G=Tx10"*gem™*s?
po=4mXx10~' N A~2
€=88X10""N"'Am*s’
R =2 cal/mole deg

CONVERSIONS

lcal=4J=4x10"erg

1 N = 10° dyn "
680 lumens = 1 W (5550 A)
1ft=30cm

1lb=44N

1 ci = 410" disint/s
leV=16x10""erg

12 '=9x10" em/s
pefeV) = 300 Br(G cm)

MASSES

m,=10"%g
Moion = 270m,
Myaon = lmmf
Myucleon = 2mme
m,c* = 0.5 MeV
m = 200m,

muon

USEFUL NUMBERS

classical electron radius = 7, = €/m,c* =3x 102 cm

Bohr radius = a, = #/m,e* = 5% 10~% cm

Rydberg wavelength = 1z = #'c/m_e* = 7x 10" "cm
Compton wavelength = 1, = #fi/m,c =4x 10" " cm

Bohr magneton = efi/2mc = 10~%° erg/G
Stefan-Boltzman const = 6 X 10~ '? W/deg* cm®
Min. ionization loss: 2 MeV/g cm®

KT, = 0.025 eV

Rovctear =4 *x10" % cm

e’/a,=26eV
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hv{visible) = 2 eV
Band gaps: Si = 1.1eV; Ge=0.7eV
Spin precession: e:3 MHz/G; p:4 kHz/G

MATERIALS

Resistivities in {2 cm: Cu:2 X 10~ (room temp.)
H,O(pure):2 X 107; seawater:25 2 cm

Specific heat (solid or liquid) = 0.5 cal/cm® deg

Linear expansion (solid or liquid) = 23X 10~3/deg

Heat conduction (insulator) = 10~ ?cal/s cm deg
(metal) = 1.0{pc, /Prmerar Jcal/s cm deg

Heat of combustion (food or fuel) = 10 cal/g

Heat of vaporization = 10* cal/mole

Elastic moduli (solids) = 10''-10'? dyn/cm?

Tensile strength (solids) = 10°~10'° dyn/cm?

Surface tension: H,O = 50 dyn/cm

Diffusion: H,0 10773, air:0.2 cm?/s

Viscosity: H,0 1072, air:2 X 10~* dyn s/cm’

ASTRONOMICAL

1 pc=3x10" cm

I mag= —4dB

my,, =mat 10 pc

Mg, (Sun) = + 5

Be.wipole)=05G

Mﬁnnh =6X 1077 g

R gorn = 6X10% cm

Rg =8%10""cm

L =2X10% erg/s = 1 kW/m” at Earth
Fioon = 4% 10" cm

Fan =1 AU = 15X 10" cm

M Guay =2X10% g

Distance to center of galaxy = 3 10*? cm
Distance between galaxies = 10°° cm
Energy density: starlight = 10~ '? erg/cm’
Primary cosmic rays: 1/cm? s

R yniverse = 3000 Mpc

ATMOSPHERE (STP)

Pllm — loﬁd}’ﬂ/ﬂnz =15 psi
Viound = Vmotee = 4% 10* cm/s
Radiation length = 36 g/cm?
Density = 10~ g/cm®

Mean free path = 710~ cm
Scale height = 8 km
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Appendix W

Short Glossary of Particle Physics

antineutron, the antimatter counterpart of the neutron.

antiproton, the antimatter counterpart of the proton.

baryon, a particle made up of three quarks.

boson any particle that has integer spin.

electron, a lepton of negative charge, found to surround the atomic nucleus in atoms of ordinary matter.
fermion, any particle that has half-integer spin.

hadron, any particle that “feels” the strong nuclear force.

Higgs boson the particle associated with the Higgs field, that gives mass to other particles.

lepton, one of six light fundamental particles™, v2, =, v}, 7—, v?.
meson a particle consisting of a quark-antiquark pair.

neutrino, an uncharged lepton of very light mass, produced in some reactions.
neutron, an uncharged baryon, found in the nucleus of atoms of ordinary matter.
positron, the antimatter counterpart of the electron.

proton, a baryon of positive charge, found in the nucleus of atoms of ordinary matter.
quark, one of six heavy fundamental particles:d, c, s, t, b.

vector boson a particle responsible for mediating a force.
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Appendix X

Fundamental Physical Constants —
Extensive Listing

The following tables, published by the National Institutes of Science and Technology (NIST), give the current
best estimates of a large number of fundamental physical constants. These values were determined by the
Committee on Data for Science and Technology (CODATA) for 2014, and are a best fit of the constants to
the latest experimental results.

Source:ht t p: // physi cs. ni st. gov/ constants
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Fundamental Physical Constants — Extensive Listing

Relative std.

Quantity Symbol Value Unit uncert. u,
UNIVERSAL
speed of light in vacuum ¢, Co 299792458 ms~! exact
magnetic constant 1o 47 x 1077 NA—2

= 12.566370614... x 1077 NA-2 exact

electric constant 1/10c? €0 8.854187817... x 10712 Fm~! exact

characteristic impedance of vacuum joc Zy 376.730313461... Q exact
Newtonian constant of gravitation G 6.67408(31) x 107! m3 kg ts™2 4.7 x107°
G/he  6.70861(31) x 10739 (GeV/c?)™2 4.7x107°
Planck constant h 6.626 070 040(81) x 10734 Js 1.2x 1078
4.135 667 662(25) x 1071° evs 6.1 x 107
h/2n h 1.054 571 800(13) x 10734 Is 1.2 x 1078
6.582119514(40) x 1016 eVs 6.1 x 1079
he 197.326 9788(12) MeV fm 6.1 x 1079
Planck mass (he/G)'/? mp 2.176470(51) x 1078 kg 2.3 x107°
energy equivalent mpc? 1.220910(29) x 10*° GeV 2.3 x107°
Planck temperature (iic®/G)'/2/k Tp 1.416 808(33) x 1032 K 2.3 x 1075
Planck length ii/mpc = (hG/c3)'/? lp 1.616229(38) x 1073° m 2.3 x 107°
Planck time Ip /¢ = (hG/c?)1/? tp 5.39116(13) x 10~% s 2.3 x107°

ELECTROMAGNETIC
elementary charge e 1.6021766208(98) x 107  C 6.1 x 1077
e/h 2.417989262(15) x 104 AJ1 6.1 x 1079
magnetic flux quantum h/2e Dy 2.067833831(13) x 10~1° Wb 6.1 x 1077
conductance quantum 2¢2/h Gy 7.748 091 7310(18) x 10~° S 2.3 x 10710
inverse of conductance quantum Gyt 12906.403 7278(29) 9] 2.3 x 10719
Josephson constant! 2¢/h K; 483 597.8525(30) x 10° Hz V! 6.1 x 1077
von Klitzing constant? h/e? = poc/2a Ry 25812.807 4555(59) Q 2.3 x 10719
Bohr magneton efi/2m,. UB 927.400 9994(57) x 10726 JT-! 6.2 x 1077
5.788 381 8012(26) x 1075 eVT! 4.5 x 10710
us/h 13.996 245 042(86) x 10° Hz T~! 6.2 x 1077
us/he  46.686 448 14(29) mtT! 6.2 x 1079
ps/k  0.67171405(39) KT ! 5.7x 1077
nuclear magneton efi/2m,, UN 5.050783699(31) x 10727 JT! 6.2 x 107
3.152451 2550(15) x 1078 eV T ! 4.6 x 10719
un/h 7.622 593 285(47) MHz T—! 6.2 x 107
pun/he  2.542623432(16) x 1072 mtT! 6.2 x 1079
unx/k  3.6582690(21) x 1074 KT ! 5.7x 1077
ATOMIC AND NUCLEAR
General

fine-structure constant e2/47ephc e 7.297 3525664(17) x 1073 2.3 x 10710
inverse fine-structure constant a~t 137.035999 139(31) 2.3 x 10710
Rydberg constant a®m.c/2h R 10973 731.568 508(65) m~! 5.9 x 10712
Rooc 3.289 841960 355(19) x 105 Hz 5.9 x 10712
Roohe  2.179872325(27) x 10718 J 1.2 x 1078
13.605 693 009(84) eV 6.1 x 1079
Bohr radius /4T Ro = 4Teph?/mee? ap 0.52917721067(12) x 1071 m 2.3 x 10710
Hartree energy ¢%/4ntepag = 2Rsche = a Ey 4.359 744 650(54) x 10718 J 1.2 x 1078
27.211 386 02(17) eV 6.1 x 107
quantum of circulation h/2me  3.6369475486(17) x 10~* m? 51 4.5 x 10710

318



Prince George’s Community College

Introductory Physics Il

D.G. Simpson

Fundamental Physical Constants — Extensive Listing

Relative std.

Quantity Symbol Value Unit uncert. u,
h/me 7.2738950072(33) x 1071 m2s™! 4.5 x 10710
Electroweak
Fermi coupling constant® Gr/(hc)®  1.1663787(6) x 107> GeV~2 5.1 x 1077
weak mixing angle* Ay (on-shell scheme)
sin? fy = 5%, = 1 — (mw/myz)? sin2fy  0.2223(21) 9.5 x 1073
Electron, e~
electron mass Me 9.10938356(11) x 1073¢ kg 1.2x 1078
5485799090 70(16) x 10~*  u 2.9 x 1011
energy equivalent Mec? 8.18710565(10) x 10714 J 1.2 x 1078
0.510998 9461(31) MeV 6.2 x 107
electron-muon mass ratio Me /My 4.83633170(11) x 1073 2.2x 1078
electron-tau mass ratio Me /My 2.87592(26) x 1074 9.0 x 107°
electron-proton mass ratio Me /My 5.446 170 213 52(52) x 10~* 9.5 x 10711
electron-neutron mass ratio Me /My 5.438 6734428(27) x 1074 4.9 x 10710
electron-deuteron mass ratio Me/Md 2.724 437107 484(96) x 1074 3.5 x 1071
electron-triton mass ratio Me /My 1.819200 062 203(84) x 1074 4.6 x 10711
electron-helion mass ratio me/my 1.819543 074 854(88) x 1074 4.9 x 10711
electron to alpha particle mass ratio Me/Maq, 1.370933 554 798(45) x 10~* 3.3 x 1071
electron charge to mass quotient —e/me —1.758820024(11) x 10*! Ckg? 6.2 x 1077
electron molar mass Nam, M(e), M, 5.48579909070(16) x 107  kgmol™! 2.9 x 107!
Compton wavelength h/m.c Ac 2.4263102367(11) x 10712 m 4.5 x 10710
Ac/2m = aag = a?/4nR s Ao 386.15026764(18) x 1015 m 45 % 10710
classical electron radius a2aq Te 2.8179403227(19) x 1071 m 6.8 x 10710
Thomson cross section (87/3)r2 Oo 0.66524587158(91) x 10728 m? 1.4 x 1079
electron magnetic moment e —928.4764620(57) x 10726 jT-! 6.2 x 107°
to Bohr magneton ratio e/ 1B —1.001 159 652 180 91(26) 2.6 x 10713
to nuclear magneton ratio e/ N —1838.28197234(17) 9.5 x 10711
electron magnetic moment
anomaly |pte|/ps — 1 e 1.159 652180 91(26) x 10~3 2.3 x 10710
electron g-factor —2(1 + a.) Je —2.002319 304 361 82(52) 2.6 x 10713
electron-muon magnetic moment ratio He/ by 206.766 9880(46) 2.2x 1078
electron-proton magnetic moment ratio e/ ip —658.210 6866(20) 3.0 x 1079
electron to shielded proton magnetic
moment ratio (H»O, sphere, 25 °C) fhe/ 1, —658.2275971(72) 1.1x 1078
electron-neutron magnetic moment ratio fe/ tin 960.920 50(23) 2.4 %1077
electron-deuteron magnetic moment ratio e/ ftq —2143.923499(12) 5.5 x 1079
electron to shielded helion magnetic
moment ratio (gas, sphere, 25 °C) He/ 114, 864.058 257(10) 1.2 x 1078
electron gyromagnetic ratio 2|pe|/h Yo 1.760 859 644(11) x 10! sTIT-1 6.2x107°
Yo/ 2 28024.951 64(17) MHzT! 6.2 x 107°
Muon, p—
muon mass my 1.883 531 594(48) x 10728 kg 2.5 x 1078
0.1134289257(25) u 2.2x 1078
energy equivalent myc 1.692 833 774(43) x 10~ J 2.5 x 1078
105.658 3745(24) MeV 2.3 x 1078
muon-electron mass ratio My /Me 206.768 2826(46) 2.2 %1078
muon-tau mass ratio my/me 5.946 49(54) x 1072 9.0 x 1075
muon-proton mass ratio my/my 0.112 609 5262(25) 2.2x 1078
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Fundamental Physical Constants — Extensive Listing

Relative std.

Quantity Symbol Value Unit uncert. u,
muon-neutron mass ratio My /My 0.1124545167(25) 2.2 %1078
muon molar mass Namy, M(p), M, 0.1134289257(25) x 1073 kgmol™! 22x 1078
muon Compton wavelength h/myc Acpu 11.73444111(26) x 10715 m 2.2 x 1078

Acu/21 Ao 1.867 594 308(42) x 10715 m 2.2 x 1078
muon magnetic moment I —4.490 448 26(10) x 10726 JT! 2.3 x 1078
to Bohr magneton ratio i/ VB —4.84197048(11) x 1073 2.2x 1078
to nuclear magneton ratio o/ N —8.890 597 05(20) 2.2x 1078
muon magnetic moment anomaly
|/ (el/2my) — 1 ay 1.16592089(63) x 1073 5.4 %1077
muon g-factor —2(1 + ay) Iu —2.002331 8418(13) 6.3 x 10710
muon-proton magnetic moment ratio Lo/ Pop —3.183345142(71) 2.2 x 1078
Tau, T~
tau mass® e 3.16747(29) x 10727 kg 9.0 x 107°
1.90749(17) u 9.0 x 1075
energy equivalent mec? 2.84678(26) x 10710 J 9.0 x 107°
1776.82(16) MeV 9.0 x 1075
tau-electron mass ratio Me/Me 3477.15(31) 9.0 x 1075
tau-muon mass ratio Me/my 16.8167(15) 9.0 x 107
tau-proton mass ratio me/myp 1.89372(17) 9.0 x 1075
tau-neutron mass ratio me/my 1.89111(17) 9.0 x 107°
tau molar mass N ms M(t), M: 1.90749(17) x 1073 kgmol™! 9.0 x 107°
tau Compton wavelength h/m.c Acr 0.697 787(63) x 10715 m 9.0 x 107°
Acq/2m A x 0.111056(10) x 10715 m 9.0 x 10~°
Proton, p
proton mass mp 1.672621898(21) x 10727 kg 1.2x 1078
1.007 276 466 879(91) u 9.0 x 10711
energy equivalent mpc? 1.503 277 593(18) x 10710 J 1.2 x 1078
938.272 0813(58) MeV 6.2 x 1079
proton-electron mass ratio mp/Me 1836.152 673 89(17) 9.5 x 10~
proton-muon mass ratio mp/my 8.880243 38(20) 2.2x 1078
proton-tau mass ratio mp/me 0.528 063(48) 9.0 x 107°
proton-neutron mass ratio mp/my 0.998 623478 44(51) 5.1 x 10710
proton charge to mass quotient e/mp 9.578 833 226(59) x 107 Ckg™! 6.2 x 1079
proton molar mass Nam,, M(p), M, 1.007276466879(91) x 1072 kgmol~! 9.0 x 10~
proton Compton wavelength h/my,c Ac,p 1.32140985396(61) x 107>  m 4.6 x 10710
Ac,p/21 Ac,p 0.210308910109(97) x 10715 m 4.6 x 10710
proton rms charge radius T 0.8751(61) x 10715 m 7.0x 1073
proton magnetic moment p 1.410 606 7873(97) x 10726 JT! 6.9 x 1079
to Bohr magneton ratio L/ 1B 1.5210322053(46) x 103 3.0 x 1077
to nuclear magneton ratio Lo/ N 2.792 847 3508(85) 3.0x 1079
proton g-factor 241,/ i 9p 5.585 694 702(17) 3.0 x 1079
proton-neutron magnetic moment ratio  fu;,/ fin —1.459898 05(34) 2.4 x 1077
shielded proton magnetic moment 78 1.410570 547(18) x 10726 JT! 1.3 x 1078
(H2O, sphere, 25 °C)
to Bohr magneton ratio 1,/ 1B 1.520 993 128(17) x 1073 1.1x 1078
to nuclear magneton ratio JUNATN 2.792 775 600(30) 1.1x 1078
proton magnetic shielding correction
1 — pp/pp (H2O, sphere, 25 °C) oy, 25.691(11) x 10~ 4.4 %1074
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Fundamental Physical Constants — Extensive Listing
Relative std.

Quantity Symbol Value Unit uncert. u,
proton gyromagnetic ratio 2u, /i Yp 2.675221900(18) x 108 sTIT™1 6.9x%x107°
/21 42.57747892(29) MHzT-! 6.9 x 107
shielded proton gyromagnetic ratio
245/l (H20, sphere, 25 °C) % 2.675153171(33) x 108 sTIT-1 1.3x1078
~L/2m 42,576 385 07(53) MHzT! 1.3 x 10°8
Neutron, n
neutron mass My 1.674927471(21) x 10727 kg 1.2 x 1078
1.008 664 915 88(49) u 4.9 x 10719
energy equivalent muc? 1.505 349 739(19) x 10710 J 1.2 x 1078
939.5654133(58) MeV 6.2 x 1079
neutron-electron mass ratio My /Me 1838.683 661 58(90) 4.9 x 10710
neutron-muon mass ratio My /My 8.892 484 08(20) 2.2x 1078
neutron-tau mass ratio My /My 0.528 790(48) 9.0 x 1075
neutron-proton mass ratio My /my 1.00137841898(51) 5.1 x 10710
neutron-proton mass difference My — My 2.305573 77(85) x 10730 kg 3.7x 1077
0.001 388449 00(51) u 3.7x 1077
energy equivalent (my —mp)c®  2.072146 37(76) x 10713 J 3.7 x 1077
1.29333205(48) MeV 3.7% 1077
neutron molar mass Nam,, M (n), M, 1.008 664 91588(49) x 1073 kgmol™* 4.9 x 10719
neutron Compton wavelength h/m,c ACn 1.319590904 81(88) x 1071 m 6.7 x 10710
Acn /2T Ao 0.21001941536(14) x 10- m 6.7 x 10710
neutron magnetic moment U —0.966 236 50(23) x 10~26 JT! 2.4 x 1077
to Bohr magneton ratio o/ 1B —1.04187563(25) x 1073 2.4 %1077
to nuclear magneton ratio o/ N —1.91304273(45) 2.4 %1077
neutron g-factor 24, / pin Gn —3.826 085 45(90) 2.4 x 1077
neutron-electron magnetic moment ratio  fiy, / fte 1.040 668 82(25) x 1073 2.4 %1077
neutron-proton magnetic moment ratio Hn/ —0.684 979 34(16) 2.4 %1077
neutron to shielded proton magnetic
moment ratio (HzO, sphere, 25 °C) un/,u;, —0.684 996 94(16) 2.4 x 1077
neutron gyromagnetic ratio 2|u, | /% o 1.83247172(43) x 108 sTIT™1 24 x1077
Yo/ 2T 29.164 6933(69) MHzT-! 2.4 x 107
Deuteron, d
deuteron mass mq 3.343583719(41) x 10727 kg 1.2x 1078
2.013 553 212 745(40) u 2.0 x 10~ 11
energy equivalent mac? 3.005063183(37) x 10710 J 1.2x 1078
1875.612928(12) MeV 6.2 x 107
deuteron-electron mass ratio ma/me 3670.482967 85(13) 3.5 x 1071
deuteron-proton mass ratio ma/my 1.999 007 500 87(19) 9.3 x 10711
deuteron molar mass Namq M(d), Mg 2.013553212745(40) x 1073 kgmol™* 2.0 x 107!
deuteron rms charge radius rd 2.1413(25) x 10715 m 1.2x 1073
deuteron magnetic moment H 0.4330735040(36) x 10726 JT~! 8.3 x107°
to Bohr magneton ratio La/1s 0.466 975 4554(26) x 1073 5.5 x 1079
to nuclear magneton ratio Ha /PN 0.8574382311(48) 5.5 x 1079
deuteron g-factor juq/pn gd 0.8574382311(48) 5.5 x 1079
deuteron-electron magnetic moment ratio  fiq/ fte —4.664 345 535(26) x 10~* 5.5 x 1079
deuteron-proton magnetic moment ratio  f1q/ftp 0.3070122077(15) 5.0 x 1079
deuteron-neutron magnetic moment ratio  f1q/fin —0.448206 52(11) 2.4 %1077
Triton, t
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triton mass my 5.007 356 665(62) x 10~27 kg 1.2 x 1078
3.015500716 32(11) u 3.6 x 10711
energy equivalent myc? 4.500 387 735(55) x 10710 J 1.2 x 1078
2808.921112(17) MeV 6.2 x 107
triton-electron mass ratio my/Me 5496.921 535 88(26) 4.6 x 1071
triton-proton mass ratio me/mp 2.99371703348(22) 7.5 x 10711
triton molar mass Namy M(t), M,  3.01550071632(11) x 10~ kgmol~t 3.6 x 107!
triton magnetic moment It 1.504 609 503(12) x 10726 JT-! 7.8 x107°
to Bohr magneton ratio e/ pB 1.6223936616(76) x 1073 4.7 x 107
to nuclear magneton ratio He/ N 2.978 962 460(14) 4.7 x107°
triton g-factor 241/ pun gt 5.957 924 920(28) 4.7 x 1077
Helion, h
helion mass o 5.006 412 700(62) x 10~%7 kg 1.2x 1078
3.014 932246 73(12) u 3.9 x 10711
energy equivalent myc? 4.499 539 341(55) x 10710 J 1.2 x 1078
2808.391 586(17) MeV 6.2 1079
helion-electron mass ratio my/Me 5495.885 279 22(27) 4.9 x 10711
helion-proton mass ratio my/mp 2.99315267046(29) 9.6 x 10711
helion molar mass Namy, M(h), M, 3.01493224673(12) x 1073 kgmol~! 3.9 x 1071!
helion magnetic moment fh —1.074617522(14) x 10726 JT-! 1.3x 1078
to Bohr magneton ratio fn/ B —1.158 740 958(14) x 1073 1.2 x 1078
to nuclear magneton ratio Hn /N —2.127 625 308(25) 1.2 x 1078
helion g-factor 2/, / ux h —4.255250616(50) 1.2 x 10~8
shielded helion magnetic moment wh —1.074553080(14) x 10726 JT-! 1.3x 1078
(gas, sphere, 25 °C)
to Bohr magneton ratio Wi/ s —1.158671471(14) x 1073 1.2 x 1078
to nuclear magneton ratio pin/ N —2.127497720(25) 1.2x 1078
shielded helion to proton magnetic
moment ratio (gas, sphere, 25 °C) /i —0.761 766 5603(92) 1.2x 1078
shielded helion to shielded proton magnetic
moment ratio (gas/H»O, spheres, 25 °C)  puy, /1y, —0.761 786 1313(33) 4.3 x107°
shielded helion gyromagnetic ratio
2|us,| /B (gas, sphere, 25 °C) " 2.037894585(27) x 108 sTITt 1.3x1078
/2n 32.434099 66(43) MHzT-! 1.3x1078
Alpha particle, o
alpha particle mass My, 6.644 657 230(82) x 10~%7 kg 1.2 x 1078
4.001 506 179 127(63) u 1.6 x 1011
energy equivalent e 5.971 920 097(73) x 10~1° J 1.2 x 1078
3727.379378(23) MeV 6.2 x 1079
alpha particle to electron mass ratio Mg,/ Me 7294.299 541 36(24) 3.3 x 10711
alpha particle to proton mass ratio Mo/ My 3.972 599689 07(36) 9.2 x 10711
alpha particle molar mass Namg M(at), My 4.001506179127(63) x 103  kgmol™! 1.6 x 10~
PHYSICOCHEMICAL
Avogadro constant Na, L 6.022 140 857(74) x 10% mol~! 1.2 x 1078
atomic mass constant
my = 55m(*?C)=1u My 1.660 539 040(20) x 10~27 kg 1.2 x 1078
energy equivalent myc? 1.492 418 062(18) x 10710 J 1.2 x 1078
931.494 0954(57) MeV 6.2 x 109
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Faraday constant® Nae F 96 485.332 89(59) C mol ! 6.2 x 1079
molar Planck constant Nah 3.9903127110(18) x 10719 Jsmol~! 4.5 x 10710
Nahe  0.119626 565 582(54) J mmol~! 4.5 x 10710
molar gas constant R 8.3144598(48) Jmol ™' K~! 5.7x1077
Boltzmann constant R/Na k 1.380648 52(79) x 10723 JK! 5.7x 1077
8.6173303(50) x 1075 eV K1 5.7 x 1077
ke/h 2.0836612(12) x 1010 Hz K~! 5.7 %1077
k/hc 69.503 457(40) mtK™! 5.7 x 1077
molar volume of ideal gas RT'/p
T =273.15 K, p = 100 kPa Vin 22.710947(13) x 103 m¥mol~!  5.7x10°7
Loschmidt constant N / Vi, no 2.6516467(15) x 10%° m—3 5.7x 1077
molar volume of ideal gas RT'/p
T =273.15K, p = 101.325 kPa Vin 22.413962(13) x 1073 m?® mol ! 5.7x 1077
Loschmidt constant N / Vi, no 2.686 7811(15) x 10%° m~3 5.7 x 1077

Sackur-Tetrode (absolute entropy) constant”
S + In[(2rm kT /h?)3/2 KT} /po)

T, =1K, py = 100 kPa So/R  —1.1517084(14) 1.2 x 1076
Ty =1K, py = 101.325 kPa —1.1648714(14) 1.2 x 10-6
Stefan-Boltzmann constant
(72 /60)kY/h®c? o 5.670367(13) x 10~8 Wm2K™* 23x1076
first radiation constant 27thc? e 3.741771790(46) x 1071 W m? 1.2 x 1078
first radiation constant for spectral radiance 2hc® ¢, 1.191042953(15) x 10716 W m? sr? 1.2x 1078
second radiation constant hc/k Co 1.438 777 36(83) x 1072 m K 5.7x 1077
Wien displacement law constants
b= AmaxT = ¢2/4.965114231... b 2.8977729(17) x 1073 mK 5.7x 1077
b = vma /T = 2.821439372... ¢/ 1% 5.878 9238(34) x 1010 Hz K~ 5.7 %1077

! See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the volt using the Joseph-
son effect.

2 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall
effect.

3 Value recommended by the Particle Data Group (Olive er al., 2014).

4 Based on the ratio of the masses of the W and Z bosons mw / myz recommended by the Particle Data Group (Olive et al., 2014). The value for
sin®Oyw they recommend, which is based on a particular variant of the modified minimal subtraction (3s) scheme, is sin?0w (Mz) = 0.23126(5).
5 This and all other values involving mq are based on the value of mec® in MeV recommended by the Particle Data Group (Olive et al., 2014).

5 The numerical value of F to be used in coulometric chemical measurements is 96 485.3251(12) [1.2 x 10~®] when the relevant current is mea-
sured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional
values of the Josephson and von Klitzing constants Kj_go and Rk _go given in the “Adopted values” table.

7 The entropy of an ideal monoatomic gas of relative atomic mass A is given by S = So + 2R In A, — R In(p/po) + 2R In(T/K).
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Index

Aberration, 206
chromatic, 206
spherical, 206
Accidentals, 85
Accommodation, 210
Acoustics, 12
Active optics, 199
Aerial, 187
Agonic line, 152
Alexander’s dark band, 244
Alnico, 162
Alternating current (AC), 179
AM radio, 184
Amateur radio, 137
Amber, 93

American Radio Relay League (ARRL), 138
American Wire Gauge (AWG), 110, 112

Ammeter, 123

Ampere’s law, 164, 169
Ampere, 16

Amplitude, 39, 55, 58
Amplitude modulation, 184
Analyzer, 232

Angular frequency, 39, 58
Antenna, 187

Antimatter, 183, 258
Antineutron, 258, 316
Antinode, 66

Antiproton, 258, 316
Arduino, 136
Arithmetic-geometric mean, 304
Astigmatism, 206
Astronomical unit, 288
Astrophysics, 12

Atomic mass unit (amu), 17
Atomic physics, 12
Aurora, 154

Auroral oval, 158

Baryon, 257, 316
Base units, 14

Battery, 104
internal resistance, 105, 111
parallel, 105
series, 104
Bel, 79
Bessel function, 69
Beta decay, 258
Bifocal lenses, 210
Big Bang, 78
Binary prefixes, 22
Binoculars, 213
Biophysics, 12
Biot-Savart law, 144, 164, 170
Birefringence, 233
Biv, Roy G., 183, 234
Blueshift, 78
Boson, 316
Bow shock, 156
Brewster’s law, 233
Bulk modulus, 59, 71

C major scale, 84, 86
Calcite, 210, 233
Calculus
differential, 26
fundamental theorem of, 30
integral, 28
Camera, 212
pinhole, 212
Candela, 16, 218
Capacitance, 125
Capacitor, 125
Capillary, 254
Cat's whisker, 189
Cauchy dispersion formula, 230
Cellular telephone, 185
Centennial Bulb, 133
Center of curvature, 195
Chemical physics, 12
Chromatic aberration, 206, 230
Chromatic scale, 84
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Chromaticity diagram, 237
CIE

chromaticity diagram, 237, 307
color matching functions, 307

Circuit, 114
Classical mechanics, 12
Clef sign, 88
Coercivity, 162
Coherent light, 222
Color
blue, 234
complement, 235
constancy, 234
cyan, 235
green, 234
magenta, 235
orange, 236
primary, 234
purple, 237
red, 234
secondary, 235
spectral, 236
violet, 237
white, 235
yellow, 234
Coma, 206
Compression, 57
Computer glasses, 210
Condenser, 125
Conductor, 95
Cones, 208, 234
Converging
lens, 202
mirror, 195
Cornea, 208
Coulomb, 94
Coulomb’s law, 94
magnetic, 140
Cross product, 296
Cross-disciplinary physics, 12
Crystal oscillator, 190
Crystal radio, 187
CubeSat, 138
Curie temperature, 162
Currency exchange rates, 22
Current divider, 119
Cyclotron frequency, 148
Cyclotron radius, 148

Damped oscillations, 47

critically damped, 48
overdamped, 47
underdamped, 47
Daraf, 125
Decibel, 79
Declination, magnetic, 152
Degree, 17, 293
square, 294
Diamagnetism, 161
Dielectric, 95
Dielectric breakdown, 100
Dielectric constant, 127
Diffraction, 224
Dimensional analysis, 19
Diode, 187
Dipole
electric, 98
magnetic, 143, 152
moment, electric, 98
moment, magnetic, 143
Direct current (DC), 179
Dispersion, 206, 230
Displacement current, 182
Diverging
lens, 202
mirror, 195
Doppler effect, 75
relativistic, 76
Dot product, 296
Drift velocity, 106

Earth, 288

Earthquake, 65

Eddy current, 163
Elastance, 125

Electric current, 106
Electric field, 97

Electric field lines, 97
Electric flux, 98

Electric generator, 166
Electric motor, 167
Electricity, 93

Electricity and magnetism, 12
Electrode, 104

Electrolyte, 104
Electromagnet, 141
Electromagnetic force, 258
Electromagnetic units, 19
Electromagnetic wave, 182
Electromagnetism, 140
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Electromotive force, 111, 166
Electron, 316
Electron volt, 103
Electrostatic units, 19
Electroweak theory, 258
Elementary charger}, 93
Emmetropia, 210
Epicenter, 65
Equilibrium position, 39
Equipotential surface, 102
Eye

compound, 210

human, 208

trilobite, 210

Farad, 125

Faraday'’s law, 166, 169
Farsightedness, 210
Fermat's principle, 200
Fermion, 316
Ferromagnetism, 161

Field-programmable gate array (FPGA), 137

Flat, 85
FM radio, 184
Focal length

lens, 202

mirror, 195
Focus, 195, 202
Foot, 15
Foot-candle, 219
Forced oscillations, 49
Fountain effect, 254
Fourth, 293
FPGA, seeField programmable gate array
Franklin, Benjamin, 93
Frequency, 43
Frequency modulation, 184
Fresnel lens, 205

Gadget Factory, 137

Galena, 189

Gamma rays, 183

Gauss, 142

Gauss's law, 99, 125, 169
for magnetism, 144, 169

Gaussian units, 19

Geophysics, 12

Grad, 17, 293

Grand Unified Theory, 258

Grave(f.n.), 18

Gravitational force, 258
Graviton, 258

Ground, 102, 114
Gyrofrequency, 148
Gyroradius, 148

HackerBoxes, 137
Hadron, 257, 316
Half step, 84
Hall effect, 149
Hall emf, 150
Heaviside-Lorentz units, 19
Helium, 72
Helium Il, 254
Henry, 170
Higgs

boson, 259

field, 259
Higgs boson, 316
Hooke’s law, 39, 54, 113
Hubble constant, 78
Hubble’s law, 78
Hyperopia, 210
Hysteresis, 161, 162

Iceland spar, 233
llluminance, 218
IMAGE, 311
Image distance, 195, 202
Image height, 195, 202
Impact parameter, 243
Impedance, 179
Imperial units, 14
Incidence, angle of, 194
Index of refraction, 200, 230
Inductance, 170
Infinitesimal numbers, 25
Infrared light, 183
Infrasound, 74
Insulator, 95
Integral, 29
double, 34
Integrand, 29
Interference, 61
constructive, 62
destructive, 62
International Prototype Kilogram (IPK), 15
Inverted image, 197, 203
lonosphere, 186
Isogonic chart, 152
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Isotropic, 64, 218

Jacobi elliptic function, 303
Jupiter, 288

K20, 16
Kaleidoscope, 216
Kelvin, 16

Kirchhoff plot, 114
Kirchhoff's rules, 120

L wave, 65
Lagrangian mechanics, 56
Lambda point, 254
Land effect, 210, 234
Larmor radius, 148
Law of reflection, 194
LC circuit, 175
LCR circuit, 178
Left-hand rule, 147
Lens, 202
double concave, 202
double convex, 202
meniscus, 202
of human eye, 208
plano-concave, 202
plano-convex, 202
Lens maker’s equation, 202
Lenz’s law, 167
Lepton, 257, 316
Light
white, 234
Lightning, 71, 100, 140
Line of purples, 237
Lodestone, 140
Logic probe, 124
Lorentz force, 147
Love wave, 65
LR circuit, 173
Lumen, 135, 217
Luminance, 307
Luminous efficiency curve, 217
Luminous flux, 217
Luminous intensity, 218
Lux, 219

Magnet
alnico, 162
ferrite, 162
neodymium, 162

permanent, 162
rare-earth, 162
samarium-cobalt, 162
Magnetic declination, 152
Magnetic domain, 161
Magnetic field, 142
Magnetic field lines, 142
Magnetic flux, 143
Magnetic inclination, 152
Magnetic monopole, 141, 144
Magnetic reconnection, 154
Magnetic susceptibility, 172
Magnetism, 140
Magnetite, 140
Magnetopause, 156
Magnetosheath, 156
Magnetosphere, 154, 311
Magnetotail, 154
Magnification, 195, 202
Magnification equation, 198, 204
Magnifier, 208
Magnifying glass, 208
Magnitude, 220
Major scales, 86
Maker Shed, 137
Malus's law, 232
Mars, 288
Mathematical physics, 12
Maxwell’s equations, 99, 140, 169, 182
Memristance, 181
Memristor, 181
Mercury, 288
Meson, 257, 316
Metallic hydrogen, 95
Meter, 15
Metric ton, 16
Metric units, 14
Mho, 110
Microcontrollers, 136
Micron, 22
Microscope, 212
Microwaves, 183
Middle C, 85
Minor scales, 87
Mirror, 195
concave, 195
convex, 195
Mirror equation, 198, 204
Modulus of rigidity, 45
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Mole, 16

Moment magnitude scale, 65

Moment of inertia, 300
Monochromatic light, 222
Monocular, 213
Motional emf, 167
Multimeter, 123
Music, 84
instruments, 90
measure, 89
notes, 84, 88
rests, 88
scale, 84, 85
tempo, 89
time signature, 89
Myopia, 210

Natural units, 14
Nearsightedness, 210
Neper, 80

Neptune, 288
NerdKits, 137
Neutrino, 316
Neutron, 257, 316
Newton, 16

Newton’s laws of motion, 12
Newton-Laplace equation, 71

Node, 66
Nought, 47
Nuclear physics, 12

Object distance, 195, 202
Object height, 195, 202
Obliquity of the ecliptic, 288
Octave, 84

Ohm, 107

Ohm’s law, 113
Ohmmeter, 123

Optic nerve, 208

Optics, 12

Oscilloscope, 123

Oval of Descartes, 210

P wave, 65

Papilio FPGA board, 137

Parallel
batteries, 105
capacitors, 126
inductors, 171
resistors, 109

springs, 44
Parallel axis theorem, 300
Paramagnetism, 161
Parsec, 78
Particle physics, 12
Pascal, 146
Pendulum
ballistic, 56
conical, 54
double, 56
Foucault, 56
nonlinear, 302
physical, 54
simple plane, 51, 302
spherical, 52
torsional, 54
Pentatonic scale, 87
Period, 43
Permeability, 172
of free spacefo), 140
relative, 172
Permittivity, 127
of free spaced)), 94
Phase constant, 39, 58
Phonograph, 81
Photometry, 217
Photon, 222
Physics, 12
Piezoelectric effect, 190
Pigments, 236
Pitch, 84
Plasma, 147
Plasma physics, 12
Pluto, 288
Poisson ratio, 45
Polar wandering, 152
Polarization angle, 233
Polarized light, 232
Polarizer, 232
Pole strength, 140
Positron, 258, 316
Potential, 102
Pound, 19
force, 19
mass, 16, 19
Presbyopia, 210
Pressure
magnetic, 146
Primary colors, 234
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Proton, 257, 316
Purples, line of, 237

Quantum electrodynamics, 140
Quantum mechanics, 12, 222, 254, 256
Quark, 257, 316

Radian, 17
radian, 293
Radio waves, 183
Radiometry, 217
Radius of curvature
mirror, 195
Ragchewing, 185
Rainbow, 230, 240
angle, 243
primary, 240
secondary, 240
Rarefaction, 57
Raspberry Pi, 136
Rayleigh criterion, 224
Rayleigh wave, 65
RC circuit, 129
Real image, 197, 202
Rectangular rule, 32
Redshift, 78
Reflected wave, 59
Reflection
angle of, 194
coefficient of, 59
Refraction, 200
law of, 200
Relativity, 12
general, 12
special, 12
Remanence, 162
Resistance, 107
Resistivity, 107, 108
temperature coefficient of, 107, 108
Resistor, 107
Resonance, 49
Retina, 208
Return stroke, 100
Richter scale, 65
Right-hand rule, 144, 145, 147, 296
Robotics, 138
Rods, 208, 234
Rollin film, 254

S wave, 65

Saturn, 288
Scattering, 233
Scattering angle, 243
Schematic diagram, 114
Second (of time), 16
Second sound, 256
Secondary colors, 235
Seismic waves, 65
Selective absorbtion, 232
Selectivity, 190
Sellmeier dispersion formula, 230
Semiconductor, 95
Series
batteries, 104
capacitors, 126
inductors, 171
resistors, 109
springs, 44
Sharp, 85
Shortwave radio, 184
Sl units, 15
Siemens, 110
Simple harmonic motion, 39, 146, 175
kinetic energy, 41
potential energy, 41
total energy, 41
Single-slit diffraction, 224
Slug, 19
Snell’s law, 200
Solar wind, 154
Solenoid, 145, 170
Solid angle, 293
Solid-state physics, 12
Sound, 71
audible, 74
infrasonic, 74
loudness, 79
speed, 71
ultrasonic, 74
Sound level, 79
Space physics, 154
SparkFun, 137
Spectral power distribution, 307
Spectrum, 236
Spherical aberration, 195, 202, 206
Spring
vertical, 43
Spring constant, 39, 43, 44
Spyglass, 213
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Staff, 87

Standard Model, 257
Standing waves, 66
Statistical mechanics, 12
Steinhart-Hart equation, 109
Stepped leader, 100
Steradian, 293

String theory, 259

Strong nuclear force, 258
Submillimeter waves, 183
Sulfur hexafluoride, 72
Superconductor, 95
Superflow, 254
Superfluid, 96, 254
Superpostion, 61

SusceptibilityseeMagnetic susceptibility

Teleidoscope, 216
Telescope, 213, 214
Cassegrain, 214
Newtonian, 214
reflecting, 213
refracting, 213
Television, 185
Terminal voltage, 111
Tesla, 142
Thermistor, 109
Thermodynamics, 12
Third, 293
Threshold of hearing, 79
Threshold of pain, 80
Time constant, 129, 173
Time travel, 251
Total internal reflection, 201
Transmission, coefficient of, 59
Transmitted wave, 59
Transmitter, 190, 192
Transverse wave, 57
Trifocal lenses, 210
Trilobite, 210
Tristimulus values, 307
Two-fluid model, 254

Ultrasound, 74
Ultraviolet light, 183
Unit vector, 96, 295
Uprightimage, 197, 203
Uranus, 288

\ector, 295

polar form, 296
rectangular form, 296
Vector boson, 258, 316
Venus, 288
Verilog, 137
VHDL, 137
Virtual image, 197, 202
Visible light, 183
Voltage divider, 119
Voltmeter, 123

W boson, 258
Wave, 57
cylindrical, 64
energy, 62
intensity, 64
longitudinal, 57
ocean, 64
plane, 64
power, 64
speed, 58, 59
spherical, 64
standing, 66
string, 59
transverse, 57
tsunami, 65
Wave equation, 182
Wave number, 58
Wavelength, 58
Weak nuclear force, 258
Weber, 144
Weight, 16
White light, 230
Whole step, 84
Whole tone scale, 87
Wire, 110

X-rays, 183

Young's experiment, 222
Young's modulus, 45, 59, 71

Z boson, 258
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