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Chapter 1

What is Physics?

Physicsis the most fundamental of the sciences. Its goal is to learn how the Universe works at the most
fundamental level—and to discover the basic laws by which it operates.Theoretical physicsconcentrates
on developing the theory and mathematics of these laws, whileapplied physicsfocuses attention on the
application of the principles of physics to practical problems.Experimental physicslies at the intersection
of physics and engineering; experimental physicists have the theoretical knowledge of theoretical physicists,
and they know how to build and work with scientific equipment.

Physics is divided into a number of sub-fields, and physicists are trained to have some expertise in all of
them. This variety is what makes physics one of the most interesting of the sciences—and it makes people
with physics training very versatile in their ability to do work in many different technical fields.

The major fields of physics are:

• Classical mechanicsis the study the motion of bodies according to Newton’s laws of motion.

• Electricity and magnetismare two closely related phenomena that are together considered a single field
of physics. We’ll study electricity and magnetism in this course.

• Quantum mechanicsdescribes the peculiar motion of very small bodies (atomic sizes and smaller).

• Opticsis the study of light, and we’ll study it in this course.

• Acousticsis the study of sound; this is another subject we’ll study in this course.

• Thermodynamicsandstatistical mechanicsare closely related fields that study the nature of heat.

• Solid-state physicsis the study of solids—most often crystalline metals.

• Plasma physicsis the study of plasmas (ionized gases).

• Atomic, nuclear, and particle physicsstudy of the atom, the atomic nucleus, and the particles that make
up the atom.

• Relativity includes Albert Einstein’s theories of special and general relativity.Special relativityde-
scribes the motion of bodies moving at very high speeds (near the speed of light), whilegeneral rela-
tivity is Einstein’s theory of gravity.

The fields ofcross-disciplinary physicscombine physics with other sciences. These includeastrophysics
(physics of astronomy),geophysics(physics of geology),biophysics(physics of biology),chemical physics
(physics of chemistry), andmathematical physics(mathematical theories related to physics).
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Besides acquiring a knowledge of physics for its own sake, the study of physics will give you a broad tech-
nical background and set of problem-solving skills that you can apply to wide variety of other fields. Some
students of physics go on to study more advanced physics, while others find ways to apply their knowledge
of physics to such diverse subjects as mathematics, engineering, biology, medicine, and finance.
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Chapter 2

Units

The phenomena of Nature have been found to obey certain physical laws; one of the primary goals of physics
research is to discover those laws. It has been known for several centuries that the laws of physics are
appropriately expressed in the language ofmathematics, so physics and mathematics have enjoyed a close
connection for quite a long time.

In order to connect the physical world to the mathematical world, we need to makemeasurementsof the
real world. In making a measurement, we compare a physical quantity with some agreed-upon standard, and
determine how many such standard units are present. For example, we have a precise definition of a unit of
length called amile, and have determined that there are about 92,000,000 such miles between the Earth and
the Sun.

It is important that we have very precise definitions of physical units — not only for scientific use, but also
for trade and commerce. In practice, we define a fewbase units, and derive other units from combinations of
those base units. For example, if we define units for length and time, then we can define a unit for speed as
the length divided by time (e.g. miles/hour).

How many base units do we need to define? There is no magic number; in fact it is possible to define
a system of units using onlyonebase unit (and this is in fact done for so-callednatural units). For most
systems of units, it is convenient to define base units for length, mass, and time; a base electrical unit may
also be defined, along with a few lesser-used base units.

2.1 Systems of Units

Several different systems of units are in common use. For everyday civil use, most of the world usesmetric
units. The United Kingdom uses both metric units and animperial system. Here in the United States,U.S.
customary unitsare most common for everyday use.1

There are actually several “metric” systems in use. They can be broadly grouped into two categories:
those that use the meter, kilogram, and second as base units (MKS systems), and those that use the centimeter,
gram, and second as base units (CGS systems). There is only one MKS system, calledSI units. We will
mostly use SI units in this course.

1In the mid-1970s the U.S. government attempted to switch the United States to the metric system, but the idea was abandoned after
strong public opposition. One remnant from that era is the two-liter bottle of soda pop.
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2.2 SI Units

SI units (which stands for Syst`eme International d’unit´es) are based on themeteras the base unit of length,
the kilogram as the base unit of mass, and thesecondas the base unit of time. SI units also define four
other base units (theampere, kelvin, candela, andmole, to be described later). Any physical quantity that
can be measured can be expressed in terms of these base units or some combination of them. SI units are
summarized in Appendix G.

SI units were originally based mostly on the properties of the Earth and of water. Under theoriginal
definitions:

• Themeterwas defined to be one ten-millionth the distance from the equator to the North Pole, along a
line of longitude passing through Paris.

• Thekilogramwas defined as the mass of 0.001 m3 of water.

• Thesecondwas defined as 1/86,400 the length of a day.

• The definition of theampereis related to electrical properties, ultimately relating to the meter, kilogram,
and second.

• Thekelvinwas defined in terms of the thermodynamics properties of water, as well as absolute zero.

• Thecandelawas defined by the luminous properties of molten tungsten.

• Themoleis defined by the density of the carbon-12 nucleus.

Many of these original definitions have been replaced over time with more precise definitions, as the need for
increased precision has arisen.

Length (Meter)

The SI base unit of length, themeter(m), has been re-defined more times than any other unit, due to the need
for increasing accuracy. Originally (1793) the meter was defined to be1=10;000;000 the distance from the
North Pole to the equator, along a line going through Paris.2 Then, in 1889, the meter was re-defined to be the
distance between two lines engraved on a prototype meter bar kept in Paris. Then in 1960 it was re-defined
again: the meter was defined as the distance of1;650;763:73 wavelengths of the orange-red emission line in
the krypton-86 atomic spectrum. Still more stringent accuracy requirements led to the the current definition
of the meter, which was implemented in 1983: the meter is now defined to be the distance light in vacuum
travels in1=299;792;458 second. Because of this definition, the speed of light is nowexactly299;792;458
m/s.

U.S. Customary units are legally defined in terms of metric equivalents. For length, thefoot(ft) is defined
to be exactly 0.3048 meter.

Mass (Kilogram)

Originally thekilogram (kg) was defined to be the mass of 1 liter (0.001 m3) of water. The need for more
accuracy required the kilogram to be re-defined to be the mass of a standard mass called theInternational
Prototype Kilogram(IPK, frequently designated by the Gothic letterK), which is kept in a vault at the Bureau
International des Poids et Mesures (BIPM) in Paris. The kilogram is the only base unit still defined in terms
of a prototype, rather than in terms of an experiment that can be duplicated in the laboratory.

2If you remember this original definition, then you can remember the circumference of the Earth: about40;000;000 meters.

15



Prince George’s Community College Introductory Physics II D.G. Simpson

The International Prototype Kilogram is a small cylinder of platinum-iridium alloy (90% platinum), about
the size of a golf ball. In 1884, a set of 40 duplicates of the IPK was made; each country that requested one
got one of these duplicates. The United States received two of these: the duplicate called K20 arrived here
in 1890, and has been the standard of mass for the U.S. ever since. The second copy, called K4, arrived later
that same year, and is used as a constancy check on K20. Finally, in 1996 the U.S. got a third standard called
K79; this is used for mass stability studies. These duplicates are kept at the National Institutes of Standards
and Technology (NIST) in Gaithersburg, Maryland. They are kept under very controlled conditions under
several layers of glass bell jars and are periodically cleaned. From time to time they are returned to the BIPM
in Paris for re-calibration. For reasons not entirely understood, very careful calibration measurements show
that the masses of the duplicates do not stay exactly constant. Because of this, physicists are considering
re-defining the kilogram sometime in the next few years.

Another common metric (but non-SI) unit of mass is themetric ton, which is 1000 kg (a little over 1 short
ton).

In U.S. customary units, thepound-mass(lbm) is defined to be exactly0:45359237 kg.

Mass vs. Weight

Mass is not the same thing asweight, so it’s important not to confuse the two. Themassof a body is a
measure of the total amount of matter it contains; theweightof a body is the gravitational force on it due to
the Earth’s gravity. At the surface of the Earth, massm and weightW are proportional to each other:

W D mg; (2.1)

whereg is the acceleration due to the Earth’s gravity, equal to 9.80 m/s2. Remember: mass is mass, and is
measured in kilograms; weight is a force, and is measured in force units ofnewtons.

Time (Second)

Originally the base SI unit of time, thesecond(s), was defined to be1=60 of 1=60 of 1=24 of the length of
a day, so that 60 secondsD 1 minute, 60 minutesD 1 hour, and 24 hoursD 1 day. High-precision time
measurements have shown that the Earth’s rotation rate has short-term irregularities, along with a long-term
slowing due to tidal forces. So for a more accurate definition, in 1967 the second was re-defined to be based
on a definition using atomic clocks. The second is now defined to be the time required for9;192;631;770

oscillations of a certain type of radiation emitted from a cesium-133 atom.
Although officially the symbol for the second is “s”, you will also often see people use “sec” to avoid

confusing lowercase “s” with the number “5”.

The Ampere, Kelvin, and Candela

For this course, most quantities will be defined entirely in terms of meters, kilograms, and seconds. There are
four other SI base units, though: theampere(A) (the base unit of electric current); thekelvin (K) (the base
unit of temperature); thecandela(cd) (the base unit of luminous intensity, or light brightness); and themole
(mol) (the base unit of amount of substance).

Amount of Substance (Mole)

Since we may have a use for the mole in this course, let’s look at its definition in detail. The simplest way to
think of it is as the name for a number. Just as “thousand” means1;000, “million” means1;000;000, and “bil-
lion” means1;000;000;000, in the same way “mole” refers to the number602;214;129;000;000;000;000;000,
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or 6:02214129� 1023. You could have a mole of grains of sand or a mole of Volkswagens, but most often the
mole is used to count atoms or molecules. There is a reason this number is particularly useful: since each nu-
cleon (proton and neutron) in an atomic nucleus has an average mass of1:660538921� 10�24 grams (called
anatomic mass unit, or amu), then there are1=.1:660538921� 10�24/, or 6:02214129� 1023 nucleons per
gram. In other words, one mole of nucleons has a mass of 1 gram. Therefore, ifA is the atomic weight of an
atom, thenA moles of nucleons has a mass ofA grams. ButA moles of nucleons is the same as 1 mole of
atoms, soone mole of atoms has a mass (in grams) equal to the atomic weight. In other words,

moles of atomsD grams

atomic weight
(2.2)

Similarly, when counting molecules,

moles of moleculesD grams

molecular weight
(2.3)

In short, the mole is useful when you need to convert between the mass of a material and the number of
atoms or molecules it contains.

It’s important to be clear about what exactly you’re counting (atoms or molecules) when using moles. It
doesn’t really make sense to talk about “a mole of oxygen”, any more than it would be to talk about “100 of
oxygen”. It’s either a “mole of oxygen atoms” or a “mole of oxygen molecules”.3

Interesting fact: there is about1/2 mole of stars in the observable Universe.

SI Derived Units

In addition to the seven base units (m, kg, s, A, K, cd, mol), there are a number of so-calledSI derived units
with special names. We’ll introduce these as needed, but a summary of all of them is shown in Appendix G
(Table G-2). These are just combinations of base units that occur often enough that it’s convenient to give
them special names.

Plane Angle (Radian)

One derived SI unit that we will encounter frequently is the SI unit of plane angle. Plane angles are commonly
measured in one of two units:degreesor radians.4 You’re probably familiar with degrees already: one full
circle is360ı, a semicircle is180ı, and a right angle is90ı.

The SI unit of plane angle is theradian, which is defined to be that plane angle whose arc length is equal
to its radius. This means that a full circle is2� radians, a semicircle is� radians, and a right angle is�=2
radians. To convert between degrees and radians, then, we have:

degreesD radians� 180

�
(2.4)

and

radiansD degrees� �

180
(2.5)

The easy way to remember these formulæ is to think in terms of units: 180 has units of degrees and� has
units of radians, so in the first equation units of radians cancel on the right-hand side to leave degrees, and in
the second equation units of degrees cancel on the right-hand side to leave radians.

3Sometimes chemists will refer to a “mole of oxygen” when it’s understood whether the oxygen in question is in the atomic (O) or
molecular (O2) state.

4A third unit implemented in many calculators is thegrad: a right angle is 100 grads and a full circle is 400 grads. You may encounter
grads in some older literature, such as Laplace’sMécanique C´eleste. Almost nobody uses grads today, though.
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Occasionally you will see a formula that involves a “bare” angle that is not the argument of a trigonometric
function like the sine, cosine, or tangent. In such cases it is understood that the angle must bein radians. For
example, the radius of a circler , angle� , and arc lengths are related by

s D r�; (2.6)

where it is understood that� is in radians.
See Appendix M for a further discussion of plane and solid angles.

SI Prefixes

It’s often convenient to define both large and small units that measure the same thing. For example, in English
units, it’s convenient to measure small lengths in inches and large lengths in miles.

In SI units, larger and smaller units are defined in a systematic way by the use ofprefixesto the SI base
or derived units. For example, the base SI unit of length is the meter (m), but small lengths may also be
measured in centimeters (cm, 0.01 m), and large lengths may be measured in kilometers (km, 1000 m). Table
G-3 in Appendix G shows all the SI prefixes and the powers of 10 they represent. You shouldmemorizethe
powers of10 for all the SI prefixes in this table.

To use the SI prefixes, simply add the prefix to the front of the name of the SI base or derived unit. The
symbol for the prefixed unit is the symbol for the prefix written in front of the symbol for the unit. For
example, kilometer (km)D 103 meter, microsecond (�s) D 10�6 s. But put the prefix on thegram(g), not
the kilogram: for example, 1 microgram (�g) D 10�6 g. For historical reasons, the kilogram is the only SI
base or derived unit with a prefix.5

The Future of SI Units

There is currently a proposal to re-define the basis of SI units, probably starting in 2018. According to the
proposal, instead of the seven base units, we woulddefinethe values of seven fundamental physical constants
so that they have fixed, unchanging values—in much the same way that the meter is currently defined so that
the speed of light in vacuum is defined to have the value 299,792,458 m/s. The proposed defined constants
are shown in Table 2-1.

Table 2-1. Proposed new SI base quantities, defining constants, and definitions. (HereX indicates extra
digits that have not yet been determined.) (Ref.:Phys. Today67, 7, 35 (July 2014).)

Base quantity Defining constant Definition

Frequency ��.133Cs)hfs The unperturbed ground-state hyperfine splitting frequency of
the cesium-133 atom is exactly 9,192,631,770 Hz.

Velocity c The speed of light in vacuumc is exactly 299,792,458 m/s.
Action h The Planck constanth is exactly6:626X � 10�34 J s.
Electric charge e The elementary chargee is exactly1:602X � 10�19 C.
Heat capacity k The Boltzmann constantk is exactly1:380X � 10�23 J/K.
Amount of substance NA The Avogadro constantNA is exactly6:022X � 1023 mol�1.
Luminous intensity Kcd The luminous efficacyKcd of monochromatic radiation of

frequency540 � 1012 Hz is exactly 683 lm/W.

5Originally, the metric standard of mass was a unit called thegrave(GRAH-veh), equal to 1000 grams. When the metric system was
first established by Louis XVI following the French Revolution, the namegravewas considered politically incorrect, since it resembled
the German wordGraf, or “Count” — a title of nobility, at a time when titles of nobility were shunned. Thegravewas retained as the
unit of mass, but under the more acceptable namekilogram. The gram itself was too small to be practical as a mass standard.
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2.3 CGS Systems of Units

In some fields of physics (e.g. solid-state physics, plasma physics, and astrophysics), it has been customary to
use CGS units rather than SI units, so you may encounter them occasionally. There are several different CGS
systems in use:electrostatic, electromagnetic, Gaussian, andHeaviside-Lorentzunits. These systems differ
in how they define their electric and magnetic units. Unlike SI units, none of these CGS systems defines a
base electrical unit, so electric and magnetic units are all derived units. The most common of these CGS
systems is Gaussian units, which are summarized in Appendix H.

SI prefixes are used with CGS units in the same way they’re used with SI units.

2.4 British Engineering Units

Another system of units that is common in some fields of engineering isBritish engineering units. In this
system, the base unit of length is the foot (ft), and the base unit of time is the second (s). There is no base
unit of mass; instead, one uses a base unit of force called thepound-force(lbf). Mass in British engineering
units is measured units ofslugs, where 1 slug has a weight of 32.17404855 lbf.

A related unit of mass (not part of the British engineering system) is called the pound-mass (lbm). At
the surface of the Earth, a mass of 1 lbm has a weight of 1 lbf, so sometimes the two are loosely used
interchangeably and called thepound(lb), as we do every day when we speak of weights in pounds.

SI prefixes are not used in the British engineering system.

2.5 Units as an Error-Checking Technique

Checking units can be used as an important error-checking technique calleddimensional analysis. If you
derive an equation and find that the units don’t work out properly, then you can be certain you made a
mistake somewhere. If the units are correct, it doesn’t necessarily mean your derivation is correct (since you
could be off by a factor of 2, for example), but it does give you some confidence that you at least haven’t
made a units error. So checking units doesn’t tell you for certain whether or not you’ve made a mistake, but
it does help.

Here are some basic principles to keep in mind when working with units:

1. Units on both sides of an equation must match.

2. When adding or subtracting two quantities, they must have the same units.

3. Quantities that appear in exponents must be dimensionless.

4. The argument for functions like sin, cos, tan, sin�1, cos�1, tan�1, log, and exp must be dimensionless.

5. When checking units, radians and steradians can be considered dimensionless.

6. When checking complicated units, it may be useful to break down all derived units into base units (e.g.
replace newtons with kg m s�2).

Sometimes it’s not clear whether or not the units match on both sides of the equation, for example when
both sides involve derived SI units. In that case, it may be useful to break all the derived units down in terms
of base SI units (m, kg, s, A, K, mol, cd). Table G-2 in Appendix G shows each of the derived SI units broken
down in terms of base SI units.
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2.6 Unit Conversions

It is very common to have to work with quantities that are given in units other than the units you’d like to work
with. Converting from one set of units to another involves a straightforward, virtually foolproof technique
that’s very simple to double-check. We’ll illustrate the method here with some examples.

Appendix L gives a number of important conversion factors. More conversion factors are available from
sources such as theCRC Handbook of Chemistry and Physics.

1. Write down the unit conversion factor as a ratio, and fill in the units in the numerator and denominator
so that the units cancel out as needed.

2. Now fill in the numbers so that the numerator and denominator contain the same length, time, etc. (This
is because you want each factor to be a multiplication by 1, so that you don’t change the quantity—only
its units.)

Simple Conversions

A simple unit conversion involves only one conversion factor. The method for doing the conversion is best
illustrated with an example.

Example.Convert 7 feet to inches.
Solution.First write down the unit conversion factor as a ratio, filling in the units as needed:

.7 ft/� in

ft
(2.7)

Notice that the units of feet cancel out, leaving units of inches. The next step is to fill in numbers so that the
same length is in the numerator and denominator:

.7 ft/� 12 in

1 ft
(2.8)

Now do the arithmetic:

.7 ft/� 12 in

1 ft
D 84 inches: (2.9)

More Complex Conversions

More complex conversions may involve more than one conversion factor. You’ll need to think about what
conversion factors you know, then put together a chain of them to get to the units you want.

Example.Convert 60 miles per hour to feet per second.
Solution. First, write down a chain of conversion factor ratios, filling in units so that they cancel out

correctly:

60
mile

hr
� ft

mile
� hr

sec
(2.10)

Units cancel out to leave ft/sec. Now fill in the numbers, putting the same length in the numerator and
denominator in the first factor, and the same time in the numerator and denominator in the second factor:

60
mile

hr
� 5280 ft

1 mile
� 1 hr

3600 sec
(2.11)

20



Prince George’s Community College Introductory Physics II D.G. Simpson

Finally, do the arithmetic:

60
mile

hr
� 5280 ft

1 mile
� 1 hr

3600 sec
D 88

ft

sec
(2.12)

Example.Convert250;000 furlongs per fortnight to meters per second.
Solution.We don’t know how to convert furlongs per fortnightdirectly to meters per second, so we’ll have

to come up with a chain of conversion factors to do the conversion. Wedo know how to convert: furlongs
to miles, miles to kilometers, kilometers to meters, fortnights to weeks, weeks to days, days to hours, hours
to minutes, and minutes to seconds. So we start by writing conversion factor ratios, putting units where they
need to be so that the result will have the desired target units (m/s):

250;000
furlong

fortnight
� mile

furlong
� km

mile
� m

km
� fortnight

week
� week

day
� day

hr
� hr

min
� min

sec

If you check the units here, you’ll see that almost everything cancels out; the only units left are m/s, which is
what we want to convert to. Now fill in the numbers: we want to put either the same length or the same time
in both the numerator and denominator:

250;000
furlong

fortnight
� 1 mile

8 furlongs
� 1:609344 km

1 mile
� 1000 m

1 km
� 1 fortnight

2 weeks
� 1 week

7 days
� 1 day

24 hr
� 1 hr

60 min
� 1 min

60 sec

D 41:58m=s

Conversions Involving Powers

Occasionally we need to do something like convert an area or volume when we know only the length conver-
sion factor.

Example.Convert 2000 cubic feet to gallons.
Solution. Let’s think about what conversion factors we know. We know the conversion factor between

gallons and cubic inches. We don’t know the conversion factor between cubic feet and cubic inches, but we
can convert between feet and inches. The conversion factors will look like this:

2000 ft3 �
�

in

ft

�3

� gal

in3
(2.13)

With these units, the whole expression reduces to units of gallons. Now fill in the same length in the numerator
and denominator of the first factor, and the same volume in the numerator and denominator of the second
factor:

2000 ft3 �
�
12 in

1 ft

�3

� 1 gal

231 in3
(2.14)

Now do the arithmetic:

2000 ft3 �
�
12 in

1 ft

�3

� 1 gal

231 in3
D 14;961 gallons (2.15)

2.7 Currency Units

Money has units that can be treated like any other units, using the same techniques we’ve just seen. Two
things are unique about units of currency:
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• Each country has its own currency units. Examples are United States dollars ($), British pounds sterling
(£), European euros (e), and Japanese yen (¥).

• The conversion factors from one country’s currency to another’s is a function of time, and even varies
minute to minute during the day. These conversion factors are calledexchange rates, and may be found,
for example, on the Internet athttp://www.xe.com/currencyconverter/.

Example.You’re shopping in Reykjav´ık, Iceland, and see an Icelandic wool scarf you’d like to buy. The
price tag says 6990 kr. What is the price in U.S. dollars?

Solution.The unit of currency in Iceland is the Icelandic kr´ona (kr). Looking up the exchange rate on the
Internet, you find it is currently $1D 119.050 kr. Then

6990 kr: � $1:00

119:050 kr:
D $58:71 (2.16)

2.8 Odds and Ends

We’ll end this chapter with a few miscellaneous notes about SI units:

• In a few special cases, we customarily drop the ending vowel of a prefix when combining with a unit
that begins with a vowel: it’smegohm(not “megaohm”);kilohm (not “kiloohm”); and hectare(not
“hectoare”). In all other cases, keep both vowels (e.g.microohm, kiloare, etc.). There’s no particular
reason for this—it’s just customary.

• In pharmacology (on bottles of vitamins or prescription medicine, for example), it is usual to indicate
micrograms with “mcg” rather than “�g”. While this is technically incorrect, it is done to avoid mis-
reading the units. Using “mc” for “micro” is not done outside pharmacology, and you should not use it
in physics. Always use� for “micro”.

• Sometimes in electronics work the SI prefix symbol may be used in place of the decimal point. For
example, 24.9 M� may be written “24M9”. This saves space on electronic diagrams and when print-
ing values on electronic components, and also avoids problems with the decimal point being nearly
invisible when the print is tiny. This is unofficial use, and is only encountered in electronics.

• One sometimes encounters older metric units of length called themicron (�, now properly called the
micrometer, 10�6 meter) and themillimicron (m�, now properly called thenanometer, 10�9 meter).
The micron and millimicron are now obsolete.

• At one time there was a metric prefixmyria- (my) that meant104. This prefix is obsolete and is no
longer used.

• In computer work, the SI prefixes are often used with units of bytes, but may refer to powers of 2 that
are near the SI values. For example, the term “1 kB” may mean 1000 bytes, or it may mean210 D 1024

bytes. Similarly, a 100 GB hard drive may have a capacity of100;000;000;000 bytes, or it may mean
100 � 230 D 107;374;182;400 bytes. To help resolve these ambiguities, a set ofbinary prefixeshas
been introduced (Table G-4 of Appendix G). These prefixes have not yet entirely caught on in the
computing industry, though.
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Chapter 3

Problem-Solving Strategies

Much of this course will focus on developing your ability to solve physics problems. If you enjoy solving
puzzles, you’ll find solving physics problems is similar in many ways. Here we’ll look at a few general tips
on how to approach solving problems.

• At the beginning of a problem stated in SI units, immediately convert the units of all the quantities
you’re given to base SI units. In other words, convert all lengths to meters, all masses to kilograms, all
times to seconds, etc.: all quantities should be in un-prefixed SI units, except for masses in kilograms.
When you do this, you’re guaranteed that the final result will also be in base SI units, and this will
minimize your problems with units. As you gain more experience in problem solving, you’ll sometimes
see shortcuts that let you get around this suggestion, but for now converting all units to base SI units is
the safest approach.

• Similarly, if the problem is stated in CGS units immediately convert all given quantities to base CGS
units (lengths in centimeters, masses in grams, and times in seconds). If the problem is stated in British
engineering units, immediately convert all given quantities to base units (lengths in feet, masses in
slugs, and times in seconds).

• Look at the information you’re given, and what you’re being asked to find. Then think about what
equations you know that might let you get from what you’re given to what you’re trying to find.

• Be sure you understand under what conditions each equation is valid. For example, it would be inap-
propriate to use the equations for constant acceleration from kinematics (e.g.x.t/ D 1

2
at2 Cv0t Cx0)

for a mass on a spring, since the acceleration of a mass under a spring force isnot constant. For each
equation you’re using, you should be clear what each variable represents, and under what conditions
the equation is valid.

• As a general rule, it’s best to derive an algebraic expression for the solution to a problem first, then
substitute numbers to compute a numerical answer as the very last step. This approach has a number of
advantages: it allows you to check units in your algebraic expression, helps minimize roundoff error,
and allows you to easily repeat the calculation for different numbers if needed.

• If you’ve derived an algebraic equation,check the unitsof your answer. Make sure your equation has
the correct units, and doesn’t do something like add quantities with different units.

• If you’ve derived an algebraic equation, you can check that it has the proper behavior for extreme
values of the variables. For example, does the answer make sense if timet ! 1? If the equation
contains an angle, does it reduce to a sensible answer when the angle is0ı or 90ı?
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• Check your answer for reasonableness—don’t just write down whatever your calculator says. For
example, suppose you’re computing the speed of a pendulum bob in the laboratory, and find the answer
is 14;000 miles per hour. That doesn’t seem reasonable, so you should go back and check your work.

• You can avoid rounding errors by carrying as many significant digits as possible throughout your cal-
culations; don’t round off until you get to the final result.

• Write down a reasonable number of significant digits in the final answer—don’t write down all the
digits in your calculator’s display. Nor should you round too much and use too few significant digits.
There are rules for determining the correct number of significant digits, but for most problems in this
course, 3 or 4 significant digits will be about right.

• Don’t forget to put the correct units on the final answer! You will have points deducted for forgetting
to do this.

• The best way to get good at problem solving (and to prepare for exams for this course) ispractice—
practice working as many problems as you have time for. Working physics problems is a skill much like
learning to play a sport or musical instrument. You can’t learn by watching someone else do it—you
can only learn it by doing it yourself.
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Chapter 4

The Calculus

Some ideas in physics are most naturally expressed in terms of a branch of mathematics calledthe calculus of
infinitesimals, or simplythe calculus. Here we will present a very brief overview of the ideas of the calculus
so that the notation will be familiar when we encounter it. For a more complete, rigorous, and in-depth
understanding of the calculus, the student is referred to courses on the subject.

4.1 Infinitesimal Numbers

Briefly stated,the calculus is the mathematics of infinitesimal numbers.Infinitesimal numbers are an exten-
sion to the set of real numbers. Following Leibniz, we will call an infinitesimal number on the number line
(thex axis) by the notationdx. The symboldx is to be thought of as one symbol; it doesnotmeand � x.

Here’s another way to think of the infinitesimal numberdx. You’ve probably encountered the “�” no-
tation before, meaning the difference between two real numbers. For example, ifx1 D 3 andx2 D 7, then
�x D x2 � x1 D 7 � 3 D 4 is their difference. The notationdx is analogous to�x, but refers to the
difference between two numbers that are “infinitely close together.”

Mathematically, we define the infinitesimal numberdx by

9 dx W 0 < dx < x;8x 2 R (4.1)

In other words,the (positive) infinitesimal numberdx is greater than zero, but smaller than any real number.
You may wonder how this is possible. The answer is: it’s just defined this way. Mathematicians have
determined that infinitesimal numbers can be defined this way without mathematical contradiction.

Intuitively, you can think of the infinitesimal numberdx as being “infinitely close” to zero, butnotzero.
Think of dx as avery, very, very, verysmall number — an “infinitely small” number.

Infinitesimal numbers obey many of the expected laws of arithmetic. Addition and subtraction work as
you would expect:

dx C dx D 2dx (4.2)

2dx C dx D 3dx (4.3)

3dx � dx D 2dx (4.4)

Multiplication is also defined:

dx � dx D .dx/2 (4.5)

The number.dx/2 is also an infinitesimal number, but is “infinitely smaller” thandx. This is as expected: if
we approximatedx by a very small number like10�6, then its square (10�12) is much smaller in comparison.
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Division of infinitesimals leads to some interesting results. In general, dividing one infinitesimal number
by another often leads to afinite result, as we’ll see in the next section.

4.2 Differential Calculus — Finding Slopes

One important application of the calculus is that it allows us to determine the slope of a line that is not
necessarily a straight line. You’ve learned in an algebra class how to find the slope of a straight line:

slopeD rise

run
(4.6)

In other words, pick any two points along the line, and take the change iny (�y, the “rise”) divided by the
change inx (�x, the “run”).

How can you calculate the slope of a line that isnot straight — say, for example, the parabolay D x 2?
For a curved line, the slope is different at different points along the curve; it is defined to be the slope of the
straight line tangent to the curve at that point. We can calculate the slope of that tangent line by using the
calculus.

As an example, let’s take the parabolaf .x/ D x2 and say we wish to find its slope atx D 3. We can
approximate the slope of the tangent line atx D 3 by finding the slope of the straight line connecting the point
on the parabola atx D 3 and a second point very close tox D 3. The closer the second point is tox D 3,
the better the approximation to the actual slopeat x D 3. For example, let the two points bex D 3 and
x D 3:01. Then atx D 3, y D f .x/ D x2 D 32 D 9, and atx D 3:01, y D f .x/ D x2 D 3:012 D 9:0601.
The slope of the line connecting these points is then

slopeD �y

�x
D 9:0601� 9

3:01� 3
D 6:01 (4.7)

Now let’s try an even closer second point:x D 3:001. Theny D x2 D 3:0012 D 9:006001. Then

slopeD �y

�x
D 9:006001� 9

3:001� 3
D 6:001 (4.8)

And yet an even closer second point:x D 3:0001. Theny D x2 D 3:00012 D 9:00060001. Then

slopeD �y

�x
D 9:00060001� 9

3:0001 � 3 D 6:0001 (4.9)

The closer the second point is to 3, the closer the slope seems to be getting to 6. In other words, in thelimit
where�x gets closer and closer to 0, the slope gets closer and closer to 6 — suggesting that the slopeat
x D 3 is exactly6. We write this limit as:

slopeD lim
�x!0

�y

�x
D lim

�x!0

f .x C�x/� f .x/

.x C�x/ � x D lim
�x!0

f .x C�x/ � f .x/
�x

(4.10)

Sincef .x/ D x2 in our example,

slopeD lim
�x!0

f .x C�x/ � f .x/
�x

(4.11)

D lim
�x!0

.x C�x/2 � x2

�x
(4.12)

D lim
�x!0

Œx2 C 2x�x C .�x/2� � x2

�x
(4.13)

D lim
�x!0

2x�x C .�x/2

�x
(4.14)

26



Prince George’s Community College Introductory Physics II D.G. Simpson

Canceling�x in the numerator and denominator,

slopeD lim
�x!0

2x C�x (4.15)

and as�x approaches zero,

slopeD 2x (4.16)

So for at any point along the curvef .x/ D x 2, its slope is given by2x. At x D 3, the slope is2 � 3 D 6, in
agreement with our earlier approximations.

The slope is called thederivativeof f .x/ with respect tox. As we have just shown, the derivative of
f .x/ D x2 with respect tox is 2x. We indicate the derivative ofy D f .x/ with respect tox by the notation

dy

dx
or

d

dx
f .x/ (4.17)

Thus the derivative can be thought of as the quotient of two infinitesimal numbers, and is defined as

dy

dx
� lim

�x!0

�y

�x
D lim

�x!0

f .x C�x/� f .x/

�x
(4.18)

For our exampley D f .x/ D x2,

dy

dx
D d

dx
x2 D 2x (4.19)

More generally, it can be shown that for anyn,

d

dx
xn D nxn�1 (4.20)

For example,

d

dx
x5 D 5x4 (4.21)

Heren need not necessarily be an integer. For example, since
p
x D x1=2, we have

d

dx

p
x D d

dx
x1=2 D 1

2
x�1=2 D 1

2
p
x

(4.22)

Similar results can be worked out for many common functions. Section D gives a short table of deriva-
tives. In conjunction with this table, we note the following properties (u andv are functions ofx, anda is a
constant):

d

dx
.au/ D a

du

dx
(4.23)

d

dx
.uC v/ D du

dx
C dv

dx
(4.24)

d

dx
.u � v/ D du

dx
� dv

dx
(4.25)

d

dx
.uv/ D du

dx
v C u

dv

dx
(4.26)

d

dx

�u
v

�
D v.du=dx/� u.dv=dx/

v2
(4.27)
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These results will be proved in a more rigorous calculus course.
Now we know how to find the slope of a line that is non necessarily straight: find a formula for the

derivative of the curve, and the slope at any point is the derivative evaluated at that point. Why would we
want to find the slope of a curved line? For one thing, a derivative with respect to time is how we describe
the rate of change of something. For example, velocity is the rate of change of position, so the velocity of a
body is written in terms of the derivative of its position with respect to time:v D dx=dt — so that if you
have a functionx.t/ that gives the positionx of a body at any timet , you can take the derivative with respect
to t and get a formula that gives the velocityv of the body at any timet . Another use for the derivative is for
optimization problems: the tangent at the peak of a curve is equal to zero, so to locate the peak of a curve, we
calculate its derivative and set it equal to zero.

Here’s an interesting calculus fact: there’s one function that is equal to its own derivative. That function
is ex:

d

dx
ex D ex (4.28)

Example.Find the derivative of the functionf .x/ D 4x 3 C 7x2 � 5x C 6 with respect tox, and find the
slope off .x/ atx D 3.

Solution.Using the above results,

d

dx
f .x/ D d

dx
.4x3 C 7x2 � 5x C 6/ (4.29)

D d

dx
.4x3/C d

dx
.7x2/ � d

dx
.5x/C d

dx
.6/ (4.30)

D 4
d

dx
.x3/C 7

d

dx
.x2/ � 5 d

dx
.x/C d

dx
.6/ (4.31)

D 4.3x2/C 7.2x/ � 5C 0 (4.32)

D 12x2 C 14x � 5 (4.33)

The slope atx D 3 is then12.3/2 C 14.3/� 5 D 145.

Example.Locate the peaks of the functionf .x/ D 4x3 C 7x2 � 5x C 6.
Solution. The peaks are where the derivative is equal to zero. We found the derivative in the previous

example, so set this derivative equal to zero to find the peaks:

12x2 C 14x � 5 D 0 (4.34)

By the quadratic formula,

x D �14˙ p
142 � 4 � 12� .�5/
2 � 12 D �7˙ p

109

12
D f�1:4534; 0:2867g (4.35)

This gives the two values ofx at which the peaks are located.

4.3 Integral Calculus — Finding Areas

Besides finding slopes, another application of the calculus is the find theareaunder a curve (i.e. between the
curve and thex axis). The area under astraightline is easy to find without the calculus: it’s just the area of a
trapezoid. But under acurvedline, we use the calculus to compute the area.
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Figure 4.1: Finding the area under a curve using rectangles (Credit: pleacher.com)

To do this, imagine dividing the area under the curve into a number of very thin rectangles (Figure 4.1).
The thinner the rectangles, the more rectangles we have, and the better the approximation to the actual area
under the curve.

If we go to the limit where the rectangles are infinitesimally narrow, then we will have infinitely many
of them, and the sum of the areas of all the rectangles exactly equals the area under the curve. Adding up
an infinite number of infinitesimal numbers is calledintegration, and typically results in a finite result. If
we have a curvef .x/, then a rectangle atx has infinitesimal widthdx and finite heightf .x/, so that that
rectangle has area equal to its width times its height, orf .x/ dx. We add together an infinite number of them
by integration; the symbol for which is an elongatedS (for “sum”),

R
:Z

f .x/ dx (4.36)

This expression is called anintegral, and the functionf .x/ is called theintegrandof the integral. The area
under the curve clearly depends on where the left and right ends of the area are. The area under the curve
f .x/ betweenx D a andx D b in indicated by

Z b

a

f .x/ dx (4.37)

Equation (4.36) is called anindefinite integral, and Equation (4.37) is called adefinite integral. To compute
a definite integral, we evaluate theindefiniteintegral at the upper boundb, and subtract the indefinite integral
evaluated at the lower bounda:Z b

a

f .x/ dx D
Z
f .x/ dx .atx D b/ �

Z
f .x/ dx .atx D a/ (4.38)

For example, suppose we want to find the area under the parabolaf .x/ D x2 betweenx D 1 andx D 3.
This would be

areaD
Z 3

1

x2 dx D
�
x3

3

� ˇ̌̌
ˇ̌
3

1

D 33

3
� 13

3
D 26

3
square units (4.39)

The vertical bar is used to indicate that we evaluate the expression at the top value (3), then subtract the
expression evaluated at the bottom value (1).
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It is important to note that the area under the curve counts asnegativearea if it lies below thex axis. For
example, consider a sine curve,f .x/ D sinx. The function sinx has a positive “lobe” above thex axis from
x D 0 to x D � , and a negative “lobe” beneath thex axis fromx D � to x D 2� . If we find the integral
of f .x/ D sinx from x D 0 to x D 2� , we’re finding the total area under the curve, but counting the part
below thex axis asnegative. We get (using Section E):

Z 2�

0

sinx dx D .� cosx/

ˇ̌̌
ˇ̌
2�

0

D � cos2� � .� cos0/ D �1 � .�1/ D 0: (4.40)

so the positive area of the first lobe is exactly cancelled by the negative area of the second lobe, and the total
area under the curve is zero. If we really wanted to find the total area under the sine curve fromx D 0 to
x D 2� , counting all area as positive, we could find the area under just one positive lobe and double it:

areaD 2

Z �

0

sinx dx D 2.� cosx/

ˇ̌̌
ˇ̌
�

0

D 2Œ.� cos�/�.� cos0/� D 2Œ1�.�1/� D 2�2 D 4 sq: units (4.41)

The area under each lobe is 2 square units.
An unexpected result from the calculus is that the derivative (slope) and integration (area) areinverse

operations of each other:

d

dx

Z
f .x/ dx D f .x/ (4.42)

so the integral can be thought of as the “anti-derivative.” This result is called thefundamental theorem of
calculus.

In a rigorous calculus course, you will learn how to work out formulas for a number of simple functions.
For example,Z

x2 dx D x3

3
C C (4.43)

whereC is an arbitrary constant. Allindefiniteintegrals will include this arbitrary constant, because when
we take the inverse (a derivative), the derivative of this constant is zero. In effect, some information about the
original function is lost when computing its derivative, so that you can’t entirely recover the original function
when computing the integral of the derivative. This lost information is expressed as an arbitrary constantC

added to the indefinite integral. To find whatC is, we would need some additional information, such as what
value the integral is supposed to have at a specific point.

More generally,Z
xn dx D xnC1

nC 1
C C (4.44)

As with the similar formula for derivatives,n need not be an integer. For example, since
p
x D x1=2, we

have Z p
x dx D

Z
x1=2 dx D x3=2

3=2
C C D 2

3

p
x3 C C (4.45)

Similar results can be worked out for many common functions. Section E gives a short table of integrals.
In conjunction with this table, we note the following properties (u and v are functions ofx, anda is a
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constant):Z
audx D a

Z
udx (4.46)

Z
.uC v/ dx D

Z
udx C

Z
v dx (4.47)

Z
.u � v/ dx D

Z
udx �

Z
v dx (4.48)

These results will be proved in a more rigorous calculus course. There are no product or quotient rules for
integrals as there are for derivatives.

Since the derivative and integration are inverses of each other, and the functione x is equal to its own
derivative, it is also equal to its own integral (to within an arbitrary constant of integration):Z

ex dx D ex C C (4.49)

Example.Find the indefinite integral of the functionf .x/ D 4x 3 C 7x2 � 5x C 6 with respect tox, and
find the area underf .x/ betweenx D 3 andx D 4.

Solution.Using the above results,Z
f .x/ dx D

Z
.4x3 C 7x2 � 5x C 6/ dx (4.50)

D
Z
4x3 dx C

Z
7x2 dx �

Z
5x dx C

Z
6 dx (4.51)

D 4

Z
x3 dx C 7

Z
x2 dx � 5

Z
x dx C 6

Z
dx (4.52)

D 4

�
x4

4

�
C C1 C 7

�
x3

3

�
C C2 � 5

�
x2

2

�
C C3 C 6.x/C C4 (4.53)

D x4 C 7

3
x3 � 5

2
x2 C 6x C C (4.54)

where we have combined all the individual constants of integrationC 1, C2, C3, C4 into a single constantC .
To find the area under the curve betweenx D 3 andx D 4, we compute the definite integralZ 4

3

f .x/ dx (4.55)

We’ve already found the indefinite integral; all we need to do is evaluate the indefinite integral atx D 4, and
subtract the indefinite integral evaluated atx D 3:

areaD
Z 4

3

f .x/ dx D
�
x4 C 7

3
x3 � 5

2
x2 C 6x C C

� ˇ̌̌
ˇ̌
4

3

(4.56)

D
�
.4/4 C 7

3
.4/3 � 5

2
.4/2 C 6.4/C C

�
�

�
.3/4 C 7

3
.3/3 � 5

2
.3/2 C 6.3/C C

�
(4.57)

D 1499

6
(4.58)
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Notice that the constant of integrationC always cancels out in a definite integral.

4.4 The Fundamental Theorem of Calculus

The fundamental theorem of calculusstates an unexpected result: the derivative (slope-finding) and integral
(area-finding) are inverses of each other. Thus

d

dx

Z
f .x/ dx D f .x/ (4.59)

4.5 Approximations

It may sometimes happen that we havedata pointsfor which we need to calculate a derivative or integral.
For example, suppose we have the following data for a moving body:

Time t (s) Positionx (m)
0.0 0.0
1.0 0.34
2.0 1.36
3.0 3.06
4.0 5.44
5.0 8.50
6.0 12.24

What is the velocityv of the body at timet D 2:5 seconds? By definition, the velocityv is found by a
derivative:v D dx=dt . One way toapproximatethis derivative is by finding�x=�t , for the interval from
2.0 to 3.0 seconds,

dx

dt
� �x

�t
D 3:06 m � 1:36 m

3:0 s� 2:0 s
D 1:70m=s (4.60)

We could do the same for every time interval in the table, and use the midpoint of the time intervals as the
time. We get the following table:

Time t (s) Velocityv (m/s)
0.5 0.34
1.5 1.02
2.5 1.70
3.5 2.38
4.5 3.06
5.5 3.74

If the data in the table is “noisy” (has lots of measurement errors), then this kind of computing derivatives
numerically can lead to very noisy results: small measurement errors can lead to a large change in slope from
one point to the next.

Integrals can be computed numerically as well. There are a number of methods for doing this; the simplest
is called therectangular rule, in which we imaging drawing a rectangle at each data point, and approximate
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the integral as the sum of the rectangle areas. For example, for the body we’ve been using for our example,
how far does the body travel from timet D 0 to time t D 6 seconds? That can be found as an integral:

x D
Z 6

0

v.t/ dt �
6X

tD0

v.t/�t (4.61)

Using the data from the above table of velocities,

x �
6X

tD0

v.t/�t (4.62)

D .0:34 m=s/.1:5 � 0:5 s/C .1:02 m=s/.2:5 � 1:5 s/C .1:70 m=s/.3:5 � 2:5 s/ (4.63)

C .2:38 m=s/.4:5 � 3:5 s/C .3:06 m=s/.5:5 � 4:5 s/C .3:74 m=s/.6:5 � 5:5 s/ (4.64)

D 12:24 m (4.65)

Numerical integration has a tendency to smooth out noise, so in general it is not as subject to the “noise”
problem as numerical derivatives are. When using the rectangular rule, one may evaluate the function at
the left edge of the horizontal (e.g. time) interval, at the right, edge, or at the center. There are other, more
sophisticated, numerical integration methods that may give better results, such as the trapezoidal rule and
Simpson’s rule. You’ll study these in a more comprehensive calculus course.

4.6 More Examples

Area of a Circle

You learned the formula for the area of a circle in elementary school:A D �R2, whereR is the radius
of the circle. We can use integral calculus to derive this formula. The simplest way to approach this using
rectangular coordinates is to find the area of a quarter circle and multiply by 4. Let’s say the circle has radius
R and center at the origin. Then the equation for the circle is

x2 C y2 D R2 (4.66)

or

y D ˙
p
R2 � x2 (4.67)

For the quarter circle in the first quadrant, we use only theC sign, which corresponds to the upper semicircle:

y D
p
R2 � x2 (4.68)

as letx go from 0 toR to get the quarter-circle in the first quadrant. The area under this quarter-circle curve
is thenZ R

0

p
R2 � x2 dx (4.69)

This is a fairly complicated integral to work out. Often in cases like this, we consult a published table of
integrals1 to find the result already worked out for us. From a published table of integrals, we find the integral

1Some well-known tables of integrals are found in theCRC Standard Mathematical Tables and Formulae; Tables of Integrals and
Other Mathematical Databy Dwight; and the massiveTable of Integrals, Series, and Productsby Gradshteyn and Ryzhik.
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to be

Z R

0

p
R2 � x2 dx D 1

2

�
x

p
R2 � x2 CR2 tan�1

�
xp

R2 � x2

�� ˇ̌̌
ˇ̌
R

0

(4.70)

D 1

2

��
2
R2 � 0

�
D �

4
R2 (4.71)

The area of a circle is then 4 times this:

A D 4 � �

4
R2 D �R2 (4.72)

and we have derived the famous formulaA D �R2.
It’s actually simpler to work this problem in polar coordinates, although it leads to adouble integral.

Imagine a circle of radiusR, whose center is at the origin. Now imagine a series of straight lines radiating
away from the origin, and concentric circles around the origin, just as you have with polar graph paper. These
lines divide the interior of the circle up into a series of little “boxes” with curved edges. If you make lots of
lines, these boxes will be very small, and if they’re infinitesimally small, you can treat them as rectangles.
A general infinitesimal “rectangle” will have one side of lengthdr , and another of (arc) lengthr d� . The
infinitesimal area of the little box is then the product of the lengths of the sides,dA D r dr d� . To get the area
of a circle, we just add together the infinitesimal areas of all the little boxes inside the circle by integratingr

from 0 toR, and integrating� from 0 to2� :

areaD
Z 2�

0

Z R

0

dA D
Z 2�

0

Z R

0

r dr d� (4.73)

This is called adouble integral. The way to evaluate it is to evaluate the “inner” integral first, then make the
result the integrand for the “outer” integral:

Z 2�

0

Z R

0

r dr d� D
Z 2�

0

"Z R

0

r dr

#
d� (4.74)

D
Z 2�

0

2
4r2

2

ˇ̌̌
ˇ̌
R

0

3
5 d� (4.75)

D
Z 2�

0

�
R2

2
� 02

2

�
d� (4.76)

D
Z 2�

0

�
R2

2

�
d� (4.77)

D R2

2

Z 2�

0

d� (4.78)
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where in the last step we movedR2=2 outside the integral because it’s a constant. Now evaluate the� integral:Z 2�

0

Z R

0

r dr d� D R2

2

Z 2�

0

d� (4.79)

D R2

2
�

ˇ̌̌
ˇ̌
2�

0

(4.80)

D R2

2
.2� � 0/ (4.81)

D �R2 (4.82)

And again we have derived the classical formula for the area of a circle.

Area of a Trapezoid

Suppose we have a trapezoid consisting of a side along thex axis, two parallel vertical sides atx D 0 and
x D h, and a slanted top side that is a straight line. Let the vertical side atx D 0 have lengtha, and the
vertical side atx D h have lengthb. Then the classical formula for the area of a trapezoid is the mean of the
lengths of the parallel sides times the distance between the parallel sides:

A D aC b

2
h (4.83)

Let’s see if we can derive this formula from integral calculus. The slanted top side of the trapezoid passes
through the points.0; a/ and.h; b/. It therefore has equation

.y � a/ D b � a
h� 0 .x � 0/ (4.84)

or

y D b � a
h

x C a (4.85)

Using integral calculus, the area of the trapezoid is then the area under this line:Z h

0

�
b � a
h

x C a

�
dx D b � a

h

Z h

0

x dx C a

Z h

0

dx (4.86)

D
�
b � a
h

x2

2
C ax

� ˇ̌̌
ˇ̌
h

0

(4.87)

D
�
b � a
h

h2

2
C ah

�
�

�
b � a
h

02

2
C a.0/

�
(4.88)

D h

�
b � a
2

C a

�
(4.89)

D h

�
b � a
2

C 2a

2

�
(4.90)

D aC b

2
h (4.91)
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and we have derived the classical formula.

Fence Enclosing Maximum Area

Let’s look at an optimization problem. Say you have a pet dog, and want to make a rectangular fenced-in area
in the back of your house for him to run around in. You get some fencing material, and plan to use the side
of the house for one side of the play area, and the fencing material for the other three sides. Let’s say you
bought a total lengthL of fencing material, and letx be the length of the side of the play area that’s along the
side of the house. Now ifx D 0, you’ll have folded the fencing in half and set it perpendicular to the side of
the house — you’ll have a rectangle of size zero on one side, and therefore zero area. On the other hand, if
x D L, then you’ll have just set the fencing up against the house, and the play area will be a rectangle whose
otherside is size zero, and therefore encloses zero area again. Clearly there’s some value ofx in between 0
andL that mustmaximizethe enclosed area. The question is: how do you maximize the total area of the play
area? In other words, what must be the dimensions of the play area that maximizes the enclosed area for a
given length of fencingL?

To solve this, we’ll need to find a formula that gives the enclosed area as a function ofx. Sincex is the
length of the side of the rectangle that’s against the house, then the opposite side must also have lengthx;
therefore the amount of fencing you have left over isL � x. This fencing will be used to make the other two
sides, so each of the other sides of the rectangle will have length.L � x/=2. The rectangular play area will
therefore be a rectangle whose sides parallel to the side of the house isx, and whose other sides have length
.L � x/=2. The area of the rectangular play area is then

A.x/ D x
L� x

2
D 1

2
.�x2 CLx/ (4.92)

This is the equation of a parabola opening downward, so it will have a peak that gives the maximum area. We
can find the value ofx at the peak (the maximum) because the slope of this curve is zero at the peak. All we
need to do is compute the derivative (i.e. slope) ofA.x/ with respect tox, then set that to zero.

d

dx
A.x/ D 0 (4.93)

d

dx

�
1

2
.�x2 C Lx/

�
D 0 (4.94)

1

2

d

dx
.�x2 C Lx/ D 0 (4.95)

1

2

�
d

dx
.�x2/C d

dx
.Lx/

�
D 0 (4.96)

1

2

�
� d

dx
x2 C L

d

dx
x

�
D 0 (4.97)

1

2
Œ�2x C L� D 0 (4.98)

� x C L

2
D 0 (4.99)

x D L

2
(4.100)
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Therefore, to maximize the play area for your dog, you should make one side (the side parallel to the side
of the house) equal to half the total amount of fencing (L=2); the remaining fencing will be divided equally
among the other two sides, so the other sides will have lengthL=4. The total area enclosed — the maximum
possible area for a lengthL of fencing — will be.L=2/.L=4/ D L2=8.

4.7 Main Ideas

We won’t be doing anything very complicated with the calculus in this course; we’ll leave mathematical rigor
and more complicated problems to a dedicated calculus course. The the purposes of this course, here are the
main ideas:

• The numberdx is an infinitesimalnumber—a number on thex axis that is ‘infinitely small,” but not
zero.

• The notation d
dx
f .x/ (thederivative) gives theslopeof the curvef .x/ at anyx.

• As a special case, the notationd
dt
f .t/ gives therate of changeof f .t/ with respect to timet .

• The notation
R b

a
f .x/ dx (theintegral) gives theareaunder the curvef .x/ betweenx D a andx D b.

• The derivative and integral are inverses of each other:d
dx

R
f .x/ dx D f .x/

4.8 Going Further

In this chapter we’ve only just touched on a few of the basic ideas behind the calculus. In a multi-semester
course, you’ll learn, among other things, how to derive the results presented here; about infinite series and
sequences; how to take derivatives and integrals of more complex functions; advanced techniques; how to
work in polar coordinates; how to work with functions of several variables; finding areas and volumes of
solids of revolution; and how to solve differential equations.

An excellent and brief introduction to the calculus, at about the level of these notes, isHow to Enjoy
Calculusby Eli S. Pine. A typical college-level calculus textbook isCalculus with Analytic Geometryby Earl
W. Swokowski.
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Part II

Waves
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Chapter 5

Simple Harmonic Motion

We begin our study of waves with the study ofsimple harmonic motion. Simple harmonic motion is the
motion that a particle exhibits when under the influence of a force of the form given byHooke’s law(named
for the 17th century English scientist Robert Hooke):

F D �kx: (5.1)

A force of this form describes, for example, the force on a mass attached to a horizontal spring with spring
constantk, wherek is a measure of the stiffness of the spring. In this caseF is the force exerted by the spring,
andx is the distance of the mass from itsequilibrium position—that is, the “resting” position at which the
mass can be left where it will not oscillate.

It can be shown using the calculus that when the particle is displaced from the equilibrium position and
released, then this force results in an oscillating motion of the particle about the equilibrium position that
varies sinusoidally with timet :

x.t/ D A cos.!t C ı/: (5.2)

Here! is called theangular frequencyof the motion, and measures how fast the particle oscillates back and
forth. The constantA is called theamplitudeof the motion, and is the maximum distance the particle travels
from its equilibrium position,x D 0. The constantı called thephase constant, and determines where in its
cycle the particle is at timet D 0. A plot of x.t/ is shown in Fig. 5.1.

Since the sine and cosine function differ only by a phase shift (sin� � cos.� � �=2/; cos� � sin.� C
�=2/), we could replace the cosine function in Eq. (5.2) with a sine by simply adding an extra�=2 to the
phase constantı. So either the sine or the cosine can be used equally well to describe simple harmonic motion
(Fig. 5.2); here we will choose to use the cosine function.

The calculus may also be used to find the velocity of the particle at any timet ; the result is

v.t/ D �A! sin.!t C ı/: (5.3)

Further, it can be shown that the acceleration at any timet is

a.t/ D �A!2 cos.!t C ı/ (5.4)

D �!2x.t/: (5.5)

Multiplying Eq. (5.5) by the particle massm, we find

ma.t/ D F.t/ D �m!2x.t/: (5.6)
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Figure 5.1: Simple harmonic motion. Shown are the amplitudeA, periodT , and phase constantı. The
horizontal linex.t/ D 0 is the equilibrium position.

Figure 5.2: Four common special special cases of simple harmonic motion phase constant. These are physi-
cally identical, and differ only by where the oscillator is in its motion att D 0. (a)A cos.!t/; (b)�A cos.!t/;
(c) A sin.!t/; (d) �A sin.!t/. In Eq. (5.2), these correspond to: (a)ı D 0, (b) ı D � , (c) ı D ��=2, (d)
ı D �=2.
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Comparing this with Eq. (5.1) we see that

k D m!2; (5.7)

or

! D
r
k

m
: (5.8)

In Eq. (5.2), the amplitudeA depends on how far the particle was displaced from equilibrium before being
released; the phase constantı just depends on when we choose timet D 0; but the angular frequency!
depends on the physical parameters of the system: the stiffness of the springk and the mass of the particle
m.

5.1 Energy

The kinetic energyK of a particle of massm moving with speedv is defined to be the work required to
accelerate the particle from rest to speedv; this is found to be

K D 1
2
mv2: (5.9)

From Hooke’s law, the potential energyU of a simple harmonic oscillator particle at positionx can be shown
to be

U D 1
2
kx2: (5.10)

The total mechanical energyE D K C U of a simple harmonic oscillator can be found by observing that
whenx D ˙A, we havev D 0, and therefore the kinetic energyK D 0 and the total energy is all potential.
Since the potential energy atx D ˙A isU D kA2=2 (by Eq. (5.10)), the total energy must be

E D 1
2
kA2: (5.11)

Since total energy is conserved, the energyE is constant and does not change throughout the motion, although
the kinetic energyK and potential energyU do change.

In a simple harmonic oscillator, the energy sloshes back and forth between kinetic and potential energy,
as shown in Fig. 5.3. At the endpoints of its motion (x D ˙A), the oscillator is momentarily at rest, and the
energy is entirely potential; when passing through the equilibrium position (x D 0), the energy is entirely
kinetic. In between, kinetic energy is being converted to potential energy or vice versa.

We can find the velocityv of a simple harmonic oscillator as a function of positionx (rather than timet)
by writing an expression for the conservation of energy:

E D K C U (5.12)
1
2
kA2 D 1

2
mv2 C 1

2
kx2 (5.13)

Solving forv, we find

v.x/ D ˙A
r
k

m

r
1 � x2

A2
: (5.14)

This can be simplified somewhat by using Eq. (5.8) to give

v.x/ D ˙A!
r
1 � x2

A2
; (5.15)

whereA! is, by inspection of Eq. (5.3), the maximum speed of the oscillator (the speed it has while passing
through the equilibrium position).
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Figure 5.3: Kinetic, potential, and total energy of the simple harmonic oscillator as a function of time. The
oscillator continuously converts potential energy to kinetic energy and back again, but the total energyE

remains constant.
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5.2 The Vertical Spring

If a horizontal mass on a spring is turned to a vertical position, then the spring is stretched by an amount
x0 D mg=k, giving it a new equilibrium position. For the vertical spring, the potential energy is still given
byU D 1

2
kx2, butx in this case refers to the distance from theoriginal (horizontal) equilibrium position.

5.3 Frequency and Period

The angular frequency! described earlier is a measure of how fast the oscillator oscillates; specifically, it
measures how many radians of its motion the oscillator moves through each second, where one complete
cycle of motion is2� radians. A related quantity is thefrequencyf , which describes how many complete
cycles of motion the oscillator moves through per second. The two frequencies are related by

! D 2�f: (5.16)

You can think of! andf as really being the same thing, but measured in different units. The angular
frequency! is measured in units of radians per second (rad/s); the frequencyf is measured in units of hertz
(Hz), where 1 HzD 1/sec.

The reciprocal of the frequency is theperiodT , and is the time required to complete one cycle of the
motion:

T D 1

f
D 2�

!
: (5.17)

The period is measured in units of seconds. As shown in the plot ofx.t/ (Fig. 5.1), the periodT is the time
between peaks in the motion.

5.4 Mass on a Spring

The discussion so far has applied to simple harmonic motion in general; there are many specific examples
of physical systems that act as simple harmonic oscillators. The most commonly cited example is a mass
m on a spring with spring constantk. The spring constantk is a measure of how stiff the spring is, and is
measured in units of newtons per meter (N/m). Specifically,k describes how much force the spring exerts
per unit distance it is extended or compressed.

A mass on a spring oscillates with angular frequency

! D
r
k

m
; (5.18)

and therefore has periodT D 2�=!, or

T D 2�

r
m

k
: (5.19)

It really doesn’t matter whether a mass on a spring moves horizontally on a frictionless surface, or bobs
up and down vertically. The motion is the same—the only difference is that if you take a horizontal spring
and hang it vertically, the equilibrium position will change because of gravity. The period and frequency of
motion will be the same.

The importance of the spring example is not that there are government laboratories filled with researchers
studying springs; rather the spring example serves as an important model and approximation for other prob-
lems. Often even a complicated force can beapproximatedas a linear force (Eq. (5.1)) over some limited
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range. In this case one may approximately model the force as a spring force with an “effective spring con-
stant”k, and allow at least an approximate answer to what might otherwise be a difficult problem.

There are several other examples of systems that form simple harmonic oscillators: the torsional pendu-
lum, the simple plane pendulum, a ball rolling back and forth inside a bowl, etc. The simple plane pendulum
will be discussed in more detail in Chapter 8.

5.5 More on the Spring Constant

It is often not appreciated that the spring constantk depends not only on therigidity of the spring, but also on
the diameter of the spring and the total number of turns of wire in the spring. Consider a vertical spring with
spring constantk, and a massm hanging on one end. Assume the system is in its equilibrium position, and
in this position it has lengthL 0 and consists ofN turns of wire. Now if you apply an additional downward
forceF to the mass, the string will stretch by an additional amountx given by Hooke’s law:x D F=k. This
stretching will manifest itself as an additional spacing ofx=N between adjacent turns of the spring. It is this
additional spacing per turn that is the true measure of the inherent “stiffness” of the spring.

Now suppose this spring is cut in half and put in its equilibrium position. Its new length will beL 0=2, and
will consist ofN=2 turns of wire. When the same additional forceF is applied to the massm, the additional
spacing between adjacent turns of the spring will be the same as before,x=N , because the spring still has
the same stiffness. Since the number of turns is nowN=2, this means that the additional total stretching of
the spring isx=2, so it will stretch by only half as much as before. By Hooke’s law, the spring constant is
nowk0 D F=.x=2/ D 2F=x D 2k, so the spring constant is now twice what it was before. In other words,
cutting the spring in half will double the spring constant. Likewise, doubling the length (number of turns) of
the spring will halve its spring constant.

Another way to think of this is to consider two springs connected in series or in parallel (Fig. 5.4). If
several springs are connected end-to-end (i.e.in series), then the equivalent spring constantks of the system
will be given by

1

ks

D
X

i

1

ki

(5.20)

D 1

k1

C 1

k2

C 1

k3

C � � � (5.21)

If the springs are connectedin parallel, then the equivalent spring constantkp of the system will be

kp D
X

i

ki (5.22)

D k1 C k2 C k3 C : : : (5.23)

For example, if two identical springs, each of spring constantk, are connected in series, then the combination
will have an equivalent spring constant ofk=2. If the two identical springs were instead connected in parallel,
then the combination would have an equivalent spring constant of2k, as shown in Figure (5.4).

Now imagine you have a long spring of spring constantk. You can imagine it as being two identical
springs connected in series, each having spring constant2k, so that the combination has a total equivalent
spring constant ofŒ.1=2k/C .1=2k/��1 D k. If the long spring is cut in half, then you are left with only one
of those smaller springs of spring constant2k, so again we reach the conclusion that cutting the spring in half
will double the spring constant.

It’s possible to calculate the spring constant from the geometry of the spring. The formula is1

k D Gd 4

8ND3
(5.24)

1See e.g.http://www.engineersedge.com/spring comp calc k.htm
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Figure 5.4: Springs in series and parallel (Credit: http://spmphysics.onlinetuition.com.my).

whered is the wire diameter,N is the number of active turns in the spring,D is the coil diameter (measured
from thecenterof the wire), andG is called themodulus of rigidityof the spring material;G is given by

G D Y

2.1C �/
(5.25)

whereY is theYoung’s modulusof the material (a measure of how much it stretches when pulled or com-
pressed), and� is the material’sPoisson ratio(a measure of how much it squeezes sideways when com-
pressed). These are properties that are characteristic of the material, and can be looked up in a handbook of
material properties. Values for a few materials are shown in the table below.

Table 5-1. Young’s Moduli and Poisson Ratios.

Material Young’s ModulusY (N/m2) Poisson Ratio�
Aluminum 69 � 109 0.334
Bronze 100� 109 0.34
Copper 117� 109 0.355
Lead 14 � 109 0.431
Magnesium 45 � 109 0.35
Stainless steel 180� 109 0.305
Titanium 110� 109 0.32
Wrought iron 200� 109 0.278

Notice from Eq. (5.24) that if the spring is cut in half,N will be half its original value, and so the spring
constantk will be doubled, in agreement with what we’ve found earlier.

Example.Suppose we make a spring of 1 mm diameter copper wire, the diameter of the spring is 1 cm,
and there are 50 turns of wire in the spring. What is the spring constant?
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Solution.From the above table, for copper,Y D 117 � 109 N/m2 and� D 0:355. From Eq. (5.25), we
have

G D Y

2.1C �/
D 117 � 109 N=m2

2.1C 0:355/
D 43:2� 109 N=m2

And the spring constant is found from Eq. (5.24)

k D Gd 4

8ND3
D .43:2 � 109 N=m2/.10�3 m/4

8.50/.10�2 m/3
D 108 N=m
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Chapter 6

Damped Oscillations

If you build a real simple harmonic oscillator by attaching a mass to a spring and letting it oscillate back and
forth, you’ll find that it doesn’t oscillate forever, as would be predicted by Eq. (5.2). Instead, the motion will
damp out due to frictional forces, and the oscillator will eventually stop oscillating.

We can model the damping forceFd as being proportional to the speedv of the oscillator:

Fd D �bv; (6.1)

whereb is a damping constant (in units of kg/s). There are three different cases of damped motion:under-
damped, overdamped, andcritically damped. In the following discussion, the natural oscillation frequency
of the undamped oscillator is1 !0 D p

k=m.

6.1 Underdamped

In the underdamped case, the damping constantb is small (b < 2m!0), and the oscillations gradually
decrease in amplitude. In this case, the motion will be described by

x.t/ D Ae�.b=2m/t cos.!0t C ı/; (6.2)

whereA is the initial amplitude andı is the phase constant. The underdamped oscillator oscillates at a slower
frequency!0 than if it were undamped, where!0 is given by

!0 D !0

s
1 �

�
b

2m!0

�2

: (6.3)

Fig. 6.1 shows what the motion looks like: it is a cosine curve modulated by an overall exponentially decaying
“envelope”.

6.2 Overdamped

Now imagine that a simple harmonic oscillator is immersed in a thick liquid like honey. In this case the
damping constantb is large (specifically,b > 2m!0), and the motion is said to beoverdamped. If the mass is

1The quantity!0 is customarily pronounced “omega-nought”,noughtbeing an old-fashioned term forzero.
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Figure 6.1: Damped oscillations.

displaced from its equilibrium position, then it will slowly move toward equilibrium, but will not overshoot
it, so no oscillations will occur. In this case the motion is described by

x.t/ D e�.b=2m/t .AeCt C Be�Ct /; (6.4)

whereC D
q
.b=2m/2 � !2

0 , and the constantsA andB depend on the initial conditions. This case is also
illustrated in Fig. 6.1.

6.3 Critically Damped

In between the underdamped and overdamped case is the case ofcritical damping, where the damping con-
stantb D 2m!0. In this case, the mass returns to its equilibrium position as quickly as possible, without
overshooting. The motion in this case is

x.t/ D e�.b=2m/t .At C B/; (6.5)

where again the constantsA andB depend on the initial conditions. Fig. 6.1 shows critical damping compared
to the similar-looking overdamped case.
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Chapter 7

Forced Oscillations

Now suppose that we have a harmonic oscillator that is being driven, orforced. For example, imagine a
spring that has a massm attached to one end, and the other end is connected to a motor-driven piston that
moves back and forth. What happens in this case is that the motion of the oscillator is fairly complicated at
first, then settles down to a “steady-state” motion, where the oscillator oscillates at the same frequency as the
driving force.

Suppose we have a damped oscillator whose natural oscillation frequency is!0 D p
k=m, and the

oscillator is being driven by a force of of the formF.t/ D F0 sin�t , so the driving force has amplitudeF0

and angular frequency�. Then after the initial complicated motion has died out, the steady-state motion will
be an oscillatory motion with the same frequency as the driving force,

x.t/ D A cos.�t C ı/: (7.1)

HereA is the amplitude of the motion, which will depend on how far the driving frequency� is from the
natural frequency!0:

A D F0=mq
.�2 � !2

0/
2 C .b�=m/2

: (7.2)

7.1 Resonance

Notice that in Eq. (7.2), the denomonator will be smallest when� D !0, so that the oscillator is being
driven at its natural frequency of oscillation. This situation is calledresonance, and can result in very large
oscillations. (Note that in Eq. (7.2) if the damping constantb D 0 and� D ! 0, the denominator is zero and
amplitude becomes infinite!) We’re familiar with examples of resonance in everyday life: for example, an
opera singer who sings a loud, high note and is able to shatter a crystal goblet. Engineers have to be careful
in designing things like buildings, bridges, aircraft, spacecraft, etc. that the objects won’t be subjected to
being driven at one of the natural frequencies of oscillation of the object. Marching soldiers break step when
crossing a bridge, just in case the cadence of the march is at one of the natural frequencies of oscillation of
the bridge, which could cause the bridge to collapse.

Fig. 7.1 shows a plot of amplitude vs. forcing frequency for a typical forced oscillator. Resonance is
shown by the large increase in the amplitude of the forced oscillations when� D !0. The smaller the
damping force, the larger the amplitude at resonance.
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Figure 7.1: Amplitude vs. forcing frequency for forced oscillations, for various damping coefficients. The
maximum amplitude occurs when the forcing frequency� is equal to the natural frequency!0, a phe-
nomenon known asresonance.
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Chapter 8

The Pendulum

A simple plane pendulum(Fig. 8.1) consists of a massm attached to one end a light rod of lengthL; the other
end of the rod is attached to a frictionless pivot. The pendulum is initially displaced from the vertical by an
angle�0 and released, causing it to swing back and forth. Is the pendulum a simple harmonic oscillator?

Figure 8.1: A simple plane pendulum.

Analyzing the geometry of the pendulum shows that the restoring force—the force acting on the pendulum
directing it back to its equilibrium position (vertical)—is�mg sin� , where� is the angle from the vertical,
g is the acceleration due to gravity, and the minus sign indicates that the restoring force acts opposite the
direction of angular displacement. We can write the restoring force as

F D �mg sin�: (8.1)

But for a simple harmonic oscillator, the restoring force must be in the formF D �kx, so the pendulum is
nota simple harmonic oscillator.

Suppose, however, that we restrict the pendulum tosmalloscillations. For small angles, we can make the
approximation sin� � � , where� is in radians. Under this approximation, Eq. (8.1) becomes

F � �mg�; (8.2)

which is the form of equation of a simple harmonic oscillator. So while the pendulum is not strictly a simple
harmonic oscillator, it isapproximatelya simple harmonic oscillator when the oscillations are small.
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8.1 Equation of Motion

Since the pendulum (in the small-angle approximation) is a simple harmonic oscillator, its motion is given by
(cf. Eq. (5.2))

�.t/ D �0 cos.!t C ı/; (8.3)

where�0 is the (angular) amplitude in radians andı is the phase constant. To find the angular frequency!,
note from geometry that the horizontal displacement distance of the pendulum isx D L sin� . Writing Eq.
(8.2) as

F � �
�mg
L

�
.L sin�/; (8.4)

and comparing with Eq. (5.1), we can see that the effective spring constant for the pendulum is

keff D mg

L
: (8.5)

Now for the harmonic oscillator we know! D p
k=m, and so

! D
r
keff

m
D

r
mg

mL
(8.6)

or

! D
r
g

L
: (8.7)

So the small-amplitude motion of the simple plane pendulum is the same as the mass on a spring; but the
angular frequency of the spring system is given by! D p

k=m, and for the pendulum it is! D p
g=L.

Other simple harmonic oscillators with have other expressions for their angular frequency!, each depending
on the physical parameters of the system.

8.2 Period

Since the period of a simple harmonic oscillator is given byT D 2�=!, we find, using Eq. (8.7), that the
period of the pendulum is

T D 2�

s
L

g
: (8.8)

Remember that this is just anapproximateexpression for the period of a pendulum, with the approxima-
tion being better the smaller the amplitude�0. An exact treatment requires the periodT to be expressed as
an infinite series. The details require some advanced mathematics that is beyond the scope of this course, but
if you’re interested, an exact treatment of the simple plane pendulum is given in Appendix Q.

8.3 The Spherical Pendulum

A spherical pendulumis similar to a simple plane pendulum, except that the pendulum is not constrained to
move in a plane; the massm is free to move in two dimensions along the surface of a sphere. Figure 8.2
shows a photograph of the movement of a spherical pendulum.
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Figure 8.2: Trace of the motion of a spherical pendulum, made by the author. A flashlight lens was covered
with a piece of cardboard in which a small hole was punched. The flashlight was then suspended by a string
from the ceiling (lens downward) to create a pendulum. The room was then darkened, the flashlight turned on,
and the flashlight pendulum allowed to swing back and forth for several minutes above a camera which was
on the floor pointing up toward the ceiling. The camera shutter was kept open, allowing this time-exposure
image to be made on the film. (Image Copyright © 2011 D.G. Simpson.)
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8.4 The Conical Pendulum

A conical pendulumis also similar to a simple plane pendulum, except that the pendulum is constrained to
move along the surface of a cone, so that the massm moves in a horizontal circle of radiusr , maintaining a
constant angle� from the vertical.

For a conical pendulum, we might ask: what speedv must the pendulum bob have in order to maintain
an angle� from the vertical? To solve this problem, let the pendulum have lengthL, and let the bob have
massm. A general approach to solving problems involving circular motion like this is to identify the force
responsible for keeping the mass moving in a circle, then set that equal to the centripetal forcemv 2=r . In
this case, the force keeping the mass moving in a circle is the horizontal component of the tensionT , which
is T sin� . Setting that equal to the centripetal force, we have

T sin� D mv2

r
: (8.9)

The vertical component of the tension is

T cos� D mg (8.10)

Dividing Eq. (8.9) by Eq. (8.10),

tan� D v2

gr
(8.11)

Figure 8.3: A torsional pendulum. (Ref. [1])

From geometry, the radiusr of the circle is
L sin� . Making this substitution, we have

tan� D v2

gL sin�
: (8.12)

Solving for the speedv, we finally get

v D
p
Lg sin� tan� : (8.13)

8.5 The Torsional Pendulum

A torsional pendulum(Fig. 8.3) consists of a mass
m attached to the end of a vertical wire. The body
is then rotated slightly and released; the body then
twists back and forth under the force of the twisting
wire. As described earlier, the motion is governed
by the rotational version of Hooke’s law,	 D �
� .

8.6 The Physical Pendulum

A physical pendulumconsists of an extended body
that allowed to swing back and forth around some
pivot point. If the pivot point is at the center of mass,
the body will not swing, so the pivot point should be
displaced from the center of mass. As an example,
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Figure 8.4: A physical pendulum. The object has massM and is suspended from pointP ; h is the distance
betweenP and the center of mass.

you can form a physical pendulum by suspending a
meter stick from one end and allowing to swing back and forth.

In a physical pendulum of massM , there is a forceMg acting on the center of mass. Suppose the body
is suspended from a point that is a distanceh from the center of mass (Fig. 8.4). Then there is a weight force
Mg acting on the center of mass of the body, which creates a torque�Mgh sin� about the pivot point. Then
by the rotational version of Newton’s second law,

	 D I˛ (8.14)

�Mgh sin� D I˛; (8.15)

whereI is the moment of inertia of the body when rotated about its pivot point, and˛ is the angular accel-
eration. Like the simple plane pendulum, this is a difficult equation to solve for�.t/, but it becomes much
easier to solve if we restrict the problem to small oscillations� . If � is small, we can make the approximation
sin� � � , and we have

�Mgh� � I˛: (8.16)

It can be shown, using the theory of differential equations, that this equation has solution

�.t/ D �0 cos.!t C ı/; (8.17)

where�0 is the (angular) amplitude of the motion (in radians),! D p
Mgh=I is the angular frequency of

the motion (rad/s), andı is an arbitrary integration constant (seconds).
The periodT of the motion (the time required for one complete back-and-forth cycle) is given by

T D 2�

!
; (8.18)

or

T D 2�

s
I

Mgh
: (8.19)

(See Appendix P for a table of moments of inertia.)
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8.7 Other Pendulums

• Double pendulum.A double pendulumis formed by attaching one pendulum to the bob of another, so
that the two pendulums are attached vertically and both bobs are free to move. The motion of a double
pendulum is a classic exercise in an advanced formulation of Newtononian classical mechanics called
Langrangian mechanics.

• Ballistic pendulum.A ballistic pendulumis a type of pendulum used to measure the speed of high-
speed objects like bullets. A bullet is fired into the pendulum bob, and the pendulum is constructed
with a ratchet mechanism that holds the pendulum in place once it reaches its maximum displacement
from the vertical. Knowing the masses of the bullet and pendulum bob, the length of the pendulum,
and the angle the pendulum reaches when the bullet is fired into it, it is possible to deduce the velocity
of the bullet.

• Foucault pendulum.A Foucault pendulumis a type of simple plane pendulum that is used to demon-
strate the rotation of the Earth. As the pendulum swings back and forth in a plane, the Earth rotates
underneath the pendulum, causing its trace along the ground to drift with time.
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Chapter 9

Waves

Having examined simple harmonic motion, we are now in a position to examine waves. Awaveis a dis-
turbance in a material medium that propagates itself through the medium.1 In a harmonic wave, each parti-
cle in the medium undergoes simple harmonic motion, but adjacent particles are slightly out of phase with
each other, which results in the wave disturbance propagating through the medium while the particles of the
medium itself simply oscillate in place.

9.1 Types of Waves

There are two major types of waves:

• Transverse waves.Particles of the medium moveperpendicularto the direction of wave motion. Trans-
verse waves can travel in solids only; they cannot propagate in fluids.

• Longitudinal waves.Particles of the medium moveparallel to the direction of wave motion. Longitu-
dinal waves can propagate in both solids and fluids.

You can create a transverse wave in a long string under tension by giving it a quick flip at one end.
The disturbance will propagate down the string, although any point on the string will move up and down,
perpendicular to the string.

You can create a longitudinal wave by stretching a Slinky toy (or other spring) and giving it a quick in-
and-out “pulse” at one end. You’ll see the coils of the Slinky be alternately close together and spread apart
as the disturbance propagates down the length of the spring. A region where the coils are close together is
called acompression, and a region where the coils are far apart is called ararefaction.

Some waves are neither transverse nor longitudinal. For example, if you examine water waves in the
ocean, you will see that particles on the surface move in cycloid-looking paths that have both components
both parallel and perpendicular to the wave velocity—so water waves are a combination of transverse and
longitudinal waves.

You can create a singlewave pulseby giving the medium a single displacement at one end; the resulting
pulse will then propagate through the medium. You can also follow one pulse by another continuously,
resulting in awave train. For example, you can displace one end of the medium with simple harmonic
motion, and you will see a continuous wave train propagating through the medium. This will result in a
harmonic wave, which can be represented mathematically as

y.x; t/ D A cos.
x � !t C ı/: (9.1)

1There are some notable exceptions: electromagnetic waves, quantum-mechanical waves, and gravitational waves do not require a
physical medium in which to propagate.

57



Prince George’s Community College Introductory Physics II D.G. Simpson

Figure 9.1: Wave motion at a fixed timet . A is the wave amplitude,ı is the phase constant,� is the
wavelength, and
 D 2�=� is the wave number.

This looks similar to the equation for simple harmonic motion, only it involvesbothpositionx and timet .
Herey is the displacement of the wave at positionx and timet , A is the wave amplitude,! is the angular
frequency of the wave, andı is the phase constant that is determined from the initial conditions. The variable

 is called thewave number, and is defined as


 D 2�

�
; (9.2)

where�, called thewavelengthof the wave, is the distance between successive wave crests.2 Fig. 9.1 shows
a “snapshot” of a harmonic wave at an instant in time, withA, ı, and� illustrated. As time increases, you
would see this wave move to the right. (This analysis applies equally to transverse and longitudinal waves.)

9.2 Wave Speed

The speed of a wave may be thought of as the speed of a single wave crest as it propagates through the
medium. Since the wave moves by one wavelength� in a time equal to the periodT , the wave speed is

2Some physicists define the wave number as1=�.
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v D �=T ; and sinceT D 1=f , we can write

v D f �: (9.3)

This equation relates the temporal frequencyf of the wave to its “spatial frequency”, or wavelength,�.

9.3 String Waves

Now let’s examine some properties of waves propagating in strings. Although string waves are occasionally
of interest (as in some musical instruments), the reason we’re interested in them here is that they form a
simple system that’s easy to visualize, yet illustrates many properties that we’ll find later in other kinds of
waves.

First, let’s look at a formula for the speedv of a wave in a string, in terms of the physical properties of
the string (its tension and density). We’ll skip the derivation and just present the result:

v D
s

FT

m=L
; (9.4)

wherev is the wave speed,FT is the tension in the string (in newtons), andm=L is the mass density of the
string (mass per unit length, in kg/m). (We’ll see later that the speed of sound waves in a fluid follows a
similar formula:v D p

B=�, whereB is the bulk modulus and� is the density of the medium. The speed of
sound waves in a solid isv D p

Y=�, whereY is the Young’s modulus.)

9.4 Reflection and Transmission

Next, let’s look at what happens when a wave pulse hits a boundary—for example, a boundary with a lighter
or heavier string. Generally at the boundary there will be areflected wavesthat returns in the opposite
direction as the incident wave, and there will be atransmitted wavethat continues into the new medium, in
the same direction as the incident wave. The various possibilities are shown in Fig. 9.2.

Note the following points:

• When the incident wave is incident on a “heavier” (denser) medium, the returning reflected wave will
be inverted.

• When the incident wave is incident on a “lighter” medium, the returning reflected wave will be right-
side up.

• The transmitted wave will always be right-side up.

• A fixed end may be regarded as an infinitely heavy medium, and may be thought of as an end that is
attached to a heavy wall. In this case there is no transmitted wave.

• A free end may be regarded as a medium of zero density, and may be thought of as an end attached to
a ring that is free to move up and down a vertical pole. In this case there is no transmitted wave.

• The transmitted wave will be largest when both media have the same density; in this case there is no
reflected wave, and all of the incident wave is transmitted.

We might ask: in string waves, how much of the incident wave is reflected, and how much is transmitted?
We can define thecoefficient of reflectionR as the ratio of reflected to incident wave energy, and similarly
define acoefficient of transmissionT as the ratio of transmitted to incident wave energy. Since both strings
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Figure 9.2: Reflection and transmission of waves in a string. (a) Wave in string incident onto fixed end;
(b) string wave incident onto free end; (c) wave in light string incident onto heavy rope; (d) wave in heavy
rope incident onto light string. When the incident wave hits a “heavier” medium, the reflected wave will be
inverted.
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are under the same tension, these coefficients depend only on the densities of the two strings. Writing the
string density (mass per unit length) as� D m=L, the coefficientsR andT turn out to be (Ref. [8])

R D
� p

�1 � p
�2p

�1 C p
�2

�2

(9.5)

T D 4
p
�1�2

.
p
�1 C p

�2/2
(9.6)

where the subscripts 1 and 2 refer to the two strings. Note the following about these equations:

1. RC T D 1. (This is due to the conservation of energy.)

2. If �1 D �2, thenR D 0 andT D 1: if both strings have the same density, then all of the incident wave
is transmitted, and none is reflected.

3. If �2 D 0, thenR D 1 andT D 0: for a “free” end, all the wave is reflected and none is transmitted.

4. Similarly, if �2 ! 1, thenR D 1 andT D 0: for a “fixed” end, all the wave is reflected and none is
transmitted.

The coefficientsR andT show how the initial waveenergyis divided among the reflected and transmittted
waves. Theamplitudesof the reflected and transmitted waves (Ar andAt , respectively) are related to the
incident wave amplitudeAi by (Ref. [8])

Ar

Ai

D
p
�1 � p

�2p
�1 C p

�2

(9.7)

At

Ai

D 2
p
�1p

�1 C p
�2

(9.8)

9.5 Superposition

What happens when two waves collide? It turns out that while they overlap (a situation calledsuperposition),
their displacementsy will add algebraically. Given two wavesy1.x; t/ andy2.x; t/, the total wavey.x; t/
will be the sum of the two:y D y1 C y2.

An example is shown in Fig. 9.3, where two wave pulses are shown colliding with each other. During the
time that the wave pulses overlap, they add algebraically. Afterwards, the two pulses continue, as if they just
passed right through each other.

This ability of waves to pass through each other is fortunate, and we observe it in everyday life. For
example, you can talk with someone directly across from you, at the same time people to your left and right
can talk to each other. The sound waves pass right through each other, and each person is able to hear and
understand his partner without difficulty. The same is true of light waves: each person is able to see the other
three, because the light waves are able to pass through each other.

9.6 Interference

Closely related to the idea of superposition is the concept of waveinterference. When two waves overlap and
their displacementsy are in the same direction, the two waves will, by superposition, add together to make
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Figure 9.3: Colliding wave pulses. (a) Before the collison. (b) During the collision, the wave pulses overlap,
and amplitudes add algebraically. (c) After the collision, the wave pulses have passed through each other
unchanged.

a bigger wave. This situation is calledconstructive interference—the waves add together constructively. On
the other had, if the waves overlap and their displacements are in theoppositedirection, the two waves will
tend to cancel each other out, resulting in a smaller wave (or even no wave at all). This situation is called
destructive interference.

An example of wave interference is shown in Fig. 9.4. The figure shows two wave pulses of the same
size and shape headed toward each other. Fig. 9.4(a) shows constructive interference, and Fig. 9.4(b) shows
destructive interference. Notice something interesting that happens in the case of destructive interference:
although the waves momentarily cancel completely and leave no wave at all, the particles in the string are
still in motion, so new waves will emerge from the flat string and continue on their way.

9.7 Wave Energy

Waves carry energy, but not mass. Each particle of the wave medium oscillates in place around its own
equilibrium position, so no mass is transported. The wave disturbance does move, though, and carries energy
with it. How much energy does a wave transport?

Suppose we have a harmonic wave traveling through a medium. Each particle of the medium oscillates
with simple harmonic motion, and has energyE D kA2=2, wherek is the spring constant andA is the
amplitude. By Eq. (5.7), we know the spring constant is related to the frequency byk D m! 2. Substituting
this into the expression for energy gives

E D 1
2
m!2A2: (9.9)

Now if the wave has surface areaS and moves with velocityv, then in timet it will sweep out a volumeSvt .
Since the massm of a small volume of the medium is the mass divided by the volume, we havem D �Svt ,
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Figure 9.4: Interference in two colliding wave pulses. (a) Constructive interference; when the two pulses
overlap, their displacements add constructively, giving a large pulse equal to the sum of the original two. (b)
Destructive interference; when the two pulses overlap, they cancel out and momentarily add to zero.
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where� is the density of the medium. Substituting this form into Eq. (9.9), we have

E D 1
2
�Svt!2A2: (9.10)

This says that the energyE carried by the wave is proportional to the square of the amplitudeA, and also to
the square of the frequency!. ThepowerP (in watts) is the energy per unit time, or

P D E

t
D 1

2
�Sv!2A2: (9.11)

Now dividing the power by the surface areaS gives an expression for the waveintensityI (watts per square
meter):

I D P

S
D 1

2
�v!2A2: (9.12)

9.8 Wave Intensity

Another issue that often arises is how wave intensityI varies with the distancer from the source of the waves.
The answer is: it depends upon the shape of the waves. The power emitted by the source will be distributed
along a surface at distancer , and the shape of that surface will depend on the shape of the waves.

One common case isspherical waves, which are produced by a point source of spherical source. For
spherical waves, the powerP emitted by the source is spread over the surface of a sphere of radiusr . If
the power is radiatedisotropically(that is, equally in all directions), then the intensity in any direction at a
distancer from the source will beI D P=.4�r 2/, soI / 1=r2. Since the intensity is proportional to the
square of the amplitude, this implies the waveamplitudedrops off asA / 1=r . In summary, for spherical
waves,

I / 1

r2
I A / 1

r
: (9.13)

Another case iscylindrical waves, which are produced by a line or cylindrical source. In this case the
power is distributed over the surface of a cylinder of radiusr , and we have

I / 1

r
I A / 1p

r
: (9.14)

When either of these types of waves is observed very far from the source, they approximateplane waves,
where the wave fronts are planes. For plane waves, the intensityI and amplitudeA are both constant and
independent ofr :

I D const:I A D const: (9.15)

9.9 Ocean Waves

The speed of ocean waves is a function of their wavelength and the ocean depth. Ocean wave speed is given
by the expression3

v D
s
g�

2�
tanh

�
2�
d

�

�
; (9.16)

3N. Mayo, “Ocean Waves—Their Energy and Power,”Physics Teacher, 35, 352 (September 1997).
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wherev is the wave speed,� the wavelength,d the ocean depth, andg the acceleration due to gravity. If
the waves are indeepwater (d > �=2), then the hyperbolic tangent in Eq. (9.16) is approximately 1 (i.e.
tanhx � 1 for largex), and this reduces to

v �
r
g�

2�
.deep waves; d > �=2/: (9.17)

On the other hand, forshallowwaves (d < �=20), the hyperbolic tangent in Eq. (9.16) reduces to its argument
(i.e. tanhx � x for smallx), and we have

v �
p
gd .shallow waves; d < �=20/: (9.18)

Tsunami wavesare waves created by earthquakes. They are unlike normal ocean waves; they have very
long wavelengths (often exceeding 100 km or 60 miles), and they travel at very high speed (typically well
in excess of 500 miles per hour, depending on depth and wavelength) (Eq. (9.16)). The amplitude of a
tsunami wave is very small while the wave is in the deep ocean; a tsunami may pass under a ship without
the passengers even noticing. But when it enters shallow water near shore, a tsunami wave decreases in both
speed and wavelength, resulting in a very destructive wave of very large amplitude.

9.10 Seismic Waves

An example of waves encountered in nature isseismic waves, which are waves in the Earth’s crust and
interior that are produced by earthquakes. Geologists have observed two types of seismic waves that travel in
the interior of the Earth:

• P waves(for “primary” or “pressure” waves) are longitudinal waves, and can travel in both the solid
and liquid parts of the interior of the Earth.

• S waves(for “secondary” or “shear” waves) are transverse waves, and can travel only in the solid parts
of the Earth.

The S waves are the slower of the two; they travel at about 60% of the speed of P waves. This is actually why
they are called “primary” and “secondary” waves: the P waves, being faster, arrive first at a seismic observing
station. P waves travel with a speed that varies from less than 5 km/s at the Earth’s crust to about 13 km/s
through the core. From the time delay between the arrival of the P waves and S waves, a seismic observing
station may infer the distance to the earthquake’sepicenter(the point on the Earth’s surface directly above
the point of origin of the earthquake). Measurements from several observing stations allow a determination
of the position of the epicenter through triangulation.

Also, since S waves cannot travel through liquids, observing seismic waves has allowed geologists to
infer something about the structure of the interior of the Earth—for example, that there the core consists of a
solid inner core, surrounded by a liquidouter core.

In addition to P waves and S waves, geologists have observed two types of waves that propagate only at
the surface of the Earth’s crust:Rayleigh wavesripple along the Earth’s surface like water waves, andL waves
(or Love waves) are a kind of transverse wave whose displacement is in the plane of the Earth’s surface.

Seismic wave energy is measured on a logarithmic scale called themoment magnitude scale. An earth-
quake energy ofE joules is said to have a magnitudeM given by

M D 2
3

log10E � 6:0: (9.19)

For small to medium earthquakes, this moment magnitude scale gives numbers close to those on the older
Richter scale that it replaces.
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Chapter 10

Standing Waves

Supposes you attach one end of a string to a wall, and hold the other end in your hand. Now give your end a
quick “flip”, and you will see a wave pulse travel down to the wall, get inverted, and the reflected wave will
come back to you.

Now suppose you set up a continuouswave trainat your end. The waves will travel to the wall, get
inverted and reflected back toward you. On the way back, they will interfere with the waves coming in the
opposite direction, and you will get a complicated-looking jumble of interfering waves.

But suppose you time things just right, with just the right frequency, so that the returning reflected waves
interfere constructively with the waves coming the other way. In this case the waves all add together nicely,
and you get a pattern ofstanding waves. Standing wave patterns look like the patterns in Fig. 10.1; you’ll see
a set of “segments” vibrating up and down, where each segment is a half wavelength. At the points between
segments, the string does not move at all; these points are called thenodes. Halfway between the nodes are
the points of maximum displacement; these are theantinodes.

It’s important to realize that if you drive one end of the string with simple harmonic motion, you will,
in general, not get standing waves—you’ll get a jumbled mess at first, that will eventually settle into non-
standing waves that oscillate at the forcing frequency. Only at certain specific frequencies will you get
standing waves.

So what frequencies will give standing waves? That depends on whether the string is fixed at both ends,
or just one end, or if both ends are free.

10.1 Fixed or Free at Both Ends

If the string is fixed at both ends and the ends are a distanceL apart, then you can see from examining
Fig. 10.1 that an integer number of segments have to fit into the distanceL. Since each segment is a half
wavelength, the condition for standing waves in this case is that an integer number of half-wavelengths must
fit into lengthL:

L D n
�

2
.n D 1; 2; 3; 4; : : :/ (10.1)

Now since the wave speedv D f �, we can substitute for� and solve forf to find an expression for the
frequencies that give rise to standing waves:

fn D n
v

2L
.n D 1; 2; 3; 4; : : :/ (10.2)

As shown in Fig. 10.1, there is a sequence of standing waves, one pattern for each integern D 1; 2; 3; 4; : : :.
The standing wavef1 is called thefirst harmonic; the next one (f2) is called thesecond harmonic, and so
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Figure 10.1: The first four standing waves in a string (a) fixed at both ends; (b) free at both ends; (c) fixed on
the left end and free on the right. The stationary points with no displacement are thenodes; in between them
are the points of maximum displacement, theantinodes.
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on, sofn is then-th harmonic. (Sometimes a different nomenclature is used:f1 is called thefundamental
frequency, f2 is called thefirst overtone,f3 is thesecond overtone, and so on, sofn is the.n�1/-th overtone.)

It turns out (as you can see from examining Fig. 10.1(b)) that this same condition (Eq. 10.2) also applies
to waves that arefreeat both ends: an integer number of half-wavelengths must fit into lengthL.

10.2 Fixed at One End and Free at the Other

A different situation occurs when the wave is fixed at one end and free at the other (Fig. 10.1(c)). From
examining the figure, you can see the pattern: an odd number of half-segments has to fit into distanceL.
Since each segment is a half wavelength, this means that an odd number of quarter-wavelengths must fit into
lengthL:

L D n
�

4
.n D 1; 3; 5; 7; : : :/ (10.3)

Again using the relationv D f � and solving forf , we find the condition for standing waves in this case is

fn D n
v

4L
.n D 1; 3; 5; 7; : : :/ (10.4)

Although we’ve been talking about string waves, this analysis refers to both transverse and longitudinal
waves (sound waves, for example). As we’ll see later, musical instruments work by creating standing sound
waves which satisfy these same conditions.

10.3 Vibrations of Rods and Plates

A rod may be set vibrating (longitudinally) by holding or clamping it at some point and stroking it with rosin.
There will be a node at the point where the rod is clamped, and antinodes at each end. For example, clamping
the rod at its center point will create standing waves free at both ends (where there are antinodes) and fixed
in the center (where the rod is clamped), resulting in ann D 1 standing wave, as shown in Figure 10.1(b),
n D 1. Clamping the rod at1/4 its length from one end again creates a node at the clamped point and antinodes
at the two ends, resulting in ann D 2 standing wave (Figure 10.1(b),n D 2).

Standing waves can also be created in two-dimensional plates or membranes. Figure 10.2 shows the
standing wave modes of a circular membrane such as a drum head. Notice in this case that the frequencies of
the standing wave modes arenot integer multiples of the fundamental frequencies, so they arenotharmonics.

Figure 10.2: Modes of vibration of a circular membrane, showing nodal lines. (Figure from D. Livelybrooks,
Univ. of Oregon.)
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Figure 10.3: Bessel functionsJm.x/. (Credit: Wolfram MathWorld.)

For the circular membrane, the vibration modes are characterized bytwointegers,m andn. The frequency
of modemn is given by

fmn D ˛mn

˛01

f01; (10.5)

where˛mn is then-th zero of a special function called theBessel functionJm.x/ (Figure 10.3). In other
words,˛mn is the value ofx at then-th time the functionJm.x/ crosses thex axis forx > 0.

The first few zeros of the first few Bessel functions are given in Table 10-1.

Table 10-1. Zeros̨ mn of the Bessel functionsJm.x/. (Credit: Wolfram MathWorld.)

n J0.x/ J1.x/ J2.x/ J3.x/ J4.x/ J5.x/

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

Example.The frequency of modem D 3; n D 2 is

f32 D ˛32

˛01

f01 D 9:7610

2:4048
f01 D 4:0589 f01:
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Part III

Acoustics

70



Chapter 11

Sound

Soundconsists of longitudinalwaves that propagate through some medium and may be detected by the human
ear. We often think of sound waves as propagating through the air, but sound waves may also move through
other materials like helium, water, or steel. In this chapter we’ll examine a few of the basic properties of
sound waves.

11.1 Speed of Sound

First of all, how fast do sound waves travel? You’ve probably noticed that sound waves have a noticeable
travel time—for example, when you’re watching a baseball game far from home plate, there is a definite
delay betweenseeinga batter hit the ball, andhearingthe sound. Experimentally, we find the nominal speed
of sound in air to be (at20ıC)

vsnd D 343 m=s (11.1)

It turns out that the speed of sound is strongly dependent on temperature. An empirical formula that corrects
for this temperature variation gives the speed of sound in air as

vsnd � .331C 0:60Tc/ m=s; (11.2)

whereTc is the air temperature, inıC. Notice that ifTc D 20ıC, we get 343 m/s.
If we convert units, we find that this is equal to about1/5 mile per second. This gives the rule you may have

learned in childhood for estimating the distance of a lightning flash: after you see the lightning, count how
many seconds go by before you hear the thunder, then divide by 5 to find how many miles away the lightning
was. (Light travels about 900,000 times faster than sound, so the lightning reaches you almost instantly, and
you don’t need to consider the light travel time.)

What about the speed of sound in other materials? Recall from Eq. (9.4) that the speed of waves in a
string is the square root of the tension divided by the density:v D p

FT =.m=L/. The speed of sound waves
in fluids follows a similar formula, known as theNewton-Laplace equation:

vsnd D
s
B

�
; (11.3)

whereB is called thebulk modulusof the material (a measure of its compressibility), and� is the density
of the material. Table 11-1 shows the bulk moduli, densities, and speeds of sound for several different
fluids. (For the speed of sound insolids, you use theYoung’s modulusY in place of the bulk modulusB:
vsnd D p

Y=�.)
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Table 11-1. Speed of sound in several fluids. (All data are for20ıC.)

Medium Bulk modulusB (Pa) Density� (kg/m3) Speed of sound

Air 1:42� 105 1.204 343
Helium 1:69� 105 0.1663 1008
SF6 1:35� 105 6.069 149
Water 2:2 � 109 1000 1497

A common laboratory demonstration is to inhale some helium gas and then try to talk; the amusing result
is an abnormally high-pitched voice. The opposite effect can be demonstrated by inhaling sulfur hexafluo-
ride (SF6), which results in an abnormally low voice. (You shouldnot attempt to do this yourself, as both
demonstrations are potentially dangerous.) As you can see from the table, all three gases have similar bulk
moduli; they differ mainly by their densities, which results in different speeds of sound for each gas. It is
these differences in the sound speed that is responsible for the high and low pitches of one’s voice in each
gas.

The bulk modulus and density of a gas are also functions of temperature. We can find the an explicit
expression for the speed of sound in a gas as a function of temperature as follows: the bulk modulusB of an
ideal gas is given by

B D p; (11.4)

wherep is the pressure of the gas, and is the ratio of the heat capacity at constant pressure (CP ) to the heat
capacity at constant volume (CV ):

 D CP

CV

: (11.5)

It can be shown from thermodynamics that:

• For a monatomic gas: D 5
3

D 1:67

• For a diatomic gas, or other gas with linear molecules: D 7
5

D 1:40

• For a gas with nonlinear molecules: D 4
3

D 1:33

Now substituting Eq. (11.4) into the Newton-Laplace equation (11.3), we have

vsnd D
r
p

�
: (11.6)

Now using the ideal gas law

pV D NkBT (11.7)

(whereV is the volume of gas,N is the number of atoms or molecules of gas,kB D 1:3806488� 10�23 J
K�1 is the Boltzmann constant, andT is the absolute temperature in kelvins) to substitute for the pressurep,
we have

vsnd D
s
NkBT

�V
: (11.8)
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Now �V is the total mass of gas, which we’ll callm, so we have

vsnd D
r
NkBT

m
: (11.9)

The mass per atom (or molecule) isma D m=N , so we have

vsnd D
s
kBT

ma

D
r
RT

M
; (11.10)

whereR D kBNA D 8:3144621 J mol�1 K�1 is the molar gas constant andNA is Avogadro’s number, and
M D m=.N=NA/ is the molar mass of the gas (kilograms per mole). Since the molecular (or atomic) weight
is in grams per mole, this mean thatM is just the molecular (or atomic) weight divided by 1000.

Using Eq. (11.10), we can see where the empirical relation for the speed of sound in air, Eq. (11.2), comes
from. Air consists of about 78% nitrogen (N2), 21% oxygen (O2), and 1% argon (Ar). Since the gases are
mostly diatomic, we will take D 1:40. To find the mass per molecule, we’ll compute a weighted average
based on composition. Since N2 has a molecular weight of 28, O2 has a molecular weight of 32, and Ar has
an atomic weight of 40, we compute the weighted average molecular weight of air to be

ma D .0:78 � 28/C .0:21 � 32/C .0:01 � 40/ D 28:96: (11.11)

To convert this to mass in kilograms, we multiply this by the atomic mass unitu D 1:660538921� 10�27 kg
to getma D 4:8089� 10�26 kg. Substituting these results into Eq. (11.10), we get

vsnd D
s
kBT

ma

(11.12)

D
s
.1:40/.1:3806488 � 10�23 J=kg/T

4:8089� 10�26 kg
(11.13)

D 20:0472
p
T (11.14)

in SI units. NowT is the absolute temperature, and let’s letTc be the temperature in degrees Celsius. Since
the two are related byT D Tc C 273:15, we have

vsnd D 20:0472
p
Tc C 273:15 (11.15)

D .20:0472/
p
273:15

r
Tc

273:15
C 1 (11.16)

D 331:32

r
1C Tc

273:15
(11.17)

We now use the series expansion (valid forjxj < 1; see Appendix C)

.1C x/1=2 D 1C 1

2
x � 1

8
x2 C 1

16
x3 � 5

128
x4 C 7

256
x5 � � � � (11.18)

� 1C 1

2
x (11.19)

and we have

vsnd � 331:32

�
1C 1

2

Tc

273:15

�
(11.20)

D 331:32C 0:6065Tc (11.21)

� 331C 0:60Tc (11.22)

and we have just derived the empirical relation, Eq. (11.2).

73



Prince George’s Community College Introductory Physics II D.G. Simpson

11.2 Frequency of Sound

Sound frequencies may be divided into the following categories, depending on whether or not they are within
the range of human hearing:

• Infrasonic.(f < 20 Hz) These sounds are at frequencies too low to be audible to humans.

• Audible.(20 Hz � f � 20;000 Hz) This is the range of human hearing.

• Ultrasonic.(f > 20;000 Hz) These sounds are at frequencies too high to be audible by humans.

These are only approximate ranges. In particular, there is a strong correlation between the highest audible
frequency and the person’s age; as we get older, we become less able to hear very high-frequency sounds.

Infrasonic sounds are inaudible to humans, but can be heard (and produced) by some animals like whales
and elephants. Some natural phenomena like earthquakes also produce infrasonic sounds.

Ultrasonic sounds are also inaudible to humans, but can be heard by some other animals, like dogs, bats,
and dolphins. The familiar dog whistle produces a high-pitched sound that is inaudible to humans, but can be
heard by dogs. Ultrasound has several practical uses: it is used in some cleansing processes, and for medical
imaging.

Table 11-2 shows the hearing ranges (frequencies) audible to different animals.

Table 11-2. Hearing ranges for various animals. [6]

Species Hearing range (Hz)

Turtle 20 – 1,000
Goldfish 100 – 2,000
Frog 100 – 3,000
Pigeon 200 – 10,000
Sparrow 250 – 12,000
Human 20 – 20,000
Chimpanzee 100 – 20,000
Rabbit 300 – 45,000
Dog 50 – 46,000
Cat 30 – 50,000
Guinea pig 150 – 50,000
Rat 1,000 – 60,000
Mouse 1,000 – 100,000
Bat 3,000 – 120,000
Dolphin (Tursiops) 1,000 – 130,000
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Chapter 12

The Doppler Effect

You have probably noticed that the frequency of sound emitted by a moving source depends on its speed; for
example, when you’re standing by the side of a road near fast-moving traffic, the engine sounds decrease in
frequency as the car passes you. (This is especially noticeable at the Indianapolis 500, for example.) This
effect is called theDoppler effect, after Christian Doppler, an Austrian physicist who first described the effect
in the 19th century.

This change in frequency is observed whether the source or the observer is moving. If the source and
observer are getting closer together, the frequency ishigher than if both were stationary; if they are getting
farther apart, the frequency islower.

A little thought reveals why this is. If thesourceof the sound is moving toward a stationary observer,
then the source will have moved in between emitting wave fronts, causing effective wavelength to be shorter,
resulting in a higher frequency heard by the observer. On the other hand, if theobserverof the sound is
moving toward a stationary source, then the observer runs into the wavefronts faster than if he were stationary,
so he hears a higher frequency.

The frequency shift my be described by the following equation, which covers either the source or the
observer moving (or both):

f 0 D f

�
vsnd ˙ vobs

vsnd� vsource

�
: (12.1)

Heref is the frequency emitted by the source, andf 0 is the frequency heard by the observer. Three speeds
go into this equation, and they are all measured with respect to the air:v snd is the speed of sound (nominally
343 m/s);vobs is the speed of the observer, andvsource is the speed of the source of the sound. All of these
speeds are taken to be positive; the directions are taken into account with the˙ and� signs. The rule for
using these signs is:

“Top sign toward, bottom sign away.”

In other words, if the source and observer are moving toward each other, we use the top signs:C in the
numerator and� in the denominator. If they are moving away from each other, we use the bottom signs:�
in the numerator andC in the denominator. To be fully explicit:

• If the observer is movingtoward the source, useC in the numerator.

• If the observer is movingawayfrom the source, use� in the numerator.

• If the source is movingtoward the observer, use� in the denominator.

• If the source is movingawayfrom the observer, useC in the denominator.
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Figure 12.1: Doppler shift for a source moving at an angle relative to to the observer. Here the source is
moving along a straight line track with velocityv, and the observer is standing off to one side of the track.
For the purpose of computing the Doppler shift, the effective speed of the source is the component ofv in the
direction of the observer,v cos� .

For example, suppose a fire engine emits a sound with a frequency of 2000 Hz, and is moving directly
toward you at 50 m/s. You are stationary. What frequency do you hear? In this casef D 2000 Hz,
vsnd D 343 m/s,vsourceD 50 m/s, andvobs D 0. Since the fire engine is moving toward you, you choose the
top signs, so the frequency you hear isf 0 D .2000 Hz/Œ.343C 0/=.343 � 50/� D 2341 Hz.

Eq. (12.1) covers the case where the source and observer are movingdirectly toward or away from each
other. But what if they are moving at some angle relative to each other, rather than directly toward or away
from each other? In that case, the velocitiesvobs andvsourcethat you use in Eq. (12.1) are thecomponentsof
the velocity along a line connecting the source and the observer. Fig. 12.1 shows an example: a source of
sound is moving along a straight track, and the observer is standing off to one side. At any point, thev source

we use in Eq. (12.1) is the component of the source’s velocity along the line connecting the source to the
observer at that point, orvsourcecos� . If we perform this calculation usingvsource D 50 m/s andd D 10 m
for each point along the track, we get the plot shown in Fig. 12.2.

It is a common misconception that in the case of a moving source, the frequency increases as the object
moves toward the observer, and decreases as it moves away. As you can see from Fig. 12.2, this is not the
case: the frequency decreases monotonically.

12.1 Relativistic Doppler Effect

Light waves exhibit the Doppler effect just as sound waves do, but the analysis is different. We’ll examine
light waves in more detail later, but for now we can just note that light waves are a type of transverse wave that
can travel through a vacuum. In discussing the Doppler effect for sound, we specified the speeds of both the
source and the observer relative to the reference frame of theair. However, there is no such reference frame
for light waves. According to Einstein’s special theory of relativity, there is no “universal” reference frame
with respect to which we can measure speeds of bodies—and furthermore, the theory says that the speed of
light is constant, regardless of the speed of the person making the measurement. So in the case of light waves,
it makes no sense to talk about the speeds of the source or the observer with respect to some fixed reference
frame, since there is no such frame—we can only talk about the speeds of the source and observerrelative to
each other. This means that the Doppler shift equation for light has only two speeds in it: the speed of light
c, and the relative speed between the source and observer,v. The Doppler equation for light waves (called
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Figure 12.2: Doppler shift for a moving source. In this example, the source is moving at a speed of 50 m/s
along a straight line, the stationary observer is a perpendicular distance of 10 m from the source’s path at
x D 0, and the frequency of the sound emitted by the source is 2000 Hz.

77



Prince George’s Community College Introductory Physics II D.G. Simpson

therelativisticDoppler equation) is

f 0 D f

r
c ˙ v

c � v
; (12.2)

where the sign conventions are the same as for the Doppler effect described earlier. This effect means that
if the source are observer of light waves are movingtoward each other, the light waves appearbluer than
they would if the source and observer were not moving relative to each other; this effect is called ablueshift.
Similarly, if the source and observer are moving away from each other, the light appears redder than it would
otherwise, an effect called aredshift.

Astronomers often observe this effect in astronomical bodies. For example, because of the Sun’s rotation,
lines in the Sun’s spectrum are blueshifted on the edge of the Sun moving toward us, and redshifted on the
edge moving away from us.

It was discovered decades ago that all distant galaxies have redshifted light, so they are all moving away
from us. Furthermore, the farther the galaxy, the greater the redshift—meaning that the farther the galaxy,
the faster it’s moving away from us. The American astronomer Edwin Hubble first noted this, and postulated
what is now calledHubble’s law; it relates the speedv with which a galaxy is moving away from us to its
distanceD from us:

v D H0D; (12.3)

whereH0 is a proportionality constant called theHubble constant. Observations by several NASA spacecraft
have recently determined the value of the Hubble constant to be aboutH0 D 71 (km/s)/Mpc. (Aparsec(pc)
is about 3.26 light-years, or about3:09� 1016 meters, and so amegaparsec(Mpc) is a million times that.)

Why are all the galaxies moving away from us like this? It’s because the Universe is expanding, which is
causing every distant galaxy to move away from every other one, much like dots drawn on a balloon moving
farther apart as the balloon is inflated. This expansion began 13.7 billion years ago with the Big Bang, the
huge explosion in which the Universe was created, and is continuing to this day.
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Chapter 13

Sound Intensity

13.1 Intensity

Let’s now look at another property of sound: itsloudness. The loudness of sound is just the intensity of the
sound waves, in watts per square meter. The sound intensityI is the powerP of the sound source (e.g. a
loudspeaker), divided by the area over which this power is spread. For example, if the source of sound waves
is an isotropic point source, then spherical sound waves are emitted equally in all directions. At a distance
r from the source, the source’s power will be spread over the surface of a sphere of radiusr , so the sound
intensity at distancer will be

I D P

A
D P

4�r2
: (13.1)

13.2 Decibels

Our ears are capable of hearing sounds over a tremendous range of intensities. It has been said that if our ears
were any more sensitive than they are, we would be able to hear the sound of individual air molecules hitting
our eardrums. But we can also hear very loud sounds, like from a jet engine. In order to accommodate this
large range of intensities, our ears tend to respondlogarithmicallyto sounds; this has motivated the creation
of a logarithmicloudness scale, where sound level is proportional to the logarithm of the intensity.

Simply taking the logarithm of the intensity doesn’t work dimensionally, though—when you take the
logarithm of a quantity, it should be dimensionless. We therefore take the logarithm of aratio of intensities
to get thesound level:

B D log10

I

I0

; (13.2)

whereB is the sound level in units ofbels(B) (named after Alexander Graham Bell),I is the sound intensity,
andI0 D 10�12 W/m2 is called thethreshold of hearing, and is roughly the lowest-intensity sound that an
average person can hear. Theactualsoftest audible sound varies from person to person, changes with age,
and is also a function of frequency. But for the purpose of defining the bel, we always use10�12 W/m2 for
I0. Also, notice that by convention, thecommon(base 10) logarithm is used in defining the bel.

In practice, the bel is rarely used; the more common unit is1/10 bel, or thedecibel(dB). The sound level
in decibels (̌ ) is given by

ˇ D 10 log10

I

I0

: (13.3)
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The threshold of hearingI D I0 corresponds to a sound level of 0 dB. A sound intensity of 1 W/m2 cor-
responds to a sound level of 120 dB, and is about where most people start finding the sound to be painfully
loud; 120 dB is called thethreshold of pain.

One useful fact to note about decibels is that each time youdoublethe intensityI (W/m2), youadd3 dB
to the sound level. This is because in going from intensityI to 2I , the sound level becomes

ˇ0 D 10 log10.2I=I0/ (13.4)

D 10 log10 2C 10 log10.I=I0/ (13.5)

� 3:010C ˇ: (13.6)

Similarly, when youhalvethe sound intensityI , yousubtract3 dB from the sound level.
When computing sound levels, you cannot do the computations in decibel units. Instead, you must do the

calculations in intensity units (W/m2), then convert to dB at the end. For example, suppose you are 35 meters
away from a 10-watt isotropic sound source. How loud a sound do you hear? You first find the intensity:
I D P=.4�r2/ D .10 W/=Œ4�.35 m/2� D 6:496 � 10�4 W=m2. Now convert the result to dB to find the
sound level:̌ D 10 log10.I=I0/ D 10 log10.6:496 � 10�4=10�12/ D 88 dB.

13.3 Nepers

A less common unit for measuring sound level is theneper(Np). Like the decibel, the neper is a logarithmic
scale; but unlike the decibel, it is a measure of the ratio ofamplitudes(not intensities), and uses the natural
logarithm instead of the common logarithm. Since the amplitude is proportional to the square root of the
intensity (A / p

I ), the sound level in nepers is given by D ln
p
I=I0, or

 D 1

2
ln
I

I0

: (13.7)

You may convert between decibels and nepers using the relationship

 .Np/ D ˇ .dB/ � ln10

20
(13.8)

Every doubling of the intensityI (W/m2) corresponds to adding about1/3 Np to the sound level, and
halvingI means subtracting about1/3 Np from the sound level.

In terms of nepers, the threshold of hearingD 0 dB D 0 Np; the threshold of painD 120 dB D 14 Np.
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Chapter 14

The Edison Phonograph

The 1870s saw the development of not one, butthreemajor inventions by American inventors in the span of
just four years:

• 1876: thetelephone, by Alexander Graham Bell.

• 1877: thephonograph, by Thomas Alva Edison.

• 1879: theelectric lamp, also by Thomas Edison. (Chapter 29.)

In this chapter we will review Edison’s invention of the phonograph.
Prior to 1877, there was no way to record the human voice or other sounds, and to play them back. A few

preliminary devices had been built that would record sounds as lines on paper and the like, but no means for
playing back the recordings was available. One can only imagine, then, what it must have been like to hear a
recording of the human voice played back for the very first time on what was Thomas Edison’s most original
invention, thephonograph.

The first words every recorded on the new phonograph were spoken by Edison himself:

Mary had a little lamb,
Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go.

On December 7, 1877, Edison demonstrated his phonograph at the New York City offices of the nation’s
leading technical weekly publication,Scientific American. Such a crowd gathered around the device that the
demonstration had to be cut short, out of fear that the weight of the crowd might cause the floor to collapse.

In Edison’s original machine, a brass cylinder was covered with a strip of tinfoil. When a person spoke
into the mouthpiece, it vibrated a diaphragm to which was attached a metal point, which made indentations
in the foil. To play the recording back, another metal point on the opposite side of the machine is run over
the grooves and drives a second diaphragm, reproducing the original sound.

Edison’s demonstration of the new phonograph was described in the December 22, 1877 issue ofScientific
American:

Mr. Thomas A. Edison recently came into this office; placed a little machine on our desk,
turned a crank, and the machine inquired as to our health, asked how we liked the phonograph,
informed us that it was very well, and bid us a cordial good night. These remarks were not
only perfectly audible to ourselves, but to a dozen or more persons gathered around, and they

81



Prince George’s Community College Introductory Physics II D.G. Simpson

Figure 14.1: Thomas A. Edison working on development of the phonograph. (Credit: U.S. Department of
the Interior, National Park Service, Edison National Historic Site.)

were produced by the aid of no other mechanism than the simple little contrivance explained and
illustrated below.

The principle on which the machine operates we recently explained quite fully in announcing
the discovery. There is, first, a mouth piece,A, Fig. 1, across the inner orifice of which is a metal
diaphragm, and to the center of this diaphragm is attached a point, also of metal.B is a brass
cylinder supported on a shaft which is screw-threaded and turns in a nut for a bearing, so that
when the cylinder is caused to revolve by the crank,C , it also has a horizontal travel in front
of the mouthpiece,A. It will be clear that the point on the metal diaphragm must, therefore,
describe a spiral trace over the surface of the cylinder. On the latter is cut a spiral groove of like
pitch to that on the shaft, and around the cylinder is attached a strip of tinfoil. When sounds
are uttered into the mouthpiece,A, the diaphragm is caused to vibrate and the point thereon is
caused to make contacts with the tinfoil at the portion where the latter crosses the spiral groove.
Hence, the foil, not being there backed by the solid metal of the cylinder, becomes indented, and
these indentations are necessarily an exact record of the sounds which produced them. . . .

No matter how familiar a person may be with modern machinery and its wonderful per-
formances, or how clear in his mind the principle underlying this strange device may be, it is
impossible to listen to the mechanical speech without his experiencing the idea that his senses
are deceiving him. We have heard other talking machines. The Faber apparatus for example is a
large affair as big as a parlor organ. It has a key board, rubber larynx and lips, and an immense
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amount of ingenious mechanism which combines to produce something like articulation in a
single monotonous organ note: But here is a little affair of a few pieces of metal, set up roughly
on an iron stand about a foot square, that talks in such a way, that, even if in its present imperfect
form many words are not clearly distinguishable, there can be no doubt but that the inflections
are those of nothing else than the human voice.

We have already pointed out the startling possibility of the voices of the dead being reheard
through this device, and there is no doubt but that its capabilities are fully equal to other results
just as astonishing. When it becomes possible as it doubtless will, to magnify the sound, the
voices of such singers as Parepa and Titiens will not die with them, but will remain as long as the
metal in which they may be embodied will last. The witness in court will find his own testimony
repeated by machine confronting him on cross-examination—the testator will repeat his last will
and testament into the machine so that it will be reproduced in a way that will leave no question
as to his devising capacity or sanity. It is already possible by ingenious optical contrivances
to throw stereoscopic photographs of people on screens in full view of an audience. Add the
talking phonograph to counterfeit their voices, and it would be difficult to carry the illusion of
real presence much further.
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Chapter 15

Music

Music is a sequence of sounds created for enjoyment or artistic expression. The sounds may be produced by
the human voice (singing), or by any number of musical instruments. Music is a vast field, and we can only
hope to touch on some of the most basic ideas of music theory here; the interested reader is referred to the
references in Appendix 62.4 for more information.

15.1 Pitch

To begin, music consists of a sequence of sounds of short duration (callednotes); each of these notes is at a
specific frequency (calledpitch). Not just any frequencies are used, though; musical notes are selected from
a set of discrete frequencies.

We find that if we hear a sound at frequencyf , then to our ears a sound at twice that frequency (2f )
sounds “similar”, but higher. To get musical notes, the interval between frequencyf and2f , known as an
octave, is divided into twelve equal parts (in a logarithmic sense) so that each note is higher in frequency than
the next lower note by a factor of12

p
2 � 1:059463. Each factor of12

p
2 change in frequency is called ahalf

step, and two half steps make awhole step. The complete set of 12 notes in an octave (each separated in pitch
by a half step) is called thechromatic scale.

Early musicians discovered that musical compositions sounded better when they used only certain subsets
of these 12 notes, rather than all 12. One of the best-known of these subsets (orscales) consists of 7 of the
12 notes in an octave; these notes were named (in order of increasing pitch) C, D, E, F, G, A, and B. In this
scale, called theC major scale, notes B and C (of the next octave) are one half step apart in frequency, as are
notes E and F; the others are a whole step apart.

Each octave contains the 12 notes in the chromatic scale, which are given the following names, in order
of increasing pitch:

Table 11-1. The musical notes.

C F] / G[
C] / D[ G
D G] / A[
D] / E[ A
E A] / B[
F B
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In this table we find the seven notes of the C major scale, along with the remaining five notes, which are
named using the symbols] and[ to indicate that they fall in between the notes of the C major scale. The
symbol] (called “sharp”) indicates a raising in pitch by one half step over the note to which it is attached;
similarly, the symbol[ (called “flat”) indicates a lowering of pitch by one half step. For example, C] is one
half step higher in pitch than C, and B[ is one half step lower in pitch than B. (The symbols] and[ are
collectively calledaccidentals.)

Notice that several notes are known by two equivalent names. For example, C] and D[ refer to the same
note—the one between notes C and D. Also, since notes B and C are separated by just one half step, we have
B] D C and C[ D B; similarly, E and F are separated by one half step, so E] D F and F[ D E.

When it is necessary to indicate a specific octave, it is written as a subscript after the note. The note A4

(near the middle of the piano keyboard) is assigned a frequency of exactly 440 Hz. Since the notes in each
octave have twice the frequency of the same note in the next lower octave, we find the frequencies of note A
in higher octaves by repeatedly multiplying by 2: A5 D 880 Hz, A6 D 1760 Hz, A7 D 3520 Hz, A8 D 7040
Hz, and A9 D 14080 Hz. Similarly for A in lower octaves, we repeatedly divide 440 Hz by 2: A3 D 220 Hz,
A2 D 110 Hz, A1 D 55 Hz, and A0 D 27.5 Hz. Human hearing covers ten octaves in pitch, going roughly
from note E0 to E10. The piano’s range is 7¼ octaves, from A0 to C8.

Beginning with the frequency of note A4 D 440 Hz, we successively multiply and divide by12
p
2 to find

the frequencies of all the other notes, as shown in Table 15-2.

Table 15-2. Frequencies (in hertz) of all the musical notes that are audible to the human ear. Middle C is
shown in bold, and the musical standard A4 is shown in italics.

Octave
Note 0 1 2 3 4 5 6 7 8 9 10

C 32.70 65.41 130.81 261.63 523.25 1046.50 2093.00 4186.01 8372.02 16744.04
C] / D[ 34.65 69.30 138.59 277.18 554.37 1108.73 2217.46 4434.92 8869.84 17739.69

D 36.71 73.42 146.83 293.66 587.33 1174.66 2349.32 4698.64 9397.27 18794.55
D] / E[ 38.89 77.78 155.56 311.13 622.25 1244.51 2489.02 4978.03 9956.06 19912.13

E 20.60 41.20 82.41 164.81 329.63 659.26 1318.51 2637.02 5274.04 10548.08 21096.16
F 21.83 43.65 87.31 174.61 349.23 698.46 1396.91 2793.83 5587.65 11175.30

F] / G[ 23.12 46.25 92.50 185.00 369.99 739.99 1479.98 2959.96 5919.91 11839.82
G 24.50 49.00 98.00 196.00 392.00 783.99 1567.98 3135.96 6271.93 12543.85

G] / A[ 25.96 51.91 103.83 207.65 415.30 830.61 1661.22 3322.44 6644.88 13289.75
A 27.50 55.00 110.00 220.00 440.00 880.00 1760.00 3520.00 7040.00 14080.00

A] / B[ 29.14 58.27 116.54 233.08 466.16 932.33 1864.66 3729.31 7458.62 14917.24
B 30.87 61.74 123.47 246.94 493.88 987.77 1975.53 3951.07 7902.13 15804.27

In general, a noten half steps above A4 has a frequency of

2n=12 � 440 Hz; (15.1)

wheren is negative for notes below A4.
Note C4 (in the middle of the piano keyboard) is calledmiddle C. Since it’s 9 half steps below A4, middle

C has a frequency of2�9=12 � 440 Hz D 261:6256 Hz.

15.2 Musical Scales

As mentioned earlier, early musicians discovered that musical compositions sound best when they don’t use
all 12 notes of the chromatic scale; instead, restricting the notes to certain subsets of the 12 (calledscales)
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results in more pleasant-sounding music.
In Western music, the most common of these scales are calledmajor scales, and the best-known of these

is theC major scale, which has already been described: it consists of the notes C, D, E, F, G, A, and B. In this
scale, the first two notes (C and D) are separated in pitch by a whole step, as are the second and third notes (D
and E). The third and fourth notes are separated by a half step. Continuing through the whole scale, we find
that the separations between the notes in pitch are two whole steps, then one half step, then three whole steps,
then another half step at the end when going from B to C of the next octave. For shorthand, let’s write “W”
for a whole-step interval between notes, and “H” for a half-step interval; then the intervals between notes in
the C major scale can be written as WWHWWWH.

There are 11 other major scales besides the C major scale. To get them, we simply start with a different
note in the chromatic scale, then follow the same WWHWWWH interval pattern; the scale is named for the
note we started with. For example, for the C]major scale, we begin with C], then go up a whole step in pitch
to get the next note in the scale, D]. Then we go up another whole step to get the next note, F. Then up a half
step to get the next note (F]), and so on until we find all seven notes in the scale. Similarly, for the D major
scale, we start with the note D and follow the same WWHWWWH pattern to find the seven notes of the D
major scale. We can repeat the process for all 12 notes in the chromatic scale; the results are shown in Table
15-3.

Table 15-3. The major scales. The last column shows the number of accidentals in that scale.

Major Scale Notes # Acc.
C C D E F G A B 0

G G A B C D E F] 1 ]
D D E F] G A B C] 2 ]
A A B C] D E F] G] 3 ]
E E F] G] A B C] D] 4 ]

B (DC[) B C] D] E F] G] A] 5 ]
F] (DG[) F] G] A] B C] D] E] (DF) 6 ]
C] (DD[) C] D] E] (DF) F] G] A] B] (DC) 7 ]

F F G A B[ C D E 1 [
B[ B[ C D E[ F G A 2 [
E[ E[ F G A[ B[ C D 3 [
A[ A[ B[ C D[ E[ F G 4 [

D[ (DC]) D[ E[ F G[ A[ B[ C 5 [
G[ (DF]) G[ A[ B[ C[ (DB) D[ E[ F 6 [
C[ (DB) C[ (DB) D[ E[ F[ (DE) G[ A[ B[ 7 [

Notice that 15 scales are listed in this table; several of them (such as B and C[) are really the same scale,
but with the notes “spelled” differently (recall that some notes have two names, such as A]=B[), so there
are really only 12 different major scales, each one beginning with a different note in the chromatic scale and
following the WWHWWWH pattern.

Notice also in Table 15-3 that each major scale can be uniquely identified by the total number of acciden-
tals (sharps and flats) of all the notes in that scales, as shown in the last column. (That’s actually the reason
for showing the “duplicate” scales in this table, so that this pattern will be clear.) Music written by selecting
notes from one of these scales is said to be written in thatkey. For example, a musical composition written
using notes selected from the C major scale is said to be written “in the key of C major”. This selection of
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notes is not strictly adhered to, though; while the notes in a composition are generally selected from the seven
in the key being used, the composer may occasionally use other notes for effect.

Since each major key can be uniquely identified by the number of accidentals, the key in which a compo-
sition may be indicated by writing the appropriate number of sharps or flats immediately after the clef sign.
For example, suppose we wish to write a composition in the key of G major. From Table 15-3, we see that
the key of G major contains only one “sharp” note, F]. So we indicate a key of G major by writing a single
] sign on the F line immediately after the clef sign; this is called thekey signature. The performer who plays
the music will see that the key signature shows a single] on the F line, and will know that the key is therefore
G major and that all written F notes should be played as F].

The major scales we’ve just seen are just one of many such scales, each of which gives a different “feel”
to the music. For example, there are severalminor scales; music written in a minor scale has a distinctively
dark, “sad” sound to it, and may remind the listener of “spooky” or “funeral” music. There is awhole tone
scalethat is often used for jazz music, and has a whole step between each note in the scale. Thepentatonic
scaleis widely used in Eastern music and for many other forms of music around the world.

Table 15-4 shows some of these scales, and their corresponding pitch interval patterns. Remember that
each scale shown represents 12 different keys, each one starting with a different note in the chromatic scale,
and each one having a bit of a different feel to it.

Table 15-4. Several musical scales and modes, and their pitch interval patterns. (HDhalf step, WDwhole
step, 3Dthree half steps.)

Name Pattern Piano white keys

Major scale WWHWWWH
Natural minor scale WHWWHWW
Harmonic minor scale WHWWH3H
Melodic minor scale WHWWWWH
Whole tone scale WWWWWW
Pentatonic scale WW3W3
Ionian mode WWHWWWH C to C
Dorian mode WHWWWHW D to D
Phrygian mode HWWWHWW E to E
Lydian mode WWWHWWH F to F
Mixolydian mode WWHWWHW G to G
Aeolian mode WHWWHWW A to A
Locrian mode HWWHWWW B to B

15.3 Music Notation

Suppose we wish to record a musical composition so that a musician can play it. How do we write out the
notes to be played? We could just list the notes to be played (B4, D3, etc.), but musicians would find that
difficult to read. Also, there needs to be some way to show thedurationof each note, and to indicate when the
performer should pause while playing the composition. To deal with these issues, musicians have developed
a special graphical system of musical notation to record music and indicate how it should be played.

The notation begins with five horizontal lines (called astaff), which essentially form a plot of frequency
vs. time, with increasing frequency (pitch) going up, and increasing time to the right. Each note is written
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eitheron one of the lines, or in the spacebetweenlines. Aclef signis written at the beginning of the staff to
indicate which lines correspond to which notes.

Two clef signs are in common use. Atreble clef is used when writing music for women’s voices, or for
instruments that play high notes, generally in the range above middle C. The treble clef sign is a stylized
script letter G that curlicues around the line for the note G4. Each of the notes in the C major scale (C, D, E,
F, G, A, and B) is written on or between lines of the staff; the other notes are are written using] and[ signs
next to these notes. Fig. 15.1 shows a treble clef symbol on the far left, followed by ovals (whole notes) that
show how each of the notes is written for one octave. (Notice that for the first two notes, the staff has been
extended downward by a shortledger lineto write middle C and C4].)

C4 C4# D4 D4# E4 F4 F4# G4 G4# A4 A4# B4 C5

Figure 15.1: Treble clef showing the chromatic scale for octave 4 (plus C5). The lowest note (far left) is
middle C.

A bass clefis used for men’s voices, or for instruments that play low notes, generally below middle C.
The bass clef sign is a stylized script letter F, with two dots on either side of the line for the note F3. Again
every line or space corresponds to one of the notes in the C major scale, with] and[ signs written for the
other notes. Fig. 15.2 shows a bass clef symbol on the far left, along with whole notes showing each note for
one octave.

C3 C3# D3 D3# E3# F3 F3# G3 G3# A3 A3# B3 C4

Figure 15.2: Bass clef showing the chromatic scale for octave 3, plus middle C (C4) on the far right.

A few other clef signs are in use. For example, viola music is written using analto clef, and there is a
tenor clef that is common in vocal music. The main point of the different clefs is to shift the notes that are
assigned to the lines of the staff in order to minimize the number of ledger lines that are needed. Music is
easier to read if most of the notes lie within the five lines of the staff.

Thedurationof each note in time is indicated by various symbols, as shown in Fig. 15.3. Awhole note,
drawn as an oval as shown on the far left, is the longest duration. Other notes are fractions of a whole note,
as shown in the figure: ahalf notehas half the duration of a whole note, aquarter notehas one-fourth the
duration of a whole note, and so on. So each written note indicates a specific pitch (by its position on the
staff) and a specific duration in time (by the symbol used).

Similarly, there are symbols for pauses, orrests. Fig. 15.4 shows the various symbols for rests of different
durations. The longest rest (awhole rest) is shown on the far left. Next is ahalf rest, which has half the
duration of a whole rest, and so on. The rests are always placed on the staff as shown in the figure; they are
not drawn higher or lower on the staff, since there is no pitch to be indicated.1

1One famousavant-gardemusical composition is4’33” by the American composer John Cage. It consists entirely of rests, and
contains no musical notes—it is just 4 minutes and 33 seconds of silence.
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whole half quarter eighth sixteenth thirty-second

Figure 15.3: Note A4, showing the symbols for different note durations. The stems may point either up-
ward (as shown here) or downward; generally they point upward for notes near the bottom of the staff, and
downward for notes near the top.

whole half quarter eighth sixteenth thirty-second

Figure 15.4: Symbols for different rest durations.

15.4 Timing

When we specified the durations of different notes, we specified them relative to the length of a whole note.
But what is the duration of a whole note, in seconds? That’s not necessarily specified—music may be played
faster or slower, so the duration of a whole note is somewhat flexible. But if he wishes, a composer may
indicate a specific rate, ortempo, at which the music is to be played (typically in units of quarter notes per
minute).

For convenience, musical notes are grouped intomeasuresof equal time; these are indicated by vertical
lines dividing the staff. Atime signatureimmediately follows the key signature, and indicates how the timing
of the composition works. The time signature is written as something resembling a fraction of the formp=q,
wherep is the number of “beats” of music per measure, andq indicates which note represents one beat.
Some common time signatures are shown in Table 15-5.

Table 15-5. Some time signatures.

Time Signature Beats per measure 1 beatD
4/4 (or C) 4 quarter note
2/2 (or Cj ) 2 half note

2/4 2 quarter note
3/4 3 quarter note
6/8 6 eighth note

15.5 An Example

Figure 15.5 shows a simple example of musical notation—the beginning of a popular song,Old MacDonald
Had a Farm.

Let’s break this down and see how it all works. Starting at the far left, you see the treble clef, which
indicates which lines on the staff correspond to which notes. Immediately after the treble clef is the key
signature, which is two] (sharp) signs on the line for note F5 and the space for C5. As shown in Table 15-3,
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Old Mac Don- ald- had a farm, EE I EE I O.

Old MacDonald Had a Farm

Figure 15.5: The first 12 notes ofOld MacDonald Had a Farm, in D major.

the key with two] signs is the key of D major, and in that key the sharp notes are F] and C]. In the key of D
major, all written F notes are to be played as F], and all written C notes are to be played as C].

After the key signature comes the time signature, which is4/4 in this case—meaning four quarter notes
(or the equivalent) per measure. After the time signature we see the notes: D5, D5, D5, A4; B4, B4, A4; F5],
F5], E5, E5; and D5. The words (lyrics) are written below the staff.

15.6 Musical Instruments

Musical instruments produce musical notes by creating standing waves of some sort. Instring instruments
(violin, cello, guitar, harp, etc.), a string under tension is caused to vibrate, either by being plucked or having
a bow drawn across it. The string is held fixed at both ends, and standing waves are created in the string,
which produces a sound. Recall that the frequenciesfn of standing waves fixed at both ends are given by

fn D n
v

2L
.n D 1; 2; 3; 4; : : :/ (15.2)

wherev is the wave speed andL is the distance between the ends. Only the first harmonic (n D 1) standing
wave is played on a string instrument. Recall also that the speed of waves in a string is given byv Dp
FT =.m=L/ (whereFT is the tension andm=L is the string density), so the frequency of the first harmonic

will be

f1 D 1

2L

s
FT

m=L
: (15.3)

The performer can shorten the effective lengthL of the string, typically by pressing the string against the
neck of the instrument. Sincem=L is constant, we havef1 / 1=L, and shortening the string will increase the
pitchf1 and play a higher note. String instruments will have several strings with different thicknesses; the
thicker strings have a higher mass densitym=L, so they play a lower pitch. In order to tune the instrument
before playing, a set of knobs allows the player to change the tensionFT in each string to make sure it plays
each note at the proper frequency; a higher tension gives a higher pitch.

In brass instruments(e.g. trumpet, trombone, French horn, tuba), the performer sets up standing sound
waves in the instrument by blowing into a mouthpiece. The player’s lips vibrate or “buzz” at a frequency
that produces standing waves; different notes are produced by changing the length of tubing (using valves,
or a slide for the trombone), and by changing the tension in the player’s lips. In some brass instruments,
like the trombone, the player can play the first harmonic by buzzing the lips very loosely in the mouthpiece;
higher harmonics are produced by increasing the lip tension. In other instruments, like the French horn, the
first harmonic cannot be played—only higher harmonics. This makes the French horn a tricky instrument to
play—only slight changes in lip tension will change the note from one harmonic from the next.

In woodwind instruments(e.g. clarinet, oboe, bassoon, flute, recorder), as in brass instruments, the player
sets up standing sound waves in the instrument. In this case, the vibrations are often produced with a reed, and
the performer changes notes by opening or closing combinations of holes along the side of the instrument,
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using the fingers or a complex system of keys. Woodwind instruments generally play the first few harmonic
standing waves; which ones can be played depend on the shape of the bore of the instrument.

Percussion instrumentsare instruments like drums, which produce a sound when a membrane or other
surface is struck and allowed to vibrate, creating standing waves in the membrane. The timpani is a drum in
which the tension in the membrane can be changed to produce a few different notes.

Some musical instruments aretransposinginstruments; for these instruments, the written notes are not
the same as the notes that are actually played. For example, music for the French horn is written seven half
steps higher than it is actually played. So when a French horn player plays a written middle C (C4), the note
that actually comes out of the instrument will be seven half steps lower, F3; such a horn is said to be “pitched
in F”, and is called anF horn. There is a lighter French horn favored by some players that is better for playing
high notes; it plays a B[ for a written C, and is called aB[ horn. The horn most commonly seen in orchestras,
with its very complex-looking system of tubing, is adouble horn. The double horn contains tubing forboth
an F horn and a B[ horn, and allows the player to switch between the two sides using a thumb valve. The
player will play lower notes on the F side of the horn, then use the thumb valve to switch to the B[ side for
high notes, since they’re easier to play on that side. Today there’s an even more complextriple horn, which
includes a thirddescant hornside for playing very high notes.

Transposition is partly for historical reasons, and partly to allow performers to play similar instruments
more easily. For example, a trumpet player can play a French horn or tuba without having to learn a different
fingering for each instrument. However, if a performer wishes to play music written for an instrument other
than the one he is playing (a horn player playing music written for trombone, for example), he may need to
mentally transpose the music while playing in order to play in the same key as the rest of the orchestra.

As mentioned earlier, music is a very large subject, and here we’ve only barely touched on the very basics
of music theory and musical notation. There’s much more to this subject: chords, harmony, timbre, intervals,
non-Western music, etc.—and there’s much more to musical notation than the bare outlines we’ve seen here.
The interested reader is referred to books on music theory for more information.
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Part IV

Electricity and Magnetism

92



Chapter 16

Electricity

The phenomenon ofelectricityhas been known since ancient times. Long ago people discovered that rubbing
fossilized tree resin (calledamber) with fur could cause it to attract bits of light material. (In fact, the Greek
word for amber,��"
	�o�, is where we get our word “electricity”.)

Experiments by French scientist Charles du Fay in the early 18th century showed that there were two
types of electricity: one he called “vitreous”, acquired by glass when rubbed with silk; and the other he called
“resinous”, acquired by amber when rubbed with fur. He also discovered that two objects with vitreous charge
repelled each other, as did two resinous-charged objects, but that a vitreous-charged object and resinous-
charged object attracted each other.

Another of many early scientists studying electricity was the American scientist and statesman Benjamin
Franklin. Franklin held the view that electricity was a fluid, and that the two types of electricity were actually
an excess of electric fluid in one material and a deficiency of fluid in the other. But which was which? Franklin
took a 50-50 shot in the dark—and missed! He called the vitreous charge “positive”, and the resinous charge
“negative”, believing these to be an excess and deficiency of electric fluid (respectively). We now know
it’s the other way around. What Franklin thought of as an electric fluid is actually a flow of particles called
electrons, and it is an excess of electrons that is what we call “negative” charge; positive charge is a deficiency
of electrons. Franklin’s unfortunate choice continues to be a source of some confusion in discussing electric
current, as we’ll see later.

Benjamin Franklin is also famous for his (quite dangerous) “kite experiment”, in which he flew a kite into
an electrically charged storm cloud. Electricity from the cloud conducted down the wet kite string to a key at
the other end, and Franklin was able to produce sparks by bringing his knuckle near the key. The experiment
showed that lightning is a form of electricity. (For his contributions to the theory of electricity, the unit of
charge in electrostatic units is named thefranklin in Benjamin Franklin’s honor.)

16.1 Electric Charge

Our modern understanding of electricity may be summarized as follows:

• There are two types of electricity, calledpositive(C) andnegative(�).

• Like-charged bodies (C andC, or � and�) repel; unlike-charged bodies (C and�) attract.

• Electric charge isquantized; that is, the charge on a body must always be a multiple of the so-called
elementary chargee. No charge can ever be smaller thane.

• Electric charge isconserved: that is, the total charge in a closed system is always constant.
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Figure 16.1: Charles-Augustin de Coulomb.

16.2 Coulomb’s Law

Using a torsion balance, the 18th century French physicist Charles-Augustin de Coulomb (1736-1805, Figure
16.1) discovered the law that determines the amount of force between two charged bodies—a law now called
Coulomb’s law. It states that if two point chargesq 1 andq2 are separated by a distancer , then the force
between them will be proportional to the product of the charges and inversely proportional to the square of
the distance between them:

F D 1

4�"0

q1q2

r2
: (16.1)

HereF is the force (in newtons),r is the separation distance (meters), andq1 andq2 are the charges measured
in units ofcoulombs(C). A coulomb is a very large unit of charge; charges we encounter in the laboratory
will typically be on the order of microcoulombs (�C) or nanocoulombs (nC).

The constant"0 in Eq. (16.1) is called thepermittivity of free space,1 and is equal to2

"0 D 8:85418781762038985 : : :� 10�12 C2 N�1 m�2: (16.2)

The proportionality constant1=.4�"0/ is called theCoulomb constant(kc). It is equal to exactly

kc D 1

4�"0

D 8:9875517873681764� 109 N m2 C�2: (16.3)

Coulomb’s law (Eq. 16.1) implicitly makes use of a property in arithmetic that mirrors the properties of
electric charges. Multiplying two numbers of like sign gives a positive number, and multiplying two numbers
of unlike sign gives a negative number. This property mirrors the behavior of electric charges: two charges
of like sign repel, and two charges of unlike sign attract. So in Coulomb’s law (Eq. (16.1)), we can interpret
a positiveforce as repulsion, and anegativeforce as attraction.

16.3 Atomic View of Electricity

As you will have already learned, all ordinary matter consists ofatoms. At the center of the atom is a tiny,
massivenucleus, which is surrounded by shells of very lightelectrons. The nucleus consists of electrically

1"0 is pronounced “epsilon-nought.”
2Because of the way SI units are defined, the constant" 0 is a transcendental number that may be computed to as many digits as

desired; its exact value is1=.2997924582 � 4� � 10�7/ C2 N�1 m�2.
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neutral (uncharged)neutronsalong with positively-chargedprotonsthat carry a charge equal to the elementary
charge,e D 1:6021766208� 10�19 C. The electrons surrounding the nucleus carry anegativecharge, also
equal to the elementary charge. In other words, neutrons have charge 0, protons have chargeCe, and electrons
have charge�e.

In ordinary matter, it is only theelectronsthat move around and produce electric charge and electric
currents. The protons are massive (about 1800 times heavier than the electrons) and tucked away in the
center of the atom, so they barely move. When we rub a piece of amber with a piece of fur, for example,
we’re removing a small number of the outermost electrons from atoms in the fur, and depositing them onto
the amber. This leaves the fur with a deficiency of electrons (giving it a positive charge) and the amber with
extra electrons (giving it a negative charge). Very few electrons are involved in this type of charging: if only
one fur atom in aquintillion loses an electron to the amber, it will produce an easily measurable electric
charge, enough to allow the amber to pick up bits of paper, for example.

So keep this in mind: whenever you’re charging objects or creating electric currents in the laboratory, it
is always the negatively-chargedelectronsthat are moving.3

16.4 Materials

Different materials behave differently depending on their ability to allow electrons to flow through them. We
classify materials as follows:

• Conductorsare materials in which electrons can flow very easily. You can think of a conductor as a
lattice of positive ions, surrounded by a kind of “gas” of free electrons that belong to no particular
atom. The free electrons are free to move throughout the conductor. Familiar conductors are metals
such as copper, gold, and silver.

• Insulators(or dielectrics) are materials in which each atom holds on to all of its atoms strongly, so
they arenot free to move through the material. Examples of insulators are rubber, wood, plastics, and
ceramics.

• Semiconductorsare between conductors and insulators. They are insulators that can be coaxed into
giving up a conduction electron under the right conditions, such as a sufficiently strong electric field.
Common semiconductors are the elements silicon and germanium.

• Superconductorsare exotic materials that form a special class of conductor. While ordinary conductors
always offer some sort of resistance to the flow of electrons, superconductors offer no such resistance.
This means, for example, that if you form a superconductor into a ring and start electrons flowing in
it, they will continue flowing forever. Traditional superconductors are made by cooling an ordinary
conductor like mercury down to very low temperatures; below some critical temperature, the material
will suddenly transition from an ordinary conductor to a superconductor. Experiments in the 1980s
discovered a new class of superconductors calledhigh-temperature superconductorsthat are made of
exotic ceramic-like materials. These still need to be cooled to become superconducting, but not nearly
as much. For example, mercury doesn’t become superconducting until it’s cooled down to 4.1 K, which
requires liquid helium temperatures and is difficult to do. But the high-temperature superconductor
YBa2Cu3O7 only needs to be cooled to 90 K, which can easily be achieved by cooling with liquid
nitrogen.

An exotic form of hydrogen calledmetallic hydrogenis thought to exist at the very high pressures (more
than 4 million atmospheres) in the interior of the planets Jupiter and Saturn. Scientists are currently
attempting to create metallic hydrogen in the laboratory, so far without success. Metallic hydrogen is

3Two hydrogen atoms walk into a bar. One says, “I’ve lost my electron.” The other says, “Are you sure?” The first replies, “Yes, I’m
positive...”
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Figure 16.2: Example of Coulomb’s law in two dimensions. Here chargesq1, q2, andq3 at the vertices of
an isosceles right triangle;q1 andq2 are positive, andq3 is negative. The total forceF1 on chargeq1 is the
vector sum of the forceF12 onq1 due toq2 and the forceF13 onq1 due toq3: F1 D F12 C F13.

thought to be either a solid or a superfluid4, and theory suggests it may possibly be a room-temperature
superconductor. Its creation in the laboratory could have significant commercial applications.

16.5 Coulomb’s Law in Two or Three Dimensions

Coulomb’s law in the form shown in Eq. (16.1) works fine for a one-dimensional problem involving two
point charges: the sign of the forceF is sufficient to indicate the direction of the force. But when we work
in two or three dimensions (for example, point charges on the vertices of a triangle) we must usevectorsto
determine the force in each charge. In vector form, Coulomb’s law is

F12 D � 1

4�"0

q1q2

r2
Or12; (16.4)

whereF12 is the force on chargeq1 due to chargeq2, andOr12 is aunit vector(a vector of magnitude 1) that
points in the direction from chargeq1 to chargeq2. Note the minus sign: if both charges are positive, for
example, then the force pointsoppositeOr12—that is, the force onq1 will be away fromq2.

If you know the angle� of the unit vectorOr12 (measured counterclockwise from theCx direction), then
the unit vector in rectangular (cartesian) form is

Or12 D cos� i C sin� j ; (16.5)

wherei andj are unit vectors in thex andy directions, respectively.
If there are multiple charges present, then thetotal force on chargeq1 is the vector sum of all the forces

on chargeq1. For example, consider Fig. 16.2, which shows chargesq1, q2, andq3 at the vertices of an
isosceles right triangle. The total forceF1 on chargeq1 is the vector sum of the forceF12 on q1 due toq2

and the forceF13 onq1 due toq3: F1 D F12 C F13.
Appendix N gives a brief review of vector arithmetic.

4See chapter 61.
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Chapter 17

The Electric Field

Except for fairly simple problems involving a few charges, it’s usually not particularly convenient to use
Coulomb’s law (Eq. (16.1)) directly. One would have to compute all the pairs of forces between each of
the charges making up each of the bodies, which could become a fairly complex calculation. Instead, we
introduce the idea of anelectric fieldas a kind of intermediate quantity. We think of one body as producing
an electric field at each point in space; we can then look at how a second body responds to that electric field.
One reason this is convenient is that we often know what the electric field looks like without necessarily
knowing anything about the distribution of charges that produced the field.

Now let’s define the electric field. The electric field is avector field—it assigns a vector to every point
in space. So let’s imagine you’re standing in a room and wish to find the electric field vector at some point
within the room. You take a smallpositivepoint chargeq0 (say a proton) and place it at that point, and
measure the electric force on it. Then the electric fieldE is the forceF divided by the test chargeq0:

E D F
q0

: (17.1)

The electric field vector has units of newtons per coulomb (N/C).
A typical situation is that we will already know the electric field by some other calculation; then Eq.

(17.1) indicates that the force on a chargeq in the electric fieldE is F D qE.

17.1 Electric Field due to a Point Charge

The electric field due to a point chargeq can be found by using Coulomb’s law. Let’s put a small pos-
itive test chargeq0 at some distancer from the chargeq; then by Coulomb’s law, the force onq0 is
F D .1=4�"0/.qq0=r

2/. Dividing by q0 gives us the electric field due to chargeq:

E D 1

4�"0

q

r2
: (17.2)

17.2 Electric Field Lines

To help visualize the shape of the electric field, in can be helpful to draw diagrams ofelectric field lines.
These lines have the following properties:

• The electric field lines are directed lines (with arrows) that pointfrom positive (C) chargeto negative
(�) charge.
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Figure 17.1: Electric field lines for an electric dipole. The dipole moment vectorp points to the left in this
case. (©GNU-FDL, Wikimedia Commons [11].)

• At any point along a field line, the electric field vectorE is tangent to the field line.

• We cannot possibly drawall field lines (because they fill all space), so we draw only a few. The
number of field lines you draw is somewhat arbitrary — we just draw enough to visualize the field
without making the diagram too crowded.

• The number of field lines terminating on a charge should be proportional to the charge.

• The closer together the field lines are, the stronger the electric field.

17.3 The Electric Dipole

As an example, consider Fig. 17.1, which shows two charges of equal magnitude and opposite sign, separated
by a fixed distance; such an arrangement is called anelectric dipole.

An electric dipole may be characterized by a quantity called thedipole moment. The dipole momentp of
an electric dipole is defined as

p D qd; (17.3)

whereq is the magnitude of either of the charges in the dipole, andd is a vector whose length is equal to
the distance between the charges, and which points from the negative charge to the positive charge (opposite
the direction of the electric field line between the charges). The dipole moment essentially measures how
electrically “polarized” a pair of charges is, with larger values when more charge is separated by a greater
distance. Electric dipole moment is measured in units of coulomb-meters (C m).

17.4 Electric Flux

Electric fluxmay be thought of as being proportional to the total number of electric field lines passing through
a given area. Given an areaA embedded in an electric fieldE, the electric flux̂ E passing through planeS
of areaA is equal to the product ofE and the component ofA perpendicular to the field:

ˆE D E � OnA D EA cos�: (17.4)
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Figure 17.2: Carl Friedrich Gauss. (Painting by Christian Albrecht Jensen.)

Here On is a unit vector perpendicular to surfaceS andA is the total area ofS . If S is a curved surface instead
of a plane, then the electric flux is more generally

ˆE D
Z

S

E � On dA (17.5)

wheredA is an infinitesimally small piece of area ofS , and the integral is over the entire area ofS . In other
words, we imagine dividing surfaceS into many tiny squares, each of which has areadA. For each square,
we draw a normal unit vectorOn at that square, and we computeE � On, which is the component of the electric
field E that is perpendicular to that square. We then multiply that result by the area of the squaredA to get
the electric flux through areadA. We add each of those fluxes together over the entire areaA of surfaceS .

17.5 Gauss’s Law

One important application of electric flux is its appearance inGauss’s law, named for German mathematician
and physicist Carl Friedrich Gauss (1777-1855) (Figure 17.2). Gauss’s law is one of the four fundamental
equations of classical electromagnetism known asMaxwell’s equations.

Gauss’s law states that if we draw an imaginaryclosedsurface in space, then the total electric flux through
that closed surfaceS is proportional to the total amount of charge enclosed inside that surface:

ˆE D
I

S

E � On dA D qencl

"0

: (17.6)

Here the circle on the integration sign indicates that the integral is over theclosedsurfaceS .
While Gauss’s law is generally true, one of its important practical uses is that it allows the quick determi-

nation of the electric field of a symmetrical distribution of charges. For example, it allows the electric field
of a spherical or cylindrical charge to be determined very easily.

As a simple example, suppose we wish to find the electric fieldE at a distancer from a point chargeq.
We would imagine drawing an imaginary spherical surface of radiusr centered onq, so that the sphere passes
through the point at which we wish to calculateE. Then on the left-hand side of Eq. (17.6), the electric flux
is the electric fieldE times the area of the sphere:̂E D H

EdA D E
H
dA D E.4�r2/. Since the total

charge inside the sphere isq, the right-hand side becomesq="0. Gauss’s law then gives4�r2E D q="0, or
E D q=.4�r2"0/, in agreement with Coulomb’s law.

Both Coulomb’s law and Gauss’s law allow us to determine the electric field due to an arbitrary distri-
bution of charge. The difference between them is that, forsymmetricalcharge distributions, Gauss’s law
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provides a shortcut that allows us to compute the electric field much more easily than using Coulomb’s law.
We can always use Coulomb’s law—Gauss’s law is just much less work when we have a symmetrical charge
distribution. For irregular charge distributions, though, we may have no choice but to “do it the hard way”
and resort to Coulomb’s law.

17.6 Electric Fields of Conductors

If an electrical conductor holds a net charge, then it has a number of important properties. If the conductor is
in electrostatic equilibrium (i.e. all charges have stopped moving), then:

• The electric field inside the conductor is zero.The conductor has free electrons throughout its interior.
If there were an electric field inside the conductor, then there would be a force on those free elec-
trons, causing them to accelerate, in violation of the assumption that the conductor is in equilibrium.
ThereforeE D 0 inside a conductor.

• Any excess charge in the conductor must lie on its surface.Using Gauss’s law, draw a Gaussian surface
just below the surface of the conductor. Since the electric field inside the conductor is zero, the electric
flux through this surface is zero. Then by Gauss’s law, the charge inside the surface is zero. Therefore,
any excess charge must lie on the surface. (Another way to think of this is that since the charges repel,
they will want to get as far away from each other as possible, so they will end up on the surface.)

• Electric field lines are perpendicular to the surface of the conductor.If the electric field lines intersected
the surface of the conductor at some angle, then there would be a tangential component of the electric
field present, which would cause the electrons to accelerate parallel to the surface. Therefore electric
field lines must meet the surface of the conductor at right angles.

17.7 Dielectric Breakdown

It is possible for materials that are normally insulators (dielectrics) to become electrically conducting, if they
are in the presence of a sufficiently large electric field. For example, air is normally in insulator, but the
presence of an electric field of at least3 � 106 N/C creates channels of ionized gas through which electrons
can flow; the result is the familiarspark. This phenomenon is calleddielectric breakdown.

17.8 Lightning

Another example of dielectric breakdown islightning. During a thunderstorm, falling water drops and snow
pellets cause the clouds to acquire a negative charge, while the ground becomes positively charged; this
creates an electric field pointing upward. Electrons from the thundercloud carve a channel of ionized gas
that makes its way to the ground in a series of steps; this channel is called thestepped leader. At the same
time, a number of shorter ionized leader channels reach from the ground to a short distance upward. At some
point the downward-moving stepped leader connects with one of the upward leaders, and forms a complete
conducting path of ionized gas from the cloud to the ground. This causes a powerful ionizing wavefront,
called thereturn stroke, to move very quickly from the ground back up to the cloud, producing the flash we
see. The return stroke heats the surrounding air to a very high temperature, causing it to expand at supersonic
speed. This creates a shock wave that produces the sound we hear as thunder. Typically several such strokes
carry current between the ground and the earth during a single flash of lightning.
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Chapter 18

Electric Potential

18.1 Potential Energy

There is a potential energy associated with the electric force. Suppose, for example, that you have a positive
and negative charge right next to each other. Now separate the two charges by some distance; since the two
charges are attracted, they will “want” to come back together. You had to do work against the electric force
to separate the two charges, and now the system has a potential energy that will be released if you allow the
charges to come back together. The forceF and potential energyU are related by

F D �dU
dx

� ��U
�x

: (18.1)

The same thing happens with the gravitational force. If two masses are separated, the attractive gravitational
force will cause the two masses to want to come together again, so the system of separated masses contains
potential energy. This potential energy can be released by allowing the masses to come back together. In
the case of gravity, the potential energy of two point massesm1 andm2 separated by distancer is U D
�Gm1m2=r (where we chooseU D 0 atr D 1, soU is always negative). Similarly, with the electric force,
the potential energy of two pointchargesq1 andq2 separated by distancer is

U D 1

4�"0

q1q2

r
; (18.2)

where againU D 0 at r D 1, andU is always negative for attracting charges and always positive for
repelling charges.

Another common situation is the potential energy in a uniform field. For gravity, the potential energy of
a massm in a uniform gravitational fieldg isU D mgh, whereh is the height above some arbitrarily-chosen
level for whichU is taken to be zero. Similarly, the potential energy of a chargeq in a uniform electric field
E is

U D qEd; (18.3)

whered is the distance from some level at whichU is chosen to be zero.

18.2 Potential

Recall how the electric fieldE was defined: by dividing the force on a small positive test charge by the
magnitude of the test charge, we get the electric field, which is a property of space. We can do something
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similar with potential energy, and find a similar quantity that is a property of space only. This quantity is
called thepotential.

Let’s first look at how this would be done with gravity. As we’ve seen, the gravitational potential energy
of two point masses isU D �Gm1m2=r . By dividing by one of the masses, we can get thegravitational
potentialG due to massm at distancer from the mass:G D �Gm=r . The gravitational potentialG has units
of J/kg.

We can do something similar with the electric force. The electric potential energy between two point
charges isU D q1q2=.4�"0r/; by dividing this by one of the charges, we get an expression for theelectric
potentialV due to chargeq at distancer from the charge:

V D 1

4�"0

q

r
: (18.4)

The electric potential is measured in units ofvolts(V), named for the Italian physicist Alessandro Volta. One
volt is equal to one joule per coulomb (1 VD 1 J/C). Electric potential is sometimes callvoltage.

As with potential energy, it is really onlydifferencesin potential that are physically meaningful. Equiva-
lently, we are free to choose what point in space (or a circuit) is chosen to have a potential of zero volts, and
all other potentials are measured with respect to that. In an electric circuit, there is usually a point called that
ground that is connected to the Earth and/or to the negative terminal of a power source, and the ground is
taken to be 0 V by convention.

Another common situation is a uniform field. In a uniform gravitational fieldg, the potential energy is
U D mgh; dividing by the massm we find the gravitational potential isG D gh. Similarly, in a uniform
electric fieldE, the potential energy isU D qEd ; dividing by the chargeq we find the electric potential is

V D Ed: (18.5)

Solving this forE, we can see that the electric field can be expressed in units of V/m as well as N/C. You
can check that these are equivalent by breaking everything down into base units (kg, m, s, A) with the help of
Table 2-2.

Because of the similarity between electric potential and gravitational potential, it can sometimes be help-
ful to think of potential as being analogous to height. Positive charge will tend to “fall” from high potential
to low potential.

Just as force and potential energy are related by Eq. (18.1), field strength and potential are similarly
related. The electric fieldE is related to the electric potentialV by

E D ��V
�x

: (18.6)

(The corresponding relation for gravity isg D ��G=�x.)

18.3 Equipotential Surfaces

Imagine drawing a surface in space such that every point on the surface is at the same potential. Such a
surface is called anequipotential surface. An important property of equipotential surfaces is that they always
intersect electric field lines at right angles. (If this were not so, then there would be a component ofE in
the plane of the equipotential surface and thus a component of the net force in the plane of the surface, in
violation of the assumption that the surface is one of constant potential.)

18.4 Comparison between Gravity and Electricity

The following table summarizes the formulæ for field strength, force, potential, and potential energy, both for
a uniform (constant) field and for a field due to a point particle.
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Table 18-1. Comparison of quantities in gravity and electricity.

Quantity Gravity Electricity

Uniform field

Field strength g D const. E D const.
Force F D mg F D qE

Potential G D gd V D Ed

Potential energy U D mG D mgd U D qV D qEd

Point particles

Field strength g D �Gm=r 2 E D q=.4�"0r
2/

Force F D �Gm1m2=r
2 F D q1q2=.4�"0r

2/

Potential G D �Gm=r V D q=.4�"0r/

Potential energy U D �Gm1m2=r U D q1q2=.4�"0r/

18.5 The Electron Volt

If a particle with an electric chargee (such as an electron or proton) is accelerated through a potential differ-
ence of 1 volt, it gains a kinetic energy of 1electron volt(eV). Note that the electron volt is a unit ofenergy,
not voltage. One electron volt is equal to1:6021766208� 10�19 joules.

Notice that it doesn’t matter how far the charged particle travels, or how much time it takes to accelerate:
it only matters that the particle is accelerated through a potential difference of 1 volt. More generally, if a
chargeNe is accelerated through a potential differenceV , the particle will gain an energy ofNeV electron
volts.

The electron volt is a common unit of energy in atomic and particle physics. Common multiples are the
kilo-electron volt (keV), mega-electron volt (MeV), and giga-electron volt (GeV).
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Chapter 19

The Battery

There are many ways of creating an electrical potential; one of the simplest is thebattery, in which an
electrical potential is created by a chemical reaction. A battery consists of two strips of dissimilar metal
(calledelectrodes) placed in solution called anelectrolyte. The electrolyte will preferentially dissolve one of
the electrodes, leaving an electric charge on one of the electrodes and the opposite charge on the other. As
an example, consider the common zinc-carbon battery. Two electrodes—one of zinc and one of carbon—are
placed in an electrolyte of sulfuric acid. The acid dissolves a little of the zinc electrode, placing Zn2C ions in
solution and leaving extra electrons behind on the zinc electrode, so that it becomes negatively charged. If the
battery is not connected to anything, then the system reaches an equilibrium condition: as the zinc electrode
becomes negatively charged, it will tend to attract the Zn2C ions back to it are restore the zinc again. If the
battery is connected to something, the zinc ions will continue to be produced, and will start to pull electrons
from the carbon electrode, which will become positively charged. As the battery continues to be used, the
electrodes will become more and more dissolved, until one of the electrodes is used up and the battery dies.

The amount of potential difference between the two electrodes (theterminalsof the battery) depends on
the chemistry, and in particular on the two metals present. In the case of a zinc-carbon battery, the potential
between the terminals is 1.5 V. Other types of batteries will have other potential differences, as shown in
Table 19-1.

Table 19-1. Common battery types.

Battery Type C Terminal � Terminal Potential
Zn-C C Zn 1.5 V
Alkaline MnO2 Zn 1.5 V
Silver oxide Ag2O Zn 1.55 V
Lead acid PbO2 Pb 2.1 V
Ni-Cd NiOOH Cd 1.2 V
Ni-Zn NiOOH Zn 1.65 V
NiMH NiOOH metal alloy 1.2 V
Lithium ion Li compound Li compound 3.6 V

When batteries are connected inseries(end to end), their voltages add. This is what you’re doing when
you put several batteries into a device like a calculator or flashlight: theC terminal of one battery is connected
to the� terminal of the next. For example, you may put four size AAA alkaline batteries into a calculator,
which provides a total potential of4� 1:5 V D 6 V. A 9 V battery actually consists of six individual batteries
connected in series in a single casing. A car battery consists of six lead-acid batteries connected in series, for
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a total potential of 12 V. Sometimes a single electrochemical system is called acell, with the word “battery”
being reserved for several cells connected in series.

It’s also possible to connect several batteries inparallel, so that allC terminals are connected together
and all� terminals are connected together. This arrangement will have the same potential as a single battery,
but will be able to delivery more electric current. This is not usually done, since one could simply replace the
multiple batteries with a single larger-sized battery instead.

In a real battery, the potential delivered by the battery is not constant, but varies with the amount of current
delivered by the battery. This is due to the battery’sinternal resistance, and is discussed further in Section
21.5.

A good way to think of a battery is as a kind of electron “pump”: it pumps current around and electrical
circuit, much like a water pump would pump water.
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Chapter 20

Electric Current

If we place a potential differenceV across opposite ends of a conductor (a copper wire, for example), then
there will be an electric fieldE D ��V=�x created inside the conductor. The free electrons will respond
to this electric field, moving opposite the direction of the electric field. This motion of electrons is called an
electric current, and is analogous to the flow of water in a stream.

Current is measured as the amount of current passing a fixed point in the conductor per unit time. A
current of 1 coulomb of charge per second is defined to be 1 ampere (A), after the French physicist Andr´e-
Marie Ampère: 1 AD 1 C/s.

By convention, the direction of electric current is taken to beoppositethe direction of the flow of electrons.
Another way to think of this is to imagine electric current to be due to the flow of positive charges through
the conductor (even though it’s actually the negative electrons that are moving). (This somewhat confusing
situation is related to Benjamin Franklin’s unfortunate choice of which type of charge to call “positive” and
which to call “negative”.) Conventional current moves in the direction from high potential to low potential.
If a conductor is connected to the terminals of a battery, then conventional current flows from theC terminal,
through the conductor, back to the� terminal.

Electric current does not flow smoothly through through a conductor. Electrons inside the conductor
are moving around at random, bumping into other electrons in their vicinity. Superimposed on this random
motion is a gradual drift of the electrons opposite the direction of the electric field. This speed of the electrons
through the conductor is called thedrift velocity. If the density of free electrons (electrons per unit volume)
is n, then the total charge per unit volume isne (wheree is the elementary charge). In timet , the volume of
electrons that move through the wire isAvd t , whereA is the cross-sectional area andvd is the drift velocity.
This means the total charge moving through the wire in timet is .ne/.Avd t/, and so the current is found by
dividing this byt :

I D neAvd : (20.1)

Here’s an important point to keep in mind: one speaks of the potential difference (or voltage)between two
pointsin an electrical circuit; but one speaks of the electric currentat one pointin the circuit. For example,
you refer to the voltageacrossa resistor, but the currentthrougha resistor.
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Chapter 21

Resistance

Suppose we apply a potential differenceV across the ends of a conductor. If the conductor were to allow
the free, unimpeded flow of electrons, then the resulting current in the conductor would be unlimited. But
in a real conductor, there is always some electricalresistanceto the flow of electric current due to the free
electrons constantly bumping into their neighbors. This electrical resistance is measured in units ofohms
(�), after German physicist Georg Simon Ohm. One ohm is defined to be that resistance that produces a
current of 1 ampere in the presence of a potential difference of 1 volt: 1� D 1 V/A.

Resistance is often introduced deliberately into electrical devices by electronic components calledresis-
tors. A resistor is typically a small cylindrical device with metal wires protruding from each end. The cylinder
is decorated with color bands, which are acolor code(Figure 21.1) that indicates the value of the resistance.
In a four-band color code, the first two bands are the first two significant digits of the resistance, and the
third band is the power of 10 by which the first two bands are to be multiplied. A fourth band indicates the
tolerance—how far the resistor is allowed to be from its marked value.

21.1 Resistivity

Even a plain conductor—like a copper wire—contain some small amount of resistance. The resistance of a
conductor is related to its dimensions and to a quantity called itsresistivity. If the resistance inR, and the
resistivity is�, then the two are related by

R D �
L

A
; (21.1)

whereR is the resistance (�), � is the resistivity (� m),L is the length of the conductor (in the direction of
the flow of current), andA is the cross-sectional area of the conductor (perpendicular to the direction of the
flow of current). It’s important to recognize that the resistivity� is an intrinsic property of the material: for
example, you can look up the resistivity of copper in a physics handbook. The resistanceR, though, depends
on the geometry—the length and diameter of the conductor, as well as its resistivity.

It turns out that the resistivity depends on temperature. You can compute the temperature correction using
the equation

� D �0 Œ1C ˛.T � T0/�: (21.2)

Here�0 is the resistivity at temperatureT0, � is the resistivity at temperatureT , and˛ is called thetempera-
ture coefficient of resistivity. You can find�0, T0 and˛ for a particular conductor in a physics handbook (e.g.
Table 21-1); then for any given temperatureT , you can find the resistivity� at that temperature.
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Figure 21.1: The resistor color code (4 bands).

Table 21-1. Resistivities and Temperature Coefficients (atT0 D 20ıC). [10]

Material Resistivity� (�m) Temperature coeff.̨ (ıC)�1

Conductors
Silver 1:59 � 10�8 0.0061
Copper 1:68 � 10�8 0.0068
Gold 2:44 � 10�8 0.0034
Aluminum 2:65 � 10�8 0.00429
Tungsten 5:6 � 10�8 0.0045
Iron 9:71 � 10�8 0.00651
Platinum 10:6 � 10�8 0.003927
Mercury 98 � 10�8 0.0009
Nichrome (Ni, Fe, Cr alloy) 100 � 10�8 0.0004

Semiconductors�

Carbon (graphite) (3–60)�10�5 �0:0005
Germanium (1–500)�10�3 �0:05
Silicon 0.1–60 �0:07

Insulators
Glass 109 – 1012

Hard rubber 1013 – 1015

� Values depend strongly on the presence of even slight amounts of impurities.
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Multiplying both sides of Eq. (21.2) byL=A, we see the resistance changes with temperature by a similar
formula:

R D R0 Œ1C ˛.T � T0/�: (21.3)

HereR0 is the resistance at temperatureT0, andR is the resistance at temperatureT .
For copperwire, a convenient empirical equation is [7]

R D R0

234:5C T

234:5C T0

; .copper only/ (21.4)

whereT andT0 are in degrees Celsius.
Eq. (21.3) suggests that it would be possible to use a resistor as a thermometer: by accurately measuring

the resistance of a resistor, one can infer the temperature. Solving Eq. (21.3) for the temperatureT , we find

T D T0 C 1

˛

�
R

R0

� 1
�
: (21.5)

In principle, this equation could be used to measure the temperature of a resistor by measuring its resistance.
A thermistoris a type of resistor specifically designed for this type of temperature measurement. How-

ever, Eq. (21.5) is not really adequate for accurate temperature measurement with a thermistor. Instead, one
uses a more accurate model called theSteinhart-Hart equation:

T D 1

aC b lnRC c.lnR/3
; (21.6)

wherea, b, andc are called theSteinhart-Hart parameters, and are provided by the thermistor manufacturer.

21.2 Resistors in Series and Parallel

Several resistors connected end-to-end (in series) have an equivalent resistance equal to the sum of the indi-
vidual resistances:

Rs D
X

i

Ri (21.7)

D R1 CR2 CR3 C � � � (21.8)

If they are connectedin parallel, the the equivalent resistance is the reciprocal of the sum of the reciprocals
of the individual resistances:

1

Rp

D
X

i

1

Ri

(21.9)

D 1

R1

C 1

R2

C 1

R3

C � � � (21.10)

A common error in computing parallel resistances is to compute sum of the reciprocals of the individual
resistances, then forget to take the reciprocal of the result at the end. Be careful not to do this!

Note the following points. For resistors connectedin series:

• The equivalent resistance will be bigger than the largest resistance in the series combination.

• If one resistor in the series combination is much larger than the others, the equivalent resistance will be
approximately equal to the largest resistance.
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• N equal resistorsR connected in series have an equivalent resistance ofNR.

For resistors connectedin parallel:

• The equivalent resistance will be smaller than the smallest resistance in the parallel combination.

• If one resistor in the parallel combination is much smaller than the others, the equivalent resistance will
be approximately equal to the smallest resistance.

• N equal resistorsR connected in parallel have an equivalent resistance ofR=N .

• For the special case of justtwo resistors in parallel, Eq. (21.9) becomes the product of the resistances
divided by their sum:

Rp D R1R2

R1 CR2

: (21.11)

It may sometimes be handy to use the notation

xjjy � xy

x C y
(21.12)

so that the equivalent resistance of two resistors in parallel isR1jjR2 D R1R2=.R1 CR2/.

21.3 Conductance

Related to the resistanceR and resistivity� are the conductanceG and conductivity� :

G D 1

R
I � D 1

�
: (21.13)

Conductance is measured in units ofsiemens(S), named for German inventor Ernst Werner von Siemens. The
siemens is also sometimes called themho(Ã), which is “ohm” spelled backwards. Conductivity is measured
in units of S/m.

The relation between conductance and conductivity is found by taking the reciprocal of Eq. (21.1):

G D �
A

L
: (21.14)

21.4 Wire

In computing the resistivity or conductivity of wire in Eqs. (21.1) and (21.14), you will need to know the
cross-sectional areaA of the wire. In the United States, wire is sold in standard diameters that are numbered
according to theAmerican Wire Gauge(AWG), as shown in Table 21-2. Wire used in laboratory work is
typically 20-gauge or 22-gauge copper wire.

By definition, AWG 0000 wire has a diameter of 0.46 inches, and AWG 36 wire has a diameter of 0.005
inches. This implies that AWGn wire has a diameterd of

d D 0:005 � 92.36�n/=39 inches; (21.15)

wheren D �3 for AWG 0000,n D �2 for AWG 000, andn D �1 for AWG 00. This formula was used to
create Table 21-2. (Note that alarger AWG number corresponds to asmallerdiameter wire.)
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21.5 Battery Internal Resistance

A real battery contains aninternal resistanceto the flow of electricity that causes it to have a lower voltage
when delivering current to a circuit than when it isn’t. The potential difference across a battery’s terminals
when it’snotconnected to a circuit and doing work is called itselectromotive force(or “emf”), E. (Note that
despite the name, this isnota force, but a voltage, measured in volts.)

The actual potential difference across a battery’s terminals when itis doing work on a circuit is called the
terminal voltage. The terminal voltageV may be modeled as

V D E � I r; (21.16)

whereI is the current being delivered by the battery, andr is the internal resistance of the battery. The more
current is drawn from the battery, the smaller its terminal voltage.
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Table 21-2. American Wire Gauge (AWG).

Gauge Diameter (in) Area (m2)

0000 0.46000 1:07219� 10�4

000 0.40964 8:50288� 10�5

00 0.36480 6:74309� 10�5

0 0.32486 5:34751� 10�5

1 0.28930 4:24077� 10�5

2 0.25763 3:36308� 10�5

3 0.22942 2:66705� 10�5

4 0.20431 2:11506� 10�5

5 0.18194 1:67732� 10�5

6 0.16202 1:33018� 10�5

7 0.14429 1:05488� 10�5

8 0.12849 8:36556� 10�6

9 0.11442 6:63419� 10�6

10 0.10190 5:26115� 10�6

11 0.09074 4:17229� 10�6

12 0.08081 3:30877� 10�6

13 0.07196 2:62398� 10�6

14 0.06408 2:08091� 10�6

15 0.05707 1:65023� 10�6

16 0.05082 1:30870� 10�6

17 0.04526 1:03784� 10�6

18 0.04030 8:23047� 10�7

19 0.03589 6:52706� 10�7

20 0.03196 5:17619� 10�7

21 0.02846 4:10491� 10�7

22 0.02535 3:25534� 10�7

23 0.02257 2:58160� 10�7

24 0.02010 2:04730� 10�7

25 0.01790 1:62359� 10�7

26 0.01594 1:28756� 10�7

27 0.01420 1:02108� 10�7

28 0.01264 8:09755� 10�8

29 0.01126 6:42165� 10�8

30 0.01003 5:09260� 10�8

31 0.00893 4:03862� 10�8

32 0.00795 3:20277� 10�8

33 0.00708 2:53991� 10�8

34 0.00630 2:01424� 10�8

35 0.00561 1:59737� 10�8

36 0.00500 1:26677� 10�8

37 0.00445 1:00459� 10�8

38 0.00397 7:96679� 10�9

39 0.00353 6:31795� 10�9

40 0.00314 5:01036� 10�9
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Chapter 22

Ohm’s Law

For many materials and devices (conductors and resisitors, for example), it is found that the greater the
potential difference placed across the device, the greater the resulting current. This is calledOhm’s law, and
may be stated as

V D IR; (22.1)

whereV is the potential difference (in volts),I is the current (in amperes), andR is the resistance (in ohms).
Ohm’s law, like Hooke’s law, is an example of what is called anempirical law: something that is found to
be at least approximately correct in many situations, but is not necessarily always true. This is an important
point: Ohm’s law is not always true! It is just something that is found to work for many things like conductors
and resistors. Ohm’s law doesnot apply in some cases: lamp filaments, diodes, and solar cells, for example.
Such devices are said to benon-ohmic.

Ohm’s law may be considered the most important principle in the analysis of electric circuits. You’ll use
it over and over again as we learn to analyze electric circuits.

22.1 Electric Power

The electric powerP consumed by a resistor is given by

P D IV; (22.2)

whereP is in watts. What this specifically refers to is the rate at which electrical energy is converted to heat.
Commercially made resistors come in several standard power ratings (e.g.1/8 W, 1/4 W, 1/2 W, 1 W). When
building a circuit, you have to make sure that the product of the current through and voltage across a resistor
does not exceed its power rating.

Using Ohm’s law (Eq. (22.1)) we can write the electric power (Eq. (22.2)) in several equivalent forms:

P D IV D I 2R D V 2

R
: (22.3)

You can use any of these to compute the power consumed by a resistor; which one you use depends on which
quantities you know:I , V , orR.
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Chapter 23

DC Electric Circuits

Electronic components like batteries and resistors may be combined into closed loops calledcircuits. An
almost endless variety of such circuits may be used to create useful device: clocks, calculators, radios, etc.
In designing an electronic circuit, an engineer or electronics hobbyist will need to perform some simple
calculations to figure out how much current is going through each part of the circuit, and how much potential
difference there is across each component. We’ll look at some of the basic methods of analysis here, using
simple circuits consisting only of batteries and resistors.

23.1 Schematic Diagrams

To show how the components of an electronic circuit are connected together, we draw aschematic diagram.
Such a diagram uses symbols to represent the different components (as shown in Fig. 23.1), along with lines
to represent the connecting wires. When two lines in a diagram cross, a dot is used to indicate that the wires
are electrically connected at that point; the absence of a dot means that there is no electrical connection.

Note that in the battery symbol, the end with thelong line is thepositiveC terminal. Groundrefers to
a connection to a large conductor—traditionally to a copper pipe driven into the earth. You will often see
several parts of a circuit connected to a common ground, with the� terminal of the battery or power supply
serving as the ground.

23.2 Kirchhoff Plots

A good way to visualize what’s happening in an electrical circuit is a diagram that has been called aKirchhoff
plot (Ref. [17]). This is a three-dimensional plot in which one draws the circuit in thex-y plane; the potential
(voltage) at any point in the circuit is then plotted on the´ axis. (See Fig. 23.2.) The plot helps you to think
of voltage as analogous to elevation: batteries cause an increase in elevation, and resistors cause a drop in
elevation. And just as water always flows downhill, you can use the diagram to help visualize electric current
flowing from high potential to low potential.

23.3 A Simple Circuit

As an example, let’s look at the simple circuit shown in Fig. 23.3, consisting of a battery and three resistors.
Conventional current flows around the circuit clockwise: from theC terminal of the battery, through the

resistors, then back into the� terminal of the battery. (Remember that the electrons actually travel in the
opposite direction, counterclockwise.) The current flowing from the battery through resistorR 1 we labelI1;
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Battery

Resistor

Capacitor

Inductor

Switch

Wire

Ground

Antenna

Headphones

Diode
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+ -

Transformer

Crystal (piezoelec.)

Telegraph key

Speaker

Microphone

Lamp

Figure 23.1: Some common schematic symbols.
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Figure 23.2: Kirchhoff plots of two simple electric circuits.Left: A simple circuit with one loop. The resistor
r is meant to model the battery internal resistance;E is the battery electromotive force; andV D E � I r is
the terminal voltage.Right: A more complex circuit. Notice how each battery causes a rise in potential, and
each resistor causes a drop in potential. (From Ref. [17].)

R1=10 ohms

V=6 V R2=5 ohms R3=3 ohms

I1

I2 I3

Figure 23.3: A simple circuit.
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this currents splits at the fork with the two parallel resistors into two currents,I 2 + I3. After passing through
these two resistors, the currents recombine, so currentI1 runs through the bottom leg of the circuit before
returning to the battery at the� terminal.

Our job is to find the currents through, and voltages across, each of the three resistors. To begin, we’ll
reduce the three resistors to a single equivalent resistor. The two resistors in parallel are equivalent to a single
resistance of

R23 D 1
1

R2
C 1

R3

(23.1)

D 1
1

5�
C 1

3�

(23.2)

D 1:875 � (23.3)

Now we’ve reduced the circuit to two resistors:R1 in series withR23. The equivalent resistance of these
two in series is

R123 D R1 CR23 (23.4)

D 10 �C 1:875 � (23.5)

D 11:875 � (23.6)

So now we’ve reduced all three original resistors to a single equivalent resistance of9:875 � connected
to the 6 V battery. We can find the currentI1 coming out of the battery using Ohm’s law:

I1 D V

R123

(23.7)

D 6 V

11:875 �
(23.8)

D 0:50526 A (23.9)

This is also the current through resistorR1. Since we knowR1 and the current throughR1, we can use Ohm’s
law to find the potential difference acrossR1:

V1 D I1R1 (23.10)

D .0:50526 A/.10 �/ (23.11)

D 5:0526 V: (23.12)

Now we need to find the currents through and voltages across resistorsR2 andR3. There are a few ways
we could proceed:

1. We can consider the two resistorsR2 andR3 as equivalent to a single resistorR23 D 1:875 �, as
we’ve already worked out. The current through this equivalent resistor isI1 D 0:50526 A. Knowing
the resistance and current, we can find the voltage across the two parallel resistors. Knowing the voltage
across each resistor, you can now work out the individual currents in each resistor using Ohm’s law.

2. Alternatively, we can note that the sum of the voltage drops for all the resistors must equal the voltage
rise due to the battery. Therefore, the voltage drop across the two parallel resistors must be6 V �
5:0526 V D 0:9474 V. Knowing this voltage and the resistancesR2 andR3, we can use Ohm’s law to
solve for the currents.
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3. A third approach would be to use proportions to figure out how the current splits going through the
two parallel resistors. Since the resistors areR2 D 5� andR3 D 3�, we know that3/8 of currentI1

goes through the5 � resistor, and5/8 goes through the3 � resistor. (Proportionally more current goes
through the smaller resistor.) In general, fortwo resistorsR1 andR2 in parallel, the currents will be

I1 D R2

R1 CR2

I (23.13)

I2 D R1

R1 CR2

I; (23.14)

whereI is the current going in to the parallel combination, before it splits intoI 1 going throughR1

andI2 going throughR2. Knowing the currents through each resistor and the two resistances, we can
use Ohm’s law to solve for the voltages across each resistor. This proportion method is really only
useful for two resistors in parallel; for three or more in parallel, the formulæ become too complicated
to be practical.

Any of these three approaches will give the same results. The currents through and voltages across each
of the resistors of Fig. 23.3 is shown in Table 23-1.

Table 23-1. Results of circuit analysis of the simple circuit of Fig. 23.3.

Resistor R (�) I (A) V (V)
R1 10 0.5053 5.0526
R2 5 0.1895 0.9474
R3 3 0.3158 0.9474

Note the following from this table:

• V1 C V2 D V1 C V3 D 6 V. Looping once around the circuit—taking either the path throughR 2 or the
one throughR3—gives a total potential drop equal to the battery voltage.

• V2 D V3. When resistors are connected in parallel, they all have the same potential drop across them.

• I2 C I3 D I1. When the the current splits at a junction, the sum of the currents leaving the junction
equals the current going into the junction.

• I2 D 3=8I1; I3 D 5=8I1. When current splits at a junction, it divides in proportion to the resistance in
each branch.

23.4 Circuit Analysis Principles

We can summarize here a few basic principles to keep in mind:

• When making a complete loop around the circuit, the sum of the voltage rises (due to batteries) equals
the sum of the voltage drops (due to resistors). This will be true of any loop you take around the circuit.

• When the current splits at a junction, the sum of the currents leaving the junction equals the sum of the
currents entering the junction.

• Current will split at a junction in proportion to the resistance in each branch, with more current going
through the branch of least resistance.
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• For resistors in series, all resistors have the same current, but there will generally be a different voltage
across each resistor. A series combination is called avoltage divider.

• For resistors in parallel, all resistors have the same voltage, but there will generally be a different
current through each resistor. A parallel combination is called acurrent divider.
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Chapter 24

Kirchhoff’s Rules

Examine the circuit shown in Fig. 24.1. You’ll note that the techniques we used in the previous chapter are
not suited to analyze this circuit, due to the presence of the 3V battery in the middle of the circuit.

Instead, we must may use of another technique calledKirchhoff ’s rules. There are two of these rules:

1. Kirchhoff ’s voltage rulestates that the sum of the voltage rises and drops around any complete loop in
the circuit equals zero.

2. Kirchhoff ’s current rulestates that at each junction in the circuit, the sum of the currents entering the
junction equals the sum of the currents leaving the junction.

24.1 Example Circuit

We’ll use the circuit shown in Fig. 24.1 as an example to illustrate how to apply Kirchhoff’s rules.

1. Begin by identifying loops in the circuit. The circuit in Fig. 24.1 consists of three loops: the upper
loop, the lower loop, and the outer loop. We’ll need to choose any two of these three loops to work
with—let’s choose the upper and lower loops.

2. Next, we choose a direction in which to “evaluate” each loop. This can be either clockwise or coun-
terclockwise; the choice is completely arbitrary, and will not affect the final results. Let’s choose to
evaluate both the upper and lower loop in the clockwise direction, as indicated by the arrows in the
center of each loop.

3. Now identify the currents in the circuit. By inspection of the circuit, we can see that there are three
distinct currents: one in the upper branch, one in the middle branch, and one in the lower branch.
We’ll label these three currentsI1, I2, andI3 (respectively), and choose a direction for each current, as
shown in Fig. 24.1. It doesn’t matter whether we choose the directions for the currents correctly—we
just guess at each direction. If we guess the wrong direction for a current, then that current will come
out negative when we finish the analysis, so the real current flows opposite the direction we guessed.

4. The next step is to apply Kirchhoff’s voltage rule to the upper and lower loops of the circuit. Beginning
at any point in the loop, we move in the direction chosen in step 2, and write down the terms shown in
Fig. 24.2; the sum of these terms is then set to zero.

For the upper loop, beginning in the upper-left corner, we find:

�I1R1 � I1R2 C 3 V C I2R3 C 6 V D 0 (24.1)
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6 V

3 V

R1=2 ohms

R2=5 ohms

R3=4 ohms

R4=7 ohms

R5=10 ohms

I1

I3 I2

Figure 24.1: Example circuit for analysis using Kirchhoff’s rules. As shown by the analysis, the actual
direction of currentI2 will turn out to be opposite the direction shown here.
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+V

-V

+IR

-IR

Figure 24.2: Terms for use in Kirchhoff’s voltage rule. The evaluation direction is always froma to b.
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or, substituting the resistance values,

�I1.2�/ � I1.5�/C 3 V C I2.4�/C 6 V D 0 (24.2)

or, simplifying,

�I1.7�/C I2.4�/C 9 V D 0 (24.3)

Similarly, for the lower loop, beginning in the upper-left corner, we find:

�I2R3 � 3 V � I3R5 � I3R4 D 0 (24.4)

Again substituting specific resistance values,

�I2.4�/ � 3 V � I3.10�/� I3.7�/ D 0 (24.5)

or, simplifying,

�I2.4�/ � 3 V � I3.17�/ D 0 (24.6)

5. We next apply Kirchhoff’s current rule to the junction on the left:

I3 D I1 C I2 (24.7)

6. Now Eqs. (24.3), (24.6), and (24.7) form a system of three simultaneous linear equations in the three
unknown currents,I1, I2, andI3. Writing these three equations in matrix form (and ignoring units for
convenience of notation),0

@ �7 4 0

0 �4 �17
1 1 �1

1
A

0
@ I1

I2

I3

1
A D

0
@ �9

3

0

1
A : (24.8)

Solving for the currents, we find0
@ I1

I2

I3

1
A D

0
@ �7 4 0

0 �4 �17
1 1 �1

1
A

�1 0
@ �9

3

0

1
A : (24.9)

Evaluating the matrix inverse as the transposed matrix of cofactors divided by the determinant, we find0
@ I1

I2

I3

1
A D � 1

215

0
@ 21 4 �68

�17 7 �119
4 11 28

1
A

0
@ �9

3

0

1
A : (24.10)

Performing the indicated multiplications, we have0
@ I1

I2

I3

1
A D

0
@ 177=215

�174=215
3=215

1
A D

0
@ 0:82326

�0:80930
0:01395

1
A : (24.11)

This tells us the three unknown currents:I1 D 823:26 mA, I2 D 809:30 mA, andI3 D 13:95 mA.
The signs of the currents tell us that we guessed the directions ofI1 andI3 correctly, but we guessed
the direction ofI2 incorrectly (sinceI2 came out negative). The correct direction ofI2 is oppositethe
direction shown in Fig. 24.1.
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Chapter 25

Electronic Instruments

In this chapter we’ll examine a few common instruments used to analyze electronic circuits.

25.1 Ammeter

An ammeteris used to measure electric current. To use an ammeter, you mustbreak the circuit at the point
at which you measure the current, the insert the ammeter into the circuit (in series).

25.2 Voltmeter

A voltmeteris used to measure the electric potential difference between two points in the circuit. To connect
a voltmeter properly, you connect the voltmeter across the two points in the circuit whose potential difference
you wish to measure (i.e. in parallel).

25.3 Ohmmeter

An ohmmeteris used to measure electrical resistance. You should not connect an ohmmeter to a live circuit;
instead, you should completely remove the component in question, and then connect it to the leads of the
ohmmeter. The ohmmeter will connect the component to its own internal power supply, and use the resulting
current to measure the resistance.

25.4 Multimeter

A common electronic measuring device is themultimeter, which is an ammeter, voltmeter, and ohmmeter
combined into a single device. A multimeter may also include capacitance meter, inductance meter, and/or a
frequency meter.

25.5 Oscilloscope

An oscilloscopeis an complicated-looking device, consisting of a screen, a probe, and an impressive array of
knobs and controls. The oscilloscope is essentially a device for plotting voltage vs. time. The ground wire
on the probe is connected to the circuit ground (generally the� of the power supply), and the probe is then
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connected to the point in the circuit whose voltage with respect to ground you wish to measure. If the current
in the circuit is periodic, the oscilloscope can be made to synchronize itself to this signal so that the plot of
voltage vs. time appears “frozen” on the screen.

The oscilloscope often has two or more independent measurement “channels” can also be made to plot
one voltage in the circuit vs. another, by using two probes and two different channels.

25.6 Logic Probe

A logic probeis used in digital circuits to indicate whether a point in a circuit is at a logic “high” or logic
“low” value.
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Chapter 26

Capacitance

Suppose we have a conductor carrying a net chargeCQ and a second conductor carrying a net charge�Q;
and suppose the two charges are separated by a fixed distance. Such a device is called acapacitor (or
condenser, an old-fashioned term). The more charge is put on the two conductors of the capacitor, the greater
the potential difference between them. In fact, we find that the potential difference isproportional to the
amount of charge:Q D CV , whereC is called thecapacitance:

C D Q

V
: (26.1)

Capacitance is measured in units offarads(F), named for English physicist Michael Faraday. One farad is
equal to one coulomb per volt (1 FD 1 C/V), and is a very large unit of capacitance. For most laboratory
applications, we will be working with units of microfarads (�F), nanofarads (nF), and picofarads (pF).

The reciprocal of capacitance is called theelastanceS :

S D 1

C
: (26.2)

Elastance has units of F�1, sometimes called adaraf (“farad” spelled backwards).

26.1 Parallel-Plate Capacitor

One common capacitor configuration consists of two parallel plates (each with areaA), separated by a dis-
tanced (Fig. 26.1). As you can see in the figure, the electric field between the plates of the capacitor is nearly
uniform, except near the edges where there are some edge effects.

To find an expression for the capacitance of the parallel-plate capacitor, we apply Gauss’s law to an
imaginary pillbox-shaped Gaussian surface that has one flat end of areaA in the region between the plates,
and the other in the region to the left of the left plate. The electric flux through all faces of the surface except
the face between the plates will be zero; for that face the electric flux will beˆe D EA; then by Gauss’s law,

ˆE D EA D Q

"0

: (26.3)

Since the potential difference between the plates isV D Ed , we have

V D Qd

"0A
: (26.4)
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Figure 26.1: Electric field between the plates of a parallel-plate capacitor. The electric field between the
plates is uniform, except near the edges. (©GNU-FDL, Wikimedia Commons [11].)

To find the capacitance, we divide this into the charge on each plate,Q:

C D Q

V
D "0A

d
: (26.5)

Note that the capacitance dependsonly on the geometry of the capacitor (plate area and spacing), and not
on the charge on capacitor or the voltage between the plates. This is true of other capacitor configurations
as well: C depends only on the geometrical properties of the capacitor. Note also that the parallel-plate
capacitor has a larger capacitance if the plates are larger, or if the plates are closer together.

26.2 Capacitors in Series and Parallel

If several capacitors are connected end-to-end (in series), the equivalent resistance is equal to the reciprocal
of the sum of the reciprocals of the individual resistances:

1

Cs

D
X

i

1

Ci

(26.6)

D 1

C1

C 1

C2

C 1

C3

C � � � (26.7)

A common error in computing series capacitances is to compute sum of the reciprocals of the individual
capacitances, then forget to take the reciprocal of the result at the end. Be careful not to do this!

If the capacitors are connectedin parallel, the the equivalent capacitance is the sum of the individual
capacitances:

Cp D
X

i

Ci (26.8)

D C1 C C2 CC3 C � � � (26.9)
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Notice that the formula for capacitors inserieslooks similar to the formula for resistors inparallel, and
vice versa.

Note the following points. For capacitors connectedin series:

• The equivalent capacitance will be smaller than the smallest capacitance in the series combination.

• If one capacitor in the series combination is much smaller than the others, the equivalent capacitance
will be approximately equal to the smallest capacitance.

• N equal capacitorsC connected in series have an equivalent capacitance ofC=N .

For capacitors connectedin parallel:

• The equivalent capacitance will be bigger than the largest capacitance in the parallel combination.

• If one capacitor in the parallel combination is much larger than the others, the equivalent capacitance
will be approximately equal to the largest capacitance.

• N equal capacitorsC connected in parallel have an equivalent capacitance ofNC .

26.3 Dielectric Materials in Capacitors

As shown by Eq. (26.5), the capacitance of a flat-plate capacitor can be increased by increasing the area of
the plates, or by decreasing the distance between them. Another way to increase the capacitance is to insert a
dielectric material between the plates; this will cause the capacitance to increase by a factor ofK:

C D K
"0A

d
; (26.10)

whereK is called thedielectric constantof the material. Inserting a dielectric material between the plates
of a capacitor does triple duty: it increases the capacitance by a factor ofK; it serves to keep the two plates
physicallyseparated by a small fixed distance; and it keeps the the plates electrically insulated from each
other so that they don’t short out.

The combination

" D K"0 (26.11)

is called thepermittivityof the material.

26.4 Energy Stored in a Capacitor

A capacitor can be thought of as a device that stores energy in the electric field between the plates of the
capacitor. Using the calculus, it can be shown that the potential energyU stored in the electric field of a
capacitor of capacitanceC , voltageV , and chargeQ (on each plate) is given by

U D 1
2
QV D 1

2
CV 2 D 1

2

Q2

C
: (26.12)

Theenergy density(energy per unit volume) of a capacitor can be found by using the parallel-plate capacitor
as an example. The total potential energy stored in a parallel-plate capacitor (of plate areaA and separation
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d ) is

U D 1
2
CV 2 (26.13)

D 1

2

"0A

d
.Ed/2 (26.14)

D 1
2
"0E

2Ad: (26.15)

Since the volume of the space between the plates isAd , the energy densityu D U=.Ad/, or

u D 1
2
"0E

2: (26.16)
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Chapter 27

RC Circuits

By connecting a resistor and capacitor together in series, we create anRC circuit. In an RC circuit, energy
is stored in the electric field of the capacitor, and the resistor controls the rate at which charge reaches the
capacitor. The characteristic time scale required to charge the capacitor is called thetime constant	 , and is
given by

	 D RC: (27.1)

If the resistanceR is in ohms and the capacitanceC is in farads, then the time constant	 will have units of
seconds.

There are two basic types of RC circuits:charginganddischarging.

27.1 Charging RC Circuit

Figure 27.1 shows a charging RC circuit. The circuit includes a battery, so that when the switchS is closed,
current flows through the resistor and charges the capacitor. As charge builds up on the plates of the capacitor,
it becomes more difficult for the battery to add even more charge to the capacitor, so the current begins to
drop. Once an amount of time has gone by that is large compared to the time constant	 D RC , the capacitor
will be essentially full charged, and the current will be negligible.

R

C

S

V

Figure 27.1: A charging RC circuit. The capacitorC begins charging once switchS is closed.
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Figure 27.2 shows the resistor voltage, capacitor voltage, circuit current, and capacitor charge in the
charging RC circuit as a function of time. The capacitor is initially uncharged, and switchS is closed at time
t D 0. Shortly after the switchS is closed, a large current flows through the circuit, the voltage across the
resistorR is equal to the battery voltageV , and the voltage across the capacitor is zero. At time	 D RC

after the switch is closed, the voltage across the resistor has decreased to1=e D 0:368 of the battery voltage;
the voltage across the capacitor has increased to1 � 1=e D 0:632 of the battery voltage; the current has
decreased to1=e of its initial value; and the charge on each of the plates of the capacitor has increased to
1 � 1=e of its maximum capacity.

Mathematically, the voltage across the resistorVR , the voltage across the capacitorVC , the current in the
circuit I , and the charge on each capacitor plateQ can be shown to be

VR.t/ D Ve�t=� (27.2)

VC .t/ D V.1 � e�t=�/ (27.3)

I.t/ D .V=R/ e�t=� (27.4)

Q.t/ D CV.1 � e�t=�/ (27.5)

As time t ! 1, current will stop flowing in the circuit, the capacitor will have reached its maximum
charge, the voltage across the resistor will be zero, and the voltage across the capacitor will equal the battery
voltage.

Figure 27.2: Plots vs. time for a charging RC circuit. (a) Resistor voltage vs. time; (b) capacitor voltage vs.
time; (c) circuit current vs. time; and (d) charge on the capacitor vs. time. The capacitor is initiallyuncharged,
and the switchS is closed at timet D 0.

27.2 Discharging RC Circuit

Figure 27.3 shows a discharging RC circuit. There is no battery in this circuit; instead, we have a capacitor
C that is initially fully charged to potentialV that is connected in series with a resistorR. When switchS is
closed at timet D 0, the voltage across the resistor and capacitor, the circuit current, and the capacitor charge
all decrease exponentially, and reach1=e of their initial value in time	 D RC . As timet ! 1, the current,
all voltages, and the capacitor charge will all dwindle to zero. Mathematically, the voltage across the resistor
VR, the voltage across the capacitorVC , the current in the circuitI , and the charge on each capacitor plateQ
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can be shown in this case to be

VR.t/ D Ve�t=� (27.6)

VC .t/ D Ve�t=� (27.7)

I.t/ D .V=R/ e�t=� (27.8)

Q.t/ D CVe�t=� (27.9)

R C

S

Figure 27.3: A discharging RC circuit. The initially charged capacitorC begins discharging once switchS
is closed.

Figure 27.4: Plots vs. time for a discharging RC circuit. (a) Resistor voltage vs. time; (b) capacitor voltage
vs. time; (c) circuit current vs. time; and (d) charge on the capacitor vs. time. The capacitor is initially fully
charged, and the switchS is closed at timet D 0.
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Chapter 28

Other Electronic Components

28.1 The Diode

28.2 The Transistor

28.3 Integrated Circuits
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Chapter 29

The Electric Light

One of the most important inventions of the nineteenth century was the invention of the electric light.

29.1 The Edison Incandescent Lamp

The first practical incandescent lamp was invented by Thomas Alva Edison on October 21, 1879, at his
laboratory in Menlo Park, New Jersey, after two years’ work. Before the invention of the incandescent
lamp, homes were lit using flames from candles, oil or kerosene lamps, or natural gas. These were a fire
hazard, did not give off much light, and consumed materials that had to be constantly replenished. Others had
made attempts to develop an incandescent lamp before Edison, but they were impractical—they were very
expensive to make, and only lasted a short time before the filament burned out or the incandescent material
was consumed. In 1877 large arc lamps did exist and were used for lighting streets, but they were much too
large for use inside the home, and nobody could figure out how to scale down the arc lamps for home use.
This was at the time called the problem of “subdivision of the electric light,” and was thought by some to be
an impossible problem to solve, and perhaps even a violation of the laws of physics.

The main impediment to the development of a usable incandescent lamp was to find a suitable filament
material. Edison spent years searching the world for a suitable material, checking out thousands of possi-
bilities one by one. In October of 1879, he finally found a filament material that worked: carbonized cotton
thread. Later experiments showed even better results using heavy paper formed into a “horseshoe” shape and
carbonized in an oven (Figure 29.1.) The carbonized horseshoe was clamped onto two platinum wires and
placed inside a glass bulb. In order to prevent combustion of the filament, all the air removed from the bulb
using a Sprengel pump, which Edison had improved so that it could create a high vacuum. Edison continued
to experiment with different filament materials, including a bamboo filament that produced a bulb that would
last for over 1200 hours. By the early 20th century, filaments were being made from finely coiled tungsten
wire.

In 2007, the U.S. Congress passed legislation that would have phased out the manufacture of relatively
inefficient incandescent bulbs over time, but this policy was eventually dropped. Incandescent light bulbs
produce a fair amount of infrared light (heat) along with visible light, so a significant amount of the electricity
used to power the bulb is used to create heat. In cold climates especially, the incandescent lamp works just
fine, as it illuminates the home and also helps to heat it. In warmer climates, it’s more efficient to have
something that produces more visible light and less infrared light.

The world’s longest-lasting incandescent lamp is the Centennial Bulb, located in a fire station in Liver-
more, California.1 The bulb has been burning almost continuously since 1901. In 2015 the Centennial Bulb
reached the milestone of having burned for over one million hours.

1http://centennialbulb.org/
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Figure 29.1: The Edison incandescent electric lamp. (From Scientific American, January 10, 1880.)
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29.2 Compact Fluorescent Bulbs

The desire for greater energy efficiency led to the development of thecompact fluorescent bulbin the 1990s,
which was essentially similar to the long fluorescent lamps common in office lighting, but with the tube
twisted into a helix and the bulb designed to work in a standard incandescent light socket. Compact fluo-
rescent bulbs enjoyed only a brief period of popularity — they were expensive, took a few moments to turn
on, contained a small amount of toxic mercury, and consumers were generally dissatisfied with the unnatural
quality of the light produced.

29.3 Light-Emitting Diode (LED) Bulbs

Dissatisfaction with compact fluorescent bulbs led to their being quickly replaced by Light-Emitting Diode
(LED) bulbs that are common today. LED bulbs have a number of advantages over their predecessors:

• Energy efficiency.LED bulbs have greater energy efficiency than incandescent bulbs, meaning that for
a given amount of electric power, the produce more visible light and less infrared light. A typical light
bulb used in the home produces about 850 lumens2 of visible light. This requires a 60-watt incandescent
bulb, but only a 9-watt LED bulb. This means that an LED bulb can produce the same illumination as
an incandescent bulb while consuming only 15% of the electric power.

• Lifetime. Incandescent bulbs typically burn out after about 2000 hours of use, while LED bulbs may
last 30,000 hours before they need to be replaced.

• Cost.Although LED bulbs were at first significantly more expensive than incandescent bulbs, the price
has dropped so that they are now comparable in price.

• Quality of illumination. Consumers have found the quality of light produced by an LED bulb to be
much more “natural” than the light produced by compact fluorescent bulbs.

2A lumenis a measure of the amount of visible light produced. See chapther 52.
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Chapter 30

Electronics as a Hobby

Many people enjoy electronics as a hobby. They enjoy the creative outlet that electronics offers—you imag-
ine some kind of electronic device or gadget, you design it yourself, and build it. Designing and building
something yourself gives you a sense of satisfaction that you simply don’t get from buying something ready-
made — plus you can design it to work just the way you want. Sometimes hobbyists skip the design stage,
and just enjoy building devices from kits.

An extensive electronics textbook,Lessons in Electric Circuits, is available on-line at:
http://www.allaboutcircuits.com/textbook/.
Here we’ll look at a few of the kinds of projects that electronics hobbyists get involved in. Maybe you’ll

decide you’d like to try some of these things yourself.

30.1 Analog Electronics

Analog electronics involves building things from parts like resistors, capacitors, inductor, transistors, etc.
You can design analog electronic circuits to do any number of things: build your own light-activated burglar
alarm, a radio receiver, remote weather station, metal detector, electronic organ, computer light pen, electronic
measuring equipment, devices for your car, etc. — you’re limited only by your imagination.

One place to start with analog electronics might be to build a simple crystal radio receiver; see:
http://www.midnightscience.com/.

30.2 Digital Electronics

Digital electronics typically involves components like microprocessors, microcomputer chips, and field-
programmable gate arrays (FPGAs). These components are are available as integrated circuits that are con-
nected to other digital and analog components to make useful devices. Microprocessor and FPGA training
kits are available to help you learn microprocessor and FPGA programming, and how to interface these de-
vices to external displays or other devices. You might even like to try something like building your own
calculator or computer completely from scratch.

Microcontrollersare very popular nowadays. These are small computers, typically designed to interact
with hardware like motors, sensors, robotic arms, etc. They’re surprisingly low cost (typically less than $50),
and can also be configured to work like a a small desktop computer. Some popular microcontrollers are:

• Arduino:http://www.arduino.cc

• Raspberry Pi:http://www.raspberrypi.org
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NerdKits(http://www.nerdkits.com) sells a good simple microcontroller kit with an informative
instruction manual, along with ideas for a few projects to get started.

Maker Shed(http://www.makershed.com) is a popular site that contains alot of information
about hobby electronics, kits, microcontrollers, etc. Maker Media also publishes a number of books on books
on hobby electronics, such asMake: Electronics, Make: More Electronics, and introductory books on the
Arduino and Rasperry Pi microcontrollers.

SparkFun(http://www.sparkfun.com) is another site dedictated to electronics hobbyists. They
sell electronics and microcontroller kits and parts.

HackerBoxes(http://www.hackerboxes.com) offers a subscription service, in which they send
out a different box of electronics hobbyist components to subscribers every month.

A field-programmable gate array (FPGA) is a kind of general-purpose logic device that you can design
with any logic circuits you wish. For example, you could program it to be a digital clock circuit or a micro-
processor. An excellent way to learn FPGA programming is with the Papilio FPGA board, available from the
Gadget Factory (http://www.papilio.cc). You can use this FPGA board alongside the tutorialIntro-
ducing the Spartan 3E FPGA and VHDLby Mike Field, available as a free e-book on the Internet. FPGAs
are programmed in one of two languages: Verilog or VHDL. This tutorial uses VHDL, which is the more
common language in the United States.

30.3 Amateur Radio

How would you like to try transmitting over the air with your own radio station? That’s possible, but you’ll
need to earn an amateur radio license first. You’ll study radio theory, electronics, and regulations, then take
an exam. If you pass, you’ll be assigned your own radio call sign by the FCC, and you can go on the air and
talk to people around the country or around the world by voice or by code.

Radio amateurs are involved in lots of activities today:

• Morse code.Many amateurs enjoy traditional radiotelegraphy, where you “talk” to people around the
world using Morse code and telegraph key.

• Radioteletype.This usually involves a computer, rather than a real teletype these days. You can send
messages via radioteletype at faster speeds than sending telegraphy by hand.

• Packet radio.This is a kind of amateur radio version of the Internet, including a type of amateur radio
e-mail.

• Amateur radio satellites.You might like to get involved in working with a number of satellites that are
in orbit around the Earth, that are especially for use by radio amateurs.

• Amateur television.You can go on the air with your own amateur television station.

• Volunteer work.Amateur radio operators are needed to help coordinate events like parades, marathons,
and long-distance bicycle rides.

• Emergency response.During an emergency, all normal lines of communications — including cell
phones — may be knocked out. Amateur radio operators are often the only way to get communications
in and out of the emergency area. You can train to be prepared to help in case of an emergency.

• Military work. Some amateurs work with the military to help coordinate radio communications.

• Experimental work.Amateurs are often involved in cutting-edge radio research, including spread-
spectrum transmission, very high- or low-frequency transmissions, or bouncing radio signals from au-
roræ, meteor trails, satellites, or even the Moon. Amateurs may get interested in radiowave propagation
in the ionosphere, and conduct their own research.

137



Prince George’s Community College Introductory Physics II D.G. Simpson

• Build your own equipment.The Amateur Radio Service is the only radio service that allows you to
design and build your own transmitting equipment.

• Low-power operations.Some amateurs enjoy the challenge of working with simple low-power (< 5

watt) transmitters that they build themselves, just to see how much can be done with low power. This
is calledQRPoperation.

• Contests.Many amateurs enjoy contests and winning awards, such as those you can win by contacting
another amateur radio operator in each state, or in as many different countries as possible. Some
organizations hold “contest nights”, where you conduct as many (very brief) contacts as possible in
one evening.

For more information on amateur radio, see the American Radio Relay League:http://www.arrl.org/.
Exams may be taken in this area from local examiners for free or for a small fee.

30.4 Robotics

Combining electronics with sensors and motorized parts involves the popular field ofrobotics. You might
want to build a robot that wheels itself around your house while avoiding obstacles, or you might want to
build a device that cooks your breakfast for you before you wake up in the morning. The possibilities with
robotics are almost endless. Many robotics kits are available to build specific kinds of robots, or you may
want to try designing and building your own robots.

To get started in robotics, try using Google to search the Internet for “hobby robotics”. You’ll find quite a
bit of information and a number of books and kits available. Also, HackerBoxes (http://www.hackerboxes.com)
offers a Robotics Workshop for beginners.

30.5 Amateur Rocketry

Model rocketry is another hobby that has become popular in the past few years, and amateur rocketeers
have begun building very powerful rockets that approach the power of professional sounding rockets. If
you’re interested in this, you can combine this hobby with electronics to build electronic payloads for model
rockets, allowing you to telemeter back to Earth information about the Earth’s atmosphere.

More information on rocketry is available from the National Association for Rocketry:
http://www.nar.org/.

30.6 Amateur Satellites

One very new hobby is the field ofamateur satellites. It is now actually possible to build your own spacecraft
and have it launched into orbit on a commercial rocket. You design and build the satellite from scratch,
including sensors, science experiments, electric power systems, attitude determination and control systems,
telemetry systems, and radio receivers on the ground. You do the design, building, and testing, then arrange
to have it flown “piggyback” on the same rocket along with a large commercial payload.

One popular amateur satellite configuration is called theCubeSat, which is constructed of cubical “mod-
ules” of size 10 cm� 10 cm� 10 cm, which is called “1 unit”, or 1U. CubeSat satellites can be made of
several modules connected together in 1U, 2U, 3U, or 6U configurations. One company, Pumpkin Inc., even
sells CubeSat kits to help you get started.

Amateur satellite work can be an expensive hobby. At the time of this writing, building a new satellite
and getting it launched will cost roughly as much as buying a new car.

For more information on amateur satellites, see the series of books by Sandy Antunes.
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30.7 Sample Electronics Projects

Here are a few fun electronics projects that hobbyists have built:

• Radio receivers of all kinds: AM, FM, shortwave, longwave, maritime, TV, police, fire, etc.

• Radio transmitters (requires an amateur radio license).

• An “alarm clock” that automatically opens your curtains in the morning.

• Home weather station.

• Robots to walk or roll around your house, automatically fix your breakfast, etc.

• Home monitoring system.

• Home planetarium.

• Parabolic microphone for amplifying very faint or distant sounds.

• Electronic circuits to disable and auto-locate your car or motorcycle if it is stolen.

• Lie detector.

• Metal detector.

• Circuits powered by fruit.

• Electronic musical instruments.

The Web sitehttp://www.instructables.com is a good source of ideas for many more electronics
projects.
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Chapter 31

Magnetism

Magnetism, like electricity, has been known since ancient times. The wordmagnetderives from the Greek
�˛��	�& ���o& , or “Magnesian stone”; Magnesia was a region of ancient Greece where one could find
lodestone, a naturally occurring permanent magnet.1 Ancient mariners were able to construct primitive mag-
netic compasses by placing these lodestones on cork and floating them in water. You’re undoubtedly familiar
with magnets yourself, from having seen modern compasses and manufactured permanent magnets.

From the perspective of physics, the phenomena of electricity and magnetism are very closely related, and
are described by a single theory ofelectromagnetism. Classical electromagnetism, which we’ll study in this
course, has at its heart four coupled equations calledMaxwell’s equations, named for the Scottish physicist
James Clerk Maxwell. (The more modern theory, calledquantum electrodynamics, requires mathematics that
is beyond the scope of this course.)

We’ll begin by examining both the similarities and differences between electricity and magnetism.

31.1 Magnetic Poles

Just as electricity consists of two kinds of electric charge, magnetism consists of two kinds ofmagnetic pole.
But while the electric charges are calledC and�, the magnetic poles are called (for historical reasons)N

andS . The two kinds of magnetic pole behave similarly to electric charges: like poles (twoN poles or two
S poles) will repel each other, but unlike poles (anN and anS pole) will attract each other.

The strength of a magnetic pole (analogous to chargeq) is called thepole strengthq �. Pole strength in SI
units is measured in units of ampere-meters (A m).

If two magnetic polesq�
1 andq�

2 are separated by a distancer , then the forceF between the two poles is
given by a magnetic counterpart of Coulomb’s law:

F D �0

4�

q�
1q

�
2

r2
; (31.1)

where�0 is called thepermeability of free space,2 and is equal to exactly4� � 10�7 N/A2. (Mathematically,
in Eq. (31.1), we write anN pole as a positiveq�, and anS pole as negative.)

Although electricity and magnetism are similar in many ways, there is one important difference: while
individual electric charges can occur in isolation,magnetic poles only occur in pairs. In other words, we
neversee an isolatedN pole orS pole by itself: whenever we have anN pole, there will always be anS pole

1Recent research suggests that lodestone is created when the mineralmagnetiteis struck by a bolt of lightning. See P. Wasilewski
and G. Kletetschka, “Lodestone: Nature’s only permanent magnet — What it is and how it gets charged”;Geophys. Res. Lett., 26, 15,
2275-78 (1999).

2�0 is pronounced “mu-nought.”
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to go with it. For example, if you take a bar magnet with anN pole and anS pole and break it in half, you
will get two smaller bar magnets, each of which has its ownN pole andS pole.

(There some theories that predict the existence of isolated magnetic poles, which are calledmagnetic
monopoles. These magnetic monopoles, if they exist, would take the form of subatomic particles. However,
no magnetic monopoles have yet been detected.)

31.2 Atomic View of Magnetism

Fundamentally,all magnetism is due to electric currents. On a macroscopic scale, we can construct an
electromagnetin the laboratory by running an electric current through a coil of wire. But even permanent
magnets are due to electric currents: the motion of an electron around an atomic nucleus creates an electric
current, and this electric current creates a magnetic field that ultimately manifests itself as the magnetic field
of the permanent magnet. This is described in detail in the discussion of ferromagnetism (Section 35.3). A
quantitative treatment of the magnetic field produced by an electric current is given in the next chapter.
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Chapter 32

The Magnetic Field

32.1 Magnetic Field

Recall how we defined the electric fieldE in Chapter 17: we place a small positive test chargeq at a point in
space, measure the forceF on it, and then compute the electric field as the force per unit charge:E D F=q.
We can similarly define amagnetic fieldB by measuring the forceF on a smallN magnetic poleq�; then the
magnetic field is defined as the force per unit pole strength:

B D F
q� : (32.1)

In SI units, the magnetic fieldB is measured in units ofteslas(T), named for the Serbian physicist Nikola
Tesla. One tesla is equal to 1 N A�1 m�1. A tesla is a very large unit; the largest magnetic fields that can
be produced in the laboratory are on the order of a few teslas. A common unit for working with terrestrial
magnetic fields is the nanotesla (nT). Another common unit ofB is thegauss(G), named for the German
mathematician Carl Friedrich Gauss. One gauss is equal to10�4 tesla.

32.2 Magnetic Field due to a Single Magnetic Pole

The magnetic field due to a single magnetic poleq� can be found by using magnetic version of Coulomb’s
law. Let’s put a smallN pole q�

0 at some distancer from the poleq�; then by the magnetic Coulomb’s
law, the force onq�

0 is F D .�0=4�/.q
�q�

0=r
2/. Dividing by q�

0 gives us the magnetic field due to a single
magnetic poleq�:

B D �0

4�

q�

r2
: (32.2)

Remember, though, that magnetic poleneveroccur in isolation—they only occur inN -S polepairs.

32.3 Magnetic Field Lines

To help visualize the shape of the magnetic field, in can be helpful to draw diagrams ofmagnetic field lines,
similar to the electric field lines we drew earlier. These lines have the following properties:

• The magnetic field lines are directed lines (with arrows) that pointfrom theN poleto theS pole.

• At any point along a field line, the magnetic field vectorB is tangent to the field line.
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• We cannot possibly drawall field lines (because they fill all space), so we draw only a few. The
number of field lines you draw is somewhat arbitrary — we just draw enough to visualize the field
without making the diagram too crowded.

• The closer together the field lines are, the stronger the magnetic field.

• Unlike electric field lines (which terminate on electric charges), magnetic field linesneverterminate.
They form closed loops, or sometimes may form a pattern that continues indefinitely without repeating
or terminating.

32.4 The Magnetic Dipole

As an example, consider Fig. 32.1, which shows the magnetic field due to a bar magnet; such an arrangement
of two magnetic poles separated by a fixed distance is called anmagnetic dipole.

Figure 32.1: Dipole magnetic field due to a bar magnet. (©GNU-FDL, Wikimedia Commons [11].)

A magnetic dipole may be characterized by a quantity called themagnetic (dipole) moment. The magnetic
momentm of a magnetic dipole is defined as

m D q�d; (32.3)

whereq� is pole strength of either end of the dipole, andd is a vector whose length is equal to the distance
between the poles, and which points from theS pole to theN pole (opposite the direction of the magnetic
field line between the poles). The dipole moment essentially measures how magnetically “polarized” a dipole
is, with larger values when more pole strength is separated by a greater distance. Magnetic dipole moment is
measured in units of A m2.

32.5 Magnetic Flux

Magnetic fluxmay be thought of as being proportional to the total number of magnetic field lines passing
through a given area. Given an areaA embedded in a magnetic fieldB, the electric flux̂ B passing through
A is equal to the product ofB and the component ofA perpendicular to the field:

ˆB D B � A D BA cos�: (32.4)
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HereA is an area vector whose magnitude is equal to the area of the surface, and whose direction is perpen-
dicular to the surface. Magnetic flux is measured in units ofwebers(Wb), where 1 WbD 1 T m2. The weber
is named after the German physicist Wilhelm Eduard Weber.

32.6 Gauss’s Law for Magnetism

We’ve already seen one of the four Maxwell’s equations, Gauss’s law. Another of Maxwell’s equations is the
analogous equation for magnetism. It has no proper name, but we may call itGauss’s law for magnetism. It
states:

ˆB D 0: (32.5)

In other words, the magnetic flux through any closed surface is always equal to zero. This is due to the fact
that there are no magnetic monopoles, so magnetic field lines never terminate.

32.7 Biot-Savart Law

As mentioned in the previous chapter, magnetic fields are produced by electric currents. TheBiot-Savart
law1 gives the magnetic field�B produced by an electric currentI running through a short length of wire
�l, where�l is a vector whose length is equal to the length of the wire, and which points in the direction of
the conventional current. The Biot-Savart law states:

�B.r/ D �0

4�

I�l � Or
r2

(32.6)

Herer is a vector pointing from the current elementI�l to the field point (the point at which the magnetic
field is being observed). Note the presence of the vector cross product operator� in this equation; the cross
product is described in Appendix N.

The Biot-Savart law is a magnetic counterpart of Coulomb’s law: just as Coulomb’s law gives the electric
field due to a point chargeq, the Biot-Savart law gives the magnetic field due to a currentI flowing through
a short wire�l .

Comparing Eq. (32.2) with Eq. (32.6), we can find the pole strengthq � due to a currentI through a short
wire of length�l :

q� D I�l: (32.7)

32.8 Magnetic Field due to a Long Wire

By making use of the calculus, one may use of the Biot-Savart law (Eq. (32.6)) to find the magnetic fieldB

due to a very long wire carrying an electric currentI , at a perpendicular distancer from the wire. The result
is:

B.r/ D �0

2�

I

r
: (32.8)

Thedirectionof the magnetic field is given by the right-hand rule: if you point the thumb of your right hand
in the direction of the conventional currentI , then the fingers of your right hand curl in the direction of the
magnetic field lines.

1PronouncedBEE-oh sav-AR, and named for the French physicists Jean-Baptiste Biot and F´elix Savart.
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32.9 Magnetic Field of a Solenoid

A solenoidis a long coil of wire. Just as a parallel-plate capacitor gives a nearly uniform electric field between
the plates of the capacitor, a solenoid gives a nearly uniform magnetic field inside the coils (Fig. 32.2). Using
the Biot-Savart law, the magetic field in the region inside the solenoid is given by

B D �0nI; (32.9)

wheren is the number of turns per unit length in the solenoid, andI is the current in the wire.
The direction of the magnetic field inside the solenoid may be given by another right-hand rule: if you

curl the fingers of your right hand in the direction of the current, then the thumb of your right hand points in
the direction of the magnetic field inside the solenoid.

Figure 32.2: Magnetic field due to a solenoid. The solenoid is seen in cross section; current flows out of the
page for the wires at the top of the figure, and into the page for wires at the bottom. (©GNU-FDL, Wikimedia
Commons [11].)

32.10 Magnetic Field of a Loop or Coil of Wire

As discussed earlier, a magnetic dipole can be created by a bar magnet—but it can also be created by a coil
of wire. Given a coil ofN turns of wire carrying a currentI , the magnetic dipole moment of the coil can be
shown to be

m D NIA On; (32.10)

whereA is the cross-sectional area of the coil, andOn is a unit normal vector, pointing perpendicular to the
plane of the coil. The direction ofOn is given by yet another right-hand rule: if the fingers of your right hand
curl in the direction of the current, then the thumb of your right hand points in the direction ofOn (and therefore
also in the direction of the magnetic momentm).

32.11 Torque on a Magnetic Dipole in a Magnetic Field

Suppose we put a magnetic dipolem in a magnetic fieldB. (The magnetic dipole could be due to a bar
magnet, coil of wire, etc.) Then the magnetic field will exert a torque� on the dipole, equal to

� D m � B: (32.11)
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Note again the presence of the vector cross product� in this equation: the direction of� will be perpendicular
to the plane containingm andB, in a right-hand sense.

Now suppose we put a magnetic dipole (e.g. a bar magnet or wire coil) of magnetic momentm in a
magnetic fieldB. What will happen? Ifm is parallel or anti-parallel toB (so the bar magnet is aligned with
B, or the plane of the wire coil is perpendicular toB), then the torque on the dipole will be zero, and nothing
will happen—the dipole will remain stationary. But if we displace the dipole from this position, then there
will be a non-zero torque on the dipole, in a direction that will rotate the dipole back toward the direction of
B. But once the dipole momentm is aligned withB, the dipole’s inertia will make it overshoot and rotate past
B, where it will experience a torque that will make it rotate back towardB again, etc. The resulting motion
will be that magnetic dipole will oscillate back and forth about theB direction, with simple harmonic motion.
The period of this oscillating motion will depend, in part, on the strength of the magnetic field; in fact, this
method was once used to measure magnetic field strength. One would measure the period of oscillation of a
well-calibrated dipole in a magnetic field, and use the resulting period to findB.

32.12 Magnetic Pressure

The magnetic field can be thought of a producing apressure, given by

P D B2

2�0

; (32.12)

whereP is the pressure in pascals (Pa; 1 Pa = 1 N/m2). This magnetic pressure can be used to relate the
“force” rating of a permanent magnet (which is the maximum weight it is supposed to be able to lift) to the
magnetic field strengthB at the pole face. SupposeF is the magnet’s force rating, and the pole face has area
A. Then the magnetic pressure isP D F=A, so

P D F

A
D B2

2�0

; (32.13)

So the force ratingF is related to the magnetic field strength at the pole faceB by

F D AB2

2�0

: (32.14)

Example.Suppose we have a 100-lb magnet whose pole face is 15 in� 4.5 in. (The 100-lb rating means
that the magnet is capable of lifting loads that weigh up to 100 pounds.) What is the magnetic field strength
B at the pole face?

Solution.First, convert everything to SI units: the pole face is 38.1 cm� 11.43 cm, andF D 444:8222

N. Then the areaA of the pole face isA D .0:381 m/ � .0:1143 m/ D 0:043548 m2. By Eq. (32.14), the
magnetic field at the pole face is given by

B D
r
2�0F

A
; (32.15)

or

B D
s
2.4� � 10�7 N=A2/.444:8222 N/

0:043548m2
D 0:160 T (32.16)
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Chapter 33

The Lorentz Force

When we place an electric charge in an electric field, or a magnetic pole in a magnetic field, the resulting
motion is pretty simple: the charge or pole simply accelerates along the direction of the field. But some more
interesting physics goes on when we place anelectriccharge in amagneticfield.

Suppose we have an electric chargeq moving with velocityv in a magnetic fieldB. Then it turns out that
the charge will experience a forceF given by

F D qv � B: (33.1)

Note once again the presence of the cross product operator�. This means that the force acting on chargeq is
perpendicular to both its direction of motionv and to the magnetic fieldB.

Note also that since the force is always perpendicular to the direction of motion, the work done by a
magnetic field on an electric charge is always zero.

If both an electric fieldE anda magnetic fieldB are both present, then the net force on the chargeq is
found by combining Eqs. (17.1) and (33.1), and is called theLorentz force: 1

F D q.E C v � B/: (33.2)

33.1 Plasmas

A plasma is essentially an ionized gas. We can gain some understanding of the behavior of plasmas by
examining the motion of charged particles in the presence of electric and magnetic fields.

Suppose, for example, that we have a (negatively charged) electron moving with velocityv perpendicular
to a magnetic fieldB, and that there is no electric field present. Then there will be Lorentz force acting on the
electron that will eventually cause it to move perpendicular to its original direction. By that time, the Lorentz
force will be in the direction opposite the direction of the direction of motion of the electron, and so on. The
net motion will be that the electron will move in a circle. The direction of motion of a negative charge in a
magnetic field will be given by still another right-hand rule: if you point the thumb of your right hand in the
direction ofB, then the fingers of your right hand will curl in the direction of motion of the electron. (If the
magnetic field points into the page, for example, then the electron will move clockwise.)

By similar reasoning, a positively charge (such as a proton) initially moving perpendicular toB will move
in a circle given by aleft-hand rule: point the thumb of yourleft hand in the direction ofB, and the fingers
of your left will curl in the direction of motion of the positive charge. For example, if the magnetic fieldB
points into the page, then a proton will move counterclockwise.

1Hypothetically, if magnetic monopoles exist, then the forceF on a magnetic monopoleq � in an electric fieldE and a magnetic field
B would be given by a similar expression:F D q �ŒB � .v=c2/�E	.
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What if the initial velocity of the charged particle is not necessarily perpendicular to the magnetic field
B? In that case, the motion will have two components: motion in a circle perpendicular to the magnetic field,
combined with uniform motion parallel to the magnetic field. The net motion will be that of ahelix: the
particles will spiral around magnetic field lines in helices.

How big are the circles that a charged particle moves in? We can find that by equating the magnetic force
of Eq. (33.1) (withv ? B) to the centripetal forcemv 2=r . We then haveqvB D mv2=r ; solving for the
radiusr of the circle, we haver D mv=.qB/. More generally, if the particle is moving in a helix, then the
radius of the helix is determined by the component of the particle’s velocityv that is perpendicular to the
magnetic field (v?). Also, since the radius is always positive, we want to use the absolute value of the charge
q. The general result is that the radius of the helix is

r D mv?
jqjB : (33.3)

This radius is called thegyroradius, cyclotron radius, or Larmor radius. The gyroradius will be larger for a
weaker magnetic field, or for a heavier or faster particle.

Another important quantity is the angular frequency with which the particle gyrates in a circle about the
magnetic field lines. The time it takes the particle to complete one circle (i.e. the period of the motion) is the
total distance divided by the speed:T D 2�r=v?. Substitutingr from Eq. (33.3), we haveT D 2�m=.jqjB/.
Since the angular frequency! D 2�=T , we have that angular frequency of the motion as

! D jqjB
m

: (33.4)

This is called thegyrofrequencyor cyclotron frequency. A particle will spin around in circles faster for a
stronger magnetic field or a lighter particle.

33.2 Force on a Wire in a Magnetic Field

Now suppose we have a wire carrying in an electric currentI placed within a magnetic fieldB. Within the
wire, the current is being carried by electrons moving with the drift velocity, each of which experiences a
Lorentz force. There will then be a forceF on the wire given by

F D I l � B: (33.5)

HereI is the current, andl is a vector whose length is equal to the length of the wire and which points in the
direction of the conventional current. Applying this to a current loop, for example, gives the same torque as
given by Eq. (32.11).

33.3 Magnetic Force between Two Long Wires

If we put two long wires next to each other so that they are parallel, then each wire generates a magnetic field
that envelopes the other wire. By combining Eq. (32.8) (which gives the magnetic field generated by a wire)
with Eq. (33.5) (which gives the force on a wire in a magnetic field), we can find the mutual force between
the two parallel wires. The result is

F

`
D �0

2�

I1I2

d
; (33.6)

whereF=` is the force per unit length,I1 andI2 are the two currents, andd is the distance between the two
wires.
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Figure 33.1: The Hall effect. (Ref. [13])

If the two currentsI1 andI2 are in thesamedirection, the wires willattract; if the currents are in the
oppositedirection, the wires willrepel. (This is in a sense “backwards” from the rule you might expect, based
on the rules the force between two electric charges or two magnetic poles—but this is the way it works out.)

Eq. (33.6) is used in the definition of the ampere: 1 ampere is defined to be that current which, when
passed through each of two long parallel wires 1 meter apart, gives a force per unit length of2 � 10�7

newtons per meter, as can be verified by substitutingI1 D I2 D 1 A andd D 1 m into Eq. (33.6).

33.4 The Hall Effect

Suppose we run an electric current though a wire—say the current runs from right to left. Such a current
could be due topositivecharges moving from right to left, or tonegativecharges moving left to right. How
can we tell the actual charge of the carriers of electric current?

An experiment to determine the correct charge of the carriers of electric current was performed in 1895
at the Johns Hopkins University by Edwin H. Hall. If an electric current is run through a conducting strip
in a magnetic field, then opposite sides of the strip will acquire opposite electric charge, and therefore a
potential difference will be created across the strip. Thedirectionof this potential difference will be different,
depending on whether the current is carried by positive or negative charges. This phenomenon is called the
Hall effect.

The principle of the experiment is shown in Figure 26.1. The positive end of a battery is connected to
the right end of the strip, and the negative end to the left end; a magnetic field is directed into the page. If
the current is carried bypositivecharges moving right to left, then the Lorentz force on the positive charge
will cause the positive charges carrying the current to move downward toward the bottom of the strip, and the
electric field due to these charges will pointupward.

If, on the other hand, the current is carried bynegativecharges moving left to right, then the Lorentz
force on the negative charges will cause the negative charges carrying the current to also move downward,
toward the bottom of the strip. In this case the electric field due to the charges carrying the current will point
downward.

When Hall performed his experiment in 1895, he discovered that the latter situation is what actually
occurs: the electric field across the strip points downward, so that the carriers of the electric current must
be negative. This experiment was done in 1895—the yearbeforethe discovery of the electron by British
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physicist J.J. Thompson.
Because of the electric field built up across the conducting strip, there is a potential difference across

the strip. It is straightforward to calculate the magnitude of this potential difference: charges will build up
across the strip until the the magnetic forceqvdB is balanced by the electrostatic forceqE, wherevd is
the drift velocity,q is the charge on the particles carrying the current, andB andE are the magnetic and
electric field strengths, respectively. Since in equilibrium the forces will balance,qvdB D qE, orE D vdB.
The potential difference"H across the strip is then"Hw, wherew is the width of the strip. Therefore this
potential, called theHall emf is given by

"H D vdBw (33.7)

Besides its historical interest, the Hall effect can be used today as a means of measuring magnetic field
strength. We measure the strip widthw, and we can determine the drift velocityvd by calibration in a known
magnetic field. Then Eq. (33.7) can be used to determine the magnetic field strengthB by measuring the
Hall emf "H .
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Chapter 34

Geomagnetism

34.1 Earth’s Magnetic Dipole

The Earth generates its own internal magnetic field, which is thought to be due to a westward-moving electric
current inside the Earth’s molten outer core. The resulting field approximates that of a magnetic dipole, with
the “poles” of the dipole near (but notat) the Earth’s geographic poles.

There is a bit of confusing nomenclature to be aware of. If you suspend a bar magnet by a string so that is
free to rotate horizontally, it will rotate to align itself with the Earth’s magnetic field, with theN pole pointing
toward geographic north. (That’s actually why the poles of a magnet are labeledN andS : theN pole is the
“north-seeking” pole and theS pole is the “south-seeking pole”.) But since unlike poles attract, the pole near
the Earth’s geographicnorthpole must be a magneticS pole, and vice versa (Fig. 34.1).

Figure 34.1: Schematic represenation of the Earth’s internal magnetic field. This should not be taken literally;
there is no bar magnet at the Earth’s center. This figure is just meant to illustrate that the Earth’s geographic
north pole is a magnetic dipoleS pole, and vice versa. Note that the Earth’s dipole is tilted with respect to
the geographic axis, which is vertical in this illustration. (©GNU-FDL, Wikimedia Commons [11].)

The Earth’s magnetic poles are not located at the geographic poles, but are some distance away; this is
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because the Earth’s magnetic dipole is not aligned with the geographic axis, but is tilted at some angle. The
magneticS pole is currently located in the Arctic Ocean north of Canada, and the magneticN pole is located
just off the coast of Antarctica. For reasons that are not currently understood, the magnetic poles “wander”
across the Earth’s surface, so the location of the magnetic poles changes from one year to the next.

The strength of the Earth’s magnetic field may be characterized by its dipole moment, which has a value
of m D 7:94 � 1022 A m2. It can be shown that the magnetic fieldB of a magnetic dipole at positionr from
the dipole is given by

B.r/ D �0

4�

��m C 3.m � Or/Or
r3

�
: (34.1)

Using this equation, we can find the expected strength of the Earth’s magnetic field at the Earth’s surface by
substitutingr D RE , whereRE is the Earth’s radius. Assuming the Earth’s magnetic field to be a perfect
dipole, the magnetic field at the Earth’s equator should be roughly.� 0=.4�//.m=R

3
E /, orB D 30;000 nT.

The magnetic field at the poles should be twice this value, orB D 60;000 nT. The actual values at the equator
and poles differ somewhat from these values because the Earth’s magnetic field is not a perfect dipole. In
fact, it’s about 90% dipole, and about 10% higher-order components.

34.2 Magnetic Declination

Because the Earth’s magnetic dipole axis is tilted with respect to the geographic axis, a magnetic compass
will generally not point toward true geographic north; it will point towardmagneticnorth. The difference (the
angle between the two norths) is called themagnetic declination. A map showing lines of equal magnetic
declination (Fig. 34.2) is called anisogonic chart.

As you can see from this chart, there is a0ı line of magnetic declination (theagonic line) running near
the Mississippi River; along this line, there is no magnetic declination, and a magnetic compass will point
to true north. Maryland is at about11ı west declination, meaning that a magnetic compass points about11ı
west of true north. To get the compass needle to point togeographicnorth, you would need to adjust the
compass dial by11ı.

Since the magnetic poles are wandering with time, the isogonic lines change from one year to the next. If
you plan on using a magnetic compass for sailing, hiking, orienteering, or similar activities, you should make
sure you have an up-to-date isogonic chart or something similar that shows the current magnetic declination
for your location. Of course, if you’re traveling large distances, your magnetic declination will be changing
as you move, so you will need to re-adjust your compass for declination from time to time.

34.3 Magnetic Inclination

We often think of the Earth’s magnetic field as running north-south, but it also has a largeverticalcomponent:
downward in the northern hemisphere, and upward in the southern hemisphere. This vertical component is
calledmagnetic inclination.

Because of magnetic inclination, a compass needle will be correctly balanced only for use in a certain part
of the world. For example, a magnetic compass made for use in the United States will have a needle that’s
heavier on theS side than theN side, to compensate for the downward component of the Earth’s magnetic
field and allow the needle to balance properly. If you take this compass and try to use it in Australia, the
compass needle will not balance properly.
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Figure 34.2: Magnetic declination map for North America.Credit: NOAA.
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34.4 Magnetic Reversals

As mentioned earlier, the Earth’s geographicnorth pole is a magneticS pole. This hasn’t always been the
case, though. The Earth’s magnetic field actually reverses direction at irregular intervals; the last such reversal
was about780;000 years ago. Figure 34.3 shows the history of the Earth’s magnetic field reversals going back
to the late Cretaceous period.

Exactly what causes these reversals of the Earth’s magnetic field is unclear, although they have been
reproduced in computer simulations. It appears that the reversal process is quite sudden in geological terms
— it may take a few decades to a century or so for the magnetic field to reverse, after which it typically stays
fairly stable for thousands of years before reversing again. Since these magnetic reversals occur at irregular
intervals, we have no way of knowing when the next one will be. There is occasional speculation that the
polar wandering may indicate that a magnetic reversal may be going on now, but nobody knows for certain.

How do we know when magnetic reversals have occurred in the past? At the mid-Atlantic ridge in the
middle of the Atlantic ocean, the Earth’s crust is spreading apart, and new crust is formed as magma seeps up
into the crack. As it cools to form rock, this magma “locks in” the direction of the magnetic field at the time
it cooled. The result is a set of bands of magnetism on either side of the mid-Atlantic ridge, which records
the past magnetic field direction in very much the same way a tape recorder works (Fig. 34.4).

It is not clear what effect, if any, magnetic reversals have on life on Earth. The fossil record doesn’t show
any correlation between magnetic reversals and mass extinctions, so we can probably infer that any effect on
life is relatively minor.

34.5 The Magnetosphere

Although the Earth’s magnetic field resembles that of a magnetic dipole near the Earth, further away the
dipole becomes distorted due to the presence of thesolar wind, a “wind” of charged particles (mostly protons
and electrons) ejected by the Sun. The solar wind compresses the day side of the Earth’s magnetic field, and
draws the night side out into a longmagnetotail. The presence of the solar wind causes the Earth’s entire
magnetic field to be encapsulated into a structure called themagnetosphere(Fig. 34.5).

The Earth’s magnetic field serves a very important biological role: it deflects potentially dangerous
charged particles from the Sun so that they move harmlessly around the Earth. Without the Earth’s magnetic
field, we would be bombarded by high-energy solar radiation, which could lead to severe health problems
and even death.

The magnetosphere is a fairly complex structure, with various plasmas and electric currents interacting
with the Earth’s magnetic field; these in turn produce magnetic fields of their own, etc. One of the goals of the
field of space physicsis to investigate this complex structure of the magnetosphere in detail and to understand
how it all works.

34.6 The Aurora

In far northern latitudes, one may see the “northern lights”, oraurora borealison some nights, especially
during periods of high solar activity (Fig. 34.6). A similar phenomenon is visible in the southern hemisphere,
called theaurora australis.

Auroræ are produced when charged particles from the Sun reach the Earth’s magnetosphere. If the Sun’s
magnetic field lines are pointing southward at the Earth, they meet the Earth’s northward-pointing magnetic
field lines in an event calledmagnetic reconnection. When the Earth’s magnetic field lines reconnect with the
Sun’s magnetic field lines, the Earth’s lines drape back toward the magnetotail, carrying a load of charged
particles with them. A similar reconnection event in the magnetotail causes the magnetic field lines to snap
back like rubber bands, and carry a load of charged particles back toward the Earth, where the enter the polar
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Figure 34.3: History of geomagnetic reversals, going back to the late Cretaceous period. The scale on the
right shows time in millions of years ago. Black indicates the same polarity as the current field, and white is
a “reversed” field [12]. 155
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Figure 34.4: The direction of the past geomagnetic field is recorded in the Earth’s crust on either side of the
mid-Atlantic ridge, in much the same way as information is stored on a magnetic tape by a tape recorder.
(Credit: U.S. Geological Survey.)

Solar
Wind Geomagnetic Tail

Magnetopause

Polar Cusp

Figure 34.5: The Earth’s magnetosphere. The leftmost curve is thebow shock, a shock wave in the solar
wind. Themagnetopauseshown here is the outer boundary of the Earth’s magnetic field. The region between
the magnetopause and the bow shock is called themagnetosheath. The Sun is outside the figure, to the left.
(Credit: NASA.)
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Figure 34.6: Aurora borealis over Bear Lake, Eielson Air Force Base, near Fairbanks, Alaska. (Credit:
Joshua Strang, USAF, Wikipedia.)
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regions. These energetic particles excite the oxygen and nitrogen atoms in the atmosphere, producing the
green and red lights of the aurora.

Figure 34.7 shows the aurora as seen by NASA’s IMAGE spacecraft in ultraviolet light. The images are
taken above the Earth, looking down at one of the poles. You can see that the auroræ form anauroral oval
centered on the pole. The figure shows how the auroral oval grows and then dies out with time.

Similar auroral ovals have been observed on Jupiter and Saturn (Fig. 34.8).
Further information on the Earth’s magnetosphere and auroræ is given in Appendix U.
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Figure 34.7: The aurora borealis as seen from above, looking down on the Earth. These images were taken
by the IMAGE spacecraft’s Far Ultraviolet Imaging System. (Credit: NASA.)
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Figure 34.8: Auroral oval at Saturn’s pole, taken in ultraviolet light by the Hubble Space Telescope. (Credit:
NASA.)
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Chapter 35

Magnetic Materials

Generally every material responds to a magnetic field in one way or another: materials may be weakly
repelled by a magnet (diamagnetism), weakly attracted to a magnet (paramagnetism), or strongly attracted to
a magnet (ferromagnetism). Each of these phenomena is described below.

35.1 Diamagnetism

In adiamagneticmaterial, the atoms of the material have no magnetic dipole moment. The external magnetic
field alters the speed of electrons in their orbits around the atomic nucleus, which induces an internal magnetic
field that repels the external field.

35.2 Paramagnetism

In a paramagneticmaterial, the atoms of the material do have a magnetic dipole moment. The dipole mo-
ments of the atoms align themselves with the external magnetic field to create an internal field that is weakly
attracted to the external magnetic field.

35.3 Ferromagnetism

Ferromagnetic materials are strongly attracted to magnets, and can be made into permanent magnets. The
ferromagnetic elements are iron, cobalt, and nickel, along with the rare earth elements gadolinium and dys-
prosium.

In ferromagnetic materials, the material is divided into a number ofmagnetic domains, each of which has
dimensions on the order of 1 mm or so. Within each domain, the atomic dipole moments are aligned in the
same direction. In an unmagnetized ferromagnetic material, each domain has its magnetic moment oriented
in a different (random) direction, so that the dipole moments of the material as a whole tend to cancel out. But
if a ferromagnetic material is exposed to an external magnetic field, the domains will tend to align themselves
with the external field, so that the material as a whole takes on a net dipole moment.

Unlike diamagnetic and paramagnetic materials, ferromagnetic materials respond nonlinearly when placed
in an external magnetic field. When a ferromagnetic material is placed within an external magnetic field, and
the external field is then removed, the field in the ferromagnetic material willnot disappear; a remanent
magnetic field will remain, turning the material into a permanent magnet. The nonlinear response of a ferro-
magnetic material to an external magnetic field is calledhysteresis(hiss-tuh-REE-sus) (Fig. 35.1).
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Figure 35.1: Hysteresis in a ferromagnetic material. The vertical axis (labeledD) is the internal magnetic
field induced in the material, and the horizontal axis (labeledE) is the external magnetic field. Starting at the
origin (an unmagnetized material in no magnetic field) and following the path withE increasing, we find the
induced field in the material increases until it reaches a saturation level, labeledDs . When the external field
E is removed, though, the path does not return to the origin; instead a remanent field (D r , the remanence)
remains in the material. The point labeledEc is called thecoercivityof the material, and is the external field
needed to de-magnetize the material. (Credit: Wikipedia, ©GNU-FDL, Wikimedia Commons.)

35.4 Permanent Magnets

Permanent magnetsare ferromagnetic materials that have a permanent magnetic field. They are manufactured
in a variety of materials; one of the most common isalnico, which is an alloy of aluminum, nickel, and cobalt
(hence Al-Ni-Co, or “alnico”), and has a shiny metallic appearance like steel. Many horseshoe and bar
magnets are made of this material, as well as heavy-duty handle magnets.

Ferrite or ceramicmagnets are made of a brownish, brittle ceramic material mixed with ferric oxide
(Fe2O3). They are sometimes used as components in electronic circuits.

Rare-earthmagnets are made of alloys that include rare-earth elements (basically the “lanthanides” row
of the periodic table). Two kinds of rare-earth magnets are made:samarium-cobalt(often used in stereo head-
phones and speakers), andneodymium. Neodymium magnets are made of an alloy of neodymium with iron
and boron (Nd2Fe14B), and are the most powerful permanent magnets made. Even very small neodymium
magnets are surprisingly powerful, and must be handled with care: two such magnets will attract each other
with a very strong force, and can easily shatter. Once stuck together, two neodymium magnets can be very
difficult to separate.

35.5 Curie Temperature

Once a ferromagnetic material has been magnetized by exposure to an external magnetic field, it may be
de-magnetized by heating it above a temperature called theCurie temperature. Above this temperature,
the thermal motion of the atoms is sufficient to re-scramble the magnetic dipole moments of the magnetic
domains, and the material becomes de-magnetized. The Curie temperatures of ferromagnetic elements are
shown in Table 35-1.
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Table 35-1. Curie temperatures for ferromagnetic elements.

Element Curie temperature (ıC)
Iron 770
Cobalt 1115
Nickel 354
Gadolinium 20
Dysprosium �188

35.6 Eddy Currents

A metal like aluminum is not ferromagnetic, so a sample of it cannot be picked up with a magnet the way
iron can. However, it can still be influenced by a magnetic field.

Suppose we put a piece of aluminum at the end of a light rod, so that it forms the bob of a pendulum. If
this pendulum is allowed to swing back and forth in the presence of an external magnetic field, something
surprising happens: the motion will be strongly damped and the pendulum will quickly stop swinging.

What’s happening is that as the aluminum metal moves through the magnetic field, electric currents called
eddy currentsare induced in the aluminum; those electric currents in turn produce a magnetic field of their
own, in a direction that opposes the external magnetic field. The interaction of the external and induced
magnetic fields produces the observed damping motion.
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Chapter 36

Ampère’s Law

In Chapter 32 we introduced the Biot-Savart law, which gives the magnetic field produced by a short current
element, and allows us to find the magnetic field due to any arbitrary geometry of electric current. Another
equation that gives the magnetic field produced by an electric current isAmpère’s law, named, like the SI unit
of electric current, for the French physicist Andr´e-Marie Ampère (1775-1836) (Figure 36.1.).

Given an electric currentI , imagine drawing a closed curveC around the current, so that the current
passes through a surface bounded byC . Now divide the curveC into small segments�l , and at each
segment, measure the component magnetic field that is parallel to�l ; we’ll call that magnetic fieldBk. Then
Ampère’s law states thatX

Bk�l D �0I: (36.1)

In other words, when we add together the productsBk�l for all the segments�l that make up curveC , we
get�0 times the current passing through the surface bounded byC .

So what? The Biot-Savart law tells us the magnetic field produced by an arbitrary arrangement of electric
current; why do we need another law that tells us the same thing? Recall Gauss’s law from Chapter 17: it
allows us to compute the electric field due to an arbitrary distribution of charge, although we could do the
same thing with Coulomb’s law. The difference is that Gauss’s law allows us to compute the electric field for
symmetricalcharge distributions very easily—much more easily than using Coulomb’s law. In these cases,
Gauss’s law can save a great deal of work. But if we have an irregular distribution of charge, we may have
no choice but to rely on Coulomb’s law and compute the electric field “the hard way.”

Figure 36.1: Andr´e-Marie Ampère.
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The relationship between the Biot-Savart law and Amp`ere’s law is similar. Although the Biot-Savart
law will always work, it can be difficult to use. In some cases where the distribution of current is highly
symmetrical, Amp`ere’s law gives us a shortcut for finding the magnetic field that is much less work than
using the Biot-Savart law. For irregular arrangements of electric current, though, we may have no choice but
to “do it the hard way” and resort to the Biot-Savart law.

For example, let’s find an expression for the magnetic field due to a currentI in an infinitely long, straight
wire, at a perpendicular distancer from the wire. To use Amp`ere’s law, we imagine drawing a circle of radius
r around the wire, so that the plane of the circle is perpendicular to the wire and the wire passes through the
center of the circle. We already know that the magnetic field due to the wire is in the shape of concentric
circles around the wire, so when we divide the circle into a number of small segments�l , we know the
magnetic fieldB will already be parallel to�l for each segment. Therefore for an infinitely long, straight
wire, X

Bk�l D B
X

�l D 2�rB: (36.2)

Then by Ampère’s law,

2�rB D �0I; (36.3)

or

B D �0I

2�r
; (36.4)

in agreement with Eq. (32.8). We could have arrived at the same result using the Biot-Savart law, but it would
be much more work.

165



Chapter 37

Faraday’s Law

In this chapter we’ll look at Faraday’s law, named for English physicist Michael Faraday (1791-1867) (Figure
37.1). Mathematically, Faraday’s law states that if the magnetic fluxˆB through a closed loop of wire changes
with time, then there will be an electromotive forceE (i.e. a voltage) induced in the wire given by

E D �N �ˆB

�t
(37.1)

HereE is the induced electromotive force,N is the number of turns of wire in the loop, and�ˆB is the
change in magnetic flux in time�t . (Recall that the magnetic flux is given bŷB D B � A.

The magnetic flux through the loop(s) of wire can be changed in several ways: the magnetic fieldB

can change in magnitude with time; the magnetic field can change direction with time; the loop of wire can
change its orientation with time; the area of the loop can change with time; or some combination of these.

Faraday’s law forms the basis of theelectric generator, which is responsible for producing most of the
electricity we use every day (except for electricity produced by batteries or solar arrays). Loops of wires are
turned inside a stationary magnetic field (or magnets may be turned inside stationary wires); this causes the
magnetic flux through the wires to change with time, creating an electric current. The turning motion may be
created by a water wheel, by geothermal steam, by steam created from burning coal or oil, or by steam created
by heat from a nuclear reaction. In effect, an electric generator converts mechanical motion into electrical
energy.

Faraday’s law may also be used in reverse: electrical energy may be converted into mechanical motion.

Figure 37.1: Michael Faraday.
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R

I

l

Figure 37.2: Motional emf.

This creates anelectric motor, a device that is familiar in such household appliances as vacuum cleaners and
electric dryers.

37.1 Lenz’s Law

Faraday’s law gives the magnitude of the induced electromagnetic force (emf) created by a changing magnetic
field. Thedirectionof the induced electromotive force and current may be found from a statement known a
Lenz’s law(named for the 19th century Russian physicist Heinrich Lenz):

The emf and induced current are in such a direction as to tend to oppose the change which
produced them.

37.2 Motional EMF

As an example to illustrate both Faraday’s law and Lenz’s law, consider the situation shown in Figure 37.2.
Two parallel conducting rails separated by a distancel are connected on their left end by a resistor. A
conducting bar is placed across the rails, and the entire apparatus is placed in a uniform magnetic fieldB

pointing into the page. Now move the conducting rail to the right with velocityv; this will increase the area
enclosed by the circuit, which will increase the magnetic flux inside the circuit. By Faraday’s law, this will
induce an electromotive force (voltage) in the circuit. An emf induced in this way is calledmotional emf.

We can find the magnitude of the induced emf using Faraday’s law. At a given instant, there is an areaA

enclosed by the circuit, formed by the rails, resistor, and conducting bar. When the bar is moving at velocity
v to the right, then in a time interval�t the area increases by an amountlv�t . The rate at which the area
changes is then

�A

�t
D lv�t

�T
D lv: (37.2)

Since the magnetic flux̂ B D BA, we have

�ˆB

�t
D B

�A

�t
D Blv: (37.3)
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Therefore by Faraday’s law, the magnitude of the induced electromotive force is

jEj D �ˆB

�t
D Blv: (37.4)

We can deduce thedirection of the induced current by using Lenz’s law, which says that the induced
current must be in such a direction that the magnetic field it produces will tend to oppose the change in
magnetic flux. If the conducting bar moves to the right, then the magnetic fluxˆB is increasingwith time.
Therefore the induced current must becounterclockwise, because, by the right-hand rule, a counterclockwise
current will produce a magnetic field inside that circuit that pointsout of the page, which will tend to decrease
the magnetic flux. In other words, the magnetic flux “wants” to remain relatively constant; if the moving bar
increases the magnetic flux through the circuit, then the induced current will be in a direction to decrease it,
so that it tries to stay as constant as possible.

Another way to determine the direction of the induced current is via the Lorentz force. The conducting
bar is full of free (negatively charged) electrons. As the bar moves across the magnetic field, the Lorentz force
on each electron will beF D �ev � B; sincev is to the right andB is into the page, this meansF will be
downward, so the electrons will move downward. The conventional current moves opposite the direction of
the electrons, so the current in the bar isupward, and the current in the circuit is therefore counterclockwise.
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Chapter 38

Maxwell’s Equations

The fundamental equations of classical electricity and magnetism are four equations calledMaxwell’s equa-
tions, named after Scottish physicist James Clerk Maxwell (1831-1879) (Figure 38.1.). The four equations
are:

1. Gauss’s law(Chapter 17) describes the electric field created by electric charges.

2. Gauss’s law for magnetism(Chapter 32) states that there are no magnetic monopoles.

3. Ampère’s law(Chapter 36) describes how a time-varying electric field creates a magnetic field.

4. Faraday’s law(Chapter 37) describes how a time-varying magnetic field creates an electric field.

Figure 38.1: James Clerk Maxwell.
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Chapter 39

Inductance

The space surrounding an electric circuit contains a magnetic field due to the electric currents running in the
circuit. By the Biot-Savart law, the magnetic flux̂B is proportional to the currentI :

ˆB D LI: (39.1)

Here the proportionality constantL is called theinductance. Of course, the magnetic flux at a given point in
space depends on a number of factors besides the current: it also depends on the distance from the current,
the permeability of free space, etc. The inductanceL can be thought of as all these other factors lumped
together.

The SI unit of inductance is thehenry (H), named for the American physicist Joseph Henry. Since
magnetic flux is measured in webers and current in amperes, Eq. (39.1) indicates that one henry is equal to
one weber per ampere: 1 HD 1 Wb/A.

39.1 Solenoid Inductor

One very common device for introducing inductance into an electric circuit is thesolenoid, which is a coil of
wire wrapped on an insulating cylinder. As discussed earlier in Section 32.9, the magnetic fieldB inside a
solenoid carrying a currentI is given by

B D �0nI; (39.2)

wheren D N=` is the total number of turns of wireN divided by the length̀ of the solenoid. We can
find an expression for the inductanceL of a solenoid by starting with this equation forB. Let A be the
cross-sectional area of the solenoid, and letN be the total number of turns of wire. Then the magnetic field
passes throughN turns, each of which has areaA. The total area through which the magnetic field passes is
thereforeNA, and so the magnetic flux is

ˆB D B.NA/ (39.3)

D �0NnIA (39.4)

D �0n
2IA`: (39.5)

The inductanceL is then found to be

L D ˆB

I
; (39.6)
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so the inductance of a solenoid is

L D �0n
2A` D �0N

2A

`
: (39.7)

Note that the inductance, like the capacitance, depends only on factors involving the geometry of the inductor:
its length`, cross-sectional areaA, and number of turns of wireN .

39.2 Inductors in Series and Parallel

Inductors connected in series and parallel follow the same equations as resistors.
Several inductors connected end-to-end (in series) have an equivalent inductance equal to the sum of the

individual inductances:

Ls D
X

i

Li (39.8)

D L1 C L2 C L3 C � � � (39.9)

If they are connectedin parallel, the the equivalent inductance is the reciprocal of the sum of the reciprocals
of the individual inductances:

1

Lp

D
X

i

1

Li

(39.10)

D 1

L1

C 1

L2

C 1

L3

C � � � (39.11)

Note the following points. For inductors connectedin series:

• The equivalent inductance will be bigger than the largest inductance in the series combination.

• If one inductor in the series combination is much larger than the others, the equivalent inductance will
be approximately equal to the largest inductance.

• M equal inductorsL connected in series have an equivalent inductance ofML.

For inductors connectedin parallel:

• The equivalent inductance will be smaller than the smallest inductance in the parallel combination.

• If one inductor in the parallel combination is much smaller than the others, the equivalent inductance
will be approximately equal to the smallest inductance.

• M equal inductorsL connected in parallel have an equivalent inductance ofL=M .

39.3 Magnetic Materials in Inductors

As shown by Eq. (39.7), the inductance of a solenoid can be increased by increasing the cross-sectional area
of the plates, or by increasing the number of turns of wire. Another way to increase the inductance is to insert
a magnetic material inside the solenoid; this will cause the inductance to increase by a factor ofKm:

L D Km �0N
2A

`
; (39.12)
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whereKm is called therelative permeabilityof the material. The combination

� D Km�0 (39.13)

is called thepermeabilityof the material. Since the relative permeabiltiyKm is typically a number very close
to 1, it is convenient to introduce themagnetic susceptibility�m, defined by

Km D 1C �m: (39.14)

39.4 Energy Stored in an Inductor

An inductor can be thought of as a device that stores energy in the magnetic field between inside the coils of
the inductor. Using the calculus, it can be shown that the potential energyU stored in the magnetic field of
an inductor of inductanceL carrying currentI , is given by

U D 1
2
LI 2: (39.15)

Theenergy density(energy per unit volume) of an inductor can be found by using the solenoid as an example.
From Eq. (39.7), the total potential energy stored in a solenoid (of plate areaA and separationd ) is

U D 1
2
LI 2 (39.16)

D 1
2
�0n

2A`I 2 (39.17)

Since the magnetic field inside the solenoid isB D �0nI , this gives

U D 1

2
.�0nI /

2.A`/
1

�0

(39.18)

D 1

2

1

�0

B2A` (39.19)

Since the volume inside the solenoid isA`, the energy densityu D U=.A`/, or

u D 1

2�0

B2: (39.20)

Compare this result with the analogous equation for a capacitor, Eq. (26.16):

u D 1
2
"0E

2: (39.21)
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LR Circuits

By connecting an inductor and a resistor together in series, we create anLR circuit. In an LR circuit, energy
is stored in the magnetic field of the inductor, and the resistor controls the rate at which current reaches the
inductor. The characteristic time scale required to create a full-strength magnetic field in the inductor is called
thetime constant	 , and is given by

	 D L

R
: (40.1)

If the inductanceL is in henries and the resistanceR is in ohms, then the time constant	 will have units of
seconds.

Figure 40.1 shows an LR circuit. The circuit includes a battery, so that when the switchS is closed,
current flows through the resistor and inductor, and begins building up a magnetic field inside the coils of the
inductor. The resulting magnetic field will be in a direction that, by Lenz’s law, will tend to oppose changes
in the direction of the current, so that it becomes harder to increase the current. Once an amount of time has
gone by that is large compared to the time constant	 D L=R, the magnetic field in the inductor will have
essentially reached its maximum value, and the current will be constant.

Figure 40.2 shows the resistor voltage, inductor voltage, circuit current, and inductor magnetic flux in the
LR circuit as a function of time. The switchS is closed at timet D 0. Shortly afterwards, a small current
flows through the circuit, the voltage across the resistorR is equal zero, and the voltage across the inductor
is equal to the battery voltageV . At time 	 D L=R after the switch is closed, the voltage across the resistor

R

L

S

V

Figure 40.1: An LR circuit.
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Figure 40.2: Plots vs. time for an LR circuit. (a) Resistor voltage vs. time; (b) inductor voltage vs. time; (c)
circuit current vs. time; and (d) magnetic flux in the inductor vs. time. The switchS is closed at timet D 0.

has increased to1 � 1=e D 0:632 of the battery voltage; the voltage across the inductor has decreased to
1=e D 0:368 of the battery voltage; the current has increased to1 � 1=e of its maximum value; and the
magnetic flux in the inductor has increased to1 � 1=e of its maximum value.

Mathematically, the voltage across the resistorVR , the voltage across the capacitorVC , the current in the
circuit I , and the magnetic flux̂ B in the inductor can be shown to be

VR.t/ D V.1 � e�t=�/ (40.2)

VL.t/ D Ve�t=� (40.3)

I.t/ D .V=R/ .1 � e�t=�/ (40.4)

ˆB .t/ D .LV=R/ .1 � e�t=�/ (40.5)

As time t ! 1, current will reach a maximum valueI D V=R, the magnetic flux in the inductor will
have reached its maximum valueLV=R, the voltage across the resistor will equal the battery voltage, and the
voltage across the inductor will be zero.
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LC and LCR Circuits

We’ve previously looked at the RC circuit (a resistor and capacitor connected to a battery) and the RL circuit
(a resistor and inductor connected to a battery). The two circuits have complementary behavior: in the
RC circuit, the current starts out with a maximum value at the instant the switch is closed and decreases
exponentially toward zero. In the RL circuit, the current starts out small the instant the switch is closed,
increases with time, and eventually levels off to its maximum value.

41.1 LC Circuits

By connecting a charged capacitor and an inductor together, we create something called anLC circuit (Figure
41.1). In an LC circuit, the complementary behavior of the capacitor and the inductor give some interesting
results. As the capacitor discharges, a current is created in the circuit, which starts to build a magnetic field
in the inductor. As time goes on, the current will increase, but start to level off because the inhibiting effect
of the inductor: the inductor will create magnetic field an induced current in a direction that will oppose the
increase in the magnetic field in the inductor. By the time the capacitor has fully discharged, the magnetic
field in the inductor will have reached its maximum value.

At this point the current would stop, were it not for the presence of the magnetic field in the inductor.
Once the capacitor has fully discharged, it can no longer provide current to the inductor, and the magnetic
field in the inductor begins to collapse. But this change in the magnetic field induces a current in a direction
that opposes the collapse in the magnetic field—in other words, in a diction that will continue the current in
its original direction, so that the capacitor will begin to charge with the opposite polarity that it originally had.
By the time the magnetic field in the inductor has completely collapsed, the capacitor will be fully re-charged
(with opposite its original polarity), and the process begins again in reverse. Current will now begin to flow in
the opposite direction, creating a magnetic field in the inductor whose polarity is opposite what it was before.
The process will continue as before (but in the opposite direction) until the capacitor is fully charged with its
original polarity, and the cycle begins again, repeating over and over.

The result is an electrical form of simple harmonic motion, with energy moving back and forth between
the electric field stored in the capacitor and the magnetic field stored in the inductor. It can be shown that this
oscillation has angular frequency

! D 1p
LC

; (41.1)

whereL is the inductance of the inductor andC is the capacitance of the capacitor. The period of oscillation
is thereforeT D 2�=!,or

T D 2�
p
LC : (41.2)
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L

S

C

Figure 41.1: An LC circuit.

Figure 41.2: Plots vs. time of LC circuit currentI , capacitor voltageVC , inductor voltageVL, capacitor
chargeQ, and inductor magnetic flux̂B . The current and inductor flux are in phase with each other, as are
the voltage and charge on the capacitor. The voltages on the capacitor and inductor are180ı out of phase.
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Figure 41.2 shows plots vs. time of the circuit current, voltages across the inductor and capacitor, charge
on the capacitor, and magnetic flux in the inductor. For these plots, att D 0 (the instant the switch is closed),
the capacitor in Fig. 41.1 is initially fully charged with the top plate positive. Positive current is taken to be
clockwise. All quantities vary sinusoidally with the same period, but may be shifted in phase with respect to
each other. If the initial charge on the capacitor isQ0, then the amplitudes for each quantity will be as shown
in the following table:

Quantity Symbol Amplitude
Current I !Q0

Capacitor voltage VC Q0=C

Inductor voltage VL L!2Q0

Capacitor charge Q Q0

Inductor mag. flux ˆB L!Q0

Energy of an LC Circuit

In a simple harmonic oscillator formed by a mass on a spring, energy is continuously sloshing back and forth
between kinetic and potential energy, with the sum of the two (the total energy) being constant. Similarly,
in an LC circuit, energy is continuously sloshing back and forth between electric energy in the capacitor and
magnetic energy in the inductor. The electric energy in the capacitor is given by Eq. (26.12):

Ue D 1

2

Q2

C
: (41.3)

From Figure 41.2 and the above table, we have the charge on the capacitor (lower plate) as a function of time
is given by

Q.t/ D �Q0 cos!t: (41.4)

and so the electric energyUe as a function of time is

Ue.t/ D Q2
0

2C
cos2 !t: (41.5)

Similarly, the magnetic energy in the inductor is given by Eq. (39.15):

Um D 1

2
LI 2; (41.6)

where the current at timet is

I.t/ D !Q0 sin!t: (41.7)

Substituting this expression forI.t/ into the formula forU m gives an expression for the magnetic energy of
the inductor as a function of time:

Um.t/ D L!2Q2
0

2
sin2 !t (41.8)

D Q2
0

2C
sin2 !t; (41.9)

where we have used the fact that!2 D 1=LC . The total energyU is then

U D Ue C Um (41.10)

D Q2
0

2C
cos2 !t C Q2

0

2C
sin2 !t D Q2

0

2C
; (41.11)

which is a constant, as expected.
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Figure 41.3: An LCR circuit.

41.2 LCR Circuits

If a resistor is placed in an LC circuit, we have anLCR circuit (Fig. 41.3). The effect of the resistor is to
introduce damping into the oscillation of the circuit: while an LC circuit oscillates like a simple harmonic
oscillator, an LCR circuit behaves like adampedharmonic oscillator. Depending on the value of the resistance
R, the current in the circuit may be underdamped, overdamped, or critically damped, just as with the damped
harmonic oscillator.
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AC Circuits

All of the electric circuits we have seen so far aredirect current(DC) circuits. This means that the current is
always traveling in the same direction at each point in the circuit. This is in contrast toalternating current
(AC) circuit, in which the direction of the current alternates back and forth between one direction and another.
Batteries provide direct current; the electric outlets in the walls of your house provide alternating current.

Capacitors and inductors are electrical components that are more typically seen in AC circuits than in DC
circuits. An AC circuit containing resistors, capacitors, and inductors can be analyzed using an interesting
mathematical trick: we simply treat all three components as if they werecomplex-valued resistors, then use
all the methods we used earlier to analyze DC circuits with resistors (but with complex arithmetic). This
complex-valued resistance is calledimpedance, and is given the symbolZ. Impedance has the same units as
resistance, ohms (�).

The value of the complex impedance for a resistor, capacitor, and inductor is shown in the table below. In
the table, the symbolj stands for the imaginary unit,1 i.e. j D p�1. The variablef in the table refers to
the frequency of the voltage source attached to the component.

Component Impedance

ResistanceR ZR D R

CapacitanceC ZC D 1
j 2�f C

InductanceL ZL D j 2�fL

We interpret the final results of the analysis (complex numbers) as giving information about both the
amplitude and phase of the signal at any point in the circuit.

1In most areas of science, mathematics, and engineering, the symboli is used for
p�1. But in electrical engineering,i is used for

current; so to avoid confusion, electrical engineers writej instead ofi for
p�1.
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Example.Suppose a 15� resistor, a 300�F capacitor, and a 4 mH inductor are connected in series to a
sinusoidal voltage source of frequency 60 Hz. Then the equivalentimpedanceof the series combination is

Z D ZR CZC CZL

D RC 1

j 2�fC
C j 2�fL

D .15 �/C 1

j 2�.60 Hz/.300 � 10�6 F/
C j 2�.60 Hz/.4 � 10�3 H/

D .15 � 7:3340j / �
where we have used the identity1=j D �j .

42.1 Format Wars of the 19th Century: AC vs. DC

Edison (DC) vs. Westinghouse (AC)
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Memristance

We have seen the three basic components of analog electronics are the resistor, capacitor, and inductor. Let’s
arrange the defining equations for resistanceR, capacitanceC , and inductanceL into a2 � 2 table:

R D V=I L D ˆB=I

C�1 D V=Q

(We’ll use the reciprocal of capacitance (elastance) to make the pattern clear.) Notice the pattern: in
the first row the current is in the denominator, and in the first column the voltage is in the numerator. You
might guess that there could be another combination,ˆB=Q, to fill in the lower-right corner. This idea led
American electrical engineer Leon Chua to predict the existence of afourthanalog electronic component in
1971, thememristor.1 ThememristanceM D ˆB=Q completes the table:

R D V=I L D ˆB=I

C�1 D V=Q M D ˆB=Q

Memristance has the same units as resistance, ohms (�).
The memristor was finally discovered during experiments with molecular electronics at the Hewlett-

Packard laboratories in 2008. It behaves like a resistor with a “memory” (hence the name): when voltage is
removed from a memristor, it still “remembers” how much voltage was last applied to it, and for how long.
The resistance increases when the current flows through it in one direction, decreases when current flows in
the opposite direction, and remains unchanged when no current flows through it.

Practical applications are still being discussed, but possibilities include applications to non-volatile com-
puter memory, including computers that could remember their previous state when being powered on, thus
avoiding the usual lengthy boot-up process.

1See IEEE Spectrum, http://spectrum.ieee.org/semiconductors/design/the-mysterious-memristor
(May 2008).
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Electromagnetism

44.1 Electromagnetic Waves

As mentioned in Chapter 37, the theory of classical electricity and magnetism is based on four equations
calledMaxwell’s equations, named for the 19th-century Scottish physicist James Clerk Maxwell. Around the
time of the American Civil War (1865) Maxwell collected the four equations together, and realized that there
was a crucial term called thedisplacement currentmissing from Ampère’s law that was required to make it
self-consistent. After adding this term to Amp`ere’s law, Maxwell was able to show that the four equations
could be combined to derive awave equation, which describes a wave moving with speed

1p
"0�0

D c D 299;792;458m=s; (44.1)

which is the speed of light in vacuum. This is a remarkable result: by combining equations that summarized
the results of laboratory experiments on electric and magnetic fields, Maxwell was able to demonstrate that
light is anelectromagnetic wave, thus connecting the fields of electromagnetism and optics.

Specifically, the classical view of electromagnetic waves (including visible light) is that it consists of
a transverse electric wave; the electric wave in turn creates a perpendicular magnetic wave, which in turn
produces the electric wave, and so on. In other words, light (and other electromagnetic waves) consist of
electric and magnetic waves that sustain each other as they propagate through space, so that no material
medium is required. (Fig. 44.1.) Light can propagate in a vacuum.

Visible light is just one of many forms of electromagnetic wave. Electromagnetic waves are categorized
(somewhat arbitrarily) according to their wavelength, as shown in Table 44-1. It’s important to realize,
though, that all these waves are really the same thing: they differ only in their wavelength, and the different
names we give them are for our own convenience.

Table 44-1. Electromagnetic waves and their wavelengths. Wavelength increases going down the table from
top to bottom; frequency and energy increase going up the table from bottom to top.

Wave Wavelengths
Gamma rays < 0.1 nm (shortest�; highestf; E)
X-rays 0.1 – 10 nm
Ultraviolet 10 – 400 nm
Visible 400 – 700 nm
Infrared 0.7 – 100�m
Submillimeter 0.1 – 1 mm
Microwaves 1 mm – 1 m
Radio > 1 m (longest�; lowestf; E)
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Figure 44.1: Diagram of an electromagnetic wave. The electric and magnetic vectors are perpendicular, and
they peak together and go to zero together. The wave travels in theE � B direction (to the right in this figure).
(Credit: NOAA.)

Gamma raysare the shortest-wavelength, highest-frequency, highest-energy waves. They are generally
associate with nuclear processes (such as nuclear fission and fusion), and with other high-energy reactions
such as matter-antimatter annihilation.

X-rays are familiar for their medical uses. Human tissue is transparent in X-rays, but human bone is
opaque. By viewing an image of the human body in X-rays, one may create images of the human skeleton.
X-rays are generally less energetic than gamma rays, and are generally produced by atomic reactions.

Ultraviolet light is light whose wavelength is shorter than can be seen by the human eye (although some
animals can see in ultraviolet light). The Sun emits a significant amount of ultraviolet light, which can cause
sun tans and sunburns in humans.

Visible light is light whose wavelengths are visible to the human eye. Violet light is the shortest wave-
length (about 400 nm) and highest frequency and energy; red light is the longest wavelength (about 700 nm)
and lowest frequency and energy. The order of the colors of visible light (from longest to shortest wavelength)
is given by the mnemonic “ROY G. BIV”: Red, Orange, Yellow, Green, Blue, Indigo, Violet.

Infrared light is light whose wavelength is longer than can be seen by the human eye—although some
animals like the pit viper can see in infrared light. Bodies that we consider “warm” (say, somewhat above
room temperature) emit significant amounts of infrared light. For example, the human body can be seen to
be “glowing” in infrared light, although it does not glow significantly in visible light. This is the principle of
the night-vision scope, which is a device that converts infrared light to visible wavelengths, so that the user
can detect this glowing of warm bodies.

Submillimeter wavesare electromagnetic waves whose wavelength is between 0.1 to 1 mm. These waves
are of some astronomical interest, and have a few applications in medicine.

Microwavesare electromagnetic waves whose wavelengths are typically measured in centimeters. Mi-
crowaves are familiar in their use in microwave ovens: the oven emits microwaves designed to resonate with
the water molecules in food, thereby “shaking” the water molecules and heating the food. Microwaves also
find uses in communications (high-frequency radio).

Radio wavesare the longest-wavelength (� > 1 m), lowest-frequency, lowest-energy electromagnetic
waves. They are used in radio astronomy and in radio communications. These wavelengths includes AM and
FM radio and broadcast television. (FM radio lies between TV channels 6 and 7.)
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Radio

Electromagnetic waves can bemodulatedto carry information; this means that the pure sinusoidal electro-
magnetic wave is modified in some fashion to include information such as voice or music. There are two
common methods for modulating a radio wave:

• Amplitude modulation.Here the frequency of the wave is constant, but theamplitudeof the wave is
modified to carry information. In a sense, the basic sinusoidal radio frequency (thecarrier wave) is
multiplied by the sound wave, and the superposition of the two is transmitted by a device called the
transmitter. Another person has a device called areceiverthat extracts the audio (sound) information
and sends it to a speaker or headphones.

• Frequency modulation.Here the amplitude of the wave is kept constant, but thefrequencyis varied
slightly about the carrier wave frequency in order to carry the audio information. Frequency modulation
has the advantage of being less susceptible to noise from phenomena such as lightning discharges, but
requires a more complex transmitter and receiver.

Radio is used in a number of ways:

• AM Radio.So named because it uses amplitude modulation, AM radio is a commercial service that is
used to broadcast music, talk, news, sports, etc. It first appeared around 1920. Stations broadcast on
frequencies between 520 kHz and 1700 kHz, separated by 10 kHz. During the day, AM stations may
travel a few hundred miles, while at night they may travel across the continent by reflecting from the
Earth’s ionosphere.

Some AM stations broadcast at low power, or may broadcast only during the day. A few stations (Table
45-2) broadcast at the maximum allowed power (50 kW) day and night, and may be heard around the
country at night.

• FM Radio.So named because it uses frequency modulation, FM radio is a commercial service whose
content is similar to that of AM radio. Stations broadcast on frequencies between 87.9 MHz and 107.9
MHz, separated by 0.2 MHz. FM radio frequencies are in a gap between television channels 6 and 7.
FM radio is less susceptible to “static” noise than AM, but the signals don’t travel far—–typically just
a few dozen miles at most.

• Shortwave.Many countries broadcast an international service around the world in various languages.
These stations broadcast on so-called “shortwave” frequencies between 1800 kHz and 30 MHz, and
use amplitude modulation. At these frequencies, radio signals can bounce off of the Earth’s ionosphere
and travel around the world.
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Shortwave broadcast content typically includes news and cultural features from that country, and often
propaganda as well. Shortwave stations are not assigned a single fixed frequency the way our AM and
FM stations are. Instead, they broadcast in blocks of an hour or so in length, with each block at a
specific time and frequency, and in a specific language directed to a particular part of the world. And
the broadcast schedules are often changed throughout the year. For this reason, a printed or on-line
shortwave broadcast guide is helpful for finding times and frequencies of English-language broadcasts
directed to North America.

Some of the best known shortwave stations are:

– Voice of America(United States)

– Radio Canada International� (Canada)

– BBC World Service(United Kingdom)

– Radio Deutsche Welle(Germany)

– Radio Sputnik, (formerlyRadio MoscowandVoice of Russia; Russia)

– Radio Australia� (Australia)

– China Radio International(formerlyRadio Peking; China)

Just very recently, a number of these stations (marked with an asterisk) have stopped broadcasting by
radio, in favor of Internet service.

• Television.Television signals are sent in much the same way as radio signals, with information about
the television picture being sent along with the audio. Television signals were encoded by frequency
modulation until the switch to digital television in 2009. Television channels are broadcast in several
contiguous “blocks” of frequencies, as shown in Table 45-1. Each television channel is 6 MHz wide.
Originally, with analog television this was to to allow room for both the video signal (lower part of the
band) and audio signal (upper part of the band). Now with digital television, each channel requires less
“bandwidth”, and so television stations often divide their 6 MHz channel into several sub-channels,
each carrying different programming.

Table 36-1. Television channel frequencies.1

Channels Frequencies (MHz)
2 - 4 54 - 72
5 - 6 76 - 88
7 - 13 174 - 216
14 - 36 470 - 608
37 - 61 614 - 764
62 - 64 776 - 794

• Cellular telephone.Cellular telephone transmissions occur over a range of frequencies lying between
800 MHz and 2700 MHz. At these high frequencies, radio signals do not travel very far, so cellular tele-
phone relies on a nation-wide system of “repeater” transmitters, which receive signals and re-transmit
them until they reach their destination. (The range of each repeater is the “cell” of cellular telephone.)

• Amateur radio.Radio amateurs have access to a number of blocks of frequency all over the radio fre-
quency spectrum. They use these for informal hobby chatting (calledragchewing), emergency commu-
nications, and experimenting with radio technology. Transmitting on the amateur radio bands requires
an amateur radio license from the Federal Communications Commission.

1There is no television channel 1. Channel 1 existed at one time, but was eliminated by the Federal Communications Commission in
1948 as part of negotiating competing interests in the radio frequency spectrum.
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• Citizen’s Band radio.This is a radio service available for use by anyone, with no license required.
Citizen’s Band (or “CB”) radio enjoyed a huge (but brief) boom of popularity during the 1970s, when
it was often used as a mobile radio service by drivers of cars and trucks. Today CB radio is much less
popular, but is still used by truck drivers.

• Other uses.Various other radio services are available for use by police, fire, military, taxicabs, maritime
and aircraft communications, etc.

Table 45-2. Some 50 kW clear-channel AM radio stations that can be heard from the east coast of the U.S.

f (kHz) Call Sign City
640 KFI Los Angeles
650 WSM Nashville
700 WLW Cincinnati
710 WOR New York
720 WGN Chicago
750 WSB Atlanta
760 WJR Detroit
770 WABC New York
780 WBBM Chicago
830 WCCO Minneapolis
840 WHAS Louisville
850 KOA Denver
870 WWL New Orleans
880 WCBS New York
890 WLS Chicago
1020 KDKA Pittsburgh
1030 WBZ Boston
1040 WHO Des Moines
1060 KYW Philadelphia
1090 WBAL Baltimore
1110 WBT Charlotte
1120 KMOX St. Louis
1160 KSL Salt Lake City

45.1 The Ionosphere

The distance that radio waves can travel depends strongly on their frequency. At some frequencies, radio
waves are able to reflect off of a layer of ionized gas in the Earth’s atmosphere called theionosphere. The
ionosphere actually consists of three layers, calledD, E, andF .2 The lowest layer is theD layer, above
that is theE layer, and the highest layer isF .3 During the day, sunlight ionizes these three layers, turning
them into a plasma. At night, when the sunlight is gone, the ions in theD andE layers re-combine with
the free electrons, and these layers become neutral. TheF layer is high enough that the gas is at a very low
density—low enough that the gas particles do not have time to collide and re-combine with the electrons, and
theF layer remains ionized all night.

Radio waves interact with the ionosphere in different ways depending on their frequency. Shortwave
radio frequencies, for example, are able to travel through theD andE layers to reach theF layer of the

2Layers of the ionosphere were lettered starting withD to allow A, B , andC to be used for possible other layers that might be
discovered below theD layer. No such layers exist, though.

3TheF layer splits into two layers (F1 andF2) during the day, and merges back into a single layer at night.
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ionosphere throughout the day and night. After reaching theF layer, the signals the reflect and bounce back
to the ground, where they reflect again back toward the ionosphere, and so on. With multiple “hops,” like
this, the radio waves can travel around the globe.

The interaction of AM radio waves is a bit different. During the night, AM radio waves can reach theF

layer and travel like shortwave radio, making multiple hops across the globe. But during the day, AM radio
waves are absorbed by the ionizedD layer and cannot reach theF layer. In effect, theD layer acts as kind
of a “curtain” that is pulled in front of theF layer during the day. The net effect is that AM radio signals can
travel great distances at night, but much shorter distances during the day.

45.2 The Crystal Radio

We’ll examine the operation of a simple radio receiver by looking in detail at the design of a simplecrystal
radio receiver. This is one of the first types of radio receiver, and has been in use since the 1920s. A crystal
radio can be built from just a few spare parts—in fact, soldiers during World War II would often build a
variety of crystal radio called a “foxhole radio” from wire, scrap wood, a razor blade, toilet paper tube, a
safety pin or pencil lead, and headphones.

One remarkable feature of a crystal radio is that it requiresno batteries: it runs entirely on the power
provided by the transmitter. Once you build a crystal radio, you can run it forever for free.

Tuning Circuit

The crystal radio circuit begins with a tuned LC circuit (Fig. 45.1(a)). The LC combination is designed to
oscillate at the same frequency as the AM radio signal to be received.

Recall from Chapter 41 that an LC circuit with inductanceL and capacitanceC oscillates with angular
frequency

! D 1p
LC

: (45.1)

Sincef D !=2� , the frequency (in hertz) is

f D 1

2�
p
LC

: (45.2)

Antenna and Ground

Now let’s add anantenna(or aerial) and ground to the tuned LC circuit (Fig. 45.1(b)). The antenna is
typically just a long wire (50–100 ft.) strung outdoors, up into a tree or other tall structure if possible.
The ground connection is a connection to a long conductor, typically the Earth itself. A traditional ground
connection is a connection to a copper pipe driven into the ground, or a connection to a copper cold-water
pipe (which also goes to the ground).

The antenna is a large conductor that picks up radio signals of all frequencies and feeds them to the LC
circuit. But the LC circuit only resonates with those input signals that are at the frequency given by Eq.
(45.2). The ground connection essentially gives the current someplace to go; without a good ground, the
current would get “backed up” in the circuit, and the radio would not operate.

The Crystal

Now that we have a circuit resonating at the frequency of the carrier wave (the frequency at which the radio
station is transmitting), we need to extract the audio signal. In a crystal radio, this is done with adiode: a
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(a) (b) (c)

(d) (e)

Figure 45.1: Construction of a crystal radio receiver. (a) Tuned LC circuit. (b) Addition of an antenna and
ground to drive the LC circuit. (c) Addition of a diode to rectify the signal and extract the audio. (d) Adding
headphones completes the radio circuit — the headphones convert the electrical signal from the diode to
sound. (e) Making the inductor or capacitor variable allows the radio circuit to tune different stations. Shown
here is a variable inductor.

188



Prince George’s Community College Introductory Physics II D.G. Simpson

Figure 45.2: A galena crystal with cat’s whisker. (©GNU-FDL,Wikimedia Commons.)

kind of one-way valve that allows current to travel in one direction, but not another. By connecting a diode to
the tuned LC circuit (Fig. 45.1(c)), we get just one-half of the resonating signal. That is, the incoming signal
will cause the LC circuit to oscillate back and forth with an alternating current, where the current sloshes
back and forth, going clockwise, then counterclockwise, then clockwise again, etc. The diode allows only
the current going in one direction to pass, which allows us to pick up the audio signal that is modulated on
the carrier wave.

If we were to connect headphones directly to the LC circuit with no diode, we would hear nothing. The
LC current sloshing back and forth would average out to zero, so we would hear no audio. Adding the diode
leaves a net non-zero signal coming out of the diode, which has the audio signal in it.

In a traditional crystal radio of the 1920s, a simple diode was constructed from a crystal of the mineral
galena, which is a heavy silvery metallic mineral consisting of crystalline lead sulfide (PbS). The galena
crystal was touched with a fine wire called acat’s whisker. The cat’s whisker was attached to a movable arm
so that it could be placed in contact with different areas of the galena crystal surface (Fig. 45.2). At some
point you would find a “sensitive” area of the crystal that would allow the whole assembly to act as a diode,
and conduct current in only one direction.

In building a “foxhole radio,” soldiers found that galena crystals were very difficult to come by. Instead,
they would substitute a razor blade, and used a safety pin or pencil lead as the cat’s whisker. This was
somewhat less satisfactory than a galena crystal, but was often adequate for picking up a station or two.

In more modern crystal radios, we often replace the galena crystal and cat’s whisker with a germanium
diode (called a1N34 germanium diode). This kind of diode contains a tiny crystal of germanium metal and
tiny cat’s whisker wire already placed so that the device will always conduct current in just one direction.

Headphones

Finally, we connect a set of headphones or crystal earpiece to the circuit (45.1(d)). This takes the signal
coming from the diode and uses it to drive the vibration of a diaphragm that produces sound waves that can
be heard by the ear.

Variable Tuning

The radio built so far can tune only one station, whose frequency is at the resonant frequency of the LC
circuit. By making either the inductor or the capacitor variable (Fig. 45.1(e)), the circuit can be made to tune
different stations. Typically we choose an inductor withL D 250 �H and a capacitor withC D 365 pF,
which gives a resonant frequency (Eq. 45.2) off D 527 kHz, which is at the lower end of the AM radio
band. If the inductor can vary between 0 and 250�H or the capacitor can vary between 0 and 365 pF, then the
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Figure 45.3: Simple radio transmitter for sending Morse code.

resonant frequency of the LC circuit can vary between a lowest frequency of 527 kHz and an upper frequency
of, in theory, infinity (ifL orC is zero).

Other Issues

The radio receiver described here is a very simple one, but will allow you to pick up strong nearby signals.
There are many ways to improve on this circuit. For example, a carefully designed antenna can allow the radio
to pick up weaker stations. Adding more sophistication to the circuit can increase itsselectivity, allowing you
to separate stations that are close together in frequency.

45.3 The Radio Transmitter

Suppose you were stranded on a deserted island, and needed to build a simple radio transmitter to signal
passing ships or nearby islands so that you could be rescued. How could you do it?

A radio transmitteris a device that creates modulated radio waves that can be picked up by a receiver
such as the crystal radio receiver described earlier. A very simple radio transmitter can be constructed from a
battery, acrystal oscillator, and some wire.

A crystal oscillator is a circuit at the heart of which is a small crystal of quartz—a transparent mineral
made of silicon dioxide (SiO2). Quartz is chosen because it exhibits apiezoelectric effect, meaning that
applying an electric field to the crystal causes it to flex a bit, and flexing the crystal creates an electric field.
The crystal oscillator circuit is designed to flex the crystal, then feed any resulting voltage back to the crystal
again; this feedback process causes the crystal to oscillate at its natural resonant frequency, and produces an
output signal at a well-defined frequency. A crystal oscillator circuit like this is used as the time basis of a
quartz watch, for example.

Figure 45.3 shows a very simple radio transmitter for sending Morse code signals. The battery powers
the crystal oscillator, whose output is connected to an antenna. The telegraph key is used to turn power to the
transmitter on and off. While the telegraph key is held down, the circuit causes the antenna to emit a radio
wave at a frequency equal to the crystal oscillator’s output frequency. Holding down the key for a short time
transmits a “dot”, while holding it down for three times as long as a dot transmits a “dash”. These dots and
dashes form the elements of Morse code (Figure 45.4).
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Figure 45.4: The International Morse Code.
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Figure 45.5: Simple transmitter with a microphone.

A more sophisticated transmitter can be built by replacing the telegraph key with a microphone (Figure
45.5). The microphone is coupled to the transmitter circuit via atransformer, which consists of two separate
coils of wire wrapped around a common core. The transformer also serves to amplify the microphone’s signal
as it is sent to the the rest of the transmitter circuit.
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Optics
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Chapter 46

Geometrical Optics

Opticsis the branch of physics concerned with the study of light. It may be divided into three main areas:

1. Geometrical opticsis the study of mirrors, lenses, and the images formed by these devices. Geometrical
optics generally ignores the wave nature of light.

2. Physical opticsstudies phenomena related to the wave nature of light: interference, diffraction, polar-
ization, and so on.

3. Photometryis the study of the brightness of light.

We’ll begin our study of optics in this chapter with geometrical optics, studying mirrors first, then lenses.

46.1 Law of Reflection

We begin with the simplest of the laws of optics, thelaw of reflection. The law of reflection states that when
a light ray strikes a reflective surface (e.g. a mirror), it will reflect off of that surface at an angle equal to its
incident angle:

�i D �r (46.1)

Here�i is theangle of incidence, and�r is theangle of reflection. In optics, all angles are by convention
measured with respect to thenormal(perpendicular) to the surface.
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Chapter 47

Mirrors

A mirror is a reflective surface. By using curved mirrors, it is possible to form an opticalimageof a real
object. The simplest curved mirror is called aspherical mirror, so called because it can be thought of as
being a circle punched out of a hollow sphere that is silvered on one side. If we punch a circle out of a
hollow sphere that is silvered on theinside, we get aconcave mirror. If the sphere is instead silvered on the
outside, we get aconvex mirror. (Figs. 47.1 and 47.2.) The radius of the (imaginary) sphere that the mirror is
“punched out of” is called theradius of curvatureof the mirror. The point that would be at the center of this
sphere is called thecenter of curvatureof the mirror.

Ideally, to form a perfect image, the mirror should be in the shape of aparaboloid. However, spher-
ical mirrors are easier to manufacture, and can be almost as good, although the deviation from the ideal
paraboloidal shape does give rise to an optical defect called aspherical aberration, to be described later.

A concave mirror causes light to reflect in towards the axis of the mirror, and is called aconvergingmirror.
A convex mirror causes light to reflect away from the axis, and is called adivergingmirror.

Light coming from an object infinitely far away will come together at a single point in a concave (con-
verging) mirror; this point is called thefocusof the mirror, and the distance between the mirror and the focus
is called thefocal lengthof the mirror. It turns out that the focus is located half-way between the lens and the
center of curvature, so that we have

f D R

2
; (47.1)

wheref is the focal length andR is the radius of curvature.
The typical problem in mirror optics is this: we are typically given:

• The distance between the object and the mirror, called theobject distance, do.

• The “height” (size) of the object, called theobject height, ho.

• The focal length of the mirror,f . (If f is not known, it can be determined from the radius of curvature
using Eq. (47.1).

We typically wish to find:

• The distance between the image and the mirror, called theimage distance, di

• The “height” (size) of the image, called theimage height, hi

• The magnificationof the image,m. This is a dimensionless number that indicates how much bigger
the image is than the original object.
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Figure 47.1: Types of mirrors.Top: Concave mirror.Bottom:convex mirror. (Credit: education.com)

Figure 47.2: Types of mirrors, as illustrated in a table spoon.Left: The bottom of a spoon forms a convex
mirror. Right: The top surface of a spoon forms a concave mirror. (Credit: Florida State University.)
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• Whether the image isreal or virtual. (In a real image, light is present at the image location, and the
image can be projected onto a screen. In a virtual image, there is no light present; a virtual image
cannot be projected onto a screen.)

• Whether the image isupright (rightside-up) orinverted(upside-down).

There are two methods that can be used to solve this type of problem:

• Theray diagram methodis a graphical method. It gives a good intuitive picture of what’s going on, but
it can be a bit time-consuming, and is not particularly accurate.

• The algebraic methoduses only algebra. It doesn’t give a good picture of what’s happening, but it’s
faster and more accurate. However, the algebraic method requires that you are very careful with the
equations, particularly with regard to getting the signs correct.

We’ll cover both methods here.

47.1 Ray Diagrams

A ray diagramis used to locate the image produced by a mirror. To create such a diagram we draw the mirror,
its axis, the object, and three light rays, as shown in Fig. 47.3. We also need to locate the focusF and center
of curvatureC along the mirror’s axis. The three rays we draw are:

1. In parallel to axis, out through the focus.

2. In through the focus, out parallel to the axis.

3. In through the center of curvature, and back out through the center of curvature.

(Only two rays are really needed; the third acts as a check.) The image will be located at the point where the
three outgoing rays meet, as shown in the figure. If the outgoing rays donot meet (i.e. they diverge), then
trace the outgoing rays back behind the mirror; in this case you will have a virtual image.

3

OBJECT

IMAGE
1

2

3

F
C

Figure 47.3: Ray diagram for a converging (concave) mirror.
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If a ray diagram is drawn with great care and correctly to scale, it may used to measure (with a ruler)
the image distancedi and image heighthi . You can tell whether the image is real or virtual, or whether it is
upright or inverted, simply by inspecting the diagram.

47.2 Algebraic Method

An alternative to the ray diagram method is thealgebraic method. This is simpler, faster, and more accurate
than the ray diagram method, but it does not give a good intuitive picture of what’s going on. Also, it isvery
easy to make a sign error with the algebraic method and get the wrong answer.

Solving a mirror optics problem algebraically involves three equations:
1. Focal length equation.If we aren’t given the focal length, we can find it from the radius of curvature

using the equation given earlier:

f D R

2
(47.2)

2. Mirror equation.This equation relates the image and object distances to the focal length:

1

di

C 1

do

D 1

f
(47.3)

Typically one is given the object distance and focal length, and solves this for the image distanced i .
3. Magnification equation.This equation lets us find the image heighth i and magnificationm:

m D hi

ho

D � di

do

(47.4)

Typically, you’re given the image object distancedo and object heightho, and have found the image distance
di from the mirror equation. You can then use this equation to find the image heighth i and magnificationm.

When using these equations, it isvery important that you give each quantity the correctsign. The sign
convention for mirrors in shown in Table 47-1.

Table 47-1. Sign conventions for mirrors.

Variable C �
do real object virtual object
di real image virtual image
ho always —
hi ,m upright image inverted image
f converging mirror diverging mirror

By inspecting the sign ofd i (which you find from the mirror equation), you can determine whether the
image is real or virtual. Also, when you computehi , its sign will tell you whether the image is upright or
inverted. So the equations above give you not only the image distanced i and image heighthi , but theirsigns
give you additional information about the image (real/virtual, upright/inverted).

47.3 Segmented Mirrors

For astronomical telescopes, the bigger the mirror, the more light is collected and the better the resolution—
so generally bigger is better. But there is a limit to how large one may big a mirror in a reflecting telescope:
at some point very large mirrors become too costly impractical to manufacture.
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A relatively new trend in large-mirror technology is to create large astronomical mirrors not as a single
large mirror, but as a collection of segments (typically hexagons) that are fitted together to form one large
mirror. The smaller mirrors are easier to deal with (although they must be formed to complex asymmetrical
shapes), and if one breaks, it can be replaced much more easily than replacing an entire large mirror. A dis-
advantage is that the segments are subjected to various deformations due to temperature changes, mechanical
stress, etc. that can easily place the segments out of alignment with each other. Keeping all the segments
properly aligned requires that each segment’s position be controlled by a computer, in a system calledactive
optics.

Several ground-based segmented-mirror telescopes have already been built, and the upcoming James
Webb Space Telescope will incorporate segmented mirrors.
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Chapter 48

Refraction

Light travels fastest (299,792,458 m/s) when it’s traveling through a vacuum. If light is traveling through
some other material, it slows down by a factor called theindex of refraction. The index of refractionn is a
dimensionless number defined by

n D c

v
; (48.1)

wherec D 299;792;458 m/s is the speed of lightin vacuum, andv is the speed of lightin the medium. Since
v � c always, this meansn 	 1; typically n is some number between 1 and 3, and will depend on the
medium.

48.1 Snell’s Law

If a light ray travels through some transparent medium and comes to an interface with another transparent
medium, the light ray will be bent as it moves into the new medium. This phenomenon is calledrefraction.
The ray will bendtoward the normal if it moves into a medium of higher index of refraction, andawayfrom
the normal if it moves into a medium of lower index of refraction. The angle at which the ray is refracted is
given bySnell’s law, sometimes called thelaw of refraction:

n1 sin�1 D n2 sin�2 (48.2)

Heren1 andn2 are the indices of refraction of the two media, and�1 and�2 are the angles of the incident
and refracted rays with respect to the normal.

In traveling from one medium to another, light will follow the path that takes theleast time; this idea is
calledFermat’s principle. Using the calculus, it is possible to derive Snell’s law from Fermat’s principle, and
thus show that Snell’s law gives the path light must follow in order to travel through the two media in the
least time.

48.2 Total Internal Reflection

It may sometimes happen that when light travels from a high-index medium to a low-index medium at a high
angle of incidence, that Snell’s law gives the sine of the angle of refraction to be greater than 1, so that the
angle of refraction is not defined. In this case, light is not refracted into the next medium at all; instead,
the light reflects off of the interface between the two media, and back into the higher-index medium. For
example, if a light ray in watern D 1:33) is headed for an interface with air (n D 1:00) at an angle of
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incidence of80ı, Snell’s law (Eq. 48.2) gives the sine of the angle of refraction to be 1.31, so the angle
of refraction is undefined. No refraction occurs in this case: instead, the light will reflect off of the water-
air interface (following the law of reflection), and go back into the water. This phenomenon is calledtotal
internal reflection.

The critical angle for total internal reflection is given by

sin�c D n2

n1

; (48.3)

where�c is the critical angle, the light is incident from medium 1, andn1 andn2 are the indices of refraction
of the two media (n1 > n2). For example, the critical angle for total internal reflection for an air-water
interface is�c D sin�1.1:00=1:33/ D 48:75ı; this means that any light ray in water headed toward an
interface with air will be reflected back into the water if its angle of incidence is greater than48:75 ı. If its
angle of incidence is less than this critical angle, the ray will be refracted out into the air.
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Chapter 49

Lenses

A lensis a disk of transparent material (such as glass or plastic), of which one or both surfaces is curved. The
curved surfaces allow the lens to form an optical image of a real object, similar to the way an image is formed
by a curved mirror.

Each side of the lens may be be either concave or convex (Fig. 49.1). If both sides of the lens are convex,
the lens is calleddouble convex; if both sides are concave, the lens is calleddouble concave. If one side is
convex and the other concave, the lens is called ameniscuslens. If one side of the lens is flat, the lens is
calledplano-convexor plano-concave. In general, if the lens is thicker in the middle than at the edges, the
lens will beconverging, and light will be bent toward the axis; if it is thinner in the middle than at the edges,
it will be diverging, and light will be bent away from the axis.

Ideally, to form a perfect image, the lens surfaces should be in the shape ofhyperboloids(of two sheets).
However, spherical surfaces are often easier to manufacture, and can be almost as good, although the deviation
from the ideal hyperboloidal shape does give rise to an optical defect called aspherical aberration, to be
described later.

Light coming from an object infinitely far away will come together at a single point in a converging (e.g.
double-convex) lens; this point is called thefocusof the lens, and the distance between the lens and the focus
is called thefocal lengthof the lens.

The typical problem in lens optics is the same as in mirror optics: we are given

• The distance between the object and the lens, called theobject distance, do.

• The “height” (size) of the object, called theobject height, ho.

• The focal length of the lens,f . (If f is not known, it can be determined using thelens maker’s
equation, Eq. (49.1).)

We typically wish to find:

• The distance between the image and the lens, called theimage distance, di

• The “height” (size) of the image, called theimage height, hi

• The magnificationof the image,m. This is a dimensionless number that indicates how much bigger
the image is than the original object.

• Whether the image isreal or virtual. (In a real image, light is present at the image location, and the
image can be projected onto a screen. In a virtual image, there is no light present; a virtual image
cannot be projected onto a screen.)
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Figure 49.1: Types of lenses. (a) Converging lenses, left to right: biconvex, meniscus, plano-convex. (b)
Diverging lenses, left to right: biconcave, meniscus, plano-concave.

• Whether the image isupright (rightside-up) orinverted(upside-down).

Just as with mirrors, there are two methods that can be used to solve this type of problem:

• Theray diagram methodis a graphical method. It gives a good intuitive picture of what’s going on, but
it can be a bit time-consuming, and is not particularly accurate.

• The algebraic methoduses only algebra. It doesn’t give a good picture of what’s happening, but it’s
faster and more accurate. However, the algebraic method requires that you are very careful with the
equations, particularly with regard to getting the signs correct.

We’ll cover both methods here.

49.1 Ray Diagrams

Ray diagrams for lenses are very similar to ray diagrams for mirrors. To create such a diagram we draw the
lens, its axis, the object, and three light rays, as shown in Fig. 49.2. We also need to locate the focusF along
the mirror’s axis. The three rays we draw are:

1. In parallel to the axis, out through the focus.

2. In through the focus, out parallel to the axis.

3. In through the centerof the lens, out through the center of lens.

Notice one difference between these rays and the rays used for mirror diagrams: for mirrors, the third ray
is through the centerof curvature; for lenses, the third ray is through the centerof the lens.

A complication arises with lenses that did not occur with mirrors: while mirrors have a single focus,
lenses havetwo foci. So which focus should you use for rays 1 and 2? It depends on whether you have a
converging lens or a diverging lens, as shown in the following table. (Here “near” refers to the focus closer
to the object, and “far” is the focus farther from the object.)

Ray Converging Diverging
1 far near
2 near far
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Figure 49.2: Ray diagram for a converging (bi-convex) lens.

49.2 Algebraic Method

An alternative to the ray diagram method is thealgebraic method. This is simpler, faster, and more accurate
than the ray diagram method, but it does not give a good intuitive picture of what’s going on. Also, it isvery
easy to make a sign error with the algebraic method and get the wrong answer.

Solving a lens optics problem algebraically involves three equations:
1. Lens maker’s equation.If we aren’t given the focal length, we can find it from the radii of curvature of

the two lens surfaces and the index of refraction of the lens material, using thelens maker’s equation:

1

f
D

�
nlens

nair
� 1

� �
1

R1

C 1

R2

�
(49.1)

whereR1 andR2 are the radii of curvature of the two surfaces,nlens is the index of refraction of the lens
material, andnair D 1 is the index of refraction of the air.

2. Thin lens equation.This equation relates the image and object distances to the focal length, and is
identical in form to the mirror equation:

1

di

C 1

do

D 1

f
(49.2)

Typically one is given the object distance and focal length, and solves this for the image distanced i .
3. Magnification equation.This equation (which is the same as it is for mirrors) lets us find the image

heighthi and magnificationm: Magnification equation:

m D hi

ho

D � di

do

(49.3)

Typically, you’re given the image object distancedo and object heightho, and have found the image distance
di from the thin lens equation. You can then use this equation to find the image heighth i and magnification
m.

When using these equations, it isvery important that you give each quantity the correctsign. The sign
convention for lenses in shown in Table 49-1, and is essentially the same as the sign convention for mirrors.

Sign convention:
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Table 49-1. Sign conventions for lenses.

Variable C �
do real object virtual object
di real image virtual image
ho always —
hi ,m upright image inverted image
f converging lens diverging lens

R1, R2 convex surface concave surface

49.3 The Fresnel Lens

If you examine the path of a light ray through a lens carefully, you’ll notice there is a fair amount of “unused”
glass. The incoming light ray is refracted (bent) when it first hits the surface of the lens, then travels in a
straight line all the way through the lens, then is refracted again on the way out. The surfaces of the lens do
all the work—it seems like all that glass inside the lens is kind of a waste, doing nothing but allowing the
light to travel in a straight line. For a large lens, it might be nice to eliminate all that unused glass; is that
possible?

Yes, we can eliminate all that unused glass, as shown in Fig. 49.3. The result is called aFresnel lens. Its
advantage is that a very large lens can be made very flat—for example, a reading lens can be made the size
of a sheet of paper, with roughly the thickness of a credit card. The disadvantage, as seen from the figure, is
that the process of eliminating the “unused” parts of the lens leaves behind a series of “steps” or ridges that
appear as rings in the lens. A Fresnel lens is therefore not suitable where high-quality optics are needed, but
it can be useful as a reading lens, for an overhead projector, or for making something like a solar furnace that
focuses sunlight to produce heat.

Figure 49.3: Cross section of (1) a Fresnel lens, and (2) the equivalent normal lens. (©GNU-FDL, Wikimedia
Commons.)
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Chapter 50

Optical Defects

A number of defects, oraberrationscan occur with mirrors and lenses that prevent them from forming an
ideal image. A few of these defects are described here.

50.1 Spherical Aberration

If the surface of a mirror deviates from its ideal paraboloidal shape, or the surface of a lens deviates from its
ideal hyperboloidal shape, (for example, if the optical surfaces are sections of spheres), then the mirror or
lens is said to have aspherical aberration. If a lens or mirror has a spherical aberration, then light rays far
from the axis focus at a different point than light rays near the axis, causing a blurring of the image. (See Fig.
50.1, top.)

50.2 Chromatic Aberration

In lenses, light of different wavelengths will generally focus at different points. This phenomenon (to be
described later) is calleddispersion, and is the variation of index of refraction with wavelength. This effect in
lenses causes a defect calledchromatic aberration, which causes the image to be surrounded by a rainbow-
like halo. It can be corrected by using combinations of several lenses, each made of a material of a different
index of refraction. Chromatic aberration does not occur in mirrors. (See Fig. 50.1, bottom.)

50.3 Astigmatism

Astigmatismis caused by an asymmetrical lens or mirror, and causes light along different axes to be focused
at different points.

50.4 Coma

Another type of optical aberration is calledcoma. Coma does not affect light rays parallel to the optical axis,
but light rays from objectsoff-axistend to be smeared into a comet-like shape.
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Figure 50.1: Optical defects in a lens.Top: Spherical aberration. Rays incident near the edge of the lens focus
closer to the lens (A), while rays near the optical axis focus farther from the lens (B). Bottom: Chromatic
aberration. Red light comes to a focus at pointR, while violet light comes to a focus at a different point,V .
(Ref. [15])
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Chapter 51

Optical Instruments

In this chapter, we’ll examine a number of common optical instruments, both natural and man-made. These
instruments are designed to form and record simple images (the eye and the camera), to make enlarged images
of very small, close objects (the magnifying glass and microscope) or of very distant objects (the telescope),
or to simply shift an image through some distance (the periscope).

51.1 The Magnifying Glass

In its simplest form, amagnifying glassor magnifierconsists of a single converging (convex) lens. The
human eye can normally get as close as about 25 cm from an object and still have it comfortable in focus;
this is called thenear point. By placing a magnifying glass near the eye (so the eye is closer to the lens than
the focus), an enlarged virtual image of the object is created. (See Figure 51.1.)

High-power magnifying glasses often contain a compound lens, consisting of two or more single lenses
cemented together. The combination of lenses can help correct unwanted optical defects.

51.2 The Human Eye

Thehuman eyeis a naturally occurring optical instrument that gives humans their sense of sight. The active
optical components are thecorneaand thelens. Most of the focusing of the image is done by the cornea,
while the lens acts as a secondary optical element. The image produced by the cornea and lens is focused onto
theretinaon the back of the eye. (Figure 51.2.) The image projected onto the retina is actually upside-down;
our brains invert the image so that we seem to see the image rightside-up.

The retina is covered with a grid of two kinds of light detectors:rods can detect very faint light, but
produces only black-and-white images.Conesrequire a somewhat brighter light level before they activate,
but they can see in color. There are three types of cones: one type is most sensitive to red light, another
most sensitive to green light, and another most sensitive to blue light. The brain receives signals of different
strengths from each type of cone at each location in the image, and from that is able to infer the color of that
part of the image. (Any color can be formed from combinations of the three primary colors red, green, and
blue; see chapter 58 on color.) From the retina, signals are transmitted to the brain via theoptic nerve.

Things are a bit more complicated than this, though. The eye and brain are able to perceive objects as
having a constant color, even when viewed under widely varying lighting conditions. It is believed that the eye
views an entire image (by means of cones) in each of the three primary colors, then sends this information to
the brain; the brain then determines the correct color both from the strength of the signals from the different
colors of cones, and also by comparing the perceived brightness of each part of the image with those of
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Figure 51.1: The principle of the magnifying glass.(Credit: “Hyperphysics,” Georgia State University,
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html)

Figure 51.2: The human eye. (Ref. [2])
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adjacent parts. Somehow, in a way that is not fully understood, the brain processes this information to deduce
the color of the object, largely independent of the color of the light source. This phenomenon is called the
Land effect, and you can see it for yourself: check the color of some object under fluorescent light indoors,
and compare it with the color when seen outdoors in sunlight. Its color will not appear to have changed, even
though fluorescent lights are tinted somewhat blue and sunlight is somewhat redder.

The human eye is capable ofaccommodation, meaning that it able to use muscles to automatically focus
images. Sometimes this doesn’t work properly, though. If the image is formedbeforereaching the retina, the
person has a condition known asmyopia, or nearsightedness. For people with this condition, closeup objects
appear in focus, but distant images are fuzzy and out of focus. This condition may be corrected by placing
diverging (concave) lenses in front of the eye, either with eyeglasses or contact lenses.

If the image has not yet formed when light reaches the retina, then the person has a condition called
hyperopia, or farsightedness. For people with this condition, distance objects are clear, but closeup objects
are out of focus. This condition may be correced by placing converging (convex) lenses in front of the eye.

A condition of perfect vision (neither myopia nor hyperopia) is calledemmetropia.
Many people upon reaching their 40s have difficulty focusing on closeup objects because the eye’s accom-

modation abilities are not as robust as they were during youth — a condition calledpresbyopia. Older people
often require converging lenses (reading glasses) to see close objects. People who have presbyopiaandeither
myopia or hyperopia often wear either reading glasses with contact lenses, or eyeglasses withbifocal lenses,
which are shaped so that looking through the top half of the lens corrects for distance vision, while looking
through the lower half corrects for close-up vision. Somewhat less common aretrifocal lenses, which correct
for distant, mid-range, and close-up vision when looking through the top, middle, and bottom of the lenses,
respectively. A recent innovation being offered by ophthalmologists and optometrists iscomputer glasses,
which are similar to reading glasses, but designed to help the wearer focus clearly at the typical distance of a
computer monitor.

51.3 The Trilobite Eye

Trilobitesare an extinct class of arthropods that were among the first living organisms on Earth. Trilobites
pre-dated the dinosaurs; they lived from the early Cambrian period (about 550 million years ago) until the
great Permian extinction of 250 million years ago, which almost wiped out all life on Earth.1;2 (See Figure
51.3.) Trilobite fossils can be found in great numbers, and range in size from 1 millimeter to as much as 2
feet long.

Most species of trilobites had a pair ofcompound eyes, similar to those found on many species of insects
today. A compound eye consists of a grid of a large number of very small lenses, all spaced very closely
together. Unlike the flexible lens of the human eye, though, trilobite eyes had rigid lenses composed of the
crystalline mineral calcite, and thus lacked the ability of accommodation that human eyes have.

To minimize the effect of optical aberrations, trilobites developed an eye lens in a shape that tended
to minimize spherical aberrations. These shapes bear a remarkable resemblance to minimum-aberration
lens designs developed by French mathematician and philosopher Ren´e Descartes (Fig. 51.4) and by Dutch
mathematician and physicist Christiaan Huygens (Fig. 51.5).3

1The cause of the Permian extinction is not known.
2Some paleontologists believe there may be some small chance that trilobites may still be alive even today, in some unexplored

depths of the oceans.
3The Descartes and Huygens minimum-aberration lens designs are based on a mathematical curve now called theoval of Descartes.

See E.N.C. Clarkson and R. Levi-Setti, “Trilobite eyes and the optics of Des Cartes and Huygens”;Nature, 254, 663–667 (1975).
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Figure 51.3: A typical trilobite. This is a fossil specimen of the speciesElrathia kingii, and is 4.2 cm long.
(Credit: www.fossilmuseum.net.)

Figure 51.4: Descartes’ lens design for minimal aberration (above left) is found in the lens of the trilobite
Crozonaspis(right). Light ray paths entering the lens from the left come into focus a short distance to the right
of the lens (blue). In the eye ofCrozonaspis, an intralensar body (white) further corrects focus after passing
through the outer lens layer (blue).(Credit: “A Guide to the Orders of Trilobites,” www.trilobites.info. Image
copyright ©1999, 2000 by S.M. Gon III, modified from Clarkson and Levi-Setti, 1975.)

Figure 51.5: Huygens’ lens design for minimal aberration (above left) is found in the lens of the trilobite
Dalmanitina(right). (Credit: “A Guide to the Orders of Trilobites,” www.trilobites.info. Image copyright
©1999, 2000 by S.M. Gon III, modified from Clarkson and Levi-Setti, 1975.)
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Figure 51.6: A simple camera. (Ref. [4])

51.4 The Camera

A camerais an instrument used to record an optical image. It is similar in design to the human eye: the image
of an object is focused by a lens onto a plane, where the image is recorded (Fig. 51.6). At one time, images
were recorded on chemically-coated glass plates; later, a flexible plastic chemical-coatedfilmwas used. Since
the 1990s, it has become very common to replace the film with a CCD (charge-coupled device) detector that
can record a digital image.

A very simple type of camera is called apinhole camera, in which the lens is replaced by a very small
hole. One could build a very simple, inexpensive camera by placing (in a darkened room!) photographic
film at one end of a lightproof box (a shoebox, for example) that has a covered pinhole at the other end. To
take a picture, the pinhole is uncovered for several seconds; the film is then removed in a darkened room and
developed(chemically processed to bring out the image).

If the distance from the pinhole to the film isL and the wavelength of light is�, the it can be shown that
the optimum diameterd of the pinhole is given by

d D
p
2L�: (51.1)

Most modern cameras use a lens instead of a pinhole, and many have a variety of settings to control
the focus and aperture size. Focusing is accomplished by changing the distance between the lens and the
film plane: the closer the object, the farther the lens must be from the film. This is because of the relation
1=di C 1=do D 1=f : decreasing the object distancedo causes1=do to increase; but sincef is constant, that
means1=di must decrease to compensate, which means the image distancedi must increase. To take extreme
closeups, some cameras can be equipped with a set ofextension ringsthat allow the lens to be placed very far
away from the film. This allows one to take photographs of objects like grains of salt, as if they were being
seen under a microscope.

51.5 The Microscope

A microscope(from the Greek��
�o& , “small”, and�
o��!, “see”) is an instrument that allows one to
seevery small objects—generally much smaller than can be seen with a magnifying glass. (See Fig. 51.7.)
The optics consist of a short-focal lengthobjective lensthat is placed near the object, and aneyepiecethat
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Figure 51.7: A compound microscope. (Ref. [3])

essentially enlarges the image produced by the objective lens. In most modern microscopes, there are several
objective lenses mounted on a rotating platform, as well as interchangeable eyepieces, so that the user can
select an appropriate combination for the desired magnification.

The microscope is often used in biology to observe cells and protozoa.

51.6 The Telescope

A telescope(from the Greek	���, “far”, and�
o��!, “see”) is an instrument designed to observe far-away
objects. A small hand-held telescope is called aspyglassor monocular; a pair of such small telescopes
mounted side-by-side provide stereo vision and are calledbinoculars.

Larger telescopes are used for astronomical observations. Astronomical telescopes are of one of two
types:

• A refracting telescopeis made of lenses: a largeobjective lens, and a smallereyepiece.

• A reflecting telescopeconsists of one or more curved lenses in place of the objective lens; an eyepiece
lens creates the final image.

Refracting astronomical telescopes were built until around 1900; since then, all large astronomical tele-
scopes have been of the reflecting type. This is because there are a number of problems with refracting
telescopes that are avoided in reflecting telescope designs. First, there is a limit on how large it is practical
to make the objective lens. The lens is made of glass; it is therefore fluid, and will tend to flow. There’s
not much that can prevent this, since the lens can only be supported by the edges. Second, since light must
pass through the lens, it is subject to being scattered by any imperfections (bubbles, etc.) that may be in the
glass, which will cause imperfections in the image. Third, since light has to travel through the lens, there
is a tendency for light to be lost as it travels through the lens, and so very faint objects are difficult to ob-
serve. Fourth, a refracting telescope is subject to chromatic aberration. All of these problems are avoided by
reflecting telescopes.

The largest refracting astronomical telescope still in use is at the Yerkes Observatory in Wisconsin; this
telescope has an objective lens with a 40-inch diameter. In contrast, reflecting telescopes of over 400 inches
diameter have been constructed.
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Figure 51.8: Optical principle of the compound microscope.(Credit: “Hyperphysics,” Georgia State Uni-
versity, http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html)

Reflecting telescopes are made in a number of different designs (Fig. 51.9). The simplest is theNewtonian
reflector. In this design, light enters the telescope tube, reflects from a large parabolicprimary mirror, up to
a flatsecondary mirror, and from there out through the side of the tube to an eyepiece.

In a Cassegrain, light reflects from a large parabolic primary mirror to ahyperbolicsecondary mirror;
from there it travels back through a hole in the center of the primary mirror to the eyepiece.

An interesting property of reflecting telescopes is that they produce aninverted (upside-down) image.
This is not a problem for astronomical observations, but this means that using a reflecting telescope to make
terrestrial observations requires the use of animage erector— an optical device placed at the eyepiece to
make the image rightside-up.

A number of reflecting telescopes have been placed in space, either in Earth orbit or elsewhere. There are
a number of reasons for placing a telescope in space:

1. The Earth’s atmosphere is a fluid with turbulent air currents that tend to blur images in ground-based
telescopes. By placing the telescope above the Earth’s atmosphere, the telescope no longer need “look”
through the atmosphere, so the images are much sharper and more detailed.

2. The Earth’s atmosphere absorbs many wavelengths of light. A telescope in space can observe at wave-
lengths that are impossible for a ground-based telescope.

3. Since the sky is always dark in space, a space-based telescope can make observations at any time —
unlike a ground-based telescope, which can only make observations at night.

51.7 The Periscope

A periscope(from the Greek����, “around”, and�
o��!, “see”) is an instrument designed to allow the
user to observe above or around a barrier. Most famously, periscopes are used in submarines to observe above
the water while the submarine remains submerged. In its simplest form, a periscope consists of two mirrors
mounted at45ı angles: one at the top, and one at the bottom, where the observer is located (Fig. 51.10).

If you have seen a submarine periscope in use (in real life or in a movie), you will notice that in order
to look around, the periscope operator rotates the entire instrument by walking around in a circle. Why not
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Figure 51.9:Several different designs of reflecting telescopes. Credit: University of New South Wales, Aus-
tralia.

Figure 51.10: Optics of the periscope. The tree is at the upper left, and produces a displaced image at the
lower right.(Credit: Arbor Scientific Co., www.arborsci.com.)
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Figure 51.11: Image observed in a kaleidoscope. (Credit: “Kaleidoscope Optics” at
http://www.4physics.com/phydemo/kaleidoscope/kaleidoscope-0.html. Image copyright © 4physics.com.)

just rotate the top mirror? Because if the top mirror were rotated, objects behind the observer would appear
upside-down. The entire instrument must be rotated to keep the image rightside-up.

51.8 The Kaleidoscope

A kaleidoscope(from the Greek
˛�o&—“beautiful,” ��ıo&—“form,” and �
o��!—“see”) is an optical
instrument invented by Scottish physicist David Brewster, whose purpose is to produce varying beautiful,
colorful patterns for the enjoyment of the user. One end of the kaleidoscope has a rotating disk containing
colorful objects like beads or glass. The tube of the kaleidoscope contains mirrors — typically three long
rectangular mirrors fastened together to form a prism whose cross section is an equilateral triangle. The user
holds the kaleidoscope up to a light source and looks through the mirrors toward the colored objects, and sees
the objects reflected multiple times in the mirrors, producing a pleasing colorful design. The design can be
modified by rotating the disk of colored objects, producing an endless variety of patterns.

Different mirror configurations are sometimes used to produce images with different symmetry patterns.
In one type of kaleidoscope, sometimes called theteleidoscope, the disk of colored objects is replaced by
a lens, so that patterns are formed from images of whatever objects are in the direction the instrument is
pointed.
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Chapter 52

Photometry

A frequently neglected area of optics is the field ofphotometry—the study of the measurement of the bright-
ness of light. A related field isradiometry, where one measures the intensity of electromagnetic radiation at
all wavelengths. In photometry, though, we take into account the physiology of human vision. The goal of
photometry is to measure the brightness of visible light,as it appears to the human eye.

We begin with a simple mathematical model of human vision. Fig. 52.1 shows such a model, called the
luminous efficiency curve; it models how the eye’s sensitivity varies with wavelength. As shown by the figure,
the human eye is most sensitive to visible light in the green part of the spectrum, at a wavelength of about
555 nm. The eye is much less sensitive to red and violet light, where the curve has values near zero.

52.1 Luminous Flux

We now introduce definitions of some basic photometric quantities. First, theluminous flux̂ is the total
amount of visible light emitted by a light source, in all directions. Luminous flux is analogous to the total
amount of electromagnetic radiation emitted by the light source, except that it is “weighted” by the luminous
efficiency curve. For example, electromagnetic radiation with a wavelength near 555 nm is given more
“importance” than radiation with a wavelength near 400 nm. This weighted average is luminous flux.

In SI units, luminous flux is measured in units oflumens(lm). If you look closely at Fig. 52.1, you’ll
see that the vertical axis has units of lumens per watt (lm/W). When we take the intensity of electromagnetic
radiation (in watts) and multiply by this luminous efficiency curve to “weight” different wavelengths accord-
ing to the sensitivity of human vision, we get units of lumens. Note that the peak of the luminous efficiency
curve is at� D 555 nm, where the human eye is most sensitive; at this wavelength the luminous efficiency is
683 lm/W.

You may see the lumen used on packages of light bulbs, where it may be listed as the “light output”. For
example, a typical 60-watt incandescent light bulb may have a luminous flux of 820 lumens. This means that
the bulb consumes electric power at the rate of 60 watts (60 joules of energy per second), while producing
820 lumens of light. High-efficiency light bulbs produce more visible light while using less electric power, at
the expense of producing less electromagnetic radiation at non-visible wavelengths. For example, a compact
fluorescent light bulb may produce 1200 lumens of light, while consuming only 20 watts of electric power.
If you’re trying to replace incandescent light bulbs with compact fluorescent bulbs, you should try to find a
compact fluorescent bulb that has a luminous flux (in lumens) similar to that of the bulb you’re replacing.
Don’t replace it with a bulb that has the same power consumption (in watts). For example, a 60-watt incan-
descent bulb that emits 820 lumens of light should be replaced by a compact fluorescent bulb that emits about
820 lumens of light.

217



Prince George’s Community College Introductory Physics II D.G. Simpson

Figure 52.1: The luminous efficiency curve.

52.2 Luminous Intensity

A quantity related to luminous flux isluminous intensityI , which is the luminous flux̂ per unit solid angle
�:

I D ˆ

�
(52.1)

The SI unit of luminous intensity is thecandela(cd): one candela is equal to one lumen per steradian. A
candela is approximately equal an older unit called thecandlepower, which was the light intensity emitted
by the flame of a candle. So a candle flame has a luminous intensity of about 1 candela; by comparison, a
60-watt incandescent light bulb has a luminous intensity of about 65 candelas, while a typical searchlight has
a luminous intensity of about 800 million candelas.

If a light source isisotropic(so it emits light equally in all directions), then there is a simple relationship
between luminous flux̂ and luminous intensityI : I D ˆ=.4� sr/.

The candela is the fundamental photometric unit in SI units, and is determined as the result of an experi-
ment. Other photometric units (the lumen and the lux) are defined in terms of the candela.

52.3 Illuminance

The level of illumination seen by an observer is called theilluminance. To find the illuminanceE, we divide
the luminous flux̂ emitted by the light source by the areaA over which that luminous flux is spread:

E D ˆ

A
(52.2)
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Figure 52.2: Solar irradiance spectrum.

The SI unit of illuminance is thelux (lx), where one lux is one lumen per square meter. To give a sense of
scale, the level of illumination in a typical office is around 400 lux, while direct sunlight is around 100,000
lux (depending on how high the Sun is in the sky, cloud conditions, etc.).

(An older unit of illuminance, thefoot-candle, is one lumen per square foot, or about 10.76391 lux.)

52.4 Example: The Sun

As an example of how photometric calculations are done, consider the Sun. To find the illuminance of the Sun
at the Earth, we would begin by measuring the intensity of the Sun’s radiation at different wavelengths; this
gives a plot of thesolar irradiance spectrum. Fig. 52.2 shows just part of the solar irradiance spectrum—the
part that’s within visible light wavelengths. We multiply this solar spectrum by the luminous efficiency curve
(Fig. 52.1), and find the area under the resulting curve. The result is the illuminance of the Sun’s light at the
Earth, and works out to beE D 133;000 lux.

We can now use Eq. (52.2) to find the luminous flux of the Sun. HereA is the total area over which the
luminous flux is spread to give illuminanceE, soA D 4�r 2, wherer is the distance of the Earth from the
Sun. We find

ˆ D EA (52.3)

D E.4�r2/ (52.4)

D .133;000 lux/Œ4�.1:4959787� 1011 m/2� (52.5)

D 3:75� 1028 lumens: (52.6)
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From this result, we can compute the luminous intensity of the Sun. Since the Sun emits light equally in
all directions (is isotropic), the luminous intensityI of the Sun is

I D ˆ

�
(52.7)

D 3:75� 1028 lm

4� sr
(52.8)

D 2:98� 1027 candelas: (52.9)

In summary, for the Sun, we find

• Luminous flux:ˆs D 3:75 � 1028 lm

• Luminous intensity:Is D 2:98� 1027 cd

• Illuminance at Earth:Es D 133 klx

52.5 Example: Incandescent Light Bulb

A 60-watt incandescent light bulb emits a luminous flux of 820 lumens. If this light bulb is isotropic and is
the only illumination in a room, then what is the illuminance at a distance of 80 cm from the light bulb?

Solution.From Eq. (52.2), the illuminanceE is

E D ˆ

A
(52.10)

D ˆ

4�r2
(52.11)

D 820 lm

4�.0:80 m/2
(52.12)

D 102 lx (52.13)

52.6 Astronomical Photometry

In astronomy, the brightness of celestial bodies such as stars and planets is not measured in the photomet-
ric units just described; instead, a logarithmic scale ofmagnitudesis employed. The magnitude scale was
originally defined so that the brightest stars in the sky are magnitude 0, the dimmest visible to the unaided
human eye are magnitude 5, and a magnitude 0 star is 100 times as bright as a magnitude 5 star. (Note that
magnitudes measuredimness, not brightness. The larger the magnitude, the dimmer the star.) The magnitude
scale is logarithmic, so an increase of 1 magnitude corresponds to a decrease in the brightness of the star by
a factor of 5

p
100 � 2:5119.

There are two types of magnitudes defined: theapparent magnitudeis the brightness of a star as seen
from Earth; a star’s apparent magnitude depends both on its intrinsic brightness and on its distance from
Earth. Theabsolute magnitudeis a measure of intrinsic brightness alone: is the brightness a star would have
if it were at a standard distance of 10 parsecs, or3:0857 � 1017 meters. It is straightforward to show that the
apparent magnitudem is related to the absolute magnitudeM by

M D m� 5.log10D � 1/; (52.14)

whereD is the distance to the star in parsecs. (Notice that ifD D 10 parsecs, then this formula gives
M D m, as expected.)
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Some examples: the brightest star in the sky, Sirius (in the constellation Canis Major), has an apparent
magnitude of�1:44. Polaris (the North Star) is a variable star that varies in magnitude, but has an average
magnitude ofC1:97. The Sun has an apparent magnitude of�26:72, and an absolute magnitude ofC4:85.

One the brightest stars in the sky is the blue-white supergiant Deneb (in the constellation Cygnus). Most
of the bright stars in the sky are around 50–100 light-years from Earth, but Deneb is some 1500 light-years
away, so it must be intrinsically very bright. Indeed, Deneb has an apparent magnitude ofC1:25 and an
absolute magnitude of�7:13.

It is possible to convert between the magnitude scale and conventional photometric units by using the Sun
as a calibration point. To convert between apparent magnitudem and illuminance, the formula can be shown
to be

E D Es10
� 2

5 .m�ms/; (52.15)

whereE is the illuminance due to the star (in lux),Es is the illuminance due to the Sun at the Earth (Es D
133;000 lux), m is the apparent magnitude of the star, andms is the apparent magnitude of the Sun (ms D
�26:72). Similarly, to convert between absolute magnitudeM and luminous flux̂ and luminous intensity
I D ˆ=.4� sr/, the formulæ are found to be (using Eqs. (52.14) and (52.15))

ˆ D ˆs10
� 2

5 .M�Ms/ (52.16)

I D Is10
� 2

5 .M�Ms/ (52.17)

whereˆs D 3:75 � 1028 lm is the luminous flux of the Sun,Is D 2:98 � 1027 cd is the luminous intensity
of the Sun,M is the absolute magnitude of the star, andMs D C4:85 is the absolute magnitude of the Sun.

Example.The illuminance at Earth due to light from star Sirius (apparent magnitudem D �1:44) is

E D Es10
� 2

5 .m�ms/

D .133;000 lux/10� 2
5 Œ�1:44�.�26:72/	

D 10:28 �lx

Example.The luminous flux̂ of the star Deneb (absolute magnitudeM D �7:13) is

ˆ D ˆs10
� 2

5 .M�Ms/

D .3:75 � 1028 lm/10� 2
5

.�7:13�4:85/

D 2:32� 1033 lm

which means Deneb is intrinsicallŷ=ˆs D 62;000 brighter than the Sun. We can similarly find the luminous
intensityI of Deneb:

I D Is10
� 2

5 .M�Ms/

D .2:98� 1027 cd/10� 2
5 .�7:13�4:85/

D 1:85� 1032 cd

or 185nonillioncandelas.
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Chapter 53

Young’s Experiment

We now begin a study ofphysical optics, which is the study of the physical properties of light, including its
wave nature.

A key experiment in physical optics isYoung’s experiment, first performed by British physicist Thomas
Young (1773–1829). In this experiment, one allows a light source to pass through two closely-separated
slits and then be projected onto a screen. The light source should bemonochromatic(that is, of a single
wavelength) andcoherent(each wave train is many wavelengths long). In Young’s time such light sources
were very faint and difficult to work with, but today we can perform the experiment easily using alaseras a
coherent monochromatic light source.

The significance of Young’s experiment is that it demonstrates that light is awave: on performing the
experiment, you find aninterference patternof alternating light and dark bands on the screen. At any pointP

on the screen, the distance from one slit will be different from the distance from the other slit; this difference
in distances will bed sin� , whered is the separation distance between the slits, and� is the angle from the
midpoint of the slits to the pointP . If the path length difference is an integral number of wavelengths, the
interference will be constructive, and abright fringewill be observed on the screen:

d sin� D m� .m D 0; 1; 2; : : :/ (bright fringes) (53.1)

Herem is called theorder of the fringe. In between the bright fringes, one will seedark fringes:

d sin� D
�
mC 1

2

�
� .m D 0; 1; 2; : : :/ (dark fringes) (53.2)

53.1 Quantum Effects

Young’s experiment may be used to demonstrate some very oddquantum mechanicaleffects. (Quantum
mechanicsis the theory of mechanics that describes particles at very small distance scales — say at the size
of an atom or smaller.) Light is — in some way we don’t entirely understand – both an electromagnetic
wave and a particle (called aphoton) at the same time. It’s possible to send light through Young’s experiment
one photon at a time, in which case you would expect the interference pattern to disappear. After all, the
interference pattern is caused by light from one slit interfering with light from the other slit, but the photon
goes through only one of the two slits. But if we do this experiment, we discover that the photons, one by
one, will build up the same interference pattern.

Now if we try to determinewhich slit the photon went through (by bouncing another photon off of it
near the slit, for example), the interference pattern disappears: the photon we used to make the determination
messes us the experiment in such a way that it destroys the interference pattern. We might try to fix this by
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using a lower-energy photon that will minimize the disturbance to the photon we’re observing — and if we
do this, the interference pattern does indeed return. But a low-energy photon also has a long wavelength, and
the wavelength is now sufficiently long that it’s no longer possible to tell which slit the original photon went
through. It’s as though Nature conspires against us to prevent us from determining which slit the photon goes
through.
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Chapter 54

Diffraction

The bending of waves (including light waves) around obstacles is calleddiffraction. Light has a very short
wavelength, but it is possible to observe diffraction in light waves without too much trouble.

One such experiment involves a setup similar to Young’s experiment, but using onlyoneslit. Light from
one part of the slit will interfere with light coming from another part of the slit, creating adiffraction pattern
as the light waves coming from different parts of the slit interfere with each other. This phenomenon is called
single-slit diffraction. The positions of thedark fringes in single-slit diffraction are given by

a sin� D m� .m D 1; 2; 3; : : :/ .dark fringes/ (54.1)

wherea is the slit width,� is the angle between the midpoint of the slit and them-th order dark fringe, and�
is the wavelength of light.

In a real Young’s experiment, you observeboththe interference pattern (due to the two slits)andsingle-
slit diffraction (due to the finite width of the slits): you will see the interference pattern modulated by an
“envelope” of single-slit diffraction.

A similar diffraction effect may be observed when light is incident on acircular aperture. In this case, the
resulting diffraction pattern is a single central bright circle, surrounded by alternating dark and light rings.
The radius of the first dark ring (which can be taken as the radius of the central maximum) subtends an angle

�r D 1:22
�

D
; (54.2)

where�r is in radians, � is the wavelength of the light, andD is the diameter of the aperture.1

54.1 The Rayleigh Criterion

Single-slit diffraction limits the resolving power of astronomical instruments: that is, it places limits on how
close two point sources of light can be to each other and still be distinguished as separate points of light.
For example, suppose an astronomical telescope is used to observe two stars that are close together. Each
star is essentially a point source of light, and will produce a single-slit diffraction pattern as seen through
the telescope aperture. If the two diffraction patterns are far apart, you will see two stars. But if the two
diffraction patterns are too close together, they will overlap and the image will blur together and look like a
single star (Fig. 54.1).

There is a threshold where the stars will be as close together as they can be, and still be distinguished
as two separate stars. This threshold is given by theRayleigh criterion. It states that theminimumangular

1The coefficient 1.22 in this equation is the first zero of the Bessel functionJ 1.x/, divided by� . A closer value is 1.2196698912665.
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Figure 54.1: Overlapping diffraction patterns and the Rayleigh criterion.

separation of two point sources of light that allows the sources to still be distinguished as two separate points
is given by:

�� D

8̂<
:̂
1:22

�

D
.circular aperture/

�

a
.rectangular aperture/

(54.3)

Here�� is the minimum angular separation (in radians),� is the wavelength of light,D is the diameter of a
circular aperture, anda is the width of a rectangular aperture.

54.2 Floaters in the Eye

54.3 The Diffraction Grating
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Chapter 55

Optics of the Hubble Space Telescope

55.1 The Hubble Space Telescope

To illustrate the workings of a real optical instrument, let’s examine some of the optical details of the Hubble
Space Telescope (HST). Hubble is arguably the most successful and productive astronomical instrument of
all time, so a study of some of its inner workings will be instructive.

Overview

Hubble is a large astronomical telescope that was placed in orbit around the Earth on April 25, 1990. It is
about the size of a school bus, and has a mass of about 11,000 kg. Hubble is in a low-Earth orbit (so it can be
serviced by the Space Shuttle), and orbits the Earth about once every 96 minutes. Each orbit is about 1 hour
in sunlight (orbit day) and 1/2 hour in darkness (orbit night).

Hubble is designed to make observations of astronomical objects in visible light, near infrared, and near
ultraviolet wavelengths—it can observe wavelengths in the range of 100–2500 nm. (Visible light lies within
this range, from 400–700 nm.)

The reason Hubble is in orbit around the Earth, rather than on the ground, is to get above the Earth’s
atmosphere. Turbulence in the Earth’s atmosphere causes blurring of the images, which is avoided when the
telescope is above the atmosphere. Also, the atmosphere absorbs some wavelengths of light, a complication
that is also avoided by being in orbit. Finally, some light is lost when it passes through the atmosphere. By
being in orbit above the atmosphere, Hubble avoids this light loss and can see very faint objects.

The Hubble Space Telescope can see objects fainter than magnitude 30 (see Section 52.6) — which is
very faint.

Instruments

Unlike ground-based amateur telescopes, there is nobody looking at Hubble’s images directly through an
eyepiece. Instead, the images observed by Hubble are sent to a complement of scientific instruments (cameras
and spectrometers), each of which can perform its own analysis and relay the resulting spectra and images to
the ground by radio. The five instruments currently on board Hubble are:

• Wide Field Camera 3 (WFC3)

• Space Telescope Imaging Spectrograph (STIS)

• Cosmic Origins Spectrograph (COS)
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• Advanced Camera for Surveys (ACS)

• Near Infrared Camera and Multi-Object Spectrometer (NICMOS)

55.2 HST Optics Overview

The Hubble Space Telescope’s optics is all based onmirrors (no lenses). Lenses are generally not suitable for
large astronomical telescopes for a number of reasons. First, a large lens requires a large solid piece of glass,
which are subject to bubbles and other irregularities that degrade the image. Also, some light is always lost
when passing through a lens, no matter how carefully the lens is made. Weight is another issue: large lenses
are very heavy, but they can only be supported from around the edges, which can cause them to sag under
gravity. Finally, lens designers are at the mercy of the optical properties of the glass (such as dispersion)
over which they have little control, except for inserting additional corrective lenses. Nevertheless, some lens-
based astronomical telescopes (calledrefracting telescopes) are still in use; the largest is the 40-inch diameter
telescope at the Yerkes observatory in Wisconsin.

Mirrors, on the other hand, have numerous advantages. They have only one optical surface, so the back of
the mirror can be hollowed out to make the mirror lighter. The mirror can be supported along the edges and
along the back, so there are fewer problems with sagging. Also, mirrors don’t suffer from some optical issues
like chromatic aberration that plague lens designers, and don’t have the light loss issues that lenses do. For
these reasons, most modern large astronomical telescopes use mirrors; these are calledreflecting telescopes.

The simplest design of a reflecting telescope is aNewtoniantelescope, in which a single parabolic mirror
(the primary mirror) forms an image, which is reflected out of the side of the telescope with a flatsec-
ondary mirrorand into an eyepiece. A more compact design, used by many larger reflecting telescopes, is a
Cassegraintelescope. In this design, light first strikes a curved primary mirror, reflects to a curved secondary
mirror, and back through a hole in the primary mirror to the eyepiece. This design allows for a primary mirror
with a long focal length to be placed in a relatively small space, since the optical path is “folded” on itself.

The Hubble Space Telescope is a reflecting telescope that is a variation of the Cassegrain design, called a
Ritchey-Chrétien Cassegraindesign. In this design, both the large primary mirror and the smaller secondary
mirror are sections of hyperboloids of two sheets. The two hyperboloids work together to focus an image just
behind the hole in the primary mirror.

Hubble’s primary mirror has a diameter ofD D 2:4 meters (94.5 inches), and has a focal length of
f D 57:6 meters. Another parameter often used to characterize astronomical telescopes is the so-called
f -number, which is defined to be the ratio of the focal length to the aperture diameter:

f -numberD f

D
(55.1)

For Hubble, the primary mirror has anf -number off=24.

55.3 Resolution

Because of single-slit diffraction, any astronomical object observed through a telescope with a finite aperture
will create a diffraction pattern, and this diffraction effect limits the resolution of the image. In general, the
larger the aperture of the telescope, the better the resolution (and also the fainter the objects it can see, since
it can collect more light).

Theresolutionof an astronomical telescope (or other optical device) is defined to be the smallest angular
separation of two point sources of light that will still allow them to be resolved as individual point sources,
despite their overlapping diffraction patterns. The exact point at which two adjacent diffraction patterns are
overlapping “too much” is a bit vague, but one commonly used definition is theRayleigh criterion. Under the

227



Prince George’s Community College Introductory Physics II D.G. Simpson

Figure 55.1: Resolution of the Hubble Space Telescope.

Rayleigh criterion, the smallest angular separation� that two point sources can have and still be resolvable
as two individual point sources is

� D 1:22
�

D
(55.2)

where� is the angular resolution in radians,� is the wavelength of the light, andD is the diameter of the
aperture of the instrument. For the Hubble Space Telescope,D D 2:4 meters, and� varies between 100 and
2500 nanometers. Using equation (2) for the Rayleigh criterion, we can plot the angular resolution of Hubble
as a function of wavelength (Figure 1).

As you can see from the figure, Hubble’s resolution in visible light is about 0.05 arcseconds (where 1
arcsecond = 1/60 arcminute = 1/3600 degree). To give some idea of what this means, if the Hubble Space
Telescope were in Washington DC, it could distinguish two objects in New York City if they were separated
by a distance of just 3 inches:

s D r�

D .331321m/

�
.0:05 arcsec/

�
1 deg

3600 arcsec

� �
� rad

180 deg

��
D 0:080m

D 3 inches
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55.4 Spherical Aberration

Shortly after its launch in 1990, it was discovered that Hubble’s primary mirror had aspherical aberration,
in the sense that it had not been ground exactly to the required hyperbolic shape. It turned out that the outer
edges had been made too flat by about 2�m—about 1/50 the thichness of a human hair, but enough to
severely degrade the images. Light striking the primary mirror near the edges focused at a different point
than light striking the mirror near the center, resulting in a significant blurring of the images.

Some mathematical techniques were developed to partially compensate for this, but the real issue was
that the optics needed to be fixed. This was done during the Hubble First Servicing Mission in 1993, when
a set of corrective optics called COSTAR (for “Corrective Optics Space Telescope Axial Replacement”) was
installed. COSTAR consisted of a set of mirrors (one for each instrument) that were curved in such a way that
they corrected for the spherical aberration in the primary mirror. The light path then became one where light
would first strike the primary mirror, then reflect off of the secondary mirror, then down through the hole in
the primary mirror where it would strike a COSTAR corrective mirror, then on to the instruments. Since the
installation of COSTAR, the Hubble Space Telescope has operated right at the theoretical limit of resolution
imposed by single-slit diffraction effects.

Since the First Servicing Mission, all new Hubble instruments that have been installed have included their
own built-in corrective optics. By the time of Servicing Mission 3B in 2002, all the instruments had their
own corrective optics built in, and COSTAR was no longer required. COSTAR was finally removed during
Servicing Mission 4 in 2009, freeing up room for another scientific instrument to be installed during this
mission, the Cosmic Origins Spectrograph.

229



Chapter 56

Dispersion

Recall that the index of refractionn of a transparent material is the ratio of the speed of light in vacuum to
the speed of light in the material:n D c=v. In general, the index of refraction will vary somewhat with
wavelength; this phenomenon is calleddispersion. Dispersion can be an unwanted effect in lenses, since it
causes chromatic aberration. But it can also be useful in prisms, in that it allows “white” light (light of all
wavelengths) to be separated into its component colors. The same phenomenon occurs in Nature, where the
dispersion properties of water allows sunlight to be separated into its component colors by water droplets,
resulting in arainbow.

For example, the

56.1 Cauchy Dispersion Formula

One simple model for dispersion in materials is theCauchy dispersion formula:

n.�/ D a0 C a1

�2
C a2

�4
C a3

�6
C � � � (56.1)

One often uses just the first two terms of the Cauchy dispersion formula:

n.�/ D a0 C a1

�2
; (56.2)

where� is the wavelength, and the constantsan depend on the material.
For water (20ıC),a0 D 1:31494, a1 D 4537:99465 nm2.
Three terms:

n.�/ D a0 C a1

�2
C a2

�4
; (56.3)

where� is the wavelength, and the constantsan depend on the material.
For water (20ıC),a0 D 1:32692, a1 D 1610:845 nm2, a2 D 95402300 nm4.

56.2 Sellmeier Dispersion Formula

A more complex dispersion model is called theSellmeier dispersion formula:

n.�/ D
�
1C B1�

2

�2 � C1

C B2�
2

�2 � C2

C B3�
2

�2 � C3

�1=2

; (56.4)
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Figure 56.1: Dispersion in distilled water, showing how the index of refraction varies with wavelength.

where� is the wavelength and constantsB1, C1, B2, C2, B3, andC3 depend on the material.
For water (20ıC), B1 D 0:35074, C1 D 8725:74686 nm2, B2 D 0:04212, C2 D 25765:38176 nm2,

B3 D 0:36067, andC3 D 8739:18542 nm2.
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Chapter 57

Polarization

In normal white light, the plane of the electric field vector occurs in random directions for different wave
trains; such light is said to beunpolarized. In polarizedlight, the electric field vector for all waves is in the
same plane.

Light may be polarized by several different methods:

1. Selective absorption

2. Reflection

3. Scattering

4. Birefringence

57.1 Selective Absorption

In selective absorbtion, unpolarized light is passed though a material called apolarizer. The polarizing
material has polymers embedded in it that absorb light whose electric vector is parallel to the polymers. The
light that passes through the polarizer has its electric vector in one plane only: the plane perpendicular to the
polymer direction. The direction of the plane of polarization (the plane of the electric vector) is called the
axis of polarizationof the polarizer.

If light passing through a polarizer is passed through a second piece of polarizing material (sometimes
called ananalyzer), the amount of light leaving the analyzer depends on the angle between the polarization
axes of the polarizer and analyzer. If the polarization axes are in the same direction, all of the light leaving
the polarizer passes through the analyzer. If the polarization axes are at right angles, the analyzer blocks all
the light from the polarizer, and no light goes through. In general, if the polarizer and analyzer are at at angle
� with respect to each other, the intensityI of light leaving the analyzer is given byMalus’s law:

I D I0 cos2 � (57.1)

whereI0 is the intensity of light leaving the polarizer, before it goes through the analyzer.
The intensity ofunpolarizedlight is cut in half after passing through a single polarizer.

57.2 Reflection; Brewster’s Law

Light may also be (partially) polarized by reflection from a reflecting surface (a linoleum floor or a glass win-
dow, for example). In this case, light will be polarized in a direction perpendicular to the plane of incidence:
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light reflecting from a reflecting floor or swimming pool will be horizontally polarized, and light reflecting
from a window will be vertically polarized.

Reflected light will, in general, be onlypartially polarized. At one particular angle of incidence, though,
the reflected light will be not just partially polarized, it will becompletelypolarized. That incidence angle is
called thepolarization angle, and is given byBrewster’s law: Brewster’s law

tan�p D n

nair
(57.2)

Here�p is the polarization angle,n is the index of refraction of the reflecting material, andnair D 1 is the
index of refraction of air.

Since light reflecting from a horizontal surface light a swimming pool will be at least partially horizontally
polarized, polarizing sunglasses are designed to have their polarization axis in theverticaldirection to block
the reflected light.

57.3 Scattering

Light may be polarized byscatteringof light. This may be seen by observing a clear blue sky through
polarizing sunglasses; by rotating the sunglasses you can see the sky getting brighter and darker, as the
sunglasses’s polarization direction changes with respect to the direction of polarized skylight.

57.4 Birefringence

Another method of polarization isbirefringence. This notably occurs in the mineral Iceland spar, which is a
transparent crystalline form ofcalcite, or calcium carbonate (CaCO3). If Iceland spar is placed on top of a
page of printed text, you will see the image of the text is doubled (i.e. there will be two images of each letter).
Each image is polarized in a different direction, as you can verify by rotating a polarizing material in front of
the Iceland spar.

Figure 57.1: Birefringence in a sample of Iceland spar. (Credit: Jo Edkins, http://gwydir.demon.co.uk/jo/
minerals/index.htm)
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Chapter 58

Color

The human eye is capable of both color and black-and-white vision. Under conditions of very low illumi-
nation, a set of very light-sensitiverodson the retina of the eye allow us to see in black and white. Under
higher illumination, a different set of light receptors calledconesbecome active that permit color vision. The
retina contains three types of cones, each of which is mostly sensitive to a different color: red, green, and
blue. Combinations of these three primary colors allow us to see all the other colors.

What we perceive as “white” light is actually a combination of all colors of light. We can split white light
into its component colors using a prism or a diffraction grating; the resulting colors and their approximate
wavelengths are shown in Table 58-1. (The sequence of colors can be remembered from the mnemonic ROY
G. BIV.)

Table 58-1. Approximate wavelengths of colors in the spectrum.

Color Wavelength (nm)

Red 650
Orange 590
Yellow 570
Green 510
Blue 475
Indigo 445
Violet 400

Our perception of color is a complicated process. It depends partly on the wavelength of light received by
the eye; but also the brain is able to distinguishcolors by comparing the brightness of an object to other nearby
objects, as seen by all three colors of cones on the retina. This complicated process (called theLand effect)
allows us to perceive objects to be the same color, even under very different lighting conditions. (Notice,
for example, that objects appear to have the same color indoors under a fluorescent light as they do outdoors
under sunlight.) This phenomenon is calledcolor constancy.

58.1 Lights

There are threeprimary colorsof light: red, green, andblue. Other colors of light can be made by combining
these three primary colors in different proportions. Equal proportions of red and green light makeyellow

234



Prince George’s Community College Introductory Physics II D.G. Simpson

Figure 58.1: Addition and subtraction of primary colors.

light; equal proportions of green and blue light make a greenish-blue color calledcyan; and equal proportions
of red and blue light make a purplish color calledmagenta. All three primary colors combined in equal
proportions makewhitelight (Fig. 58.1).

If one of the primary colors is removed from white light, the remaining colors combine to form asec-
ondary colorthat is said to be thecomplementof the missing color. For example, removing the blue light
component from white light leaves yellow light, so yellow is said to be the complement of blue—in a sense,
blue is “anti-yellow” and yellow is “anti-blue”. Similarly, the complement of green is magenta, and the
complement of red is cyan (Table 58-2).

In summary,for lights, the primary colors are red, green, and blue; the secondary colors are cyan, ma-
genta, and yellow.

Table 58-2. Complementary colors.

Color Complement

red cyan
green magenta
blue yellow

These properties of light colors are used in devices we encounter every day. For example, if you enlarge
a color television screen or computer monitor with a magnifying glass, you will see that the image is made
up of an array of small, adjacent red, green, and blue pixels which are combined in different proportions to
form different colors. For example, if you enlarge a part of the screen that contains a yellow image, you will
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see the red and green pixels turned on, and the blue pixels turned off. To form orange, the red pixels will be
on and bright, the green pixels on but dim, and the blue pixels will be off.

58.2 Pigments

Coloredpigmentslike paints and inks work differently from lights. If a colored pigment is illuminated
with white light, it will absorb some colors and reflect others; the combination of the reflected light colors
determines the color of the pigment.

Students of art are often taught that the primary colors for paints are red, yellow, and blue, but this
isn’t quite right. For pigments like paints, the primary colors are the same as thesecondarycolors of light:
magenta, yellow, and cyan. Magenta paint absorbs its complementary color (green) and reflects red and blue
light; yellow paint absorbs its complement (blue) and reflects red and green light; and cyan paint absorbs its
complement (red) and reflects green and blue light (Table 58-3).

Table 58-3. Pigment colors.

Made by
Pigment combining Absorbs Reflects

red magenta & yellow green & blue red
green cyan & yellow red & blue green
blue cyan & magneta red & green blue
cyan cyan red green & blue
magenta magenta green red & blue
yellow yellow blue red & green
white none none all
black all all none

Likewise, thesecondarycolors for pigments are the same as theprimarycolors for lights: red, green, and
blue. In each case, a pigment of one of the secondary colors reflects only that color, and absorbs the others.

The color that results by mixing pigments can generally be predicted1 by assuming that the mixture will
absorb the colors of its components, and reflect everything else. For example, what happens if we mix cyan
and yellow paint? The cyan pigment absorbs red, the yellow pigment absorbs blue, and so the mixture should
absorb both red and blue, and reflect green; thus cyan and yellow pigments mixed together make green.

Table 58-3 shows the colors resulting by combining colors inequal amounts. Other colors can be created
by combining pigments in ways that reflect the primary light colors in unequal amounts. For example,
suppose we combine red and yellow pigments. The red component of the mixture will absorb green and blue
light, while the yellow component will absorb blue light. The mixture will then absorb some green light, and
lots of blue light — resulting in the reflection of lots of red light and some green light, and anorangecolor.

58.3 Spectral Colors

If white light is split into its component colors (aspectrum) using a prism or diffraction grating, we observe
the colors listed in Table 58-1, called thespectral colors. The spectrum includes the primary colors of light
(red, green, and blue), along with the secondary colors yellow and cyan (located between green and blue).

1Assuming the pigments do not react chemically.
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But the spectrum doesnot include the color magenta, which is a combination of two colors on opposite ends
of the spectrum (red and blue). Magenta is an example of a class of colors calledpurples, that are formed by
combining blue/violet with red in different proportions. Purples arenotspectral colors, and do not appear in
the spectrum of white light.

There is an important distinction betweenpurple andviolet. Purple is anon-spectral color formed by
combining blue/violet light with red light.Violet, however,is a spectral color, and appears at the short-
wavelength end of the spectrum.

58.4 The Chromaticity Diagram

Figure 58.2 shows theCIE chromaticity diagram.2 It is a figure upon which may be plotted every color visible
to the human eye. Its unusual shape is because of the way it is defined; see Appendix R for details.

The curved, horseshoe-shaped edge of the chromaticity diagram is where the pure spectral colors lie.
Colors along this edge are the brightest and most vivid that we see them. Moving from the edge toward
the center of the figure, the colors become more and more washed-out, finally becoming white at point
E D .0:3333; 0:3333/, the equal-energy point.

The straight line from.x; y/ D .0:17; 0:00/ to .0:73; 0:26/ is called theline of purples. The non-spectral
colors (magenta and other purples) lie along this line.

Whether you’re looking at Figure 58.2 on a color monitor or on paper (printed from a color printer),
you’re notreally seeing the diagram the way it actually looks. That’s because both color monitors and color
printers are limited in the range of colors they can display. The white triangle in Fig. 58.2 shows the range
of colors visible on a typical color monitor. If you look at the figure on a color monitor, you’ll notice the
colors look relatively constant moving along a line the white triangle to the curved edge; this is because of
limitations in the color monitor.

Figure 58.3 illustrates some properties of the chromaticity diagram. Fig. 58.3(a) shows that if you connect
any two points (colors)A andB with a straight line, then all points along the line represent colors that can be
formed by combining colorsA andB in different proportions. Another property is illustrated by Fig. 58.3(b):
choose any color point on the edge of the diagram, and draw a straight line from that point, through the center
pointE, to the edge of the opposite side of the figure. This point at the opposite edge of the figure is the
complementof the original point.

2CIE is the International Commission on Illumination; its initials are an abbreviation for its French name, Commission Internationale
de l’Éclairage.
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Figure 58.2: The CIE 1931 chromaticity diagram. The white triangle shows the range of colors that can
be displayed on a color computer monitor. The curved line in the middle shows the color of blackbody
radiation at various temperatures. PointsA, B, C , andD are standard light sources (A: tungsten, 2856 K;B:
Illuminant B;C : Illuminant C;D: D65, 6500 K.) PointE is the equal-energy point.
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Figure 58.3: Some properties of the chromaticity diagram. (a) IfA andB are two points (colors) on the
diagram, then any color along the line connectingA andB can be formed by combiningA andB in different
proportions. (b) Complementary colors lie on opposite sides of a line passing through the equal-energy point
E.
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Chapter 59

The Rainbow

The rainbow, one of the most beautiful and striking objects seen in Nature, is typically visible during a late
afternoon rain shower, when the Sun is low in the sky and shining at the same time (Fig. 59.1). Understanding
all of the features of the rainbow requires many different ideas from optics.

59.1 Colors

The most obvious feature of the rainbow is its selection of colors. The phenomenon responsible for the colors
isdispersion(Chapter 56). White light from the Sun enters each raindrop, refracts into the interior of the drop,
reflects once via total internal reflection, and refracts back out of the drop again. The angles of refraction are
determined by Snell’s law and the index of refraction. But because of dispersion, the index of refraction (and
therefore the angle of refraction) is different for each color of light (Table 59-1).

Table 59-1. Indices of refraction of water for different colors.

Color Wavelength (nm) nwater

Red 650 1.3317
Orange 590 1.3333
Yellow 570 1.3340
Green 510 1.3364
Blue 475 1.3381
Indigo 445 1.3400
Violet 400 1.3436

When you see a rainbow in Nature, you can often seetwobows: a brightprimary rainbow, and above it a
faintersecondary rainbow(Fig. 49.1). The secondary bow is due to light reflecting a second time inside the
raindrop due to total internal reflection.

59.2 The Primary Rainbow

In the brighter primary rainbow, red appears on the outside edge and violet on the inside edge.1 The primary
rainbow is due to light reflecting a single time inside the raindrops due to total internal reflection.

1The next time you see a drawing of a rainbow, check to see whether the artist put the colors in the correct order, with red on the
outside edge. Drawings have the colors wrong as often as not.
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Figure 59.1: A rainbow. The bright primary bow is over the barn; the dimmer secondary bow is to the right.
Alexander’s dark band is the dark region between the two bows. (Credit: Pennsylvania State University.)
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Figure 59.2: Observation of primary and secondary rainbows by an observer at pointE. The Sun is behind
the observer, as indicated by the linesS andS 0. R andV show the locations of the red and violet bands
(respectively) in the primary bow, whilev andr show the locations of violet and red in the secondary bow.
(Ref. [5])
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Figure 59.3: Impact parameter and the resulting scattered light rays. (From Nussenzveig,Scientific American,
April 1977.)

The rainbow is in the shape of a partial circle, being a larger part of the circle the lower the Sun is in
the sky. The rainbow would, in fact, be a complete circle if the ground weren’t in the way; such complete
rainbows may sometimes be seen from airplanes. The center of the rainbow’s circle is directly opposite the
direction of the Sun in the sky, so if the Sun is setting in the west and it’s raining, look for a rainbow in the
east.

59.3 The Secondary Rainbow

A fainter secondary rainbow appears above (outside) the primary rainbow, and its colors are reversed (violet
on the outside edge and red on the inside edge). It is also a bit wider than the primary bow. The secondary
bow is due to light reflectingtwiceinside the raindrop due to total internal reflection. Some light is lost during
each reflection, so the secondary bow will be fainter than the primary bow.

59.4 Location of the Rainbow

What determines the location of the rainbow in the sky? The center of curvature of the rainbow is opposite
the direction of the Sun, but what determines the angle from the sunline to the rainbow? By convention, we
measure the angle between the Sun and the rainbow, as seen by the observer; this is called therainbow angle.
The primary rainbow has a rainbow angle of about138ı, while the for the secondary bow the rainbow angle
is 130ı.

What determines these angles? Figure 59.3 shows the path of a light ray through a single (spherical)
raindrop. The perpendicular distance between the light ray and the center of the drop is called theimpact
parameter, as shown in the figure. Of course, light rays are hitting the many raindrops at all different im-
pact parameters, so the outgoing light rays are scattered over a range of angles. But from the principles of
geometrical optics, we can calculate the angle of the outgoing light ray (thescattering angleas a function of
impact parameter (Fig. 59.4). In the figure, you can see that the curve for the primary bow (upper curve) has
a minimum for an impact parameter that is about 0.86 times the drop radius. Around this impact parameter,
significant changes in the impact parameter result in nearly the same scattering angle — in essence, many
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Figure 59.4: Scattering angle vs. impact parameter for the primary and secondary rainbows. (After Nussen-
zveig,Scientific American, April 1977.)

light rays hitting the drop at around this impact parameter will be scattered in the same direction, and this is
where the rainbow will appear. According to calculations, light rays hitting the drop with an impact parameter
of 0.86 of the drop radius will have a scattering angle of138 ı, which is the rainbow angle for the primary
bow.

Similarly, the curve for the secondary bow (two internal reflections) has a maximum at about 0.95 the
radius of the drop. Therefore many light rays light hitting the drop with an impact parameter around 0.95 of
the drop radius will scatter at about the same angle, which is rainbow angle of the secondary bow,130 ı.

59.5 Alexander’s Dark Band

As seen in Figure 49.4, there is no impact parameter for either the primary or secondary bow that will lead to
light being scattered between130ı and138ı. This results in a dark band between the primary and secondary
bows, known asAlexander’s dark band(Fig. 59.1).

244



Prince George’s Community College Introductory Physics II D.G. Simpson

59.6 Higher-Order Rainbows

Both the primary and secondary rainbows are easy to observe in Nature, but what about high-order bows,
corresponding to three or more reflections of light rays inside each raindrop?

Confirmed observations of third- and fourth-order bows in Nature have only very recently been made for
the first time, in 2011.2 (See Figures 59.6 and 59.7.) There is at this time also evidence for observation of a
fifth-order rainbow in 2015.3

It can be shown (Ref. [16]) that the rainbow angle of thek-th order rainbow (corresponding tok internal
reflections in each drop) is given by

�k D k.180ı/C 2�ik � 2.k C 1/�rk (59.1)

where thek-th angle of incidence�ik is given by

�ik D cos�1

s
n2

w � 1
k.k C 2/

(59.2)

and thek-th angle of refraction�rk is found from Snell’s law:

�rk D sin�1

�
1

nw
sin�ik

�
(59.3)

Herenw is the index of refraction of water. Sincenw varies depending on the color of light, these equations
can be used to find the rainbow angle for both red and violet light, and from that deduce the width of each
bow. The results of these calculations through the 20-th order rainbow are shown in Table 59-1, and illustrated
in Figure 59.5. Notice that as the rainbow orderk increases, the rainbows get both fainter and wider.

2SeeApplied Optics, 50, 28, pp. F129-F141 (2011).
3See Edens, H.E. (2015) Photographic observation of a natural fifth-order rainbow,Appl. Opt.54, B26-34.
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Table 59-1. The first 20 orders of rainbows of water, calculated from geometrical optics. This table shows
the rainbow angles�k and bow widths�� . Also shown are which side of the drop the incident light rays hits
(TDtop, BDbottom) and the rainbow “parity” (ND“normal” parity, with red on the outside and violet on the
inside; RD“reversed” parity, with violet on the outside and red on the inside).1 The 12th order bow is split
at the horizon, with red rays incident on the bottom of the drops and violet rays on the top (see Fig. 59.5).

Rainbow angle�k Width Drop
k red violet �� Side Parity
1 137.63ı 139.35ı 1.72ı T N
2 129.63ı 126.52ı 3.11ı B R
3 42.47ı 38.11ı 4.37ı B N
4 42.76ı 48.34ı 5.58ı T R
5 127.08ı 133.86ı 6.78ı T N
6 149.10ı 141.13ı 7.96ı B R
7 65.59ı 56.45ı 9.14ı B N
8 17.71ı 28.02ı 10.32ı T R
9 100.86ı 112.35ı 11.49ı T N

10 176.08ı 163.43ı 12.65ı B R
11 93.11ı 79.29ı 13.82ı B N
12 10.19ı 4.79ı 14.99ı

(Note 1) (Note 1)

13 72.68ı 88.83ı 16.15ı T R
14 155.51ı 172.82ı 17.32ı T N
15 121.69ı 103.21ı 18.48ı B R
16 38.91ı 19.27ı 19.64ı B N
17 43.84ı 64.65ı 20.80ı T R
18 126.58ı 148.55ı 21.97ı T N
19 150.69ı 127.57ı 23.13ı B R
20 67.98ı 43.69ı 24.29ı B N
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Figure 59.5: Locations of the first 20 orders of rainbows in the sky. Each order bow is dimmer and wider
than the previous one. Only the 1st and 2nd order bows are visible in Nature, but the higher-order bows may
be observed in laboratory experiments, as described in theAmateur Scientistcolumn ofScientific American,
July 1977.

Figure 59.6: First ever photograph of a third-order (tertiary) rainbow, taken in southern Germany in 2011. (a)
Original photograph. PointsA andB are reference positions for image orientation. (b) Computer-enhanced
version that shows the third-order bow. Arrows show the location of the rainbow image. The Sun is off to the
right. (Großmann, Schmidt, and Haußmann,Applied Optics, 50, 28, F134F141 (2011).)
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Figure 59.7: First ever photograph of a fourth-order (quaternary) rainbow, taken in northern Germany in
2011. (a) Original photograph. (b) Computer-enhanced version that shows both the third-order bow (left)
and fourth-order bow (right). The Sun is off to the left. (Theusner,Applied Optics, 50, 28, F129F133 (2011).)
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Chapter 60

Special Relativity

60.1 Introduction

The classical mechanics described by Sir Isaac Newton begins to break down at very high velocities, i.e. at
velocities near the speed of lightc D 299;792:458 km/s. For bodies moving at a significant fraction of the
speed of light, Newton’s mechanics needs to be modified. The necessary modifications were developed by
physicist Albert Einstein (1879-1955, Figure 60.1). in the early 20th century.

60.2 Postulates

Einstein discovered that the necessary modifications to Newtonian mechanics could be derived by assuming
two postulates:

1. Absolute uniform motion cannot be detected.

2. The speed of light is independent of the motion of the source.

The first postulate says that all motion is relative—that there is no reference frame that all observers can agree
to be absolutely at rest. The second postulate says that light does not obey the usual laws of velocity addition.

Figure 60.1: Albert Einstein.
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For example, if someone is moving toward you at 99% of the speed of light and turns on a flashlight in your
direction, you will measure the light’s speed to be the same as if that person were at rest.

Although these postulates seem quite reasonable, they lead to some surprising consequences. Let’s ex-
amine a few of those consequences.

60.3 Time Dilation

It turns out that one consequence of Einstein’s postulates is that time runs more slowly for someone moving
relative to you; this effect is calledtime dilation. If someone is moving at speedv relative to you, then their
clocks will run slower than yours. If a clock measures a time interval�t0 when it’s at rest, then when it’s
moving at a speedv relative to you, you will measure that time interval to be longer by a factor :

�t D  �t0; (60.1)

where�t is the time interval measured by the moving clock,�t0 is the time interval measured on the clock
when it’s at rest, and is an abbreviation for the factor

 � 1p
1 � v2=c2

: (60.2)

(Note that 	 1.) The time interval�t0, measured when you’re at rest with respect to the clock, is called
theproper time.

This effect means that time travel is possible—at least time travel into the future. One simply builds a
spacecraft and travels close to the speed of light, then turns around and returns to Earth. (It is not clear whether
time travel into the past is possible, but it might be possible under Einstein’sgeneraltheory of relativity.)

60.4 Length Contraction

Another consequence of the postulates is that a moving body will appear to be shortened in the direction of
motion; this effect is calledlength contraction. The length of a moving body will appear to be shortened by
this same factor of :

L D L0


(60.3)

HereL0 is the length of the body when it is at rest, and is called theproper length. Since 	 1, the moving
body will be shorter when it is moving.

60.5 An Example

As an example, let’s imagine that a spacecraft is launched at high speed relative to Earth toward the nearest
star, Alpha Centauri (which is about 4 light-years away). The ship travels at 80% of the speed of light during
the trip. From Earth, we see that the whole trip takes 5 years. We also see the astronaut’s clocks running more
slowly than ours by a factor of D 2:78, so that when the astronauts arrive, they are only 1.8 years older.

What do the astronauts see from their point of view on the spacecraft? Their clocks run at what seems a
normal rate for them, but they see that thedistanceto Alpha Centauri has been length-contracted by a factor of
 D 2:78. They’re traveling at a speed of0:80c, but they only have to travel a distance of (4 light-years)/ D
1:44 light-years. When they arrive at Alpha Centauri, they’re older by (1.44 light-years)/0:80c D 1:8 years.

In summary, observers on Earth see the astronaut’s clocks moving more slowly, but the astronauts have
to travel the full 4 light-years. The astronauts see their clocks moving at normal speed, but the distance they
have to travel is shorter. All observers agree that the astronauts are only 1.8 years older when they arrive.
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60.6 Momentum

In Newton’s classical mechanics, momentum isp D mv. Under special relativity, this is modified to be

p D mv: (60.4)

Relativistically, it is this definition of momentum that is conserved. Newton’s Second Law in the form
F D ma is no longer valid under special relativity, but Newton’s original formF D dp=dt is still valid, using
this definition of momentump.

Notice that asv ! c, we have ! 1 (by Eq. (60.2)), and so momentump ! 1. As a body goes
faster, its momentum increases in such a way that it becomes increasingly difficult to make it go even faster.
This means that it is not possible for a body to move faster than the speed of light in vacuum,c.

60.7 Addition of Velocities

Let’s suppose that we have two bodies moving in one dimension. The first is moving at speedu, and the
second is moving at speedv. What is the speed of the second relative to the first? In other words, what will
you measure as the speed of the second body if you’re sitting on the first body?

In classical Newtonian mechanics, the speedw of the second body relative to the first is simply

w D v � u: (60.5)

For example, if the first body is moving to the right with speedu D 10 m/s, and the second body is moving
toward it to the left with speedv D �20 m/s, then an observer on the first body will see the second body
moving toward it with a speed ofw D 30 m/s.

In the special theory of relativity, this seemingly self-evident equation for adding velocities must be
modified as follows:

w D v � u
1 � uv=c2

: (60.6)

This reduces to Eq. (60.5) unless the speeds involved are near the speed of light. For the above example,
whereu D 10 m/s andv D �20 m/s, Eq. (60.6) givesw D 29:99999999999993324 m/s, rather than
w D 30 m/s given by Eq. (60.5). As you can see, for many applications, the difference between the classical
formula (60.5) and the exact relativistic formula (60.6) is not enough to justify the extra complexity of using
the relativistic formula.

But for speeds near the speed of light, using the relativistic formula is important. For example, ifu D
0:99c andv D �0:99c, then the classical formula of Eq. (60.5) would givew D 1:98c > c, in violation of
special relativity; but using the exact expression in Eq. (60.6) gives the correct answer,w D 0:9999494975c.

Eq. (60.6) makes it impossible for the the relative speeds to be greater than the speed of lightc. In the
extreme caseu D c andv D �c, Eq. (60.6) givesw D c, in agreement with the Einstein’s second postulate.

60.8 Energy

Rest Energy

Einstein showed that mass is a form of energy, as shown by his most famous equation,

E0 D mc2: (60.7)

E0 is called therest energyof the particle of massm. The clearest illustration of this formula is the mutual
annihilation of matter andantimatter(a kind of mirror-image of ordinary matter). When a particle of matter
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collides with a particle of antimatter, the mass of the two particles is converted completely to energy, the
amount of energy liberated being given by Eq. (60.7).

As examples, the rest energy of the electron is 511 keV, and the rest energy of the proton is 938 MeV.
(1 eV is oneelectron volt, and is equal to1:6021766208� 10�19 J.)

Kinetic Energy

In classical Newtonian mechanics, the kinetic energy is given byK D mv2=2. The relativistic version of this
equation is

K D . � 1/mc2: (60.8)

It is not obvious that this reduces to the classical expression until we expand into a Taylor series:

 D
�
1 � v2

c2

��1=2

D 1C 1

2

v2

c2
C 3

8

v4

c4
C 5

16

v6

c6
C 35

128

v8

c8
C 63

256

v10

c10
C 231

1024

v12

c12
C � � � (60.9)

Substituting this series expansion for into Eq. (60.8), we get

K D 1

2
mv2 C 3

8
m
v4

c2
C 5

16
m
v6

c4
C 35

128
m
v8

c6
C 63

256
m
v10

c8
C 231

1024
m
v12

c10
C � � � (60.10)

Unless the speedv is near the speed of lightc, all but the first term on the right will be very small and can be
neglected, leaving the classical equation.

Total Energy

If the only forms of energy present are the rest energyE0 and the kinetic energyK, then the total energyE
will be the sum of these:

E D E0 CK D mc2: (60.11)

It is often useful to know the total energy of a particle in terms of its momentump rather than its velocityv.
It can be shown that the total energy is given in terms of momentum by

E2 D .pc/2 C .mc2/2: (60.12)

In the case where the total energy is much larger than the rest energy (E 
 E0), we may neglect the second
term on the right, and use

E � pc: (60.13)
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Chapter 61

Superfluids

When liquid helium-4 (4He) is cooled below a critical temperature of 2.17 K (called thelambda point), a
sudden phase transition occurs, and the helium becomes an exotic fluid calledhelium II.1 Helium II is the
best-known example of asuperfluid—a fluid with odd properties that are governed by the laws of quantum
mechanics.

As helium I is cooled toward the lambda point, it boils violently; but when the lambda point is reached,
the boiling suddenly stops. This is due to a sudden increase in the thermal conductivity of the liquid when
it transitions to the superfluid state. The thermal conductivity of superfluid helium II is more that a million
times greater than that of liquid helium I, and helium II is a better conductor of heat than any metal.

Superfluid helium II is perhaps best known for its unusual viscosity. One method for measuring the
viscosity of a liquid is to allow it to flow through a thin tube or channel called acapillary: the more viscous
the liquid, the larger the diameter of the capillary needed to permit the liquid to flow. Helium II can flow
through capillaries much less than 1�m in diameter, and in such experiments behaves as though it haszero
viscosity. This ability of helium II to flow through very tiny capillaries is calledsuperflow.

Another method for measuring viscosity is to rotate a small cylinder inside the liquid; viscosity will cause
the liquid to be dragged along with the cylinder, and a small rotatable paddle placed near the axis of the
rotating cylinder will show whether the rotating cylinder is causing the liquid to rotate. In such experiments,
helium II doesexhibit some viscosity. No ordinary liquid exhibits this sort of dual behavior with respect to
viscosity.

A common model to explaining this odd behavior is called thetwo-fluid model. In this model, liquid
helium II is thought of as consisting of two interpenetrating components: anormal (viscous) component,
and asuperfluid(nonviscous) component. In the capillary experiment, only the superfluid component flows
through the tiny capillaries, but in the rotating-cylinder experiment, the normal component is dragged along
with the cylinder, causing circulation in the liquid.

Another unusual phenomenon observed in helium II is called thefountain effect(Fig. 61.1). A tube with
a porous plug in the bottom is placed inside a bath of helium II. A superflow of helium is observed to flow
through the tiny (� 1 �m) capillariestoward the heater; upon being heated, the superfluid component is
converted to a normal component, and the fluid is unable to flow back out through the fine capillaries in the
plug. Pressure builds in the tube until the helium squirts out of the capillary in the top of the tube, creating a
“helium fountain”. Since the second law of thermodynamics states that heat cannot flow from lower to higher
temperatures, this implies that the superfluid component carries no heat: any heat in the helium II must be in
the normal component.

Yet another interesting property of helium II is the formation of a very thin film called aRollin filmwhen
the liquid is placed in a container. The Rollin film will creep up the sides of the container, and if the container

1Above 2.17 K, liquid helium is a (mostly) ordinary liquid calledhelium I.
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Figure 61.1: The fountain effect in superfluid liquid helium II. (Credit: NASA.)

Figure 61.2: A Rollin film of helium II. The film creeps up the sides of the container and back down the
outside, collecting in small drops at the bottom. (Credit: Liquid Helium II: The Superfluid, University of
Michigan.)
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is open, it will creep back down the outside, so that the helium II will spontaneously creep out of the container
(Fig. 61.2). The Rollin film is much less than 1�m in thickness; its creeping speed is slow just below the
lambda point, but may reach a speed as high as 35 cm/s at lower temperatures.

Finally, helium II exhibits an unusual way of conducting heat. Normally, substances conduct heat through
diffusion, where the rate of heat flow is proportional to the temperature difference; but in superfluid helium
II, heat is conducted bywaves. This phenomenon is calledsecond sound, and no other substance exhibits this
behavior. The speed of second sound is small just below the lambda point; at a lower temperature of 1.6 K, it
is about 20 m/s.

It should be kept in mind that the two-fluid model of helium II discussed here is simply amodel—a
convenient way of thinking about the behavior of the liquid. Superfluid helium II is a quantum liquid, and a
complete description of its behavior requires the application of quantum mechanics.
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Chapter 62

The Standard Model

The Standard Modelof particle physics is our current best theory of how the Universe is put together at its
most fundamental level. It describes the fundamental nature of both matter and forces. This is still very much
at the frontier of physics research, so it’s not clear how much of our understanding of this is correct.

62.1 Matter

All of (ordinary) matter is found to be made of two types of particles:quarksandleptons. There are six types
of quarks (calledup, down, charmed, strange, top, andbottom) and six types of leptons (theelectron, muon,
tau lepton, and their associatedneutrinos.) (Table 62-1.)

Table 62-1. The basic particles of matter.

Quarks Leptons
Up (u) Electron (e�)
Down (d) Electron neutrino (�0

e )
Charmed (c) Muon (��)
Strange (s) Muon neutrion (�0

�)
Top (t) Tau lepton (	�)
Bottom (b) Tau neutrino (�0

� )

Quarks are never observed in isolation: they occur only as a system of three quarks (called abaryon), or
as a quark-antiquark pair (called ameson). (An antiquark is a form ofantimatter, described below.) Examples
of baryons are theproton(which consists of two “up” quarks and one “down” quark) and theneutron(which
consists of two “down” quarks and one “up” quark). Baryons and mesons together are collectively known as
hadrons, so a hadron refers to a collection of bound quarks.

Quarks are held together in hadrons by a very strong force that becomes stronger the farther apart the
quarks are separated. This is why they are not observed in isolation.

Leptons consist of the electron, the muon (which acts like a heavy electron), and the tau lepton (which acts
like a very heavy electron). Each of these particles has a charge of�e. In reactions in which these particles
are produced, there is generally also a neutrino particle. Neutrinos are very light particles with almost no
mass, and for the most part they pass right through ordinary matter; in fact, there are billions of them passing
through your body right now. Only very rarely do they interact with ordinary matter, but occasionally they
do. Physicists have built neutrino “telescopes” to detect them; these telescopes consist of underground pools
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filled with cleaning fluid surrounded by light detectors. In the rare event that a neutrino interacts with ordinary
matter, it emits a brief flash of light which is detected and recorded.

Both quarks and leptons are, as far as we can observe, point masses. None of them has any internal
structure that we’re currently aware of.

62.2 Antimatter

Each quark and lepton has a corresponding mirror-image particle that has the same mass but opposite charge;
such particles are calledantimatter. The antimatter counterpart of the electron is called thepositron(eC); for
other particles, you just add the prefixanti- (e.g.anti-proton, anti-neutron, etc.)

Whenever a particle of ordinary matter comes in contact with its antimatter counterpart, the two particles
are destroyed and converted to energy in the form of gamma rays. The amount of energy created is given by
Einstein’s famous formula,E0 D mc2, wherem is the sum of the particle masses andc is the speed of light
in vacuum.

62.3 Forces

We know of four fundamental forces in Nature: thegravitational force, theelectromagnetic force, and two
nuclear forces(Table 62-2.) We’re all familiar with the gravitational force (which is keeping you attached
to the ground as you read this). Most of the other forces you encounter in everyday life are electromagnetic
in nature. The strong nuclear force is responsible for holding atomic nuclei together against the mutual
electrostatic repulsion of protons, and is also responsible for nuclear fusion reactions that occur in the Sun
and in hydrogen bombs. The weak nuclear force is responsible for a process calledˇ decay, in which a
neutron in an atomic nucleus decays into a proton, electron, and anti-neutrino, and the electron escapes from
the atom in the process.

Table 62-2. The four forces.

Force Vector boson
Gravitational Graviton (?)
Electromagnetic Photon
Strong nuclear Gluon
Weak nuclear W, Z

According to the Standard Model, each of these forces is mediated by a particle called avector boson. In
effect, each force is thought to be caused by the exchange of these particles.1

The electromagnetic and weak nuclear forces have been (somewhat) unified into a combined “electroweak
theory”, although this theory is not entirely complete. Many physicists believe that the electromagnetic,
strong nuclear, and weak nuclear forces can be shown to be different aspects of a single underlying force, and
thus all covered by a single “Grand Unified Theory”. No Grand Unified Theory has yet been discovered.

Our best theory of gravity to date is Einstein’s General Theory of Relativity, and has so far been shown
to be consistent with experimental results. However, general relativity says that the gravitational force is due
to the curvature of space-time; this is at odds with the Standard Model view, which is that gravity is caused
by the exchange of particles calledgravitons. No experiment has yet detected the existence of gravitons, and
it’s uncertain whether or not general relativity is the correct final theory of gravity.

1The gravitational force is not considered to be part of the Standard Model.
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Some physicists believe that it may be possible to show thatall four forces (including gravity) are aspects
of a single underlying force, and covered by a theory called the “Theory of Everything”. Such a theory
(which is essentially a grand unified theory plus gravity) has not yet been found, nor is it known whether
such a theory even exists. Some theories such asstring theoryhave been proposed, but are far from being
experimentally verified. These are issues to be worked out by future generations of physicists.

62.4 The Higgs Boson

A key piece of the Standard Model isHiggs field, which is responsible for giving particles their mass. The
Higgs field fill all of space, even in places where there would otherwise be a vacuum. The degree to which a
particle interacts with the Higgs field determines its mass: particles interacting weakly with the Higgs field
are light, while those that interact strongly with the Higgs field are heavy. Particles that don’t interact with
the Higgs field at all, like the photon, are massless.

The Standard Model predicts that fields that fill all space should be associated with a particle — for
example, as we’ve seen each of the four fundamental forces is associated with a vector boson particle.2 The
particle associated with the Higgs field is theHiggs boson. The Higgs boson was detected experimentally at
the CERN particle physics accelerator3 in 2015, thus confirming the existence of the Higgs field and giving
increased confidence in the Standard Model.4

2Except, perhaps, for gravity.
3CERN stands for Conseil Europ´een pour la Recherche Nucl´eaire, and is a facility located on the border between France and Switzer-

land.
4Seehttp://www.nobelprize.org/nobel_prizes/physics/laureates/2013/popular-physicsprize2013.pdf
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Further Reading

General

• The Feynman Lectures on Physicsby R.P. Feynman, R.B. Leighton, and M.L. Sands (Addison-Wesley,
1963).
This collection of physics lectures was delivered by Nobel laureate Richard Feynman at the California
Institute of Technology in the 1960s, and is known to every physicist. It is regarded by many as one of
the best, clearest surveys of physics ever written. These lectures have recently re-released in a “New
Millennium Edition”, and the audio recordings of the lectures have been released on CD as well.

• Feynman’s Tips on Physics: A Problem-Solving Supplement to the Feynman Lectures on Physicsby
R.P. Feynman (Addison-Wesley, 2005).
Supplementary material for theFeynman Lectures on Physics, in which Feynman gives his advice on
strategies for solving physics problems.

Mathematics

• How to Enjoy Calculusby Eli S. Pine (Geyer Instructional AIDS Co., 1983).
Thebest introduction to the calculus, bar none. Also very brief (150 pages).

Waves (Part I)

• Vibrations and Wavesby A.P. French (Norton, 1971).
One of the four volumes of theMIT Introductory Physics Series, this calculus-based book gives a fairly
detailed presentation of vibrations and waves.

Acoustics (Part II)

• The Physics of Sound(3rd ed.) by R.E. Berg and D.G. Stork (Benjamin Cummings, 2004).
A text on acoustics and music for non-scientists, written by authors from the University of Maryland.

Music (Chapter 15)

• Horns, Strings, and Harmonyby Arthur H. Benade (Dover, 1992).
A good survey of the physics of music and musical instruments.
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• Good Vibrations: The Physics of Musicby Barry Parker (Johns Hopkins, 2009).
A recent non-mathematical book on the physics of music.

• Musical Acoustics(3rd ed.) by Donald E. Hall (Brooks/Cole, 2002).
An undergraduate textbook on the physics of music.

Electricity and Magnetism (Part III)

• Fundamentals of Electric Wavesby Hugh Hildreth Skilling (Krieger, 1948).
A brief, very clear book on electric waves (but requires a background in the calculus).

• The Lightning Dischargeby Martin A. Uman (Dover, 2001).
A good book on the science of lightning by a well-known researcher.

• “A Bolt Out of the Blue” by Joseph R. Dwyer,Scientific American, May 2005.
A recent article on some of the latest developments in lightning research.

Electronics (Part III)

• Getting Started in Electronicsby Forrest M. Mims III (Master Publishing, 2000).
This is a very brief (128 pp.), informal, hand-written (!) book on analog and digital electronics, aimed
mainly at electronics hobbyists. Lots of good information on both theory and practical electronics, and
easy to read.

• Electronic Principles(6th ed.) by Albert P. Malvino (Glencoe McGraw-Hill, 1999).
A standard, well-regarded undergraduate text on electronics, at roughly the level of this course.

• The Art of Electronics(3rd ed.) by Paul Horowitz and Winfield Hill (Cambridge, 2015).
An advanced book on analog and digital electronics, covering basically anything you would ever want
to know about electronics. This book is widely regarded as a standard reference in the field. The book
has a Web site athttp://www.artofelectronics.com/.

• Lessons in Electric Circuitsis a free electronic book, available on the Internet at:
http://www.allaboutcircuits.com/textbook/. This book starts with the basics, yet
covers a lot of material. The entire book is in six volumes, and is over 2700 pages long.

• Bebop to the Boolean Boogie(3rd ed.) by Clive “Max” Maxfield (Newnes, 2009).
An informal, easy-to-read introductory book on digital electronics.

• Digital Fundamentals(10th ed.) by Thomas L. Floyd (Pearson Prentice Hall, 2009).
A standard undergraduate text on digital electronics, at roughly the level of this course.

Radio (Chapter 45)

• The Science of Radio: With MATLAB and Electronics Workbench Demonstrations(2nd ed.) by Paul J.
Nahin (Sprinter, 2001).

• The Electronics of Radioby David Rutledge (Cambridge, 1999).

• The ARRL Handbook for Radio Communicationsis published in a new edition each year by the Ameri-
can Radio Relay League, which is the association of radio amateurs in the United States: http://www.arrl.org.
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• The Xtal Set Society (http://www.midnightscience.com) is a society devoted to crystal ra-
dios. They have a number of kits and publications, and issue a newsletter.

Optics (Part IV)

• Optics(4th ed.) by Eugene Hecht (Addison-Wesley, 2001).
A standard undergraduate text on optics.

• Principles of Optics(7th ed.) by Max Born and Emil Wolf (Cambridge, 1999).
An advanced, graduate-level book on optics.

Color (Chapter 58)

• Light and Color in Nature and Artby Samuel J. Williamson and Herman Z. Cummins (Wiley, 1983).
An excellent book on color—quite readable, yet contains a lot of technical information.

• The Physics and Chemistry of Color(2nd ed.) by Kurt Nassau (Wiley, 2001).
A good undergraduate text on color, somewhat more advanced than the Williamson and Cummins text.

• Color Science: Concepts and Methods, Quantitative Data and Formulae(2nd ed.) by G. Wyszecki and
W.S. Stiles (Wiley, 2000).
A standard advanced text on color theory.

The Rainbow (Chapter 59)

• “The Theory of the Rainbow” by H. Moys´es Nussenzveig,Scientific American, April 1977, 116–127.

• “The Amateur Scientist: How to Create and Observe a Dozen Rainbows in a Single Drop of Water” by
Jearl Walker,Scientific American, July 1977.

• “Multiple rainbows from single drops of water and other liquids” by Jearl D. Walker,Am. J. Phys.,
May 1976, 421–433.

• The Rainbow: From Myth to Mathematicsby Carl B. Boyer (Princeton, 1987).

Modern Physics (Part V)

• The Road to Realityby Roger Penrose (Knopf, 2004).
A recent survey of modern physics by a famous physicist.

• QED: The Strange Theory of Light and Matterby Richard P. Feynman (Princeton, 1988).
A famous Nobel laureate explains the theory of quantum electrodynamics at a level accessible to the
general public.
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Just for Fun

• Physics of the Impossibleby Michio Kaku (Doubleday, 2008). A noted physicist discusses the possi-
bility of time travel, force fields, invisibility cloaks, transporters, etc.

• The Disappearing Spoonby Sam Kean (Little, Brown & Co., 2010). A very entertaining collection of
stories surrounding the periodic table of the elements.

• Mr. Tompkins in Paperbackby George Gamow (Cambridge, 1993). A famous Russian physicist wrote
these stories of a world in which the speed of light is just 30 mph so relativistic effects are visible, and
more stories of a world where Plancks constant is so large that quantum effects are visible. An updated
version has also been written,The New World of Mr. Tompkins(Cambridge, 2001).

• Dragon’s Eggby Robert L. Forward (Del Rey, 2000). Physicist Robert Forward wrote this novel about
humans who discover a civilization of creatures living on the surface of a neutron star.
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Appendix A

Greek Alphabet

Table A-1. The Greek alphabet.

Letter Name
A ˛ Alpha
B ˇ Beta
�  Gamma
� ı Delta
E " Epsilon
Z � Zeta
H � Eta
‚ � Theta
I � Iota

K 
 Kappa
ƒ � Lambda
M � Mu
N � Nu
„ � Xi
O o Omicron
… � Pi
P� Rho
† � Sigma
T 	 Tau
‡ � Upsilon
ˆ ' Phi
X � Chi
‰  Psi
� ! Omega

(Alternate forms:° D ˇ, � D ", # D � , ~ D 
,$ D � , % D �, & D � , � D '.)
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Appendix B

Trigonometry

Basic Formulæ

sin2 � C cos2 � � 1

sec2 � � 1C tan2 �

csc2 � � 1C cot2 �

Angle Addition Formulæ

sin.˛ ˙ ˇ/ � sin˛ cosˇ ˙ cos˛ sinˇ

cos.˛ ˙ ˇ/ � cos˛ cosˇ � sin˛ sinˇ

tan.˛ ˙ ˇ/ � tan˛ ˙ tanˇ

1� tan˛ tanˇ

Double-Angle Formulæ

sin2� � 2 sin� cos� � 2 tan�

1C tan2 �

cos2� � cos2 � � sin2 � � 1 � 2 sin2 � � 2 cos2 � � 1 � 1 � tan2 �

1C tan2 �

tan2� � 2 tan�

1 � tan2 �

Triple-Angle Formulæ

sin3� � 3 sin� � 4 sin3 �

cos3� � 4 cos3 � � 3 cos�

tan3� � 3 tan� � tan3 �

1 � 3 tan2 �

cot3� � cot3 � � 3 cot�

3 cot2 � � 1
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Quadruple-Angle Formulæ

sin4� � 4 cos3 � sin� � 4 cos� sin3 �

cos4� � cos4 � � 6 cos2 � sin2 � C sin4 �

tan4� � 4 tan� � 4 tan3 �

1 � 6 tan2 � C tan4 �

cot4� � cot4 � � 6 cot2 � C 1

4 cot3 � � 4 cot�

Half-Angle Formulæ

sin
�

2
� ˙

r
1 � cos�

2

cos
�

2
� ˙

r
1C cos�

2

tan
�

2
� sin�

1C cos�
� 1 � cos�

sin�

Products of Sines and Cosines

sin˛ cosˇ � 1

2
Œsin.˛ C ˇ/C sin.˛ � ˇ/�

cos˛ sinˇ � 1

2
Œsin.˛ C ˇ/� sin.˛ � ˇ/�

cos˛ cosˇ � 1

2
Œcos.˛ C ˇ/C cos.˛ � ˇ/�

sin˛ sinˇ � �1
2
Œcos.˛ C ˇ/� cos.˛ � ˇ/�

Sums and Differences of Sines and Cosines

sin˛ C sinˇ � 2 sin
˛ C ˇ

2
cos

˛ � ˇ

2

sin˛ � sinˇ � 2 cos
˛ C ˇ

2
sin

˛ � ˇ
2

cos˛ C cosˇ � 2 cos
˛ C ˇ

2
cos

˛ � ˇ
2

cos˛ � cosˇ � �2 sin
˛ C ˇ

2
sin

˛ � ˇ
2

267



Prince George’s Community College Introductory Physics II D.G. Simpson

Power Reduction Formulæ

sin2 � � 1
2
.1 � cos2�/

cos2 � � 1
2
.1 C cos2�/

tan2 � � 1 � cos2�

1C cos2�

Other Formulæ

tan� � cot� � 2 cot2�
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Credit: trigidentities.net, ©2005 Paul Dawkins.
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Exact values of trigonometric functions at3ı intervals. (Ref. [9])
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Appendix C

Useful Series

The first four series are valid ifjxj < 1; the fifth is valid forx 2 < a2; and the last three are valid for all real
x.

.1C x/1=2 D 1C 1

2
x � 1

8
x2 C 1

16
x3 � 5

128
x4 C 7

256
x5 � 21

1024
x6 C 33

2048
x7 � 429

32768
x8 C � � � (C.1)

.1 � x/1=2 D 1� 1

2
x � 1

8
x2 � 1

16
x3 � 5

128
x4 � 7

256
x5 � 21

1024
x6 � 33

2048
x7 � 429

32768
x8 � � � � (C.2)

.1C x/�1=2 D 1� 1

2
xC 3

8
x2 � 5

16
x3 C 35

128
x4 � 63

256
x5 C 231

1024
x6 � 429

2048
x7 C 6435

32768
x8 � � � � (C.3)

.1�x/�1=2 D 1C 1

2
xC 3

8
x2 C 5

16
x3 C 35

128
x4 C 63

256
x5 C 231

1024
x6 C 429

2048
x7 C 6435

32768
x8 C � � � (C.4)

1

aC x
D 1

a
� x

a2
C x2

a3
� x3

a4
C x4

a5
� x5

a6
C � � � (C.5)

ex D 1C x C x2

2
C x3

6
C x4

24
C x5

120
C x6

720
C x7

5040
C x8

40320
C x9

362880
C � � � (C.6)

sinx D x � x3

6
C x5

120
� x7

5040
C x9

362880
� x11

39916800
C x13

6227020800
� � � � (C.7)

cosx D 1 � x2

2
C x4

24
� x6

720
C x8

40320
� x10

3628800
C x12

479001600
� � � � (C.8)
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Appendix D

Table of Derivatives

d

dx
a D 0 (D.1)

d

dx
x D 1 (D.2)

d

dx
xn D nxn�1 (D.3)

d

dx

p
x D 1

2
p
x

(D.4)

d

dx
sinx D cosx (D.5)

d

dx
cosx D � sinx (D.6)

d

dx
tanx D sec2 x (D.7)

d

dx
secx D tanx secx (D.8)

d

dx
cscx D � cotx cscx (D.9)

d

dx
cotx D � csc2 x (D.10)

(D.11)

273



Prince George’s Community College Introductory Physics II D.G. Simpson

d

dx
ex D ex (D.12)

d

dx
ln x D 1

x
(D.13)

d

dx
ax D ax ln a (D.14)

d

dx
loga x D 1

x lna
(D.15)

d

dx
sin�1 x D 1p

1 � x2
(D.16)

d

dx
cos�1 x D �1p

1 � x2
(D.17)

d

dx
tan�1 x D 1

1C x2
(D.18)

d

dx
sec�1 x D 1

jxjpx2 � 1 (D.19)

d

dx
csc�1 x D �1

jxjpx2 � 1 (D.20)

d

dx
cot�1 x D �1

1C x2
(D.21)

d

dx
sinhx D coshx (D.22)

d

dx
coshx D sinhx (D.23)

d

dx
tanhx D sech2 x (D.24)
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Appendix E

Table of Integrals

In the following table, an arbitrary constantC should be added to each result.

Z
dx D x (E.1)

Z
a dx D ax (E.2)

Z
xn dx D xnC1

nC 1
.n ¤ �1/ (E.3)

Z p
x dx D 2

3

p
x3 (E.4)

Z
1

x
dx D ln jxj (E.5)

Z
sinx dx D � cosx (E.6)

Z
cosx dx D sinx (E.7)

Z
tanx dx D ln j secxj (E.8)

(E.9)
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Z
secx dx D ln j secx C tanxj (E.10)

Z
cscx dx D ln j cscx � cotxj (E.11)

Z
cotx dx D ln j sinxj (E.12)

Z
ex dx D ex (E.13)

Z
lnx dx D x lnx � x (E.14)

Z
ax dx D ax

lna
(E.15)

Z
loga x dx D x lnx � x

lna
(E.16)

Z
sinhx dx D coshx (E.17)

Z
coshx dx D sinhx (E.18)

Z
tanhx dx D ln coshx (E.19)
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Appendix F

Mathematical Subtleties

• When taking the square root of both sides of an equation, a˙ sign must always be introduced. For
example:

x2 D a ) x D ˙p
a

Both roots may be valid, or, depending on the problem, it may be that one root or the other may be
rejected on mathematical or physical grounds.

• Dividing an equation through by a variable may result in losing roots. For example, suppose we have

x2 � ax D 0

Dividing through by the variablex will result in one solution,x D a; the solutionx D 0 has been lost.
Instead of dividing through by the variablex, the proper procedure is tofactor outanx:

x.x � a/ D 0

Since the product on the left-hand side is zero, it follows that eitherx D 0 or x � a D 0, and we retain
both roots.

• The relation

p
x

p
y D p

xy (F.1)

is valid only forx; y 	 0.

• Some mathematical conventions:

? 1 isnotconsidered a prime number.

? 0Š D 1

? 00 D 1

? Towers of exponents are evaluated from the top down:abc D a.bc/
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• When taking an inverse trigonometric function, there will in general betwo correct values; your cal-
culator will give only one value, theprincipal value(P.V.). The other value is found using the table
below.

Function P.V. Other value
arcsin � � � �
arccos � ��
arctan � � C �

arcsec � ��
arccsc � � � �
arccot � � C �

For arctan.y=x/, add� to the calculator’s principal value answer ifx < 0.
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Appendix G

SI Units

Table G-1. SI base units.

Name Symbol Quantity

meter m length
kilogram kg mass
second s time
ampere A electric current
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table G-2. Derived SI units.

Name Symbol Definition Base Units Quantity

radian rad m / m — plane angle
steradian sr m2 / m2 — solid angle
newton N kg m s�2 kg m s�2 force
joule J N m kg m2 s�2 energy
watt W J / s kg m2 s�3 power
pascal Pa N / m2 kg m�1 s�2 pressure
hertz Hz s�1 s�1 frequency
coulomb C A s A s electric charge
volt V J / C kg m2 A�1 s�3 electric potential
ohm � V / A kg m2 A�2 s�3 electrical resistance
siemens S A / V kg�1 m�2 A2 s3 electrical conductance
farad F C / V kg�1 m�2 A2 s4 capacitance
weber Wb V s kg m2 A�1 s�2 magnetic flux
tesla T Wb / m2 kg A�1 s�2 magnetic induction
henry H Wb / A kg m2 A�2 s�2 induction
lumen lm cd sr cd sr luminous flux
lux lx lm / m2 cd sr m�2 illuminance
becquerel Bq s�1 s�1 radioactivity
gray Gy J / kg m2 s�2 absorbed dose
sievert Sv J / kg m2 s�2 dose equivalent
katal kat mol / s mol s�1 catalytic activity
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Table G-3. SI prefixes.

Prefix Symbol Definition English

yotta- Y 1024 septillion
zetta- Z 1021 sextillion
exa- E 1018 quintillion
peta- P 1015 quadrillion
tera- T 1012 trillion
giga- G 109 billion
mega- M 106 million
kilo- k 103 thousand
hecto- h 102 hundred
deka- da 101 ten
deci- d 10�1 tenth
centi- c 10�2 hundredth
milli- m 10�3 thousandth
micro- � 10�6 millionth
nano- n 10�9 billionth
pico- p 10�12 trillionth
femto- f 10�15 quadrillionth
atto- a 10�18 quintillionth
zepto- z 10�21 sextillionth
yocto- y 10�24 septillionth

Table G-4. Prefixes forcomputer use only.

Prefix Symbol Definition

yobi- Yi 280 D 1,208,925,819,614,629,174,706,176
zebi- Zi 270 D 1,180,591,620,717,411,303,424
exbi- Ei 260 D 1,152,921,504,606,846,976
pebi- Pi 250 D 1,125,899,906,842,624
tebi- Ti 240 D 1,099,511,627,776
gibi- Gi 230 D 1,073,741,824
mebi- Mi 220 D 1,048,576
kibi- Ki 210 D 1,024
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Gaussian Units

Table H-1. Gaussian base units.

Name Symbol Quantity

centimeter cm length
gram g mass
second s time
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table H-2. Derived Gaussian units.

Name Symbol Definition Base Units Quantity

radian rad m / m — plane angle
steradian sr m2 / m2 — solid angle
dyne dyn g cm s�2 g cm s�2 force
erg erg dyn cm g cm2 s�2 energy
statwatt statW erg / s g cm2 s�3 power
barye ba dyn / cm2 g cm�1 s�2 pressure
galileo Gal cm / s2 cm s�2 acceleration
poise P g / (cm s) g cm�1 s�1 dynamic viscosity
stokes St cm2 / s cm2 s�1 kinematic viscosity
hertz Hz s�1 s�1 frequency
statcoulomb statC g1=2 cm3=2 s�1 electric charge
franklin Fr statC g1=2 cm3=2 s�1 electric charge
statampere statA statC / s g1=2 cm3=2 s�2 electric current
statvolt statV erg / statC g1=2 cm1=2 s�1 electric potential
statohm stat� statV / statA s cm�1 electrical resistance
statfarad statF statC / statV cm capacitance
maxwell Mx statV cm g1=2 cm3=2 s�1 magnetic flux
gauss G Mx / cm2 g1=2 cm�1=2 s�1 magnetic induction
oersted Oe statA s / cm2 g1=2 cm�1=2 s�1 magnetic intensity
gilbert Gb statA g1=2 cm3=2 s�2 magnetomotive force
unit pole pole dyn / Oe g1=2 cm3=2 s�1 magnetic pole strength
stathenry statH erg / statA2 s2 cm�1 induction
lumen lm cd sr cd sr luminous flux
phot ph lm / cm2 cd sr cm�2 illuminance
stilb sb cd / cm2 cd cm�2 luminance
lambert Lb 1=� cd / cm2 cd cm�2 luminance
kayser K 1 / cm cm�1 wave number
becquerel Bq s�1 s�1 radioactivity
katal kat mol / s mol s�1 catalytic activity
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Units of Physical Quantities

Table I-1. Units of physical quantities.

Quantity SI Units Gaussian Units
Absorbed dose Gy erg g�1

Acceleration m s�2 cm s�2

Amount of substance mol mol
Angle (plane) rad rad
Angle (solid) sr sr
Angular acceleration rad s�2 rad s�2

Angular momentum N m s dyn cm s
Angular velocity rad s�1 rad s�1

Area m2 cm2

Bulk modulus Pa ba
Catalytic activity kat kat
Coercivity A m�1 Oe
Crackle m s�5 cm s�5

Density kg m�3 g cm�3

Distance m cm
Dose equivalent Sv erg g�1

Elastic modulus N m�2 dyn cm�2

Electric capacitance F statF
Electric charge C statC
Electric conductance S stat��1

Electric conductivity S m�1 stat��1 cm�1

Electric current A statA
Electric dipole moment C m statC cm
Electric displacement (D) C m�2 statC cm�2

Electric elastance F�1 statF�1

Electric field (E) V m�1 statV cm�1

Electric flux V m statV cm
Electric permittivity F m�1 —
Electric polarization (P ) C m�2 statC cm�2

Electric potential V statV
Electric resistance � stat�
Electric resistivity � m stat� cm
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Table I-1 (cont’d). Units of physical quantities.

Quantity SI Units Gaussian Units
Energy J erg
Enthalpy J erg
Entropy J K�1 erg K�1

Force N dyn
Frequency Hz Hz
Heat J erg
Heat capacity J K�1 erg K�1

Illuminance lx ph
Impulse N s dyn s
Inductance H statH
Jerk m s�3 cm s�3

Jounce m s�4 cm s�4

Latent heat J kg�1 erg g�1

Length m cm
Luminance cd m�2 sb
Luminous flux lm lm
Luminous intensity cd cd
Magnetic flux Wb Mx
Magnetic induction (B) T G
Magnetic intensity (H ) A m�1 Oe
Magnetic dipole moment (B convention) A m2 pole cm
Magnetic dipole moment (H convention) Wb m pole cm
Magnetic permeability H m�1 —
Magnetic permeance H s
Magnetic pole strength (B convention) A m unit pole
Magnetic pole strength (H convention) Wb unit pole
Magnetic potential (scalar) A Oe cm
Magnetic potential (vector) T m G cm
Magnetic reluctance H�1 s�1

Magnetization (M ) A m�1 Mx cm�2

Magnetomotive force A Gb
Mass kg g
Memristance � stat�
Molality mol kg�1 mol g�1

Molarity mol m�3 mol cm�3

Moment of inertia kg m2 g cm2

Momentum N s dyn s
Pop m s�6 cm s�6

Power W statW
Pressure Pa ba
Radioactivity Bq Bq
Remanence T G
Retentivity T G
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Table I-1 (cont’d). Units of physical quantities.

Quantity SI Units Gaussian Units
Shear modulus N m�2 dyn cm�2

Snap m s�4 cm s�4

Specific heat J K�1 kg�1 erg K�1 g�1

Strain — —
Stress N m�2 dyn cm�2

Temperature K K
Tension N dyn
Time s s
Torque N m dyn cm
Velocity m s�1 cm s�1

Viscosity (dynamic) Pa s P
Viscosity (kinematic) m2 s�1 St
Volume m3 cm3

Wave number m�1 kayser
Weight N dyn
Work J erg
Young’s modulus N m�2 dyn cm�2
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Physical Constants

Table J-1. Fundamental physical constants (CODATA 2018).
Description Symbol Value

Speed of light (vacuum) c 2:99792458� 108 m/s
Gravitational constant G 6:67430� 10�11 m3 kg�1 s�2

Elementary charge e 1:602176634� 10�19 C
Permittivity of free space "0 8:8541878128� 10�12 F/m
Permeability of free space �0 1:2566370621210�6 N/A2

Coulomb constant (1=.4�"0/) kc 8:9875517923� 109 m/F
Electron mass me 9:1093837015� 10�31 kg
Proton mass mp 1:67262192369� 10�27 kg
Neutron mass mn 1:67492749804� 10�27 kg
Atomic mass unit (amu) u 1:66053906660� 10�27 kg
Planck constant h 6:62607015� 10�34 J s
Planck constant�2� „ 1:0545718176461564� 10�34 J s
Boltzmann constant kB 1:380649� 10�23 J/K
Avogadro constant NA 6:02214076� 1023 mol�1

Table J-2. Other physical constants.

Description Symbol Value

Acceleration due to gravity at Earth surface g 9.80 m/s2

Speed of sound in air (20ıC) vsnd 343 m/s
Density of air (sea level) �air 1.29 kg/m3

Density of water �w 1 g/cm3 D 1000 kg/m3

Index of refraction of water nw 1.33
Resistivity of copper (20ıC) �Cu 1:68 � 10�8 �m
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Astronomical Data

Table K-1. Astronomical constants.

Description Symbol Value

Astronomical unit AU 1:49597870� 1011 m
Obliquity of ecliptic (J2000) " 23 ı:4392911
Solar mass Mˇ 1:9891� 1030 kg
Solar radius Rˇ 696;000 km

Table K-2. Planetary Data.

Planet Mass (Yg) Eq. radius (km) Orbit semi-major axis (Gm)

Mercury 330:2 2439:7 57:91

Venus 4868:5 6051:8 108:21

Earth 5973:6 6378:1 149:60

Mars 641:85 3396:2 227:92

Jupiter 1;898;600 71;492 778:57

Saturn 568;460 60;268 1433:53

Uranus 86;832 25;559 2872:46

Neptune 102;430 24;764 4495:06

Pluto 12:5 1195 5906:38
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Unit Conversion Tables

Time

1 dayD 24 hoursD 1440 minutesD 86400 seconds
1 hourD 60 minutesD 3600 seconds
1 yearD 31 557 600 seconds� � � 107 seconds

Length

1 mileD 8 furlongsD 80 chainsD 320 rodsD 1760 yardsD 5280 feetD 1.609344 km
1 yardD 3 feetD 36 inchesD 0.9144 meter
1 footD 12 inchesD 0.3048 meter
1 inchD 2.54 cm
1 nautical mileD 1852 metersD 1.15077944802354 miles
1 fathomD 6 feet
1 parsecD 3.26156376188 light-yearsD 206264.806245 AUD 3:08567756703� 10 16 meters
1 ångströmD 0.1 nmD 105 fermi D 10�10 meter

Mass

1 kilogramD 2.20462262184878 lb
1 poundD 16 ozD 0.45359237 kg
1 slugD 32.1740485564304 lbD 14.5939029372064 kg
1 short tonD 2000 lb
1 long tonD 2240 lb
1 metric tonD 1000 kg

Velocity

15 mphD 22 fps
1 mphD 0.44704 m/s
1 knotD 1.15077944802354 mphD 0.514444444444444 m/s
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Area

1 acreD 43560 ft2 D 4840 yd2 D 4046.8564224 m2

1 mile2 D 640 acresD 2.589988110336 km2

1 areD 100 m2

1 hectareD 104 m2 D 2.47105381467165 acres

Volume

1 liter D 1 dm3 D 10�3 m3 � 1 quart
1 m3 D 1000 liters
1 cm3 D 1 mL
1 ft3 D 1728 in3 D 7.48051948051948 galD 28.316846592 liters
1 gallonD 231 in3 D 4 quartsD 8 pintsD 16 cupsD 3.785411784 liters
1 cupD 8 flozD 16 tablespoonsD 48 teaspoons
1 tablespoonD 3 teaspoonsD 4 fluidrams
1 dry gallonD 268.8025 in3 D 4.40488377086 liters
1 imperial gallonD 4.54609 liters
1 bushelD 4 pecksD 8 dry gallons

Density

1 g/cm3 D 1000 kg/m3 D 8.34540445201933 lb/galD 1.043175556502416 lb/pint

Force

1 lbf D 4.44822161526050 newtonsD 32.1740485564304 poundals
1 newtonD 105 dynes

Energy

1 calorieD 4.1868 joules
1 BTU D 1055.05585262 joules
1 ft-lb D 1.35581794833140 joules
1 kW-hrD 3.6 MJ
1 eV D 1:6021766208� 10�19 joules
1 jouleD 107 ergs

Power

1 horsepowerD 745.69987158227022 watts
1 statwattD 1 abwattD 1 erg/sD 10�7 watt

Angle

radD deg� �
180

degD rad� 180
�

1 degD 60 arcminD 3600 arcsec
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Temperature
ıC D (ıF�32/� 5

9
ıF D �ı

C� 9
5

	 C 32

K D ıC C 273:15
ıR D ıF C 459:67

Pressure

1 atmD 101325 PaD 1.01325 barD 1013.25 millibarD 760 torr
D 760 mmHgD 29.9212598425197 inHgD 14.6959487755134 psi
D 2116.21662367394 lb/ft2 D 1.05810831183697 ton/ft2

D 1013250 dyne/cm2 D 1013250 barye

Electromagnetism

1 statcoulombD 3:335640951981520� 10�10 coulomb
1 abcoulombD 10 coulombs
1 statvoltD 299:792458 volts
1 abvoltD 10�8 volt
1 maxwellD 10�8 weber
1 gaussD 10�4 tesla
1 oerstedD 250=� .D 79:5774715459477/A/m
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Figure L.1: Conversion chart for kitchen measurements. (Credit: S.B. Lattin Design.)
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Appendix M

Angular Measure

M.1 Plane Angle

The most common unit of measure for plane angle is thedegree( ı ), which is 1/360 of a full circle. Therefore
a circle is360ı, a semicircle is180ı, and a right angle is90ı.

A similar unit (seldom used nowadays) is a sort of “metric” angle called thegrad, defined so that a right
angle is 100 grads, and so a full circle is 400 grads.

The SI unit of plane angle is theradian (rad), which is defined to be the angle that subtends an arc length
equal to the radius of the circle. By this definition, a full circle subtends an angle equal to the arc length of a
full circle (2�r ) divided by its radiusr — and so a full circle is2� radians.

Since a hemisphere is180ı or� radians, the conversion factors are:

radD �

180
� deg (M.1)

degD 180

�
� rad (M.2)

Subunits of the Degree

For small angles, a degree may be subdivided into 60minutes( 0 ), and a minute into 60seconds( 00 ). Thus a
minute is 1/60 degree, and a second is 1/3600 degree.1 Angles smaller than 1 second are sometimes expressed
asmilli-arcseconds(1/1000 arcsecond).2

M.2 Solid Angle

A solid angleis the three-dimensional version of a plane angle, and is subtended by the vertex of a cone. The
SI unit of solid angle is thesteradian(sr), which is defined to be the solid angle that subtends an area equal
to the square of the radius of a circle. By this definition, a full sphere subtends an area equal to the area of a
sphere (4�r2) divided by the square of its radius (r 2) — so a full sphere is4� steradians, and a hemisphere
is 2� steradians.

1Sometimes these units are called theminute of arcor arcminute, and thesecond of arcor arcsecondto distinguish them from the
units of time that have the same name.

2In an old system (Ref. [14]), the second was further subdivided into 60thirds ( 000 ), the third into 60fourths( 0000 ), etc. Under this
system, 1 milli-arcsecond is 3.6 fourths of arc. This system is no longer used, though; today the second of arc is simply subdivided into
decimals (e.g.32:8647300 ).
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Ω

θ

Figure M.1: Relation between plane angle� and solid angle� for a right circular cone.

There is a simple relation between plane angle and solid angle for a right circular cone. If the vertex of
the cone subtends an angle� (theaperture angleof the cone), then the corresponding solid angle� is (Fig.
M.1)

� D 2�

�
1 � cos

�

2

�
: (M.3)

Another unit of solid angle is thesquare degree(deg2):

sq: deg: D sr�
�
180

�

�2

: (M.4)

In these units, a hemisphere is 20,626.48 deg2, and a complete sphere is 41,252.96 deg2.
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Appendix N

Vector Arithmetic

A vectorA may be written in cartesian (rectangular) form as

A D Ax i C Ay j C A´k; (N.1)

wherei is aunit vector(a vector of magnitude 1) in thex direction,j is a unit vector in they direction, and
k is a unit vector in thé direction.Ax , Ay , andA´ are called thex, y, and´ components(respectively) of
vectorA, and are the projections of the vector onto those axes.

Themagnitude(“length”) of vectorA is

jAj D A D
q
A2

x C A2
y C A2

´: (N.2)

For example, ifA D 3i C 5j C 2k, thenjAj D A D p
32 C 52 C 22 D p

38.
In two dimensions, a vector has nok component:A D Ax i C Ay j .

Addition and Subtraction

To add two vectors, you add their components. Writing a second vector asB D Bx i C By j C B´k, we have

A C B D .Ax C Bx/ i C .Ay C By/ j C .A´ C B´/ k: (N.3)

For example, ifA D 3i C 5j C 2k andB D 2i � j C 4k, thenA C B D 5i C 4j C 6k.
Subtraction of vectors is defined similarly:

A � B D .Ax � Bx/ i C .Ay � By / j C .A´ � B´/ k: (N.4)

For example, ifA D 3i C 5j C 2k andB D 2i � j C 4k, thenA � B D i C 6j � 2k.

Scalar Multiplication

To multiply a vector by a scalar, just multiply each component by the scalar. Thus ifc is a scalar, then

cA D cAx i C cAy j C cA´k: (N.5)

For example, ifA D 3i C 5j C 2k, then7A D 21i C 35j C 14k.
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Dot Product

It is possible to multiply a vector by another vector, but there is more than one kind of multiplication between
vectors. One type of vector multiplication is called thedot product, in which a vector is multiplied by another
vector to give ascalarresult. The dot product (written with a dot operator, as inA � B) is

A � B D AB cos� D AxBx C AyBy C A´B´; (N.6)

where� is the angle between vectorsA andB. For example, ifA D 3i C 5j C 2k andB D 2i � j C 4k, then
A � B D 6 � 5C 8 D 9.

The dot product can be used to find the angle between two vectors. To do this, we solve Eq. (N.6) for�

and find cos� D A � B=.AB/. Applying this to the previous example, we getA D p
38 andB D p

21, so
cos� D 9=.

p
38

p
21/, and thus� D 71:4ı.

An immediate consequence of Eq. (N.6) is that two vectors are perpendicular if and only if their dot
product is zero.

Cross Product

Another kind of multiplication between vectors, called thecross product, involves multiplying one vector by
another and giving anothervectoras a result. The cross product is written with a cross operator, as inA � B.
It is defined by

A � B D .AB sin�/ u (N.7)

D
ˇ̌̌
ˇ̌̌ i j k
Ax Ay A´

Bx By B´

ˇ̌̌
ˇ̌̌ (N.8)

D .AyB´ �A´By/ i � .AxB´ �A´Bx/ j C .AxBy �AyBx/ k; (N.9)

where again� is the angle between the vectors, andu is a unit vector pointing in a direction perpendicular
to the plane containingA and B, in a right-hand sense: if you curl the fingers of your right hand from
A into B, then the thumb of your right hand points in the direction ofA � B (Fig. N.1). As an example, if
A D 3i C5j C2k andB D 2i � j C4k, thenA � B D .20�.�2//i �.12�4/j C.�3�10/k D 22i �8j �13k.

Rectangular and Polar Forms

A two-dimensional vector may be written in eitherrectangular formA D A x i C Ay j described earlier, or in
polar formA D A†� , whereA is the vector magnitude, and� is the direction measured counterclockwise
from theCx axis. To convert from polar form to rectangular form, one finds

Ax D A cos� (N.10)

Ay D A sin� (N.11)

Inverting these equations gives the expressions for converting from rectangular form to polar form:

A D
q
A2

x C A2
y (N.12)

tan� D Ay

Ax

(N.13)
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Figure N.1: The vector cross productA � B is perpendicular to the plane ofA andB, and in the right-hand
sense. (Credit: “Connected Curriculum Project”, Duke University.)

297



Appendix O

Matrix Properties

This appendix presents a brief summary of the properties of2 � 2 and3 � 3 matrices.

2�2 Matrices

Determinant

The determinant of a2 � 2 matrix is given by the well-known formula:

det

�
a b

c d

�
D ad � bc: (O.1)

Matrix of Cofactors

The matrix of cofactors is the matrix of signed minors; for a2 � 2 matrix, this is

cof

�
a b

c d

�
D

�
d �c

�b a

�
(O.2)

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
2 � 2 matrix,�

a b

c d

��1

D 1

ad � bc
�

d �b
�c a

�
(O.3)
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3�3 Matrices

Determinant

The determinant of a3 � 3 matrix is given by:

det

0
@ a b c

d e f

g h i

1
A D a.ei � f h/� b.d i � fg/ C c.dh � eg/: (O.4)

Matrix of Cofactors

The matrix of cofactors is the matrix of signed minors; for a3 � 3 matrix, this is

cof

0
@ a b c

d e f

g h i

1
A D

0
@ ei � f h fg � di dh � eg
ch� bi ai � cg bg � ah
bf � ce cd � af ae � bd

1
A (O.5)

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
3 � 3 matrix,

0
@ a b c

d e f

g h i

1
A

�1

D 1

a.ei � f h/� b.d i � fg/ C c.dh � eg/

0
@ ei � f h ch� bi bf � ce
fg � di ai � cg cd � af
dh� eg bg � ah ae � bd

1
A

(O.6)
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Appendix P

Moments of Inertia

The table below shows the moments of inertia of several common uniform bodies. A very helpful theorem
to be used in conjunction with this table is theparallel axis theorem, which relates the moment of inertiaI cm

about an axisA passing through the center of mass to the moment of inertiaI about another axis parallel to
A. If the two rotation axes are separated by a distanceh,then

I D Icm CMh2 (P.1)

whereM is the mass of the body.
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Figure P.1: Table of moments of inertia of uniform bodies. (Credit: University of Pennsylvania.)
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Appendix Q

The Simple Plane Pendulum: Exact
Solution

The solution to the simple plane pendulum problem described in Chapter 8 is only approximate; here we
will examine theexactsolution, which is surprisingly complicated. We will begin by deriving the differential
equation of the motion, then find expressions for the angle� from the vertical and the periodT at any time
t . We won’t go through the derivations here—we’ll just look at the results. Here we’ll assume the amplitude
of the motion�0 < � , so that the pendulum doesnot spin in complete circles around the pivot, but simply
oscillates back and forth.

The mathematics involved in the exact solution to the pendulum problem is somewhat advanced, but is
included here so that you can see that even a very simple physical system can lead to some complicated
mathematics.

Q.1 Equation of Motion

To derive the differential equation of motion for the pendulum, we begin with Newton’s second law in rota-
tional form:

	 D I˛ D I
d 2�

dt2
; (Q.1)

where	 is the torque,I is the moment of inertia,̨ is the angular acceleration, and� is the angle from the
vertical. In the case of the pendulum, the torque is given by

	 D �mgL sin�; (Q.2)

and the moment of inertia is

I D mL2: (Q.3)

Substituting these expressions for	 andI into Eq. (Q.1), we get the second-order differential equation

�mgL sin� D mL2 d
2�

dt2
; (Q.4)

which simplifies to give the differential equation of motion,

d 2�

dt2
D �g

L
sin�: (Q.5)
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Q.2 Solution,�.t/

If the amplitude�0 is small, we can approximate sin� � � , and find the position�.t/ at any timet is given
by Eq. (8.3) in Chapter 8. But when the amplitude is not necessarily small, the angle� from the vertical at
any timet is found (by solving Eq. (Q.5)) to be a more complicated function:

�.t/ D 2 sin�1



k sn

�r
g

L
.t � t0/I k

��
; (Q.6)

where sn.xI k/ is aJacobian elliptic functionwith modulusk D sin.� 0=2/. The timet0 is a time at which
the pendulum is vertical (� D 0) and moving in theC� direction.

The Jacobian elliptic function is one of a number of so-called “special functions” that often appear in
mathematical physics. In this case, the function sn.xI k/ is defined as a kind of inverse of an integral. Given
the function

u.yI k/ D
Z y

0

dtp
.1 � t2/.1 � k2t2/

; (Q.7)

the Jacobian elliptic function is defined as:

sn.uI k/ D y: (Q.8)

Values of sn.xI k/ may be found in tables of functions or computed by specialized mathematical software
libraries.

Q.3 Period

As found in Chapter 8, the approximate period of a pendulum for small amplitudes is given by

T0 D 2�

s
L

g
: (Q.9)

This equation is really only anapproximateexpression for the period of a simple plane pendulum; the smaller
the amplitude of the motion, the better the approximation. Anexactexpression for the period is given by

T D 4

s
L

g

Z 1

0

dtp
.1 � t2/.1 � k2t2/

; (Q.10)

which is a type of integral known as acomplete elliptic integral of the first kind.
The integral in Eq. (Q.10) cannot be evaluated in closed form, but itcan be expanded into an infinite

series. The result is

T D 2�

s
L

g

(
1C

1X
nD1

�
.2n� 1/ŠŠ
.2n/ŠŠ

�2

sin2n

�
�0

2

�)
(Q.11)

D 2�

s
L

g

(
1C

1X
nD1

�
.2n/Š

22n.nŠ/2

�2

sin2n

�
�0

2

�)
: (Q.12)
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We can explicitly write out the first few terms of this series; the result is

T D 2�

s
L

g

�
1C 1

4
sin2

�
�0

2

�
C 9

64
sin4

�
�0

2

�
C 25

256
sin6

�
�0

2

�

C 1225

16384
sin8

�
�0

2

�
C 3969

65536
sin10

�
�0

2

�
C 53361

1048576
sin12

�
�0

2

�
C 184041

4194304
sin14

�
�0

2

�

C 41409225

1073741824
sin16

�
�0

2

�
C 147744025

4294967296
sin18

�
�0

2

�
C 2133423721

68719476736
sin20

�
�0

2

�
C � � �

�
:

(Q.13)

If we wish, we can write out a series expansion for the period in another form—one which does not
involve the sine function, but only involves powers of the amplitude� 0. To do this, we expand sin.�0=2/ into
a Taylor series:

sin
�0

2
D

1X
nD1

.�1/nC1�2n�1
0

22n�1.2n � 1/Š (Q.14)

D �0

2
� �3

0

48
C �5

0

3840
� �7

0

645120
C �9

0

185794560
� �11

0

81749606400
C � � � (Q.15)

Now substitute this series into the series of Eq. (Q.11) and collect terms. The result is

T D 2�

s
L

g

�
1C 1

16
�2

0 C 11

3072
�4

0 C 173

737280
�6

0 C 22931

1321205760
�8

0 C 1319183

951268147200
�10

0

C 233526463

2009078326886400
�12

0 C 2673857519

265928913086054400
�14

0

C 39959591850371

44931349155019751424000
�16

0 C 8797116290975003

109991942731488351485952000
�18

0

C 4872532317019728133

668751011807449177034588160000
�20

0 C � � �
�
:

(Q.16)

An entirely different formula for the exact period of a simple plane pendulum has appeared in a recent
paper (Adlaj, 2012). According to Adlaj, the exact period of a pendulum may be calculated more efficiently
using thearithmetic-geometric mean, by means of the formula

T D 2�

s
L

g
� 1

agm.1; cos.�0=2//
(Q.17)

where agm.x; y/ denotes the arithmetic-geometric mean ofx andy, which is found by computing the arith-
metic and geometric means ofx andy, then the arithmetic and geometric mean of those two means, then
iterating this process over and over again until the two means converge:

anC1 D an C gn

2
(Q.18)

gnC1 D p
angn (Q.19)

Herean denotes an arithmetic mean, andgn a geometric mean.
Shown in Fig. Q.1 is a plot of the ratio of the pendulum’s true periodT to its small-angle periodT 0

(T=.2�
p
L=g/) vs. amplitude�0 for values of the amplitude between 0 and180ı, using Eq. (Q.17). As

you can see, the ratio is1 for small amplitudes (as expected), and increasingly deviates from1 for large
amplitudes. The true period will always be longer than the small-angle periodT 0.
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Figure Q.1: Ratio of a pendulum’s true periodT to its small-angle periodT 0 D 2�
p
L=g, as a function of

amplitude�0. For small amplitudes, this ratio is near 1; for larger amplitudes, the true period is longer than
predicted by the small-angle approximation.
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Appendix R

CIE Chromaticity Coordinates

In this appendix, we’ll look at some of the details of the CIE chromaticity diagram (Fig. 58.4) and how
coordinates on the diagram are computed. The mathematics involves the integral calculus, so is outside the
usual scope of this course.

Suppose we have a colored object, and we wish to find its coordinates.x; y/ on the CIE chromaticity
diagram. We begin by measuring thespectral power distributionI.�/ of the object: this is the fractionI of
light reflected from the object at each wavelength (�), under some standard illumination conditions. We also
need a set of “weighting” functions called theCIE color matching functions.x; y; ´/; these are defined as
shown in Figure R.1. Then thetristimulus values.X; Y; Z/ are given by

X D
Z 1

0

I.�/ x.�/ d� (R.1)

Y D
Z 1

0

I.�/ y.�/ d� (R.2)

Z D
Z 1

0

I.�/ ´.�/ d� (R.3)

Roughly speaking,X measures the “redness” of the object,Y its “brightness” (orluminance), andZ
its “blueness.” Normalizing these tristimulus values gives us the coordinates.x; y; ´/ on the chromaticity
diagram:

x D X

X C Y CZ
(R.4)

y D Y

X C Y CZ
(R.5)

´ D Z

X C Y CZ
D 1 � x � y (R.6)

(R.7)

Because of the normalization condition, knowingx andy automatically giveś D 1� x � y; therefore only
x andy are needed as the chromaticity coordinates.
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Figure R.1: CIE color matching functionsx.�/, y.�/, and´.�/.
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Appendix S

Calculator Programs

On the class Web site you will find several physics-related programs for a variety of electronic calculator
models. The programs are available at:

http://www.pgccphy.net/1020/software.html

Contents

1. Projectile Problem

2. Kepler’s Equation

3. Hyperbolic Kepler’s Equation

4. Barker’s Equation

5. Reduction of an Angle

6. Helmert’s Equation

7. Pendulum Period

8. 1D Perfectly Elastic Collisions
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Appendix T

Right-Hand Rules

• Vector cross product.Curl the fingers of your right hand from one vectorA to a second vectorB; then
your right thumb points in the direction of the cross productA � B.

• Magnetic field in a long wire. Point the thumb of your right hand in the direction of the current; then
the fingers of your right hand curl in the direction of the magnetic field.

• Magnetic field in a solenoid.Curl the fingers of your right hand in the direction of the current; then
the thumb of your right hand points in the direction of the magnetic field inside the solenoid.

• Magnetic moment of a coil.Curl the fingers of your right hand in the direction of the current flowing
around the coil; then the thumb of your right hand points in the direction of the magnetic moment.

• Gyro motion of a negative charge in a magnetic field.Point the thumb of your right hand in the
direction of the magnetic field; then the fingers of your right hand curl in the direction of gyro motion
of a negativecharge.
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Appendix U

The Earth’s Magnetosphere

The following pages on the Earth’s magnetosphere were written by Dr. Sten Odenwald as part of the public
education for NASA’s IMAGE mission. IMAGE (Imager for Magnetopause-to-Aurora Global Exploration)
was an Earth-orbiting spacecraft designed to produced images of various parts of the Earth’s magnetosphere.
The figures labeled 5-2, 5-3, and 5-4 were taken by the IMAGE spacecraft.

Source:http://solarb.msfc.nasa.gov/for_educators/learn/textbooks.html
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9.0  Earth's Magnetism  
    An ordinary compass works because the Earth is itself a giant 
magnet with a north and a south pole. Navigators have known 
about the pole-seeking ability of magnetized compass needles and 
lodestone for thousands of years. During the last two centuries, 
much more has been learned about the geomagnetic field and how 
it shapes the environment of the Earth in space. 
  The geomagnetic field is believed to be generated by a magnetic
dynamo process near the core of the Earth through the action of 
currents in its outer liquid region. Geologic evidence shows that it 
reverses its polarity every 250,000 to 500,000 years. In fact, the 
geomagnetic field is decreasing in strength by 5% per century, 
suggesting that in a few thousand years it may temporarily vanish 
as the next field reversal begins. Although the geomagnetic field 
deflects high-energy cosmic rays, past magnetic reversals have 
not caused obvious biological impacts traceable in the fossil 
record. Earth’s atmosphere, by itself, is very effective in shielding 
the surface from cosmic rays able to do biological damage. The 
location of the magnetic poles at the surface also wanders over 
time at about 10 kilometers per year. Mapmakers periodically 
update their maps to accommodate this drift.
  The domain of space controlled by Earth’s magnetic field is 
called the magnetosphere. The geomagnetic field resembles the 
field of a bar magnet; however, there are important differences 
due to its interaction with the solar wind: an interplanetary flow 
of plasma from the Sun. The magnetosphere is shaped like a 
comet with Earth at its head. The field on the day side is 
compressed inwards by the pressure of the solar wind. A boundary 
called the magnetopause forms about 60,000 kilometers from 
Earth as the solar wind and geomagnetic field reach an 
approximate pressure balance. The field on the nightside of Earth 
is stretched into a long geomagnetic tail extending millions of 
kilometers from Earth. Above the polar regions, magnetic field 
lines from Earth can connect with  field lines from the solar wind 
forming a magnetospheric cusp where plasma and energy from 
the solar wind may enter. Ionized gases from Earth’s upper 
atmosphere can escape into the magnetosphere through the cusp 
in gas outflows called polar fountains. The magnetosphere is a 
complex system of circulating currents and changing magnetic 

often affected by distant events on the Sun called “space weather.”  
The conveyor belt for the worst of these influences is the ever-
changing solar wind itself. Space weather “storms” can trigger 
changes in the magnetospheric environment,  cause spectacular 
aurora in the polar regions, and lead to satellite damage and even 
electrical power outages.

9.1 Trapped Particles and Other Plasmas

  Within the magnetosphere there are several distinct populations 
of neutral particles and plasmas. The Van Allen Radiation Belts 
were discovered in 1958 during the early days of the Space Age. 
The inner belts extend from an altitude of 700 up to 15,000 km 
and contain very high-energy protons trapped in the geomagnetic 
field. The outer belt extends 15,000 to 30,000 km and mostly 
consists of high-energy electrons. Geosynchronous satellites orbit 
Earth just outside the outer belt. Human space activity is confined 
to the zone within the inner edge of the inner belt. Space-suited 
astronauts exposed to the energetic particles in the Van Allen Belts 
would receive potentially lethal doses of radiation. The particles 
that make up the Van Allen Belts bounce along the north- and 
south-directed magnetic field lines to which they are trapped like 
water flowing in a pipe. At the same time, there is a slow drift of 
these particles to the west if they are positively charged, or east if 
they are negatively charged. There are also three additional 
systems of particles that share much the same space as the Van 
Allen Belts, but have much lower energies: the geocorona, the 
plasmasphere, and the ring current. 
  Extending thousands of kilometers above Earth is the 
continuation of its tenuous outer atmosphere called the geocorona. 
It is a comparatively cold, uncharged gas of hydrogen and helium 
atoms whose particles carry little energy. In the geocoronal region, 
there is a low-energy population of charged particles called the 
plasmasphere, which is a high-altitude extension of the 
ionosphere. Unlike the geocorona, the plasmasphere is a complex, 
ever-changing system controlled by electrical currents within the 
magnetosphere. These changes can cause this region to fill up with 
particles and empty over the course of hours or days.    

Figure 5-1 Earth’s Magnetic Field.
The geomagnetic field resembles the field of an 
ordinary bar magnet. The north magnetic pole of Earth 
is located near the south geographic pole, while the 
south magnetic pole of Earth is located near the north 
geographic pole. The figure also shows the major 
regions of Earth’s magnetosphere. The filled region 
shown in red is called the plasmasphere. The dotted 
region contains the Van Allen Radiation Belts and the 
ring current. The region shown in green just outside of 
the ring current zone contains the plasmasheath. 

Solar
Wind Geomagnetic Tail

Magnetopause

Polar Cusp
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11:11:01 11:17:09 11:23:16

11:29:24 11:35:32 11:41:40

11:47:48 11:53:56 12:00:03

  During severe storms, compasses display incorrect bearings as 
the surface geomagnetic field changes its direction. In the 
equatorial regions, an actual decrease in the strength of the 
geomagnetic field can often be measured. This is generally 
attributed to the existence of a temporary river of charged 
particles flowing between 30,000 and 60,000 kilometers above 
ground: the ring current. These particles have energies between 
those within the plasmasphere and those in the Van Allen Belts. 
They appear to originate within the geomagetic tail as charged 
particles that are injected deep into the magnetosphere. Most of 
the time there are few particles in the ring current, but during 
severe storms, it fills up with a current of millions of amperes, 
which spreads into an invisible ring encircling Earth. Just as a 
flow of current through a wire creates its own magnetic field, the 
ring current generates a local magnetic field that can reduce some 
of Earth’s surface field by up to 2% over the equatorial regions. 
   In addition to these families of particles, there are also powerful 
currents of particles that appear during especially stormy 
conditions and lead to visually dramatic phenomena called the 
aurora borealis and the aurora australis: the northern and 
southern lights.

9.2  The Aurora

  For thousands of years humans have been able to look up at the 
northern sky and see strange, colorful glows of light.  By the 
early 1900’s, spectroscopic studies had shown that auroral light 
was actually caused by excited oxygen and nitrogen atoms 
emitting light at only a few specific wavelengths. The source of 
the excitation was eventually traced to currents of electrons and 
protons flowing down the geomagnetic field lines into the polar 
regions where they collide with the atmospheric atoms. However, 
aurora are not produced directly by solar flares. Radio 
communications blackouts on the day side of Earth are triggered    

by solar flares as these high-energy particles disturb the 
ionosphere. When directed toward Earth, expulsions of matter by 
the Sun called coronal mass ejections contribute to the 
conditions that cause some of the strongest aurora to light up the 
skies. At other times, a simple change in magnetic polarity of the 
solar wind from north-directed to south-directed seems to be  
enough to trigger aurora without any obvious solar disturbance.
  Because of the existence of the magnetospheric cusp on the day 
side of Earth, solar wind particles can, under some conditions, 
flow down this entryway into the polar regions. This causes 
daytime aurora, and the diffuse red glows of night time aurora. 
This is, virtually, the only instance where solar wind particles can 
directly cause aurora. It is not, however, the cause of the 
spectacular nightime polar aurora that are so commonly 
photographed. To understand how these aurora are produced, it is 
helpful to imagine yourself living inside a television picture tube. 
We don’t see the currents of electrons guided by magnetic forces, 
but we do see them paint serpentine pictures on the atmosphere, 
which we then see as the aurora. The origin of these currents is in 
the distant geomagnetic tail region, not in the direct inflow of 
solar wind plasma. 
  When the polarity of the solar wind’s magnetic field turns 
southward, its lines of force encounter the north-directed lines in 
Earth’s equatorial regions on the dayside. The solar wind field 
lines then connect with Earth’s field in a complex event that 
transfers particles and energy into Earth’s magnetosphere. While 
this is happening near Earth, in the distant geomagnetic tail, other 
changes are causing the geomagnetic field to stretch like rubber 
bands and snap into new magnetic shapes. This causes billions of 
watts of energy to be transferred into the particles already trapped 
in the magnetosphere out in these distant regions. These particles, 
boosted in energy by thousands of volts, then flow down the field 
lines into the polar regions to cause the aurora, like the electrons 
in a television picture tube that paint a pattern on the phosphor 
screen.

Figure 5-2  The Plasmasphere.
A view from above the North Pole 
of the plasmasphere illuminated by 
ultraviolet light from the Sun. The Sun is 
located beyond the upper right corner.

Figure 5-4  The Auroral Oval.
From space, the aurora borealis appears 
as a ring of light that changes its 
appearance from minute to minute.

Figure 5-3  The Ring Current.
From above the North Pole, the current 
is seen flowing around the equatorial 
regions of the Earth.
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Appendix V

Round-Number Handbook of Physics

The one-pageRound Number Handbook of Physicson the following page is by Edward M. Purcell of Harvard
University, and appeared in the January 1983 issue of theAmerican Journal of Physics. It is intended as a
brief reference for doing quick “back of the envelope”, order-of-magnitude calculations.
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Appendix W

Short Glossary of Particle Physics

antineutron, the antimatter counterpart of the neutron.

antiproton , the antimatter counterpart of the proton.

baryon, a particle made up of three quarks.

boson, any particle that has integer spin.

electron, a lepton of negative charge, found to surround the atomic nucleus in atoms of ordinary matter.

fermion, any particle that has half-integer spin.

hadron, any particle that “feels” the strong nuclear force.

Higgs boson, the particle associated with the Higgs field, that gives mass to other particles.

lepton, one of six light fundamental particles:e�, �0
e , ��, �0

�, 	�, �0
� .

meson, a particle consisting of a quark-antiquark pair.

neutrino, an uncharged lepton of very light mass, produced in some reactions.

neutron, an uncharged baryon, found in the nucleus of atoms of ordinary matter.

positron, the antimatter counterpart of the electron.

proton, a baryon of positive charge, found in the nucleus of atoms of ordinary matter.

quark , one of six heavy fundamental particles:u, d , c, s, t , b.

vector boson, a particle responsible for mediating a force.
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Appendix X

Fundamental Physical Constants —
Extensive Listing

The following tables, published by the National Institutes of Science and Technology (NIST), give the current
best estimates of a large number of fundamental physical constants. These values were determined by the
Committee on Data for Science and Technology (CODATA) for 2014, and are a best fit of the constants to
the latest experimental results.

Source:http://physics.nist.gov/constants
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Fundamental Physical Constants — Extensive Listing
Relative std.

Quantity Symbol Value Unit uncert. ur

UNIVERSAL
speed of light in vacuum c, c0 299 792 458 m s−1 exact
magnetic constant μ0 4π × 10−7 N A−2

= 12.566 370 614... × 10−7 N A−2 exact
electric constant 1/μ0c

2 ε0 8.854 187 817... × 10−12 F m−1 exact
characteristic impedance of vacuum μ0c Z0 376.730 313 461... Ω exact
Newtonian constant of gravitation G 6.674 08(31) × 10−11 m3 kg−1 s−2 4.7 × 10−5

G/h̄c 6.708 61(31) × 10−39 (GeV/c2)−2 4.7 × 10−5

Planck constant h 6.626 070 040(81) × 10−34 J s 1.2 × 10−8

4.135 667 662(25) × 10−15 eV s 6.1 × 10−9

h/2π h̄ 1.054 571 800(13) × 10−34 J s 1.2 × 10−8

6.582 119 514(40) × 10−16 eV s 6.1 × 10−9

h̄c 197.326 9788(12) MeV fm 6.1 × 10−9

Planck mass (h̄c/G)1/2 mP 2.176 470(51) × 10−8 kg 2.3 × 10−5

energy equivalent mPc2 1.220 910(29) × 1019 GeV 2.3 × 10−5

Planck temperature (h̄c5/G)1/2/k TP 1.416 808(33) × 1032 K 2.3 × 10−5

Planck length h̄/mPc = (h̄G/c3)1/2 lP 1.616 229(38) × 10−35 m 2.3 × 10−5

Planck time lP/c = (h̄G/c5)1/2 tP 5.391 16(13) × 10−44 s 2.3 × 10−5

ELECTROMAGNETIC
elementary charge e 1.602 176 6208(98) × 10−19 C 6.1 × 10−9

e/h 2.417 989 262(15) × 1014 A J−1 6.1 × 10−9

magnetic flux quantum h/2e Φ0 2.067 833 831(13) × 10−15 Wb 6.1 × 10−9

conductance quantum 2e2/h G0 7.748 091 7310(18) × 10−5 S 2.3 × 10−10

inverse of conductance quantum G−1
0 12 906.403 7278(29) Ω 2.3 × 10−10

Josephson constant1 2e/h KJ 483 597.8525(30) × 109 Hz V−1 6.1 × 10−9

von Klitzing constant2 h/e2 = μ0c/2α RK 25 812.807 4555(59) Ω 2.3 × 10−10

Bohr magneton eh̄/2me μB 927.400 9994(57) × 10−26 J T−1 6.2 × 10−9

5.788 381 8012(26) × 10−5 eV T−1 4.5 × 10−10

μB/h 13.996 245 042(86) × 109 Hz T−1 6.2 × 10−9

μB/hc 46.686 448 14(29) m−1 T−1 6.2 × 10−9

μB/k 0.671 714 05(39) K T−1 5.7 × 10−7

nuclear magneton eh̄/2mp μN 5.050 783 699(31) × 10−27 J T−1 6.2 × 10−9

3.152 451 2550(15) × 10−8 eV T−1 4.6 × 10−10

μN/h 7.622 593 285(47) MHz T−1 6.2 × 10−9

μN/hc 2.542 623 432(16) × 10−2 m−1 T−1 6.2 × 10−9

μN/k 3.658 2690(21) × 10−4 K T−1 5.7 × 10−7

ATOMIC AND NUCLEAR
General

fine-structure constant e2/4πε0h̄c α 7.297 352 5664(17) × 10−3 2.3 × 10−10

inverse fine-structure constant α−1 137.035 999 139(31) 2.3 × 10−10

Rydberg constant α2mec/2h R∞ 10 973 731.568 508(65) m−1 5.9 × 10−12

R∞c 3.289 841 960 355(19) × 1015 Hz 5.9 × 10−12

R∞hc 2.179 872 325(27) × 10−18 J 1.2 × 10−8

13.605 693 009(84) eV 6.1 × 10−9

Bohr radius α/4πR∞ = 4πε0h̄
2/mee

2 a0 0.529 177 210 67(12) × 10−10 m 2.3 × 10−10

Hartree energy e2/4πε0a0 = 2R∞hc = α2mec
2 Eh 4.359 744 650(54) × 10−18 J 1.2 × 10−8

27.211 386 02(17) eV 6.1 × 10−9

quantum of circulation h/2me 3.636 947 5486(17) × 10−4 m2 s−1 4.5 × 10−10
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h/me 7.273 895 0972(33) × 10−4 m2 s−1 4.5 × 10−10

Electroweak
Fermi coupling constant3 GF/(h̄c)3 1.166 3787(6) × 10−5 GeV−2 5.1 × 10−7

weak mixing angle4 θW (on-shell scheme)
sin2 θW = s2

W ≡ 1 − (mW/mZ)2 sin2 θW 0.2223(21) 9.5 × 10−3

Electron, e−

electron mass me 9.109 383 56(11) × 10−31 kg 1.2 × 10−8

5.485 799 090 70(16) × 10−4 u 2.9 × 10−11

energy equivalent mec
2 8.187 105 65(10) × 10−14 J 1.2 × 10−8

0.510 998 9461(31) MeV 6.2 × 10−9

electron-muon mass ratio me/mμ 4.836 331 70(11) × 10−3 2.2 × 10−8

electron-tau mass ratio me/mτ 2.875 92(26) × 10−4 9.0 × 10−5

electron-proton mass ratio me/mp 5.446 170 213 52(52) × 10−4 9.5 × 10−11

electron-neutron mass ratio me/mn 5.438 673 4428(27) × 10−4 4.9 × 10−10

electron-deuteron mass ratio me/md 2.724 437 107 484(96) × 10−4 3.5 × 10−11

electron-triton mass ratio me/mt 1.819 200 062 203(84) × 10−4 4.6 × 10−11

electron-helion mass ratio me/mh 1.819 543 074 854(88) × 10−4 4.9 × 10−11

electron to alpha particle mass ratio me/mα 1.370 933 554 798(45) × 10−4 3.3 × 10−11

electron charge to mass quotient −e/me −1.758 820 024(11) × 1011 C kg−1 6.2 × 10−9

electron molar mass NAme M(e),Me 5.485 799 090 70(16) × 10−7 kg mol−1 2.9 × 10−11

Compton wavelength h/mec λC 2.426 310 2367(11) × 10−12 m 4.5 × 10−10

λC/2π = αa0 = α2/4πR∞ λC 386.159 267 64(18) × 10−15 m 4.5 × 10−10

classical electron radius α2a0 re 2.817 940 3227(19) × 10−15 m 6.8 × 10−10

Thomson cross section (8π/3)r2
e σe 0.665 245 871 58(91) × 10−28 m2 1.4 × 10−9

electron magnetic moment μe −928.476 4620(57) × 10−26 J T−1 6.2 × 10−9

to Bohr magneton ratio μe/μB −1.001 159 652 180 91(26) 2.6 × 10−13

to nuclear magneton ratio μe/μN −1838.281 972 34(17) 9.5 × 10−11

electron magnetic moment
anomaly |μe|/μB − 1 ae 1.159 652 180 91(26) × 10−3 2.3 × 10−10

electron g-factor −2(1 + ae) ge −2.002 319 304 361 82(52) 2.6 × 10−13

electron-muon magnetic moment ratio μe/μμ 206.766 9880(46) 2.2 × 10−8

electron-proton magnetic moment ratio μe/μp −658.210 6866(20) 3.0 × 10−9

electron to shielded proton magnetic
moment ratio (H2O, sphere, 25 ◦C) μe/μ′p −658.227 5971(72) 1.1 × 10−8

electron-neutron magnetic moment ratio μe/μn 960.920 50(23) 2.4 × 10−7

electron-deuteron magnetic moment ratio μe/μd −2143.923 499(12) 5.5 × 10−9

electron to shielded helion magnetic
moment ratio (gas, sphere, 25 ◦C) μe/μ′h 864.058 257(10) 1.2 × 10−8

electron gyromagnetic ratio 2|μe|/h̄ γe 1.760 859 644(11) × 1011 s−1 T−1 6.2 × 10−9

γe/2π 28 024.951 64(17) MHz T−1 6.2 × 10−9

Muon, μ−
muon mass mμ 1.883 531 594(48) × 10−28 kg 2.5 × 10−8

0.113 428 9257(25) u 2.2 × 10−8

energy equivalent mμc
2 1.692 833 774(43) × 10−11 J 2.5 × 10−8

105.658 3745(24) MeV 2.3 × 10−8

muon-electron mass ratio mμ/me 206.768 2826(46) 2.2 × 10−8

muon-tau mass ratio mμ/mτ 5.946 49(54) × 10−2 9.0 × 10−5

muon-proton mass ratio mμ/mp 0.112 609 5262(25) 2.2 × 10−8
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muon-neutron mass ratio mμ/mn 0.112 454 5167(25) 2.2 × 10−8

muon molar mass NAmμ M(μ),Mμ 0.113 428 9257(25) × 10−3 kg mol−1 2.2 × 10−8

muon Compton wavelength h/mμc λC,μ 11.734 441 11(26) × 10−15 m 2.2 × 10−8

λC,μ/2π λC,μ 1.867 594 308(42) × 10−15 m 2.2 × 10−8

muon magnetic moment μμ −4.490 448 26(10) × 10−26 J T−1 2.3 × 10−8

to Bohr magneton ratio μμ/μB −4.841 970 48(11) × 10−3 2.2 × 10−8

to nuclear magneton ratio μμ/μN −8.890 597 05(20) 2.2 × 10−8

muon magnetic moment anomaly
|μμ|/(eh̄/2mμ) − 1 aμ 1.165 920 89(63) × 10−3 5.4 × 10−7

muon g-factor −2(1 + aμ) gμ −2.002 331 8418(13) 6.3 × 10−10

muon-proton magnetic moment ratio μμ/μp −3.183 345 142(71) 2.2 × 10−8

Tau, τ−
tau mass5 mτ 3.167 47(29) × 10−27 kg 9.0 × 10−5

1.907 49(17) u 9.0 × 10−5

energy equivalent mτc
2 2.846 78(26) × 10−10 J 9.0 × 10−5

1776.82(16) MeV 9.0 × 10−5

tau-electron mass ratio mτ/me 3477.15(31) 9.0 × 10−5

tau-muon mass ratio mτ/mμ 16.8167(15) 9.0 × 10−5

tau-proton mass ratio mτ/mp 1.893 72(17) 9.0 × 10−5

tau-neutron mass ratio mτ/mn 1.891 11(17) 9.0 × 10−5

tau molar mass NAmτ M(τ),Mτ 1.907 49(17) × 10−3 kg mol−1 9.0 × 10−5

tau Compton wavelength h/mτc λC,τ 0.697 787(63) × 10−15 m 9.0 × 10−5

λC,τ/2π λC,τ 0.111 056(10) × 10−15 m 9.0 × 10−5

Proton, p
proton mass mp 1.672 621 898(21) × 10−27 kg 1.2 × 10−8

1.007 276 466 879(91) u 9.0 × 10−11

energy equivalent mpc2 1.503 277 593(18) × 10−10 J 1.2 × 10−8

938.272 0813(58) MeV 6.2 × 10−9

proton-electron mass ratio mp/me 1836.152 673 89(17) 9.5 × 10−11

proton-muon mass ratio mp/mμ 8.880 243 38(20) 2.2 × 10−8

proton-tau mass ratio mp/mτ 0.528 063(48) 9.0 × 10−5

proton-neutron mass ratio mp/mn 0.998 623 478 44(51) 5.1 × 10−10

proton charge to mass quotient e/mp 9.578 833 226(59) × 107 C kg−1 6.2 × 10−9

proton molar mass NAmp M (p), Mp 1.007 276 466 879(91) × 10−3 kg mol−1 9.0 × 10−11

proton Compton wavelength h/mpc λC,p 1.321 409 853 96(61) × 10−15 m 4.6 × 10−10

λC,p/2π λC,p 0.210 308 910 109(97) × 10−15 m 4.6 × 10−10

proton rms charge radius rp 0.8751(61) × 10−15 m 7.0 × 10−3

proton magnetic moment μp 1.410 606 7873(97) × 10−26 J T−1 6.9 × 10−9

to Bohr magneton ratio μp/μB 1.521 032 2053(46) × 10−3 3.0 × 10−9

to nuclear magneton ratio μp/μN 2.792 847 3508(85) 3.0 × 10−9

proton g-factor 2μp/μN gp 5.585 694 702(17) 3.0 × 10−9

proton-neutron magnetic moment ratio μp/μn −1.459 898 05(34) 2.4 × 10−7

shielded proton magnetic moment μ′p 1.410 570 547(18) × 10−26 J T−1 1.3 × 10−8

(H2O, sphere, 25 ◦C)
to Bohr magneton ratio μ′p/μB 1.520 993 128(17) × 10−3 1.1 × 10−8

to nuclear magneton ratio μ′p/μN 2.792 775 600(30) 1.1 × 10−8

proton magnetic shielding correction
1 − μ′p/μp (H2O, sphere, 25 ◦C) σ′p 25.691(11) × 10−6 4.4 × 10−4
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proton gyromagnetic ratio 2μp/h̄ γp 2.675 221 900(18) × 108 s−1 T−1 6.9 × 10−9

γp/2π 42.577 478 92(29) MHz T−1 6.9 × 10−9

shielded proton gyromagnetic ratio
2μ′p/h̄ (H2O, sphere, 25 ◦C) γ′p 2.675 153 171(33) × 108 s−1 T−1 1.3 × 10−8

γ′p/2π 42.576 385 07(53) MHz T−1 1.3 × 10−8

Neutron, n
neutron mass mn 1.674 927 471(21) × 10−27 kg 1.2 × 10−8

1.008 664 915 88(49) u 4.9 × 10−10

energy equivalent mnc2 1.505 349 739(19) × 10−10 J 1.2 × 10−8

939.565 4133(58) MeV 6.2 × 10−9

neutron-electron mass ratio mn/me 1838.683 661 58(90) 4.9 × 10−10

neutron-muon mass ratio mn/mμ 8.892 484 08(20) 2.2 × 10−8

neutron-tau mass ratio mn/mτ 0.528 790(48) 9.0 × 10−5

neutron-proton mass ratio mn/mp 1.001 378 418 98(51) 5.1 × 10−10

neutron-proton mass difference mn − mp 2.305 573 77(85) × 10−30 kg 3.7 × 10−7

0.001 388 449 00(51) u 3.7 × 10−7

energy equivalent (mn − mp)c2 2.072 146 37(76) × 10−13 J 3.7 × 10−7

1.293 332 05(48) MeV 3.7 × 10−7

neutron molar mass NAmn M(n),Mn 1.008 664 915 88(49) × 10−3 kg mol−1 4.9 × 10−10

neutron Compton wavelength h/mnc λC,n 1.319 590 904 81(88) × 10−15 m 6.7 × 10−10

λC,n/2π λC,n 0.210 019 415 36(14) × 10−15 m 6.7 × 10−10

neutron magnetic moment μn −0.966 236 50(23) × 10−26 J T−1 2.4 × 10−7

to Bohr magneton ratio μn/μB −1.041 875 63(25) × 10−3 2.4 × 10−7

to nuclear magneton ratio μn/μN −1.913 042 73(45) 2.4 × 10−7

neutron g-factor 2μn/μN gn −3.826 085 45(90) 2.4 × 10−7

neutron-electron magnetic moment ratio μn/μe 1.040 668 82(25) × 10−3 2.4 × 10−7

neutron-proton magnetic moment ratio μn/μp −0.684 979 34(16) 2.4 × 10−7

neutron to shielded proton magnetic
moment ratio (H2O, sphere, 25 ◦C) μn/μ′p −0.684 996 94(16) 2.4 × 10−7

neutron gyromagnetic ratio 2|μn|/h̄ γn 1.832 471 72(43) × 108 s−1 T−1 2.4 × 10−7

γn/2π 29.164 6933(69) MHz T−1 2.4 × 10−7

Deuteron, d
deuteron mass md 3.343 583 719(41) × 10−27 kg 1.2 × 10−8

2.013 553 212 745(40) u 2.0 × 10−11

energy equivalent mdc2 3.005 063 183(37) × 10−10 J 1.2 × 10−8

1875.612 928(12) MeV 6.2 × 10−9

deuteron-electron mass ratio md/me 3670.482 967 85(13) 3.5 × 10−11

deuteron-proton mass ratio md/mp 1.999 007 500 87(19) 9.3 × 10−11

deuteron molar mass NAmd M(d),Md 2.013 553 212 745(40) × 10−3 kg mol−1 2.0 × 10−11

deuteron rms charge radius rd 2.1413(25) × 10−15 m 1.2 × 10−3

deuteron magnetic moment μd 0.433 073 5040(36) × 10−26 J T−1 8.3 × 10−9

to Bohr magneton ratio μd/μB 0.466 975 4554(26) × 10−3 5.5 × 10−9

to nuclear magneton ratio μd/μN 0.857 438 2311(48) 5.5 × 10−9

deuteron g-factor μd/μN gd 0.857 438 2311(48) 5.5 × 10−9

deuteron-electron magnetic moment ratio μd/μe −4.664 345 535(26) × 10−4 5.5 × 10−9

deuteron-proton magnetic moment ratio μd/μp 0.307 012 2077(15) 5.0 × 10−9

deuteron-neutron magnetic moment ratio μd/μn −0.448 206 52(11) 2.4 × 10−7

Triton, t
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triton mass mt 5.007 356 665(62) × 10−27 kg 1.2 × 10−8

3.015 500 716 32(11) u 3.6 × 10−11

energy equivalent mtc
2 4.500 387 735(55) × 10−10 J 1.2 × 10−8

2808.921 112(17) MeV 6.2 × 10−9

triton-electron mass ratio mt/me 5496.921 535 88(26) 4.6 × 10−11

triton-proton mass ratio mt/mp 2.993 717 033 48(22) 7.5 × 10−11

triton molar mass NAmt M(t),Mt 3.015 500 716 32(11) × 10−3 kg mol−1 3.6 × 10−11

triton magnetic moment μt 1.504 609 503(12) × 10−26 J T−1 7.8 × 10−9

to Bohr magneton ratio μt/μB 1.622 393 6616(76) × 10−3 4.7 × 10−9

to nuclear magneton ratio μt/μN 2.978 962 460(14) 4.7 × 10−9

triton g-factor 2μt/μN gt 5.957 924 920(28) 4.7 × 10−9

Helion, h
helion mass mh 5.006 412 700(62) × 10−27 kg 1.2 × 10−8

3.014 932 246 73(12) u 3.9 × 10−11

energy equivalent mhc2 4.499 539 341(55) × 10−10 J 1.2 × 10−8

2808.391 586(17) MeV 6.2 × 10−9

helion-electron mass ratio mh/me 5495.885 279 22(27) 4.9 × 10−11

helion-proton mass ratio mh/mp 2.993 152 670 46(29) 9.6 × 10−11

helion molar mass NAmh M(h),Mh 3.014 932 246 73(12) × 10−3 kg mol−1 3.9 × 10−11

helion magnetic moment μh −1.074 617 522(14) × 10−26 J T−1 1.3 × 10−8

to Bohr magneton ratio μh/μB −1.158 740 958(14) × 10−3 1.2 × 10−8

to nuclear magneton ratio μh/μN −2.127 625 308(25) 1.2 × 10−8

helion g-factor 2μh/μN gh −4.255 250 616(50) 1.2 × 10−8

shielded helion magnetic moment μ′h −1.074 553 080(14) × 10−26 J T−1 1.3 × 10−8

(gas, sphere, 25 ◦C)
to Bohr magneton ratio μ′h/μB −1.158 671 471(14) × 10−3 1.2 × 10−8

to nuclear magneton ratio μ′h/μN −2.127 497 720(25) 1.2 × 10−8

shielded helion to proton magnetic
moment ratio (gas, sphere, 25 ◦C) μ′h/μp −0.761 766 5603(92) 1.2 × 10−8

shielded helion to shielded proton magnetic
moment ratio (gas/H2O, spheres, 25 ◦C) μ′h/μ′p −0.761 786 1313(33) 4.3 × 10−9

shielded helion gyromagnetic ratio
2|μ′h|/h̄ (gas, sphere, 25 ◦C) γ′h 2.037 894 585(27) × 108 s−1 T−1 1.3 × 10−8

γ′h/2π 32.434 099 66(43) MHz T−1 1.3 × 10−8

Alpha particle, α
alpha particle mass mα 6.644 657 230(82) × 10−27 kg 1.2 × 10−8

4.001 506 179 127(63) u 1.6 × 10−11

energy equivalent mαc2 5.971 920 097(73) × 10−10 J 1.2 × 10−8

3727.379 378(23) MeV 6.2 × 10−9

alpha particle to electron mass ratio mα/me 7294.299 541 36(24) 3.3 × 10−11

alpha particle to proton mass ratio mα/mp 3.972 599 689 07(36) 9.2 × 10−11

alpha particle molar mass NAmα M(α),Mα 4.001 506 179 127(63) × 10−3 kg mol−1 1.6 × 10−11

PHYSICOCHEMICAL
Avogadro constant NA, L 6.022 140 857(74) × 1023 mol−1 1.2 × 10−8

atomic mass constant
mu = 1

12m(12C) = 1 u mu 1.660 539 040(20) × 10−27 kg 1.2 × 10−8

energy equivalent muc2 1.492 418 062(18) × 10−10 J 1.2 × 10−8

931.494 0954(57) MeV 6.2 × 10−9
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Faraday constant6 NAe F 96 485.332 89(59) C mol−1 6.2 × 10−9

molar Planck constant NAh 3.990 312 7110(18) × 10−10 J s mol−1 4.5 × 10−10

NAhc 0.119 626 565 582(54) J m mol−1 4.5 × 10−10

molar gas constant R 8.314 4598(48) J mol−1 K−1 5.7 × 10−7

Boltzmann constant R/NA k 1.380 648 52(79) × 10−23 J K−1 5.7 × 10−7

8.617 3303(50) × 10−5 eV K−1 5.7 × 10−7

k/h 2.083 6612(12) × 1010 Hz K−1 5.7 × 10−7

k/hc 69.503 457(40) m−1 K−1 5.7 × 10−7

molar volume of ideal gas RT/p
T = 273.15 K, p = 100 kPa Vm 22.710 947(13) × 10−3 m3 mol−1 5.7 × 10−7

Loschmidt constant NA/Vm n0 2.651 6467(15) × 1025 m−3 5.7 × 10−7

molar volume of ideal gas RT/p
T = 273.15 K, p = 101.325 kPa Vm 22.413 962(13) × 10−3 m3 mol−1 5.7 × 10−7

Loschmidt constant NA/Vm n0 2.686 7811(15) × 1025 m−3 5.7 × 10−7

Sackur-Tetrode (absolute entropy) constant7
5
2 + ln[(2πmukT1/h2)3/2kT1/p0]
T1 = 1 K, p0 = 100 kPa S0/R −1.151 7084(14) 1.2 × 10−6

T1 = 1 K, p0 = 101.325 kPa −1.164 8714(14) 1.2 × 10−6

Stefan-Boltzmann constant
(π2/60)k4/h̄3c2 σ 5.670 367(13) × 10−8 W m−2 K−4 2.3 × 10−6

first radiation constant 2πhc2 c1 3.741 771 790(46) × 10−16 W m2 1.2 × 10−8

first radiation constant for spectral radiance 2hc2 c1L 1.191 042 953(15) × 10−16 W m2 sr−1 1.2 × 10−8

second radiation constant hc/k c2 1.438 777 36(83) × 10−2 m K 5.7 × 10−7

Wien displacement law constants
b = λmaxT = c2/4.965 114 231... b 2.897 7729(17) × 10−3 m K 5.7 × 10−7

b′ = νmax/T = 2.821 439 372... c/c2 b′ 5.878 9238(34) × 1010 Hz K−1 5.7 × 10−7

1 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the volt using the Joseph-
son effect.
2 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall
effect.
3 Value recommended by the Particle Data Group (Olive et al., 2014).
4 Based on the ratio of the masses of the W and Z bosons mW/mZ recommended by the Particle Data Group (Olive et al., 2014). The value for
sin2θW they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is sin2θ̂W(MZ) = 0.231 26(5).
5 This and all other values involving mτ are based on the value of mτc

2 in MeV recommended by the Particle Data Group (Olive et al., 2014).
6 The numerical value of F to be used in coulometric chemical measurements is 96 485.3251(12) [1.2 × 10−8] when the relevant current is mea-
sured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional
values of the Josephson and von Klitzing constants KJ−90 and RK−90 given in the “Adopted values” table.
7 The entropy of an ideal monoatomic gas of relative atomic mass Ar is given by S = S0 + 3

2
R ln Ar − R ln(p/p0) + 5

2
R ln(T/K).

323



Appendix Y

Periodic Table of the Elements

324



Prince George’s Community College Introductory Physics II D.G. Simpson

1 H
hy

dr
og

en
1.

00
8

[1
.0

07
8,

 1
.0

08
2]

1 
18

 

3 L
i

lit
hi

um
6.

94

[6
.9

38
, 6

.9
97

]

4 B
e

be
ry

lli
um

9.
01

22

11 N
a

so
di

um

22
.9

90

12 M
g

m
ag

ne
si

um
24

.3
05

[2
4.

30
4,

 2
4.

30
7]

19 K
po

ta
ss

iu
m

39
.0

98

20 C
a

ca
lc

iu
m

40
.0

78
(4

)

37 R
b

ru
bi

di
um

85
.4

68

38 S
r

st
ro

nt
iu

m

87
.6

2

38 S
r

st
ro

nt
iu

m

87
.6

2

55 C
s

ca
es

iu
m

13
2.

91

55 C
s

ca
es

iu
m

13
2.

91

56 B
a

ba
riu

m

13
7.

33

87 F
r

fr
an

ci
um

88 R
a

ra
di

um

5 B bo
ro

n
10

.8
1

[1
0.

80
6,

 1
0.

82
1]

13 A
l

al
um

in
iu

m

26
.9

82

31 G
a

ga
lli

um

69
.7

23

49 In
in

di
um

11
4.

82

81 T
l

th
al

liu
m

20
4.

38

[2
04

.3
8,

 2
04

.3
9]

6 C
ca

rb
on

12
.0

11

[1
2.

00
9,

 1
2.

01
2]

14 S
i

si
lic

on
 2

8.
08

5

[2
8.

08
4,

 2
8.

08
6]

32 G
e

ge
rm

an
iu

m

72
.6

30
(8

)

50 S
n

tin

11
8.

71

82 P
b

le
ad

20
7.

2

7 N
ni

tr
og

en
14

.0
07

[1
4.

00
6,

 1
4.

00
8]

15 P
ph

os
ph

or
us

 

30
.9

74

33 A
s

ar
se

ni
c

74
.9

22

51 S
b

an
tim

on
y

12
1.

76

83 B
i

bi
sm

ut
h

   
  

20
8.

98

8 O
ox

yg
en

15
.9

99

[1
5.

99
9,

 1
6.

00
0]

16 S su
lfu

r
32

.0
6

[3
2.

05
9,

 3
2.

07
6]

34 S
e

se
le

ni
um

78
.9

71
(8

)

52 Te
te

llu
riu

m

12
7.

60
(3

)

84 P
o

po
lo

ni
um

9 F
flu

or
in

e

18
.9

98

17 C
l

ch
lo

rin
e

35
.4

5 

[3
5.

44
6,

 3
5.

45
7]

35 B
r

br
om

in
e

79
.9

04

[7
9.

90
1,

 7
9.

90
7]

53 I
io

di
ne

12
6.

90

85 A
t

as
ta

tin
e

10 N
e

ne
on

20
.1

802 H
e

he
liu

m

4.
00

26

18 A
r

ar
go

n

39
.9

48

36 K
r

kr
yp

to
n

83
.7

98
(2

)

54 X
e

xe
no

n

13
1.

29

86 R
n

ra
do

n

22 Ti
tit

an
iu

m

47
.8

67

22 Ti
tit

an
iu

m

47
.8

67

40 Z
r

zi
rc

on
iu

m

91
.2

24
(2

)

72 H
f

ha
fn

iu
m

17
8.

49
(2

)

10
4

R
f

ru
th

er
fo

rd
iu

m

  

23 V
va

na
di

um

50
.9

42

41 N
b

ni
ob

iu
m

92
.9

06

73 Ta
ta

nt
al

um

18
0.

95

10
5

D
b

du
bn

iu
m

24 C
r

ch
ro

m
iu

m

51
.9

96

24 C
r

ch
ro

m
iu

m

51
.9

96

42 M
o

m
ol

yb
de

nu
m

95
.9

5

74 W
tu

ng
st

en

18
3.

84

10
6

S
g

se
ab

or
gi

um

25 M
n

m
an

ga
ne

se

54
.9

38

43 Tc
te

ch
ne

tiu
m

75 R
e

rh
en

iu
m

18
6.

21

10
7

B
h

bo
hr

iu
m

26 F
e

iro
n

55
.8

45
(2

)

44 R
u

ru
th

en
iu

m

10
1.

07
(2

)

76 O
s

os
m

iu
m

19
0.

23
(3

)

10
8

H
s

ha
ss

iu
m

27 C
o

co
ba

lt

58
.9

33

45 R
h

rh
od

iu
m

10
2.

91

77 Ir
iri

di
um

19
2.

22

10
9

M
t

m
ei

tn
er

iu
m

28 N
i

ni
ck

el

58
.6

93

46 P
d

pa
lla

di
um

10
6.

42

78 P
t

pl
at

in
um

19
5.

08

11
0

D
s

da
rm

st
ad

tiu
m

29 C
u

co
pp

er

63
.5

46
(3

)

47 A
g

si
lv

er

10
7.

87

79 A
u

go
ld

19
6.

97

30 Z
n

zi
nc

65
.3

8(
2)

48 C
d

ca
dm

iu
m

11
2.

41

80 H
g

m
er

cu
ry

20
0.

59

11
1

R
g

ro
en

tg
en

iu
m

11
2

C
n

co
pe

rn
ic

iu
m

11
4 F
l

fle
ro

vi
um

11
3

N
h

ni
ho

ni
um

11
5

M
c

m
os

co
vi

um

11
7

Ts
te

nn
es

si
ne

11
8

O
g

og
an

es
so

n

11
6

L
v

liv
er

m
or

iu
m

57 L
a

la
nt

ha
nu

m

13
8.

91

58 C
e

ce
riu

m

14
0.

12

59 P
r

pr
as

eo
dy

m
iu

m

14
0.

91

60 N
d

ne
od

ym
iu

m

14
4.

24

61 P
m

pr
om

et
hi

um

62 S
m

sa
m

ar
iu

m

15
0.

36
(2

)

63 E
u

eu
ro

pi
um

15
1.

96

64 G
d

ga
do

lin
iu

m

15
7.

25
(3

)

65 T
b

te
rb

iu
m

15
8.

93

66 D
y

dy
sp

ro
si

um

16
2.

50

67 H
o

ho
lm

iu
m

16
4.

93

68 E
r

er
bi

um

16
7.

26

69 T
m

th
ul

iu
m

16
8.

93

70 Y
b

yt
te

rb
iu

m

17
3.

05

71 L
u

lu
te

tiu
m

17
4.

97

89 A
c

ac
tin

iu
m

90 T
h

th
or

iu
m

23
2.

04

91 P
a

pr
ot

ac
tin

iu
m

23
1.

04

92 U
ur

an
iu

m

23
8.

03

93 N
p

ne
pt

un
iu

m

94 P
u

pl
ut

on
iu

m

95 A
m

am
er

ic
iu

m

96 C
m

cu
riu

m

97 B
k

be
rk

el
iu

m

98 C
f

ca
lif

or
ni

um

99 E
s

ei
ns

te
in

iu
m

10
0

F
m

fe
rm

iu
m

10
1

M
d

m
en

de
le

vi
um

10
2

N
o

no
be

liu
m

10
3

L
r

la
w

re
nc

iu
m

21 S
c

sc
an

di
um

44
.9

56

39 Y
yt

tr
iu

m

88
.9

06

57
-7

1 
 

la
nt

ha
no

id
s 

89
-1

03
 

 
ac

tin
oi

ds
 

at
om

ic
 n

um
be

r

S
ym

b
o

l
n

am
e

co
nv

en
tio

na
l a

to
m

ic
 w

ei
gh

t

st
an

da
rd

 a
to

m
ic

 w
ei

gh
t

2 
13

 
14

 
15

 
16

 
17

 
K

ey
: 

3 
4 

5 
6 

7 
8 

9 
10

 
11

 
12

 

Fo
r n

ot
es

 a
nd

 u
pd

at
es

 to
 th

is 
ta

bl
e,

 s
ee

 w
w

w
.iu

pa
c.

or
g.

 T
hi

s 
ve

rs
io

n 
is 

da
te

d 
28

 N
ov

em
be

r 2
01

6.
  

C
op

yr
ig

ht
 ©

 2
01

6 
IU

PA
C

, t
he

 In
te

rn
at

io
na

l U
ni

on
 o

f P
ur

e 
an

d 
A

pp
lie

d 
C

he
m

ist
ry

.

IU
PA

C
 P

er
io

d
ic

 T
a

b
le

 o
f 

th
e 

El
em

en
ts

325



References

[1] Elroy M. Avery, School Physics(Sheldon and Co., New York, 1895).

[2] Albert F. Blaisedell,Our Bodies and How We Live,Boston: Ginn, 190, 259.

[3] Encyclopædia Britannica(11th ed., vol. 18), New York, NY: The Encyclopaedia Britannica Company,
1910.

[4] Ellsworth D. Foster (ed.)The American Educator(vol. 2), Chicago, IL: Ralph Durham Company, 1921.

[5] Elroy M. Avery, School Physics(New York: 1895).

[6] R. Fay, Hearing in Vertebrates. A Psychophysics Databook.Hill-Fay Associates, Winnetka, Illinois,
1988.

[7] A.E. Fitzgerald and David E. Higginbotham,Basic Electrical Engineering. McGraw-Hill, 1957.

[8] R. Fitzpatrick,Oscillations and Waves(Web site at the Univerisity of Texas, Austin):
http://farside.ph.utexas.edu/teaching/315/Waves/Waves.html
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Aberration, 206
chromatic, 206
spherical, 206

Accidentals, 85
Accommodation, 210
Acoustics, 12
Active optics, 199
Aerial, 187
Agonic line, 152
Alexander’s dark band, 244
Alnico, 162
Alternating current (AC), 179
AM radio, 184
Amateur radio, 137
Amber, 93
American Radio Relay League (ARRL), 138
American Wire Gauge (AWG), 110, 112
Ammeter, 123
Ampère’s law, 164, 169
Ampere, 16
Amplitude, 39, 55, 58
Amplitude modulation, 184
Analyzer, 232
Angular frequency, 39, 58
Antenna, 187
Antimatter, 183, 258
Antineutron, 258, 316
Antinode, 66
Antiproton, 258, 316
Arduino, 136
Arithmetic-geometric mean, 304
Astigmatism, 206
Astronomical unit, 288
Astrophysics, 12
Atomic mass unit (amu), 17
Atomic physics, 12
Aurora, 154
Auroral oval, 158

Baryon, 257, 316
Base units, 14

Battery, 104
internal resistance, 105, 111
parallel, 105
series, 104

Bel, 79
Bessel function, 69
Beta decay, 258
Bifocal lenses, 210
Big Bang, 78
Binary prefixes, 22
Binoculars, 213
Biophysics, 12
Biot-Savart law, 144, 164, 170
Birefringence, 233
Biv, Roy G., 183, 234
Blueshift, 78
Boson, 316
Bow shock, 156
Brewster’s law, 233
Bulk modulus, 59, 71

C major scale, 84, 86
Calcite, 210, 233
Calculus

differential, 26
fundamental theorem of, 30
integral, 28

Camera, 212
pinhole, 212

Candela, 16, 218
Capacitance, 125
Capacitor, 125
Capillary, 254
Cat’s whisker, 189
Cauchy dispersion formula, 230
Cellular telephone, 185
Centennial Bulb, 133
Center of curvature, 195
Chemical physics, 12
Chromatic aberration, 206, 230
Chromatic scale, 84
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Chromaticity diagram, 237
CIE

chromaticity diagram, 237, 307
color matching functions, 307

Circuit, 114
Classical mechanics, 12
Clef sign, 88
Coercivity, 162
Coherent light, 222
Color

blue, 234
complement, 235
constancy, 234
cyan, 235
green, 234
magenta, 235
orange, 236
primary, 234
purple, 237
red, 234
secondary, 235
spectral, 236
violet, 237
white, 235
yellow, 234

Coma, 206
Compression, 57
Computer glasses, 210
Condenser, 125
Conductor, 95
Cones, 208, 234
Converging

lens, 202
mirror, 195

Cornea, 208
Coulomb, 94
Coulomb’s law, 94

magnetic, 140
Cross product, 296
Cross-disciplinary physics, 12
Crystal oscillator, 190
Crystal radio, 187
CubeSat, 138
Curie temperature, 162
Currency exchange rates, 22
Current divider, 119
Cyclotron frequency, 148
Cyclotron radius, 148

Damped oscillations, 47

critically damped, 48
overdamped, 47
underdamped, 47

Daraf, 125
Decibel, 79
Declination, magnetic, 152
Degree, 17, 293

square, 294
Diamagnetism, 161
Dielectric, 95
Dielectric breakdown, 100
Dielectric constant, 127
Diffraction, 224
Dimensional analysis, 19
Diode, 187
Dipole

electric, 98
magnetic, 143, 152
moment, electric, 98
moment, magnetic, 143

Direct current (DC), 179
Dispersion, 206, 230
Displacement current, 182
Diverging

lens, 202
mirror, 195

Doppler effect, 75
relativistic, 76

Dot product, 296
Drift velocity, 106

Earth, 288
Earthquake, 65
Eddy current, 163
Elastance, 125
Electric current, 106
Electric field, 97
Electric field lines, 97
Electric flux, 98
Electric generator, 166
Electric motor, 167
Electricity, 93
Electricity and magnetism, 12
Electrode, 104
Electrolyte, 104
Electromagnet, 141
Electromagnetic force, 258
Electromagnetic units, 19
Electromagnetic wave, 182
Electromagnetism, 140
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Electromotive force, 111, 166
Electron, 316
Electron volt, 103
Electrostatic units, 19
Electroweak theory, 258
Elementary charge (e), 93
Emmetropia, 210
Epicenter, 65
Equilibrium position, 39
Equipotential surface, 102
Eye

compound, 210
human, 208
trilobite, 210

Farad, 125
Faraday’s law, 166, 169
Farsightedness, 210
Fermat’s principle, 200
Fermion, 316
Ferromagnetism, 161
Field-programmable gate array (FPGA), 137
Flat, 85
FM radio, 184
Focal length

lens, 202
mirror, 195

Focus, 195, 202
Foot, 15
Foot-candle, 219
Forced oscillations, 49
Fountain effect, 254
Fourth, 293
FPGA,seeField programmable gate array
Franklin, Benjamin, 93
Frequency, 43
Frequency modulation, 184
Fresnel lens, 205

Gadget Factory, 137
Galena, 189
Gamma rays, 183
Gauss, 142
Gauss’s law, 99, 125, 169

for magnetism, 144, 169
Gaussian units, 19
Geophysics, 12
Grad, 17, 293
Grand Unified Theory, 258
Grave(f.n.), 18

Gravitational force, 258
Graviton, 258
Ground, 102, 114
Gyrofrequency, 148
Gyroradius, 148

HackerBoxes, 137
Hadron, 257, 316
Half step, 84
Hall effect, 149
Hall emf, 150
Heaviside-Lorentz units, 19
Helium, 72
Helium II, 254
Henry, 170
Higgs

boson, 259
field, 259

Higgs boson, 316
Hooke’s law, 39, 54, 113
Hubble constant, 78
Hubble’s law, 78
Hyperopia, 210
Hysteresis, 161, 162

Iceland spar, 233
Illuminance, 218
IMAGE, 311
Image distance, 195, 202
Image height, 195, 202
Impact parameter, 243
Impedance, 179
Imperial units, 14
Incidence, angle of, 194
Index of refraction, 200, 230
Inductance, 170
Infinitesimal numbers, 25
Infrared light, 183
Infrasound, 74
Insulator, 95
Integral, 29

double, 34
Integrand, 29
Interference, 61

constructive, 62
destructive, 62

International Prototype Kilogram (IPK), 15
Inverted image, 197, 203
Ionosphere, 186
Isogonic chart, 152
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Isotropic, 64, 218

Jacobi elliptic function, 303
Jupiter, 288

K20, 16
Kaleidoscope, 216
Kelvin, 16
Kirchhoff plot, 114
Kirchhoff’s rules, 120

L wave, 65
Lagrangian mechanics, 56
Lambda point, 254
Land effect, 210, 234
Larmor radius, 148
Law of reflection, 194
LC circuit, 175
LCR circuit, 178
Left-hand rule, 147
Lens, 202

double concave, 202
double convex, 202
meniscus, 202
of human eye, 208
plano-concave, 202
plano-convex, 202

Lens maker’s equation, 202
Lenz’s law, 167
Lepton, 257, 316
Light

white, 234
Lightning, 71, 100, 140
Line of purples, 237
Lodestone, 140
Logic probe, 124
Lorentz force, 147
Love wave, 65
LR circuit, 173
Lumen, 135, 217
Luminance, 307
Luminous efficiency curve, 217
Luminous flux, 217
Luminous intensity, 218
Lux, 219

Magnet
alnico, 162
ferrite, 162
neodymium, 162

permanent, 162
rare-earth, 162
samarium-cobalt, 162

Magnetic declination, 152
Magnetic domain, 161
Magnetic field, 142
Magnetic field lines, 142
Magnetic flux, 143
Magnetic inclination, 152
Magnetic monopole, 141, 144
Magnetic reconnection, 154
Magnetic susceptibility, 172
Magnetism, 140
Magnetite, 140
Magnetopause, 156
Magnetosheath, 156
Magnetosphere, 154, 311
Magnetotail, 154
Magnification, 195, 202
Magnification equation, 198, 204
Magnifier, 208
Magnifying glass, 208
Magnitude, 220
Major scales, 86
Maker Shed, 137
Malus’s law, 232
Mars, 288
Mathematical physics, 12
Maxwell’s equations, 99, 140, 169, 182
Memristance, 181
Memristor, 181
Mercury, 288
Meson, 257, 316
Metallic hydrogen, 95
Meter, 15
Metric ton, 16
Metric units, 14
Mho, 110
Microcontrollers, 136
Micron, 22
Microscope, 212
Microwaves, 183
Middle C, 85
Minor scales, 87
Mirror, 195

concave, 195
convex, 195

Mirror equation, 198, 204
Modulus of rigidity, 45
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Mole, 16
Moment magnitude scale, 65
Moment of inertia, 300
Monochromatic light, 222
Monocular, 213
Motional emf, 167
Multimeter, 123
Music, 84

instruments, 90
measure, 89
notes, 84, 88
rests, 88
scale, 84, 85
tempo, 89
time signature, 89

Myopia, 210

Natural units, 14
Nearsightedness, 210
Neper, 80
Neptune, 288
NerdKits, 137
Neutrino, 316
Neutron, 257, 316
Newton, 16
Newton’s laws of motion, 12
Newton-Laplace equation, 71
Node, 66
Nought, 47
Nuclear physics, 12

Object distance, 195, 202
Object height, 195, 202
Obliquity of the ecliptic, 288
Octave, 84
Ohm, 107
Ohm’s law, 113
Ohmmeter, 123
Optic nerve, 208
Optics, 12
Oscilloscope, 123
Oval of Descartes, 210

P wave, 65
Papilio FPGA board, 137
Parallel

batteries, 105
capacitors, 126
inductors, 171
resistors, 109

springs, 44
Parallel axis theorem, 300
Paramagnetism, 161
Parsec, 78
Particle physics, 12
Pascal, 146
Pendulum

ballistic, 56
conical, 54
double, 56
Foucault, 56
nonlinear, 302
physical, 54
simple plane, 51, 302
spherical, 52
torsional, 54

Pentatonic scale, 87
Period, 43
Permeability, 172

of free space (�0), 140
relative, 172

Permittivity, 127
of free space ("0), 94

Phase constant, 39, 58
Phonograph, 81
Photometry, 217
Photon, 222
Physics, 12
Piezoelectric effect, 190
Pigments, 236
Pitch, 84
Plasma, 147
Plasma physics, 12
Pluto, 288
Poisson ratio, 45
Polar wandering, 152
Polarization angle, 233
Polarized light, 232
Polarizer, 232
Pole strength, 140
Positron, 258, 316
Potential, 102
Pound, 19

force, 19
mass, 16, 19

Presbyopia, 210
Pressure

magnetic, 146
Primary colors, 234
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Proton, 257, 316
Purples, line of, 237

Quantum electrodynamics, 140
Quantum mechanics, 12, 222, 254, 256
Quark, 257, 316

Radian, 17
radian, 293
Radio waves, 183
Radiometry, 217
Radius of curvature

mirror, 195
Ragchewing, 185
Rainbow, 230, 240

angle, 243
primary, 240
secondary, 240

Rarefaction, 57
Raspberry Pi, 136
Rayleigh criterion, 224
Rayleigh wave, 65
RC circuit, 129
Real image, 197, 202
Rectangular rule, 32
Redshift, 78
Reflected wave, 59
Reflection

angle of, 194
coefficient of, 59

Refraction, 200
law of, 200

Relativity, 12
general, 12
special, 12

Remanence, 162
Resistance, 107
Resistivity, 107, 108

temperature coefficient of, 107, 108
Resistor, 107
Resonance, 49
Retina, 208
Return stroke, 100
Richter scale, 65
Right-hand rule, 144, 145, 147, 296
Robotics, 138
Rods, 208, 234
Rollin film, 254

S wave, 65

Saturn, 288
Scattering, 233
Scattering angle, 243
Schematic diagram, 114
Second (of time), 16
Second sound, 256
Secondary colors, 235
Seismic waves, 65
Selective absorbtion, 232
Selectivity, 190
Sellmeier dispersion formula, 230
Semiconductor, 95
Series

batteries, 104
capacitors, 126
inductors, 171
resistors, 109
springs, 44

Sharp, 85
Shortwave radio, 184
SI units, 15
Siemens, 110
Simple harmonic motion, 39, 146, 175

kinetic energy, 41
potential energy, 41
total energy, 41

Single-slit diffraction, 224
Slug, 19
Snell’s law, 200
Solar wind, 154
Solenoid, 145, 170
Solid angle, 293
Solid-state physics, 12
Sound, 71

audible, 74
infrasonic, 74
loudness, 79
speed, 71
ultrasonic, 74

Sound level, 79
Space physics, 154
SparkFun, 137
Spectral power distribution, 307
Spectrum, 236
Spherical aberration, 195, 202, 206
Spring

vertical, 43
Spring constant, 39, 43, 44
Spyglass, 213
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Staff, 87
Standard Model, 257
Standing waves, 66
Statistical mechanics, 12
Steinhart-Hart equation, 109
Stepped leader, 100
Steradian, 293
String theory, 259
Strong nuclear force, 258
Submillimeter waves, 183
Sulfur hexafluoride, 72
Superconductor, 95
Superflow, 254
Superfluid, 96, 254
Superpostion, 61
Susceptibility,seeMagnetic susceptibility

Teleidoscope, 216
Telescope, 213, 214

Cassegrain, 214
Newtonian, 214
reflecting, 213
refracting, 213

Television, 185
Terminal voltage, 111
Tesla, 142
Thermistor, 109
Thermodynamics, 12
Third, 293
Threshold of hearing, 79
Threshold of pain, 80
Time constant, 129, 173
Time travel, 251
Total internal reflection, 201
Transmission, coefficient of, 59
Transmitted wave, 59
Transmitter, 190, 192
Transverse wave, 57
Trifocal lenses, 210
Trilobite, 210
Tristimulus values, 307
Two-fluid model, 254

Ultrasound, 74
Ultraviolet light, 183
Unit vector, 96, 295
Upright image, 197, 203
Uranus, 288

Vector, 295

polar form, 296
rectangular form, 296

Vector boson, 258, 316
Venus, 288
Verilog, 137
VHDL, 137
Virtual image, 197, 202
Visible light, 183
Voltage divider, 119
Voltmeter, 123

W boson, 258
Wave, 57

cylindrical, 64
energy, 62
intensity, 64
longitudinal, 57
ocean, 64
plane, 64
power, 64
speed, 58, 59
spherical, 64
standing, 66
string, 59
transverse, 57
tsunami, 65

Wave equation, 182
Wave number, 58
Wavelength, 58
Weak nuclear force, 258
Weber, 144
Weight, 16
White light, 230
Whole step, 84
Whole tone scale, 87
Wire, 110

X-rays, 183

Young’s experiment, 222
Young’s modulus, 45, 59, 71

Z boson, 258
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