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HOMOGENEOUS TURBULENCE DYNAMICS

This book summarizes the most recent theoretical, computational, and
experimental results dealing with homogeneous turbulence dynamics. A
large class of flows is covered: flows governed by anisotropic production
mechanisms (e.g., shear flows) and flows without production but dom-
inated by waves (e.g., homogeneous rotating or stratified turbulence).
Compressible turbulent flows are also considered. In each case, main
trends are illustrated using computational and experimental results, and
both linear and nonlinear theories and closures are discussed. Details
about linear theories (e.g., Rapid Distortion Theory and variants) and
nonlinear closures (e.g., EDQNM) are provided in dedicated chapters,
following a fully unified approach. The emphasis is on homogeneous
flows, including several interactions (rotation, stratification, shear, shock
waves, acoustic waves, and more) that are pertinent to many applications
fields – from aerospace engineering to astrophysics and Earth sciences.
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“Wir müssen wissen, wir werden wissen”
(We must know, we shall know)

David Hilbert
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1 Introduction

1.1 Scope of the Book

Turbulence is well known to be one of the most complex and exciting fields of re-
search that raises many theoretical issues and that is a key feature in a large number
of application fields, ranging from engineering to geophysics and astrophysics. It is
still a dominant research topic in fluid mechanics, and several conceptual tools de-
veloped within the framework of turbulence analysis have been applied in other
fields dealing with nonlinear, chaotic phenomena (e.g., nonlinear optics, nonlinear
acoustics, econophysics, etc.).

Despite more than a century of work and a number of important insights, a
complete understanding of turbulence remains elusive, as witnessed by the lack of
fully satisfactory theories of such basic aspects as transition and the Kolmogorov
k−5/3 spectrum. Nevertheless, quantitative predictions of turbulence have been de-
veloped. They are often based on theories and models that combine “true” dynam-
ical equations and closure assumptions and are supported by physical and – more
and more – numerical experiments.

Homogeneous turbulence remains a timely subject, even half a century after
the publication of Batchelor’s book in 1953, and this framework is pivotal in the
present book. Homogeneous isotropic turbulence (HIT) is the best known canonical
case; it is very well documented – even if not completely understood – from exper-
iments and simple models to recent 40963 full direct numerical simulation (DNS).
Of course, this case is addressed (in Chapter 3), but more generally emphasis is
put on homogeneous anisotropic turbulence (HAT) in the presence of mean (ve-
locity, temperature, etc.) gradients, body forces, or both. This context is illustrated
by several physical and numerical experiments (the latter being easy to perform
by slight modification of pseudo-spectral numerical methods designed for DNS of
isotropic turbulence following the method introduced by Rogallo in the late 1970s),
but its interest for developing fundamental understanding and improving theories
and models is largely underestimated regarding the existing literature. Depending
on the strength of the distortion (by mean gradients and/or body forces) and its time
of application, it is possible to move from pure linear approaches, such as the rapid
distortion theory (RDT), to fully nonlinear statistical theories, with the important
intermediate step of “weak” turbulence theories, such as the wave-turbulence the-
ory. As far as possible, it is proposed to pass from “weak” to “strong” turbulence by

1
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Nonlinear closures/theories 
(all triadic interactions taken into account)

Wave-turbulence theory 
(resonant triadic interactions only)

Linear theory 
(no triadic interaction)

Figure 1.1. Sketch of the hierarchy of embed-
ded turbulence theories and closures.

following a strict hierarchy of embedded models and theories, which is illustrated in
Fig. 1.1.

This strategy was introduced by the second author in his contribution to the
recent book Theories of Turbulence (Oberlack and Busse, 2002). Even if the most
original part of the present book deals with two-point statistics, the Reynolds stress
budget is very informative and therefore Reynolds stress equations are discussed
before more complex approaches are addressed. Limits or failures of single-point
closures are highlighted in each case.

A discussion of the physical relevance of the HAT cannot be avoided, and we
show that homogeneous turbulence in the presence of space-uniform mean gradi-
ents is not so ideal and restrictive. In addition to physical and numerical experiments
that are capable of reproducing HAT, some typical equations (e.g., Townsend or
Craya equations) are shown to remain relevant for analyzing flows with nonuniform
mean gradients [e.g. short-wave stability analyses, Wentzel–Kramers–Brillouin
(WKB) RDT]. In some cases, pedagogical explanations for “pure” homogeneous
turbulence can be extended toward inhomogeneous turbulence (e.g., near-wall tur-
bulent shear flow). Another important point is that homogeneous sheared turbu-
lence exhibits self-sustained cycles, which are key features of turbulence dynamics
in near-wall regions.

A large number of books devoted to turbulence are available that put the em-
phasis on three aspects: statistical properties of isotropic, incompressible turbulence
(e.g., Batchelor, 1953; Frisch, 1995; Tsinober, 2001, Davidson, 2004), descriptions of
global dynamics and statistical properties of some academic flows (boundary layer,
mixing layer, jet, wake, etc.; e.g., Townsend, 1976; Smits and Dussauge, 2006), and
modeling of turbulent motion for engineering purpose (among others, Durbin and
Petersson Reif, 2001; Wilcox, 2004). Only little information on the dynamics of tur-
bulent scales is usually provided, and most authors put the emphasis on a partic-
ular feature. One should of course mention general-purpose textbooks (see Pope,
2000; Tennekes and Lumley, 1994; Bailly and Comte-Bellot, 2003), which provide
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the reader with a general survey of different issues related to turbulence research.
Therefore, recent results dealing with dynamics of turbulent motion obtained from
DNSs, advanced statistical models (linear theories and models, nonlinear triadic clo-
sures, etc.), and experiments are not available to the reader in a single book. Results
are disseminated among a huge number of journal articles, technical reports, and
conference papers that do not always use the same terminology.

The present book aims at providing a state-of-the-art sum of results and theories
dealing with homogeneous turbulence, including anisotropic effects and compress-
iblity effects. The underlying idea is to gather the most recent results dealing with
the dynamics of homogeneous turbulence when it interacts with external forcing
(strain, rotation, etc.) and when compressibility effects are in play. Each chapter will
be devoted to a given type of interaction and will present and compare experimen-
tal data, DNS/LES (large-eddy simulation) results, analysis of the Reynolds stress
budget equations, and advanced linear and nonlinear theoretical models. The roles
of both linear and nonlinear mechanisms are emphasized. The link between the sta-
tistical properties and the dynamics of coherent structures is also addressed. Despite
its being restricted to homogeneous turbulence, this book will be of interest to all
people involved in turbulence studies, as it will highlight basic physical mechanisms
that are present in all turbulent flows.

Another interest of this book is the possiblity for the reader to find a unified
presentation of the results and also a clear presentation of existing controversies
and shortcomings in the theoretical background. Special attention is paid to bridging
gaps among the results obtained in different research communities. This last point is
developed concerning both results dealing with turbulence dynamics and the tools
used to investigate it.

1.2 Structure and Contents of the Book

The presentation of the results is carried out in such a way that it allows for two
levels of reading: a first level for readers interested in the results but who do not want
to enter into the details of the tools (i.e., linear and nonlinear theoretical models)
employed to get them, and a second level for readers interested in these details.

The book is organized in 15 chapters, with turbulent-flow cases ranging from
HIT (without distortion, Chapter 3) to HAT subjected to various distorting pro-
cesses (rotation, strain, shear, stratification) in Chapters 4–7. Flows subjected to
coupled forcing effects are collected in Chapter 8, whereas compressible turbulence
is addressed in Chapters 9–11. Chapter 2 presents the basis of dynamical (conserva-
tion equations) and statistical analyses of turbulence.

Technical details about theroretical tools and theories used in Chapters 3–11
are gathered in dedicated chapters whose reading is not mandatory. The linear-
interaction theory for shock–turbulence interaction is presented in Chapter 12. Lin-
ear theories such as the RDT are detailed in Chapter 13, and two-point nonlinear
closure theories [e.g., eddy-damped quasi-normal Markovian (EDQNM) theory]
are addressed in Chapter 14. Some concluding comments are presented Chapter 15.
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Constraints for ensuring consistency of statistical homogeneity – for turbu-
lence – with the distorting processes are given in the most general way, for both
incompressible (particularly in Chapter 2) and compressible (Chapter 10) flows. The
physical relevance of this framework is also discussed.

Every typical flow case is revisited under different angles of attack, from obser-
vations and simulations, models, to theories, combining dynamical, statistical, and
structural aspects, as follows:

1. observations, physical, and numerical experiments
2. analysis through Reynolds stress tensor (RST) equations, and balance and cou-

pling terms
3. refined analysis using linear theory
4. refined analyses through full nonlinear theories and models for two-point statis-

tics (if available)
5. phenomenological (and possibly dynamical) approach to structures, evolution,

coupling.

It is worth noting that two classes of flows are discussed in this book. The first
one is the class of flows without turbulence-production mechanisms (e.g., decaying
isotropic turbulence, rotating homogeneous turbulence, stably stratified homoge-
neous turbulence, etc.) and flows with turbulent-kinetic-energy-production mech-
anisms (e.g. homogeneous sheared turbulence). In the former case, nonlinear dy-
namics and its modification by mean-flow effects are the sole features of the flow,
whereas in the latter case linear mechanisms are the main dynamical characteristics.
Therefore nonlinear models are the tools of choice in the first case (but eigenfunc-
tions of the linear theories can provide an optimal basis to write them), whereas
they are only briefly discussed in flows with productions for which linear theories
are very powerful.

The most complete illustration of the hierarchy of models embedded in each
other is the case of pure rotation (Chapter 4). Common models, such as RST clo-
sure models, are shown to present definite flaws in this case, and some limited at-
tempts to improve single-point closure techniques are only briefly reviewed. As an
important related point, linear theories such as the RDT were only briefly reviewed
for irrotational mean flows only in other recent monographs about turbulence (e.g.,
Pope, 2000; Durbin and Petersson Reif, 2001), with the only exception of pure shear
in the book by Townsend (1976), written a long time ago. In contrast, linear the-
ory for HAT subjected to more general rotational mean flows is a very important
part of the present book. In addition, our extended linear theory is a building block
that may be useful for a wider community (e.g., elliptical-flow instability from the
viewpoint of stability analysis, rotating and/or stratified shear flow, in Chapter 8).

The application domain of two-point nonlinear closures is even more restricted
in existing monographs (e.g., Monin and Yaglom, 1975; Leslie, 1973; Lesieur, 1997;
Frisch, 1995). Only isotropic turbulence is treated in a straightforward way, and only
a few attempts to deal with small anisotropy are offered, whereas the linkage to
linear models and wave turbulence is ignored.
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The last item about “structures” deserves some clarification. On the one hand,
it is recognized that typical structures can be evidenced by snapshots, or random
realizations, of statistically homogeneous flows. The first example is the appearence
of vortex tubes in isotropic turbulence. Other well-known structures are streaklike
(in shear flows), cigar (in flows with dominant rotation), or pancake (flows with
dominant stable stratification) structures. On the other hand, the relevance of low-
order statistics to identify and quantify these structures is controversial. Second-
order statistics, if they include fully anisotropic two-point correlations, can give real
insight into these structures, with quantitative information (elongation parameters,
aspect ratios). An objection can be made that phase coherence is lost in homoge-
neous statistics – at least for single-time second order – so that some aspects of co-
herent structures are not accounted for. Accordingly, we will speak of structures, or
structuring effects, avoiding “coherent,” when we identify them by using anisotropic
statistics and not only using visualizations of snapshots.

The advanced models and theories selected here systematically incorporate dy-
namical operators that are really based on Navier–Stokes equations, even if they
deal with “weak” turbulence only (e.g., linearized models, wave turbulence), not to
mention exact triadic equations and conventional two-point closures based on them.
Three-dimensional (3D) Fourier space is an unavoidable tool in HAT analysis; it
is first considered here as a mathematical convenience to account for solenoidal
properties (in isovolume turbulence) and to simplify related modal decompositions.
Special use is made of decomposition of the fluctuating velocity in Fourier space,
often referred to as the Craya–Herring decomposition, which amounts to a general
Helmholtz decomposition, in terms of two solenoidal (toroidal–poloidal type), or
vortical, modes and one dilatational (or divergent) mode. In incompressible turbu-
lence, a Poisson equation is immediately recovered by projecting momentum equa-
tions onto the dilatational mode, the dilatational velocity mode being zero, so that
dynamical equations deal with only the two solenoidal modes. This decomposition
readily generates the helical-mode decomposition, and various “vortex-wave” de-
compositions when buoyancy fluctuation is accounted for (Chapters 7 and 8). The
dilatational mode recovers its dynamic role, together with the pressure mode, when
compressibility is introduced. The increase of the complexity of the system can be
presented as follows:

1. Two-mode turbulence, in which the two independent unknowns are u(1), u(2) us-
ing the toroidal–poloidal decomposition, or u(2) ± ıu(1) considering the helical-
mode variant. The dilatational mode u(3) is strictly zero so that the pressure
mode u(4) is completely solved in terms of the two solenoidal ones, and there-
fore removed from consideration (Chapters 2–6).

2. Three-mode turbulence. Same situation as before, but an additional buoy-
ancy term is incorporated as a pseudo-dilatational mode. The physical problem
with five components (three for velocity fluctuations, one for pressure fluctua-
tions, one for buoyancy fluctuations) is turned into a three-mode one thanks to
the Boussinesq approximation (divergence-free velocity field and the related
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Poisson equation for pressure hold again, even if buoyancy exists), used in
Chapters 7 and 8.

3. Four-mode turbulence u(1), . . . , u(4), as in the quasi-isentropic flow cases ad-
dressed in Chapters 9 and 10. If the acoustic-equilibrium hypothesis holds, u(3)

and u(4) can be combined as [u(4) ± ıu(3)], where u(3) corresponds to the kinetic
energy of acoustic waves and u(4) gives its potential counterpart.

4. Five-mode-turbulence, in which the last, fifth, entropy mode is added. In prac-
tice, decomposition in terms of five modes is possible, but not completely uni-
versal (discussed in Chapter 9). Introduction of a realistic entropy mode can
be puzzling in homogeneous turbulence, not to mention the question of using
density-weighted variables (velocity, momentum, or intermediate mixed quan-
tity). Nevertheless, a decomposition very close to the u(1)–u(5) one (toroidal–
poloidal–dilatational–pressure–entropy) is used in Chapter 11 to describe up-
coming perturbations passing through an idealized shock wave. Here, the Chu–
Kovasznay decomposition is a preferential tool, as it makes it possible to split
the incoming fluctuations into vortical, acoustic, and entropy modes. It is suf-
ficient, however, to take the solenoidal (vortical) mode as one component
only, so that four-mode turbulence is eventually used because upstream- and
downstream-traveling acoustic perturbations must be treated in separate ways.

Isotropy is generally broken by the dynamical operators, so that a complete
anisotropic description is needed, consistent with the symmetries of background
equations, both in physical (two-point correlations) and in Fourier space (spectral
tensors). It is worthwhile stressing that our detailed anisotropic description includes
dimensionality, with a possibility of quantifying a 3D to two-dimensional (2D) [or
to one-dimensional (1D)] transition. For instance, the structure-based modeling by
Kassinos and Reynolds, which allows us to distinguish dimensionality and compo-
nentality, becomes a by-product of our general description, at least for homoge-
neous turbulence.

This viewpoint allows us to classify the theoretical approaches to turbulence as
follows:

1. Theoretical “spectral-shell models” (as used by physicists to work on intermit-
tency) are not considered in the present book, and empirical (spherically aver-
aged) spectral models are only very briefly discussed ( in Chapters 13 and 14),
as solenoidal properties, and related exact pressure terms, cannot be preserved
by spherically averaged transport equations in Fourier space. Consequently,
equations that are exact and closed in the linear – rapid distortion – limit are
no longer closed after spherical averaging.

2. “Modern” phenomenological theories about scaling and intermittency, from
the legacy of Kolmogorov, are touched on, but in a minimal way, as they re-
tain very little from Navier–Stokes equations. Only the Kolmogorov equation
for the third-order structure function is partly based on Navier–Stokes, but it
also relies on additional assumptions like local isotropy and quasi-steadiness. In
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addition, a strong departure of the “anomalous exponents”∗ from the original
Kolmogorov theory (which leads to �n = n/3) is interpreted as intermittency
by physicists (see Bohr et al., 1998; Frisch, 1995). In contrast, wave turbulence
based on (even weakly nonlinear) Navier–Stokes dynamics can radically ques-
tion this viewpoint. Typical anomalous exponents can be found in the case of
rapid rotation, even for low-order structure functions (n = 2 and n = 3), with
no connection to intermittency (see Fig. 4.18 in Chapter 4 and the correspond-
ing discussion). The “anomality” of exponents reflects the strong anisotropy
linked to a partial transition from 3D to 2D structures and has probably noth-
ing to do with intermittency in this example. Generally, the pure statistical
description based on anomalous exponents, or extended self-similarity (ESS)
laws, mixes anisotropy, inhomogeneity, and intermittency in an intricate way.

3. “Old-fashioned” statistical two-point “triadic” closures, the simplest one being
EDQNM, are reconciled with linear models and wave-turbulence theory, and
finally are shown to be still useful and relevant (especially with respect to the
modern phenomenological theories quoted just before).

4. Low-order two-point (or more) moments are shown to be very informative:
second-order moments for energy distribution, third-order moments for energy
transfers (cascades), and fourth-order ones for typical closure, especially in con-
nection with associated dynamical equations. Higher-order moments, by means
of n-structure functions and full probability density functions (pdf’s) are very
briefly discussed.

Finally, Lagrangian statistics and passive scalar transport are not addressed, but
it is worth noting that linear theories and two-point closures have relevant applica-
tions in these domains.

Let us go back to Chapters 9–11, dealing with dynamics of compressible tur-
bulence. This issue is almost absent in most previous books dealing with turbu-
lence fundamentals. Chapter 9 is devoted to presentation of state-of-the-art knowl-
edge about the dynamics of compressible isotropic turbulence. The Chu–Kovazsnay
modal decomposition of turbulent fluctuations is first introduced to provide the
reader with a physical insight into coupling among acoustics, entropy, and vortic-
ity. Then the different regimes observed in numerical simulations and theoreti-
cal analyses are described: the pseudo-acoustic regime, the subsonic regime (both
pseudo-acoustic and thermal regimes are considered) and the supersonic regime. In
each case, details of the interactions and transfers among scales and modes are dis-
cussed, and the link with the dynamics of coherent events (vortical structures, acous-
tic waves, shocklets, etc.) is made. Some low-Mach triadic-interaction-theory results
are included, together with simplified models. Chapter 10 presents the coupling of
compressible turbulence with mean-gradient effects. In this chapter, the emphasis
is put on linear theory and DNS results because they are well suited to describe

∗ Often denoted �n in the literature, n being the order of the structure function that is supposed to
decay as r−�n .
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dominant dynamical mechanisms in such strongly anisotropic flows. The theory of
compressible RDT is highlighted. Chapter 11 is dedicated to the shock–turbulence
interaction, which has been proved to be very accurately predicted by the linear in-
teraction approximation (LIA) for a large class of flows. The LIA is presented in
Chapter 12 in its most achieved version, and it is used to illustrate the physics of the
interaction of a shock with different kinds of fluctuations corresponding to the Chu–
Kovazsnay modes. A comparison with DNS and experimental results is also made.
Despite its being restricted to simple flow configurations, the basic physical mech-
anisms emphasized in this part are the building blocks for the interpretation and
understanding of the properties of compressible turbulent flows in complex config-
urations.
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2 Statistical Analysis of Homogeneous Turbulent
Flows: Reminders

2.1 Background Deterministic Equations

2.1.1 Mass Conservation

The equation of mass conservation is well known and does not need a long explana-
tion to be derived. Both Eulerian and Lagrangian forms are subsequently given. The
latter is less common in fluid dynamics but it deserves some attention, as it brings in
some fundamental Lagrangian concepts and relationships.

Let us begin by addressing the Eulerian description. To this end, we consider
a fixed arbitrary control volume V , delineated by a surface S. The total mass of the
fluid is governed by the following integral balance equation:

d

dt

∫∫∫
V
�(x, t)d3x︸ ︷︷ ︸

variation

= −
∫∫

S
�(x, t)u(x, t) · nd�︸ ︷︷ ︸

flux

+
∫∫∫

V
m(x, t)d3x︸ ︷︷ ︸

production

, (2.1)

in which � , u, and m are the density, the velocity, and the rate of mass production, re-
spectively. All these fields are assumed to be continuous fields in terms of time t and
Eulerian and Cartesian coordinates x. In this equation, d3x is the elementary volume
of a fluid particle, d� is the elementary surface with outward normal, and n is the unit
vector. The classical Ostrogradsky formula yields

∫∫
S �u · nd� = ∫∫∫

V ∇ · (�u)d3x,
so that the previous equation is rewritten as∫∫∫

V

[
∂�

∂t
+ ∇ · (�u) − m

]
d3x.

For the sake of clarity, the divergence of a vector V is denoted as ∇ · (V) or,
alternatively, ∂Vi

∂xi
in the following. The classical local and instantaneous counterpart

of the preceding equation is the continuity equation,

∂�

∂t
+ ∇ · (�u) = m. (2.2)

In the Lagrangian description, fluid particles follow trajectories, which are given
by the relationship

xi = x L
i (X, t, t0), (2.3)

10
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which links the position of the fluid particle at time t to its initial position X at time t0.
The Lagrangian coordinates X characterize the initial position, and therefore label
the trajectory. To avoid confusion, the trajectory equation is denoted as x L

i , different
from the Eulerian coordinates xi . In the following, the superscript L is often omitted,
but different notations are used for time derivatives.

On the one hand, ∂
∂t denotes an Eulerian time derivative, at constant x, as in

Eq. (2.2). On the other hand, the overdot denotes the Lagrangian time derivative,
at constant X. As a first example, the differential term in Eq. (2.3) can be expanded
as

dxi = ui dt + Fi j d X j (2.4)

(in which dxi holds for dx L
i ), straightforwardly leading to

ẋ i = ∂x L
i

∂t
= ui

and

Fi j = ∂x L
i

∂ X j
.

The latter matrix, referred to as the Cauchy matrix, is denoted as ∂xi/∂ X j from
now on for the sake of brevity. It is the classical semi-Lagrangian displacement gra-
dient in continuum mechanics (see Eringen, 1971, from whom notations are bor-
rowed).

The preceding brief reminder is needed for deriving the continuity equation in
the Lagrangian description. Now, one considers that the mass of an ensemble of
fluid particles is conserved during its motion,

d

dt

∫∫∫
V
�(X, t, t0)d3x =

∫∫∫
V

m(X, t, t0)d3x︸ ︷︷ ︸
M

,

but the moving domain V has to be considered as the mapping of an initial domain
V0 following all individual trajectories with positions in this domain (m ought to be
considered in Lagrangian coordinates, too, but a new specific notation is not intro-
duced for the sake of simplicity). From the very definition of Fi j , its determinant
(always nonzero positive) is the Jacobian of the x-to-X transformation, so that

d3x = Jd3 X,

where

J (X, t, t0) = Det F (2.5)

is the local and instantaneous volumetric ratio following a trajectory. The conserva-
tion equation can be written as

d

dt

∫∫∫
V0

� Jd3 X = M,
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12 Statistical Analysis of Homogeneous Turbulent Flows

and the (Lagrangian) time derivative holds inside the integral, so that∫∫∫
V0

(
�̇ J + � J̇

)
d3 X = M.

From

Ḟ i j = ∂ ẋ i

∂ X j
= ∂ui

∂xn
Fnj (2.6)

one derives

J̇ = ∇ · (u)J. (2.7)

Finally, the continuity equation can be expressed as (� J̇ ) = Jm, or

J (X, t, t0) = �(X, t0)
�(X, t)

+
∮ t

t0

(Jm)dt, (2.8)

using J (X, t0, t0) = 1 (where the time integral of m is computed along a trajectory),
or, alternatively,

�̇ = −�∇ · (u) + m. (2.9)

Of course, the identity of the latter equation with Eq. (2.2) can be checked,
using

�̇ = ∂�

∂t
+ ẋ j

∂�

∂x j
= ∂�

∂t
+ u j

∂�

∂x j
. (2.10)

2.1.2 The Navier–Stokes Momentum Equations

In the same way as for the mass, the conservation of momentum yields

d

dt

∫∫∫
V
�ui d

3x︸ ︷︷ ︸
variation

= −
∫∫

S
�ui u · nd�︸ ︷︷ ︸
flux

+
∫∫∫

V
� fi (x, t)d3x︸ ︷︷ ︸

production

, (2.11)

in which the “production” involves a body force per mass unit, denoted as f , but
the domain of fluid is not isolated: A surfacic strain tensor �i j is acting on it. Ac-
cordingly, a pure kinematic balance, as in the previous subsection for the mass, is no
longer valid, and dynamics must be accounted for. Replacing ui u · n = ui u j n j with
(ui u j − �i j )n j , one obtains

∂(�ui )
∂t

+ ∂(�ui u j − �i j )
∂x j

= � fi , (2.12)

or

� u̇i = ∂�i j

∂x j
+ � fi , (2.13)

using the continuity equation with m = 0.



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

2.1 Background Deterministic Equations 13

Finally, the classical Navier–Stokes equations∗ correspond to the following ex-
pression of the strain tensor in Eq. (2.13):

�i j = −p�i j + �

 ∂ui

∂x j
+ ∂u j

∂xi︸ ︷︷ ︸
Si j

−2�i j

3
∂un

∂xn

+ 3�+ 2�
3

∂un

∂xn
�i j

︸ ︷︷ ︸
�visc

i j

, (2.14)

in which the threefold decomposition includes a spherical term linked to pressure p,
a shearing viscous term that involves the symmetric, trace-free velocity-gradient
tensor, and a viscous “bulk” term. The fluid-dependent parameters � and � are
the Lamé coefficients, which are often linked together by the Stokes relationship
3�+ 2� = 0, which removes from consideration the pure volumic bulk dissipation
process.

2.1.3 Incompressible Turbulence

Strict incompressibility is recovered assuming �(x, t) = �0 in the continuity equa-
tion, so that the velocity field is divergence free or solenoidal. Ignoring the mass
“production” term m for the sake of simplicity, mass conservation reduces to the
divergence-free (solenoidal) condition, or to J = 1 from the Lagrangian viewpoint,
and the momentum equation reduces to

u̇i = − 1
�0

∂p

∂xi
− �∇2ui + fi , (2.15)

in which the left-hand-side term is the acceleration, or

u̇i = ∂ui

∂t
+ ẋ j

∂ui

∂x j
= ∂ui

∂t
+ u j

∂ui

∂x j
(2.16)

as for Eq. (2.10). � = �/�0 is the kinematic viscosity, which is considered a constant
parameter. The problem is self-consistent and well posed, with four dependent vari-
ables (u1, u2, u3, p) and four equations (one for the divergence-free constraint, three
for the preceding system of Navier–Stokes equations).

The pressure is no longer a thermodynamic, autonomous variable, but a sim-
ple Lagrange multiplier connected to the solenoidal constraint for velocity. Taking
the divergence of Eq. (2.15), and accounting for the incompressibility constraint
∂ui/∂xi = 0, one obtains

1
�0

∇2 p = − ∂2

∂xi∂x j
(ui u j ) − ∂ fi

∂xi
. (2.17)

∗ These equations were established by Claude Navier in 1823 and rediscovered or rederived at least
four times: by Cauchy in 1823, by Poisson in 1829, by Saint-Venant in 1837, and by Stokes in 1847
(Darrigol, 2005). Navier had already distinguished two types of motion, “régulier” (mean) and
“tumultueux” (turbulent), foreshadowing Osborne’s Reynolds decomposition. The idea that two
length scales are present was also considered by Saint-Venant.
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This Poisson-type equation displays how the pressure is connected to the terms
that are not divergence free in the Navier–Stokes equations†: the acceleration term
itself (contributing to the first term on the right-hand side) and possibly the body-
force term (second term on the right-hand side). In contrast, divergence-free terms,
such as ∂ui/∂t and �∇2ui , are removed. This relationship between velocity and pres-
sure is essential in many turbulent flows such as those discussed in Chapters 3–8.
Two remarks can be made from the very beginning:

� This nonlocal and instantaneous relationship is not physical, because it implies that
the speed of sound is infinite, so that a pressure disturbance in a remote position
instantaneously responds to a velocity disturbance.

� However, this unphysical problem is very relevant to studying and to understand-
ing low-Mach-number turbulence. It is now clear that the problem of turbulence
is not only due to the nonlinearity of the acceleration term (2.16), as often ad-
vocated, and not only due to the lack of integrability of trajectories (2.3) (e.g.,
Lagrangian chaos). The “pressure-released” turbulence, illustrated by Burgers’
equation in the 1D case and by the cosmological gas in three dimensions (e.g.,
Polyakov, 1995), is essentially solved! Hence, the role of pressure, or, identically,
the restriction to solenoidal modes (projection onto a solenoidal subspace), is
an essential point to understanding why turbulence is so complex. In addition,
“solenoidal turbulence,” as calculated using pseudo-spectral DNS at the highest
resolution available [e.g., 40963, (Kaneda et al., 2003)], mimics all characteristics
of – low-speed – “real” physical turbulence.

2.1.4 First Insight into Compressibility Effects

As soon as the solenoidal condition is relaxed, the coupling between pressure
and velocity becomes very different. First, the problem with five components
(� , u1, u2, u3, p) is governed by only four equations, i.e., mass and momentum con-
servation, the latter with given �i j . The state law of the fluid provides a new equa-
tion, but also introduces a new variable, usually temperature or entropy. Conse-
quently, a new conservation equation (for energy, enthalpy, entropy) is needed. As
introduced in Chapter 9, the entropy term s is chosen in this book, so that the six-
component (� , u1, u2, u3, p, s) compressible problem is addressed by use of a six-
component system of equations: 1 (mass conservation) + 3 (momentum conserva-
tion) + 1 (state law) + 1 (entropy conservation).

As a first illustration, it is possible to derive an equation for � , combining mass
and momentum equations, as follows:

∂2�

∂t2
− a2

0∇2� = ∂2

∂xi∂x j

�ui u j − �visc
i j + �i j (p − a2

0�)︸ ︷︷ ︸
Ti j

 . (2.18)

† It is important to note that such terms exist even if the velocity field is solenoidal.
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2.1 Background Deterministic Equations 15

A characteristic speed of sound, a0, is assumed to be space uniform in this equa-
tion, which is “exact” in this limit (only production terms m and f are ignored,
for the sake of simplicity). For instance, with isentropic and low-Mach-number ad-
ditional assumptions, Ti j reduces to its first term, and (2.18) can be used to support
acoustic analogies (e.g., Lighthill and many followers). An equation similar to (2.18)
can be found for the pressure, so that Eqs. (2.17) and (2.18) illustrate the different
dynamics when compressibility is called into play.

2.1.5 Reminder About Circulation and Vorticity

The reader is referred to basic textbooks for the fundamentals about circulation,
related Kelvin theorem, and vorticity, e.g., Saffman (1995). The vorticity is defined
as the curl of velocity, i.e. � = curl u, leading to

�i = 	i jn
∂un

∂x j
. (2.19)

It may be noted that instead of using the tensorial expression with the third-
order alternating pseudo-tensor 	i jn (often referred to as the Levi–Civita tensor),
one can use the symbolic notation ∇ × u, but with care because the symbolic oper-
ator ∇ is not a vector, and some permutation rules do not hold for it.

From momentum conservation law (2.13) it follows that

�̇i + ∂u j

∂x j
�i − ∂ui

∂x j
� j = 	i jn

∂

∂x j

(
1
�

∂�nm

∂xm
+ fn

)
.

The right-hand-side is exactly the curl of the acceleration u̇. Ignoring the viscous
and body-force terms, one can rewrite this equation as

D

Dt

(
�i

�

)
= ∂ui

∂x j

� j

�
= 1

�3
	i jn

∂�

∂x j

∂p

∂xn
, (2.20)

which makes the baroclinic torque appear on the right-hand side.
This term vanishes in the barotropic case p = p(�), and not only in the pure

incompressible case. In such a situation, Eq. (2.6) for Fi j is the same as the preceding
equation for �i/� at fixed j . As a consequence, the evolution of the vorticity vector
along trajectories is governed by the Cauchy matrix as

�i (x, t) = 1
Det F

Fi j (X, t, t0)� j (X, t0). (2.21)

A similar but less common equation for the velocity is the Weber equation:

ui (x, t) = F−1
j i (X, t, t0)u j (X, t0) + ∂


∂xi
, (2.22)

where 
 is a scalar potential. It is easy to derive the former from the latter by
means of the curl operator, but the reciprocal is much more difficult to establish. An
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alternative way for proving Eq. (2.22) is to start from the Kelvin circulation theorem
(Julian Hunt, private communication):∮

C
u(x, t) · �x =

∮
C0

u(X, t0) · �X,

in which the closed chains of fluid particles, respectively C0 at initial time and C at
final time, are connected by trajectories. Because the result has to be independent
of the form of the (e.g., initial) loop C0, a differential formula can be derived from
the integral one, as in thermodynamics for the first and second principles, yielding

u(x, t) · �x − u(X, t0) · �X = d
,

in which d
 is a total differential. The Weber equation is recovered from the former
differential equation by use of �Xi = F−1

i j �x j and d
 = ∂

∂xi
�xi .

2.1.6 Adding Body Forces or Mean Gradients

In the absence of external forcing or turbulence production by means of interaction
with a nonuniform mean-velocity field, the “incompressible” turbulence (only this
case is discussed here) decays, and (but this is more controversial) returns toward
isotropy. Therefore decaying isotropic turbulence, which is addressed in Chapter 3,
is the best illustration for turbulence dynamics. Statistical homogeneity is a manda-
tory requirement to study such a turbulence, so that the concepts of homogeneity
and isotropy are intimately connected in various fundamental approaches to homo-
geneous isotropic turbulence (HIT). A main theme of this book is to illustrate how
the framework of homogeneous anisotropic turbulence (HAT) is informative and
useful – up to careful definitions and some caveats.‡ In this context, we focus on
anisotropic forcings, which can render the turbulence anisotropic and inject energy,
so that the ultimate decay is altered or even prevented.

How such a forcing can preserve homogeneity, as far as possible, while repre-
senting a physical process, is the first question. Our experience is that forcing pro-
cesses often used in fundamental studies have nothing to do with actual flows. On
the other hand, mean rotation, strain, shear, and density stratification are physically
relevant effects, consistent or not with statistical homogeneity.

The case of turbulence in a rotating frame is helpful to introduce our concept of
HAT. On the one hand, a solid-body motion

x (0)
i = Fi j (t − t0)X j , (2.23)

in which F reduces to a space-uniform, orthogonal (F−1 = F̃) matrix can be superim-
posed to a disturbance motion that will be considered “turbulent.” In the preceding
equation, the motion can be considered as base one, X denotes the Lagrangian coor-
dinates associated with the base-flow motion, and Fi j (t) is also the base-flow counter-
part of the general matrix introduced at the beginning of this chapter. In agreement

‡ A precise definition of statistical homogeneity is premature here; this definition is given in Subsec-
tion 2.2.1.
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with the usual solid-body motion description, the velocity field is characterized by
the angular-velocity vector �n with magnitude � and orientation n, so that

u(0) = �n × x with ∇ × u(0) = 2�n

up to a constant term, which can be set equal to zero by changing the frame of
reference thanks to the Galilean invariance property. In other words, the base flow
is characterized by a constant-velocity-gradient matrix A:

A =
(

∂u(0)
i

∂x j

)
=

 0 −� 0
� 0 0
0 0 0

 , (2.24)

choosing ni = �i3 without loss of generality. Accordingly, it is possible to replace
ui with u(0)

i + u′
i in the background equations and to study the turbulent flow (i.e.,

u′) in the presence of a particular base flow u(0) with a constant, antisymmetric
gradient matrix. In our simple example dealing with solid-body rotation, the base-
displacement gradient matrix is

[
F (0)

i j

]
=

 cos�(t − t0) − sin�(t − t0) 0
sin�(t − t0) cos�(t − t0) 0

0 0 1

 . (2.25)

On the other hand, it is well known that it is easier to study turbulence in the ro-
tating frame, projecting both position and velocity in this non-Galilean frame of ref-
erence. Replacing xi with Xi and ui with vi , defined in the same way as in Eq. (2.23)
by

ui = F (0)
i j (t − t0)v j ,

one sees that vi and Xi satisfy the same equations as ui and xi in the Galilean ref-
erence frame, up to additional, centrifugal, and Coriolis forces. This non-Galilean
acceleration term is defined as

f = −2�n × v︸ ︷︷ ︸
Coriolis

−�2[n × (n × X)].

This simple example, addressed in more detail in Chapter 4, is used here to
illustrate the relevance of adding a constant base velocity gradient or adding a body
force. For solid-body rotation, energy is not directly injected into turbulence, be-
cause the Coriolis force produces no work (and the centrifugal force can be removed
from consideration if it is incorporated in the pressure term), but the energy cascade
is strongly altered and rendered highly anisotropic. Without anticipating the results
dealing with statistical properties of this flow, which are presented in the relevant
chapter, the presence of solid-body rotation can be shown to be consistent with sta-
tistical homogeneity of the turbulent flow: removing the base-flow motion for defin-
ing homogeneity (and hence restricting the analysis to disturbances) in the first case,
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u′ = u − u(0),§ and considering homogeneity for u′ → v in the rotating frame in the
second case.

To what extent can the pure antisymmetric base velocity-gradient matrix be re-
placed with a more general one, including both symmetric and antisymmetric parts?
Craya introduced in 1958 a relevant formalism for this purpose, which has been
completely revisited in Cambon’s thesis (1982) and rediscovered later in the context
of stability analysis (e.g., Craik and Criminale, 1986). In a large part of this book, a
constant-mean-velocity-gradient matrix A is used for studying the turbulent velocity
field:

u′
i = ui − Ai j x j ,

The following comments can be made prior to analysis:

1. A special form of A is required for preserving statistical homogeneity of the tur-
bulent field. In the incompressible case, however, these conditions are not very
stringent, allowing hyperbolic, linear, and elliptical streamlines for the mean
motion. As soon as A has a nonzero symmetric part, kinetic energy can be di-
rectly injected into the turbulent flow, i.e., some turbulence-production mecha-
nisms can take place.

2. The strict analogy with the effect of body forces holds for solid-body motion
only. The advection of turbulent motion by the mean flow can be removed by a
convenient change of frame, even if A is not purely antisymmetric, but all other
terms in the equations for u′ are then rendered more complicated, as they will
involve F(0)(t − t0)-dependent factors (Rogallo, 1981; Cambon, 1982).

3. Both linear [as in the rapid distortion theory (RDT) or in similar stability anal-
yses] and full nonlinear approaches can be carried out with the additional
constant-mean-velocity-gradient-matrix effect, keeping the context of homo-
geneous, but often highly anisotropic, turbulence.

4. What is the physical relevance of a mean flow without boundaries having the
same A matrix over the whole space (often called extensional base flow in the
community of hydrodynamic stability)? This question is essential. It received a
clear answer, at least for linear theory, ranging from WKB RDT to short-wave
disturbance analyses: One has to consider that the spatial homogeneity, and
therefore the region in which the mean gradient is almost constant, is restricted
to a domain that is large with respect to the size of relevant turbulent structures
(turbulence in general), or large with respect to the wavelength of disturbances,
from the linear-stability viewpoint.

This last point (4) suggests that HAT in the presence of constant A is not only a
marginal domain in the field of turbulence research. We therefore propose to use it
as one of the main threads in this book. Of course, this point has to be discussed with
care, in order to delineate its relevance to understanding the dynamics of realistic
shear flows of practical interest. In addition, it is shown at the end of this book that

§ It is worth noting that the base flow is not invariant by translation.
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turbulence in the presence of a shock wave can be treated by use of the HAT for-
malism. Even if the effect of the shock is very far from a mean-gradient effect, it is
consistent with the absence of typical length scale L for the distorting mechanism: L
is considered infinite (or very large with respect to the size of turbulent structures)
in the first case; it is zero (the thickness of the shock wave), in contrast, in the sec-
ond case (or very small with respect to the size of turbulent or organized structures
passing through the shock wave).

2.2 Briefs About Statistical and Probabilistic Approaches

A presentation of statistical tools is a “compulsory figure” in any book on turbu-
lence. The reader is referred to, e.g., Tennekes and Lumley’s monograph (1972)
and to Chapter 3 of a more recent book (Mathieu and Scott, 2000) for a deep and
comprehensive review. Because this aspect is well documented, we recall only un-
avoidable definitions and procedures in this section.

2.2.1 Ensemble Averaging, Statistical Homogeneity

The most fundamental statistical averaging deals with an ensemble of realizations
of a random variable V and is denoted either by an overbar V or by angle brackets
〈V 〉 in the following. Possible approximations using temporal or spatial averaging
are not discussed here. We assume that the ensemble averaging has all the prop-
erties of commutation (with time and spatial derivatives), which are often referred
to as the Reynolds axioms and can therefore be referred to as Reynolds averaging.
Discussing ergodicity is also beyond the scope of this book. The probability density
function (pdf) that underlies the calculation of any statistical moment, as V n for a
scalar or Vn for a vector, is introduced only when it is used within a specific context.

In view of the importance of homogeneous turbulence in this book, one cannot
ignore the excellent definition by Batchelor (1953), as follows:

Given an infinite body of uniform fluid in which motions conform to the equa-
tions (1.2.1) and (1.2.2), and given that at some initial instant the velocity of the
fluid is a random function of position described by certain probability laws which
are independent of position, to determine the probability laws that describe the
motions of the fluid at subsequent times.

2.2.2 Single-Point and Multipoint Moments

It is important to point out that the Reynolds decomposition, in terms of a mean-
velocity field, u, and a fluctuating-velocity field, u′, remains useful in many applica-
tions. It is used as a mandatory requirement before the statistical tools are applied
to u′

i , e.g., evaluating statistical moments of the turbulent field. In this sense, sta-
tistical modeling is restricted to a centered random variable u′ = u − u. In addition,
N th-order moments of u′ can be taken at the same point in the spatial domain, or
at different points, the number of sampling points ranging from 2 to N . Evolution
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equations can be derived for all these quantities, with a problem of closure revis-
ited in the last section of this chapter. A given level of description can be labeled as
[N , P], where N is the order of correlations and P (P ≤ N) is the number of unde-
pendent points. Emphasis in this book is put on low-order moments, with N ranging
from 2 to 4, but possibly in a multipoint description.

2.2.3 Statistics for Velocity Increments

An alternative to the two-point description, for instance based on the velocity-
correlation tensor

Ri j (x, r , t) = ui (x, t)u j (x + r , t), (2.26)

is to work with velocity increments

�ui = ui (x + r , t) − ui (x, t)

and to consider their moments only. This analysis is discussed in Chapter 3. A local
scaling (in terms of r) of related moments, or structure functions, is easier to justify,
following Kolmogorov, because the velocity increments are naturally smaller and
smaller as the distance r = | r | decreases. This analysis is restricted to an inertial
range of scales, with r significantly larger than the Kolmogorov scale (see definition
in Table 3.4) and significantly smaller than a typical integral length scale. High-order
moments, i.e., high-order structure functions, are investigated in order to character-
ize the internal intermittency, but the multipoint approach is always a two-point
one.

2.2.4 Application of Reynolds Decomposition to Dynamical Equations

The velocity and pressure fields are first split into mean and fluctuating components,
and equations for their time evolution are derived from the basic equations of mo-
tion of the fluid. Assuming incompressibility, as is done in this chapter unless explic-
itly stated, one obtains the following mean-flow equations,

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ �

∂2ui

∂x j∂x j
− ∂u′

i u
′
j

∂x j︸ ︷︷ ︸
Reynolds stress term

, (2.27)

∂ui

∂xi
= 0, (2.28)

and the equations for the fluctuating component

∂u′
i

∂t
+ u j

∂u′
i

∂x j
+ u′

j

∂ui

∂x j
+ ∂

∂x j
(u′

i u
′
j − u′

i u
′
j )︸ ︷︷ ︸

nonlinear term

= −∂p′

∂xi︸ ︷︷ ︸
pressure term

+ �
∂2u′

i

∂x j∂x j︸ ︷︷ ︸
viscous term

(2.29)
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and

∂u′
i

∂xi
= 0. (2.30)

Here, ui and p are the mean velocity and static pressure (divided by density),
and u′

i and p′ are the corresponding fluctuating quantities, usually interpreted as
representing turbulence.

At various points, we will mention related works in the area of hydrodynamic
stability. It is worth noting that in the inhomogeneous case Eqs. (2.29) and (2.30)
for the fluctuating flow are essentially the same as those for a perturbation u′

i , about
a basic flow ui , with an additional forcing term ∂u′

i u
′
j/∂x j . Although the aims of

stability theory (to characterize the growth of perturbation) and of the theory of
turbulence (to determine the statistics of u′

i ) are different, we believe it is nonethe-
less valuable to draw parallels between these two fields. It is our hope that, in doing
so, we will encourage specialists in both areas to become more conversant with each
others’ work.

Equation (2.29) is now used to derive equations for the time evolution of ve-
locity moments, i.e., averages of products of u′

i with itself at one or more points in
space. Setting up the equations for the nth-order velocity moments at n points, one
discovers that there are two main difficulties. First, the term in (2.29) that is non-
linear with respect to the fluctuations leads to the appearance of (n + 1)th-order
moments in the evolution equations for nth-order moments. Second, the pressure
term brings in pressure–velocity correlations.

The pressure field is intimately connected with the incompressibility constraint.
Indeed, by taking the divergence of (2.29), one obtains a Poisson equation for the
pressure fluctuations:

∇2 p′ = − ∂2

∂xi∂x j
(u′

i u j + ui u
′
j + u′

i u
′
j − u′

i u
′
j ). (2.31)

The solution of this equation based on the Green’s functions expresses p′ at
any point in space in terms of an integral of the velocity field over the entire fluid
domain, together with integrals over the boundaries, the details of whose expression
in terms of velocity do not concern us here.

The solution of the Poisson equation ∇2 p′ = f ′ can be written as

p′(x, t) =
∫

R3
G(x, x′) f ′(x′, t)d3x′, (2.32)

with the related Green’s function given by

G(x, x′) = 1
4�

1
|x′ − x| (2.33)

in a 3D unbounded domain, getting rid of specific boundary conditions.
Replacing f ′ in Eq. (2.32) with the whole right-hand side of Eq. (2.31) yields

both linear and nonlinear, nonlocal contributions from fluctuating velocity. Thus
the pressure at a given point is nonlocally determined by the velocity field at all
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points of the flow, leading to integrodifferential equations for the velocity moments
when the pressure–velocity moments are expressed in terms of the sole velocity.
It must be observed that nonlocality is not specific to the use of statistical meth-
ods, but is an intrinsic feature of incompressible fluids, in which the pressure field
responds instantaneously and nonlocally to changes in the flow to enforce incom-
pressibility. The source term in Poisson equation (2.31) consists of parts that are
linear and nonlinear with respect to the velocity fluctuation. Therefore the pressure
can be decomposed as the sum of two components: a pressure term p′(r) associated
with linear terms (and referred to as the rapid pressure term, as it responds immedi-
atly to a change in the mean flow) and a second one, p′(s), which is associated with
the nonlinear one (referred to as the slow pressure term, as it is not directly sensitive
to a change in the mean flow):

∇2 p′(r) = − ∂2

∂xi∂x j
(u′

i u j + ui u
′
j ), (2.34)

∇2 p′(s) = − ∂2

∂xi∂x j
(u′

i u
′
j − u′

i u
′
j ). (2.35)

2.3 Reynolds Stress Tensor and Related Equations

2.3.1 RST Equations

In addition to simple closure models for the Reynolds-averaged Navier–Stokes
equations, such as models of turbulent viscosity using a mixing-length assumption,
second-order single-point [2,1] models offer both a dynamical and a statistical de-
scription of the turbulent field. The governing equations for the RST, turbulent ki-
netic energy, and for its dissipation rate can reflect the effects of convection, diffu-
sion, distortion, pressure, and viscous stresses, which are present in the equations
that govern the fluctuating field u′

i .
The exact evolution equation for the RST, Ri j = u′

i u
′
j [with r = 0 in Eq. (2.26)],

derived from Eq. (2.29), has the form

∂ Ri j

∂t
+ uk

∂ Ri j

∂xk
= Pi j +
i j − ε i j − ∂Di jk

∂xk
, (2.36)

where

Pi j = − ∂ui

∂xk
Rk j − ∂u j

∂xk
Rki (2.37)

is usually referred to as the production tensor and is the only term on the right-
hand side of Eq. (2.36) that does not require modeling, as it is given in terms of
the basic one-point variables ui and Ri j . The remaining terms, which are not exactly
expressible in terms of the basic one-point variables and heuristic approximations,
forming the core of the model are introduced to close the equations.
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The second term on the right-hand side of Eq. (2.36) is associated with the fluc-
tuating pressure and is given by


i j = p′
(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)
, (2.38)

consisting of one-point correlations between the fluctuating pressure and rate-of-
strain tensor. As discussed in the introduction, p′ is nonlocally determined from the
velocity field by Poisson equation (2.31), which, in principle, requires multipoint
methods for its treatment. It is usual to decompose 
i j into three parts,


i j = 

(r)
i j +


(s)
i j + 


(w)
i j , (2.39)

corresponding to the three components of the Green’s function solution of (2.31).
The first is known as the “rapid” pressure component and arises from the pressure
component defined by Eq. (2.34). Being linear, this component is present in RDT,
hence the term “rapid” component. The second term in (2.39) is the “slow” compo-
nent and comes from (2.35). Finally, 
(w)

i j is the wall component and corresponds to
a surface integral over the boundaries of the flow in the Green’s function solution
for p′, which is additional to the volume integrals expressing the rapid and slow com-
ponents. The three components of 
i j have zero trace and are assumed to represent
physically distinct mechanisms. Hence they are modeled separately. The pressure–
strain tensor is traceless (because of the incompressibility constraint) and therefore
corresponds to a mechanism of redistribution of energy between the different com-
ponents of the RST. Linear and nonlinear mechanisms reflected in its rapid and slow
parts, respectively, are discussed at the end of this subsection. In simple models, a
mechanism of isotropization of the production is attributed to 


(r)
i j , and a mechanism

of return to isotropy, or isotropization of the RST, is attributed to 

(s)
i j .

The dissipation tensor,

ε i j = 2�
∂u′

i

∂xk

∂u′
j

∂xk
, (2.40)

accounts for the destruction of kinetic energy by viscous effects. The usual scalar
dissipation rate, denoted as ε , is defined as

ε ≡ 1
2

ε i i . (2.41)

The last term in Eq. (2.36) vanishes in homogeneous turbulence. This term is
expressed as a flux of a third-order correlation tensor Di jk , which gathers triple-
velocity correlations, pressure–velocity terms, and viscous-diffusion terms:

Di jk = u′
i u

′
j u

′
k + 1

�

(
�jk p′u′

i + �ik p′u′
j

)
+ �

(
u′

i

∂u′
j

∂xk
+ u′

j

∂u′
i

∂xk

)
. (2.42)

Its role is essential to the spatial transfer of turbulent kinetic energy (and
anisotropy), which is created near a wall, away from it. It is ignored, however, as
far as strict statistical homogeneity is assumed in this book.
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Given the importance of the K − ε model in engineering, together with the spe-
cific role of trace-free terms in the Reynolds stress equations, it is useful to introduce
a trace-deviator decomposition for the RST,

Ri j = 2K
(
�i j

3
+ bi j

)
, K = 1

2
Rii , bi j = Ri j

2K − �i j

3
(2.43)

and to write the governing equations for both the kinetic energy K and the devia-
toric, trace-free, and dimensionless anisotropy tensor bi j .

The evolution equation for the kinetic energy derived from Eq. (2.36) is

∂K
∂t

+ uk
∂K
∂xk

= P − ε − ∂Dk

∂xk
, (2.44)

and a similar equation is derived for bi j . All the terms present in the Reynolds stress
equation contribute to the equation for the kinetic energy, except the – traceless –
pressure–strain tensor. The scalar production term P = Pi i/2 can be rewritten as

P = −K
[

1
3

(
∂ui

∂x j
+ ∂u j

∂xi

)
+
(

∂ui

∂xk
bk j + ∂u j

∂xk
bki

)]
. (2.45)

The deviatoric part of the dissipation tensor is either neglected or simply mod-
eled similarly as the slow part of the pressure–strain tensor. Only the scalar dissi-
pation rate ε is considered an independent variable, which is governed by its own
equation. Because the exact evolution equation for ε is very complex, the model
equation used in practice is obtained by deriving the equation for ε̇ /ε from the one
for K̇/K, which is much easier to derive.

The terms that appear in the evolution equations for Reynolds stress models in
homogeneous turbulence can be exactly expressed as integrals in Fourier space of
contributions derived from the second-order spectral tensor R̂i j , which is the Fourier
transform of double correlations at two points, and from the third-order “transfer”
spectral tensor Ti j , which involves the Fourier transform of two-point triple-velocity
correlations (see Section 2.5).

2.3.2 The Mean Flow Consistent With Homogeneity

Let us consider a mean flow, filling all the space, with space-uniform velocity gradi-
ents, which generalize the solid-body motion u(0) introduced in Subsection 2.1.6:

ūi (x, t) = Ai j (t)x j + u0
i . (2.46)

Its presence can be consistent with statistical homogeneity for the fluctuating
flow. This is a common background for homogeneous turbulence and recent linear
stability analyses (see Craik and Criminale, 1986, among others).¶ Equations (2.27)

¶ It is important to stress that the feedback of the RST in (2.27) vanishes because of statistical homo-
geneity (zero gradient of any averaged quantity), so that the mean flow (2.46) has to be a particular
solution of the Euler equations and can be considered a base flow for stability analysis. In turn,
the form of (2.46) is consistent with the preservation of homogeneity of the fluctuating flow gov-
erned by (2.29) and (2.30), provided that homogeneity holds for the initial data. This explains why
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1 1

1

2

22

Strain-dominated flow (hyperbolic) Shear flow (linear)

Vorticity-dominated flow (elliptical)

Figure 2.1. Sketch of isovalues of the stream function for the steady mean flow in homogeneous
RDT: the three canonical cases, (a) elliptical �2 � S2, (b) hyperbolical �2 � S2, (c) linear �2 = S2.

and (2.29) can be simplified by dropping the Reynolds stress term in both, so that
(2.27) reduces to a particular Euler equation with a solution of type (2.46). As a
consequence, the trace-free matrix A is subjected to the condition that dA/dt + A2

must be symmetric, or, equivalently,

	i jk

(
d A jk

dt
+ A jn Ank

)
= 0, Aii = 0. (2.47)

Irrotational mean flows, which are flows with a symmetric gradient matrix A,
i.e., with Ai j = A ji , are obvious solutions. Rotational mean flows yield more compli-
cated linear solutions, and only the steady case has received much attention [Craik
and co-workers and Bayly and co-workers performed recent developments in un-
steady cases; see, e.g., Bayly, Holm, and Lifschitz (1996)]. Conditions (2.47) imply
that A can be written as

A =

 0 S − � 0
S +� 0 0

0 0 0

 (2.48)

in the steady, rotational case, when axes are chosen appropriately, where S,� ≥
0. This corresponds to steady plane flows, combining vorticity 2� and irrotational
straining S. The related stream function (sketched in Fig. 2.1) is

� = S

2
(x2

1 − x2
2 ) + �

2
(x2

1 + x2
2 ), (2.49)

homogeneous RDT can have the same starting point as a rigorous and complete linear-stability
analysis in this case, before the random initialization of the fluctuating velocity field is considered.
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with ui = 	i3 j
∂�
∂x j

. The problem with arbitrary S and � was analyzed in order to ex-
tend classical RDT results, which were restricted to pure strain and pure shear. For
S ��, the mean-flow streamlines are open and hyperbolic. For S ��, the mean-
flow streamlines are closed and elliptic about the stagnation point at the origin. The
limiting case, S = �, correspond to pure shearing of straight mean streamlines (see
Chapter 5 for the fundamentals of RDT analysis).

2.3.3 Homogeneous RST Equations. Briefs About Closure Methods

Classical closure methods are now briefly addressed. The reader is referred to ref-
erence books for an exhaustive discussion about turbulence modeling, e.g., Piquet
(2001). If we restrict our attention to homogeneous turbulence in the presence of
mean-velocity gradients previously defined, the RST is unsteady: The steadiness of
RST equations, often assumed in Reynolds averaged Navier–Stokes (RANS) meth-
ods, comes from the use of time averaging, and does not concern us here. Histori-
cally, basic concepts for deriving statistical closures were introduced in this unsteady
homogeneous framework (Launder, Reece, and Rodi, 1975; Lumley, 1975). The
most difficult term to close in homogeneous turbulence is the linear (rapid) contri-
bution to the pressure–strain tensor in Eqs. (2.36) and (2.39), which one can write as



(r)
i j = 2Amn (Minmj + M jnmi ) , (2.50)

with

Mi jpq = 1
4�

∂2

∂rp∂rq

∫∫∫
1

| r − r ′ | Ri j (r ′, t)d3r ′, (2.51)

using Eqs. (2.32) and (2.33). A slightly different form of Mi jpq can be found in
Launder, Reece, and Rodi (1975) and Lumley (1978). The alternative relationship
for Mi jpq in Fourier space, more tractable from our viewpoint, is given in Subsec-
tion 2.6.1.2, in exact agreement with, e.g., Kassinos, Reynolds, and Rogers (KRR)
(2001). In general, there is no direct link between Mi jpq and the RST, even if the
identity Mi jpp = Ri j holds, and the problem of closure arises from the two-point
structure in Eq. (2.51). In classical closures, the nondimensional tensor Mi jpq/(2K)
is sought as a tensorial function of the nondimensional deviatoric tensor bi j defined
in Eq. (2.43). Models range from linear (Launder, Reece, and Rodi, 1975) to cubic
tensorial expansions.

Similarly, the slow pressure–strain tensor is assumed to be an isotropic tensorial
function of bi j . In the simplest version, 
(s)

i j is proportional to −bi j , in agreement
with an heuristic principle of return-to-isotropy.

Finally, the ε -equation is usually closed by pure analogy with the K-equation.
One can understand this by considering the following evolution equations for their
logarithmic derivatives:

1
K

dK
dt

= P
K − ε

K (2.52)
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and

1
ε

dε
dt

= C	1
P
K − C	2

ε
K , (2.53)

where C	1 and C	2 are two real arbitrary parameters, which are tuned to optimize
the results on some very simple flows (e.g., decaying isotropic turbulence, homoge-
neous shear flow, turbulent flat-plate boundary layer, etc.). The first equation can be
considered as exact in the homogeneous unsteady limit if the production term given
by Eq. (2.45) is known (it derives from the RST, but it is evaluated from simplified
bi j models in linear and nonlinear K − ε models). On the other hand, the second
equation is only a carbon copy of the first one, using two empirical constants, with-
out linkage to the true enstrophy equation.

2.3.3.1 KRR’s New Tensors

Even if the RST is recovered in contracting the last two indices of Mi jpq , the closure
of this whole tensor in terms of the sole RST is a heuristic method, which was ques-
tioned, especially in the presence of a rotational mean flow. To capture more of the
components of Mi jpq , KRR (2001) proposed introducing a dimensionality tensor,

Dpq = Miipq , (2.54)

along with a circulicity tensor, denoted as Fi j in KRR (2001), and a stropholysis
tensor, Qi jn ,

Fi j = 	i pm	 jqn Mmnpq , Qi jn = 	i pq M jqpn, (2.55)

with an alternative fully symmetrized version Q∗
i jn . In homogeneous turbulence, the

circulicity tensor is not an independent one, in agreement with

Fi j = K�i j − Di j − u′
i u

′
j . (2.56)

Alternative definitions (also valid in inhomogeneous turbulence) are obtained
with a vector potential, or turbulence stream-function vector � ′

i , so that

u′
i = 	imn�

′
n,m, (2.57)

u′
i u

′
j = 	imn	i pq� ′

n,m�
′
q,p, Di j = � ′

n,i�
′
n, j , Fi j = � ′

i,n�
′
j,n. (2.58)

The reader is referred to KRR (2001) for the definition of a last tensor, denoted
as Ci j and specifically inhomogeneous. As for Mi jpq , a new insight into this structure-
based modeling will appear using spectral formalism.

2.4 Anisotropy in Physical Space. Single-Point
and Two-Point Correlations

In single-point modeling used in RANS methods, the deviatoric part of the RST is
used as the unique anisotropy indicator. An equation for bi j is readily derived from
(2.36), as the K-equation (2.44).
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Anisotropy for two-point correlations in physical space R(r , t) is rarely investi-
gated, because application of group-invariance properties (e.g., axisymmetry) must
be made prior to application of the incompressibility constraint. Incompressibility
yields implicit differential relationships between the different terms resulting from
the symmetry-group analysis (Sreenivasan and Narasimha, 1978). In contrast, as we
shall subsequently see, the incompressibility constraint a priori yields dramatic sim-
plifications (reduction of the number of unknowns) for the spectral tensor, which
is the 3D Fourier counterpart of R(r , t), so that application of symmetry-group
properties, as a second step, is much simpler. Similarly, anisotropy begins to be
investigated for structure functions in the scaling–intermittency community, using
the SO(3) symmetry group and spherical harmonic expansions (Arad, Lvov, and
Proccaccia, 1999). Nevertheless, we are not aware of any application to typically
anisotropic flows, such as the ones addressed in Chapters 4–8.

The anisotropy tensor bi j defined in Eq. (2.43) can be used to characterize the
structure of the anisotropic flows. Following the Cayley–Hamilton therorem, one
has

b3
i j + I2bi j − I3�i j = 0, (2.59)

where the second and third invariants of the anisotropy tensor are defined as
I2 = −bi j b ji/2 and I3 = det(b), respectively. It was shown by Lumley and Newman
(1977) that all physically admissible turbulent flows are contained within a finite
region (often referred to as the Lumley triangle) in the space spanned by I2 and
I3 (or, equivalently, in the space spanned by the two nonvanishing eigenvalues of
the anisotropy tensor). Each admissible point in the anisotropy map corresponds
to a specific shape of the ellipsoid generated by the three diagonal components of
the RST. The classification of the main anisotropy states was recently clarified by
Simonsen and Krogstadt (2005). The main elements of the classification are sum-
marized in Table 2.1 and illustrated in Fig. 2.2.

This analysis can be applied to any deviatoric dimensionless and trace-free ten-
sor derived from a definite-positive symmetrical tensor. The three positive eigenval-
ues of such a tensor, related to the orthogonal frame of eigenvectors (principal axes)
can be used instead of the �i eigenvalues. Many instances are given throughout this
book, including structure-based modeling and even spectral tensors.

2.5 Spectral Analysis, From Random Fields to Two-Point Correlations.
Local Frame, Helical Modes

2.5.1 Second-Order Statistics

Regarding homogeneous turbulence, we aim to take into account the possible dis-
torting effects of a mean flow defined by Eqs. (2.46) and (2.47), or effects of body
forces, so that anisotropy is essential. Therefore, the emphasis is put on homo-
geneous anisotropic turbulence (HAT). The Fourier transform is a valuable tool
to handle equations for velocity and pressure fluctuations, considered as random
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Table 2.1. Characteristics of the RST and the anisotropy tensor

Shape of Reynolds
State of turbulence Invariants Eigenvalues of bi j stress ellipsoid

Isotropic I2 = I3 = 0 �1 = �2 = �3 = 0 Sphere

Axisymmetric
(one large �i )

−I2
3 = ( I3

2

)2/3
0 � �1 �

1
3

− 1
6 � �2 = �3 � 0

Prolate spheroid

Axisymmetric
(one small �i )

−I2
3 = (− I3

2

)2/3
0 � �1 �

1
3

0 � �2 = �3 �
1
6

Oblate spheroid

One component I3 = 2
27 I2 = − 1

3 �1 = 2
3

�2 = �3 = − 1
3

Line

Two component
(axisymmetric)

I3 = − 1
108

I2 = − 1
12

�1 = − 1
3

�2 = �3 = 1
6

Disk

Two component − I2
3 = ( 1

27 + I3
)

�1 + �2 = 1
3

�3 = − 1
3

Ellipsoid

Source: Adapted from Simonsen and Krogstad (2005).

variables, as well as their statistical multipoint correlations matrices. The relations
between second-order tensors defined in both physical and Fourier spaces are dis-
played in Fig. 2.3.

The inverse Fourier transform that connects u′ to û is expressed as

u′
i (x, t) =

∫∫∫
ûi (k, t) exp(ık · x) d3k. (2.60)

Applying it to the two-point correlation tensor, one obtains

u′
i (x, t)u′

j (x + r , t) =
∫∫∫

R̂i j (k, t) exp(ık · r)d3k. (2.61)

0.4

0.3

0.2

0.1

0

− 0.06 − 0.04 − 0.02 0.02 0.04 0.06 0.080
I3

−I
2

2 Component
I3 = − (I2/3 + 1/9) 

Rodlike turbulence
Axisymmetric, I3 > 0
I3 = 2(− I2/3)3/2Disklike turbulence

Axisymmetric, I3 < 0
I3 = − 2(− I2/3)3/2

2 Component
Axisymmetric

1 Component

Isotropic

Figure 2.2. Lumley’s anisotropy invariant map and related Reynolds stress ellipsoids. Admissi-
ble turbulent states are located inside the trianglelike subdomain. From Simonsen and Krogstad
(2005), with permission of the American Institute of Physics.
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u′i(x, t)

ûi(k, t)

u′i(x, t)u′j(x+r, t)

u′iu′j(x, t)

û*i (k, t)ûj(− k, t) ∼ Rij(k, t)

r = 0

d3k

Inverse/direct
Fourier transform

Inverse/direct
Fourier transform

Figure 2.3. Schematic view of the relations that exist between second-order tensors defined in both
physical and Fourier spaces.

One may recall here that the direct Fourier transform is written as

R̂i j (k, t) = 1
(2�)3

∫∫∫
Ri j (r , t) exp(−ık · r)d3r . (2.62)

It is worth noting that the prefactor 1/(2�)3 appears in Eq. (2.62), and not in
Eq. (2.61). According to (2.61), the RST, which one obtains by setting r = 0 in Ri j ,
derives from its spectral counterpart R̂ through a 3D integral:

u′
i (x, t)u′

j (x, t) =
∫∫∫

R̂i j (k, t)d3k. (2.63)

The final equation of note in this subsection is

û∗
i (p, t)û j (k, t) = R̂i j (k, t)�3(k − p). (2.64)

Two alternative ways can be used to derive evolution equations for statisti-
cal quantities in spectral space. On the one hand, one can derive an equation for
u′

i (x, t)u′
j (x + r , t) by first using Eq. (2.29) and then obtaining the equation for R̂i j

by applying (2.62) (Oberlack, 2001). On the other hand, an equation for ûi (k, t) can
be directly obtained in Fourier space, from which one derives the equation for R̂i j

using Eq. (2.64). At least in homogeneous turbulence, the second way is simpler be-
cause the pressure term can be solved in the simplest way in the equation for ûi . As
a consequence, it is used in the following. The first way (Craya, 1958), even if more
cumbersome, has the advantage of applying a Fourier transform on only statistical
(smooth) quantities, without need for distribution theory. The reader is referred to
Batchelor (1953) and to Chapter 6 of Mathieu and Scott (2000) for a detailed anal-
ysis of Fourier expansions of both random variables and their statistical moments
and their limit in an infinite box.
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Figure 2.4. Polar-spherical system of coordinates for k and related
Craya–Herring frame of reference.

2.5.2 Poloidal–Toroidal Decomposition and Craya–Herring
Frame of Reference

The poloidal–toroidal decomposition (see, e.g., Chandrasekhar, 1981) is used to rep-
resent a three-component divergence-free velocity field in terms of two independent
scalar terms, taking advantage of the presence of a privileged direction n:

u′ = ∇ × (storn)︸ ︷︷ ︸
toroidal part

+∇ × [∇(spoln)]︸ ︷︷ ︸
poloidal part

, (2.65)

in which spol and stor are scalar potentials. The axial vector n is chosen along the
vertical direction, without loss of generality. As a caveat, some care is needed
to represent vertically sheared horizontal flows (VSHFs) (as coined in Smith and
Waleffe, 2002) that are defined as u′ = u′(x · n, t) with u′ · n = 0.

In Fourier space, the preceding decomposition yields a pure geometrical repre-
sentation,

û = k × n(ı̂stor)︸ ︷︷ ︸
toroidal mode

− k × (k × n)(ŝpol)︸ ︷︷ ︸
poloidal mode

, (2.66)

and it appears immediately that the Fourier mode related to the vertical wave-vector
direction, k ‖ n, has zero contribution. This gap in the spectral description precludes
the capture of the VSHF mode in physical space. To solve this problem, one can
define an orthonormal frame of reference, which is nothing but the local reference
frame of a polar-spherical system of coordinates for k (see Fig. 2.4):

e(1) = k × n
|k × n| , e(2) = e(3) × e(1), e(3) = k

k
, (2.67)

with k × n �= 0. Local frame vectors e(1), e(2), e(3) may coincide with the fixed frame
of reference, with e(3) = n for k ‖ n. The only price to pay for matching toroidal–
poloidal modes to the VSHF one is to accept a nonuniform definition for k × n = 0
and k × n �= 0, but this is well known using any polar-spherical coordinate sys-
tem. In the turbulence community, the local frame (e(1), e(2)) of the plane normal
to the wave vector is often referred to as the Craya–Herring frame. Accordingly
the divergence-free velocity field in Fourier space has only two components in the
Craya–Herring frame:

û(k, t) = u(1)e(1) + u(2)e(2). (2.68)
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For k × n �= 0, u(1) and u(2) are directly linked to the toroidal mode and the
poloidal mode, respectively. For k × n = 0, they correspond to the VSHF mode.
For the vorticity fluctuation, a similar decomposition is found:

�̂i (k, t) = ık
[
u(1)e(2)

i − u(2)e(1)
i

]
, (2.69)

so that u(1) and u(2) are directly related to the spectral counterparts of Orr–
Sommerfield/Squires variables: �̂3 = −k⊥u(1) for �′

3 and −k2û3 = −kk⊥u(2) for ∇2u′
3,

with k⊥ = |k × n|. A similar decomposition is used in Bayly, Holm, and Lifschitz
(1996). Finally, the wave-vortex decomposition introduced in Riley, Metcalfe, and
Weissman (1981) in the particular context of stably stratified turbulence (see Chap-
ter 7) is also a particular case of Eq. (2.65).

RDT equations (and fully nonlinear ones, too) can be written in the Craya–
Herring frame, resulting in a reduced Green’s function with only four independent
components (Cambon, 1982). Details are given in the following chapters, in which
RDT solutions are discussed.

Finally, one may mention that the toroidal part of the flow is always a part of
the “horizontal” velocity component u′ × n, the one that is divergence free only
in terms of horizontal coordinates. This toroidal contribution does not reduce to a
two-dimensional two-component (2D-2C) mode, because the toroidal potential stor

also depends on the “vertical” coordinate x · n in general; it appears as a 3D stream
function. Both the VSHF mode and the 2D-2C mode are low-dimension mani-
folds, which can be incorporated in the generalized poloidal–toroidal decomposi-
tion, without need for specific additional terms. In spite of the analogy of (2.65) with a
“vortical-divergent” Helmholtz decomposition restricted to the horizontal flow (the
vertical component being a part of the poloidal mode by means of u′ · n = −∇2spol),
this decomposition is purely vortical in three dimensions, because it generates a 3D
potential vector

� ′
i = storni + 	i pq

∂spol

∂x p
nq , (2.70)

as the one used by KRR [see Eq. (2.57)]. The detailed way to recover the two scalar
functions spol and stor from the solenoidal velocity field is not recalled here for the
sake of brevity.

2.5.3 Helical-Mode Decomposition

This decomposition is an alternative to the Craya–Herring decomposition and
presents some advantages regarding frame-invariance properties, treatment of
background nonlinearity, and rotating turbulence. The helical modes are defined
from

Ni (k) = e(2)
i (k) − ıe(1)

i (k), (2.71)
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Table 2.2. Local frame of reference in Fourier space

Decomposition name V3(k) V1(k) V2(k)

Poloidal–toroidal n ık × n −k × (k × n)

Craya–Herring
k
k

k × n
|k × n|

k
k

× k × n
|k × n|

Helical
k
k

k
k

× k × n
|k × n| − ı

k × n
|k × n|

k
k

× k × n
|k × n| + ı

k × n
|k × n|

Note: The general form is û(k, t) = �1(t)V1(k) + �2(t)V2(k), where [V1(k), V2(k)] is a local
frame in the plane orthogonal to k. This local basis is supplemented by a third vector, V3. The
vector n is an arbitrary parameter in the three decompositions.

so that the solenoidal velocity field in Fourier space is decomposed as

û(k, t) = �+(k, t)N(k) + �−(k, t)N(−k). (2.72)

The preceding definition is the same as the one in Cambon’s thesis (1982). It
was used in all the subsequent papers (e.g., Cambon and Jacquin, 1989) from the
same team. Particularly, this definition ensures Hermitian symmetry,

N(−k) = N∗(k),

where ∗ denotes a complex conjugate, because e(1)(−k) = −e(1)(k) and e(2)(−k) =
e(2)(k). The most useful property is

ık × N = k N, (2.73)

which means that Neık · x and its complex conjugate are eigenmodes of the curl op-
erator. Accordingly, the vorticity fluctuation in Fourier space is written as

�̂i (k, t) = k [�+(k, t)Ni (k) − �−(k, t)Ni (−k)] . (2.74)

Helical modes (2.71) were also used by Waleffe (1992). If one looks at the lit-
erature from only the turbulence community, similar modes were introduced in the
1970s as helicity waves (Uriel Frish and Marcel Lesieur, private communication),
but they were not used to get simplified dynamical equations.

Key elements of the three spectral decompositions just presented are summa-
rized in Table 2.2.

2.5.4 Use of Projection Operators

Even when pure incompressible flows are considered, the solenoidal property for
the velocity field is not satisfied by some terms in the governing equations, so that
projection onto a solenoidal subspace is needed. The Helmholtz decomposition,
which is addressed in Chapter 9, can be used in a simple way to define longitudi-
nal and transverse projection operators.
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A simple geometric decomposition is obvious for any vector V into a component
along a given direction spanned by a unit vector a and a component contained in the
plane normal to a,

V = V‖ + V⊥,

with V‖ = (V · a)a and, by difference, V⊥ = V − (V · a)a. This decomposition
brings in two projection matrices, P‖

i j = ai a j , with V ‖
i = P‖

i j Vj , and P⊥
i j = �i j − ai a j

with V ⊥
i = P⊥

i j Vj .
If we now consider V(k) as the Fourier transform of any term in the background

equation that governs û and set a equal to the unit vector along k, i.e., ai = ki/k,
the preceding geometric decomposition gives a simplified instance of the Helmholtz
decomposition. Accordingly,

V ‖
i (k) = ki k j

k2
Vj (k)

corresponds to the projection onto the dilatational mode, and

V ⊥
i (k) =

(
�i j − ki k j

k2

)
Vj (k)

corresponds to the projection onto the solenoidal mode. This immediately suggests
defining a longitudinal projection operator as

P‖
i j = ki k j

k2
(2.75)

and a transverse projection operator as

P⊥
i j = �i j − ki k j

k2
. (2.76)

Let us consider the following generic model equation,

∂u′
i

∂t
+ Si + ∂p′

∂xi
,

with a solenoidal vector field u′ and an arbitrary term Si . Its counterpart in Fourier
space is

∂ ûi

∂t
+ Ŝi + ıki p̂ = 0,

and the solenoidal property is replaced with the condition that û and k are orthogo-
nal. Application of the longitudinal projection operator yields

P‖
i j û j = 0,

and

P‖
i j Ŝ j + ıki p̂ = 0,

which corresponds to the Poisson equation for the pressure term, whereas the tran-
verse projection operator gives

P⊥
i j û j = ûi
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and

ûi

∂t
+ P⊥

i j Ŝi = 0.

The latter equation is a pure solenoidal equation, which no longer includes the
pressure term. When the emphasis is put on solenoidal turbulence, only the lat-
ter form of the dynamical equation is useful (as far as specific information on the
pressure term is not needed), and only the tranverse projection operator P⊥(k) is
needed. For the sake of simplicity the adjective “transverse” and the superscript ⊥

will be omitted from now on. Of course, the projection operator has a simple ex-
pression in terms of Craya–Herring and helical modes:

Pi j = e(1)
i e(1)

j + e(2)
i e(2)

j = 
 (Ni N ∗
j

)
. (2.77)

The decomposition of an arbitrary vector field V(k), which is not a priori diver-
gence free, requires the use of the three vectors [e(1), e(2), e(3)] of the Craya–Herring
base, with e(3)

i = ki/k. One recovers here the fact that the third component is related
to the dilatational mode (which is a 1D mode in the local reference frame) and that
the first two components represent the solenoidal mode (which is a priori 2D in the
local reference frame), in agreement with both the Helmholtz and toroidal–poloidal
decompositions in physical space.

2.5.5 Nonlinear Dynamics

Considering a mean flow that preserves the statistical homogeneity of the fluctuating
motion, one can recast nonlinear equation (2.29) as

˙̂ui + Mi j û j = si − �k2ûi , (2.78)

where

˙̂ui = ∂ ûi

∂t
+ ∂ ûi

∂km

dkm

dt
= ∂ ûi

∂t
− Almkl

∂ ûi

∂km
(2.79)

is related to linear advection by the mean flow [see Eq. (2.46)], and Mi j = Amj (�im −
2ki km/k2) gathers linear distortion and pressure terms (see Chapter 5). Once nonlin-
ear and viscous terms have been summed, Eq. (2.78) generalizes the linear inviscid
equation.

The nonlinear term si is given by

si (k, t) = −ı Pi jk(k)
∫

p+q=k
û j (p, t )̂uk(q, t)d3p, (2.80)

in which the third-order tensor Pi jk = 1
2 (Pi j kk + Pikk j ) arises from the elimination

of pressure using the incompressibility condition ki ûi (k, t) = 0, in agreement with
the use of projection operator (2.76) as discussed in the previous subsection.

Equations (2.78)–(2.80) are completely generic and hold for other cases, includ-
ing body forces and additional random variables. This is achieved in a straightfor-
ward manner, simply by changing the matrix M of the linear operator and/or the
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influence matrix Pi jk in the convolution product that reflects quadratic nonlinearity.
The evolution equation for R̂i j (Craya, 1958) derived from Eqs. (2.64) and (2.78) is

˙̂Ri j + Mik R̂k j + M jk R̂ik = Ti j − 2�k2 R̂i j (2.81)

where the left-hand side arises from the linear inviscid part of Eq. (2.78). The term
˙̂Ri j is a convective time derivative in k-space with distortion components. The sec-
ond term on the right-hand side is the spectral counterpart of the dissipation tensor.
The generalized transfer tensor Ti j is mediated by nonlinearity as

〈û∗
i (p, t)s j (k, t) + s∗

i (p, t)û j (k, t)〉 = Ti j (k, t)�(p − k). (2.82)

This tensor involves triple-velocity correlations as shown by Eq. (2.80) for si .
More details on it will be given in Chapter 3.

Although the purely linear theory closes the equations and simplifies mathe-
matical analysis, its domain of applicability is rather limited because it neglects all
interactions of turbulence with itself, including the physically important cascade pro-
cess. Multipoint turbulence models that account for nonlinearity by means of clo-
sure lead to moment equations with a well-defined linear operator and nonlinear
source terms. The view taken in this book is that, even when nonlinearity is signif-
icant, the behavior of the linear part of the model often has a significant influence.
Thus it is important to first understand the properties of the linearized model. An
additional interesting output of the linearized analysis is that it often allows for the
definition of a simplified formulation of the nonlinear model by use of more appro-
priate variables.

2.5.6 Background Nonlinearity in Different Reference Frames

Equations given in Subsection 2.5.5 express background linear and nonlinear terms
in 3D Fourier space. They can be rewritten in the different local reference frames
previously introduced (results are summarized in Table 2.3).

In the Craya–Herring frame of reference, the û vector with three components is
replaced with the u(�) vector that has two components, and Eq. (2.78) becomes

u̇(�) + m��u(�) = −ı
∫

p+q=k
P���u(�)(p, t)u(�)(q, t)d3 p, (2.83)

with

m��(k) = e(�)
i Mi j e

(�)
j − ė(�)

i e(�)
j (2.84)

and

P��� (k, p) = k

2

{
[e(�)(k) · e(�)(p)][e(3)(k) · e(�)(q)]

+ [e(�)(k) · e(�)(q)][e(3)(k) · e(�)(p)]
}

. (2.85)

More details will be given in Chapters 3 and 7.
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When the helical-mode decomposition is used, with �s = (1/2)ûi (k)Ni (−sk),
background equation (2.83) becomes

�̇s + mss ′�s ′ = −ı
∫

p+q=k
Mss ′s ′′�s ′(p, t)�s ′′(q, t)d3 p, (2.86)

with

mss ′(k) = (1/2)Ni (−sk)Mi j N j (s ′k) − (1/2)Ṅi (−sk)N j (s ′k) (2.87)

and

Mss ′s ′′ = k

4

{
[N(−sk) · N(s ′ p)][e(3)(k) · N(s ′′q)]

+ [N(−sk) · N(s ′′q)][e(3)(k) · N(s ′ p)]
}

. (2.88)

The signs s, s ′, s ′′ take only the values ±1, and the Einstein convention on re-
peated indices is used. The last equation will be revisited in Chapters 3 and 7.

It is worth noting that Eqs. (2.85) and (2.88) directly use the expression of the
basic nonlinearity as the solenoidal part of ∇(u ⊗ u). A very interesting variant is
obtained starting from the solenoidal part of � × u (e.g., Waleffe, 1992). The coun-
terpart of (2.85) is

P��� = 1
2
	��3e(�)(k) ·

[
qe(�)(p) × e(�)(q) + pe(�)(q) × e(�)(p)

]
, (2.89)

whereas the counterpart of (2.88) is

Mss ′s ′′ = 1
2

(s ′ p − s ′′q)N(−sk) · [N(s ′ p) × N(s ′′q)] . (2.90)

Applications of the first equation are given in Chapter 7, whereas applications
of the second equations appear in Chapters 3 and 4.

2.6 Anisotropy in Fourier Space

2.6.1 Second-Order Velocity Statistics

Independent of closure, the spectral tensor R̂i j is not a general complex matrix,
but has a number of special properties, including the fact that it is Hermitian and
positive-definite, as follows from Eq. (2.64). The incompressibility condition k j û j =
0 and Eq. (2.64) also yield R̂i j k j = 0. Taken together, these properties show that,
instead of the 18 real degrees of freedom needed to describe a general complex
tensor, R̂i j can be represented by only four independent scalars. Indeed, by use of
the spherical-polar coordinate system in k-space defined by Eqs. (2.67) and (2.68),
the tensor simplifies to

R̂ =

 �11 �12 0
�12∗ 
22 0

0 0 0

 . (2.91)
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Displaying the first two unit vectors of the Craya–Herring frame, one obtains

R̂i j = �11e(1)
i e(1)

j +�12e(1)
i e(2)

j +�12∗e(2)
i e(1)

j + �22e(2)
i e(2)

j , (2.92)

or, in a more compact form,

R̂i j = ���e(�)
i e(�)

j ,

in which the summation convention over repeated Greek indices, taking only the
values 1 and 2, is used.

Similarly, the decomposition in terms of helical modes yields

R̂i j =
∑
s=±1

∑
s ′=±1

Ass ′
Ni (−sk)N j (s ′k).

Even if these decompositions are essentially the same and rely on four indepen-
dant real scalars, an optimal splitting can be found to identify the most “physical”
and the most intrinsic (with respect to any change of the orthonormal frame of ref-
erence) quantities. Using

Ni N ∗
j = Pi j + ı	i jn

kn

k
,

in which Pi j denotes the projection operator and 	i jn the alternating third-order
Ricci tensor, one can rewrite the latter equation as

R̂i j = e(k, t)Pi j (k) + 
[Z(k, t)Ni (k)N j (k)] + ıH(k, t)	i jn
kn

k
, (2.93)

where e(k, t) and H(k, t) are real scalars and Z(k, t) = Zr + ıZi is a complex scalar.
The quantity

e(k, t) = 1
2

R̂ii = 1
2

(
�11 +�22) (2.94)

is the energy density in 3D k-space, whereas

kH(k, t) = ıkl	li j R̂i j = −k��12 (2.95)

is the helicity spectrum. Global kinetic energy K and global helicity h are given by

K(t) = 1
2

u′
i u

′
i =

∫
e(k, t)d3k, h(t) = 1

2
�′

i u
′
i =

∫
kH(k, t)d3k. (2.96)

The third term,

Z = 1
2

R̂i j N ∗
i N ∗

j = 1
2

(
�22 −�11 + ı
�12) , (2.97)

characterizes a polarization anisotropy, as subsequently discussed.
Anisotropy is expressed through the variations of these scalars with respect

to the direction of k, as well as the departures of H and Z from zero at a given
wavenumber. Whatever spectral closure is used, the number of real unknowns may
be reduced to the preceding four scalar parameters when numerical simulations are
carried out, and analysis of the results can be simplified by use of these variables,
particularly when the turbulence is statistically axisymmetric.
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In various homogeneous isotropic or anisotropic configurations, the radial-
energy spectrum E(k, t) is a key quantity, which is obtained from e(k, t) by averaging
over spherical shells of radius k = |k|:

E(k, t) =
∫ ∫

k=|k|
e(k, t)d2k =

∫ �

0

∫ 2�

0
e(k, �,
, t)k2 sin �d�d
, (2.98)

the last integral specifying the use of conventional variables in polar-spherical co-
ordinates. Other 1D energy spectra can be obtained by averaging over planes or
cylinders. They are defined only when specific applications are addressed. For 3D
isotropic turbulence (including mirror symmetry), the general set (e, Z , h) reduces
to

e = E(k, t)
4�k2

, Z = h = 0,

so that

R̂i j (k, t) = E(k, t)
4�k2︸ ︷︷ ︸

e

(
�i j − ki k j

k2

)
︸ ︷︷ ︸

Pi j

. (2.99)

2.6.1.1 Directional and Polarization Anisotropy – Intrinsic Form

Equation (2.93) can be written in any direct orthonormal system of Cartesian coor-
dinates. It can be shown that e, |Z |, and H are invariants. If the fixed frame of refer-
ence is changed, or if the specific Craya–Herring frame is rotated around the wave
vector k, only the phase of Z will be modified. It is therefore possible to have access
to the intrinsic (eigen)representation of the spectral tensor by specifying a unique
angle directly related to the phase of Z . For physical convenience, let us discuss only
the symmetric real part of the spectral tensor, ignoring the contribution from helic-
ity. The real part of the spectral tensor can be represented in the orthonormal frame
defined by its principal axes. The two nonzero eigenvalues e + |Z | and e − |Z | are
associated with the two principal axes, which are orthogonal to k and to each other.
The third eigenvalue, which is equal to 0, is related to the unit vector spanned by k.
Finally Z describes the anisotropic structure of the real part of the spectral tensor
at a given k: Its modulus is half the difference of the nonzero eigenvalues, whereas
its phase is related to the angle for passing from the Craya–Herring frame to the
eigenframe by rotation around k (see Fig. 2.5).

The anisotropic structure is then analyzed by isolating pure isotropic contribu-
tion (2.99) in Eq. (2.93), so that


 (R̂i j
) = E(k)

4�k2
Pi j︸ ︷︷ ︸

isotropic part

+
[

e(k) − E(k)
4�k2

]
Pi j︸ ︷︷ ︸

directional anisotropy

+ 
 [Z(k, t)Ni N j ]︸ ︷︷ ︸
polarization anisotropy

. (2.100)

It is now possible to distinguish the directional anisotropy, which means that all
directions of k on a spherical shell do not have the same amount of energy, from the
polarization anisotropy, which means that the orientations of the vector û, located
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2

Sphere

3
1

k

θn

Cigar Pancake Cigar

Figure 2.5. Schematic representation of anisotropy in spectral space. The top line displays the el-
lipse spanned by the four nonvanishing components of R̂ that is the local Craya–Herring reference
frame [see Eq. (2.91)], giving, for every k, e + |Z | (length of the largest axis), e − |Z | (length of
the smallest axis), and their angle in the plane normal to k by means the phase of Z . The bottom
line shows the associated ellipsoid generated by the corresponding Reynolds tensor in the physical
space.

in the plane normal to a given wave vector k, are not statistically equivalent. The
first kind of anisotropy is quantified by the angular distribution of e − E/(4�k2),
whereas the second kind is measured by Z , whose modulus and phase are related to
the intensity and the angle of polarization, respectively.

2.6.1.2 Induced Anisotropic Structure of Arbitrary Second-Order
Statistical Quantities

The anisotropic decomposition previously introduced can be used to obtain a mean-
ingful decomposition of any arbitrary second-order statistical tensor.

The following threefold splitting is obtained for the RST:

ui u j =
∫∫∫

R̂i j (k, t)d3k = 2K

�i j

3
+ b(e)

i j + b(z)
i j︸ ︷︷ ︸

bi j

 , (2.101)

where

2Kb(e)
i j =

∫∫∫ (
e − E

4�k2

)
Pi j d

3k, 2Kb(z)
i j =

∫∫∫

 (Z Ni N j ) d3k. (2.102)

The fourth-order tensor Mi jpq can be expressed as

Mi jpq =
∫∫∫ [

ki kp

k2
R̂q j (k, t) + k j kp

k2
R̂qi (k, t)

]
d3k. (2.103)

2.6.1.3 Bridging with Dimensionality and Componentality

Similar decompositions can be found for the dimensionality structure tensor (KRR,
2001):

Di j =
∫∫∫

ki k j

k2
2e(k, t)d3k = 2K

[
�i j

3
+ 2b(e)

i j + 0
]

,
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and for the vorticity correlation tensor∗∗:

�′
i�

′
j = �2

[
�i j

3
+ b(k2e)

i j − b(k2z)
i j

]
, (2.104)

with

�2 =
∫∫∫

k2e(k, t)d3k, (2.105)

�2b(k2e)
i j =

∫∫∫
k2
(

e − E

4�k2

)
Pi j d

3k, (2.106)

�2b(k2z)
i j =

∫∫∫
k2
 (Z Ni N j ) d3k. (2.107)

Relations (2.106) and (2.107) show that the anisotropy tensor bi j is the sum
of two very different contributions: b(e)

i j , which originates the directional (or di-

mensionality) anisotropy, and b(z)
i j , which accounts for polarization anisotropy. Sur-

prising RDT results in rotating flows are explained by this decomposition (see
Chapter 4), and the formalism introduced in KRR (2001) appears as a by-product
of Eq. (2.93) in homogeneous turbulence, the decomposition in terms of direc-
tional and polarization anisotropy lending support to componental and dimensional
anisotropy.

The third tensor introduced by KRR, referred to as stropholysis, is also con-
nected to the e − Z decomposition, and its fully symmetrized form can be recast
as

Q∗
i jn = sym

∫∫∫
kn

k
�(Z Ni N j )d3k. (2.108)

In conclusion, it is worthwhile to point out that a fully anisotropic spectral
(or two-point) description carries a very large amount of information, even if re-
stricted to second-order statistics. In the inhomogeneous case, the proper orthogo-
nal decomposition (POD) (see Lumley, 1967) has renewed interest in second-order
two-point statistics, but this technique is applied to strongly inhomogeneous quasi-
deterministic flows. It is said that POD spatial modes are only Fourier modes in ho-
mogeneous turbulence, without considering that a spectral tensor such as R̂ ought to
be diagonalized in order to exhibit its eigenmodes as POD modes in the anisotropic
case.

∗∗ Rather than introducing the vorticity correlation tensor, KRR (2001) introduced a circulicity tensor
Fi j , which involves larger scales. This tensor corresponds to

Fi j = 2K
[
�i j

3
+ b(e)

i j − b(z)
i j

]
with our notation.
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2.6.2 Some Comments About Higher-Order Statistics

N -order correlations at N points can be defined in homogeneous turbulence by
means of spectral tensors, similar to the second-order case (N = 2). For instance,

〈û∗
i1

(kN )ûi2 (k1) . . . ûiN−1 (kN−2)ûiN (kN−1)〉

= R̂i1i2...iN (k1, k2, . . . , kN−1)�

(
kN −

N−1∑
i=1

ki

)
. (2.109)

Because the N wave vectors form a closed polygon, only N − 1 of them, k1,
k2, . . . , kN−1, are independent, corresponding to the N − 1 independent separations
vectors r1, . . . , r N−1 in physical space. The interest of addressing the most complex
configuration, with N independent points for representing N th-order correlations,
is discussed in the last section of this chapter.

As a first general result, for incompressible turbulence, it is possible to extend
Eq. (2.81), which was derived for N = 2, to an arbitrary order, yielding an equation
for R̂i1... iN (k1, . . . , kN−1, t). In this equation, all pressure effects can be exactly incor-
porated as functions of R̂i1...iN itself, as all the linear effects, and of the (N + 1)th-
order spectral tensor.

As a second result, it is possible to replace û(kn) with u(�)(kn) using either the
local Craya or poloidal–toroidal frame attached to kn . Accordingly, the N th-order
spectral tensor is shown to depend on N + 1 scalar components only, considering
that u(�) has two components and that the spectral tensor is left unchanged when
permuting simultaneously the N wave vectors and the N indices. The latter re-
sult was found independently in the Ph.D. theses of Cambon (1982) and Lindborg
(1996).

Of course, the most general case has very few applications, but the cases N = 3
and N = 4 are relevant in triadic and quasi-normal closure theories and models,
which are addressed in the following chapters. Orders larger than N = 4 are com-
monly addressed in the “scaling-intermittency” community, for structure functions,
but always restricted to two-point correlations.

2.7 A Synthetic Scheme of the Closure Problem: Nonlinearity
and Nonlocality

Both the nonlinear pressure component and the nonlinear term appearing directly
in Eq. (2.29) contribute to the closure problem: The equation for the nth-order ve-
locity moments involves (n + 1)th-order moments. As a consequence, no finite sub-
set of the infinite hierarchy of integrodifferential equations describing the velocity
moments at all orders is closed, reflecting the fundamental difficulty of the turbu-
lence problem, viewed through the classical statistical description in terms of statisti-
cal moments. The origin of the closure problem is nonlinearity of the Navier–Stokes
equations, which is borne by the convective terms and the nonlinear part of the
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pressure fluctuations. Nonlocality, by itself, does not lead to problems, although the
technical difficulties associated with integrodifferential are nontrivial.††

The nonlocal problem of closure is discarded only in models for multipoint sta-
tistical correlations, e.g., double correlations at two points or triple correlations at
three points, so that in such models the problem of closure is determined by the sole
nonlinearity.

The knowledge of the pdf of the velocity fluctuations is equivalent to the knowl-
edge of all the statistical moments of arbitrary orders. Therefore the previously men-
tioned problem of the open hierarchy of the moment equations is precluded in a pdf-
based approach. Consequently, the problem of closure induced by the nonlinearity
is precluded by use of a pdf approach, but the nonlocal problem of closure remains,
so that the equations for a local single-point velocity pdf involve a two-point veloc-
ity pdf, and equations for an n-point velocity pdf involve an (n + 1)-point velocity
pdf (Lundgren, 1967). Therefore an open hierarchy of equations is recovered by a
pdf approach but with respect to a multipoint spatial description!

To summarize all the consequences of the preceding discussion, a synthetic
scheme using a triangle is shown in Fig. 2.6. The vertical axis bears the order of the
statistical moments, from 1 (the mean velocity), 2 (second-order moments), up to
arbitrarily high-order moments. For the sake of convenience, the moments of order
greater than or equal to 2 are centered, so that they involve only the fluctuating-
velocity field. Along the vertical axis, n corresponds to the number of possible dif-
ferent points for a multipoint description of the nth-order moment under consider-
ation along the horizontal axis. Considering the nth-order moment, the number of
points ranges from 1 (single-point correlation), 2 (two-point correlation), up to n.
The possible solutions are observed to generate a triangle in this representation.

In other words, the vertical axis displays the open hierarchy that is due to nonlin-
earity, whereas the horizontal one deals with nonlocality. Each point in the triangle
characterizes a level of description. As an example, the point [3, 2] is related to triple
correlations at two points, which are associated with the spectral-energy transfer
and the kinetic-energy cascade. In addition, one can state the problem of closure by
looking at the adjacent points (if any) just above and just to the left. For instance, the
main problem that concerns engineering, when solving Reynolds-averaged Navier–
Stokes equations, is expressing the flux of the RST. This can be represented by an
arrow from [2, 1] to [1, 1]. Then the equations that govern the RST [2, 1] need ex-
tra information (not given by [2, 1] itself, leading to the appearance of the closure
problem) on second-order two-point correlations [2, 2] (involved in the “rapid”
pressure–strain-rate term and the dissipation term), on triple-order single-point
correlations [3, 1] and triple-order two-point correlations [3, 2] (involved in the
“slow” pressure–strain-rate and diffusion terms). Of course, the RST [2, 1] is directly
derived from second-order correlations at two points [2, 2], illustrating the simple

†† Nonlocality ought to be only understood in physical space here. Of course, the operators related to
pressure and dissipation will appear as local quantities in Fourier space, but this is only for the sake
of mathematical convenience. Discussing the possible degree of locality of nonlinear interactions in
Fourier space is briefly discussed in the next chapter.
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Figure 2.6. Synthetic scheme for statistical closures.

rule of concentration of the information when moving from the right to the left. The
nonlocality issue, because of pressure and dissipation terms, is discarded if one looks
at only [n, n] correlations (located on the hypotenuse of the triangle in Fig. 2.6),
leaving only the hierarchy that is due to nonlinearity. The governing equations for
[2, 2] need extra information on only [3, 2]. The equations that govern [3, 3] require
extra information on only [4, 3]. These two examples, which are directly involved in
classical two-point closures, are discussed in Chapter 3.

The arrow from [n + 1, n] to [n, n] gives an obvious generalization of the opti-
mal way to use multipoint closures and illustrates the open hierarchy of equations
that is due to the sole nonlinearity. Often the closure relationship holds at the level
[n + 1, n + 1], from which is readily derived the level [n + 1, n]. For instance, the
quasi-normal (QN) assumption, which is involved in all multipoint closures, as well
as in wave-turbulence theories, calls into play the [4, 4] level.

Regarding the pdf approach, we are concerned with the upper horizontal side
of the triangle. It seems to be consistent to relate to the point [∞, 1] a description
in terms of a local-velocity pdf. Accordingly, the arrow from [∞, 2] to [∞, 1] shows
the need for extra information on the two-point pdf in the equations that govern
single-point pdfs. In the same way, the arrow from [∞, n + 1] to [∞, n] shows the
link between n-point and (n + 1)-point pdf’s [Lundgren (1967)] and illustrates the
open hierarchy of equations that is due to the sole nonlocality.
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The last limit concerns the ultimate point [∞,∞]. It is consistent to consider
that the limit of a joint pdf of velocity values at an infinite number of points is equiv-
alent to the functional pdf description of Hopf (1952). In this case we reach the top
right point of the triangle and there is no need for any extra information. The Hopf
equation is closed, and it is possible to derive from it any multipoint pdf or statistical
moment. It is interesting to point out that the bottom right point [1, 1] gives the most
crude information about the velocity field – its mean value – whereas the opposite
point [∞,∞] gives the most sophisticated.

As a last general comment, our synoptic scheme clearly shows that the problem
of closure, which reflects a loss of information at a given level of statistical descrip-
tion, can be removed from consideration, at least partially, if additional degrees of
freedom are introduced to enlarge the configuration space. For instance, introduc-
ing as a new dependent variable the vector that joins the two points in a two-point
second-order description allows for the removal of the problem of closure that is
due to nonlocality, which is present when a single-point second-order description is
used. The introduction, as a new dependent variable, such as the test value �i of the
random velocity field u′

i in a pdf approach,††

P(�i , x, t) = �(u′
i (x, t) − �i ),

allows for the removal of the problem of closure that is due to nonlinearity, which
is present in any description in terms of statistical moments. Finally, any problem of
closure is removed by use of the Hopf equation but the price to pay is an incredibly
complicated configuration space! The probabilistic description, which is of practical
interest regarding a concentration scalar field rather than a velocity field, is exten-
sively addressed in the context of combustion modeling, and is no longer considered
in this book.

†† For the reader who is not acquainted with the definition using a “Dirac” function, this corresponds
to the “fine-grained” pdf; which is well documented, for instance, in Pope’s book.
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3 Incompressible Homogeneous Isotropic Turbulence

To caricature, it can be jokingly said that, once one has eliminated all features of a
flow that one understands, what remains is turbulence. This sentence, taken from
Mathieu and Scott (2000), is even more relevant in HIT, in which no interaction
with a structuring effect (mean flow, body force, shock wave, wall, etc.) may occur.
HIT, even if it can be described statistically with a few number of quantities, is really
the core of the turbulence problem.

3.1 Observations and Measures in Forced and Freely
Decaying Turbulence

3.1.1 How to Generate Isotropic Turbulence?

Isotropic turbulence can be investigated with both experimental and numerical ap-
proaches, despite the fact that it requires the existence of an unbounded domain
from the theoretical point of view.

A quasi-isotropic fully developed turbulent state can be reached in wind tunnels
with a grid to promote turbulence (see Fig. 3.1). In such a setup, boundary layers de-
velop along solid walls, but an isotropic flow is recovered in the core of wind tunnel.
The grid wake transforms a part of mean-flow kinetic energy into turbulent kinetic
energy. Downstream of the grid, the mean flow is uniform and no more turbulence-
production mechanism takes place. Therefore the turbulent-fluctuation dynamics is
entirely governed by the advection that is due to the uniform mean flow, the nonlin-
ear interactions, and the linear viscous effects, leading to a monotonic decay of the
turbulent kinetic energy K.

Several regions are usually identified downstream of the grid, which corre-
spond to different dynamical regimes. These decay regimes are discussed in Subsec-
tion 3.1.3.

The spatial development of isotropic turbulence observed in wind tunnels can-
not be exactly reproduced in numerical simulations because of the enormous com-
puting power required. But it mimics switching from a spatially evolving flow to a
time-developing flow. In this new configuration, periodic boundary conditions are
imposed in all space directions, and a pseudo-turbulent initial condition is used. An
isotropic time-decaying turbulent flow is then obtained. It can be made statistically
steady in time by inserting an ad hoc forcing term. But it is worth noting that the use

49
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Figure 3.1. Schematic view of wind-tunnel setup for generating isotropic turbulence.

of periodic boundary conditions induces spurious couplings at scales of the order of
the computational domain size and that the analysis of large-scale dynamics must be
carried out with great care.

Spatially developing and time-evolving flows can be compared thanks to Tay-
lor’s frozen-turbulence hypothesis. In 1938, Taylor hypothesized that the turbulent
velocity fluctuation u(x, t) measured by a stationary probe can be interpreted as re-
sulting from the advection of a frozen spatial structure by a uniform steady flow with
velocity U , yielding

u(x, t) = u(x − U t, 0). (3.1)

This hypothesis can also be used to find an approximate relation between space
and time derivatives. Let us consider consider a new reference frame advected at
velocity U . Denoting quantities expressed in this new reference frame by a tilde (∼)
one has

x̃ = x − U t, t̃ = t, ũ(x̃, t̃) = u(x, t) − U , (3.2)

and

∂ui

∂t
= ∂ ũi

∂x j

∂x j

∂t
+ ∂ ũi

∂t
= ∂ ũi

∂t
− U j

∂ ũi

∂x j
. (3.3)

If one now assumes that the signal is frozen in the advected frame, i.e., if
∂ũ/∂t ≈ 0, then the following relation holds:

∂

∂t
≈ −U j

∂

∂x j
. (3.4)
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It is important to note that the Taylor hypothesis does not hold in the following
cases, at least from the theoretical viewpoint:

� A single advecting velocity cannot be defined. This is the case in compressible
flows, in which hydrodynamic and acoustic perturbations do not have the same
speed, and in flows in which the advection speed depends on the scale of the per-
turbation. This last case is met in some shear flows (e.g., mixing layers).

� The rate of change in the moving frame cannot be neglected. Let us consider a
structure with characteristic size L and characteristic time T . The Taylor hypoth-
esis is valid if

L

U
� T . (3.5)

Now using the relation
√
K ≈ L/T , the validity criterion can be recast as

√
K � U, (3.6)

showing that the mean-flow speed must be large compared with the characteristic
turbulent velocity scale.

One of the first experiments of decaying grid-generated turbulence, but per-
haps one of the most documented, was carried out by Comte-Bellot and Corrsin
(1966). To achieve a better isotropy, at least measured looking at the RST, a con-
vergent duct was placed after the grid, in the “formation region.” Without this addi-
tional device, the Reynolds stresses exhibit a mild axisymmetry with u2

1 � u2
2 ∼ u3

2:
The effect of the convergent duct is to diminish the Reynolds stress component in
the axial direction (x1 here) and to increase it in the radial directions, as shown
by RDT (see Chapter 5). Unfortunately, such experiments cannot reproduce high-
Reynolds-number flows; a typical value of the Reynolds number based on the Tay-

lor microscale Re� = u′�/� is 70–80. Here, u′ =
√

2
3K denotes the characteristic ve-

locity scale of the large, energy-containing scales, and � ≡
√

15�u′2/ε is the Taylor
microscale,∗ where ε is the kinetic-energy dissipation rate. Examples of available
experimental data sets are listed in Table 3.1.

DNS began to reach higher Reynolds numbers in the early 1980s. A weakness
of these simulations is that the large-scale forcing that is present in the simulation
prevents recovering reliable information about the smallest wavenumbers.

Some examples are listed in Table 3.2.

3.1.2 Main Observed Statistical Features of Developed Isotropic Turbulence

The main results retrieved from laboratory experiments and numerical simulations
are as follows:

� Typical observed turbulent kinetic-energy spectrum shapes are displayed in Fig. 3.2.
A universal inertial range is observed in the turbulent kinetic-energy spectrum if

∗ It is recalled that the Taylor microscale is associated with scales at which the spectrum of kinetic-
energy dissipation, or equivalently the enstrophy spectrum, exhibits its maximum.
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Table 3.1. A few experiments dealing with decaying incompressible isotropic turbulence

Ref. ReGrid Remarks

Batchelor and Townsend (1948) 5500, 11 000
Wyatt (1955) 11 000, 22 000, 44 000
Van Atta and Chen (1969) 25 600, 25 300 Re� � 35–49
Comte-Bellot and Corrsin (1966) 34 000, 68 000 Re� � 37–72
Sreenivasan et al. (1980) 7400 Re� � 34
Uberoi (1963) 29 000
Uberoi and Wallis (1967) 8750, 17 500
Sirivat and Warhaft (1983) 5150, 9550
Mohamed and LaRue (1990) 6000, 10 000, 12 000, 14 000 Re� � 28–43
Kistler and Vrebalovich (1966) 10 500 Re� � 264–669
Skrbek and Stalp (2000) ∼105 Superfluid helium
Midlarsky and Warhaft (1996) Active grid Re� � 400–500
Midlarsky and Warhaft (1998) Active grid Re� � 730
Kang et al. (2003) Active grid Re� � 630–720

Note: For appartus based on passive grids (i.e., turbulence is generated by the wake of rods), the Reynolds num-
ber is computed by use of the size of the mesh of the grid used to trigger turbulence and the mean velocity at the
grid location. For active-grid-based experiments, the Taylor-scale-based Reynolds number at probe locations
is indicated. It is worth noting that a nonnegligible residual anisotropic error is always observed in active-grid
experiments.

Table 3.2. A few DNSs dealing with incompressible isotropic turbulence

Ref. Re� Forcing (Y/N) Grid

Kerr (1990) 82 Y 1283

Vincent and Meneguzzi (1991) 150 Y 2403

Sanada (1992) 120 Y 2563

Jimenez et al. (1993) 35 Y 643

Jimenez et al. (1993) 61 Y 1283

Jimenez et al. (1993) 94 Y 2563

Jimenez et al. (1993) 168 Y 5123

Wang et al. (1996) 190 Y 5123

Jimenez and Wray (1998) 37 Y 643

Jimenez and Wray (1998) 62 Y 1283

Jimenez and Wray (1998) 95 Y 2563

Jimenez and Wray (1998) 142 Y 3843

Jimenez and Wray (1998) 163 Y 5123

Jimenez and Wray (1998) 62 N 5123

Kaneda et al. (2003) 167 Y 2563

Kaneda et al. (2003) 257 Y 5123

Kaneda et al. (2003) 471 Y 10243

Kaneda et al. (2003) 732 Y 20483

Kaneda et al. (2003) 1201 Y 40963

Note: Simulations without forcing are related to freely decaying turbulence. The Reynolds num-
ber is measured at the initial time of the simulation in the free-decay case and at statistical equi-
librium in the forced case.
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Figure 3.2. Evolution of the kinetic-energy
spectrum in the initial stage decay com-
puted with spectral closures. Top: emer-
gence of self-similarity and validation of
the PLE hypothesis for k1 scaling at low
wavenumbers. Middle: emergence of self-
similarity and validation of the PLE hypoth-
esis for k2 scaling at low wavenumbers. Bot-
tom: emergence of self-similarity with a k4

behavior for initial Gaussian-shaped spec-
trum, and PLE hypothesis breakdown for
the k4 spectrum. From Clark and Zemach
(1998) with permission of AIP.

the Reynolds number is high enough. At very high wavenumbers, viscous dissipa-
tion becomes dominant, and the energy spectrum falls very quickly. The physical
assumption that the turbulent field is regular in the sense that the L2 norm of all
high-order spatial derivatives of the velocity field is finite suggests that the spec-
trum shape should exhibit an exponential decay at very high wavenumbers.

The spectrum shape at large scales (i.e. small wavenumbers) that do not be-
long to the inertial range is observed to be flow dependent.

The time evolution of the turbulent kinetic-energy spectrum is displayed in
Figs. 3.2 and 3.3. Results dealing with both the free-decay case and the statisti-
cally steady case are presented. In the former case, no source of turbulent kinetic
energy is present, and the turbulent kinetic energy is a monotonically decaying
function of time, whereas in the latter a kinetic-energy source is used to reach a
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Figure 3.3. Evolution of the kinetic-energy
spectrum with transition from the initial
stage of decay to the final stage of decay.
From Clark and Zemach (1998) with permis-
sion of AIP.

statistically steady state. In both cases, it is observed that the spectrum shape re-
laxes toward a universal shape at small scales (provided that the Reynolds number
is high enough to allow for the existence of the inertial range). The change in the
kinetic-energy spectrum shape is due to nonlinear interactions between modes.
Two mechanisms are obviously at play: a direct kinetic-energy cascade from large
to small scales (also referred to as the forward cascade) that is responsible for the
existence of the inertial range, and an inverse kinetic-energy cascade from small
to large scales (also named the backward cascade) that yields the growth of the
energy spectrum at very small wavenumbers.

The celebrated hypotheses proposed by Kolmorogov in 1941 yield the fol-
lowing asymptotic spectrum shapes for small scales for which the local isotropy
hypothesis holds:

E(k) = K0ε 2/3k−5/3 F(k�) (3.7)

where K0, ε , �≡ (�3/ε )1/4, and F are the Kolmogorov constant, the dissipation
rate, the Kolmogorov length scale, and a nondimensional function, respectively.
The regularity of the derivatives of the velocity field is ensured by the function F ,
which must be a fast-decaying function, i.e.,∫ +∞

0
xn F(x)dx � ∞, ∀n ≥ 0. (3.8)

Among the numerous proposals made for F(x), a widely admitted one is

F(x) = Cx� exp(−�xn), (3.9)

where C , �, �, and n are real parameters. Not to mention values of n such
as n = 4/3 (proposed by Pao, for pure mathematical convenience), n = 2 (sug-
gested by Townsend, assuming linear response of small scales), n = 1 is consis-
tently predicted by all “triadic” closures [EDQNM, direct interaction approxi-
mation (DIA), Lagrangian history direct interaction approximation (LHDIA),
Lagrangian renormalized approximation (LRA)] (Kaneda, 1993) and supported
by recent experimental and DNS results. The reader is referred to Ishihara
et al. (2005) for a recent survey including new DNSs with the Taylor microscale
Reynolds number Re� and resolution ranging up to about 1201 and 40963,
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respectively. In addition to n = 1, the values of � and � obtained by the latter
DNS decrease monotonically with Re� and appear to converge toward asymptotic
values as Re� → ∞, but the convergence, especially that of �, is slow. A simple
power-law fitting suggests the following asymptotic (infinite Re�) values:

� = −2.9 + 7.2Re−0.47
� , � = 0.62 + 9.3Re−0.19

� , C = 0.038 + 23.5Re−0.42
� .

Surprisingly, the previously mentioned closures predict � = 3 (Kaneda, 1993).
This positive value, however, does not yield an overshoot for the spectrum, be-
tween the end of the inertial range and the beginning of the dissipative range,
because � is sufficiently large.

For small scales much larger than the Kolmogorov scale �, one recovers the
inertial-range expression:

E(k) = K0ε 2/3k−5/3. (3.10)

The exact value of the Kolmogorov constant is not known. A large number
of estimates are provided in the literature (Sreenivasan, 1995), coming from mea-
sures in the atmospheric boundary layer, from laboratory experiments, and from
numerical simulations. This uncertainty comes from either the departure from
isotropy in many flows or the absence of a large inertial range in the spectrum. A
reliable estimate seems to be K0 = 1.5 ± 0.1.

It is important to note that the Kolmogorov scaling is valid in the asymptotic
limit of very large Reynolds numbers only, and that the invariance of ε as a spec-
tral flux comes from a simple dimensional analysis. Denoting L as the integral
scale of turbulence, one finds that the usual estimates for the upper and lower
bounds of the inertial range are

Lupper � 5(ReL)−1/2L , L lower � 50(ReL)−3/4 L , (3.11)

where ReL = Lu′/�. The miminum Reynolds number for an inertial range to ex-
ist is an open issue, but there is evidence that the Taylor-scale-based Reynolds
number Re� must be O(100) for any natural inertial range to exist and that
Re� = O(1000) for a decade of inertial range.

� Turbulent velocity fluctuations are not Gaussian random variables.
A first manifestation of non-Gaussianity of the turbulent velocity field is that

its odd-order statistical moments are not zero, whereas they are identically zero
for a random Gaussian field. The skewness factor for a single-point velocity distri-
bution can be almost zero (result given by either isotropy or Gaussianity), whereas
the skewness of velocity gradients has a very significant negative value.

A measure of this difference is therefore gained by looking at the skew-
ness and the flatness parameters† based on velocity increments (or equivalently

† Let us recall that the flatness factor F(a) and the skewness factor S(a) of the random field a are
defined as

F(a) ≡ 〈a4〉
〈a2〉2 , S(a) ≡ 〈a3〉

〈a2〉3/2 . (3.12)



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

56 Incompressible Homogeneous Isotropic Turbulence

-4 -2 0 2 4
Normalized velocity  u/urms 

10
-6

10
-4

10
-2

100
P

ro
ba

bi
li

ty
 d

en
si

ty
 p

(u
/u

rm
s)

 

Run A
Run B
Run C
Run D
Run E
Run F
Gaussian

Figure 3.4. Probability density function of normalized velocity fluctuation in isotropic turbulence.
From Noullez et al. (1997) with permission of CUP.

the velocity gradients). Common reported values of the skewness factor are
S0 = −0.4 ± 0.1 (instead of S0 = 0 for a Gaussian field), whereas the flatness fac-
tor, F0, ranges from 4 to 40, depending on the Reynolds number (instead of F0 = 3
for a Gaussian field).

It is worth noting that single-point even moments of velocity fluctuations ex-
hibit a quasi-normal distribution (see Fig. 3.4), whereas velocity increments are
not Gaussian random variables. Therefore the one-point analysis of the turbulent
velocity field is not sufficient to analyze the lack of Gaussianity of turbulence:
Two-point quantities must be considered. Extreme velocity events, which corre-
spond to the very end of the tails of the pdf plots, are observed to escape the
normal distribution. A possible explanation is that these extreme events are (at
least partially) governed by the physical mechanisms responsible for the produc-
tion of turbulent kinetic energy.‡ Therefore they are flow dependent and do not

If a is a Gaussian field, then

F(a) = 3, S(a) = 0. (3.13)

Still assuming that a is a random Gaussian field, and defining �a = curl a and Sa = 1
2 (∇a + ∇T a),

one has

F(�a) = 5/3, F(S2
a ) = 7/5. (3.14)

Another important point is that almost all nonlinear functions of a will exhibit non-Gaussian
behavior.

‡ It can be shown (Falkovich and Lebedev, 1997) that Gaussian random forcing having a correlation
scale lF and a time scale �F yields velocity pdf tails of the form

ln P(u) ∝ −u4 for u � max(urms, lF /�F ),
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Figure 3.5. Probability density function of normalized velocity increment in isotropic turbulence.
From Noullez et al. (1997) with permission of CUP.

exhibit a universal behavior, because they are sensitive to the characteristic time
scale of turbulence production at large scales.

The analysis of the pdf’s of the longitudinal velocity increments shows that
the lack of Gaussianity is scale dependent (see Fig. 3.5), in the sense that velocity
increments at small scales exhibit larger differences with the normal distribution
than velocity increment at larger scales.

The lack of Gaussianity is an intrinsic feature of turbulence because of the
nonlinearity of the Navier–Stokes equations. This point is addressed in Subsec-
tion 3.7.4.

3.1.3 Energy Decay Regimes

Turbulent kinetic energy K is observed to follow different regimes, depending on
the position in the wake of the turbulence-generating grid. Three regions are usually
identified, which are subsequently presented. They have an universal character, as
they are observed in almost all clean experimental data sets.

1. The formation region, in which the wakes of the rods of the grid interact and
merge. These interactions lead to a loss of memory of turbulent fluctuations and

where P(u) is the pdf of the velocity fluctuation u. For short-correlated forcing such that �F �
lF /urms, one obtains

ln P(u) ∝ −u3 for lF /�F � u � urms.

Therefore it is seen that the interplay between the external forcing and the turbulence nonlinearity
leads to an automatic breakdown of Gaussianity for very intense events.
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to the rise of an quasi-isotropic state.§ It is important to note that this return to
isotropy is not observed if the initial Reynolds number is too low.

2. The initial region, in which the flow can be considered isotropic and is strongly
energetic. In this region, the Taylor-scale-based Reynolds number Re� = �u′/�
is high, meaning that the nonlinear effects are dominant. In this region,
turbulent kinetic energy K is observed to decay approximately as t−n with
n ≈ 1, whereas the Taylor scale grows as t0.35−0.4. Experimental data yield
6/5 ≤ n ≤ 4/3. It is important to notice that experimental uncertainties deal-
ing with the measure of the decay exponent are high, as this measure relies on
several strong assumptions (Mohamed and Larue, 1990; Skrbek and Stalp,
2000).

Theoretical analyses based on two-point closures, like EDQNM (see Sub-
section 3.5.6) reveal that the decay exponent n is sensitive to many parameters
related to the initial condition, such as the slope of the turbulent kinetic-energy
spectrum at very small wavenumbers at initial time, but also to possible satu-
ration effects that are due to the finite size of both experimental facilities and
computational domains (Skrbek and Stalp, 2000). The turbulence is observed
to exhibit self-similar states during this decay stage. The analysis of these states
is presented in Subsection 3.2.

3. The final region, which is defined as the region in which the Taylor-based
Reynolds number is so low that the viscous linear effects are dominant. The
criterion Re� ≤ 100 is sometimes used to define the final region. The turbu-
lent kinetic energy now decays more quickly, leading to K ∼ t−n with n ≈ 2,
whereas the Taylor microscale grows as

√
t . It is important to note that, at such

a low Reynolds number, isotropy is very difficult to achieve, either in labora-
tory experiments or in numerical simulations, because of couplings between
large and small scales. As in the previous case, the decay rate is expected to
be sensitive to the slope of the spectrum at very low wavenumbers and various
parameters of the experimental appartus. Experimental realizations of the final
region are very rare, and it seems that the transition between the initial and the
final regions has never been observed experimentally, as it would require very
long wind tunnels (Skrbek and Stalp, 2000). Details about this decay regime are
given in Subsection 3.2.6.

3.1.4 Coherent Structures in Isotropic Turbulence

Statistical isotropy does not imply that isotropic turbulence fluctuations are un-
coherent. Since the pioneering simulations of Siggia (1981), it has been observed
that vortical coherent events are present in isotropic turbulence. One usually dis-
tinguishes elongated vortices, referred to as worms or vortex tubes, and flat vortex
sheets. These structures, their dynamics, and their role in the turbulence dynamics
are discussed in Section 3.6.

§ The term quasi-isotropic refers here to a state in which at least second-order statistical moments are
isotropic. But some anisotropic effects that are due to turbulence memory may remain on higher-
order moments.
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3.2 Self-Similar Decay Regimes, Symmetries, and Invariants

3.2.1 Symmetries of Navier–Stokes Equations and Existence
of Self-Similar Solutions

Let us first recall that a physical law F(x, t ; u1, . . . , uN ) (where x and t denote the
space and time, respectively, and ui , i = 1, N are physical quantities) is said to be
invariant under the transformation F −→ F∗, x −→ x∗, t −→ t∗, ui −→ u∗

i (i =
1, N) if and only if

F(x, t ; u1, . . . , uN ) = F(x∗, t∗; u∗
1, . . . , u∗

N ), (3.15)

i.e., the physical law is not modified by the change of variables. The Navier–Stokes
equations for an incompressible fluid in an unbounded domain (i.e., without bound-
ary conditions) are known to admit the following one-parameter set of symmetries¶

(which has the mathematical structure of a Lie group):

� Time translation:

(t, x, u, p) −→ (t + t0, x, u, p). (3.16)

� Pressure translation:

(t, x, u, p) −→ [t, x, u, p + �(t)]. (3.17)

� Rotation (with Q as a constant-rotation matrix):

(t, x, u, p) −→ (t,Qx,Qu, p). (3.18)

� Generalized Galilean transformation:

(t, x, u, p) −→ [t, x + v(t), u + v̇(t), p − �x · v̈(t)]. (3.19)

� Scaling I:

(t, x, u, p) −→ (�2t,�x,�−1u,�−2 p). (3.20)

� Scaling II:

(t, x, u, p, �) −→ (t,�x,�u,�2 p,�2�), (3.21)

where � is an arbitrary strictly positive real parameter.
It is important to note that these symmetries are identified by conducting an

exact mathematical analysis of the incompressible Navier–Stokes equations without
introducing any hypothesis or modeling assumptions.∗∗

¶ Other symmetries, such as mirror symmetry, exist but are not one-parameter symmetries.
∗∗ This analysis is performed considering the following one-parameter (Lie group) transformation:

Ta : y → ŷ = ŷ(y, a), y = (t, x, u, p, �), (3.22)

which depends continuously on the real parameter a. Let us write formally the Navier–Stokes equa-
tions as N S(y) = 0. Ta is said to be a symmetry of the Navier–Stokes equations if

N S(y) = 0 ⇐⇒ N S(ŷ) = 0. (3.23)
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Boundary conditions may eventually decrease the number of symmetries, but
cannot introduce new symmetries. It is worth noting that scalings I and II are par-
ticular forms (taking h = −1 and h = 1) of the even more general rescaling:

(t, x, u, p, �) → (�1−ht,�x,�hu,�2h,�1+h�). (3.25)

We now focus on isotropic turbulence. In this case, symmetries such as rota-
tion invariance, Galilean invariance, pressure, and time translation are implicitly
met. Therefore the emphasis is to be put on the scaling symmetries and looking at
the statistical moments of the turbulent velocity field. Let r and f be the correlation
distance and the normalized two-point double-velocity correlation, respectively (see
Subsection 3.4.1 for a detailed description). In the limit of very large Reynolds num-
bers (i.e., vanishing molecular viscosity), these quantities are transformed as follows
(Oberlack, 2002):

t∗ = �2t, r∗ = �1r, u′2∗ = (�1/�2)2u′2, f ∗ = f. (3.26)

In the case of a finite Reynolds number, the only possible solution is �2 = �2
1. A

set of invariants r̆ , f̆ , ŭ, p̆ can be defined:

r̆ = r

t
2

�+3

, f̆ = u′2 f

t−2 �+1
�+3

, ŭ = u

t− �+1
�+3

, p̆ = p

t−2 �+1
�+3

, (3.27)

where

� = 2
ln�2

ln�1
− 3. (3.28)

It is worth noting that, in the finite-Reynolds-number case, � = 1 is the only
possible value. It can be shown, still considering the high-Reynolds-number limit,
that the parameter � is related to the spatial decay of the two-point correlations and
the shape of the kinetic-energy spectrum at a low wavenumber:

lim
r−→+∞ f (r) ∼ r−�, lim

k−→0
E(k) ∼ k�. (3.29)

It is important to note that the constants involved in these scaling laws are as-
sumed to be independent of time, corresponding to the so-called permanence of
large eddies (PLE) hypothesis.

We now show that the existence of self-similar solutions for the isotropic decay
problem can be deduced from symmetry analysis (and not assumed a priori). To this
end, let us consider the following one-parameter subgroup of transformation (Clark
and Zemach, 1998):

t∗ = �(t + t0) − t0, x∗ = �� x, (3.30)

The set of symmetries constitutes a local one-parameter Lie group, referred to as a symmetry group
of the Navier–Stokes equations. Assuming that the neutral element of this group (i.e., the identity
transformation) corresponds to a = 0, the group is characterized by the variation of y under Ta

around a = 0, which is represented by the infinitesimal generator X:

X ≡ ∂ ŷ
∂a

∥∥∥∥
a=0

=
∑

i

�i
∂

∂yi
, �i ≡ ∂ ŷi

∂a

∥∥∥∥
a=0

. (3.24)

Once X is known, all elements of the symmetry group Ta can be calculated.
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where � is an arbitrary real parameter. This subgroup is labeled by � and t0, which
are two real parameters. We are now looking for turbulent flows such that the shape
of the kinetic-energy spectrum E(k, t) is invariant under transformation (3.30). Sim-
ple dimensional analysis yields

�3�−2 E(k, t) = E[�−kk,�(t + t0) − t0]. (3.31)

The preceding property holds for all group elements if it holds for the infinites-
imal element, i.e., for the group element � = 1 + ��, with �� � 1. To this end, one
differentiates (3.31) with respect to � and then takes � = 1. The result is the follow-
ing determining equation:

(3� − 2)E(k, t) = −�k
∂ E

∂k
+ (t + t0)

∂ E

∂t
, (3.32)

which can be solved by the method of characteristics in spectral space. The right-
hand side of Eq. (3.32) leads to the following characteristic line equation:

d

dt
k(t) = − �

t + t0
k(t), (3.33)

and therefore the wavenumber k evolves as

k(t) =
(

1 + t

t0

)−�

k(0) (3.34)

along the characteristic line spanned by k(0). Along this line, the kinetic-energy
spectrum evolution is given by

d

dt
E(k(t), t) = ∂ E

∂k

dk

dt
+ ∂ E

∂t
= 3� − 2

t + t0
E[k(t), t], (3.35)

leading to the following solution:

E(k(t), t) =
(

1 + t

t0

)3�−2

E0[k(0)]

=
(

1 + t

t0

)3�−2

E0

[
k(t)

(
1 + t

t0

)�]
. (3.36)

Introducing the length scale L(t) and the energy scale K (t) such that

L(t) = L0

(
1 + t

t0

)�

, K (t) = K0

(
1 + t

t0

)2�−2

, (3.37)

one obtains

E(k, t) = K (t)L(t)F(kL(t)), (3.38)

in which the nondimensional shape function F is such that

F(�) = E0(�/L0)
K0L0

. (3.39)

Therefore, the solution obeys a self-similar decay regime if there exist a single
length scale L(t), a single velocity scale††

√
K (t), and a single nondimensional shape

†† An adequate choice for K0 yields K (t) = K(t).
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Table 3.3. Time-evolution exponents in self-similar decay of isotropic turbulence deduced
from symmetry analysis, assuming the PLE hypothesis holds

� = 1 � = 2 � = 4 � = +∞

L(t) ∼ t1/2 t2/5 t2/7 Const.
K(t) ∼ t−1 t−6/5 t−10/7 t−2

Ret (t) ∼ Const. t−1/5 t−3/7 t−1

Invariant name Ret Birkhoff Loitsyansky L(t)
Invariant definition L

√
K/� Eq. (3.46) Eq. (3.44)

∫ +∞
0 f (r)dr

Associated spectrum Saffman Batchelor

function F such that relation (3.38) is satisfied at all times and all wavenumbers. The
important conclusion is that (3.38) is not postulated as in early studies like those
of Karman and Howarth in the late 1930s, but deduced as being a consequence
of the symmetries of the governing equations in the limit of very high Reynolds
numbers.

3.2.2 Algebraic Decay Exponents Deduced From Symmetry Analysis

The symmetry analysis introduced in the previous subsection can also be used to
recover some information about the time evolution of the solution. One does this
by finding the values of � in Eq. (3.28) or � in Eq. (3.30).

Time-scaling laws for turbulent kinetic energy K(t), turbulent dissipation ε (t),
integral length scale L(t), and turbulent Reynolds number Ret are deduced from
relation (3.27) in a straightforward way:

L(t) =
∫ +∞

0
f (r, t)dr = t

2
�+3

∫ +∞

0
f (r∗)dr∗ ∼ t

2
�+3 , (3.40)

K(t) ∼ t−2 �+1
�+3 , (3.41)

Ret (t) = L(t)
√
K(t)

�
∼ t− �−1

�+3 , (3.42)

ε (t) ∼ d

dt
K(t) ∼ t− 3�+5

�+3 . (3.43)

It is seen that the time-evolution exponents of these global turbulent parame-
ters are explicit functions of �. Because � is also related to the shape of the kinetic-
energy spectrum at very large scales [see Eq. (3.29)], this leads to the conclusion
that the self-similar decay regime is governed by the very large scales of turbu-
lence.

Different values for � have been proposed during the past few decades, which
are now briefly surveyed (corresponding time-evolution exponents are displayed in
Table 3.3). A value of � is associated with the existence of an invariant quantity that
will remain constant during the decay (see subsequent discussion). In some cases
the existence and the physical meaning of this invariant quantity are easily handled,
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whereas some controversies exist in other cases. The most popular values for the
parameter � are as follows:

� � = 4. According to the Loitsyansky–Landau theory, it was hypothesized by Loit-
syansky in 1939 that the following integral quantity (referred to as the Loitsyansky
integral or the Loitsyansky invariant),

I = −
∫

r2u(x) · u(x + r)d3r = 8�u′2
∫ +∞

0
r4 f (r)dr, (3.44)

[with f (r) given by (3.76)], is invariant in time during the decay phase. The cor-
responding time-evolution exponents were derived by Kolmogorov in 1941. The
associated form of the kinetic-energy spectrum is referred to as the Batchelor spec-
trum:

E(k) = I

24�2
k4 + · · · (kL � 1), (3.45)

where L is the integral length scale. The time invariance of I is a controversial is-
sue because it depends on the decay rate of a velocity two-point correlation at long
range. It is constant if velocity long-range interactions decay fast enough, which is
not obvious because the pressure fluctuations may induce strong long-range inter-
actions.‡‡ The controversy was initiated by Proudman and Reid in 1954, followed
by Batchelor and Proudman in 1956, who advocated that long-range interactions
are strong enough to render I time dependent. Since that time, I has been ob-
served to be time dependent in many numerical simulations, in agreement with
predictions of many two-point closures like EDQNM. This issue was very recently
revisited by Davidson (2004) and Ishida, Davidson, and Kaneda (2006), who ob-
served that I becomes time independent after a transient phase in high-resolution
DNS, provided that the domain size is much larger that of the turbulent integral
scale (they considered a ratio up to 80) and that the Reynolds number is larger
than 100. Therefore time dependency observed in previous simulations was an
artefact that was due to spurious long-range correlations induced by the insuffi-
cient domain size and periodic boundary conditions. The fact that pressure fluctu-
ations do not lead to a strong long-range coupling may be attributed to a screening
effect in fully developed turbulence: Long-range correlations are weakened by op-
posite canceling effects of the very intricate turbulent vorticity field.

� � = 2. This second value was proposed in 1954 by Birkhoff, who made the hypoth-
esis that the following integral quantity is invariant (referred to as the Birkhoff
integral but also as the Saffman integral):

S =
∫

u(x) · u(x + r)d3r = 4�u′2
∫ +∞

0
r2
(

3 f + r
∂ f

∂r

)
dr, (3.46)

‡‡ This point is easily understood if one looks at the Green’s function solution given by Eqs. (2.32) and
(2.33), which show that the pressure fluctuations caused by an eddy at a distance r from this eddy
have an intensity p′ ∼ r−3 for large r .



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

64 Incompressible Homogeneous Isotropic Turbulence

with f (r) given by (3.76). The corresponding time behavior of the solution was
derived by Saffman in 1967, after he argued that the Loitsyansky integral is di-
verging in isotropic turbulence. For that purpose, Saffman revised the approach
introduced by Comte-Bellot and Corrsin in 1966 to investigate the connection be-
tween the energy spectrum and the energy decay. The associated spectrum shape
(the Saffman spectrum) at large scales is

E(k) = S

4�2
k2 . . . (kL � 1). (3.47)

� � = 1. This value was proposed by Oberlack (2002), who emphasizes that this is
the only value of � that allows for the full similarity of the Kármán–Howarth
equation [see Eq. (3.78) and the corresponding subsection] at finite Reynolds
number. A noticeable feature of this solution is that the decay occurs at constant
turbulent Reynolds number.

� � = +∞. This solution was also proposed by Oberlack in 2002. It corresponds to
a decay with a constant integral scale.

3.2.3 Time-Variation Exponent and Inviscid Global Invariants

The direct physical interpretation of the value of the decay parameter � is unclear
in some cases. One can get a deeper insight into the related physics by looking at
the links that exist between the choice of a value for � and the conservation of exact
invariants of inviscid flows.

Following Oberlack (2002), let us first recall that, for an inviscid flow in an un-
bounded domain V , the following nonlocal conservation laws are exact:

d

dt

∫
V

u · ud3x = 0 (kinetic-energy conservation), (3.48)

d

dt

∫
V

x × ud3x = 0 (angular-momentum conservation), (3.49)

d

dt

∫
V

u · (∇ × u)d3x = 0 (linear-impulse or helicity conservation). (3.50)

Now, using the change of variable based on the invariants introduced in
Eq. (3.27), we can rewrite the three conservation laws as follows:

(� − 2)
∫

V
ŭ · ŭd3 x̆ = 0 (kinetic-energy conservation), (3.51)

(� − 7)
∫

V
x̆ × ŭd3 x̆ = 0 (angular-momentum conservation), (3.52)

(� − 1)
∫

V
ŭ · (∇̆ × ŭ)d3 x̆ = 0 (linear-impulse or helicity conservation). (3.53)

Kinetic energy is strictly positive in a turbulent flow, whereas the sign and the
absolute value of angular momentum and helicity are not a priori known. Because
a choice for � can enforce only one of the three conservation laws just given, it
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makes sense to assume that the total linear momentum and helicity are identi-
cally null, whereas the kinetic energy is preserved, yielding � = 2. Therefore the
Birkhoff–Saffman theory is coherent with the preservation of kinetic energy at infi-
nite Reynolds numbers.

Another interpretation is possible (Davidson, 2004) because both Loitsyansky
and Birkhoff integral quantities are related to exact dynamical invariants of inviscid
motion in an unbounded domain. The first one is the linear impulse, ILI, and the
second is the angular momentum, IAM, with

ILI = 1
2

∫
V

(x × curl u)dV, (3.54)

IAM =
∫

V
(x × u)dV . (3.55)

Considering a volume V filled by isotropic turbulence with a characteristic
length much larger that the integral length scale of the turbulent motion, the fol-
lowing relations hold: 〈

I2
LI

〉
V

� I, (3.56)

〈
I2

AM

〉
V

� S. (3.57)

If turbulent eddies have a finite, nonnegligible linear momentum, then S �= 0
and therefore the spectrum will be of the Saffman type and � = 2. If their linear
momentum is very small but their angular momentum is finite, then S � 0 and
I �= 0, yielding a Batchelor-like spectrum and � = 4.

Let us just note that, if the two-point correlations fall sufficiently rapidly to en-
sure that all integrals are convergent, the following Taylor series expansion holds at
small wavenumbers:

E(k) = S

4�2
k2 + I

24�2
k4 + · · · (kL � 1). (3.58)

3.2.4 Refined Analysis Without PLE Hypothesis

The analysis previously conducted relies on the PLE hypothesis, which is observed
to fail in some cases. Let us now consider a self-similar state whose low-wavenumber
kinetic-energy spectrum is

E(k, t) = C�(t)k� (kL � 1), (3.59)

where C� is a priori a time-dependent function. It is recalled that the PLE hypothesis
states that C� is time independent. Simple dimensional analysis and solution self-
similarity lead to the following scaling laws,

K ∝ t−n, L ∝ t−b, ε ∝ t−(n+1), (3.60)
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from which it follows that

ReL = Lu′

�
∝ t (2��+1−�)/(�+3),

√
K

L
= ε

K ∝ t−1, (3.61)

where the coefficient �� is defined as

�� = 1
C�

dC�

d log t
(3.62)

and where the coefficients are tied by the following relation:

−n + (� + 1)b = �� . (3.63)

The theoretical analysis based on the EDQNM closure shows that C� is constant
in time and �� = 0 for � � 4, whereas �4 = 0.16. Therefore one has n = −6/5 for
� = 2 and n = −1.38 for � = 4. Neglecting the time variation of C4, one recovers
the Kolmogorov value of n = −10/7 � −1.43 for � = 4.§§

Typical numerical results (obtained by use of simplified numerical models, as
these data cannot be obtained by experimental means and are out of range of avail-
able supercomputing facilities) are displayed in Fig. 3.2. Turbulent flows with an ini-
tial small-wavenumber slope higher than 4 are observed to relax toward the � = 4
self-similar state.

3.2.5 Self-Similarity Breakdown

According to Eq. (3.38), which is a definition, self-similarity implies that the spec-
trum can be described with a single length scale, a single velocity (or energy) scale,
and a single shape function. All previous developments are compatible with the ex-
istence of a self-similar solution. The issue of the possible occurence of breakdown
of self-similarity for solutions with 4 − p � � � 4, where p is the coefficient such
that

C�(t) ∝ L p(t), (3.64)

was raised by Eyink and Thomson (2000) on the grounds of theoretical arguments,
where L is the integral length scale. This self-similarity breakdown was observed in
1D Burgers’ turbulence simulations by Noullez et al. (2005) (see Subsection 3.8.3 for
more details about Burgers’ turbulence). The value p = 0.55 can be inferred from
EDQNM results. In this non-self-similar regime, the small-wavenumber part of the
spectrum should be divided into two parts, one with E(k, t) ∝ Ak� for k ≤ 1/ l∗(t)

§§ The value n = −1.38 for � = 4 is associated with a time-varying Loitsyanski integral: I ∼ t0.16. This
results conflicts with the most recent DNS results (Ishida, Davidson, and Kaneda, 2006). This can be
understood looking at the expansion of the nonlinear transfer term mediated by strongly nonlocal
triadic interactions in the limit of very small wavenumbers retrieved from two-point closures (e.g.
EDQNM):

T (k → 0) = ∂ E/∂t ∼ Ak4 − 2�turbk2 E,

where �turb is an eddy viscosity. An error on the constant A may yield an error on the energy balance
at very small wavenumbers, inducing a spurious time evolution of I.
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Figure 3.6. Evolution of the effective decay
exponent �K for different values of the low-
wavenumber spectrum exponent, n. The time
scale � is the same as in Fig. 3.3. From Clark and
Zemach (1998) with permission of AIP.

and one with E(k, t) ∝ C4(t)k4 for 1/ l∗(t) ≤ k ≤ 1/L(t). Here the new length scale
l∗(t) evolves like l∗(t) ∝ L p/(4−�)(t). Self-similarity is broken if the two length scales
are necessary to describe the spectrum evolution over long times, i.e., if l∗(t) � L(t)
for t � 1. This is the case if 4 − p � � � 4.

3.2.6 Self-Similar Decay in the Final Region

All results previously displayed in this section are related to the inital stage of decay,
which is governed by nonlinear interactions. We now discuss the possibility of self-
similar behavior in the final stage of decay. Simple calculations show that, if the PLE
hypothesis holds, the kinetic energy evolves as

K(t) ∼ t−(�+1)/2 if E(k, 0) ∼ k� (kL � 1). (3.65)

A long time evolution of the kinetic-energy spectrum computed with an
EDQNM closure is displayed in Fig. 3.3. It is observed that a self-similar fi-
nal stage of decay is reached after a very long time. Here � denotes the eddy
turnover time scale associated with the peak of the spectrum at the initial time: � =
[k3

max(0)E(kmax, 0)]−1/2. It is also noticed that, in the final viscous-decay stage, the
PLE holds, even in the present case in which E(k, 0) ∼ k4 at very large scales.

An interesting problem is the time needed to reached the final stage of decay
starting from a high-Reynolds-number solution initially governed by a nonlinear ini-
tial decay stage. The time evolution of the effective time-decay exponent �K defined
as

�−1
K (t) = − ∂

∂t

[ K(t)
∂K(t)/∂t

]
(3.66)

is displayed in Fig. 3.6 for different values of the spectrum low-wavenumber power-
law exponent. A trivial calculation shows that �K = (� + 1)/2 if the turbulent ki-
netic energy obeys algebraic decay law (3.65).

It is observed that in all cases a very long time is needed before the solution
reaches the final stage of decay, i.e., �K = const. The turbulence quickly reaches a
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cascade-dissipation equilibrium for the k1 spectrum.¶¶ For other spectrum shapes,
the transition is too long to be observed (Clark and Zemach, 1998). Considering a
wind tunnel with air and a mean-flow velocity equal to 20 m s−1, a grid-generated
turbulence such that K(0) = 20 m2 s−2 and the initial turbulent Reynolds number
is equal to ReL = 3000, the wind-tunnel length required to reach the final stage is
of the order of 1016 m (about 1 light year, or about one-third the distance to the
nearest star!) for k2-shaped spectrum, and 5 × 106 m (almost an Earth radius!) for
k4 spectra.

3.3 Reynolds Stress Tensor and Analysis of Related Equations

For decaying HIT, the RST reduces to a spherical form, as the dissipation tensor, so
that

u′
i u

′
j = 2K�i j

3
, ε i j = 2ε

�i j

3
,

and Eqs. (2.52) and (2.53) simplify to

dK
dt

= −ε (3.67)

and

dε
dt

= −C	2
ε 2

K . (3.68)

In the absence of production because of the uniformity of the mean flow, the
first equation is exact. Using the logarithmic derivatives, one can simply solve the
preceding system of equations. It admits power-law solutions of the form

K(t) = K(0)
(

1 + t

t0

)−n

; ε (t) = n
K(0)

t0

(
1 + t

t0

)−n−1

, (3.69)

with

t0 = n
K(0)
ε (0)

, C	2 = − d(log ε )
d(logK)

,

yielding

C	2 = n + 1
n

. (3.70)

Accordingly, a direct link of C	2 to the exponent of the decay law is given.
Following the results given in Subsection 3.1.3, one obtains m = 2, n = 6/5, and
C	2 = 11/6 for a Saffman spectrum and m = 4, n = 1.38 and C	2 = 1.72 for a Batche-
lor spectrum. The analysis of the self-similar initial decay stage given in the previous
section emphasized that the decay exponent is directly tied to the power-law behav-
ior of the kinetic-energy spectrum at low wavenumbers. Therefore C	2 can also be

¶¶ This is consistent with the fact that it is the only solution that is fully consistent with the symmetry
analysis at a finite Reynolds number.
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recast as a function of the spectrum shape at very large scales:

C	2 = 1 + � + 3
2(� + 1)

, with E(k) ∼ k�, (kL � 1). (3.71)

A direct consequence is that there is no really universal value for C	2 and that
a K − ε model with fixed parameters is not able to capture the subtle changes in the
decay rate of K that may occur.

All these developments hold for large values of the Reynolds number only. At a
low Reynolds number, i.e., during the final decay period, more complex expressions
for C	2 must be found. Because the high-Reynolds-number asymptotic analysis can
no longer be used, only empirical expressions are available. Most of them rely on an
exponential interpolation between asymptotic values. As an example, let us mention
the model proposed by Coleman and Mansour (1991):

C	2(ReT ) = 1. − 0.222 exp(−0.1677
√

ReT ), (3.72)

where the Reynolds number ReT is defined as ReT = K2/�ε . A limitation of this
model, which is shared by almost all other models, is that it does not take into ac-
count other parameters, like the initial condition. Considering a fully linear evolu-
tion, the turbulent kinetic-energy spectrum evolves as

E(k, t) = E(k, 0)e−2�k2t . (3.73)

For small wavenumbers, one obtains

E(k, t) = kme−2�k2t , (3.74)

which leads to K(t) ∝ t−(m+1)/2. Available experimental data, in which nonlinear ef-
fects are small but not identically zero, lead to m � 3. In the strictly linear limit, one
expects to recover either the Batchelor solution (m = 2, C	2 = 1.67) or the Saffman
solution (m = 4, C	2 = 1.4).

The analysis can be further extended to account for the influence of the skew-
ness of velocity gradients. This point is not discussed here (see Piquet, 2001, for a
detailed discussion of the modeling issues related to the free-decay case).

It is clear that the main trends of high-Reynolds dynamics of decaying HIT can
be predicted by the simplest K − ε model if the initial conditions are taken into
account, including the initial spectrum shape. But the discussion just presented also
shows that, even for a very simple turbulent flow such as HIT, several physical mech-
anisms escape the formalism of the K − ε model defined by Eqs. (3.67) and (3.68).
The very reason why is that the turbulent decay depends on both the large and the
small scales and that most turbulence models written in the physical space are not
able to account for spectral features of turbulence.

It is also worth emphasizing that prediction is not explanation and that our
knowledge of HIT remains elusive. Internal intermitency that is reflected in the
scaling of high-order moments is an open problem; the formation of microstructures
like worms is shown in physical and numerical experiments but not really explained
from the analysis of Navier–Stokes equations.
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Figure 3.7. Schematic view of multipoint correla-
tions. Top: general sketch of the correlation be-
tween two velocity components taken at two dif-
ferents points A and B. Bottom: illustration of the
physical meaning of the longitudinal correlation
function f (r) and its transverse counterpart g(r).

3.4 Classical Statistical Analysis: Energy Cascade, Local Isotropy,
Usual Characteristic Scales

3.4.1 Double Correlations and Typical Scales

Isotropy implies that the two-point second-order correlation tensor

Ri j (r) = 〈u′
i (x)u′

j (x + r)〉
(time is omitted for the sake of brevity) can be expressed as Ri j = A(r)�i j + B(r)rir j ,
or

Ri j (r) = u′2
{

g(r)�i j + [ f (r) − g(r)]
rir j

r2

}
, (3.75)

introducing the scaling factor u′2 = 2
3K and using the longitudinal correlation func-

tion

u′2 f (r) = Ri j (r)
rir j

r2
, (3.76)

and its tranverse counterpart

u′2g(r) = Ri j (r)ni n j , (3.77)

in which n is a unit vector normal to r (see Fig. 3.7).
The scalar correlation functions f and g are linked by the incompressibility

constraint. Using ∂ Ri j

∂r j
= 0 one obtains

g(r) = f (r) + r

2
∂ f

∂r
.
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Finally, reintroducing the time dependency, the evolution equation for the two-
point second-order tensor amounts to the single scalar equation, e.g., for f , as
follows:

∂

∂t
(u′2 f ) =

(
∂

∂r
+ 4

r

)[
RLL,L(r, t) + 2�

∂

∂r
(u′2 f )

]
, (3.78)

which is referred to as the Karman–Howarth equation. The term RLL,L represents
the longitudinal two-point third-order correlation function, which is involved by
means of the quadratic nonlinearity. It is defined as

RLL,L(r, t) = u′
i (x, t)u′

i (x, t)u′
m(x + r , t)

rm

r
. (3.79)

A slightly different form can be found in Mathieu and Scott (2000).
Typical spatial length scales of turbulence can be defined by functions f (r) and

g(r). The longitudinal and transverse integral length scales, denoted by L f and Lg ,
respectively, are defined as

L f =
∫ ∞

0
f (r)dr, Lg =

∫ ∞

0
g(r)dr, (3.80)

and the longitudinal and transverse Taylor microscales, � f and �g , are computed as

� f =
√

− 2
∂2 f
∂r2

, �g =
√

− 2
∂2g
∂r2

, (3.81)

respectively. The definitions of the latter come from the Taylor series expansions of
f and g at small r , such as f (r) = 1 − r2

�2
f
+ · · · . Isotropy implies

Lg = 1
2

L f ; �2
g = 1

2
�2

f . (3.82)

Finally, the dissipation rate is usually expressed as

ε = 30�
u′2

�2
f

= −15�u′2 ∂2 f

∂r2
. (3.83)

Assuming that the dissipation rate ε is constant, one can derive many scaling
laws, which are summarized in Table 3.4. The scaling laws for ε are further discussed
in Subsection 3.5.7.6.

3.4.2 (Very Brief) Reminder About Kolmogorov Legacy, Structure Functions,
“Modern” Scaling Approach

Structure functions are interesting alternatives to velocity correlations at two points,
using equivalent r (two-point) separation vectors, but velocity increments �u′ =
u′(x + r) − u′(x) instead of u′(x) or u′(x + r). The counterpart of the longitudinal
correlation f is the (longitudinal) second-order structure function

〈�u2
‖〉 =

〈{
[u′(x + r) − u′(x)] · r

r

}2
〉
.
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Table 3.4. Usual scaling laws derived from Kolmogorov’s 1941 framework

Name Symbol Definition Scaling with � Remark

Integral scale L L/�∝ Re3/4
L ∝ Re3/2

� Large energy-containing
scales

Taylor microscale �
√

15�u′2/ε �/�∝ Re1/4
L ∝ √

Re� Small scales, maximum of
dissipation/enstrophy
spectrum

Kolmogorov scale � (�3/ε )1/4 Local Reynolds number
equal to one

Note: The dissipation rate is assumed to be scale independent. Reynolds numbers are defined as ReL = u′ L/�

and Re� = u′�/�. The local Reynolds number at scale l is defined as Rel = u(l)l/�, where u(l) is the characteristic
velocity scale associated with l.

Definition of the nth-order longitudinal structure function 〈�un
‖〉 is readily obtained

from the preceding equation. In homogeneous turbulence, the second-order longi-
tudinal structure function, for instance, is given by

〈�u2
‖〉 = 2

3
K [1 − f (r)] . (3.84)

More generally, one can keep in mind that structures functions give information on
two-point statistics for r �= 0 and tend to zero with vanishing r .

Kolmogorov originally proposed scaling the structure functions in terms of r
and the dissipation rate ε only, the first and simplest version (denoted K41 since the
seminal paper of Kolmogorov was published in 1941) reducing to

〈�un
‖〉 ∼ (ε r)n/3. (3.85)

The scaling results only from dimensional analysis, once the physical parame-
ters have been chosen. Of course, this choice relies on nontrivial phenomenological
aspects. The scaling holds for an inertial range, i.e., for L � r � �, delineated by a
large-scale L , comparable with L f in Eqs. (3.80) and the Kolmogorov scale �.

It is important to notice that the classical Taylor series expansion ui (x + r) =
ui (x) + ∂ui

∂rl
rl + · · · would yield a different scaling law: 〈�un

‖〉 ∼ rn . This result, which
holds for a smooth velocity field, may be valid for the smallest scales, i.e., r � �. The
simple fact that the K41 exponent is fractional (n/3) means that the velocity field
appears not to be differentiable in the inertial range and that self-similar dynamics
is expected.

Modern phenomenological theories continue in search of a more general scal-
ing, replacing the n/3 exponents with new ones, �n , called “anomalous exponents,”
because the former are in question in the case of internal intermittency. The back-
ground argument for introducing such new scaling is to consider a local dissipation
rate (or energy flux) that is no longer independent of the size r . The reader is re-
ferred to the following books for more details: Monin and Yaglom (1975), Frisch
(1995), and Mathieu and Scott (2000).
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Figure 3.8. Value of the constant in inviscid asymptotic law (3.87) vs. the Taylor-microscale-based
Reynolds number. From Antonia (2007), courtesy of R.A. Antonia.

Finally, let us just mention the famous Kolmogorov’s four-fifths law,

〈�u3
‖〉 = −4

5
	r + 6�

∂

∂r
〈�u2

‖〉, (3.86)

which appears as a simplified form of the Kármán–Howarth equation, and is one of
the few “exact” equation in the theory of turbulence. Accordingly, the K41 scaling
remains unquestioned (at least in HIT at very high Reynolds number) for n = 3.

But it is important noting that the further simplified inviscid form,

〈�u3
‖〉 = −4

5
	r, (3.87)

is nothing but an asymptotic limit, whose range of validity is still an open ques-
tion. Recent experimental and numerical results show that it holds for very large
Reynolds numbers only, as shown in Fig. 3.8: Re� = O(103) may be considered a
lower bound for flows with turbulence production, whereas much higher values such
as Re� = O(105) − O(106) are certainly more realistic in decaying turbulence.

3.4.3 Turbulent Kinetic-Energy Cascade in Fourier Space

It is often easier to investigate two-point statistics by use of 3D Fourier space. The
counterpart of Eq. (3.75) in the Fourier space is Eq. (2.99), repeated here:

R̂i j (k, t) = E(k, t)
4�k2︸ ︷︷ ︸
e(k,t)

(
�i j − ki k j

k2

)
︸ ︷︷ ︸

Pi j

.

It should be borne in mind that isotropy yields a very special form of the spectral
tensor. The involved parameters are the following: E(k, t), with k = |k|, is the usual
energy spectrum, representing the distribution of turbulent kinetic energy over dif-
ferent scales and the quantity in parentheses will be recognized as the projection
matrix, Pi j (k). Thus R̂i j is determined by a single real scalar quantity, E , which is a
function of the sole magnitude of k. Therefore both the form of R̂i j at a single point
and its distribution over k-space are strongly constrained by isotropy.
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The evolution of the energy spectrum is governed by the Lin equation,∗

∂ E(k, t)
∂t

+ 2�k2 E(k, t) = T (k, t) (3.88)

in which the third-order correlations are involved in the scalar spectral transfer term
T (k, t).† This equation can be seen as a spectral counterpart of Kármán–Howarth
equation (3.78). The exact relationship among E(k), T (k), and all the correlations
defined in physical space can be found in Mathieu and Scott (2000).

This equation derives from Craya’s equation (2.81) by canceling mean-gradient
terms and by assuming isotropy, so that

E(k, t) = 2�k2 R̂ii (k, t), T (k, t) = 2�k2Tii (k, t). (3.89)

Integrating the equation over k yields

K(t) =
∫ ∞

0
E(k, t)dk ε = 2�

∫ ∞

0
k2 E(k, t)dk (3.90)

and ∫ ∞

0
T (k, t)dk = 0. (3.91)

This allows us to recover basic equation (3.67) and shows that T (k, t) is a pure
redistribution term in the Fourier space. The last relation accounts for the fact that
the convection term conserves the total kinetic energy, leading to the well-known re-
sult that global kinetic energy is an invariant in inviscid incompressible flows (with-
out boundary conditions).

One can notice that the counterpart of inviscid Kolmogorov 4/5 law (3.87) is

F(k) =
∫ ∞

k
T (k)dk = ε , (3.92)

where F(k) is the spectral flux across a wavenumber k, is “exact” in very similar
conditions, i.e., at very high Reynolds numbers only. This is observed in Fig. 3.9, in
which a constant F(k) is observed on hardly one decade at Re� = 1132, whereas it
is not observed at all for Re� = 732.

Typical shapes of E(k), 2�k2 E(k), and T (k) are displayed in Fig. 3.12 in Sec-
tion 3.5. It is observed that the peak of the energy spectrum, E(k), is significantly
separated from the one of the dissipation spectra 2�k2 E(k) at large Reynolds num-
bers. The transfer term is almost zero in a small zone within the inertial range, neg-
ative for smallest k and positive for largest k, the areas of both positive and nega-
tive values being exactly balanced. The physical meaning is that small-wavenumber

∗ The name Lin equation is used in agreement with a paper published by von Kármán and Lin in
1949, in which seminal talks by C. C. Lin are quoted.

† Let us emphasize here the physical meaning of the sign of T (k). The net effect of nonlinearity on
modes k such that T (k) � 0 is a kinetic-energy gain [which must be balanced by viscous effects in
the statistically steady case ∂ E(k, t)/∂t = 0], whereas modes such that T (k) � 0 lose more kinetic
energy than they gain through nonlinear interactions (these scales must be fed by a forcing term to
obtain a statistically steady state). Last, scales such that T (k) = 0 are in equilibrium, in the sense
that they do not lose or gain kinetic energy on the mean.
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Figure 3.9. Value of the spectral flux F(k) [denoted here as 
(k)] vs. the wave number k in high-
resolution DNS. From Aoyama et al. (2005) with permission of Physical Society of Japan.

modes lose kinetic energy on the mean because of the nonlinear interactions,
whereas large-wavenumber modes gain kinetic energy. The scale located within the
inertial range has a zero net transfer. The associated dynamic picture is the cele-
brated forward energy cascade process‡: Turbulent kinetic energy is injected into the
system (by external forcing, hydrodynamic instabilities, etc.) at small-wavenumber
modes. The energy is then pumped toward higher-wavenumber modes by the non-
linear interactions, “streaming” in some sense toward modes at which it will be
transformed into heat by viscous mechanisms. The inertial range is defined as the
zone in which the net transfer T (k) is zero [or, equivalently, the spectral flux F(k) is
constant]. In the inertial zone, the classical Kolmogorov scaling§

E(k) = K0ε 2/3k−5/3 (3.93)

is observed in both experimental and numerical data sets.
The evolution equation for the dissipation ε is recovered from Eq. (3.88) by

integrating it over k after multiplication by the factor 2�k2, yielding

d ε
dt

=
∫ ∞

0
2�k2T (k)dk −

∫ ∞

0
(2�k2)2 E(k)dk. (3.94)

From this equation, it is clear that the second term on the right-hand side is
negative and corresponds to a viscous-destruction mechanism. The first term is es-
sentially positive. A part of T (k) (at large k) is privileged by the k2 weighting factor
and can be interpreted as a production of ε by nonlinear interactions. This point will
be further discussed in Section 3.7.

‡ The term cascade was coined by Onsager in the late 1940s.
§ This scaling is consistent with the content of the papers published by Kolmogorov in 1941. But it

is worth noting that Kolmogorov never worked in Fourier space. The expression of the turbulent
kinetic spectrum was given by his Ph.D. student, A. Obhukov, and almost independently rendered
popular by Heisenberg.
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The fact that the evolution of ε results from the imbalance between two very
different terms, whose sum can be efficiently modeled by the purely negative term
− n

n+1
ε 2

K in Eq. (3.68), is certainly true in HIT at high Reynolds numbers, but remains
not completely understood.

A brief introduction to 2D turbulence is given in Subsection 3.8.2.

3.5 Advanced Analysis of Energy Transfers in Fourier Space

3.5.1 The Background Triadic Interaction

The equation introduced in the previous chapter,

∂ ûi

∂t
(k, t) = ı Pimn(k)

∑
�

û∗
m(p, t)û∗

n(q, t)︸ ︷︷ ︸
si

, (3.95)

with

Pimn = 1
2

[km Pin(k) + kn Pim(k)] , (3.96)

is now detailed. Viscous effects are omitted and the symbol
∑

� for summation over
triads is used in a generic way to avoid distinguishing between the discrete and the
continuous formulations from the beginning. The use of complex conjugates for the
Fourier coefficients in the sum (or integral) is consistent with a fully symmetric re-
lationship for the triad, i.e.,

k + p + q = 0 (3.97)

instead of p + q = k coming from the convolution product.
A slightly different form of the nonlinear coupling term is found to replace the

term ∂ui u j

∂x j
in physical space with 	i jn� j un . The corresponding form in Fourier space

is ısi = Pim	mjn
∑

� �̂ j (p, t)ûn(q, t), which can be shown to be the same as the previ-
ous one, using the Ricci relationship and a symmetric form with respect to p and q.
This formulation is more convenient when the helical-mode basis is used.

In terms of the helical modes, Eq. (3.95) has the generic form

∂�s(k)
∂t

= ı
∑
�

Mss ′s ′′(k, p)︸ ︷︷ ︸
I

�∗
s ′(p, t)�∗

s ′′(q, t)︸ ︷︷ ︸
II

, (3.98)

with �s(k) = (1/2)û · N(−sk) and û(p) = ∑
s ′ �s ′ N(s ′ p). The signs s, s ′, s ′′, or polar-

ities, take values of ±1 only. It is worth noting that, in Eq. (3.98), term I is related
to only the topology of the triad (i.e., is a purely geometric factor), whereas term II
depends on only the amplitude of the modes, i.e., on the turbulent field itself. From
Eq. (3.95) it is found that (e.g., Cambon and Jacquin, 1989)

Mss ′s ′′(k, p) = 1
2

{
[N(−sk) · N(−s ′ p)][k · N(−s ′′q)]

+ [N(−sk) · N(−s ′q)][k · N(−s ′′ p)]
}
. (3.99)
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The second formulation, using � × u as the basic nonlinearity (Waleffe, 1992,
1993), yields

Mss ′s ′′(k, p) = 1
2

(s ′ p − s ′′q)N(−sk) · [N(s ′ p) × N(s ′′q)], (3.100)

using the aditional relationship

�̂(p) = p
∑

s ′
s ′�s ′(p, t)N(s ′ p) (3.101)

and the antisymmetry of the triple scalar product.
The use of helical modes allows for an optimal factorization of the coupling

terms in terms of the moduli k, p, q, and the angular variables: The former depend
on only the geometry of the triangle whereas the latter also depend on the orienta-
tion of its plane. For further analysis, it is better to start from Eq. (3.100) because
it appears more symmetric than (3.99) in terms of the three vectors of the triads,
involving a triple scalar product, without need for additional calculations.

For instance, Eqs. (3.98) and (3.100) can be rewritten as

∂�s(k)
∂t

=
∑
s ′s ′′

∑
�

(s ′ p − s ′′q)K (sk, s ′ p, s ′q)�∗
s ′(p, t)�∗

s ′′(q, t), (3.102)

with

K (sk, s ′ p, s ′′q) = 6
4

N(−sk) · [N(−s ′ p) × N(−s ′′q)]. (3.103)

The principle of triad instability stated by Waleffe (see Subsection 3.5.4) takes ad-
vantage of the full symmetry of the coupling coefficient K with respect to any simul-
taneous permutation of vectors and polarities within a given triad.

A last set of equations allows us to express K (and other related coefficients in
statistical closures) in terms of the parameters of the triad. The idea is to turn from
local reference frames (or helical modes) defined with respect to a fixed polar axis
to their counterparts defined with respect to the normal unit vector of the triad (or
almost equivalently with respect to a fixed k, if p and q are under consideration).
The unit normal vector is defined as

� = k × p
| k × p | , (3.104)

and unit vectors in the plane spanned by the triad, normal to k, p, q, respectively,
are

� = k
k

× �, �′ = p
p

× �, �′′ = q
q

× �. (3.105)

“Triadic” helical modes are defined by

W(s) = � + ıs�, W(s ′) = �′ + ıs′�, W(s ′′) = �′′ + ıs′′�, (3.106)

and they are related to the original ones by

N(sk) = eıs�W(s), N(s ′ p) = eıs′�′
W ′(s ′), N(s ′′q) = eıs′′�′′

W ′′(s ′′), (3.107)



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

78 Incompressible Homogeneous Isotropic Turbulence

where �, �′, and �′′ are angles that characterize the rotation of the plane of the triad
around k, p, and q , respectively (see Chapter 14).

The advantage of W(s), W ′(s ′), W ′′(s ′′) with respect to N(sk), N(s ′ p), N(s ′′q) is
that any invariant combination (double or triple scalar product) of the former will
rely on only the geometry of the triad, and therefore can be expressed in terms of the
moduli k, p, q only. As a first useful application, the coefficient K can be expressed
as

K = i

4
e−ı(s�+s ′�′+s ′′�′′)W(s) · [W ′(s ′) × W ′′(s ′′)].

The triple scalar product involves the sines of the internal angles of the triad:

W(s) · [W ′(s ′) × W ′′(s ′′)] = ı(s ′s ′′ sin� + ss ′′ sin� + ss ′ sin�).

These sines are connected to the lengths of the triangle through

sin�
k

= sin�
p

= sin�
q

= Ckpq , (3.108)

so that

K (sk, s ′ p, s ′′q) = e−ı(s�+s ′�′+s ′′�′′) ss ′s ′′

4
(sk + s ′ p + s ′′q)Ckpq , (3.109)

with

Ckpq =
√

2k2 p2 + 2p2q2 + 2q2k2 − k4 − p4 − q4

2kpq
, (3.110)

which appears in EDQNM models (see Subsection 3.5.7).
As a second application, the system of dependent variables k, p, q,� is well

suited for representing the triadic interactions. If the symbolic operator
∑

� is re-
placed with the integral, the relevant term is written as∫∫∫

S(k, p, t)d3 p,

where S(k, p, t) originates from T = (1/2)Tii using Eqs. (2.80) and (2.82). Its gen-
eral expression in terms of triple-velocity correlations [see also Eq. (3.112)] is not
important here, because only the change of dependent variables at fixed k [switching
from (p1, p2, p3) to (p, q,�)] is considered, for any integrand S.

If q is expressed as −k − p in S, then the factors p, q, and � can replace
p1, p2, p3, yielding∫∫∫

S(k, p, t)d3 p =
∫∫

� k

pq

k
dpdq

∫ 2�

0
S(k, p, q,�)d�. (3.111)

The coefficient pq/k is the Jacobian of the change of integration variables, and
� k is the domain of p, q, so that k (fixed), p, q are the lengths of the sides of a
triangle.

Finally, the other angular variables in Eq. (3.109), �′ and �′′, also can be ex-
pressed as functions of k, p, q, and �.
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3.5.2 Nonlinear Energy Transfers and Triple Correlations

The transfer term T (k) in Eq. (3.88) involves triple-velocity correlations under sum-
mation on triads. We do not discuss here simplified closure models relying on a
spectral-flux term F(k) such that T (k) = ∂ F/∂k, where F(k) is a more or less local
(in Fourier space) function of k and E(k). These models do not take into account
the detailed triadic structure of the background equations, but can in some cases
yield interesting results on the evolution of E(k). In some models, a quasi-local flux
in wave space can reflect very distant interactions, which are mediated by flat triads,
so that the term “local” is misleading: For instance, the cusp in eddy viscosity cor-
responds to k ∼ p, q ∼ 0, whereas the plateau at small k corresponds to p ∼ q � k
(Kraichnan, 1976). One could speak of “dyadic” models, instead of “local” models,
in this case.

The techniques addressed in this subsection offer a closure for triple correla-
tions at three points. They are developed in Fourier space for the sake of mathe-
matical convenience. A third-order spectral tensor can be defined as

〈ûi (k)û j (p)ûn(q)〉 = ıSi jn(k, p, t)�(k + p + q), (3.112)

which corresponds to the general definition given in Chapter 2, up to a factor ı. The
transfer tensor that incorporates their contribution in the equation for the second-
order spectral tensor is given by

Ti j (k)�(k + p) = 〈si (p)û j (k)〉 + 〈ûi (p)s j (k)〉,
or

Ti j (k) = �i j (k) + �∗
j i (k), (3.113)

with

�i j (k) = Pimn

∫
Sjmn(k, p)d3 p. (3.114)

Two contributions can be distinguished in Ti j . The first one is given by

1
2

[
kn

∫
(Sjin + S∗

j in)d3 p + km

∫
(Sjmi + S∗

im j )d3 p
]

and corresponds to a true transfer tensor with zero integral. The complementary
contribution,

1
2

kmkn

k2

(
ki

∫
Sjmnd3 p + k j

∫
S∗

imnd3 p
)

,

gives by integration the “slow” pressure–strain tensor 
s
i j introduced in Subsec-

tion 2.3.1.
Of course, we are interested in only

T (k) = 2�k2Tii = 2�k2(�i i + �∗
j i )

in HIT, but it is necessary to address the equation for Si jn to derive a consistent
closure.
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Similar to the equation for the second-order spectral tensor, the equation that
governs Si jn is found as[

∂

∂t
+ �(k2 + p2 + q2)

]
Si jn(k, p) = Ti jn(k, p) + Tjni (p, q) + Tni j (q, k).

The first term (the other ones are derived by circular permutations) on the right-
hand side is exactly expressed as

�(k + p + q)Ti jn = ı〈si (k)û j (p)ûn(q)〉

=
∫

k=r+s
Pirs(k)〈ûr (r)ûs(s)û j (p)ûn(q)〉d3r , (3.115)

and involves fourth-order correlations.

3.5.3 Global and Detailed Conservation Properties

Some global conservation properties of the Navier–Stokes equations in the limit of
vanishing molecular viscosity can be easily recast in the Fourier space, providing
some useful constraints on the triadic nonlinear transfer term.

We consider here the conservation of the global kinetic energy and the global
helicity (in an unbounded domain and in the absence of external forcing):

∂

∂t

∫
u(x) · u(x)d3x = 0, (3.116)

∂

∂t

∫
u(x) · �(x)d3x = 0, � = curl(u). (3.117)

These two relations illustrate the fact that the nonlinear term redistributes en-
ergy and helicity among the different modes. As shown by Kraichnan, these global
conservation properties can be supplemented by other ones, which hold at the level
of each triad, leading to detailed conservation properties.

Let us consider a triad (k, p,q) that satisfies constraint (3.97). Using the helical-
mode decomposition and rewriting relation (3.102) for the single triad under con-
sideration, one obtains

∂�s(k)
∂t

= (s ′ p − s ′′q)K (sk, s ′ p, s ′q)�∗
s ′(p, t)�∗

s ′′(q, t), (3.118)

∂�s ′(p)
∂t

= (s ′′q − sk)K (sk, s ′ p, s ′q)�∗
s (k, t)�∗

s ′′(q, t), (3.119)

∂�s ′′(q)
∂t

= (sk − s ′ p)K (sk, s ′ p, s ′q)�∗
s (k, t)�∗

s ′(p, t). (3.120)

It is obvious from these equations that

�̇s(k)�∗
s (k) + �̇s ′(p)�∗

s ′(p) + �̇s ′′(q)�∗
s ′′(q) = 0,
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because (s ′ p − s ′′q) + (s ′′q − sk) + (sk − s ′ p) = 0, all other terms being perfectly
symmetric in terms of (sk, s ′ p, s ′′q), as the factor K is. Here,

e(k) = 1
2
�s(k)�∗

s (k) = 1
2

û(k) · û∗(k) (3.121)

denotes the spectral density of energy. In other words, examination of the very sim-
plified form for Mss ′s ′′ given in Eqs. (3.118)–(3.120) immediately shows that

Mss ′s ′′(k, p) + Ms ′s ′′s(p, q) + Ms ′′ss ′(q, k) = 0, (3.122)

using the same nomenclature as for the nonlinear terms in Subsection 3.5.1, so that
the detailed conservation of energy is found in an optimal way.

Detailed conservation of helicity is an even more striking result because of the
optimal modal decomposition, with

sk�̇s(k)�∗
s (k) + s ′ p�̇s ′(p)�∗

s ′(p) + s ′′q �̇s ′′(q)�∗
s ′′(q) = 0, (3.123)

resulting from sk(s ′ p − s ′′q) + s ′ p(s ′′q − sk) + s ′′q(sk − s ′ p) = 0, which implies that

sk Mss ′s ′′(k, p) + s ′ pMs ′s ′′s(p, q) + s ′′q Ms ′′ss ′(q, k) = 0. (3.124)

The spectral density of helicity is given by

h(k) ∼
∑
s=±1

ısk�s(k)�∗
s (k) =

(
1
2

)
û∗(k) · �̂(k). (3.125)

The related interesting result is

Mss ′s ′′(k, p)
s ′′q − s ′ p

= Ms ′s ′′s(p, q)
sk − s ′′q

= Ms ′′ss ′(q, k)
s ′ p − sk

= −ıK(sk, s ′ p, s ′′q). (3.126)

Equations (3.122) and (3.124) show that the nonlinear interactions among
modes within a given triad conserve both kinetic energy and helicity. A look at
Eqs. (3.118)–(3.120) also shows that two modes with the same wavenumber and the
same polarity do not force the third one in the triad. In the previous example, one
has ∂�s ′′(q)/∂t = 0 if k = p and s = s ′.

3.5.4 Advanced Analysis of Triadic Transfers and Waleffe’s
Instability Assumption

The analysis of triadic interactions can be further refined, distinguishing among the
three following types of interactions:

� local interactions, which correspond to triads (k, p, q) such that k � p � q. A
usual definition is that max(k, p, q)/ min(k, p, q) ≤ 2 − 3.

� distant interactions, which are such that max(k, p, q)/ min(k, p, q) ≥ 7–10.
� nonlocal interactions, which correspond to all other cases.

It is important to stress that the detailed conservation of energy can be shown in
terms of primitive variables, û, with some consequences on the triadic transfers, sub-
sequently discussed first, below, but new properties of these transfers are displayed
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by use of helical modes and taking advantage of the formal analogy of Eqs. (3.118)–
(3.120) with the Euler problem for the angular momentum of a solid body (see Sub-
section 3.5.5).

Brasseur and co-workers addressed the question of the relative intensity of the
transfers associated with each type of triadic interaction (Brasseur and Wei, 1994)
at large wavenumbers contained in the inertial range of the energy spectrum. Con-
sidering the triad (k, p, q), the nonlinear term that appears in the evolution equation
of e(k) = û∗(k) · û(k) associated with this single triad is

ė(k)NL = −ı
{
[û(k) · û(p)] [k · û(q)] + [û(k) · û(q)] [k · û(p)]

}+ c.c. (3.127)

in terms of primitive variables, instead of

ė(k)NL = ıMss ′s ′′(p, q)�∗
s (k)�∗

s ′(p)�∗
s ′′(q),

using helical modes. In any case, detailed energy conservation implies that

ė(k)NL + ė(p)NL + ė(q)NL = 0. (3.128)

Numerical simulations have shown that distant interactions play a very impor-
tant role in the dynamics of small scales. This observation can be explained as fol-
lows.

First, let us consider a distant triad that couples a low wavenumber k to two high
wavenumbers p and q , and let us introduce the small parameter � = k/p � k/q. We
obtain from Eq. (3.127) the following scaling laws:

ė(k)NL = O(�), (3.129)

ė(p)NL = −ė(q)NL = −ı
{
[û(p) · û(q)] [p · û(k)]

}+ c.c. + O(�), (3.130)

which show that energy transfers take place between the two high-wavenumber
modes, leading to the existence of a local energy transfer associated with a dis-
tant interaction. In the asymptotic limit � −→ 0, one can see that no energy is ex-
changed between large and small scales: The low-wavenumber mode acts only as a
catalyst. But it is important to note that small- and larger-wavenumber modes are
coupled through the distant interactions, even if no energy is exchanged between
them, because distant interactions can propagate low-wavenumber (i.e., large-scale)
anisotropy at small scales.

The magnitude of the rate of energy exchange of a high-wavenumber mode k
(k � 1) that is due to distant interactions can be evaluated as

ė(k)NL ∝ e(k)k
√

e(p) (distant interactions), (3.131)

where p is the energy-containing mode (i.e., the low-wavenumber mode of the dis-
tant triad), whereas, for the local interactions, one obtains

ė(k)NL ∝ e(k)k
√

e(k) (local interactions). (3.132)

These evaluations show that the distant interactions induce a much larger en-
ergy transfer than the local ones, because the energy of the low-wavenumber mode
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in the distant triad, e(p), is much higher than e(k). As a consequence, the effect of
distant interactions is important at large wavenumbers. The relative importance of
transfers associated with distant triads with respect to those associated to local tri-
ads is an increasing function of the ratio of the energy contained in the small- and
high-wavenumber modes.

Direct numerical simulations have also shown that

� the energy transfer from large to small scales (i.e., the kinetic-energy cascade) is
local across the spectrum,

� for energetic scales (i.e., wavenumbers located near the peak of the spectrum),
the kinetic-energy transfer toward the smaller scales is mainly due to local inter-
actions, and

� for small scales (i.e., high wavenumber located within the inertial range), the
energy-transfer is governed by distant interactions involving one mode in the
energy-containing range.

A finer analysis of numerical databases also reveals that all distant interactions
do not contribute in same way to the energy transfer toward smaller scales, i.e., that
distant triads do not redistribute kinetic energy in the same way among the three
interacting modes. To explain this and to provide a detailed analysis of all possible
transfers within a single distant triad, Waleffe (1992, 1993) developed a theory based
on the instability assumption.

The first step in Waleffe’s analysis is to consider the stability of system (3.118)–
(3.120) around its steady solutions. There are three steady solutions. Considering
the steady solution given by (the two others can be deduced by simple permutations)

∂�s(k)
∂t

= A,
∂�s ′(p)

∂t
= ∂�s ′′(q)

∂t
= 0, (3.133)

one obtains

∂2�s ′(p)
∂t2

= (s ′′q − sk)(sk − s ′ p)|K (sk, s ′ p, s ′q)|2|A|2�∗
s ′(p), (3.134)

where the modulus of the complex parameters is defined as follows:

|K (sk, s ′ p, s ′q)|2 ≡ K (sk, s ′ p, s ′q)K ∗(sk, s ′ p, s ′q), |A|2 ≡ AA∗. (3.135)

The disturbance in �∗
s ′(p) will grow exponentially if (s ′′q − sk)(sk − s ′ p) � 0.

This happens if sk is intermediate between s ′′q and s ′ p, leading to a stability crite-
rion based on the intermediate mode. Now combining energy-detailed conservation
relation (3.122) and the trivial geometric relation

(s ′′q − sk) + (sk − s ′ p) + (s ′ p − s ′′q) = 0, (3.136)

one can see that the unstable mode is the mode whose coefficient Mss ′s ′′ has a sign
opposite to the two others, with the highest absolute value. From this observation it
follows that

� the mode associated with the largest wavenumber can never be unstable,
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F-type R-type

Figure 3.10. Schematic view of kinetic-energy
transfers according to Waleffe’s instability as-
sumption among modes within a single triad. The
two types of interactions are represented. Thick
arrows denote the energy transfers.

� the mode associated with the smallest wavenumber is unstable if the two larger-
wavenumber modes have opposite polarities (i.e., helicities of opposite sign),

� the mode associated with the intermediate wavenumber is unstable if it has the
same polarity as the mode asssociated with the largest wavenumber.

The instability assumption advocated by Waleffe is that the mode that releases
energy toward the two others within a single triad is the instable mode.

The combination of the two possible polarities for the three wave vectors leads
to the existence of eight possible triadic interactions, which can be grouped in two
classes according to the resulting kinetic-energy transfer (see Fig. 3.10):

� The forward interactions (F-type in the parlance of Waleffe), for which the two
smallest wavenumbers have opposite polarities. In this case, the preceding analy-
sis shows that the energy is released by the smallest wavenumber (i.e., the largest
scale), leading to a forward energy cascade.

� The reverse interactions (R-type), for which the smallest wave vectors have the
same polarity. In this case, the intermediate mode can be the unstable one, leading
to a transfer of energy toward both a larger (backward energy cascade) and a
smaller scale (forward energy cascade).

Let us now focus on the distant interactions, which are of particular impor-
tance in the large-wavenumber mode dynamics. Let (k, p,q) be a distant triad with
|q − p| � k � p � q . The triad-related geometrical factor that appears in the def-
inition of Mss ′s ′′ scales as (sk + s ′ p + s ′′q). As a consequence, the energy transfer
scales as ±k ± (p − q) for distant F-type interactions and as ±k ± (p + q) for dis-
tant R-type interactions. Therefore, on average, distant triads mostly induce energy
transfers of the R-type, yielding a local energy transfer between the largest wave
vectors.

Among the four possible R-type triadic interactions, two contribute in the mean
to the backward energy cascade from the large-wavenumber modes toward the
small-wavenumber modes. The direction of the cascade associated with the two oth-
ers depends on the value of the ratio between the smallest and the intermediate
wavenumbers.

On average, within the inertial range, the net effect of the R-type interac-
tions is a backward energy transfer toward the small-wavenumber modes, the direct
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energy cascade being due to F-type interactions. Consequently, the net energy trans-
fer within the inertial range is a direct energy cascade that is due to the large local
energy transfer associated with distant interactions.

Quantitative evaluations of the different energy fluxes were performed by
Waleffe (1992, 1993), who used additional statistical assumptions about self-
similarity, or a statistical closure as EDQNM [or test field model (TFM), which is
almost identical to EDQNM for 3D HIT]. The EDQNM model allows us to reach
much higher Reynolds numbers than DNS, and it may be more accurate in terms
of spectral discretization, avoiding errors of cancellation. In addition, it can be de-
veloped in terms of helical modes too, separating the eight different kinds of triads in
exact agreement with detailed conservation of energy and helicity.

3.5.5 Further Discussions About the Instability Assumption

We now discuss some analogies that exist between the instability principle and other
problems.

As stated by Waleffe in his seminal paper (1992), the instability principle pre-
sented in the previous section is formally similar to the problem of the instability of
a rigid body rotating around one of its principal axes of inertia. Let first note that
system (3.118)–(3.120) can be recast in the following compact form:

d�

dt
= K (sk, s ′ p, s ′′q)(D�∗) × �∗, (3.137)

where � = [�s(k), �s ′(p), �s ′′(q)]T and

D =

 sk 0 0
0 s ′ p 0
0 0 s ′′q

 . (3.138)

Detailed conservation laws of energy and helicity within the triad yield

d

dt
(� · �∗) = d

dt
(� · D�∗) = 0. (3.139)

Let us consider a solid body in rotation, where L and � are its angular-
momentum and angular-velocity vectors, respectively. The Euler equations that de-
scribe this motion are

d L
dt

= L × �. (3.140)

Now, introducing the tensor of inertia of the solid, denoted as I, one can write
the angular momentum as the product of I with the rotation vector I�. Problem
(3.140) can be rewritten in the principal axes of the inertia matrix as follows:

I1�̇1 = (I2 − I3)�2�3, (3.141)

I2�̇2 = (I3 − I1)�3�1, (3.142)

I3�̇3 = (I1 − I2)�1�2. (3.143)
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Therefore the first conservation law is for the rotational kinetic energy I1�
2
1 +

I2�
2
2 + I3�

2
3 [equivalent to the triadic kinetic-energy conservation law – (3.122)], and

the second one for the norm of the angular momentum (I1�1)2 + (I2�2)2 + (I3�3)2

[equivalent to triadic helicity conservation law – (3.124)]. Systems (3.137) and
(3.140) are mathematically similar, with D and � playing the role of I and L, re-
spectively. It is known that there exist three steady-state solutions for the problem
of the rotating solid, which correspond to rotation around any one of the principal
axes of inertia. Rotation around the axis of middle inertia is unstable, whereas the
two other cases are stable solutions. This implies that the smallest wavenumber is
unstable if the two largest wavenumbers have helicities of opposite sign and that
the medium wavenumber is unstable otherwise. Therefore it is seen that the anal-
ogy enables us to recover the results of the previous section. But it is worthwhile
remarking that components of D can exhibit negative values.

The second point discussed by Waleffe deals with the link between the F-type
interactions and the elliptical instability. Let us first recall that elliptical instability is
the 3D instability of flows with locally elliptical streamlines. The instable modes are
resonant inertial waves associated with the uniform background rotation (see Sec-
tion 4.5). These waves are helical modes of opposite polarities and eigenfrequencies,
say f + and f −. A detailed analysis (see Waleffe, 1992, for technical details) shows
that the elliptical instability corresponds to an F-interaction: The two modes with
eigenfrequencies f + and f − have opposite polarities and are coupled with the mean
flow, which is associated with a zero frequency. It can also be shown that there exists
a low-wavenumber cutoff: The wavenumber of the perturbation must remain higher
than the effective wavenumber of the elliptic background flow for the instability to
develop. Therefore elliptical instability originates in an interaction that leads to the
instability of the smallest-wavenumber mode in a triad through interactions with
two larger-wavenumber modes of opposite polarities.

3.5.6 Principle of Quasi-Normal Closures

The previous equations for ûi , R̂i j , and Sinj illustrate the infinite hierarchy of open
equations, which is usually formally written as

∂
∂t u = uu,

∂
∂t 〈uu〉 = 〈uuu〉,

∂
∂t 〈uuu〉 = 〈uuuu〉,

. . . = . . .

A common feature of triadic closures, from the EDQNM model (Orszag, 1970)
to the most sophisticated Kraichnan’s theories, is a quasi-normal (QN) relationship.
Any technique that aims at expressing high-order moments as products of low-order
ones is a good candidate for closing the previously mentioned infinite hierarchy of
open equations. Instead of moments, cumulants directly express the difference of
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moments with respect to their factorized expression in terms of lower-order ones, so
that classical closures rely on small estimates of cumulants. Historically, the assump-
tion of a vanishing fourth-order cumulant for the turbulent velocity fluctuations, i.e.,

〈uaubucud〉 − 〈uaub〉〈ucud〉 − 〈uauc〉〈ubud〉
−〈uaud〉〈ubuc〉 = 0, (3.144)

was first proposed by Milionschikov (1941) and then by Proudman and Reid (1954).
In the preceding equation, different superscripts are used to distinguish different
velocity modes, possibly in physical space with four different positions and for dif-
ferent components, and finally in Fourier space for mathematical convenience. The
assumption of a vanishing fourth-order cumulant is usually referred to as the quasi-
normal (QN) approximation, but not as a normal (or Gaussian) approximation
because nothing is said about third-order cumulants (or third-order moments be-
cause there is no contribution from 〈u〉〈uu〉). Of course, an estimate for third-order
moments is sought, so that a pure Gaussian relationship, which removes them, is
meaningless (except in some rapid distortion limit, which will be addressed in a sub-
sequent chapter). In addition, a QN assumption can be supported mathematically
and physically in the weak-turbulence theory of wave turbulence, as illustrated by
Benney and Newell (1969) and Zakharov, Lvov, and Falkowitch (1991) (this ap-
proach will be revisited in Chapter 4).

Starting from the exact definition for Ti jn , the QN assumption yields

�(k + p + q)Ti jn = Pirs(k)
∫

−k+r+s=0
d3 p × [〈ûr (r)ûs(s)〉〈û j (p)ûn(q)〉

+〈ûr (r)û j (p)〉〈ûs(s)ûn(q)〉
+〈ûr (r)ûn(q)〉〈û j (p)ûs(s)〉] . (3.145)

Using 〈ûr (r)ûs(s)〉 = R̂rs(s)�(r + s), one finds the contribution from the first
term to be zero because R̂rs(k = 0) = 0, so that

T QN
i jn (k, p) = Pir ks

[
R̂r j (p)R̂sn(q) + R̂rn(q)R̂s j (p)

]
(3.146)

or, equivalently,

T QN
i jn (k, p) = Pirs R̂r j (p)R̂sn(q). (3.147)

Finally, one obtains the following QN closure:[
∂

∂t
+ �(k2 + p2 + q2)

]
Si jn(k, p) = T QN

i jn (k, p) + T QN
jni (p, q) + T QN

ni j (q, k). (3.148)

Even though the QN closure was proposed a long time ago, the resolution of the
corresponding Lin equation requires significant numerical resources. First, numer-
ical solutions obtained in the late 1960s (Ogura, 1963; O’Brien and Francis, 1963)
exhibited incorrect behavior for a long time evolution. A negative zone appeared
at small k in the energy spectrum, because of a too strong energy transfer from the
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largest structures. This lack of realizability was shown to result from a too high esti-
mate of the right-hand side of the preceding equation. To solve this problem, Orszag
(1970) proposed adding an eddy-damping (ED) term, so that

Ti jn(k, p, t) − T QN
i jn (k, p, t) = −�(k, t)Si jn(k, p, t)︸ ︷︷ ︸

damping term

.

Similar relationships are obtained for other wave-vector pairs by permuting the
wave vectors of the triad. The special form of the linear relationship between fourth-
order and third-order cumulants was partly suggested by Kraichnan’s DIA theory.
The left-hand side represents the contribution from fourth-order cumulants and the
right-hand side deals with third-order cumulants. The ED coefficient plays the role
of an extra dissipation, reinforcing the dissipative laminar effect, which is not suffi-
cient to ensure realizability in the primitive QN closure. Gathering the dissipative
terms into a single one,

�kpq = �−1
kpq = �(k2 + p2 + q2) + �(k, t) + �(p, t) + �(q, t), (3.149)

the EDQN counterpart of Eq. (3.148) is easily obtained from it, replacing �(k2 +
p2 + q2) with �−1

kpq . The solution of the latter equation is found as

Si jn(k, p, t) = exp [−�kpq(t − t0)] Si jn(k, p, t0)

+
∫ t

t0

exp
[
−
∫ t

t ′
�kpq(t ′′)dt ′′

] [
T QN

i jn (k, p, t ′) + · · ·
]

dt ′. (3.150)

Conventionaly, the last procedure, called Markovianization, yields neglect of
the intrinsic history of T QN

i jn , or, equivalently, that of R̂i j , in the time integral. In
other words R̂ and T QN are considered as slowly varying quantities, so that one can
take t ′ = t in them, whereas the exponential term is considered as rapidly varying.
Ignoring the initial data for triple correlations, consistently with large t − t0, the
simplest EDQNM closure (in the absence of complex additional linear terms) is

Si jn(k, p, t) = �kpq

[
T QN

i jn (k, p, t) + T QN
jni (p, q, t) + T QN

ni j (q, k, t)
]
. (3.151)

The latter equation illustrates an instantaneous relationship between third- and
second-order correlations, but nonlocality in spectral space and triadic structure is
preserved.

The tensor �i j defined in Eq. (3.114) is then expressed as

�i j =
∫

�kpq Pjnm(k)
[
Pirs(k)R̂rn(p)R̂sm(q) + Pnrs(p)R̂rm(q)R̂si (k)

+ Pmrs(q)R̂rm(k)R̂sn(p)
]

d3 p, (3.152)

in which the characteristic time �kpq is given by relation (3.149). Permuting p and q
in the last term, the simplified form

�i j = Pjnm(k)
∫

�kpq R̂sm(q)
[
Pirs(k)R̂rn(p) + 2Pnrs(p)R̂ri (k)

]
d3 p (3.153)

is finally obtained.
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3.5.7 EDQNM for Isotropic Turbulence. Final Equations and Results

3D isotropy yields dramatic simplifications, as

R̂r j (p) = e(p)Pr j (p)

in Eq. (3.147), and

T e(k) = �i i (k)

from (3.114). The transfer term T (e) is therefore found as

T (e)(k, t) =
∫∫∫

2kp�kpqe(q, t) [A(k, p, q)e(p, t) − B(k, p, q)e(k, t)] d3 p (3.154)

with

Pinm(k)Psm(q)Pirs(k)Prn(p) = k2 A(k, p, q)

and

2Pinm(k)Psm(q)Pnrs(p)Pri (k) = 2kpB(k, p, q).

Because kpB(k, p, q) + kq B(k, q, p) = k2 A(k, p, q), A(k, p, q) can be replaced
with B(k, p, q) in the preceding equation. In addition, it is simpler to express this
unique coefficient in terms of the cosines of the internal angles of the triangle of
sides k, p, q :

x = cos� = p2 + q2 − k2

2pq
, y = cos� = q2 + k2 − p2

2qk
,

z = cos � = k2 + p2 − q2

2kp
.

Another relevant geometric term is Ckpq , which was already found in Eq.
(3.110).

Because C2 B(k, p, q) = kp − q2z, B(k, p, q) = sin� sin� − z sin2 � , = xy + z −
z(1 − z2), and finally

B(k, p, q) = xy + z3,

the simplified expression follows:

T (e) =
∫∫∫

2kp�kpq(xy + z3)e(q, t) [e(p, t) − e(k, t)] d3 p. (3.155)

It is now possible to use the integration variables p, q, and � as in Eq. (3.111). Be-
cause the integrand depends on only k, p, q, and not on �, performing the integra-
tion with respect to � simplifies as a multiplication by 2�, so that

T (e) =
∫∫

� k

4�p3q2�kpq(xy + z3)e(q, t) [e(p, t) − e(k, t)]
dpdq

pq
. (3.156)

A last equation is found reintroducing E(k) = 4�k2e(k) and T (k) = 4�k2T (e)(k) as

T (k, t) =
∫∫

� k

�kpq(xy + z3)E(q, t)
[
E(p, t)pk2 − E(k, t)p3] dpdq

pq
. (3.157)
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This is the conventional form of the isotropic EDQNM model. Instead of deriving
this equation from (3.95), it is also possible to start from (3.98). The “Byzantine use
of projectors” (Leaf Turner) is the classical way to calculate geometric coefficients,
but the same result can be obtained in terms of helical modes and related ampli-
tudes.

Isotropic turbulence allows for dramatic simplifications for all statistical theo-
ries or models, and therefore is one of the most interesting canonical flows of ref-
erence. For instance, all classical two-point triadic closure theories have the same
structure, because they express T (k) as a nonlocal function of E(k).

Different versions of statistical theories differ from only the expression of the
damping factor � in (3.149), which adds nonlinear readjustment of the response
function.

As shown by Orszag (1970), the use of

�(k, t) ∼ k
√

k E(k, t)

yields a satisfactory behavior of E when solving numerically the Lin equation, with
the establishment of a Kolmogorov inertial zone. Another variant (Pouquet et al.,
1975) is

�(k, t) = A

√∫ k

0
p2 E(p, t)dp, (3.158)

which amounts to choosing � as the inverse of the Corrsin time scale, the constant A
(André and Lesieur, 1977) being fixed by a given value of the Kolmogorov constant.

Results of the EDQNM model in pure decaying (unforced) HIT are subse-
quently presented.

3.5.7.1 Well-Documented Experimental Data, Moderate Reynolds Number

Comparisons with (Comte-Bellot and Corrsin, 1966) experimental data by Vignon
and Cambon (1980) illustrate the relevance of the EDQNM model at moderate
Reynolds numbers (see Fig. 3.11). The experimental data are very comprehensive,
with access to E(k, t) at different sections downstream of the grid (the downstream
distance x − x0 divided by the mean advection velocity U is equivalent to an elapsed
time), the energy spectrum is calculated from its 1D counterpart assuming isotropy.
In addition, the dissipation spectrum is derived, and finally even the transfer term
T (k, t) is captured, comparing measures at two close sections for estimating � E/� t .

3.5.7.2 Transfer Term at Increasing Reynolds Number

When the Reynolds number is increased, a large inertial zone is easily constructed
for the energy spectrum, but, somewhat surprisingly, the zone of the zero-transfer
term is much shorter, as shown in Fig. 3.12. Particularly, the flat zone of zero trans-
fer appears only for huge values of Re� (typically Re� ≥ 104), whereas a significant
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Figure 3.11. Comparisons of EDQNM and experimental data in decaying. Top: turbulence kinetic-
energy spectrum E(k) at three different locations/elapsed times. Bottom: spectral-energy transfer
function T (k) at some locations. Data taken from Vignon and Cambon (1980) and Cambon et al.
(1981).



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

92 Incompressible Homogeneous Isotropic Turbulence

0.0001

0.001

0.01

0.1

1

10

10-2 10-1 100 101 102

E
(K

)

K

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

10-2 10-1 100 101 102 103 104 105 106 107

E
(K

)

K

-0.5

0

0.5

1

1.5

10-2 10-1 100 101 102

K

K TNL(K)

2ν K3E(K)

-0.5

0

0.5

1

1.5

10-2 10-1 100 101 102 103 104 105 106 107

K

K TNL(K)

2ν K3E(K)

Figure 3.12. Typical spectra (top), nonlinear transfer and viscous dissipation (bottom) in isotropic
turbulence at Re� = 30 (left) and Re� = 105 (right); x and y scales are chosen arbitrarily. The
straight lines are related to the Kolmogorov −5/3 slope. Courtesy of W. Bos.

inertial zone appears in the energy spectrum for 102 � Re� � 103. This result is con-
sistent with experimental studies, in which the 4/5 Kolmogorov law for the third-
order structure function was recovered only at unexpectedly high Re�. Therefore
it is seen that the definition of the inertial range deserves further discussion. All
wavenumbers located within the inertial range in the energy spectrum do not have
a vanishing T (k), and are therefore dynamically sensitive to production and/or dis-
sipation. Modes that are not directly sensitive to production and viscous effects, i.e.,
modes that are governed by the sole triadic nonlinear transfer terms, are modes with
wave numbers such that T (k) = 0. This dynamical definition is much more strin-
gent than the one based on the existence of a self-similar zone in the kinetic-energy
spectrum.

These observations mean that the EDQNM model can be used to obtain addi-
tional results about statistics in physical space, as second- and third-order structure
functions, using an isotropic relationship, which is well documented in Mathieu and
Scott (2000), because many recent experiments focused on these statistics. However,
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it should be borne in mind that E(k) and T (k) are very informative, as they allow
us to compute various statistics, and they are accurately predicted by an EDQNM
model at almost any Reynolds number. In Fig. 3.12, the transfer term is multiplied
by k in order to preserve the zero value of the integral when k is expressed in loga-
rithmic scale, according to the relation

kT (k)d(ln k) = T (k)dk.

For the sake of clarity, the enstrophy (or dissipation up to a factor 2�) spectrum
is also multiplied by k. The positive part of the transfer and the dissipation spec-
trum are observed to coincide only when the transfer function exhibits a significant
plateau.

3.5.7.3 Toward an Infinite Reynolds Number

EDQNM calculations can be started with zero molecular viscosity, initializing the
Lin equation with a narrowband energy spectrum. In this case, the inertial zone
develops well and extends more and more toward larger and larger k’s. It is con-
jectured that the inertial zone could reach an infinite wavenumber, say kmax = ∞,
in a finite time, yielding a finite dissipation rate at zero viscosity: This is sometimes
called the energetic catastrophe in the turbulence community. Unfortunately, this
cannot be completely proven, because, in practice, the Lin equation closed by the
EDQNM model cannot be solved analytically, so that a numerical solution, with
discretized k and finite kmax is needed. Nevertheless, very large kmax, related to a
constant logarithmic step � k/k = constant, can be used, without a possible coun-
terpart in DNS. As very classical behavior, at least in DNS, spectral energy tends
to accumulate near the cutoff wavenumber kmax, so that a viscous term ought to be
introduced in order to avoid an energy peak at the highest wave vector. The only
advantage of the EDQNM model with respect to DNS in this case is the huge value
of kmax related to a huge (but not infinite) Reynolds number, which can be reached
with modest computational ressources.

Very recently, following a calculation of truncated inviscid Euler equations by
Brachet et al. (Cichowlas et al., 2005), Bos and Bertoglio (2006a) used the conven-
tional EDQNM model to study the accumulation of spectral energy at a given (very
high) kmax with zero viscosity. As a nice result, both a thermalized¶ tail following a
k2 law and a large inertial range with k−5/3 behavior arise, separated by a sink, as
shown in Fig. 3.13.

This sink induces a kind of conventional dissipative range – but at zero laminar
viscosity – probably mediated by the nonlocal eddy viscosity (Kraichnan, 1971, 1976;
Lesieur and Schertzer, 1978), and is even clearer in the EDQNM model than in
inviscid truncated DNS. Here, the smallest scales act as the molecular motion in
real viscous flows, giving a nice illustration of the turbulent-eddy-viscosity concept.

¶ Thermalized is used here by analogy with the random molecular motion from which the macroscopic
quantities such as temperature and pressure originate.
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Figure 3.13. Time evolution of the kinetic-
energy spectrum in the purely inviscid case us-
ing the classical EDQNM model. (Courtesy of
W. Bos and J.P. Bertoglio.)

3.5.7.4 Very Recent Improvements

A recent improvement, which renders the EDQNM model closer to a self-consistent
theory, consists of evaluating the ED �(k, t) using an additional dynamical equation
for a velocity-displacement cross correlation (Bos and Bertoglio, 2006b). As shown
in Fig. 3.14, a realistic value of the Kolmogorov constant K0 ∼ 1.73 is derived, with-
out need to specify it a priori in the model for �, as in Eq. (3.158) by means of A.

It is also interesting to calculate by the EDQNM procedure, not only the con-
tribution of triple correlations to the transfer term (a typical cubic moment at two
points), which also generates the third-order structure function, but more complex
cubic statistics in three points, which are very difficult to obtain from experiments
or even from DNS/LES because they are very noisy quantities. For instance, triple-
vorticity (not only velocity) correlations at three points (which are related to their
detailed distribution in terms of triads) can be calculated in a systematic way, only
from the given energy spectrum. Applications to the statistics of vorticity, with an
answer from statistical theory to the problem of cyclonic–anticyclonic asymmetry in
rotating turbulence, is presented in Chapter 4.

3.5.7.5 On Instantaneous Energy Transfers

Most of results previously presented dealing with the kinetic-energy spectum and
the energy transfers [e.g., E(k) and T (k) profile] are related to ensemble-averaged
data and therefore should be interpreted as time-averaged results (providing that
the ensemble average can be seen as a time average thanks to the ergodicity theo-
rem) in the forced HIT case.
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Figure 3.14. Compensated spectrum E(k)ε −2/3k5/3 in
isotropic turbulence computed using the EDQNM
model with self-consistent ED. The plateau corre-
sponds to the value of the Kolmogorov constant K0

(denoted as CK in the figure). (Courtesy of W. Bos
and J.P. Bertoglio.)
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DNSs have provided information dealing with the main features of the nonaver-
aged, instantaneous energy transfers (Kida and Ohkitani, 1992a, 1992b) in forced
isotropic turbulence. It is observed that both E(k, t) and T (k, t) fluctuate around
their mean values and that the energy transfer function takes both positive and neg-
ative values at the same wavenumber, depending on time. As a consequence, the
kinetic-energy cascade process is to be understood as an ensemble-averaged con-
cept, which can be difficult to identify in instantaneous fields.

Kida and Okhitani observed that the standard deviation of the energy transfer

function,
√

T (k, t)2, scales as k−1. By tracking “blobs” of kinetic energy in the (k, t)
plane, they found that the time for energy to be transferred from wavenumber k0 to
wavenumber k = �k0 is equal to

Tk0→k =
(

�2/3

�2/3 − 1

) [
(ε̄ k2

0)−1/3 − (ε̄ k2)−1/3] , (3.159)

where ε̄ is related to the ensemble-averaged value of the dissipation. The value � �
1.4 leads to the best fit of the numerical data, indicating that the net energy transfer
is mostly local.

It is worth noting that expression (3.159) has been obtained with the Kolmo-
gorov-type expression for the characteristic time �k for the energy to be transferred
across the wavenumber k:

�k = (
ε̄ k2)−1/3

. (3.160)

3.5.7.6 Nonlinear Cascade Time Scale, Equilibrium,
and Dissipation Asymptotics

The possible existence of a universal value of the normalized dissipation rate Cε

in high-Reynolds-number turbulent flows has been addressed by several authors,
and is sometimes referred to as the zeroth law of turbulence. This nondimensional
coefficient is defined as

Cε = ε L

u′3 , (3.161)

where L and u′ =
√

2
3K are the integral length scales (see Subsection 3.4.1) and a

turbulent velocity scale, respectively. It appears in commonly used scaling laws re-
lated to Kolmogorov’s theory, e.g.,

Re� =
√

15
Cε

ReL . (3.162)

Both experimental data and numerical simulations exhibit a significant scatter
in the values of Cε . The sensitivity on the nature of the flow (freely decaying tur-
bulence or forced turbulence) and on the Reynolds number is observed to be large.
A rationale for these discrepancies, based on both EDQNM simulations and an an-
alytical analysis based on a simplified model spectrum, has been proposed by Bos,
Shao, and Bertoglio (2007).
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The first important conclusion is that the asymptotic value of Cε explicitely de-
pends on the existence of a turbulence-production mechanism at large scales. The
key point is that one must distinguish between several characteristic quantities to
get an accurate description of kinetic energy dynamics in isotropic turbulence:

� The production rate, i.e., the rate at which the turbulent kinetic energy K is in-
jected at scales of order L . This production rate is characterized by u′3(t)/L(t).
The rate at which kinetic energy leaves the large scales is denoted ε f (t), with

ε f (t) = C f
ε

u′3(t)
L(t)

, (3.163)

where C f
ε is the proportionality constant.

� The cascade time, Tc, which measures the time it takes for an amount of energy
initially injected at scale L to reach the dissipative Kolmogorov scale �. Consider-
ing a simplified Kolmogorov inertial range, one obtains Tc = T (1 − �−2/3), where
T = L/u′ is the integral time scale and � = L/�.

� The dissipation rate, ε (t), which characterizes the transformation of kinetic energy
into heat at very small scales.

In forced turbulence with constant injection rate, a statistically stationary state
can be reached, in which the production rate is equal to both the cascade transfer
rate and the dissipation rate, i.e., ε f (t) = ε (t). The associated value nondimensional
dissipation parameter is denoted by Cε = C forced

ε .
In freely decaying turbulence, both u′ and L vary in time, yielding a time-

dependent production and cascade rate. A packet of kinetic energy injected at time t
will be dissipated once it has reached the dissipative scales, i.e., at time t + Tc. There-
fore, the equilibrium equality between ε f (t) and ε (t) found in the forced turbulence
case no longer holds, and one must write ε f (t) = ε (t + Tc) �= ε (t), or equivalently

ε (t + Tc) = C forced
ε

u′3(t)
L(t)

. (3.164)

Introducing the time-decay exponent n such that K(t) ∝ t−n and ε (t) ∝ nt−n−1,
one has L(t) ∝ t1−n/2 and T ∝ t , yielding

ε (t + Tc) = C forced
ε

u′3(t + Tc)
L(t + Tc)

(
t

t + Tc

)−n−1

= Cdecay
ε

u′3(t + Tc)
L(t + Tc)

(3.165)

and therefore

Cdecay
ε

C forced
ε

=
(

1 + Tc

t

)n+1

= [
1 + Ac(1 − �−2/3)

]n+1
, (3.166)

showing that the normalized dissipation coefficient cannot cannot be the same in
forced and freely decaying turbulence. Another important fact is that the decay ex-
ponent n is known to be flow dependent, because it is a function of the kinetic-
energy spectrum shape at very large scales [see Eq. (3.41) and Table 3.3]. For large
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values of �, i.e., for large values of ReL , a very good agreement with EDQNM results
is obtained taking Ac = 0.2.

One can find an expression for C forced
ε by considering a simplified model spec-

trum. Using the model

E(k) =


Ak� kL ≤ 1
K0ε 2/3k−5/3 kL ≥, k�≤ 1
0 k�� 1

, (3.167)

where A is an arbitrary positive parameter, one obtains

C forced
ε = �

[
(3� + 5)/5� − 3

5�
−5/3

]
2K 3/2

0 [(3� + 5)/(3� + 3) − �−2/3]5/2
, (3.168)

along with

ReL = �K 3/2
0

[
(3� + 5)/� − 3�−5/3

] [
3�4/3 − (3� + 5)/(� + 3)

]
20
√

(3� + 5)/(3� + 3) − �−2/3
. (3.169)

Relations (3.168) and (3.169) lead to an implicit expression of C forced
ε as a func-

tion of ReL , whose asymptotic value is

lim
ReL −→+∞

C forced
ε = �(3� + 3)5/2

10K 3/2
0 �(3� + 5)3/2

. (3.170)

This asymptotic expression is observed to fit EDQNM results for ReL ≥ 103. As
a general conclusion, let us emphasize that no universal value for Cε can exist.

Mazelier and Vassilicos (2008) reached similar conclusions without using a cas-
cade time scale or a production rate. The gist of their conclusions can be summarized
as follows. A self-similar pattern is one in which the small number of large scales is
directly reflected in the large number of small scales. Zero crossings of turbulent ve-
locity correlations form such a pattern. As a consequence, the averaged distance be-
tween consecutive zero crossings is strongly influenced by a nondimensional param-
eter C ′

s , which is some sort of number of large-scale eddies within an integral scale.
The parameter Cε is then related to the preceding parameter by Cε = f (log Re�)C ′3

s ,
in which the dimensionless function tending to 0.26 in the limit of log Re� � 1. In
addition to the variability in terms of moderate Re�, the topological structure of
large eddies governs the parameter C ′

s , leading to a lack of universality of the di-
mensionless dissipation coefficient.

3.6 Topological Analysis, Coherent Events, and Related Dynamics

As already mentioned, it has been known since the direct observations by Siggia
(1981) that coherent structures exist in isotropic turbulence.∗∗

∗∗ Although the observation of these structures is recent, it is worth noting that the idea that turbulent
dissipation can be tied to a random distribution of vortex tubes and vortex sheets goes back to
Townsend in 1951.
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It must be noticed that the term “coherent structures” can be fuzzy. In the fol-
lowing, we follow only the conventional use, provisionally avoiding the question of
temporal coherence – are they known to preserve themselves temporally? – of these
structures. Only considering instantaneous spatial coherence, these structures may
be grouped into two classes: vortex tubes (also referred to as worms or vortex fila-
ments) and vortex sheets. The former are identified as elongated, tubelike vortices
mainly subjected to an axial strain, whereas the latter are related to vorticity sheets
that experience a plain strain.

The existence of these events raises several important questions for both the
analysis of isotropic turbulence study and the general turbulence theory:

1. How do we define these events, or, more precisely, how do we define them
unequivocally?

2. What is the dynamics of these events: How are they generated? What is their
life cycle? Do they exhibit some universal features?

3. What is their role in isotropic turbulence dynamics? How are they related to
well-known features such as the kinetic-energy cascade, the turbulent kinetic-
energy dissipation, and the internal intermittency?

Recent results dealing with these issues are subsequently surveyed. But let us
emphasize here that, despite the impressive amount of efforts devoted to the analy-
sis of isotropic turbulence, a global complete theory for the coherent events it con-
tains is still lacking.

3.6.1 Topological Analysis of Isotropic Turbulence

The topological analysis of isotropic turbulence first brings in the problem of defin-
ing the various coherent events. A huge amount of works have been devoted to this
problem. The proposed techniques can be divided roughly into the following two
classes.

The first approach consists of projecting the instantaneous turbulent field onto
objects (sometimes referred to as the “cartoons of turbulence”) whose definitions
are given analytically. It involves a local tuning of the control parameters that ap-
pear in the analytical model to obtain the best fit with the local turbulent field, lead-
ing to the definition of a pattern-tracking algorithm. A complete survey of analytical
solutions for an isolated viscous vortex was recently performed by Rossi (2000). Two
useful analytical models, namely Burgers’ vortex and Burgers’ vortex-sheet models,
are subsequently given.

Burgers’ vortex is a model for an axially stretched viscous vortex. Denoting z
as the direction of the vortex axis, � as its circulation, � as the time-independent
rate of strain, and � as the viscosity, the cylindrical velocity components are given
by

uz = 2�z, ur = −�r, u� = �

2�r

(
1 − e−�

)
, (3.171)
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where � = r2/4�2, and

�2 = �

�
+
(
�2

0 − �

�

)
e−�t , (3.172)

with �(0) = �0, and t denotes the time. The axial vorticity is found to be equal to
(other components are identically zero)

�z = �

��2
e−� . (3.173)

The induced kinetic-energy dissipation field is

ε = 12��2 + ��2

16�2�4

(
e−� − 1 − e−�

�

)2

. (3.174)

An asymptotic equilibrium solution is found for large times, i.e., for �2 = �/�.
For this solution, diffusion and convection are balanced and the total dissipation is
found to be independent of the viscosity �. It is worth noting that the dissipation
is negligible outside a circular area of the order of �2, whereas its peak is propor-
tional to ��2/�4. The total rate of vortex-induced dissipation per unit length scales
as ��2/�2.

Burgers’ vortex sheet is defined as the superposition of a plane potential flow
and a plane shear layer. It corresponds to a diffusing vortex sheet with stretched
vortex lines. Let us consider the case in which the shear-layer vorticity is along the
z axis and varies in the y direction. The Cartesian components of the potential flow
field are given by

u p = 0, vp = −�y, wp = �z. (3.175)

The vorticity field of the Burgers’ vortex sheet is given by

�z = − 4√
�

�U

�
e−y2/�2

, (3.176)

where �U is the velocity jump across the shear layer and � is defined as

�2 = 2�
�

(
1 − e−2�t

)
. (3.177)

The equilibrium solution corresponds to �2 = 2�/�.
Both Burgers’ vortex model and Burgers’ vortex-sheet model have been ob-

served to compare favorably with local features of a simulated turbulent field and
can therefore be used as theoretical models to describe turbulence dynamics.

Before discussing other definitions, let us first recall some results dealing with
the topological analysis of instantaneous, incompressible, isotropic turbulent fields.
Most analyses rely on the relation that exists between the vorticity vector and the
eigenvectors of the strain-rate tensor S. Let us denote êi (i = 1, 2, 3) as the three
eigenvectors of S and �̂i as the corresponding eigenvalues. In the following, the
eigenvalues are reordered so that �̂1 ≥ �̂2 ≥ �̂3. The incompressibility constraint
yields

�̂1 + �̂2 + �̂3 = 0, (3.178)
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meaning that there is at least one positive ( �̂1) and one negative ( �̂3) eigenvalue.
The intermediate eigenvalue �̂2 can be either negative or positive. Both numerical
and experimental data show that the vorticity vector is preferentially aligned with
ê2. Lund and Rogers (1994) defined the following nondimensional parameter:

�̂
∗ = − 3

√
6 �̂1 �̂2 �̂3(

�̂
2
1 �̂

2
2 �̂

2
3

)3/2 , (3.179)

which has the remarkable property that it ranges from −1 to 1 and that its pdf is
uniform for a Gaussian random velocity field. This parameter is a measure of the
local deformations caused by the strain-rate tensor. Axisymmetric extension and
axisymmetric contraction occur when �̂

∗ = 1 and �̂
∗ = −1, respectively, and plane

shear corresponds to �̂
∗ = 0. Lund and Rogers observed in DNS data that the most

probable case in isotropic turbulence is axisymmetric extension and that this state is
well correlated with regions of high dissipation.

The preferential alignement of � with ê2 is a pure kinematic effect. Jimenez
(1992) showed that in the vicinity of a vortex whose maximum vorticity is large
with respect to that in the background flow the vorticity is automatically aligned
with the intermediate eigenvector. It can also be shown (Horiuti, 2001; Andreotti,
1997; Nomura and Post, 1998) that this alignment is the result of the crossover of
the eigenvalues at a certain distance from the vortex center in Burgers’ analytical
vortex model.††

The second approach for finding reliable definitions of coherent events relies
on the local analysis of the velocity-gradient tensor ∇u = S + W, intuition telling us
that a vortex will be a region where the vortical part dominates over the irrotational
part of the strain.

The first general, Galilean-invariant 3D vortex criterion was proposed by Hunt
and co-workers (1988). This criterion, referred to as the Q-criterion, defines a vor-
tex as a spatial region where the second invariant of the velocity-gradient tensor is
positive:

Q = 1
2

(|W|2 − |S|2) = −1
2

tr
(
S2 + W2) � 0, (3.182)

where |W| and |S| are Euclidian norms. The Q-criterion can be related to the pres-
sure field, because Q has the same sign as the Laplacian of the pressure field. Us-
ing this criterion is equivalent to saying that vortices are regions where ∇2

p � 0. It
is worth noting that, in 2D flows, this criterion is equivalent to the Okubo–Weiss

†† This can be directly seen by looking at the analytical expressions of the eigenvalues obtained for the
Burgers’ vortex:

�̂± = �

2

{
−1 ± Re�

[
4�
�r2

(
1 − e−�r2/4�

)
− e−�r2/4�

]}
, (3.180)

�̂z = �, (3.181)

where Re� = �/4�� is the circulation-based Reynolds number. If Re� is high enough, the crossover
between �̂+ and �̂z occurs, i.e., there exists a region with �̂+ ≥ �̂z .
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criterion derived independently by Okubo in 1970 and Weiss in 1991. Tanaka and
Kida (1993) observed that the criterion given by Eq. (3.182) does not allow us to
distinguish between vortex-tube cores and curved vortex sheets (subsequently dis-
cussed). To isolate vortex-tube cores, they used the threshold |W|2 � 2|S|2.

Another 3D criterion is the � -criterion (Chong, Perry, and Cantwell, 1990).
Here, a vortex is a region where

� =
(

Q

3

)2

+
(

det(∇u)
2

)2

� 0 (3.183)

The swirling-length criterion defined by Zhou and co-workers (Zhou et al.,
1999) is an extension of the � -criterion. It relies on the observation that in re-
gions where the tensor ∇u has two complex-conjugate eigenvalues �̃cr ± i �̃ci and
a real eigenvalue �̃c, �̃ci and �̃cr can be interpreted as having a measure of the local
swirling rate inside the vortex (in the plane defined by the eigenvectors associated
with the complex eigenvalues) and a local stretching/compression strength along the
last eigenvector. A vortex tube is defined as a region satisfying the � -criterion and
in which �̃ci is above an arbitrary threshold.

This idea of using the local frame associated with the eigenvectors of the
velocity-gradient tensor was further developed by Chakraborty and co-workers
(2005), who proposed the enhanced-swirling-strength criterion. Following this cri-
terion, a vortex is a region where

�̃ci ≥ 	 and − �′ ≤ �̃cr

�̃ci
≤ �, (3.184)

where 	, �, and �′ are positive threshold values.
Another popular criterion, referred to as the �2-criterion, was proposed by

Jeong and Hussain (1995). According to this criterion, a vortex is defined as a region
where the intermediate eigenvalue (denoted as �2 if the eigenvalues are reordered
in decreasing order) of the symmetric matrix S2 + W2 is negative:

�2 � 0. (3.185)

A more recent criterion was proposed by Horiuti (2001), which can be seen as
an improvement of the �2 criterion. The three eigenvalues of the tensor S2 + W2

are renamed as �z , �+, and �−, where �z corresponds to the eigenvector that is the
most aligned with the vorticity vector, and �+ and �− are the largest and smallest re-
maining eigenvalues, respectively. Using these definitions, Horiuti defines a vortex
as region where

0 � �+ ≥ �−. (3.186)

This criterion isolates the vorticity-dominated region similar to the core region
of a Burgers’ vortex tube.

Although these criteria perform similarly well in simple flows, their use in tur-
bulent shear flows and flows submitted to strong rotation is more problematic, as it is
not always possible to separate the mean-flow contribution from the turbulent one.
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The case of vorticity sheets seems to be more difficult to handle and received
less attention than the vortex case. A reason for that is certainly that these structures
are more disorganized and less stable than vortex tubes. Therefore their observation
is more difficult. Another difficulty is that the category of vortex sheets encompasses
different objects. Horiuti (2001) makes the distinction between flat sheets similar to
Burgers’ vortex layer and curved sheets that exist in the circumference of the core re-
gion of a vortex tube. These two kinds of vorticity sheets may have different dynam-
ical features, as both vorticity and strain are dominant in flat sheets, whereas strain
is predominant in curved sheets. The flat sheets are also referred to as strong vortex
layers by Tanaka and Kida (1993) who defined them as regions where both vorticity
and strain rate take large comparable values.†† The criterion used by Tanaka and
Kida is

1
2
�

|W|2
|S|2 �

4
3
. (3.187)

From the same reordering of the eigenvalues of the symmetric tensor S2 + W2

as for the vortex-tube definition given in Eq. (3.186), Horiuti (2001) defines curved
sheets as regions where

�+ ≥ �− � 0, (3.188)

whereas a flat-sheet definition is

�+ ≥ 0 ≥ �−. (3.189)

This definition is observed to educe vortex sheets, but also vortex-tube cores in
some cases. To get a more accurate definition, Horiuti and Takagi (2005) proposed
a new definition based on the eigendecomposition of the symmetric second-order
velocity-gradient tensor SW + WS. Denoting �s

z , �
s
+, and �s

− as the eigenvalues as-
sociated with the eigenvector that is maximally aligned with the vorticity vector,
the largest and the smallest remaining eigenvalue, respectively, it is observed that
vortex sheets can be educed using the criterion

�s
+ � 	, (3.190)

where 	 is an arbitrary positive threshold. The vortex-sheet normal vector is accu-
rately computed as ∇�s

+.

3.6.2 Vortex Tube: Statistical Properties and Dynamics

Vortex tubelike structures have been extensively analyzed by both DNSs and lab-
oratory experiments. Probability density functions of vortex-tube main features are
displayed in Figs. 3.15–3.18. These data were obtained by Jimenez and Wray (1998)
from DNSs of isotropic turbulence for Taylor-scale-based Reynolds numbers Re�

†† These authors also define a strong vortex tube as a region with large vorticity and small strain rate.
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Figure 3.15. The pdf of the radius R of the vortex tube normalized with the Kolmogorov scale �.
Different lines and symbols are related to different values of the Reynolds number. From Jimenez
and Wray (1998) with permission of CUP.
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Figure 3.16. The pdf of the radius R of the vortex tube normalized with the local equilibrium
Burgers’ radius Rb. Burgers’ radius is defined as Rb = 2

√
�/�, where � is the viscosity and � is the

local axial stretching. Different lines and symbols are related to different values of the Reynolds
number. From Jimenez and Wray (1998) with permission of CUP.
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Figure 3.17. The pdf normalized maximum axial vorticity of the vortex tube. Different lines and
symbols are related to different values of the Reynolds number. From Jimenez and Wray (1998)
with permission of CUP.
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Figure 3.18. The pdf maximum azimuthal velocity u0 of the vortex tube. Assuming that the vortic-
ity profile is Gaussian, one has u0 = 0.319R�0. Different lines and symbols are related to different
values of the Reynolds number. From Jimenez and Wray (1998) with permission of CUP.
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ranging from 37 to 168; they used a vortex-tracking method that relies on the pro-
jection of the instantaneous field onto the Burgers’ vortex model. It is worth not-
ing that, although the normalized peak values are Reynolds number independent
(showing that the vortex tubes exhibit some universal features), the pdf tails are
sometimes observed to be sensitive to the Reynolds number (showing that some ex-
treme events do not have the same dependency with respect to the Reynolds num-
ber as the “mean” vortex tubes).

The main conclusions of Jimenez and co-workers are as follows:

� The equilibrium Burgers’ vortex model is adequate to describe vortex tubes found
in isotropic turbulence, as shown by the peak in the pdf displayed in Fig. 3.16. This
point is also supported by results dealing with joint pdf’s of stretching and radius
and of radius and azimuthal velocity.

� The radius of a vortex tube scales as the Kolmogorov scale �, a typical value being
R � 4 − 4.2�.

� The mean stretching experienced by the vortex tubes scales with �′ independently
of Re�. The statistics of the stretching along the vortex-tube axis are the same as in
the background turbulent flow, showing that the latter is responsible for the main
part of vortex stretching.

The maximum of the axial strain felt by the vortices scales as O(�′ Re1/2
� ). Be-

cause it is Reynolds number dependent, it is believed to be due to self-stretching.§§
� The maximum vorticity in the vortex-tube core scales as O(�′ Re1/2

� ). This is in
agreement with the idea that vortex tubes are more intense at higher Reynolds
numbers.

� The azimuthal velocity, or, equivalently, the azimuthal velocity increment �u
across the vortex-tube diameter, scales with turbulent intensity u′. Because u′ is
associated with large-scale energy-containing scales, this scaling law is inconsis-
tent with Kolmogorov scaling, which states that the velocity increment across dis-
tances of O(�) should be O(u′ Re−1/2

� ). The Re�-independent upper bound for the
azimuthal velocity is approximately 2.5u′, this limit being reached by vortex tubes
with the smallest radii. A rationale for that is subsequently given.

� The circulation-based Reynolds number of the vortices observed in Jimenez and
Wray (1998) is about 20Re1/2

� .
� The vortex-tube length, defined in terms of the autocorrelation of some vortex-

tube property 
 as

L
 =
∫ s0

0


(s ′ + s)
(s ′)


2(s ′)
ds, (3.191)

where s0 denotes the point where the autocorrelation first vanishes, depends on
the quantity 
. Results show that two groups must be distinguished. The lengths
based on vortex radius and axial vorticity are O(�Re1/2

� ), i.e., they scale with the
Taylor microscale �, whereas the one based on the axial stretching varies as the
Kolmogorov scale �.

§§ Another possible physical process for this scaling law, the interactions between vortex tubes, is
shown to be much weaker than self-stretching.
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The fact that the correlation length of axial stretching is of the order of the
vortex-tube diameter (i.e., of the Kolmogorov scale, which is also the correlation
length of the velocity gradient in the whole flow) shows that the main stretching
experienced by the vortex tubes originates in the background flow.

The existence of the second scale � can be understood as follows. Let us con-
sider a vortex tube of length l � �. The line integral of the vorticity stretching is
given by ∫ l

0
t · Stdl︸ ︷︷ ︸

O(�′ L)

= u · t‖l
0 −

∫ l

0

u · n
R dl︸ ︷︷ ︸

O(Lu′R−1)

, (3.192)

where n, t , u, S, and R are the unit normal vector and tangent vector, the veloc-
ity vector, the stretching tensor, and the local radius of curvature, respectively.
To enforce homogeneity between the left- and right-hand sides of Eq. (3.192),
one must have R = O(u′/�′) = O(�). The physical consequence is that the vor-
tex tube must be geometrically complex over a length larger than the Taylor
microscale.

A higher upper bound for the vortex length is found by use of a vortex-tube-
tracking algorithm: The length of the most intense tubes is of the order of the
velocity integral scale defined as L	 , where 	 is the dissipation. The difference
between the tube length and the axial length of the vortex properties (radius, etc.)
can be explained by the existence of axial Kelvin waves driven by the pressure
fluctuation along the vortex axis.

� The total volume fraction filled by the vortex tubes decreases as Re−2
� , correspond-

ing to a total length that increases as Re�, leading to a increasing intermittency.

The fact that this upper bound depends on large-scale scale quantities only while
the maximum vorticity depends on Re1/2

� is not consistent by the classical dynamical
scheme of a stretched vortex with fixed circulation. A possible explanation, based on
the stability analysis of a columnar vortex, is that there exists a natural limit beyond
which a vortex tube of finite length cannot be stretched without becoming unstable.
This instability induces axial currents that counteract the external stretching. This
mechanism, studied in the case of Burgers’ vortex by Jimenez and co-workers, limits
the maximum azimuthal velocity to be of the same order as the straining velocity
differences applied along the vortex axis. The straining field being induced by the
background turbulent flow, one recovers an O(u′) upper limit. As a consequence,
the vorticity can be amplified by the stretching while at the same time the maximum
azimuthal velocity remains bounded. This implies that the length of the vortex tube
with a azimuthal velocity close to u′ must be large enough to have an edge-to-edge
velocity difference of that order, i.e., it must be of the order of the velocity integral
scale L	 , in agreement with the numerical data.

The dynamics of vortex-tube formation is another fundamental issue. A first
point is that the vortex tubes are part of the O(�′) background vorticity and
therefore must be seen as particular extreme cases of a more general population of
weaker vortical structures. The latter have been observed in numerical simulations
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to originate in the roll-up of vortex sheets because of Kelvin–Helmholtz-type insta-
bilities. In the absence of a mean-flow gradient, vortex tubes are created by straining
of the weaker vorticity structures. Dimensional analysis shows that the large-scale
strain u′/L	 yields the creation of Burgers’ vortices with an equilibrium radius of the
order of the Taylor microscale �, whereas the small-scale strain, which is equal to the
inverse of the Kolmogorov time scale and to the rms vorticity �′ = √

ε /�, generates
Burgers’ vortices with a radius of the order of the Kolmogorov length �. One can
see that the classical dynamical picture, which is in agreement with the Kolmogorov
scaling, is associated with the dynamics of the uncoherent part of the turbulent field.
The existence of high-intensity vortex tubes that escape the Kolmogorov scaling is
discussed in the next section.

The creation of vortex tubes with a length of the order of the integral scale can-
not be explained by the usual vortex-stretching mechanism. Jimenez made the hy-
pothesis that they originate in the connection of shorter precursors. It has also been
shown (Verzicco, Jimenez, and Orlandi, 1995; Jimenez and Wray, 1998) that in-
finitely long vortices can be maintained by axially inhomogeneous locally compres-
sive strains. Because similar axial fluctuations of the vorticity have been observed
in vortex tubes, this mechanism may explain that these very long vortex tubes are
sustained in isotropic turbulence over long times.

3.6.3 Bridging with Turbulence Dynamics and Intermittency

The internal Reynolds number of the vortex tubes being of the order of O(Re1/2
� ),

these vortices can be unstable at high Reynolds numbers. The numerical data sug-
gest that the maximum strain felt by the vortices, which scales like O(�′ Re1/2

� ), orig-
inates in the first stage of this instability process. The instability process leads to
vortex-tube deformation and the creation of small pinched segments whose length
is of the order of the diameter of the parent vortex.

This vortex instability led Jimenez and co-workers to suggest the existence of a
coherent �u cascade. According to that theory, vortex instability yields the existence
of a hierarchy of coherent stretched vortices, the circulation being preserved while
the upper bound �u ∼ O(u′) holds at each level. With Burgers’ vortex used as a
model, two consecutive levels n and n − 1 are related by

�n ∼ u′

Rn−1
, ln ∼ Rn−1, Rn ∼

√
�

�n
∼
√
�Rn−1

u′ , (3.193)

where ln , Rn , and �n denote the length, radius, and axial strain of the vortex tubes
at the nth level of the coherent cascade, respectively. The limit of the cascade is
obtained as the asymptote n −→ ∞:

�∞ ∼ u′2

�
∼ �′ Re�, l∞ ∼ R∞ ∼ �

u′ ∼ �Re−1/2
� . (3.194)

The limit value of the circulation-based Reynolds number is 1. An interest-
ing feature of the preceding physical scheme is that it involves scales smaller than
the Kolmogorov scale �. Because they originate in vortex-tube instabilities, the
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Figure 3.19. Schematic representation of the two turbulent cascade mechanisms. Adapted from
Jimenez and Wray (1998).

structures at a given level of the cascade are not space filling but are concentrated
in small volumes, leading to a natural interpretation of the internal intermittency of
turbulence at small scales.

It is also worth noting that strong vortex tubes with �u = O(u′) must be sub-
ject to more complex instability mechanisms, which will be compatible with the fact
that the circulation � is invariant and that the velocity increment �u ∼ �/R is upper
bounded. A possible mechanism (compatible with both numerical and experimental
observations) is that when a vortex is so strained that its azimuthal velocity would
become higher than the driving axial-velocity difference, vorticity is expelled into a
cylindrical vorticity sheet. The thickness of this sheet is equal to the Burgers’ length
of the driving strain. It is unstable, and Kelvin–Helmholtz-type instabilities will lead
to its breakup and the formation of longitudinal vortices whose circulation and ra-
dius will be such that the global circulation is equal to that of the parent vortex.

The full global dynamical scheme proposed by Jimenez and co-workers consists
of two different cascade mechanisms (see Fig. 3.19):

� The incoherent cascade associated with space-filling structures such that �u/R �

�′ (i.e., incoherent structures) that fulfill the Kolmogorov scaling �u = O(R1/3).
The key physical mechanism at play here is the stretching of noncoherent struc-
tures by the background vorticity.

� The coherent �u cascade previously described, which is associated with vortex
tubes that are not space filling. The governing physical mechanism is the dynamic
response of the vortex tubes to the stretching they experience.

The global physical picture is the following. Large-scale uncoherent vortical
structures¶¶ are stretched by the background vorticity, leading to the existence of

¶¶ Uncoherent structures are defined here as structures with a characteristic vorticity weaker than the
background vorticity �′.
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smaller structures and the kinetic-energy cascade. Once the cumulated stretching is
strong enough, coherent vortex tubes arise, with typical radii ranging from the Tay-
lor microscale to the Kolmogorov scale. Each coherent vortex tube is then subject
to the coherent �u cascade mechanism, leading to the generation of a hierarchy
of thinner and thinner tubes. The dynamical scheme previously described does not
account for possible interactions between vortex hierarchies generated by the co-
herent cascades. Some exchanges are a priori possible by means of phenomena such
as vortex connection or imperfect braiding.

Numerical data reveal that the O(�′) background vorticity is concentrated in
large-scale vortex sheets that separate the energy-containing eddies at the integral
scales. This background vorticity is observed to be responsible for almost 80% of
the total turbulent dissipation in existing numerical simulations, whereas it fills only
25% of the total volume of the flow.

Vortex tubes are not responsible for the global dynamics of flow and play al-
most no role in global physical mechanisms like the kinetic-energy cascade in the
inertial range or the turbulent dissipation. This point will be further discussed in
Section 3.7. Previous scaling laws show that their total energy scales as O(Re−2

� ),
whereas they induce a kinetic-energy dissipation that decreases as O(Re−1

� ). They
are possibly responsible for the intermittency observed in higher-order statistics
and for extreme values found in the tails of pdf’s of many turbulent quantities.
It is to be noted that no satisfactory link between coherent-event dynamics and
inertial-range intermittency has been established up to now. Vortex tubes are cer-
tainly a source of intermittency, but mostly at small scales. The trend of vortex
tubes to form large-scale clusters reported by Moisy and Jimenez (2004) might
be a source for large-scale intermittency, but no definitive evidence is available at
the present time. Other mechanisms, like the persisting long-range coupling be-
tween large and small scales, may also contribute to the inertial-range intermit-
tency.

3.7 Nonlinear Dynamics in the Physical Space

3.7.1 On Vortices, Scales, Wavenumbers, and Wave Vectors – What
are the Small Scales?

The analysis of isotropic turbulence dynamics, as done in this chapter, is usually
carried out concurrently in both Fourier and physical space, a very difficult issue
being to bridge between these two different approaches.

It is important to emphasize here that several shortcomings usually occur that
are misleading. Fourier analysis is based on the use of wave vectors, which are not
equivalent to scales, because a wave vector also carries information dealing with
orientation. The associated wavenumber, defined as a Euclidian norm of the wave
vector, has the dimension of the inverse of a length. A large part of the information
is now lost, such as the mode polarity in the helical-mode decomposition denoted
by the parameter s in Eq. (2.86).
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Another problem is to switch from the scale concept to classical objects of fluid
dynamics like vortices. Small scales are very often understood as “small vortices,”
which is wrong. The three reasons are as follows:

1. Neither Fourier analysis, which introduces wave vectors, nor the scale-
dependent analysis in the physical space (based on structure functions, scale-
dependent increments, etc.) involves the concept of coherent events such as a
vortex. It is worth noting that none of the recent definitions of a vortex or a
vortex sheet (see Subsection 3.6.1) is based on the the scale concept.

2. Modes in Fourier space are nonlocal in space, whereas the very concept of a
vortex is intrinsically local in physical space because it is associated with a given
object.

3. As seen in Subsection 3.6.2, 3D vortices (as defined according to one of the
available definitions) cannot be defined by a single length scale. This is obvi-
ously the case of vortex tubes, whose axial lengths are much higher than their
typical diameters.

Therefore one must be very cautious when “translating” or “extrapolating” re-
sults coming from Fourier analysis in physical space (and vice versa).

What definition of small scales can be used in physical space? Such a definition
should rely on the flow dynamics. It is commonly agreed that most of kinetic-energy
dissipation ε occurs at modes with high wavenumbers∗ because it is equal to

ε = 2�
∫ +∞

0
k2 E(k)dk, (3.195)

and that scales dominated by viscous effects are the small scales. Because the right-
hand side of Eq. (3.195) is proportional to the square of the L2 norm of the velocity
gradient ∇u, one can see that small scales of turbulence in the physical space should
be defined as scales associated with large gradients of the velocity field. On the oppo-
site side, large scales in physical space are the ones that carry most of the turbulent
kinetic energy. Because

K =
∫ +∞

0
E(k)dk, (3.196)

and E(k) ≥ 0,∀k, one can see that modes with dominant contributions to K and
ε are not the same, the latter having larger wavenumbers than the former at high
Reynolds numbers. In this sense, one can establish a link between wavenumbers
and scales in physical space.

Let us conclude this section by emphasizing that velocity gradients, from which
one can define the small scales in physical space, include both symmetric and anti-
symmetric parts, i.e., both turbulent strain S and vorticity �.

∗ High is to be understood as a relative notion, the reference being the wavenumbers at which turbu-
lent kinetic energy is injected or created by external forcing or hydrodynamic instabilities.
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It is worthy noting that the true exact local expression for the dissipation in
physical space is ε = 2�Si j Si j , i.e., dissipation is a function of strain, not vorticity.
Introducing the vorticity, one obtains

ε (x, t) ≡ 2�Si j Si j = ��i�i + �
∂2

∂xi∂x j
(ui u j ), (3.197)

showing that, in an unbounded or periodic domain, the following usual volume or
statistical averaged relations hold:

ε ≡ 2�Si j Si j = ��i�i . (3.198)

Therefore mean dissipation can be tied to the mean enstrophy through a purely
kinematic relation in isotropic turbulence. But such a relation is meaningless from a
local point of view, leading to the conclusion that the strain field is the right quantity
to describe the dissipation process.

3.7.2 Is There an Energy Cascade in the Physical Space?

Although the kinetic-energy energy cascade is a well-established result in Fourier
space and in an ensemble-averaged sense, its “translation” in physical space is not
straightforward. The Navier–Stokes equations just tell us that momentum and ki-
netic energy are transported in the physical space, global kinetic energy being in-
variant in a fully periodic domain in the absence of viscous effects and external
forcing. Exact equivalences between terms appearing in Fourier and physical space
formulations are only global, nonlocal expressions, which do not make it possible
to have direct access to single-wave-vector-related information in physical space.
Therefore the energy cascade concept is not relevant in physical space from a rigor-
ous viewpoint. It is directly related to the projection of the Navier–Stokes equations
onto basis functions that intrinsically bear the information related to scale depen-
dency (such as Fourier, but also wavelets, hp bases in finite-element methods, etc.).
This point was emphasized a long time ago by von Neumann and Onsager in 1949.

A very common picture deals with the kinetic-energy cascade being the re-
sults of a hierarchy of vortex-breakdown phenomena, with each vortex generat-
ing smaller vortices. This phenomenological picture, very often presented as the
Richardson cascade, is wrong: Experimental and numerical results show that vor-
tices observed in isotropic turbulence do not behave this way and that the transfer
of kinetic energy does not originate in the instability of the vortices. As emphasized
by Tsinober (2001), this flawed physical picture originates in a too-rapid reading of
the famous sentence written by Richardson in 1922: “We thus realize that: big whirls
have little whirls that feed on their velocity, and little whirls have lesser whirls and so
on on to viscosity – in the molecular sense.” It is to be noticed that Richardson never
made further use of this picture and that the term cascade was coined by Onsager
two decades later in the 1940s.
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NAIVE PICTURE REAL TURBULENCE

Figure 3.20. Nonphysical simplified view of the turbulent kinetic cascade in physical space (left)
and true structure of the instantaneous vorticity field computed by means of high-resolution nu-
merical simulation (right). It is seen that the simplified picture based on hierarchical breakup pro-
cess has no physical ground. Right picture reproduced with courtesy of Laboratory for Computa-
tional Science and Engineering.

Therefore the question arises of the existence of a mechanism in the physical
space that can be interpreted as the counterpart of the turbulent kinetic-energy
cascade in the Fourier space. In physical space, one observes that the injection of
turbulent kinetic energy at a given scale yields the generation of velocity gradients
and turbulent kinetic-energy dissipation. Using the definition previously given for
the small scales in physical space, one can see that the turbulent kinetic cascade in
Fourier space must be replaced with the generation of velocity gradients (i.e., both
vorticity and strain) in physical space.

It is also important to note that some oversimplified pictures of the cascade
that illustrate this process as a hierarchical breakup of structures in smaller ones in
physical space is misleading (see Fig. 3.20). One gains a much more realistic pic-
ture by looking at the true topology of the turbulent field, revealing that the basic
mechanisms are vorticity stretching, vortex-sheet folding/rolling up, vortical-blob
reconnection, etc.

3.7.3 Self-Amplification of Velocity Gradients

In agreement with the definition of the small scales in physical space as previously
given and the observation that the kinetic-energy cascade picture does not hold in
physical space, the dynamics of turbulence should be investigated by looking at the
dynamics of velocity gradients. Therefore strain and vorticity fields should be able
to be used to describe turbulence dynamics. Another reason is that they are much
more sensitive to internal intermittency than velocity and kinetic energy. Histori-
cally, Taylor pointed out the importance of vorticity in 1937, and the role of strain
was emphasized by Kolmorogov in 1941. These two quantities must be considered
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in parallel, as they are weakly correlated in isotropic turbulence and they are tied
by a strongly nonlocal relation.

Let us recall some fundamental evolution equations for the vorticity �, the
strain S, the enstrophy �2/2, and the total strain S2 = Si j Si j . In the absence of ex-
ternal forcing, one has

∂�i

∂t
+ u j

∂�i

∂x j
= � j Si j + �∇2�i , (3.199)

1
2

∂�2

∂t
+ u j

∂�2

∂x j
= �i� j Si j + ��i∇2�i , (3.200)

∂Si j

∂t
+ u j

∂Si j

∂x j
= −Sik Sk j − 1

4

(
�i� j − �2�i j

)− ∂p

∂xi x j
+ �∇2Si j , (3.201)

1
2

∂S2

∂t
+ u j

∂S2

∂x j
= −Sik Sk j Si j − 1

4
�i� j Si j − Si j

∂2 p

∂xi x j
+ �Si j∇2Si j . (3.202)

Now, with the analysis restricted to isotropic turbulence, the evolution of mean
enstrophy and mean total strain are governed by the following equations:

1
2

∂�2

∂t
= �i� j Si j + ��i∇2�i , (3.203)

1
2

∂S2

∂t
= −Sik Sk j Si j − 1

4
�i� j Si j + �Si j∇2Si j . (3.204)

Two of the most distinctive features of 3D turbulence are as follows:

1. Enstrophy production by means of vortex stretching is positive in the mean,

�i� j Si j � 0, (3.205)

as hypothesized by Taylor in 1938. Using Lin’s equation (3.88) for the evolution
of E(k), it is seen that this term is exactly equal to

∫∞
0 k2T (k)dk.

Numerical simulations show that this term is 2 orders of magnitude larger
than other terms that appear on the right-hand side of Eq. (3.203). It is impor-
tant to note that this term happens to take negative values locally. The positive
mean value comes from the fact that its pdf is strongly positively skewed. More
details about the enstrophy production will be given later in this section, but
let us emphasize here that the positivity on the mean of enstrophy production
cannot be explained when vortex lines are considered as material lines. This is
a misconception, because material lines and vorticity lines have very different
behaviors, which are due to the fact that vorticity is not a passive scalar (it re-
acts back on the velocity field). These discrepancies are exhaustively discussed
in Tsinober (2001).
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Vorticity amplification via vortex stretching

S = − (∇ u + ∇ Tu), S2 1
2 − SijSjk Ski 

− ω iω jSij 

Strain self-amplification

ω =   curl(u), ω 2 

Strain

Vorticity

∇ 2u = 2∇ . S

∇
2 u = − curl(

ω )

u ∇ u

Figure 3.21. Schematic view of the velocity-gradient self-amplification process in isotropic turbu-
lence.

2. Total strain production is positive in the mean. Using the nonlocal kinematic
equality†

�i� j Si j = −4
3

Sik Sk j Si j , (3.206)

one observes that the characteristic feature of turbulence is that

−Sik Sk j Si j � 0. (3.207)

This term is observed to be larger by 2 orders of magnitude than the viscous
term in the balance equation for S2.

A few important observations can be drawn from Eqs. (3.203) and (3.204):

1. Enstrophy production results from the interaction of vorticity with the
strain field, whereas the production of total strain mainly comes from self-
amplification of the strain field. This is illustrated in Fig. 3.21.

2. In regions where �i� j Si j � 0, the production of total strain is decreased
because the two terms have opposite signs [see Eq. (3.206)], i.e., vortex stretch-
ing tends to suppress production of strain, at least in a direct way. On the op-
posite side, vortex compression (i.e., regions where �i� j Si j � 0) aids the pro-
duction of total strain. Now, identifying the dissipation and its production as
the counterpart of the kinetic-energy cascade in physical space, one arrives at
the conclusion that turbulence dynamics in the physical space is associated with

† This equality, found by Betchov (1956), is valid in homogeneous, but not necessarily isotropic, tur-
bulence, as recently noted by J.N. Gence (private communication).
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Table 3.5. Individual contributions of eigenmodes of the strain tensor S to
the production of velocity gradient

Nonlinear term i = 1 i = 2 i = 3

�̂
3
i 1.2–1.62 0.05 −2.67–−2.25

�2 �̂
2
i cos2(�, êi ) 0.52–0.53 0.12–0.15 0.32–0.36

Note: Ranges of variations are taken from Tsinober (2001), from Re� = 75 (direct numer-
ical simulation) to Re� = 104 (measurements in the atmospheric boundary layer). There is
no summation over repeated indices here.

the predominant production of the rate of strain by means of strain self-
amplification and vortex compression rather than with vortex stretching. The lat-
ter is observed to resist the production of dissipation, and therefore to decrease
the intensity of turbulent nonlinear dynamics in some sense.

DNSs provide a deep insight into the dynamics of the generation of total strain
and vorticity. Among other results, they make it possible to identify the regions of
space and the physical events responsible for the production mechanisms previously
presented. As in Subsection 3.6.1, let us denote as êi (i = 1, 2, 3) the three eigenvec-
tors of S and as �̂i the corresponding eigenvalues. Simple algebra yields

−Sik Sk j Si j = −( �̂
3
1 + �̂

3
2 + �̂

3
3) = −3 �̂1 �̂2 �̂3. (3.208)

One knows that �̂1 � 0. Numerical simulation shows that �̂2 is positively

skewed, yielding �̂
3
2 � 0, and that �̂3 is negatively skewed, ensuring the posi-

tive production in Eq. (3.207). Typical values are displayed in Table 3.5. There-
fore the nonlinear dynamics, understood as the generation of dissipation and small
scales, is directly associated with regions in which �̂3 � 0, i.e., with regions of vortex
compression.

The vortex-stretching term can be rewritten as follows:

�i� j Si j = �2 �̂i cos2(�, êi ). (3.209)

Numerical data reveal that the largest contribution to positive enstrophy pro-
duction comes from regions where � tends to align with ê1 (see Table 3.5, in which
typical values of the contributions to |�S|2 are displayed). But, as mentioned in Sub-
section 3.6.1, it is known that, in vortex tubes, � is mainly aligned with ê2. This result
indicates that vortex tubes are not responsible for the main part of enstrophy produc-
tion, which originates in regions with larger strains than enstrophy, and with large cur-
vature of vorticity lines. In the latter, enstrophy production is maximal and is much
larger than viscous destruction. On the contrary, vortex tubes are axial structures
with low curvature and maximal enstrophy. In these tubes, modeled as Burgers-like
vortices, one observes an approximate equilibrium between enstrophy production
and viscous effects. Because their vorticity field is mostly concentrated on the axial
component, they are not able to react back on the strain field that stretches them.
In this sense, the nonlinearity is reduced in these objects, yielding a long lifetime.
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It is important to note that enstrophy production mainly originates in strain-
dominated regions. Two types of such regions are found:

� Strain-dominated regions with small curvature of vorticity lines. These regions are
mostly located around vorticity-dominated regions (vortex tubes), in which the
vorticity lines wrap around the vortices, leading to a preferential alignment of �

with ê2. These regions are not associated with the maximal enstrophy production.
� Strain-dominated regions with large curvature of vorticity lines. In these regions,

large enstrophy production is associated with a large magnitude of �̂3 and large
negative values of the enstrophy production rate �̂

2
i cos2(�, êi ). Predominant

mechanisms are vortex compression and vortex tilting (change of orientation).

3.7.4 Non-Gaussianity and Depletion of Nonlinearity

The non-Gaussian character of turbulence, pointed out in Subsection 3.1.2, is in-
trinsically tied to dynamics of turbulence. One can understand this by looking at
enstrophy and total strain production processes, which can be seen as the counter-
part of the turbulent energy cascade in the physical space. A striking feature is that
production terms in Eqs. (3.203) and (3.204) are third-order moments, which should
be identically zero if the turbulent field were a Gaussian random field. Production of
enstrophy and total strain are non-Gaussian features of turbulence. Therefore non-
Gaussianity originates in the very dynamics of turbulence dictated by the Navier–
Stokes equations.

The strategy that consists of describing Navier–Stokes turbulence by comparing
it with the properties of a Gaussian random velocity field is appealing, as many the-
oretical results are available for the latter. Kraichnan and Panda (1988) suggested
comparing the values of several key nonlinear terms that are involved in the de-
scription of nonlinear dynamics in physical space, and introduced the notion of de-
pletion of nonlinearity. This term was coined to account for the fact that some even
moments related to nonlinear mechanisms are larger in the Gaussian case than in
Navier–Stokes turbulence; e.g., the ratio

| u∇u + ∇ p |Navier–Stokes

| u∇u + ∇ p |Gaussian
� 0.5–0.6 (3.210)

is inferred from available numerical data, where | . | is related to the rms value, and
is different from 〈.〉, which yields an identically zero value. These results could be in-
terpreted as a sign that the nonlinearities are depleted in Navier–Stokes turbulence.
Of course, this idea must be considered with care, because, looking at odd moments,
the Navier–Stokes turbulence appears to be infinitely more nonlinear than its Gaus-
sian approximation.

As previously mentioned, it is also observed that both enstrophy and strain
production are reduced in regions dominated by enstrophy with respect to strain-
dominated regions. Accordingly, vorticity-dominated regions, and more specifically
vortex tubes, are regions in which the nonlinear effects are less intense and can be
considered as locally depleted.
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3.8 What are the Proper Features of Three-Dimensional
Navier–Stokes Turbulence?

We now address the following question: Among all the features of turbulence pre-
viously presented, which are the ones that are proper characteristics of 3D Navier–
Stokes incompressible turbulence in the sense that they are not shared by other
systems?

3.8.1 Influence of the Space Dimension: Introduction to
d-Dimensional Turbulence

A first question deals with the influence of the space dimension on turbulence dy-
namics. Although 1D incompressible turbulence does not exist,† the dynamics of
isotropic turbulence in two (see Lesieur, 1997, for a detailed discussion of 2D tur-
bulence), three, or even four dimensions has been investigated, both theoretically
(Fournier and Frisch, 1978) and numerically (Suzuki et al., 2005). The main results
are subsequently summarized:

� The turbulent kinetic-energy spectrum exhibits an inertial range at small scales
if the Reynolds number is high enough. But it is worth noting that the spectrum
shape depends on the space dimension. In 2D turbulence, two inertial ranges are
detected. A first inertial range with E(k) ∝ k−5/3 is followed by a second one at
higher wavenumbers, in which E(k) ∝ k−3. On the other hand, a single inertial
range with E(k) ∝ k−5/3 is observed in three and higher dimensions.

� A kinetic-energy cascade is observed in all cases, even in the 2D case in which
the vortex-stretching term in the vorticity equation is identically zero. But, in
agreement with Waleffe’s instability assumption (see Subsection 3.5.4), because
F-type distant interactions are almost absent, the net ensemble-averaged dom-
inant mechanism is a reverse energy cascade from large- to small-wavenumber
modes. In the 2D case, this reverse cascade is easily interpreted in terms of vortex
dynamics, as vortices are observed to merge, generating larger and larger struc-
tures. In both 3D and 4D cases, the forward energy cascade is observed to be
dominant at large wavenumbers. Theoretical analyses show that 2D turbulence is
a singular point and that the forward cascade is dominant in spaces with dimen-
sion d ≥ 3.

� Self-similar decay regimes exist in all dimensions. An extension of the analysis
presented in Subsection 3.1.3 shows that a self-similar decay regime in the d-
dimensional case exists if the kinetic-energy spectrum at a small wavenumber
behaves like

E(k, t) ∝ C (d)(t)kd+1 (small wavenumbers). (3.211)

† In the 1D case, the divergence-free constraint simplifies into a null-space derivative constraint, lead-
ing to uniform solutions in space.
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Assuming that C (d)(t) is constant (i.e., assuming that the PLE assumption
holds), one obtains the following law for the decay of turbulent kinetic energy:

K(t) ∝ t−n, n = 2(d + 2)
(d + 4)

, d ≥ 2. (3.212)

The decay coefficient n is an increasing function of the space dimension d.
This fact is interpreted by Suzuki as evidence that energy transfer is more efficient
in higher dimensions.

� Comparisons between 3D and 4D isotropic turbulence (Suzuki et al., 2005) show
that the total dissipation is less and less intermittent whereas intermittency is
stronger on velocity increments as the dimension increases. The reason is the
change in balance between pressure and convection terms as the dimension d
increases. The role of pressure and incompressibility becomes weaker in higher
dimensions, because the system has more degrees of freedom. As a consequence,
the velocity field is less constrained and a larger intermittency can exist. The en-
hanced energy transfer in higher dimensions is also tied to this weakening of the
pressure influence: Because more persistent straining of the small scales by the
large-scale strain is allowed, the energy transfer toward a small scale is enhanced.

� The role of coherent vortices in a kinetic-energy cascade is less and less important
as the dimension d is increased.

3.8.2 Pure 2D Turbulence and Dual Cascade

2D turbulence without forcing can be characterized by the following kinetic-energy
spectrum,

E(k) ∼ �2k−3,

in which �2 is the total enstrophy and k holds for the wavenumber component in the
wave plane normal to the direction of the missing velocity component. 2D turbu-
lence is often considered in the presence of some forcing, for instance with spectral
energy injected at a wavenumber k0, and two situations must be distinguished: The
previous law is valid for k � k0, whereas a conventional k−5/3 law prevails for k � k0.

The k−3 was proposed, probably independently, by Batchelor, Leith, and
Kraichnan. Such a law is not really recovered by DNS, but a modified one,

E(k) ∼ �2k−3 [ln(k/k0)]1/3
,

is consistently derived from theoretical (Kraichnan, 1967) and numerical (Ishihara
and Kaneda, 2001) results.

In physical space, a pure K41 law is predicted for nth-order structure functions,
without need for curvature of the straight line of exponents as for 3D turbulence.
Only the prefactor of the Kolmogorov law is changed, yielding

〈�u3
‖〉 = 3

2
ε r
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for k0r � 1. The absence of curvature is interpreted as an absence of intermittency,
whereas the change of sign of the prefactor is linked to the inverse energy cascade.
It is also conjectured that there is no “dissipation anomaly,” so that a vanishing
viscosity would mean a vanishing dissipation rate. On the other hand, the constant-
enstrophy flux is reflected by a mixed velocity–vorticity third-order structure func-
tion, scaling as

〈[�u‖(r)] [��(r)]2〉 = −4
3
�2r

for k0r � 1.
In view of realistic flow cases, in which the flow is partially 2D but filling in a

volume, pure 2D turbulence can be seen as a limiting case of 3D axisymmetric tur-
bulence, so that the previously mentioned (averaged over circles) energy spectrum
E(k), k = k⊥ is connected with the fully dimensional one e(k) as

e(k) = E(k⊥)
2�k⊥

�(k‖), (3.213)

where the Dirac delta is related to the invariance of the velocity field with respect
to the coordinate x‖ in physical space. If two-dimensionality is related to the latter
invariance only, the Fourier component of the velocity consists of both components
u(1) and u(2) in the Craya–Herring reference frame in Fourier space, but restricted
to k‖ = 0 (horizontal wave plane). In this case, u(1) corresponds to the horizontal
vortical component, and u(2) to the vertical “jetal” velocity component. Classical
2D-2C (two-dimensional two-component) turbulence is characterized only by the
u(1)-related velocity.§ The counterpart of 3D isotropic equations for a single triad is
(Fjortoft, 1953; Kraichnan, 1967; Waleffe, 1992)

u̇(1)
k = (p2 − q2)

ıs

2
Ckpqu(1)∗

p u(1)∗
q , (3.214)

u̇(1)
p = (q2 − k2)

ıs

2
Ckpqu(1)∗

q u(1)∗
k , (3.215)

u̇(1)
q = (k2 − p2)

ıs

2
Ckpqu(1)∗

k u(1)∗
p , (3.216)

where Ckpq is given by Eq. (3.110). The sign s is equal to +1 for any even permuta-
tion of the vectors k, p, q of the triad and −1 for an odd permutation. It is clear that
each interaction independently conserves energy and enstrophy. Without further
quantitative statistical analysis, it is immediately shown that only (R) triads are con-
cerned. Compared with the instability principle expressed in terms of helical modes
for 3D isotropic turbulence, the analogy with the Euler stability problem of a solid
body that rotates around its principal axes of inertia is even more striking, replac-
ing I1, I2, I3 by k2, p2, q2 in Eqs. (3.141)–(3.143). Only positive terms are involved,
without the need for looking at signs (i.e., polarities of helical modes) as before.

A last important result is that the triad instability principle is found to be consis-
tent with the concept of a dual cascade observed in 2D turbulence, i.e., a dominant

§ Exact relations are u(1) = −�̂‖/k and u(2) = −û‖ in the horizontal (k‖ = 0) wave plane.
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Figure 3.22. Instantaneous “turbulent” solu-
tion of the 2D Burgers’ equations. Shocks are
observed. Courtesy of A. Noullez.

inverse cascade for energy from large to small wavenumbers, and a direct enstrophy
cascade from small to large wavenumbers.

3.8.3 Role of Pressure: A View of Burgers’ Turbulence

We use here the results dealing with the turbulence-like solutions of Burgers’ equa-
tions, also referred to as Burgers’ turbulence or “Burgulence,” to discuss in the role
of the pressure. This model,

∂u
∂t

+ u∇u = �∇2u, (3.217)

can be interpreted as an asymptotic model for hydrodynamics, in which pressure has
no feedback on the velocity field. Because it is the pressure gradient that enforces
the incompressiblity, Burgers’ equations correspond to an infinitely compressible
fluid. It is worth noting that the vorticity equation obtained by application of the
curl operator to Eq. (3.217) is similar to the usual one derived from Navier–Stokes
equations. But vorticity will remain identically zero for irrotational initial conditions
and ad hoc boundary conditions, because a velocity potential exists.

Extensive analyses of both forced and decaying isotropic Burgers’ turbulence
have been carried out, with different space dimensions (Girimaji and Zhou, 1995;
Noullez and Pinton, 2002; Noullez et al., 2005). The main observations are as
follows:

� The Burgers’ velocity field is composed of planar viscous shocks (see Fig. 3.22)
and does not exhibit vortices as in the Navier–Stokes case. This important fact
puts the emphasis on the role of pressure, which is responsible for the existence
of coherent vortices (as defined in Subsection 3.6.1). A consequence is that the
analysis of the sole vorticity equation is not relevant to characterize Navier–
Stokes turbulence. It is also to be noted that this observation is consistent with
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Figure 3.23. Time evolution of the turbulent kinetic-energy spectrum in freely decaying 2D Burg-
ers’ turbulence. The occurrence of a self-similar solution with a k−2 inertial range is observed.
Reproduced from Noullez et al. (2005) with permission of the American Physical Society.

the one dealing with the weakening of both pressure effects and vortices’ roles
in d-dimensional Navier–Stokes turbulence for increasing d (see the preceding
section).

� At high Reynolds numbers, Burgers’ turbulence exhibits an inertial range in
the kinetic-energy spectrum. Both theoretical and numerical results agree on an
E(k) ∝ k−2 behavior (see Fig. 3.23). The difference from the E(k) ∝ k−5/3 behav-
ior of the Navier–Stokes turbulence originates in the nature of the small-scale
events. Whereas in the Navier–Stokes case the small scales are completely charac-
terized by the molecular viscosity � and the dissipation rate ε , they are determined
by the velocity jump across the shock [[u]] and the characteristic shock separation
length L in the Burgers’ case. The dissipation rate is therefore estimated as

ε = [[u]]3

24L
. (3.218)

Because [[u]] ∼ √
12K and L is approximately equal to the velocity autocor-

relation length scale, it is seen that, in Burgers’ turbulence, small scales are deter-
mined by large-scale parameters.

� As in Navier–Stokes turbulence, the dominant mechanism within the inertial
range is a kinetic-energy cascade toward the high wavenumbers, and a reverse
cascade drives the small-wavenumber dynamics. Within the inertial range, the en-
ergy transfer is local in spectral space. The triadic interactions causing the most
energetic transfers are distant ones, whereas most of the net kinetic-energy trans-
fer is induced by local triadic interactions. Therefore the global picture is close to
the one found in Navier–Stokes turbulence, despite the very important difference
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in the topology of the velocity field, showing that the spectral features of Navier–
Stokes dynamics previously mentioned are not intrisically due to pressure effects
and the existence of vortices.

� Burgers’ turbulence exhibits intermittency, as Navier–Stokes turbulence: Tails
of the velocity-fluctuation pdf’s have the same non-Gaussian behavior, whereas
velocity-increment pdf’s exhibit a strong departure from the normal distribution.
This shows that intermittency, as a general phenomenon, is not a consequence
of the existence of coherent vortices in Navier–Stokes turbulence; neither is it a
pressure effect. It is due to the nonlinearity of the governing equations and to the
existence of strong nonlocal interactions in Fourier space.

3.8.4 Sensitivity with Respect to Energy-Pumping Process:
Turbulence with Hyperviscosity

We now address the influence of the energy-pumping process on the self-similar
decay and the inertial-range behavior of isotropic turbulence. This question was
investigated by Borue and Orszag (1995a, 1995b), who performed some simulations
in the 3D case using the following hyperviscous generalization of the Navier–Stokes
equations:

∂u
∂t

+ u∇u = −∇ p + �p∇2pu, (3.219)

∇ · u = 0, (3.220)

where �p is a hyperviscosity. The usual Navier–Stokes equations are recovered by
setting p = 1. Borue and Orszag used p = 8. Their results, in both forced and freely
decaying isotropic turbulence, suggest that inertial-range dynamics may be indepen-
dent of the particular mechanism that governs dissipation at high wavenumbers. The
usual inertial-range behavior was recovered, along with the main features of inter-
mittency and non-Gaussianity. But, because the dissipation induced by the hyper-
viscosity is concentrated at higher wavenumbers than the physical one, the inertial
range is observed to be larger in the former case than in the latter.
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Pouquet, A., Lesieur, M., André, J.-C., and Basdevant, C. (1975). Evolution of high

Reynolds number two-dimensional turbulence, J. Fluid Mech. 75, 305–319.
Proudman, I. and Reid, W. H. (1954). On the decay of a normally distributed and

homogeneous turbulent velocity field, Philos. Trans. R. Soc. London A 297, 163–189.
Rossi, M. (2000). Of vortices and vortical layers: An overview, in Vortex Structure and

Dynamics, Maurel, A. and Petitjeans, P., eds., Lecture Notes in Physics, Springer,
pp. 40–123.

Siggia, E. D. (1981). Numerical study of small scale intermittency in three dimensional
turbulence, J. Fluid Mech. 107, 375–406.

Skrbek, L. and Stalp, S. R. (2000). On the decay of homogeneous isotropic turbulence,
Phys. Fluids 12, 1997–2019.

Sreenivasan, K. R. (1995). On the universality of the Kolmogorov constant, Phys. Fluids
7, 2778–2784.

Suzuki, E., Nakano, T., Takashi, N., and Gotoh, T. (2005). Energy transfer and inter-
mittency in four-dimensional turbulence, Phys. Fluids 17, 081702.

Tanaka, M. and Kida, S. (1993). Characterization of vortex tubes and sheets, Phys.
Fluids 5, 2079–2082.

Tsinober, A. (2001) An Informal Introduction to Turbulence, Kluwer Academic.
Verzicco, R., Jimenez, J., and Orlandi, P. (1995). Steady columnar vortices under local

compression, J. Fluid Mech. 299, 367–388.
Vignon, J. M. and Cambon, C. (1980). Thermal spectral calculation using EDQNM

theory, Phys. Fluids 23, 1935–1937.
Waleffe, F. (1992). The nature of triad interactions in homogeneous turbulence, Phys.

Fluids 4, 350–363.
Waleffe, F. (1993). Inertial transfers in the helical decomposition, Phys. Fluids 5, 677–

685.
Zakharov, V. E., Lvov, V., and Falkowitch, G. (1992). Wave Turbulence, Springer.
Zhou, J., Adrian, R. J., Balachandar, S., and Kendall, T. M. (1999). Mechanisms for

generating coherent packets of hairpin vortices, J. Fluid Mech. 387, 353–396.



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

4 Incompressible Homogeneous Anisotropic
Turbulence: Pure Rotation

4.1 Physical and Numerical Experiments

Rotation of the reference frame is an important factor in certain mechanisms of
flow instability, and the study of rotating flows is interesting from the point of view
of turbulence modeling in fields as diverse as engineering (e.g., turbomachinery and
reciprocating engines with swirl and tumble), geophysics, and astrophysics. Effects
of mean curvature or of advection by a large eddy can be tackled by use of simi-
lar approaches. In this chapter, the emphasis is put on the dynamics of turbulence
subjected to solid-body rotation with constant angular velocity. Considering rota-
tion with angular velocity � around the axis e3, the mean-flow-gradient matrix and
mean-flow-displacement-gradient matrix are given by the following expressions (see
Subsection 2.1.6):

A =

 0 −� 0
� 0 0
0 0 0

 , F =

 cos�t − sin�t 0
sin�t cos�t 0

0 0 1

 . (4.1)

This expression for A is obtained by setting S = 0 in Eq. (2.48).
Some commonly agreed statements have been drawn from several experimen-

tal, theoretical, and numerical studies, in which rotation is suddenly applied to ho-
mogeneous turbulence. The main results are summarized as follows:

� Rotation inhibits the energy cascade, so that the dissipation rate is reduced
(Bardina, Ferziger, and Rogallo, 1985; Jacquin et al., 1990). This is illustrated in
Fig. 4.1.

� The initial 3D isotropy is broken, so that a moderate anisotropy, consistent with
a transition from a 3D to a 2D state, can develop. Anisotropy is more reflected in
integral length scales with various components than in Reynolds stresses (Jacquin
et al., 1990; Cambon, Mansour, and Godeferd, 1997). Typical results are shown in
Fig. 4.2.

� Elongated vortical structures are generated with asymmetry in terms of cyclonic
and anticyclonic axial vorticity (Bartello, Métais, and Lesieur, 1994), structures
with cyclonic vorticity being observed to be dominant. Cyclonic eddies are char-
acterized by a positive fluctuating vorticity in the axial direction �‖ = �i ni �

0 (= �3 with a particular choice of frame), seen in the rotating frame: They

127



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

128 Incompressible Homogeneous Anisotropic Turbulence

Ω  (rad/s)

Ω =  0
Ω ≠  0

62.8

31.4

15.7

5.2

10

0.0005

0.005

0.005

0.005

0.005

20 40 60 80 100
x/M

K
(x

)/
K

(x
0)

0.2

0.1

0 1 2 3

K

t–t0

Stokes Eq.
Ω =  100
Ω =  5.00
Ω =  2.00
Ω =  0.00

Figure 4.1. Time evolution of turbulent ki-
netic energy in initially isotropic turbulence
submitted to solid-body rotation. Top: exper-
imental data from Jacquin et al. (1990); Bot-
tom: DNS data from Morinishi, Nakabayashi,
and Ren (2001). The decay rate is observed to
be a decreasing function of the rotation rate
�. At a very high rotation rate, DNS results
perfectly match the decay recovered consid-
ering the linear Stokes equations, showing
that the nonlinear mechanisms are totally in-
hibited. The rotation rate � is not expressed
in the same units in the two plots.

correspond to eddies rotating with the same sense as system vorticity. Negative
axial vorticity characterizes anticyclonic eddies in the same conditions.

� If the turbulence is initially anisotropic, the “rapid” effects of rotation (i.e., the lin-
ear dynamics described by the RDT approach) conserve a part of the anisotropy
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Figure 4.2. Time evolution of the turbulence inte-
gral length scales in initially isotropic turbulence
submitted to solid-body rotation. Experimental
data from Jacquin et al. (1990).
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Figure 4.3. ONERA’s experimental setup for initialy decaying isotropic turbulence submitted to
solid-body rotation. (Courtesy of O. Leuchter).

[called directional anisotropy b(e)
i j ] and damp the other part [called polarization

anisotropy b(z)
i j ], resulting in a spectacular change of the anisotropy bi j of the RST

(Cambon, Jacquin, and Lubrano, 1992; Kassinos, Reynolds, and Rogers, 2001).

These effects, which are not at all taken into account by current one-point
second-order closure models (from K − ε to u′

i u
′
j − ε models), have motivated

new single-point modeling approaches by Cambon, Jacquin, and Lubrano (1992)
and Mansour, Cambon, and Speziale (1991), and to a lesser extent by Kassinos,
Reynolds, and Rogers (2001) for linear (or “rapid”) effects only. It is worth notic-
ing that the modification of the dynamics by the rotation ultimately comes from the
presence of inertial waves (Greenspan, 1968). Inertial waves have an anisotropic
dispersion law. They are capable of changing the initial anisotropy of the turbulent
flow and also can affect the nonlinear dynamics. This explains the relevance of spec-
tral theory to study HAT with mean-flow rotation.

4.1.1 Brief Review of Experiments, More or Less in the Configuration
of Homogeneous Turbulence

A first class of experiments consists of decaying grid turbulence in a wind tunnel,
in which a rotation generator creates a constant angular velocity in the streamwise
direction. In the experiment by Traugott (1958), the rotation was imposed on the
annular region between two coaxial rotating disks. This study is mentioned for our
record, but very little information can be obtained because of the nonuniformity of
the mean flow and the very short length of the duct. The experiment by Wigeland
and Nagib (1978) introduced a much better rotation generator. In this setup, solid-
body rotation was enforced thanks to a cylindrical rotating honeycomb, with the grid
just behind and attached to the rotating cylinder. This rotating device was success-
fully used by Jacquin et al. (1990) (see Fig. 4.3), but in a much larger wind tunnel,
fulfilling homogeneity with an excellent accuracy and yielding reliable results about
kinetic-energy decay, Reynolds stress components, integral length scales, and 1D
energy spectra. The results can be analyzed as in a conventional grid-generated tur-
bulence experiment, the streamwise spatial coordinate playing the role of elapsed
time. A large range of “initial” (in the first transverse section chosen closely down-
stream of the grid) Rossby numbers was covered. The only drawback to this
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experiment was the initially moderate value, and monotonic decrease, of the
Reynolds number, as is usual in grid-generated turbulence.

A second class of experiments was carried out in a rotating tank, a diffusive
turbulence being created by an oscillating grid (Hopfinger, Browand, and Gagne,
1982; Dickinson and Long, 1984) near the bottom of the tank. The turbulence is es-
sentially inhomogeneous in the vertical axial direction and statistically steady. The
steady state is different in different horizontal sections, moving away from the grid.
In the experiment by Ibbetson and Tritton (1975), an unsteady turbulence was cre-
ated by the initial motion of perforated plates in a rotating torical annulus with
square sections.

Another interesting experiment was carried out by McEwan (1976). A radially
uniform, small-scale mixing pattern without advection in the radial plane was ob-
tained in a rotating transparent cylinder by injecting and pumping fluid from the
perforated plane-ended bottom. Polystyrene beads were suspended in the fluid and
illuminated by a stroboscope to visualize the flow motion. Without rotation, the jets
caused randomly shaped wiggly particle paths, whereas intense vortices, always cy-
clonic, were observed in the presence of rotation.

The development of particle image velocimetry (PIV) measurements was bene-
ficial to these types of experiments, with renewed interest in the spatial structure of
the rotating flow. The recent experiment by Baroud et al. (2003) used a very special
forcing by jets in an annulus in the rotating tank. Despite specific nonhomogeneity
and anisotropy generated by the forcing process, in a way difficult to control and to
compare with the sole effect of rotation, useful conclusions about scaling laws were
drawn from the experimental results. Some of these results were consistent with
those of the experiment by Simand (2002) dealing with turbulence near the core of a
strong vortex; they will be discussed at the end of this chapter (see Subsection 4.7.5).
Another experiment by Praud, Sommeria, and Fincham (2006), carried out in the
Coriolis platform in Grenoble, deserves attention. It will be discussed in Chapter 8,
as it combined solid-body rotation and vertical stable stratification. In addition, the
use of a rake instead of a grid yielded preferential forcing of the horizontal motion.

The recent experiment by Morize, Moisy, and Rabaud (2005) has something to
do with the experiment by Ibbetson and Tritton (1975), with the grid being moved
in only the first phase, before the free decay is studied in a rotating tank. This ex-
periment aimed to reproduce initially homogeneous isotropic turbulence suddenly
set into solid-body rotation, but at a higher Reynolds number than in Jacquin’s ex-
periment, and using modern PIV anemometry. Nonhomogeneity and anisotropic
forcing are prevented, as far as possible, by moving the grid, only in the phase of
generation of initial turbulence, in the whole vertical extent of the tank. Another
experimental study by Staplehurst, Davidson, and Dalziel (2008) is in progress, and
appears to fulfill even better homogeneous conditions than the latter one, especially
in removing some mean-flow spurious components.

Detailed results of these experiments are not discussed in this section. Results
dealing with quasi-homogeneous turbulence are emphasized and discussed through-
out this chapter; inhomogeneous effects are briefly considered in the last section.
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4.2 Governing Equations

4.2.1 Generals

The problem of turbulence subjected to solid-body rotation can be directly related
to the case of turbulence in the presence of a mean flow with space-uniform gra-
dients, provided a purely antisymmetric mean-velocity-gradient matrix is chosen,
i.e., Ai j = 	ik j�k , where � is the angular velocity, in agreement with Eq. (4.1). But
it is simpler to work with a coordinate system and velocity vectors defined in the
steadily rotating frame. In this non-Galilean frame, rotation of the frame only in-
troduces inertial forces, namely centrifugal and Coriolis forces. Because the former
can be incorporated into the pressure term, only the latter has to be explicitly taken
into account when the Navier–Stokes equations are written in the rotating frame:

∂u
∂t

+ 2� × u + ∇ p = �∇2u − u · ∇u. (4.2)

As usual in incompressible fluid dynamics, the pressure term is completely de-
termined by the solenoidal condition ∇ · u = 0. Taking the divergence and the curl
of these equations yields

∇2 p − 2� · � = −∂u j

∂xi

∂ui

∂x j
(4.3)

and
∂�i

∂t
− 2�l

∂ui

∂xl
= �l

∂ui

∂xl
+ �∇2�i . (4.4)

In all the equations just given, nonlinear and viscous terms are gathered on the
right-hand side.

4.2.2 Important Nondimensional Numbers. Particular Regimes

By use of a reference velocity scale U and a reference length scale L , so that ui =
ũiU , xi = x̃i L , ∇ = ∇̃ 1

L , Eq. (4.2) becomes

∂ũ
∂ t̃

+ 1
Ro

n × ũ − 1
Re

∇̃2ũ + L

U 2
∇ p = −ũ · ∇̃ũ, (4.5)

in which only nondimensional quantities appear (except in the pressure term, which
is subsequently further discussed). The unit vector n is chosen so that � = n�. In
addition to the Reynolds number Re, the Rossby number,

Ro = U

2�L
, (4.6)

is displayed. In the latter equation, the time scale was taken equal to L/U . Another
possibility is to choose 1/2� as the time scale, leading to t = 2�t̃ ,∗ and

∂ũ
∂ t̃

+ n × ũ − Ro

Re
∇̃2ũ + 1

2�U
∇ p = −Ro ũ · ∇̃ũ, (4.7)

∗ Possible slightly different scalings are t = t̃ �
2� and t = t̃ 2�

2� .
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so that the Rossby number affects only the nonlinear term. The term Ro/Re is the
inverse of the Ekman number. The linear inviscid limit is recovered by discarding
the right-hand-side, assuming a very low Rossby number and a very high Ekman
number. The pressure term is not so easy to treat. Following Eq. (4.3), it must be
split into a linear part and a nonlinear part that scale as 1

Ro U 2/L and U 2/L , respec-
tively.

Applying the same scaling to Eq. (4.4) yields

∂�̃i

∂ t̃
− 1

Ro
nl

∂ ũi

∂ x̃l
= �̃l

∂ ũi

∂ x̃l
+ 1

Re
∇̃2�̃i (4.8)

in the first case, and

∂�̃i

∂ t̃
− nl

∂ ũi

∂ x̃l
= Ro�̃l

∂ ũi

∂ x̃l
+ Ro

Re
∇̃2�̃i (4.9)

in the second case. The Proudman theorem is conventionally derived from Eq. (4.8),
in the limit of zero-Rossby number, so that

n j
∂ ũi

∂ x̃ j
= 0 (4.10)

characterizes a 2D state, in the sense that the dependency of velocity on the ax-
ial coordinate x‖ = x · n vanishes at a high rotation rate. Accordingly, the velocity
equation reduces to the geostrophic balance in the same conditions, or

∇̃ p̃ = n × ũ. (4.11)

On the other hand, if �−1 is chosen as the time scale, the zero-Rossby limit leads to
only the linear regime, i.e.,

∂ũ
∂ t̃

+ n × ũ + ∇̃ p̃ = 0, (4.12)

∇̃2 p̃ − n · �̃ = 0, (4.13)
∂�̃i

∂ t̃
− nl

∂ ũi

∂ x̃l
= 0. (4.14)

It is important to note that the conditions for having a complete two-
dimensionalization are very stringent, as both linear and steady limits must be
reached at the same time. Taylor columns were found in beautiful historical ex-
periments of rotating laminar flows (Taylor, 1921), for instance when Taylor slowly
pushed a coin in the bottom of his rotating tank. In a rapidly rotating turbulent flow,
it is clear that these conditions are not fulfilled at small but nonzero-Rossby num-
bers because nonlinear effects, even weak at a given time, can accumulate over a
long time and induce a modified cascade, which is not necessarily the conventional
2D cascade. Anyway, the transition from a 3D to a 2D structure is essentially an
unsteady – transition requires evolution! – and nonlinear process, as will be subse-
quently seen. The linear regime consists of unsteady wave motion, which becomes
steady (zero dispersion frequency) in only the 2D limit. Consequently, the Taylor–
Proudman theorem (Proudman, 1916; Taylor, 1921) will be used in a restricted sense
here: The steady mode of the motion is the 2D mode in the linear regime of rapidly
rotating flow. Nondimensional equations will no longer be used in this chapter, but
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the choice of relevant scales, L , U , and �, remains an important issue, allowing us
to define different, e.g., macro and micro, Rossby and Reynolds numbers.

4.3 Advanced Analysis of Energy Transfer by DNS

The striking decrease in the dissipation rate of kinetic energy has been intensively
investigated by use of DNS. The main findings are subsequently summarized before
being analyzed in the rest of this chapter through linear and nonlinear theories.

The main observations are as follows:

� Rotation induces a deep modification of the kinetic-energy transfer function T (k).
Spherically averaged profiles of T (k) are displayed in Fig. 4.4. Both its shape and
amplitude are drastically modified, resulting in a dramatic reduction of the kinetic-
energy cascade.

� Both the forward and the reverse energy cascades are affected by rotation. They
both vanish, as illustrated in Fig. 4.5.

� This modification is due to the so-called phase-scrambling phenomenon,† which
originates in the fact that the transfer function T (k) is generated by triadic con-
tributions that are differentially affected by oscillations, depending on the angle �
between the wave vector k and the rotation vector �, not to mention similar ef-
fects on the other vectors of each triad. This is illustrated in Fig. 4.6, which displays
T (k, cos �) for different values of �. The usual dynamical picture is recovered in
the case � = 0, whereas in the cases � �= 0, regions with negative–positive values
of T (k) are more and more mixed, leading to a weakening of the kinetic-energy
cascade.

� The effect of rotation is visible for a certain range of Rossby numbers only. A
very small rotation rate yields a negligible influence of rotation, whereas very
high rotation rates lead to an almost complete inhibition of the nonlinear kinetic-
energy cascade, resulting in a “frozen” field submitted to linear viscous effects.
Partial two-dimensionalization and two-componentalization, resulting from fully
nonlinear dynamics, are illustrated in Fig. 4.7, which presents the evolution of

† This effect could be perhaps better denoted as phase mixing, in connection with the very angle-
dependent dispersion relation of inertial waves, as we will discuss on the grounds of basic equations.
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directional anisotropy component b(e)
33 and the polarization anisotropy coefficient

b(z)
33 as functions of the Rossby number. The meaning and the behavior of these

descriptors will be rediscussed at length throughout this chapter.

Of course, present DNS results are limited in terms of Reynolds numbers and
elapsed time, and a very long evolution time �t is required for capturing nonlinear
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effects at very low Rossby numbers. This explains some of the discrepancies ob-
served among DNS, LES, and statistical theory, as discussed later on. Fortunately,
a consistent core of agreed statements arises from this threefold approach, not to
mention experimental data.

4.4 Balance of RST Equations. A Case Without “Production.”
New Tensorial Modeling

The Reynolds stress equations for HAT submitted to solid-body rotation defined by
Eq. (4.1) are

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk
= −�


−2u′

1u′
2 u′

1u′
1 − u′

2u′
2 −u′

2u′
3

u′
1u′

1 − u′
2u′

2 2u′
1u′

2 u′
1u′

3

−u′
2u′

3 u′
1u′

3 0

+
i j − ε i j . (4.15)

A careful examination of Eq. (4.15) reveals that the production term is iden-
tically zero if the turbulent field is isotropic at the initial time. Therefore explicit
coupling between the mean flow and the turbulent field is not responsible for the
triggering of the departure from isotropy; pressure effects are responsible for this.

Considering only the most relevant Reynolds stress components (this is more
general than specifying initial isotropy or initial anisotropy), so that u′

�u′
3 = u′

3u′
� =

0,� = 1, 2, system (4.15) simplifies as

du′
1u′

1

dt
= +2�u′

1u′
2 +
11 −ε 11

du′
2u′

2

dt
= −2�u′

1u′
2 +
22 −ε 22

du′
3u′

3

dt
= 
33 −ε 33

du′
1u′

2

dt
= �(u′

2u′
2 − u′

1u′
1) +
12 −ε 12

. (4.16)
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Figure 4.8. Couplings between the different nonvanishing Reynolds stresses in the pure rotation
case. Arrows indicate the production process, their color being related to the physical quantity at
play (mean strain, pressure, viscosity).

The different couplings are illustrated in Fig. 4.8.
These equations can be rearranged to diagonalize the production term, intro-

ducing two deviatoric components (Cambon, Jacquin, and Lubrano, 1992):

A = u′
3u′

3 − 1
2

(u′
1u′

1 + u′
2u′

2); B = 1
2

(u′
1 + ıu′2)2.

The preceding system of equations results in

dK
dt

= −ε

d A

dt
= 


(r)
A +


(s)
A

d B

dt
= 4ı�B +


(r)
B +


(s)
B

, (4.17)

in which pressure–strain-rate and dissipation-rate components are derived in a triv-
ial way, following the rules for deriving K, A, B from the Reynolds stress origi-
nal components. For convenience, pressure–strain-rate contributions are split into
a “rapid” linear [superscript (r)] and a “slow” nonlinear [superscript (s)] contribu-
tion. Possible deviatoric contributions from the dissipation tensor are included in
the “slow” term.

Almost all the principles for single-point modeling are questioned in the case of
rotating turbulence. Looking at the turbulent kinetic energy, the exact K − ε equa-
tions do not include any explicit additional term with respect to the isotropic non-
rotating case, because the Coriolis force produces no work [as evidenced from the
first equation of (4.17)]. The only way to take into account alteration of the kinetic-
energy decay is to modify the C	2 constant in the evolution equation for turbulent
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dissipation (3.68). Empirical ways to render this constant sensitive to the Rossby
number (Bardina, Ferziger, and Rogallo, 1985; Aupoix, 1983) are discussed in Cam-
bon, Jacquin, and Lubrano (1992).

A more rational way consists of modeling the imbalance between the produc-
tion (nonlinear gradient self-amplification) and the destruction (dissipation) in the
ε -equation, as reported in Cambon, Mansour, and Godeferd (1997). From the re-
sults of Subsection 3.7.3, the exact equation for the dissipation rate is

d ε
dt

= 2��′
i�

′
j u

′
i, j − 2�2�′

i, j�
′
i, j ,

in rotating and nonrotating homogeneous turbulence, without any explicit contribu-
tion from the Coriolis force. By use of an adequate scaling, the velocity-derivative
skewness Sk is linked to the enstrophy-production term by the following relation:

Sk = 6
√

15
7

��′
i�

′
j u

′
i, j

K
ε 2

Re−1/2,

in which Re is a macro-Reynolds number and the numerical prefactor comes from
the conventional definition of the skewness used by experimentalists in isotropic
turbulence. A second nondimensional parameter was defined by Mansour, Cambon,
and Speziale (1991) to account for the departure of the enstrophy-destruction term
from its conventional evaluation in the nonrotating case:

G = 3
√

15
7

[
2�2�′

i, j�
′
i, j − Cε 2(Re)

ε 2

K

] K
	2

Re−1/2.

A modified ε -equation is then recovered:

d ε
dt

=
[

7

3
√

15
(Sk − G)Re1/2 − Cε 2(Re)

]
ε 2

K , (4.18)

where Sk is the only term that accounts for the triple correlations directly affected by
rotation. The nonrotating case is simply recovered taking Sk = G, whereas a four-
equation model (whose unknowns are K, ε , Sk , and G) was proposed by Mansour,
Cambon, and Speziale (1991) in the rotating case. This model was supported by the
EDQNM model and full DNS in Cambon, Mansour, and Godeferd (1997), with the
following asymptotic model for the velocity-gradient skewness:

Sk = Sk(0)√
1 + 2/Ro2

�

, Ro� = �′

2�
,

where Ro� is the micro-Rossby number and Sk(0) ∼ −0.49 is the asymptotic value
in isotropic turbulence without rotation. An almost perfect collapse onto this curve
was also recovered in the experimental study by Morize, Moisy, and Rabaud (2005).

The accuracy of description, prediction, or both, provided by conventional
single-point models is even worse regarding the anisotropy. In spite of the strong
anisotropy evidenced in two-point (or spectral) descriptions, which is mainly re-
flected by the integral length scales in physical space, the deviatoric part of the RST
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is a very poor indicator. The condition of statistical axisymmetry implies that

bi j = −3
2

binni n j

(
�i j

3
− ni n j

)
, (4.19)

so that a single-component bi j ni n j [b33 in the present case, proportional to A in
Eq. (4.17)] is enough to describe the full anisotropy tensor (and therefore only the
corresponding line in Lumley’s map is needed). A similar relationship is valid for
any trace-free single-point tensor. Restricting our attention to the linear regime,
rapid rotation applied to an initially anisotropic flow yields conservation of di-
rectional anisotropy b(e)

i j and rapid damping of polarization anisotropy b(z)
i j . This

effect is completely missed in any conventional single-point closure model, in
which only bi j is used. The latter effect was called “rotational randomization” by
Kassinos, Reynolds, and Rogers (2001), but can be more physically related to
anisotropic phase mixing induced by dispersive inertial waves (e.g., Cambon,
Jacquin, and Lubrano, 1992; Kaneda and Ishida, 2000). As an illustration, the case
of axisymmetric initial anisotropy is shown in Fig. 4.9.

The rapid change of the relevant anisotropy ratio corresponds to the evolu-
tion from the initial state in which b(e)

33 (0) = − 1
2 b33(0) and bz

33(0) = 3
2 b33(0) (e.g., as

in the flow generated by an axisymmetric duct) to a final state in which b33 = b(e)
33 (0)

[= − 1
2 b33(0)], because of the conservation of b(e)

33 and rapid (about a quarter of a rev-

olution) damping of b(z)
33 . In the same “rapid” limit, no Reynolds stress model, even

the most sophisticated one, yields an evolution of anisotropy. As a matter of fact, the
initial anisotropy is conserved, because there is no production and any conventional
closure of the rapid pressure–strain tensor as a function of the sole Reynolds stress
tensor yields zero contribution in rotating axisymmetric homogeneous turbulence.

For instance, in the axisymmetric case, only the first two equations of (4.17)
are relevant, and all classical closure models yield 


(r)
A = 0, with 


(s)
A = 0, in the

rapid inviscid limit. Some improvements were independently proposed by Cambon,
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Jacquin, and Lubrano (1992) and Kassinos, Reynolds, and Rogers (2001), using an
implicit splitting in terms of directional and polarization anisotropy. Finally, the role
conventionally attributed in Reynolds stress models to “rapid” and “slow” pressure–
strain tensors is completely wrong in rotating turbulence: In the true rotating homo-
geneous turbulence case, the rapid (linear) part contributes to a partial return to
isotropy [i.e., a damping of b(z)

33 ], whereas the slow (nonlinear) part must generate a
mild anisotropy associated with the component b33 [or equivalently A in Eq. (4.17)]
indirectly connected to the transition from a 3D to a 2D structure.

4.5 Inertial Waves. Linear Regime

4.5.1 Analysis of Deterministic Solutions

Linearized inviscid equations, written in a nondimensional form at the end of Sec-
tion 4.2, are revisited here for velocity, pressure, and vorticity. Equations are rewrit-
ten in dimensional form for physical discussions:

∂u
∂t

+ 2� × u + ∇ p = 0, ∇ · u = 0, (4.20)

∇2 p − 2�n · � = 0, (4.21)

∂�i

∂t
− 2�

∂ui

∂x‖
= 0. (4.22)

Because the Coriolis force is not divergence free, the pressure term has a non-
trivial contribution to enforce the incompressibility constraint. A closed subsystem
of equations can be used for u‖ = u · n, p and �‖ = � · n. When the axial compo-
nents of velocity and vorticity are eliminated in the latter subsystem, the following
closed equation is found for p:

∂2

∂t2

(∇2 p
)+ 4�2∇2

‖ p = 0, (4.23)

with ∇2
‖ = ∂2

∂x2
‖
. Even if the primitive Poisson equation ∇2 p = f is an elliptic one,

Eq. (4.23) admits propagating-wave solutions. Surprising properties of these iner-
tial waves are illustrated by the St. Andrew’s cross-shaped structures observed in
experiments by McEwan (1970) and Mowbray and Rarity (1967) (see Fig. 4.10). If
local harmonic forcing with frequency �0 takes place in a tank rotating at angular
velocity �, simplified solutions can be sought by use of a normal-mode decomposi-
tion. Considering normal modes of the form p = eı�0tP , the spatial part is governed
by

[�2
0 ∇2

⊥ + (�2
0 − 4�2)∇2

‖ ]P = 0,

which shows the possible transition from an elliptic to a hyperbolic problem when �0

crosses the threshold 2� by decreasing values. This transition explains the sudden
appearance of the cross-shaped structures for �0 � 2�. In spite of the rather com-
plex geometry, one can assume, in addition, that the disturbances are plane waves,
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Figure 4.10. Saint Andrew’s cross-shaped structures in a rotating flows: (a) sketch of the experi-
ments by McEwan (1970) and Mowbray and Rarity (1967); (b) results from DNS in a plane chan-
nel, rotating around the vertical axis. From top to bottom, 2�/�0 = 1.10, 1.33, 2. Reproduced from
(Godeferd and Lollini, 1999) with permission of CUP.
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i.e., p ∼ eı(k · x−�k t). When this solution is injected into Eq. (4.23), the classical dis-
persion law of inertial waves is recovered:

�k = ±2�
k‖
k

= ±2� cos �. (4.24)

The phase and group velocity of these inertial waves, denoted as Cp(k) and
Cg(k), respectively, are given by

Cp(k) = 2
� cos �

k2
k = �k

k2
k, (4.25)

Cg(k) = (∇�k) · k = 2
k3

k × (� × k) = 2
� sin �

k
e(2), (4.26)

where e(2) is the vector of the local Craya–Herring frame in Fourier space defined
in Eq. (2.67).

If one interprets the rays emanating from the small forcing zone in the figure
as traces of isophase surfaces, so that the wave vector is normal to them, Eq. (4.24)
with �k = �0 gives the angle � (defined as the angle between k and the rotation axis),
in excellent agreement with the directions of the rays.

It is important to note that if pressure effects are omitted (leading to the defini-
tion of a pressure-released problem) only the horizontal part of the flow is affected
by the circular periodic (with constant frequency 2�) motion, but propagating waves
cannot occur. Hence fluctuating pressure (through its linkage with the incompress-
ibility constraint) is responsible both for anisotropic dispersivity and horizontal–
vertical coupling.

Going back to velocity, an equation similar to (4.23) can be found for both
poloidal and toroidal potentials defined in Eq. (2.65). Without forcing and boundary
conditions, the specific initial-value linear problem takes the form

∂ ûi

∂t
+ 2�Pin	n3 j û j = 0. (4.27)

This equation is simpler than the generic one for the RDT problem addressed
in the next chapter, because x and u in physical space are projected onto the rotat-
ing frame, so that there is no advection by the mean flow, and therefore no time
shift in the wave vector.‡ Given the incompressibility constraint û · k = 0, it is eas-
ier to project the equation onto the local frame (e(1), e(2)) normal to k defined by
Eq. (2.67). The solution expresses that the initial Fourier component û(k, 0) is ro-
tated about the axis k by an angle 2�tk‖/k = �k t . The linear solution for the two-
component velocity vector u(�),� = 1, 2, is[

u(1)(k, t)
u(2)(k, t)

]
=
[

cos�k(t − t ′) − sin�k(t − t ′)
sin�k(t − t ′) cos�k(t − t ′)

][
u(1)(k, t ′)
u(2)(k, t ′)

]
. (4.28)

‡ Of course, a strictly equivalent problem is defined by the equations of Section 2.1 written in a
Galilean frame of reference, for a pure antisymmetric gradient matrix Ai j = �	i3 j , with k(�t) fol-
lowing the solid-body rotating motion.
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The corresponding linear solution in the fixed frame of reference for the initial-
value problem is

ûi (k, t) = Gi j (k, t, t ′)û j (k, t ′), (4.29)

in which the Green’s function is expressed as a function of the two complex eigen-
vectors N = e(2) − ıe(1) and N∗ = N(−k) = e(2) + ıe(1) in the plane normal to k:

Gi j (k, t, t ′) =
∑
s=±1

Ni (sk)N j (−sk)eıs�k (t−t ′). (4.30)

The diagonal decomposition is particularly useful in the context of pure rota-
tion, because N and N∗ more generally generate the eigenmodes of the curl opera-
tor and directly appear in the (e, Z , h) decomposition [see Eq. (2.93)].

The main features of the inertial waves are subsequently summarized. An iner-
tial wave is

1. a plane wave that propagates along k,
2. a transverse wave, because û(k, t) ⊥ k,
3. a dissipative wave. The damping factor associated with û(k, t) is equal to e−�k2t ,

as deduced from a trivial extension of the inviscid linear analysis previously
discussed.

Complete linear solutions are often referred to as RDT solutions. Even if the
previously mentioned Green’s function is a particular case of the ones defined in
the general RDT theory, the terminology RDT is misleading in the case of rotating
turbulence. First, there is no space distortion: Even in the Galilean frame of refer-
ence, strictly circular characteristic lines (i.e., mean trajectories) are found in physi-
cal space. This is easily seen by writing the equation for these lines: xi = Qi j (�t)X j .
A similar result is obtained in spectral space, because ki = Qi j (�t)K j , where Q,
which is equal to F in Eq. (4.1), is an orthogonal matrix. Therefore the transfor-
mation has isometric properties. Second, the linear solution can be valid for a very
long time, because the appearance of a significant nonlinear cascade is delayed with
respect to the nonrotating case. The occurrence of phase mixing that is due to in-
teractions between dispersive inertial waves is the best explanation for this deple-
tion of nonlinearity (recall that nonlinear effects do vanish in some DNS results,
but keep in mind limitations in terms of Reynolds number and in terms of elapsed
time �t).

The linear regime of inertial waves has interesting properties, which can be dis-
cussed independently of any statistical treatment:

� The dispersion frequency is modulated by the angle-dependent term cos �. This
modulation reflects the role of fluctuating pressure in connection with k · û = 0,
with a variation of �k from 0 (wave plane normal to �) to 2� (wave vector par-
allel to �). This wide range of dispersion frequencies allows for parametric res-
onances, either for linear processes (as for elliptical-flow instability with weak
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additional strain discussed in Chapter 8) or for weakly nonlinear interactions (e.g.,
the wave-turbulence approximation, discussed in Section 4.6).

� The zero frequency is found for the wave plane normal to �. This illustrates the
fact that the sole steady mode (i.e., zero-frequency mode) is the 2D mode (k‖ = 0
corresponds to ∂/∂x‖ = 0 in physical space), in agreement with (our restricted use
of) the Taylor–Proudman theorem.

� The fact that the dispersion frequency depends on the orientation but not on the
modulus of the wave vector is a very particular situation, encountered in other
cases of purely transverse pressure and vorticity waves, like the internal gravity
waves addressed in Chapter 7. As a consequence, phase velocity and group ve-
locity are orthogonal to each other. In the same way, the group velocity is found
maximal and in the axial direction, when the phase velocity is near zero, close to
the wave plane normal to �.

4.5.2 Analysis of Statistical Moments. Phase Mixing
and Low-Dimensional Manifolds

Linear equations can be used to compute various statistical moments of the solution.
For instance, the linear solution for the second-order spectral-tensor equation is

e(k, t) = e(k, t0), h(k, t) = h(k, t0), Z(k, t) = e4ı�k (t−t0) Z(k, 0). (4.31)

As a first consequence, an initially anisotropic flow is altered, with b(e)
i j and b(z)

i j

being conserved and damped, respectively, as illustrated in Fig. 4.9. In counterpart,
these equations yield no evolution for isotropic initial data, with Z = h = 0.

The concept of phase mixing can be understood from Eqs. (4.29) and (4.30) in
which the initial data term û(k, t ′) could be replaced with a new slow time-evolving
variable, U(k, 	t, t ′). The impact of the basic Green’s function, for instance in break-
ing 3D isotropy, depends on the order and on the degree of complexity of statistical
moments (purely initial values or slowly evolving ones) to which it is applied.

Throughout this book, manifold means a subspace of the spatial configuration
space. The configuration space is defined in 3D Fourier space for mathematical con-
venience. For instance, the 2D manifold (also referred to as the slow manifold be-
cause �k = 0 for modes belonging to this manifold) corresponds to the wave plane
k‖ = 0 embedded in 3D Fourier space (all k). The manifold of resonant triads repre-
sents the subspace defined by (±�k ± �p ± �q = 0, k + p + q = 0), which is embed-
ded in the space of all triads (k + p + q = 0) in 6D (all k, p) Fourier space.

4.5.2.1 Single-Time Second-Order Statistics

When single-time second-order statistics are examined, isotropy is essentially con-
served in the linear limit, as time dependency can cancel out by multiplying eı�k t

by its complex conjugate. This result is often considered as too general, saying that
phase information is lost in homogeneous turbulence (Davidson, Stapelhurst, and
Dalziel, 2006).
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A refined analysis can be derived from Eq. (4.31). Both kinetic energy and di-
rectional anisotropy b(e)

i j are conserved in the linear inviscid limit, whereas the po-
larization anisotropy, given by

2K(0)b(z)
i j (t) =

∫∫∫

 [Z(k, x, 0)e4ı�xt Ni N j

]
d3k with x = cos �, (4.32)

is essentially damped. This damping is a general effect obtained by summing up
terms affected by different oscillations, here from 0 (x = 0) to 2� (x = 1). If initial
data are axisymmetric with mirror symmetry, for instance, the relevant integral that
illustrates the damping of b(z)

i j is

I (k,�t) =
∫ 1

0
C(k, x) cos(4�xt)dx,

which always tends to zero as the nondimensional time �t becomes large {C(k, x) is
taken equal to (1 − x2)
[Z(k, x, 0)] in Eq. (4.32) for i = j = 3}. The only exception
is found when C(x) has a nonintegrable singularity: A simple instance is given by
2D-2C initial data such that Z(k, 0) = −[E(k)/(2�k)]�(kx). It is clear from our very
simple example that the phase mixing, induced by the x-weighting term in the in-
tegrand by means of the frequency 4�x , is responsible for damping, whereas x = 0
may characterize a low-dimensional manifold that escapes the damping effect if it is
singular.

Unexpected behavior of the RST results from the selective damping of the ini-
tial polarization anisotropy b(z)

i j , as shown in Fig. 4.9.
Useful dynamical properties, however, are recovered for two-time (t, t ′) second-

order statistics, with interesting applications to Lagrangian diffusivity as discussed
in Kaneda and Ishida (2000) and Cambon et al. (2004), as time dependency cannot
cancel out when multiplying e±2ı�xt by e±2ı�xt ′

. These applications are beyond the
scope of the present book.

4.5.2.2 Single-Time Third-Order Statistics

In this case the linear operator generates a product of three phase terms, e±2ı(k‖/k)�t ,
e±2ı(p‖/p)�t , and e±2ı(q‖/q)�t , that are related to the triad (k, p, q).

Triple-velocity correlations that govern the nonlinear energy and anisotropy
transfers in related Lin-type equations are considered in the next subsection: The
effect of phase mixing, considered linear if applied to triple correlations, is inter-
preted as nonlinear by means of the impact of transfer on energy distribution.

Triple correlations undergoing phase mixing can also be studied per se, as the
triple-vorticity correlations revisited in Section 4.8. Let us mention that, in any cu-
bic correlation, which is generated from triadic components 〈ûm(q, t)ûn(k, t)û(p, t)〉
with k + p + q = 0, phase mixing is induced by the term

exp
[

ı2�t

(
s

k‖
k

+ s ′ p‖
p

+ s ′′ q‖
q

)]
,

which results from the previously mentioned product of three phase terms, the zero
value of its phase corresponding to the manifold of resonant triads.
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4.6 Nonlinear Theory and Modeling: Wave Turbulence and EDQNM

4.6.1 Full Exact Nonlinear Equations. Wave Turbulence

Simplified equations projected on the local basis of eigenmodes N and N∗ can be
used for discussing both linear and nonlinear operators, as well as for develop-
ing closure theories for rotating turbulence. The starting point is the same as in
the previous chapter. Using the associated amplitudes �s, s = ±1, which are defined
by

û(k, t) = �+(k, t)N(k) + �−(k, t)N(−k), (4.33)

one obtains the following evolution equation: ∂

∂t
+ �k2 − ıs

(
2�

k‖
k

)
︸ ︷︷ ︸

�k

 �s =
∑

s ′,s ′′=±1

∫
k+p+q=0

Mss ′s ′′(k, p)�∗
s ′(p, t)�∗

s ′′(q, t)d3p,

(4.34)

in which a diagonal form of the linear operator appears and the nonlinear term
Mss ′s ′′(k, p) is given by Eqs. (3.99) and (3.100). The linear inviscid solution is

�s(k, t) = exp
(

2ıs�t
k‖
k

)
�s(k, 0), s = ±1.

Replacing§ the initial condition with a new function as such that

�s(k, t) = exp
(

2ıs�t
k‖
k

)
as(k, t), s = ±1 (4.35)

one obtains an equation for as in which linear operators are absorbed in the nonlin-
ear one as integrating factors:

ȧs =
∑

s ′,s ′′=±1

∫
k+p+q=0

exp
[

2ı�

(
s

k‖
k

+ s ′ p‖
p

+ s ′′ q‖
q

)
t

]
× Mss ′s ′′(k, p)a∗

s ′(p, t)a∗
s ′′(q, t)d3p. (4.36)

Note that the quantities as can be interpreted as amplitudes of slow variables,
because the contribution of rotation has been removed. This problem can be an-
alyzed with a multiple (two) time-scale technique, by setting as = as(k, 	t), where
	 is a (really) small parameter for asymptotic expansion that can be related to a
Rossby number. Such a refined analysis is not needed here, and we will just retain
from Eq. (4.36) the importance of resonant triads. These triads are defined by the
relation

s�k + s ′�p + s ′′�q = 0 (4.37)

§ This change of variables is referred to as the Poincaré transform.
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Figure 4.11. Visualization of resonant surfaces of
inertial waves, given by Eq. (4.38), for a given ori-
entation of k. The locus of p is seen in the plane
p2 = 0, for �k = 1.1. Complex loops appear for
�/3 � �k ��/2. Courtesy of F. S. Godeferd.

and correspond to a zero value of the phase term on the right-hand side of Eq. (4.36),
leading to

s
k‖
k

+ s ′ p‖
p

+ s ′′ q‖
q

= 0 with k + p + q = 0. (4.38)

These resonant or quasi-resonant triads are found to dominate the nonlinear
slow motion, because the effect of the phase term on the left-hand side of Eq. (4.36)
is a severe damping of the nonlinearity by phase mixing. The complexity of the res-
onant surfaces is illustrated by Fig. 4.11. The preceding resonance condition can be
complemented by projecting the general triad condition on the plane normal to the
rotation axis, yielding:

k‖ + p‖ + q‖ = k cos �k + p cos �p + q cos �q = 0. (4.39)

In that case, why not obtain a simplified model by solving Eq. (4.36) with an inte-
gral restricted to the resonant triads? Because the resonant surfaces are sufficiently
complex to require very accurate interpolation, rendering the resulting computation
efficient for a smooth distribution of the slow amplitudes as in Fourier space only.
Such a smooth distribution cannot represent turbulence, so that one has to resort
to describing naturally smooth quantities like statistical moments instead of the in-
stantaneous solution. It is not forbidden, however, to try to isolate resonant triads
in DNS: Some related studies are discussed in Section 4.7.

A qualitative analysis of resonant triads (Waleffe, 1993) deserves attention be-
fore quantitative issues dealing with statistical moments are addressed. Going back
to the analysis presented in Section 3.5 and introducing the selection rules of reso-
nant triads (4.37) and (4.39), one obtains

cos �k

s ′q − s ′′p
= cos �p

s ′′k − sq
= cos �q

sp − s ′k
. (4.40)

Applying the instability principle of Waleffe introduced in Subsection 3.5.4, but
restricting the analysis to resonant triads, equality (4.40) shows that the transfer of
energy always goes from a less slanted leg of the triad (with respect to the rotation
vector) to a more slanted one. This result comes from the fact that the unstable
mode is also the mode whose pulsation �k has the larger amplitude and opposite
sign with respect to the two other modes of the triad under consideration. Let us
consider the triad (k, p, q) and assume that k is the unstable mode. Then one has
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Figure 4.12. Schematic view of kinetic-energy transfer
according to Waleffe’s instability assumption among res-
onant modes in rotating turbulence.

|�k | � |�p|, |�q |, which leads to | cos �k | � | cos �p|, | cos �q |. Accordingly, a drain of
energy is predicted toward the wave plane orthogonal to �, as illustrated in Fig. 4.12.
Waleffe, however, points out that the rate of energy transfer vanishes exactly when
the wave vector reaches the equatorial orientation characterized by k · � = 0. The
latter wave plane is exactly both the slow and the 2D manifold. Its meaning is very
different in the discrete case and in the continuous case: For instance, extension of
the resonance condition to the exact slow manifold is valid in only the discrete case,
and related issues are further discussed in Subsection 4.7.2.

Wave turbulence is an unavoidable aspect in other domains, such as plasma
physics, with a very large literature that influenced the “Russian School,” although it
also addressed turbulence in classical fluids (Zakharov, L’vov, and Falkovich, 1992).
Applications can be found even in the physics of solids: Random weakly interacting
acoustic waves are considered a gas of phonons in the latter case. In fluid mechan-
ics, the turbulent flow is seen as a sea of random spatiotemporal wave modes, whose
nonlinear interactions can be considered as weak in the limit of a small parame-
ter. The deterministic ingredient is the dispersion law, which gives a straightforward
link of a “rapid” temporal frequency � to the spatial wave vector k. All other vari-
ables of the flow, such as the amplitudes A of the wave modes and/or some phase
terms � in any generic wave mode of motion a exp[ı(k · x − �(k)t + �)], are treated
as random variables. Even k could be considered as random, in some models, rang-
ing from linear [kinematic simulation (Cambon et al., 2004)] to weakly nonlinear
ones (e.g., Monte Carlo methods for solving statistical closures). The possibility of
applying a weakly nonlinear theory relies on a time-scale separation: Amplitudes
a are assumed to slowly evolve in time with respect to the rapid temporal oscilla-
tions induced by �(k)t (� phase terms are removed here, or absorbed in a, such
as aeı� → A). In this sense, wave turbulence is a theory for the evolution of slowly
evolving envelopes that modulate high-frequency oscillations.

Rapidly rotating turbulence is an almost perfect case to apply such a theory:
The inertial wave modes form a complete basis (they are identical to the helical
modes, which are even useful for studying “strong” turbulence); the small parameter
that controls the “weak” nonlinearity is not artificial: This is a Rossby number. It
is important to notice that to bridge between a small Rossby number and a weak
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nonlinearity seems to be trivial and tautological at first glance (this argument is used
in RDT, for instance, without any refined analysis of the nature of nonlinearity);
more important is the fact that the phase mixing induced by rapid oscillations yields
a severe damping of nonlinear interactions, so that nonlinearity concentrates on a
low-dimension manifold. Among all the triads called into play in the absence of
waves, only very few survive in the long-term limit, forming quasi-resonant triads.
Finally, when transferring the EDQNM machinery from velocity (spatial) Fourier
modes to slow amplitudes, in agreement with an exact Poincaré transform (4.35),
the limit of wave turbulence is recovered at vanishing eddy damping, as we will see
in the following subsections.

4.6.2 Second-Order Statistics: Identification of Relevant
Spectral-Transfer Terms

Second-order correlations are entirely generated by the quantities e, Z , and H, or,
equivalently, by 〈a∗

s as ′ 〉, s = ±1, and s ′ = ±1. Without any assumption, second-order
correlations are governed by the following system of equations:(

∂

∂t
+ 2�k2

)
e(k, t) = T (e)(k, t), (4.41)(

∂

∂t
+ +2ı�k + 2�k2

)
Z(k, t) = T (Z)(k, t), (4.42)(

∂

∂t
+ 2�k2

)
H(k, t) = T (h)(k, t), (4.43)

in which the nonlinear terms T (e)(k, t), T (Z)(k, t), and T (h)(k, t) are defined starting
from the transfer tensor Ti j given by Eq. (3.113), as

T (e) = 1
2

Tii , T (z) = 1
2

Ti j N ∗
i N ∗

j , T (h) = 1
2
	i jn

ki

k
Tjn,

in full agreement with e = (1/2)R̂ii , Z = (1/2)R̂i j N ∗
i N ∗

j , and h = (1/2)	i jn(ki/k)R̂i j .
It appears that the Coriolis force does not affect the (linear) left-hand sides,

except for the polarization parameter Z(k, t). Replacing Z with � , where � is such
that

Z(k, t) = e2ı�k t�(k, t), (4.44)

and T (Z)(k, t) with e2ı�k t T � (k, t), only the right-hand-side terms, which are linked to
triple correlations and mediated by nonlinearity, are possibly rotation dependent.
Contributions from triple-velocity correlations are therefore gathered into the gen-
eralized spectral-transfer terms T (e,Z ,h), which derive from Eqs. (4.41)–(4.43). If the
preceding system of equations is initialized with 3D isotropic initial data, i.e., by
setting e(k, 0) = E(k)/(4�k2) and Z = H = 0 at the initial time, then the anisotropy
that should reflect the transition toward the 2D structure can be created by the non-
linear spectral-transfer terms only. This anisotropy consists of axisymmetry without
mirror symmetry, leading to e = e(k, cos � = k‖

k , t) and Z = Z(k, cos � = k‖
k , t), with
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Z = 0 if k is parallel to the vertical axis, in agreement with the symmetries of rotating
Navier–Stokes equations, which ought to be satisfied by the closure theory.

4.6.3 Toward a Rational Closure with an EDQNM Model

A complete anisotropic EDQN model can be built in terms of the Green’s function
G and the spectral tensor R̂, using products of G to solve the linear operators that
appear in the equations for third-order correlations (Cambon, 1982; Cambon and
Scott, 1999). Related technical details are relegated to Chapter 14. On the grounds
of these equations, it is possible to discuss an optimal way to treat the Markovianiza-
tion procedure, i.e., to simplify the time dependency in the integrands that connect
the transfer term to second-order correlations. Closed equations display three kinds
of time-dependent terms:

1. Viscous, or viscous + damping, terms:

exp
(∫ t

t ′
�dt ′′

)
→ V (t, t ′).

2. Terms involving the RDT Green’s function:

G(t, t ′) → exp[±ı�(t − t ′)].

3. Terms from the second-order spectral tensor (through QN assumption):

R̂(t ′) → (e, Z , h)(t ′).

According to the Markovianization procedure in classical EDQNM, we can as-
sume that V (t, t ′) is so rapidly decreasing in terms of time separation � = (t − t ′)
that it is concerned only with the time integral in the closure equations, whereas the
other terms take their instantaneous value at t ′ = t , so that they are replaced with
G(t, t) and R̂(t), respectively. In other words, one considers that the only rapid term
is V (t, t ′), the other terms being assumed to be slow ones. This procedure, referred
to as EDQNM1, is not relevant for rotating turbulence, as the presence of G(t − t ′)
in the closure relationship is responsible for the breakdown of the initial isotropy.
Using EDQNM1 with isotropic initial data, isotropy is maintained, and no effect
of system rotation can appear. A second step, referred to as EDQNM2, consists of
simply “freezing” the (e, Z , h) terms by setting t ′ = t in them, whereas the complete
“readjusted” response function, with both V (t, t ′) and G(t, t ′) terms, is conserved in
the time integrand with its detailed time dependency. An interesting result is that
the time integral of the threefold product of response functions yields a generic clo-
sure relationship of the form

T (e,Z ,h) =
∑

s=±1,s ′=±1,s ′′=±1

∫
Sss ′s ′′

(e, Z , h)
�kpq + ı(s�k + s ′�p + s ′′�q)

d3p. (4.45)

The nonlinear term Sss ′s ′′
(e, Z , h) is given in Chapter 14.
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Figure 4.13. Isolines of kinetic energy e(k, cos �, t) for 512 × 128 × 128 LES computations: (a) at
� = 0 at time t/� = 427; (b) EDQNM2 with � = 0; (c) LES with � = 1 at t/� = 575; and (d)
EDQNM2 calculation with � = 1 at time t/� = 148. The vertical axis bears cos �k (from 0 to 1
upward) and the horizontal one the wavenumber k. Reproduced from Cambon, Mansour, and
Godeferd (1997) with permission of CUP.

Results dealing with the rise of directional anisotropy and the description of the
transition to 3D isotropy to 2D structure obtained using EDQNM2 are illustrated
in Fig. 4.13, in which they are compared with high-resolution 528 × 128 × 128 LES
data. It should be borne in mind that the development of angular dependency in
e(k, cos � = k‖

k , t), which amounts to a concentration of energy toward the 2D slow
manifold (sketched in Fig. 4.16 in the next subsection), results from nonlinear inter-
actions mediated by T (e) in Eqs. (4.41) and (4.45).

The latter procedure can be questioned, in spite of its excellent numerical re-
sults, because it is not completely consistent with the basic rapid–slow decompo-
sition suggested by Eq. (4.35). All the terms in the set (e, Z , h) that generate R̂

should not be considered as slow terms according to the RDT solution (4.31).
Therefore it is necessary to use the decomposition defined by Eq. (4.44), so that
only � appears as a slow variable, in complete agreement with Eq. (4.35). The re-
sulting optimal procedure, referred to as EDQNM3, yields freezing e(t ′) = e(t),
h(t ′) = h(t), �(t ′) = �(t) while keeping the t ′ dependency under the integral for
Z(t ′) = exp(2ı�t ′)� (t), V (t, t ′), and G(t, t ′), as before. This EDQNM3 version dif-
fers only slightly from EDQNM2, but presents decisive advantages. It is completely
consistent with building EDQNM in terms of slow amplitudes using relation (4.35).
Another advantage is that an asymptotic expansion can be obtained in the limit
�kpq � 2�, which exactly coincides with the Eulerian wave-turbulence theory (see
Galtier, 2003). It is proved that realizability is enforced in this limit, whereas it is not
in the EDQNM2 version.

4.6.4 Recovering the Asymptotic Theory of Inertial Wave Turbulence

Ignoring the H and � contributions for the moment, EDQNM3 [or equivalently
EDQNM2 (Cambon and Jacquin, 1989; Cambon, Mansour, and Godeferd, 1997)
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as the two versions differ only in treating Z ] yields the following closure for the Lin
equation:

T (e) =
∑

s ′,s ′′=±1

∫ ∫ ∫
A(k, s ′p, s ′′q)

�kpq + ı(�k + s ′�p + s ′′�q)
e(q) [e(p) − e(k)] d3 p, (4.46)

where the exact forms of A and �kpq are given in Chapter 14.
The denominator reflects the time integration of a product of three ED Green’s

functions derived from Eq. (4.30).
In the limit of a very high rotation rate, or at a vanishing Rossby number,

the asymptotic version of this equation is obtained with the following Riemann–
Lebesgue relationship for distributions (also sometimes referred to as the Plemelj
or Sokhotsky formula):

1
� + ıx

→ ��(x) + P
(

1
x

)
when � → 0,

in which P holds for the principal value in the complete integral expression [such as
(4.46)].

The resulting asymptotic quasi-normal Markovian (AQNM) closure is ex-
pressed as

T (e) =
∑

s ′,s ′′=±1

∫ ∫
Ms′s′′

�
A(k, s ′p, s ′′q)

s ′Cg(p) − s ′′Cg(q)
e(q) [e(p) − e(k)] d2 p, (4.47)

in which Ms ′s ′′ is the family of resonant surfaces and Cg(k) is the group velocity of
inertial waves. The damping factor � no longer appears in the final equation, and
the denominator accounts for the fact that the reduction from a volume to a surface
integral brings in the gradient of resonant surfaces, whence the occurrence of the
group velocity. The reader is referred to Cambon, Rubinstein, and Godeferd (2004)
for a presentation of the full EDQNM3 equations (without H) and to Bellet et al.
(2006) for AQNM equations for e, � , H.

Starting from isotropic initial data, with a narrowband energy spectrum, an in-
ertial zone is constructed that solves the AQNM equation for e(k, �) at a vanishing
Rossby number and infinite Reynolds number, until the inertial range reaches the
maximum wavenumber. At this stage of the computation, the laminar viscosity is
reintroduced,¶ and a self-similar spectrum is obtained. The spherically averaged en-
ergy spectrum E(k) is constructed with a k−3 slope, as shown in Fig. 4.14, but the
prefactor is E(k) ∼ �

t k−3. Axisymmetric shape, with strong directional anisotropy,
is found for the angle-dependent spectrum 4�k2e(k, cos �, t), as shown in Fig. 4.15.
This directional anisotropy, mediated only by nonlinear transfer, is consistent with

¶ Unfortunately, it is not possible to continue the computation at infinite Reynolds number at this
stage, as was done in the isotropic case without rotation in Chapter 3, because the ED is no longer
present in the AQNM equation, and especially because accumulation of spectral energy at kmax
is no longer possible, because of typical oscillations emanating from the largest wave vectors as
numerical instabilities.
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Figure 4.14. Construction of the spherically averaged spectrum in AQNM. The straight line gives
the k−3 slope. Reproduced from Bellet et al. (2006) with permission of CUP.

the sketch displayed in Fig. 4.16, and with all previous theoretical and numerical
studies by Cambon and Jacquin (1989), Waleffe (1993), and Cambon, Mansour, and
Godeferd (1997). That illustrates a transition from a 3D (e equidistributed on spher-
ical shells) to a 2D structure (e concentrated on the horizontal wave plane). Never-
theless, the two-dimensionalization is limited to large k, and is never fully achieved.
The k−3 slope for E results from the averaging of various slopes for 4�k2e, rang-
ing from k−2 (for quasi-horizontal wave vectors) to k−5 (for quasi-vertical wave
vectors). The relevance of this asymptotic result is perhaps marginal, because the
time � needed to obtain the inertial zone built by means of weak wave-turbulence
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Figure 4.15. Asymptotic angular-dependent
spectra from AQNM. Spectral energy
density for different angles, from bottom
to top, �/(�/2) = 1/300 (what we call the
vertical mode), �/(�/2) = 51/300, �/(�/2) =
101/300, �/(�/2) = 151/300, �/(�/2) =
201/300, �/(�/2) = 251/300, and �/(�/2) =
299/300 (the “horizontal” mode). The
straight line gives the k−2 slope. Reproduced
from Bellet et al. (2006) with permission of
CUP.
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Figure 4.16. Top: Schematic view of the net energy spectral transfers in the pure rotation case.
Bottom: Sketch of emerging large-scale coherent structures. Notice that the conical region in which
the energy concentrates remains finite, even if the size of the slow manifold tends to zero at van-
ishing Rossby numbers.

dynamics is very high, as �� ∼ O(Ro−2) at a very small Rossby number Ro. In
this context, it is interesting to note that a similar result was obtained by a high-
resolution (5123) DNS, therefore at moderate Ro, Re, and elapsed time, as shown
in Fig. 4.17.

4.7 Fundamental Issues: Solved and Open Questions

4.7.1 Eventual Two-Dimensionalization or Not

It is clear that the trends toward a 2D structure saturate at very long time, at least
in the continuous case. The anisotropic state, which eventually becomes self-similar,
is consistent with power-law decay for single-point statistics. The turbulent kinetic
energy is observed to decay as K(t) ∼ t−0.86 in AQNM. Full two-dimensionalization
requires very strong conditions of axisymmetric angular distribution for e:

e(k⊥, k‖) = E(k⊥)
2�k⊥

�(k‖), (4.48)
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Figure 4.17. Angular-dependent spectra of
purely rotating turbulence. A comparable
isotropic spectrum of the same quantity is
shown as a black dotted curve. Data taken
from Liechtenstein, Godeferd, and Cambon
(2005).

or equivalent conditions expressed with k =
√

k2
⊥ + k2

‖ and cos � = k‖/k, where � de-
notes the Dirac delta function. An additional condition possibly brings in the polar-
ization anisotropy Z , leading to

Z(k⊥, k‖) = − E(k⊥)
2�k⊥

�(k‖) (4.49)

in order to ensure that the contribution to vertical velocity is identically zero. The
first equation characterizes a 2D state only, whereas both characterize a 2D-2C state
(Cambon, Mansour, and Godeferd, 1997). In contrast, the asymptotic state of weak
inertial turbulence predicted by the AQNM model is consistent with an integrable
singularity at k‖ = 0 for e(k⊥, k‖), and with a zero Z . Near the 2D manifold, the
distribution is consistent with

e(k⊥, k‖) ∼ k−7/2
⊥ k−1/2

‖ , or e(k, cos �) ∼ (cos �)−1/2k−4, (4.50)

as analytically obtained by Galtier (2003). The k−4 law at smallest cos �’s is consis-
tent with the AQNM result (Fig. 4.15) or the k−2 slope after multiplication by k2.

Things can be different in the discrete case, for instance when the velocity field
is chosen to be periodic with a finite wavelength in one, two, or three directions.
On the one hand, some mathematical theorems can predict decoupled dynamics
and eventual dominance of the slow manifold. Such a “nonlinear Proudman theo-
rem” relies on smoothness assumptions about the initial velocity field and empha-
sizes the role of purely 2D particular resonant triads that are sometimes referred to
as catalytic triads. On the other hand, some underresolved DNSs or LESs (for in-
stance DNS with hyperviscosity) discussed in Subsection 4.7.3 seem to predict two-
dimensionalization, in agreement with essentially decoupled dynamics of the slow
manifold, in which the energy is eventually concentrated.
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4.7.2 Meaning of the Slow Manifold

Both the definition and the relative weight of the slow manifold depend on the dis-
cretization in conventional pseudo-spectral DNS and LES. In any case, the underly-
ing assumptions of weak turbulence are no longer valid in the domain k‖/k = O(Ro),
because the time-scale separation between “slow” amplitudes a±1 and “rapid”
phases exp(±2�tk‖/k) no longer holds. In DNS and LES, k‖/k cannot be smaller
than a typical mesh ratio � k/k, so that the apparent thickness of the slow manifold
is fixed independently of the Rossby number, which questions any calculation at too
small a Rossby number.

Even if EDQNM3 and AQNM equations deal with the continuous case, their
numerical resolution needs discretization in Fourier space, but the angular step can
be much smaller than in DNS/LES. The exact limit k‖ = 0 cannot be afforded by
AQNM equations in any case, and the AQNM numerical code is used only until the
smallest nonzero value of this parameter is reached.

The consequence is twofold:

1. The contribution of the neighborhood of k‖ = 0 is singular. But, because this
singularity is integrable, any quantity that involves an integral over the whole
angle-dependent wave space can be accurately computed. Examples of such
quantities are the spherically averaged energy spectrum E(k) and the Reynolds
stress components.

2. The system of AQNM equations has to be complemented in order to take into
account the slow manifold per se. This is needed to evaluate statistical quanti-
ties that involve only the k‖ = 0 wave plane, as the 2D energy components:

u2
3L(3)

33 = 2�2
∫ ∞

0
[e(k⊥, k‖ = 0) + Z(k⊥, k‖ = 0)] k⊥dk⊥ (4.51)

and

u2
1L(3)

11 = u2
2L(3)

22 = �2
∫ ∞

0
[e(k⊥, 0) − Z(k⊥, 0)] k⊥dk⊥. (4.52)

These quantities are very important. They were measured in Jacquin et al.
(1990) and accurately predicted by DNS and EDQNM2 in Cambon, Mansour,
and Godeferd (1997). The strong difference in the evolution of these quanti-
ties suggests that the polarization anisotropy Z = 
Z is important in the exact
slow manifold k‖ = k3 = 0. Generally, e + 
Z and e − 
Z give the spectral en-
ergy of the poloidal and toroidal modes, respectively. In the equatorial wave
plane (k‖ = 0), they contribute to both horizontal and vertical energy. A re-
fined statistical model ought to match AQNM outside the vicinity of the slow
manifold, with Z = 0, and full EDQNM3 in the vicinity of the 2D manifold
(Cambon, Rubinstein, and Godeferd, 2004). An interesting related problem is
that the ED cannot be ignored in the vicinity of the slow manifold, as it is in
classical wave-turbulence theory, so that a fully nonlinear statistical theory is
needed.
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4.7.3 Are Present DNS and LES Useful for Theoretical Prediction?

DNS and LES results have also shown the tendency of rotating turbulence to be-
come anisotropic by spectral transfer toward the horizontal wave plane (Cambon,
Mansour, and Godeferd, 1997; Morinishi, Nakabayashi, and Ren, 2001), not to men-
tion qualitative results dealing with the development of vortices elongated in the
vertical direction (Bartello, Métais, and Lesieur, 1994). Nevertheless, it is difficult
to decide, based on these results, whether the flow becomes 2D in the long time
limit, for several reasons. Spatial periodicity of the flow, which is assumed in nu-
merical models, implies that the size of the periodic box must be sufficiently large
to avoid spurious confinement effects. In particular, the turbulent correlation length
and Cgt must remain small compared with the box size, where Cg is the inertial-
wave group velocity given by Eq. (4.26). The latter condition is very stringent for
long time simulations, as the evolution time scales as Ro−2�−1 at small Rossby
numbers.

Regarding RST anisotropy with directional/polarization splitting, the exact
equation

2K(t)b33(t) =
∫∫∫ (

e − E

4�k2

)
sin2 �d3k︸ ︷︷ ︸

b[e)
33 (t)

+
∫∫∫


 (�e−2ıcos �t
)

sin2 �d3k︸ ︷︷ ︸
b(z)

33 (t)

, (4.53)

along with Eq. (4.41), allows us to discuss some results. Recent DNSs and LESs
(Cambon, Mansour, and Godeferd, 1997; Morinishi, Nakabayashi, and Ren, 2001;
Yang and Domaradzki, 2004) yield results similar to those of AQNM (Bellet et al.,
2006) dealing with the time history of b(e)

33 . A monotonic increase from about 0 (ini-
tial isotropy) to a maximum value is observed. This maximum value is never larger
than 0.08, and therefore remains far below the theoretical 2D limit that is equal to
1/6 [obtained in injecting Eq. (4.48) into Eq. (4.53) (Cambon, Mansour, and Gode-
ferd, 1997)]. In AQNM, the b(z)

33 term remains equal to zero, so that b33 = b(e)
33 . The

vanishing of b(z)
33 seems to be a very general result, also valid in the nonlinear case

if � evolves slowly and has integrable singularity at k‖ = 0. In almost all underre-
solved DNSs (or LESs), a rapid evolution of b(z)

33 with negative value can yield a

strong departure of b33 from b(e)
33 , resulting eventually in a negative value of b33 of

about −0.2. The latter effect (e.g., Bartello, Métais, and Lesieur, 1994), which means
that two-componentalization is much more important than two-dimensionalization,
is probably due to the numerical confinement. This discrepancy yields distinguish-
ing the continuous case from the discrete one. In the continuous unbounded case,
it is clear that Z can have a physically relevant negative value in the slow mani-
fold, allowing a large increase of the ratio u2

1L(3)
11 /u2

3 L(3)
33 , according to Eqs. (4.51)

and (4.52) and Cambon and Jacquin (1989); Jacquin et al. (1990), and Cambon,
Mansour, and Godeferd (1997), but its integral contribution to b(z)

33 must vanish by
phase mixing under the conditions previously mentioned on � in Eq. (4.53). Finally,
Eq. (4.53) illustrates the fact that directional and polarization anisotropies can have
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opposite effects on the RST anisotropy. Using the terminology introduced by Kassi-
nos, Reynolds, and Rogers (2001), one should say that dimensionality [anisotropy
of the dimensionality tensor corresponds to −2b(e)

i j ] and polarization have opposite
effects on componentality (conventionally measured by bi j ).

4.7.4 Is the Pure Linear Theory Relevant?

When the analysis is restricted to single-time second-order statistics in homoge-
neous turbulence, it is clear that anisotropic structuration is possible only through
nonlinear mechanisms. As pointed out by Davidson, Stapelhurst, and Dalziel
(2006), this does not exclude the fact that formation of organized structures can
be mediated by linear mechanisms.

On the one hand, single-time second-order statistics are particular cases, as
phase information is essentially lost when combining eı�k t and its conjugate in the
definition of the second-order spectral tensor R̂, at least looking at its trace. Phase
information is recovered considering more complex correlations, even in the homo-
geneous case. Not to mention two-time second-order statistics with relevant “linear”
(so-called RDT) applications (Kaneda and Ishida, 2000), third-order correlations
are affected by these phase effects. It is because the linear operator has a deep in-
fluence on third-order correlations that the transfer terms T (e,z,h) become rotation
dependent and anisotropic in Eq. (4.41), breaking the initial isotropy.

On the other hand, it is suggested that inertial waves propagating from a blob
of vorticity can generate elongated structures in the pure linear – but nonhomo-
geneous – case. This illustrates the fact that the lowest frequencies are linked to
the fastest group velocity, which is close to the axial direction. In addition, a very
interesting analysis of the angular momentum, with different time scalings depend-
ing on the angle of ray propagation, is performed in Davidson, Stapelhurst, and
Dalziel (2006). It is also suggested that the strong but transient anisotropy of integral
length scales observed in the intermediate range of Rossby numbers by Jacquin et al.
(1990) reflects this linear mechanism. Incidentally, this intermediate range was very
clearly delineated in Jacquin’s experimental study, as subsequently discussed. First,
several parameters were defined to describe the flow dynamics: a macro-Rossby
number RoL = u′

2�L with L = L(3)
33 and u′ =

√
u2

3 (from the observation that the ax-
ial components were the less altered by rotation) and a micro-Rossby number Ro�

choosing the axial Taylor length scale for � with Ro� ∼ �′/(2�). Second, in the free-
decay experiments, both Rossby numbers were initialized with Ro� � RoL � 1, and
then decreased together, so that two transitions were successively observed. The
first one is for Ro� � RoL = 1 and the second one for Ro� = 1 � RoL , respectively.
These two transitions delineate the intermediate range of Rossby numbers, in which
anisotropy was observed to develop. A very clear collapse of quantities combin-
ing Reynolds stresses and integral length scales from Figs. 4.1 and 4.2 was found
in terms of the macro-Rossby number, showing that anisotropy of these quantities
is triggered at a macro-Rossby number close to one. Nevertheless, these features
were well reproduced by pure homogeneous EDQNM-type models and DNS/LES,
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in which RDTs for single-time second-order statistics give no anisotropy at all, if
started from isotropic initial data.

From very large and old experiences with rotating flows, we consider that the
different viewpoints can be reconciled. Instead of opposing linear to nonlinear dy-
namics, or homogeneous to inhomogeneous flows, we prefer to say that linear and
nonlinear processes interact in a subtle way. As also discussed in the last section, it
is more important to specify the order and the nature of the correlations to which
the linear operator is applied. The fact that these correlations do or do not exhibit
quasi-Gaussian properties is perhaps more important than their degree of statistical
inhomogeneity.

4.7.5 Provisional Conclusions About Scaling Laws and Quantified
Values of Key Descriptors

The kinetic energy decays more slowly in homogeneous rotating turbulence, with
an exponent (e.g., −0.86 in AQNM) about one-half of the one observed in the
nonrotating case (Squires et al., 2000; Bellet et al., 2006). This situation seems to
correspond to high-Reynolds-number and very low-Rossby-number limits, so that
different decay laws can be found in DNSs and experiments, such as a purely vis-
cous decay law linked to negligible nonlinearity. On the other hand, a faster decay
can be explained by inhomogeneous effects, dissipation of energy carried by inertial
waves near the Ekman boundary layers (Ibbetson and Tritton, 1975), and more non-
local effects of Ekman pumping on organized eddies (Morize, Moisy, and Rabaud,
2005). Directional anisotropy reaches a value of about b(e)

33 ∼ 0.07–0.08 (Cambon,
Mansour, and Godeferd, 1997; Morinishi, Nakabayashi, and Ren, 2001; Yang and
Domaradzki, 2004; Bellet et al., 2006), whereas polarization anisotropy b(z)

33 remains
zero (Bellet et al., 2006), weak (Cambon, Mansour, and Godeferd, 1997; Morinishi,
Nakabayashi, and Ren, 2001), or reaches a large negative value, so that b33 ∼ −0.2
(DNS and LES with long elapsed time and low resolution).

The spherically averaged energy spectrum is assumed to scale as E(k) ∼√
�ε k−2 (Zhou, 1995), in agreement with an energy transfer scaling as �−1 but com-

pletely ignoring the anisotropy. In the same way, an isotropic scaling of the second-
order structure function in terms of r (and not r2/3 as in the usual Kolmogorov
theory) is invoked by Baroud et al. (2003) and directly connected to a k−2 energy
spectrum. We consider this proposal as not fully consistent, also because the au-
thors claimed that they have quasi-2D dynamics with an inverse energy cascade.
More generally, however, the “anomalous” scaling of the nth-order structure func-
tion as rn/2 seems to be supported by both Baroud et al. (2003) and Simand (2002).
A very clear trend is shown in Fig. 4.18 from the latter author.

A complete scaling of e(k⊥, k‖) for any wave-vector modulus and direction is
possible from the AQNM numerical database (Bellet et al., 2006), or even from
DNS/LES with convenient postprocessing (Cambon, Mansour, and Godeferd, 1997;
Liechtenstein, Godeferd, and Cambon, 2005), but it is not yet available. It may gen-
eralize the scaling law (4.50) given in Galtier (2003).
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Figure 4.18. �q (q) exponents for structure
functions at positions d closer and closer to
the core of an intense vortex (“French wash-
ing machine” with corotative disks at 30 Hz):
d = 4.5 cm, �; d = 3.5 cm, �; d = 2.5 cm, �;
d = 1.5, +; d = 0.5, ◦; K41 model, solid line;
K62 model, dashed curve. (Simand, 2002.)

4.8 Coherent Structures, Description, and Dynamics

Emergence of “cigar-shaped” vortex structures has been observed in several DNS
and LES studies. A recent visualization is shown in Fig. 4.19. At least in DNS ini-
tialized with conventional “almost Gaussian” realizations with random phase terms,
they do not emerge if the nonlinear terms are canceled. This is consistent with
the hypothesis of “nonlinear formation of structures,” supported by the anisotropic
statistical approach of Cambon’s team, but relevant critiscisms by Peter Davidson
must be accounted for. The appearance of these structures depends on the range of
Rossby and Reynolds numbers, and also on the resolution and effective confinement
of the numerical simulation.

Figure 4.19. Isovorticity surfaces from re-
cent high-resolution DNS. Dominant cyclonic
structures are gray. Courtesy of L. Liechten-
stein.
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Figure 4.20. Top: Vortex structures identified
by normalized angular-momentum (NAM)
isovalues (tubes) and horizontal cross section
of vorticity isovalues (noisy spots in the bot-
tom plane). NAM value at point M is obtained
by averaging | MP × u(P) | /(| MP || u(P) |)
over point P in a small domain surround-
ing M. Bottom: Selected pair of cyclonic–
anticyclonic eddy structures, identified by
NAM = 0.7 isosurfaces. Helical lines along
them correspond to instantaneous streamlines
in the close vicinity of isosurfaces. Repro-
duced from Godeferd and Lollini (1999) with
permission of CUP.

A more realistic confinement is present in the DNS by Godeferd and Lollini
(1999) on a plane channel rotating about the vertical direction. In addition to a real-
istic numerical approach to vertical confinement (pseudo-spectral Fourier–Fourier–
Chebyshev code with no-slip boundary conditions), another motivation was to re-
produce the main results of the experiment by Hopfinger, Browand, and Gagne
(1982), briefly introduced in Subsection 4.1.1. The identification of vortices is illus-
trated in Fig. 4.20 (top) using both horizontal sections of isosurfaces (noisy spots
in the bottom plane of the figure) and isovalue surfaces of a normalized angular
momentum, which is defined in the caption. The latter criterion (NAM) was sug-
gested by experimentalist Marc Michard (Lyon) in PIV for obtaining smooth isoval-
ues. Asymmetry in terms of cyclones–anticyclones is mainly induced by the Ekman
pumping near the solid boundaries, yielding helical trajectories. This is illustrated
in Fig. 4.20 (bottom), in which a cyclone–anticyclone pair is isolated. Even if the
Ekman pumping generates a three-component motion, the presence of the hori-
zontal walls and the presence of the forcing in the horizontal plane between them
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are essential for enforcing coherent vortices. Nevertheless, and in contrast with the
experimental results, no significant asymmetry between cyclonic and anticyclonic
structures was observed in terms of number and intensity. In the same way, the
typical distance between adjacent vortices is of the same order of magnitude as that
of their diameter, and the Rossby number in their core is close to one. It was ex-
pected that, for a given symmetric distribution of more intense and concentrated
vortices, the centrifugal and the elliptic instabilities could act in preferentially desta-
bilizing the anticyclones, so that the cyclone could emerge. It seems that the insuffi-
ciently high Reynolds number is responsible for the lack of intensity and concentra-
tion of cigar vortices.

There is now a general agreement about the fact that cyclonic vertical vorticity
is dominant, i.e., �3 � 0 on the average, at sufficiently high Reynolds numbers and
in an intermediate range of Rossby numbers. The intermediate range is not the same,
according to the definitions by Jacquin et al. (1990) or by Bourouiba and Bartello
(2007). Anyway, the latter definition deals with only micro-Rossby numbers signifi-
cantly smaller than 1, as in Bartello, Métais, and Lesieur (1994).

It is perhaps puzzling that the approach by Bartello, Métais, and Lesieur (1994)
and more recently by Chen et al.(2005) is essentially supported by low-resolution
LES (not DNS because of hyperviscosity), whereas the dynamics of vorticity is em-
phazized. It is well known that LESs cannot accurately capture the small scales that
contribute to the enstrophy, except if a sophisticated subgrid-scale model is used to
explicitely represent the continuation of scales. The fact that the skewness of axial
vorticity in Bartello, Métais, and Lesieur (1994) seems to grow with a positive value
until a reasonable level is reached is corroborated by recent experiments (Morize,
Moisy, and Rabaud, 2005) (see Fig. 4.21). This suggests that, even if the dimensional
value of 〈�3

3〉 is likely strongly underestimated in a low-resolution LES, the nondi-
mensional ratio

S� = 〈�3
3〉

〈�2〉3/2
(4.54)

is probably captured with an acceptable order of magnitude.
In addition, the recent study by Morize, Moisy, and Rabaud (2005) of decaying

rotating turbulence shows the relevance of the linear time scale to compare different
cases with the same scaling: The vorticity skewness grows as t� with � ∈ [0.7; 0.75]
in Fig. 4.21. In this figure, the final rapid collapse is attributed to the rise of non-
homogeneous mechanisms, such as Ekman pumping. DNSs by van Bokhoven et al.
(2007) yield similar results [Fig. 4.21]. The late-time collapse in Fig. 4.21 can be in-
terpreted as a final stage of linear “triadic” phase mixing because of the absence of
strong enough nonlinearity in decaying turbulence at a moderate initial Reynolds
number.

Because a significant part of the vorticity statistics, informative for the pre-
viously mentioned issue of asymmetry in terms of cyclonic and anticyclonic axial
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Figure 4.21. Skewness of the vertical vorticity distribution, experiment (top) (Morize, Moisy, and
Rabaud, 2005), DNS (middle) (van Bokhoven et al., 2007), DNS run at the largest Rossby number
plotted with experimental results (bottom) (Staplehurst, Davidson, and Dalziel, 2007).
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vorticity, deals with triple correlations, statistical theory can be revisited and con-
fronted by arguments from stability analysis, as subsequently discussed.

Triple-vorticity correlations are found as

〈�3
‖〉(t) =

∑
s,s ′,s ′′=±1

∫
R6

exp
[

ı2�t

(
s

k‖
k

+ s ′ p‖
p

+ s ′′ q‖
q

)]
Tss ′s ′′(k, p, 	t)d3kd3p.

(4.55)

This equation is exact in the linear (RDT) limit, with 	 = 0 in the contribution
from slowly evolving amplitudes denoted Tss ′s ′′ , even if applying RDT to cubic statis-
tical moments is not usual. It exactly reflects the consequence of Poincaré transform
(4.35) at the level of cubic moments if 	 is not zero.

To compute this integral, it is necessary to know the contribution from initial,
or slowly evolving, triple correlations for all triads.∗∗ But the problem is much bet-
ter documented than in physical space because robust spectral theories such as
EDQNM provide a systematic way to express initial, isotropic Tss ′s ′′ in terms of
the initial scalar-energy spectrum E(k). More generally, more advanced EDQNM
versions can be used to solve the full nonlinear problem, not only for generating
isotropic initial data in Eq. (4.55) with 	 = 0. Common to the linear and nonlinear
formulations, the phase term controlling phase mixing appears in Eq. (4.55) and is
zero when triads are in exact resonance.

As another result of statistical theory, it can be shown that the triple-vorticity
correlation 〈�3

3〉 is necessarily produced with a positive value (corresponding to net
production of cyclonic vertical vorticity) when 3D isotropic turbulence is suddenly
set into solid-body rotation (Gence and Frick, 2001). This result comes from the
Euler equations written in the rotating frame,

d

dt
〈�3

3〉 = 3〈�2
3� j S3 j 〉 + 6�〈�2

3 S33〉 with Si j = 1
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
,

as the specific rotation-induced “production” term 6�〈�2
3 S33〉 is essentially positive,

as is the classical “nonlinear vortex-stretching term” 〈�i� j Si j 〉. The reader is re-
ferred to van Bokhoven et al. (2007) for the statistical analysis and its deep discus-
sion, supported by both DNS and experimental results.

∗∗ Or equivalently, in physical space, for any triple correlation at three points, information that cannot
be provided by the third-order structure function alone.
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5 Incompressible Homogeneous Anisotropic
Turbulence: Strain

5.1 Main Observations

This chapter is devoted to the dynamics of homogeneous turbulent flows submit-
ted to a pure strain. The pure strain case is defined as the case in which the mean-
velocity-gradient matrix A is symmetric. As discussed in the rest of this chapter,
several experimental setups have been designed during the past few decades that
lead to different forms for A. Kinematic aspects, from the design of ducts in exper-
iments to a first insight into RDT (more details are given in Chapter 13), are also
introduced in the general case in which A combines a symmetric and an antisym-
metric part (mean vorticity) in order to characterize in the simplest way what the
specificity is of an irrotational straining process.

Both experiments and numerical simulations lead to the following observations
dealing with the dynamics of homogeneous turbulence subjected to pure strain:

� The initially isotropic turbulence becomes anisotropic in the presence of a mean
strain, and the principal axes of the RST become identical to those of the A, the
axis of contraction for A corresponding to the direction of maximum amplification
for the RST. If the strain is applied for a long enough time, anisotropy reaches an
asymptotic state. Typical results are displayed in Fig. 5.1.

� Turbulent kinetic energy K(t) is a growing function of time at large nondimen-
sional time St (see Fig. 5.2), where S is related to a norm of A. This produc-
tion of turbulent kinetic energy is related to the growth of anisotropy. For initially
isotropic turbulence, an initial period of decay is observed, which corresponds to
the transient phase during which the anisotropy starts raising from zero.

� Negative production, i.e., destruction of K(t) by the mean flow, can be ob-
served over the transient phase for some initially anisotropic turbulent flows (see
Fig. 5.3). It is important to note that this phenomenon is not related to a dissi-
pative mechanism involving molecular viscosity or nonlinear cascade. It is due
to the same physical mechanisms that are responsible for turbulence production
in other cases. The negative–positive character of turbulence production by pure
strain is determined by the angle between the principal axes of the RST and those
of A. In addition, the temporal memory of the straining process, identified by the
Cauchy matrix F related to A, plays an essential role for explaining the response of
turbulence to time-dependent processes A(t).
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Figure 5.1. Time evolution of anisotropy in the pure strain case with isotropic initial field. Top:
evolution of the three components of the total kinetic energy (solid curves: linear RDT predic-
tion; symbols: experiments). Bottom: evolution of the structural anisotropy indicator in different
experiments. Reproduced from Tucker and Reynolds (1968) with permission of CUP.
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Figure 5.2. Time evolution of turbulent kinetic energy in the pure strain case with isotropic initial
field, illustrating the production phenomenon. The turbulent kinetic energy K is denoted by q2

here. Reproduced from Tucker and Reynolds (1968) with permission of CUP.

5.2 Experiments for Turbulence in the Presence of Mean Strain.
Kinematics of the Mean Flow

In most wind-tunnel experiments, turbulence was generated by a grid and trans-
ported along the tunnel by the mean flow. Distorted ducts located downstream of
the grid were used to impose the desired strain on the initially isotropic turbulence.
The principle is the following: The distorted duct is designed so that its internal
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Figure 5.3. Time evolution of turbulent kinetic energy in the pure strain case with anisotropic
initial field, illustrating the negative production phenomenon. � is the angle of rotation between
two successive coplanar strains, � = 0 corresponds to a constant-strain rate without rotation of the
strain direction. Reproduced from Gence and Mathieu (1979) with permission of CUP.

surface is coincidental with a stream-tube surface of the desired mean flow, leading
to the imposition of the target mean-velocity-gradient field. The Lagrangian for-
malism introduced in Subsection 2.1.6 is particularly useful. It provides a simple
and elegant framework to describe the geometry of stream tubes and to recover a
kinematic interpretation of the mathematical operators that appear in the RDT. Ac-
cordingly, the kinematic description of the mean “distorting flow” makes use of the
Lagrangian and mixed Lagrangian–Eulerian formalism introduced in Chapter 2, but
the quantities related to Lagrangian features of the solution, such as the Lagrangian
coordinates Xi , the trajectories, and mixed Eulerian–Lagrangian quantities such as
the Cauchy matrix Fi j , are restricted to the mean flow only.

5.2.1 Pure Irrotational Strain, Planar Distortion

The decay of HIT is well reproduced in wind-tunnel experiments, in which turbu-
lence created by a grid is advected downstream without significant distortion (see
Subsection 3.1.1). In this case, an equivalent elapsed time is estimated thanks to the

Taylor frozen-turbulence hypothesis (see Subsection 3.1.1) as t = x3−x0
3

U0
, where x3

denotes the streamwise coordinates. Here, x0
3 is a typical “initial” distance from the

grid, needed to homogenize the wakes of the rods (about 40 mesh sizes in practice),
and U0 is the mean velocity, which is considered as uniform in the duct, outside the
boundary layers.

The additional straining process is obtained with a distorting duct, whose trans-
verse sections have a constant area, in order to conserve U0, but are more and more
elongated as the distance from the grid increases. Rectangular transverse sections
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Figure 5.4. Sketch of the duct used by Gence and Mathieu to obtain plane straining of turbulence.
Reproduced from Gence and Mathieu (1979) with permission of CUP.

were used by Maréchal (1970) and Tucker and Reynolds (1968), whereas elliptical
sections were used by Gence and Mathieu (1979). In all cases, the contour lines have
a hyperbolic design in order to reproduce a mean strain with constant rate.

As a typical feature of the experiment by Gence and Mathieu, the initial sec-
tion of the distorting duct is elliptical with its large axis in the vertical direction, so
that the aspect ratio of the ellipse first decreases to reproduce a compression in the
vertical direction (say x2) and a dilatation in the spanwise (x1) direction. Contin-
uation of the process yields recovering an increasing aspect ratio, with elongation
of the elliptical section in the spanwise direction. The change from decreasing to
increasing the aspect ratio implies that a circular section is obtained at a particular
downstream position. Accordingly, the distorting duct is split into two parts, before
and after the circular section, so that a sudden change of the principal axes of the
straining process can be reproduced only by rotating the second part of the duct
with respect to the first part from an angle � (see Fig. 5.4). For instance, in the case
of continuous strain, a rotation of �/2 allows reverting the strain, so that the initial
section is exactly recovered at the end of the duct.

Moreover, a duct with a constant section can be added at the end of the dis-
torting one, in order to study the expected return-to-isotropy of turbulence, at least
when the distortion results in a large anisotropy of the turbulent flow.

All these experiments illustrate the generation of the mean-velocity gradients A

in a cross section normal to the uniform streamwise velocity, denoted U0 and chosen
along the direction 3, so that the mean trajectories can be defined by

xi = Fi j (t, t0)X j + U0t�i3. (5.1)
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The initial time t0 is omitted or denoted by 0 in the following discussion.
The corresponding mean-gradient matrix A and mean-displacement matrix F

are (see Subsection 2.1.6)

A = A0 =

⎡⎢⎣−S 0 0
0 S 0
0 0 0

⎤⎥⎦ , and F = F0(t) =

⎡⎢⎣ e−St 0 0
0 eSt 0
0 0 1

⎤⎥⎦ (5.2)

for a constant-straining process, or the first part of the duct in the Gence’s experi-
ment, and

A = Q̃A0Q,F = F0(t1) + Q̃F0(t − t1)Q for t1� t� 2t1 (5.3)

with

Q =

⎡⎢⎣ cos� − sin� 0
sin� cos� 0

0 0 1

⎤⎥⎦ , (5.4)

for the second part of the duct with t1 = L/U0 corresponding to the location of the
circular section at half the length 2L of the full Gence’s distorting duct.

The distorting duct is built by materializing a stream tube, corresponding to
an initial cross section, chosen to be rectangular (Maréchal, 1970; Tucker and
Reynolds, 1968) or elliptical (Gence and Mathieu, 1979). True streamlines are ex-
pected to be homothetic and to follow the geometry imposed by the duct, in agree-
ment with previous equations, an expectation that appeared to be reasonable in a
large part of the duct not too close to solid boundaries.

5.2.2 Axisymmetric (Irrotational) Strain

This case is of particular interest because axial symmetry is the simplest anisotropy.
The corresponding mean flow can be reproduced by means of an axisymmetric dis-
torting duct, convergent or divergent. As also discussed in the next subsection, the
mean velocity is not constant in the streamwise – and axial – direction, and it is
not constant in a given cross section with increasing (divergent duct) or decreas-
ing (convergent duct) surface. Flow separation and specific instabilities can appear,
especially in the divergent case, but also in the convergent case (Leclaire, 2006).
In spite of the complexity of these experimental issues, this flow is considered as a
reference case, at least from a theoretical and numerical viewpoint.

The configuration of axisymmetric strain is approached in convergent and diver-
gent ducts, and only the vicinity of the centerline (axis) is considered for the sake of
simplicity. The mean-velocity-gradient matrix is

A =

⎡⎢⎣−S/2 0 0
0 −S/2 0
0 0 S

⎤⎥⎦ , (5.5)



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 19:39

5.2 Turbulence in the Presence of Mean Strain 173

where S is possibly time dependent and S � 0 corresponds to the case of an ax-
isymmetric convergent duct. As previously, when the axial direction is chosen as
ni = �i3 without lack of generality, the nontrivial components in the Cauchy matrix
are

F33(t) = exp
[∫ t

0
S(t ′)dt ′

]
= C(t), F11(t) = F22(t) = 1√

C(t)
. (5.6)

5.2.3 The Most General Case for 3D Irrotational Case

On the other hand, 3D irrotational strain characterized by A having three eigen-
values, S1, S2, S3, with zero sum (because of incompressibility constraint), and
possibly being time dependent, holds little interest from the viewpoint of homo-
geneous turbulence and related experimental approaches. Some specific RDT so-
lutions were initially proposed by Courseau and Loiseau (1978), but can be easily
generalized and simplified, using the formalism introduced by Cambon (1982) and
Cambon, Teissèdre, and Jeandel (1985), using both a reduced Green’s function
and the Cauchy matrix. For any analytical result subsequently given, we will spec-
ify whether it applies to the 3D general irrotational case.

5.2.4 More General Distortions. Kinematics of Rotational Mean Flows

A different kind of experimental procedure was initially proposed to obtain a pure
mean-shear flow. For instance, in Rose (1966) and Champagne, Harris, and Corrsin
(1970), the shear gradient is created in the vertical direction (here x1) by a pileup
of plates, without distortion of the duct. Even if a constant-mean-velocity gradient
∂u2/∂x1 is obtained throughout the duct, the consistency with statistical homogene-
ity of turbulence is much more problematic than in the experiments for irrotational
strain presented in the preceding section. The streamwise velocity is no longer uni-
form in a cross section, so that the mean advection time (x3 − X3)/U3(x1) varies with
x1; it is shorter near the top (largest U3) than near the bottom (smallest U3) of the
duct. As a consequence, A21 = S can be considered as constant in a current cross
section, but not F21 = St .

To obtain a pure shear flow in a more satisfactory way (regarding homogeneity
of turbulence), and especially to generalize it to an arbitrary combination of vorticity
and strain, a general procedure was defined at ONERA, in close collaboration with
the LMFA team (Leuchter, Benoit, and Cambon, 1992). The principle is to gener-
ate solid-body rotation in a cylindrical duct, and then to superimpose a convenient
irrotational process by a subsequent distorting duct. Jacquin’s experiment for pure
rotation, presented in the previous chapter, was used for this purpose, replacing the
cylindrical duct after the rotation generator (a rotating honeycomb) with a duct de-
signed in exact accordance with Eq. (5.1). Current cross sections of the distorting
duct do correspond to a single advection time (x3 − X3)/U0. They are ellipses of
constant area with both their aspect ratio and the orientation of their axes varying
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continuously with the streamwise position. In Eq. (5.1), F (with corresponding A) is
easily calculated as follows:

A =

⎡⎢⎣ 0 S −� 0
S + � 0 0

0 0 0

⎤⎥⎦ , F =

⎡⎢⎣ cosh�0t (S −�) sinh�0t
�0

0

(S + �) sinh�0t
�0

cosh�0t 0

0 0 1

⎤⎥⎦ , (5.7)

with

�2
0 = S2 − �2. (5.8)

The hyperbolic case S �� is given here as an example, but the elliptical case
S �� is straightforwardly derived by changing �0 into ı�0, yielding a periodic F.
The analytical solution F�� = ��� cosh�0t + A��

sinh�0t
�0

results from A�� A�� = �2
0 ���,

so that F̈�� = �2
0 F��, excluding the value 3 for Greek indices. The particular case of

pure shear S = �, whose associated shear rate is equal to � + S = 2S, is consistently
recovered in the limit �0 → 0.

Elliptical cross sections are analytically derived from the initial (circular) section
of the distorting duct, i.e., X�X� = R2, so that

F−1
�� (t)F−1

�� (t)x�x� = R2, t = x3 − x0
3

U0
. (5.9)

Typical streamlines, such as those sketched in Fig. 2.1, are recovered in the plane
(1, 2) of the mean distortion as the envelope of the moving ellipses. They are hyper-
boles for �2

0 � 0, straight lines for �0 = 0, and ellipses for �2
0 � 0. Only in the last

case is the duct periodic; a typical sketch is shown in Fig. 5.5.

5.3 First Approach in Physical Space to Irrotational Mean Flows

5.3.1 Governing Equations, RST Balance, and Single-Point Modeling

5.3.1.1 Planar Strain

The evolution equations for Reynolds stresses associated with the gradient matrix
A defined in Eq. (5.2) are

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk
= S

⎡⎢⎢⎣
2u′

1u′
1 0 u′

1u′
3

0 −2u′
2u′

2 −u′
2u′

3

u′
1u′

3 −u′
2u′

3 0

⎤⎥⎥⎦+ 
i j − εi j . (5.10)

The corresponding equation for the turbulent kinetic energy is

∂K
∂t

= S
(
u′

1u′
1 − u′

2u′
2

)
− ε. (5.11)

It is seen that the production of kinetic energy by explicit linear effects is due
to the anisotropy and more precisely to the difference between the two diagonal
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Honeycomb Grid

Convergent Rotating duct Distorting duct

Duct 1

z

y

z z

y y

z

y

ω = 0 ω = 0.5

ω = 2ω = 1

Figure 5.5. Sketch of the distorting ducts in the experiment by Leuchter, Benoit, and Cambon
(1992). Top: side view of the experimental facilities, “periodic” case with � = �/S = 2. Bottom:
front view of the duct for different values of � = �/S.
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Reynolds stresses u′
1u′

1 and u′
2u′

2. This production can be either positive or nega-

tive, depending on the signs of S and
(
u′

1u′
1 − u′

2u′
2

)
. The possible occurrence of a

negative production term corresponds to the existence of flows in which the mean
irrotational strain will destroy the turbulent kinetic energy. A direct consequence is
that the production mechanism escapes the isotropic two-equation turbulence mod-
els, in which the differences between the diagonal Reynolds stresses are neglected.
The errors committed on turbulent kinetic-energy production in the vicinity of stag-
nation points in nonhomogeneous flows are directly related to this problem.

Of course, negative production occurs in Gence’s experiment, and this is further
discussed at the end of this section.

5.3.1.2 Axisymmetric Irrotational Strain

For axisymmetric strain with A given by Eq. (5.5), one has

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk
= S

⎡⎢⎢⎢⎣
u′

1u′
1 u′

1u′
2 − 1

2 u′
1u′

3

u′
1u′

2 u′
2u′

2 − 1
2 u′

2u′
3

− 1
2 u′

1u′
3 − 1

2 u′
2u′

3 −2u′
3u′

3

⎤⎥⎥⎥⎦+ 
i j − εi j . (5.12)

The corresponding equation for the turbulent kinetic energy is

∂K
∂t

= S

2

(
u′

1u′
1 + u′

2u′
2 − 2u′

3u′
3

)
− ε. (5.13)

It is seen that the production mechanisms are still governed by anisotropy in
this configuration, but this time it involves the three diagonal Reynolds stresses.

5.3.1.3 More General Rotational Strains

In the general case corresponding to Eq. (5.7), one has

∂u′
i u

′
j

∂t
+ uk

∂u′
i u

′
j

∂xk

= −

⎡⎢⎢⎢⎣
2(S −�)u′

1u′
2 (S −�)u′

2u′
2 + (S + �)u′

1u′
1 (S −�)u′

2u′
3

(S − �)u′
2u′

2 + (S + �)u′
1u′

1 2(S +�)u′
1u′

2 (S +�)u′
1u′

3

(S −�)u′
2u′

3 (S +�)u′
1u′

3 0

⎤⎥⎥⎥⎦
+ 
i j − εi j (5.14)

and

∂K
∂t

= 2Su′
1u′

2 − ε. (5.15)
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Pressure Pressure

heat

u′
3u′

3

u′
2u′

2

u′
1u′

2

u′
1u′

1

viscosity

viscosity viscosity

(Ω − S ) (Ω + S )

(Ω + S )(Ω − S )

Figure 5.6. Couplings between the different nonvanishing Reynolds stresses in the general strain
case. Arrows indicate the production process, their color being related to the physical quantity at
play (mean strain, pressure, viscosity).

Considering the case of an initially isotropic field, one has u′
�u′

3 = u′
3u′

� = 0,
� = 1, 2 so that Eq. (5.14) simplifies to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du′
1u′

1

dt
= 2(�− S)u′

1u′
2 +
11 −ε11

du′
2u′

2

dt
= −2(�+ S)u′

1u′
2 +
22 −ε22

du′
3u′

3

dt
= 
33 −ε33

du′
1u′

2

dt
= �(u′

2u′
2 − u′

1u′
1) + S(u′

2u′
2 + u′

1u′
1) +
12 −ε12

. (5.16)

The different couplings are illustrated in Fig. 5.6. This case is rediscussed from
the viewpoint of RDT, first in Subsection 5.4.1 and then in Chapter 8.

5.3.2 General Assessment of RST Single-Point Closures

The most general irrotational flow case, with time-dependent and even 3D (i.e., with
three different nonzero eigenvalues) A is now considered.

Full Reynolds stress models work satisfactorily to predict the effect of irrota-
tional strain. For instance, the Reynolds stress component in the direction of mean
compression is shown to increase and the one in the direction of mean dilatation is
shown to decrease, so that increasing anisotropy is created by a monotonic strain.
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In addition, directional and polarization anisotropies seem to be closely related,
at least at the level of single-point statistics, by means of

b(e)
i j = −1

2
bi j , b(z)

i j = 3
2

bi j . (5.17)

This relationship was quoted in Kassinos, Reynolds, and Rogers (2000) as “dimen-
sionality [measured by −2b(e)

i j ] equals to componentality” (measured by bi j ). Such a
relationship will be shown to be consistent with RDT, but only for a very short time
and starting from isotropic initial data in Subsection 5.4.2.

On the other hand, K − ε modeling is questioned if the straining process is time
varying. This can be explained by the fact that even a crude “pressure-released”
equation like Eq. (5.20) given in the next subsection is much better for predicting
RST anisotropy than the so-called Boussinesq approximation bi j (t) ∝ Ai j (t). Be-
cause the instantaneous Boussinesq relationship used in K − ε models, and even
in its so-called nonlinear variants, cannot take into account the time history of A,
they completely miss the quasi-reversible behavior observed in Gence’s experiment.
Similar conclusions can be drawn for time-periodic strains (relevant for reciprocat-
ing engines, for instance) for both full Reynolds stress models and K − ε variants
(Hadzic, Hanjalic, and Laurence, 2001).

5.3.3 Linear Response of Turbulence to Irrotational Mean Strain

The role of mean vorticity is easily understood by linearizing the vorticity equation:

�̇′
i = ∂ui

∂x j
�′

j + ∂u′
i

∂x j
� j .

Only in the absence of mean vorticity is this equation similar to Eq. (2.21) and
admits the solution

�′
i (x, t) = Fi j (X, t, t0)�′

j (X, t0), (5.18)

which is now a true solution, as F and X are related to only the (irrotational) mean
flow, and therefore are externally given data. Similarly, a linearized Weber equation
can be written, leading to

u′
i (x, t) = F−1

j i (X, t)u′(X, t0) + ∂
′

∂xi
. (5.19)

The two last equations, which are directly useful in RDT, are no longer valid if
the mean flow is rotational.

Generalization to rotational mean flows is possible, using Clebsh potentials, but
the method is much less tractable; it is touched on by Hunt (1973) and Goldstein
(1978) and used by Nazarenko and Zakharov (1994) in the case of pure plane shear
flow.

Interpretation of results from experiments of distortion is easy in the irrota-
tional case. From the vorticity equation, with F given by Eq. (5.2), it is seen than
the vorticity component is decreased in the direction of compression (direction x1
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x

U ′

U ′+ u W ′+ u

V ′− u

U ′− uU ′

W ′

V ′y

z

Figure 5.7. Cartoon using two individual vortices aligned with compression–dilatation axes to pre-
dict anisotropic trends induced by a mean strain. Left: Two straight vortices with equal diameters
and circulation. Right: vortices after compression–dilatation assuming preservation of (i) volume
of each vortex and (ii) angular momentum of each vortex. It is seen that the velocity component in
the plane normal to the strain is left unchanged, whereas velocity is increased (resp. decreased) in
the direction of the compression (resp. dilatation).

here) and increased in the direction of elongation of the mean constant strain. More
generally, the RDT solution for vorticity correlations is

�′
i�

′
j (t) = Fim(t)Fjn(t)�′

m�
′
n(0).

Such a solution is not very realistic, as enstrophy involves the smallest scales,
and it is much more constraining (than for the RST) to exclude nonlinearity in the
response of turbulence to the mean strain. The basic process suggested by Eq. (5.18),
however, yielded a qualitative argument to interpret the effect of the strain on ve-
locity fluctuations (Gence and Mathieu, 1979), as given schematically in Fig. 5.7:
Vorticity is amplified if a vortex tube is elongated, so that it rotates faster and the
velocity components are amplified in the two directions normal to the axis of the
elongated vortex tube. Conversely, a compressed vortex tube rotates slower and
the velocity components are decreased in the two directions normal to the axis of
the compressed vortex tube. This effect is sketched starting from two similar vortex
tubes (a situation that mimics initial isotropy) with axes in directions x1 and x2, the
first being compressed and the second being elongated. Accordingly, it is suggested
that the velocity fluctuation is amplified in the direction of compression, with 〈u′2

1 〉
increasing, and is decreased in the direction of elongation, with 〈u′2

2 〉 decreasing. Of
course, this simple reasoning accounts for the fact that F is present in Eq. (5.18)
whereas its inverse F−1 is present in Eq. (5.19), but does not account for the fact
that linear velocity dynamics is also dependent on a “rapid” pressure effect, medi-
ated by the scalar potential term in Eq. (5.19). However, the qualitative prediction
remains correct, and the “pressure-released” equation,

u′
i u

′
j (t) = F−1

mi (t)F−1
nj (t)u′

mu′
n(0), (5.20)

for the RST is consistent with the qualitative development of anisotropy.
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If the mean strain is irrotational, but with the principal axes of A possibly mov-
ing with time, as in Gence’s experiments, it is possible to use the previous equa-
tions with F given by Eq. (5.2) for 0 � t � t1 and by Eq. (5.3) for t1 � 0 � 2t1.
The quasi-reversibility of the flow anisotropy when � = �/2, which is associated
to Fi j (2t1) = Fi j (0), reflects the dominant role of F, which returns to its initial value,
as the final elliptical section returns to its initial position. Note that F is no longer
symmetric in the second phase [see Eq. (5.3)], even if A is, because of the history
of A. As a consequence, it is convenient to distinguish between Fi j and Fji in the
general equations, even for irrotational mean flows. The matrix F is continuous in
time, generating continuous mean trajectories, even if A is discontinuous because of
a sudden change of principal axes. The same reversible behavior might be obtained
at the end of the more complex distorting duct in the elliptic-flow case, “forgetting”
to rotate the honeycomb. This experiment is just mentioned here as a “gedanken ex-
periment” as it has never been performed. The design of the distorting duct accounts
for a given � rate and makes it possible – in principle – to reproduce the elliptical-
flow instability at given S, with S �� (see Chapter 8); this possibility appeared more
exciting than producing a new reversible irrotational strain with continuous motion
of its principal axes.

5.4 The Fundamentals of Homogeneous RDT

An exhaustive presentation of the RDT is given in Chapter 13. The present section
aims to provide the key elements of this method that are necessary for understand-
ing the physical analysis subsequently given in this chapter.

The simplest multipoint closure consists of dropping all nonlinear terms in Eq.
(2.29) before applying the statistical average operator. Also dropping the viscous
term, one obtains the RDT, introduced by Batchelor and Proudman (1954). The
RDT model is assumed to be a relevant model for the large scales of turbulence,
which are not directly governed by viscous effects at very high Reynolds numbers.
This approach was further developed by Townsend (1976) and Hunt (1973). Useful
reviews were given by Hunt and Carruthers (1990) and more recently by Cambon
and Scott (1999). An effort was made in the latter review to bridge the RDT basic
concepts and equations and some studies carried out in the fields of applied math-
ematics and hydrodynamic stability by Craik and Criminale (1986), Bayly (1986),
and other authors.

In neglecting nonlinearity entirely, the effects of the interaction of turbulence
with itself are supposed to be small compared with those resulting from mean-flow
distortion of turbulence. One often has in mind flows such as weak turbulence en-
countering a sudden contraction in a channel or flows around an airfoil. The under-
lying implicit assumption is that the time required for a significant distortion by the
mean flow to develop is short compared with that for the turbulent evolution in the
absence of distortion effect. Linear theory can also be relevant, at least over short
enough times, if physical influences leading to linear terms in the fluctuation equa-
tions dominate turbulent flows, such as in a strongly stratified or rotating fluid or a
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conducting fluid in a strong magnetic field. For such cases, the term “rapid distortion
theory” is probably a little bit misleading.

Thanks to the linearity assumption, the time evolution of u′
i may be formally

written as

u′
i (x, t) =

∫
Gi j (x, x′, t, t ′)u′

j (x′, t ′)d3x′, (5.21)

where Gi j (x, x′, t, t ′) is a Green’s function matrix expressing the evolution from time
t ′ to time t . Whereas u′

i is a random quantity, which varies from one realization to
another realization of the flow, Gi j is deterministic and can in principle be calculated
for a given ui (x, t). From Gi j and the initial turbulence, Eq. (5.21) may be used to
predict the time evolution.

Another simplifying assumption that is often made is that the size of turbulent
eddies, L , is small compared with the overall length scales of the flow, �, which might
be the size of a body encountering fine-scale free-stream turbulence (see e.g., Hunt
and Carruthers, 1990). In that case, one uses a local frame of reference convected
with the mean velocity and approximates the mean-velocity gradients as uniform,
but time varying. Thus the mean velocity is approximated by Eq. (2.46) in the mov-
ing frame of reference. In the example of fine-scale turbulence encountering a body,
one may imagine following a particle convected by the mean velocity, which sees a
varying mean-velocity gradient, Ai j (t), even when the mean flow is steady.

For the sake of simplicity, the following equations are derived in the case of an
extensional mean flow, with mean-velocity gradients uniform in the whole space.∗

This is referred to as “homogeneous RDT” because statistical homogeneity (invari-
ance by translation of all fluctuating flow statistics) holds for the fluctuating flow,
provided some additional conditions of admissibility are imposed to A, as intro-
duced in Chapter 2. Recall that the mean flow is a particular solution of Euler equa-
tions and is not itself invariant by translation (only its gradient is). In the linear limit,
the fluctuating fields (u′

i , p′) satisfy modified equation (2.29) with the advection–
distortion parts written in terms of Ai j (t):

∂u′
i

∂t
+ A jk xk

∂u′
i

∂x j︸ ︷︷ ︸
advection

+Ai j u
′
j + ∂p′

xi
= 0. (5.22)

Its solution is most easily obtained by means of Fourier analysis, with elemen-
tary components of the form

u′
i (x, t) = ai (t) exp [ık(t) · x] , (5.23)

p′(x, t) = b(t) exp [ık(t) · x] . (5.24)

Evolution equations for both the wave vector and the amplitudes are easily
obtained from Eq. (5.22) (details are given in Chapter 13). They can be written

∗ One has to keep in mind that essentially the same equations can be used in more realistic flow cases,
following Hunt and co-workers and Lifschitz and Hameiri (1991).
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as follows, under simple ordinary differential equations (ODEs):

dki

dt
+ A ji k j = 0 (5.25)

and

dai

dt
= −

(
�in − 2

ki kn

k2

)
Anj︸ ︷︷ ︸

Mi j

a j . (5.26)

General solutions that are valid for arbitrary initial data are expressed as follows
in terms of linear transfer matrices,

ki (t) = F−1
j i (t, t0)k j (t0), (5.27)

ai (t) = Gi j (t, t0)a j (t0), (5.28)

in which the Cauchy matrix appears under a transposed and inverse form [this is
a general solution for any Eikonal-type equation; see Eq. (5.25)] and corresponds
to the solution for the gradient of a passive scalar (see Chapter 13). The use of a
Green’s function G allows us to get rid of particular initial data for the fluctuating
field. In the preceding equations, it is perhaps clearer to specify the wave-vector
dependency in a and G, especially if we combine elementary solutions of the form
given by Eq. (5.23) by means of Fourier synthesis. As a consequence, the RDT so-
lution can be expressed as follows:

ûi [k(t), t] = Gi j (k, t, t0)̂u j [k(t0), t0], (5.29)

in which the Green’s function is eventually determined by the (universal, not flow-
dependent) initial conditions:

Gi j (k, t0, t0) = �i j − Ki K j

K 2
, Ki = ki (t0). (5.30)

At this stage, it may be noticed that homogeneous RDT gathers enough features
for solving two problems:

� A deterministic problem, which consists of solving the initial-value linear system
of equations for ai , in the most general way. This is done by determining the spec-
tral Green’s function, which is also the key quantity requested in linear-stability
analysis.

� A statistical problem that is useful for the prognosis of statistical moments of u′

and p′. Interpreting the initial amplitude û[k(t0), t0] as a random variable with
a given dense k(t0) spectrum, relation (5.29) yields the prediction of statistical
moments though products of the basic Green’s function (details are displayed in
Chapter 13).

A useful reduced (using the minimum number of components) Green’s function
can be used in the Craya–Herring frame of reference, as

u(�)[k(t), t] = g��(k, t, t ′)u(�)[k(t ′), t ′], (5.31)
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A Green’s function is then expressed in terms of only four components, solv-
ing the two-component linear system in (2.86) (details are provided in Chapter 13).
Using helical modes is less useful, except near the limit of pure rotation or purely
antisymmetric A.

5.4.1 Qualitative Trends Induced by the Green’s Function

Considering a mean flow given by Eq. (5.7), qualitative RDT results are subse-
quently presented, before being discussed with more details in Chapters 6 and 8.

Irrotational mean flows with Ai j = A ji yield simple RDT solutions in which
both F and G display dominant exponential growth (if A is not time dependent),
reflecting pure stretching of vorticity disturbances, in accordance with the existence
of the hyperbolic instability.

Rotational mean flows yield more complicated linear solutions, and only the
steady case has received much attention [although Craik and co-workers and Bayly
and co-workers made recent developments in unsteady cases; see, e.g., Bayly, Holm,
and Lifschitz (1996)].

The steady, rotational case, when axes are chosen appropriately, corresponds
to constant S,� ≥ 0, generating steady plane flows, which combine vorticity 2� and
irrotational straining S. The related stream function is sketched in Fig. 2.1. The prob-
lem with arbitrary S and � was analyzed in Cambon (1982) and Cambon, Teissèdre,
and Jeandel (1985) with the purpose of extending classical RDT results, which were
restricted to pure strain and pure shear. For S ��, the mean-flow streamlines are
open and hyperbolic, and RDT results are qualitatively close to those of the pure
strain case� = 0. For S ��, the mean-flow streamlines are closed and elliptic about
the stagnation point at the origin. This case is the most surprising one, in which F

is periodic in time whereas G is capable of generating exponential growth of fluctu-
ations for k-directions concentrated about special angles (k3/k ∼ ±1/2 if S � �).
The RDT can therefore be relevant for explaining the mechanism of elliptical-
flow instability (Bayly, 1986) (details are discussed in Chapter 8). The limiting case
S = � corresponds to pure shear of straight mean streamlines. The RDT solutions
of Townsend (1976) reflect algebraic growth in the parlance of stability analysis (see
Chapter 6).

5.4.2 Results at Very Short Times. Relevance at Large Elapsed Times

As recalled in Cambon and Rubinstein (2006), the first significant terms of the RDT
solution for single-time second-order statistics at a short time, starting from 3D
isotropic initial data, involve only the symmetric part S of A, yielding

e(k, t) = 1
2

[
k
∂e

∂k
|t=0 + e(k, 0)

]
t Si j

ki k j

k2

and

Z(k, t) = 1
2

e(k, 0)t Si j N
∗
i (k)N ∗

j (k),

with e(k, 0) = E(k)/(4�k2).
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Spherical integration gives

H (e)
i j (k, t) = − 1

15

(
−1 + k

E

d E

dk

)
Si j t and H (z)

i j (k, t) = −2
5

Si j t

for the spherically averaged spectra of b(e)
i j and b[z)

i j , given eventually by

b(e)
i j = 2

15
Si j t, b(z)

i j = −2
5

Si j t, bi j = − 4
15

Si j t.

One recovers the fact that “componentality” is equal to “dimensionality” [see
Eq. (5.17) and related discussion], but this result does not persist for a long time.
Looking at a nonlinear theory, assuming that weak anisotropy results from a lin-
ear response to turbulence perturbated from a fully nonlinear quasi-isotropic state,
Ishihara, Yoshida, and Kaneda (2002) and Yoshida et al. (2003) found similar re-
sults:

H (e)
i j = 1

15
(B − A)k−2/3ε−1/3Si j and H (z)

i j = 2
5

Ak−2/3ε−1/3Si j .

One can see that the time scale in short-time RDT is simply the elapsed time t ,
whereas it is a turbulent time scale in the linear response theory (in fact a fully non-
linear theory, touched on in Chapter 14). Given the values of “constants” A and B,
which are evaluated from LRA theory and from DNS data, no simple relationship
between b(e)

i j and b(z)
i j similar to Eq. (5.17) is shown.

5.5 Final RDT Results for Mean Irrotational Strain

5.5.1 General RDT Solution

A complete analytical solution for the velocity in Fourier space can be obtained
from its counterpart in terms of vorticity, using Eq. (5.18). An easier way to derive
this is to use linearized Weber equation (5.19):

Gi j (k, t, t ′) = Pin(k)F−1
jn (t, t ′). (5.32)

This solution is valid for any irrotational straining process, even 3D and time de-
pendent. The Cauchy matrix appears as the only explicit time-dependent tensor in
the solution; an implicit time dependency is mediated by k, but it is again governed
by the Cauchy matrix, according to Eikonal solution (5.27). Accordingly, this solu-
tion is completely time reversible if the history of F is. This shows that the complete
RDT solution shares qualitative properties with the pressure-released oversimpli-
fied one introduced in Subsection 5.3.3. Only the additional viscous factor, which
is very easy to add, not to mention nonlinear effects, can break the reversibility of
such a solution.

In this case, the use of the Craya–Herring frame does not simplify the solution
significantly, except if the straining process is axisymmetric, as considered in the
next subsection.
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5.5.2 Linear Response of Turbulence to Axisymmetric Strain

The mean-velocity-gradient matrix is given by (5.5), general equations (5.32) – any
irrotational strain – and (13.13) – any RDT case – are valid, and characteristic lines
in Fourier space are

k� = K�C1/2, k3 = K3C−1. (5.33)

The parameter C , which is given by Eq. (5.6), is directly related to the contraction
ratio of the stream tube or to the ratio A(t)/A(0) of the area of a current circular
section to the initial one in the corresponding axisymmetric duct, because C−2(t) =
A(t)/A(0). The linear inviscid solution in the Craya–Herring frame is

u(�)(k, t) = e(�)
i (k)F−1

i j (t)e(�)
j (K )︸ ︷︷ ︸

g��

u(�)(K , 0),

and finally a very simple form of g�� is obtained:

g�� =
[

C1/2 0
0 C−1/2 K

k

]
. (5.34)

For instance, solutions for the spectral tensor of double correlations are equal to

�11(k, t) = C(t)
E(K )
4�K 2

, �22(k, t) = C−1(t)
E(K )
4�k2

, (5.35)

starting from isotropic initial data. Only two nontrivial components are needed, �11

related to toroidal energy and �22 related to poloidal energy, taking into account
simplifications from axisymmetry (with mirror symmetry), yielding

e = 1
2

(
�11 +�22) , Z = 1

2

(
�22 −�11)

in the expression of the general spectral tensor R̂. As a consequence, toroidal and
poloidal contributions to the kinetic energy are found equal to

K(tor)(t)
K(0)

= 3
2

C(t),
K(pol)(t)
K(0)

= C−1(t)
∫ 1

0

K⊥K 2

k4
dx .

These results use a minimal number of components for generating RDT solu-
tions, and they are consistent with those of Sreenivasan and Narasimha (1978), Lee
(1989), and Ribner (1953). In addition, Lee (1989) provided complete useful analyt-
ical solutions for the RST (with only two nontrivial axial and transverse components
here):

u′2
3 = K(0)

C4s/3

2(1 − C2s)

[−1 + (2 − C2s)�′] , (5.36)

u′2
1 = u′2

2 = K(0)
C4s/3

4(1 − C2s)

[
2 − C2s

C2s
− C2s�′

]
, (5.37)
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with s = ±1 being the sign of S, and

�′ = 1

2
√

1 − C−2
Ln

1 + √
1 − C−2

1 − √
1 − C−2

if S � 0

and

�′ = arctan (
√

C2 − 1√
C2 − 1

if S � 0,

and for various terms in the RST budget.

5.6 First Step Toward a Nonlinear Approach

A “first loop” of nonlinear iteration was offered by Kevlahan and Hunt (1997) for a
pure irrotational constant strain.

Issues linked to tradic closures are subsequently introduced (see details in
Chapter 14).

Before examining the simplest and most interesting applications of linear and
nonlinear theory, it is worthwhile to anticipate the difficulties for passing from (lin-
ear) RDT to generalized quasi-normal (nonlinear) closure for HAT in the presence
of mean flows given by (5.7).

In the “hyperbolic” and “elliptic” cases, with 0 �= S �= � in (5.7), the RDT
Green’s function can display exponential growth, at least for particular angles of
k (k3/k ∼ 1/2 in the case S � �). If the bare zeroth-order response function is only
modified by ED, convergence is not ensured for the time integral of the threefold
product GGG in the generic closure relationship.

A less critical situation occurs when S = � (pure plane shear), because the
RDT Green’s function yields only algebraic growth, so that the viscous term en-
sures convergence of the time integral involved in the closure. Nevertheless, it is
very cumbersome to develop, and especially to solve numerically with enough ac-
curacy, a complete anisotropic EDQNM model in this case. Recall that even calcu-
lation of single-point correlations resulting from viscous RDT at high St is not easy
(Beronov and Kaneda, private communication), the asymptotic analysis being even
complex for inviscid RDT (Rogers, 1991). DNSs suggest that fully nonlinear effects
yield exponential growth for the turbulent kinetic energy, but computations are very
sensitive to cumulated errors (remeshing, low angular resolution at small k). Such
a transition from algebraic growth (linear dynamics at small time) to exponential
growth (nonlinear dynamics) is not completely described and explained, but very
simple single-point closure models can mimic it. In addition, interesting scaling laws
for possible exponential growth follow from an approach by Julian Scott (private
communication), which is itself a refinement of Oberlack’s approach dealing with
symmetries of the Navier–Stokes equations. All these issues are addressed in the
relevant chapter (Chapter 6) and rediscussed in Chapter 14.
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The linear response theory (in fact a fully nonlinear theory) by Kaneda and
co-workers is relevant but only in the limit of small scales and vanishing shear (or
strain) rate. General solutions depend on only the symmetric part of the mean strain,
and therefore are the same for the three different cases (elliptical, hyperbolical,
rectilinear), a result that is at odds with our main approach here.

Only for pure rotation, or S = 0,� �= 0, the most general EDQNM versions
were carried out toward complete achievement. In this case, the zeroth-order state
consists of superimposed oscillating modes of motion, with no amplification and no
interaction: They correspond to neutral dispersive inertial waves. A time integral
of a threefold product of the Green’s functions converges, provided an infinitesimal
viscous (or ED) term is added. In the limit of small interactions, two-point closures
and theories of wave turbulence were reconcilied (Chapter 4).

This preliminary discussion justifies, to a certain extent, discriminate flows dom-
inated by production from flows dominated by waves, a distinction that is revisited
in Chapters 7, 8, and 15. The first class is illustrated by classical shear flows, in which
a nonzero “production term” is displayed in the equations governing the RST. This
production is often related to the growth of instabilities, when stability analysis is
addressed. The second class is illustrated in Chapters 4, 7, and 8, as the more rel-
evant area to apply spectral closures. It is worth noting that the dynamics can be
dominated by dispersive waves, which are neutral but for a small part of the con-
figuration space, in which exponential amplification occurs. In the latter case, e.g.,
for flows with weak ellipticity (S � �), production of energy is nonzero, but classic
single-point closure models are of poor relevance, because only particular orienta-
tions in wave space are subjected to parametric instability.

5.7 Nonhomogeneous Flow Cases. Coherent Structures in Strained
Homogeneous Turbulence

The RDT for irrotational strain can be extended to analyze the vicinity of stagna-
tion points in connection with the hyperbolic instability. Application to modeling of
turbulence impinging on bluff bodies was given by Hunt and co-workers. The mean
flow is a potential 2D inviscid flow, and hence strictly irrotational, and equations
very similar to the ones found in the homogeneous case are recovered following
mean-flow trajectories for short-wave disturbances.

A more advanced theoretical study was performed by Leblanc and Godeferd
(1999), on the grounds of the zonal short-wave analysis introduced by Lifschitz and
Hameiri (1991). Further theoretical insight into the hyperbolic instability is found in
a “nonhomogeneous” case, in which the “mean” flow is a cell of 2D Taylor–Green
vortices (the Taylor’s four-roller mill). Stretching of the vorticity perturbation along
the principal axis of strain leads to the formation of spanwise counterrotating vor-
tices (also sometimes referred to as ribs or braids) in the irrotational stagnation-
point region. Beautiful rib (or braid) structures obtained in a DNS with 1283 grid
points are shown in Fig. 5.8.
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Y

Z X

Figure 5.8. Isosurface of the vorticity magni-
tude of the perturbed flow in the nonlinear
regime. Reproduced from Leblanc and Gode-
ferd (1999) with permission of AIP.

Only a very few studies have been devoted to the analysis of coherent structures
in homogeneous strained turbulence, because the topology of the flow is simpler
than the one observed in other cases (see chapters dealing with rotation, pure shear,
etc.) and because flow dynamics is relatively well understood.

Using low-Reynolds-number DNS, Rogers and Moin (1987) also observed that
vorticity tends to be statistically aligned with the direction of positive strain. Vor-
ticity occurs in coherent elongated vortex tubes that are stretched and strengthened
by the mean strain. Vortex tubes submitted to a compressive effect buckle rather
than decrease in strength. The absence of mean-flow rotation is observed to prevent
the occurrence of hairpin vortices (which are observed in the pure shear case; see
Section 6.5).

A look at instantaneous fields yields the following observations:

� Axisymmetric-contraction flows develop elongated vortex tubes in the stretching
direction.

� Axisymmetric-expansion flows develop no unique structures, and a number of
ringlike structures are observed.

� Plane-strain flows exhibit a combination of the structures observed in the two
previous cases.
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6 Incompressible Homogeneous Anisotropic
Turbulence: Pure Shear

6.1 Physical and Numerical Experiments: Kinetic Energy, RST,
Length Scales, Anisotropy

Mean-shear flows are ubiquitous in turbulence. In a real flow, the shear is always
created by the no-slip condition on solid walls, except when there is no tangen-
tial velocity or when the wall is a belt moving with the same velocity as the flow
(shear-free boundary layer). Shear flows are therefore intimately connected with
near-wall turbulence dynamics. Nevertheless, many features can be understood in
the idealized case of a uniform mean shear in the absence of boundaries, in the con-
text of HAT. The relevance of this idealized model flow was discussed by W. C.
Reynolds, among many others. The effect of the wall is to create a mean shear
and to block the vertical motion. The arbitrary imposed uniform shear in the HAT
framework is also responsible for a reduction of vertical velocity fluctuations (as
we shall see with all details in this chapter). Therefore the presence of a wall is not
mandatory.

The emphasis in this chapter is put on the departure from isotropy that is due
to the application of a constant shear. The main reasons are that it contains all the
physical mechanisms present in homogeneous shear flows and that it is the most
extensively analyzed flow in this family. The mean flow ū = (Sy, 0, 0) is character-
ized by the following space-uniform mean-velocity-gradient matrix A and Cauchy
(or displacement gradient) matrix F,

A =

⎡⎢⎣0 S 0
0 0 0
0 0 0

⎤⎥⎦ , F(t) =

⎡⎢⎣1 St 0
0 1 0
0 0 1

⎤⎥⎦ , (6.1)

and components i = 1, 2, 3 classically are referred to as streamwise, cross-gradient
(or vertical), and spanwise directions, respectively. In other chapters, permuta-
tions of the indices 2 and 3 are used, but the intrinsic “streamwise/cross-gradient/
spanwise” nomenclature is kept unchanged.

It is important to note that the shear rate S in Eq. (6.1) is equal to twice the
rotation rate � and the strain rate S defined in Eq. (5.7), as the pure shear rate is
defined as � = S. Therefore, in this chapter, the rotation rate and the strain rate are
equal to S/2.

192
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6.1.1 Experimental and Numerical Realizations

Many experiments were designed to reproduce the mean-flow gradient given in
Eq. (6.1) while preserving a quasi-homogeneous turbulent state. The experimental
setups combining a piling-up of plates in the vertical direction and grid-generated
turbulence are the most well known and documented (Rohr et al., 1988; De Souza,
Nguyen, and Tavoularis, 1995). As discussed in Chapter 5, in which older experi-
mental studies were also quoted, they suffer a significant drawback in that they do
not ensure uniformity of the Cauchy matrix in the whole cross section, or in a sim-
pler way they do not ensure the uniformity of the mean streamwise velocity. As a
consequence, the equivalent elapsed time St is not uniform in a cross section, yield-
ing spurious diffusion effects. The specific experimental facility developed at ON-
ERA by Leuchter and co-workers (see Chapter 5), which combines a mean-rotation
generator with an angular velocity S/2 in the direction normal to the plane of the
shear and an additional distorting duct to create the additional straining process in
the cross sections is much more satisfactory, but the length of the distorting duct
severely limits the maximum elapsed time St ∼ 1.5. Finally, some relevant experi-
ments aim at reproducing a planar Couette flow, using a moving belt, but “initial”
turbulence cannot be created independently, so that such experiments are more de-
voted to studying hydrodynamic stability than developed turbulence dynamics.

Some relevant DNSs have been performed. Most of them were based on the
Rogallo (1981) method, which uses a pseudo-spectral scheme to evaluate nonlinear
terms and the mean-Lagrangian system of coordinates to capture the linear effects
in an optimal way. Among these numerical studies, many useful results and anal-
yses can be found in the rather old study by Lee, Kim, and Moin (1990), whereas
the recent numerical study by Brethouwer (2005) provides one of the most reli-
able and accurate databases for both homogeneous rotating and nonrotating shear
flows.

6.1.2 Main Observations

Looking at the time development of Reynolds stresses, physical and numerical ex-
periments provide a consistent picture that consists of three phases (see Figs. 6.1
and 6.2):

1. Initial data, or upstream data, in a grid-generated turbulence, being quasi-
isotropic, the RST is nearly spherical with no significant cross correlation u′

1u′
2,

so that the first phase of the evolution is close to the decay of unsheared turbu-
lence.

2. In the second phase, anisotropy develops, so that the production of turbulent
kinetic energy (which is proportional to u′

1u′
2) becomes larger than its dissipa-

tion rate, and the turbulent kinetic energy begins to increase. It is worth noting
that, if the initial turbulent kinetic energy is too low, the viscous damping may
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Figure 6.1. Evolution of turbulent kinetic energy, K (top) and streamwise turbulence intensity
(bottom), measured in different laboratory experiments. In all cases, the production phenomenon
is clearly observed after the initial decay phase. Reproduced from Rohr et al. (1988) with permis-
sion of CUP.
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Figure 6.2. Evolution of turbulence characteristic scales in different experiments. Top: integral
scale; middle: Taylor scale; bottom: Kolmogorov scale. The ratio L/� is observed to increase, show-
ing that the spectrum is filled by the production mechanism. Solid curves are related to isotropic
decay. Reproduced from Rohr et al. (1988) with permission of CUP.

be so high that the flow will be dominated by linear viscous effects, resulting in
a monotone decay until all fluctuations have been suppressed.

3. In the final stage, an asymptotic regime is reached in which the turbulent
kinetic-energy growth rate can become exponential, but this point is more sub-
tle than is generally admitted. The exponential growth is associated with con-
stant values of the components of the anisotropy tensor, bi j . Both numerical
and experimental data indicate that the following nondimensional quantities
exhibit constant (but flow-dependent!) values in the asymptotic regime:

SK
ε

,
Su′

1u′
2

ε
,

which are the shear rapidity (which compares the nonlinear time scale �NL =
K/ε with the shear time scale S−1) and the ratio of the production of turbu-
lent kinetic energy to the dissipation rate. Combining these two quantities, one
finds that u′

1u′
2/K is also constant. It is worth noting that the exponential growth

regime cannot be sustained for arbitrary long times, as turbulent kinetic energy
must remain finite in physical systems. The kinetic-energy growth can be esti-
mated as (Rohr et al., 1988)

K(t) = K(0)e�St , � =
(

−u′
1u′

2

K

)(
1 − Su′

1u′
2

ε

)
, (6.2)
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Table 6.1. Asymptotic behavior of homogeneous shear
turbulence for large St

DNS and Pressure-
Quantity experiments RDT released RDT

K(St � 1)/K(0) ∝ e�St ∝ St ∝ (St)2

b11(St � 1) 0.203 2/3 2/3
b22(St � 1) −0.143 −1/3 −1/3
b33(St � 1) −0.06 −1/3 −1/3
b12(St � 1) 0 (−0.15) 0 0

Note: The asymptotic value given between parentheses for b12 in
the first column is the one given in Piquet (2001), which is a plateau
value observed for a finite range of St , whereas zero is presumably
the true asymptotic value for St � 1.

where the damping factor � is constant, flow dependent, and positive. This ex-
pression is very useful: It shows that St is not the only parameter that describes
the flow, that � must be taken into account, and that, for low values of �St , a
first-order Taylor series expansion makes it possible to recover the turbulent
kinetic-energy linear growth rate reported by some authors.

We now discuss the asymptotic regime in more detail. Anisotropy of the RST
develops too, with the streamwise component becoming largely dominant with re-
spect to the two other diagonal ones, and the vertical one being the smallest. Ex-
act values of the components of the anisotropy tensor bi j are difficult to infer from
available data, as a nonnegligible dispersion among data is observed. Plausible tar-
get values given by Piquet (2001) are displayed in the first column of Table 6.1. It is
worth noting that the asymptotic value of b12 is observed to be flow dependent, but
that the true asymptotic value may be equal to 0. Other values may be in fact in-
termediate plateau values found in experiments and numerical simulation at mode-
rate St .

It is worth noting that bi j is only one descriptor of anisotropy among many oth-
ers. Interesting anisotropy indicators also are provided by the integral length scales
L(n)

i j , which are defined as follows:

u′
i u

′
j L

(n)
i j =

∫
u′

i (x)u′
j (x + ra(n))dr with a(n)

m = �mn, (6.3)

with no summation over repeated i, j subscripts, i, j, n = 1, 3.∗

The longitudinal integral scale L(1)
11 becomes very large and dominates all other

components at large St . Among various components, the (large) ratio L(1)
11 /L(3)

11 is
particularly informative as it is directly linked to the aspect-ratio (streamwise length
to spanwise spacing) streaklike structures (this point will be further developed in
Subsection 6.3.2). Incidentally, one can notice that the appearance of streaks is

∗ In isotropic turbulence, all these quantities reduce to a single one, say L f , with L(n)
nn = L f (any n,

no summation on it), L(n)
i i = L f /2 if n �= i (no summation on i), and L(n)

i j = 0 if i �= j . Accordingly,
departure from this simple relationship reflects the anisotropic structure too.
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found in the homogeneous shear case, even if their dynamics and topology are sig-
nificantly different from the “true” near-wall streaks. Analysis of structures is ad-
dressed in much more detail in Subsection 6.3.2 and Section 6.6.

6.2 Reynolds Stress Tensor and Analysis of Related Equations

The equation governing the RST is

du′
i u

′
j

dt
= −S

⎡⎢⎢⎢⎣
2u′

1u′
2 u′2

2 u′
2u′

3

u′2
2 0 0

u′
2u′

3 0 0

⎤⎥⎥⎥⎦+
i j − εi j , (6.4)

in which the structure of the production term (first term on the right-hand side) has
been detailed. Reynolds stress components involving the vertical, or cross-gradient,
u′

2 component are present in this term.
Now, considering the case of an initially isotropic field, this system simplifies as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du′
1u′

1

dt
= −2Su′

1u′
2 +
11 −ε11

du′
2u′

2

dt
= 
22 −ε22

du′
3u′

3

dt
= 
33 −ε33

du′
1u′

2

dt
= −Su′

2u′
2 +
12 −ε12.

. (6.5)

The different couplings are illustrated in Fig. 6.3. The associated evolution equa-
tion for the turbulent kinetic energy is

dK
dt

= −Su′
1u′

2 − ε, (6.6)

which shows the importance of the cross correlation u′
1u′

2 for the kinetic-energy
growth rate.

Reynolds stress models with conventional closure techniques perform satisfac-
torily in the shear-flow case. One reason is historical and not really rational: Ad-
justable constants in the closure models were fitted with maximum care in this case
only! Another reason is that the dynamics is dominated by a simple production to
dissipation balance (or partial imbalance), and it is not very sensitive to the model-
ing of the pressure–strain-rate tensor, especially to its rapid part, whose single-point
modeling is the most difficult task.

For instance, the exponential growth of turbulent kinetic energy obtained after
a sufficiently large elapsed time and at large Reynolds number can be predicted,
even if not really explained. Equation (6.6) can be rewritten as

1
SK

dK
dt

= −u′
1u′

2

K − ε
SK , (6.7)
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viscosity

viscosity

viscosity

Pressure

Pressure

Main shear

Main shear

heat

heat

u′1u′1

u′3u′3

u′2u′2u′1u′2

Figure 6.3. Couplings between the different nonvanishing Reynolds stresses in the pure shear case.
Arrows indicate the production process, their color being related to the physical quantity at play
(mean strain, pressure, viscosity).

leading to 1
SK

dK
dt = constant in the asymptotic regime. A reasonable asymptotic

value of the shear-rapidity term is obtained from both the previous equation and
the modeled corresponding ε equation,

1
Sε

dε
dt

= C	1(−2b12) − C	2
ε

SK , (6.8)

provided a correct asymptotic value is assumed for b12. The dependence of the pre-
diction on the two empirical constants is not discussed here. The reasonable asymp-
totic value for the nondimensional term −2b12 previously given is obtained consid-
ering the pressure–strain-rate modeling and distinguishing between the rapid (or
linear) and the slow (or nonlinear) pressure terms, respectively denoted 


(r)
i j and



(s)
i j . In the pure shear case, the rapid and slow time scales are S−1 and K/ε, respec-

tively. Assuming that the dissipation is nearly isotropic for the sake of simplicity, the
equation for the cross stress can be rewritten as

du′
1u′

2

dt
= −Su′2

2 + 

(r)
12 + 


(s)
12 , (6.9)

where u′2
2 is governed by

du′2
2

dt
= 


(r)
22 +


(s)
22 − 2

3
ε. (6.10)

It immediately appears that the growth rate of u′
1u′

2 is first driven by the vertical
correlation u′2

2 , this effect being modulated by both rapid and slow pressure–strain-
rate correlations terms. The effect of the linear term 


(r)
12 is modeled to reduce the
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production, and is perhaps not so important, at least qualitatively. In contrast, the
conventional return-to-isotropy effect of the modeled nonlinear term,



(s)
22 = −C(r ti)εb22, (6.11)

is essential for allowing an exponential growth rate in a fully nonlinear regime. A
simple explanation can be offered as follows. In the absence of nonlinear terms
(and without significant dissipation), Reynolds stress equations, even if they can-
not reproduce the RDT behavior (see Section 6.3), at least are consistent with an
algebraic growth of the turbulent kinetic energy: K(St) ∝ (St)n , 1 ≤ n ≤ 2. In this
regime, u′2

2 remains very small. The presence of the nonlinear pressure–strain rate,
modeled in agreement with the return-to-isotropy principle, will redistribute the en-
ergy between the diagonal components of the RST, therefore feeding the smallest
component u′2

2 . This effect will reinforce the production term −Su′2
2 through a strong

positive 
(s)
22 term in Eq. (6.10). Even if the term 


(s)
12 , being positive, will contribute

to damping the growth of u′
1u′

2, the effect of 
(s)
22 will be the most efficient “nonlin-

ear” one to enhance u′2
2 and therefore to allow a dramatic increase of production,

consistent with an eventual exponential growth.

6.3 Rapid Distortion Theory: Equations, Solutions, Algebraic Growth

Linearized inviscid equations in physical space are

∂u′
i

∂t
+ Sx2

∂u′
i

∂x1
+ S�i1u′

2 = −∂p′

∂xi
. (6.12)

The pressure (here divided by the mean reference density) term is identified by
taking the divergence of the previous equation as

∇2 p′ = −2S
∂u′

2

∂x1
(6.13)

so that the vertical (cross-gradient) component of the velocity is evidenced as the
key component. Combining linearized Navier–Stokes and Poisson equations, it can
be easily found that the Laplacian of the vertical velocity fluctuation is simply ad-
vected by the mean flow:

D
Dt

(∇2u′
2

) =
(

∂

∂t
+ Sx2

∂

∂x1

)
∇2u′

2 = 0. (6.14)

The fact that ∇2u′
2 obeys a decoupled equation and may be chosen as one of

the basic variables to study linear solutions in the presence of mean shear is not
surprising because in the analyses of Orr–Sommerfeld and Squire, ∇2u′

2 and �′
2

(vertical vorticity fluctuation) are the two basic variables. Accordingly, it is not too
difficult to find complete solutions in physical space for these variables. Neverthe-
less, these solutions display nonlocal operators and involve an integrodifferential
Green’s function in physical space, so that the RDT problem is much more easily
solved in Fourier space.
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Using the general formalism introduced in Chapter 5 (detailed in Chapter 13),
RDT equations can be recast as

˙̂ui + S

(
�i1 − 2

k1ki

k2

)
û2 = 0 (6.15)

and

k̇i + Sk1�i2 = 0. (6.16)

The latter equation generates the following characteristic lines in Fourier space,

k1 = K1, k2 = K2 − St K1, k3 = K3, (6.17)

which are related to the mean trajectories in physical space:

x1 = X1 + X2St, x2 = X2, x3 = X3. (6.18)

It is worth noting that Eqs. (6.17) and (6.18) are a special case of ki = F−1
j i K j

and xi = Fi j X j using Eq. (6.1). Taking advantage of the decoupling of the equation
for û2,

˙̂u2 − 2S
k1k2

k2
û2 = 0, (6.19)

and using k̇i ki = k̇k = −Sk1k2 from Eq. (6.16), one obtains

D

Dt
(k2û2) = 0, (6.20)

which is the exact counterpart of Eq. (6.14). The solution is

û2(k, t) = K 2

k2
û2(K , 0). (6.21)

Finally, the full solution is expressed as (e.g., Townsend, 1976; Piquet, 2001)⎛⎜⎝û1(k, t)

û2(k, t)

û3(k, t)

⎞⎟⎠ =

⎡⎢⎣1 G12 0

0 K 2

k2 0

0 G32 1

⎤⎥⎦
⎛⎜⎝û1(K , 0)

û2(K , 0)

û3(K , 0)

⎞⎟⎠ (6.22)

where the two extradiagonal terms are given by

G12 = −S
∫ (

1 − 2
K 2

1

k2

)
K 2

k2
dt, G32 = 2S

K1K3

K 2

∫
K 4

k4
dt, (6.23)

in which the time dependency is induced by k2(t) following Eqs. (6.17). Analytical
integration is not difficult but rather tedious (a whole page would be needed to write
the analytical solutions with only various algebraic and tan−1 terms); see Townsend
(1976) and Piquet (2001).

For K1 = 0, the solution drastically simplifies, leading to K/k = 1, G12 = −St ,
and G32 = 0.

This solution can be found with the minimum number of components in the
Craya–Herring frame of reference. Choosing n (the polar axis of the decomposition)
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in the vertical direction, the two modes u(1) and u(2) are related to vertical vorticity
and the Laplacian of vertical velocity, respectively. Therefore they appear to be
the spectral normalized counterparts of Orr–Sommerfeld–Squire variables that are
commonly used within the linear-instability theory framework. The resulting system
of the two equations is

u̇(�) + Se(�)
1 e(�)

2 u(�) = 0, �,� = 1, 2, (6.24)

as the terms ė(�)
i e(�)

i identically vanish, although k itself is time dependent.
As for the solution in the fixed frame of reference, the equation for the poloidal

component u(2) is decoupled from the one for the toroidal component because

u̇(2) − S
k1k2

k2
u(2) = 0.

The evolution equation for the toroidal component u(1) reduces to

u̇(1) + S
K3

k
u(2) = 0

so that the complete solution is(
u(1)(k, t)
u(2)(k, t)

)
=
[

1 g12

0 K
k

](
u(1)(K , 0)
u(2)(K , 0)

)
, (6.25)

in which the unique extradiagonal term is

g12 = −S
K3

K

∫
K 2

k2
dt = K K3

K1K⊥

(
tan−1 k2

K⊥
− tan−1 K2

K⊥

)
, (6.26)

with

K⊥ =
√

K 2
1 + K 2

3 , (6.27)

so that a complete solution is generated that is much simpler than Townsend’s in
the fixed frame of reference. As before, the particular case K1 = 0 yields K/k = 1
and g12 = −St k3

k .

6.3.1 Some Properties of RDT Solutions

The role of fluctuating pressure is clearly to reduce the vertical velocity component,
and therefore to diminish the production of turbulent kinetic energy. This point
is illustrated by the growth rates reported in the first line of Table 6.1. Ignoring
the pressure term in the linearized equation, the vertical velocity component is just
advected. More generally the pressure-released RDT solution is

u′
2(x, t) = u′

2(X, 0), u′
3(x, t) = u′

3(X, 0), u′
1(x, t) = u′

1(X, 0) − Stu′
2(X, 0). (6.28)
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Of course, this oversimplified solution is not divergence free. The pressure-
released RDT solution for the departure from the isotropy problem is

u′
1u′

1(t) = 2
3
K(0)

[
1 + (St)2] , (6.29)

u′
2u′

2(t) = u′
3u′

3(t) = 2
3
K(0), (6.30)

u′
1u′

2(t) = −2
3

StK(0), (6.31)

yielding a quadratic (St)2 growth rate for the kinetic energy. Corresponding asymp-
totic values of the anisotropy tensor components are presented in Table 6.1.

But it must be borne in mind that this is the Laplacian of the vertical velocity
component that is advected in the full RDT solution, so that

∂2u′
2(x, t)

∂xi∂xi
= ∂2u′

2(X, 0)
∂ Xi∂ Xi

,

leading to a decrease of the vertical component. This effect is quantified in Fourier
space by the factor K 2/k2(t), which tends to zero at large St if K1 is nonzero. For
instance,

u′2
2 =

∫∫
K 4

k4
R̂22(K , 0)d3k,

which can be evaluated from isotropic initial data,

R̂i j (K , 0) = E(K )
4�k2

(
�i j − Ki K j

K 2

)
,

with d3k = d3K coming from the incompressibility constraint,† so that

u′2
2 = 2K(0)

3
1

4�

∫∫
|K |=1

K 2K 2
⊥

k4
d2K , (6.32)

where the surface integral on the initial wavenumber K has to be performed on a
spherical shell of radius unity. A system of polar-spherical coordinates can be used
for further calculations. The decay with time of the integral results from the growth
of k4(t) for almost all K -directions, except K1 = 0.

All the Reynolds stresses can be obtained in a similar way. Let us just mention
the general solution for the kinetic energy, as

u′
i u

′
i =

∫∫∫
R̂ii (k, t)d3k

and

R̂ii (k, t) = E(K )
4�K 2

g��(k, t)g��(k, t)

† It is recalled that, in this case, one has Det F = 1.
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if the initial field is isotropic. Finally, the RDT amplification rate of kinetic energy
is found as

K(t)
K(0)

= 1
2

1
4�

∫∫
|K |=1

| g |2 d2K , (6.33)

where the integral of the square of the norm of g has to be calculated on a spherical
shell of radius unity for the initial wave vector.

Despite the simplicity of the latter integral and the fact that g�� is analytically
expressed from Eqs. (6.25) and (6.26), the final derivation of the kinetic-energy his-
tory is not an easy task. The problem comes from the existence of two different solu-
tions, one for K1 = 0 and one for K1 �= 0, even if continuity holds. An expansion for
high values of St yields a result that is not uniformly valid over the angular domain
in k: A substantial contribution to the integral comes from a narrow region of thick-
ness O

(
(St)−1

)
near K1 = 0 as St increases. This difficulty persuaded Rogers (1991)

to use matched asymptotic expansions to recover the large St behavior of the tur-
bulent kinetic energy. Only the final result is discussed here for the sake of brevity:
The growth rate is linear, K(St)/K(0) ∼ St . Such a linear growth rate is satisfacto-
rily recovered in the DNS of Brethouwer (2005), discarding nonlinear terms. More
generally, large time contributions were derived for all Reynolds stress components
as

u′
1u′

2

2K(0)
→ − ln 2, (6.34)

u′2
1

2K(0)
→ (2 ln 2)St, (6.35)

u′2
2

2K(0)
→ 4(St)−1 ln(4St), (6.36)

u′2
3

2K(0)
→ �2

8
ln(St) − 1.419. (6.37)

The corresponding asymptotic values of the components of the anisotropy ten-
sor are given in Table 6.1.

As a last result, it is interesting to calculate some statistical quantities with very
simple RDT solutions.

Let us first consider statistical quantities that we define by looking at the sole
plane K1 = 0. This plane corresponds to 2D structures averaged in the streamwise
direction, so that u′

i u
′
j L

(1)
i j (without summation over repeated indices) are immedi-

ately found from a RDT integral restricted to K1 = 0, e.g.,

u′2
1 L(1)

11 = 2K(0)
3

L f

[
1 + (St)2

3

]
,

where L f is the reference integral scale in isotropic turbulence.
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Figure 6.4. Inviscid and viscous RDTs compared
with high-shear-rate and low-shear-rate DNSs.
DNS came from a joint exploration by C. Cambon
and M. J. Lee of the CTR database in 1990 (the
same database was used by Lee, Kim, and Moin,
1990). Time histories of the streamwise 2D energy
components u′2

1 L(1)
11 are plotted. Reproduced from

Salhi and Cambon (1997) with permission of CUP.

The plane K3 = 0 corresponds to 2D structures averaged in the spanwise direc-
tion, and similarly simple RDT solutions can be derived for u′

i u
′
j L

(3)
i j :

u′2
1 L(3)

11 = 2K(0)
3

L f

2
= constant.

The ratio of the two latter quantities illustrates the fact that a simple RDT analy-
sis can predict an increasing streaky aspect ratio L(1)

11 /L(3)
33 . The idea of evaluating the

integral length scales, or more precisely their product by related Reynolds stresses
(called later “2D energy components” by Cambon and co-workers), was introduced
by Townsend but applied to RDT only for an irrotational mean strain. Applications
to pure shear and to rotating shear cases are reported in Salhi and Cambon (1997).
Figure 6.4 shows the excellent agreement between RDT predictions and DNS re-
sults if the shear rate is high enough.

6.3.2 Relevance of Homogeneous RDT

RDT can predict qualitative trends, and even quantitative ones for single- and
two-point statistical quantities, which are often dimensionless and characterize
anisotropy. Most usual quantities are Reynolds stress components u′

i u
′
j , with nondi-

mensional deviatoric tensor bi j , and integral length scales L(n)
i j for different velocity

components (subscripts i and j) and different directions of two-point separation (su-
perscript n) for them. The anisotropy reflected in the latter length scales can be very
different from the Reynolds stress anisotropy and therefore cannot be derived from
the knowledge of bi j . The qualitative relevance of RDT solutions can appear even
for particular realizations (snapshots) of the fluctuating-velocity field when com-
pared with full DNS. This is illustrated in Fig. 6.5, which compares instantaneous
velocity fields obtained in the case of pure plane shear and plane channel flow near
the wall. It is concluded that the tendency to create elongated streaky structures by
a strong mean shear is inherent in this “homogeneous RDT” operator, independent
of the presence of a wall and nonlinear effects.
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Figure 6.5. Contours of streamwise fluctuating velocity from (a) DNS, (b) RDT calculations for
uniformly sheared homogeneous turbulence, and (c) DNS of plane channel flow near a wall hor-
izontal plane y+ ∼ 10. The streamwise elongation of turbulent structures resulting from shear ap-
pears clearly, as does the strong similarity between RDT and DNS results. From Lee, Kim, and
Moin (1990) with permission of CUP.

A detailed analysis of the vortical structures dynamics is given in Section 6.5.
We just summarize here the results of Iida, Iwatsuki, and Nagano (2000), who per-
formed a detailed analysis of subtle discrepancies that exist between vortex tubes
predicted by RDT and those observed in DNS for a medium shear 0 ≤ St ≤ 6.

DNSs reveal that these longitudinal vortices are inclined in the (x, y) plane and
tilted in the (x, z) plane. Vortices with positive (resp. negative) longitudinal vortic-
ity tend to tilt at a positive (resp. negative) angle, while they are all inclined at a
positive angle. An important result is that RDT is able to predict the inclination
of longitudinal vortices, but not their tilting. Therefore the tilting appears to be a
nonlinear phenomenon. This subtle kinematical difference on the vortices’ topol-
ogy has a very large impact on nonlinear dynamics. To measure this effect, Iida and
co-workers computed nonlinear terms by using both DNS and RDT velocity fields
as inputs. Their main observations are as follows:

� In DNS, the kinematics of longitudinal vortices is deeply affected by the instan-
taneous strain-rate tensor. They are stretched in the streamwise and spanwise
direction and compressed in the vertical direction. These local strains yield the
existence of spiral streamlines in the streamwise direction and the production of
nonzero instantaneous local Reynolds stress u′

2u′
3. The streamwise fluctuations

generated at the sides of the longitudinal vortex are wrapped around it, leading to
the existence of negative values of the local fluctuating strain (∂u′

1/∂x2 + ∂u′
2/∂x1)
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inside the vortex. This phenomenon, referred to as vortex wrapping, is absent in
RDT fields.

� The vortex-wrapping phenomenon and its effect on the kinematics of longitudi-
nal vortices have a strong impact on nonlinear energy transfers. RDT fields lead
to a vanishing transfer function in Fourier space for the vertical Reynolds stress
u′

2u′
2, whereas it contributes to an inverse energy cascade in the DNS field. RDT

fields also yield to an underestimation of the forward energy cascade associated
with the nonlinear transfers of u′

1u′
1 and u′

3u′
3. This underestimation is tied to the

misprediction of the instantaneous values of u′
2u′

3.

6.4 Evidence and Uncertainties for Nonlinear Evolution:
Kinetic-Energy Exponential Growth Using Spectral Theory

Some attempts exist to reproduce both linear and fully nonlinear regimes by a uni-
fied spectral theory. EDQNM approaches by Cambon et al. (1981) were limited
to moderate anisotropy and were unable to cover a very large St domain. Theo-
retical derivations from LRA by Ishihara et al. (2002) are even more limited to
weak anisotropy and small structures. The general formalisms, called EDQNM1
and EDQNM3, are valid in principle, but no complete solution, with an arbitrary
degree of anisotropy, was numerically computed. General issues are discussed in
Chapter 14. Instead of a general EDQNM (or LRA) approach, we discuss here how
to introduce a self-similar argument in the spectral theory, following a very relevant
approach proposed by Julian Scott (private communication).

A different approach was proposed by Nazarenko and Zakharov (1994). A kind
of “first loop” is used for evaluating the impact of nonlinearity. On the one hand,
this approach includes an interesting formalism, using Clebsch potentials, allowing
us to derive a Hamiltonian operator (Hamiltonian formalism is also very important
in the “Russian” school of wave turbulence). On the other hand, the basic RDT
solution is completely missed, as the authors consider that the asymptotic value of
kinetic energy is a (nonzero) constant in inviscid RDT, ignoring all the subtle effects
correctly accounted for by Rogers (1991). This last point unfortunately invalidates
their main result, which is that turbulent kinetic energy grows as (St)2 in their par-
ticular nonlinear regime.

A relevant analysis is proposed by Julian Scott as follows. Large-scale self-
similarity can be expressed very similarly as in Eq. (3.38) for the shearless-flow case,
as

R̂i j (k, t) = u2L3�i j (kL), (6.38)

where u(t) and L(t) are velocity and length scales characterizing the self-similar
evolution of turbulence, respectively, and �i j is a dimensioneless tensor. The RST
is therefore given by

u′
i u

′
j = u2

∫∫∫
�i j (q)d3q, (6.39)
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showing that its different components are proportional to the same function, u2, of
time. Thus the ratio of different components is constant, as observed asymptotically.
When Eq. (6.38) is used, Craya’s equation (2.81) becomes

�2

(
qm

∂�i j

∂qm
+ 3�i j

)
− �1�i j + �3

(
Mim�mj + M jm�im − Almql

∂�i j

∂qm

)
= �i j ,

(6.40)

where q = kL is the similarity variable, Ti j = u2L3�(q), and the quantities �1, �2,
and �3 are given by

�1(t) = L

u3

du2

dt
, �2(t) = 1

u

dL

dt
, �3 = L

u
. (6.41)

Given the fact that we are concerned with large scales, the viscous term in
Eq. (2.81) is dropped. From Eqs. (6.41), it follows that the �’s are related by

d�3

dt
= �2 + 1

2
�1. (6.42)

Presuming that the given mean flow does not permit self-similar solutions of
the RDT (which is the case for the pure plane shear, but also for all but the pure
rotation case), the only possible large-scale self-similarity, allowing for nonlinearity,
has constant �’s. From Eqs. (6.41) this implies the following exponential behavior,

u(t) ∼ exp
(
�2

�3
t

)
, L(t) ∼ exp

(
�2

�3
t

)
, (6.43)

by use of �1 = −2�2. A positive value of �2/�3 is consistent with experimental and
numerical DNS results.

Of course, we have not shown that large-scale self-similarity occurs, merely that,
if it does, it must respect (6.43). The previous analysis has something to do with
Oberlack’s approach, in the sense that no closure theory is needed, but the discus-
sion of the admissible values for the constants �’s relies on a very subtle analysis of
asymptotic RDT (not reported here for the sake of brevity).

We also take from Julian Scott the following remark. An exponential growth of
L means that, in practice, the large scales in turbulence increase rapidly in size until
they encounter inhomogeneities or boundaries of the flow, at which point the pre-
ceding model, assuming homogeneous turbulence in an infinite domain, no longer
holds.

6.5 Vortical–Structure Dynamics in Homogeneous Shear Turbulence

The statistical behavior of homogeneous shear turbulence previously described can
be explained as being the consequence of the growth and collapse of vortical struc-
tures. It is worth noting here that these structures govern the dynamics of the flow,
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although it was seen in Section 3.6 that their influence on the dynamics of isotropic
turbulence is weak.

Using numerical simulations, Kida and Tanaka (1994) identify the following
scenario for the departure from isotropy:

1. Uncoherent vorticity blobs initially present in isotropic turbulence are trans-
formed into coherent elongated vortex tubes by the imposed mean shear by
means of the vortex-stretching process. This linear mechanism, well recovered
by the RDT, yields the formation of longitudinal vortex tubes. These structures
are aligned with the directions of maximal extension of the mean shear flow
(i.e., they are inclined at 45◦ and 225◦ to the downstream direction). The dis-
tance between the longitudinal vortex tubes is determined by the initial field
and has not been observed to depend on the mean-shear rate.

2. Longitudinal vortex tubes experience the mean shear and are inclined more
and more toward the streamwise direction with a further increase in their vor-
ticity. These two trends are easily understood considering a rectilinear vortex
filament that makes an angle � with the streamwise axis and with axial vortic-
ity �. Neglecting viscous effects and assuming that the vortex filament remains
rectilinear, one obtains (Brasseur and Wang, 1992)

d�

dt
= 1

2
S� sin(2�), (6.44)

d�

dt
= −S sin2(�). (6.45)

Because of nonlinear effects, vorticity vectors inside the longitudinal vortex
tubes are less inclined (by about 10◦) than the vortex tubes themselves, leading
to the vortex-wrapping phenomenon.

3. Longitudinal vortex tubes induce a swirling motion that leads to the forma-
tion of vortex sheets with a spanwise component. These sheets are generated
in planes nearly parallel both to the longitudinal vortex-tube axes and to the
spanwise axis.

4. The vortex sheets are linearly unstable and roll up through the Kelvin–
Helmholtz instability, leading to the growth of vortex tubes in the spanwise
direction. These new vortex tubes are usually referred to as lateral vortex tubes.

5. Lateral vortex tubes are subject to the mean-shear effect in the presence of fluc-
tuations, yielding the generation of hairpinlike vortices, whose legs correspond
to streamwise vortices.

6. All vortical structures present in the flow interact and are subjected to the mean
shear, and break down into a disordered field with weak enstrophy.

7. The continuous action of the mean shear leads to the occurrence of a large
oblique stripe structure, which inclines at 10◦–15◦ with the downstream direc-
tion. The growth of this structure leads to a very large decrease of vertical ve-
locity and vorticity fluctuations.



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 19:39

6.6 Self-Sustaining Turbulent Cycle 209

Energy
burst

Enstrophy
burst

∼ 5St

∼ 10 − 20 St

StK
in

et
ic

 e
ne

rg
y,

 e
ns

tr
op

hy

Figure 6.6. Schematic view of the time histories of
global turbulent kinetic energy and enstrophy in
DNS of homogeneous shear turbulence. One cycle
of the SSP is shown.

6.6 Self-Sustaining Turbulent Cycle in Homogeneous
Sheared Turbulence

The asymptotic long-time behavior of homogeneous shear turbulence previously
discussed in this chapter cannot be sustained for an arbitrarily long time, because
turbulent kinetic energy and characteristic length scales must remain bounded. The
very large St behavior of homogeneous shear turbulence is usually not observed in
wind-tunnel experiments because of the experimental setup characteristics. A cyclic
behavior of global turbulent kinetic energy and enstrophy associated with a kind of
unsteady equilibrium solution has been observed in numerical simulations at very
large St (typically for St ≥ 30) (Pumir, 1996; Gualtieri et al., 2002). This turbulent
cycle involves the existence of a self-sustaining turbulent mechanism [also referred to
as self-regenerating or autonomous cycle, or self-sustaining process (SSP)]. The typi-
cal evolution of global turbulent kinetic energy and enstrophy is displayed in Fig. 6.6
A typical cycle is composed of a spike of energy followed by a spike of enstrophy.
These global quantities are observed to exhibit very large relative fluctuations within
40%–50%. The period of the cycle is observed to be of the order of 10–20 S−1.

As stated by Pumir (1996), let us first note that an additional arbitrary length
scale must be prescribed in the simulation to allow for the existence of an equi-
librium solution.‡ From Eq. (6.6), it is seen that a steady statistical equilibrium is
reached if

−Su′
1u′

2 = ε. (6.46)

Now using the usual scaling laws ε ∝ K3/2/L and u′
1u′

2 ∝ √
K, where L is a char-

acteristic length scale, one sees that equilibrium is possible if and only if K ∝ SL ,
leading to the constraint that L must be finite. In very large St simulations, the length
scale L is imposed by the size of the computational domain, which is always finite
and represents an upper bound for the large-scale size. But is is worth noting that

‡ It is recalled here that in the homogeneous shear problem a length scale is missing, because the
mean shear applies in an infinite domain. In this sense, violation of statistical homogeneity, which is
a drawback from a too-rigorous viewpoint, is of interest here.
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in such simulations large scales interact with themselves by means of the periodic
boundary conditions, resulting in a breakdown of ergodicity.

Numerical simulations have shown that kinetic-energy production is mainly
governed by the interaction of the mean shear with the spanwise mode kS =
(0, 0,±1). The energy extracted by this mode from the mean flow is then trans-
ferred to other modes by the nonlinear kinetic-energy cascade process, the fre-
quency of the cycle being determined by the dynamical balance between these two
processes. Because of the incompressiblity constraint, the associated velocity field
is û(kS) = (û, v̂, 0). The linear interaction mechanism is described by the following
system:

dû

dt
= −Sv̂ − �k2

Sû, (6.47)

d v̂

dt
= −�k2

S v̂. (6.48)

The vertical component v̂ is monotonically damped by the viscous effects,
whereas the streamwise component û is amplified if

S [Re(û)Re(v̂) + Im(û)Im(v̂)] � 0. (6.49)

The corresponding physical scheme is as follows: The growth of energy results
from one of the streamwise velocity fluctuations, which is due to the advection of
fluid blobs of high streamwise velocity toward regions of lower velocity by the nor-
mal velocity v. This scenario is reminiscent of the ejection/sweep mechanism ob-
served in turbulent boundary layers.

The different phases of the self-sustaining cycle are fully compatible with the
vortical-structure dynamics observed by Kida and Tanaka (1994), described in the
previous section. The energy burst is observed to occur when the legs of the hair-
pin vortices (i.e., longitudinal vortex tubes) interact with large negative Reynolds
stresses, whereas the minimum of kinetic energy is observed at the beginning of the
cycle when randomly distributed vorticity blobs experience the mean-shear action.
A sketch of the full cycle is displayed in Fig. 6.7. Typical vortical structures at differ-
ent stages of the cycle are displayed in Fig. 6.8.

6.7 Self-Sustaining Processes in Nonhomogeneous Sheared
Turbulence: Exact Coherent States and Traveling-Wave Solutions

The self-sustaining process (SSP) in homogeneous shear flows described in the pre-
ceding section has been identified in numerical simulations only. Its existence seems
to rely on a numerical trick, namely the possibility of enforcing an upper bound for
the turbulent integral scale by means of the use of periodic boundary conditions in
the simulation. In these simulations, the length scale that is missing because of the
homogeneity assumption is recovered by defining the computational box. Neverthe-
less, previous results show that some SSPs may exist in turbulent shear flows. This
phenomenon is found in the inner region of turbulent boundary layers, and modern
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Figure 6.7. Sketch of the self-sustaining turbulent cycle in homogeneous shear flows.

analyses dealing with turbulence control and turbulent drag reduction in these flows
rely on the SSP concept.

Because of the huge importance of shear flows in all fields of application, re-
cent theoretical results dealing with SSPs in wall-bounded shear flows are briefly
surveyed in this section. The main goal here is to characterize near-wall turbulence
in terms of nonlinear exact solutions to incompressible Navier–Stokes equations for
Couette, Poiseuille, and Couette–Poiseuille flows. All these solutions look qualita-
tively similar: a wavy low-velocity streak flanked by staggered streamwise vortices of
alternating signs. According to Jimenez and co-workers (Jimenez et al., 2005), these
solutions, which correspond to permanent stationary or traveling waves and to limit
cycles in autonomous flows, can be classified into upper- and lower-branch fami-
lies. The upper-branch familiy consists of weak streaks with strong streamwise vor-
tices, whereas the lower-branch solutions have much stronger streaks and weaker
vortices.

Emphasis is put on the theory proposed by Waleffe and co-workers (see Hamil-
ton, Kim, and Waleffe, 1995; Waleffe, 1996, 2003, and references given therein), as it
is fully consistent and closed from the theoretical point of view and its results corre-
late satisfactorily with wind-tunnel experiments and numerical simulation. The main
discrepancy with the self-sustaining turbulent cycle in homogeneous shear flows dis-
cussed in the previous section is that the SSPs in nonhomogeneous shear flows in-
volve a local change in the mean flow because of feedback of the fluctuating field.
It is worth recalling here that such a feedback is by definition precluded in homoge-
neous turbulent flows.

The original purpose of Waleffe and co-workers was to explain the regener-
ation of turbulent structures observed in the near-wall region in turbulent wall-
bounded flow. An important finding is that the results subsequently discussed have
been proved to hold for a large variety of shear flows: Couette flow, Poiseuille flow,
and the continuum of Couette–Poiseuille solutions. Because the theoretical analysis
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reveals that the SSP is not sensitive to the boundary conditions imposed on the fluc-
tuations (either free-slip or no-slip conditions can be used), it can be conjectured
that the main role of the solid boundary is to sustain a mean shear, and that a simi-
lar SSP might develop in free-shear flows.

Waleffe’s SSP theory is essentially a weakly nonlinear theory of a 3D pro-
cess about a base shear flow that has an O(1) spanwise modulation U(y, z), but
it is not weakly nonlinear about a 1D laminar base flow U(y). It relies on exact
traveling-wave solutions of the incompressible Navier–Stokes equations of the form
u(x, t) = u(x − ctex , 0), where c and ex are the constant wave velocity and the unit
vector in the streamwise direction, respectively. The full velocity field, including the
base shear flow, is decomposed by means of a Fourier transform in the streamwise
direction, leading to

u(x, t) = u0(y, z) + [eı��u1(y, z) + c.c.
]+ · · · , (6.50)

where u0(y, z) = [u0(y, z), v0(y, z), w0(y, z)] is the base shear flow and � = x − ct .
The base shear flow can be decomposed as the sum of a 1D mean-shear flow u(y)
(defined as the streamwise velocity averaged over the periodic x and z directions)
and streaky structures responsible for the modulation u0(y, z) − u(y). These streaky
structures are assumed to represent elongated streamwise blobs of rapid and slow
fluids observed in the near-wall region of turbulent wall-bounded flows. They are
modeled by means of streamwise rolls, which are longitudinal vortices with alternat-
ing streamwise vorticity sign and low O(Re−1) amplitude. The SSP theory consists
of three main steps (see Fig. 6.9):

1. Formation of the streaky flow. The existence of weak streamwise rolls
[0, v0(y, z), w0(y, z)] redistributes the streamwise momentum, leading to large
spanwise fluctuations in the streamwise velocity, [u0(y, z), 0, 0]. If the rolls are
strong enough, an inflexional streamwise velocity profile can be generated.

2. Instability of the streaky flow. The existence of a locally inflexional streamwise
velocity profile leads to wakelike instability in which a 3D disturbance develops.

3. Nonlinear feedback on the rolls. The streak eigenmode [eı��u1(y, z) + c.c.] is
the first harmonic in the streamwise direction of the disturbance. Its quadratic
self-interaction [e2ı��u1(y, z)u1(y, z) + u∗

1(y, z)u1(y, z) + c.c.] generates a sec-
ond harmonic [e2ı��u2(y, z) + c.c.]. But, more important, the nonlinear self-
interaction term u∗

1(y, z)u1(y, z) is observed to extract energy from the streak
and to reenergize the original streamwise rolls, leading to the definition of a
closed nonlinear feedback loop.

Therefore the three necessary ingredients of the SSP are streamwise rolls,
streaks, and streak eigenmode. An additional element is the mean shear, which pro-
vides the overall energy. It is worth noting that the streak instability extracts energy
from the streaks and then cannot directly sustain them. It sustains the rolls, which
sustain the streaks. The destruction of one of these key elements would lead to a
breakdown of the SSP, and therefore to a possible deep modification of turbulence,
as done in several turbulent drag-reduction strategies.
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Figure 6.9. Schematic representation of Waleffe’s SSP in nonhomogeneous shear flows.

6.8 Local Isotropy in Homogeneous Shear Flows

The question of the validity of Kolmogorov’s local isotropy hypothesis in homoge-
neous shear flows has been addressed by several authors, using both experimental
and simulation data. A first observation is that, as expected, the mean shear in-
duces a breakdown of global isotropy. Looking at pdfs of velocity increments (see
Fig. 6.10), one can see that the effect of the shear is scale dependent. Its influence on
small-scale anisotropy is strong, leading to a noticeable departure from the isotropic
turbulence case, whereas the effects at larger scales are weaker.

Therefore the question arises of the existence of a range of scales for which the
local isotropy may hold. Experimental data show that, under certain circumstances,
the turbulent energy spectrum E(k) exhibits two different inertial ranges. More pre-
cisely, there exists a wavenumber kS such that, within the inertial range,

E(k) ∝
{

k−1 k � kS

k−5/3 k � kS
. (6.51)

This bifurcation can be recovered by means of a simple dimensional analysis
(Gualtieri et al., 2002). Introducing the shear scale LS � 1/kS ,

LS =
√

ε
S3

, (6.52)

one can see that at scales larger than LS the dynamics is expected to be dominated
by linear shear effects, whereas scales much smaller than LS should be governed by
nonlinear effects. Local isotropy may hold for the latter range of scales, but it is not
observed in all cases, as subsequently discussed. Experimental data show that the
bifurcation between the two inertial ranges occurs for kLS ∼ 0.5–1.
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The preceding criterion is not sufficient to account for the full complexity of the
problem, as viscous effects are neglected and these effects can preclude the occur-
rence of the quasi-isotropic inertial range. One needs to define two nondimensional
parameters, Si and Sd , to describe the full problem. The first one measures the rela-
tive importance of nonlinear inertial mechanisms and linear shear effects:

Si = 2SK
ε

=
(

l

LS

)2/3

, l = (2K)3/2

ε
. (6.53)

The second one is defined as the ratio of the dissipative and shear effects:

Sd = S

√
�

ε
=
(
�

LS

)2/3

. (6.54)

One can expect to observe a pseudo-isotropic inertial range for small values of
Sd only. For large values of Si , most of the scales in the inertial range are dominated
by the mean-shear effects, precluding the existence of scales compatible with local
isotropy. A consequence is that true local isotropy, if it exists, can be recovered at
a very high Reynolds number only. Such high values have not been reached up to
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now, and available data make it possible to identify only trends. Available results
suggest that, with an increase in the Reynolds number, small scales in homogeneous
turbulence come closer to isotropy, but that some anisotropy persists, even at Re� =
660 (Ferchichi and Tavoularis, 2000). An open issue is the existence, even at very
high Reynolds number, of a pseudo-isotropic state of the small scales, in which some
anisotropy would remain.
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7 Incompressible Homogeneous Anisotropic
Turbulence: Buoyancy and Stable Stratification

7.1 Observations, Propagating and Nonpropagating Motion. Collapse
of Vertical Motion and Layering

Turbulent flows can transport passive scalars, such as temperature or concentration.
In important applications, such scalar (e.g., temperature, salinity) fluctuations gen-
erate a buoyancy force in the presence of gravity, which directly affects the velocity
field. In addition, the transport of such “active” scalars by turbulence is altered by
a mean-density gradient – intimately related to a mean-scalar gradient – in many
applications, especially in atmospheric and oceanic research.

A first sketch of what stable and unstable stratifications are can be understood
from a simple displaced-particle argument, as follows. Considering a vertical nega-
tive mean-density gradient (the heaviest flow is at the bottom), as in the scheme in
Fig. 7.1, if a fluid particle is displaced upward, keeping its density and initially in hy-
drostatic equilibrium, it must experience a lighter fluid environment: The imbalance
between (smaller) buoyancy and (same) weight will result in a downward force.
The opposite situation occurs if the particle is moved downward, the imbalance
buoyancy–weight will result in a upward force. Accordingly, the buoyancy force
acts as a restoring force in this situation of negative mean-density gradient. Vertical
oscillations with a typical frequency N are expected (as subsequently rediscussed).

The same reasoning holds for explaining unstable stratification. The mean-
velocity gradient is now positive: A particle that is displaced upward will experience
a heavier fluid environment, so that the buoyancy will result in a upward force, forc-
ing the particle to continue to move up. This case of instable stratification, which
includes important instances of thermal convection, is not addressed in this book.

Only stable stratification is considered in this chapter. This situation is current
in the ocean, except in a (neutral) mixing layer near the surface. All situations,
stable, unstable, and neutral, are encountered in the atmosphere, with a persistent
case of the inversion of the temperature gradient, which yields a stable case in the
tropopause and low stratosphere.

The previously mentioned vertical oscillations are the simplest mechanism for
generation of internal gravity waves. Gravity waves have a strong analogy to the
inertial waves introduced in Chapter 4. On the one hand, because the velocity field
remains divergence free, pressure fluctuations are responsible for both anisotropic
dispersivity and vertical–horizontal interchange of motion by the gravity waves, in a

219
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Figure 7.1. Sketch of basic oscillations, verti-
cal displacement in stable stratification (left),
horizontal displacement in rotating-flow case
(right).

way very similar to what occurs for inertial waves. Similar St. Andrew’s cross-shaped
structures are found in both (rotating and stratified) cases. On the other hand, it is
possible to define a potential energy for gravity waves only, as we will see further:
The wave kinetic energy is essentially the poloidal kinetic energy, whereas the po-
tential energy is proportional to the variance of density (or buoyancy) fluctuation.
In this sense, buoyant flows with stable stratification illustrate another case of flow
dominated by wavy effects with zero-energy production, as introduced in Chapter 4.
For pure rotating turbulence, there is zero production of kinetic energy and for strat-
ified (and stratified rotating) turbulence there is zero production of total energy, the
latter being defined as the sum of kinetic energy and potential energy.

The essential difference between the rapidly rotating case and the strongly strat-
ified one is the existence of an important nonpropagating mode of motion in the
latter case. The toroidal part of the motion is unaffected by the gravity waves in the
linear limit of a small Froude number. It is perhaps useful to recall the definition
of Froude numbers, which are very similar to macro-Rossby numbers in Chapter 4,
only replacing 2� with N and using alternatively large horizontal L⊥ or vertical L‖
length scales:

Fr⊥ = u′

N L⊥
; Fr‖ = u′

N L‖
. (7.1)

More generally, the Ertel theorem yields a nonlinear definition of the nonprop-
agating mode (rediscussed in Chapter 8, in agreement with general definition of
potential vorticity). In the geophysical community, this mode is referred to as the
quasi-geostrophic (QG) mode that is generally defined in the presence of additional
Coriolis effects (see Chapter 8). Many wave-vortex decompositions, which are often
neither intrinsic nor general, exist in the literature, so that particular care is given
in this book to the very definition of the modes of motion. For instance, the wave-
vortex decomposition by Riley et al. (1981) is meaningful only in the absence of ad-
ditional rotation. The same decomposition was recently coined “vortical-divergent”
by Brethouwer et al. (2007): This terminology is more confusing than the former,
because the whole velocity field is divergence free (it would be relevant, however,
in connection with the true Helmholtz decomposition for compressible flows, for in-
stance in Chapter 9). The “vortex” (Riley, Metcalfe, and Weissman, 1981) or “vor-
tical” (Brethouwer et al., 2007) mode is better qualified as the toroidal one anyway.

The main effect of stable stratification is to inhibit the vertical motion. Never-
theless, this stabilizing effect is not necessarily true for the horizontal motion, as
recently shown in several studies devoted to the zig-zag instability, following Billant
and Chomaz (2000). Considering vertical columnar vortices, strong stratification
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Figure 7.2. Experimental illustrations of the zig-zag instability. Courtesy of J.-M. Chomaz and
P. Billant.

partly inhibits elliptical and/or centrifugal instabilities (touched on in Chapter 8)
but breaks the vertical coherence of the columns by creating alternate, tangling,
horizontal motion by means of zig-zag instability (Fig. 7.2).

This instability is even invoked to explain the horizontal layering of strongly
stratified flows: We think that this is only part of the full answer. In the same way,
the scaling of the vertical length scale U/N , where U [or u′ in Eq. (7.1)] is a typical
horizontal velocity scale and N is the gravity-wave typical frequency, is suggested by
the zig-zag instability (Billant and Chomaz, 2001) but also by many other arguments
disconnected from it.

Finally, the morphology of a strongly stratified flow is essentially a piling-up
of velocity and density horizontal “pancakes” that can be observed in Fig. 7.6 in
Section 7.5. A similar topology was reported from the observation of instantaneous
isovorticity surfaces by Kimura and Herring (1996).

The flow is really quasi-horizontal but far from being 2D. Even with a random
forcing of 2D modes, a DNS by Herring and Métais (1989) exhibits a clear tendency
of forming horizontal layers, with a limited vertical thickness.

Gravity waves are present in the layered flow, but perhaps only in the limit of
low frequencies (low dispersion frequency at a given high frequency N is obtained
in the limit of quasi-vertical wave vectors, forming a vertically sheared horizontal
flow – VSHF – mode, as subsequently shown). A clear analysis of such flows cannot
be made without rigorous terminology, avoiding the confusion among horizontal,
2D, and toroidal motions. In addition to an accurate description of the morphology,
dynamical arguments must be discussed: What is the mechanism that controls the
thickness of the pancakes?

In addition to the mathematical–numerical decomposition by Riley, Metcalfe,
and Weissman (1981), another related aspect is the scaling arguments for small (hor-
izontal) Froude numbers, which supports the idea of almost vertically decorrelated
thin horizontal pancake layers. The scaling by Riley, Metcalfe, and Weissman (1981)
seems to hold for laboratory experiments, for internal waves (because the vertical
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scale of U/N is generally not of importance), and possibly for larger-scale flows
(if their dynamics is not controlled by the vertical scale U/N). Note that strongly
stratified flows (low Froude numbers in either sense) can exhibit waves over a broad
range of frequencies. They are not limited by scaling or dynamical arguments to ver-
tical scales of the order of U/N . There can be significant vertical motion associated
with the waves.

Applications are very important for flows in the atmosphere and the ocean, in
which stable stratification limits the vertical motion and makes the flow mainly hor-
izontal. The problem of the sense of the kinetic-energy cascade (forward or back-
ward) in such flows is still controversial, even if a global consensus is now emerging
against the idea of a classical 2D inverse cascade. On the one hand, the analogy
between QG and 2D dynamics, with conservation of potential vorticity, was in-
vestigated by Charney (1971). This analogy was revisited by Bartello (1995) with
a refined analysis of pure QG interactions, also in the line of the Waleffe’s instabil-
ity principle. Regarding applications, Lilly (1983) proposed that the kinetic-energy
spectra observed in the atmosphere at mesoscales (i.e., very low wavenumbers) are a
manifestation of this 2D mechanism. In spite of this questionable speculation about
upscale energy transfer, Lilly (1983) was probably the first to sugggest that verti-
cal layering and instabilities would result from strong stratification (at low Froude
numbers). At the bottom of page 755 and the top of page 756 of his paper he states:

The second and more difficult problem is concerned with the continuing validity
of the RMW [Riley, Metcalfe, and Weissman, 1981] scale analysis over a long pe-
riod of time. The predicted decoupling of the dynamics at adjacent vertical levels
can be maintained only as long as the local Richardson number is large. Both the
inherent instability of turbulent flows and the existence of any mean vertical shear
will decorrelate the vertical flow structure and produce locally small Richardson
numbers. The subsequent regeneration of small-scale three-dimensional turbu-
lence then modifies the stratified turbulence evolution to a yet uncertain degree.

Recently, Lindborg and Cho (Lindborg and Cho, 2001; Cho and Lindborg,
2001) deduced from analysis of third-order statistical moments that the energy cas-
cade is in the direct sense, i.e., from small to large wavenumbers. This observational
evidence was further supported by a dimensional analysis related to the zig-zag in-
stability (Billant and Chomaz, 2001), showing that the vertical scale is necessarily
limited by a local buoyancy length scale L B = U/N , where U is the horizontal ve-
locity scale and N is the Brunt–Väisälä frequency. Several DNSs (or rather LESs be-
cause of the use of a hyperviscosity instead of the classical molecular viscosity) were
carried out by Lindborg and co-workers to investigate such a forward cascade. In
these computations, the 2D-2C modes, and only these modes, are randomly forced,
and the horizontal length scales are a priori chosen much larger than the vertical
ones, using flattened boxes. Even if these studies present interest for atmospheric
flows, their contribution to a better conceptual understanding of turbulence is lim-
ited by both geometric constraints and artificial forcing: No refined analysis of the
anisotropy of the flow is performed, as was done in the case of rotating turbulence.
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Even more important, no new mechanism of triad interactions is derived from such
LESs.

7.2 Simplified Equations, Using Navier–Stokes and Boussinesq
Approximations, With Uniform Density Gradient

Navier–Stokes equations, with buoyancy force b = bn within the Bousinesq assump-
tion, are subsequently given in the presence of a uniform mean-density gradient. For
the sake of simplicity, the mean flow is restricted to a “stabilizing” uniform vertical
gradient of density, whose strength is given by N , the Brunt–Väisälä frequency:

(∂t + u · ∇) u + ∇ p − �∇2u = bn, (7.2)

(∂t + u · ∇)b −  ∇2b = −N 2n · u, (7.3)

∇ · u = 0. (7.4)

Dependent variables are the fluctuating velocity u, the pressure p divided by a
mean reference density, and the buoyancy force b. The vector n denotes the verti-
cal unit upward direction aligned with the gravitational acceleration g = −gn. The
Boussinesq approximation (Boussinesq, 1876) (the reader is referred to the large
literature on geophysics) preserves the solenoidal property for the velocity, but
allows the density to fluctuate. In the basic continuity equation, �̇ + �ui,i = 0, it
amounts to considering separately �̇ = 0 and ui,i = 0. The first condition generates
b-equation (7.3), whereas only the right-hand-side of momentum equation (7.2) calls
b into play.

Because a large amount of literature is devoted to the turbulent transport of the
passive scalar, a short discussion of this case cannot be avoided. Let us consider first
that the fluctuating concentration of a passive scalar, say c, is addressed, instead of
b, and that a vertical mean gradient (∂C/∂x3)n exists for scalar concentration. The
classical advection–diffusion equation, with additional “mean production” is

(∂t + u · ∇)c −  ∇2c + ∂C

∂x3
u · n = 0,

which is essentially the same as Eq. (7.3). The only difference with the passive scalar
equation is the presence of the right-hand side in (7.2) that reflects an “active” feed-
back from scalar concentration to velocity field.

The use of the buoyancy variable b allows us to have the same equations, with
the unique frequency N , for a liquid or for a gas. For a liquid, b = g� ′/�0, where
� ′ denotes a small fluctuation and �0 is the mean reference density. The definition
N =

√
g�/�0, where � is the mean vertical gradient of density, presents a strong

analogy with the frequency of a pendulum, with (�/�0)−1 playing the role of the
length of the pendulum. For a gas, b is proportional to the fluctuating potential
temperature � , as b = �g� , where � is the thermometric expansivity. Accordingly,
one has N = √

g�� , where � is the mean vertical gradient of temperature.
Finally, the different flow cases are distinguished only by the diffusivity coeffi-

cient for b. Because there is no meaning for a diffusive density,  must be considered
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as the diffusivity of the stratifying agent, for instance the temperature for a gas ( /�
is a Prandtl number) or the salinity for a liquid ( /� is a Schmidt number). With-
out loss of generality, the fixed frame of reference is subsequently chosen such that
ni = �i3. Therefore u3 is the vertical velocity component.

7.2.1 Reynolds Stress Equations With Additional Scalar Variance and Flux

As for the case of a passive scalar, single-point second-order correlations include not
only the RST ui u j (there is no mean velocity here, so that u = u′), but also the scalar
variance b2 and the scalar flux bui . Transport equations for the latter correlations
are standard (passive scalar in the presence of a mean gradient of passive scalar
of magnitude N 2). The Reynolds stress equations must be affected by the active
buoyancy term, yielding

dui u j

dt
= 


(s)
i j + bu j�i3 + bui�j3 − ε i j .

All Reynolds stresses with a vertical component are therefore altered by buoy-
ancy fluxes. Buoyancy fluxes bui are themselves governed by

dui b

dt
= N 2ui u3 +


(r)
ib +


(s)
ib − 	ib,

whereas the buoyancy variance b2 satisfies

db2

dt
= 2N 2bu3 − 	b.

These equations immediately result from combining basic equations (7.2) and (7.3).
They can be found in Craft and Launder (2002) up to slightly different notation,
with additional nonhomogeneous diffusive terms, and replacing d/dt with D/Dt
(i.e., considering fully convective terms). Even in strictly homogeneous turbulence,
some additional contributions from triple correlations, neglected in conventional
modeling, may appear. They result from the fact that conservation laws (with zero
contribution of related nonlinear transfer terms) are valid for separately considered
toroidal and wave (poloidal + potential) energies, but not for horizontal, vertical,
and potential energies [those that are tractable in only the Reynolds stress model
(RSM) framework, with potential energy proportional to b2]. This will be evident
when we look at generalized Lin equations in Section 7.5.

Craft and Launder developed one of the most sophisticated full RSM models
(details are not given here for the sake of brevity; see Craft and Launder, 2002), with
application in the two-component limit (TCL), not to be confused with the 2D limit,
relevant here, but also (for different reasons) for near-wall turbulence. In particular
cases, such as the pure decay of homogeneous stably stratified turbulence, the model
mimics the damping of oscillations induced by gravity waves, without significant
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Figure 7.3. Normalized vertical buoyancy flux
u3b. Realizable Ri j − 	 means the sophisticated
TCL model. The EDQNM is essentially RDT
here; the damping of oscillations reflects the phase
mixing that is due to anisotropic dispersivity of
gravity waves. Courtesy of L. Van Haren.

dissipation (see Fig. 7.3). The damping effect results from phase mixing of dispersive
waves, and this physical effect cannot be directly incorporated into a single-point
closure model: The correct behavior of the model is even more surprising and is
probably due to the high complexity of the linear pressure–strain-rate tensors, such
as 
(r)

3b , along with strong constraints imposed, such as realizability. Recall, however,
that in similar conditions, all single-point closure models miss the effects of inertial
waves.

7.2.2 First Look at Gravity Waves

Analysis of the linear limit, mathematical treatment of equations in terms of eigen-
modes, and closure methods for statistics in HAT, can be developed as for the par-
ticular case of pure rotation in Chapter 4.

Without pressure fluctuation, the additional buoyancy and stratification terms
yield oscillations for vertical velocity and buoyancy terms, with frequency N . This
simple motion reflects that the buoyancy force acts as a restoring force in the case
of stable stratification. As for the case of pure rotation, the pressure term in (7.2)
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is needed to satisfy (7.4), and its role in the complete linear solution consists of
coupling vertical and horizontal motion and of generating dispersive inertia–gravity
waves.

The counterpart of Eq. (4.23) for inertial waves is

∂2

∂t2

(∇2 p
)+ N 2∇2

⊥ p = 0. (7.5)

It is needed only to replace 2� with N and to replace the vertical component ∇‖
of the Laplacian operator with its horizontal ∇⊥ counterpart. The same treatment
(i.e., normal-mode decomposition and derivation of the dispersion relation) shows
that the threshold value to trigger the St. Andrew’s cross-shaped structures with a
local harmonic forcing �0 (Mowbray and Rarity, 1967) is �0 = N . The dispersion
frequency in an unbounded domain is defined as

�k = N
k⊥
k

= N sin �. (7.6)

As for the case of rapid rotation, a zero-frequency mode exists for gravity waves,
but it corresponds to the vertical wave-vector direction, forming the 1D VSHF
mode, instead of the 2D (Taylor–Proudman) mode (linked to k‖ = 0) for inertial
waves. As stated before, another even more important difference with the rotating-
flow case is that a part of the horizontal motion remains steady in the linear limit
and therefore decoupled from 3D wave motion.

7.3 Eigenmode Decomposition. Physical Interpretation

In the unbounded case, or for periodic boundary conditions, the different modes,
wavy and steady, are easily found in Fourier space, and a tractable RDT solu-
tion is found in terms of them. Pressure fluctuation is removed from consideration
in the Fourier-transformed equations by use of the local Craya–Herring frame of
reference in the plane normal to the wave vector, taking advantage of Eqs. (7.4)
and (2.67), so that the problem with five components (u1, u2, u3, p, b) in physical
space is reduced to a problem with three components in Fourier space, namely
two solenoidal velocity components [u(1), u(2)] and a component for b̂. The three-
component set [u(1), u(2), b̂] is not a true vector, and this can complicate further
mathematical developments in terms of its eigenmodes and statistical correlations.
So it is more convenient to gather these three components into a new vector v̂,
whose inverse 3D Fourier transform, v, is real. v̂ can be written as∗

v̂ = û + ı
1
N

b̂
k
k
, (7.7)

∗ The term ıkb̂ corresponds to the gradient of the fluctuating buoyancy term in physical space. As
in other studies dealing with the passive scalar, it can be better to use the scalar gradient than the
scalar itself.
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so that its three components are u(1), u(2), and u(3) = ı1
N b̂ in the Craya–Herring

frame, using also its third direction e(3) = k/k, even if it is more usually related to a
divergent part of the velocity flow. The scaling of the contribution of the buoyancy
force allows one to define twice the total spectral-energy density as

v̂ ∗
i v̂i = û ∗

i ûi + N−2̂b∗̂b. (7.8)

Linear inviscid equations are easily found as u̇(1)

u̇(2)

u̇(3)

 =

0 0 0
0 0 −N k⊥

k

0 N k⊥
k 0


u(1)

u(2)

u(3)

 . (7.9)

Linear – improperly called RDT – solutions are easily found, with constant u(1)

and oscillating u(2)–u(3). In any orthonormal frame of reference, linear solutions can
be found in terms of the three eigenmodes,

v̂ = � (0) N(0) + � (1) N(1) + � (−1) N(−1), (7.10)

or

v̂ =
∑

s=0,±1

as(k, t) exp(ıs�k t)N(s), (7.11)

in which the eigenmodes N(s), s = 0,±1 are simple linear combinations of the
vectors in Eq. (2.67). N(0) reduces to the toroidal mode e(1) here. The reader is
referred to Chapter 8 and to Cambon (2001) for a more general QG-AG (age-
ostrophic) decomposition, also valid in the presence of additional rotation. Essen-
tially the same decomposition was introduced by Bartello (1995) in the geophysical
context. Of course, as are constants given by initial data in the strict linear limit. A
Green’s function similar to (4.30) is derived as

Gi j (k, t, t0) =
∑

s=0,±1

N s
i (k)N−s

j (k) exp[ıs�k(t − t0)], (7.12)

and the nonlinear equations can be expressed in terms of the eigenmodes, as in
Chapter 4, if time dependency is reintroduced in as, s = 0,±1, as in the more gen-
eral version of (7.11). The new element, with respect to (4.36), is the presence of a
“strong” nonlinearity, related to a term M(000), which does not reduce to “weak”
wave turbulence, as do the other coupling terms such as M(00±1), M(0±1±1), and
M(±1±1±1) (only the latter being present in rotating turbulence). Because of the form
of the eigenvectors and of the dispersion law, the structure of G in (7.12) is consis-
tent with axisymmetry around the axis of reference (chosen to be vertical here), with
mirror symmetry, and where k‖ and k⊥ hold for axial (along the axis) and transverse
(normal to the axis) components of k, respectively.
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Anisotropy can be significantly broken through the axisymmetrical response
function for triple correlations only, or possibly for two-time second-order statis-
tics (whose analysis is beyond the scope of this book), but the linear limit ex-
hibits no interesting creation of structural anisotropy in classic RDT for predict-
ing second-order single-point statistics. However, in practice, there is a (partial)
two-dimensionalization in rotating turbulence and a horizontal layering tendency
in the stably stratified case. In other words, RDT alters only phase dynamics and
conserves exactly the spectral density of typical modes (full kinetic energy for the
rotating case, total energy and toroidal energy for the stably stratified case), so that
two-dimensionalization or “two-componentalization” (horizontal layering), which
affect the distribution of this energy, are typically nonlinear effects.

Nevertheless, the eigenmodes of the linear regime form a useful basis for ex-
panding the fluctuating-velocity–buoyancy field, even when nonlinearity is present,
and nonlinear interactions can be evaluated and discussed in terms of triadic interac-
tions between these eigenmodes. Accordingly, the complete anisotropic description
of two-point second-order correlations can be related to spectra and cospectra of
these eigenmodes.

Finally, it is important to recall that the spectral mode related to the first vector
e(1) of the Craya–Herring frame of reference is linked to the toroidal mode in phys-
ical space only if the wave-vector direction differs significantly from n. This mode
matches the VSHF mode if k is vertical. The same property holds for the second
vector e(2), which corresponds essentially to poloidal motion but also matches the
VSHF mode for vertical k. The VSHF mode, or u⊥(k‖, t) in physical space, is not
really a wavy mode, even if it corresponds to zero frequency of gravity waves. In ad-
dition, the coupling with buoyancy, which is the main characteristic of linear gravity
waves (poloidal velocity coupled with buoyancy) vanishes for this mode, so that b
is again a passive scalar in the VSHF limit, and strong departure from equipartition
in terms of kinetic and potential wave energy is possible. Regarding vorticity, the
VSHF mode has no contribution to vertical vorticity and contributes to horizontal
vorticity, whereas the toroidal mode (sometime called “vortex” or “vortical” mode)
generates the vertical vorticity component. The Craya–Herring decomposition al-
lows us to incorporate in a very tractable geometrical way the toroidal–poloidal de-
composition, with very different limits given by 2D Taylor–Proudman modes (hor-
izontal wave vectors) and 1D VSHF modes (vertical wave vectors). Near the 2D
limit, the toroidal mode corresponds to horizontal velocity and vertical vorticity,
and vice versa for the poloidal mode. More generally, toroidal velocity corresponds
to poloidal vorticity and vice versa [the Craya–Herring frame is also a useful cyclic
basis; see Eq. (7.15)]. Only near the VSHF limit are vorticity and velocity both quasi-
horizontal.

The main nonlinear mechanism in quasi-homogeneous unsteady stratified flows
consists of concentrating energy toward more and more vertical wave vectors, as
shown in the cartoon from Godeferd and Cambon (1994) in Fig. 7.5 in Section 7.5.
This anti-2D (compared with the case of rotation; see Fig. 4.16 in Chapter 4) trend
can be explained by the toroidal cascade, independently of wave-turbulence “weak”



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

7.4 The Toroidal Cascade as a Strong Nonlinear Mechanism 229

nonlinearity, and without invoking specific instabilities to prexisting and/or forced
coherent vertical vortices.

7.4 The Toroidal Cascade as a Strong Nonlinear Mechanism
Explaining the Layering

Looking at the velocity equation, under a slightly different form (the inviscid case is
considered for the sake of simplicity), one finds

∂u
∂t

+ � × u + ∇
(

p + 1
2

u2
)

= bn, (7.13)

in which projection onto the e(1) mode removes both the “divergent” term (total
pressure here) because of solenoidal property and the b term because it is vertical.
The toroidal (or toroidal + VSHF) equation is therefore

∂u(1)

∂t
+ e(1) · �̂ × u = 0,

and it is possible to extract the pure toroidal contribution in the nonlinear term as

∂u(1)(k, t)
∂t

+ ı
k

2

∑
�

e(1)(k) ·
[
e(2)(p) × e(1)(q) + e(2)(q) × e(1)(p)

]
× u(1)∗(p, t)u(1)∗(q, t) + CCC, (7.14)

using

û = u(1)e(1) + u(2)e(2), �̂ = ık
[
u(1)e(2) − u(2)e(1)

]
. (7.15)

The CCC term denotes the contribution of other quadratic terms, those that
correspond to u(1)∗u(2)∗ and to u(2)∗u(2)∗. Some are identically zero because, for in-
stance, the triple scalar product in terms of e(1) for k, p, q is zero [e(1) being al-
ways horizontal]. More generally, the decomposition in terms of eigenmodes shows
that any u(2) contribution in CCC involves a “rapid” phase factor eı�t , as seen from
Eq. (7.11). These rapid factors result in an efficient damping of the nonlinearity by
anisotropic phase mixing, unless their time dependency is canceled out by means
of resonance conditions. Accordingly, in the limit of strong stratification, the CCC
terms survive only through “weak” resonant-wave interactions (exactly as for ro-
tating turbulence in Chapter 4). The new fact is that all triads involving u(1) only
have a nonvanishing contribution without any wave-resonance constraint. On the
other hand, resonant-wave interactions represent a low-dimensional manifold, so
that magnitude of the CCC contributions can be considered as being of the order
of the Froude number. Discarding CCC terms is therefore relevant if the Froude
number is very small (but with very high Reynolds number in order to allow signifi-
cant nonlinearity, purely toroidal here) and the elapsed time is not too high, with in
addition a special care to investigate the VSHF limit.

The relevance of a pure toroidal cascade, or of a pure QG cascade, revisited in
Chapter 8, deserves further discussion in the geophysical context. But let us note
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that this study can be almost disconnected from the context of geophysical applica-
tions, as it deals with the basic nonlinearity of Euler equations, seen by means of
triad interactions in 3D Fourier space. Given the success of Waleffe’s triad instabil-
ity principle for predicting the energy cascades, a similar approach is now applied to
Eq. (7.14) neglecting the CCC term.

Restricting this equation to a single triad, one obtains

u̇(1)
k = (p2

⊥ − q2
⊥)Gu(1)∗

p u(1)∗
q , (7.16)

u̇(1)
p = (q2

⊥ − k2
⊥)Gu(1)∗

q u(1)∗
k , (7.17)

u̇(1)
q = (k2

⊥ − p2
⊥)Gu(1)∗

k u(1)∗
p , (7.18)

where

G = ı

2
Ckpq

kpq

k⊥ p⊥q⊥

k × p
| k × p | · n (7.19)

and

Ckpq = | sin (̂p, q) |
k

= . . . sym(k, p, q). (7.20)

New detailed conservation laws can be identified in the present case. The
factor G is invariant with respect to any even permutation of the vectors k, p, q
of the triad and changes its sign for an odd permutation. Therefore it is clear
that triadic interactions within a single triad conserve toroidal energy, because
u̇(1)

k u(1)∗
k + u̇(1)

p u(1)∗
p + u̇(1)

q u(1)∗
q = 0 and vertical contributions to toroidal enstrophy,

as

k2
⊥u̇(1)

k u(1)∗
k + p2

⊥u̇(1)
p u(1)∗

p + q2
⊥u̇(1)

q u(1)∗
q = 0. (7.21)

The analogy with the 2D case is very strong; see also Waleffe (1992), and es-
pecially his Appendix A, and pioneering papers by Fjortoft (1953) and Kraichnan,
but it must be noticed that the 2D-2C limit requires the additional condition that
k‖ = p‖ = 0 in Eqs. (7.18). Without further quantitative statistical analysis (next sec-
tion), it is imediately shown that only (R) triads are concerned, but in terms of k⊥
only. Compared with the instability principle expressed in terms of helical modes for
3D isotropic or rapidly rotating turbulence, the analogy of (7.18) with the stability
of a solid rotating around its principal axes of inertia (Euler problem) is even more
striking. In contrast with the helical case, in which terms sk, s ′ p, s ′′q play the role
of (positive) principal inertia moments I1, I2, I3, with the additional difficulty linked
to various signs (polarities of helical modes s = ±1, s ′ = ±1, s ′′ = ±1), now really
positive terms (k2

⊥, p2
⊥, q2

⊥) play these roles.
In short, the presence of only reverse interactions could suggest an inverse cas-

cade, at least in terms of k⊥ wave-vector components and therefore in terms of
cylinders. Strong anisotropy allows for very rich modalities of cascade, with various
senses depending on shell-to-shell (direct), cylinder-to-cylinder, or angle-to-angle
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(see Fig. 7.10 in the next section) spectral-energy transfer. Statistical theory is
needed to derive such information in a quantitative way.

7.5 The Viewpoint of Modeling and Theory: RDT, Wave
Turbulence, EDQNM

The case of stably stratified turbulence is different from the one of pure rotation,
even if the gravity waves present strong analogies with inertial waves. An additional
element is the presence of the toroidal mode, which is steady and decoupled from
gravity-wave modes, at least in the linear limit.

As for the case of rotating turbulence, exact generalized Lin equations are easily
found: (

∂

∂t
+ 2�k2

)
U (tor) = T (tor), (7.22)(

∂

∂t
+ 2�k2

)
U (w) = T (w), (7.23)(

∂

∂t
+ 2�k2 + 2ıN

k⊥
k

)
Z ′ = T (z′), (7.24)

in which

U (tor) = 1
2

u(1)u(1)∗, U (pol) = 1
2

u(2)u(2∗), U (pot) = 1
2

u(3)u(3)∗. (7.25)

The total energy of gravity waves (in the linear limit of eigenmode decomposi-
tion) is given by

U (w) = U (pol) + U (pot). (7.26)

The nonlinear term Z ′ quantifies the imbalance between poloidal kinetic and
potential (buoyancy) parts of the total wave energy: Its real part is (1/2)[U (pol) −
U (pot)] and its imaginary part is related to the poloidal buoyancy flux (details are
given in Godeferd and Cambon, 1994, and Godeferd and Staquet, 2003). Clo-
sures for the transfer terms [right-hand side of Eqs. (7.22)–(7.24)] are found in
terms of the basic set of the previously mentioned spectra, depending on both
k⊥ and k‖ (or on k and cos � = k‖/k) in the simplest statistical way consistent
with the symmetries (axisymmetry with mirror symmetry) of the dynamical basic
equations. As an example, the contribution to T (tor), which is related to purely
toroidal triple correlations 〈u(1)(k, t)u(1)(p, t)u(1)(q, t)〉 under an integral, involve
a term �kpqU (tor)(q, t)[a(k, p)U (tor)(p, t) − b(k, p)U (tor)(k, t)] once closed by the
anisotropic EDQNM procedure.

About global and detailed conservation laws, it is important to stress that
Eqs. (7.22) and (7.23) are always exact, with their right-hand side having zero in-
tegral. On the other hand, detailed conservation laws per triad, for both toroidal
kinetic energy and for vertical enstrophy, are valid only if the poloidal contribution
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Figure 7.4. Stable stratification, purely linear inviscid calculation, isotropic initial data with initially
unbalanced poloidal/potential energy of ratio � ; the toroidal component remains constant and
equal to the initial poloidal component. From Salhi and Cambon (2007) with permission of the
American Physical Society.

to the velocity field is discarded. Removal of poloidal components in the detailed
triadic budget for the toroidal mode amounts to neglecting weak gravity-wave tur-
bulence with respect to strong turbulence, a conjecture that is reasonable at a very
small Froude number and a moderate elapsed time.

Discarding the right-hand side in the preceding system of equations (and viscos-
ity, even if it is easily acounted for) yields the so-called RDT limit for second-order
single-time statistics. When the spectra and cospectra are integrated over Fourier
space, toroidal energy is strictly conserved, as is U (tor) at any k, whereas poloidal-
and potential-energy components asymptotically equilibrate after a transient phase
made of damped oscillations with opposing phases (see Salhi and Cambon, 2007, for
details, and Fig. 7.4). The damping originates in phase mixing, because the integral
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Figure 7.5. Stable stratification, sketch of the non-
linear cascade (top, angular drain in Fourier space)
and corresponding layering effect in physical space
(bottom).

of Z ′ over the polar angle sin � = k⊥/k tends toward zero because of the weighting
factor e2ıNt sin � coming from RDT.

Detailed equations and DNS/EDQNM comparisons, including the angle-
dependent spectra, are given in Godeferd and Staquet (2003). The EDQNM2 model
in Godeferd and Cambon (1994) yielded the angular drain of energy that condenses
the energy toward vertical wave vectors, in agreement with the collapse of verti-
cal motion and layering (see the sketch in Fig. 7.5). Recall that, because of the
incompressibility constraint (k · û = 0), both contributions to velocity and vorticity
become almost horizontal if the spectral density of energy is concentrated near the
vertical wave vectors. In terms of directional and polarization anisotropy, polariza-
tion becomes marginal and all anisotropic features depend on the sole directional
anisotropy, including the collapse of vertical motion.

The latter effect is reflected in physical space by a pancake structure, sketched
in Fig. 7.5(bottom) and illustrated in Fig. 7.6, in which isovalues of velocity gradients
are obtained from a snapshot of instantaneous DNS data. This layering can be statis-
ticaly quantified by the development of two different integral length scales, as shown
in Fig. 7.7 (from EDQNM2) and Fig. 7.8 (from DNS), with excellent agreement. The
integral length scale related to horizontal velocity components and horizontal sepa-
ration L(1)

11 is shown to develop similarly to isotropic unstratified turbulence, whereas

the one related to vertical separation L(3)
11 is blocked. In the same conditions, with

initial equipartition of potential and wave energy, linear calculation (RDT) exhibits
no anisotropy, i.e., L(1)

11 = 2L(3)
11 .

The EDQNM2 procedure was made as simple as possible in Cambon et al.
(2007) in order to focus on pure toroidal interactions and to reach very high
Reynolds numbers Re at very low Froude numbers Fr and long elapsed times, a
range of parameters not presently accessible to DNS. A typical shape of strongly
anisotropic transfer related to T (tor)(k, cos �) in Eq. (7.24) is shown in Fig. 7.9.
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Figure 7.6. Isovalues of the vertical gradient of horizontal velocity fluctuation. Pure stratification.
DNS with 2563 grid points and isotropic initial data. Reproduced from Godeferd and Staquet
(2003) with permission of CUP.

Figure 7.7. Development of typical integral length scales
from EDQNM2. L(1)

11 (top) and L(3)
11 (bottom), where in-

dices 1 and 3 denote horizontal and vertical directions, re-
spectively. (Initial) isotropy implies L(1)

11 = 2L(3)
11 . Repro-

duced from Godeferd and Staquet (2003) with permission
of CUP.

Figure 7.8. Same as Fig. 7.7, from DNS with 2563 grid
points. Reproduced from Godeferd and Staquet (2003)
with permission of CUP.
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Figure 7.9. Angle-dependent toroidal transfer
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sults in stably stratified freely decaying tur-
bulence at initial Re� − 145. Data taken from
Cambon et al. (2007).

Cartoons for different types of interactions, and related cascades, are displayed
for sphere-to-sphere and cylinder-to-cylinder energy transfers in Fig. 7.10.

7.6 Coherent Structures: Dynamics and Scaling of the Layered
Flow, “Pancake” Dynamics, Instabilities

7.6.1 Simplified Scaling Laws

When the detailed anisotropy of the flow is ignored, the simplified scaling laws seem
to be valid from examination of results of various numerical and physical experi-
ments. For instance, Lindborg (2006) reported a conventional scaling in DNS/LES

k k

g

k ⊥
 =

 0

g

k ⊥
 =

 0

Figure 7.10. Top: isotropic energy drain in spectral space. Direct (left) and inverse (right) cascade.
Bottom: cylinder-to-cylinder cascade.
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Figure 7.11. From left to right: variance power spectra of zonal wind, meridional wind, and poten-
tial temperature near the tropopause from Global Atmospheric Sampling Program aircraft data.
The spectra for meridional wind and temperature are shifted one and two decades to the right,
respectively. Reproduced from Nastrom and Gage (1985) and Lindborg (2006) with permission of
CUP.

in flattened boxes with the strongest stratification for both horizontal kinetic- and
potential-energy spectra:

E⊥(k⊥) = C1ε 2/3k−5/3
⊥ , E (pot)(k⊥) = C2ε pε −1/3k−5/3

⊥ , (7.27)

where ε and ε p are the dissipation rates of kinetic and potential energy, respectively.
These scaling laws are consistent with a vertical Froude number close to the unity,
equipartition in terms of potential and kinetic energy,† and classical estimates by
Taylor for length scales, as in isotropic flows without stratification. The spectral scal-
ings are consistent with the ones by Nastrom and Gage (1985), as shown in Fig. 7.11.

The numerical method can be questioned because of underresolution in the ver-
tical direction (use of a hyperviscosity) and artificial forcing of purely 2D horizontal

† The equipartition of kinetic and potential energy is not imposed by dynamical equations, except for
linear internal waves.
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Figure 7.12. Angle-dependent spectra, toroidal (left) and poloidal (right) energy. High-resolution
DNS of strongly stratified flow. Courtesy of L. Liechtenstein.

modes, but the very different simulation by Riley and deBruynKops (2003), redis-
cussed in the next subsection, gives a similar scaling. Such a scaling was expected
but not observed in a recent experiment by Praud, Fincham, and Sommeria (2005) –
Adam Fincham attributes this to the Reynolds number being too low – carried out
in the large Coriolis tank filled with saltwater (without rotation here; the cases with
additional rotation are addressed in the next chapter), turbulence being generated
by a moving rake.

7.6.2 Pancake Structures, Zig-Zag, and Kelvin–Helmholtz Instabilities

The fact that conventional scaling laws are recovered in a very similar way to
what is found in isotropic turbulence without stratification seems to contradict the
highly anisotropic organization of the strongly stratified flow. This anisotropic or-
ganization can be quantified by various statistical indicators, from single-point cor-
relations to two-component spectra such as the ones presented in Godeferd and
Staquet (2003) and Liechtenstein, Godeferd, and Cambon (2005). It is linked to
anisotropic structures that are identified in DNS snapshots by means of isovelocity-
gradient surfaces. Pancake structures were identified a long time ago in pseudo-
spectral DNS (Kimura and Herring, 1996). More recently, it was shown that the
horizontal layering with pancake structures essentially modifies the toroidal part
of the flow, whereas the poloidal part remains apparently almost isotropic. Angle-
dependent spectra U (tor)(k, cos �) and U (pol)(k, cos �) calculated from DNS give con-
sistent, more quantitative, information. The whole result, in both spectral space
(see Fig. 7.12) and physical space (see Fig. 7.13) confirms the cartoon displayed in
Fig. 7.5, but is restricted to the sole toroidal component of the flow.

It is worth noting that in actual flows internal waves would not be expected to be
isotropic. The reason why is that some of them are generated by the adjustment of
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Figure 7.13. Isoenstrophy surfaces (snap-
shot), using only the toroidal (top) and
the poloidal (bottom) contributions from
the fluctuating-velocity field. High-resolution
DNS of strongly stratified flow. Courtesy of L.
Liechtenstein.

the toroidal modes (cyclostrophic adjustment), some can be affected by the toroidal
shear, and others can undergo the resonant-wave–vortex interaction (see Lelong
and Riley, 1991). The latter was reported to be important in numerical simulations
in Bartello (1995).

Another type of more specific structure results from the zig-zag instability.
Such instabilities were first identified in the presence of vertical columnar struc-
tures moving horizontally in a stratified tank. A typical tangling motion develops in
the horizontal direction perpendicularly to the main motion of eddies, with typical
velocity U breaking their vertical coherence with a typical length scale U/N . In ad-
dition to the case of a pair of counterrotating eddies, advancing with almost con-
stant velocity because of mutual induction, the case of corotating eddies was inves-
tigated (Otheguy, Billant, and Chomaz, 2006). In the latter case, mutual induction
results in circular motion, and tangling zig-zag motion develops in the radial direc-
tion. This instability was proposed as a generic mechanism to create layering with a
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Figure 7.14. Top panel shows part of a horizontal slice through the w field. The white dashed line
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on that vertical slice. Reproduced from Riley and deBruynKops (2003) with permission of AIP.

universal scaling U/N in a strongly turbulent stratified flow (Billant and Chomaz,
2001). This assumption is probably too simple. On the one hand, the zig-zag instabil-
ity requires the presence of prexisting coherent vortices with vertical lengths much
larger than U/N : In some experiments, in which a moving rake favors 2D structur-
ing, the zig-zag motion is recovered (Praud, Fincham, and Sommeria, 2005), but it
is not found in other ones with smaller dimensions (Peter Davidson, experimental
study in progress), in which turbulence is generated by a grid with not a too large
mesh. On the other hand, even in the presence of an array of vertical 2D vortices,
significant horizontal velocity U must result from translational or rotational motion
of eddies: For instance, the zig-zag instability is inhibited if the base flow is the 2D
Taylor–Green flow, or Taylor’s “four rollers mill,” in which all degrees of freedom
are blocked by mutual induction of vortices.

A more promising type of instability is of the Kelvin–Helmholtz type and can
result from the intense vertical shearing between pancake layers. Such structures do
not appear in the fully 3D DNS (in cubic boxes) of decaying stratified turbulence
by Liechtenstein, Godeferd, and Cambon (2005) because the moderate Reynolds
number probably limits the shearing process. For a different reason, because of the
insufficient vertical resolution, they hardly appear in the DNS/LES with flattened
computational domains (Lindborg, 2006).

Only in the DNS by Riley and co-workers is there a significant occurrence found
for such Kelvin–Helmholtz instabilities, as shown in Fig. 7.14.
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The resolution of these DNSs (which can be considered as really 3D) is compa-
rable with the ones by Liechtenstein, Godeferd, and Cambon (2005), but the largest
structures are initialized by a network of 3D Taylor–Green vortices, allowing for a
much larger Reynolds number.

It has been suggested for a long time that a stability criterion, such as the one of
Miles (1961), i.e., Ri = N 2/S2 ∼ 1/4, can control the “efficient” local shear S. More
generally, Riley and deBruynKops (2003) introduced the nondimensional number

Rb = F2
r Re,

referred to as the buoyancy efficiency parameter, to identify a regime of strongly
turbulent and strongly stratified flows characterized by Rb � 1, capable of devel-
oping strong interlayer shearing. The latter threshold was recently rediscovered by
Brethouwer et al. (2007), with application to their underresolved DNS. The param-
eter Rb is almost equivalent to the parameter 	/(�N 2), which is called the activity
parameter or the buoyancy Reynolds number by oceanographers. Bill Smyth and
Jim Riley (private communication) suggest that this parameter must be greater than
about 20 for the flow to sustain turbulence.
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8 Coupled Effects: Rotation, Stratification,
Strain, and Shear

A combination of system rotation and stable stratification is essential for geophysi-
cal applications, even if the former effect is significantly smaller than the latter in 3D
flows, e.g., for scales much smaller than the synoptic ones in the atmosphere. As for
pure rotating turbulence in Chapter 4 and purely stratified turbulence in Chapter 7,
linear analysis, i.e., RDT, describes only neutral stability and will lead to the defini-
tion of both the wave-vortex eigenmode decomposition and dispersion frequencies
of inertia–gravity waves in the present chapter. Nonlinear dynamics is essential, and
allows us to revisit a quasi-geostrophic (QG) cascade, which generalizes the toroidal
cascade discussed in Chapter 7 with additional Coriolis effects.

Other coupled effects investigated in this chapter can create linear instabilities
that can be analyzed within the RDT framework. These instabilities are associated
with turbulence-production mechanisms, which are the main striking new physical
phenomena when compared with other flows discussed in this book. Therefore only
the linear approach will be emphasized in these cases. In the presence of mean shear,
barotropic instabilities occur, with a strong analogy between the rotating-shear-flow
case and the stratified shear flow. A special case combining the three ingredients,
namely the mean shear, system rotation, and stable stratification, is shown to give
new insight into the baroclinic instability. Finally, the very important elliptical-flow
instability is investigated, which results from a coupled effect of mean vorticity with
weak additional mean strain. This instability can trigger nonlinear cascade and tur-
bulence in physical systems with large strained vortices.

A general conclusion about linear stability theory is provided at the end of this
chapter in order to delineate the domain of relevance of homogeneous RDT and of
its natural extension by means of WKB RDT.

8.1 Rotating Stratified Turbulence

In the absence of mean shear, it is possible to consider that both the system angular
velocity and the mean-buoyancy gradient are vertical. The vertical mean vorticity
can be replaced with the Coriolis parameter

f = 2� cos �, (8.1)

where � is the colatitude (see Fig. 8.1).∗

∗ Projecting the angular velocity onto the local vertical axis, which yields the angle-dependent factor
cos�, is analogous to projecting the angular velocity on the wave-vector direction, which yields the

243



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

244 Coupled Effects: Rotation, Stratification, Strain, and Shear

Ω

g
= Ω cos λλ

Figure 8.1. Definition and meaning of the Coriolis
parameter f in geophysics.

Only neutral stability can be described by use of RDT in this case. The linear
inviscid solution for velocity–buoyancy fluctuations consists of superimposed steady
and oscillating modes, as for the purely stratified-flow case. The former corresponds
to the QG mode (which is equal to the toroidal mode in the absence of rotation) and
the latter, referred to as the ageostrophic (AG) mode, is related to inertia–gravity
waves. This new decomposition is commonly referred to as QG/AG decomposition.
RDT yields very simple behavior, in which single-time velocity–buoyancy correla-
tions are possibly affected by damped oscillations, the damping resulting from the
dispersivity of wave motion. The poloidal–toroidal-like decomposition, closely re-
lated to the QG/AG one, was shown to simplify the RDT prediction. For instance,
the total turbulent kinetic energy is conserved in pure rotation, and damped oscilla-
tions yield an asymptotic equidistribution of poloidal and toroidal turbulent kinetic
energy. In pure stratification, both total (kinetic + potential) and toroidal kinetic en-
ergy are conserved, whereas poloidal kinetic and potential energies asymptotically
equilibrate after damped oscillations (see Fig. 7.4). In these cases, linear dynamics –
if restricted to single-time, two- or single-point correlations – is of little interest,
as relevant structuring effects result from only the nonlinear terms. In the present
case, RDT suggests building a full nonlinear model in terms of the slowly varying
amplitudes of QG/AG modes, which are constant in the pure linear inviscid limit.

As for the purely stratified case [see Eq. (7.11)], a single vector w can gather
both velocity and buoyancy fluctuations, with the following decomposition:

ŵ =
∑

s=0,±1

a(s)(k, t) exp(sı�k t)︸ ︷︷ ︸
� (s)(k,t)

N(s)(k), s = 0,±1. (8.2)

It is important to note that both the eigenmodes N(s), s = 0,±1 and the (un-
signed) dispersion frequency of inertia–gravity waves,

�k =
√

N 2 sin2 � + f 2 cos2 �, (8.3)

angle-dependent dispersion frequency of inertial waves with cos �. This projection reflects a domi-
nant role of the Coriolis force in the tangent plane of the rotating spheroid (our Earth), whereas it
reflects pure solenoidal motion looking at a sphere in 3D Fourier space. In the geophysical commu-
nity, the angle of latitude is commonly used and therefore a sine often appears instead of a cosine.
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Figure 8.2. Cartoon of the “wave-vortex” (or lin-
ear QG-AG) decomposition from the Craya–
Herring decomposition or related toroidal–poloi-
dal one in physical space. The toroidal mode is the
part of the horizontal velocity fluctuation with zero
divergence in terms of horizontal coordinates; it
corresponds to (velocity contribution to) the QG
mode only without rotation; (velocity contribution
to) the QG mode is only a fraction of this toroidal
mode at a given f/N ratio and identically vanishes
at N = 0 (pure rotation).

are explicit functions of the ratio f/N (Cambon, 2001). Here, s = 0 is related to the
QG mode, which is also referred to as the nonpropagating mode, whereas s = ±1
corresponds to the AG modes, which are propagating inertia–gravity waves.

As shown in Fig. 8.2, the QG/AG (or wave-vortex) decomposition is dependent
on f/N : the inertia–gravity-wave contribution to the velocity field is the poloidal
part of the flow without rotation and includes an increasing part of the toroidal
component when the rotation (by means of the ratio f/N) increases. In the case
of pure rotation, the inertial wave mode includes the entire velocity field, and the
nonpropagating (QG) part of the flow identically vanishes.

Because the QG mode, with a(0) amplitude, makes a significant contribution,
the cascade related to triadic interactions including QG modes can be expected to
be dominant only with respect to the other resonant or quasi-resonant wave inter-
actions. It is recalled that, using the nomenclature used in other chapters, these pure
QG triadic interactions are denoted as (0, 0, 0). This purely QG cascade is discussed
in the next subsection.

Discarding a priori the QG mode, it can be shown that resonant inertia–gravity
waves can play a role in concentrating energy toward larger scales and quasi-VSHF
modes, at least if f/N is small. This was found by Smith and Waleffe (2002), for
instance, by forcing isotropically the small scales without putting energy at large
scale at the initial time.

At least two radically different mechanisms of concentration of energy toward
the VSHF mode are thus possibly present:

� the toroidal cascade, already investigated in Chapter 7 for the pure stratification
case; the toroidal mode is the limit of the QG mode in the absence of system
rotation. This mechanism plays a dominant role and leads to a rapid layering of
the flow if a significant large-scale toroidal part of the flow exists initially and f/N
is not too large.

� the transfers induced by the resonant inertia–gravity waves.
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The relevance of the QG model was expected by Smith and Waleffe (2002)
to prevail when 1/2 � N/ f � 2, as triadic “wave” resonances are forbidden in this
range of parameters, as seen from looking at dispersion law (8.3).

8.1.1 Basic Triadic Interaction for Quasi-Geostrophic Cascade

If the flow is seen in a rotating frame of reference with angular velocity ( f/2)n, f be-
ing the Coriolis parameter for geophysical applications, only the basic momentum
equation for u is affected by the additional Coriolis force f n × u. The associated
evolution equation for b is identical to the one obtained in the pure stratification
case; see Eq. (7.3). In agreement with Eq. (8.2) and with the cartoon displayed in
Fig. 8.2, the nonpropagating mode now combines toroidal kinetic energy and poten-
tial energy,

� (0) = a(0) = �s

�
u(1) + �r

�
u(3), (8.4)

with

�s = N
k⊥
k

, �r = f
k‖
k

, � =
√
�2

r + �2
s , (8.5)

and where � (0) is related to the QG energy. The two other terms � (±1) deal with
inertia–gravity waves whose dispersion frequency �k is given by Eq. (8.3) (Cambon,
2001).

Let us now investigate detailed properties of the interactions within a single iso-
lated triad. Following the same procedure as for the toroidal cascade in Chapter 7,
i.e., removing all nonlinear interactions involving wave modes in order to retain only
the QG ones, one obtains a set of equations similar to (7.18):

�̇
(0)
k = (p2�2

p − q2�2
q )G ′� (0)∗

p � (0)∗
q , (8.6)

�̇ (0)
p = (q2�2

q − k2�2
k )G ′� (0)∗

q �
(0)∗
k , (8.7)

�̇ (0)
q = (k2�2

k − p2�2
p)G ′� (0)∗

k � (0)∗
p , (8.8)

which involves a modified factor G ′(k, p, q). This new geometrical factor is fully
symmetric in terms of (k, p, q) (Cambon, Godeferd, and Kaneda, 2007). One finds
from this system of equations that detailed conservation holds for both QG energy
and potential enstrophy, i.e.,

�̇
(0)
k �

(0)∗
k + �̇ (0)

p � (0)∗
p + �̇ (0)

q � (0)∗
q = 0

and

k2�2
k �̇

(0)
k �

(0)∗
k + p2�2

p �̇
(0)
p � (0)∗

p + q2�2
q �̇

(0)
q � (0)∗

q = 0.

These two detailed conservation laws are analogous to those for toroidal energy
and vertical enstrophy associated with the pure toroidal cascade for purely stratified
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flows and to those for the total energy and total enstrophy in 2D isotropic turbu-
lence. The linkage to potential enstrophy comes from

k2�2
k

N 2
� (0)� (0)∗ =  2

⊥u(1)u(1)∗ +
(

f

N
k‖

)2

u(3)u(3)∗, (8.9)

using Eq. (8.4). This result is to be compared with vertical enstrophy, which is recov-
ered if f = 0. These two conservations laws were already quoted by Bartello (1995),
his eigenmode decomposition being essentially the same† as the one deduced from
Craya–Herring decomposition, and its geometric factor N (000) is similar to the pre-
ceding one (but it does not display the factor p2�2

p − q2�2
q ).

An important remark must be made here. Equation (8.9) gives the spectral den-
sity of the variance of the linearized absolute potential vorticity (APV). The fluctu-
ating linearized APV can be defined as

n · � + f

N 2

∂b

∂x‖
(8.10)

in physical space and as

ık⊥u(1) + ı
f

N
k‖u(3) (8.11)

in Fourier space. Its fully nonlinear counterpart is defined as the scalar product of
the absolute vorticity (mean f n + fluctuating �) by the gradient of buoyancy (mean
N 2n + fluctuating ∇b), and is eventually divided by N 2 for keeping the dimension
of vorticity:

1
N 2

( f n + �) · (N 2n + ∇b
)
. (8.12)

In short, from the preceding equation, one can derive an additive threefold de-
composition in terms of

� a “mean” contribution f ,
� the linearized fluctuation given by Eq. (8.10),
� a nonlinear quadratic contribution � · (∇b/N 2).

8.1.2 About the Case With Small but Nonnegligible f/N Ratio

Especially in oceanography, one encounters at mesoscales f/N ratios of the order of
10−1–10−2. Nevertheless, even with a weak f/N ratio, the effect of the Coriolis force
cannot be ignored. The dominant structures are pancake structures, as in strongly
stratified turbulence without rotation, but their scaling and dynamics are influenced
by the Coriolis force. For instance, the contribution from gravity-wave dispersion

† The geometrical decomposition used in Godeferd and Cambon (1994) and Cambon (2001) has
the only advantage in that a true pseudo-compressible vector can be defined in physical space, by
inverse Fourier transformation of the single “true” vector ŵ = û + ı(k/k)(b̂/N ) = ∑

i=1,3 u(i)e(i) =∑
s=0,±1 �

(s) N(s) with all related simplifications that are due to orthonormality. Mixing a true vector
û and a scalar b̂ is less tractable in general.
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frequency (�s = N sin �) is assumed to be of the same order as the contribution from
the inertial-wave frequency, or

N
k⊥
k

∼ f
k‖
k

. (8.13)

The latter relation is consistent with a Burgers’ number,

Bu =
(

f

N

Lh

Lv

)2

,

close to one, if the ratio of typical vertical Lv and horizontal Lh length scales is
related to the inverse of the ratio k‖/k⊥.

8.1.3 The QG Model Revisited. Discussion

The QG model discussed by Charney (1971) was already touched on in Chapter 7.
Conservation of full nonlinear APV defined by Eq. (8.12) is a direct consequence
of the Ertel theorem (see also Staquet and Riley, 1989). Roughly speaking, this
amounts to replacing the vertical direction with the local normal to isopycnal sur-
faces in the toroidal–poloidal decomposition, the QG motion being along these sur-
faces and AG motion being across them.

Of course, if these surfaces are weakly undulated and therefore close to hori-
zontal surfaces, linearization of APV is physically justified.

Too strong properties are often attributed to QG motion, in an analogous way
to the unjustified use of the Proudman theorem to explain the transition toward a
2D state, yielding some wrong statements:

� QG motion is analogous to 2D motion, with dual energy cascades, so that a direct
cascade is expected for APV and an inverse cascade is for QG energy,

� In spite of the strong anisotropy of QG motion, a simple rescaling in terms of f/N
can restore an apparent isotropy.

The recent experimental study by Praud, Sommeria, and Fincham (2006), which
made use of the very large Coriolis platform in Grenoble, contributed to support
this point of view, at least for values of f/N ranging from 0.8 to 1.2. Beautiful cigar
vortices are created just behind a moving rake, looking very similar to 2D structures,
and then evolve toward less elongated structures (Fig. 8.3) in a rotating tank full
of brine. The use of the PIV technique allowed almost 3D velocity and vorticity
measurements.

In principle, vertical variability is captured in this experimental study. Even if
the horizontal dimension greatly exceeds the vertical dimension of the layer, this
does not reduces to the shallow-water case in which “2D,” “QG,” and “horizontal”
motion concepts collapse. On the other hand, the use of a rake with only vertical
sticks can favor pure 2D motion with respect to the use of a grid.

In a DNS without any forcing, it is possible to switch from “pancake” to “cigar”
structures by increasing the ratio f/N , as shown in Fig. 8.4, for instance. Incidentally,
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(a)

(c)

(b)

(d )

Figure 8.3. Visualization by PIV of vortex structures, N/ f = 1.2, from Praud, Sommeria, and
Fincham (2006) with permission of CUP.

the fact that an apparently isotropic structure is found for f/N = 1 is possibly mis-
leading: This case is very different from pure isotropic turbulence. It is also worth-
while to note that “structures,” identified by isovorticity surfaces in high-resolution
DNS, are much more scrambled than the ones visualized by PIV techniques in
physical experiments: Cigars are very different from smooth Taylor columns in
such DNSs! A bit paradoxically, underresolved DNS and LES can show apparently
smoother structures, but this is a numerical artefact.

Neglecting wall effects and anisotropic forcing, one could write a more subtle
QG model for the new Lin equation,(

∂

∂t
+ 2�k2

)
e(QG)(k‖, k⊥, t) = T (QG)(k‖, k⊥, t), (8.14)

with

1
2
〈� (0)∗(p, t)� (0)(k, t)〉 = e(QG)(k, t)�3(k − p), (8.15)

extending Eqs. (7.22)–(7.24) for the toroidal cascade in purely stratified flows to var-
ious f/N ratios. The generalized transfer term T (QG)(k‖, k⊥, t) can be constructed
from triadic contributions strictly preserving detailed conservation of both QG en-
ergy and (linearized) APV. Depending on f/N , a very complex and multiform
anisotropic cascade is expected in terms of the full distribution of the transfer
term expressed as a function of k⊥ and k‖. As for the model of toroidal cascade in

(a) (b) (c)

Figure 8.4. Enstrophy isosurfaces; (a) f/N = 0.1, (b) f/N = 1, (c) f/N = 10. 2563 unforced DNS
results from Liechtenstein, Godeferd, and Cambon (2005).
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Chapter 7 for f/N = 0, the strong dependence of the term G ′ in Eq. (8.6) with re-
spect to k‖ can induce a dynamical cascade process very different from the one ob-
served in 2D turbulence, in spite of the conservation of APV. Only the case of pure
rotation cannot be recovered this way, as the QG mode vanishes in this case and
only inertial-wave turbulence is relevant. Nevertheless, the case of pretty large f/N
ratios – as the highest ratios addressed by Praud, Sommeria, and Fincham (2006) –
remains of interest. Note that Herring (1980) proposed a first QG model based on a
Lin equation with a transfer term closed by an EDQNM technique, but its relevance
was limited by additional quasi-isotropic assumptions.

A very different angle of attack is to try to generalize the Kolmogorov 4/5 law
using both velocity and APV increments for building third-order structure functions
(Kurian, Smith, and Wingate, 2005). The advantage of working on structure func-
tions in physical space is avoiding a too strict limitation to quadratic nonlinearity (a
fully nonlinear APV variable can be used), whereas cubic and quartic nonlinearities
are very difficult to handle in Fourier space (even the classical convolution product
mediated by quadratic nonlinearity is not so simple!). A drawback is that a complete
solenoidal description, with exact removal of explicit pressure terms from the very
beginning, is very complicated in physical space; removal of mixed pressure–velocity
terms in the 4/5 Kolmogorov law is a very marginal case, for instance.

Of course, a more complete analysis may be developed on the grounds of the
most general set of spectra and cospectra consistent with axisymmetry without mir-
ror symmetry. In this more general case, another Lin equation is written for the spec-
trum of total (kinetic + potential) inertia–gravity-wave energy, e(w), defining an-
other true transfer term‡ T (w). The system must be supplemented by two additional
terms similar to Z in Eq. (7.24) characterizing the imbalance between potential and
kinetic energy of waves, together with poloidal and toroidal buoyancy fluxes ex-
changed between them. Only these Z terms are affected by linear (rapid) factors ı�t ,
and they are not associated with global conservation laws. This is a complete gen-
eralization of the (e, Z) system for pure rotation and the system [e(tor), e(pol+pot), Z ′]
for pure stratification.

It is important to note that the vanishing integral for T (QG) and T (w) reflects
global conservation laws, whereas the detailed conservation of both QG energy and
potential vorticity is found only when inertia–gravity-wave modes are discarded in
triads. Such a removal can be made a priori, or invoking the physical context of very
small Rossby and Froude numbers.

8.2 Rotation or Stratification With Mean Shear

In contrast to the cases without mean motion (in addition to the sole solid-body
rotation), it is better to reintroduce specific notation for the fluctuation u′ in the
following discussion. A similar distinction is made for the buoyancy scalar, intro-
ducing b and b′.

‡ Let us recall that a nonlinear term in a Lin-type equation is referred to as a true transfer term if its
integral over all wavenumbers is zero, i.e., if it is associated with a global conservation law.
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Within the Boussinesq approximation framework, the equation for the sole-
noidal velocity field in a rotating frame displays two additional terms, reflecting both
Coriolis and buoyancy forces, the intensity of the latter being denoted by b (the
fluctuation being denoted by b′ from now on):

Fb = 2� × u − bn. (8.16)

The use of b allows us to get rid of the different formulations in terms of tem-
perature or density. Let us just recall that b is related to the density � by the relation
b = �g/�0 in a liquid, where g is the gravitational acceleration and �0 is the con-
stant density of reference. The vector n is the vertical unit upward vector such that
g = −gn. Before the field is split into mean and fluctuating components, the mo-
mentum equation is recast as follows,

∂ui

∂t
+ u j

∂ui

∂x j
+ 2�n	in j u j = − 1

�0

∂p

∂xi
+ bui (8.17)

and the mass conservation equation �̇ + � ∂ui
∂xi

= 0 yields

∂b

∂t
+ u j

∂b

∂x j
= 0,

∂ui

∂xi
= 0. (8.18)

The mean flow consists of a vertical mean shear such as Ai j = S�i1�j3 and of a
vertical density gradient, i.e.,

∂ui

∂x j
= Ai j = S�i1�j3,

∂b

∂x j
= N 2�j3,

so that the Brunt–Väisälä frequency N appears as the characteristic frequency of
buoyancy–stratification. From now on, the indices 1, 2, 3 refer to streamwise, span-
wise, and vertical directions of the pure plane shear mean motion, respectively, with
ni = �i3, as in Fig. 8.5(c).

This mean flow is an exact solution of the preceding equations if the system rota-
tion is in the spanwise direction, i.e., �i = ��i2. In this case, the fluctuating buoyancy
b′ is governed by the equation

∂b′

∂t
+ Sx3

∂b′

∂x1
+ u′

j

∂b′

∂x j
− �Pr∇2b′ = −N 2u′

3,

reintroducing the diffusivity of the stratifying agent for generality. The equation for
u′ is

∂u′
i

∂t
+ Sx3

∂u′
i

∂x2
+ S�i1u′

3 + u j
∂ui

∂x j
+ 2�s

n	in j u j + �∇2u = − 1
�0

∂p

∂xi
+ b′n. (8.19)

In the absence of the mean-density gradient, i.e., if N = 0, one can get rid of b′

and the rotating mean-shear flow is a particular solution of the Euler equations in
the rotating frame.

The main RDT results are now revisited in the presence of pure plane mean
shear, system rotation, and/or mean-density stratification–buoyancy.
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Figure 8.5. Sketch of the mean flow, including (a) system vorticity, (b) vertical stable stratification,
and (c) mean shear. Tilting of isopycnal surfaces can trigger the baroclinic instability, if (a), (b), (c)
are simultaneously present.

Equations for the fluctuating fields are written in Fourier space. The corre-
sponding variables are denoted by û and b̂, as before, the “prime” being ommitted
because there is no ambiguity with the mean flow in Fourier space.

In all cases subsequently addressed, including the baroclinic context, the linear
advection process is induced only by a mean shear, so that the time dependency of
the wave vector is always

k1 = K1, k2 = K2, k3 = K3 + K1St, (8.20)

choosing S = ∂u1/∂x3. In a polar-spherical system of coordinates for the initial wave
vector K in Eq. (8.20), the angles � (polar) and � (azimutal) are defined by

sin � =
√

k2
1 + k2

2/K , cos� = k1/

√
k2

1 + k2
2, (8.21)

with the usual relations

k1 = K1 = K sin � cos
, k2 = K2 = K sin � sin
, K3 = K cos �.

Inviscid RDT governing equations are

dûi

dt
= −

[
S�j3

(
�i1 − 2

ki k1

k2

)
+ 2�Pin	n2 j

]
︸ ︷︷ ︸

Mi j

û j + Pi3b̂, (8.22)

in which contributions from pure shear, Coriolis force, and buoyancy effects are
taken into account, and

db̂

dt
= −N 2û3. (8.23)
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As in previous RDT studies, a system of equations is derived in the Craya–
Herring frame of reference: u̇(1)

u̇(2)

u̇(3)

 =

 0 (2� + S) k2
k 0

−2� k2
k S k1k3

k2 −N k⊥
k

0 N k⊥
k 0


u(1)

u(2)

u(3)

 , (8.24)

with k⊥ =
√

k2
1 + k2

2 . One can recover easily the terms identified in the pure shear
(with S factor), pure rotation (with the dispersion frequency 2�k2/k), and in pure
stratification (with the dispersion frequency Nk⊥/k) cases. But the main difficulty
remains the time dependency of k3, also reflected in k, that is induced by the pure
shear according to Eq. (8.20).

8.2.1 The Rotating-Shear-Flow Case

The rotating shear flow, with angular velocity aligned with the spanwise direction
(i = 2 here) and without stratification (N = 0) is well documented. The homoge-
neous case was studied by single-point closure methods, RDT and DNS/LES. The
mechanisms of stabilization and destabilization by rotation, identified in the homo-
geneous case, can explain what happens in rotating channels and blade cascades in
turbomachinery. As a general result, the production of turbulence increases near
the pressure-driven (or intrados) wall, in agreement with an anticyclonic rotation
with respect to the rotation induced by the mean shear. On the opposite side, the
turbulence is damped (relaminarization is even possible) near the suction side (or
extrados) wall, in agreement with a cyclonic rotation.

The asymmetry in terms of cyclonic and anticyclonic spanwise system rotation is
not reproduced by a basic k − 	 model, which completely misses the Coriolis force
effects. It could be recovered, however, by some more sophisticated “nonlinear”
versions, which are close to algebraic stress models. Any RSM can work satisfacto-
rily, the key point being to have an exact “production” tensor. The basic effect of
production can be understood thanks to the very simple analysis based on a particle-
displacement argument introduced by Bradshaw (1969) and revisited in a slightly
different way by Tritton (1992).

The starting point is the following system of equations for the planar fluctuating
flow, which corresponds to an oversimplified pressure-released inviscid RDT:

d

dt
u′

1 + (S + 2�)u′
3 = 0,

d

dt
u′

3 + 2�u′
1 = 0, (8.25)

the spanwise component u′
2 being constant in the same conditions. The dynami-

cal behavior of this system is governed by the Bradshaw number (or rotational
Richardson number, in order to avoid confusion with the “true” Richardson number
introduced in the stably stratified shear case):

B = 2�
S

(
1 + 2�

S

)
. (8.26)
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An exponential growth is obtained for B � 0, an exponential damping for B �

0, and a neutral behavior is recovered for B = 0.
This effect of the Bradshaw number is confirmed by much more sophisticated

analyses, such as RDT and even “nonhomogeneous” stability analyses in more com-
plex flows. One of the most popular is the one by Pedley (1969), which deals with
rapidly rotating pipes.

As pointed out by J. Riley (private communication; see also Yanase et al., 1992),
it was almost fortuitous that this oversimplified analysis based on Eq. (8.25) gave
the same criterion as the rigorous stability analysis performed by Pedley. A relevant
explanation was given by Leblanc and Cambon (1997): In simplified system (8.25),
u′

1 and u′
3 must be interpreted as the amplitudes of solenoidal disturbance modes

with very high spanwise wavenumbers, which are naturally pressureless, and not
as the primitive fluctuating horizontal velocity components. The term “very high
spanwise wavenumber” is related to modes such that k2 � 1/L , where L is a typical
length scale of the horizontal motion and k2 is the wavenumber of the disturbance
in the direction normal to the plane of the 2D base flow.

Such modes, like v = A(x)e�t eık2 , with vectors A and x lying in the plane of the
base flow, have dominant contributions to exponential instability with respect to all
other modes. This result is valid for the stability of any 2D base flow in a rotating
frame subjected to 3D disturbances. System (8.24) gives a simple illustration in “ho-
mogeneous” RDT, where u(1) (toroidal mode) and u(2) (poloidal mode) satisfy the
same system as the two-component pressureless one if k1 = k3 = 0, k2 = k. But the
pure 2D contribution (no variability in the spanwise direction) is recovered at van-
ishing k2, for which the Coriolis force makes no contribution.§ A related point is that
only exponential instability is governed by the Bradshaw number B whereas differ-
ent dynamics are given by the parameters Ro−1 = 2�/S and −(1 + Ro−1), even in
cases having the same B, as investigated by Salhi and Cambon (1997). The sim-
plest example is the case without rotation and the case with zero absolute vorticity
(Ro = −1), which are very different, despite the fact that they both correspond to
B = 0.

Looking more closely at RDT solutions, an Ince equation (1956) can be written
for both the poloidal and toroidal velocity components. The simplest way is to start
from the first two equations in (8.24), so that

1
S2

d

dt

[
k2(t)

du(1)

dt

]
+ k2

2 Bu(1) = 0, (8.27)

1
S

du(1)

dt
=
(

1 + 2�
S

)
k2

k(t)
u(2). (8.28)

§ The mode of planar motion, which is relevant for explaining the stabilizing–destabilizing effect of
rotation, is very close to the VSHF mode emphasized in stably stratified turbulence, replacing the
vertical direction with the spanwise direction; as for the VSHF mode, it is completely different from
a 2D mode.
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The first one gives the typical Ince equation and displays only the Bradshaw (or
rotational Richardson) number.

Typical RDT results for the turbulent kinetic energy are shown in Fig. 8.10 and
rediscussed in Section 8.4.

8.2.2 The Stratified-Shear-Flow Case

This case is much less documented than the previous one, but a good survey of avail-
able results can be found in Hanazaki and Hunt (2004) along with RDT analyses.
The analogy between the two cases, rotating and stratified shear flows, was discussed
by Bradshaw (1969), but only on the grounds of very simple arguments. This analy-
sis suggested a quasi-complete analogy between the number in Eq. (8.26) (called the
Richardson number in Bradshaw, 1969!) and the true Richardson number, which is
defined by

Ri = N 2

S2
(8.29)

in the stratified-shear-flow case.
In this case, RDT equations yield the following Ince equation for b, found by

Hanazaki and Hunt (2004):

k2(t)
d2b̂

dt2
− 2Stk1k3(t)

db̂

dt
+ (k2

1 + k2
2)N 2b̂ = 0, (8.30)

which suggested new analytical solutions based on Legendre functions of complex
order. Without shear, the time dependency of the coefficients vanishes in Eq. (8.30),
and the periodic solutions are immediately recovered, with a frequency equal to
the dispersion frequency of gravity waves: � = ±N sin �. Of course, because this
equation corresponds to the last one in Eq. (8.24), it can be rewritten as

1
S2

d

dt

[
k2(t)

db̂

dt

]
+ (k2

1 + k2
2)Rib̂ = 0, (8.31)

which displays the Richardson number.

8.2.3 Analogies and Differences Between the Two Cases

When k1 = 0 (this mode corresponds to an infinite streamwise wavelength) the
time dependency of the wave vector vanishes, and RDT solutions with exponential
growth (if B � 0 or Ri � 0) or periodic behavior (if B � 0 or Ri � 0) are immedi-
ately recovered. In the latter case, the typical frequency is the dispersion frequency
of gravity waves in the stratified shear case, � = ±N sin �, and the dispersion fre-
quency of inertial waves in the rotating shear case, � = ±2� cos �. In the general
case (k1 �= 0), the solutions of the gi j equations were found in terms of hypergeomet-
ric functions (Salhi and Cambon, 1997), and then in terms of Legendre functions of
complex order (Salhi, 2002), generalizing the solutions given by Hanazaki and Hunt.
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This complex order was denoted � in the rotating case and � in the stratified shear
case (Salhi, 2002), where

� = 1
2

(−1 +
√

1 − 4B tan2 � ),

� = 1
2

(−1 +
√

1 − 4Ri/ cos2 � ).

(8.32)

According to these new RDT solutions, it can be confirmed that the exponen-
tial instability is governed only by the Bradshaw (or rotational Richardson) num-
ber, or by the Richardson number, with detailed analogy between rotating and
buoyant–stratified cases. Algebraic instability, however, does not scale with either
the Bradshaw or the Richardson number alone, as previously stated by comparing
the rotating shear cases at Ro−1 and at −(1 + Ro−1).

The general RDT solutions can be easily generalized to the shear case with both
spanwise system rotation and vertical stratification (A. Salhi, private communica-
tion), and at least the solutions at k1 = 0 were addressed by Kassinos, Akylas, and
Langer (2006). Nevertheless, this case with three external parameters (S, N , 2�) is
less interesting than the one addressed in the next section, which gives new insight
into baroclinic instability.

8.3 Shear, Rotation, and Stratification. RDT Approach
to Baroclinic Instability

8.3.1 Physical Context, the Mean Flow

We now consider the same homogeneous turbulent shear flow having mean velocity
in the x1 direction in a Cartesian reference frame, but rotating with angular velocity
� about the x3 (vertical) axis (see Fig 8.5). The absolute mean vorticity is

�a
i = S�i2 + f �i3, (8.33)

with f = 2�. As in the previous section, the mean flow is subject to vertical stratifi-
cation, with uniform density gradient

� = �0 − S� x3, (8.34)

where �0 is a constant reference density; S� is chosen positive in the stabilizing case.
Equivalently, one has

b = −N 2x3. (8.35)

This mean flow is not an exact solution of the Euler equations, which reduces to

∂ui

∂t
+ u j

∂ui

∂x j
+ f 	i3 j u j = − 1

�0

∂ p

∂xi
+ b�i3. (8.36)
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The corresponding equation for the vorticity is found by taking the curl of this
equation, leading to

dWi

dt
+ u j

∂Wi

∂x j
− ∂ui

∂x j
(W j + f �j3) = −	i j3

∂b

∂x j
. (8.37)

This equation is satisfied by Eq. (8.33) in both vertical and spanwise directions,
but not in the streamwise direction, for which

dW1

dt
− S f = − ∂b

∂x2
. (8.38)

Without an additional spanwise component of the mean-density (or buoyancy)
gradient, mean vorticity is created in the streamwise direction. Accordingly, to re-
move W1, the following density-gradient component ought to be accounted for:

∂b

∂x2
= S f = − S f

N 2︸︷︷︸
	

∂b

∂x3
with N 2 = S�

g

�0
. (8.39)

In other words, the tendency for the horizontal density gradient ∂b
∂x2

to generate
vorticity [Eq. (8.38)] in the streamwise direction is exactly balanced by twisting the
background vorticity (S f term). This is often called the geostrophic adjustment in
the geophysical community (Drazin and Reid, 1981).

Finally, the linearization of mass and momentum conservation equations yields

∂u′
i

∂t
+ Sx3

∂u′
i

∂x1
+ S�i1u3︸ ︷︷ ︸

shear

+ f 	i3 j u
′
j + 1

�0

∂p

∂xi
= b′�i3;

∂u′
i

∂xi
= 0, (8.40)

∂b′

∂t
+ Sx3

∂b′

∂x1︸ ︷︷ ︸
shear

= −N 2

u′
3 − 	u′

2︸︷︷︸
HDG

 . (8.41)

Viscous–diffusive terms are ommitted for the sake of brevity: In the b equation,
the diffusivity  ∇2b would be related to the kinematic diffusivity  of the stratify-
ing agent, salt or temperature, in an experimental or observational case (of course,
the diffusion of � has no sense in the mass conservation equation). New terms in-
duced by the shear are underlined. They consist of direct distortion terms (shear)
and horizontal-density-gradient (HDG) effects. Equation (8.38) is a consequence of
the basic flow admissibility constraint, which requires that the mean flow must be
a particular solution of Euler or Helmholtz equations, as the admissibility condi-
tion (dA/dt + A2 symmetric) in the pure kinematic nonbuoyant case with arbitrary
Ai j (t). The slope 	 = b,2/b,3 of the mean isopycnal (constant-density) surfaces with
respect to the horizontal direction is due to the coupling between shear and rota-
tion because 	 = 0 without shear or without the Coriolis force (the latter cases were
addressed in the previous section).
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The mean flow with three parameters S, f , and N is shown in Fig. 8.5. Two
independent nondimensional numbers can be chosen among the Rossby number,
the Richardson number, and the baroclinic coefficient:

Ro = S

f
, Ri = N 2

S2
, 	 = S f

N 2
. (8.42)

Let us emphasize that the present case with nonzero 	, which corresponds to
the baroclinic instability, can be considered as a model for an important problem in
meteorology, that is, the large-scale instability of the westerly winds in midlatitudes
(Drazin and Reid, 1981).

8.3.2 RDT Equations

The equation for the velocity Fourier mode is derived from (8.22), only changing
2�	n3 j into f 	n2 j , whereas the new equation for b̂ is found as

db̂

dt
= −N 2 (−	û2 + û3) . (8.43)

For the sake of convenience, a new scaling is used to define the third buoyancy-
related mode, keeping unchanged the two solenoidal modes: u(3) = (S/N 2)b̂. After
some tedious algebra, a new system of equations, very similar to (8.24), is obtained:

 u̇(1)

u̇(2)

u̇(3)

 =


0 k2+	Rik3

k 0

−	Ri k3
k

k1k3
k2 −Ri k⊥

k

−	 k1
k⊥

k⊥
k + 	 k2k3

kk⊥
0


 u(1)

u(2)

u(3)

 . (8.44)

A possible viscous factor modified only by mean shear at Pr = 1 (Prandtl num-
ber) is not recalled for the sake of brevity (Salhi and Cambon, 1997; Hanazaki and
Hunt, 2004; Salhi, 2002).

Simple analytical solutions of system (8.44) are obtained when considering the
k1 = 0 mode that corresponds to an infinite streamwise wavelength. In this case,
the wave vector is no longer time dependent, because the shear advection vanishes.
Accordingly, the coefficients of the system of RDT are constant, and analytical so-
lutions are easily found.

For k1 = 0, one obtains

u̇(1) = k2 + 	Rik3

k
u(2), (8.45)

u̇(2) = Ri

[
	k3

k
u(1) − k⊥

k
u(3)

]
, (8.46)

u̇(3) =
(

k⊥
k

+ 	
k2k3

kk⊥

)
u(2), (8.47)
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leading to the following equation for the poloidal component:

ü2 + Ri

[(
	

k3

k
+ k2

k

)2

− (1 − Ri)	2 k2
3

k2

]
︸ ︷︷ ︸

�2
0

u(2) = 0. (8.48)

These solutions exhibit an oscillating behavior (stable case) when �2
0 � 0, an ex-

ponential growth (unstable case) whenever �2
0 � 0, and a linear (algebraic) growth

if �0 = 0, where

�2
0 =
[(

cos �
R0

+ sin �
)2

− (1 − Ri) sin2 �

]
. (8.49)

Neutral curves drawn in the [Ri , � = (̂k, n)] plane for k1 = 0 for different values
of Ro (left) and 	 (right) are displayed in Fig. 8.6. For the latter case, a zoom is made
on small values of 	, which are more relevant for geophysical applications.

It is shown that the threefold coupling among shear, rotation, and stratification
allows one to extend the band of instability until Ri = 1. Without system rotation,
the instability essentially concerns negative values of the Richardson number and is
limited by rather small positive values of Ri : Ri ∼ 0.1 from RDT, DNS, and LES
studies, and Ri = 1/4 is recovered from the analysis of Miles (1961).¶

About the occurrence of baroclininic instability in the geophysical context, the
pioneering approach by Eady (1949) seems radically different at first glance, but
numerical solutions of the general RDT equations at k1 �= 0 yield amplification rates
that are comparable with those found by Eady for small values of the parameter 	
(such values are illustrated in the bottom part of Fig. 8.6). Typical DNS results,
carried out for extending the RDT results, are shown in Fig. 8.7.

8.4 Elliptical Flow Instability From “Homogeneous” RDT

This instability is very generic and occurs in many flow configurations. The reader is
referred to Kerswell (2002) for a detailed review. A sudden interest arose when Pier-
rehumbert discovered its characteristic properties by a conventional normal-mode
analysis approach, whereas at the same time Bayly (1986) found the same results
using a much simpler and more elegant method, which is essentially equivalent to
RDT.

Ellipticity in the core of large vortices is very general. It can originate in the
mutual interaction of adjacent vortices, whereas an isolated vortex can remain cir-
cular. As proposed by the authors previously mentioned, it is not necessary to study
the stability of a pair of vortices, but rather one should study the stability of a single
vortex, getting rid of the mutual-interaction origin of the ellipticity.∗∗ One just has

¶ The stability analysis of Miles, however, is different, because it accounts for a possible inflexion
point of the mean-shear profile for a horizontal slab limited by two horizontal walls.

∗∗ A similar reasoning is made when the mean shear is considered a priori, getting rid of its origin, like
solid-wall effects.
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Figure 8.6. Neutral curves (exponentially instable zone are in the part of the surface delineated by
the concave side of the curve), or �0 = 0, for k1 = 0, at different values of 	 (bottom) and Ro (top).

to assume, in addition, that the typical wavelength of the instability is small with
respect to the dimension of the core of the vortex. In this sense, elliptical instability
is a local instability in actual flows, in contrast to cooperative instabilities (e.g., the
Crow instability in a vortex pair) that involve the whole pattern of adjacent eddies.

Going back to RDT, one has to imagine that the mean flow given by Eq. (5.7)
with S �� represents an infinite elliptical eddy. In this case, no mean length scale
may appear, and dynamics of initial disturbances depends only on the orientation,
but not on the modulus, of their wave vector. The effect of a viscous cutoff in vis-
cous RDT can be easily accounted for, but it is not discussed here for the sake
of brevity. Of course, it is more realistic to consider that the elliptic core has a fi-
nite size and that RDT (or WKB RDT, or short-wave asymptotics) is valid only for
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0.036

4.914

Figure 8.7. Isosurfaces for the buoyancy fluctuation in the zonal spanwise-vertical plane, from
DNS. 	 = 0.2, Ri = 0.99, Re�(t = 0) = 66. Courtesy of G. Simon.

disturbances with wavelengths much smaller than this size, but equations are essen-
tially the same.

RDT calculations were carried out by Cambon (1982) and Cambon, Teissèdre,
and Jeandel (1985) for S ��, and the results foreshadowed the ones by Bayly.
This study contributed to motivating the experimental study by Leuchter and co-
workers, with the design of a very complex distorting duct capable of reproducing
an elliptical-flow case with S = �/2, as discussed in Chapter 5. Observation of a
clear elliptical-flow instability was problematic, given the limited length of the duct.
The emphasis was put on the complex evolution of Reynolds stress components, re-
lated spectra, and integral length scales, for statistical modeling purposes. To avoid
confusion with the notation used in this chapter, the strain rate is given as D (and
not S, kept for the shear rate only) and the vorticity of the elliptical eddy is given
as W (and not 2�, kept for the system vorticity in the rotating frame). Expressed in
terms of the solenoidal modes u(1) and u(2), the general RDT equations are(

u̇(1)

u̇(2)

)
=
[

2aD − k3
k (W + 2�)

2bD + k3
k (W + 2�) k̇

k − aD

](
u(1)

u(2)

)
, (8.50)

with a = e(1)
1 e(1)

1 and b = e(2)
1 e(1)

2 + e(2)
2 e(1)

1 (Cambon, 1982; Cambon et al., 1994),
choosing the axial vector n along the direction of mean vorticity (n normal to the
plane of the 2D mean flow here). Choosing n in the (cross-gradient) direction of the
shear is interesting too, but not discussed here (see Salhi, Cambon, and Speziale,
1997). For the sake of convenience, an additional Coriolis effect is accounted for in
the previous equation, the case of the basic elliptical instability in a Galilean frame
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Figure 8.8. Figure reproduced from Cambon’s thesis (1982) in Godeferd, Cambon, and Leblanc
(2001): Maximum eigenvalue of the symmetric Green’s function GG̃ as a function of the direction
� of the wave vector measured from the polar axis (taken at a period t = 2�/�0, this eigenvalue
differs from the actual Floquet parameter only because of the use of a symmetric form of the
Green’s matrix). Curves labeled 1, 2, 3, 4, are obtained at times t/T = 1.3, 2, 2.5, 3 in terms of the
period T = 2�/�0, W/(2D) = 3.

being recovered for � = 0 and D � W/2. As a very simple term, the matrix exhibits
the projection of the absolute vorticity 2� + W onto the wave vector, as the unique
contribution from rotational terms.

Analytically solving this system of two equations is difficult because k is periodic
in time according to Eq. (5.27), so that all coefficients a, b, and k̇/k are periodic too.
Computation of the Green’s functions g and G must therefore be performed through
numerical integration. The main result is displayed in Fig. 8.8.

This figure has the merit of suggesting the mechanism of resonant amplification
by periodic forcing, which is more accurately captured by Bayly (1986), who used a
Floquet analysis.

The Floquet analysis takes advantage of the fact that the coefficients in the lin-
ear system of equations are periodic with a frequency of

�0 =
√(

W

2

)2

− D2. (8.51)
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Figure 8.9. Typical instability band in the �–E
plane, E = (W/2 − D)/(W/2 + D) being the ellip-
ticity; from Salhi, Cambon, and Speziale (1997)
with permission of the American Institute of
Physics.

It is therefore possible to compute the Green’s function for only a single period
T = 2�/�0 and to extract its eigenvalues once and for all. The Green’s function
given by an arbitrary number p of periods is obtained by simply calculating the
power p of the one-period matrix. Exponentiation of the one-period matrix amounts
to exponentiation of its eigenvalues, so that the amplification rate is easily calculated
from a single-period run.

The instability band was found to correspond to

W
k3

k
∼ ±W/2

at very small D: One recovers on the left-hand side the intrinsic frequency of in-
ertial waves, which is also the dominant term in Eq. (8.50) at small D, whereas
the right-hand side is the frequency of the external forcing following mean ellip-
tical streamlines at small D. One can imagine a scheme in which the wave-vector
direction describes a periodic trajectory (with frequency W/2 at vanishing D),
whereas the Fourier component rotates in the plane normal to it with frequency
W cos � = W k3/k: Resonance is found when cos � = ±1/2. The subharmonic con-
ditions with cos � given by a rational number other than ±1/2 yield no significant
amplification here. The location of the instability peak near (k3/k) = cos � = ±1/2
in Fig. 8.8 is therefore explained. The maximum growth rate at leading order in
terms of D/W is found as

� = 9
16

D

for the particular wavenumber orientation cos � = 1/2. On time average, this means
that the vorticity �̂ aligns itself with the underlying stretching direction.

Using the rigorous Floquet analysis, it is shown how the instability band, which
emanates from the point � = �/3 at vanishing ellipticity, expands at larger elliptici-
ties (see Fig. 8.9).

Among a lot of results not given here for the sake of brevity, one can mention
the analytical study of an Ince equation by Waleffe (1990). One can obtain such
an equation by deriving a single second-order ODE from system (8.50), as we have



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

264 Coupled Effects: Rotation, Stratification, Strain, and Shear

10

8

6

4

2

0 2 4 6 8 10 12

Zero tilting vorticity

(a) No rotation

Zero absolute vorticity

Cyclonic

10

8

6

4

2

0 2 4 6 8 10 12

(b)

St

q2

q2
0

q2

q2
0

Figure 8.10. (a) Inviscid and (b) viscous RDT results for the four cases R = 2�/W , pure shear flow
in the rotating frame. Reproduced from Cambon et al. (1994) with permission of CUP.

seen in other examples in the previous sections. Transition to turbulence was further
investigated using LES/DNS by Lundgren and Mansour (1996).

Let us also mention the shift of the instability band when the elliptical flow is
seen in a reference frame rotating at angular velocity � (Craik, 1989): It is simply
found by using

(2�+ W )
k3

k
∼ ±W/2.

This illustrates that the system vorticity and the relative (mean) vorticity do not
act in the same way: They are simply added in the left-hand side, displaying the
absolute vorticity in the dispersion frequency, but W is kept on the right-hand side.
Typical results from inviscid and viscous RDTs for the pure shear flow are shown in
Fig. 8.10 and for the rotating elliptical flow in Fig. 8.11. As shown by Cambon et al.
(1994) and Salhi, Cambon, and Speziale (1997), four flow cases are very relevant
among all possible 2D mean flows with rectilinear D = W/2, hyperbolical D � W/2,
or elliptical D � W/2 streamlines in the frame rotating with angular velocity �:

� the reference case without system rotation,
� the case with zero-mean tilting vorticity, 2�+ W/2 = 0, which gives always the

most destabilizing one,
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Figure 8.11. (a) Inviscid and (b) viscous RDT results for the four cases, R = 2�/W , elliptical-flow
case with D = W/4 in the rotating frame. Reproduced from Cambon et al. (1994) with permission
of CUP.

� the case with zero-mean absolute vorticity, 2�+ W = 0, which is always the only
unconditionally stable one, even if subject to some algebraic growth (see also
Craik, 1989),

� a cyclonic case, with 2� = W/2.

Viscous RDT is given here only as a reference, in order to show the effect of a
viscous cutoff, and therefore to select only the most robust exponential growths.

8.5 Axisymmetric Strain With Rotation

Axial strain, such as the one obtained near the centerline of a convergent ax-
isymmetric duct, was addressed in Chapter 5. An interesting case was obtained by
Leuchter and Dupeuble (1993), when adding an axisymmetric convergent duct after
the generator of rotation illustrated in Fig. 4.3. In close connection with what was ob-
served when rapid rotation is suddenly applied to axisymmetric initial data (see Fig.
4.9), the anisotropy of the flow is dramatically modified. This effect is completely
missed by any RSM, as it is linked to the selective rapid damping of polarization
anisotropy by phase mixing, the directional anisotropy being conserved. This linear
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Figure 8.12. A-parameter (which charac-
terizes the RST anisotropy in the case of
axial symmetry) with q2 = 2K. �0 is the
rotation-to-strain-rate ratio. RDT calcula-
tion, data taken from Leuchter and Cam-
bon (1997). Courtesy of O. Leuchter.

effect can be reproduced by the structure-based model of Kassinos and Reynolds,
as discussed in Cambon and Scott (1999).††

A more sophisticated study was carried out by Leuchter and Cambon (1997),
with access to both linear and subtle nonlinear effects of rotation in the straining
geometry, using RDT, DNS, and EDQNM2. The anisotropy parameter A/(2K),
with

A = b33 − (b11 + b22)/2,

is plotted in Figs. 8.12 and 8.13. This parameter is the unique one needed to char-
acterize bi j with axial symmetry, because bi j is diagonal with b11 = b22 = −b33/2. A
RSM can reproduce the rise of A with negative value because of the axisymmetric
strain, reflecting the rise of a “pancake-type” RST b11 = b22 � 0, but not the effect
of additional rotation, which partly counterbalances this production.

The case of axial compression with rotation can be considered as another case of
compressed turbulence, as discussed in Section 10.3. If the compression is periodic –
this could be illustrated in a reciprocating engine with swirl – specific instabilities can
be shown by use of homogeneous RDT, very close to the elliptical-flow case. After a
first numerical RDT computation by C. Cambon, a complete Floquet’s analysis was
performed by Mansour and Lundgren (1990), showing different bands of instability
similar to the one displayed in Fig. 8.9. A mechanism of parametric resonance of
inertial waves by the external periodic compression is displayed. This mechanism
was further investigated in the more realistic configuration of an axially rotating
cylindrical vessel, with small-amplitude periodic compression (Duguet, Scott, and
Le Penven, 2005).

8.6 Relevance of RDT and WKB RDT Variants for Analysis
of Classical Instabilities

The short-wave asymptotic theory introduced by Lifschitz and Hameiri (1991) is
presented in Chapter 13. It can be seen as a WKB variant of RDT. It is used in
the following discussion for identifying localized elliptic, centrifugal, and hyperbolic
instabilities (Godeferd, Cambon, and Leblanc, 2001).

†† The damping of polarization anisotropy was referred to as “rotational randomization” in the
structure-based model.
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Figure 8.13. Same quantities and parameters as in Fig. 8.12. DNS and EDQNM2 results, data taken
from Leuchter and Cambon (1997). Courtesy of O. Leuchter.

The Coriolis force alters the stability of 2D vortex flows subjected to 3D dis-
turbances. As an illustration, it is possible to consider 2D base flows more complex
than those of homogeneous RDTs illustrated in Fig. 2.1. For instance, the Taylor–
Green flow in a rectangular cell (see Fig. 8.14) has an elliptic point in the core of
each eddy and a hyperbolic point in the corner of the four cells. The Stuart flow
(see Fig. 8.15) is elliptic in the core region with hyperbolic points inserted between
adjacent vortices (only a single vortex is shown, but one has to consider periodicity
in the horizontal direction). The stability of these flows can be revisited in a rotat-
ing frame, using the short-wave WKB theory developed by Lifschitz and Hameiri
(1991), which amounts to a zonal RDT analysis. Such an analysis allows for the
identification of the role of elliptic and hyperbolic points in 3D instabilities altered
by system rotation, but also to capture the centrifugal instability that may affect anti-
cyclonic vortices (Sipp, Lauga, and Jacquin, 1999; Godeferd, Cambon, and Leblanc,
2001). The three kinds of instability and their possible competition were studied by
solving the Townsend (or Kelvin–Townsend) equations along different trajectories.
For each closed trajectory, a temporal Floquet parameter can be calculated from the
zonal RDT Green’s function. This parameter, denoted by �(x0, �), depends on both
the space coordinate x0, which labels the trajectory, and on the angle �, which gives
the orientation of the wave vector. A typical pattern of �(x0, �) in the case of the
rotating Stuart flow is shown in Fig. 8.16. The dominant instability is the centrifugal

Ω

x/a

y/
a
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0

π0-π /2 π /2

π /E

-π /E

+W

+W

-W
Figure 8.14. The Taylor–Green flow: isovalues
of the vorticity. Case E = 2. Reproduced from
Sipp, Lauga, and Jacquin (1999) with permis-
sion of AIP.
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Figure 8.15. The Stuart flow. Isovalues of the
stream function. Core ellipticity parameter � =
1/3.
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Figure 8.16. Floquet amplification parameter � (plotted onto the vertical axis) as a function of
the trajectory, indexed by the position x0 (on the left), and the orientation � (on the right) of
the local wave vector to the spanwise (normal to the plane of the base flow) axis. x0 varies from
0 (core) to � (periphery), and � varies from 0 (pure spanwise modes) to �/2 (pure 2D modes).
Anticyclonic system rotation: The dimensionless vorticity at the core (x0 = 0) of a Stuart cell is −7
and the related Rossby number is −5. Reproduced from Godeferd, Cambon, and Leblanc (2001)
with permission of CUP.
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one in the particular anticyclonic case illustrated here. In addition, a typical elliptical
instability branch emanates from the core (left-hand part of the figure). It should be
pointed out that the local WKB RDT for short-wave disturbances can provide real
insight into the nature of instabilities – e.g., elliptical, hyperbolic, and centrifugal –
that occur in nonparallel flow with and without system rotation. Classical massive
eigenvalue problems provide little or no such insight. In such studies, for instance
by Peltier and co-workers, different kinds of instabilities, called “core,” “braid,”
and “edge,” were identified, but local analysis allowed us to substitute “elliptical,”
“hyperbolical,” and “centrifugal” into this terminology.

Finally, it is perhaps worthwhile to mention the instabilities that cannot be cap-
tured by RDT (possibly extended toward WKB RDT). A very important one is the
inflexional shear instability. Even if every point of a linear profile is an inflexional
point, the case of change of concavity cannot be recognized by RDT as such. The
reason is that only the gradient of the mean velocity is accounted for in the local
theory, but not the curvature. A related point is that the inflexional instability in
actual flows is not a short-wave, very local, one.

The case of the baroclinic instability is more subtle and surprising. On the one
hand, the baroclinic instability is a long-wave instability in many geophysical con-
texts; on the other hand, we hope that the specific section in this chapter could show
a possible relevance of homogeneous and WKB RDT, and at least will generate a
debate in the geophysical community.
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9 Compressible Homogeneous Isotropic Turbulence

9.1 Introduction to Modal Decomposition of Turbulent Fluctuations

9.1.1 Statement of the Problem

A natural question that arises when dealing with compressible turbulent flows is
this: How does one characterize the compressibility effects on turbulence? Or, in an
equivalent way, what are the differences between the compressible turbulent fluctu-
ations and the incompressible ones? To answer this question, it is first important to
remark that in incompressible flows the full solution is contained in the sole velocity
field because the pressure is nothing but an enslaved Lagrange multiplier. In com-
pressible turbulence, this is no longer true because pressure is now an autonomous
variable and at least one additional physical variable is required for describing the
solution.∗ The basic governing equations for such flows are

∂�

∂t
+ ∇ · (�u) = m, (9.1)

�

(
∂u
∂t

+ u∇u
)

= −∇ p − 2
3
∇ (�∇ · u) + ∇ · (�S) + � f , (9.2)

p

R

(
∂s

∂t
+ u · ∇s

)
= ∇ · (�∇T ) + �

[
1
2
S : S − 2

3
(∇ · u)2

]
+ Q, (9.3)

where R, p, � , T , u, s, �, and � denote the perfect gas constant, pressure, den-
sity, temperature, velocity, entropy, coefficients of viscosity, and heat conduction,
respectively. The additional variables m, f , and Q are related to the rate of mass in-
jection per unit volume, the body force per unit mass, and the rate of heat addition
per unit volume, respectively. Both the viscosity and the heat conduction are as-
sumed to be monotonic functions of the temperature, i.e., � = �(T ) and � = �(T ).
The system is supplemented by the perfect gas law

p = � RT (9.4)

∗ The discussion in the present book is restricted to the case of single-phase, nonreactive, single-
species flows of divariant fluids.
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and the definition of the entropy

s − sr = cv log
[(

p

pr

)(
�r

�

)]
, (9.5)

where sr , pr , and �r are related to a reference state.
A common way to solve this problem is to try to decompose the observed fluc-

tuations as the sum of a compressible part and an incompressible one, the latter be-
ing very often understood as the part of the solution that fulfills the incompressible
Navier–Stokes equations, the former being defined as the difference between the
full solution and the incompressible part. Unfortunately, no fully general decom-
position based on this approach leading to tractable and useful analysis has been
proposed up to now. A main reason for that is that such a decomposition does not
explicitly distinguish between acoustic waves and other compressible phenomena.

To remedy this problem and to provide a meaningful and powerful decomposi-
tion of compressible fluctuations into physical modes, Kovasznay proposed a small-
parameter expansion discussed in the next subsection, which is based on the as-
sumption that the turbulent fluctuations will be small in some sense with respect to
a uniform mean flow. As will be subsequently seen, this decomposition provides us
with much meaningful information, but its validity is restricted because it relies on
a linearized theory. To handle flows in which nonlinear mechanisms are dominant,
another approach consists of using the exact Helmholtz decomposition of the com-
pressible velocity field. Because this decomposition does not rely on any assumption
dealing with the amplitude of the turbulent fluctuations, it is valid in all flows. But its
weakness is that it does not allow a direct splitting of other flow variables like den-
sity, pressure, or entropy. Therefore it must be supplemented with arbitrary splitting
procedures for these variables (Subsection 9.1.4).

9.1.2 Kovasznay’s Linear Decomposition

The first step in Kovasznay’s approach (Kovasznay, 1953) consists of expanding the
turbulent field as

u = u0 + �u1 + �2u2 + · · · , (9.6)

� = �0 + ��1 + �2�2 + · · · , (9.7)

p = p0 + �p1 + �2 p2 + · · · , (9.8)

s = s0 + �s1 + �2s2 + · · · , (9.9)

where � is a small parameter related to the amplitude of the perturbation field and
(u0, �0, p0, s0) are related to a uniform mean field. It is worth noting that the leading
fluctuating terms in the pressure and the density fields are assumed to have the same
scaling order with respect to �. Different scaling laws can also be considered (e.g.,
Zank and Matthaeus, 1990, 1991; Bayly, Levermore, and Passot, 1992). The mean
velocity u0 can be set to zero by changing the frame of reference.
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Assuming that the source terms on the right-hand sides of Eqs. (9.1)–(9.3)
scale like � and inserting the preceding expansions into these equations, one ob-
tains the following linearized set of equations for the first-order fluctuating field
(u1, �1, p1, s1) (the subscript 1 will be omitted hereafter for the sake of clarity):

∇ · u + ∂p

∂t
− ∂s

∂t
= m

�0
, (9.10)

∂u
∂t

+ a2
0∇ p − �0∇2u − 1

3
�0∇(∇ · u) = f , (9.11)

∂s

∂t
− 4

3
�0∇2s − 4

3
(� − 1)�0∇2 p = Q

�0cpT0
, (9.12)

where �0 = �0/�0, � = cp/cv , cp being the specific heat at constant pressure and cv

that at constant volume. It is to be noted that the pressure and the entropy have been
normalized by �p0 and cp, respectively (the notations have not been changed for the
sake of simplicity). The speed of sound in the undisturbed medium, a0, is computed
as a0 = √

�p0/�0. The Prandtl number �cp/� has been taken equal to 3/4 for the sole
purpose of simplifying the algebra. This linear system can be rewritten introducing
the fluctuating vorticity � = ∇ × u. By a slight manipulation, one obtains

∂�

∂t
− �0∇2� = ∇ × f , (9.13)

∂s

∂t
− 4

3
�0∇2s = 4

3
(� − 1)�0∇2 p + Q

�0cpT0
, (9.14)

∂2 p

∂t2
− a2

0∇2 p − 4
3
��0

∂

∂t

(∇2 p
) =

[(
∂

∂t
− 4

3
�0∇2

)
m

�0
− ∇ · f + ∂

∂t

(
Q

�0cpT0

)]
.

(9.15)

This set of equations is supplemented by additional relations obtained by lin-
earizing perfect gas law (9.4) and entropy definition (9.5):

�p − �

�0
− T

T0
= 0, (9.16)

p + 1
� − 1

(
s − T

T0

)
= 0. (9.17)

Using these equations, Kovasznay proposes to define three physical modes, each
mode corresponding to the solution of a subsystem extracted from (9.13)–(9.15):

� The vorticity mode, whose fluctuating field is denoted by (��, p�, s�, u�), is de-
fined as follows:

∂��

∂t
− �0∇2�� = ∇ × f , (9.18)

p� = 0, s� = 0, ∇ × u� = ��, ∇ · u� = 0. (9.19)
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The vorticity mode is associated with a solenoidal rotational velocity field, and
it can be interpreted as the “incompressible” part of the solution. But it is worth
noting that there is no corresponding pressure disturbance because it is expected
to be of the order of �2. If the source term is set equal to zero, an exact wavelike
solution is

�� = Z� exp
(
ık� · x − �0k2

�t
)
, (9.20)

u� = ı
k� × Z�

k2
�

exp
(
ık� · x − �0k2

�t
)
, (9.21)

where the wave vector associated with the vorticity mode, k�, and the complex
amplitude fluctuation vector Z� are such that Z� · k� = 0, i.e., the associated ve-
locity field corresponds to a transverse wave.

� The entropy mode whose corresponding perturbation field is (�e, pe, se, ue), is de-
fined as

∂se

∂t
− 4

3
�0∇2se = 4

3
(� − 1)�0∇2 pe + Q

�0cpT0
, (9.22)

�e = 0, pe = 0, ∇ × ue = 0, ∇ · ue = ∂se

∂t
. (9.23)

The corresponding wavelike solution for the source-free problem is

se = S exp
(

ıke · x − 4
3
�0k2

e t

)
, (9.24)

ue = ıS
4
3
�0ke exp

(
ıke · x − 4

3
�0k2

e t

)
, (9.25)

where S and ke are the complex amplitude and the wave vector, respectively. The
velocity perturbation is purely dilatational and is induced by the sole viscous ef-
fects, and therefore ue = 0 in the inviscid case.

� The acoustic mode, which is characterized by (�p, pp, sp, up). The governing re-
lations for this mode are

∂2 pp

∂t2
−a2

0∇2 pp − 4
3
��0

∂

∂t

(∇2 pp
)=[( ∂

∂t
− 4

3
�0∇2

)
m

�0
− ∇ · f + ∂

∂t

(
Q

�0cpT0

)]
,

(9.26)

∂sp

∂t
− 4

3
�0∇2sp = 4

3
(� − 1)�0∇2 pp, (9.27)

∇ × up = 0, ∇ · up = ∂sp

∂t
− ∂pp

∂t
+ m

�0
. (9.28)



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 21:31

9.1 Introduction to Modal Decomposition of Turbulent Fluctuations 277

The wave solution is

pp = P exp [ı(kp · x − �t)] , (9.29)

sp = 4
3

P
(� − 1)�0k2

p

c − 4
3�0kp

exp [ı(kp · x − �t)] , (9.30)

up = ıPkp
a2

0

c − 4
3�0kp

[ı(kp · x − �t)] , (9.31)

where P and kp are the complex amplitude and the wave vector, respectively. The
complex propagation frequency � is defined as

� = −a0kp

⎛⎝√1 − 4� 2�2
0k2

p

9a2
0

− ı
2
3
��0kp

a0

⎞⎠ . (9.32)

The imaginary part of � gives the damping rate of the acoustic waves whereas
the real part is related to the frequency of oscillations. It is observed that the viscous
effects lead to the existence of a dispersive solution. The existence of an acoustic–
entropy fluctuation originates in the viscous dissipation of the pressure waves. In the
inviscid case, one recovers sp = 0 and waves travel at the speed a0 (i.e., � = −a0kp).

It is seen that disturbances associated with the entropy mode and the vorticity
mode are passively advected by the mean field (velocity u0 in a reference frame at
rest), whereas acoustic disturbances travel at the speed of sound relative to the mean
flow.

Using this three-mode decomposition, all turbulent fluctuations can be decom-
posed as

p = p� + pe + pp, (9.33)

s = s� + se + sp, (9.34)

u = u� + ue + up, (9.35)

� = �� + �e + �p. (9.36)

Nonvanishing contributions in both viscous and inviscid cases are summarized
in Table 9.1.

The analysis of governing equations for each mode also gives some information
on the role of the forcing terms m, f , and Q.

The mass-addition term m leads to a production of the acoustic mode [see
Eqs. (9.26) and (9.28)]. The effect is twofold: Mass addition induces the rise of a
nonzero velocity perturbation, and it also generates pressure waves. But it is worth
noting that if m obeys the diffusion equation,(

∂

∂t
− 4

3
�0∇2

)
m

�0
= 0, (9.37)
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Table 9.1. Nonvanishing Kovasznay mode contribution to
the fluctuating field

Mode/fluctuation s p u �

Acoustic X © ©
Entropy © X
Vorticity © ©

Note: Symbols are related to nonvanishing contributions. X: nonzero
contribution in the viscous case only; ©: nonzero contribution in both
viscous and inviscid cases.

then no pressure wave is created. In this case, the generated velocity field is a po-
tential field whose potential 	p satisfies the following Poisson equation:

∇2	p = m

�0
. (9.38)

The forcing term f produces both the vorticity mode and the acoustic mode.
A closer examination of the governing equations shows that the irrotational (resp.
solenoidal) part of f generates the acoustic (resp. vorticity) mode and cannot gen-
erate the vorticity (resp. acoustic) mode. If f is a harmonic force field (i.e., it is both
solenoidal and irrotational) no fluctuating vorticity and pressure fields are gener-
ated. The only effect is the creation of a harmonic velocity field uH given by

∂uH

∂t
= f . (9.39)

The effect of heat addition (term Q) is to create both an entropy mode and an
acoustic mode. Adding heat obviously yields an increase of the entropy (creation of
the entropy mode) and leads to a local dilatation of the medium and a local distur-
bance in the pressure field (creation of the acoustic mode).

9.1.3 Weakly Nonlinear Corrected Kovasznay Decomposition

The linear decomposition previously presented makes it possible to define the
three physical modes, but it does not provide any insight into the interactions be-
tween them because the modes evolve independently. Information dealing with the
creation–destruction of fluctuations that are due to the modal interactions is recov-
ered by looking at terms of the order of �2 resulting from bilateral interactions (Chu
and Kovasznay, 1957). The full analysis brings in 18 terms and also involves a second
nondimensional parameter† �′ = �0k/a0 that measures the ratio of the characteristic
length scale of the perturbation, 1/k, and the intrinsic scale of the medium �0/a0.
Second-order terms scale as �2 or �2�′. Because for turbulent flows at atmospheric
pressure and density one has �′ � �,‡ it is chosen to neglect terms of the order

† It is recalled that the first nondimensional parameter � is related to the amplitude of the perturba-
tions.

‡ Considering �0 = 0.15 × 10−4 m2 s−1 and a0 = 300 ms−1, one obtains �0/a0 = 5 × 10−8 m, which is
of the order of the mean-free path of the molecules in the gas. For a frequency equal to 1 Hz, one
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Table 9.2. Source terms associated with second-order bilateral modal interactions according to
Kovasznay decomposition

Modal interaction Acoustic source Vorticity source Entropy source

Acoustic–acoustic Steepening and self-scattering
∇ · ∇ · (upup) + a2

0∇2 p2
p

+ �−1
2

∂2 p2
p

∂t2

O(�2�′) O(�2�′)

Vorticity–vorticity Generation 2∇ · ∇ · (u�u�) Self-convection and stretching
−u�∇�� + ��∇u�

O(�2�′)

Entropy–entropy O(�2�′) O(�2�′) O(�2�′)

Acoustic–vorticity Scattering 2∇ · ∇ · (u�up) Vorticity convection
and stretching
−up∇�� + ��∇up − ��∇ · up

O(�2�′)

Acoustic–entropy Scattering ∂
∂t ∇ · (seup) Baroclinic source

−a2
0(∇se) × (∇ pp)

Heat convection
−up · ∇se

Vorticity–entropy O(�2�′) O(�2�′) Heat convection
−u� · ∇se

of �2�′. Remaining terms and associated production mechanisms are displayed in
Table 9.2.

It is important to note that these second-order corrections make all the modes
fully coupled, because even self-interactions yield the growth of the other modes.
Therefore the Kovasznay decomposition strictly holds for fully linear approxima-
tions only.

9.1.4 Helmholtz Decomposition and Its Extension

Let us recall that the Helmholtz decomposition of an arbitrary vector field v takes
the form§

v = vs + vd + vH , (9.40)

where vs,vd , and vH are the solenoidal (i.e., incompressible), the dilatational
(i.e., compressible), and harmonic components, respectively. This decomposition is
shown to be useful throughout this book, even when strict incompressibility is as-
sumed (it is not applied to the velocity but to its time variations, e.g., see Subsection
2.5.4). It can be generated by two terms, a potential vector such that vs = ∇ × �,
yielding ∇ ·vs = 0, and a scalar potential vd = ∇	, yielding ∇ × vd = 0. The inter-
section of solenoidal and dilatational subspaces, vH , is generated by both curl(∇×)
and div(∇ · ) operators, and is usually determined by the following harmonic prob-
lem: ∇2vH = 0. The “vortical-divergent” nature of this decomposition also derives
from � = ∇ × u = ∇ × us and d = ∇ · u = ∇ · ud . Let us just emphasize that the

has 1/k = 300 m and �′ = 1.66 × 10−10. For 1 kHz one has �′ = 1.66 × 10−7 and �′ = 1.66 × 10−4 at
1 MHz. Even at 1 GHz, one obtains �′ = 1.66 × 10−1 
 1!

§ The mathematical conditions for the existence and the uniqueness of such a decomposition are not
discussed here.
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toroidal–poloidal decomposition in physical space offers a useful and unique way
to construct the potential vector � [see Eqs. (2.65), (2.66), and (2.70)]. This poten-
tial is not unique in general, and therefore it must be subjected to additional gauge
conditions to be completely determined. As a last point, the poloidal–toroidal de-
composition can be itself tied to a kind of Helmholtz decomposition, but restricted
to the transverse u × n part of the flow, yielding a peculiar vortical-divergent decom-
position for the horizontal (or transverse, ⊥ n) velocity field only (see Chapter 7).

The Helmholtz decomposition is exact and does not rely on any assumption
about the physical nature of v. In the absence of relevant boundary effects, or in
the case of periodic boundaries (as used in DNS for approaching realizations of a
homogeneous flow), the harmonic component is space uniform and can therefore
be taken equal to zero, so that

u = us + ud . (9.41)

More generally, even in the presence of solid boundaries, the harmonic term can
be absorbed in, e.g., the second “dilatational-irrotational” term [the RDT solution
for an irrotational straining process in the presence of a wall provides an example,
based on the Helmholtz decomposition of linearized Weber equation (5.19)].

Generally, this decomposition is static, in the sense that it does not rely on the
evolution equations that govern the dynamics, up to some exceptions mentioned
throughout this book.

Helmholtz decomposition holds for the velocity, but does not provide any help
in the task of splitting the pressure and the density (or the entropy) between
compressible and incompressible components. Therefore the splitting given by
Eq. (9.41) must be supplemented by some arbitrary definition of compressible and
compressible parts of other physical variables.

The pressure is usually split as

p = ps + pd , (9.42)

where ps is defined as the part of the pressure field that satisfies the Poisson equation
found for the pressure in the incompressible case, leading to

∇2 ps = −∇ · ∇ · (usus). (9.43)

The general decomposition discussed in Chapter 2 suggests a more general de-
composition, applying the Helmholtz decomposition to any term V = V s + Vd given
by a relation of the form ∂u/∂t + V + 1

�
∇p = 0. The classical previously mentioned

Poisson equation is recovered assuming ud = 0, � = constant, and Vd = (us∇us)d .
Another variant would consist of applying the Helmholtz decomposition to the al-
ternative evolution equation for

√
�u subsequently discussed.

The component pd is then defined as the remainder: pd = p − ps from
Eq. (9.43).

An important remark is that the solenoidal field (us, ps) does not include acous-
tic waves, but that the residual field (ud , pd) is not restricted to acoustic phenomena.
The characteristic velocity scale associated with (us, ps) is the fluid velocity, whereas
(ud , pd) can have two characteristic scales in the most general case: the fluid velocity
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and the speed of sound. The former will hold if (ud , pd) is dominated by heat transfer
(convective phenomenon), whereas the latter will be relevant in acoustics-governed
cases.

It is worth noting that, following Kida and Orszag (1990a, 1990b, 1992), Miura
and Kida (1995) extend the usual Helmholtz decomposition by applying it to the
vector field w = √

�u. Using this definition, the authors enforce the positive defi-
niteness of the spectra of the compressive and rotational kinetic energies.

9.1.5 Bridging Between Kovasznay and Helmholtz Decomposition

Kovasznay decomposition can be related to Helmholtz decomposition for the ve-
locity field.

In the case in which uH = 0, one obtains

us = u�, ud = up + ue. (9.44)

It is worth noting that the Helmholtz approach does not rely on a small-
parameter expansion and is therefore exact, whereas the Kovasznay decomposition
is nothing but a first-order approximation.

9.1.6 On the Feasibility of a Fully General Modal Decomposition

The second-order correction of the linear Kovasznay decomposition provides mean-
ingful qualitative insight into bilateral interactions. Because of the small-amplitude
hypothesis, it is not able to give correct quantitative predictions in fully developed
turbulent flows. Therefore, more sophisticated decompositions must be found to
deal with genuinely nonlinear dynamics.

The idea of defining nearly independent physical modes that can serve as a ba-
sis to decompose turbulent compressible fluctuations is very appealing, but unfortu-
nately it cannot be extended to arbitrary mean fields. The very reason why is that in
the general case the mean-field gradients bring in new terms in linearized equations
that do not allow us to decouple the different fluctuating fields. The search for such
a system of equations for the acoustic mode developing about an arbitrary mean
field is the Holy Grail of aeroacoustics, and a large number of surrogate evolution
equations have been proposed that will not be discussed here. The interested reader
is invited to refer to reference books on acoustics.

Other chapters of this book deal with the coupling between the modes induced
by the mean-field nonuniformity: Chapter 10 is devoted to the interactions induced
by a nonuniform smooth mean-velocity field, and the case of the interaction with a
planar normal shock wave is detailed in Chapter 11.

9.2 Mean-Flow Equations, Reynolds Stress Tensor, and Energy Balance
in Compressible Flows

9.2.1 Arbitrary Flows

We first address the derivation of the governing equations for the mean field and
the associated second-order turbulent stresses. The usual density-weighted average,
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referred to as the Favre averaging technique,¶ is retained here. For a dummy vari-
able 	 (either a scalar or a vectorial one), the mean part, 	̃, and the fluctuating part,
	′′, are defined as

	̃ ≡ �	

�̄
, 	′′ ≡ 	− 	̃, (9.45)

where the bar symbol is related to the usual statistical average. Let us consider the
Navier–Stokes equations written in the strong conservation form:

∂�

∂t
+ ∇ · (�u) = 0, (9.46)

∂�u
∂t

+ ∇ · (�uu) = −∇ p + ∇ · �, (9.47)

∂�e

∂t
+ ∇ · (�ue) = −p(∇ · u) + � : (∇u) + ∇q, (9.48)

where e = cvT is the internal energy. The viscous stress tensor � and the heat con-
duction flux vector q are defined as

� = �
[

2S − 2
3

(∇ · u)I
]

, (9.49)

q = −�∇T . (9.50)

For the sake of completeness, the evolution equation for the enthalpy, h = cpT ,
the vorticity � = ∇ × u, and the pressure are

∂�h

∂t
+ ∇ · (�uh) =

(
∂p

∂t
+ u · ∇ p

)
+ � : (∇u) + ∇q, (9.51)

∂�

∂t
+ (∇�)u = (∇u)� + �∇2� − (∇ · u)�

+ 1
�2

(∇�) ×
{
∇ p − 4

3
∇[�(∇ · u)] + �∇ × �

}

+∇ ×
[

2
�
S(∇�) − 2

3
1
�

(∇ · u)(∇�)
]

− 1
�

(∇�) × (∇ × �), (9.52)

∂p

∂t
+ u · ∇ p = �p

cp

(
∂s

∂t
+ u · ∇s

)
− �p(∇ · u). (9.53)

¶ But let us notice that the density-weighted average was introduced by Osborne Reynolds in his
seminal paper in 1884!
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Considering constant molecular viscosity and diffusivity, and taking the inner
product of (9.52) with �, one obtains an evolution equation for the enstrophy � =
� · �/2:

∂�

∂t
+ ∇ · (u�) = −�(∇ · u) + � · S · � − 1

�2
� · (∇ p × ∇�)

+ �
�

� · ∇2� − �� ·
{

1
�2

∇� ×
[
∇2u + 1

3
∇(∇ · u)

]}
. (9.54)

Applying mass-weighted averaging procedure (9.45) to system (9.46)–(9.48) and
using the binary regrouping∗∗ approach for the convective terms,

�	ui = �̄ 	̃ũi + �	′′u′′
i = �̄ 	̃ũi + �̄ 	̃′′u′′

i , (9.55)

one obtains the following equations for the mean-flow variables:

∂ �̄

∂t
+ ∂(�̄ ũ j )

∂x j
= 0, (9.56)

∂ �̄ ũi

∂t
+ ∂(�̄ ũi ũ j )

∂xi
= − ∂ p̄

∂xi
+ ∂ �̄i j

∂x j
− ∂ �̄ Ri j

∂x j
, (9.57)

∂ �̄ ẽ

∂t
+ ∂(�̄ ẽũ j )

∂x j
= − p̄

∂ ũi

∂xi︸ ︷︷ ︸
I

− p
∂u′′

i

∂xi︸ ︷︷ ︸
II

+ �̄i j
∂ ũi

∂x j︸ ︷︷ ︸
III

+ �i j
∂u′′

i

∂x j︸ ︷︷ ︸
IV

+ ∂q̄i

∂xi︸︷︷︸
V

− ∂(�̄ ẽ′′u′′
j )

∂x j︸ ︷︷ ︸
VI

, (9.58)

where the RST is now defined as

Ri j ≡ ũ′′
i u′′

j . (9.59)

An additional equation for the mean kinetic energy K̃ ≡ �̄ ũi ũi/2 is obtained by
taking the inner product of mean-momentum equation (9.57) by the mean-density-
weighted velocity vector ũ:

∂ K̃

∂t
+ ∂(K̃ ũ j )

∂x j
= − ∂( p̄ũi )

∂xi︸ ︷︷ ︸
VII

+ p̄
∂ ũi

∂xi︸ ︷︷ ︸
I

− ∂(�̄ Ri j ũi )
∂x j︸ ︷︷ ︸
VIII

+ �̄ Ri j
∂ ũi

∂x j︸ ︷︷ ︸
IX

+ ∂(�̄i j ũi )
∂x j︸ ︷︷ ︸

X

− �̄i j
∂ ũi

∂x j︸ ︷︷ ︸
III

.

(9.60)

The physical meaning of source terms in the mean-internal-energy equation and
the mean kinetic energy are as follows:

� I: mean pressure-dilatation energy transfer, which is strictly null if the mean-
velocity field ũ is solenoidal.

� II: pressure-fluctuation dilatation correlation, which vanishes if the fluctuating-
velocity field u′′ is solenoidal.

� III: viscous heat production associated with mechanical dissipation by the mean
flow.

∗∗ This term was coined by Chassaing and co-workers (see Chassaing et al., 2002), who developed the
alternative ternary regrouping approach.
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� IV: viscous heat production associated with mechanical dissipation by the fluctu-
ating flow (turbulent dissipation of turbulence kinetic energy).

� V: mean external heat source by conduction.
� VI: turbulent diffusion of internal energy.
� VII: power of the mean external pressure forces in the mean motion.
� VIII: power of the Reynolds stresses.
� IX: energy exchange with the turbulence kinetic energy (shear production). This

term is null if the mean shear is zero.
� X: power of the mean external viscous stresses in the mean motion.

The evolution equation for the fluctuating velocity is

∂(�̄u′′
i )

∂t
+ ∂(�̄u′′

i ũ j )
∂x j

= −∂(�̄ Ri j )
∂x j

− �̄u′′
j

∂ ũi

∂x j
− �̄u′′

i

∂u′′
i

∂x j
+ �

′

�

∂p

∂xi
− �

′

�

∂�i j

∂x j
.

(9.61)

In the same way as in the incompressible flow case, evolution equations for the
Reynolds stresses can be deduced from the Navier–Stokes equations. Still consider-
ing the binary regrouping, one obtains

∂ �̄ Ri j

∂t
+ ∂(�̄ Rik ũk)

∂xk
= −�̄

(
Rik

∂ ũ j

∂xk
+ R jk

∂ ũi

∂xk

)
+ p′

(
∂u′′

i

∂x j
+ ∂u′′

j

∂xi

)
− ∂

∂xk

(
�u′′

i u′′
j u

′′
k + p′u′′

i 
jk + p′u′′
j
ik − � ′

iku′′
j − � ′

jku′′
i

)
+ u′′

i

(
∂ �̄ jk

∂xk
− ∂ p̄

∂x j

)
+ u′′

j

(
∂ �̄ik

∂xk
− ∂ p̄

∂xi

)
− � ′

ik

∂u′′
j

∂xk
− � ′

jk

∂u′′
i

∂xk
.

(9.62)

Defining the instantaneous turbulence kinetic energy as k = u′′
i u′′

i /2, one de-
duces from the Reynolds stress equations the following evolution equation for the
mean-density-weighted turbulence kinetic energy K̃:

∂K̃
∂t

+ ∂(K̃ũ j )
∂x j

= − ∂(�̄K̃u′′
j )

∂x j︸ ︷︷ ︸
XI

− �̄ Ri j
∂ ũi

∂x j︸ ︷︷ ︸
IX

− ∂( p̄u′′
i )

∂xi︸ ︷︷ ︸
XII

− ∂ p′u′′
i

∂xi︸ ︷︷ ︸
XIII

+ p
∂u′′

i

∂xi︸ ︷︷ ︸
II

+ ∂(�i j u′′
i )

∂x j︸ ︷︷ ︸
XIV

− �i j
∂u′′

i

∂x j︸ ︷︷ ︸
IV

, (9.63)

where the physical mechanisms at play are as follows:

� XI: turbulent diffusion.
� XII: external power of mean-pressure forces acting through the fluctuating

motion.
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Figure 9.1. Schematic view of mean-energy ex-
changes in compressible turbulence.

� XIII: external power of pressure fluctuations in the fluctuating motion.
� XIV: external power of fluctuating viscous forces in the fluctuating motion.

Direct energy exchanges among the mean-flow kinetic energy, the mean in-
ternal energy, and the mean turbulence kinetic energy are due to common terms
appearing in Eqs. (9.58), (9.60), and (9.63), namely terms I, II, III, IV, and IX. A
schematic view of this dynamical scheme is displayed in Fig. 9.1.

9.2.2 Simplifications in the Isotropic Case

The dynamical scheme just presented simplifies dramatically in isotropic turbulence
because of the absence of the mean-flow gradient and the symmetry properties
of statistical moments of turbulent fluctuations. In this case, system (9.58)–(9.60)–
(9.63) becomes

∂ �̄ ẽ

∂t
= − p

∂u′′
i

∂xi︸ ︷︷ ︸
II

+ �i j
∂u′′

i

∂x j︸ ︷︷ ︸
IV

, (9.64)

∂ K̃

∂t
= 0, (9.65)

∂K̃
∂t

= p
∂u′′

i

∂xi︸ ︷︷ ︸
II

− �i j
∂u′′

i

∂x j︸ ︷︷ ︸
IV

. (9.66)

One observes that, as in the case of incompressible flow, the mean kinetic en-
ergy is constant because the turbulent force in the mean-momentum equation van-
ishes. The remaining coupling terms, II and IV, correspond to energy exchanges
between the mean internal energy and the mean turbulence kinetic energy (see
Fig. 9.2). It is worth noting that term II depends on the sole dilatational part of
the fluctuating-velocity field. Using the Kovasznay decomposition, one can see that
this term is associated with the acoustic mode and the entropy mode. In the general
case in which temperature-dependent viscosity is considered, term IV also accounts
for turbulent fluctuations of the molecular viscosity. This term is also present in the
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Figure 9.2. Schematic view of mean-energy ex-
changes in compressible isotropic turbulence.

incompressible case and therefore is associated with the three modes of the Kovasz-
nay decomposition.

The full dynamical scheme in isotropic turbulence consists of energy exchanges
at constant total mean energy between the mean turbulence kinetic and the mean
internal energy because

∂

∂t
(ẽ + K̃ + K̃) = ∂ ẽ

∂t
+ ∂K̃

∂t
= 0. (9.67)

Therefore the whole dynamics is governed by terms II and IV, and most studies
dealing with compressible isotropic turbulence have been devoted to the analysis of
these two terms and the underlying physical mechanisms.

To get a deeper insight into the contributions of each physical mode, it is useful
to decompose terms II and IV.

The pressure-dilatation correlation (term II) can be rewritten as

p
∂u′′

i

∂xi
= p′ ∂u′′

i

∂xi
= p′ ∂u′

i

∂xi
, (9.68)

where it is important to note that u′ ≡ (u − ū) is defined using the usual statis-
tical average and not the density-weighted one. This change is possible because,
as pointed out by Feiereisen and co-workers (Feiereisen, Reynolds, and Ferziger,
1981), the density-weighted average and the usual average are equivalent in homoge-
neous flows. One observes this by writing the following exact decomposition of the
density-weighted momentum:

�̄ ũi ≡ �̄ ūi + �u′
i = �̄ ūi + � ′u′

i , (9.69)

from which it follows that

ũi = ūi + �
′u′

i

�̄
. (9.70)

Because the momentum is conserved in homogeneous turbulence (and more
generally in all periodic domains) and the statistical average can be interpreted as
a volume average by invoking the ergodic theorem, the last term on the right-hand
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side of Eq. (9.70) is constant in space and time. The two velocity fields ũ and ū are
related by an additive constant, which can be chosen to be zero by selecting the ad
hoc frame of reference.

Introducing the Helmholtz decomposition u′ = u′
s + u′

d and p′ = p′
s + p′

d , the
pressure-dilatation term is rewritten as

p′ ∂u′
i

∂xi
= p′

s

∂u′
d i

∂xi
+ p′

d

∂u′
d i

∂xi
. (9.71)

This new expression emphasizes that this term is strictly null in incompress-
ible flows, but also that the solenoidal field has a contribution associated with the
correlation between the solenoidal pressure fluctuations and the divergence of the
fluctuating-velocity field. Because the entropy mode has no pressure fluctuation (at
least in the first-order Kovasznay approximation), it is seen that term II is null if
there is no acoustic mode. In the true solution of nonlinear problems, it is expected
to be very small if no acoustic waves are present or if no very intense entropy source
is present.

Neglecting the molecular viscosity fluctuations,†† the dilatation-dissipation term
(term IV) can be decomposed in homogeneous turbulence as‡‡

�i j
∂u′′

i

∂x j
= � ′

i j

∂u′′
i

∂x j
= �̄ ε̄s + �̄ ε̄d , (9.72)

where ε̄s and ε̄d , which are respectively referred to as the solenoidal and the dilata-
tional dissipation rate, are defined as

ε̄s = 2
�̄

�̄
W ′

i j W
′
i j = �̄

�̄
�′

i�
′
i , W ′

i j = 1
2

(
∂u′

i

∂x j
− ∂u′

j

∂xi

)
, (9.73)

ε̄d = 4
3
�̄

�̄

(
∂u′

i

∂xi

)2

= 4
3
�̄

�̄

(
∂u′

d i

∂xi

)2

, (9.74)

where � ≡ ∇ × u′ = ∇ × u′
s . It is observed that ε̄s (resp. ε̄d) does not depend on the

dilatational (resp. solenoidal) field at all, and will therefore be exactly zero if the
solenoidal (resp. dilatational) field is not present in the flow. In high-speed flows
without a strong external entropy source, and restricting the analysis to the linear
Kovasznay splitting, it is seen that the solenoidal dissipation ε̄s is associated with the
sole vorticity mode, whereas the dilatational dissipation is mainly due to the acoustic
mode.

†† This assumption is relevant for most high-speed nonreactive flows.
‡‡ In nonhomogeneous flows a third contribution must be taken into account, which is defined as

ε̄n = 2
�̄

�̄

[
∂2

∂xi∂x j
u′

i u
′
j − 2

∂

∂x j

(
u′

j

∂u′
i

∂xi

)]
.
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9.2.3 Quasi-Isentropic Isotropic Turbulence: Physical
and Spectral Descriptions

A further simplified model is obtained assuming that turbulent fluctuations are isen-
tropic. The resulting model is widely used to analyze the properties of turbulence in
the compressible regime in the absence of significant thermal effects.

The associated set of governing equations is

∂u′
i

∂t
+ 1
�̄

∂p′

∂xi
− � ∂u′

i

∂xk∂xk
− �

3
∂

∂xi

(
∂u′

k

∂xk

)
= −u′

j

∂u′
i

∂x j
, (9.75)

∂

∂t

(
p′

� P

)
+ ∂u′

i

∂xi
= −u′

j

∂

∂x j

(
p′

� P

)
, (9.76)

in which all nonlinear terms have been put on the right-hand side, and where

p′

� P
= p′

�̄a2
0

with a2
0 = � P

�̄
, (9.77)

in which P and �̄ , which can possibly be time-dependent variables (see Chapter 10),
are chosen constant together with the speed of sound in this section. More general
quasi-isentropic equations can be derived, as discussed in Chapter 10, but additional
assumptions are very useful, such as the low-Mach-number assumption, which leads
to �p/P � 1 and the possible removal of the nonlinear term in the last equation for
the pressure p.

Viscous terms may be omitted, in agreement with the isentropic assumption, but
they have been kept here because they are used in some closure approaches and/or
for numerical convenience (hence the term quasi-isentropic used for this subsec-
tion). The second viscous term, which involves the divergence of the velocity, is
consistent with Eq. (2.14) supplemented with the Stokes law 3�+ 2� = 0, as well as
with Eq. (9.2). Let us also note that the role of viscosity in Kovasznay mode cou-
pling, which has already been introduced in Subsection 9.1.2, will be subsequently
rediscussed in a simpler way.

The problem can be recast in a much simpler and useful way by use of the local
Craya basis in Fourier space.§§ The solenoidal and dilatational parts of the velocity
field, denoted by ûs and ûd , can be decomposed as follows:

ûs(k) = u(1)(k)e(1)(k) + u(2)(k)e(2)(k), ûd(k) = u(3)(k)e(3)(k), (9.78)

where e(i)(k), i = 1, 3 are defined as in the incompressible case [see Eq. (2.67)].
Their counterparts in terms of vorticity [�′ = curl(u′) = curl(us)] and divergence

§§ This projection onto the local reference frame is valid without any assumption dealing with statisti-
cal symmetries, such as isotropy. Isotropy allows us to use the projectors P⊥

i j and P‖
i j , instead of, or

in addition to, the Craya–Herring modes, as extensively discussed in Subsection 2.5.2. This is true
only because of the equipartition in terms of poloidal and toroidal modes that is imposed by 3D
isotropy.



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 21:31

9.2 Mean-Flow Equations, RST, and Energy Balance in Compressible Flows 289

(d = ∇ · u = ∇ · us) are immediately found:

�̂ = ık
[
u(2)e(1) − u(1)e(2)] and d̂ = ıku(3). (9.79)

The definition of vorticity in terms of the Craya modes is the same as the one
used in the incompressible case. These three velocity modes must be supplemented
by a fourth mode, which accounts for the remaining independent thermodynamic
quantity.¶¶ To have a problem with homogeneous dimension, the pressure fluctu-
ation can be scaled as a velocity, and considered as a fourth component (Simone,
Coleman, and Cambon, 1997):

u(4) = ı
p̂

�̄a0
. (9.80)

This scaling is similar to the one used in Eckhoff and Storesletten (1978).
Therefore governing equations (9.75) and (9.76) are rewritten in terms of the

four variables in Fourier space as follows:

d

dt

⎛⎜⎜⎜⎝
u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
�k2 0 0 0
0 �k2 0 0
0 0 4

3�k
2 −a0k

0 0 a0k 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
T (1)

NL

T (2)
NL

T (3)
NL

T (4)
NL

⎞⎟⎟⎟⎠ , (9.81)

where all linear terms have been grouped on the left-hand side. The nonlinear terms
are defined as follows:

⎛⎜⎜⎜⎝
T (1)

NL

T (2)
NL

T (3)
NL

T (4)
NL

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
−e(1) ·

(
�̂′ × u′

)
−e(2) ·

(
�̂′ × u′

)
−e(3) · �̂′ × u′ − 1

2 ıkû′
j u

′
j

̂ıu′
j
∂(p′/(�̄a0))

∂x j

⎞⎟⎟⎟⎟⎟⎟⎠ , (9.82)

where the hat symbol denotes the Fourier transform. A more advanced closed form
of the nonlinear terms of Eq. (9.81) in terms of u(1), u(2), u(3), and u(4) is obtained by
injecting (9.78) and (9.79) into Eq. (9.82)(Cambon and Sagaut, 2007).

It is worth noting that because a simplified isentropic model is used, the com-
puted solenoidal and dilatational fields are not identical to those obtained by pro-
jecting the solution of the full compressible Navier–Stokes equations. In the present
simplified model, only Kovasznay’s vortical and acoustic modes [characterized by
(u(1), u(2)) and (u(3), u(4)), respectively] are retained, and the entropic mode is dis-
carded.

Two-point statistical moments are now considered. Because of 3D isotropy,
two-point second-order statistics are generated by three independent spectra,
namely the spectrum of the solenoidal kinetic energy Ess(k), the kinetic-energy

¶¶ A single additional degree of freedom is enough thanks to the isentropy assumption.
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spectrum of the dilatational component Edd(k), and the pressure spectrum E pp(k):

〈
u(1)∗(p, t)u(1)(k, t)

〉 = 〈
u(2)∗(p, t)u(2)(k, t)

〉 = Ess(k, t)
8�k2


3(k − p), (9.83)

〈
u(3)∗(p, t)u(3)(k, t)

〉 = Edd(k, t)
4�k2


3(k − p), (9.84)

〈
u(4)∗(p, t)u(4)(k, t)

〉 = E pp(k, t)
4�k2


3(k − p), (9.85)

and the cross spectrum

〈
u(3)∗(p, t)u(4)(k, t)

〉 = Edp(k, t)
4�k2


3(k − p), (9.86)

whose imaginary part is neglected, consistent with 3D isotropy with mirror symme-
try. The solenoidal and dilatational kinetic energies, respectively denoted Ks and Kd ,
are computed as follows:

Ks(t) =
∫ +∞

0
Ess(k, t)dk, Kd(t) =

∫ +∞

0
Edd(k, t)dk, (9.87)

and the corresponding dissipations are defined as

ε̄s(t) = 2�
∫ +∞

0
k2 Ess(k, t)dk, ε̄d(t) = 2

4
3
�

∫ +∞

0
k2 Edd(k, t)dk. (9.88)

The pressure variance is recovered as follows:

p′ p′(t) = �2
0a2

0

∫ +∞

0
E pp(k, t)dk. (9.89)

The evolution equations associated with the four spectra are similar to the orig-
inal Lin equation (3.88) derived in the incompressible case for the kinetic-energy
spectrum E(k):

d

dt

⎛⎜⎜⎜⎝
Ess

Edd

Edp

E pp

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
2�k2 0 0 0

0 2 4
3�k

2 2a0k 0
0 −a0k 4

3�k
2 a0k

0 0 −2a0k 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

Ess

Edd

Edp

E pp

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Tss

Tdd

Tdp

Tpp

⎞⎟⎟⎟⎠ , (9.90)

where nonlinear terms have been grouped on the right-hand side. As for the cases
of rotating and/or stratified turbulence, only the transfer terms related to true en-
ergy spectra must have a zero integral, i.e., exhibit a global conservation property.
This constraint is fulfilled by Tss (solenoidal energy transfer) and Tpp + Tdd (trans-
fer of total acoustic-wave energy) but not by Tpp − Tdd and Tdp, which therefore
are not true transfer terms. The nonlinear terms are related to the physical mecha-
nisms mentioned in Table 9.2. Neglecting viscous terms, this system can be recast in
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the following compact form (see also rotating and/or stratified incompressible flow
cases):

d Ess(k)
dt

= Tss(k), (9.91)

d Ew(k)
dt

= Tw(k), (9.92)

d Z(k)
dt

+ 2ı(a0k)Z(k) = Tz(k), (9.93)

in which

Ew(k) = Edd(k) + E pp(k) (9.94)

is the total turbulent acoustic-energy spectrum,∗ and

Z(k) = Edd(k) − E pp(k) + 2ıEdp(k) (9.95)

characterizes the imbalance between kinetic and potential energies of waves.

9.3 Different Regimes in Compressible Turbulence

Numerical experiments and theoretical analyses show that several dynamical
regimes exist in isotropic compressible turbulence, even in the free-decay case in
which no external forcing is present. This is a noticeable difference with incom-
pressible decaying turbulence that exhibits a single behavior. A major difficulty
is that these regimes are very sensitive to a large number of parameters, such as
the turbulent Mach number† and the initial conditions (i.e., the relative energy of
each mode in the Kovasznay or Helmholtz decomposition). That can be intuitively
understood by looking at the corrected Kovasnay analysis, which reveals that each
physical mode has a very specific dynamics: Changing the initial condition might
therefore have a strong influence on the development of the flow.

Four main regimes have been identified, according to the influence of compress-
ibility effects on the turbulence dynamics‡:

� The low-Mach-number quasi-isentropic regime, in which the turbulent Mach num-
ber is low and the interactions between the solenoidal and dilatational com-
ponents are weak. Moreover, the dilatational component is assumed to obey

∗ It is recalled that the acoustic energy is usually defined as

�0
u2

2
+ p2

2�0a2
0

in the framework of linear acoustics, where u and p denote acoustic velocity and pressure distur-
bances, respectively.

† Let us recall that the turbulent Mach number is defined as Mt = √
K/a0.

‡ A very low-Mach-number regime of compressed – but not really compressible – turbulence is dis-
cussed in Chapter 10. Despite the fact that isotropy is assumed for this flow, it is more convenient
to include the corresponding discussion in the next chapter, as the isotropic fluctuating flow is sub-
jected to an external mechanism of mean spherical compression–dilatation.
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quasi-linear acoustic dynamics. A vast majority of available studies are devoted
to the case in which the dilatational mode is restricted to the acoustic mode. Two
kinds of theories are subsequently emphasized: a purely linear one, which basi-
cally predicts that acoustic equilibrium holds at all scales, and a more powerful
nonlinear one, which shows that acoustic equilibrium is restricted at very small
wavenumbers only, whereas another regime, referred to as pseudo-sound, is ob-
served at large wavenumbers.

� The weakly nonlinear thermal regime, in which the dilatational component in-
cludes thermal effects that are not governed by acoustic phenomena.

� The nonlinear subsonic regime, in which the turbulent Mach number is still less
than one, but the fluctuations of the dilatational mode are strong enough to make
nonlinear phenomena arise. In this case, some turbulence-induced very small
shocks (referred to as shocklets or eddy shocklets) are detected.

� The supersonic regime, in which the turbulent Mach number is larger than one. In
this case, the dilatational mode is of great importance and shocklets have a large
impact on the full field.

9.3.1 Quasi-Isentropic Turbulent Regime

Theoretical developments for this regime are pivotal from our viewpoint as they all
rely on all the basic exact equations of Subsection 9.2.3. The meaning of the term
“exact” must be taken here in the same sense as for exactness of Eq. (9.76). Pure
linear theory allows us to recover the essentials of the acoustic equilibrium, which
is possibly altered by laminar viscous terms. Regarding nonlinear theories, no fewer
than three versions are presented, giving very different results even if they rely on
the same “exact” Lin equations and use similar QN closures that have been im-
proved for extradissipative terms.

9.3.1.1 Linear Theory

The basic equations of linear theory for compressible turbulence are obtained in a
trivial way, dropping the right-hand sides in Eqs. (9.81) and (9.90). It is observed
that the solenoidal and the wavy components of the solution are totally decoupled,
in agreement with the usual linear acoustic theory. The dilational and the pressure
modes are coupled through acoustic-wave dynamics, which induces some exchanges
between the dilatational kinetic energy and the turbulent potential energy.

Let us first consider the linear viscous regime. The solenoidal kinetic energy
decays exactly as in the incompressible case (see Chapter 3), leading to

u(�)(k, t) = e−�k2t u(�)(k, 0),� = 1, 2 Ess(k, t) = e−2�k2t Ess(k, 0). (9.96)

The linear system related to acoustic waves simplifies to

d

dt

(
u(3)

u(4)

)
+
[

4
3�k

2 −a0k
a0k 0

](
u(3)

u(4)

)
= 0, (9.97)
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whose solution is governed by the sign of the discriminant:

D = [(2/3)�k2]2 − [a0k]2.

A cutoff value kd = 3a0/(2�) is therefore introduced: For k 
 kd (i.e., D 
 0) the
eigenvalues of the preceding linear system of equations are complex conjugates,
yielding damped oscillating solutions, whereas only damping without oscillations is
found for k � kd (i.e., D � 0) in relation with real eigenvalues. At low Mach number
and large Reynolds number, the cutoff value kd is very large,§ so that the domain
k � kd is irrelevant, but a renormalized version of this system can be useful, with
drastic modification of kd : This issue is subsequently discussed.

The linear inviscid theory has received much more attention (e.g., Erlebacher
et al., 1990; Sarkar et al., 1991; Erlebacher and Sarkar, 1993) because it leads to
the prediction of possible equilibrium states. It is handled in a very simple way
(Cambon, Coleman, and Mansour, 1993; Simone, Coleman, and Cambon, 1997) us-
ing both the local Craya–Herring decomposition and the pressure rescaling given
by Eq. (9.80).¶ Dropping all nonlinear and viscous terms, one can see that the
solenoidal component is frozen, whereas the following conservation relations hold
at all wavenumbers:

u(3)(k, t) + sıu(4)(k, t) = eısa0kt
[
u(3)(k, 0) + sıu(4)(k, 0)

]
, s = ±1, (9.98)

Ew(k, t) = Ess(k, t) + Edd(k, t) = Ess(0, t) + Edd(0, t) = Ew(k, 0), (9.99)

along with

Edd(k, t) = 1
2

Ew(k, 0) + 1
2

[Edd(k, 0) − E pp(k, 0)] cos(2a0kt)

− Edp(k, 0) sin(2a0kt), (9.100)

E pp(k, t) = 1
2

Ew(k, 0) − 1
2

[Edd(k, 0) − E pp(k, 0)] cos(2a0kt)

+ Edp(k, 0) sin(2a0kt), (9.101)

Edp(k, t) = 1
2

[Edd(k, 0) − E pp(k, 0)] sin(2a0kt)

+ Edp(k, 0) cos(2a0kt). (9.102)

The acoustic-equilibrium state is defined as an equilibrium state in which the
kinetic energy of the dilatational mode is equal to the potential energy of the pres-
sure mode. One has to distinguish between two variants of the acoustic-equilibrium
assumption.

§ Considering air at common pressure and temperature, one has a0 � 340 m s−1 and � � 10−5

m2 s−1, yielding kd ∼ 5.107 m−1.
¶ It is worth noting that a large number of works dealing with the inviscid linear theory have been

carried out in the physical space, using system (9.75)–(9.76). In this case, a multiple scale expansion
is needed to operate the splitting between the solenoidal and the dilatational component, whereas
it is trivial in the local spectral frame of reference. It can also yield to a premature occurrence of
nondimensional parameters and to an artificial unnecessary complication of the problem.
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The first one, referred here to as the strong acoustic-equilibrium hypothesis, as-
sumes that this equilibrium holds at all wavenumbers, yielding

Edd(k) = 1

�2
0a2

0

E pp(k), ∀k (strong acoustic-equilibrium hypothesis). (9.103)

The second variant, namely the weak acoustic-equilibrium hypothesis, deals with
the asymptotic values of global quantities, such as Kd(t) and p′ p′(t) at large time.
Using the analytical solutions previously given, one has

lim
t→+∞Kd(t) = lim

t→+∞

∫ +∞

0
Edd(k, t)dk

= 1
2

∫ +∞

0
Ew(k, 0)dk = 1

2

[
Kd(0) + p′ p′(0)

�2a2
0

]
= (Kd)∞, (9.104)

lim
t→+∞ p′ p′(t) = � 2

0a2
0 lim

t→+∞

∫ +∞

0
E pp(k, t)dk

= �2
0a2

0

2

[
Kd(0) + p′ p′(0)

�2a2
0

]
= (p′ p′)∞, (9.105)

along with

lim
t→+∞

∫ +∞

0
Edp(k, t)dk = lim

t→+∞

∫ +∞

0
(E pp − Edd)dk = 0. (9.106)

The latter relation comes from relation (9.95), which leads to

Z(k, t) = eıa0kt Z(k, 0), lim
t→+∞

∫ +∞

0
Z(k, t)dk = 0. (9.107)

This last result is seen to be a consequence of the phase-mixing phenomenon.
Let us recall that phase mixing was induced by an angle-dependent factor in the
dispersion law for inertia and/or gravity waves, whereas it results from the presence
of the factor k in the integrand in the present case.

An important conclusion is that, whatever initial condition is considered, the
solution converges toward the following equilibrium state:

(Kd)∞ = 1

�2
0a2

0

(p′ p′)∞ (weak acoustic-equilibrium hypothesis). (9.108)

It is of course easily seen that strong acoustic equilibrium is a sufficient but not
necessary condition for the weak acoustic equilibrium to be satisfied.

The weak acoustic-equilibrium solutions can be represented in a very simple
and elegant way by use of the ratio of the mean compressible kinetic energy to
the total mean turbulent kinetic energy, � (t), and the function F(t) introduced by
Sarkar:

F(t) ≡ �2
0a2

0
Kd(t)

p′ p′(t)
= �2

0a4
0 M2

t

� (t)

p′ p′(t)
, (9.109)
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Figure 9.3. Values of the equilibrium turbulent kinetic-energy ratio �∞ as functions of � (0) and
F(0). Increasing values of F(0) correspond to decreasing values of �∞ at fixed � (0). Lines plotted
correspond to (from left to right) F(0) = 10−3, 10−2, 10−1, 0.5, 1, 10, 105.

with K = Ks + Kd , Mt = √
K/a0 and

� (t) = Kd(t)
Ks(t) + Kd(t)

= Kd(t)
Ks(0) + Kd(t)

. (9.110)

The equilibrium values can be rewritten as

(p′ p′)∞ = 1
2

p′ p′(0) [1 + F(0)] , (9.111)

(Kd)∞ = 1
2
Kd(0)

[
1 + 1

F(0)

]
. (9.112)

A very interesting result obtained by inserting equilibrium values into (9.109) is
that the acoustic-equilibrium value of Sarkar’s function, F∞, is equal to unity:

F∞ = lim
t→∞F(t) = 1. (9.113)

This result indicates that at acoustic equilibrium there is an equipartition be-
tween the kinetic [numerator of Eq. (9.109)] and the potential component [half the
denominator of Eq. (9.109)] of the compressible energy. One obtains the relative
weights of the incompressible and compressible parts of the kinetic energy by eval-
uating the acoustic-equilibrium value of the parameter � :

�∞ = � (0)
1 + F(0)

2F(0) + � (0)[1 − F(0)]
. (9.114)

Main features of the weak acoustic-equilibrium state are illustrated in Figs. 9.3
and 9.4. It is clearly seen that a low value of F(0) yields a very rapid increase of
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Figure 9.4. Acoustic-equilibrium value referred to the initial value as a function of F(0). Dashed
curve, dilatational velocity field; solid curve, dilatational pressure.

the kinetic-energy ratio in terms of � (0), meaning that initial strong nonequilib-
rium leads to very rapid changes in the solution for F(0) � 1. This relaxation is
also seen to yield a dramatic change in the repartition of the acoustic energy. An
interesting conclusion is that the linear dynamics that corresponds to the pseudo-
acoustic regime is compatible with very important changes in the dilatational
field.

9.3.1.2 The Relevant Incompressible Limit for Both Spectra of Solenoidal
Energy and Pressure Variance

Before the spectra and cospectra related to dilatational and pressure components
are modeled, a definition of the incompressible reference is the first mandatory task.

At low Mach number, it is possible to neglect the feedback from dilatational and
pressure modes in Eq. (9.91), so that the spectrum of the solenoidal mode, Ess(k), is
given as in strictly incompressible turbulence. Therefore a closed form for Tss(k) is
obtained by a classical isotropic incompressible EDQNM model, and Ess(k) exhibits
a classical Kolmogorov inertial range at high Reynolds number. This is consistent
with a selection among all resonant triads, neglecting all resonant triads involving
waves with respect to the pure solenoidal ones (more details are given Chapter 15).
In a similar way, neglecting all triads involving at least one wave mode versus pure
vortex interactions yields selecting the toroidal cascade in Chapter 7 and the QG
cascade in Chapter 8.

The calculation of the spectrum of the pure incompressible part of the pressure
fluctuation, denoted by E inc

pp , is performed starting from the Poisson equation and
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using a QN approximation as in Batchelor’s approach.∗∗ As a result, the following
robust model of E pp(k) as a function of Ess(k) is obtained:

E inc
pp (k) = 1

�̄2a2
0

.
�̄ 2

2
k
∫∫

� k

(1 − x2)(1 − y2)Ess(p)Ess(q)
dpdq

pq
, (9.115)

using the same notations as for the isotropic incompressible EDQNM transfer term
(see Subsection 3.5.7).

The first prefactor 1/(�̄2a2
0) originates in pressure scaling (9.77) and can be om-

mitted in order to interpret E inc
pp (k) as the spectrum of the pressure variance with its

original dimension. Even if the preceding integral cannot be analytically solved in
general, this equation is consistent with a pressure spectrum shape at small k and
the scaling kE2(k) ∼ k−7/3, at larger k, for a Kolmogorov energy spectrum.

9.3.1.3 Quasi-Inviscid Limit: Toward an Extended Wave-Turbulence Model

In the low-Mach-number case, acoustic perturbations travel at a much higher speed
than hydrodynamic fluctuation, and a two-time-scale problem can be defined. Asso-
ciating the fast time scale with acoustic perturbations and the slow time scale with
hydrodynamic fluctuations, a wave-turbulence-type problem is obtained whose gov-
erning equations can be expressed in terms of the slow amplitudes a(0)

� ,� = 1, 2 and
a(s), which are defined as

u(�) = a(0)
� (k, t), � = 1, 2, (9.116)

u(3) + su(4) = eısa0kta(s)(k, t), s = ±1. (9.117)

Here, a(0) denotes the amplitude of the vortical nonpropagating mode and
a(s), s = ±1 are related to the amplitudes of wavy acoustic modes. General prop-
erties of the associated nonlinear system of equations are discussed in Chapter 14.
Nonlinear terms, once expressed as functions of these new variables, still involve
convolution products inherited from their quadratic nature. The exact inviscid equa-
tion can be written as

ȧ(s) =
∑

s ′=0,±1,s ′′=0,±1

∫∫∫
k+p+q=0

Nss ′s ′′(k, p)eıa0t(sk+s ′ p+s ′′q)a(s ′)∗(p, t)a(s ′′)∗(q, t)d3 p,

(9.118)
up to some formal difficulties: Because a(0) is a two-component vector, the in-
dex s no longer refers to the solenoidal part in this particular subsubsection, and
only the value s = 0 is related to the solenoidal mode. The influence matrix Nss ′s ′′

is derived from (9.82) in a straightforward – but tedious – way. As in similar
cases of rotating (which do not involve any s = 0 mode), stratified (in which s = 0
would correspond to the toroidal + VSHF mode), and rotating stratified (in which

∗∗ The pressure variance is linked to fourth-order velocity correlations by means of the Poisson equa-
tion, and fourth-order correlations are factorized in term of products of second-order ones by means
of a QN approximation.
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s = 0 would correspond to the QG mode), an interesting feature is that all prod-
ucts a(s ′)∗(p, t)a(s ′′)∗(q, t) present in the convolution integral governing a(s)(k, t) are
weighted by the following resonance operator:

exp[ıa0t(sk + s ′ p + s ′′q)], s, s ′, s ′′ = 0,±1, k + p + q = 0. (9.119)

Different interactions are characterized only by the set (s, s ′, s ′′):

� pure vortex (solenoidal here) triadic interactions associated with (0, 0, 0),
� pure wavy triadic interactions corresponding to (±1,±1,±1),
� mixed triadic interactions with (0,±1, 0) or (0,±1,±1). This last class is assumed

to be very weak with respect to pure vortex interactions when the nonlinear trans-
fer term Tss is modeled.

The generation of all transfer terms using asymptotic QNM theory readily fol-
lows, but the absence of a relevant ED term (with vanishing eddy viscosity) would
generate an inertial range with a k−2 slope and not a k−5/3 one for Tss . The op-
timal compromise between “strong” turbulence and “weak” wave-turbulence the-
ory, is to introduce an ED correction in generating the typical Green’s function (or
Kraichnan’s response function) as follows:

∂

∂t

⎛⎜⎜⎜⎝
u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
� 0 0 0
0 � 0 0
0 0 �acous −a0k
0 0 a0k �acous

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
X (1)

X (2)

X (3)

X (4)

⎞⎟⎟⎟⎠ . (9.120)

The arbitrary vector (X (1), X (2), X (3), X (4))T can be replaced with a Dirac term
(impulsional response) in the most general definition of the Green’s function, but
the same result (identifying the response function once and for all) is most eas-
ily obtained from the general initial-value problem with (X (1), X (2), X (3), X (4))T =
(0, 0, 0, 0)T (Cambon and Scott, 1999). It is very important to stress that the preced-
ing system of equations is used for generating only the nonlinear Green’s function,
and for solving only corresponding equations for triple correlations needed in the in-
tegrands of Tdd , Tpp, and Tpp, or equivalently for Tpp + Tdd and T (z). The ED term �
can be chosen as in Subsection 3.5.7, and �acous is a formal small parameter, used only
for the sake of mathematical regularization of the resonance operator. Of course,
the very high-Reynolds-number limit allows us to get rid of details for the laminar
viscous terms, which are displayed in the next subsubsection.

9.3.1.4 Introducing Relevant Eddy-Damping. Main Results

A first application of the EDQNM procedure was performed by Marion and co-
workers [Marion et al. (1998a, 1988b)], with some inaccuracies corrected by Bataille
(1994), and new numerical results given in Bataille and Zhou (1999) and Bertoglio,
Bataille, and Marion (2001). This procedure follows the one proposed by Leslie
(1973) and invokes Kraichnan’s DIA theory as an intermediate step, using two-point



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 21:31

9.3 Different Regimes in Compressible Turbulence 299

spectral tensors of the form R̂i j (k, t, t ′), before deriving EDQNM-type equations.††

One can reinterpret the system generating the nonlinear response function as

d

dt

⎛⎜⎜⎜⎝
u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
� 0 0 0
0 � 0 0
0 0 (4/3)�k2 + � −a0k
0 0 a0k �

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
X (1)

X (2)

X (3)

X (4)

⎞⎟⎟⎟⎠ . (9.121)

The choice of the ED term �(k) for the compressible nonlinear terms associated
with Edd(k), E pp(k), and Edp(k) has a dramatic influence on the results. The choice
of the same �(k) for all modes amounts to introducing the very simple and unique
decorrelation function e−�(t−t ′). This procedure is not theoretically grounded and
must therefore be considered as an empirical closure, as it relies on the direct use of
a damping term built for solenoidal modes for the nonlinear interactions involving
dilatational modes, which obey very different physics.

Two main results are obtained: First, the acoustic equilibrium is recovered
in a strong sense; second, a typical slope for the pressure spectrum is found, as
−7/2 (Marion et al., 1998a), then −11/3 (Bataille, 1994; Bataille and Zhou, 1999;
Bertoglio, Bataille, and Marion, 2001), but in any case that of Batchelor, −7/3, is
not recovered in the incompressible limit Mt → 0. Another reported problem is that
strong acoustic equilibrium, together with the high level of pressure spectrum in the
inertial range, yields overestimating the level of Edd .

These results, considered at least as puzzling and somehow unphysical, moti-
vated Fauchet (1998) and Fauchet and Bertoglio (1999a, 1999b) to choose a new
decorrelation function. Mentioning some informal proposal made by Kraichnan,
Fauchet and Bertoglio proposed replacing the usual ED factor −�(t − t ′) with
�2(t − t ′)2 for the dilatational and pressure modes. This result can be recast in a
more general way. Instead of renormalizing the pure dissipative laminar term, one
may try to renormalize the dispersion frequency of acoustic waves, so that the rele-
vant response function would be generated by

∂

∂t

⎛⎜⎜⎜⎝
u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
� 0 0 0
0 � 0 0
0 0 (4/3)�k2 + �acoust −a0k − r
0 0 a0k + r �acoust

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
X (1)

X (2)

X (3)

X (4)

⎞⎟⎟⎟⎠ . (9.122)

In other words, � is not used as an additional nonlinear dissipative effect for
dilatational pressure and dilatational modes. It is replaced with a nonlinear cor-
rection r(t) for the purely linear acoustic dispersion frequency a0k. The too simple
choice r ∼ � is not correct, because the decorrelation effect cannot be obtained with
a deterministic r , and only a modified resonance operator would be generated in
Eq. (9.119), changing a0(t − t ′) into (a0 + r)(t − t ′). As a more subtle interpretation,

†† A direct procedure for solving linear operators at the level of triple corelations, however, would
probably be more general and more convenient for mathematical analysis, like the one for deriving
EDQNM1 to EDQNM3, the latter giving wave turbulence in the limit of inviscid wave propagator.
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Table 9.3. Two-point closure prediction dealing with inertial range in the
low-Mach-number regime (Mt 
 0.1)

Decorrelation function ∼exp[−�(k)(t − t ′)] ∼exp[−�2(k)(t − t ′)2]

Edd (k) ∝ M2
t Re1

Lk−11/3 ∝ M4
t Re0

Lk−3

E pp(k) ∝ M2
t Re1

Lk−11/3 ∝ M2
t Re0

Lk−7/3

Eacous
p′ p′ (k) ∼ Edd (k) ∝ M6

t Re0
Lk−11/3

lim
Mt →0

E pp(k) �= E inc
pp (k) = E inc

pp (k)

Kd/Ks ∝ M2
t Re1

L ∝ M4
t Re0

L

ε̄d/ε̄s ∝ M2
t Re0

L ∝ M4
t Re−1

L ln(ReL )

Notes: Left and right columns display results given by EDQNM and the improved Fauchet–
Bertoglio model, respectively. Eacous

p′ p′ (k) denotes the spectrum of the acoustic pressure fluc-
tuation defined as p′ = p − ps , where ps is the pressure field associated with the solenoidal
velocity field us . The last two lines summarize results dealing with the ratio of solenoidal–
dilatational kinetic energy and dissipation, respectively. Adapted from Fauchet (1998).

r is really a random factor (hence our coining r for random), changing from a real-
ization of [u(3), u(4)] to another one. One must assume that r is a Gaussian process,
having zero mean and variance �. This point will be further discussed in the next sec-
tion using the simple example of Kraichnan’s random oscillator explained in Kaneda
(2007).

The main results obtained with this improved model are the following (predic-
tions related to the inertial range are gathered in Table 9.3, and a simplified analyt-
ical model will be exhaustively discussed in Subsection 9.3.1.6):

� The strong acoustic-equilibrium hypothesis, which states that E pp(k) = Edd(k), is
violated, showing the importance of nonlinear effects. This is seen in Fig. 9.5,
which displays computed spectra in the nonlinear equilibrium state.

� Strong acoustic equilibrium is now observed at very small k only (and not over the
entire inertial range), at scales really corresponding to acoustic wavelengths that
are much larger than the integral velocity length scale given by Ess(k).

� In the inertial range, the E pp(k)(k) spectrum almost collapses with its incompress-
ible counterpart E inc

pp (k), with a related −7/3 slope, but Edd(k) is found far be-
low, with a −3 slope. This last result is consistent with a much smaller magnitude
of the dilatational motion with respect to the evaluation consistent with strong
acoustic equilibrium [which yields the total collapse E inc

pp (k) ∼ E pp(k) ∼ Edd(k)].
The scaling is now Edd ∼ M4

t k−3 in the inertial range. The corresponding behavior
of the compressibility ratio � defined by Eq. (9.110) as a function of the turbu-
lent Mach number is therefore � ∼ M4

t , and not � ∼ M2
t , as suggested by Bataille

(1994). The fact that the potential energy of waves, with an E pp(k) spectrum, can
so greatly exceed their kinetic energy, with an Edd(k) spectrum, even questions
the very concept of acoustic waves. This observation led many authors, including
historical specialists of aeroacoustics, such as Lighthill, to refer to this state as the
pseudo-sound regime instead of real acoustics.
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Figure 9.5. Spectra in the nonlinear equilibrium state predicted using an extended EDQNM-type
closure for compressible flows (the dilational energy spectrum is denoted by Ecc instead of Edd ).
Courtesy of G. Fauchet and J. P. Bertoglio.

� It is worth noting that previous results hold in the low-Mach-number regime only.
For Mt � 0.1, the pseudo-sound regime disappears and the k−3 inertial range is
not observed anymore on Edd(k). A k−5/3 is recovered for Mt close to 1 according
to the improved two-point closure, but this result must be considered with care
because several assumptions that underlie this theory are not satisfied anymore.

� The ratio ε̄d/ε̄s is observed to scale as M5
t for Mt � 0.2 instead of M4

t at lower
Mach numbers (see Fig. 9.6).

9.3.1.5 Additional Discussion About the Modified Decorrelation Function

The use of the modified decorrelation function e−�2(t−t ′)2
is the essential improve-

ment brought by Fauchet with respect to earlier developments. Now we show that
the Gaussian form is suggested by the “random oscillator,” Kraichnan’s toy model,
rediscussed by Leslie (1973) and Orszag (1977), with an excellent survey given by
Kaneda (2007). The starting point is the following single-mode model:

d

dt
g(t) = −{ı[b0 + b(t)] + �0}g(t), g(0) = 1,

in which b0 holds for the acoustic frequency a0k, b(t) for a time-dependent, possibly
random, contribution to the former, and �0 for a viscous parameter, e.g., propor-
tional to �k2. The exact solution of this single-mode equation is

g(t) = exp[−(�0 − ıb0)t − ı
∫ t

0
b(s)ds],
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Figure 9.6. Ratio of the dilatational dissipation (denoted by εc here) over the solenoidal dissipation
(denoted by εs here) in the nonlinear equilibrium state predicted with an extended EDQNM-type
closure for compressible flows, vs. the turbulent Mach number for different values of the turbulent
Reynolds number. Courtesy of G. Fauchet and J. P. Bertoglio

whereas the solution for its ensemble average is

〈g(t)〉 = exp
[
−(�0 − ıb0)t − 1

2

∫∫ t

0
〈b(s)b(s ′)〉ds ′

]
.

In particular, the latter equation reduces to

〈g(t)〉 = exp
[
−(�0 − ıb0)t − 1

2
�2t2

]
,

with �2 = 〈b2〉, if b is a real time-independent Gaussian process with zero mean. It
is recalled that 〈exp(ısb)〉 = exp(−�2t2/2) for such a process.

Of course, g(t) is a scalar function here, but the analogy between its equation
and the subsystem [u(3) − u(4)], with X (3) = X (4) = 0 in (9.122) is obvious, consider-
ing u(3) ± ıu(4) and removing the laminar factor (4/3)�k2, with b(t) = r(t).

This simple analysis shows that a Gaussian part of the renormalized response
function can be generated by a random contribution added to the mean frequency
of linear acoustic waves. Going back to our specific problem of weakly nonlinear
compressible turbulence, this suggests that a renormalization of the viscous terms is
likely less crucial – and even less adequate – than a renormalization of the dispersion
frequency. Main conclusions and semi-open questions are as follows:

� Pure acoustic-wave turbulence, corresponding to triadic interactions without con-
tribution of solenoidal modes, i.e., with (s = ±1, s ′ = ±1, s ′′ = ±1), is a mar-
ginally relevant model. It probably preserves the acoustic equilibrium, without
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the need to renormalize either the viscous factors or the acoustic frequency.
One can expect a strong analogy with inertial-wave rotating turbulence from this
point of view, as damping terms are needed only to regularize the resonance
operators in the high-Reynolds-number limit.

� Modeling issues not present in pure wave turbulence occur when strong tur-
bulence (e.g., usual solenoidal turbulence) interacts with wave turbulence. The
concept of waves, which is associated with a balance between potential and ki-
netic energy, may even become irrelevant because the compressible state can be
very far from acoustic equilibrium if k is not too small, yielding E pp(potential) �
Edd(kinetic).

� Breakdown of acoustic equilibrium in the closure model seems to be linked to the
introduction of a Gaussian factor in the response tensor, possibly resulting from
the renormalization of the acoustic-wave frequency, rather than from renormal-
ized viscosity. The Gaussian decorrelation factor can inhibit the time memory of
triple correlations in a more efficient way than the classical exponential term does.
As a result, typical oscillations in resonance operator (9.119) are inhibited too.

� There is no physical explanation for choosing the order of magnitude of the renor-
malized dispersion frequency as 〈r2〉 = �2 in Eq. (9.122). It is also suggested that
the extended wave-turbulence models using (9.120) can be of interest too. The
breakdown of the “strong” acoustic equilibrium is also possible in such a model.
This is evidenced by the linearly sheared (with shear rate S) flow model discussed
in Chapter 10, in which there is a source term [∼ Su(2) in the shear case, whereas
Tdd plays this role in the present case] induced by the coupling with the solenoidal
mode in the equation for u(3). Because this source term has no counterpart in the
equation for u(4), it can break the acoustic equilibrium at sufficiently large values
of the S/(a0k) parameter.

9.3.1.6 Analytical Fauchet–Bertoglio Model

In the absence of analytical results from the extended wave-turbulence model just
discussed, let us give more details provided by the model proposed in Fauchet
(1998). Carrying out an asymptotic analysis in the limit of very low Mach numbers
and very high Reynolds numbers, and considering the following solenoidal kinetic-
energy spectrum model

Ess(k) =

⎧⎪⎨⎪⎩
Bk� k 
 kL

K0ε̄2/3
s k−5/3 kL ≤ k ≤ k�

0 k � k�

, (9.123)

where

B = K0ε̄2/3
s k−5/3−�

L , (9.124)

Fauchet and Bertoglio obtained analytical models for both nonlinear transfer terms
and related spectra. The analysis is restricted to Tdd(k) and Tdp(k), because Tss(k)



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 21:31

304 Compressible Homogeneous Isotropic Turbulence

is not modified by compressiblity effects and there is no feedback of the the dilata-
tional part of the solution on us . The leading-order terms for the local and nonlocal
tranfers in Tdp(k) are

Tdp(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2(1+�)

a0︸ ︷︷ ︸
I

+ 8
65

K 2
0

a0
ε̄4/3

s

k3

k13/3
L︸ ︷︷ ︸

II

(k 
 kL)

a0kE inc
pp (k)︸ ︷︷ ︸

III

+
(

k

kL

)4/3

a2
0k2 E inc

pp (k)︸ ︷︷ ︸
IV

(k ≥ kL)

, (9.125)

in which terms I and III are related to local interactions, whereas nonlocal interca-
tions are grouped in contributions II and IV. The exact form of the incompressible
pressure spectrum E inc

pp (k) is not known at this stage. One just has to know that
E inc

pp (k) ∝ k−7/3 in the inertial range. A careful analysis of the relative amplitude of
these terms shows that nonlocal transfer term IV is dominant at small wavenum-
bers such that k 
 kP , whereas the local interaction term III is dominant at higher
wavenumbers k ≥ kP . The threshold wavenumber is evaluated by the following
formula:

kP =
(

65
16

CG

)3/13

kL � 1.47kL , CG � 1.32. (9.126)

Now using the relation

Tdp(k) = a0kE inc
pp (k), (9.127)

one obtains the following expression for the incompressible pressure spectrum.
Taking � = 4, the corresponding expression for the incompressible pressure

spectrum is

E inc
pp (k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8

65 K 2
0 ε̄4/3

s
k2

a2
0 k13/3

L

k 
 kP

CG

2a2
0
K 2

0 ε̄4/3
s k−7/3 kP ≤ k ≤ k�

0 k � k�

. (9.128)

Therefore it is seen that the incompressible pressure spectrum and the
solenoidal kinetic-energy spectrum do not have their maxima at the same wavenum-
bers, because kP � kL . It is worth noting that the exact expression for E inc

pp (k) in the
inertial range, i.e., k ≥ kP , is not a direct output of the asymptotic analysis that is
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supplemented by an auxiliary model. The dilatational nonlinear term can be ex-
panded as

Tdd(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3
�

k(4+3�)

a4
0︸ ︷︷ ︸

V

+ 64
5
�3/2

√
2�K 7/2

0
ε̄7/3

s

a4
0k7/3

L

Fp

(
k

kacous

)
︸ ︷︷ ︸

VI

+ 64
15
�

4
3
�K 3

0
ε̄2

s

a4
0k3

L

k2

︸ ︷︷ ︸
VII

(k 
 kL)

12
4
3
�
�

a0
k3 Ess(k)E inc

pp (k)︸ ︷︷ ︸
VIII

+ k−7/3 exp(−�a2
0k2/3)︸ ︷︷ ︸

IX

+ 4
3
�

k−7/3

a4
0︸ ︷︷ ︸

X

(k ≥ kL)

,(9.129)

with � � 0.2, where the function Fp in term VI is defined as

Fp(x) = �(15/4) − �(15/4, x2)
x7/2

. (9.130)

The parameter kacous denotes the wavenumber associated with the peak of the
acoustic spectrum. It is evaluated as

kacous = 2
√

2�
Cb

MtkL , Cb =
√

3� + 5
3(� + 1)

. (9.131)

Here, local interactions are represented by terms V and VIII, whereas other
terms are related to nonlocal contributions.

The analysis of the relative amplitudes reveals the existence of three different
spectral zones:

� The acoustic region, which corresponds to very small wavenumbers such that
k 
 kr1, with

kr1 = 3
4

(10CG)1/3kL � 1.8kL . (9.132)

In this region, nonlocal term VI is dominant. It is therefore interpreted as the
production of an acoustic wave. The spectrum of acoustic production, Pacous(k),
can therefore be rewritten as

Pacous(k) = (VI) = 256
15

�

C7
b

√
��

3
K3/2

s M4
t Fp

(
k

kacous

)
. (9.133)

The total radiated acoustic power, Ptot, is then equal to

Ptot =
∫ k�

0
Pacous(k)dk = 4.2C−5

b ε̄s M5
t , (9.134)
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which is in very good agreement with the usual estimates found by using the acous-
tic Lighthill analogy. Relation (9.133) does not yield the right estimate for both the
value and the location of the peak of the normalized acoustic production spectrum
P∗

acous(k) ≡ Pacous(k)/P . Using the normalized frequency �∗ = a0ku′2/ε̄s , one re-
covers the correct prediction max[P∗

acous(�
∗)] � 0.1 for �∗ = �∗

max � 3.5 by using
a realistic spectrum shape for Ess(k) instead of (9.123). Doing so, term VI yields a
normalized production spectrum that is very close to the one proposed by Lilley
in 1993:

P∗
acous(�

∗) = 8
3�St

�∗/(2St )4

(1 + (�∗/2St )2)3
, St = 1.24. (9.135)

� A transition region, in which both nonlocal transfer terms IX and X play an
important role, term X having the largest amplitude. This region is defined as
kr1 
 k 
 kr2, where

kr2 � 2.5

C5/11
b C2/11

a

, M7/11
t Re2/11

L kL , Ca = 3� + 5
3�

. (9.136)

� An inertial-range region for k � kr2, in which local transfer term VIII is now dom-
inant. This inertial range is associated with the pseudo-sound regime, in which the
dilatational velocity field is in equilibrium with the solenoidal pressure.

This simplified form of Tdd(k) enables a detailed analysis of the dilatational
energy spectrum Edd(k). To this end, the following expression is derived from
Eq. (9.90):

2
[

4
3
� + �acous

t (k)
]

k2 Edd(k) = Tdd(k), (9.137)

where the ED term �acous
t (k) accounts for cumulative effects of higher-order terms

neglected during the derivation of the simplified form of Tdd(k), previously given.
The improved two-point closure suggests that

�acous
t (k) = 1

30

√
2�K0

�

(
ε̄s

k4
L

)1/3

F�

(
k

kacous

)
, (9.138)

with

F�(x) = 5
1 − e−x2

x2
− e−x2

. (9.139)

The effect of this damping term is to prevent the occurrence of an acoustic catas-
trophe in the limit of infinite Reynolds number, i.e., Edd(k) remains bounded. A
similar term was introduced by Crow in 1967. This damping term is very small for
wavenumbers larger than kacous, and therefore is neglected in both the transition re-
gion and the inertial range because it is much smaller than the molecular viscosity
at these scales. Combining equilibrium relation (9.137) with the simplified form of



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 21:31

9.3 Different Regimes in Compressible Turbulence 307
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Figure 9.7. Sketch of the dilatational kinetic-
energy spectrum Edd (k) in the nonlinear equilib-
rium state, according to the simplified Fauchet–
Bertoglio analytical model derived from the ex-
tended two-point closure for compressible flows.

the nonlinear transfer term, one obtains (see Fig. 9.7)

Edd(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

32

√
2�3/2

C5
bkacous

M3
t Ks Facous

(
k

kacous

)
, k 
 kr1

64
135

�

C6
b

M4
t Re0

LKs
k0

kL
, kr1 
 k 
 kr2,

2a
CG

C6
b

M4
t Re0

LKsk
−1
L

(
k

kL

)−3

, k ≥ kr2

(9.140)

where

Facous(x) = 1
x2

Fp(x)
F�(x)

. (9.141)

The peak of Edd(k) in the acoustic region observed at k = kmax
acous � 1.32 kacous is

Edd(kmax
acous) � 0.046

C7
b

K5/2
s

ε̄s
M2

t Re0
L . (9.142)

In the acoustic region, further analyses show that

Edd(k) ∝
{

M0
t Re0

Lk2, k 
 kr1, k � kmax
acous

M11/2
t Re0

Lk−7/2, k 
 kr1, k � kmax
acous

. (9.143)

This analytical expression for Edd(k) enables a straightforward evaluation of the
turbulent acoustic kinetic energy:

Kacous =
∫ +∞

0
32

√
2�3/2

C5
bkacous

M3
t Ks Facous

(
k

kacous

)
dk ∝ 32

√
2�3/2

C5
b

M3
t Ks, (9.144)

which is in perfect agreement with Crow’s scaling law for this quantity.
The compressible turbulent kinetic energy contained in the inertial range and

the corresponding dilatational dissipation are found to be equal to

Kd =
∫

k≥kr2

Edd(k)dk = 0.25C−6
b Ks M4

t , (9.145)

ε̄d = 4
3
�

∫
k≥kr2

k2 Edd(k)dk = 1.65CaC−5
b ε̄s M4

t

ln(ReL)
ReL

. (9.146)
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9.3.1.7 Numerical Experiments

Isotropic compressible turbulence has been investigated by several research groups
by means of DNS of the full compressible Navier–Stokes equations. In most cases,
the low-Reynolds-number free-decay regime is considered. The main results are as
follows:

1. A statistical equilibrium is observed that corresponds to the weak acoustic-
equilibrium hypothesis with F(t) ≈ 1 = F∞. The function F fluctuates almost
periodically around unity. This result is remarkable, as all couplings with in-
ternal energy are neglected in the theoretical derivation of the linear model
for the pseudo-acoustic regime and the strong acoustic-equilibrium hypothesis
is shown to be violated by both improved two-point closures and numerical
simulations. These slight fluctuations might be explained by an almost periodic
energy exchange between the acoustic mode and the entropy mode (i.e., the
internal energy). This point is further discussed.

2. This weak equilibrium state is very robust: It is has been observed for a very
wide range of turbulent Mach numbers and initial conditions. As a matter of
fact, statistical equilibrium states with F ≈ 1 have been found for turbulent
Mach numbers as high as 0.5 (Sarkar et al., 1991).

3. The theoretical prediction (9.114) for �∞ was found to be accurate for a large
number of cases simulated in Erlebacher et al. (1990).

The energy balance associated with the statistical equilibrium states has been
very finely analyzed in both decaying and forced isotropic turbulence (Kida and
Orszag, 1990a, 1992; Miura and Kida, 1995). In these studies, the transfers between
the dilatational turbulent kinetic energy Kd , the solenoidal turbulent kinetic energy
Ks , and the fluctuating internal energy ẽ have been investigated. The main conclu-
sions dealing with the global energy transfers at the equilibrium state are as follows:

1. In the acoustic-equilibrium state, both Kd(t) and ẽ(t) fluctuate sinusoidally
about a constant mean value (see Fig. 9.8). The two signals are in exact phase
opposition and have similar amplitude, leading to Kd(t) + ẽ(t) � constant. This
is consistent with the finding that F(t) is nearly constant.

2. The solenoidal kinetic energy Ks varies slowly with irregular fluctuations of
small amplitude and does not exhibit phase locking with either Kd(t) or ẽ(t).

3. The interactions between the solenoidal and compressive components of the
turbulent kinetic energy are weaker than self-interactions of the respective
components.

4. The pressure–dilatation term [term II in Eqs. (9.64) and (9.66)] governs the
coupling between Kd(t) and ẽ(t) (see Fig. 9.9). It is also observed to overwhelm
other terms that appear in the evolution equations for Kd(t), the total mean
turbulent kinetic energy K = Kd + Ks , and the internal energy ẽ. It exhibits
a periodic behavior with the same period as Kd(t) and ẽ(t), and it is due to
acoustic pressure fluctuations.
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Figure 9.10. Time histories of the wavenumber spectra of dilatational turbulent kinetic energy
(left), internal energy (middle), and dilatational pressure (right). White (resp. dark) regions are
regions where the instantaneous spectrum coefficients are decreasing (resp. increasing) in time.
Reproduced from Miura and Kida (1995) with permission of AIP.

This dynamical picture can be further refined by looking at energy exchanges at
individual wavenumbers. The main findings of Miura and Kida are as follows:

1. The periodic behavior of the compressible kinetic energy and the internal en-
ergy is observed at each wavenumber in the spectra associated with these quan-
tities, Edd(k, t) and Ee(k, t), respectively (see Fig. 9.10). The same observation
holds for the compressible pressure spectrum E pp(k, t).

2. The period of oscillation �(k) depends on the wavenumber and is the same
for the three spectra at each wavenumber. The measured period corresponds
almost exactly to the one associated with acoustic waves:

�(k) = �

�(k)
, �(k) ∼ ±a0k. (9.147)

At every wavenumber, it is found that the phase of oscillation of E pp(k, t) is in
advance of those of Edd(k, t) and behind those of Ee(k, t) by a quarter of a period.

A schematic view of the energy transfers associated with this regime is displayed
in Fig. 9.11.

9.3.2 Weakly Compressible Thermal Regime

The analysis of the pseudo-acoustic regime previously presented relies on the as-
sumption that the density and the temperature fluctuations are governed by acoustic
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Figure 9.11. Detailed schematic view of mean-energy exchanges in compressible isotropic turbu-
lence in the pseudo-acoustic-equilibrium state.

waves. This analysis can be extended by considering flows in which the density and
temperature fluctuations are much larger than those induced by the acoustic fluctu-
ations. In such flows, the asymptotic analysis presented in the preceding section is
no longer valid and must be extended to describe the weakly compressible thermal
regime.

9.3.2.1 Asymptotic Analysis and Possible Thermal Regimes

The weakly compressible thermal regime has been investigated by several authors,
who proposed leading-order compressible corrections to the true incompressible
Navier–Stokes equations. The following discussion puts the emphasis on the re-
sults of Bayly and co-workers (Bayly, Levermore, and Passot, 1992) and Zank and
Matthaeus (1990, 1991).

The complexity of the problem is easily understood by recalling that the in-
compressible Navier–Stokes dynamics is recovered as the limit of the compress-
ible Navier–Stokes equations when two small parameters are taken equal to zero: a
first one, 
, related to the ratio of the fluid velocity about the speed of sound (i.e.,
a characteristic Mach number) and a second one, 
′, related to ratio of thermal-
energy scales. Therefore the problem of the relative size of these two small pa-
rameters arises when the leading-order correction to the incompressible Navier–
Stokes equations is sought. Let us anticipate the following discussion to say that
several regimes can be obtained, depending on the ratio of these two control
parameters.

The first step consists of nondimensionalizing the full compressible Navier–
Stokes equations and introducing the two small parameters. The resulting system
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is (Bayly, Levermore, and Passot, 1992)

∂�

∂t
+ ∇ · (�u) = 0, (9.148)

�

(
∂u
∂t

+ u · ∇u
)

= − 1

2

∇ p + 1
Re

∇ · � + � f , (9.149)

�cp

(
∂T

∂t
+ u · ∇T

)
= ��T

(
∂p

∂t
+ u · ∇ p

)
+ 1

2

2

Re
� : �

+ 1
RePr

∇ · (�∇T ) + 
′�q, (9.150)

where Re = Lr ur�r/�r and Pr = �r cp/�r are the Reynolds number and Prandtl
number, respectively, � denotes the thermal expansion parameter, and � ≡ Tr�r .
The subscript r is related to reference scales. The system is supplemented by the
perfect gas law (9.4). The characteristic speed ur is associated with fluid velocity,
and a reference thermal speed vr = √

cpTr is introduced. The reference pressure is
defined as pr = �rv

2
r . Here, q is a nondimensional thermal forcing term that accounts

for the presence of heat sources–sinks in the flow (e.g., reactive flows). The two small
parameters are defined as follows:


 ≡ ur

vr
=
√
� − 1Mr , 
′ ≡ qr

v2
r

, (9.151)

where Mr = ur/ar is the usual reference Mach number and qr is a characteristic heat
production scale.

The existence of these two scaling parameters yields a formal double expansion
problem, whose treatment is cumbersome. To avoid such a complex development,
Bayly and co-workers set 
′ = 
2/ l , where l is a positive integer. By use of this rela-
tionship, all dynamic quantities are expanded in asymptotic series of the form (here
expressed for a dummy variable 	):

	 = 	(0) + 
2/ l	(1) + 
4/ l	(2) + · · · . (9.152)

Assuming that the fluid fluctuates close to the reference state, the zeroth-order
terms for density and temperature must have their values for that state, yielding
� (0) = T (0) = 1. An immediate consequence of the perfect gas law is that the zeroth-
order pressure term p(0) also corresponds to a uniform field. Therefore the leading-
order fluctuating field that accounts for the weak compressible thermal turbulence
is made up of u(0), � (1), T (1), and p(1).

Two cases can be defined that correspond to different thermal regimes:

1. Relatively small external heating with respect to both the viscous heating and the
pressure-induced temperature fluctuations: l = 1. In this case, the lowest-order
nontrivial equations are

∇ · u(0) = 0, (9.153)
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∂u(0)

∂t
+ u(0) · ∇u(0) = −∇ p(1) + 1

Re
∇2u(0), (9.154)

∂T (1)

∂t
+ u(0) · ∇T (1) = �

[
∂p(1)

∂t
+ u(0) · ∇ p(1)

]
+ 1

2Re
� (0) : � (0)

+ 1
RePr

∇2T (1) + q, (9.155)

supplemented by the linearized equation of state:

p(1) = � − 1
�

[
� (1) + T (1)

]
. (9.156)

These equations must be interpreted as the incompressible Navier–Stokes
equations for u(0) and p(1) supplemented by a passive scalar equation for T (1)

with several source terms. Therefore the fluctuating pressure is completely de-
termined up to an additive function of time through the relation

∇2 p(1) = −∇ · ∇ · [u(0)u(0)] + ∇ · f . (9.157)

The time evolution of the density perturbation is deduced from Eqs.
(9.155)–(9.157).

2. Strong external heating : l ≥ 2. In this case, the lowest-order nontrivial system is

∇ · u(0) = 0, (9.158)

∂u(0)

∂t
+ u(0) · ∇u(0) = −∇ p(l) + 1

Re
∇2u(0), (9.159)

∂T (1)

∂t
+ u(0) · ∇T (1) = 1

RePr
∇2T (1) + q, (9.160)

and

� (1) + T (1) = 0. (9.161)

The leading-order pressure fluctuation is given by

∇2 p(l) = −∇ · ∇ · [u(0)u(0)]. (9.162)

Here again the system appears to be composed of the incompressible
Navier–Stokes equations supplemented by a passive scalar equation. The latter
is simpler than in the weak heating case, because pressure-induced and viscous-
dissipation-induced temperature fluctuations are now negligible. An important
difference with the previous case is that the density fluctuations are now totally
enslaved to the temperature fluctuations and are anticorrelated.

These developments are consistent with the presence of acoustic modes of the
order of 
2. The first dilatational correction to the velocity field is u(1).
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9.3.2.2 Statistical Equilibrium States

We now discuss the features of the statistical equilibrium states associated with the
two weakly compressible thermal models previously discussed. For these models,
no exact analytical solutions can be found, and the analysis will be restricted to the
properties of the inertial ranges of the spectra of the fluctuating quantities in a fully
developed turbulent isotropic flow. In both cases, the kinetic-energy spectrum and
the pressure spectrum are expected to be the same as in incompressible isotropic tur-
bulent flows. Corresponding inertial-range scalings are Ess(k) ∝ k−5/3 for the former
and E pp(k) ∝ k−7/3 for the latter.

In the strong heating case, the temperature fluctuations obey the passive scalar
equation. Assuming that the external heating acts at relatively large scales and ne-
glecting conduction effects, one obtains the usual scaling law from the temperature
spectrum ET T (k) ∝ k−5/3. Because the density and temperature fluctuations are an-
ticorrelated, they have the same spectrum, yielding E�� (k) ∝ k−5/3.

In the weak heating case, it must be remembered that entropy behaves as a
passive scalar and therefore exhibits the usual scaling law in the inertial range
Es(k) ∝ k−5/3. The leading-order entropy fluctuation is given by

s(1) = T (1) − p(1). (9.163)

Comparing the spectral slopes of the entropy spectrum and the pressure spec-
trum, one can see that the temperature fluctuations must overwhelm the pressure
fluctuations at small scales to recover a −5/3 slope for the entropy spectrum, lead-
ing to ET T (k) ∝ k−5/3. As a consequence, in the inertial range, density fluctuations
will also be governed by temperature fluctuations, leading to E�� (k) ∝ k−5/3.

It is seen that both regimes lead to the same scaling laws for the inertial-range
spectra. But it is worth noting that these scaling laws differ from those obtained for
a quasi-isentropic flow, in which E�� (k) ∝ k−7/3.

9.3.2.3 Numerical Observations

The existence of the different regimes and the related turbulent statistical equilib-
rium states predicted by the theoretical analysis have been checked through numer-
ical experiments (Bayly, Levermore, and Passot, 1992; Cai, O’Brien, and Ladeinde,
1997).

The main observations are summarized as follows:

1. Both weak (l = 1) and strong (l = 2) external heating regimes can be repro-
duced in numerical simulations and are stable if consistent initial conditions
are prescribed.

2. The anticorrelation between density and pressure fluctuations is observed for
almost incompressible initial conditions [� (0) = 0] at relatively low initial tur-
bulent Mach numbers (Mt ≤ 0.3). In other cases, the growth of the acoustic
mode scrambles the correlation.
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3. In freely decaying turbulence with consistent initial conditions, the asymptotic
regime, i.e., the value of l at the final stage of the simulation, depends on the
Prandtl number. For low values of the Prandtl number (Pr ≤ 1) the density
fluctuations are observed to decay until the l = 1 regime is encountered. For
larger values of the Prandtl number, states with l ≥ 2 are observed.

4. If initial conditions are not fully consistent with the governing equations, the
pressure fluctuations are observed to grow very quickly, corresponding to a
transfer of internal energy toward acoustic energy. The weakly compressible
thermal regimes are then observed to bifurcate toward the pseudo-acoustic or
the nonlinear subsonic regimes.

5. Despite the fact that it was derived neglecting the heat conduction effect,
the weak equilibrium relation F(t) = 1 [in which F is defined according to
Eq. (9.109)] is observed to hold in simulations with large initial temperature
fluctuations after a short transient phase. But the oscillations of F about 1 are
much larger than in simulations with pseudo-acoustic initial conditions.

9.3.3 Nonlinear Subsonic Regime

The two regimes discussed in Subsections 9.3.1 and 9.3.2 are expected to occur in the
limit of nearly incompressible turbulence, i.e., at turbulent Mach numbers: Mt � 1.
For turbulent Mach numbers less than unity but not negligible, Mt can no longer
be used as a small parameter. Therefore the asymptotic analyses previously pre-
sented are theoretically no longer valid, as one expects that the nonlinearities aris-
ing from the convective terms will play a major role. As a matter of fact, numerical
simulations show that very small shocks, referred to as shocklets or eddy shocklets,
develop.

9.3.3.1 Conditions for Occurrence of Shocklets

Before discussing the properties of these shocklets and analyzing their influence on
the dynamics and the statistical properties of compressible isotropic turbulence, it is
worth noting that they can occur at nominally very low Mach numbers depending
on the initial condition. In the case in which initial acoustic pressure perturbations
are very strong, the linear theory is no longer relevant to describe the dynamics.
Considering such an initial condition, convective terms will play an important role,
leading to the propensity for the occurrence of nonlinear acoustic phenomena such
as wave steepening and focusing and shock formation. Therefore a strong nonlinear
transient phase will be present during which shocklets can form.

In a similar manner, the analyses dealing with the weakly compressible thermal
regime were based on the assumption that both 
 and 
′ as defined in Eq. (9.151)
are very small. Because 
 ∝ Mr , the asymptotic series expansion is no longer valid
at higher turbulent Mach numbers. Moreover, it has been observed in numerical
experiments that the thermal regimes are very sensitive to the initial conditions,
and that, if the initial perturbations are not consistent with the governing equations
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and are strong enough, acoustic waves grow and the dynamics bifurcates toward the
nonlinear regime in which shocklets are present.

No exact threshold value for the turbulent Mach number Mt associated with the
occurrence of shocklets is known, as this phenomenon also depends on other param-
eters. It seems that all simulations carried out for Mt ≥ 0.4 exhibit shocklets. But it
is important to note that shocklets can appear at lower Mach numbers, depending
on the initial condition.

9.3.3.2 Energy Budget and Shocklet Influence

Shocklets are small bow shocks that have been observed to satisfy the Rankine–
Hugoniot jump conditions. Therefore these events exhibit all the properties of usual
shocks. In particular, they induce sharp pressure and density gradients and, because
they are associated with a compression, a negative value of the divergence of the
velocity. As a consequence, one can reasonably expect that they should have a non-
negligible influence on the energy balance. We subsequently summarize the obser-
vations retrieved from DNSs. Because all these simulations were carried out at small
Reynolds numbers, viscous effects are important and they damp the effect of the
shocklets. Therefore exact values of the quantities subsequently given must be in-
terpreted as a qualitative description of high-Reynolds-number flows rather than as
an accurate quantitative one.

Numerical experiments show that the pdf of the dilatation (i.e., the divergence
of the velocity field) is strongly skewed: About 2/3 of the volume is associated with
an expansion (∇ · u � 0), whereas only 1/3 corresponds to compression. On average,
the expansion regions are responsible for 80%–90% of the solenoidal dissipation ε̄s

and 50%–60% of the total dissipation (ε̄d + ε̄s). The global dilatational dissipation
ε̄d is found to be small with respect to the global solenoidal dissipation ε̄s : Lee and
co-workers (Lee, Lele, and Moin, 1991) report that ε̄d is less than or equal to 10%
of the total dissipation for Mt up to 0.6.

The shocklets fill only a few percent of the total volume: Pirrozoli and Grasso
(2004) found that they represent only 1.4% of the volume at Mt = 0.8 whereas Sam-
taney et al. (2001) report a fraction smaller than 2% in their set of numerical exper-
iments. Nevertheless, the shocklets strongly modify the local relative importance
of the physical mechanisms: Near shocklets, the dilatational dissipation is up to 10
times larger than the solenoidal dissipation. Despite the fact that they fill only a very
small part of the fluid domain, shocklets are responsible for about 20% of the global
dilatational dissipation.

The shocklets perturb the dilatation field. This perturbation can be roughly es-
timated by looking at the jump condition for the dilatation for a bow shock moving
into a 2D inviscid steady flow provided by Kida and Orszag (1990a, 1992):

[[∇ · u]] � 2
R(� + 1)

(
(� − 1)M2

s + 2
(� + 1)M2

s

− 3M2
s + 1

M2
s − 1

tan2 �

)
un, (9.164)
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where R, un , Ms , and � are the radius of curvature of the shock, relative velocity
normal to the shock, shocklet Mach number defined by the ratio of un about the
upstream speed of sound, and the angle between the fluid velocity and the shock
normal, respectively. It is seen that the sign of the induced dilatation depends on
both R and �, and that its amplitude is a function of the square of the normal Mach
number. The use of a 2D simplified model was proved to be qualitatively relevant
by Kida and Orszag, as the 3D curved shock can be locally projected on a 2D space.
Lee and co-workers observed that the correlation between pressure fluctuations and
dilatation fluctuations is large near shocklets, leading to a local enhancement of the
transfers between the internal energy and the turbulence kinetic energy. These au-
thors also report that the overall effect of the pressure–dilatation term p′d on the
evolution of kinetic energy in freely decaying isotropic turbulence is comparable
with the overall dilatational dissipation ε̄d . This effect is typical of the presence of
the shocklets, as this term is theoretically and experimentally found to be negligible
in the pseudo-acoustic regime.

9.3.3.3 Enstrophy Budget and Shocklet Influence

The shocklets also have a large impact on the dynamics of vorticity and enstrophy.
The general jump relation for vorticity derived from Rankine–Hugoniot will be dis-
cussed in the chapter devoted to the shock–turbulence interaction (Chapter 11), and
the interested reader can refer to it. But it is very important to emphasize that the
main trends and the relative importance of the different physical mechanisms are
not the same in the shocklet case as in the large-scale shock case discussed in Chap-
ter 11. The main reason for this is a scale effect: Shocklets are small shock waves
that form when turbulent eddies allow for the local steepening of pressure waves,
and their size is therefore comparable with those of the turbulent eddies, whereas
large-scale shock size is much greater than that of the turbulent vortical structures.

We first recall some estimates related to vorticity creation by a bow shock mov-
ing in a steady, inviscid 2D flow (Kida and Orszag, 1990b):

[[�]] � 4(M2
s − 1) sin �

R(� + 1)M2
s ((� − 1)M2

s + 2)
|u|, (9.165)

where the nomenclature is the same as in the previous paragraph. The sign of the
created vorticity is seen to depend on the local shock curvature and the angle of
incidence. The created vorticity is zero for normal shocks (� = 0) and Mach waves
[� = ± cos−1(1/Ms)]. The effect of the sole baroclinic term −(∇p × ∇�)/� 2 is eval-
uated as

[[un�]] � 4(M2
s − 1)2

R(� + 1)2 M4
s

u2
n tan � (9.166)

and is observed to depend on M4
s instead of M2

s for the global vorticity creation.
Numerical experiments show that the volume-averaged enstrophy budget is

governed by the vortex-stretching term � · S · � and the viscous dissipation. The
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former is positive and creates some vorticity, whereas the latter is strictly negative.
The baroclinic term is negligible whereas the compression term �(∇ · u) exhibits
an oscillatory behavior, with a period very similar to those of the compressive ki-
netic energy and the internal energy. Therefore this phenomenon is interpreted as
a coupling between acoustic waves and the vorticity.

A finer analysis can be achieved that distinguishes between regions of negative
dilatation and regions of positive dilatation. The compression term is observed to
be dominant in shocklet areas, whereas the stretching term is the most important in
the expansion region. A careful look at DNS data reveals that vorticity is created on
shocklets through the baroclinic interaction and is enhanced in expansion regions
by the vortex-stretching phenomenon. The baroclinic production is relatively small
because there is a clear trend for the pressure gradient and the density gradient to
be aligned against each other: The global pdf of the angle between these vectors ex-
hibits a peak near 4◦ and is almost null for angles higher than 10◦, even for values of
Mt as high as 0.74. It is also found that increasing the turbulent Mach number yields
a stronger alignment of these vectors. Because of the weakness of the baroclinic
production, Kida and Orszag observed that the barotropic relation(

p

p̄

)
=
(
�

�̄

)�
(9.167)

is valid overall.
A last observation is that the vorticity has a statistical preference to align with

the density gradient ∇� near the shocklets and to be orthogonal to it outside shock-
let aeras. Because the shocklets fill a very small fraction of the fluid domain, the
overall pdf of the angle between � and ∇� has a peak at 90◦. As in the incom-
pressible case, the vorticity is observed to be aligned overall with the intermediate
eigendirection of the velocity-gradient tensor.

9.3.3.4 Statistical Equilibrium State

Numerical simulations show that statistical equilibrium is reached in the nonlinear
subsonic case after a short transient phase.

This statistical equilibrium state is very similar to the one observed in the
pseudo-acoustic regime: Sarkar’s function fluctuates almost periodically about unity
because of energy exchanges between internal energy and the dilatational field. The
period of oscillation corresponds to the characteristic acoustic time scale, and the
amplitude is an increasing function of the Mach number.

9.3.4 Supersonic Regime

The supersonic regime, in which the turbulent Mach number is greater than 1, is
much less known than the other regimes. The main reasons why so little attention
has been paid to this configuration are that it is encountered in astrophysics only
and that it escapes most theoretical tools because it does not allow small-parameter
expansion.
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Only very few numerical experiments are available (Porter, Pouquet, and
Woodward, 1992a, 1992b, 1994), which all reveal the existence of two distinct quasi-
equilibrium phases separated by a short transition phase:

� The quasi-supersonic phase, whose typical duration is of the order of a few acous-
tic time scales. During this initial period, nonlinear phenomena yield the forma-
tion of a myriad of small but intense shock waves. No vortical structures are ob-
served during this period. Then the shocks interact, leading to the existence of
vortex sheets that roll up because of Kelvin–Helmholtz-type instabilities, yielding
the existence of vortex tubes. These vortex tubes then experience vortex stretch-
ing, leading to the appearance of the usual kinetic-energy cascade phenomenon.
During this phase, which is dominated by shock formation and shock interaction,
the evolution of vorticity is governed by the baroclinic production and the lin-
ear terms (vortex stretching and dilatation terms), which are of equal amplitude.
At the end of the quasi-supersonic phase, both dilatational velocity spectrum and
solenoidal velocity spectrum exhibit an inertial range with a −2 slope:

Edd(k) ∝ k−2, Ess(k) ∝ k−2. (9.168)

It is worth noting that most of turbulent kinetic energy is contained in the
solenoidal mode once the vortical structures have been created.

� The immediate postsupersonic phase that is governed by vortex interaction and
vortical decay. The main processes involved in subsonic vortex dynamics are
present, but shocks are still present and very active. As a consequence, the fol-
lowing inertial-range scalings are observed:

Edd(k) ∝ k−2, Ess(k) ∝ k−1. (9.169)

The vorticity dynamics is dominated by the vortex stretching and the dilation
term during this phase, the baroclinic production being now much weaker because
of the decrease of the turbulent Mach number.

At much longer times, an equilibrium state similar to the subsonic regime is
recovered in which the shocks are much weaker and the solenoidal velocity dynam-
ics is decoupled (at the leading-order approximation) from the acoustic field. The
measured inertial range behaviors are Edd(k) ∝ k−2 and Ess(k) ∝ k−5/3.

9.4 Structures in the Physical Space

Compressible isotropic turbulence, like incompressible isotropic turbulence, ex-
hibits coherent events that can be classified according to some criteria. In the
pseudo-acoustic regime at very low Mach numbers, the solenoidal field is nearly
decoupled from the dilatational field and they evolve almost independently. The
kinetic energy being concentrated in the solenoidal velocity component (the ratio
of the two components of the turbulent kinetic energy scales like M4

t ), the velocity
field is almost identical to the one observed in purely incompressible flows, and all
the results dealing with the velocity-field topology given in Section 3.6 hold.
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The analysis must be modified to account for new configurations in the nonlin-
ear subsonic regime. This was achieved by Kevlahan, Mahesh, and Lee (1992), who
proposed a topological analysis of the velocity field that accounts for compressibility
effects. Main elements of this classification are displayed in Subsection 9.4.1. It has
also been observed that shocklets form in this regime. The main known characteris-
tics of these structures are discussed in Subsection 9.4.2.

9.4.1 Turbulent Structures in Compressible Turbulence

The analysis carried out by Kevlahan and co-workers (Kevlahan, Mahesh, and Lee,
1992) relies on the local analysis of the topology of the velocity field. Introducing the
anisotropic part of the instantaneous strain tensor S∗ = S − (Skk/3)I, it is possible to
define three region types:

� Eddy-dominated regions:

W : W � 2S∗ : S∗. (9.170)

� Shear zones:

1
2
S∗ : S∗ ≤ W : W ≤ 2S∗ : S∗. (9.171)

� Convergence zones:

W : W 

1
2
S∗ : S∗. (9.172)

This decomposition is supplemented by a criterion related to the local degree
of compressibility. Defining the sensor C as

C = (∇ · u)2

S∗ : S∗ + W : W
, (9.173)

it is proposed that

� C ≤ 0.05: structures behave as incompressible ones,
� C � 0.05: structures are compressible.

The analysis can be further refined by retrieving some information about the
structure shape. Denoting by �∗

1,�
∗
2, and �∗

3 the three eigenvalues of S∗,‡‡ the
structure shapes can be classified according to the sign of the third invariant of S∗,
III∗ = −�∗

1�
∗
2�

∗
3:

� III∗ 
 0: cigar-type structures,
� III∗ � 0: pancake-type structures.

‡‡ One can easily observe that

�∗
i = �i − (∇ · u)

3
, (9.174)

where �’s are the eigenvalues of S. A direct consequence is∑
i=1,3

�∗
i = 0, (9.175)

as in incompressible turbulence.
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Regions can also be grouped as focal or compression regions and nonfocal or
expansion regions according to the sign of the determinant of S∗, D∗ = det(S∗):

� D∗ � 0: focal/compression region,
� D∗ 
 0: nonfocal/expansion region.

It is worth noting that D∗ can be computed from the second and third invariants
of S∗ like

D∗ = 27
4

(III∗)2 + (II∗)3, II∗ = �∗
1�

∗
2 + �∗

1�
∗
3 + �∗

2�
∗
3. (9.176)

Using a wide database including flows with turbulent Mach numbers up to 0.8,
Pirrozoli and Grasso (2004) observed that several features of isotropic turbulence
are not sensitive to the Mach number and are therefore similar to those of perfectly
incompressible isotropic turbulence. They are listed as follows:

1. The eigenvalues of the strain tensor S∗ are in the ratio −4:3:1.
2. The number of pancake and cigar structures is in the ratio 3:1.
3. Vorticity has a statistical preference to align with the intermediate eigendirec-

tion of S∗, being either parallel or antiparallel (probabilities are equal).
4. The joint pdf of II∗ and III∗ does not depend on the Mach number.

Their analyses also show that focal regions are of great importance for the
solenoidal field: These regions fill about 2/3 of the total volume and account for
80%–90% of the enstrophy and 50%–60% of the solenoidal dissipation ε̄s . More
precisely:

1. At low Mt , incompressible structures dominate and the fractions of the volume
filled by shear zones, convergence zones, and eddies are 44%, 35% and 21%,
respectively.

2. Shear regions account for 45% of the enstrophy regardless of the turbulent
Mach number.

3. At low Mt , kinetic energy is dissipated nearly equally in focal and nonfocal
structures, whereas at high Mt focal structures are more active than the non-
focal ones.

4. At high Mt , dilatational dissipation mainly takes place in shear and convergence
zones.

5. Shocklets are rare (less than 2% of the volume) but represent up to 20% of the
global dilatational dissipation.

9.4.2 A Probabilistic Model for Shocklets

We now present the main features of the probabilistic model for shocklets derived
by Samtaney and co-workers (Samtaney, Pullin, and Kosovic, 2001) on the grounds
of DNS data.

The initial step consists of parameterizing the pdf of the longitudinal velocity
increment, which will serve as a basis to evaluate the shocklet-based Mach number.
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The pdf is observed to be very similar to those measured in incompressible isotropic
turbulence, leading to the following exponential expression:

P(�u) � 1
��u

exp
[
−b(r)

∣∣∣∣ �u

��u

∣∣∣∣] , (9.177)

where �u is the velocity increment along the direction of u between two points

separated by a distance r and ��u =
√

(�u)2. The function b can be written as
b(r) = �(r/�)�, where � is the Kolmogorov length scale and � = 1.5 and � = 0.16
are constant parameters.§§

The second step deals with the derivation of a model pdf for the shocklet
strength, the shocklet being modeled as a weak shock (i.e., Ms − 1 � 1).

Let �u be the normal velocity difference across the shocklet. Usual jump con-
ditions yield the exact relation:

�u

a
= − 2

� + 1

(
Ms − 1

Ms

)
, (9.178)

where a is the speed of sound in the fluid upstream of the shocklet. The shocklet
thickness 
s is evaluated with the classical weak-shock theory:


s � �

a

3
(Ms − 1)

(9.179)

where � is related to the viscosity upstream of the shock. To get a reliable model,
one must evaluate all quantities using turbulence-related variables. To this end, it is
assumed that the following expression for the dissipation derived in the incompress-
ible case holds,

ε = 15�
(

∂u

∂x

)2

� 15�
(
�u

r

)2

, (9.180)

from which the following leading-order estimates in terms of (Ms − 1) are derived:

�u � 4a

� + 1
(Ms − 1), (9.181)

��u � 3√
15a

√
�ε

1
(Ms − 1)

, (9.182)

∣∣∣∣ �u

��u

∣∣∣∣ � 4
√

15a2

3(� + 1)
√
�ε

(Ms − 1)2. (9.183)

The last expression can be further refined by introduction of the mean turbulent
Mach number Mt and the Taylor–Reynolds number Re�:

∣∣∣∣ �u

��u

∣∣∣∣ � 4
(� + 1)

Re�
M2

t

(Ms − 1)2, (9.184)

§§ The value � = 1.5 was measured in low-Reynolds-number simulations. High-Reynolds-number
wind-tunnel experiments suggest � � 0.5.
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leading to the following expression for the pdf of the shocklet strength (the constant
� is taken equal to zero for the sake of simplicity):

P(Ms − 1) � 8�
(� + 1)

Re�
M2

t

(Ms − 1) exp
[
− 4�

(� + 1)
Re�
M2

t

(Ms − 1)2
]

. (9.185)

This expression is observed to be in good agreement with a large set of experi-
mental data, with Re� = 50–100 and Mt = 0.1–0.5. In the same manner, a model pdf
can be found for the shocklet thickness:

P(
/�) �
(



�

)3

exp

[
−12

√
15�

� + 1

(



�

)2
]

. (9.186)

One can see from Eqs. (9.185) and (9.186) that the most probable shocklet cor-
responds to

Ms = 1 + Mt

√
� + 1
8�Re�

, 
 = (15)1/4�

√
8�
� + 1

. (9.187)

Using the preceding value of � and considering air, one finds that the most prob-
able shocklet thickness is about 5 �, which is much larger than the mean free path
of the molecules.
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10 Compressible Homogeneous Anisotropic
Turbulence

10.1 Effects of Compressibility in Free-Shear Flows. Observations

To understand and model compressibility-induced effects on turbulence is an impor-
tant topic, as these effects are significant in many engineering applications, particu-
larly in the fields of propulsion and supersonic aerodynamics, which are concerned
with jets or wakes subjected to large velocity and density gradients. The compress-
ible plane mixing layer is a generic problem for these applications, and explaining
and modeling how compressibility reduces turbulent mixing in a shear layer has
motivated the large research effort devoted to this topic during the 1980s and 1990s.
Mixing usually refers to interpenetration of two streams. It is characterized by two
scales: a length scale � and a velocity scale �U, which evaluate the thickness of the
interface and intensity of the fluctuations, respectively. The reduction of mixing by
compressibility is illustrated in Fig. 10.1 in which � is the previously mentioned thick-
ness and Mc = �U/a is the convective Mach number, with a the average speed of
sound.

There is now a consensus in the literature that the “intrinsic compressibility”
(nonzero-velocity divergence in Mach-number-dependent flows) of a turbulent ve-
locity field tends to reduce the amplification rate of turbulent kinetic energy pro-
duced by mean-velocity gradients, with respect to the solenoidal case. These effects
were particularly investigated in shear flows, including both experimental and nu-
merical studies of the plane mixing layer and DNS of homogeneous shear flows. The
reader is referred to the review by Lele (1994) and the references given therein, and
to Sarkar (1995) and Simone, Coleman, and Cambon (1997) for more recent results.

Two preliminary questions immediately follow:

1. To what extent is homogeneous turbulence relevant to explain such mecha-
nisms in inhomogeneous flows?

2. Is compressibility always stabilizing (i.e., leading to a decrease in the turbulent
kinetic growth rate) in homogeneous turbulence?

The answer to the first question is somewhat difficult. The “stabilizing” effect of
compressibility in the mixing layer, for instance, can be attributed to the inhibition
of the Kelvin–Helmholtz instability at a convective Mach number larger than 0.6.
Such an instability escapes homogeneous RDT. Nevertheless, it is expected that

327
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Figure 10.1. Dependence of shear-layer growth rate on convective Mach number. DNS and exper-
imental results from Pantano and Sarkar (2002).

our analysis can exploit strong analogies between the homogeneous shear and the
mixing layer.

The answer to the second question is simple: No.

10.1.1 RST Equations and Single-Point Modeling

Equations for the RST are not so different from the one in the homogeneous in-
compressible case, at least in the absence of specific additional production by mean-
pressure, mean-density, or mean-temperature gradients. If we restrict our attention
to flows in which the “production” term in the RST equations results only from
mean-velocity gradients, we must consider that the pressure–strain-rate tensor is no
longer trace free and that the dissipation tensor can display an explicit dilatational
contribution. Using Eq. (9.62) and taking into account the homogeneity constraint,
one obtains

∂ �̄ Ri j

∂t
= − �̄

(
Rik

∂ ũ j

∂xk
+ R jk

∂ ũi

∂xk

)
+ p′

(
∂u′′

i

∂x j
+ ∂u′′

j

∂xi

)
+ u′′

i

(
∂ �̄ jk

∂xk
− ∂ p̄

∂x j

)
+ u′′

j

(
∂ �̄ik

∂xk
− ∂ p̄

∂xi

)

− � ′
ik

∂u′′
j

∂xk
− � ′

jk

∂u′′
i

∂xk
. (10.1)

The corresponding evolution equation for the turbulent kinetic energy K is

dK
dt

= P +
(d) − ε̄ s − ε̄ d , (10.2)
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in which the production term is

P = −�̄ Rik
∂ ũi

∂xk
(10.3)

and ε̄ s and ε̄ d are the solenoidal and dilatational dissipations introduced in Subsec-
tion 9.2.2. The pressure–dilatation correlation term, denoted by 
(d), is equal to half
the trace of the pressure–strain-rate tensor.

Historically, two kinds of explanations were proposed to account for compress-
ibility effects and used to derive specific turbulence models:

1. According to the first explanation, the main effect is attributed to the explicit
terms in Eq. (10.2). For instance, a reduction of the growth rate of K is assumed
to result from a significant negative value of 
(d) and the negative term −ε̄ d .

2. According to the second approach, the main mechanism responsible for the
decrease of the turbulent kinetic-energy growth rate is an alteration of the dy-
namics of pressure fluctuations. This modification results in a mollification of
the pressure–strain-rate tensor in Eq. (10.1) and an associated depletion of the
production term P in Eq. (10.2). This effect appears an implicit one, at least if
one considers the evolution equation for K.

An important issue is how to measure the compressibility. At least two Mach
numbers are relevant in shear flows: the conventional turbulent Mach number Mt =
u′/a, introduced in the previous chapter, and the gradient Mach number,

Mg = SL

a0
. (10.4)

The gradient Mach number compares the velocity scale SL with the speed of
sound a0, where S and L are a mean-velocity-gradient scale and a typical length
scale of the largest turbulent eddies, respectively. A similar parameter that accounts
for the change of a mean-flow Mach number across an eddy, denoted by �m, was
introduced by Durbin and Zeman (1992). A more general meaning and interpreta-
tion was then introduced by Jacquin, Cambon, and Blin (1993) and Sarkar (1995),
with slightly different terminologies (“distortion” and “gradient” Mach number).
Despite Jacquin’s precedence, we adopt here the terminology gradient Mach num-
ber because it is the most popular. We think, however, that the RDT equations first
investigated by Jacquin and co-workers gave the best interpretation of this param-
eter, as its counterpart at a fixed wavenumber, S/(a0k), is the pivotal parameter for
separating different flow regimes.

Looking at DNS results, one can see that the implicit alteration of the produc-
tion is linked to a significant change in the Reynolds stress anisotropy. To illus-
trate this point, some values of bi j are proposed for the compressible homogeneous
shear-flow case and compared with their counterparts in the incompressible case
(see Section 6) in Table 10.1. Estimates for the compressible shear case presented
here were proposed in Heinz (2004) on the grounds of relatively low Reynolds DNS
performed by Sarkar and co-workers.
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Table 10.1. Reynolds stress anisotropy in compressible and incompressible homogeneous
shear flows at large St

Quantity Incompressible case Compressible case Pressure-released RDT

b11 0.203 2/3 − 0.4e−0.3Mg ± 0.01 2/3
b22 −0.143 −1/3 + 0.17e−0.3Mg ± 0.01 −1/3
b33 −0.06 −1/3 + 0.23e−0.3Mg ± 0.01 −1/3
b12 −0.15(0) −0.17e−0.3Mg ± 0.005 0

Note: Values given in the two first columns come from DNS and wind-tunnel experiments (if available).

The reduction of b12 in absolute value with respect to the incompressible case is
directly connected to the reduction of production in this case, whereas the increase
in b11 reflects a less efficient redistribution of the kinetic energy among the normal
Reynolds stresses by the pressure–strain-rate tensor, which can be interpreted as
an alteration of the so-called return-to-isotropy mechanism. Even if compressibil-
ity correction factors in terms of Mg essentially come from empirical fitting, their
asymptotic values are of interest, as they are observed to differ from both the in-
compressible and pressure-released RDT case.

Even if the “implicit” compressibility effect previously mentioned is probably
more relevant than the “explicit” one to explain the decrease in the growth rate
of K, rationales based on single-point statistics, which ignore the detailed conse-
quences of the Helmholtz decomposition, cannot be fully satisfactory and universal.
This is illustrated by the fact that some flows can be found in which the mollifi-
cation of pressure–strain-rate correlations at increasing gradient Mach number is
not the right explanation, because it results in an increase of the turbulent kinetic-
energy growth rate. These flows include the irrotational strain case and even shear
flows at moderate elapsed time, as shown by RDT and DNS results. As discussed in
Chapter 6 in the pure incompressible case, the “slow” (nonlinear) and the “rapid”
(linear) contributions to the pressure–strain-rate tensor may have opposite effects
on the production of K: Reducing the linear term yields increasing the production.
The conventional stabilizing effect of compressibility is recovered in homogeneous
shear flows at larger elapsed times, but the right explanation is different from the
one based on the sole reduction of pressure–strain terms (Sarkar, 1995; Pantano
and Sarkar, 2002). This point will be extensively addressed in this chapter.

10.1.2 Preliminary Linear Approach: Pressure-Released Limit
and Irrotational Strain

Linearizing the Euler equations for velocity and pressure fluctuations (u′
i , p′)

around a mean flow with velocity ūi and discarding the pressure–fluctuation term
yields the following pressure-released solution (e.g., Cambon, Teissèdre, and Jean-
del, 1985):

u′(pr)
i (x, t) = Hi j (X, t, t0)u′

j (X, t0), (10.5)
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where x is the position of a fluid particle at time t having the position X at time t0,
following a mean trajectory. The matrix Hi j is closely linked to the Cauchy matrix,
or semi-Lagrangian displacement gradient matrix, F, related to the mean flow (see
Section 2.1), so that Hi j and Fi j reflect a time-accumulated effect of mean-velocity
gradients. They are obtained by solving the following equations:

Ḟi j = ∂Ui

∂xm
Fmj , Fi j (X, t0, t0) = �i j , (10.6)

Ḣi j = − ∂Ui

∂xm
Hmj , Hi j (X, t0, t0) = �i j . (10.7)

One has Hi j = F−1
j i if and only if the mean-velocity-gradient matrix A is symmetric,

i.e., if the mean, flow is irrotational. A transposed mean-velocity-gradient matrix
must be used in Eq. (10.6) to connect Hi j to the modified F in the general rotational
case.

More generally, the linear response to an irrotational mean flow can be ex-
pressed by a linearized form of Weber equation (2.22), leading to

u′
i (x, t) = F−1

j i (X, t, t0)u′
j (X, t0) + ∂


∂xi
, (10.8)

in which the scalar potential 
 accounts for the effects of fluctuating pressure. The
associated equation for the vorticity fluctuation is

�′
i (x, t) = 1

Det F
Fi j (X, t, t0)�′

j (X, t0). (10.9)

Both equations are valid not only in the solenoidal case (u′
i,i = 0), as used in

Chapter 5, but also in various barotropic compressible cases. The vorticity equation
is not valid in the presence of a linearized baroclinic torque, for instance. These
equations were used by several authors, including Hunt (1973), Goldstein (1978),
and Durbin and Zeman (1992).

As conjectured in Jacquin, Cambon, and Blin (1993) and rediscussed in
Coleman, and Mansour (1993) and Simone, Coleman, and Cambon (1997), the
solenoidal linear response u′

s obtained by applying the Helmholtz decomposition to
Eq. (10.8) yields the minimum kinetic-energy growth rate, and its pressure-released
counterpart leads to the maximum growth rate. This yields the following evolution
equation:

u′ = u′
s + f (Mg)

[
u′(pr) − u′

s

]
︸ ︷︷ ︸

u′
d

, (10.10)

where u′(pr) is given by Eq. (10.5) with H =T F̃−1 = e− ∫ t
t0

A(t,t0)dt ′
. The following sim-

ple model can be derived (e.g., Cambon, Coleman, and Mansour, 1993):

K = Ks + f (Mg)
[
K(pr) − Ks

]
︸ ︷︷ ︸

Kd

(10.11)
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for the linear history of the turbulent kinetic energy, where the weighting fac-
tor f (Mg) is a monotonically increasing function of Mg . For a consistency rea-
son, one has f (0) = 0. This decomposition was successfully assessed for homoge-
neous turbulence, using both isentropic RDT and full DNS, as subsequently dis-
cussed, and it is reasonable if the pressure-released limit is more energetic than the
solenoidal limit, as it often is. Incidentally, one can mention that a simple model
by Debiève et al. (1982) for the evolution of the RST in turbulence–shock-wave
interaction can be derived from Eq. (10.5). The reader is referred to Jacquin, Cam-
bon, and Blin (1993) for a detailed discussion of this approach. A short discussion
is also given in Chapter 11, in the section devoted to the comparison between RDT
and LIA.

This preliminary analysis has the advantage in that it does not involve detailed
expressions for the Helmholtz decomposition in Fourier space. But the extraction
of u(s) from the solution of Eq. (10.8) requires solving the Poisson equation,

∇2
 = −∂u′(pr)
i

∂xi
,

which comes from the dilatational balance u′(pr)
d + ∇
 = 0.

More generally, two aspects must be kept in mind:

� The linearized Weber equation is valid for irrotational mean flows without baro-
clinic effects only. Finding the final expression of the scalar potential 
 in terms of
initial velocity remains an additional task to do anyway.

� The pressure-released linear limit (10.5) is completely general and is valid for a
rotational mean flow. But it appears as the limiting case of a linearized Weber
equation for irrotational mean strains only.

10.2 A General Quasi-Isentropic Approach to Homogeneous
Compressible Shear Flows

Generally, if the Mach number effect is significant, the effects of compressibility
are complex, as both acoustic and entropy modes are called into play, as well as
the vortical mode inherited from the incompressible case (see Section 9.1). Irrota-
tional mean flows have been studied by Goldstein (1978), who used an inhomoge-
neous RDT formulation [which can be based on Eq. (10.8)], whereas homogeneous
RDT has been extended to quasi-isentropic compressible turbulence at significant
Mach numbers in the presence of either irrotational compression or mean-shear
flows (Simone, Coleman, and Cambon, 1997). For high-speed compressible flows, it
is no longer possible to consider the velocity field as divergence free. Accordingly,
the pressure disturbance can recover its role of thermodynamical variable. It is no
longer a Lagrange multiplier bound by the divergence-free constraint, which can be
eliminated.
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10.2.1 Governing Equations and Admissible Mean Flows

Compressible isentropic equations are

∂�

∂t
+ ui

∂�

∂xi
+ �

∂ui

∂xi
= 0, (10.12)

�

(
∂ui

∂t
+ u j

∂ui

∂x j

)
= − ∂p

∂xi
= 0, (10.13)

1
p

(
∂p

∂t
+ ui

∂p

∂xi

)
− �

1
�

(
∂�

∂t
+ ui

∂�

∂xi

)
= 0. (10.14)

Extending the analysis performed for strictly incompressible flows (including
the special case of buoyant flows addressed in Chapters 7 and 8) is not a easy task
and can be done in several different ways.

One can at least try to obey the following rules or principles:

� To define a base flow, which could be identified with the mean flow, or �̄ , ū, p̄, as
a special solution of the governing equations.

� To derive evolution equations for a disturbance flow, � ′ = � − �̄ , p′ = p − p̄,
u′ = u − ū by subtracting equations for the base flow from governing equations.
The structure of these equations may satisfy some properties of invariance by
translation, which are consistent with statistical homogeneity.

� To restrict the degree of nonlinearity to quadratic terms, neglecting higher-order
nonlinear terms.

As in homogeneous incompressible turbulence, the first and second conditions
can be considered independently of statistical assumptions and treatment. This is
done by Craik and co-workers, who define the first condition as an admissibility
condition. Accordingly, an admissible base flow is also compatible with a wavelike
form for the disturbance flow, and the superposition of both is called “a class of
exact solutions” for Euler equations. This is nothing other than a formal rediscovery
of RDT, but one in which nonlinearity is rigorously excluded in the equations for
the disturbance flow: Only single-mode perturbation is considered and nonlinearity
is zero for a single Fourier mode in the incompressible case. This is no longer true
in compressible turbulence: Nonlinearity does exist even for a single Fourier mode
(monochromatic disturbance). We will try to define, however, a system of simplified
equations in which only quadratic nonlinearities appear.

The condition that the mean-velocity gradient must be uniform in space is in-
herited from the incompressible case, leading to

∂ ūi

∂x j
= Ai j (t).

An admissibility condition for the mean density follows as

∂ �̄

∂t
+ A jm xm

∂ �̄

∂x j
+ �̄ Aii = 0.
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This condition is compatible with the existence of a mean-density gradient, or
�̄ = �0(t) + Ci (t)xi , as in the buoyant flow case with the Boussinesq approximation
addressed in Chapter 7. But this case is too complicated if the velocity field is not
solenoidal, so that only

�̄ = �(t), �0 = �̄(0) (10.15)

is considered.
As a consequence, the momentum equation for the base flow is very similar to

its incompressible counterpart:

�̄(t)
(

d Ai j

dt
+ Aim Amj

)
x j = − ∂ p̄

∂xi
.

One recovers the condition that dA/dt + A2 must be a symmetric tensor, tak-
ing the curl of the preceding equation, and that �̄(t)(d Aii/dt + Aim Ami ) = −∇2 p̄,
taking its divergence. Looking now at the linearized momentum equation for the
disturbance flow,

� ′
(

d Ai j

dt
+ Aim Amj

)
x j + �̄(t)

[
∂u′

i

∂t
+ A jm xm

∂u′
i

∂x j
+ Ai j (t)u′

j

]
x j = − ∂ p̄

∂xi
,

(10.16)

one observes that the contribution from the left-hand side is twofold, as it combines
both the mean acceleration weighted by the fluctuating density and the fluctuating
acceleration weighted by the mean density. Violation of translational invariance by
the first term is probable, but difficult to prove.∗ A simplified class of mean flows is
finally proposed as

dA

dt
+ A2 = 0, p̄ = P(t). (10.17)

Relaxing the assumption of irrotational mean strain is possible for developing
at least linear RDT solutions, but the assumption of statistical homogeneity must
be enforced. Even if this condition is much less stringent than is generally admitted,
the fact that the mean flow is characterized only by its spatial gradient matrix A

has important consequences. First, it is not possible to define a length scale and a
velocity scale for the mean flow (such as � and �U in the shear-layer case), but
only a time scale. This explains why linearization is not justified, as in conventional
linear-stability analysis, by a (small) ratio of disturbance-to-base-velocity scale, but
by an assumption of small elapsed time. S, which has the dimension of the inverse of
a time, is a typical scalar scale for A; the linear solution is expected to hold for small
St only. But the maximum St at which it is valid depends crucially on the initial
shear-rapidity factor SL/u′, where L and u′ are typical scales for the disturbance
flow, and other features of the flow. Practical experience shows that the validity
of RDT cannot be predicted a priori, considering only St and the initial value of

∗ In this case, one could check if a wavelike disturbance form for all the disturbance terms, including
also � ′, can be consistently defined, without canceling a priori the mean-acceleration term.
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SL/u′. In some extreme cases, like rotating turbulence with angular velocity � and
low Rossby number Ro = u′/(2�L), the nonlinearity becomes significant only after
a very long time, such that �t = Ro−2 (see Chapter 4). This is partly explained by
the depletion of nonlinearity that is due to phase mixing by dispersive inertial waves
at small Rossby numbers. This “rapid” adjective in RDT is even less relevant here
because at least two “rapid” time scales exist, namely 1/S and L/a. In brief, short
time is a sufficient condition to ensure the validity of the linear solution, but not a
necessary one.

A background mean flow is defined by space-uniform density �̄(t), pressure
P(t), and mean-velocity gradients,

Ui = Ai j x j ,

along with Eq. (10.17), and it is possible at least to consider that the fluctuations of
density and pressure are weak with respect to their mean reference values, i.e.,

� ′ � �̄(t), p′ � P(t).

Finally, the following simplified system of two equations is found for the fluctu-
ating flow:

D

Dt
u′

i + Ai j u
′
j + 1

�̄

∂p′

∂xi
= −u′

j

∂u′
i

∂x j
, (10.18)

D

Dt

(
p′

� P

)
+ ∂u′

i

∂xi
= −u′

j

∂

∂x j

(
p′

� P

)
, (10.19)

where

a2 = �
P

�̄
(10.20)

is the square of the speed of sound. The symbol D
Dt denotes the material deriva-

tive following the mean-flow streamlines. Viscous terms are omitted, in agree-
ment with isentropic assumption, but they can be added for numerical convenience.
These equations are the starting point for both the nonlinear statistically isotropic
approach in the absence of a mean-velocity gradient (Fauchet et al., 1997) (see
also Subsection 9.3.1), and the linear approaches in the presence of A (Jacquin,
Cambon, and Blin, 1993; Cambon, Coleman, and Mansour, 1993; Simone, Coleman,
and Cambon, 1997).

10.2.2 Properties of Admissible Mean Flows

A zero-mean acceleration in Eq. (10.17) corresponds to

F̈i j (t, 0)X j = 0,

so that the general expression for F is

Fi j (t, 0) = �i j + Si j t, (10.21)
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where Si j is an arbitrary constant matrix. The mean-velocity-gradient matrix is read-
ily derived, using A = dF

dt F
−1, as

A(t) = S(I + S)−1. (10.22)

Using the volumetric ratio

J (t, 0) = DetF(t, t0) = exp
[∫ t

t0

Aii (t ′)dt ′
]

(10.23)

and the mean-isentropic equation P(t)�−�
0 (t) = constant, one obtains

�0(t) = �0(0)
J (t, 0)

, P(t) = P(0)
J � (t, 0)

, (10.24)

resulting in the definition of a time-dependent speed of sound a(t) if J (t, 0) is time
varying.

These equations were given in Cambon, Coleman, and Mansour (1993) to ex-
tend the conditions proposed by Blaisdell, Mansour, and Reynolds (1991), and per-
haps are not the most general solutions consistent with the three admissibility con-
ditions mentioned in the previous section. The search for more complex admissible
base flows (e.g., Craik and Allen, 1992) is more a mathematically skilled task than
a physically relevant problem. One must mention a possible way to derive a hierar-
chy of model equations, using asymptotic expansions: The ambitious study by Rupat
Klein (private communication) yielded a hierarchy of flow models including more
and more complex effects of compressibility, but is especially relevant for geophys-
ical turbulence.

10.2.3 Linear Response in Fourier Space. Governing Equations

Equations (10.18) and (10.19) are linearized around a mean flow with space-uniform
gradient A, discarding their right-hand sides. As usual in RDT and in related stabil-
ity analyses, the equations are simplified by considering Fourier modes

(u′
i , p′)(x, t) =

∫
(ûi , p̂)[k(t), t]eık(t) · xd3k,

with

k̇i = −A ji k j .

The only difference with incompressible RDT for the treatment of advection is
the occurrence of the term Ann , because the Fourier counterpart of u̇′

i is

∂ ûi

∂t
− Annûi − A jmk j

∂ ûi

∂km
.

Extending the notation with the overdot to derivatives in Fourier space, the
latter equation can be recast as

˙̂ui − Annûi = ∂ ûi

∂t
+ dkm

dt

∂ ûi

∂km
− Annûi . (10.25)
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The system of Eqs. (10.18)–(10.19) yields

˙̂ui − Annûi + Ai j û j = − ı

�0
ki p̂, (10.26)

˙̂p + (� − 1)Ann p̂ = −� Pıki ûi . (10.27)

An important step in investigating this system is to use the Helmholtz decom-
position:

û =
(
I − kkT

k2

)
û︸ ︷︷ ︸

ûs

+ kkT

k2
û︸ ︷︷ ︸

ûd

. (10.28)

In addition, the Craya–Herring frame of reference can be used for specifying
the two solenoidal modes: The third vector is nothing other than k/k and is used to
define the dilatational mode, with a superscript 3, consistently with

e(3) = k
k
, u(3) = û · e(3),

from which comes

û = u(1)e(1) + u(2)e(2)︸ ︷︷ ︸
ûs

+ u(3) k
k︸ ︷︷ ︸

ûd

. (10.29)

In agreement with the decomposition in physical space discussed in Subsec-
tion 9.1.4, the subscripts s and d denote solenoidal and dilatational modes, respec-
tively. Because the Craya–Herring frame of reference is a direct orthonormal frame,
vortical (applying the curl operator) and dilatational (applying the divergence) ve-
locity contributions have simple counterparts in this frame:

�̂(k, t) = ık
[
u(1)e(2) − u(2)e(1)], (10.30)

ûi,i (k, t) = ıku(3). (10.31)

To recover a homogeneous problem, the pressure fluctuation is scaled as a ve-
locity and considered as fourth component of the solution vector (Simone, Coleman,
and Cambon, 1997):

u(4) = ı
p̂

�0a
. (10.32)

This scaling is similar to the one of Eckhoff and Storesletten (1978).
Linear solutions are therefore expressed in terms of u(i), i = 1, 4 components,

solving the following linear system of ODEs:
u̇(1)

u̇(2)

u̇(3)

u̇(4)

+


m11 − Ann m12 m13 0

m21 m22 − Ann m23 0
m31 m32 m33 − Ann +ak

0 0 −ak 3−�
2 Ann




u(1)

u(2)

u(3)

u(4)

 = 0, (10.33)
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or equivalently,

u̇(i) − Annu(i) + mi j u
( j) = 0, (10.34)

where the coefficients of the RDT matrix m are defined as follows:

m�� = e(�)
i Ai j e

(�)
j − ė(�)

i e(�)
i

= e(�)
i Ai j e

(�)
j + 	�3�e(2)

j Ai j e
(1)
j , (10.35)

m�3 = e(�)
i Ai j e

(3)
j − ė(�)

i e(3)
i = e(�)

i (Ai j − A ji ) e(3)
j , (10.36)

m3� = e(3)
i Ai j e

(�)
j − ė(3)

i e(�)
i = 2e(3)

i Ai j e
(�)
j , (10.37)

m33 = e(3)
i Ai j e

(3)
j , (10.38)

m34 = −m43 = −a0k. (10.39)

As previously, Greek indices take the value 1 or 2 only and refer to solenoidal
modes. The calculation of the “solenoidal block” is made assuming that the polar
axis n of the Craya–Herring frame of reference is one of the eigenvectors of A.

Of course, the 4D problem in physical space (u1, u2, u3, p) remains a four-
component problem in Fourier space. When the Craya–Herring frame is used, no
reduction of the number of variables is obtained as in solenoidal cases because
the dilatational mode u(3) does not vanish, but the matrix mi j , i = 1, 4, j = 1, 4 has
some zero components and the role of each nonzero component is more easily un-
derstood. All the coefficients in the “velocity block” of the preceding matrix, or
mi j , i = 1, 3, j = 1, 3, depend on A and therefore scale with S, which is a norm of
A. The acoustic terms m34 and m43 scale with the dispersion frequency of acoustic
waves, ka0. As a consequence, the parameter S/(a0k) is immediately found to be
the pivotal parameter; of course it is a spectral counterpart of the gradient Mach
number Mg . The different couplings between the solenoidal modes u(1) and u(2), the
dilatational mode u(3), and the pressure mode u(4) are illustrated on Fig. 10.2.

The solution of Eq. (10.33) is expressed as

u(i)[k(t), t] = J (t, 0)gi j (k, t, 0)u( j)(K , 0), (10.40)

with J given by (10.23). As usual in RDT, the deterministic function gi j , i, j = 1, 4,
can be computed analytically or numerically, solving sequentially system (10.33)
for a set of arbitrary simple initial data, such as u(i) = �i1, �i2, �i3, �i4. Correspond-
ing solutions for the statistical moments are obtained from the initial value of
these statistical moments through g products. Simplified forms of these initial val-
ues usually come from isotropy and “strong” acoustic-equilibrium assumptions
(Simone, Coleman, and Cambon, 1997).

In the general case with time-dependent J , new “divergence” and “pressure”
terms can be used, introducing the following new integration variables:

y = J−1 u(3)

k
, z = J−1 u(4)

a0
, (10.41)
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∇u

∇u

∇⋅ u∇u

×∇ u

Pressure mode
Acoustic waves

Solenoidal field

Dilatational field

Figure 10.2. Schematic view of interactions between modes defined in the local Craya–Herring
frame according to the RDT analysis of compressible homogeneous shear flows. Dotted lines de-
note self-interaction.

and by using

k̇

k
= −Ai j

ki k j

k2
. (10.42)

one finds a useful “pressure” equation:

D

Dt

(
ż

k2

)
+ a2

0 z = a2
0 zs, (10.43)

in which

zs = J−1 p̂s

�̄a2
0

= ı
J−1

ka2
0

m3�u(�) (10.44)

involves only the solenoidal velocity field and exactly corresponds to the solution of
the Poisson equation found in the strictly incompressible case.

10.2.3.1 Recovering the Acoustic Regime

In the absence of mean flow, i.e., setting A = 0 in Eq. (10.33), the solenoidal mode
is strictly conserved, whereas pressure and dilatational velocity modes are governed
by [

u(3) ± ıu(4)](t) = e±ıa0kt
[
u(3) ± ıu(4)](t = 0), (10.45)

which corresponds to the acoustic regime discussed in Chapter 9.

10.2.3.2 Recovering the Solenoidal Limit

The solenoidal limit, also known as incompressible RDT, is found by solving only
the block i = 1, 2, j = 1, 2, as u(3) = 0 gives the solenoidal limit [e.g., Eq. (10.31)].
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The governing equation for the pressure mode is

u(4) = u(4)
s = m3�

ka0
u(�). (10.46)

This equation gives the counterpart of the solution for the Poisson equation
satisfied by the fluctuating pressure in this limit, or

p̂ = p̂s = − ı

�0
m3�u(�), m3� = 2

ki

k
Ai j e

(�)
j .

10.2.3.3 Irrotational Mean-Strain Case

In addition to pure solenoidal coupling terms m��, which are the same as in
solenoidal RDT, and to “acoustical” or “pseudo-sound” terms m34 = −a0k, m43 =
a0k, previously discussed, some very interesting terms are

m�3 = e(�)
i (Ai j − A ji )

k j

k
.

These terms represent a feedback from the dilatational mode to the solenoidal
modes, and they are generated by the rotational part of the mean flow.

As an immediate consequence, the solenoidal flow is decoupled in the pres-
ence of an irrotational straining process. Another less obvious consequence is that
the kinetic-energy growth rate is larger in compressible RDT than in solenoidal
RDT, as the kinetic energy of the dilatational mode, which is always positive, is
just added to the kinetic energy of the solenoidal mode, which is independent of
compressibility in this case. The effect of the fluctuating pressure in the solenoidal
linear limit is just to kill this dilatational contribution. Accordingly, as first demon-
strated by Jacquin, Cambon, and Blin (1993), the kinetic-energy growth rate in-
creases monotonically with increasing gradient Mach number Mg , from solenoidal
RDT to “pressure-released” RDT, in full agreement with Eq. (10.11). These results
were revisited and confirmed by full DNS (Cambon, Coleman, and Mansour, 1993)
(also quoted in Lele, 1994, and Simone, Coleman, and Cambon, 1997) for homo-
geneous axial compression [Ai j = S(t)�i1�j1], as shown on Fig. 10.3. For the sake of
convenience, the time-advancement parameter is not S(0)t but the inverse of the
mean volumetric ratio J (t), with S(t) = −S(0)/(1 − S(0)t) = −S(0)/J (t). The con-
tribution of the solenoidal mode corresponds to a quasi-linear growth of kinetic
energy in terms of the mean-compression ratio J−1, whereas the dilatational con-
tribution leads to a quasi-parabolic growth. It is worth noticing that compressibility
is always shown to have a destabilizing effect regarding RDT for irrotational mean
flow. Of course, the general relevance of this result can be questioned because it
relies on both the irrotational condition and the short time condition S(0)t � 1 in
the case of axial compression.

Analytical solutions for solenoidal RDT and pressure-released limit are

K(t)
K(0)

= 1
2

(
1 + J−2 tan−1(

√
J−1 − 1)√

J−1 − 1

)
, (10.47)
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Figure 10.3. Turbulent kinetic-energy histo-
ries for different values of the gradient Mach
number Mg , in the axial compression case.
Top: Full DNS (dots) and linear theory (lines).
Bottom: in addition, splitting into solenoidal
and dilatational parts (Simone, Coleman, and
Cambon, 1997).

yielding a quasi-linear growth in terms J−1, and

K(t)
K(0)

= 2 + J−2

3
, (10.48)

yielding a parabolic growth if J−1 ≥ 1, respectively. Despite the presence of the
varying mean volumetric ratio, the solenoidal equation is very close to the clas-
sical equation for mean incompressible axial strain given by Batchelor [see also
Eqs. (5.36) and (5.37) in Chapter 5], up to a J 4/3 factor. This result was also found
by Ribner (1953). The framework of solenoidal turbulence subjected to mean strain
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with variable volume is also addressed in Cambon, Mao, and Jeandel (1992), with
the particular flow case addressed in the next subsection.

10.3 Incompressible Turbulence With Compressible Mean-Flow Effects:
Compressed Turbulence

An interesting class of solenoidal (i.e., with divergence-free velocity fluctuations)
homogeneous turbulent flows can be considered in the presence of a mean flow with
space-uniform gradients, which take into account a variation in the mean volume.
Provided that the Mach number is small enough, this set of assumptions is self-
consistent, and it is possible to extend solenoidal RDT to compressed turbulence, i.e.,
to a divergence-free fluctuating-velocity field in the presence of a mean dilatational
flow, neglecting acoustics and thermal effects.

The mean flow is characterized by the volumetric ratio (10.23), which differs
from 1 when the constraint Aii = 0 is relaxed. For the sake of brevity t0 is omitted
in what follows, so that abridged notations F(t), J (t) are now used in this section.
Among different compressing mean flows, the case of isotropic compression de-
serves particular attention. In this case, the matrices A and F, and the trajectory
equations are written as

Ai j (t) = S(t)�i j , Fi j (t) = J 1/3(t)�i j , xi = J 1/3(t)X j , (10.49)

in which S = 1
3

1
J

d J
dt . The fluctuating field is governed by

∂u′
i

∂t
+ Sx j

∂u′
i

∂x j
+ Su′

i + 1
�

∂p′

∂xi
= −u′

j

∂u′
i

∂x j
+ �∇2u′

i , (10.50)

in which explicit nonlinear terms and viscous terms are gathered in the right-hand
side. Setting the right-hand side to zero, the RDT solution is directly found in phys-
ical space†:

u′(x, t) = J−1/3(t)u′(X, 0).

More interesting is the possibility of deriving a rescaling for full nonlinear equa-
tion (10.50) in terms of spatial coordinates, velocity, and time. It is expressed as
follows:

x∗ = J−1/3x, u∗(x∗, t∗) = J 1/3u′(x, t) dt∗ = J−2/3(t)dt. (10.51)

Such a dynamical rescaling can also be used in Boltzmann equations and applied
to cosmological gas in order to account for the expansion of the universe. When sub-
stituting it in Eq. (10.50) that governs the primitive unscaled variables, the rescaled
quantities are shown to satisfy the Navier–Stokes equations without the additional
mean terms that depend on S on the left-hand side. For consistency reasons, the
pressure is rescaled as p∗ = J 5/3 p, and the only difference with uncompressed freely
decaying isotropic turbulence for the velocity field u∗(x∗, t∗) is a possible influence

† This is a very special case, in which the nonlocal potential term is zero in Eq. (10.8).
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of time variations of the viscosity �∗(t). The variation in Reynolds number follows
directly because u′L = u∗L∗. If the Reynolds number is high enough, however, it is
reasonable to expect that all classical results dealing with spatiotemporal dynamics
and statistics of isotropic freely decaying turbulence are still valid for (u∗, x∗, t∗), so
that the corresponding laws for primitive variables (u′, x, t) can be readily derived
using Eq. (10.51). The reader is referred to Cambon, Mao, and Jeandel (1992) for
various applications.

This scaling deserves attention for two reasons. First, it illustrates a particu-
lar “dynamical” version of the general scale invariance [see, e.g., Frisch, 1995, and
Eq. (3.25)]:

x∗ = �x, u∗ = �hu, t∗ = t�1−h, �∗ = �1+h�, (10.52)

so that � corresponds to the time-dependent mean-density ratio J−1/3, with h = −1.
In the latter invariance group, the viscosity would be left unchanged if h = −1, but
it should be borne in mind that the dynamical rescaling deals with a continuously
time-varying parameter J −1/3(t) in contrast to �. It is worth noting that, by taking
h = −1, one recovers scaling law (3.20), whereas one finds transformation (3.21) by
setting h = 1.

Second, it can be used to check the consistency of any model or theory, ranging
from K − ε to elaborate EDQNM, DIA, or LRA versions.

As a simple example, let us start with a classical decay law such as

K(t) = K(0)
(

1 + t

nt0

)−n

, L(t) = L(0)
(

1 + t

nt0

)1−n/2

,

consistently obtained for the turbulent kinetic energy, its dissipation rate, and the
single relevant integral length scale L , with 1/t0 = −(1/K)dK/dt at t = 0. Applying
the rescaling, which amounts to rewriting the same equations in terms of “starred”
variables, the following equations are derived for the “compressed” decay:

K(t) = K(0)e2Ct

(
1 + e2Ct − 1

2nCt0

)−n

, L(t) = L(0)e−Ct

(
1 + e2Ct − 1

2nCt0

)1−n/2

,

for a mean compression or dilatation at constant rate S(t) = −C . These equations
show immediately that the domain of relevance of RDT in terms of elapsed time
is more restricted as is usually conjectured, with a dominant nonlinearity having
an effect opposite to the linear one. Choosing a spherical compression, i.e., C � 0,
the RDT growth-rate factor for K, e2Ct , is always balanced and rapidly dominated
by a nonlinear term given by e−2nCt . This reflects the fact that, when the velocity
u′ is affected by a linear RDT factor eCt , the nonlinear term of dimension u′2/ l is
affected by a factor e−3Ct , the full nonlinear effect being finally accounted for by the
time rescaling dt = dt∗e2Ct .

This flow is particular in the sense that turbulence is not really compressible,
but it offers a very simple way to exactly evaluate the impact of nonlinearity; this
is an unique instance for comparing linear RDT with full nonlinear theory. In con-
trast, a depletion of nonlinearity is rather expected in true compressible turbulence,
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with respect to the incompressible flow case, but in the anisotropic case, as discussed
further. It is also possible to study the spherical (isotropic) compression or dilata-
tion applied to really compressible homogeneous turbulence. Very consistent re-
sults were found by Blaisdell, Coleman, and Mansour (1996) and Simone, Coleman,
and Cambon (1997), using full DNS and isentropic RDT: As a particular result,
the strong acoustic equilibrium can be sustained, as illustrated by Fig. 2 in Simone,
Coleman, and Cambon (1997).

10.4 Compressible Turbulence in the Presence of Pure Plane Shear

The background velocity field of pure plane shear addressed in this section is identi-
cal to the one considered in the incompressible case (see Chapter 6). It is defined by

A =

0 S 0
0 0 0
0 0 0

 , F(t) =

1 St 0
0 1 0
0 0 1

 . (10.53)

The associated characteristic lines in the both Fourier and physical (trajectories)
space are given by

k1 = K1, k2 = K2 − K1St, k3 = K3; x1 = X1 + St X2, x2 = X2, x3 = X3.

(10.54)

In this case J ≡ 1, so that �̄ , P , and a (= a0) are constant.

10.4.1 Qualitative Results

Even in the pure shear case, the pressure-released limit is more energetic than the
linear solenoidal limit. Accordingly, a reduction of pressure fluctuations, in the lin-
ear limit, would yield a monotonic increase of turbulent kinetic energy with increas-
ing Mg , as for the case of irrotational mean straining! The fact that the pressure-
released growth rate is higher than the solenoidal one, in the linear limit, results
from Eqs. (10.5) and (10.53), which yield a quadratic growth rate for the kinetic en-
ergy, i.e., K(t) ∝ (St)2.‡ In the same conditions, the solenoidal RDT predicts only a
linear growth rate: K(t) ∝ St . Once recast in a relevant nondimensional form, the
kinetic-energy growth rate is characterized by

" = 1
SK

dK
dt

, (10.55)

which is equal to

" = −2

[
b12 + ε̄ s + ε̄ d −
(d)

SK

]
(10.56)

‡ The reader is referred to Chapter 6 for a detailed discussion of the incompressible shear case.
Results are summarized in Table 6.1.
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according to Eq. (10.2). In the pressure-released linear limit with isotropic initial
data, the kinetic-energy growth rate is equal to

"(pr) = 2St

3 + (St)2
. (10.57)

This equation gives the upper solid line in the bottom part of Fig. 10.4. The
corresponding limit of solenoidal RDT is plotted in Fig. 10.4, as the lower solid
line. Is there a simple explanation for this stabilizing effect of pressure in solenoidal
RDT, without looking at RDT details? As in all shear-flow cases, the answer is given
by the dynamics of the vertical velocity component: u′

2 is passively advected in the
pressure-released linear limit, whereas it is its Laplacian ∇2u′

2 that is advected in the
RDT solenoidal limit. According to the corresponding RDT complete solution in
Fourier space, D(k2û2)/Dt = 0, leading to û2(k, t) = K 2

k2 û2(K , 0) and a decrease of
u′

2 as K/k � 1 for t � 0. Using the Craya–Herring frame with the polar axis parallel
to the cross-gradient direction of the mean shear, the complete RDT solution (see
also Chapter 6) is much simpler than the one given by Townsend (1976) in the fixed
frame. The corresponding equation dealing with u′(2) is

D

Dt
(ku(2)) = 0, (10.58)

which is consistent with the pure advection of ∇2u2 in the physical space. Note that
this analysis only confirms that the role of the so-called “rapid” pressure–strain-rate
tensor in Reynolds stress equations is a stabilizing one. This result is in qualitative
agreement with crude single-point models, in which the “rapid” pressure–strain-rate
tensor is modeled as reducing the production. Using these simple considerations, a
destabilizing effect of compressibilty is observed, as shown in Fig. 10.4 for St � 4
in both full DNS and quasi-isentropic compressible linear theory. This result is
very similar to what happened in the irrotational mean-strain case, with a mono-
tonic increase of " with increasing Mg , from the solenoidal to the pressure-released
case.

10.4.2 Discussion of Results

As shown in Fig. 10.4, the conventional “stabilizing” behavior of compressibility is
recovered at largest time St � 4. It is therefore clear that this stabilizing behavior
is explained by the presence of the m�3 coupling terms, at least in the linear limit.
Figure 10.4 displays the main part of the turbulent kinetic-energy growth rate "

defined in Eq. (10.55), which reduces to −2b12, ignoring other terms, as also justified
by Sarkar (1995).

Equations for the pure plane shear case are subsequently rewritten using
Eqs. (10.35)–(10.37) and the three nontrivial components from the solenoidal
Craya–Herring frame:

e(1)
1 = − K3

K⊥
, e(2)

2 = − K⊥
k

, e(2)
1 = K1k2

K⊥k
.
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Figure 10.4. Histories of the nondimensional production term −2b12, full DNS (top) and linear
quasi-isentropic compressible theory (bottom), so-called (improperly) RDT. Upper and lower
solid curves correspond to pressure-released limit and solenoidal limit, respectively. Initial Mg

(called Md in the figure) ranges from 4 to 67 for both DNS and RDT; arrows show trends with
increasing Mg . From Simone, Coleman, and Cambon (1997).
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It is recalled that the optimal choice for the arbitrary vector n in the definition of
the local frame (see Table 2.2) is to choose the polar axis in the cross-gradient shear
direction: ni = �i2. Further simplifications are obtained with integrating factors to
remove some diagonal coupling terms, in agreement with Eq. (10.42). After some
algebra, one obtains

u̇(1) + S
K3

k(t)
u(2) = S

K3k2(t)
K⊥

u(3)

k(t)
, (10.59)

D

Dt

(
ku(2)) = −S

K1

K⊥
k(t)u(3), (10.60)

D

Dt

(
u(3)

k(t)

)
= 2S

K1 K⊥
k4(t)

k(t)u(2) − a0u(4), (10.61)

u̇(4) = a0k(t)u(3), (10.62)

with

K⊥ =
√

K 2
1 + K 2

3 , (10.63)

as a special case of Eq. (10.33). The counterpart of Eq. (10.43) is

D

Dt

( ˙̂p
k2(t)

)
= a2

0

2ı�0S
K1 K⊥

k4
(ku(2))︸ ︷︷ ︸

p̂s

− p̂

 . (10.64)

Going back to the (generally expected) stabilizing effect of compressibility, it is
commonly accepted, following Sarkar (1995) and Pantano and Sarkar (2002), that
the weakening of pressure correlation is the sole explanation. As a matter of fact,
the weakening of pressure can be demonstrated from the solution of Eq. (10.64),
considering the following scalar Green’s function for pressure to velocity
coupling:

p̂(k, t) =
∫ t

t0

G(k, t, t ′) p̂s(k, t ′)dt ′. (10.65)

Recently, Thacker, Sarkar, and Gatski (2006) proposed an analytical solution
for a similar scalar Green’s function in the pure shear case, generalizing the form
G = sin[a0k(t−t ′)]

a0k recovered in the shearless case (e.g., Pantano and Sarkar, 2002). One
can point out that this scalar Green’s function is generated by the equation

¨̂p + a2
0k2 p̂ = a2

0k2 p̂(s) (10.66)

(translating their results with our notations), which is simpler and less general than
Eq. (10.64). Both Eqs. (10.64) and (10.66) account for the time dependency of k by
means of Eq. (10.54), but the removal of the divergence term was not accurately
obtained in Thacker, Sarkar, and Gatski (2006). In addition, the equation of type
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(10.65) was used to express the “rapid” pressure–strain-rate tensor in terms of the

velocity spectral tensor involved in p̂∗û(s)
i : A solenoidal spectral model for û(s)∗

i û(s)
j

was used by Thacker, Sarkar, and Gatski (2006) for this purpose (see also Cambon
and Rubinstein, 2006, for a discussion of this model).

It is advocated here that the explanation based on Eq. (10.64) (weakening of
pressure fluctuations) for stabilizing–destabilizing compressibility effects is only a
partial one. This equation is also a by-product of the general study based on the
full system of linear equations considered here. The conventional explanation is
valid, for instance, to account for the difference between the less compressible case
in the top part Fig. 10.4 (which corresponds to an almost constant production rate
at largest St), which is also a fully nonlinear result, and the pressure released case
(upper curve in solid line in the bottom part of Fig. 10.4). This “explanation” is
irrelevant when the plot of compressible RDT results at large Mg and large elapsed
time lies below the incompressible RDT limit curve (solid line in Fig. 10.4): In this
case the sole argument of mollification of pressure would lead a destabilizing effect
of compressibility. In contrast, the second explanation based on the feedback [in Eq.
(10.60)] of the dilatational mode onto the relevant poloidal mode (which includes
the whole vertical velocity component, a key component for the production by shear
in any case) is valid.

As a final remark, let us recall that the argument dealing with the weakening of
pressure is always relevant in the irrotational “mean” case, or at St � 4 in the shear
case, but yields a systematic destabilizing effect because the pressure-released limit
is always over the incompressible RDT limit! Of course, looking at the Reynolds
stress equations, the weakening of the nonlinear (so-called slow) pressure–strain-
rate tensor yields a stabilizing effect in the pure shear-flow case, but this reflects
more a depletion of nonlinearity at increasing Mg than a stabilizing effect of com-
pressibility: In addition, the ratio of gradient to turbulent Mach number Mg/Mt is
nothing other than the shear-rapidity factor, and increasing Mg without increasing
Mt in the same proportion means depleting the nonlinearity. The latter remark also
holds for DNS results presented in Fig. 10.4, but not for pure linear theories.

10.4.3 Toward a Complete Linear Solution

As a direct continuation of the study by Simone, Coleman, and Cambon (1997),
some work remains to be done to retrieve more information from the linear equa-
tions in the pure shear-flow case. The existence of the invariant quantity

� = ku(2) + S

a0

K1

K⊥
u(4), (10.67)

which is passively advected [i.e., conserved along the characteristic lines (10.54)], as
seen by combining Eqs. (10.60) and (10.62), offers new perspectives for analytical
solutions. Analytical solutions by Thacker, Sarkar, and Gatski (2006) for the scalar
pressure Green’s function can be useful for this purpose too.
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A single second-order equation is found at K1 �= 0 for x = ku(2):

D

Dt

(
ẋ

k2

)
− K 2

1

(
2

S2

k4
+ a2

0

K 2
⊥

)
x = − K 2

1

K 2
⊥

a2
0�. (10.68)

As in all RDT cases in the presence of pure plane shear, an analytical solution
is found if K1 = 0, because k = K . In this case acoustic solution (10.45) for u(3) and
u(4) is valid, whereas the solution of (10.60) and (10.59) is

u(2)(k, t) = u(2)(k, 0), (10.69)

u(1)(k, t) = u(1)(k, 0) − St
k3

k
u(2)(0)

+ S
k2

k

[
sin(a0kt)

a0k
u(3)(k, 0) − cos(a0kt)

a0k
u(4)(k, t)

]
.

(10.70)

The feedback from dilatational to toroidal mode is displayed in the latter equa-
tion. The probably more important (for global production) feedback from dilata-
tional to poloidal is canceled at k1 = 0, showing the need for a general solution at
any K1.

10.5 Perspectives and Open Issues

Perspectives for modeling nonhomogeneous and/or nonlinear effects can be briefly
discussed. On the one hand, extending homogeneous RDT toward zonal (localized)
RDT is possible, but the related assumption of short-wave disturbance can discon-
nect the acoustic modes in practice. A more promising case is found when distur-
bances are localized in the vicinity of rays (along which total energy, including the
acoustic one, propagates), instead of being localized near mean trajectories. More
details are given in Chapter 13.

On the other hand, in the absence of mean-velocity gradients, interactions
among solenoidal, dilatational, and pressure modes are purely nonlinear and can be
analyzed and modeled in pure isotropic homogeneous turbulence. In this context,
the model by Fauchet et al. (1997) gave promising spectral information, as shown in
the previous chapter. To reconcile both cases, i.e., taking into account both linear
distortion by the mean flow and nonlinearity, is a formidable challenge. At least,
the nonlinear model could be used for initializing in a better way the compressible
RDT equations, replacing a questionable “strong” acoustic equilibrium with a more
realistic “weak” one.

Regarding “strong” acoustic equilibrium, even the RDT solution can signifi-
cantly break it, independently of initial data, if Mg is sufficiently large, or more pre-
cisely if S/(a0k) is large and K1 �= 0. Linear equation (10.62) is probably always valid,
even in the nonlinear case, and the forcing by the solenoidal term [poloidal mode in
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Eq. (10.61)] can play a similar role here as the dominant part of the T (3)
NL term does

in the nonlinear case.

10.5.1 Homogeneous Shear Flows

A critical survey of previous studies has shown that the alteration of pressure equa-
tion by compressibility, without significant change in its source term, is not the cor-
rect explanation for the “stabilizing” effect, at least for homogeneous shear flow. It
is suggested that the alteration previously mentioned results from the depletion of
nonlinearity, and that this is the nonlinear part of the pressure–strain rate and not
the linear (so-called rapid) one that is concerned in this case. In contrast, the subtle
coupling between solenoidal and dilatational velocity modes is essential for explain-
ing the stabilizing effect in the linear limit, and especially the feedback from the
dilatational mode induced by the rotational part of the mean flow, as in Eq. (10.60).
Such an analysis escapes the description permitted by Reynolds stress modeling. A
general linear solution such as (10.40) contains a lot of information, and it is a pity
to derive from it only conventional single-point statistics: More information can be
obtained about spectral distribution, because the ratio S/(ak) that underlies the dis-
tortion Mach number is wavenumber dependent, and also about specific vortical
and dilatational contributions.

10.5.2 Perspectives Toward Inhomogeneous Shear Flows

In an incompressible mixing layer, the velocity scale is unequally determined by
the difference in the two stream velocities, v0 ∼ �U , and variation in the length
scale unequally depends on the velocity ratio. Compressibility changes this dimen-
sional rule by making the speed of sound a relevant parameter with the consequence
that the two preceding scales now possibly depend on a Mach number (the gradi-
ent Mach number Mg ∼ �U/a or the turbulent Mach number Mt ∼ v0/a with a
an average of the two speeds of sound). As already mentioned, the consensus that
emerged from DNS of compressible mixing layers is that compressibility stabilizes
a mixing layer by decreasing its pressure fluctuations; see, e.g., Pantano and Sarkar
(2002). This leads in particular to reduction of the pressure–strain terms that pro-
duce the turbulent shear stress through redistribution among the Reynolds stresses
of the energy provided by the work of the mean shear. Indeed, these DNSs pro-
vide us with decisive results. But, according to our preceding analyses, the detailed
sequence of mechanisms leading to mixing-layer stabilization still escapes our un-
derstanding. It is important to note that linear analyses of compressible flows are
somewhat in contradiction with the proposed interpretations because, given a shear
rate �U/�, damped pressure fluctuations should make both the kinetic energy and
the shear stress increase instead of decrease, through contribution of dilatational
velocity fluctuations growing with the gradient Mach number. This should remain
effective in the conditions that hold in a mixing layer because one does not expect a
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strong imbalance between linear and nonlinear time scales in such a free flow (actu-
ally �/�U does not depart so much from �/v0 and mildly rapid shear conditions must
prevail). This indicates that nonlinear compressibility effects should be addressed,
in particular the changes in the mechanism of “isotropization” of the fluctuations
by pressure, which are essential for producing kinetic energy in a shear flow. Eval-
uation of the respective impact of compressibility on linear and nonlinear pressure
terms is required for understanding and modeling correctly the compressible mixing
layer. Note at last that in this inhomogeneous flow transport terms are also deeply
modified by the drop of pressure fluctuations. Namely, one observes that the de-
crease in the production of turbulent kinetic energy is almost compensated for by
an equivalent decrease in its transport, letting the dissipation rate ε remain almost
unchanged.

This last result also deserves attention. With Favre averaging and normaliza-
tion by �U and by the momentum thickness � being used in the DNS, the result
is that ε �/(�U)3 depends weakly on compressibility. If at the same time the nor-
malized kinetic energy v2

0/(�U)2 is reduced by compressibility, basic dimensional
analysis leaves us with the paradox that the rate of dissipation of the turbulent ki-
netic energy [which is proportional to (�U)3/�] exceeds by a factor proportional to
(�U/v0)3 the rate of injection of the kinetic energy into the cascade (proportional
to v3

0/�).
Indeed, this reasoning is very crude, but it indicates that the detailed mecha-

nisms fixing energetic equilibrium in compressible mixing layers are not yet fully
asserted. This was addressed for instance by the results of Jacquin et al. (1996), who
observed that changing Mg thanks to variations in the total temperature of the in-
teracting streams had almost no effect on mixing of the total pressure in their flow:
Weak variations in the total pressure spreading rate with compressibility were ob-
tained and were also observed in other experiments. This may be an indication that
the dissipation processes, which set the losses (i.e., the transformation of mechani-
cal energy into heat), weakly depend on compressibility in free compressible shear
flows. If this were true, this should be integrated into the models. Although it is,
there remains still much to make and to understand on the subject.

Finally, explanations based on the hydrodynamic stability, as the inhibition of
Kelvin–Helmholtz instabilities by compressibility, cannot be ignored, even if our
main theme here is developed turbulence. The reader is referred to Friedrich (2006)
for the problem of compressibility in wall-bounded flows.

10.6 Topological Analysis, Coherent Events and Related Dynamics

Because it is nearly impossible to generate compressible homogeneous flows in wind
tunnels, DNS is the main tool for coherent event eduction and analysis. The case
of compressible homogeneous shear flows has received much less attention than
the incompressible homogeneous shear flow and compressible isotropic turbulence.
Only a very few papers address the issue of the dynamics of coherent events in the
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compressible homogeneous shear case, among which are Sarkar, Erlebacher, and
Hussaini (1991), Blaisdell, Mansour, and Reynolds (1993), Erlebacher and Sarkar
(1993), Simone, Coleman, and Cambon (1997) and Hamba (1999).

10.6.1 Nonlinear Dynamics in the Subsonic Regime

As in the case of isotropic compressible turbulence, several flow regimes can be
identified, according to the level of compressibility, the relative importance of ther-
mal versus acoustic mechanisms, etc. Only the subsonic case without strong thermal
effects has been investigated, corresponding to the pseudo-acoustic regime de-
scribed in Subsection 9.3.1 or the nonlinear subsonic regime discussed in Subsec-
tion 9.3.3, in which the main part of the turbulent kinetic energy is carried by the
solenoidal component of the velocity field. In practice, initial turbulent Mach num-
bers Mt ranging from 0.1 to 0.5 have been considered in the references previously
cited. No results dealing with the supersonic regime and homogeneous shear with
strong thermal effects are available. Only relatively weak shear effects have been in-
vestigated, as the final-value nondimensional time reached in the simulations is typ-
ically St � 10. A noticeable exception is found in Blaisdell, Mansour, and Reynolds
(1993), in which simulations have been carried out up to St = 24. The main reason
for that is that, because of the production mechanisms, the turbulent Mach num-
ber is monotonically increasing after a transient phase, leading to the occurrence of
shocklets, which are poorly captured by the spectral methods used for this kind of
simulation.

All simulations show that the flow converges toward a state that does not de-
pend on the initial value of the compressibility ratio � (0) defined in Eq. (9.110).
After a transient state, the production effects associated with the mean shear seem
to lead to nearly universal behavior, in which a solenoidal field and an acoustic field
interact. This evolution is illustrated in Fig. 10.5, which displays the evolution of the
balance of the terms in Eq. (10.1) as a function of St for two values of the initial
Mach number. It is observed that the relative importance of each balance term does
not depends on the turbulent Mach number and St (after the initial transient phase).
In all cases, the dissipation is negligible. For low values of the turbulent Mach num-
ber, the solenoidal and acoustic fields are relatively decoupled in this growth regime.
This is mainly due to the fact that the kinetic energy of the dilatational mode is very
small compared with that of the solenoidal field. At higher values of the turbulent
Mach number, shocklets are observed, as in the isotropic case. An interesting point
is that this nonlinear subsonic regime is reached in all cases if the final value of St is
high enough. When shocklets are present, the dilatational dissipation ε̄ d is enhanced.
Even in the presence of shocklets, it is observed in Blaisdell, Mansour, and Reynolds
(1993) that, after the initial transient phase, the relative weights of dilatational and
solenoidal kinetic-energy dissipations reach a constant value, with ε̄ d/ε̄ s = 0.1. This
ratio is reached for Mt ≥ 0.3. In this regime, it is observed that 23% (resp. 58%) of
the total dilatational dissipation is associated with the 1% (resp. 10%) volume of
the flow with the most compressive dilatations.
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Figure 10.5. Evolution of the budget terms of the Reynolds stresses as a function of St in com-
pressible homogeneous shear flows. Dissipation is not plotted when it is negligible. From Hamba
(1999) with permission of the American Institute of Physics.

This relative decoupling was analyzed by Erlebacher and Sarkar (1993), who
looked at the balance of budget terms in the equation for the dilatation variance d2

and the enstrophy variance �2. In the homogeneous shear case, the corresponding
evolution equations are

1
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= − 1
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Table 10.2. Values of the terms in the budget equations for dilatation and vorticity variance in
compressible homogeneous shear flows at St = 9 and Mt = 0.27, according to Erlebacher and
Sarkar (1993)

Eq. 1 2 3 4 5 6 7 8 9 10

(10.71) 28 0 96 0 34 0 355 69 33 −292
(10.72) 4124 −26 −45 4555 −46 0 0 1 −6355
(10.72), M = 0 6699 5301 0 −8453

Note: The terms are sorted from the left to the right on the right-hand side of the evolution equation. The third
line displays the value of the budget term for the vorticity variance in the incompressible case at the same value
of St and the same Reynolds number as in the compressible case.

where SC and SI denote the the dilatational and solenoidal parts of the turbu-
lent velocity-gradient tensor S, respectively. Amplitudes of the balance terms that
appear on the right-hand side of these two equations computed at St = 9 when
Re� = 23.4, Mt = 0.27 and SK/ε = 6.05 are displayed in Table 10.2. From looking at
the dilatation variance balance, it is clear that interactions terms between solenoidal
and dilatational modes are much smaller than between the dilatational components
themselves. The main production term is −2Sd SC

12, which is related to an interac-
tion of the dilatational field with the background shear. In a similar way, it is seen
that the dilatational mode has a very weak direct influence on the vorticity variance,
but that the total enstrophy increase rate in the compressible case is 50% of the
one found in the strictly incompressible case. Here, compressibility is observed to
reduce both the enstrophy variance production by the solenoidal vortex-stretching
term and the enstrophy variance dissipation. It is worth noting that the main pro-
duction mechanism is the nonlinear vortex stretching, and that the direct production
by the background shear is negligible at St = 9.

10.6.2 Topological Analysis of the Rate-of-Strain Tensor

The effect of compressibility on the statistical features of the rate-of-strain tensor
was investigated by Erlebacher and Sarkar (1993). To this end, these authors split
the rate-of-strain tensor S into a solenoidal component SI and an irrotational com-
ponent SC , which are computed by applying the Helmholtz decomposition to the
global fluctuating-velocity field.

In the incompressible case, the rate-of-strain ellipsoid (based on the eigenvalues
of S) has the preferred shape (−4:1:3) in strongly dissipative regions. In the com-
pressible case, with St = 9 and Mt = 0.27, the eigenvalue ratios of the solenoidal
rate-of-strain tensor are almost identical to those of S in the incompressible case.
The irrotational part exhibits a very different behavior, as pdfs of the eigenvalue
ratios have two peaks. The main peak is associated with an ellipsoid of the shape
(−2.2:1:1.2), whereas the secondary peak corresponds to (−1:−0.7:1.7). The former
suggests that the structures that are associated with regions of high dilatation are
sheetlike in the x–z plane, the strain rates being extensional in the plane of the
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sheet and strongly compressive normal to it. The latter shows that regions with one
large expansion strain are also associated with high dilatation. The exact shape of
the two preferential dilatational rate-of-strain ellipsoids are certainly Reynolds and
Mach number dependent, but the finding that the two rate-of-strain components
have very different features is trustworthy.

The same simulation also shows that compressibility (at least in this regime) has
no influence on the relative orientation of the vorticity vector.

10.6.3 Vortices, Shocklets, and Dynamics

The vortical structures observed in available simulations are qualitatively the same
as in the incompressible case discussed in Chapter 6. This is in agreement with the
analysis of the balance of the budget terms of the vorticity variance previously pre-
sented. Therefore it can be concluded that, in the pseudo-acoustic regime and in the
nonlinear subsonic regime, compressiblity does not result in a qualitative change in
the vortical-structure dynamics, and most of the results presented for the incom-
pressible case dealing with vortex dynamics still hold. But it should be mentioned
that the existence of a self-sustaining process in compressible homogeneous shear
flows has not been investigated.

The occurrence of shocklets in compressible homogeneous shear flows has been
reported in several DNSs (Blaisdell, Mansour, and Reynolds, 1993; Sarkar, Er-
lebacher, and Hussaini, 1991). They appear as elongated ribbonlike structures ly-
ing at an angle about 15◦–20◦ to the x axis in the (x–y) plane. The most plausible
scenario is that they are created by the upwash and downwash mechanisms induced
by the streamwise streaky vortical structures in the direction of the mean-velocity
gradient (Blaisdell, Mansour, and Reynolds, 1993). This entrainment effect causes
high-speed and low-speed fluid pockets to come into contact, yielding a compres-
sion that causes a shocklet. DNS data show that shocklets do not contribute directly
significantly to the dilatational dissipation rate ε̄ d , but they play an important role in
the dynamics of ε̄ d .

The weak influence of shocklets on the global dynamics is also revealed by the
fact that the thermodynamic fields follow a quasi-isentropic behavior, despite the
occurrence of the shocklets, which are entropic phenomena. The conclusion is that,
looking at the value of the polytropic coefficient n in the relation

p′ p′

p
= n

� ′� ′

�
= n

n − 1
T ′T ′

T
, (10.73)

n = 1.35 was found in Blaisdell, Mansour, and Reynolds (1993). It is recalled that
n = � = 1.4 corresponds to an isentropic flow, whereas n = 0 and n = 1 are related
to isobaric and isothermal flows, respectively.
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11 Isotropic Turbulence–Shock Interaction

This chapter is devoted to the analysis of the interaction of an initially isotropic tur-
bulence with a normal plane shock wave. Even though this case is very simple from
a geometrical viewpoint, it will be seen that it involves most physical mechanisms
observed in more complex configurations. It also makes it possible to carry out an
extensive theoretical analysis, leading to a deep understanding of the underlying
physics.

11.1 Brief Survey of Existing Interaction Regimes

Several interaction regimes exist, which can be grouped into two families. The first
one, referred to as the destructive interaction family, encompasses all configurations
in which the structure of the shock wave is deeply modified during the interaction
in the sense that a single well-defined shock wave can no longer be identified, the
limiting case being the shock destruction. The second family, i.e., the nondestructive
interaction family, is made up of all cases in which the structure of the shock wave is
preserved during the interaction. It is important to note that, in the latter case, the
shock wave can be strongly corrugated by the incoming turbulence.

11.1.1 Destructive Interactions

The first case of destructive interactions is that of unstable shocks, in which any small
disturbances will lead to the destruction of the shock wave because of instability
mechanisms. In such a case, the destruction mechanism is tied to the shock itself and
not to the turbulence dynamics (see Lubchich and Pudovkin, 2004, and references
given therein).

According to Dyakov (1954), a shock is absolutely unstable if one of the two
following conditions is fulfilled:

(�2u2)2
[
∂(1/�2)

∂p2

]
H

−1 (11.1)

or

(�2u2)2
[
∂(1/�2)

∂p2

]
H
� 1 + 2M2, (11.2)
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where M is the Mach number and subscripts 1 and 2 refer to the shock upstream and
downstream states, respectively. The index H indicates that the derivative is calcu-
lated along the Hugoniot curve in the pressure-specific volume plane. The absolute
instability regime corresponds to cases in which the solution of the jump conditions
is not unique, and small perturbations trigger the bifurcation toward stable states
made of combinations of discontinuities and simple waves. It can be shown that the
absolute instability cannot occur for plane shocks in perfect gases. It can also be ob-
served in perfect gases for curved shocks or plane shocks with viscous effects such
as an interaction with a boundary layer.

Another shock instability, referred to as the relative instability, was identified by
Kontorovich (1957). Here, a perturbation, once having emerged at the discontinu-
ity, stands for arbitrarily long times, emitting acoustic, vorticity, and entropy waves
without attenuation and amplification. The criterion for the occurrence of the rela-
tive instability is

1 − M2
2 [1 + (�2/�1)]

1 − M2
2 [1 − (�2/�1)]


 (�2u2)2
[
∂(1/�2)

∂p2

]
H

 1 + 2M2. (11.3)

It is observed that the range of the relative instability is adjacent to one of the
two ranges of the absolute instability. In the relative instability regime the shock
wave is not destroyed by infinitesimal initial perturbations but it cannot exist alone,
as the downstream solution is made of the superposition of a uniform field and
propagating perturbation waves. For initial perturbations of finite amplitude, the
shock wave disintegrates to a shock wave of essentially different intensity and other
elements.

Other cases of destructive interactions are associated with cases in which the
turbulent fluctuations are strong enough to yield a local deep modification of the
shock wave. These configurations escape the linear instability theory used to define
the preceding destructive regimes and can therefore be classified as nonlinear de-
structive interactions. The first case is associated with the case in which a turbulent
eddy is strong enough to render the flow locally subsonic. When it reaches the shock
wave, the latter will be locally annihilated. In the second case, the upstream flow re-
mains supersonic but the perturbation is strong enough to make some secondary
shocks appear.

11.1.2 Nondestructive Interactions

The nondestructive interactions are trivially defined as all the interactions that are
not destructive, meaning that a single well-defined continuous shock wave can be
indentified all through the interaction process. Two subcases are identified:

1. The linear interaction regime (see Section 11.2), in which the perturbations are
assumed to be weak in the sense that the mean-flow quantities obey the usual
Rankine–Hugoniot jump conditions, whereas the turbulent fluctuations satisfy
linearized jump relations.
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2. The nonlinear interaction regime (see Section 11.3), in which the turbulent in-
tensity is so high that the mean flow is modified by the turbulent fluctuations.
In this case, turbulent fluxes must be taken into account when jump conditions
are written for the mean flow.

11.2 Linear Nondestructive Interaction

11.2.1 Shock Modeling and Jump Relations

The available developments dealing with linear approximation theory in the non-
destructive case do not take viscous effects into account. The rationale for that is
that viscous effects are negligible compared with other physical mechanisms during
the interaction (this will be proved a posteriori when we compare theoretical results
with DNS and experimental results), and that relaxation times associated with vi-
brational, rotational, and translational energy modes of the molecules are very small
with respect to macroscopic turbulent time scales. Therefore the shock is modeled
as a surface discontinuity with zero thickness. An important consequence is that the
shock has no intrinsic time or length scale, and its corrugation is entirely governed
by incident fluctuations. Its effects are entirely captured by the Rankine–Hugoniot
jump conditions for mass, momentum, and energy:

[[�un]] = 0, (11.4)

[[
�u2

n + p
]] = 0, (11.5)

[[ut ]] = 0, (11.6)[[
e + p

�
+ u2

]]
= [[H ]] = 0, (11.7)

where H is the stagnation enthalpy and u is the velocity in the reference frame tied
to the shock wave, i.e., u = v − us where v and us are the fluid velocity and the
shock speed in the laboratory frame, respectively. Subscripts n and t are related
to the normal and tangential components of vector fields with respect to the shock
wave, respectively:

un ≡ u · n, ut ≡ n × (u × n), u = unn + ut , (11.8)

where n is the shock normal unit vector. An exact general jump condition for the
vorticity can be derived from the relations just given (Hayes, 1957). First noting that
the vorticity vector � = ∇ × u can be decomposed as � = �nn + �t with

�n = (∇ × ut )n (11.9)

and

�t = n ×
(

∂ut

∂n
+ ut · ∇n − ∇||un

)
(11.10)
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where ∇|| denotes the tangential (with respect to the shock surface) part of the nabla
operator, one obtains the following vorticity jump conditions in unsteady flows in
which the shock experiences deformations:

[[�n]] = 0, (11.11)

[[�t ]] = n ×
(

∇||(�un)
[[

1
�

]]
− 1
�un

[[� ]] (D||ut + us D||n)
)

, (11.12)

with

D||ut =
(

dut

dt

)
t

+ ut · ∇||ut =
(

∂ut

∂t
+ us

∂ut

∂n

)
t

+ ut · ∇||ut , (11.13)

and

D||n = dn
dt

+ ut · ∇||n = −∇||us + ut · ∇||n. (11.14)

It is seen that the normal component of the vorticity is continuous across the
shock, whereas the jump of the tangential component depends on the density jump,
the tangential velocity, and the shock-wave deformation. In steady flows, the jump
condition for the tangential vorticity simplifies as

[[�t ]] = n ×
(

∇||(�un)
[[

1
�

]]
− 1
�un

[[� ]] ut · ∇||ut

)
. (11.15)

11.2.2 Introduction to the Linear Interaction Approximation Theory

We now briefly introduce the linear interaction approximation (LIA), which is a
very powerful tool pioneered in the 1950s (Ribner, 1953; Moore, 1954) to analyze
the nondestructive linear interaction regime. Details of the LIA procedure are given
in Chapter 12. It relies on the following simplified dynamic scheme:

1. The shock wave has no intrinsic scale, and therefore it is governed by incident
perturbations. It will act only through the jump conditions.

2. Both mean and fluctuating parts of the upstream field (i.e., the field in the su-
personic part of the flow) are arbitrarily fixed.

3. The downstream field is fully determined by the upstream field and the jump
conditions. More precisely, it is assumed that the interaction process between
turbulent fluctuations and the shock is mostly linear, so that
a. the mean flow obeys the usual Rankine–Hugoniot conditions and
b. the fluctuating field obeys linearized jump conditions.

This physical scheme is illustrated in Fig. 11.1.
Two conditions must be fulfilled to ensure that the linear approximation is rel-

evant:

1. The fluctuations must be weak in the sense that the distorted shock wave must
remain well defined. Numerical experiments led Lee and co-workers (Lee,
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Figure 11.1. Schematic view of the LIA for shock–turbulence interaction.

Lele, and Moin, 1993) to propose the following empirical criterion for the linear
regime:

M2
t 
 �(M2

1 − 1), (11.16)

where Mt and M1 are the upstream turbulent and mean Mach numbers, respec-
tively, and � ≈ 0.1.

2. The time required for turbulent events to cross the shock must be small com-
pared with the turbulence time scale K/ε (with K and ε the turbulent kinetic
energy and the turbulent kinetic-energy dissipation rate, respectively), so that
nonlinear mechanisms cannot have significant effects.

The LIA analysis is made more accurate by decomposing the fluctuating field
using Kovasznay decomposition: Both the upstream and downstream fluctuating
fields are split as sums of individual modes, each mode being characterized by its
nature (acoustic, vorticity, or entropy mode) and wavenumber or frequency. Be-
cause linearized jump conditions are utilized, all cross interactions between modes
are precluded, and the downstream fluctuating field is obtained by means of a simple
superposition of the LIA results obtained for each upstream fluctuating mode. Let
us emphasize here that, as will be subsequently demonstrated, the fact that interac-
tions are precluded does not mean that an upstream perturbation wave is associated
with an emitted downstream wave of the same nature (as a matter of fact, all phys-
ical modes are excited in the downstream region in the general case), but that the
interaction process is not sensitive to shock deformations induced by other upstream
fluctuations.

The resulting LIA scheme is as follows: One considers two semi-infinite do-
mains separated by the shock wave. Both the mean and fluctuating fields in the
upstream domain are arbitrarily prescribed. Because the flow is hyperbolic in this
domain, it is not sensitive to the presence of the shock wave. The mean downstream
field is computed with the mean upstream field and the usual Rankine–Hugoniot
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jump relations (11.4)–(11.7). The emitted fluctuating field is then computed by the
linearized jump relations as boundary conditions. Using results displayed in Chap-
ter 12, it is important to note that the wave vectors of the emitted waves are com-
puted with the dispersion relation associated with each physical mode, the frequency
and the tangential component of the wave vector being the same as the upstream
perturbation. The linearized jump conditions are used to compute only the ampli-
tudes of the emitted waves.

11.2.3 Vortical Turbulence–Shock Interaction

We first address the case in which the incident turbulence is isotropic and com-
posed of vorticity modes only. This case was investigated by several researchers
(Lee, Lele, and Moin, 1993, 1997), who used LIA and DNS. The trends found by
means of DNS and LIA are corroborated by wind-tunnel experiments, but a strict
quantitative agreement is hopeless because the exact nature of the incident turbu-
lence in experiments cannot be controlled because of technological limitations. The
main observations are as follows:

1. Velocity fluctuations. The streamwise distributions of the kinetic energy of
the three velocity components given by both DNS and LIA are displayed in
Fig. 11.2. It is observed that all velocity components are amplified, leading
to a global increase in the turbulent kinetic energy. The amplification rate is
well recovered by the LIA calculation, showing that the amplification is mainly
due to linear mechanisms. In agreement with LIA, the velocity field behind the
shock wave is axisymmetric. Both LIA and DNS predict that the amplification
is Mach number dependent. The amplification level is plotted as a function of
the upstream Mach number, M1, in Fig. 11.3. It is interesting to note that the
amplification of the transverse velocity components is an increasing monotonic
function, whereas the shock normal velocity component amplification exhibits
a maximum near M1 = 2. The transverse components are more amplified than
the streamwise component for M1 � 2, and the amplification of the total tur-
bulent kinetic energy tends to saturate beyond M1 = 3. The streamwise DNS
profiles reveal that the velocity field experiences a rapid evolution downstream
of the shock, leading to the definition of two different regions behind the shock
wave. This observation is in full agreement with the LIA analysis, which pre-
dicts the existence of a near-field region where the evanescent acoustic waves
emitted during the interaction are not negligible. Comparing the LIA and DNS
profiles (see Fig. 11.2) once again leads to the conclusion that the process is
mainly governed by linear mechanisms. The rapid evolution in the near-field
region is due to the exponential decay of evanescent acoustic waves, which are
responsible for the anticorrelation of the (acoustic) dilatational and (vortical)
solenoidal field just downstream of the shock. The nature of the relaxation pro-
cess that takes place in the near-field region is better understood when one
recalls that the solution of linearized Euler equations about a 1D mean field is
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Figure 11.2. Streamwise evolution of normalized Reynolds stresses. Top: DNS results (lines
for M1 = 2, Mt = 0.108, Re� = 19.0 and symbols for M1 = 3, Mt = 0.110, Re� = 19.7)); streamwise
component R11 = u′u′: solid line and dots; spanwise component R22 = v′v′: dashed line and “x”;
spanwise component R33 = w′w′: dotted line and “+”. Bottom: LIA results for M1 = 2, Mt = 0.108;
streamwise component R11: solid line; spanwise components R22 and R33: dashed line. Vertical dot-
ted lines show the limit of the shock displacement region. From Lee, Lele, and Moin (1997) with
permission of CUP.

such that the following acoustic-energy balance holds:

∂

∂x

[
M2

(
K
a2

2

+ 1
2
� ′2

�̄2

)
+ 1
�

p′u′′

p̄a2

]
= 0, (11.17)

where

K = 1
2

(
u′′u′′ + v′′v′′ + w′′w′′) (11.18)
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Figure 11.3. LIA prediction of far-field Reynolds stress amplification vs. the upstream Mach num-
ber. Solid line: turbulent kinetic energy; dashed line: streamwise Reynolds stress R11 = u′u′; dotted
line: spanwise Reynolds stresses R22 = v′v′ and R33 = w′w′. From Lee, Lele, and Moin (1997) with
permission of CUP.

if viscous and entropy–dilatation correlation effects are neglected. A close ex-
amination of DNS data shows that these two contributions are small in the
near-field region and that the near-field evolution is associated with an energy
transfer from the acoustic potential energy in the form of density or pressure
fluctuations to turbulent kinetic energy. This transfer is done by means of the
pressure transport term ∇ · (p′u′′). The pressure–dilatation term p′∇ · u′′ is ob-
served to be strictly positive in this region, corresponding to a reversible trans-
fer from the mean internal energy to the turbulent kinetic energy.

Outside the near-field region, the global behavior results from the com-
petition between the viscous decay and the return-to-isotropy process. In low-
Reynolds-number DNS,∗ the viscous effect is dominant: The turbulent kinetic-
energy balance simplifies as an equilibrium between the convection term and
the viscous term, showing that the main effects are convection of turbu-
lent velocity fluctuations by the mean field and their destruction by viscous
effects.

2. Vorticity field. The vorticity is also strongly affected by the interaction with
the shock wave. The streamwise evolution of the vorticity components com-
puted in two different simulations are presented in Figs. 11.4 and 11.5. Several
typical features are observed. First, the streamwise (i.e., shock normal) vortic-
ity component is not affected, in agreement with the conclusion drawn from
jump condition (11.11). The two other components are amplified, in a symmet-
ric way, leading to the definition of a statistically axisymmetric vorticity field
being the shock wave. This behavior was predicted by the LIA analysis [see

∗ The turbulent Reynolds numbers based on the Taylor microscale Re� at the inlet plane of DNS
presented in Lee, Lele, and Moin (1993, 1997) range from 11.6 to 21.6.



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 21:31

366 Isotropic Turbulence–Shock Interaction

1.6

1.4

1.2

1.0

0.8

0.6

0.4
0 5 10 15 20 25 30 35

K0x

Figure 11.4. Vorticity amplification across shock (DNS data, M1 = 1.2, Ret = 84.8). Solid line:
streamwise component �′

1�
′
1; dashed line: spanwise component �′

2�
′
2; dash–dot line: spanwise

component �′
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′
3. From Lee, Lele, and Moin (1993) with permission of CUP.

Eq. (12.95)]. The amplification of the transverse component is Mach number
dependent, and the LIA analysis presented in Fig. 11.6 shows that it is a mono-
tonically increasing function that tends to saturate at very high Mach numbers.
Because the vorticity has no contribution from the acoustic modes, it does not
exhibit a near field. But it is interesting to note that two different behaviors of
the streamwise vorticity component are observed downstream of the shock: It
is monotonically decreasing at a low Reynolds number, whereas it has a local
maximum at a higher Reynolds number. The explanation for this bifurcation
is found by looking at the evolution equation of the vorticity component vari-
ances using DNS data. Neglecting the temperature-induced fluctuations of the
viscosity, the evolution equation for the fluctuating vorticity variances �′

��
′
� is
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Figure 11.5. Vorticity amplification across shock (DNS data on two computational grids, M1 =
1.2, Ret = 238). Solid line and “+”: streamwise component �′

1�
′
1; dashed line and “x”: spanwise

component �′
2�

′
2; dash–dot line and diamonds: spanwise component �′

3�
′
3. From Lee, Lele, and

Moin (1993) with permission of CUP.
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upstream Mach number M1: LIA results. From Lee, Lele, and Moin (1997) with permission of
CUP.
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. (11.19)

Inside the shock wave, the transverse component evolution (� = 2, 3) that
leads to the existence of the jump in the LIA theory is dominated by the
vorticity–compression terms (IV + V), the vorticity–mean-compression term
IV being the leading term. Downstream of the shock region, the vortex-
stretching mechanism (II + III) is balanced by the viscous effects (VIII). In all
DNS cases, both the baroclinic production term (VI) and the turbulent trans-
port (VII) are negligible. The dynamics of the streamwise component is dif-
ferent. Inside the shock wave, vortex stretching (II + III) and vorticity com-
pression (IV + V) balance each other, resulting in a negligible influence of the
shock, in agreement with inviscid jump relations. Downstream of the shock
wave, the streamwise vorticity variance �′

1�
′
1 is governed by the balance be-

tweeen two dominating mechanisms: turbulent vortex stretching (III) and vis-
cous effects (VIII). In the low-Reynolds-number case, the viscous damping
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overwhelms the vortex-stretching effects, leading to a monotonous decay. At
a higher Reynolds number, the turbulent stretching is large enough to yield the
existence of a local downstream maximum.

3. Turbulence length scales. Characteristic scales of turbulence are observed to be
modified during the interaction in a scale-dependent manner. Let us first discuss
the behavior of the 1D spectra E�(k�), which are defined such that (without
summation over Greek indices)

u′
�u

′
� =

∫ k�=∞

k�=0
E�(k�) dk�, (11.20)

where u′
� and k� are the �th component of u′ and the �th component of k,

respectively. Both LIA and DNS results show that
a. in the longitudinal spectra E�(k1), small scales (i.e., large wavenumbers) are

more amplified than large scales (i.e., small wavenumbers) and
b. the amplification pattern is more complex for transverse spectra: Higher am-

plification at small scales is found for E1(k2) and E2(k2), whereas the large
scales are the most amplified for E3(k2).

This complex behavior makes it necessary to carry out a specific analysis for
each characteristic length scale, as they are spectrum dependent. Defining the
integral scale for the dummy variable 	 as

�	(x) =
∫ r=+∞

r=0
C		(r, x) dr, (11.21)

where the transverse two-point correlation C		(r, x) is given by (	 is assumed
to be a centered random variable)

C		(r, x) = 	(x, y, z, t)	(x, y + r, z, t)

	(x, y, z, t)	(x, y, z, t)
, (11.22)

in which the statistical averaging is carried out over time and homogeneous
directions y and z, both DNS and LIA show that (see Fig. 11.7)
a. �u1 , �u2 , and �� exhibit a significant Mach-number-dependent decrease

across the shock and
b. �u3 is largely increased by the interaction.

Now looking at the Taylor microscales (see Fig. 11.8), it is observed that
they are all significantly reduced during the interaction, the reduction being
more pronounced in the shock normal direction. It is recalled that the Taylor
microscale �� associated with u′

� and the density microscale �� are computed
here as

�� =
√√√√ u′

�u
′
�

∂u′
�

∂x�

∂u′
�

∂x�

, �� =
√√√√ � ′� ′

∂� ′
∂y

∂� ′
∂y

. (11.23)

4. Thermodynamic quantities. The thermodynamic properties of the flow down-
stream of the shock are also modified by the interaction process. Both DNS
and LIA results show that, for an isentropic incident isotropic turbulence, the
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Figure 11.7. Streamwise evolution of turbulence transverse integral scales (DNS, M1 = 2, Mt =
0.108, Re� = 19). Dashed line: �u1 ; solid line: �u2 ; dotted line: �u3 ; dashed–dotted line: �� . From
Lee, Lele, and Moin (1997) with permission of CUP.

downstream field remains isentropic for weak shocks such that M1 
 1.2. At
higher upstream Mach numbers, the emitted entropy waves have a significant
energy because their magnitude becomes comparable to that of acoustic waves.
This effect is illustrated by plotting the normalized correlation coefficients (see
Fig. 11.9):

n�p ≡
√

p′ p′

p̄2

�̄2√
� ′� ′

, n�T ≡ 1 +
√

T ′T ′

T̄ 2

�̄2√
� ′� ′

, (11.24)

C�T ≡ 1 + �̄

T̃

√
� ′T ′′√
� ′� ′

, (11.25)
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Figure 11.8. Streamwise evolution of turbulence microscales (DNS, M1 = 2, Mt = 0.108, Re� =
19). Solid line: �u1 ; dashed line: �u2 ; dotted line: �u3 ; dashed-dotted line: �� . From Lee, Lele, and
Moin (1997) with permission of CUP.
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Figure 11.9. Evolution of normalized correlation coefficients in the far-field region downstream of
the shock versus the upstream Mach number M1. n�p : solid line (LIA) and black circles (DNS); n�T :
dashed line (LIA) and black circles (DNS); C�T : dotted line (LIA) and ‘x’ (DNS); is : dashed-dotted
line (LIA). From Lee, Lele, and Moin (1997) with permission from CUP.

along with the entropy-fluctuation contribution

is ≡
√

s ′s ′

c2
p

�̄2√
� ′� ′

. (11.26)

It is observed that the entropy fluctuations are more significant than acous-
tic fluctuations for M1 � 1.65. But it is worth noting that, downstream of the
shock, neither the isentropic hypothesis (which states that the entropy fluctu-
ations are negligible) nor the strong Reynolds analogy proposed by Morkovin
for shear flows (which says that the stagnation temperature is constant, which
amounts to assuming that acoustic waves have a negligible effect on the density
fluctuations) is valid if M1 � 1.2. It is recalled that the latter can be expressed
as

� ′

�̄
= −T ′′

T̄
= (� − 1)M2

1
u′′

1

ũ1
. (11.27)

11.2.4 Acoustic Turbulence–Shock Interaction

The case of an incident purely acoustic isotropic field has been addressed by Mahesh
and co-workers (Mahesh, Lele, and Moin, 1995), who used both LIA and DNS. It is
observed that this case exhibits very significant differences with respect to the case
of an incident purely vortical isotropic turbulence.

The main results are summarized as follows:

1. Velocity fluctuations. As in the case of incident vortical turbulence, the inter-
action yields an increase of the fluctuating kinetic energy just behind the shock
wave (see Fig. 11.10). For weak shock waves (LIA analysis in Mahesh, Lele, and
Moin, 1995, is done with M1 = 1.2), the kinetic energy decays monotonically
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Figure 11.10. LIA prediction of streamwise evolution of turbulent kinetic energy K downstream
of the shock wave. Solid line: M1 = 1.2; dashed line: M1 = 2. From Mahesh, Lele, and Moin (1995)
with permission of CUP.

downstream of the shock, whereas for strong shocks (M1 = 2 in Mahesh, Lele,
and Moin, 1995) it exhibits local extrema behind the shock. In the former case
the evanescent waves are weak and have a negligible impact on the acoustic-
energy balance [see Eq. (11.17)], whereas in the latter, the evanescent waves
are strong and lead to the existence of a near-field relaxation very similar to
the one observed in the case of incident vortical turbulence. But it is worth
noting that increasing the Mach number yields a decrease of the amplification
immediately behind the shock front.

The behavior of far-field kinetic energy is a bit more complex. Far-field tur-
bulence intensities are plotted versus the upstream Mach number in Fig. 11.11.
A first observation is that the shock normal turbulence intensity is higher than
the two transverse components. The second, more important, conclusion is that
the amplification factor of the far-field kinetic energy does not respond mono-
tonically to an increase in the upstream Mach number: The far-field kinetic en-
ergy is lower than the incident kinetic energy for 1.25 ≤ M1 
 1.80, whereas it is
higher for other values. But it is worth noting that the energy of transverse com-
ponents of velocity decreased over a wider range of upstream Mach numbers.
This phenomenon can be understood by decomposing the far-field kinetic en-
ergy into a vortical and an acoustic contribution, denoted by Ks and Kd , respec-
tively (see Fig. 11.12). It is observed that Kd decays monotonically for M1 � 1.2,
whereas Ks is a strictly increasing function of M1. The existence of a local min-
imum is explained by the fact that the solenoidal kinetic energy exceeds the
dilatational one for M1 � 2 and the incident kinetic energy for M1 � 2.25. The
behavior of the far-field acoustic kinetic energy is governed by the competition
between two mechanisms: the amplification of the energy of incident waves,
which grows with the Mach number, and the fact that the range of angles cor-
responding to evanescent emitted waves also increases with M1, making fewer
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Figure 11.11. LIA analysis of far-field turbulent kinetic energy versus the upstream Mach number
M1. Solid line: turbulent kinetic energy K; long-dashed line: streamwise Reynolds stress R11 = u′u′;
short-dashed line: transverse Reynolds stresses R22 = v′v′ and R33 = w′w′. From Mahesh, Lele, and
Moin (1995) with permission of CUP.

and fewer emitted waves that contribute to the far field. The LIA analysis shows
that, at a high upstream Mach number, the energy of all velocity components
scales as M2

1 .
2. Vorticity. In this case, the production in the acoustic wave is mainly governed by

the baroclinic term [term VI in Eq. (11.19)]. The jump relations for the vorticity
components show that transverse components will be the most affected, the
streamwise component evolution being governed by other mechanisms, as in
the case of incident vortical turbulence.
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Figure 11.12. LIA analysis of the evolution components of the far-field turbulent kinetic en-
ergy versus the upstream Mach number M1. Long-dashed line: dilatational (acoustic) kinetic en-
ergy Kd ; solid line: solenoidal (vortical) kinetic energy Ks ; short-dashed line: full kinetic energy
K = Ks + Kd . From Mahesh, Lele, and Moin (1995) with permission of CUP.
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Figure 11.13. LIA prediction of far-field normalized rms fluctuations of thermodynamical quanti-

ties. Solid line:
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�−1 (
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T ′T ′/T̄ ). From Mahesh, Lele,
and Moin (1995) with permission of CUP.

3. Thermodynamic quantities. The evolution of the thermodynamic quantities in
the far field versus the upstream Mach number is displayed in Fig. 11.13. It is
observed that the downstream fluctuations are nearly isentropic for M1 
 1.5.
At higher Mach numbers the emitted entropy fluctuations are significant rel-
ative to the acoustic fluctuations. The dominance of the entropy mode at a
high Mach number originates in two phenomena: the emission of stronger and
stronger entropy waves and the decrease of acoustic energy in the far field.

11.2.5 Mixed Turbulence–Shock Interaction

We now address the cases in which the incident turbulent field is composed of differ-
ent types of Kovasznay modes: hybrid vortical–acoustic turbulence (Mahesh, Lele,
and Moin, 1995) and vortical–entropic turbulence (Mahesh, Moin, and Lele, 1996
and Mahesh, Lele, and Moin, 1997). These cases are of great interest, as physical tur-
bulence generated in wind tunnels or observed in natural flows is never strictly vor-
tical or acoustic. It is worth recalling here the important conclusion that a Kovasnay
mode will generate modes of different natures through nonlinear self-interactions.
Therefore the sensitivity of the results previously presented for pure incident fields
is of major interest to gain deeper insight into the dynamics of realistic flows. But be-
cause the experimental data exhibit a significant dispersion, it can be inferred that
their sensitivity must be great (independent of the fact that such experiments are
very difficult to perform for technical and technological reasons). Another point is
that, in real flows, the distribution of the total energy among the three Kovasznay
modes is unknown and cannot usually be controlled. Therefore we hereafter put the
emphasis on the theoretical results dealing with the sensitivity of the results rather
than give an exhaustive presentation of some realizations.
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Let us begin by examining the 2D linearized Euler equation for the vorticity
fluctuation about a 1D mean flow. We use it as a simple phenomenological model to
describe the amplification of the transverse vorticity components across the shock.
The linearized evolution law is

∂�′

∂t
+ U

∂�′

∂x
= −�′ ∂U

∂x
− ∂� ′

∂y

1
�̄2

∂ p̄

∂x
+ ∂p′

∂y

1
�̄2

∂ �̄

∂x
. (11.28)

The usual viscous model (Zel’dovich and Raizer, 2002; Landau and Lifshitz,
1987) for the shock front shows that (∂ ū/∂x) 
 0, (∂ p̄/∂x) � 0, and (∂ �̄/∂x) � 0 in
the shock region. The first term on the right-hand side of the previous equation cor-
responds to the compression by the mean-flow gradient. Because ∂ ū/∂x is negative
in the shock region, the net effect of vorticity amplification by the bulk compression
is recovered. The two last terms are related to the baroclinic mechanisms. The sec-
ond term on the right-hand side of Eq. (11.28) involves the fluctuating density and
is therefore nonzero for both acoustic and entropy fluctuating modes, whereas the
third one is nonzero for acoustic perturbations only. This equation also shows that
the baroclinic and the bulk compression contributions can have the same or opposite
signs, depending on the respective signs of the vorticity, density, and pressure fluc-
tuations. If the contributions have the same sign, the net amplification of vorticity
will be increased by the cooperative interaction, whereas the two mechanisms will
tend to cancel in the opposite case, yielding a decrease of the net vorticity fluctua-
tion amplification. One can see that increased amplification is recovered if �′ p′ � 0
or �′� ′ 
 0. The very important conclusion drawn from that very simple analysis is
that the results of the shock–turbulence interaction will be greatly sensitive to the
correlation between the Kovasznay modes in the incident field.

11.2.5.1 Influence of the Upstream Entropy Fluctuations

Let us first consider the case of an incident field made of vorticity and entropy
modes. We simplify the problem by considering a single-plane entropy wave with
amplitude Ae and a single vorticity wave with amplitude Av with the same wave
vector k. According to results presented in Section 12.3, the upstream field is given
by

u′

ū
= Av cos�eı(k·x−�t),

v′

ū
= −Av sin�eı(k·x−�t),

s ′

cp
= Aee

ı(k·x−�t), (11.29)

leading to

�′

ū
= −Aveı(k·x−�t),

� ′

�̄
= −T ′

T̄
= Aee

ı(k·x−�t),
p′

p̄
= 0. (11.30)

It is seen that �′ and u′ on the one hand and � ′ and T ′ on the other hand are
in phase opposition. Therefore the condition for cooperative interaction �′� ′ 
 0 is
equivalent to u′T ′ 
 0. Introducing the complex ratio,

Ae

Av

= �eı�, (11.31)
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Figure 11.14. Schematic view of the influence of the
phase difference between velocity and temperature fluc-
tuations on the emitted vorticity fluctuation. Top: veloc-
ity and temperature fluctuations are in phase, leading to
a decrease of the vorticity amplification. Bottom: they
are in phase opposition, yielding a large increase of the
vorticity amplification.

it is seen that cooperative interaction is observed if � ∈] − �/2,�/2[, whereas partial
cancellation occurs for � ∈]�/2,−�/2[. This discussion is illustrated in Fig. 11.14.

DNS and LIA results dealing with the amplification of velocity fluctuations in
the case of an incident isotropic turbulent are presented in Fig. 11.15. They show
that, in the case in which the streamwise velocity component and temperature fluc-
tuations are strongly anticorrelated (u′T ′/urmsTrms ≈ −1), the amplification of all
velocity components is greatly enhanced, the effect being more important on the
streamwise component. The velocity field still exhibits a near field whose properties
are similar to those of the near field generated by a pure vortical incident field. On
the opposite, the amplification is reduced when they are correlated, i.e., u′T ′ � 0.
The evolution of the amplification of the far-field velocity variances with respect to
the upstream Mach number is displayed in Fig. 11.16. The LIA predicts that the am-
plification saturates for M1 � 2, with a remarkable exception: If the upstream fluc-
tuations satisfy Morkovin’s hypothesis given in Eq. (11.27), the amplification factor
does not saturate and keeps growing with M1. The main reason is that, if Morkovin’s
hypothesis is assumed to hold in the upstream region, the relative importance of the
entropy modes with respect to the vorticity mode scales like M2

1 .
Similar conclusions hold for the vorticity field: Both DNS and LIA confirm

the predictions drawn from the simplified model. The amplification factor of the
transverse vorticity components is plotted versus the upstream Mach number in
Fig. 11.17. Once again, the amplification is enhanced if u′

1T ′ 
 0 and exhibits very
strong values if the incident turbulent field satisfies Morkovin’s hypothesis.

An interesting point is that the interaction with the shock results in a break-
down of Morkovin’s hypothesis downstream of the shock wave, even if it holds
upstream of the shock. Recalling that the fundamental assumption in Morkovin’s
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Figure 11.15. Influence of upstream entropy
fluctuations on the streamwise evolution of
Reynolds stresses at M1 = 1.29. Top: DNS
data. Streamwise Reynolds stress R11 = u′u′
for u′

1T ′/urmsTrms = –0.06 (solid line) and
–0.84 (black circles); transverse Reynolds
stress R22 = v′v′ for u′

1T ′/urmsTrms = –0.06
(dashed line) and –0.84 (“x”). Bottom: LIA
analysis, same cases and symbols as for DNS
data. From Mahesh, Lele, and Moin (1997)
with permission of CUP.
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Figure 11.16. LIA analysis of influence of upstream
entropy fluctuations on the downstream evolution of
Reynolds stresses versus the upstream Mach num-
ber M1. Top: Streamwise Reynolds stress R11 = u′u′.
Solid line: pure vortical incident turbulence; dotted
line: u′

1T ′ 
 0; dashed–dotted line: u′
1T ′ � 0; dashed

line: Morkovin’s hypothesis satisfied upstream. Bot-
tom: transverse Reynolds stress R22 = v′v′, same
symbols as in Fig. 11.15. From Mahesh, Lele, and
Moin (1997) with permission of CUP.
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Figure 11.17. LIA analysis of influence of up-
stream entropy fluctuations on the far-field
amplification of transverse vorticity compo-
nents�′

2�
′
2 =�′

3�
′
3 versus the upstream Mach

number M1. Solid line: pure vortical incident
turbulence; dotted line: u′

1T ′ 
 0; dashed–
dotted line: u′

1T ′ � 0; dashed line: Morkovin’s
hypothesis satisfied upstream. From Mahesh,
Lele, and Moin (1997) with permission of
CUP.

proposal is that the stagnation temperature T 0 is constant in the flow, and decom-
posing it as follows,

T 0 = T̄ + T ′ + 1
2

(U + u′)2 + v′2 + w′2

cp
, (11.32)

the Rankine–Hugoniot jump relation for the energy (11.7) yields the continuity of
T 0 across the shock wave:

T̄1 + T ′
1 + 1

2
(U1 + u′

1 − us)2 + v′
1

2 + w′
1

2

cp

= T̄2 + T ′
2 + 1

2
(U2 + u′

2 − us)2 + v′
2

2 + w′
2

2

cp
, (11.33)

where us is the shock speed associated with the corrugation of the shock front by in-
cident perturbations. Assuming that fluctuations are small enough, one can linearize
(11.33), yielding

T ′
1 + U1(u′

1 − us)
cp

= T ′
2 + U2(u′

2 − us)
cp

. (11.34)

Now assuming that the upstream flow satisfies the Morkovin hypothesis, one
obtains the following expression for the linearized fluctuation of the stagnation tem-
perature behind the shock wave:

T ′
2 + U2u′

2

cp
= us(U2 − U1)

cp
. (11.35)

Using this expression, one can write

T ′′
2

T̄2
+ (� − 1)M2

2
u′′

2

U2
= −(� − 1)M2(C − 1)

us

ā2
, (11.36)

where C is the compression factor defined by Eq. (12.12). Therefore Morkovin’s
hypothesis holds downstream of the shock wave if and only if the right-hand side of
Eq. (11.36) is zero, which is observed to be false in both LIA and DNS results.
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11.2.5.2 Influence of the Upstream Acoustic Fluctuations

The analysis of the influence of upstream acoustic waves is simpler than the one
of entropy waves, as these waves cannot be correlated with the vortical fluctuations,
their propagation speeds being different.† Therefore the emitted far field is obtained
by means of a simple superposition of the far fields corresponding to the vortical
fluctuations and acoustic fluctuations considered separately.

This is illustrated considering the amplification of the total turbulent kinetic
energy K = Ks + Kd :

K2

K1
= (Ks)2 + (Kd)2

(Ks)1 + (Kd)1
= (1 − �1)

(Ks)2

(Ks)1
+ �1

(Kd)2

(Kd)1
, (11.37)

where �1 is the ratio of dilatational acoustic energy to the total kinetic energy [see
Eq. (9.110)] in the upstream state. The amplification factors of the acoustic and
vortical components being different, significant differences in the amplification of
the total kinetic energy can be observed by varying the value of �1.

11.2.6 On the Use of RDT for Linear Nondestructive Interaction Modeling

The LIA theory has been shown to be a very accurate tool to predict and understand
the linear nondestructive shock–turbulence interactions. The capability of the RDT
theory to account for the same physical effects has also been investigated by many
authors, among whom are Jacquin, Cambon, and Blin (1993) (see also the references
given therein).

Within the RDT framework, the planar shock is essentially modeled as an unidi-
rectional irrotational compression with a time-varying mean flow already discussed
in Subsection 10.2.3.3. Therefore all results presented in this subsection can be
used in a straightforward way. Therefore the amplification ratio of turbulent kinetic
energy is lower bounded by the solenoidal limit given by Eq. (10.47) and upper
bounded by the pressure-released evolution described by relation (10.48). These
two evolutions laws are compared with LIA results in Fig. 11.18.

Large discrepancies are observed, the two RDT limits yielding a much larger
amplification ratio than both the near- and far-field LIA predictions at almost all
upstream Mach numbers. The inaccuracy of RDT for this problem can be under-
stood by looking at Table 11.1, which summarizes the main differences between the
RDT and LIA approaches. Of course, because of the isentropy assumption, RDT
cannot account for entropy effects discussed in Subsection 11.2.5.1. But by restrict-
ing to the case of a purely vortical incoming turbulence described in Subsection
11.2.3, one can observe that the main weaknesses of RDT are as follows:

� The inability to account for the shock corrugation and its feedback on the emitted
turbulent field.

† It is worth noting here that some interactions exist if the upstream field is composed of a single wave
of each type, but these interactions cancel from a statistical viewpoint in fully developed isotropic
turbulent flows.
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Figure 11.18. Comparison of the turbulent kinetic-energy amplification factor as a function of the
upstream Mach number according to different linearized theories for a pure solenoidal upstream
disturbance field. Adapted from Jacquin, Cambon, and Blin (1993).

� The inability to predict the existence of evanescent acoustic waves downstream of
the shock and the existence of a cutoff incidence angle for incoming disturbances
(see details in Subsection 12.4.2).

� The isentropic assumption, because the entropy fluctuations are more significant
than the acoustic ones for M1 � 1.65 downstream of the shock. The isentropic
assumption for the emitted field is found to be realistic for weak shocks only, with
M1 
 1.2.

11.3 Nonlinear Nondestructive Interactions

11.3.1 Turbulent Jump Conditions for the Mean Field

Let us denote the mean and fluctuating velocity components (Ui , Vi , Wi ) and
(u′′

i , v
′′
i , w′′

i ), respectively, where the subscripts 1 and 2 refer to the upstream and

Table 11.1. Main features of shock–turbulence interaction modeling according to linearized
theories

Theory features LIA RDT

Intrinsic time scale none 1/S

Intrinsic length scale none (infinitely small) none (infinitely large)
Shock viscous effects yes (linearized Rankine–Hugoniot relations) no
Shock corrugation effects yes (linearized response) no
Vortical disturbances yes yes
Acoustic disturbances yes yes
Entropy disturbances yes no
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downstream states, respectively. The mean and fluctuating enthalpies are denoted
by h̃i and h′′

i . Using the same notation as in previous sections, assuming that a frame
of reference can be found in which the mean shock wave is stationary and that vis-
cous effects are negligible, Lele (1992) deduced from the Navier–Stokes equations
written in conservative form the following jump relations for the mean-flow quanti-
ties (the vector normal to the shock wave is chosen to be along the x direction):

�̄1U1 = �̄2U2, (11.38)

�̄1U
2
1 + �̄1ũ′′

1u′′
1 + p̄1 = �̄2U

2
2 + �̄2ũ′′

2u′′
2 + p̄2, (11.39)

�̄1U1V1 + �̄1ũ′′
1v

′′
1 = �̄2U2V2 + �̄2ũ′′

2v
′′
2 , (11.40)

�̄1U1W1 + �̄1ũ′′
1w

′′
1 = �̄2U2W2 + �̄2ũ′′

2w
′′
2 , (11.41)

�̄1U1

(
h̃1 + 1

2
K1 + 1

2
K1

)
+ �̄1

(
h̃′′

1u′′
1 + U1ũ′′

1u′′
1 + V1ũ′′

1v
′′
1 + W1ũ′′

1w
′′
1 + 1

2
K̃′′

1K′′
1u′′

1

)
= �̄2U2

(
h̃2 + 1

2
K2 + 1

2
K2

)
+ �̄2

(
h̃′′

2u′′
2 + U2ũ′′

2u′′
2 + V2ũ′′

2v
′′
2 + W2ũ′′

2w
′′
2 + 1

2
K̃′′

2K′′
2u′′

2

)
, (11.42)

where the mean-turbulent and mean-flow kinetic energies are defined as

Ki = ũ′′
i u′′

i + ṽ′′
i v′′

i + w̃′′
i w

′′
i , Ki = U 2

i + V 2
i + W 2

i (11.43)

and

K̃′′
i K′′

i u′′
i ≡ 1

�̄
�u′′

i (u′′
i u′′

i + v′′
i v′′

i + w′′
i w

′′
i ). (11.44)

Equations (11.38)–(11.42) show that the mean-flow quantities are directly af-
fected by the jump in the turbulent stresses across the shock and that they cannot
be computed separately. Therefore closures for the turbulent terms are required for
computing the mean flow downstream of the shock front. Only very few attempts
to close the jump conditions are available (Lele, 1992; Zank et al., 2002). Because
none of them has been fully assessed, they are not discussed here.

It is worth noting that the mean-flow solutions of the nonlinear jump conditions
can be very different from those considered within the LIA framework. A striking
example is that if the incident mean flow is normal to the mean shock front (i.e., V1 =
W1 = 0), the mean flow downstream of the shock can deviate from a unidirectional
flow (i.e., V2 �= 0 and/or W2 �= 0). The observed effects of turbulence are as follows:

1. Turbulent fluctuations increase the mean shock speed.
2. Turbulent fluctuations decrease the efficiency of turbulence amplification

across the shock as the amplitude of incident fluctuations is increased.
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11.3.2 Jump Conditions for an Incident Isotropic Turbulence

The general jump conditions previously given simplify dramatically in the case of a
normal upstream mean flow advecting an isotropic incident field. In this case, the
mean flow remains unidirectional and one has

Vi = Wi = 0, ũ′′
i v

′′
i = ũ′′

i w
′′
i = 0, i = 1, 2. (11.45)

After some algebra, one obtains the following expressions for the mean-flow
quantities [to be compared with Eqs. (12.12)–(12.14)]:

p̄2

p̄1
= 1 + 2�

� + 1

[
(1 − K)� + (1 + K)

2
M2

1 − K

]
− 1

p̄1

[[
�̄ ũ′′u′′]] , (11.46)

C = �̄2

�̄1
= U1

U2
= 1

K

(� + 1)M2
1

2 + (� − 1)M2
1

, (11.47)

M2
2 = L2

(
1 + � − 1

2
M2

1

)

×
[

(1 + L)� − (1 − L)
2

(1 − L)� + (1 + L)
2

M2
1 − � − 1

2
L2
]−1

,

(11.48)

with

L = K√
1 + [[H ]]

H1

(11.49)

and

K =
(

1 + U1

U1 − U2

[[H ]]
H1

)(
1 − 2�

(� + 1)(U1 − U2)

[[
ũ′′u′′

U

]])−1

, (11.50)

where H = h̃ + U 2/2 is the mean stagnation enthalpy.
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12 Linear Interaction Approximation for
Shock–Perturbation Interaction

This chapter is devoted to a detailed presentation of the linear interaction approxi-
mation (LIA) theory mentioned in Chapter 11. The main assumptions that underlie
the LIA are discussed in Subsection 11.2.2 and are not duplicated here. We just
recall here that the LIA holds if the following constraints are fulfilled:

1. The fluctuations must be weak in the sense that the distorted shock wave must
remain well defined. Numerical experiments led Lee and co-workers (Lee,
Lele, and Moin (1993) to propose the following empirical criterion for the lin-
ear regime:

M2
t 
 �

(
M2

1 − 1
)
, (12.1)

where Mt and M1 are the upstream turbulent and mean Mach numbers, respec-
tively, and � ≈ 0.1.

2. The time required for turbulent events to cross the shock must be small com-
pared with the turbulence time scale K/ε (with K and ε the turbulent kinetic
energy and the turbulent kinetic-energy dissipation rate, respectively), so that
nonlinear mechanisms cannot have significant effects.

12.1 Shock Description and Emitted Fluctuating Field

We consider here the interaction of a plane shock with a normal 2D flow in the (x, y)
plane. Let the undisturbed shock normal vector and the mean flow be oriented along
the x axis. The disturbed shock front is defined as

x = xs(y, t). (12.2)

The position of the undisturbed shock is arbitrarily chosen to be x = 0. The
local instantaneous normal and tangential vectors, n and t , are equal to

n =
(

1,−∂xs

∂y

)T

, t =
(

∂xs

∂y
, 1
)T

. (12.3)

The shock speed in the reference frame associated with the mean shock location
is equal to

us =
(

∂xs

∂t
, 0
)T

= (us, 0)T . (12.4)

384
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The upstream and downstream fields are split as follows:

�i (x, y, t) = �̄i + �� ′
i (x, y, t), (12.5)

si (x, y, t) = s̄i + �s ′
i (x, y, t), (12.6)

Ti (x, y, t) = T̄i + �T ′
i (x, y, t), (12.7)

pi (x, y, t) = p̄i + �p′
i (x, y, t), (12.8)

ui (x, y, t) = Ui + �u′
i (x, y, t), (12.9)

vi (x, y, t) = 0 + �v′
i (x, y, t), (12.10)

along with

xs(y, t) = 0 + ��(y, t), (12.11)

where subscripts 1 and 2 are related to the upstream (incident) and downstream
(emitted) fields, respectively. The parameter � is assumed to be a small parameter,
i.e., � � 1, so that all primed quantities and � are of the order of O(1).

Because the mean field obeys the classical Rankine–Hugoniot jump condi-
tions (11.4)–(11.7), which are recovered as the zeroth-order relations by inserting
Eqs. (12.5)–(12.10) into jump relations (11.4)–(11.7), the following classical relations
hold:

C ≡ �̄2

�̄1
= U1

U2
= (� + 1)M2

1

2 + (� − 1)M2
1

, (12.12)

p̄2
p̄1

= 1 + 2�
� + 1

(M2
1 − 1), (12.13)

M2 ≡ U2

a2
=
√

2 + (� − 1)M2
1

2�M2
1 − (� − 1)

, (12.14)

where M1 and M2 are the upstream and downstream Mach numbers, respectively.
The incident field is composed of superimposed plane-propagating waves.

Thanks to the linear approximation, one can restrict the analysis to a single incident
wave for each Kovasznay mode, with the orientation of the incident wave vector
as a free parameter. One can remark that, because the shock is assumed to have
no intrinsic length scale, the LIA results will not depend on the wave-vector mod-
ulus. Let k and � be the wave vector and the frequency of the incident plane wave,
respectively. Therefore all fluctuating quantities tied to the incident wave have the
following form:

	(x, y, t) = A	e
ı(k·x−�t), (12.15)

where 	 and A	 are a dummy variable and the corresponding amplitude parameter,
respectively. Denoting � as the angle between k and the x axis, one has k · x = kx x +
ky y = kr with kx = k cos�, ky = k sin�, and r = x cos�+ y sin�.
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αsα Figure 12.1. Schematic view of the 2D LIA for shock–
plane-wave interaction.

Because the shock has no intrinsic scale and is fully governed by incident per-
turbations, its displacement induced by the perturbation wave just considered is

�(y, t) = A�e
ı(ky y−�t) = A�e

ı(k sin�y−�t), (12.16)

where the amplitude factor A� remains to be computed.

12.2 Calculation of Wave Vectors of Emitted Waves

12.2.1 General

We now address the problem of computing the wave vector of each emitted wave.
The problem is schematized in Fig. 12.1.

As previously stated, any incident perturbation triggers the generation of a triad
of emitted waves (one wave for each Kovasznay mode) in the downstream region.
Continuity at the shock wave requires that the solution in this region have the same
transverse wavenumber ky and frequency as the incident perturbation wave. There-
fore all fluctuating variables behind the shock wave have the generic form

	(x, y, t) = A	F(x)eı(ky y−�t) = A	F(x)eı(k sin�y−�t), (12.17)

where the function F(x) is still unknown and must be such that the emitted fluctuat-
ing field obeys the governing equations of the Kovasznay analysis, i.e., the linearized
Euler equations. Looking for plane-wave solutions, one can write

F(x) = eık̃x x , (12.18)

where the wave-vector normal component k̃x is such that the dispersion relation
associated with the Kovasznay mode under consideration is satisfied.

12.2.2 Incident Entropy and Vorticity Waves

We first address the problem of an incident entropy or vorticity wave, for which
� = k cos�U1.
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12.2.2.1 Emitted Entropy and Vorticity Waves

For the emitted entropy and vorticity modes, the linear analysis yields the following
single dispersion relation:

k · ū = �, (12.19)

where ū is the mean velocity, leading to

� = kxU1 = k cos�U1 = k̃xU2, (12.20)

from which it follows that

k̃x = U1

U2
k cos� = Ck cos�, (12.21)

where C is the compression factor defined by Eq. (12.12). Fluctuating fields associ-
ated with the entropy and vorticity modes are therefore of the form

	(x, y, t) = A	e
ık(C cos�x+sin�y−U1 cos�t), (12.22)

where it is important to note that k is the modulus of the wave vector of the incident
wave. Because the entropy and vorticity modes obey the same dispersion relation,
emitted waves associated with these two modes have the same wave vector, i.e., they
propagate in the same direction and have the same wavelength. Let ks and �s be the
wave vector of the emitted entropy and vorticity waves and the angle between ks

and the x axis, respectively. Relation (12.22) can be rewritten as follows:

	(x, y, t) = A	e
ı(ks ·x−�t) = A	e

ı(ks cos�s x+ks sin�s y−�t), (12.23)

leading to the two relations

cot�s = C cot�, (12.24)

ks

k
= sin�

sin�s
. (12.25)

12.2.2.2 Emitted Acoustic Waves—Propagative and
Nonpropagative Regimes

The dispersion relation for the acoustic mode in the linear approximation is

(�− k · ū)2 − a2k2 = 0, (12.26)

where a is the mean speed of sound. Using this relation in the domain located behind
the shock, one obtains

(�− k̃xU2)2 − a2
2(k̃2

x + k2 sin2 �) = 0. (12.27)

Reminding one that � = kU1 cos�, this last relation can be recast as

1
C2

(
1

M2
2

− 1
)

k̃2
x + 2k cos�

C
k̃x − k2

[
cos2 �− sin2 �

1
(CM2)2

]
= 0. (12.28)
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The discriminant � of the preceding quadratic relation determines if k̃x is real
or imaginary. The discriminant being equal to

� = 2k sin�
CM2

√(cos�
sin�

)2
− 1

C2

(
1

M2
2

− 1
)

, (12.29)

it is seen that k̃x is real if 0 ≤ � ≤ �c, where the critical angle �c is such that

cot�c =
√

1 − M2
2

CM2
(12.30)

and imaginary if �c 
 � ≤ �/2. Denoting as k̃i and k̃r the real and imaginary parts
of k̃x , the emitted acoustic fluctuating field can be expressed as

	(x, y, t) = A	e
−k̃i x eı(k̃r x+k sin�y−�t), (12.31)

showing that the emitted acoustic field decays exponentially behind the shock wave
if k̃x is not real, i.e., if the angle of incidence of the incident wave is larger than the
critical angle �c. This threshold angle demarcates two regimes for the emitted acous-
tic waves: the propagative regime without damping and the nonpropagative regime
with damping. The latter is coined as nonpropagative because the emitted wave
amplitude is nearly zero at a distance of the order of one wavelength downstream
of the shock. Therefore it is possible to identify a near-field solution in which the
nonpropagative perturbations have a significant contribution and a far-field solution
in which nonpropagative perturbations are negligible.

Elementary algebra yields the following expression for the roots of Eq. (12.28):

k̃±
x =

−2k cos�
C

± �
2
C2

(
1

M2
2

− 1
) , (12.32)

where � is given by (12.29). It is observed that k̃+
x is the only physically admissible

root, as k̃−
x leads to an exponential growth of the solution behind the shock. There-

fore k̃x = k̃+
x hereafter. The corresponding normalized form is

k̃x

k
= C

M2

1 − M2
2

[
− cos�M2 + sin�

√
cot2 �− 1

C2

(
1

M2
2

− 1
)]

. (12.33)

In the nonpropagative regime, the real and imaginary parts of k̃x are equal to

k̃r

k
= −C cos�

M2
2

1 − M2
2

(12.34)

and

k̃i

k
= C sin�

M2

1 − M2
2

√
cot2 �− 1

C2

(
1

M2
2

− 1
)

, (12.35)
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respectively. The emitted acoustic field can be reexpressed by introducing the emit-
ted wave vector ka , which is such that

e−k̃i x eı(k̃r x+k sin�y−�t) = eı(ka(cos�a x+sin�a y+i�x)−�t), (12.36)

where �a is the angle between ka and the x axis. The geometrical characteristics of
the emitted wave are given by

ka

k
= sin�

sin�a
(12.37)

and ⎧⎪⎨⎪⎩
C cot� = cot�a + 1

M2 sin�a
(propagative regime)

cot�a

cot�c
a

= cot�
cot�c

(nonpropagative regime)
, (12.38)

and the damping factor is expressed as

�=

⎧⎪⎨⎪⎩
0 (propagative regime)

| cot�c
a sin�a|
M2

√
1 −

(
cot�
cot�c

)2

(non propagative regime)
, (12.39)

where �c
a is the angle of the emitted acoustic wave when � = �c. It can be shown

that cos�c
a = −M2.

12.2.3 Incident Acoustic Waves

12.2.3.1 Fast and Slow Waves

We now consider the case of an incident acoustic wave for which we have (�−
k cos�U1)2 = a2

1k2. The method is similar to the one previously presented for inci-
dent entropy and vorticity waves, but the analysis is made a bit more complex be-
cause incident waves can be classified into two types: the fast waves, which propagate
in the direction of the mean flow (i.e., u1U1 � 0), and the slow waves, which travel in
the opposite direction (i.e. u1U1 
 0). These two families are demarcated by the sta-
tionary Mach waves with an angle of incidence �M such that cos�M = −1/M1. Both
fast and slow waves can lead to the generation of vorticity, entropy, and propagating
or evanescent acoustic waves.

12.2.3.2 Emitted Entropy and Vorticity Waves

Let us first address the case of emitted entropy and vorticity waves. Using the dis-
persion relations of incident and emitted waves, one obtains

� = k cos�U1 ± a1k = kU1

(
cos�± 1

M1

)
= k̃xU2, (12.40)
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where k̃x can be computed in the same way as in the case of incident vorticity and
entropy waves. Signs “+” and “−” in the preceding equation are related to fast and
slow waves, respectively. An elegant way to compute the angle of the emitted waves
is proposed by Fabre and co-workers (Fabre, Jacquin, and Sesterhenn, 2001), who
introduce the angle �′ ∈ [0,�] such that

cot�′ = cot�+ 1
M1 sin�

. (12.41)

The angle �s of the emitted entropy and vorticity waves is given by Eq. (12.24)
as in the case of an incident entropy–vorticity wave, the angle of incidence � being
replaced with �′. The wave-vector modulus, ks , is still given by Eq. (12.25). The
plane-wave operator associated with emitted fluctuating fields is similar to the one
found for incident entropy–vorticity waves [Eq. (12.23)], the wave vector ks being
defined as previously stated.

12.2.3.3 Emitted Acoustic Waves

We now turn to the case of emitted acoustic waves. A difference with the case of
incident entropy–vorticity waves is that fast and slow waves have different threshold
angles, denoted �+

c and �−
c , respectively. These two angles are solutions of

cot�±
c + 1

M1 sin�±
c

= ±
√

1 − M2
2

CM2
. (12.42)

For fast waves, the propagative regime is associated with � ∈]0,�+
c [ and the

nonpropagative regime with � ∈]�+
c ,�M [. For slow waves, the propagative and non-

propagative regimes correspond to � ∈]�−
c ,�[ and � ∈]�M ,�−

c [, respectively. In
both cases, the damping factor � is given by Eq. (12.39), the angle of the incident
wave � being replaced with the angle �′ defined in Eq. (12.41), and the wavelength
ka is still computed by solving Eq. (12.37). The angle �a of the emitted wave is de-
fined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cot�a

cot�a
c

= cot�′

cot�+
c

− 1
M2

√(
cot�′

cot�+
c

)2

− 1 �a ∈]0,�[ � ∈]0,�+
c [

cot�a

cot�a
c

= cot�′

cot�+
c

�a ∈]0,�[ � ∈]�+
c ,�M [

cot�a

cot�a
c

= cot�′

cot�−
c

�a ∈]�, 2�[ � ∈]�M ,�−
c [

cot�a

cot�a
c

= cot�′

cot�+
c

+ 1
M2

√(
cot�′

cot�−
c

)2

− 1 �a ∈]�, 2�[ � ∈]�−
c ,�[

. (12.43)

Using these definitions for the damping rate � and the wave vector ka , the emit-
ted acoustic field is still of the form (12.36).
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Table 12.1. First decomposition of the emitted field associated with a single plane incident
wave with wavenumber k and frequency �

Acoustic mode Vorticity mode Entropy mode

u2(x,y,t)
U2

= Feık̃x x eı(k sin�y−�t) + Geı(kC cos�x+k sin�y−�t) + 0
v2(x,y,t)

U2
= Heık̃x x eı(k sin�y−�t) + I eı(kC cos�x+k sin�y−�t) + 0

p′
2(x,y,t)

p̄2
= Keık̃x x eı(k sin�y−�t) + 0 + 0

� ′
2(x,y,t)
�̄2

= K
�

eık̃x x eı(k sin�y−�t) + 0 + Qeı(kC cos�x+k sin�y−�t)

T ′
2 (x,y,t)

T̄2
= K �−1

�
eık̃x x eı(k sin�y−�t) + 0 − Qeı(kC cos�x+k sin�y−�t)

s ′
2(x,y,t)

cp
= 0 + 0 − Qeı(kC cos�x+k sin�y−�t)

12.3 Calculation of Amplitude of Emitted Waves

12.3.1 General Decompositions of the Perturbation Field

Utilizing either formulation of the exponential operator and the results given in Sub-
section 9.1.2 dealing with the inviscid Kovasznay decomposition, the perturbation
field in the downstream domain associated with a single incident plane wave can
therefore be written under the general form∗ given in Table 12.1, where F, G, H,

I, K , and Q are amplitude parameters that will be computed thanks to the boundary
conditions, i.e., the linearized Rankine–Hugoniot jump conditions. The fully turbu-
lent emitted field is recovered by summing the emitted perturbations associated with
all incident waves, i.e., carrying out the summation over k, � and the wave nature.

It is worth noting that all these parameters are not independent because the
fluctuations are solutions of the linearized Euler equations. Substitution into the
x-momentum equation yields

U1(−ıFk cos�U1) + ıU2U1 Fk̃x = −ı
p̄2

�̄2
K k̃x , (12.44)

from which it follows that

F = 1
�

1
(CM2)2

k̃x
k

cos�− k̃x
Ck

K . (12.45)

The y-momentum equation leads to

U1(−Hık cos�U1) + U2U1 Hık̃x = − p̄2

�̄2
Kık sin�, (12.46)

which can be rearranged like

H = 1
�

1
(CM2)2

sin�

cos�− k̃x
Ck

K . (12.47)

∗ It is chosen here to normalize velocity fluctuations by using U2, and not U1. Turning from one
formulation to the other one brings in the compression factor C .
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A last constraint is that the vortical velocity field is solenoidal, which is equiva-
lent to

U1GıkC cos�+ U1 I ık cos� = 0, (12.48)

leading to

I = −C cot�G. (12.49)

It is recalled that the entropy, density, pressure, and temperature fluctuations
are tied by the two following linearized relations:

� ′
2

�̄2
= 1
�

p′
2

p̄2
− s ′

2

cp
, (12.50)

T ′
2

T̄2
= � − 1

�

p′
2

p̄2
+ s ′

2

cp
. (12.51)

The preceding system is supplemented by the normalized boundary conditions

1
U1

∂�

∂t
= Leı(k sin�y−�t),

∂�

∂y
= − L

cos�
eı(k sin�y−�t), (12.52)

where L is an amplitude factor for the shock displacement. The downstream per-
turbation field is therefore parameterized by four independent parameters, namely
I, K , L , and Q. The problem is a priori well behaved, as there are four unknowns
and four jump conditions. The problem can be recast, making the transfer coeffi-
cients ZF , ZG, ZH , ZI , ZK , ZL , and ZQ appear, which are defined as

F = AZF , G = AZG, H = AZH , I = AZI , K = ZK , L = AZL , Q = AZQ,

(12.53)

where A is the complex amplitude of the incident wave (A is therefore identical to
the coefficient of the Fourier transform of the incident perturbation field associated
with k).

The decomposition given in Table 12.1 and Eq. (12.52) can also be rewrit-
ten, making the amplitude of each Kovasznay mode explicitly appear. This new
expression is given in Table 12.2, where it is chosen here to use the second form
of the exponential wave operator to illustrate it.

The shock-front displacement is now expressed as

k�(y, t) = Zxeı(k sin�y−�t). (12.54)

The coefficient � is defined as � =
√

1 − �2 + 2i�cos�a . The four unknowns are
now Aa, Av, As , and Ax , i.e., the normalized amplitudes of the acoustic, vorticity, and
entropy modes and shock displacement, respectively. One observes that � = 1 in the
propagative regime, whereas � is imaginary in the nonpropagative regime, showing
that the velocity and pressure fluctuations associated with evanescent waves are not
in phase.
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Table 12.2. Second decomposition of the emitted field associated with a single plane incident wave
with wavenumber k and frequency �

Acoustic mode Vorticity mode Entropy mode

u2(x,y,t)
U2

= Aa
cos�a+ı�
�M2�

e−ka�x eı(ka x cos�a+ka y sin�a−�t) + Av sin�seı(ks x cos�s+ks y sin�s−�t) + 0
v2(x,y,t)

U2
= Aa

sin�a
�M2�

e−ka�x eı(ka x cos�a+ka y sin�a−�t) − Av cos�seı(ks x cos�s+ks y sin�s−�t) + 0
p′

2(x,y,t)
p̄2

= Aae−ka�x eı(ka x cos�a+ka y sin�a−�t) + 0 + 0
� ′

2(x,y,t)
�̄2

= Aa
1
�

e−ka�x eı(ka x cos�a+ka y sin�a−�t) + 0 − Aseı(ks x cos�s+ks y sin�s−�t)

T ′
2 (x,y,t)

T̄2
= Aa

�−1
�

e−ka�x eı(ka x cos�a+ka y sin�a−�t) + 0 + Aseı(ks x cos�s+ks y sin�s−�t)

s ′
2(x,y,t)

cp
= 0 + 0 + Aseı(ks x cos�s+ks y sin�s−�t)

For an incident wave with complex amplitude A the unknown amplitudes are
given by

Aa = AZa, Av = AZv, As = AZs, Ax = AZx , (12.55)

where Za, Zv, Zs , and Zx are complex transfer functions associated with the second
decomposition.

The two decompositions are tied by the following equalities:

ka�= k̃i , ka cos� = k̃r , (12.56)

ZF = Za
cos�a + ı�

�M2�
, ZG = Zv sin�s, ZH = Za

sin�a

�M2�
, (12.57)

ZI = −Zv cos�s, ZK = Za, ZQ = −Zs . (12.58)

12.3.2 Calculation of Amplitudes of Emitted Waves

Amplitudes of the emitted Kovasznay modes are related to those of the incident
wave through linearized jump conditions. The first step of the procedure consists
of substituting Eqs. (12.5)–(12.10) into Rankine–Hugoniot relations (11.4)–(11.7)
written in a frame of reference that moves at the local instantaneous speed of the
shock wave and to retain terms that are of the order of O(�). Then, normalizing
the fluctuating quantities by using mean-flow variables, one obtains the following
equations that are valid at x = 0:

1
C

(
u′

2 − ∂�
∂t

U2

)
=
(

u′
2 − ∂�

∂t

U1

)
= (� − 1)M2

1 − 2

(� + 1)M2
1

(
u′

1 − ∂�
∂t

U1

)

+ 2

(� + 1)M2
1

(
T ′

1

T̄1

)
, (12.59)

1
C

(
v′

2

U2

)
=
(

v′
2

U1

)
=
(

v′
1

U1

)
+ 2(M2

1 − 1)

(� + 1)M2
1

∂�

∂y
, (12.60)
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(
� ′

2

�̄2

)
= 4

(� − 1)M2
1 + 2

(
u′

1 − ∂�
∂t

U1

)
− (� − 1)M2

1 + 4

(� − 1)M2
1 + 2

(
T ′

1

T̄1

)
, (12.61)

(
p′

2

p̄2

)
= 4�M2

1

2�M2
1 − (� − 1)

(
u′

1 − ∂�
∂t

U1

)
− 2�M2

1

2�M2
1 − (� − 1)

(
T ′

1

T̄1

)
, (12.62)

where all mean-flow quantities and incident fluctuating perturbations (subscript 1)
are known.

The second step of the LIA procedure consists of selecting an incident wave, i.e.,
choosing its nature and prescribing the incident wave vector k (which is equivalent
to prescribing �, k, and �). One then obtains a set of linear equations for the am-
plitude of the emitted waves and the shock displacement, expressing both incident
and emitted fluctuating fields by using one of the two decompositions previously
presented [Table 12.1 and Eq. (12.52) or Table 12.2 and Eq. (12.54)], in which ks ,
ka , and the damping factor for evanescent waves are computed thanks to the ad hoc
relations.

Let us take the second decomposition displayed in Table 12.2 and Eq. (12.54) as
an example. This case was exhaustively described by Fabre and co-workers (Fabre,
Jacquin, and Sesterhenn, 2001).

In the case of an incident entropy wave, the linearized jump conditions yield the
following linear system:

A

⎛⎜⎜⎜⎝
Zv

Zs

Za

Zx

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1
−C

0
C2

(�−1)M2
1
,

⎞⎟⎟⎟⎠ , (12.63)

where the matrix A is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎣
sin�s −1 1

�
+ cos�p+ı�

�M2�
ı(C − 1) cos�

2 sin�s −1 M2
2 +1
�M2

2
+ 2 cos�p+ı�

�M2�
0

− cos�s 0 sin�p

�M2�
ı(1 − C) sin�

sin�s
1

(�−1)M2
2

1
�M2

2
+ cos�p+ı�

�M2�
ıC(1 − C) cos�

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.64)

For an incident vorticity wave, one obtains

A

⎛⎜⎜⎜⎝
Zv

Zs

Za

Zx

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
sin�

2C sin�
−C cos�
C2 sin�

⎞⎟⎟⎟⎠ , (12.65)

where the matrix A is given by Eq. (12.64) as in the case of an incident entropy wave.
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Figure 12.2. LIA transfer functions vs. the angle of the incident wave � in the case of an incident
plane acoustic wave. Top: Za (left) and Zv (right); Bottom: Zs (left) and Zx (right). Solid line: real
part, dashed line: imaginary part. Courtesy of D. Fabre, IMFT, France.

The case of incident acoustic waves leads to

A′

⎛⎜⎜⎜⎝
Zv

Zs

Za
sin�
sin�′ Zx

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣

1
�

+ cos�
�M1

C

�

(
M2

1 +1
M2

1
+ 2 cos�

M1

)
C sin�
�M1

C2

�

(
1

M2
1

+ cos�
M1

)

⎤⎥⎥⎥⎥⎥⎥⎦ , (12.66)

where the matrix A′ is given by Eq. (12.64) with � replaced with the angle �′ defined
in Eq. (12.41) in the last column:

A′ =

⎡⎢⎢⎢⎢⎢⎢⎣
sin�s −1 1

�
+ cos�p+ı�

�M2�
ı(C − 1) cos�′

2 sin�s −1 M2
2 +1
�M2

2
+ 2 cos�p+ı�

�M2�
0

− cos�s 0 sin�p

�M2�
ı(1 − C) sin�′

sin�s
1

(�−1)M2
2

1
�M2

2
+ cos�p+ı�

�M2�
ıC(1 − C) cos�′

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.67)
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Figure 12.3. LIA transfer functions versus the angle of the incident wave � in the case of an inci-
dent plane entropy wave. Top: Za (left) and Zv (right); Bottom: Zs (left) and Zx (right). Solid line:
real part, dashed line: imaginary part. Courtesy of D. Fabre, IMFT, France.

A careful examination of these results reveals that the transfer functions de-
pend only on �, M1 and �, i.e., they are not functions of the wavenumber k. This is
coherent with the fact that the shock wave is assumed to have no intrinsic length
scale.

The computed transfer functions, angles of emission, and damping factor are
displayed in Figs. 12.2–12.5.

12.4 Reconstruction of the Second-Order Moments

The general formulation of the fluctuating field behind the shock wave makes it
possible to derive expressions for the second-order statistical moments and to em-
phasize some fundamental differences between fields generated by propagating and
evanescent waves (Mahesh, Lele, and Moin, 1995; Mahesh, Moin, and Lele, 1996).
As previously stated, the existence of evanescent waves with significant amplitude
just behind the shock yields the existence of a thin region with peculiar behavior,
referred to as the near field.
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Figure 12.4. LIA transfer functions versus the angle of the incident wave � in the case of an inci-
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12.4.1 Case of a Single Incident Wave

Let us first consider the kinetic energy associated with the shock normal velocity
component u′

2. The mean fluctuating kinetic energy is defined as

u′
2

2(x) ≡ u′
2u′

2
∗(x), (12.68)

where the superscript * and the overbar denote the complex conjugate and av-
eraging over time and the homogeneous direction y, respectively. Using the
decomposition given in Table 12.1 along with Eq. (12.53), one obtains

u′
2

2(x)

U 2
1

=
(
|ZF |2eı(k̃−k̃∗)x + |ZG |2 + ZF Z∗

Geı(k̃−kC cos�)x + Z∗
F ZGe−ı(k̃∗−kC cos�)x

)
|A|2.

(12.69)

If k̃ is real, i.e., if the acoustic waves are not damped and the regime is of the
propagative type, the preceding expression is identical to

u′
2

2(x)

U 2
1

= |A|2 {|ZF |2 + |ZG |2

+ 2[(ZF )r (ZG)r + (ZF )i (ZG)i ] cos(k̃ − kC cos�)x

− 2[(ZF )i (ZG)r + (ZF )r (ZG)i ] sin(k̃ − kC cos�)x
}
, (12.70)

where the subscripts i and r are related to the imaginary and real components, re-
spectively; in the case of evanescent waves k̃ is complex, and Eq. (12.69) leads to

u′
2

2(x)

U 2
1

= |A|2
{

|ZF |2e−2k̃i x + |ZG |2

+ 2[(ZF )r (ZG)r + (ZF )i (ZG)i ]e−2k̃i x cos(k̃r − kC cos�)x

− 2[(ZF )i (ZG)r + (ZF )r (ZG)i ]e−2k̃i x sin(k̃r − kC cos�)x
}

. (12.71)

A similar expression is derived for the kinetic energy of the transverse com-
ponent, replacing u′

2
2(x) with v′

2
2(x), ZF with ZH , and ZG with ZI in Eqs. (12.69)–

(12.71). It is seen that in the propagative regime the kinetic energy has spatially
uniform contributions from both the vortical and acoustic modes and an oscillat-
ing component whose argument is equal to the phase difference between them. In
the nonpropagative regime it has a spatially uniform contribution from the vorticity
mode only, an exponentially decaying monotone acoustic component, and exponen-
tially damped components that are due to the correlation between the vorticity and
the acoustic mode. Temperature and density variances exhibit a similar behavior, as
they are made of a combination of the acoustic and entropy modes.

The vorticity, which depends on the sole vorticity mode, has spatially uni-
form distribution. The same conclusion holds for the entropy variance, as entropy
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fluctuations depend on the sole entropy mode that has no evanescent regime. Quan-
tities that depend on the sole acoustic mode, such as pressure and dilatation, exhibit
dramatic changes when switching from one regime to the other one. Let us illustrate
this point by using the pressure variance. In the propagative regime, the pressure
variance is spatially uniform:

p′
2

2(x)

p̄2
2

= |ZK |2|A|2, (12.72)

whereas in the nonpropagative regime it experiences an exponential decay,

p′
2

2(x)

p̄2
2

= e−2k̃i x |ZK |2|A|2. (12.73)

Looking at these expressions, one can distinguish between the near-field and
the far-field behaviors. In the near-field region, exponentially decaying terms are
still important. The width of this region scales as O(1/k), showing that it is very
thin. In the far-field region, all decaying terms are negligible.

12.4.2 Case of an Incident Turbulent Isotropic Field

It is important to note that the developments just presented are valid in the case
of a single incident wave. We now address the problem of an incident turbulent
isotropic field. In the original Cartesian frame of reference, the undisturbed plane
shock is assumed to lie in the y–z plane and the normal mean flow is parallel to the
x axis.

Let us first consider an isotropic solenoidal velocity field generated by vorticity
modes. The energy spectrum of the incident velocity field is assumed to be of the
form

Ei j (k) = E(k)
4�k2

(

i j − ki k j

k2

)
, (12.74)

where E(k) is the 3D energy spectrum. Because the velocity field is solenoidal, the
velocity vector associated with the wave vector k is orthogonal to k and may have
a component orthogonal to the plane spanned by k and the x axis. Therefore the
2D analysis previously presented must be extended by introducing cylindrical co-
ordinates (x, r,	) (see Fig. 12.6). Here, x still refers to the x axis in the original
Cartesian frame of reference. Let u′

x and u′
r be the fluctuating-velocity components

in the x and r directions, and u′
	 be the one in the 	 direction. The latter is normal

to the x–r plane spanned by the x axis and the wave vector k. We also introduce �,
the angle between k and the x axis in the x–r plane, and 	 is defined as the angle
between k and the y axis in the y–z plane.



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 17, 2008 21:31

400 LIA for Shock–Perturbation Interaction

x

r

r

z

x

y

Figure 12.6. Schematic view of the LIA
for shock–turbulence interaction: refer-
ence frames for the treatment of an
isotropic incident field.

The change of frame of reference implies that

u′ = u′
x , (12.75)

u′
r = v′ cos	+ w′ sin	, u′

	 = −v′ sin	+ w′ cos	, (12.76)

v′ = u′
r cos	− u′

	 sin	, w′ = u′
r sin	+ u′

	 cos	, (12.77)

and the elemental volumes of integration are tied by the following relation:

dk = k2 sin� d� d	dk, (12.78)

with k ∈ [0,+∞],� ∈ [−�/2,�/2] and 	 ∈ [0, 2�], along with

k1 = k cos�, k2 = k cos	 sin�, k2 = k sin	 sin�. (12.79)

The 2D analysis previously presented obviously holds for the u′
x and u′

r compo-
nents, as the x–r plane corresponds to the x–y plane in the 2D analysis. The angle �
is the same in the two coordinate systems. The method consists therefore of apply-
ing the LIA procedure to the u′

x and u′
r components, whereas the u′

	 component is
left unmodified by the interaction because it is tangential to the shock wave, accord-
ing to Eq. (11.6). An important point is that the amplitude A of the incident wave
that appears in the 2D analysis [see Eqs. (12.53) and (12.55)] is now related to the
magnitude of the velocity vector in the x–r plane, leading to

|A| = |u′
1|

sin�
, |A|2 = E(k)

4�k2
. (12.80)

Now, introducing the spectral components of kinetic energy behind the shock
waves in both the Cartesian and cylindrical coordinates systems, Eqs. (12.75)–
(12.77) yield the following relations:

E11 = Exx , (12.81)

E22 + E33 = Err + E		, (12.82)

E22 = cos2 	Err + sin2 	E		 − sin 2	Er	, (12.83)

E33 = sin2 	Err + cos2 	E		 + sin 2	Er	. (12.84)
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The spectral components are linked to the amplitude factor A by

|A|2 = E1
11

sin2 �
= E1

11 + E1
rr = E1

nn − E1
		, (12.85)

where the superscript “1” refers to the incident perturbation field and Enn is the
total kinetic-energy density, from which it follows that

E1
		 = E1

nn − |A|2 = E(k)
4�k2

(12.86)

and

E22 + E33 = Err + E(k)
4�k2

. (12.87)

The streamwise kinetic energy behind the shock wave is defined as

u′
2

2(x)

U 2
1

=
∫ +∞

k=0

∫ +�/2

�=−�/2

∫ 2�

	=0
E11k2 sin� d� d	dk, (12.88)

where E11 is the amplitude of the emitted wave associated with a single incident
wave vector computed with the 2D theory [see Eq. (12.69)]:

E11

U 2
1

= |A|2
[
|ZF |2eı(k̃−k̃∗)x + |ZG |2

+ ZF Z∗
Geı(k̃−kC cos�)x + Z∗

F ZGe−ı(k̃∗−kC cos�)x
]
. (12.89)

Remarking that E11 is independent of 	 and that it is symmetric about � = 0,
one finds that Eq. (12.88) simplifies as

u′
2

2(x)

U 2
1

= 4�
∫ +∞

k=0

∫ +�/2

�=0
E11k2 sin� d	dk. (12.90)

If the transfer functions have the same value at all scales, i.e., if the ratios be-
tween the amplitudes of the three Kovasznay modes are scale independent, mean-
ing that kinetic energy, entropy, and pressure are null or exhibit the same spectrum,
then the emitted kinetic energy does not depend on the shape of the spectrum of
the incident field:

u′
2

2(x)

U 2
1

=
{∫ +�/2

�=0

[
|ZF |2eı(k̃−k̃∗)x + |ZG |2 + ZF Z∗

Geı(k̃−kC cos�)x

+ Z∗
F ZGe−ı(k̃∗−kC cos�)x

]
sin�d�

}∫ +∞

k=0
E(k)dk. (12.91)
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An expression for the far field is derived by neglecting evanescent terms and
using the fact the correlation terms in the propagative regime integrates to zero:(

u′
2

2

U 2
1

)
far-field

=
[∫ �c

�=0
(|ZF |2 + |ZG |2) sin�d�+

∫ +�/2

�c

|ZG |2 sin�d�

]

×
∫ +∞

k=0
E(k)dk, (12.92)

where �c is the threshold angle that demarcates propagating and evanescent emitted
acoustic waves (see Section 12.2). Expressions similar to Eq. (12.90) for the trans-
verse components of kinetic energy are

v′
2

2(x)

U 2
1

= w′
2

2(x)

U 2
1

= 1
2

4�
∫ +∞

k=0

∫ +�/2

�=0

[
Err + E(k)

4�k2

]
k2 sin� d� dk. (12.93)

Comparing Eqs. (12.90) and (12.93), one sees that the velocity field is statisti-
cally axisymmetric behind the shock wave. Simplified expressions for the far field
can also be easily derived.

Expressions for the emitted vorticity components can be derived in the same
manner. It is first recalled that, for an incident solenoidal isotropic velocity field, the
following relations hold for the Cartesian components of the incident vorticity field:

�′
2

2(x)

U 2
1

= �′
3

2(x)

U 2
1

=
∫ +�/2

�=0
(2 − sin2 �) sin� d�

∫ +∞

k=0

k2 E(k)
2

dk. (12.94)

It is recalled that the shock normal component of vorticity is not modified during
the interaction with the shock wave. The two transverse components of the emitted
vorticity field are given by

�′
2

2(x)

U 2
1

= �′
3

2(x)

U 2
1

= 2
∫ +∞

k=0

∫ +�/2

�=−�/2

∫ 2�

	=0

((
cos2 	

{
cos2 �C2|ZI |2

− 2C cos� sin�[(ZI )r (ZG)r + (ZI )i (ZG)i ]
}

+ cos2 � sin2 	+ sin2 �|ZG |2))k4|A|2 sin� d� d	dk.

(12.95)

If the transfer functions are the same at all scales, the preceding equation be-
comes

�′
2

2(x)

U 2
1

= �′
3

2(x)

U 2
1

=
∫ +�/2

�=0

{
cos2 �C2|ZI |2 + sin2 �|ZG |2 + cos2 �	

− 2C cos� sin�[(ZI )r (ZG)r + (ZI )i (ZG)i ]
}

sin� d�

×
∫ +∞

k=0

k2 E(k)
2

dk. (12.96)

It is worth noting that the emitted vorticity field does not depend on the spec-
trum shape in this case.
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The case of an incident isotropic acoustic field is much simpler, as the associated
velocity field is purely dilatational and is therefore parallel to the wave vector. Con-
sequently, the velocity vector is entirely contained in the x–r plane in the cylindrical
coordinate system previously introduced, i.e., u′

	 is identically zero. Therefore this
case will not be detailed because it can be directly treated by use of the 2D LIA
theory, the 2D x–y plane being taken equal to the x–r plane. It is just recalled that
the isotropic spectral tensor is now defined by

E1
i j (k) = E(k)

8�k2

ki k j

k2
(12.97)

and not by Eq. (12.74).
The last case is the one of scalar quantities, such as pressure and entropy. This

case is much simpler because no projection is needed. As an example, the variance
of the emitted pressure wave is given by

p′
2

2(x)

p̄2
2

= 2�
∫ +∞

k=0

∫ +�/2

�=0
E ppk2 sin� d� dk, (12.98)

where E pp is computed with relations (12.72) and (12.73) for a single incident plane
wave, i.e., E pp = |ZK |2|A|2 in the propagative regime and E pp = e−2k̃i x |ZK |2|A|2 in
the nonpropagative regime.

Statistics related to the oscillations of the shock front can also be derived in a
similar manner. For the shock speed variance, one obtains

(∂�/∂t)2

U 2
1

= 4�
∫ +∞

k=0

∫ +�/2

�=0
|ZL |2|A|2k2 sin� d� dk, (12.99)

which can be rearranged as follows if the modal amplitude ratios are scale indepen-
dent for an incident isotropic solenoidal velocity field:

(∂�/∂t)2

U 2
1

=
∫ +�/2

�=0
|ZL |2 sin� d�

∫ +∞

k=0
E(k)dk. (12.100)

The rms oscillation amplitude is given by

�2 = 4�
∫ +∞

k=0

∫ +�/2

�=0

|ZL |2
k2 cos2 �

|A|2k2 sin� d� dk, (12.101)

from which it follows that

�2 =
∫ +�/2

�=0

|ZL |2
cos2 �

sin� d�
∫ +∞

k=0

E(k)
k2

dk (12.102)

for incident isotropic vortical turbulence if transfer function values are scale inde-
pendent.

12.5 A posteriori Assessment of LIA

As said at the beginning of this chapter, the LIA is observed to compare well with
DNS and experimental data if M2

t 
 0.1(M2
1 − 1). But a finer analysis reveals that
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some discrepancies arise in predicting the emitted field associated with incident
waves with an angle of incidence close to the critical angle that demarcates propa-
gating and evanescent waves. The rationale for that is that the energy of the emitted
waves is high near the critical angle (the transfer functions exhibit a strong, narrow
peak for � = �c), leading to a breakdown of the small-perturbation hypothesis. The
amplitude of the fluctuations being too high, the linear approximation should be
refined to account for additional nonlinear effects.
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13 Linear Theories. From Rapid Distortion Theory
to WKB Variants

13.1 Rapid Distortion Theory for Homogeneous Turbulence

The essentials for RDT were introduced in Chapter 5. More details are given in
this chapter for deriving basic equations and calculating statistics. One considers
the pure incompressible case in the presence of a mean flow with admissible mean-
velocity-gradient matrix Ai j (t). In the linear limit, the fluctuating field (u′

i , p′) satis-
fies modified equation (2.29) with the advection–distortion parts written in terms of
Ai j (t):

∂u′
i

∂t
+ A jk xk

∂u′
i

∂x j︸ ︷︷ ︸
advection

+Ai j u
′
j + ∂p′

∂xi
= 0. (13.1)

13.1.1 Solutions for ODEs in Orthonormal Fixed Frames of Reference

The solution of Eq. (13.1) is most easily obtained by Fourier analysis, with elemen-
tary components of the form

u′
i (x, t) = ai (t) exp [ık(t) · x] , (13.2)

p′(x, t) = b(t) exp [ık(t) · x] , (13.3)

where ı2 = −1. Evolution equations for the amplitudes are easily obtained from Eq.
(13.1). They can be written as follows:

dai

dt
+ ıai x j

(
dk j

dt
+ Anj kn

)
+ Ai j a j + ıki b = 0. (13.4)

Time dependency of the wave vector k allows one to simplify the advection term
by setting

dki

dt
+ A ji k j = 0. (13.5)

According to the mathematical treatment of partial derivative equations, this
equation also gives the characteristic lines of the operator ∂

∂t − Anj kn
∂

∂k j
in Fourier

space. Because the mean trajectories are the characteristic lines of the advection
operator ∂

∂t + A jn xn
∂

∂x j
, it is clear that eikonal equation (13.5) is the counterpart of

406
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ẋi − Ai j x j in Fourier space, changing Ai j into −A ji and x into k. A more physical
interpretation will be given in the following discussion.

More classically, the pressure contribution b is removed from consideration by
the incompressibility constraint, which is equivalent to the orthogonality condition
(see Subsection 2.5.4):

ki ai = 0. (13.6)

Applying the projection operator

Pin = �in − ki kn

k2
(13.7)

to Eq. (13.4), one finds

dai

dt
− ki

k2
kn

dan

dt
+ Pin Anj a j = 0,

with ki
dai
dt = − dki

dt ai = Ani knai , by using relation (13.5), so that a is found to satisfy
the following ODE:

dai

dt
= −

(
�in − 2

ki kn

k2

)
Anj︸ ︷︷ ︸

Mi j

a j . (13.8)

ODEs (13.5) and (13.8) are referred to as the Townsend or Kelvin–Townsend
equations. In the matrix M, the factor ki kn

k2 reflects the contribution from the fluc-
tuating pressure term, with a prefactor 2 that takes into account advection in wave
space. As usual, spectral analysis allows for a straightforward treatment of the non-
local dependence of pressure on velocity. The time dependency of the wave vector
represents the convection of the plane wave exp[ık(t) · x] by the base flow. Both the
direction and magnitude of k change as wave crests rotate and approach or separate
from each other because of mean-velocity gradients.

General solutions that are valid for arbitrary initial data are expressed as follows
in terms of linear transfer matrices:

ki (t) = Bi j (t, t0)k j (t0), (13.9)

ai (t) = Gi j (t, t0)a j (t0), (13.10)

where the universal values for B and G at t = t0 are subsequently recalled.
In the preceding equations, it is perhaps clearer to specify the wave-vector de-

pendency in a and G, especially if we combine elementary solutions of the form
given by Eq. (13.2) by Fourier synthesis. As a consequence, the RDT solution can
be expressed as follows:

ûi (k(t), t) = Gi j (k, t, t0)̂u j [k(t0), t0], (13.11)
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in which the Green’s function is eventually determined by the initial conditions∗

Gi j (k, t0, t0) = �i j − Ki K j

K 2
, Ki = ki (t0). (13.12)

Of course, G is governed by the same equation as a or û,

Ġi j = −MinGnj ,

in which the overdot is a convenient notation to indicate that k has to be considered
as a time-dependent vector in G(k, t, t0).

As for the time dependency of the wave vector, B can be directly linked to the
Cauchy matrix F through

Bi j (t, t0) = F−1
j i (t, t0). (13.13)

The general definition of the Cauchy matrix for an arbitrary flow has been given
previously.

When similar characteristic lines for the advection term are compared in both
physical and in Fourier space, i.e., xi = Fi j X j (trajectory) and ki = F−1

j i K j , their
close analogy is obvious. One recovers the conservation of k · x (= K · X) along tra-
jectories and also conservation of the plane wave exp[ık(t) · x(t)].

13.1.2 Using Solenoidal Modes for a Green’s Function with a Minimal
Number of Components

For instance, a reduced Green’s function can be used in the Craya–Herring frame
of reference, as

u(�)[k(t), t] = g��(k, t, t ′)u(�)[k(t ′), t ′]. (13.14)

The reduced Green’s function g��, with only four components instead of nine
for Gi j , can be generated by solving

u̇(�) + m��u(�) = 0, (13.15)

with

m�� = e(�)
i Ai j e

(�)
j − ė(�)

i e(�)
i . (13.16)

Here, the Einstein convention of summation over repeated indices is used for
both Latin (varying from 1 to 3) and Greek (taking only the values 1 and 2) indices.
The Craya–Herring frame being orthonormal, it characterizes a solid-body motion
when k is time dependent, so that the entrainment term is simply

ė(�)
i e(�)

i = 	�3��E , �E = −e(2)
i Ai j e

(1)
j − ni Ai j e

(1)
j

k

k⊥
, (13.17)

∗ A different initialization Gi j = �i j was prescribed in Townsend (1956, 1976). Equation (13.12)
presents some advantages, as ki Gi j = 0 can be satisfied at any time, and the RDT Green’s func-
tion can be more easily related to Kraichnan’s response function.
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with k =| k |, k⊥ =
√

k2 − (k · n)2. The last result is simplified if the axial vector n
is chosen along one of the eigendirections of A (Cambon, Teissèdre, and Jeandel,
1985), so that

�E = −e(2)
i Ai j e

(1)
j . (13.18)

This condition was always fulfilled, and an optimal choice of n, if needed, has
been discussed.

Similar equations can be found in terms of helical modes, but they present no
additional interest, except if the mean vorticity, or the mean absolute vorticity in the
presence of an additional Coriolis force, is completely dominant. A first instance is
given in Chapter 4.

13.1.3 Prediction of Statistical Quantities

Throughout this book, we are using an approach that reconciles and simplifies two
different approaches:

� The way initiated by Townsend in RDT, who addressed the very definition of
a deterministic Green’s function, prior to any statistical calculation, without us-
ing a local frame of reference. Recent studies (since 1986) in the community of
hydrodynamic stability theory have essentially the same starting point, being dis-
connected from applications to statistics anyway.

� The way initiated by Craya, who put the emphasis on solving statistical equations
for second-order and third-order spectral tensors, but with a reduced number
of components obtained by projecting these equations and these tensors in the
eponymous frame of reference. Craya never considered the fluctuating-velocity
field in Fourier space, which Herring did (1974), recovering the local frame of
reference, but restricting the statistical approach to axial symmetry only.

Recall that the second way yielded several studies (dealing with single-time
two-point and single-point second-order statistics) by J. N. Gence and co-workers
(mainly his Ph.D. students), following Courseau and Loiseau (1978) for pure strain
and pure shear, namely “pure” rotation, rotating shear, and buoyant flows (without
mean stratification). Related publications, mainly written in French, can be obtained
from the authors on request.

About the first way, it is perhaps useful to discuss some points dealing with ter-
minology. The time-dependent Fourier modes given in Eq. (13.2), when recovered
in the hydrodynamic stability community, were often referred to as “Kelvin modes,”
ignoring their use in RDT (engineering community) and considering that the first
instance of such modes was given by Lord Kelvin. This may be true, but the ter-
minology is misleading, given the huge number of Kelvin modes and Kelvin waves
called into play in stability analyses. Let us illustrate this with two examples: For a
specialist in aerodynamics, a Kelvin wave is a localized inertial wave confined in the
core of a vortex, whereas for an oceanographer, it is a much more complex wave,
also dealing with the variation of the Coriolis parameter with latitude, the stable
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density stratification, and the topology. We hope to have clarified the point here
that “mean-Lagrangian–Fourier modes,” or “Fourier modes advected by the mean”
would be less confusing than Kelvin modes. It is not necessary to recall chronolog-
ically all the authors who used a similar approach, from Kelvin to Batchelor and
Proudman (1954).

As an example of statistical calculation, the RDT equation for second-order
statistics is readily derived from Eq. (13.11) by using Eq. (2.64), leading to

R̂i j [k(t), t] = Gin(k, t, t0)G jm(k, t, t0)R̂nm[k(t0), t0]. (13.19)

Given an initial solution R̂i j at t = t0, one can compute it at later times using
relation (13.19), provided that the Green’s function Gi j (k, t, t ′) is known. The deter-
mination of Gi j is thus the main problem in applying homogeneous RDT in practice.

Applications mainly concern second-order, two-point, and one-point correla-
tions, with many results about the history of the RST when the initial data are cho-
sen to be isotropic. Similarly, a “rapid” pressure–strain-rate tensor and dissipation
tensor can be calculated.

It is not difficult to reintroduce a laminar viscous effect or an efficiently modeled
damping effect, as illustrated by Townsend (1956, 1976) and by some RDT applica-
tions reported in Chapters 6 and 8. The viscous factor was calculated in the most
general way by Cambon, Teissèdre, and Jeandel (1985) as

V0(k, t) = exp
(

−�

∫ t

0
k2(t)dt

)
,

so that

V0(k, t) = exp
[
−klkn

∫ t

t0

Fli (t, t ′)Fni (t, t ′)dt ′
]

. (13.20)

This equation involves a quadratic form in terms of k, using the group relations
of F [such as F(t, t ′).F(t ′, t ′′) = F(t, t ′′)] and can also be given in terms of the “mate-
rial” wave vector K .

Equation (13.19) can also be extended to any order n, thanks to the existence
of general solution (13.11), by means of a product of n Green’s functions: linear so-
lutions for third-order correlations are considered per se in Chapter 4, for instance,
and incorporated in triadic closures for evaluating nonlinear transfer terms.

Complete inviscid RDT equations for the RST and the integral length scales are
subsequently given for isotropic initial data:

u′
i u

′
j = K(0)

4�

∫∫
|K |=1

e(�)
i (k)g�� (k, t)g�� (k, t)e(�)

j (k)d2 K (13.21)

and

E (n)
i j = u′

i u
′
j L(n)

i j (no summation on i, j)

= 1
2

∫ ∞

0

E(k)
k

dk
∫∫

kl=0
e(�)

i (k)g�� (k, t)g�� (k, t)e(�)
j (k)d2 K . (13.22)
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The latter equation makes use of the additional condition Kl = kl , as for in-
stance k1 = K1 and k3 = K3 for the pure plane shear-flow case in Chapter 6).

13.1.3.1 Initial-Value Problem or Forcing?

Instead of considering the initial-value problem, one may add a forcing term to the
linear equation in order to mimic a nonlinear effect and/or a source of noise.

From the general solution for the fluctuating field,

û(k(t), t) = Gi j (k, t, t0)û[k(t0), t0] +
∫ t

t0

Gi j (k, t, t ′) f j [k(t ′), t ′]dt ′, (13.23)

it is possible to derive a related statistical solution. The contribution from the initial
value can even be omitted if the Green’s function is rapidly decaying. Interesting
applications can be found by looking at the RST, or even at its subgrid scale coun-
terpart in LES. Choosing an isotropic white noise for the forcing, with

〈 f ∗
i (p, t) f j (k, t ′)〉 = B(k)

4�k2
�3(k − p)�(t − t ′), (13.24)

the RST obeys the following linear response solution:

u′
i u

′
j (t) =

∫∞
0 B(k)dk

4�

∫ t

t0

dt

[∫∫
|K |=1

e(�)
i (k)g�� (k, t)g�� (k, t)e(�)

j (k)d2 K
]

. (13.25)

Even if the structure of this equation is similar to its counterpart for the initial-
value problem, it may be more interesting to have a steady state at large time, for-
getting the intermediate history of the RST. For instance, a bounded steady state
u′

i u
′
j (∞) is found in the absence of exponential or algebraic growth for g�� in the

inviscid case. More interesting, a steady state can be obtained even in some cases
with exponential growth by reintroducing the viscous factor (13.20). For instance,
the convergence of the temporal integral is analyzed in Cambon (1982) for a large
class of flows subjected to strain-dominated mean flow, i.e., in the presence of a
hyperbolic instability. Because the mean advection is seen in wave space (K → k),
this asymptotic analysis depends on only the infrared part of the spectrum B(k), as
B(k) ∼ kx when k → 0.

Decomposing Eq. (13.25), or its viscous counterpart, into contributions related
or not (in a local way) to the mean-velocity gradient reveals typical coefficients, such
as efficient viscosity and anisotropic kinetic alpha (AKA) coefficients. For instance,
in a quasi-parallel flow dominated by mean shear, one can formally write the Taylor
series expansion of u′

i u
′
2 = Ri with respect to the gradient of the large-scale flow,

Ri (∞) = " iU0 − �T S�i1, . . . ,

where two coefficients " i and �T appear (N. Le Provost, private communication).
Turbulent viscosity is well known, but RDT can also suggest negative values of
�T , e.g., in rotating shear flows. Some recent applications of RDT to subgrid scale
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modeling by B. Dubrulle and co-workers appear to be related to such a calculation
of an eddy viscosity.

The first term with " i is known as the " effect or AKA effect (Frisch, She, and
Sulem, 1987). Surprisingly, this term cannot be removed by Galilean invariance. It
can exist only in anisotropic helical turbulence.

13.1.4 RDT for Two-Time Correlations

RDT can be used for evaluating the spectrum of the variance of a passive scalar
concentration s ′, subject to a mean scalar gradient s :

ṡ ′ = ∂s ′

∂t
+ u′

j

∂s ′

∂x j
= − ∂s

∂x j
u j ,

in which the material derivative is replaced with a simple Eulerian time derivative,
whereas linear dynamics is used only for the bearer velocity field u′. Given the strong
analogy of the fluctuating trajectory equation, ẋ = u′

i , with that of the previously
mentioned scalar, this approach can be used for calculating mean-square displace-
ments, or single-particle diffusion, the particle being only a fluid element.

A different approach was initiated by Kaneda and Ischida (2000), who calcu-
lated two-time velocity correlations by means of RDT. Homogeneous RDT can-
not give access to the Lagrangian two-time correlations, because the “Lagrangian”
Fourier mode can afford oversimplified “mean” trajectories, but not the “fluctuat-
ing” ones. On the other hand, a simplified Corrsin hypothesis can be advocated for
replacing the Lagrangian two-time velocity second-order correlations with their Eu-
lerian counterpart. The two ways, either linearizing both scalar and velocity equa-
tions to derive second-order single-time mixed correlations, or applying RDT to
two-time second-order velocity correlations by using the simplified Corrsin hypoth-
esis, yield the same final result for single-particle dispersion, but the second is much
less demanding about physical assumptions. The simplified Corrsin hypothesis is
less stringent than the crude assumption of equating ṡ ′ and ∂s ′/∂t from the very
beginning.

The only advantage of the first way is to illustrate what information is gained
using the following more sophisticated model: to incorporate the linear operators in
a synthetic model of turbulence, usually referred to as kinematic simulation (KS),
and to compute individiual random trajectories from the synthetic velocity field that
include linear (RDT) dynamics.

Applications to single-particle diffusion by rotating stratified turbulence are
performed in Cambon et al. (2004), with comparison of the statistical RDT model,
the KS + RDT model, and DNS.

13.2 Zonal RDT and Short-Wave Stability Analysis

The condition of extensional mean flow, having a velocity-gradient matrix A uni-
form in the whole space, is very stringent, as is the statistical homogeneity (spatial
invariance of any centered multipoint moment related to the fluctuating flow).
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It is therefore useful to generalize the linear solutions in the presence of more
complex “base” (or mean) flows, either for extending stability analyses, or for mod-
eling nonhomogeneous turbulence.

13.2.1 Irrotational Mean Flows

For irrotational mean flows, for instance, potential flows, a tractable form of inviscid
RDT in physical space can be based on the solution of the equation that governs the
fluctuating vorticity (�i = 	i jku′

j,k), a particular Kelvin equation for the linearized
case without mean vorticity:

�i (x, t) = Fji (X, t, t0)� j (X, t0). (13.26)

As we have seen in Chapters 5 and 10, the related Weber equation,

u′
i (x, t) = F−1

j i (X, t, t0)u′
j (X, t0) + ∂
(x, t)

∂xi
, (13.27)

is particularly useful.
The mean flow may involve complex trajectories, which are defined by

xi = xi (X, t0, t) with ẋ = ūi (x, t), (13.28)

in which Lagrangian coordinates X denote the initial position at time t0 of a particle,
which reaches the position x at time t , and the overdot holds for the related “mean”
material derivative. The Cauchy matrix F does not need to be defined again. Of
course, the complete solution of type (5.21) requires that the potential term on the
right-hand side of (13.27) be expressed in terms of initial data. This can be done by
using an incompressibility condition with relevant boundary conditions, and even
applications to compressible flows are possible (Goldstein, 1978), as already dis-
cussed in Chapter 10. Of course, in the general incompressible case, integral nonlo-
cal dependency, as in (5.21), reappears through the solution for 
 in Eq. (13.27).

13.2.2 Zonal Stability Analysis With Disturbances Localized Around
Base-Flow Trajectories

As soon as the mean flow is rotational, equations such as (13.26) or (13.27) are
no longer valid to tackle inhomogeneous RDT. Assuming weak inhomogeneity,
considerable progress can be made without the need for irrotational mean flow,
although simplifications occur in this case. As discussed earlier, turbulence that is
fine-scaled compared with the overall dimensions of the flow can be treated under
RDT by following a notional particle advected by the mean flow. Thus the results
obtained for strictly homogeneous turbulence can be extended to the weakly inho-
mogeneous case, but with a mean-velocity-gradient matrix Ai j (t) that reflects the
∂ ūi/∂x j seen by the moving particle.

Even if the Green’s function related to the canonical base flow (2.46)–(2.47) can
give interesting information for linear stability analysis and short-time development
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of turbulence, this problem is somewhat unphysical in the absence of typical length
scales for variation of the base-flow gradients and disturbances. For instance, the
Green’s function in (13.11) depends on only the orientation, but not on the modulus,
of the wave vector. Rather than considering perturbations with an arbitrary wave-
length k−1 in the presence of the flow (2.46), it is more physical to consider a base
flow whose velocity gradients vary over a typical length scale �, and to restrict the va-
lidity of the zonal stability analysis to perturbations with much shorter wavelengths,
i.e., k−1 � �. In so doing, the disturbance field should locally experience advection
and distortion effects by the base flow, similar to the effects of an extensional flow
with space-uniform gradients. Given a priori a length scale separation between base
and disturbance flows, one can imagine looking through a mathematical magnify-
ing glass in the vicinity of real base trajectories. This idea has been formalized in
the context of flow stability (see the short-wave “geometric optics” of Lifschitz and
Hameiri, 1991) using an asymptotic approach based on the WKB method, which
is traditionally used to analyze the theoretical ray limit (i.e., short waves) in wave
problems. The perturbation solution is written as

u′
i (x, t) = ai (x, t) exp[ı�(x, t)/	], (13.29)

with a similar expression for the fluctuating pressure, with amplitude b(x, t), where
� is a real phase function, 	 is a small parameter expressing the small scale of
the “waves” represented by Eq. (13.29), and ai (x, t) and b(x, t) are complex am-
plitudes that are expanded in powers of 	 according to the WKB technique: ai =
a(0)

i + 	a(1)
i + · · · . Inserting (13.29) into linearized equations (2.29) and (2.30) yields

�̇a(0)
i + b(0) ∂�

∂xi
= 0

and ki a
(0)
i = 0 at the leading 	−1 order. Consequently, it is found that b(0) = 0 and

that

�̇ = ∂�

∂t
+ u j

∂�

∂x j
= 0, (13.30)

i.e., the wave crests of Eq. (13.29) are convected by the mean flow, whose trajectories
are given by (13.28). It is then apparent that (13.29) is locally a plane-wave Fourier
component of wavenumber

ki (x, t) = 	−1 ∂�

∂xi
. (13.31)

The spatial derivatives of �̇ = 0 yield an Eikonal equation:

k̇i = −A ji (t)k j , (13.32)

where, as before, Ai j = ∂ui/∂x j and the dot represents the mean-flow material
derivative ∂/∂t + ui∂/∂xi . Finally, at the next 	0 order, one obtains

ȧ(0)
i = −Mi j (t)a(0)

j , (13.33)



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

13.2 Zonal RDT and Short-Wave Stability Analysis 415

with Mi j as in (13.8), after elimination of the pressure by use of the leading-order
incompressibility condition ki a

(0)
i = 0.

Equations (13.32) and (13.33) have exactly the same form as the basic equations
of homogeneous RDT (Townsend’s equations ) and therefore, together with Eq.
(13.28), describe the weakly inhomogeneous case at leading order. The only differ-
ence is that, rather than being related to simple time derivatives, the dots represent
mean-flow material derivatives, implying that one should follow mean-flow trajecto-
ries that differ from one to another. In homogeneous RDT, the different classes of
disturbances are only labeled by the direction of the initial wave vector K = k(t0),
and all trajectories, such as � = constant in (2.49), are equivalent. In the zonal RDT
approach, it is necessary to add the Lagrangian coordinate vector X for labeling dif-
ferent trajectories. In agreement with classic continuum mechanics, one has

dxi = Fi j d X j + ūi dt (13.34)

when differentiating the mean-trajectory equation x = x(X, t0, t), so that �̇ = 0 and
(13.32) correspond to

k · �x = K · �X, ki (X, t) = F−1
j i (X, t, t0)K j , (13.35)

which generalizes (13.9)–(13.13). The latter equations actually correspond to k · x =
K · X. It is perhaps useful to rewrite the complete system of equations, exhibiting
all parameters and dependent variables (Godeferd, Cambon, and Leblanc, 2001):

ẋi = ūi (x), (13.36)

k̇i = −∂ ū j

∂xi
k j (X, t), (13.37)

ȧi = −
(
�in − 2

ki kn

k2

)
∂ ūn

∂x j
a j (X, t), (13.38)

with solutions (13.35) for k, and

ai (X, k, t) = Gi j (X, K , t, t0)a j (X, K , t, t0).

Typical applications are presented in Chapter 8. It is even possible to consider the
base flow as unsteady and to directly use the Cauchy matrix for solving (13.38) with
(13.35), without the need for numerical solutions of Eqs. (13.36) and (13.37), as
illustrated by Guimbard and Leblanc (2006).

13.2.3 Using Characteristic Rays Related to Waves Instead of Trajectories

The WKB method by Lifschitz and Hameiri (1991) is different from those devel-
opments that lead to “geometric optics” and “physical optics.” Accordingly, the
first one (Lifschitz and Hameiri, 1991) is referred to as short-wave linear stability
analysis, or zonal WKB RDT everywhere in this book, whereas only the second is
denoted as “geometric optics” from now on. The starting point of “true geometric



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

416 Linear Theories

optics” is similar to Eq. (13.29), but the spatiotemporal evolution is assumed to be
slow, so that x and t in (13.29) ought to be replaced with 	x and 	t , respectively. In
“true geometric optics,” the leading-order approximation is 	(0), and the inhomoge-
neous dispersion law is exhibited, for instance in injecting Eq. (13.29) with (x → 	x,
t → 	t) in linearized equations (2.29) and (2.30) so that

�̇ = ±�(∇�) − ∇� · ū, (13.39)

in which, for the sake of simplicity of notation, spatial and temporal operators con-
cern “slow” variables. Stressing, as before, that k = ∇�, a Hamiltonian function can
be defined as

�̇ = H(k, x) = ±�(k) − k · ū. (13.40)

Accordingly, a Hamiltonian dynamical system is derived :

ẋ = ∂ H

∂k
, (13.41)

k̇ = −∂ H

∂x
. (13.42)

Because H includes both the dispersion frequency and the Doppler frequency
that is due to convection by the mean flow, or k · ū, the right-hand side of Eq. (13.41)
is the sum of group and convection velocities, and the related characteristic line is
the ray along which energy propagates. Applications of the Hamiltonian dynamical
system are used by Galmiche (1999), for instance, in the case of gravity waves prop-
agating in an inhomogeneous medium. Note that the dispersion law cannot appear
at the leading order in the Lifschitz–Hameiri WKB method, so that the previous sys-
tem of Hamiltonian equations reduces to trajectory equation (13.36) and to Eikonal
equation (13.32), respectively, with H = −k · ū. The dispersion law is recovered in
Lifschitz and Hameiri (1991) at the next order by means of the solution for am-
plitude equation (13.38), similar to RDT solutions of Chapters 4 and 7. Using the
development in terms of slow spatiotemporal variables, in true geometric optics, the
next order (	1) leads to the “physical optics” approximation, which yields conserva-
tion of wave action.

In the same context of gravity waves, promising perspectives, with transport
of statistical spectra with nonlinear effects and diffusion, are offered by Carnevale
and Frederiksen (1983). In the latter work, the Hamiltonian function that appears in
Eq. (13.40) is affected by nonlinear dynamics in connection with a simplified version
of DIA, and the role of resonant triad interactions is displayed.

Another interesting field of application is aeroacoustics, as a zonal RDT along
trajectories can be applied to a weakly compressible flow: Both vortical and entropic
modes can be considered, but the acoustic mode is always missed because it is not
a short-wavelength one at low Mach numbers. On the other hand, it is possible to
extend the zonal analysis along trajectories (linked to velocity u) by a ray method
along acoustic rays, which are linked to u + ak and u + ak.
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13.3 Application to Statistical Modeling of Inhomogeneous Turbulence

The stability analysis framework is no longer discussed in the following discussion
for the sake of brevity, and only incompressible turbulence is considered.

Generalization of the Craya equation can be sought in the presence of an
arbitrary mean flow, in deriving a complete equation for the two-point velocity-
correlation tensor with centered position from Eq. (2.29):

Ri j (r , x, t) = u′
i (x − r/2)u′

j (x + r/2). (13.43)

A Fourier transform can be applied with respect to the separation distance r , so
that the equation for the hybrid spectral–physical tensor R̂(k, x, t) can be displayed.
Equations for both R and R̂ are very complicated. Correlations involving the pres-
sure cannot be expressed in terms of velocity only, as in Eq. (2.81), especially if
boundary conditions have to be taken into account. Hence it is necessary to add
some assumptions or to introduce some multiscale approach. The remaining neces-
sary assumption is the separation of spectral and physical space dependencies of the
correlations, for example by treating the statistical inhomogeneity as weak. Even
for homogeneous turbulence, going beyond the isotropic case entails a high com-
putational cost for two-point simulations using classical nonlinear closures, a cost
that is not insignificant compared with that of DNS. Thus it is currently unattrac-
tive to solve the full set of equations resulting from closures such as DIA, TFM, or
EDQNM in the inhomogeneous case without simplifications.

An alternative approach can take inhomogeneity into account by means of the
basis set of modes used to express the fluctuations, while as far as possible maintain-
ing the structure of equations of the correlation matrix similar to that of the homo-
geneous case. The modes that substitute for Fourier components may, for instance,
be chosen to satisfy the boundary and incompressibility conditions. Accordingly,
strong inhomogeneity that is due to solid boundaries can be accommodated by the
very definition of the fluctuation modes. This approach is illustrated by the recent
work of Turner (1999), who considered the problem of channel flow by using suit-
ably chosen modes whose amplitude equations are analogous to those of Fourier
modes in the homogeneous case and that were closed by means of a random phase
approximation. The normal modes of the linear problem might well be good candi-
dates in this type of approach.

13.3.1 Transport Models Along Mean Trajectories

Simplified equations for R̂(k, x, t) are suggested by the short-wave analysis of Sub-
section 13.2.2. In turbulent flows, the fluctuating field is not the single component
(13.29), but instead consists of a random superposition of such components. As one
might expect, given the behavior of the underlying local Fourier components pre-
viously described, it can be shown that, at leading order, weakly inhomogeneous
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turbulence evolves according to

˙̂Ri j + Mik R̂k j + M jk R̂ik = 0, (13.44)

where the dot now represents the operator

∂

∂t
+ ui

∂

∂xi
− ∂u j

∂xi
k j

∂

∂ki
(13.45)

and expresses both convection by the mean flow and evolution of the wavenumber
of individual Fourier components according to Eq. (13.32). Spectral evolution equa-
tion (13.44) corresponds to the RDT limit of its homogeneous equivalent, i.e., the
Craya equation, provided that the dot operator is interpreted appropriately. Thus,
following the mean flow, the leading-order, local spectral tensor R̂i j (k, x, t) behaves
as in homogeneous RDT, being given in terms of its initial values and the RDT
Green’s function. The obvious way to incorporate nonlinearity and viscosity into
this description is to use

˙̂Ri j + Mik R̂k j + M jk R̂ik = Ti j − Di j − 2�k2 R̂i j (13.46)

rather than Eq. (13.44) to describe spectral evolution, where Ti j could be modeled
by a homogeneous spectral closure. For the sake of completeness, the tensor Di j

would typically represent inhomogeneous diffusion across the mean streamline.
An interesting alternative, as proposed by Nazarenko, Kevlahan, and Dubrulle

(1999), is to derive weakly inhomogeneous RDT by using a Gabor transform and
related WKB development. A small parameter like 	 in Eq. (13.29) appears. It is the
ratio of the wavelength of the Fourier mode to the length of its Gaussian envelope.
The interest of this method is not to derive the equations for the wave vector and the
amplitude of the fluctuating-velocity field (the method previously presented does
the job in a simpler and more general way), but to calculate a space-dependent RST
by integrating R̂i j (x, k, t) as in Eq. (13.21). Consequently, the nonlinear term that
expresses the feedback from the RST in (2.27) can be evaluated (it is zero in pure
homogeneous RDT).

13.3.2 Semiempirical Transport “Shell” Models

This approach, discussed in Godeferd, Cambon, and Scott (2001), is mainly illus-
trated by semiempirical transport models, which treat the dependency with respect
to the position variable by analogy with one-point modeling. These models can-
not incorporate all the information coming from general equation (13.46), but they
retain some element of its structure. They are very far from the “shell models” pre-
sented by, e.g., Bohr et al. (1998), but they share with them the property that the
spectral dependency is retained only through the modulus of the wave vector. Ac-
cordingly, it is assumed that primitive equations for R̂(k, x, t) are integrated over
spherical shells of radius k. Because of spherical averaging, one has to forget the
idea of recovering the asymptotic RDT limit, even in the homogeneous case, and
one needs to model the “rapid” terms comprising distortion and pressure–strain
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Figure 13.1. Sum of the main useful relations for RDT analysis. It is recalled that F is the solution
of Ḟ = AF. Transposition is denoted as At , instead of Ã in the text.

correlations, modeling that is unnecessary in the fully anisotropic theory. Transport
models for the joint physical–spectral space energy spectrum E(k, x) have been de-
veloped that describe inhomogeneity in a way similar to the diffusive terms in the
k − ε model, but allow a better treatment of dissipation, calculated from the energy
spectrum. Examples include the inhomogeneous EDQNM model of Burden (1991),
the SCIT (Simplified Closure for Inhomogeneous Turbulence) model developed at
Lyon (Touil, Bertoglio, and Parpais, 2000) and the LWN (Local Wave Number)
model developed at Los Alamos (Clark and Zemach, 1995). These approaches are
extensively discussed in Sagaut, Deck, and Terracol (2006).

As a useful compromise between RSM and subgrid-scale modeling, with seam-
less transition from RANS to LES, the partially integrated Reynolds stress modeling
by Chaouat and Schiestel (2005, 2007) deserves attention. The underlying spectral
formalism is not based on closures but on heuristic arguments, whereas spatial Tay-
lor expansions are used for the position coordinates in physical space.

13.4 Conclusions, Recent Perspectives Including Subgrid-Scale
Dynamics Modeling

Some analytical relations are summarized in Fig. 13.1, particularly for displaying
the role of the Cauchy matrix in both homogeneous and zonal RDT (Eikonal equa-
tion) in the general case, and its particular involvement for irrotational mean (base)
flows.

Application of RDT to subgrid-scale modeling appears to be attractive, but it
is probably premature to report related studies by Leonard or by Dubrulle and co-
workers, previously touched on in this chapter, and LES is largely outside the scope
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of this book. The interested reader is referred to Sagaut (2005) for an exhaustive
presentation.

One can just mention a direct use of the Cauchy matrix for deriving pressure-
released simplified solutions for the transport of the subgrid-scale stress tensor, very
similar to what is done for the RST. This way of improving LES, recently discussed
by C. Meneveau (invited talk, ETC11 conference, Porto, June, 2007), is in the line
of the seminal study by Crow (1968), and, of course, is in agreement with many
instances of pressure-released “solutions” given in this book. We think that this ap-
proach is valid for a strain-dominated coarse-grain flow, but is more questionable in
the case of a vorticity-dominated flow. In applying the pressure-released approach
to a rotational coarse-grain flow, it must be borne in mind that F must be replaced
with H, whose history involves transposed A, not to mention that the full RDT
solution can be very different from its pressure-released counterpart (one uses

Ḟ = AḞ and ˙̃F
−1 = −ÃF̃−1).

Other applications deal with the transport of the coarse-grain mean-velocity
gradient, which is governed by the following equation (as the mean-flow gradient
for homogeneous RDT, but with additional diffusive terms, not given explicitly):

Ȧi j + Ain Anj = ∂2 P

∂xi∂x j
+ diffusive and subgrid terms.

A spherical form of the pressure Hessian in terms of Eulerian coordinates gives
immediately a closed form for the nondiffusive part of the equation, such as

∂2 P

∂xi∂x j
= 1

3
∇2 P�i j = (

Ȧnn + Amn Anm
) �i j

3
,

but incorrect dynamical behavior was shown.† Recent studies by Chevillard and
Meneveau support the proposal that the sphericity of the pressure Hessian is better
assessed in Lagrangian coordinates, leading to

∂2 P

∂xi∂x j
= F−1

ni F−1
mj

∂2 P

∂ Xn∂ Xm
= 1

3
∂2 P

∂ Xn∂ Xn
F−1

mi F−1
mj ,

so that a particular Cauchy–Green tensor is displayed.
Recall that the additive decomposition in terms of trace, symmetric deviator,

and antisymmetric parts of A can be replaced with a multiplicative decomposition
for F, F = J 1/3 · Q′ · S′ (J = 1 in the incompressible case) or F = J 1/3SQ, with sym-
metric (S,S′) and orthogonal (Q,Q′) factors being not the same according to the or-
der of the multiplication. A pure symmetric factor is displayed, with F̃−1 · F−1 = S−2,
or not (F̃−1 · F−1 = QS−2Q̃).

† But it can be seen that even oversimplified admissible mean-velocity gradients used in homogeneous
RDT immediately question this assumption for the pressure Hessian.
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homogène anisotrope, J. Méc. 17, 245–297.

Craik, A. D. D. and Criminale, W. O. (1986). Evolution of wavelike disturbances
in shear flows: A class of exact solutions of Navier–Stokes equations, Proc. R. Soc.
London Ser. A 406, 13–26.

Crow, S. C. (1968). Viscoelastic properties of the fine-grained incompressible turbu-
lence, J. Fluid Mech. 33, 1–20.

Frisch, U., She, Z. S., and Sulem, P. L. (1987). Large-scale flow driven by the anisotropic
kinetic alpha effect, Physica D 28, 382–392.

Galmiche, M. (1999). Interactions turbulence-champs moyens et ondes de gravité in-
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14 Anisotropic Nonlinear Triadic Closures

This chapter includes detailed equations that are not given in Chapters 4, 5, and
7. Fundamentals of anisotropic triadic closures are given in Chapter 4. A general
discussion is offered on various aspects of these closures. Strong anisotropy is the
most original aspect that is emphasized throughout this book, but it is perhaps use-
ful to recall the role of the characteristic time (e.g., eddy damping in EDQNM)
for the decorrelation of triple correlations in canonical incompressible HIT, and
not only in EDQNM. The closure for compressible quasi-isentropic isotropic tur-
bulence, which is a very interesting case of interaction of “strong” solenoidal turbu-
lence with pseudo-acoustical “weak” wave turbulence, also merits additional discus-
sion. Finally, the theory of “linear response” by Kaneda and co-workers, touched on
in Chapter 5, is rediscussed in connection with an approach to weak anisotropy.

14.1 Canonical HIT, Dependence on the Eddy Damping for the Scaling
of the Energy Spectrum in the Inertial Range

All technical details about EDQNM for HIT are given in Chapter 3. In this case, and
only looking at the power-law slope of the single-time energy spectrum E(k) in the
inertial range, all “triadic” theories, including the most sophisticated self-consistent
ones, from DIA to TFM, LHDIA and LRA, can be analyzed from the following
simple, purely dimensional and local in wave space, argument∗:

F(k) =
∫ ∞

k
T (k)dk ∼ �(k)(−1)k4 E2 → ε ,

where �(k) is the ED term in EDQNM, or a constant external frequency in isotropic
or isotropized wave-turbulence theory. A link of the exponent of the power law
for E(k), or E(k) ∼ k−y , to the exponent of the power law for �(k), or �(k) ∼ kx is
immediately derived as a linear law:

y = 2 − x/2.

∗ This analysis can be found in existing literature, e.g., in books by Frisch and Lesieur, but it was
suggested by a very concise and pedagogical informal talk, given by W. Bos in the CNRS Summer
School in Cargèse (France), August 13–25, 2007.
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Markovian Random Coupling Model

Lagrangian time scale
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Figure 14.1. Map of a single straight line of the E(k)-to-�(k) power-law exponents. Suggested by
W. Bos.

Some important cases are discussed as follows, and summarized in Fig. 14.1 with
0 ≤ x ≤ 2:

� Constant �(k) = f0 : x = 0, y = 2, E ∼ k−2. This case is illustrated by some mod-
els, such as the Markovian random coupling model, which amount to EDQNM
with constant ED. They also illustrate oversimplified cases of wave turbulence, in
which �(k) is not a nonlinear decorrelation time, but instead the time frequency
of the external linear wave operator ( f0 = 2� in rotating turbulence, f0 = N in
stratified turbulence, Alfven frequency in magnetohydrodynamics, etc.).

� “Eulerian” time scale: The sweeping effect, or advection of small scales by the
largest ones, seen in the Eulerian framework, suggests �(k) ∼ Uk, yielding x = 1,

y = 3/2, and E ∼ k−3/2. The wrong exponent of original DIA is immediately
derived.

� “Lagrangian” time scale: One of the simplest proposals, by Kraichnan and Orszag,
is �(k) ∼ ε 1/3k2/3, yielding x = 2/3, y = 5/3. More sophisticated proposals, such

as �(k) ∼ k3/2 E1/2, or �(k) ∼
√∫ k

0 p2 E(p)dp (see Chapter 3) are also consistent
with x = 2/3, y = 5/3 in the inertial range. The correct Kolmogorov law is recov-
ered, as found in EDQNM and in all self-consistent theories correcting DIA with
Lagrangian or semi-Lagrangian approaches, not to mention the very recent self-
consistent EDQNM version by Bos and Bertoglio (2006).

� Pure viscous time scale, �(k) ∼ �k2: x = 2, y = 1, E(k) ∼ k−1. This corresponds
to a late time of decay, or a transient zone between the inertial range and the
dissipative one.

It is a bit surprising that a complex spectral-flux term, which results from the dif-
ference of two large nonlocal terms {e.g., pE(q)[k2 E(p) − p2 E(q)] in Eq. (3.157)},
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which are individually high and quasi-balanced, might be so simply evaluated by
k3 E(k)2, by use of pure dimensional analysis, but this works for our simple purpose
of deriving power laws.

To speak of “Eulerian” or “Lagrangian” time scales is almost a caricature, with-
out a deep survey of Lagrangian, semi-Lagrangian, and Eulerian theories. We have
chosen not to treat in detail these aspects in this book, but let us mention at least two
points. On the one hand, the Lagrangian or Eulerian origin of the nonlinear decorre-
lation time scale of triple correlations can be ignored, as it is done in the local energy
transfer theory by McComb (1974), which is also a self-consistent theory (i.e., which
involves no adjustable parameter dealing with the Kolmogorov constant) giving the
correct point x = 2/3, y = −5/3 in the diagram. On the other hand, it is important
to recall that the parameter �(k) comes from Kraichnan’s response tensor, which is
an essential ingredient of any triadic spectral closure and therefore is revisited in the
next section. This response tensor, either random or averaged, is a tangent Green’s
function to a nonlinear state and therefore is subject to the effects of advection and
deformation by the velocity field. In this sense, the RDT Green’s function [in fact
both G(k, t, t ′) and F(t, t ′) in “mean” Eulerian, G(K , t, t ′) in Lagrangian] illustrates
in an oversimplified way these advection and deformation effects by the mean flow,
even if nonlinear dynamics is essential in the Kraichnan Green’s function. Accord-
ingly, we think that a physical discussion taking into account the different advection
and deformation aspects cannot ignore their different translations in Lagrangian or
Eulerian frameworks.

14.2 Solving the Linear Operator to Account for Strong Anisotropy

14.2.1 Random and Averaged Nonlinear Green’s Functions

The concept of response tensor is in the heart of all closures inherited from Kraich-
nan. The most general definition is obtained from writing the perturbation equa-
tion for a disturbance field �û created by an external disturbance � f̂ (e.g., from a
solenoidal stirring force):

�ûi (k, t) =
∫∫ ∫ t

t0

Gi j (k, k′, t, t ′)� f̂ j (k′, t ′)d3k′dt ′. (14.1)

It is very important to stress that the perturbation is performed around any
particular random realization of û, which is a solution of the fully nonlinear Navier–
Stokes equations in Fourier space. The nonlinear term ûu leads to the contribution
2û�u in the �û equation. Accordingly, the response function is also a random vari-
able, changing from realization to realization of the bearer velocity field û. There-
fore this relation is not only an integral formulation in time, but also in wave-vector
space. In this sense, the response tensor before averaging is a tangent Green’s func-
tion related to a random and nonlinear state.
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Only the statistical counterpart of G,† obtained from statistical ensemble aver-
aging, becomes local in wave space assuming spatial homogeneity, i.e.,

〈Gi j 〉 = G+
i j (k, t, t ′)�3(k − k′). (14.2)

One can just recall that the ED term in the previous section can be related to
G+ by �(k)−1 ∼ ∫

G+(k, t, t ′)dt ′.
Considering a homogeneous turbulent velocity field, but subjected to a mean

flow that is not itself homogeneous but with uniform velocity gradients, the preced-
ing equation must be modified as follows:

〈Gi j 〉 = G+
i j (k, t, t ′)�3[k − F̃−1(t, t ′)k′]. (14.3)

A purely diagonal form is recovered in terms of mean-Lagrangian wave vectors,
yielding a term �3(K − K ′).

From these general considerations, we consider that the confusion between G
and 〈G〉 → G+ is highly misleading, even without mean flow. Identification of the
random response function with its averaged counterpart is made in Leslie (1973),
for instance, and by many other authors. Such oversimplifications do not lead to an
incorrect final form of DIA equations, for instance, but this is only because these
equations are consistent with a first-loop iterative expansion around a deterministic
zeroth-order state for G. The same procedure performed in the presence of a mean
flow, using (14.2) instead of (14.3), is nothing but wrong.

Introducing a perturbative expansion in terms of the basic nonlinear term in
Navier–Stokes equations, the zeroth-order response function naturally appears as
the viscous linear Green’s function, which is really deterministic (or “statistically
sharp” in Leslie’s parlance). In the case of HIT without mean flow, the linear oper-
ator reduces to the viscous term, so that the basic Green’s function, or zeroth-order
response tensor is simply

G(0)
i j (k, t, t ′) = Pi j (k) exp[−�k2(t − t ′)].

14.2.2 Homogeneous Anisotropic Turbulence with a Mean Flow

For HAT in the presence of a distorting mean flow, the linear operator inherited
from RDT must be accounted for: It is an essential building block for construct-
ing the nonlinear theory, and it can generate the relevant nontrivial zeroth-order
response function of any “triadic” closure, including DIA, EDQNM, etc.

In the presence of an additional right-hand-side term fi (k, t) in the basic spec-
tral equation,

˙̂ui + Mi j û j + �k2ûi = fi , (14.4)

† G must be not confused with the linear Green’s function in physical space in Eq. (5.21).
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which represents nonlinearity and possibly random forcing, the basic RDT solution
can be generalized as

ûi (k(t), t) = G(0)
i j (k, t, t ′)û j (k(t ′), t ′) +

∫ t

t ′
G(0)

i j (k, t, �) f j (k(�), �)d�. (14.5)

It is necessary to include the viscous term, so that G(0) is the viscous Green’s
function given by

G(0)
i j (k, t, t ′) = Gi j (k, t, t ′)V0(k, t, t ′), (14.6)

where G (in pure inviscid RDT) and V0 are defined in Chapter 13. The latter equa-
tion is generic, and similar forms can be found for the equations that govern the
statistical moments of û at any order.

For instance, the equation for the second-order spectral tensor, or Craya equa-
tion (2.81), is formally solved as

R̂i j (k(t), t) = G(0)
im (k, t, t0)G(0)

jn (k, t, t0)R̂mn[k(t0), t0]

+
∫ t

t0

G(0)
im (k, t, t ′)G(0)

jn (k, t, t ′)Tmn[k(t ′), t ′]dt ′, (14.7)

and similarly for the third order, with a threefold product

G(k, t, t ′) ⊗ G(p, t, t ′) ⊗ G(q, t, t ′), k + p + q = 0,

called into play (the detailed equation will be given in the next section).
In a slightly different form, one can introduce a new variable a defined as

ûi (k(t), t) = G(0)
i j (k, t, t0)a j [k(t0)︸︷︷︸

K

, t], (14.8)

which replaces the initial data in the linear solution and can be considered as slowly
varying in time, where the initial time is fixed at t ′ = t0. The Green’s function can be
used for deriving a new equation for the slow variable without any assumption from
the exact, Navier–Stokes-type, û equation:

ȧi = G(0)−1
i j (k, t, t0)Pjmn[k(t)]

∫∫∫
G(0)

ms (p, t, t0)as(P, t)︸ ︷︷ ︸
û(p)

G(0)
nr (q, t, t0)ar (Q, t)︸ ︷︷ ︸

û(q)

d3 p,

(14.9)

with q = k − p. The latter equation suggests a systematic way to derive a suitable
closure. For instance, the idea in applying generalized EDQNM is to transfer the
“machinery” of EDQNM procedures/assumptions from the û to the slow variables
a. A cartoon of the optimal procedure, called EDQNM3, and successively applied
to the pure rotation case in Chapter 4, can be given as follows:

� The quasi-normal (QN) procedure is the same, working with û or with a variables.
Fourth-order correlations at three points are expressed in terms of products of
second-order correlations.
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� The Markovian (M) procedure consists of freezing the time dependency of the
slow variables, and of the slow variables only, in the time integral that links third-
order to second-order correlations, once the QN assumption used.

� Eddy damping consists of replacing the “bare” viscous RDT Green’s function
with a possibly renormalized one as

G+
i j (k, t, t ′) = Gi j (k, t, t ′)V (k, t, t ′), (14.10)

where the term V , which is substituted into V0 in Eq. (14.6), will be specified later
on.

In view of “exact” equation (14.9), however, specific difficulties linked to the ad-
vection term appear, and a unique system of dependent variables has to be chosen.

Time dependence of the wave vectors reflects the advection by the mean flow.
The general relation

ki (t) = F−1
j i (t, t ′)k j (t ′) (14.11)

is always valid, but for any operator depending on (k, t, t ′), one can ask the question
of whether a fixed wavenumber of reference, such as K = k(t0), is useful or not.
In addition to the renormalization of G by a scalar term, the related question of
renormalizing the Cauchy matrix in Eq. (14.11) can be raised, together with the two-
time aspect in general: In spite of some proposals for modeling parallel shear flows
with a saturated accumulated mean shear (F12 here), e.g., by Maxey and Hunt, we
prefer to keep Eq. (14.11) unchanged here. In the presence of solid-body rotation
or dominant mean vorticity, for instance, saturating �t is meaningless.

To avoid any ambiguity, “mean-Lagrangian” wave vectors will be used, such as
K = k(t0), P = p(t0), Q = q(t0), when “slow” variables are concerned, and the time
argument, e.g., t or t ′, will be specified in k, p, q .

As far as possible, eigenmode decomposition must be used to diagonalize G.
At least, a drastic reduction of the number of variables can be obtained in working
with the components in the Craya–Herring frame or in similar frames of reference,
as used in Cambon (1982), Cambon, Teissèdre, and Jeandel (1985), and in all sub-
sequent papers from the same team.

14.3 A General EDQN Closure. Different Levels of Markovianization

Using the threefold product of Green’s functions to express triple correlations in
terms of fourth-order ones, the most general EDQN closure for the transfer tensor
Ti j in the Craya’s equation leads to

�i j (k(t), t) = Pjml[k(t)]
∫ t

−∞

∫∫∫
k+p+q=0

× G+
in(k, t, t ′)G+

mr (p, t, t ′)G+
ls(q, t, t ′)R̂vs[q(t ′), t ′]

×
{

1
2

Pnvw[k(t ′)]R̂wr (p(t ′), t ′) + Prvw[p(t ′)]R̂wn[k(t ′), t ′]
}

d3 pdt ′

(14.12)
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with

Ti j (k, t) = �i j (k, t) + �∗
j i (k, t). (14.13)

If the factor V in Eq. (14.10) is generated only by adding to the “laminar” vis-
cous factor �k2 a damping term �(k, t), the result can be written as

V (k, t, t ′) = exp
[
−
∫ t

t ′
�k2(t ′′) + �(k(t ′′), t ′′)dt ′′

]
. (14.14)

The exponential decay factor in Eq. (14.14) is related to the cumulative viscous
and eddy damping between t ′ and t . Notice that, although ED formally appears by
means of the revised Green’s function G+

i j , unlike viscosity it is really a nonlinear
effect, modifying the expression of the third-order moments in terms of the second-
order ones.

The time integral in Eq. (14.12) expresses memory of the third-order moments,
represented by �i j , for the fourth-order moments, written as products of R̂. This
memory is too long-lasting in the QN model, but ED suppresses memory by pro-
gressive attenuation of the Green’s function with increasing t − t ′ by way of the �

part of the exponential factor in Eq. (14.14). This will to decrease the importance
of third-order memory is taken to its logical conclusion by the Markovianization
process. First, the integrand in Eq. (14.14) is approximated by its value at t ′′ = t to
obtain

Ṽ (k, t, t ′) = exp
[−(�k2(t) + �(k(t), t)(t − t ′)

]
. (14.15)

14.3.1 EDQNM2 Version

Next, the spectral tensors in Eq. (14.12) can be replaced with their values at t ′ = t ,
and the wave vectors too, leading to the following form (Cambon and Scott, 1999):

�i j [k(t), t] = Pjml[k(t)]
∫∫∫

k+p+q=0
�iml;nrs R̂ns(q, t)

×
[

1
2

Pnvw(k)R̂wr (p, t) + Prvw(p)R̂wn(k, t)
]

d3 pdt ′, (14.16)

where

�iml;nrs =
∫ t

−∞
Gin(k, t, t ′)Gmr (p, t, t ′)Gls(q, t, t ′)Ṽ (k, t, t ′)Ṽ (p, t, t ′)Ṽ (q, t, t ′)dt ′.

(14.17)

Equation (14.16) yields an EDQNM model, for which the nonlinear transfer
term in Eq. (2.67) is determined by R̂ at the current instant of time, rather than
by the entire past history of the spectral tensor. This is the essence of Markovian-
ization. This version was a rather logical generalization of the classical approach
of Orszag (1970), allowing for mean-flow effects, and was successfully applied to
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rotating‡ (Cambon and Jacquin, 1989) and to stably stratified turbulence (Godeferd
and Cambon, 1994). On the other hand, it is not the optimal EDQNM version: De-
pending on the mean-flow features, a simpler or a more sophisticated version can be
used.

14.3.2 A Simplified Version: EDQNM1

It is tempting to push the Markovianization one step further and set t = t ′ in the
RDT Green’s functions of Eq. (14.17), in which case one obtains equations for the
spectral transfer as if there were no mean flow. This amounts to replacing G with
the identity matrix, so that

�iml;nrs = �in�mr�ls�kpq(t), (14.18)

with

�kpq = �(k2 + p2 + q2 + �(k, t) + �(p, t) + �(q, t).

The only effect of the mean flow on the spectral evolution then appears through
the linear operators on the left-hand side of Eq. (2.81). This version is also valid for
anisotropic turbulence without mean flow, the isotropic case addressed in Chapter 3
being derived by setting the isotropic form for R̂. Finally, a more tractable form of
the transfer term is derived from the e − Z decomposition of the anisotropic spectral
tensor, in terms of T (e) and T (z) (Cambon, Mansour, and Godeferd, 1997):

T (e) = 1
2

Tii (k)

=
∫∫∫

�kpq2kp
{
(e′′ + 
X ′′)[(xy + z3)(e′ − e) − z(1 − z2)(
X ′ − 
X)]

}
d3 p

+
∫∫

�kpq2kp
[�X ′(1 − z2)(x�X − y�X ′)

]
d3 p, (14.19)

T (z) = 1
2

Ti j (k)Ni (−k)N j (−k)

=
∫∫∫

�kpq2kpe−2ı�
{
(e′′ + 
X ′′)[(xy + z3)(
X ′ − X)

− z(1 − z2)(e′ − e) + ı(y2 − z2)�X ′]
}

d3 p

+
∫∫

�kpq2kpe2ı�
{
ı�X ′(1 − z2)[x(e + X) − ıy�X ′]

}
d3 p, (14.20)

with e = e(k, t), e′ = e(k, t), e′′ = e(q, t), X = Z(k, t)e2ı�, X ′ = Z(p, t)e2ı�′
, X ′′ =

Z(q, t)e2ı�′′
. Angles �, �′, and �′′ are defined in Eq. (14.38). With respect to arbitrary

‡ Time dependency of the wave vectors was not considered in the EDQNM2 version for “pure”
rotation, because the formalism was developed in the rotating frame, but if the same procedure is
applied to equations in the Galilean frame, in the presence of a solid-body “mean” motion, time
shifting cannot be neglected, as discussed at the end of this section.
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anisotropy, only the helicity spectrum and the helicity transfer are omitted, consid-
ering that these terms cannot be created and are present only if introduced in initial
data. Absence of the helicity spectrum is generally justified in homogeneous tur-
bulence, despite the interest of (random) helical modes for investigating nonlinear
interactions. Notice that the latter equations are most easily obtained from the so-
phisticated EDQNM2 and EDQNM3 versions for rotating turbulence, given in the
next section, by setting � = 0. This way of deriving equations can appear paradoxi-
cal, but, again, it follows from the fact that helical modes give the best basis for both
rotating and nonrotating turbulence.

Of course the conventional EDQNM model for 3D isotropic turbulence is
recovered using e = E(k)/(4�k2), Z = 0, and

∫∫∫
d3 p = 2�

∫∫
� k

(pq/k)dpdq in
Eq. (14.19), whereas the averaging on � yields T z = 0 in the same conditions.

14.3.2.1 Recovering the Conventional 2D Case With Additional Jetal Mode

Another interesting result is the derivation of an extended isotropic 2D version, set-
ting k⊥ = k, k‖ = 0, and using

∫∫∫
d3 p = ∫∫

� k
(1 − x2)−1/2dpdq , e2ı� = e2ı�′ = e2ı�′′ =

−1. In this case, the expression of T e − T z in terms of e − Z is exactly the 2D
EDQNM equation used by Leith (1971) and Pouquet et al. (1975). e − Z at k‖ = 0
is the limit of the toroidal energy spectrum, directly linked to vertical vorticity. In
addition, the expression of T e + T z in terms of both e − Z and e + Z in this limit is
exactly the EDQNM equation of a passive scalar advected by a 2D flow. e + Z is
the limit of poloidal energy that represents a purely vertical mode, which is referred
to as the jetal mode by Kassinos and Reynolds, and plays the role of the spectrum
of the variance of the passive scalar (see also Cambon and Godeferd, 1993). One
recovers the fact that a 2D-3C (two-dimensional with three-velocity components)
flow, characterized by both e − Z (toroidal = vortical) and e + Z (poloidal = jetal)
energy spectra, evolves toward a pure vortical flow, because the energy e − Z is
conserved by the inverse cascade, whereas the energy e + Z is rapidly damped.

14.3.3 The Most Sophisticated Version: EDQNM3

In all cases in which the linear RDT effect is shown to be important to the dynamics
of triple correlations, it is not possible to use EDQNM1, and EDQNM2 is poten-
tially more relevant. Nevertheless, the Markovianization in EDQNM2 is not com-
pletely consistent with the decomposition in terms of slow and rapid terms from the
very definition of slow variables in Eqs. (14.8) and (14.9). The most straightforward
Markovianization consists of setting t = t ′ in the slow terms and in the slow terms
only. Accordingly, the spectral tensor itself is not to be globally considered as a slow
term, but ought to be rewritten in terms of the slow variables as

R̂vs(q(t ′), t ′) = G(0)
vi (q, t ′, t0)G(0)

s j (q, t ′, t0)Ai j (Q, t ′) (14.21)

in Eq. (14.12), so that only Ai j is taken at the current instant of time t ′ = t before
time integration is performed. This “optimal” version asks the question of whether
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the time dependence of the wave vectors has to be considered as rapid or not. On
the one hand, truncation of the memory of F can be justified: A proposal by Maxey
and Hunt for the pure plane shear flow suggests replacing S(t − t ′), or

∫ t
t ′ S(t ′′)dt ′′ for

time-evolving mean-shear rate, with a value that saturates toward a constant S · �NL

at increasing t − t ′. On the other hand, in the simplest case of rotating turbulence,
but seen in the Galilean frame in the presence of mean solid-body motion (A is an-
tisymmetric), there is no physical argument to saturate the phase �(t − t ′). In this
case, F, which is a pure orthogonal matrix, and G, which has an exact counterpart
in the rotating frame, have to be treated in the same way, i.e., as “rapid” terms. Ac-
cordingly, we consider that both F and G in the general case have to be considered
as “rapid” for the sake of consistency, and therefore the past history of the wave
vectors cannot be neglected.

The resulting closure is rather complicated, involving a lot of G factors, together
with various F-dependent time shifts for wave vectors, with possible simplifications
coming only from the group relations verified by G and F (Cambon, Teissèdre, and
Jeandel, 1985). Another technical difficulty comes from the use of the inverse of G:
This difficulty is avoided, using the reduced g�� RDT Green’s function, working with
Craya–Herring components, with the additional advantage of reducing the number
of dependent variables.

The minimum set of equations, in terms of the minimum number of dependent
variables, that form the EDQNM3 version is given as follows.

� Definition of “slow” variables a�, using Lagrangian wave vectors,

u(�)(k(t), t) = g��(k, t, t0)A�(K , t), (14.22)

with easy inversion using g−1
�� .

� Writing the basic Navier–Stokes equations with distorting mean flow in terms of
them:

∂

∂t
A�(K , t) = g−1

�� (K , t, t0)
∫∫∫

P���(K , P, t)g��(P, t, t0)

× A�(P, t)g��(Q, t, t0)A�(Q, t)d3 P, (14.23)

with P��� given by (2.85).
� To construct EDQN equations, corresponding to (14.12) in terms of A� correla-

tions tensors, the final closure equation being given for

〈A�(Q, t)A�(K , t)A� (P, t)〉 = A��� (K , P, t)�(K + P + Q). (14.24)

� To replace in the EDQN equation for A��� t ′ with t only in the second-order slow
counterparts of R̂, such as

〈A∗
�(P, t ′)A�(K , t ′)〉 = A��(K , t ′)�(K − P). (14.25)
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14.4 Application of Three Versions to the Rotating Turbulence

The most general EDQNM versions were carried out toward complete achieve-
ment for pure rotation only. In this case, the zeroth-order state consists of super-
imposed oscillating modes of motion, without amplification and interaction: They
correspond to neutral dispersive inertial waves. The time integral of a threefold
product of Green’s functions converges, provided an infinitesimal viscous (or ED)
term is added. In the limit of small interactions, two-point closures and theories of
wave turbulence share an important background. Even if the latter are developed
in the inviscid case, a vanishing damping term is also added, as a mathematical con-
venience, in order to regularize the resonant operators.

The EDQNM1 version presents no interest because the isotropy is broken by
the Green’s function only at the level of triple correlations: Started with isotropic
initial data, EDQNM1 equations conserve isotropy and are not at all affected by
rotation. Equations (14.19) and (14.20), however, remain of interest in some situa-
tions, as discussed in Subsection 14.3.2, illustrating the interest of the e − Z decom-
position.

Detailed EDQNM2 and EDQNM3 equations are subsequently given in terms
of e and Z (without initial helicity).

In EDQNM3 equations subsequently recalled from Cambon, Rubinstein, and
Godeferd (2004) [(14.30) and (14.31)], T (e,z,h) are given by volume integrals close to
the ones found in the appendix of Cambon, Mansour, and Godeferd (1997) (CMG
hereafter). Helicity is ignored here as in CMG, for the sake of brevity. The inte-
grands are completely expressed in terms of (e, Z) through quadratic terms involv-
ing triads. The most laborious calculation is for deriving five geometric factors, de-
noted A1(k, p, q), . . . , A5(k, p, q). Fortunately, these factors were calculated once
and for all, and play the same role in EDQNM2 and EDQNM3.

The way to simply move from EDQNM2 to EDQNM3, in the absence of helic-
ity, is found as follows.

The only explicit (in addition to the time dependence of the e − Z variables
themselves) time-dependent term in the EDQNM2 integrand of T (e,z) is

exp[−zkpq(t − t ′)] = exp[(−�kpq − ı�kpq)(t − t ′)], �kpq = s�k + s ′�p + s ′′�q ,

(14.26)

and its integral gives ∫ t

−∞
e−zkpq (t−t ′)dt ′ = 1

zkpq
. (14.27)

The polarization anisotropy is now denoted as � in order to avoid confusion
with its slow counterpart, which is only relevant here, Z , with the relationship

�(sk, t ′) = Z(sk, t ′)e−2ıs�k t ′
. (14.28)

Only Z has to be considered as “slow,” so that it has to be frozen to t ′ = t in
the temporal integral over t ′ resulting from EDQN. Accordingly, the related phase
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term in � will give an additional (versus EDQNM2) contribution to the temporal
integrand, with the following modifications:

1. there is no modification for the terms that do not include � in T (e),
2. terms containing � in T e are altered in replacing 1/zkpq with

∫ t

−∞
e−zkpq (t−t ′)−ı�z t ′

dt ′ = e−ı�z t

zkpq − ı�z
, (14.29)

where �z = 2s ′′�q for Z ′′-type term, �z = 2s�k for Z -type term, �z = 2s ′′�q +
2s�k for Z Z ′′-type terms, and �z = 2s ′′�q + 2s ′�p for Z ′ Z ′′-type terms.

Consequently, the EDQNM3 version without helicity of T (e) becomes

T (e) = 1
23

∑
ss ′s ′′

∫
C2

kpq

[
A1(sk, s ′ p, s ′′q)

� + ı(s�k + s ′�p + s ′′�q)
e′′(e − e′)

]
d3 p

+ 1
23

∑
ss ′s ′′

∫
C2

kpq

[
A2(sk, s ′ p, s ′′q)

� + ı(s�k + s ′�p − s ′′�q)
e2ıs′′(�′′−�q t)eZ(s ′′q)

]
d3 p

+ 1
23

∑
ss ′s ′′

∫
C2

kpq

[
A3(sk, s ′ p, s ′′q)

� + ı(−s�k + s ′�p + s ′′�q)
e2ıs(�−�k t)e′′ Z(sk)

]
d3 p

− 1
23

∑
ss ′s ′′

∫
C2

kpq

[
A5(sk, s ′ p, s ′′q)

� + ı(s�k + s ′�p − s ′′�q)
e2ıs′′(�′′−�q t)e′ Z(s ′′q)

]
d3 p

+ 1
23

∑
ss ′s ′′

∫
C2

kpq

[
A4(sk, s ′ p, s ′′q)

� + ı(−s�k + s ′�p − s ′′�q)
e2ıs′′(�′′−�q t)+2ıs(�−�k t)

× Z(s ′′q)Z(sk)
]

d3 p

− 1
23

∑
ss ′s ′′

∫
C2

kpq

[
A4(sk, s ′ p, s ′′q)

� + ı(s�k − s ′�p − s ′′�q)
e2ıs′′(�′′−�q t)+2ıs′(�′−�pt)

× Z(s ′′q)Z(s ′ p)
]

d3 p, (14.30)

where the geometric factors A1 to A5 are given in the CMG appendix, and are re-
called below. Equations are very symmetric. With respect to EDQNM2, the pres-
ence of a Z , or Z ′, Z ′′ factor results in changing the corresponding sign in the term
±�k ± �p ± �q , and to add the specific time-oscillating phase factor e−2ı�t . T (e) being
real, it is possible to retain only s = 1 and to replace complex contributions with
twice their real part. As in Eqs. (14.19) and (14.20), e = e(k, t), e′ = e(p, t), e′′ =
e(q, t).
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The EDQNM3 version of T (z), as follows, is derived from its EDQNM2 coun-
terpart in a similar way, except that the whole term is multiplied, in addition, by the
oscillating term e2ı�k t :

T (z) = 1
23

∑
s ′s ′′

∫
C2

kpqe2ı(�k t−�)
[

A3(k,−s ′ p,−s ′′q)
� + ı(�k + s ′�p + s ′′�q)

e′′(e′ − e)
]

d3 p

+ 1
23

∑
s ′s ′′

∫
C2

kpqe2ı(�k t−�)
[

A4(k,−s ′ p,−s ′′q)
� + ı(�k + s ′�p − s ′′�q)

e2ıs′′(�′′−�q t)eZ(s ′′q)
]

d3 p

+ 1
23

∑
s ′s ′′

∫
C2

kpqe2ı(�k t−�)
[

A1(k,−s ′ p,−s ′′q)
� + ı(−�k + s ′�p + s ′′�q)

e2ı(�−�k t)e′′ Z(k)
]

d3 p

− 1
23

∑
s ′s ′′

∫
C2

kpqe2ı(�k t−�)
[

A5(k,−s ′ p,−s ′′q)
� + ı(�k − s ′�p + s ′′�q)

e2ıs′(�′−�pt)e′′ Z(s ′ p)
]

d3 p

+ 1
23

∑
s ′s ′′

∫
C2

kpqe2ı(�k t−�)
[

A2(k,−s ′ p,−s ′′q)
� + ı(−�k + s ′�p − s ′′�q)

e2ıs′′(�′′−�q t)+2ı(�−�k t)

× Z(s ′′q)Z(k)
]

d3 p

− 1
23

∑
s ′s ′′

∫
C2

kpqe2ı(�k t−�)
[

A2(k,−s ′ p,−s ′′q)
� + ı(�k − s ′�p − s ′′�q)

e2ıs′′(�′′−�q t)+2ıs′(�′−�pt)

× Z(s ′′q)Z(s ′ p)
]

d3 p. (14.31)

Accordingly, all explicit time-dependent oscillating terms cancel for the T (z)

term that depends on the third one, Z(k).
Let us recall the definition of geometric coefficients§:

Ckpq = sin(p, q)
k

= sin(k, q)
p

= sin(k, p)
q

, (14.32)

and

A1(k, p, q) = −(p − q)(k − q)(k + p + q)2, (14.33)

A2(k, p, q) = −(p − q)(k + q)(k + p + q)(k + p − q), (14.34)

A3(k, p, q) = (p − q)(k + q)(k + p + q)(−k + p + q), (14.35)

A4(k, p, q) = (p − q)(k − q)(k + p + q)(k − p + q), (14.36)

A5(k, p, q) = −(p − q)(p + q)(k + p + q)(k + p − q). (14.37)

The other geometric coefficients that depend on not only the triad geometry
(via moduli k, p, q), but also on the orientation of its plane, are only �,�′,�′′ terms.
Following Cambon (1982), Cambon and Jacquin (1989), and Waleffe (1993), they

§ The additional factor 2p/k was a mistake in the CMG appendix.
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are displayed by substituting into the local frames related to the helical (or complex
Craya–Herring) decomposition [N(sk), N(s ′ p), N(s ′′q)] alternative ones that have
their polar axis normal to the plane of the triad rather than to the plane of rotation,
so that

N(sk) = esı� (� + ıs�)︸ ︷︷ ︸
W(s)

, N(s ′ p) = es ′ı�′
(�′ + ıs′�)︸ ︷︷ ︸

W ′(s ′)

, N(s ′′q) = es ′′ı�′′
(�′′ + ıs′′�)︸ ︷︷ ︸

W ′′(s ′′)

,

(14.38)

in which � is the unit vector normal to the plane of the triad, whereas �, �′, �′′

are unit vectors all located in the plane of the triad, and normal to k, p, and q,
respectively. Accordingly, the scalar products in terms of k, p, q, W, W ′, and W ′′

depend on only the moduli k, p, q. These scalar products generate all the A1–A5

terms.
The last equations, derived from the previous one, which are used in general

EDQNM equations [e.g. (14.30) and (14.31)], are

cos �p = p‖/p = −z cos �k +
√

1 − z2 sin�, (14.39)

cos �q = q‖/q = −y cos �k −
√

1 − y2 sin�, (14.40)

with y = cos(k, q), z = cos(k, p), sin(k, q) = Ckpq p, sin(k, p) = Ckpqq. Accordingly,

p cos �p = −q cos �q = pqCkpq sin� (14.41)

at k‖ = 0.
The asymptotic limit of wave turbulence in terms of e, Z , h is (Bellet et al., 2006)

T (e) = �

4

∑
s ′,s ′′

C2
kpq

A1(k, s ′′q, s ′ p)
s ′Cg(p) − s ′′Cg(q)

[e′(e′′ − e) + s ′h′(s ′′h′′ − h)] d S, (14.42)

T (h) = �

4

∑
s ′,s ′′

C2
kpq

A1(k, s ′′q, s ′ p)
s ′Cg(p) − s ′′Cg(q)

[s ′ H ′(e′′ − e) + e′(s ′′h′′ − h)] d S, (14.43)

and

T (z) =−Z
�

4

[∑
s ′,s ′′

C2
kpq

A1(k, s ′′q, s ′ p)
s ′Cg(p) − s ′′Cg(q)

e′d S + ı
∫∫∫

C2
kpq

A1(k, s ′′q, s ′ p)
s ′Cg(p) − s ′′Cg(q)

e′d3 p

]
.

(14.44)

Equations (14.42) and (14.43) are essentially the same as in Galtier (2003). The
last equation, and Z in general, is ignored in conventional wave-turbulence theory
(Waleffe, 1993; Galtier, 2003). The transfer term T (z) is linear in Z , and it is the
only term that does not reduce to a surfacic integral (

∫∫
d S) over surfaces of res-

onant triads: The integral
∫∫∫

d3 p in Eq. (14.44) denotes a principal-value integral
in the vicinity of the resonant surface. Much more complex quadratic interaction
terms that involve Z in volumic EDQNM3 [Eqs. (14.30) and (14.31)] are discarded
in AQNM when removing rapidly oscillating terms.
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In the case of magnetohydrodynamic flows, which are not discussed here for
the sake of brevity, the use of similar two-point closure/ wave-turbulence theories is
particularly relevant (see Galtier et al., 2001, for flows dominated by Alfvén waves).

14.5 Other Cases of Flows With and Without Production

Throughout this book, we have distinguished between flows dominated by produc-
tion and flows dominated by waves. The first class is illustrated by classical shear
flows, in which a nonzero production term is displayed in the equations governing
the RST. This production is often related to growth of instabilities, when stability
analysis is addressed. The second class is illustrated in Chapters 4, 7, and 8 as being
the most relevant area to apply spectral closures. Note that the dynamics can be
dominated by dispersive waves, which are neutral but for a small part of the con-
figuration space, in which exponential amplification occurs. In the latter case, e.g.,
for flows with weak ellipticity (i.e., S � �), the production of energy is nonzero, but
classic single-point closure models are of poor relevance, as only particular orienta-
tions in wave space are subjected to parametric instability.

14.5.1 Effects of the Distorting Mean Flow

14.5.1.1 Hyperbolic and Elliptic Cases

In the hyperbolic and elliptic cases, with 0 �= S �= � in Eq. (5.7), the RDT Green’s
function can display exponential growth at least for particular angles of k (k3/k ∼
1/2 in the case S � �0). If the bare zeroth-order response function is modified only
by ED, with exponential decorrelation as in Eq. (14.15), convergence is not ensured
for the time integral of the threefold product GGG in the generic closure relation-
ship. Another type of nonlinear decorrelation operator, e.g., a Gaussian one, could
be used.

14.5.1.2 Pure Shear

A less critical situation occurs when S = � (pure plane shear), as the RDT Green’s
function yields only algebraic growth, so that the viscous term ensures convergence
of the time integral involved in the closure. Nevertheless, it is very cumbersome
to develop, and especially to solve numerically with enough accuracy, a complete
anisotropic EDQNM model in this case. Recall that even calculation of single-
point correlations resulting from viscous RDT at high St is not easy (Beronov and
Kaneda, private communication). DNSs suggest that fully nonlinear effects yield
exponential growth for the turbulent kinetic energy, but computations are very sen-
sitive to cumulated errors (remeshing, low angular resolution at small k, etc.). Such a
transition from algebraic growth (linear, small time) to exponential growth (nonlin-
ear) is mimicked by simple models but not really explained. Interesting scaling laws,
however, for possible exponential growth follow from self-similarity arguments, as
discussed in Chapter 6.
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Figure 14.2. Table of different properties, including eigenmodes (if relevant), conservation law,
and cascade processes.

14.5.2 Flows Without Production Combining Strong and Weak Turbulence

A particular class of flows “without production” involves both wavy and nonprop-
agating modes, the latter being constant in the linear limit. Their dynamics can mix
strong and weak turbulence. On the one hand, strong turbulence is concerned only
when nonlinear interactions in terms of the nonpropagating modes are considered:
That includes the “toroidal turbulence” for pure stratification, the QG turbulence
for the stratified rotating case, and the pure solenoidal case for the weakly com-
pressible flow case.

Principal features of flows without production, that are addressed in this book
are collected in Fig. 14.2.

Investigation of interactions with waves is a second step in the study of such
flows: We are first faced with the problem of interacting acoustic waves in the latter
case only, because the solenoidal problem is essentially solved (e.g., using conven-
tional isotropic EDQNM consistent with a Kolmogorov energy spectrum).

14.5.2.1 Buoyant Flows in a Stably Stratified Fluid

In the purely stratified case, gravity-wave turbulence is crucial only if the nonprop-
agating mode, i.e., the toroidal part of the velocity field, is a priori discarded. This
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removal is generally unphysical, and oversimplified wave-turbulence studies, such
as the one by Caillol and Zeitlin (2000), are only marginally relevant. The claim of
explaining horizontal layering in the latter paper is highly misleading. In contrast,
emphasis on rather strong turbulence is much more relevant, at least at moderate
times, looking at the “toroidal cascade,” and the transition from a 3D isotropic un-
structured flow to a strongly anisotropic, horizontally layered, flow can be described
by the statistical theory.

14.5.2.2 Weakly Compressible Isotropic Turbulence

The case of weakly compressible turbulence is not present in Fig. 14.2. In this case,
the solenoidal mode plays a role similar to the toroidal mode in stratified turbulence
and to the QG mode in the rotating and stratified case, but the pseudo-acoustic
mode is not necessarily a wave mode: True acoustic waves are observed at very low
wavenumbers, whereas the pseudo-sound regime may hold at higher wavenumbers.
As for the case of buoyant turbulence in a stratified fluid, the basic equations in
terms of “slow” amplitudes are

∂as

∂t
=

∑
s ′,s ′′=0,±1

∫
k+p+q=0

exp[−ı(s�k + s ′�p + s ′′�q) t]

× Nss ′s ′′(k, p)a∗
s ′(p, t)a∗

s ′′(q, t) d3 p. (14.45)

Diffusive terms can be neglected for a preliminary discussion of couplings. Of
course, the coupling coefficients Nss ′s ′′ completely differ from their counterparts
in the solenoidal buoyant case subjected to stable stratification, and a0 is two-
component (solenoidal mode) in the compressible case. A similar cartoon, however,
can be discussed in both flow cases, depending on the signs (s, s ′, s ′′), or triad polar-
ities, as follows:

1. Nonpropagating slow mode, s = 0. It is clear that the nonlinear dynamics is
dominated by interactions between slow modes only, so that the leading terms
may correspond to s ′ = s ′′ = 0: One recovers the “toroidal turbulence” for the
stratified flow case and pure incompressible dynamics for the weakly compress-
ible flow case. The main difference is that incompressible isotropic turbulence
is well understood, at least regarding energy spectrum and energy transfer,
whereas toroidal turbulence is still under investigation. Consequently, a large-
Reynolds-number Kolmogorov energy spectrum can be specified and fixed for
the solenoidal mode, as in Fig. 9.5.

2. Our main interest in this subsection is the mode related to s = ±1, generat-
ing “dilatational velocity” and “pressure” contributions, which are closely con-
nected together, or not, by means of a possible acoustic equilibrium. It is very
difficult to rank a priori the three kinds of interactions (±1, 0, 0), (±1,±1, 0),
and (±1,±1,±1) for (s, s ′, s ′′). The first one is never resonant, but cannot be
completely removed from consideration of whether the order of magnitude
of a0 is much larger than the one of a±1. The second one will select resonant
“dyads,” like k ± p = 0. Only the third one will select resonant triads, such as
k ± p ± q = 0.
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It is clear that wave turbulence is only a part of the whole story, which is even
irrelevant in some cases, like the toroidal turbulence in the stably stratified case. A
simplified EDQNM3 closure strategy is applicable, but the study by Fauchet (1998)
has shown the importance of a nonconventional ED term, denoted by V in this
chapter, or, more generally of the nonlinear part of Kraichnan’s response function.

Finally, we have illustrated closure theories for weakly compressible flows in
Chapter 9 by a peculiar study. This viewpoint, which may appear idiosyncratic, is
mainly motivated by the existence of detailed asymptotic laws that were derived,
with practical interest. There exist important works on this topic, from wave tur-
bulence for nonlinear sound (Zakharov, L’vov, and Falkowich, 1992), to absolute
equilibrium in truncated Euler equations. For instance, a generalized k−5/3 law can
be inferred from Kraichnan (1955) for both solenoidal and acoustic modes, even in
the viscous case, but radiation to infinity is excluded in this study.

14.5.3 Role of the Nonlinear Decorrelation Time Scale

When comparing strong turbulence without production and wave turbulence, it is
important to stress significant differences:

� Conventional isotropic EDQNM works well, at least for predicting energy spectra
and transfers, but we do not know really why! The role of ED is crucial, and even
the QN structure results from only a heuristic closure strategy. In any case of
strong turbulence less documented, as the toroidal turbulence in stably stratified
flows, the conventional isotropic ED probably needs refinement, especially in the
spectral region where energy concentrates (quasi-VSHF 1D modes). Recourse to
more sophisticated self-consistent closure theories may be useful.

� The “pure” wave-turbulence theory, which appears as a limiting case of QNM
closure, also works well, but we know why! A QN structure can be supported
by mathematical analysis (Benney and Newell, 1969) or by a physically relevant
random-phase approximation. Markovianization results from a rigorous rapid–
slow time-scale decomposition, and ED is unimportant in the asymptotic limit. In
this limit, there is no need for a significant nonlinear renormalization of the bare
dispersion frequency, too.

� The role of ED appears to be very subtle in the “mixed” case, when wave
turbulence coexists with strong turbulence. In stably stratified turbulence, a
quasi-perfect agreement was found between DNS results and EDQNM2 results
(Godeferd and Staquet, 2003), keeping the same ED (inherited from HIT) for all
interactions, but only the relatively low-Reynolds-number range, which was al-
lowed in DNS, was investigated. In the case of very high Reynolds number and
very low Froude number, with large ReFr2 parameter, which is discussed at the
end of Chapter 7, a refined analysis will be needed. The case of quasi-isentropic
isotropic turbulence offers a very good example: Keeping the same ED for all in-
teractions yields poor results. Very striking results are found by choosing a Gaus-
sian kernel for V in Eq. (14.10) instead of a exponential one. As discussed in
Chapter 9, this cannot be obtained by replacing the acoustic-wave frequency with
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a renormalized nonlinear one. A relevant explanation, given in this book but not
in the original reference (Fauchet, 1998), is to add a random part to the linear
dispersion frequency, in agreement with Kraichnan’s random oscillator.

A related problem is the possible need for a “renormalized” wave frequency
in wave turbulence. For instance, a nonlinear shift in Rossby wave frequency is
demonstrated from statistical theory and DNS (Kaneda and Holloway, 1994; Ishi-
hara and Kaneda, 2001), whereas such a shift seems to be useless in 3D rotat-
ing turbulence (inertial wave turbulence) and in MHD turbulence (Alfvén wave
turbulence). The study of Galtier et al. (2001) had the merit of showing that
even nondispersive waves can generate weak wave turbulence, against a well-
established prejudice. Of course, phase mixing results from dispersivity, and natu-
rally damps nonlinearity. The “prejudice,” however, is possibly linked to a con-
fusion between a pure advection term by a velocity, V , yielding exp(ık · V) in
Fourier space, and the phase term ±ık · V of nondispersive waves, . . . ,forgetting
the sign ±1! Because of the sign, which allows propagation in opposite directions
(generally coming from second order in time, Dalembertian-type, operator), wave
operators affect the triple correlations – even in the absence of dispersive effects –
whereas pure advection terms do not. Rossby waves are characterized by a first
order in time operator, and therefore propagate only in one direction. We do not
question here the wave terminology, even if Rossby waves could be called “west-
ward advected oscillations” instead of “waves.” This is a question of definition
of waves, but one can point out the very different nature of inertial, Alfvén, and
Rossby waves. The Rossby waves could be less efficient in damping nonlinearity,
so that a nonlinear shift would reveal not too weak a turbulence.

14.6 Connection with Self-Consistent Theories: Single
Time or Two Time?

The Kraichnan’s DIA, in spite of some drawbacks, played a crucial role in the long
history and progressive generation of “triadic closure” theory. The two-time aspect
is essential in the first version, as well as in its Lagrangian or semi-Lagrangian more
sophisticated subsequent variants (see Kaneda, 2007, for a very recent review). The
aim of such a two-time and two-point (or even three-point) statistical theory is to de-
rive a consistent set of close equations for both the response tensor, corresponding
to G+(k, t, t ′) in this chapter, and to the two-time spectral tensor, which generalizes
our R̂ as R̂(k, t, t ′).

A theory formulated in terms of two-time statistical tensors can be converted
into its single-time counterpart by use of a so-called fluctuation–dissipation theorem.
For instance,

R̂i j (k, t, t ′) = G+
in(k, t, t ′)R̂nj (k, t ′, t ′), (14.46)

ignoring the possible time dependency of the wave vector for the sake of simplicity.
In conventional applications, the two-time dependency of the response tensor is a
priori specified [for instance, exponential (t − t ′) decorrelation]. EDQNM can be
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Figure 14.3. Embedded theories.

presented as a by-product of DIA in this way, but we think that it is a rather com-
plicated and indirect way to proceed. Few applications of DIA or EDQNM were
made in the context of HAT. One can mention the return to isotropy from a (weak)
anisotropic (axisymmetric) case by Herring (1974), and the weakly axisymmetric
QG EDQNM model by the same author mentioned in Chapter 8. More sophisti-
cated anisotropic models were developed by Sanderson, Hill, and Herring (1986),
using a small number of spherical harmonics. None of these studies were able to
incorporate as a building block the RDT Green’s function as a natural zeroth-order
response tensor, if we exclude wave turbulence, of course.

A general formulation of two-time DIA yields a single Green’s function in the
nonlinear closure of the equation for the two-time correlation spectral tensor, and
the two other factors then appear by means of the preceding fluctuation–dissipation
relationship, leading to essentially the same form as Eq. (14.12) with a threefold
product of response tensors. Of course, solving (inverting?) the modified response
tensor operator for third-order single-time correlations is simpler and more direct,
the threefold product even appearing in the basic equation for velocity fluctua-
tion, rewritten in Eqs. (14.9) and (14.23). The final DIA-type evolution equation for
the two-time spectral tensor therefore contains an integral whose structure is much
the same as EDQN expression (14.12), with terms such as Glq(q, t, t ′)R̂qn(q ′, t ′) re-
placed with the two-time spectral tensor R̂ln(q ′, t, t ′), leaving one remaining Green’s
function from the threefold product, which is replaced with the response tensor.

A more streamlined procedure could be based on EDQNM3, using DIA and
subsequent self-consistent theories for improving the ED factor only, in agree-
ment with the strict hierarchy of embedded models/theories displayed in the scheme
shown in Fig. 14.3, in which the LRA (Kaneda, 2007) is chosen at the end of the list,
as a representation of self-consistent theories with recourse to Lagrangian approach,
without excluding other variants. This strategy can be used for deriving complete
two-time statistics, as illustrated in RDT by Kaneda and Ishida (2000), in order to
have access to R̂(k, t, t ′). The way of solving operators linked to any product of re-
sponse tensors is applicable. The only difficulty could result from a very complex
equation for the response tensor G+(k, t, t ′), with no explicit simplified solution in
terms of R̂(k, t, t ′) [such as G(0)(k, t, t ′)V (k, t, t ′)].
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14.7 Applications to Weak Anisotropy

Applications to weakly anisotropic flows have been mentioned previously (Herring,
1974; Sanderson, Hill, and Herring, 1986). In addition, some recent applications of
LRA to the response of turbulence to a weak linear operator in the presence of
strong nonlinearity deserves attention.

14.7.1 A Self-Consistent Representation of the Spectral
Tensor for Weak Anisotropy

The most general decomposition of the spectral tensor (e.g., the e − Z − H de-
composition introduced and discussed in Chapter 2), which holds for arbitrary flow
anisotropy, involves never more than four real scalars. In addition to the very exis-
tence of the polarization anisotropy Z , anisotropy is reflected by the angle depen-
dence of these basic scalars. Looking at the trace of the spectral tensor, it is clear
that E(k)/(4�k2) is only the zeroth-degree angular harmonic of e(k) and gives no
information on its angular distribution in wave space. Nevertheless, some informa-
tion about this angular distribution can be obtained by spherically averaging all the
components of the spectral tensor R̂, because some weighting factors, such as the
projector Pi j ( for e) or the polarization deviator Ni N j (for Z) generate angular har-
monics until the degree 2. As a result, the following self-consistent decomposition is
found:

R̂i j (k, t) = E(k)
4�k2

[(
1 − 15H (e)

pq

kpkq

k2

)
Pi j + 5

(
Pin Pjm H (z)

nm + 1
2

Pi j H (z)
pq

kpkq

k2

)]
,

(14.47)

in which one can identify the contribution from the directional anisotropy as

R̂(dir)
i j =

(
e − E

4�k2

)
Pi j = −15H (e)

pq (k)
kpkq

k2

E(k)
4�k2

Pi j (k), (14.48)

and the contribution of polarization anisotropy¶ as

R̂(pol)
i j = 5

E(k)
4�k2

[
Pin(k)Pjm(k)H (z)

nm (k) + 1
2

Pi j (k)H (z)
pq (k)

kpkq

k2

]
, (14.49)

in addition to the purely isotropic part

R̂(iso)
i j = E(k)

4�k2
Pi j (k).

This decomposition, introduced by Cambon and Rubinstein (2006), can gener-
alize many other similar tensorial expansions. It is self-consistent in the sense that
it does not involve any adjustable parameter. Given an arbitrary anisotropic R̂, it
is possible to derive from it the spherically averaged spectra H (e)

i j (k) and H (z)
i j (k)

¶ This form is strictly equivalent to its counterpart in terms of Z , 
(Z Ni N j ), with Z =
(5/2)E/(4�k2)H (z)

i j N∗
i N∗

j , without using the helical-mode vector N.
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defined in Chapter 2, and then to reconstruct its angle-dependent form, up to a
given degree of angular harmonics, using Eq. (14.47). The difference between the
original, arbitrarily anisotropic, R̂, and its weakly anisotropic approximation gener-
ated by H (e)

i j (k) and H (z)
i j (k) is the contribution from higher-degree harmonics that

cannot be reconstructed from H (e)
i j and H (z)

i j alone. Let us discuss only the case of
directional dependence, as a simple example, for illustrating the building of angular
dependence. A systematic way to express the angular dependence of a “true” scalar
such as e is using scalar spherical harmonics:

e = 1
2

R̂ii = E

4�k2
+

N0∑
n=1

2n∑
m=−2n

em
2n(k) Pm

2n(cos �k) exp(ım
k)︸ ︷︷ ︸
Y m

2n(�k ,
k )

,

whereas the expression derived from (14.47) is

e = E(k)
4�k2

(
1 − 15H (e)

pq

kpkq

k2

)
,

in exact agreement with the decomposition in terms of scalar spherical harmon-
ics for 2N0 = 2. The symmetric trace-free tensor E(k)H (e)

i j (k) includes five inde-
pendent components, which correspond exactly to the five independent coefficients
em

2n(k) with n = 1. Accordingly, this decomposition is consistent with an expansion
of the order of 2N0 = 2 of the trace of R̂, which is the first nontrivial degree, given
the symmetries. A similar link of angular harmonics to H (z)

i j components holds for
the polarization anisotropy, but is more complicated because tensorial harmonics
are called into play.

Among many particular forms and uses of Eq. (14.47), one can mention its ap-
plication in Cambon, Jeandel, and Mathieu (1981) to the closure of a spherically
averaged version of the Craya equation by EDQNM, in which both “rapid” and
“slow” spectra of pressure–strain correlations require a partial reconstruction of the
angle dependency in Fourier space.

Going back to the approach of linear response, Eq. (14.47) is only used for
translating the main results in the presence of a weak shear, as already touched
on in Chapter 5. This approach is very different from the one dedicated to strongly
anisotropic turbulence, as the linear response is sought with respect to a weak per-
turbation (the linear RDT operator) to a nonlinear state in statistical equilibrium.
In this sense, the tangent response function can be also weakly anisotropic and
therefore far from the RDT linear limit G(0), which is generally very anisotropic
for large t − t ′. A decomposition of G+ in terms of a pure isotropic factor and a
weakly anisotropic one is found consistently.

The linear response has some analogies with the general laws that connect fluxes
and forces in statistical theory for continuum media, with similar symmetry proper-
ties as the ones prescribed by Onsager. The main equation for the response to a
weak mean flow with Ai j velocity gradients is

R̂(aniso)
i j = Qi jnm(k)Anm,



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

14.7 Applications to Weak Anisotropy 445

and because of the symmetry of the Qi jnm tensor, only the symmetric part, Snm , of
Anm is eventually displayed. Translated into our own formalism, this yields R̂(aniso) =
R̂(dir) + R̂(pol), and, using Eqs. (14.48) and (14.49),

H (e)
i j (k) = 1

15
(B − A)

(
k

k0

)−2/3

ε −1/3k−2/3
0 Si j , (14.50)

H (z)
i j (k) = 2

15
A

(
k

k0

)−2/3

ε −1/3k−2/3
0 Si j . (14.51)

For the basic state, a classical Kolmogorov inertial range is recovered, with
E(k) = Ck	

2/3k−5/3, so that the dimensional spectra of deviatoric tensors, E(k)H (e)
i j

and E(k)H (z)
i j , exhibit a classical scaling like ε 1/3k−7/3, as suggested by Lumley. In

the preceding equations, k0 is identified with the wavenumber at which the inertial
range can be considered to begin. Accordingly, k−2/3

0 ε 2/3 is the typical time scale,
and k−2/3

0 ε 2/3Si j is the relevant nondimensional strain tensor. Finally, A and B are
universal constants, obtained in a satisfactory agreement both by DNS for homo-
geneous pure plane shear and LRA theory (Ishihara, Yoshida, and Kaneda, 2002;
Yoshida, Ishihara, and Kaneda, 2003).

14.7.2 Brief Discussion of Concepts, Results, and Open Issues

Given the strong constraints given by weak anisotropy, with a spectral tensor that
is necessarily of the form (14.47), and dimensional analysis “à la Lumley,” there
are very few degrees of freedom, and the main results can be obtained by much
simpler, even wrong, ways. The merit of LRA in this case, is to find the result in
a rigorous and self-consistent way, avoiding useless oversimplifications. Even if the
specific shear-advection term inherited from the linear operator has no significant
effect on the tensor H (e)

i j , which expresses the linear response as in the short-time
RDT limit (see Chapter 5), this shear-advection effect is correctly accounted for in
the intermediate theoretical steps, so that the confusion between relations (14.2)
and (14.3) is avoided from the beginning.

One could expect, at least in the case of pure plane shear, to reconcile an ap-
proach to strong anisotropy, more restricted to large scales, and the linear response
theory, limited to very small scales.

Not even mentioning the case of combined effects of irrotational strain and vor-
ticity, which leads to elliptical or hyperbolical instabilities with exponential growth
in the linear limit, the case of solid-body rotation deserves some attention. It ap-
pears that the Coriolis force has no impact on the linear response. This is consis-
tent with an objectivity principle satisfied in continuum mechanics. Nevertheless, it
is well known that Chapman–Enskog-type developments for Boltzmann equations
can question such objective laws if they are carried out at a sufficient order. The
constitutive laws, or fluxes-to-forces relationship, could become explicitly Coriolis
dependent in this situation. In the same way, the effect of solid-body rotation can be
recovered at a further order (quadratic dependency on �?) using LRA.
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Another point is the fact that strong anisotropy induced by the Coriolis force at
a sufficiently low Rossby number is found to be dominant at small scale, as shown
by both wave-turbulence theory and DNS results. The classical picture of strong
anisotropy restricted to largest scales is radically questioned. In this situation, it
seems to be difficult to match both low-Rossby and high-Rossby limits.

14.8 Open Numerical Problems

The numerical cost of solving EDQNM equations, as well as those issued from sim-
ilar single-time or even two-time “triadic” theories, is very low in the isotropic case.
This cost, and the complexity of the numerical procedure, can blow up, not only in
an inhomogeneous configuration, as it is often said, but even in the case of strong
anisotropy. The numerical solution of the equations of wave turbulence was de-
manding in terms of numerical resources, with a particular care for accurately cap-
turing the resonant surfaces with complex shapes.

Reaching very high Reynolds numbers and even asymptotic limits, e.g., vanish-
ing Rossby numbers, is not a problem in solving these statistical model equations,
in contrast to DNS. This is the number of angular variables in interaction that is re-
sponsible for the high cost, especially because the classical pseudo-spectral scheme is
difficult to apply: a factorization like A(k)

∑
û(p)û(q), which is very simple for basic

Navier–Stokes equations, yielding A(k)ûu is very cumbersome when one is looking
at typical equations in terms of spectral tensors and response functions. A higher
accuracy, however, can be obtained in statistical closures, for accounting for typical
triads, such as the resonant ones but also the quasi-exact cancellation between some
of them. Even very simple quantities affected by phase mixing, e.g., in Chapter 7,
whose history consists of damped oscillations with a smooth envelope, are found
to exhibit chaotic wrong envelopes after a finite integration time, in any classical
pseudo-spectral DNS, because of limited accuracy in terms of � k/k, k‖/k, etc. It is
therefore pertinent to try to solve costly statistical models. Attempts to reduce this
cost, using – despite the cumbersome factorization – pseudo-spectral techniques, or
Monte Carlo methods, do exist but are outside our scope.
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15 Conclusions and Perspectives

Description and knowledge of turbulent flows is advancing well, particularly with
the increasing development of numerical resources (Moore’s law) and detailed mea-
surements using more and more particle image velocimetry (PIV), stereoscopic
particle image velocimetry (SPIV), and particle tracking velocimetry (PTV). Well-
documented databases are created that can support techniques of data compression
using a dramatically reduced number of modes (POD, wavelet coefficients, master
modes, etc.).

Behind this attractive show window, however, the advance of our conceptual
understanding of turbulent flows is much less satisfactory. Advances in numerics,
experiments, data-compression schemes, are first beneficial to applied studies, for
instance those using a smart combination of techniques (often referred to as multi-
physics, with hybrid RANS–LES methods, and many others). Turbulent flows are
well reproduced in the vicinity of a well-documented “design-point,” but this mod-
eling is questioned far from it (“far” in the parameter’s space, or simply in elapsed
time for unsteady processes). Efficiency of data-compression schemes, for instance,
is ellusive because a low-dimension set of modes, identified and validated near the
design-point, can lose its relevance far from it.

We hope that this book will contribute to an honest and up-to-date survey of
turbulence theory, with the special purpose of reconciling different angles of attack.
In this sense, the atomization of the community into competing, and/or too (deliber-
ately) self-isolating, chapels, is perhaps one of the main impediments for advancing
theory. The difference of parlances or jargons is a related aspect, despite the univer-
sality of the mathematical formalism.

15.1 Homogenization of Turbulence. Local or Global Homogeneity?
Physical Space or Fourier Space?

One may go back to the theory of homogeneous turbulence (or “homogeniza-
tion of turbulence”) by George Batchelor (1920–2000), following a very interest-
ing recent essay by Moffatt (2002). It is usefully recalled that Batchelor was aware
from the very begining of the importance of Kolmogorov’s approach, including the
celebrated 4/5 law. He published a deep analysis of the theory as early as 1946
and 1947, having read the four-page seminal article in Doklady (Comptes Rendus
of USSR Academy of Sciences). It is therefore irrelevant to oppose Batchelor’s

449
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approach to turbulence to Kolmogorov’s. One may evoke the meeting held in
Marseille (1961), which is often mentioned as the “Solvay meeting” of turbulence,
quoted as a “watershed for turbulence” by K. Moffat:

Kolmogorov was there, together with Obukhov, Yaglom, and Millionshchikov;
von Karman and G. I. Taylor were both there – the great father figures of prewar
research in turbulence – and the place was humming with all the current stars of
the subject – Stan Corrsin, John Lumley, Phillip Saffman, Les Kovasznay, Bob
Kraichnan, Ian Proudman, and George Batchelor himself, among many others.

Finally, it is recalled how Kolmogorov himself questioned the validity of his
K41 theory, opening Pandora’s box with a scale-dependent, intermittent distribu-
tion of ε (r). This resulted in both a large interest for internal intermittency, and a
frustration that afflicted Batchelor and many others from 1960 onward.

We think, however, that very important progress in the theory was made fol-
lowing Kraichnan’s approach, even before the early sixties, not to mention linear
theory such as RDT, and that it is a pity to underestimate related studies, as is often
done in the “intermittency and scaling” community, especially after the publication
of Frisch’s book. In addition, the development of practical models, mainly based
on single-point closures, in RANS and (more recently) in LES, was very useful for
turbulence in engineering and environment, with almost no impact of new devel-
opments of theory of internal intermittency, but often a strong connection with the
spectral approach. Unjustified∗ reluctance to look at a formalism in Fourier space,
and strong (justified) interest for a statistical approach in terms of velocity (or vor-
ticity, pressure, etc.) increments can explain partly such an underestimation.

As a first example, it can be shown (e.g., Chapter 3) that the Kolmogorov law
〈�u3

‖〉(r)/r = −(4/5)ε is as “exact” as its counterpart in Fourier space
∫∞

k T (k)dk = ε
is. In the same way, more general (not only valid at very high Reynolds number)
laws were given by von Karman and Howarth in 1938 in physical space and in
Fourier space by Lin and von Karman in 1949.

The concept of local homogeneity raises very important questions. On the one
hand, the use of increments (e.g., velocity increments) for defining two-point statis-
tics allows for a better approach to local homogeneity, even if “local homogeneity”
is almost an oxymoron, because homogeneity means translational invariance. In ad-
dition, structure functions of the order of 2 and 3 can be obtained from measure-
ments more easily than second-order spectra and transfer spectra,† and the spectral
approach holds little interest for higher-order statistical moments (higher than 4).
From this viewpoint, local homogeneity (and very often isotropy) is assumed at rel-
atively small scales in exploiting physical and numerical experiments in rather com-
plex flows; the assessment that “the flow is considered as homogeneous and isotropic
in the center of a von Karman flow, in the centerline of the plane channel, near the

∗ Even the more that studies about scaling and intermittency are often supported by conventional
pseudo-spectral DNS!

† Some measurements, however, give direct access to spectral information, and even to anisotropic
one, such as scattering of ultrasound waves (C. Baudet, S. Fauve) or light (D. Grésillon).
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centerline of a jet, etc.” can be found in many recent papers, whereas the same as-
sessment would have been considered ridiculous 20–30 years ago. This viewpoint,
getting rid of inhomogeneous–anisotropic large scales in rather complex flows and
focusing on small scales, considered as homogeneous–isotropic–intermittent, is not
wrong, partly thanks to the use of incremental statistics. This is questionable, how-
ever, from a dynamical viewpoint: Apparent local isotropy can result from quasi-
balanced inhomogeneous flux terms that are present in the transport equations.
More generally, we have shown from a dynamical approach that the universality
of small scales, independent of the way of injecting energy at large scales, is really
questioned in many cases, even at very high Reynolds numbers. Despite significant
advantages, the conventional viewpoint has some negative results:

� Not to encourage the building of smart experimental facilities, in which homo-
geneity can be really assumed in a very large spatial domain, following the ones
presented in Chapters 4–8.

� To consider as marginally relevant the theoretical approach to flows, such as those
studied in Chapters 4, 7, and 8, which can be really considered as homogeneous,
but strongly anisotropic, at almost any scale.

Other arguments, which illustrate the interest of considering Fourier space
(modal decomposition related to the Helmholtz decomposition, treatment once and
for all of pressure fluctuations, giving the minimal number of dynamical modes), are
presented in Chapters 1 and 2. Regarding the description of the cascade, it is impor-
tant to stress that triadic spectral description, not even mentioning “closure,” carries
on much more information than third-order structure functions do. It accounts for
triple correlations at three points, and not only at two points, and allows us to iden-
tify exact operators that underlie detailed conservation laws, such as Eqs. (3.122)
and (3.124) for detailed conservation of both energy and helicity, Eqs. (3.214)–
(3.216) for detailed conservation of energy and enstrophy, Eqs. (7.16)–(7.18) for
detailed conservation of toroidal energy and vertical enstrophy, and Eqs. (8.6) to
(8.8) for detailed conservation of QG energy and potential vorticity. Another point
that deserves to be emphasized is the power of Waleffe’s instability hypothesis that,
starting from the exact detailed conservation laws and the stability analysis of a low-
dimensional system, leads to accurate predictions dealing with triadic tranfers and
induced cascades, even in nonhomogeneous cases.

15.2 Linear Theory, “Homogeneous” RDT, WKB Variants, and LIA

It is usually said that the “problem(s) of turbulence” come(s) from the nonlinear-
ity of basic Navier–Stokes-type equations. This is only partially true, as “burgu-
lence” (i.e., pseudo-turbulent behavior exhibited by the solution of the Burgers’
equations), not to mention its 3D generalization to the cosmological gas, is essen-
tially solved and understood. The quadratic advection term is probably always in-
volved in the problem, but the projection onto a solenoidal subspace, in connec-
tion with the pressure term, is another important ingredient, at least in the nearly



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

452 Conclusions and Perspectives

incompressible flow case. As a slightly different illustration (from basic dynamical
equations, again), the advection term is completely removed in a pure Lagrangian
alternative to Navier–Stokes equations, but nonlinear complicated operators rear
their ugly heads through pressure and diffusive terms.

As another trivial remark, the validity of a linear approach depends on the state
in which one performs the linearization.

Linear theories addressed here retain at least a part from exact dynamical equa-
tions, and include a straightforward treatment of the pressure term, together with
the Helmholtz decomposition for purely incompressible and weakly compressible
fluctuatings flows.

Homogeneous RDT offers interesting possibilities for reconciling the stability
analysis and statistical approach, when it is consistent with exponential instability
(hyperbolical instability in Chapter 5, barotropic instability for rotating shear, its
baroclinic extension, and elliptical-flow instability in Chapter 8). Related destabi-
lizing effects are mimicked by much simpler single-point RSM models, such as for
the shear flow rotating around the spanwise direction, but only RDT or more so-
phisticated linear stability analyses really explain why, in connection with dominant
pressure-released modes. In other cases, in which the destabilizing effect comes
from a narrow band of angular modes in wave space, with the “rapid” fluctuating
pressure allowing a resonant amplification to periodic “production,” the “rapid” re-
sponse of any RSM is poor (e.g. elliptical flow instability and periodic compression
with swirl).

Even when RDT gives very few results about the evolution of statistics, it could
suggest a good choice of eigenmodes for improving fully nonlinear theories, as il-
lustrated in Chapter 4–8. Identification of a deterministic Green’s function, possibly
expressed in terms of a minimal number of solenoidal modes, from the basic lin-
earized equation that governs the fluctuating field, is shown to be the best way for
using linear theory: It is possible to predict the impact of the linear operator on
any statistical moment, showing for instance a poor relevance of RDT dealing with
single-time second-order moments, in contrast with interesting information given
for two-time second-order statistics and third-order statistics (see Chapters 4, 7, 8,
and 13).

WKB variants allow us to relax the assumption of homogeneity in the linear
theory, or to suggest at least a nice illustration of what could be “local homogene-
ity” from a dynamical viewpoint. In contrast to homogeneous RDT, it is possible to
identify localized instable zones in a base flow, which is smooth but more realistic
than the admissible mean flows of homogeneous RDT and to quantify their contri-
bution: An example of competing centrifugal, elliptical and hyperbolical instabilities
is given in Chapter 8 for simple nonparallel flows with adjacent eddies.

It is important to point out some limitations. A generic instability such as the
Kelvin–Helmholtz one cannot be afforded, even if homogeneity is relaxed. Despite
a very promising extension of RDT to stratified flows with shearing effects, and pos-
sible prediction of baroclinic mechanisms, and to compressible shear (Chapter 10),
this drawback cannot be ignored. For compressible shear flows, a possible depletion
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of nonlinearity (with respect to the incompressible case) can explain an unexpected
relevance of linear theory, at least in the homogeneous case.

Among the canonical-flow cases addressed in this book, only the case of the
incompressible shear flow is a bit disappointing, restricting the approach to RDT:
the important mechanism of redistribution of energy between RST components by
nonlinear pressure terms, which is of course discarded, can be mimicked by very
simple single-point closures.

WKB RDT can be applied to compressible flows, but its implicit ingredient of
short-wave disturbance yields discarding the acoustic mode. Some extensions can
be found in replacing the base-flow trajectories with the acoustic rays, as is touched
on in Chapter 13. On the other hand, LIA has much in common with a purely ho-
mogeneous linear theory. Because there is no length scale given by the base flow,
there is no restriction of the wavenumber range for the disturbance flows. One can
say that the typical length scale of the mean flow is infinite in homogeneous RDT
(or equivalently for the extensional base flow in stability analysis), whereas it is zero
(the shock-wave thickness) in LIA. As in RDT, a transfer matrix can link upstream
and downstream modal amplitudes of the disturbance field, but an entropic distur-
bance mode can be accounted for. Some wavelike response of the shock wave and
its linkage to the full linear transfer matrix for the disturbance field is another useful
feature, with no equivalent in RDT. A very striking result of LIA, beyond statistical
results, is the possibility of advecting a temperature spot across the shock wave and
giving rise to a pair of corotating vortices. In addition to a mathematical transfer
term from the upstream entropy mode to downstream vortical mode via the baro-
clinic torque, a nice formation of structure is found!

15.3 Multipoint Closures for Weak and Strong Turbulence

An assessment of multipoint closures can be proposed. It appears that their use for
“production-dominated” flow is probably a too complicated task, given the “return
of investment” that one can expect. On the other hand, application to flows “without
production,” which consist of only nonpropagating neutral modes and wave modes
in the linear eigenmode decomposition, is very promising.

The latter case includes incompressible HIT as the simplest, the whole velocity
field being a trivial neutral mode in the linear inviscid limit.

In the particular case of turbulence subjected to pure rotation, the complex
structural anisotropy is created by the nonlinear cascade, with the angular depen-
dence of energy in wave space reflecting the loss of dimensionality. Such behav-
ior occurs in other flow configurations in which the presence of dispersive waves is
more important than the classic “production” mechanisms. Even without additional
mean strain (such as the elliptical-flow unstable case), pure rotation induces com-
plex “rapid” and “slow” effects, for which even the basic principles of single-point
closures are questionable. Single-point closures look particularly poor because there
is no production by the Coriolis force, whereas the dynamics is dominated by waves
whose anisotropic dispersivity is induced by fluctuating pressure.
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This suggests discriminating “turbulence dominated by production effects”
from “turbulence dominated by wavy effects.” In short, single-point closures are
well adapted to simple turbulent flow patterns of the first class in rather complex
geometry, whereas multipoint closures are more convenient for complex turbulent
flows in simplified geometry, as illustrated by the second class.

15.3.1 The Wave-Turbulence Limit

Mathematical developments in the area of wave-turbulence theory (WT) have re-
cently renewed interest in flows that consist of superimposed dispersive waves, in
which nonlinear interactions drive the long-time behavior. Individual modes are of
the kind

u′
i (x, t) = ai (t) exp[ı(k · x − � t)], (15.1)

with a known analytical dispersion law for �k = �(k). Similar averaged nonlinear
amplitude equations can be found using either WT or multipoint closures (MPC),
the advantages and drawbacks of which are briefly discussed below.

In the case of wave turbulence, statistical homogeneity and quasi-normal as-
sumptions have equivalent counterparts, obtained by assuming a priori Gaussian
random phases for the wave fields. In addition, isotropic dispersion laws such as
�k = |k|� in Eq. (15.1) are almost exclusively treated in wave turbulence for deriv-
ing Kolmogorov spectra, with the key hypothesis of constant and isotropic energy
fluxes across different scales associated with a wavenumber |k|. By contrast, in geo-
physical flows, dispersion laws are anisotropic, with, for instance, � = �kx/k2 in the
case of Rossby waves, � = ±2�k‖/k for inertial waves, and � = ±Nk⊥/k for gravity
waves (kx , k‖, and k⊥ are the components of the associated wave vector respectively,
in the zonal direction, and the directions parallel or perpendicular to the rotation–
gravity vectors). In the latter two 3D cases, this anisotropy is reflected by the strange
conical – St. Andrew’s cross – shape of isophase surfaces in typical experiments
with a localized point forcing (see views of this type in Figure 4.10) and by angular-
dependent energy drains when looking at nonlinear interactions, as illustrated in
Chapters 4, 7, and 8.

At least if Eulerian correlations are considered, the MPC and wave-turbulence
theories share in general an important background. Kinetic equations for mean
spectral-energy densities of waves are found in wave turbulence, similar to homo-
geneous MPC. Their slow evolution is governed by similar energy transfer terms,
which are cubic in terms of wave amplitudes (triads). There is also a possibility that
these transfers involve fourth-order interactions (quartets) in wave turbulence when
triple resonances are forbidden by the dispersion laws and/or by geometric con-
straints (e.g., shallow waters). Resonant quartets seem to be particularly relevant
when resonances are seen in a Lagrangian description. When triple resonances are
allowed, for instance in cases of rotating turbulence, stably stratified turbulence and
magnetohydrodynamic turbulence, wave-turbulence kinetic equations have exactly
the same structure as their counterpart in elaborated MPC. Hence, wave turbulence
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and MPC have a common limit at very small interaction parameters (e.g., Rossby
number, Froude number, magnetic number in magnetohydrodynamics). Of course,
interactions between neutral modes, if they are present, and wave modes cannot be
investigated by the pure theory of wave turbulence.

15.3.2 Coexistence of Weak and Strong Turbulence, With Interactions

When eigenmodes consist of nonpropagating, neutral, and wavy modes, one can ex-
pect very complex cascade processes. Wave turbulence, dominated by resonant tri-
ads, is the only modality in the absence of the nonpropagating mode. Accordingly,
inertial wave turbulence in 3D rotating turbulence is really relevant if the Rossby
number is sufficiently small.‡ When strong nonlinearity mediated by interactions
that involve only the nonpropagating mode and weak nonlinearity involving at least
a wave mode are face to face, the former can be considered as dominant. Both the
toroidal cascade and QG cascade are therefore of interest in stratified and rotat-
ing turbulence. Note that the emergence of toroidal (idem QG) cascade is found in
neglecting wavy modes in triadic interactions; this does not mean that waves have
no effect; in contrast, this is because gravity waves (idem inertia-gravity) waves
severely damp nonlinear contributions other than the pure toroidal (idem QG)
ones by angle-dependent phase mixing that toroidal (idem QG) cascade emerges.
For weakly compressible flows addressed in Chapter 9, the solenoidal turbulence
is already well known, so that a pseudo-acoustical cascade appears as a relevant
theme.

15.3.3 Revisiting Basic Assumptions in MPC

The derivation of statistical equations of MPC is often a very formal skill, so
that these theories can be considered opaque and complicated. Let us mention
(Moffatt, 2002) again:

and the new approaches, particularly Kraichnan’s (1959) DIA, were of such math-
ematical complexity that it was really difficult to retain that essential link between
mathematical description and physical understanding, which is so essential for real
progress.

In the same vein, A. Craya, in the early 1960s, evoked about DIA the Mona
Lisa’s (La Joconde) smile, having his strange beauty but some ambiguity. As a
very interesting survey, Y. Kaneda proposed no fewer than seven different ways
to derive DIA equations. The essential ingredient is a formal development around
a Gaussian field, but the effective second-order spectral tensor and response ten-
sor are only eventually defined by the final set of coupled equations that govern
them, so that they cannot be specified a priori, and they can significantly differ from

‡ The 2D manifold appears as the limit of the wavy inertial mode at vanishing dispersion frequency,
it is therefore a low-dimension slow mode, but not at all a 3D nonpropagating mode, filling all the
space, as the toroidal mode is in stably stratified turbulence.
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their zeroth-order counterpart. The derivation of EDQNM is less subtle, but the
conventional presentation is often too close to a cooking recipe, with heuristic pro-
cedures (ED, Markovian) called into play in order to correct an initially too crude
QN model. To derive EDQNM from DIA, using a specified form for the response
tensor, and a so-called fluctuation–dissipation theorem to translate two-time corre-
lations into single-time ones, may give information about ED and Markovianization;
but this is really a too complicated and indirect way. Comparing EDQNM with WT
theory, especially using the deep analysis of zero cumulant assumption by Benney
and Newell (1969) quoted in Chapter 4, is really enlightening. It is first possible to
understand why QN closure can be an intrinsic (exact?) closure in wave turbulence,
getting rid of ED because the damping by phase mixing of dispersive waves is a
very efficient and physical process, whereas Markovianization is bound by the natu-
ral separation into rapid phase terms and slowly evolving amplitudes of waves. It is
perhaps necessary to think in a more physical way of the use of cumulants, and of a
more convincing link between the fourth-order cumulants and the third-order ones,
yielding the basic concept of ED for strong turbulence. Nth-order cumulants at N
points represent the difference between statistical moments of the order of N and
their factorized expression in terms of products of moments of smaller order. In this
sense, a convergence to zero is ensured, which is not valid for the moments them-
selves, as soon as the points in the configuration space are sufficiently separated.
Instead of speaking of a quasi-Gaussian distribution, which is often questioned in
turbulent flow, one may address a pdf at four points, which reduces to almost a
product of pdf’s for sufficient separation lengths. The QN assumption, or more gen-
erally the EDQN one, could be more physically funded by an argument of maximum
factorization of four-point pdf’s, or maximum decorrelation between the different
points, which is less constraining and does not use the word “Gaussian.” Of course,
this is a very preliminary proposal: We have in mind a four-point distribution with-
out specifying more the configuration space (physical, Fourier, other?). As a sim-
ple illustration, factorization would be achieved for any tetrad including at least a
long leg: very large tetrads with more than one long leg, flat tetrads with only one
long leg.

15.4 Structure Formation, Structuring Effects, and Individual
Coherent Structures

The two-point anisotropic description is more powerful, even if homogeneity is
assumed, than is generally recognized. In rotating and stratified turbulence the
anisotropic spectral description, with angular dependence of spectra and cospec-
tra in Fourier space, allows quantification of columnar or pancake structuring in
physical space. Among various indicators of the thickness and width of pancakes,
which can be readily derived from anisotropic spectra, integral length scales L(n)

i j

related to different components and orientations are the most useful. As another
illustration (see Fig. 6.5), the streaklike tendency in shear flows can be easily found
in calculating by RDT both the L(1)

11 component, which gives the streamwise length
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of the streaks, and L(3)
11 , which gives the spanwise separation length of the streaks

(as usual, 1 and 3 refer to streamwise and spanwise coordinates, respectively). In
pure homogeneous RDT at constant shear rate, both length scales can be calcu-
lated analytically and their ratio (elongation parameter) is found to increase as (St)2,
S = ∂U1/∂x2 being the shear rate. Of course, more realistic quantitative aspects of
the true streaky structures found in the near-wall region are not captured, as dis-
cussed in Chapter 6.

It is often said that phase information is lost in homogeneous turbulence, but
this is true only for single-time second-order statistics, and even does not exclude
dynamical phase mixing, as illustrated by damped oscillations toward equiparti-
tion (equipartition in terms of poloidal and toroidal energy components for rapid
rotation, with nontrivial transient evolution from initial imbalance if initial data
are anisotropic, equipartition in term of poloidal and potential energy components
for strong stratification, and similar evolution from initial imbalance). More infor-
mative and surprising phase mixing is found for two-time second-order statistics,
even in the pure linear regime: This illustrates that dispersive waves can drive the
Lagrangian diffusion (passive tracers, single-particle displacement), a role that is
often attributed to purely spatial structures, such as coherent vortices, in the turbu-
lence community. Finally, nonlinear formation of structures in rotating and strati-
fied flows, which is emphasized in this book, means formation of vortex structures, –
waves are structures too but are spatiotemporal (delocalized in space) coherent
events. In fact, a subtle interplay of linear and nonlinear effects is called into play.

As a final remark, statistical indicators in homogeneous anisotropic turbulence
can quantify some average characteristics of structures (e.g., aspect ratios of cigar-
shaped and pancake-shaped structures, vorticity skewness for quantifying asym-
metry in terms of cyclonic and anticyclonic vorticity for cigar-shaped structures),
whereas information on their dynamics can be given by statistical equations. In ad-
dition, some individual coherent structures, localized in space (and in time?), if not
really obtained in statistical model equations, are found in snapshopts from DNS, as
realizations of homogeneous turbulence.

15.5 Anisotropy Including Dimensionality, a Main Theme

This is emphasized throughout this book, except in Chapters 3 and 9. It appears
as a multifold and rich property of turbulent flows, even those without produc-
tion, and affects both the multiscale energy distribution and the cascade process,
possibly until smallest scales. Our viewpoint contrasts with what is currently ad-
mitted in the turbulence community. In the engineering community, anisotropy is
considered as characterized only by the deviatoric part of the RST (bi j is “THE”
anisotropy tensor), despite the more general investigation introduced by Reynolds
and Kassinos in their structure-based modeling approach. In the physicist commu-
nity, inhomogeneity–anisotropy is considered only for the largest scales, generally
out of investigation, whereas scales that merit attention are seen as homogeneous–
isotropic–intermittent. If attention is paid to anisotropy, with recent studies using
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the SO(3) symmetry group, this concerns only the small anisotropy identified by a
very small number of angular harmonics.

Finally, this book includes the material to revisit a general theory of axisymmet-
ric turbulence. Axial symmetry with and without mirror symmetry is the simplest
symmetry for an exhaustive statistical and dynamical approach to strong anisotropy,
in both spectral and physical space, using all the theoretical tools used herein, includ-
ing the most sophisticated ones. Application to magnetohydrodynamic flows with
external strong magnetic fields could be the next step. This step can be useful for a
collaboration between specialists of turbulence in fluid and specialists of turbulence
in plasmas. The existence of the International Thermonuclear Experimental Re-
actor (ITER) worldwide project critically needs such a collaboration. Problems of
turbulence, such as the “anomalous” heat and mass (for ions) transfer in the radial
direction, is expected to be a severe problem in a future huge Tokamak. Geody-
namo and astrophysical turbulence are other instances.

15.6 Deriving Practical Models

Finally, one may anticipate some criticism against this book: too many equations,
too few practical results! A striking feature of several homogeneous flows discussed
in this book is that they escape turbulence models used in engineering applications.
The test is fair, as we have considered the best adapted mathematical formalism to
deal with the subtleties of the problem, from K − ε models to anisotropic MPC, with
a lot of intermediate links.

The way to derive more practical applications, from useful simple scaling laws
to once-and-for-all calculation of parameters (eddy diffusivity, anisotropic ratios,
etc.), must be discussed.

The terms appearing in the rate equations for Reynolds stress models in ho-
mogeneous turbulence can be exactly expressed as integrals over Fourier space of
spectral contributions derived from the second-order spectral tensor R̂i j , which is
the Fourier transform of double correlations at two points, and from the third-order
“transfer” spectral tensor Ti j . All one-point quantities in the equation that gov-
erns u′

i u
′
j can be expressed as integrals over wavenumber space, as for Eq. (2.63).

The equation for the dissipation rate ε = ��i�i (in quasi-homogeneous and quasi-
incompressible turbulence) can be derived from the exact equation that governs the
fluctuating-vorticity field �i . Recall that the practical procedure for deriving the ε -
equation hardly uses the latter exact equation and consists of basing the equation
for 	̇/	 on the equation for K̇/K with adjustable constants.

About single-point closures, one may recall that the knowledge of the mean
(Reynolds averaged) flow together with the RST in every point (with a possible
limited time dependence¶) would have been the Holy Grail in turbulence modeling

¶ Let us recall that there is no conceptual obstacle against unsteady RANS, and that seminal stud-
ies about 1975 dealt with the time development of Reynolds stresses in homogeneous turbulence
subject to a given mean flow.



P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

15.6 Deriving Practical Models 459

20 or 30 years ago. More information can be required now. In this sense the criti-
cism against single-point closure techniques deals less and less with their incorrect
closure assumptions, and more and more with the unsufficient information carried
out by them. More information about low-probability events, dramatic unsteadi-
ness, coherent structures, for predicting hazards, is needed in engineering and in
environmental flows. Two-point two-time statistics can be useful for predicting dis-
persion processes and radiated noise (e.g., applying acoustic analogies to quasi-
incompressible vortical flows). Looking at passive and reactive scalar fields, infor-
mation on pdf’s is needed too.
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