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Introduction

Stormy development of electronic computation techniques (computer systems and
software), observed during the last decades, has made possible automation of data
processing in many important human activity areas, such as science, technology,
economics and labor organization. In a broadly understood technology area, this
development led to separation of specialized forms of using computers for the design
and manufacturing processes, that is:

— computer-aided design (CAD)
— computer-aided manufacture (CAM)

In order to show the role of computer in the first of the two applications men-
tioned above, let us consider basic stages of the design process for a standard piece
of electronic system, or equipment:

— formulation of requirements concerning user properties (characteristics, parame-
ters) of the designed equipment,

— elaboration of the initial, possibly general electric structure,

— determination of mathematical model of the system on the basis of the adopted
electric structure,

— determination of basic responses (frequency- or time-domain) of the system, on
the base of previously established mathematical model,

— repeated modification of the adopted diagram (changing its structure or element
values) in case, when it does not satisfy the adopted requirements,

— preparation of design and technological documentation,

— manufacturing of model (prototype) series, according to the prepared documen-
tation,

— testing the prototype under the aspect of its electric properties, mechanical dura-
bility and sensitivity to environment conditions,

— modification of prototype documentation, if necessary, and handing over the
documentation to series production.

The most important stages of the process under discussion are illustrated in
Fig. I.1.

Xi



Xii Introduction

Fig. 1.1
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According to the diagram presented above, the design process begins with the
formulation of user requirements, which should be satisfied by the designed system
in presence of the given construction and technological limitations. Next, among
various possible solutions (electrical structures represented by corresponding struc-
tures), the ones, which best satisfy the requirements adopted at the start are chosen.
During this stage, experience (knowledge and intuition) of the designer has decisive
influence on the design process. For general solution chosen in this manner (values
of system elements can be changed), mathematical model, in the form of transfer
function, insertion losses function or state equations, is next determined. On the
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base of the adopted mathematical model, frequency- or time-domain responses of
the designed system are then calculated. These characteristics are analyzed during
the next design stage. In case when the system fully satisfies the requirements taken
at the start, it is accepted and its electric structure elaborated in this manner can be
considered as the base for preparation of the construction and technological doc-
umentation. In the opposite case, the whole design cycle is repeated for changed
values of elements of the adopted electrical structure. When modification of the
designed system is performed with participation of the designer (manual control),
the process organized in this way is called interactive design. It is also possible to
modify automatically the parameters of the designed system, according to appro-
priate improvement criterions (goal function), which should take usually minimal

or maximal values. Design process is then called optimization. During the stage of
constructing mathematical model of the designed system, as well as during the stage
of analysis, there is a constant need for repeated performing of basic mathematical
procedures, such as:

— solving systems of linear algebraic equations,

— solving systems of nonlinear algebraic equations,

— approximation or interpolation of one or many variable functions,
— integration of one or many variable functions,

— integration of ordinary differential equations,

— integration of partial differential equations,

— solving optimization problems, the minimax problem included.

The second process mentioned above, namely the CAM, can be considered in
a similar way. The author is convinced that efficient use of computer in both pro-
cesses considered, requires extensive knowledge of mathematical methods for solv-
ing the problems mentioned above, known commonly under the name of numerical
methods. This is, among other things the reason, why numerical methods became
one of the basic courses, held in technical universities and other various kinds of
schools with technical profile Considerable cognitive virtues and specific beauty of
this modern area of mathematics is the fact, which should also be emphasized here.

This book was worked out as education aid for the course “Numerical Methods in
Radio Electronics* lead by the author on the Faculty of Electronics and Information
Technology of Warsaw University of Technology. During its elaboration, consider-
able emphasis was placed on the transparency and completeness of discussed issues,
and presented contents constitute sufficient base for writing calculation programs in
arbitrary programming language, as for example in Turbo Pascal. Each time, when it
was justified for editorial reasons, vector notation of the equation systems and vec-
tor operations were deliberately abandoned, the fact that facilitates undoubtedly the
understanding of methods and numerical algorithms explained in this book. Numer-
ous examples of engineering problems taken from electronics and high-frequency
technology area serve for the same purpose.



Chapter 1
Methods for Numerical Solution
of Linear Equations

As already mentioned in the Introduction, in many engineering problems there is
a constant need for solving systems of linear equations. It could be said with full
responsibility that solving of such equations constitutes one of the most common
and important problems of the numerical mathematics [1-5]. The systarinafar
equations can be written in the following expanded form:

ap1Xy + apXp + - - + AmXn = by

a1X1 + agXo + - - - + agXp = bp
. (1.1

an1X1 + anpXe + - - - + @nnXn = by

Using the definitions (notions) of the square matrix and the column matrix
(vector), the system (1.1) can be represented by the following equivalent matrix
equation:

A-X=B8B 1.2)
where
a1 a2 ... aun
A=| % 2 - &nlighe square matrix of coefficients
An1 Gn2 ... Gnn
B =[by, by, ..., bn]T is the vector of free terms
X = [X1, X2, ..., Xa] " is the vector of variables
The transposition symbol “T” is used for the vect@s= [by, by, ..., b,]" and
X = [X1, X2, ..., Xa] T, which are in fact column matrices. Solution of the equation

system (1.1) consists in finding such values for every component of the vector of
unknownsX that all equations of the system (1.1) are simultaneously satisfied.
This assertion is legitimate only when it is assumed that such solution exists. In

S. RostoniecFundamental Numerical Methods for Electrical Engineering 1
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2 1 Methods for Numerical Solution of Linear Equations

the opposite case, the whole effort, undertaken in order to determine such solution,
would be in vain. In order to avoid such undesirable conditions, we should inves-
tigate in advance the existence of a unique nontrivial solution — the task for which
the analysis of the square coefficient ma#kiand calculation of its determinant can
help. The fundamental forms of square matrices and the formula used for calculating
their determinants are given below for the particular case of the third-order square
matrix (h = 3).

Symmetric matrix

2 1 -1
-1 2 4
Upper triangular matrix
1 2 3
Uu=|(0 -1 1
0O 0 2
Lower triangular matrix
1 0 O
L=12 -1 0
4 0 2
Diagonal unitary matrix
1 00
E=|0 1 0
0 0 1
Zero matrix
0 0O
0=|0 0 O
0 0O

The variableD(detA) defined by Eq. (1.3) is called the determinant of the square
matrix A of ordern:

a1 A2 ... Qi
a a; Lo &
D=|" 2 =" (D amaz . - anw (1.3)

A1 G2 ... Gmn
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where the indexes, 8, ..., » denote all among the! possible permutations of the
numbers 12, 3, ..., n, andk is the number of inversions in a particular permutation.

According to this definition, the determinant of the second-order matrix
(n=2)is

detA = aj1dpr — Aipdpl (14)
In case of the third-order matrix (= 3), we have
detA = ay18x0833+ 812823831 + 821832813 — 813822831 — 811823832 — AzzAroA21 (1.5)

In the general casa & 3), the calculation of the determinant of the square matrix
is a cumbersome task. Therefore, as a rule, we use an indirect method based on the
properties of the triangular matrix (upper or lower), having the determinant equal
to

detT =1ty17 - too-taz- ...tk ... tan (16)

wheretyy is thekth element of the main diagonal of this matrix. Another property
that can also be used for this purpose is the equality of determinants of a square
matrix A and the equivalent triangular matfix if only the rows and columns are
not permuted in the process of the transformation of the matrixto the matrix
T [3, 6]. This transformation can be made by eliminating the unknowns, i.e., in the
same way as in case of the elimination process described step by step in Sect. 1.1.1.
According to the formula (1.6), we have det= 1 and def0 = 0. The necessary
and sufficient condition for the existence of a solution of the equation system (1.1) is
that the determinard of the coefficient matripA is distinct from zero. The matrix
for which this condition is satisfied is called nonsingular. Wikee- 0, the equation
system under consideration can have either no solution or an infinite number of so-
lutions. This property has the following simple geometrical interpretation in the case
n = 3. Each equation of the system (1.1) describes a plane in the three-dimensional
space, as proved in Appendix A. The intersection of the two pldheand P,
shown in Fig. 1.1, represents the straight line that intersects the third Piaat
point S. The coordinatesxgs, X»s, X3s) Of this point represent the solution being
sought.

In case wherD = 0, some of these planes are parallel or identical. The methods
used for numerical solution of the systems of linear equations can be classified as
follows:

— direct (simple) methods
— iteration methods

In case of the direct methods, explicit recursive formulas are used to determine
the components of the vect¥r constituting the solution, and it is not necessary to
know the initial approximate solution (starting point). A classical example of such
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A
X3
X3s -
~
~
~
e
|
I X
0 , 2
} -
X
>~ | , 2s
~ - Y
~ |
~ 7/
~
X1s £ _ _ _ _ _ _ _ _— =~
I
X1
Fig. 1.1

direct method is the Cramer’s rule explained below for solving a system of two
equations.

X1 + anoxp = by

1.7
ap1X1 + axXp = by (£.7)

a1 ap b1 ap
= = ayidp — apdp;, Di= = bjay, — boa
Q1 A 11822 — 812821 1 by @ 1822 — Dzan1
a1 b
D, = a; b; =ayibp —ay;, xg=D1/D, xp;= Dy/D whenD # 0.

In case of larger equation systenms={ 2), this rule is numerically ineffective
and hence is of little practical use. The main advantages of direct methods are their
simplicity and universality. The most important disadvantages are the necessity to
store (in the computer memory) the whole coefficient ma#ixuring the com-
puting process and the effect of computing error accumulation, which is specially
inconvenient in case of very large equation systems, such assfa00. The effect
of computing error accumulation is absent when we use the iteration methods of-
ten called the consecutive iterations methods. They are mainly used for solving the
large equation systems. Unfortunately, the knowledge of an approximate solution,
ensuring convergence of the computation process, is necessary to start the solving
procedure. The basic methods belonging to both groups will be discussed in this
chapter, see Fig. 1.2.
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Methods for solving linear equations

Direct methods Iterative methods
— Gauss elimination — Direct iteration method
— Gauss - Jordan elimination — Jacobi method
— LU decomposition — Gauss - Seidel method

— Inverse matrix method
Hybrid methods (direct + iterative)

Fig. 1.2

1.1 Direct Methods

1.1.1 The Gauss Elimination Method

In order to explain the main concept of the Gauss elimination method, let us consider
the following system of three equations in three unknowns:

a1X1 + a12X2 + arsxs = by
Ap1X1 + axoXp + agaXz = by (1.8)
ag1X1 + agoXp + azaXz = bs

In order to eliminate the unknown variabte from the second equation, we add
the first equation to the second equation multipliedas1/a;11. In a similar way,
we multiply the first equation by-asi/a;; and we add it to the third equation. Now
we have the following equation system:

ap1X1 + auoXg + ausxs = by
Ap,Xo + ApaX3 = D, (1.9)

’ R W

ag,Xo + agaX3 = bj

wherea,, = ay — apdi/au1, a3 = apz — auzder/au1, b, = by — biapi/aus,
ag, = agp — A12831/811, 855 = @33 — A13831/a11, andb = by — biagi/a1;
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Subsequently, we can eliminate the variaklefrom the third equation of the
system (1.9). For this end, we multiply the second equation by the texfyya;,
and add it to the third equation of the system. Finally, we obtain the system:

apX1 + a1oXo + arsXs = by
X2 + ApaXz = b (1.10)
agaX3 = b3

whereags = a3 — 8383,/ 85, andb; = by — ba;,/a5,.

This transformed equation system (1.10) is mathematically completely equiva-
lent to the system (1.8). The coefficient matrix of this system has the triangular
form, which means that the first stage of the procedure, called the elimination stage
or, more colloquially, the upward movement, is completed. According to the formula
(1.6), the determinant of this matrix is equallo= ay; - a,, - a3; and has the same
value as the determinant of the coefficient matkirof the equation system (1.8).

In case this determinant is different from zero, the transition to the second stage
of the procedure is legitimate. This second stage is called the substitution stage, or
the backward movement, and begins with the determinatioxy dfom the third
equation and substitution of the valuexgfobtained in this way in the second equa-
tion. After this substitution, the second equation of the system (1.10) contains only
one unknown variable, namekg, which can be found in the elementary way. The
values ofxz andx; calculated in this way are then substituted in the first equation
of the system (1.10), which reduces to the one-variable equatian which can be
solved in an equally simple way. The second and the third equation of the system
(1.9) can be interchanged in order to obtain the condition in which the coefficients
in the main diagonal have the maximum absolute values. In this manner, the numer-
ical error of the method is reduced. Additionally, the interruption of the count after
the incidental occurrence of the division by zero becomes impossible. The method
improved in this way is called the Gauss elimination method with the choice of
the main (pivotal) element, called the pivoting strategy. For the arbitrary3, the
variable elimination process used in the Gauss method (stage 1) can be considered as
determination of the matrix serie&®) = A,A@ AQ) A0 AM:BD) =B,

B@ B® ... B, ... BM where the matricea® andB® have the form
r (1 1 1 1) _ -
D A a0 0
0 A . A . o e
AD — BO = | - 1.11
0 o () 0 b -
- a.” . am i
Lo 0 ...a&aY .. oaf. | bY |
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According to the procedure of elimination of the consecutive unknown variables
described above, the elements of these matrices are determined by using the follow-
ing expressions:

(i+1) 0] aly 0] (i+1) (1) ) (0]

i+ i ji i i+ i i i

ajk = ajk — @ -y, bj = bl — E : bi (112)
| I

wherei = 1,2.3,....,n; j =i+1i+2i+3,....,njandk =i +1,i + 2,
i+3,...,n _

In a case when{a ~ 0 dividing by zero may accour, see formula (1.12). Such
computational menace can be eliminated by an appropriate choice of the pivotal
element, also called pivot. This protection consists in the choice, among elements

O A0 S0 o) : . .
&, Al &) , @,; belonging to the — column, of the element having the
largest nonzero absolute value. Let the kowof the matrixA() be the row, for which

., i<j=n (1.13)

Then, the rowk of the matrixA®) should be interchanged with tlith row. At
the same time, the elemertt® andb{ of the column matrix (vectorB® should
be interchanged. In a similar way, the process of calculating the matieand
B® should be continued up to the positior= n. The resulting equation system,
equivalent to the original systef- X = B, is

AM . x — M (1.14)

in which the coefficient matriA(™ is the upper triangular matrix. In the process of
finding the pivot in theth iteration, if we obtain

o) | = max|a)| < & (1.15)

wheree is a given, sufficiently small positive number (e.g.+= 1076), the whole
process should be interrupted, because it means that the deteriinétite matrix

of coefficients A, AM) is equal to zero. In the opposite cag® & 0), we should

pass to the next substitution stage. The essential meaning of this uncomplicated
stage was explained above using an example of the three equations in three variables.
Whenn > 3, the particular terms of the desired solution can be found by using the
following recursive formula:

1 n
X = = [B7 = 37 a0 x (1.16)
& j=i+1

wherei =n,n—-1,n-2,...,1.
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Example 1.1Let us solve the system of three linear equations by using the Gauss
elimination method:

10Xy — 72+ Ox3 =7
—3X1 + 2%, + 63 =4
5X3 — 1X; +5x3 =6

In the first step, we eliminate the variablefrom the second and the third equa-
tion. For this purpose, we multiply both sides of the first equation by the number 0
and add it to the second equation. In a similar way, we multiply the first equation by
—0.5 and add it to the third equation. As a result of these operations, we obtain

10Xy — 7X2 +Ox3 =7
—0.1x, + 6x3 = 6.1
2.5%, +5x3 =25

In order to reduce the rounding error, the second and the third equation should
be interchanged.

10X, — 7X, =7
2.5%, + 5x3 =25
—0.1x; + 6x3 = 6.1

Our next step is the elimination of the variablgfrom third equation. For this
end, the second equation should be multiplied pg5land then added to the third
equation. After this operation, we obtain the system

10Xy — 7X =7
2.5%, + 5%x3 = 2.5
6.2x3 = 6.2

The coefficient matrix of this transformed equation system has the form of a
triangular matrix. The determinant of this matrix, calculated using the formula (1.6),
equalsD = 10-25.6.2 = 155. The nonzero value of this determinant shows
that the equation system under consideration has one nontrivial solution. It follows
directly from the third equation thag; = 1. After substituting the valug; = 1 in
the second equation, we obtairb®2 + 5- 1 = 2.5. This equation is satisfied by
Xo = —2.5/2.5 = —1. Substitutingxs = 1 andx, = —1 in the first equation, we
obtainx; = 0. Finally, our complete solution is as follows; = 0, x, = —1, and
X3 = 1.

The formulas and the procedure for choosing the pivoting element, explained in
this section, served as a base for the design of the computer program GAUSS. This
program was subsequently used to solve the following system of six linear equations
(n=16):
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6 -3 2 1 -1 1 X1 11
-3 -7 0 4 -2 1 Xo -5
4 -3 6 -1 2 1 x3 | | 28
2 4 5 -7 -3 2| x| |-6
-1 5 -4 0 8 -2 X5 25
3 0 4 -2 5 -6 X6 -4

During the elimination process, accompanied by an operation of choosing the
pivots, this equation system is being transformed to the following equivalent form:

6 -3 2 1 -1 1 X1
0 -85 1 45 -25 15 Xo
0 0 4921569 —4.686275 —4.137255 2549020 Xa
0 o0 0 2135458 6784861 —2.199203 | | x,
) 0 0 5264925  01343285| | xs
) 0 0 0 —6.612686 | | xo
11
05
| —9.372549
= | 29.270920
27.1306
—39.67612

Solution of this equation system, determined during the second, substitution
stage, isthevectoX = (x3 = 1, X =2, X3 = 3, X4 = 4, X5 = 5, Xg = 6).

1.1.2 The Gauss—Jordan Elimination Method

In order to explain the essence of the Gauss—Jordan method, let us reconsider the
system of three linear equations in three unknoiyné,, andl 3, interpreted here as
the complex amplitudes of the currents in a three-mesh electrical circuit.

Rial1 + Rizlo + Rislz = V3
Roal1 + Roolo + Roslz = Vo (1.17)
Rs1l1 + Rsol2 + Raslz = V3

It is obvious that multiplying both sides of each of the equations (1.17) by a
constant and summing them up does not change the values of the unknown cur-
rentsl, I, andl 3. Hence, by using this operation repeatedly, in order to eliminate
some of the unknowns, it is possible to transform the equation system (1.17) to the
following form:
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1-1:40:-1,4+0-13=C4
0-13+1-12+0-13=C, (1.18)
0-1;4+0-1,+1:13=C3

in which the transformed matrix of coefficiemsis the diagonal unitary matrix. It
follows directly from the equations (1.18) that= C4, I, = C,, andl3 = C3. One

of the procedures serving to eliminate some unknowns from the particular equations
was demonstrated using Example 1.2.

Example 1.2Assume that the equation system (1.17) has the same coefficients, as
the system analyzed in Example 1.1, i.e.,

100, =7, =7
—3l1+2,+6l3=4
517 —1,+5l3=6

Using the transformations shown in Example 1.1, this equation system can be
written in the following equivalent triangular form:

100, =7, =7
25l,+5l3 =25
6.213=6.2

Dividing all three equations by their diagonal coefficients, we obtain

I, — 071, =07
lo+2l3=1
I3=1

Now we shall eliminate the variable from the first equation. To do this, we
may add to it the second equation multiplied by.(Resulting equation system has
the form

l1+0-1,+14l13=14
l,+2l3=1
I3=1

Next we shall eliminate the variablg from the first and the second equation. It
can be done by multiplying the third equation by the constah# and adding it
to the first equation. Similarly, the third equation should be multipliedH2yand
added to the second equation. Finally, we obtain the following system of equations:
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lI14+0-1,+0-13=0
lo+0-I3=-1
l3=1

for which the matrix of coefficient# is diagonal and unitary and has the solution

I, = 0,1, = —1, andlz3 = 1. During the transformation of the equation sys-
tem (1.17) to the form (1.18), the vector of curreht®€mains unchanged and the
operation is made with respect to the matrix of coefficients and vector of voltages.
Creation of the so-called augmented matrix of omlen+1) therefore proves very
useful. In case of the system of three equations:(3) discussed in this section, the
augmented matrix has the form:

_ Riu Rz Riz M1
R = |:RIV:| = Rzl R22 R23 Vg (1.19)
Rt Rz Rez Vi

Matrix R may be transformed through the full elimination process, after which it
takes the form

100 I,
010 Ip (1.20)
0 0 1 Ig

For this purpose, the computation algorithm given in the literature can be used
[8, 9].

1.1.3 The LU Matrix Decomposition Method

Let us now consider the task of solving repeatedly the system of linear equations
A.-X=B (1.22)

each time for the same matrix of coefficiedtsbut for different excitation vectors

B. The Gauss and Gauss—Jordan elimination methods are not effective for solving
this particular problem, because the repeated transformation of the rAatmnd
vectorB is needed even though the matfixemains the same always. In such case,
one of the LU decomposition methods, as for example the Crout method [7, 8], may
prove to be more convenient. In this last method, decomposition of the nonsingular
matrix A of the ordem into the producA = L - U of the two triangular matrices
(lowerL and uppel)) is used. Structures of the two matrideandU of this product

are described by the following general relation:
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ajg a2 a3 - ain
a1 a2 Q3 ... an
as1 as2 A3 ... &,
ah-11 @n-12 an-13 an-1n
an1 an2 an3 ann |
|11 0 0 0_ 1 up Uz ... U1n
|21 |22 0 - 0 0 1 U23 Uon
. |31 |32 |33 e 0 0 0 1 U3zn
|n,1’1 |n71,2 |nfly3 Ce 0 0 0 o ... Un_1n
el ls ... lm| [0 0O 0 ... 1

The equations of the system (1.21), which we want to solve, should be written
in such an order that the diagonal elemeaisof the coefficient matribA are dif-
ferent from zero and possibly have the greatest absolute values. Then the diagonal
elementd;; of the lower triangular matrix. will also be different from zero. Sub-
stituting the relatiolA = L - U in Eq. (1.21), we obtain

L-.U.-X=B (1.22)

Assume initially that the triangular matricesandU are known. In consequence,
solving the equation system (1.22) with respect to the column vectam be per-
formed in the two simple stages. In the first stage, from the equation

L-D=B (1.23)
we determine the vect@. According to Eq. (1.22), this vector satisfies the equation
U.-X=D (1.24)

involving also the desired solution. The second stage therefore consists in determin-
ing the vectorX from Eq. (1.24). Both stages of the solution process mentioned
above can be performed in a relatively simple way, thanks to the triangular form of
theL andU matrices. For example, in case of three equations, the system (1.23)
takes the form

[1200 = by
12101 + 1220 = by (1.25)
[3101 + 1320 + l3303 = bs

and its solution with respect to the vecir= [dy, d, d3]T may be obtained without
serious difficulties. In the general case# 3), the componentd, of the auxiliary
vectorD can be found by using the following recursive formula
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(1.26)

1 k-1
dk=_'|:bk—zlki'di:|a k=23, ...,n
i=1

When the column vectoDd is known we can solve the matrix equation (1.24)
which forn = 3 takes the following form.

IXg + U12Xp + UisXs = 0y
1Xo + UpsXz = dp
Ix3 = d3

(1.27)

The solutionX = [x1, X2, X3]" of these equations can be found in a similarly
uncomplicated way, i.e., using the method of consecutive substitutions.
For an arbitraryn > 3, the matrix equation (1.24) has the form

[1 up ugs Uin X1 [ dy ]

0 1 wuzs U2n X2 dy

0 0 1 U3zn X3 d3 (1 28)
0O O 0 Un—1,n Xn-1 dn_1

00 0 .. 1 o | | o |

In order to find the solution vectoX = [X1, X, X3, ..., Xn]', the method of
consecutive substitutions should be applied. It is defined this time by the following
recursive computation formula

(1.29)

wherej =n,n—-1,n-2, ..., 1

According to Egs. (1.23) and (1.24), after substituting the new vé&;tare need
to determine only the new vectBrand next we must calculate the vec¥arwhich
is the desired solution to our problem. The matrices1dU need not be reprocessed
and this fact diminishes essentially the amount of calculations. It is due to the fact
that these matrices were assumed to be known. In the general case, they can be
determined using the following recursive relations:
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liy = a1

-1
Iijzaij—lgl|ik~ukj fori >j>1

ay (1.30)

which are in the literature often referred to as the Doolittle formulas [9, 10]. The
terma;;, where 1<i < n,1 < j < n, appearing in these relations, is the element
of a given nonsingular matrix of coefficients These relations are developed in
Appendix D, using the standard rule of multiplying two matrices of the same order.

Example 1.3onsider the following system of equations

1 2 3 47 [x 4.0
2 11 20 29| |x | _|206
3 8 16 24| |xs |~ | 174
4 14 25 40| | x4 2738

The triangular matriced and U determined using the relations (1.30) are
equal to

A WN PP
DN N O
= wWwoOo
O OO
O OOk
QO FrN
OFrRLr N W
PN Wb

The determinant of the matrix of coefficients satisfies the equatioh detletL -
detU = 84. 1 = 84. The solution obtained by using the LU decomposition method
isx; = 1.0, X, = 0.7, x3 = 0.4, andxs = 0.1.

1.1.4 The Method of Inverse Matrix

The method of inverse matrix also finds an application for the task of repeatedly
solving the system of linear equations

A-X=B (1.31)
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for which the matrix of coefficient®\ remains unchanged. In other words, the
equation system is being solved for different values of the free terms forming the
vectorB.

As we know from the extensive literature on the subject, application of the above
method is legitimate, if the number of solution processes applied to the equation
system (1.31) is greater tham,2vheren is the rank of the matrid, equal to the
number of equations in the system. The inveksé of a nonsingular square matrix
A (having the determinand different from zero) is also the nonsingular square
matrix of the same rank. Product of these matrices, i.e.,

AlL.A=A.A1T=E (1.32)

is equal to the unitary matrik, having also the same rank. The equation system
(1.31) will remain unchanged after multiplication of both sides by an inverse matrix,
ie.,

Al.A.X=A1.B (1.33)
Substituting relation (1.32) in the expression (1.33), we obtain
E-X=A1.B (1.34)

The product of the unitary matrik of the rankn by a column vectoiX with
n elements is identical to the vectat. Due to this property, Eq. (1.34) can be
written as

X=A"1.B (1.35)

expressing the essence of the method under consideration. It follows from the above
equation that the solution vectdr can be found by simple multiplication of the
inverse matrixA ! by the vector of free ternmB. Determination of the inverse matrix

A1 therefore constitutes an essential and most difficult problem, which must be
solved in the first stage. Different algorithms available in the literature on linear
algebra can be used for this purpose. In case of the matrix of a smallmank3j,

the relations given in Appendix B may prove to be useful. One of the most popular
algorithms used for calculating the inverse matrix is presented below. Assume that
a square nonsingular matri is given. Denote the elements of this matrix &y,

where 1< i < n,1 < j < n. Elements (terms) of the inverse matix ! are
denoted by;, where 1<i <n, 1 < j < n. Product of this two matrices, i.e.,

A-Al=E (1.36)

can be presented in the following equivalent form:
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n
Z AikXkj =3ij (1.37)
k=1

whered;; is the Kronecker symbol taking the value 1 foe= j and the value 0
fori # j. It follows from Eq. (1.37) that, if we want to determine elements of the
column j of the matrixA—1, the following system of equations should be solved:

ayX1j + AoXej + ... +aXn; =0
a21X1j + Ax2X2j + ... + @nXnj = 0

(1.38)

an1X1j + @n2Xj + ... + @nnXnj = 0

In order to find all elements of the matix*, the equation system (1.38) should
be solvedn times, namely forj = 1,2, 3, ..., n. The matrix of coefficient#\ of
this system remains unchanged, and therefore, it can be effectively solved by using
the LU decomposition method described in the previous section. The product (1.32)
can be used to evaluate precision obtained for the calculated inverse Avatribn
case this precision is not satisfactory, the main equation system can be solved once
more, this time by using the relation (1.35).

Example 1.45olve the following system of equations using the method of inverse
matrix

1 -2 3] [x 12
-1 1 2% |= 8
2 —1-1| |xs 4

The inverseA ! of the coefficients matrixA of the system given below is equal
to (see Appendix B)

Al =

[SNCVIIE

5
1
3 7
3

oo~

According to the relation (1.35), we have

X1 1 -1 5 7 12 7
X2 | = 3 -3 7 5 8 |=15
X3 1 31 4 5

Finally, we find our solutionx; = 7, x, = 5, andxz = 5.
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1.2 Indirect or lterative Methods

1.2.1 The Direct Iteration Method

In this section, we consider the direct iteration method, the first one belonging to the
class of iterative methods. Let us consider the systemliokear equations:

a11X1 + aXo + ... + amnXn = by
A1X1 + X + ... + anXn = by

(1.39)
3n1X1 + an2Xz + . .. + @nnXn = by
Assume that the approximate solutiod, x”, x{¥), ..., x(©] was previously

found by using one of the direct methods described earlier in this chapter. After
substituting this approximate solution in the equation system (1.39), we obtain

a1xX\? + agxQ + - 4+ agx©@ = bl

a9 + apx© + -+ + apx©@ = b (1.40)
anx)” + axX + -+ aux® = b

Let us now introduce the corrections determined with respect to the final solution

X = [X1, X2, X3, ..., Xa] T and to the vectoB = [by, by, bs, ..., by]",i.e,

e =x —x@ fori=123...,n

ri(o)z b —bi(o) fori =1,2,3,...,n

By subtracting the equation system (1.40) from (1.39), we obtain the system of
linear equations in which the unknowns form the appropriate correction vector:

611181 + a128(0) +...+ alneﬁo) = rio)

32181 ) + azze(o) - 2 = réo) (1.41)
an1 8(0) + anzeéo) vt anne®@ =1 ©@

Solving the system (1.41) with respect to the correctigfis £, ..., £©, we
obtain the second, more accurate approximation of the desired solution, i.e.,

X = x© 4 0
X = <0) +60 (1.42)

XM = xO 4 0O
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Repeating the process described above several times, one can obtain such accu-
racy that two solutions obtained in the two consecutive iterations will differ neg-
ligibly. It means that the vector {9, r,( r3® . r,(] will approach the zero
vector [0 0, 0, ..., 0]. We shall underline here the fact that in the process of solving
the equation systems, similar to the one described by Eq. (1.41), with respect to the
consecutive corrections, the matrix of coefficieAtsemains unchanged and only
the column vectorrf, r,, ..., ry] varies from one consecutive solution to the next.
Hence, application of the LU decomposition method appears to be useful in case of
such equation systems.

1.2.2 Jacobi and Gauss—Seidel Methods

Let us consider the following systemmwofinear equations im unknowns, for which
the coefficient matriA is nonsingular.

1. X1+ apXo +aizXs + ...+ ammXn, = by
Xy +1-Xo + X3+ ...+ amXy = b

an1X1 + 8noXo + ansXs + ...+ 1- Xy = by

(1.43)

Now assume that the initial approximation of the desired soluﬁ{jﬂﬁ [xéo), xéo),
..., xO7is known. The majority of linear equation systems, formulated in connec-
tion with various engineering problems, can be transformed into the canonical form
(1.43) simply by interchanging individual equations and dividing each of them by
its respective diagonal coefficient. The equations should be arranged in such a way
that the nonzero coefficients having the largest modules (absolute values) occupy
the main diagonal.

1.2.2.1 The Jacobi Method

The matrix of coefficient#\ of the equation system (1.43) can be expressed as the
sum of three square matrices of the same rank, i.e.,

A=L+E+U (1.44)

wherelL is the lower diagonal matrig the diagonal unitary matrix, arid an upper
diagonal matrix. After substituting relation (1.44) in Eq. (1.43), we obtain

A-X=(L+E+U)-X=B (1.45)
Eq. (1.45) can be used to obtain directly iterative Jacobi formula.

E-X=—(L+U)-X+B (1.46)
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which after some elementary matrix transformations can be written as
X=—-(L+U)-X+B

This formula can often be found in the literature in the different, but equivalent
form:

X=C-X+B (1.47)

whereC = —(L + U) = E — A is the Jacobi matrix. According to this formula,
elementg;; of the matrixC are equal to

{—a,-j fori£#j, i=123,...,n, j=2123,...,n
Gj = S
l1—a; fori=]j

ConsecutiveK + 1) approximation of an exact solution can be calculated from

the formula (1.47), based on the approximation obtained from the previous
iteration,k:

Xt — c.x® 4B (1.48)

wherek = 0,1, 2, 3, .... The series of consecutive iterations obtained in this way
is convergent to an exact solution, if the coefficient mafxiis strictly diagonally
dominant or strict column diagonally dominant [3, 7].

1.2.2.2 Supplement

The square nonsingular matri is called diagonally dominant if the sum of

the absolute values of its elements on the main diagonal is greater than or equal
to the sum of the absolute values of the remaining elements of the analyzed row of
the matrix, i.e.,

n
ail = Y e

k=1

K|

wherei = 1,2, 3,...,n. The matrixA is strictly diagonally dominant if all above
inequalities are strict. The square matAxis column diagonally dominant if its
transposé\" is diagonally dominant.
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Table 1.1

J Iteration X1 Xo X3 X4

0 1.000000000 1000000000 1000000000 1000000000
1 2.500000000 1050000000 200000000 350000000
2 1585000000 —0.495000000 170000000 192500000
3 2.059750000 2149250000 185000000 363750000
4 1592475000 —0.246750000 272700000 222187500
5 1954811250 (816201250 1801980000 222920000
10 1767227058 —0.080484505 192187444 595988039
50 1810208660 M60535363 558382308 5668661047

Example 1.550lve the following equation system using the Jacobi method

5 -1 3 05 X1 15
06 03 1 2 X2 | | 8
06 06 3 12 3| |9

2 4 06 12 X4 8

taking the initial approximatiorvdflo) =1, xéo) =1, xéo) =1, xflo) = 1]. Proceeding
according to the algorithm described above, in the first stage the given equation
system is transformed to the canonical form

1 -02 06 01 X1 3
0.5 1 015 03 X | |2
02 02 1 04 X3! |3
03 015 05 1 Xa 4

The Jacobi iteration formula obtained based on this system of equations gives

(k1) )
b 0 02 -06 -01 L 3
x| | -05 0 —015 03| %’ | |2
x| T 1-02 -02 0 —04| |y 3
(kD -03 -015 05 0] | g 4
4 4

Some consecutive approximations of the exact solution obtained from this for-

mula are given in Table 1.1.

1.2.2.3 The Gauss—Seidel Method

Consider the equally simple algorithm of Gauss—Seidel iteration method, presented
below for the case of the system of three linear equations:
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ap1X1 + ayoXg + aysxz = by
ap1Xq + AxXg + Ax3Xz = by (1.49)
ag1X1 + az2X2 + A33X3 = b3

Assume that the elemengs of the main diagonal are different from zero. In
the opposite case, the equations should be rearranged. We determine the unknowns
X1, X2, andxs from the first, second, and third equation, respectively:

1
X =—— (by — aioXp —aisxs), a1 #0
11

1
Xp = 02 (b2 — @p1Xy — @paxz), @ #0 (1.50)
1
X3 = — (b3 — az1X1 — axX2), ax#0
ags

We assume a certain honzero approximate solutigr:= x§°>, Xo = xgo), and
X3 = xgo). Substituting these values in the first equation of the system (1.50) yields

1
Xgl) = — (bl — a]_zXéO) — a13Xé0))
aig

Using x{" and x{ we determinex{" from the second equation of system
(150), i.e.

1
Xél) =— (bz - azle) - 823X§0)> ,
az

Substituting«!” andx{" in the third equation, we calculate

1
P = = <b3 ~agx® aszXél))
aza

In this way the first iteration of the solving process has been completed. Of course
the whole process should be repeated many times until the soiitiofix;, Xz, X3]
similar to the solution resulting from the previous iteration is obtained. The process
described above is convergent if

ail =Y laj| fori=123....n (1.51)
i#]

with a condition that at least one of the above inequalities should be strict. Condition
(1.51) is sufficient but not necessary, and for some equation systems, the computa-
tion process may prove to be convergent even when this condition is not satisfied.
According to this conclusion, the equations should be rearranged in such a way that
the elements of the main diagonal have largest absolute values. It follows from the
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comparison of the algorithms of both methods presented above that they have much
in common. In the Jacobi method, a consecutilee} (1) approximation of the de-

sired exact solution is determined exclusively based on the approximation obtained
in previousk iteration. In case of the Gauss—Seidel method, individual components
of each consecutive approxmatuzflf+ ) ,wherej =1,2,3,...,n, are determined
based on an approximation obtained in the prevlouaratlon and of newly calcu-

lated component&(k“), wherei < j. This property guarantees faster convergence
and numerical stability of the Gauss—Seidel method. During the analysis of many
technical and economical problems, we meet the necessity of solving large systems
of equations (e.g., fon > 100). To solve very large equation systems, iterative
methods are chiefly used, as for example the Gauss—Seidel method described above.
At the beginning, we meet here the problem of initial approximation of the desired
solution, which can be obtained solving the system in question by the Gauss elimina-
tion method. The initial solution obtained in this way should guarantee convergence
of the calculation process.

Example 1.6n order to illustrate an application of the Gauss—Seidel method, we
will find some approximate solutions to the following equation system:

4 -1 1 00 O X1 4
2 6 -1 00 2 Xo 6.4
1 2 -5 10 1 x3| | 03
1 -1 1 4 0 05| |xa]| | 29
1 0 0 15 2 Xs 2.6
O 0 1 -12 7 Xs -11

Calculation process begins with the following initial approximatimﬁl.) =
1.0,x? = 08, (0) = 06,x” = 04, x(o) 0.2, andxéo) 0.0. Diagonal
elements of the matnx of coefﬂments (elements on the main diagonal) satisfy con-
dition (1.51), which is the sufficient condition for convergence of the calculation
process. Numerical values of some approximations of the exact solujor-=(
1.077511712x, = 0.883357158 x3 = 0.573309477x, = 0.563250046x5 =
0.288218927xs = —0.240928187) are given in Table 1.2

Table 1.2
X Number of iterations
1 5 10

X1 1.049999999 077607126 077511712
X2 0.816666687 (883261359 (883357158
X3 0.556666673 (73347946 (573309477
X4 0.527500028 (663184419 (5663250046
Xs 0.204499975 (288186709 (288218927

X6 —0.219738086 —0.240933952 —0.240928187
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In case of rearranging an arbitrary equation pair of the analyzed system (as, for
example, Egs. (1.5) and (1.6)), the solution obtained for the vécteould remain
unchanged. Unfortunately, condition (1.51) will no longer be satisfied and the cal-
culation process may become divergent.

1.3 Examples of Applications in Electrical Engineering

Example 1.7The electric diagram of the six-element ladder circuit driven by a volt-
age source(t) = Egcost + 0) with an internal impedancg, is shown in
Fig. 1.3.

The voltage wavefornu (t) across the loading impedanze can be found by
using the mesh current method formulating balance equations for complex ampli-
tudes of the voltage in the independent closed loops [11, 12]. This method is based
on Kirchhoff’s law, stating that the sum of voltages in each closed loop of an elec-
tric circuit is equal to zero. According to this law, we can formulate the following
equations for the meshes chosen as in Fig. 1.3:

Zily+Z5(11 — 12) + Zgl1 = Eg4
Z3lo+Z4(l2 = 13) +Zo(l2—11) =0 (1.52)
Zsla+Z6Z/(Ze + Z)l3+ Z4(lz3—12) =0

whereEq = E4 exp(j0), 14,12, 13 are the complex amplitudes of the control
voltage and currents flowing in the meshes having the same orientations and
Z1,2Z2,23,24,Zs, Zg, andZ, are the impedances determined according to the rules
of the symbolic calculus [4]. After rearranging, the system of equations (1.52) can
be written in the following matrix form:

Z1+2Z5+ Zg —Z5 0
—Z; Zy+ 23+ 24 —Z4 I1 Eg
7.7 X |2 = 0
(YA I 0

0 -Z Zo+Zs+ —— 3
4 4+ L5+ Zo1 7,
(1.53)
Eq z Zs Zs
1 [+

0O =090 D) |4
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Elements of the coefficient matrix of the equation system (1.53) are the complex
numbers, as in case of the complex amplitudes of currents that we calculate. This
equation system can be solved by using the Gauss elimination method described in
Sect. 1.1. In this case, the operations of addition, subtraction, multiplication, and
division should be performed according to the rules concerning complex numbers.
Prior to solving the equation system, individual equations should be placed in such
an order that the complex coefficients of the main diagonal have possibly largest ab-
solute values. Solving the system (1.53), we obtain complex amplitudes of the mesh
currents, including the amplitudg = I3exp(jps). Finally, the evaluated voltage
waveformu,(t) is described by

Z6Z,

6 ZeZ
Zs+ Z

Ze+ Z

I3 cost + @3+ V) (1.54)

u(t) = R6|:| 3

exp(jwt)] .

where the symbol Re [ ] denotes the real part of the expression given in the square
brackets, and’ is the phase angle of the complex numBgZ, /(Ze + Z;). In order

to perform the calculations, we take the valigs= 10, Z} = 1M, Z; = Z3 =

Zs = 1/(jwC), Zo = Z4s = Zeg = 10K, whereC = 470pF,E4 = 10V, and

o = 2rf = 27(10% rad/s. The equation system (1.53) can be formulated in the
following matrix form:

10001- j3386275 —10000 0 l1
—10000 20000- j3386275 —10000 x| 12
0 —10000 1990M9 — j3386275 I3
10
=|0
0

The solution for these equations are the following current amplituides:
0.0643 4 j0.2616mA, 1, = —0.0499+ j0.0437mA, andlz = —0.0160 —
j0.0053mA. The output voltage, determined according to the expression (1.54), is
u(t) = 0.3354 cosgt + 3.4614)V.

Example 1.8An another method largely used in the electrical engineering is the
analysis of nodal potentials [11, 12]. In order to explain its essence, let us evaluate
the voltageu,(t) across the output terminals of the circuit “double T” shown in
Fig. 1.4.

For the analysis we assume that the system is supplied by the current source
ig(t) = lgcospt + 0) with an internal admittanc¥,. The nodal voltage method
is based on Kirchhoff's theorem, stating that the sum of currents entering and that
leaving a node of the electric circuit is always equal to zero. It is not too difficult to
prove that this law applies also for the case of complex amplitudes of these currents.
In consequence, we can formulate the following equations for the analyzed circuit:
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lg— YqUi — G(Up — Uy) — pC(Uy — Uz) = 0

G(Us — Up) + pC(Us — Uz) — Y,Up = 0 (1.55)
pC(U1 — U3) — 2GU3 — pC(U3 — U) = 0

G(U1 — Uy) = G(Uy — Up) = 2pCU, =0

wherely = I5exp(j0), U1, Uy, Uz, Uy are respectively the complex amplitude of
the control current and voltage complex amplitudes determined at the corresponding
nodes 1, 2, 3, and 4, see Fig. 1Gl= 1/R andp = jo = j2x f is the operator of

the applied symbolic calculus. After arranging, the equation system (1.55) takes the
form

Yg+G+pC 0 —pC -G U; lg

0 G+pC+Y, —pC -G y U| | O

—pC —pC 2G + 2pC 0 Us| | O

-G -G 0 2G +2pC U,y 0
(1.56)

As in case of the previous example, the equation system (1.56) can be solved
by using the Gauss elimination method, and we obtain the vector of nodal voltages
complex amplitudes, including, = U, exp(j¢2). According to the principles of
the symbolic calculus, the desired voltage wavefoutt) is

ux(t) = Re[U, exp(jwt)] = U, cost + ¢3) (1.57)

Complex amplitudes dfl;, U, U3, andU, calculated folR = 10k(), C = 1nF,
Yy = Yi = 1uS, Iy = 1mA, and for several values of the angular frequenare
given in Table 1.3.

It follows from the analysis of amplitudes of the voltage given in the third
column of the Table 1.3 that it attains the minimum for the angular frequegpey
2w fo = 1/(RC) = 10°rad/s. In other words, the analyzed two-pole filter has a
selective frequency respongéw) = Uz(w)/U1(w), Fig. 1.5(a).

Due to the above property, this two-port filter (Fig. 1.4) can be applied in the low
frequency harmonic oscillator as it is shown in Fig. 1.5(b).
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Table 1.3

o (rad/s) U1 (V) Uz(V) Usz(V) Uq(V)

0.98 x 10° 5.0502 -0.0495 2.4875 0.0129
—j4.9998 —j0.0515 +j0.0126 —j2.5383

0.99 x 10° 5.0249 —0.0246 2.4875 0.0126
—j4.9749 —j0.0254 +j0.0125 —j2.5126

1.00x 1P 4.9998 0.0000 2.4875 0.0124
—j4.9502 +j0.0000 +j0.0124 —j2.4875

1.01x 10° 4.9749 0.0244 2.4875 0.0121
—j4.9259 +j0.0246 +j0.0123 —j2.4629

1.02x 10°P 4.9503 0.0485 2.4875 0.0119
—j4.9017 +j0.0485 +j0.0121 —j2.4387

(@)

0.010

U,
U,
0.005
0.000
0.95 1.0 f/fo 1.05
(b)
C c
Rl

R, u(®

e}

Fig. 1.5
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In this circuit, the “double T” two-port network was placed in the negative

feedback loop, and this feedback attains the minimum absolute value for angular
frequencywy = 1/(RC). The positive feedback needed for ensuring the genera-
tion condition is implemented by using a properly designed frequency-nonselective
resistance divider,K;, Ry).
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Chapter 2
Methods for Numerical Solving the Single
Nonlinear Equations

Numerous scientific and technical problems can be described by means of single
equations with one variable or systemsnagéquations witm variables. According

to the character of functions appearing in these equations, they can be linear or
nonlinear. The corresponding classification of algebraic equations is given in the
diagram of Fig. 2.1.

In this diagram, the class of single nonlinear equations is divided into polynomial
and transcendent equations. They will be discussed in this order in the following
sections of the present chapter. For presentation of the Bairstow’s method, some
formulas were used, which are developed later in Sect. 3.3. These expressions rep-
resent in fact a special case of Newton’s method, used for solving systems of
nonlinear equations with variables, [2] [7] [8].

Algebraic equations

One equation System of n equations

| ]

Linear Nonlinear Linear Nonlinear

]

Polynomial Transcendential

Fig. 2.1
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2.1 Determination of the Complex Roots of Polynomial
Equations by Using the Lin’s and Bairstow’s Methods

The polynomial equations are expressed by sums of finite number of terms contain-
ing powers of the variabl&. Thus, equations of this kind can be presented in the
following general form:

F(X) = Wh(X) = X" 4+ ayx" 1 4 apx"2
+agX" 2+ . +ap1X+a, =0 (2.1)

The class of polynomial equations includes also equations, in which the function
F(x) has the form of a rational function, i.e., the quotient of two nonzero poly-
nomials. In any case, equations described by means of a rational function can be
transformed to the canonical form (2.1). The well-known quadratic equation:

ax’*+bx+c=0 a#0 (2.2)

is the simplest case of a nonlinear polynomial equation. Real or complex roots of
this equation can be calculated by using the following simple formulas:

_—b—va

b+ VA
o ’ 2a

X1
2a

X2 (2.3)

where the discriminant is equal th = b? — 4ac. The similar explicit formulas
found by Nicollo Fontana (1500-1557) for cubic equations are much more compli-
cated. In the mathematical bibliography they are often unjustly called as Cardan’s
formulas. In case of the equations of higher orders-(4) finding roots by means

of analytical methods is extremely difficult. Therefore, numerical methods are used
for this purpose, among which the methods of Lin's and Bairstow’s [1-3] are most
commonly used.

2.1.1 Lin's Method

The Lin’s and Bairstow’s methods are based on the fact that the equation (2.1) can
be written as:

(% + px+ Q) (X" +byx" 3 4 bpx"* - 4 by_sX + by_o)
+Rx+S=0 (2.4)

In this expressionRx + Sis a linear remainder term that we desire to be zero.
A zero remainder would mean that the original polynomial (2.1) is exactly divisible
by the quadratic factox€ + px + q). Coefficientsp, g, by, by, b, .. ., b_o, Rand
Sof the Eq. (2.4) are related to the coefficientsyl,,ay, as, au, . . ., a, of Eq. (2.1)
as follows:
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bi=a—p
b, =a,— pb; —q
bs =az — pbp, —qby

bi =a —pb_1—gb_ (2.5)

bh2=an2— pbh_3—qbh_4
R=an1— pbh2—0gb3
S=a,—qgb>

Expressions (2.5) can be obtained by comparison of coefficients of the cor-
responding terms of Egs. (2.1) and (2.4) containing the same power of the un-
known variablex. If the term Rx + S) appearing in the Eq. (2.4) is equal to zero
(R =0, S=0), then the roots of the quadratic facta? (+ px + q) are also the
roots of Eqg. (2.1). Assuming that the coefficieptandq of the factor &>+ px+q)
are real, the rootg; = ¢+ jd andx, = ¢ — jd form the pair of the complex
conjugate numbers. The real padnd the imaginary pad of this roots are related
to the coefficientg andq in the following way:

p=-2c, q=c’+d° (2.6)

The mathematical basis of the Lin’s and Bairstow’s methods consists in finding
such values of the coefficiengs q, by, b, bs, . . ., by_2, forwhichR = 0 andS = 0.
In other words, the polynomial (2.1) should be divisible (without remainder) by the
factor (x> + px + q). This condition can be expressed by the equations:

R=a,1— pbh2—-0gb_3=0

2.7
S=a,—qb,>2=0 @9

from which consecutive more accurate values of the coefficients can be found.

q/: banzv bn727éo
n—
p = an-1— q'bn-3 (2.8)

bn—2

The process of determining the coefficieptandq by the Lin’s method is per-
formed in the following manner. In the first iteration, for given (initial) values of the
coefficientsp andq, the coefficientdy, by, bs, ..., bp_2, R and S are found using
formulas (2.5). If the coefficient® and S are different from zero then, according
to (2.8), the successive, more accurate valuep ahdq are determined. In the
next iteration, they are used to calculate new values of coefficmnts, bs, ...,
b,_2, R and S. This process is continued until the coefficiel®sand S become
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close to zero within the predetermined accuracy. It follows from the character of
the expressions (2.8) that Egs. (2.7) are solved using the Gauss—Seidel method,
but the coefficient®,_, andb,_3 of these equations have different values for each
iteration. In other words, these coefficients are functiong @nd g, see formu-

las (2.5). When condition® = 0 andS = 0 are satisfied, Eq. (2.4) takes the
form:

(X% + px 4 A)(X"2 + byx"3 4 bpX"* + - - 4 by_sX + by_2)

(2.9)
= (¥*+ px+0) - Wyh2(x) =0
First roots of this equation are the roais= c+ jd andx, = x; of the quadratic
factor (x> + px + q) determined according to (2.3) or (2.6). The consecutive roots
of the Eq. (2.9), and at the same time of the Eq. (2.1), are determined by solving the
equation:

Wh_2(x) = 0 (2.10)

If the order of reduced polynomidl,_»(x), that is 6 — 2), becomes greater
than 2, then these roots can be determined in much the same way as described
above. The remaining roots of the Eq. (2.1) can be of course found by means of
the same procedure. During the final phase of the computation, the order of the
successive reduced polynomi&}_o«(x), wherek = 1,2, 3,...,n/2, is not greater
than 2, and determining its roots terminates the process of solving Eq. (2.1). It is
known from the numerous cases described in the literature that the Lin's method
just presented can be characterized by slow convergence of the process of calcu-
lating the coefficientgp andq, until R = 0 andS = 0. Moreover, by unfortunate
choice of the initial values of these coefficients, the whole process can be diver-
gent. These shortcomings were eliminated in the Bairstow's method, in which the
system of equations (2.7) is being solved using the Newton’s method described in
Sect. 3.3.

2.1.2 Bairstow's Method

By determining the roots of polynomial equation (2.1) using the Bairstow’s method,
the system (2.7) is being iteratively solved by means of the Newton’s method. Ac-
cording to the Egs. (3.16) and (3.17), the successive; {) approximations of the
coefficientsp andq are calculated from the following formulas:

p(n+1)=p(n)_l<Ra_S_SE)

J aq aq 2.11)
1 aS R '

) g L = (R. 22 _g. 28

= +J( op O ap)
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where

During the calculation of the partial derivatives appearing in the above formulas,
we shall be aware of the fact that the coefficigRtand S are functions of the coeffi-
cientshq, by, b, .. ., by_2. The later are in turn dependent prandq, see formulas
(2.5). Itis therefore necessary to determine the sequence of partial derivatives of the
coefficientshy, by, bg, .. ., by_2, Rand Swith respect top andq. These sequences
can be described in the following way:

by

— = =-1

ap

ab: ab
a_;:CZZ_bl_p<a—pl>:—bl—pclz—b1+p
6b3_C — b 6b2 ab]_ — b c c
ap == 2 p ap q ap - 2 p 2 q 1

(2.12)

abi—C'— b ab_1 b _» b . ‘
ap_'_ i-1— P q ap )= -1 — PG-1—0G_2

o _ g (s (e
6p =Llph-2= n—3 p (')p = n—3 PG-3 qCh-4

q
IR obn_ obn_
i —bn_2 — p( s 2) -q ( L 3) = —bn2— PG-2—qG-3 (2.13)

ob ob ob
—3=d3=—p<a—;>—b1—q<—ql)=—b1—pdz—qd1

(2.14)

b b, _ b _
— =d = —p( ' l) —biz—Q< alq2> =-b_>—-pd_1—qd_:
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dbn_ dbn_ abn_
ar(]qz =0 2= —p( 62313) —bn_4—q< 8214) = —bn-4 — pth-3 — qth_4

IR dbn_» dbn_3
E__p< aq )-bn—s—Q( aq ) =—bn3— pth-2—Qqd3 (2.15)

aS abn_
E =-b,2—q ( " 2) =—bh2—qdh2

The coefficientsR(p, q), S(p, q) used in expressions (2.11) and their partial
derivatives described by (2.13) and (2.15) are computeg fer p™ andq = q™.
After calculatingp®™? andq™t? they are used for computing the new values of
the coefficientdy, R and S of the Eq. (2.4). The coefficients, R and S, where
i =1,23,...,n— 2, can be calculated from formulas (2.5). Next, we use ex-
pressions (2.12), (2.13), (2.14) and (2.15) to find new values of partial derivatives
of the coefficientsR and S with respect top andq correspondingly. Values of this
derivatives, in accordance with formulas (2.11), make possible finding qi®é
andq(™+2 approximations of the coefficients, which we are due to find. The succes-
sive approximations of the coefficienpsandq can be found iteratively in similar
way as described previously. These computations are continued until coefficients
R and S become close to zero with prescribed accuracy. Assume now that, as the
result of computations described above such valpes p* andq = q* were
determined, for whiclR(p*, g*) = 0 andS(p*, g*) = 0. Then rootsx; = ¢ + jd
andx, = ¢ — jd of the equation to be solved are identical to the roots of quadratic
equation k> + p*x + g*) = 0. The real part and the imaginary pad of these
roots are:

c:—p—, d=qg*—c? (2.16)

2

Similarly, as for all iterative methods, computations according to the Bairstow’s
method begin from the (initial) approximatign= p© andq = q©, which should
be chosen in such a way that the computing process just described is convergent.
The relations presented above form the theoretical basis to the elaboration of the
computer program P2.1, in which it was takg® = 0, q© = 0.

Example 2.IThe computer program mentioned above has been used to solve the
equation:

Wy(x) = x” — 4x5 4 25x° 4 30x* — 185¢% + 428> — 257 — 870=0 (2.17)
having the following rootsx; = 2, X = —1, X3 =1+ j2, X4 =1—j2, X5 =
245, x¢ =2— |5, x; = —3, wherej = +/—1. After finding the rootx; andxy,

the Eq. (2.17) can be written in the following product form:

Wy (X) = (X—X1)(X—X2)Ws(X) = (x2—Xx—2)(x°—3x*+24x>+48x>—89x+435) = 0
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The successive roots of the Eq. (2.17) we solvexgre 1+ j2 andxs = 1—j2,
being the roots of the reduced equatidk(x) = 0, which can be written as:

Wi(X) = (X — X3)(X — Xa)Wa(x) = (x> —2x + 5)(x® = x> + 17x +87) =0

Solving the equatioliV3(x) = 0 we obtain the rootg; = 2+ j5 andxs = 2— j 5.
Hence, the equatios(x) = O can be written in the form of the following product:

Wa(x) = (X — Xa)(X — X5)Wi(X) = (x* — 4x + 29)(x + 3) = O

which gives the value of the last root we wanted to determine xze= —3.

By changing the initial approximationpf®, @) we can change also the or-
der of finding successive roots of the equation. This order does not influence ob-
viously the values of the roots but can indirectly decide on the convergence of
the performed calculations. This conclusion justifies the fact that by changing the
order of determining the roots, the coefficients of reduced polynorifigls(x),
W,_4(x) change also their values. For example, whE¥ = 10 andq©@ = 0,
the roots of the Eq. (2.17) calculated by means of the program P2.1 are equal to:
X1=-1 Xo=-3, X3=1+j2, X4=1—]2, Xs =2+)5, X¢ =2—j5, x7=2.

In this case, the Eq. (2.17) is transformed in the following way:

Wa(X) = (X — X1)(X — X2) W5(X)
= (X® + 4x + 3)(x® — 8x* 4 54x3 — 1622 + 301x — 290)= 0

where

Ws(X) = (X — X3)(X — Xa)W5(X) = (x? — 2x + 5)(x® — 6x? + 37x — 58)
Ws(X) = (X — Xa)(X — X5)Wa(X) = (X* — 4X + 29)(x — 2)
Wi(x) =x —2

The results obtained in this example are good illustration of the general rule
saying that the nontrivial polynomial equation of thi# order hash roots which
can be uniquely determined. If all coefficients of this equations are real numbers,
then its complex roots form pairs of the complex conjugate numbers.

2.1.3 Laguerre Method

Itis concluded in the monography [3] that the Laguerre method for finding the roots
of polynomial equations is the most effective method and is sufficiently convergent.
In order to illustrate its algorithm, let us assume thatktreapproximation of any
root xx of the equationV,(x) = 0 is known. Next, i.e.,K + 1)th approximation of

this root is calculated by using the following formula:
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an(Xk)

Xk+1 = Xk —
de(Xk)
+ /H
Ix VH(X)

(2.18)

where

2
H(x)=(n-1) {(n —1) [dvgr;((x)] — an(X)%}

Sign £ in the denominator of expression (2.18) should be chosen so as to ob-
tain the smallest value of the differenpg.1 — x«|. Values of polynomial,(xx)
and its derivatives needed for each iteration can be effectively calculated using the
following formulas:

. dWh(X) o PWi(x)
Wh(Xk) = bn; T:cn_l, W:Zdn_z (2.19)
where
bp=1 b =xb_1+a, i=123....n
co=1 ¢ =xG_1+b, 1=123,....n-1
=1 d=xd_1+¢, 1=123,....,n-2

After calculating the first roox;, the equatioiV,(x) = 0 can be written in the
following product form:W,(x) = (x — Xx1))Wh_1(X) = 0. Consecutive roots of the
equationW,(x) = 0 are evaluated from formulas (2.18) and (2.19) with respect to
the reduced equation,_1(x) = 0. The process is continued until all the roots of the
equationW,(x) = 0 are not evaluated. If all the coefficients of the polynondia(x)
are real and the roog is complex, we can assume that the next pgef = (x;)*.

In this case, the produck (- x;)(x — Xi+1) is a quadratic factorx€ + px + q) with
real coefficientgp andq. Extracting this factor from the equation being solved we
obtain the new equation with reduced second order.

2.2 Iterative Methods Used for Solving Transcendental Equations

According to the type of the functiofr (x) describing the equatiofr(x) = O,

this equation belongs to the class of the algebraic or transcendental equations. If
the functionF (x) has the form of a polynomial or of a rational function (quotient

of the two polynomials), then this equation belongs to the class of the algebraic
equations. Classical example of this class is the polynomial equation considered in
previous sections. In case when the functiofx) has the form of the exponential,
logarithmic, trigonometric function, or their combination, such equation belongs un-
doubtedly to the class of transcendental equations. Only some simple transcendental
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equations can be solved by means of direct methods allowing to express the solution
(roots) by means of a closed-form mathematical formulas. Hence, majority of the
transcendental equations describing diverse scientific and technical problems can-
not be solved by means of direct methods. In such cases, the iterative numerical
methods, consisting usually of two stages [4—6] should be used. In the first stage,
an initial approximation of the solution is determined, and in the next (in the second
stage) the more accurate solutions are obtained, and the order of accuracy deter-
mines the prescribed admissible error. In the frame of this chapter, the following
iterative methods will be described:

— bisection (dividing by two) method

— secant method

— tangents (Newton—Raphson) method

— indirect method based on transformation of the given problem into an equivalent
optimization problem, which can be subsequently solved by means of the golden
or Fibonacci cut methods.

If we want to perform computations using the methods mentioned above we must
know the closed intervalg], b], in which only one solution exists. This interval is
usually determined using the uniform search method, as shown in Fig. 2.2.

Testing the functiorr (x) is performed with a constant small st&p. All over as-
sumed intervald, b] we search a such small subintervad = [x;_1, ;] for which
F(xi—1) - F(x) < 0. It means that the desired solutigh, for which F(x*) = 0,
belongs to this interval. In the next stage of the solution method the subintegval
is treated as an initial one and often also denotedabi]f

2.2.1 Bisection Method of Bolzano

Let us have the small closed interval p] including a single solution (real root) of
the nonlinear equatiok (x) = 0, see Fig. 2.3.

A
F(x) Ax

j;\;t |
| o
| |

Fig. 2.2
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Further search for solution can be performed by means of the bisection method
of Bolzano, called briefly bisection method [3, 7]. Using this method, in the first it-
eration we determing, = (a+b)/2 and calculate the value of the functibifx,). If
the valued-(a) andF (x;) have the same signs, then the searched interval decreases,
when we assuma = x;. Similarly, if the values-(x;) and F (b) have equal signs,
then we decrease the searched interval by taliiagx;. Using the same procedure,
in the second iteration we calculatge = (a + b)/2 and the value of the function
F(x2). When the value$(x,) and F(b) have identical signs, the searched interval
becomes smaller by exclusion of the sectiap, p], that is by takingb = x,. In
the opposite case, i.e., whéi(a) - F(x2) > 0 reduction of the search interval is
obtained by takinga = X,. This process is continued iteratively up to the moment
when the length of this interval attains the value which is less than expected, or until
the absolute value of the function at the ends of the interval becomes smaller than the
prescribed accuracy. The criterion of ending the calculation, formulated in this way,
is described by the inequality= (x)| < e, wheree is an arbitrarily small positive
number. The bisection method is used mostly in case of solving equations for which
the functionF (x) satisfies the Dirichlet’s conditions, that it has finite number of dis-
continuities of the first order in the initial interval,[b], and it is bilaterally bounded
inside this interval. Having in mind that we do not use the values of the derivative
of the functionF(x) in the calculation process, this method is very effective in the
sense that always leads to the solution, but in many cases is ineffective because of
the amount of calculations.

2.2.2 The Secant Method

Next, we shall consider the secant method (known also as the false position method),
used for the purpose of plotting the functibrix) shown in Fig. 2.4.
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Fig. 2.4

To fix our attention, we assume that the functie(x) takes on the limits of the
interval [a, b] the values having different signs, thatigh) < 0. As the first approx-
imation of the desired solution (root), we take the valug being the coordinate of
the intersection point of the secant, passing by the pdasd B with the x-axis,
i.e.,X;. In order to determine the equation of this secant, it is necessary to find the
coordinates at its arbitrary poift(x, y), using for this purpose the similarity of the
triangles marked in Fig. 2.4.

(2.20)

F@@ -y _x-—a
F(a—F(b) b-a

According to Fig. 2.4, the coordinates of the intersection point of the secant and
the x-axis are equal tox = x; andy = 0. After introducing these values of the
intersection point to the Eg. (2.20), we obtain:

b—a

M= AT ED—F@)

(@) (2.21)

Comparing the signs of the valuéga) and F(x;) we come to the conclusion
that the desired solution belongs to the inteneal;], becausda-(a) - F(x1) < O.
According to this conclusion, the search interval can be narrowed by removing the
section kq, b]. In the second iteration, we pose the secant through the pdints
andB; = [x1,y = F(X1)], see Fig. 2.4. This secant intersects thaxis at the
point having the coordinates= x, andy = 0. Proceeding in the similar way, we
narrow the searched interval unilaterally, obtaining a convergent series of approx-
imations {Xq, X2, X3, ..., Xn} Of the solution we search for. The iteration process
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just presented should be repeated until the value of the fund&@x,)| is smaller

than an arbitrarily small positive number The method of secants, similar to the
bisection method, is effective (always leads to the solution), and in comparison with
bisection method is more effective in the numerical sense. This effectiveness should
be interpreted as the amount of calculation necessary to obtain the solution. Simi-
larly, as in case of the bisection method we assume that the furie{ionsatisfies

the Dirichlet conditions in the initial intervag] b].

2.2.3 Method of Tangents (Newton—Raphson)

In order to solve the nonlinear equations with one unknown, the method of tangents
is often used, which is the particular case of the Newton method [7].

In this case, it is necessary that the functifx) be bounded and differentiable
at the given intervald, b], in which one single solution exists. As an illustration of
the basic idea of this method, let us consider the problem of solving the equation
F(x) = 0; geometric interpretation of which is shown in Fig. 2.5.

We start choosing an arbitrary interior poiqt of the interval g, b], for which
the functionF (x) takes the valugy = F(Xo). For this value we calculate the value
of derivative F'(xg) = F’(X = Xg), hecessary for determining the equation of the
tangent to the curvg = F(x) at P(xo, Yo). The coordinatex andy at an arbitrary
point P(x, y) lying on this tangent satisfy the equation:

y — F(X0) = F'(Xo) - (X — Xo) (2.22)

According to Fig. 2.5 the tangent intersects ¥haxis at the point having the co-
ordinatesx = x; andy = 0. Therefore, after introducing these values into Eq. (2.22)
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Fig. 2.5
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we obtain:

F(Xo)
F/(x0)’

X1 = Xo — F/(Xo) 75 0 (223)

It is easy to show thain(+ 1)th approximation of the solution is related to the
previous nth solution, by the following formula:

F(xn)

- F/(Xn)’ F,(Xn) #0 (2.24)

Xn+1 = Xn

The criterion at the end of calculations for this method has often been the form
of the following inequality:

IF(Xn)l < ¢ (2.25)

whereg is an optionally small positive number. On the basis of the literature on the
subject, it is possible to formulate the conclusion that the amount of calculations
in each iteration of the tangent method is greater than the corresponding amount of
calculations performed by using bisection or secant method. It is mainly due to the
necessity of calculation of the derivative of the functi®(x) during each iteration.
Nevertheless, the number of iterations necessary to determine the solution is much
lower, which makes this method more convergent. It was proved in the literature
that the tangent method has very good convergence in the (near) neighborhood of
the desired solution. This method is therefore willingly used in the final stage of the
mixed method and used in case when an extremely high accuracy is required. At the
preliminary stages the methods of uniform search and bisection are usually applied.

One disadvantage of the method under discussion is that it requires to evaluate the
derivative of functionF(x,) wheren = 0, 1, 2, 3, .. .. Unfortunately, for many real
functions it is inconvenient to find their derivatives analytically. In such situations a
corresponding approximation (difference formula) should be used. If the derivative
F’(xn) in the Newton method formula (2.24) is replaced by means of two successive
functional approximations in the formula

F(%n) — F(Xn-
Fl) ~ R = o0 sy (220
n — An—

the new iteration formula becomes

F() Xn — Xn—1

TEO) T T R Ry |0 7 Fle) 20 (22D

Xn+1 = Xn

The Newton—Raphson method modified in this manner is known as the secant
method [7]. As with the Newton method, the search of the root by the secant tech-
nigue may be terminated when consecutive valuex afjree to be within some
acceptable error or when the function vallgx,), is acceptably close to zero,
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see condition (2.25). The secant method has the same convergence difficulties at
a multiple root as does the method of Newton iteration discussed earlier.

2.3 Optimization Methods

The problem of solving the nonlinear equation with one unknown can be trans-
formed into the corresponding, one-dimensional optimization problem. Solution of
the equatiorF(x) = 0 is obviously equivalent to the problem of finding the global
minimum (equal to zero) of the unimodal functig(x)|. The idea of this transfor-
mation is shown in Fig. 2.6.

a)
F(x)
|
|
| b X
0 |
| a
|
|
- |
b)
[Fel
\ . |
|
|
| \ \ !
| b X
L | | : .
| a % %
ay Xy an bk

Fig. 2.6
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The process of evaluation of the global minimum of the functié(x)| can be
effectively performed by means of the golden or Fibonacci cut methods [6]. As an
example, let us consider the algorithm of the golden cut method. In the first iteration,
for a given interval &, b], we determine the interior points (coordinateg)andx;,
see Fig. 2.6(b), from the following formulas:

X; =a+ (b—a)/s?
xz =a+(b—-a)/s (2.28)

where
s=(1++/5)/2 = 1.618033989

Next, we calculate the valugb (x1)| and|F(x)|. When|F (x,)| < |F(x})|, we
take the new search interval as [x}]. In the opposite case, i.e., whé¢R(xy)| >
|F(xi)|, the searching interval is reduced by removing the sectionx]. When
the valueg F(x,)| and |F(x;)| of the function are equal, the new interval is chosen
as an arbitrary one among the subintervals determined above, trat is ] or
[X1, b]. In a similar way, we perform each successive iteration. Next, the above
process is repeated several times in order to make the search interval narrower. After
performingn iterations, the length of this interval is reduced to:

b—a
|bn_an|=| |

o (2.29)

As the criterion for the end of calculation, the following condition can be used:
bk —axl < ¢ (2.30)

wheree is an arbitrarily small positive number. It is worth emphasizing the fact that
in eachkth iteration, wherek = 2, 3, ..., n, only one of the coordinates is deter-
mined;x or X, and the corresponding value of the function, i.E (x)| or | F(x{<)|.

Due to the adopted procedure of determination of the coordinates, see Eq. (2.28), it
is possible that one of the coordinatespr x,, is the same as one of the coordinates
determined in the previous iteration. This precious property leads to the reduction
of the calculations almost by two. The parameteappearing in the relation (2.28),

is the inverse of the parameter= (—1 + +/5)/2 describing the golden cut of

a line segment; hence justification of the name of the method. The Fibonacci cut
method differs from the one described earlier chiefly due to the manner in which the
coordinates andx;, are evaluated.

Numerous comparative calculations made by means of both methods prove that
the golden cut method is only a little less effective. Nevertheless, this method is more
frequently used, because the Fibonacci cut method requires previous determination
of the number of iterations, which is not always easy to determine.
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2.4 Examples of Applications

Example 2.2As a first example of applications of numerical methods presented
above, we consider the problem of designing the lossless slab line. The cross-section
of this TEM transmission line is shown in Fig. 2.7.

The distributions of the electric@l and magneti¢d fields are shown in Fig. 2.8.

The line under consideration belongs to the class of the dispersionless, two-
conductor waveguides, in which the TEM electromagnetic waves are propagated
(Transverse Electro Magnetic Mode). The external conductor of the line is formed
by two, parallel equipotential conductive planes. As in the case of other config-
urations of the TEM transmission lines, circuit parameters, such as the complex
amplitudes (phasors) of the voltafjeand of the current, as well as characteristic
impedanceZ, can be used for a description of them. In order to explain the meaning
of these parameters, we assume that a variable voltage (difference of potentials)
exists between two arbitrary points and B lying on the surfaces of the internal
and external conductors.

u(t) = Ug cost + ¢y) (2.31)

At any fixed moment of time this voltage is equal to:

u(t) = fA ’ E(t)d! (2.32)

and the integration is performed along an arbitrary line joining the pdirdaad B.
The quantity

U = Uoexp(j gu) (2.33)
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Fig. 2.8

representing the formulas (2.31) and (2.32) is called the complex amplitude (phasor)
of the voltage. The variable electric field in the lig€t) is always accompanied

by a variable magnetic fiel#i(t), having the field lines surrounding the internal
conductor of the line. According to the Ampere law, the total current flowing in the
internal conductor of the line is:

i(t) = lpcospt + ¢) = yg H(t)dl (2.34)
C

whereC is an arbitrary closed line surrounding the conductor. The quantity

I =loexp(ji) (2.35)

representing the formula (2.34) is called complex amplitude of the current. The ratio
of the complex amplitude of the voltage to the complex amplitude of the current is
called characteristic impedance of the line:

Zo = IE (2.36)

The characteristic impedandg should not be confused with the wave impedance
defined as:

E

The characteristic impedan@ of the slab line depends on its geometrical di-
mensiond, d, see Fig. 2.7, and the electrical parameters,, u, of the dielec-
tric. In general case, the impedanggcan be evaluated by solving the appropriate
Laplace’s boundary value problem described in detail in Chap. 8 of the present book.
Such an approach, however, is rather complicated and strenous. Therefore, for this
reason many approximating closed-form design formulas have been elaborated. Itis
concluded in [9, 10] that the Wheeler’s analysis formula is the most accurate and a
convenient one for using in an engineering practice. The advantage of this formula
lies also in its simple mathematical form, namely:
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d VX+JY R
Zo( =) =59952 /X [in VXEVY R o1aR® . Q (2.3
b & X —-Y 30

where

d
%'B’ X=1+2sf(R), Y=1-2sirf(R) m=23141592653..

& — the relative permittivity of the dielectric substrate
wr — the relative permeability of the dielectric substrate.

According to the results published in [9, 11], the above formulas make it possible
in determining the impedanc&, with high accuracyAZy/Zo < 0.001) for Q05 <
d/b < 1. The design of the slab line on the basis of (2.38) consists in evaluating
such a ratial/b for which the following equation is satisfied:

v (%) = 7o <%> —Z5=0 (2.39)

whereZy is the given value of the characteristic impedance. The fundtiayb)
assumes its minimum value (zero) at pailib being sought. This point solution

can be effectively evaluated by means of the golden cut method. Some calculation
results obtained in this way are presented in Table 2.1.

Example 2.3 igure 2.9 presents cross-section of the eccentric coaxial line, the in-
ner conductor of which is laterally displaced from its normal position to the axis
location.

The characteristic impedance of this TEM transmission line can be evaluated
analytically by a field analysis and the resulting expression is:

Zo(x) = 59.952\/? In (x +xeC 1) . [Q] (2.40)

where
& — the relative permittivity of the dielectric substrate;
ur — the relative permeability of the dielectric substrate;

b+ (a2 — 4c?) /b

X = x(b) =
(b) 7
Table 2.1
Zg, Q) &r e d/b
30 3.78 ®4790

1
50 1 1 05486
75 1 1 03639
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We can easily see that wher= 0, the line under discussion becomes the normal

coaxial line for which:
ay _ Ko (@
Z (B> — 59952 / in (b), Q (2.41)

For given values o = 7 x 103 m, ¢ = 10~* m andZ, = 50, (), designing
the eccentric coaxial line on the basis of formula (2.40) consists in evaluating such
diametem, see Fig 2.9, for which the following equation is satisfied:

|Zo[x(b)] — Zol =0 (2.42)
Solving the Eq. (2.42) using the golden cut method we obibaie 3.038 x
10-3 m. Performing similar calculations for the eccentridity= 0 (the eccentric

line becomes the normal coaxial line) we obthin= 3.040 x 102 m. Identical
result can be obtained analytically by using the formula:

~Zo
b—a.expl %0 2.43
a exp[sg.gsz/_ur /sr] (2.43)

which is the inverted form of (2.41).
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Chapter 3
Methods for Numerical Solution
of Nonlinear Equations

In this chapter, we consider the systemsi@afrbitrary equations:

Fi(X1, X2, ..., Xn) = F1(x) =0
Fz(Xla X25 ceey Xn) = F2(X) = O

(3.1)
Fn(xl» XZ» ey Xn) = Fn(x) = 0
with n unknowns, creating the vectrr= [x, X2, . . ., Xy]. In the case when at least
one of the functions (x) of the system, where= 1, 2, 3, ..., n, is nonlinear with
respect to at least one unknown (variabdg)wherej =1, 2, 3, ..., n, the system is

nonlinear. The nonlinearity of the functidf(x) with respect to the variabbg C x

should be understood in the following way. Value changes of these functions and
related changes of the corresponding variables are not related by means of constant
coefficients, independently of the value of variables. Contrary to the linear case, the
systems of nonlinear equations cannot be solved by means of direct (simple) meth-
ods, because such methods are not elaborated up to now. In consequence, in case of
the systems of nonlinear equations, the iterative numerical methods are chiefly used
and the most popular among them are:

Method of direct iterations;

Iterative parameter perturbation procedure;
Newton iterative method and

Equivalent minimization strategies.

3.1 The Method of Direct Iterations

The algorithm of the method of direct iterations is very similar to that of the Gauss—
Seidel method used for solving systems of linear equations, see Sect. 1.2.2. During
the first stage of the procedure, the system of equations (3.1) is transformed to the
following equivalent form:
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X1 = fl(Xg, X3y ..y Xn)
Xo = (X1, X3, ..., Xn)

3.2)
Xn = fa(X1, X2, ..., Xn_1)

We begin our calculation by taking the approximate initial solution, i.e.:
X1 =21, Xo =a, X3=4ags,..., Xn =y

Then the expressions which permit to find successive, more accurate, approxi-
mations of the solution can be written in the following form:

Xy = fi(ag, as, ..., ah_1, an)
Xo = fao(Xq, @3, ..., 811, @n)

: 3.3
Xi = fi(Xe, X2, ..., Xi_1,841,...,8n) (3.3)

Xn = fn(X1, X2, ..., Xn—2, Xn—-1)

The calculating process, performed according to the formula (3.3) has iterative
form, and it means that the approximate solution obtained in the current iteration
constitutes the initial approximation (starting point) for the next iteration. These
calculations are continued, until the difference

R=Z|Xi_ai| (3.4)
i—1

obtained from the two consecutive solutions (found in the previous and the current
iteration) would become sufficiently small. In the limit case (for an infinite number
of iterations) the differenc® should attain the value equal to zero. The applicability
condition for this method is simply identical to the convergence of the veckre
(3.3), towards a certain limit solutidix*]. In order to satisfy the above condition,
the initial approximation by which the iteration process begins, should be chosen
in a possibly close neighborhood of the desired solution. The initial approximation
satisfying the above condition is frequently determined by means of the optimiza-
tion methods. This problem will be explained later in the present chapter. Another
indirect way to solve this problem is the application of the iterative parameter per-
turbation procedure presented in Sect. 3.2.



3.2 The Iterative Parameter Perturbation Procedure 51
3.2 The lterative Parameter Perturbation Procedure

In order to clarify the essence of this procedure, let us reconsider the task of finding
the solution of the equation system (3.1) written in the form:

Fi(x)=0 (3.5)

wherei = 1,2, 3,...,n. Evaluation of this solution using the procedure of direct it-
erations is not possible when the initial approximation guaranteeing the convergence
of the calculation process is not known. In such cases, it is possible to introduce
the second auxiliary equation systemrokquations (linear or nonlinear) witt
unknowns

Gi()=G2%) =0 (3.6)

for which the solution is already known. The systems of equations (3.5) and (3.6)
constitute the base of the generalized equation system, defined as follows:

Gi(k+1)(X) _ Gl(k)(X) + [FI (X) _ Gl(k)(x)]% (37)

Parametek of this system is an integer taking the values from the interval O to
N, whereN is a fixed integer (e.gx 10) determining the digitization step. It can
be easily shown that fdt=0, the system (3.7) is identical to the system described
by auxiliary equations (3.6), whose solution is assumed to be known. For the second
limiting value of the parametdy, that is fork = N, the system (3.7) transforms to
the system (3.5). When the valueMfis sufficiently great, changing the value of the
parametek with constant step equal to 1 leads to the “almost smooth” transforma-
tion of the equation system (3.6) into the system (3.5). For each fixed value of the
parametek = k’, beginning fromk = 1 and ending whek = N, the system (3.7)
is being solved by the simple iterations method described in the previous section.
The solution obtained for this value of the paramédter k' is used as the initial
approximation for the solution to be obtained in the next cycle, i.ek ferk’+1. As
the system of equatior@i(k“)(x) differs small from the syster@i(k)(x) solved in the
previous cycle, the convergence probability of the calculations performed by means
of the direct iterations is very high. This probability can be increased by diminishing
the iteration step; that is by increasing the valueNofUnfortunately, it causes an
increase of the number of cycles needed for obtaining the solution of an equation
system (3.7) using the method of direct iterations. It does not lead hopefully to
the increase of calculation errors, because there is no error accumulation when we
use iteration methods. The method we have just explained can be called a “forced
method”, because the difficult task of finding the solution of the equation system
(3.5) has been obtained for the price of big number of auxiliary calculations [1-3].
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3.3 The Newton Iterative Method

In this section, we consider the systemnofionlinear equations with unknowns
forming the vectox = [xq, X2, ..., Xp]:

Fi(Xg, X2, ..., Xy) = F1(x) =0
Fao(Xg, X2, ..., Xp) = Fo(x) =0
. (3.8)

Fn(X1, X2, ..., Xn) = Fa(X) =0

Assume that the approximation obtained for the solution of the system (3.8) in
thekth iteration is equal to:

Xy =a1, Xo=2ap, X3=4agz,..., Xn =2an

Solution of this system using the Newton method consists in finding such correc-
tionsAx;, wherei = 1,2, 3, ..., n, defined for the particular unknowns for which
the vector

X=[x1=a1+Axy, Xo=a8+AXp, ..., Xp=an+Axy| =a+Ax (3.9)

constitutes the solution being sought. Let us develop the functions on the left-
side of the system (3.8) into the Taylor series at the known point (veates)

[aq, &, 83. .., an]

aF1 dF1 aF1

Fi(x) = Fi(@) + —AX1 + —Axo + - - AXp + -+

1(%) 1()+axl 1t oG et o At
ok aoF, ok

Fo(X) =~ Fo(a) + —AXp + —AXo + -+ —AXp + - - -

200 ~ Fo(a) + 9%1 1+ %o 2t X, " + (3.10)
(:)Fn aFn aFn

Fa(X) ~ Fn(8) + —AX1 + —Axo + - - Axp +---

n( ) n( )+ aX1 1+ 9o 2+ + 9% n+

According to our previous assumption the veckgrsee (3.9), should be the
solution of the equation system (3.8). It means that the functig(s), where
i = 1,2,3,...,n, should be equal to zero. After considering this property we
obtain:
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oF oF oF

—AX —AXx o+ —=AX, = —F4(a

dX1 1t dX2 2+ + 0Xn " 1(3)

aoF, ok JiF,

T2 A% 4+ T2 Axp + - - Ax, = —Fo(@

axg AT G et g A% 2(3) (3.11)
9F, 9F, 9F,

—DAX + —2AXp + -+ —AXy = —Fp(@

P 1+ %o 2t Xy (@

In order to assure some clarity to our further considerations, we write the
equation system (3.11) in an equivalent matrix form:

B aFl aFl (‘)Fl N
Xy 9Xs  9¥Xn Ax _E(a
IF, 0F, 9, ! 1(3)
— ... = Axz —F2(a)
0X1 0Xo Xy | - . = . (3.12)
o0Fy OF,  aF, | LA —F(@)
L oxg 9X2 9%
In the consecutive developments of the functién&), wherei = 1,2,3,...,n,
at the pointa, only the first linear terms of the Taylor series, for all the unknowns
Xj, J =1,2,3,...,n, have been taken into account. The desired vectera+ Ax

represents therefore only a consecutive, better approximation of the desired solution.
All partial derivatives of the functionk; (x) are determined at the poiat It is easy

to show that the system of equations (3.12) obtained in this way is linear with respect
to the correctiondx = [AX1, AXy, AXs, ..., AX,]formulated for all the unknown
variables.

This system is usually being solved by the Gauss elimination method with
the choice of pivoting (principal) element. After determination of the corrections
[AXq, AXp, AXs, ..., AXy], new approximation is made by takirg= x and the cal-
culations are repeated according to the same algorithm. The iteration process can
be stopped only after obtaining the vectosatisfying equations (3.8) up to the
desired accuracy. For each iteration, it is necessary to verify whether the equation
system (3.12) is not singular. Thus, it is necessary to verify whether the determinant
of the coefficient matrix (Jacobian) is not equal to zero or not infinitely small. In
case when the absolute value of this determinant (Jacobian) is too small, the ex-
cessive calculation errors may occur. This situation happens most frequently in the
final phase of calculations, during which the calculated vectmrcomes very close
to the final solution. In such case the derivatives of the functig) constituting
the coefficient matrix are close to zero. In the engineering practice, we often meet
the common problem of solving the system of two nonlinear equations with two
unknowns. Therefore, let us consider especially this problem more in detail:
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Fi(x1, x2) =0

3.13
Fa(x1, X2) =0 349

Assume first that thath approximation of the desired solution, thalxﬁg) and

xé”), is known. According to the theory presented above, the equation system (3.12)
formulated for this task has the form:

W(x™) . Ax = —F(a™) (3.14)
where
aF1 aFy
0X1 OX
)y _ 1 2
W) = | e e (3.15)
X1 dX2

Solving this equation system with respect to the correction velctore obtain
the next (4 1)th, better approximation of the desired solution. For that purpose, let
us multiply both sides of the equation system (3.14) by the inverse of the coefficient
matrix, namelyw ~1(x("). After this multiplication we obtain:

W™y . w(x™) . Ax = —W=1(x™) . F@™) (3.16)

According to the relations (2.24) and (2.25) given in the preceding chapter,
Eq. (3.16) can be written as:

Ax = —W(x™) . F@@") (3.17)

The left-side of the Eq. (3.17) represents the correction vector, which added to
the previous approximation forms a new more accurate approximation. The next,
(n 4 1)th approximation of the desired solution is:

XD — xO _ W1(xMy . Fa™) (3.18)

The crucial problem we meet when we want to implement the algorithm ex-
plained above, in order to determine the next approximation of the needed solution,
is finding the inverse of the coefficient matrix described by the relation (3.12). This
matrix can be easily found using the algorithm presented in Appendix 2. Finally, we
obtain:

1 JoF JoF
X:E_n+1) — X(n) _ = F1—2 _ 2_1
J dX2 dXo
(3.19)

1 JoF JoF
(n+1) (n) 2 1
MY = x4 SR — — F—

2 2 T J [ aX 2 8X1]
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where
aFl 6F1
v vl oFL oF, oF OF
g | oxax AR A A A (3.20)
WP 0Fp | dxe Xy 0Xp
X1 0Xp

FunctionsF;, F, appearing in the relations (3.19) and (3.20) and their deriva-
tives are determined at the poind], x"]. During the calculation of then(+ 1)th
approximation of the desired solution it may occur that the Jacobiturns out
to be equal to zero. In such case, the whole calculation process will be interrupted,
because the division by zero is prohibited. In order to prevent such events, the corre-
sponding security procedures should be included into the program. We usually adopt
the following practical procedure. After finding out that the Jacohlais equal
to zero, a small increment (negative or positive) is added to one, freely chosen
variable, for example™. For such incremented valug]’ + ¢, x"] the functions
F1, F>, their derivatives and the determinahtis next calculated. When absolute
value of the determinant exceeds the given positive, nonzero value then the new
approximation {(ﬁ”“), xg‘*l)] can be calculated according to formulas (3.19). In the
opposite case, we add the incremei the different variable and repeat the whole
process once more. Sometimes the whole calculation process may be divergent with
respect to the limit equal to the solution, because the distance (mdiraensional
space) of the assumed initial approximation (starting point) from the solution is too
large. In such cases, we can transform the problem described by the Egs. (3.8) into
an equivalent optimization problem, according to the method described in Sect. 3.4.

Example 3.1As an illustration for the algorithm of the Newton method presented
above we propose to evaluate the solutions of the following pair of equations:

Fi)=x24+x3—-5=0
Fo()=x?—x3+3=0

We assume that the initial approximation of the solution, i.e., the starting point
9, xP) = (0.5, 1) is known. The approximate values of the solution (1, 2), found

in the consecutive iterations are given in Table 3.1.

Table 3.1

n 0 1 2 3 4
x" 05 125 1025 1.0003 1
R | 25 205 2.0006 2
Fi  —375 28125 02531 3.05%1073 0
F 225 -16875  —01519 —1.830x10°% 0

J —4 —25 —16.81 —16.0097 -16
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The solution (1, 2) evaluated above is only one of the set of four solutions:
(1, 2), 1, 2), (-1, -2) and (1,—2) placed in the particular quadrants of the two-
dimensional space (plang)x,. The consecutive solutions mentioned above can be
evaluated in the similar manner by appropriate choice of the initial approximation
(starting point). Of course the point (0, 0) is not suitable for this purpose. This
restriction is justified by the fact that at this central point the Jacobian (3.20) takes
zero value.

Example 3.2Vhen we use the Bairstow’s method to find the roots of a polynomial
equation (2.1), the system of equations (2.7) is being solved by means of the New-
ton iterative method. According to the formulas (3.19) and (3.20), the consecutive,
(n + 1)th approximation of the coefficienfs andq, which we must determine, is
calculated by means of the following relations

o — pm _ L <R. 0S o aR)

J aq g
(3.21)
1 S IR
(n+1) _ ) 4 = N <N
@ +J<R ap Sap>

where

_____ £0

During the process of calculation of the partial derivatives appearing in the above
formulas it should be remembered that the coefficiéhénd S are functions of the
coefficientshy, by, bs, ..., by_2. These coefficients depend in turn prandq, see
formulas (2.5). Therefore, we have to determine the sequence of partial derivatives
of the coefficientdy, by, bs, ..., b,_2, R and S with respect top and q. These
derivatives can be found by using relations (2.12—-2.15) given in the Sect. 2.1.

3.4 The Equivalent Optimization Strategies

In Sect. 2.3, the problem of finding solution of the one nonlinear equation with
one unknown was transformed into an equivalent optimization problem, which was
subsequently solved by means of the golden cut method. This approach can be gen-
eralized to the form useful in case of the systennddrbitrary equations with
unknowns. For this end, we take the functiBrfx), see the equation system (3.1),

and construct the new function which attains the global minimum equal to zero for
the vectorx, which represents the desired solution. The examples of such functions
are:
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U = IR (3.22)
i=1

V) =Y IR (3.23)
i=1

In practice, the function (3.22) is most frequently used, because it is easier to
differentiate, than the function (3.23). When applied to the problem considered in
Example 3.1, the functiob (x) has the form:

U (X1, X2) = (X2 + X5 — 5)? 4 (x2 — x2 4 3)° (3.24)

The function (3.24) assumes the minimum value equal to zero at the point [1, 2],
which is the desired solution. Outside this point, i.e., for the arbitrary values of the
variablesx;, X, this function remains positive. This property is shown in Fig. 3.1.

In the close neighborhood of the point (1, 2) the analyzed function describes the
surface of the shape similar to the paraboloid of revolution. Therefore, starting at an
arbitrary pointP(xy, x2) lying on that surface and moving in the directiofx,, x,),
pointing to the region in which the function in question decreases, we approach the
desired solution. The trajectory from the starting point, up to the point corresponding
to the solution may of course consist of several linear sections, positions of which in
the two-dimensional space, X, (on the plane) define the corresponding directions
of improvement, that isl; (X1, X2). The simplest representative of the functions de-
scribing the minimization directiod is the anti-gradient function defined by:

Ay

/

D convergence area
X1

Fig. 3.1
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U U
—VU(x1, X2) = —k1— — ko— 3.25
(X1, X2) 19 2% (3.25)
wherek; andk; are the unit vectors (versors) corresponding to the variahlasd
X2, respectively. In general case, when we are dealing with a functidepending
onn independent variables, the anti-gradient of this function is:

aU ()

o (3.26)

n
—VU (X1, X2, X3, ..., Xn) = =VU(X) = — Z K;
i—1

wherek; is the versor related to the variable The direction of minimization, eval-
uated by (3.26) constitutes the basis for the simplest gradient optimization method,
known as the steepest descent method [4, 5]. This method is most effective in the
initial phase of searching, when the partial derivatives of the fundlipt) are con-
siderably different from zero. As we approach the solution, values of these deriva-
tives decrease, and in consequence the directiamdetermined with decreasing
precision. For this reason, the process of searching for the solution in the close
neighborhood should be continued by means of more effective methods, as the
Fletcher—Reeves and Davidon—Fletcher—Powell method. The algorithms of these
methods and corresponding application examples can be found in the literature [4—6].

3.5 Examples of Applications in the Microwave Technique
Example 3.3As the first example of application of the numerical methods discussed
above, let us design the air coupled slab lines for given values of characteristic

impedanceZoe and Zg, [7, 8]. The cross-section of these lossless TEM transmis-
sion lines is shown in Fig. 3.2.

€ Mo
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The outer conductor of these lines is formed by two parallel equipotential
conducting planes. The lines of this type are used broadly in various microwave
devices such as different kinds of filters, directional couplers, etc., chiefly intended
to work at medium- and high-power levels. Due to the circular geometry of the inner
conductors, they are easy to manufacture and make possible in obtaining the good
impedance and constructional matchings with respect to adjacent coaxial lines. Ba-
sic electrical parameters of the coupled lines are the two characteristic impedances
defined for the symmetrical (in-phase) and antisymmetrical excitations, denoted by
Zoe and Zy,, respectively. The coupled lines are excited symmetrically, even-mode
(++), if the voltages applied to their inner conductors are:

uz(t) = Up cosgt + ¢o)

(3.27)
Uz(t) = U cost + ¢o)

The electric field distribution obtained for such symmetrical excitation is shown
in Fig. 3.3(a).

The ratio of complex amplitudes of the voltade= Ug exp(j ¢o) and the currents
| flowing in each conductor is called the even-mode characteristic impedance and
is denoted aZe. In the case when the voltages applied to the inner conductors has
the phase lag at an angle 28that is:

u(t) = Ug cosgt + ¢o)

(3.28)
Uy (t) = Ug cost + ¢o + )

@)

(b)

\
1

Fig. 3.3
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the excitation is called antisymmetrical, odd-mode—). The corresponding
electrical field distribution is given in Fig. 3.3(b). In this case there is a strong elec-
trical field between the inner conductors, which may cause a breakdown. The odd-
mode characteristic impedan@,, is defined as the ratio of the complex amplitude

of the voltagel = Ug exp(j ¢o) to the complex amplitude of the currentfowing
through each inner conductors. For each pair of the design parameteds h and

y = s/h, see Fig. 3.2, the impedancgg. and Z, satisfy the following condition:

Zoo < Zo < Zoe (3.29)

whereZ; is the characteristic impedance of the lines without coupling. The impe-
dancesZqe and Zy, are equal, if the distancebetween the inner conductors of the
line is sufficiently large (theoretically infinite). In the microwave technology, the
pair of coupled lines is often characterized by the coupling coefficient defined by:

ZOe - ZOo

[
ZOe+ ZOo

(3.30)

It follows from the inequalities (3.29) that @ k < 1. The characteristic impe-
dancesZy and Zy, of lines under consideration depend on geometrical dimen-
sionsh, h, s, see Fig. 3.2. Similarly for the single slab line, see Example 2.2,
the impedance&. and Zo, can be evaluated by solving the appropriate Laplace
boundary value problem described in detail in Chap. 8. However, such field ap-
proach is rather complicated, and therefore inconvenient for engineering practice.
Therefore, for this reason many approximating closed-form design formulas have
been elaborated. The example of such formulas useful for engineering is presented
below [8].

0.523962
Zoe(X, y) = 59.952 In[ } ,

f1(x) f2(X, y) fa(x, y)

0.523962f5(x, y)}
f1() fa(x.y) 1’

(3.31)
Zoo(X, y) = 59.952 In[

where

x=d/h

y=s/h
_ax)
fi(x) = xm
c(y) — xd(y) + e(x)g(y) fory < 0.9

fa(x, =
Y =1 14 0,004 exp(09—y) fory = 09
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fa(x, y) = th G%’)

k(y) — xI(y) + m(xX)n(y) for y < 0.9
falx.y) = { 1 fory > 0.9

a(x) = 1+ exp(1l&k — 18272)
b(x) = +/5.905— x4

0.014002 0.000636
c(y) = —0.810%4 + 1.3401y2 — 0.6929 + 1.0892+ -

y2

d(y) = 0.11— 0.83y + 1.64y? — y°
e(x) = —0.15 exp(13x)

a(y) = 2.23 exp(—7.01y + 10.24y* — 27.58y°)

0.2145 0.222573 0.01282
k(y) = 1+ 0.01 (—0.0726— + - 3)

y? y3
0.6866 0.0831 0.0076
Ty Ty
m(x) = —0.1098+ 1.2138 — 2.25352 + 1.1313¢3
0.016 0.0362 0.00234
+ 2 3
y y

I(y) = 0.01 (—0.26+

n(y) = —0.019—

The relations given above guarantee the accuracy of the impedZpgasy)
andZgo(X, y) not worse than 3% for01 < x <0.8and 01 < y.

For given values of impedanc&y. = Zj, and Zg, = Z, the design of these
lines consists in determining such values of parametetsd/h andy = s/ h, see
Fig. 3.2, for which the following equations are satisfied:

Vi(X, y) = Zoe(X, ¥) — Zpe =0
(3.32)
V2(X, Y) = ZOO(X’ y) - 260 =0

The system of nonlinear equations (3.32) can be effectively solved by using the
Newton method described in Sect. 3.3. Thus, the-(1)th approximation of the
desired solution is:

1
J

(3.33)
1
J
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where

V1 oV
ox ay
Vo Vo
oxay

£0

and k™, y™M) is the nth (previous) approximation. The functiong(x, y) and

V,(X, y) appearing in the expressions (3.32) and their derivatives are calculated at
point x(™, y(M). Before execution of then@-1)th iteration, the value of the Jacobian

J should be verified. When its value is different from zero, the calculations can
be continued. In the opposite case, we should perform a small shift of the point
(x™, yM), by adding a small numberto one of the variables in order to satisfy the
conditionJ # 0. After this “small perturbation” the calculations can be continued
according to the formulas (3.33). The initial approximation assuring convergence of
the calculation process of this algorithm can be found according to the following
expressions:

0 A
xO = —exp
4 59.952,/0.987— 0.171k — 1.72%3

yo =1 <E> )
T r—1

(3.34)

where

Zo = +/ZoeZoo

0.0014+1.117K—0.68%K?
Kk ZOe_ Z00 ( 4 )

- Zoe+ Zoo - x©)

As the criterion allowing to stop the calculations, the following condition is most
frequently used:

VZ(X, y) + VZ(X, y) < ZoeZoo x 10°° (3.35)

This inequality guarantees the precision not worse thd#0An example of
such calculations is presented in Table 3.2.

Example 3.4This example deals with a problem concerning design of the non-
commensurate four-section impedance transformer with the maximally flat inser-
tion loss function. Calculations will be performed for different values of the ratio
R = Zg»/Zo; of impedances that are to be matched. The electrical scheme of the
designed transformer is shown in Fig. 3.4(a).
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Table 3.2

& = 1, MUr = 1

Zoe Q) Zoo Q) x=d/h y=s/h
51.607 48443 05483 Q07882
52.895 47263 Q5460 06119
55.277 45227 Q5418 04439
59.845 41774 05286 02802
69.371 36038 Q4893 01460

The insertion loss function of this transformer is:

P.
L=o= =1+ Talf=1+T5
PWY

where

To1 = C{D — 2 cos(2,0) + E cos(d + 2a,0) — F[2 cos(D) — cos(&0 —

C=(R—1)(R?+1)(R+ 17/(16R>VR), D =2(R®+ 1)/(R+ 1)?
E=(R+17%(R*+1), F=(R-17?/(R?+1)

6 a,0 a,0 0
O O O O o
| | | | |
Zn  Zo2 Zn Zoz Znn  Zp =RZgy
[ [ [ [ [
O (@] O O Q
| | | | |
(b)
L
Ld _ — — —
| |
x
1 | | .

(3.36)

20)1}

63
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Design of the transformer of this type consists in finding such values of electrical
lengthsé( fp) and ayxf( fo) of the particular sections, for which the insertion loss
function (3.36) will satisfy the following conditions:

L[O(fo), @] =1

3.37
L®[o = 6(fo), ] =0 827
where the index = 1, 2, 3 describes the derivative of the ordewith respect to
0(f) calculated at the poirt = 0( fp). It follows from analysis of the relation (3.36)
that conditions (3.37) are satisfied if:

1
—Tx[O0(f =0
c 21[0(fo), a]

d

7 {éTzl[G = 6(fo), az]} =0

(3.38)

The derivative appearing in the system of equations (3.38) can be determined
using the following explicit formula:

d [éTzl(G, az)} = 4ay sin(2a,0) — E(2 + 2ay) sin(2 + 2a,0)

do (3.39)

— F[—4sin(D) + (2ay — 2) sin(22260 — 26)]

where the coefficient& and F are defined by the relation (3.36). The system of
equations (3.38) can be effectively solved by means of the Newton method, that is
in the similar way as the previous Example 3.2. Convergence of the iteration process
is guaranteed, when the following initial approximation is adopted:

6o(R) = 0.273 exp(0188— 0.131R -+ 0.004R?),

(3.40)
ax(R) = 2.948+ 0.175R
Results of some chosen calculations performed by means of the algorithm pre-
sented above are given in Table 3.3.
For the three transformers designed in this way (see the columns 1, 4 and 5 of
the Table 3.3), the frequency responses of the voltage standing wave ratio (VSWR)
have been evaluated. The corresponding plots are presented in Fig. 3.5.

Table 3.3

R 0o(fo, R), rad a(R) 0(fo, R), rad ay

15 02702 31395 02734 31341
2 0.2475 32104 02592 32168
3 0.2304 34072 02306 34104
4 0.2074 36093 02067 36058
5 0.1904 37979 01876 37929
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1.10

VSWR

o5 i
NP4

9 1.0 1.1 f/1,

1.00

Fig. 3.5

These responses have been evaluated by using the formula:

1+ I
VSWR= —— 3.41
-y (3.41)
where
T
I = [ T2

V14 T2l?

The formula (3.41) was determined for the case, when the analyzed transformers
are lossless. Such assumption is fully justified in case of the small transformers
operating in the UHF band and at lower frequencies of the microwave range.

Example 3.9_et us consider once again the design problem for the noncommen-

surate four-section impedance transformer whose electrical scheme is shown in
Fig. 3.4(a). The insertion loss functidn( f) of this transformer should be sim-

ilar to that shown in Fig. 3.6. In other words, the insertion loss functigri)

of the designed transformer should be equal to ripples similar as the insertion

Fig. 3.6
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loss function of the corresponding Chebyshev transformer composed of quarter
wavelength sections [9].

We assume that the ratR = Zg,/ Zo; of impedance that are to be matched and
the band coverage coefficient= f,/f; = 0(f,)/0(f,) are given. The problem
formulated above leads to the conclusion that we should find such electrical length
6 =6(f1) and the coefficiend,, see Fig. 3.4(a), for which the cuntg f) will be
similar to that shown in Fig. 3.6. It is clearly visible that this response should take
the identical extreme values at the three points representing different frequencies
fie = f1, f2e, f3e = f2lying inside the given bandwidthf{ — f,). This requirement
can be described by the following nonlinear equations:

T21(6a, 82) — T21(0a - fae/f1e, @) =0

T21(6a, @2) + T21(0a - foe/f1e, @) =0

(3.42)

whereT,1(6, &) is the element of the wave transmission matrix described by the for-
mula (3.36). The system of equations (3.42) can be solved by means of the Newton—
Raphson method when the appropriate initial approximatiéf?(R, x), aéo)

(R, X)] is known. Of course, this initial approximation should ensure convergence
of the calculation process. In other words, the initial approximation must lie in
the sufficiently close neighborhood of the desired solution. The two-variable func-
tions 6O(R, x) andago)(R, X) satisfying this requirement can be found in the fol-
lowing way. Assume that the solution of the equation system (3.42) is known
at the arbitrary point R, Xo) of our region of interest. This solution should be
treated as an initial approximation for the solution of this system of equations for
R = Ry + ARy, X = X + AXq, whereAR; andAx; represent small increments,

for which convergence of the calculation process is assured. The solution obtained
in this way serves as initial approximation used subsequently to obtain next solu-
tion of the system (3.42) foR = Ry + AR; + ARy andx = Xg + Axy + Axs.
Proceeding in a similar way, we can determine the set of solutions guaranteeing
convergence of the calculation process performed by means of the Newton method,
in our region of interesD : [Rmin < R < Rmax Xmin < X < Xmax. The set of
discrete solutions evaluated in this mannerf& 4 R < 10and 14 < x < 2.6 has

been subsequently approximated by using the following uncomplicated continuous
functions [9]:

Va(r, X)
1+x

6O(R, x) = 0(fy) =

(3.43)
_ ) + fa(r)(2-x)
V4(r7 X)
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where

r=R—15Vyr,x)= fi(r) + fo(r)(x — 2)

f1(r) = 0.629575 exp{0.115156 + 0.0049392 — 0.0000743)

fo(r) = 0.105558 exp{-0.046644 — 0.0012132 4 0.000267°)

f3(r) = 1.614779 exp{0.079409 + 0.0037012 — 0.000075°)

fa(r) = 0.251327— 0.123151 exp{0.219819 + 0.0162912 — 0.000646 )

Formulas (3.43) make it possible the effective solution of the system of equa-
tions (3.42) for 13<R<10 and 14<x<2.6. Some calculation results, obtained by
using these approximating formulas are given in Tables 3.4 and 3.5.

The VSWR(f/f1) responses obtained for two four-section transformers des-
igned for R = 2, x = 2) and R = 4, x = 1.9) are shown in Figs. 3.7 and 3.8,
respectively.

Similar to (3.43) closed-form formulas for designing the more broadband non-
synchronous transmission line transformers composed of six and eight noncom-
mensurate sections are described in papers [10, 11]. It deserves noting that the

Table 3.4
R= 202/201 X = fz/ fl 9( fl), rad ag VSWRyax
4 1.3 0.1845 3.4618 1.0430
4 1.9 0.1642 2.8787 1.2759
4 2.6 0.1500 2.3205 1.6492
Table 3.5
R=Zp/Znn x=f/f1 6(f1), rad a VSWRmax
1.5 2 0.2098 2.5659 1.0740
2 2 0.1996 2.6058 1.1340
3 2 0.1790 2.6969 1.2359
4 2 0.1619 2.7849 1.3253
5 2 0.1482 2.8655 1.4074
VSWR R=2

1.4 /

1.2 \\ 1.340 /

1.0 \/ \/

0.8 1.0 1.2 14 1.6 18 2.0 f11,

Fig. 3.7
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VSWR
R=4
14
\ 1.2759
— | = e - -
1.2 // N
1.0

0.8 1.0 1.2 14 16 1.8 20 fifi
Fig. 3.8

eight-section transformer described in [11] has been used as a prototype circuit
for designing the eight-way power divider/combiner implemented in the L-band
rotary joint. Moreover, a similar multi-section nonsynchronous noncommensurate
transmission line structures can be applied to matching two-frequency dependent
complex impedances over the given frequency band. The corresponding design al-
gorithm and examples of applications are described in [12, 13].
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Chapter 4
Methods for the Interpolation
and Approximation of One Variable Function

Each professionally active engineer usually has to do with large number of numer-
ical data acquired during the calculation or experimenting process. It is therefore
obvious that statistical processing of this data or assignment of the corresponding re-
lations in the form of analytic functions has major importance for practical purposes.
The methods of interpolation and approximation discussed in this chapter serve,
among other goals, for this purpose. By interpolation we understand the process of
assignment, for the given functign= y(x), continuous or discrete, of a continuous
function f (x) which for a finite number of values of takes the same values, that
is f(x) =Yy =vy(X), wherei =0,1,2 3,...,n. The values ok andy; represent
the coordinates of the points (see Fig. 4.1), called the interpolation points (nodes).
The coordinatesg; are therefore often identified with this names [1-4].

In most practical cases, we are concerned with interpolation of a discrete function
yi = y(Xi) by means of a continuous functioi(x). This problem may be solved
in many different ways but the methods most frequently used for this purpose are:
piecewise linear interpolation, using the Lagrange or Newton—Gregory interpolation
polynomial, interpolation by means of cubic spline functions and interpolation using
a finite linear combination of Chebyshev polynomials of the first kind. All these
methods are discussed in Sect. 4.1. Slightly different, but a more general problem
is the approximation of a given, continuous or discrete functiog y(x), by a
continuous functionf (x). In this case, both functions can take the same values
f(x) = yvi = y(x), for a finite number of points;, but it is not a necessary
condition. Such a particular case is shown in Fig. 4.2.

In case of approximating the discrete functign= y(x;), wherei = 0, 1, 2,
3,...,n, by a continuous functiorf (x), the most frequently used measure of the
quality of the approximation (norm) is the following sum:

Ri=) |f(6)— v (4.1
i=0

which should take the possibly smallest value. When the approximated function
y = y(x) satisfies the Dirichlet’'s conditions in an approximation intereald] (is
bounded and has a finite number of discontinuities of the first kind), we can evaluate:

S. RostoniecFundamental Numerical Methods for Electrical Engineering 69
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A
y(xi) I
f(x)
Yn-1
Yn
X
T T T || T : =
Xo X1 Xp Xn-1 Xn
Fig. 4.1
1 b
R, = f(x) — 4.2
o= e [ 1160 - vl “2)
a

The norm given by formula (4.2) has a simple geometrical interpretation. It is
equal to the ratio of the hatched area in Fig. 4.3 to the length of the approximation

interval.
Another example of the norm used for approximation of a continuous function

y(x) by a functionf (x) is:

1
|b— al

Rs =

b
/ [£(x) — yo) ] dx (4.3)

The approximation methods used most frequently in the engineering can be
discriminated in consideration of the approximating functioix) or the adopted
approximation norm. In general, an approximating function can be a linear combina-

tion of linearly independent component functigngx), wherek = 0,1,2,3,..., m
A
y(xi) y2
f(x) o
Y1 ) Ys
(@] Y3 O ]
Y4
S \ f(x)
Yo
X
| | | : : —
Xo X1 Xo X3 Xa X5

Fig. 4.2
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A
y(x) ()

f(x) /

y(x)

Q- — — —
o+ - - — — —

Fig. 4.3

£(x) = a0po(X) +@191(X) + 2p2(X) + Bapa(X) + -+ + Amem(X) = D awpk(X)
k=0
(4.4)

The set of functiongy(X) is called linearly independent, when no such function
belonging to this set exists that can be expressed as the linear combination of the
remaining functions. It means that the identity

" ane(x) = 0 (4.5)

k=0

cannot be satisfied for an arbitrary set of coefficiegta, a,, as, ..., anm different

from zero. The simplest example of the linearly independent functions is the set of
power functions: 1x, x?, X3, ..., x™. The problem of approximation by means of
the function (4.4) can be solved very easily in case when a given system of linearly
independent functions is orthogonal [5, 6]. In order to explain this property, we
formulate the relation:

b
/ ¢ (e (X)dx = @i (X)e(x) =0 fori #k (4.6)

a

If each arbitrarily chosen pair of functions belonging to the set of linearly inde-
pendent functions satisfies the condition (4.6), then such a set is orthogonal in an
interval [a, b]. Moreover, if the following condition is simultaneously satisfied

P’ X)=N; =1 fori =0,1,2,3,...,m 4.7)

then the set of functions is said to be orthonormal in an inteeyd][
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The approximation methods presented in Sect. 4.2 will be discussed in the
following order:

— approximation of a constant functigifx) = const in the limited intervald, b]
by the Chebyshev polynomia},(x);

— approximation of a constant functiop(x) = const in the intervald, b] by the
Butterworth polynomiaBy,(x);

— approximation of a discrete function = y(x;), wherei =0,1,2,3,...,n, by
the polynomial

D(X) = agpo(X) + ar@1(X) + a2p2(X) + agea(X) + - - - + anen(X) = Z 3 ¢i (X)
i=0

according to the least squares criterion;
— approximation of periodic functions satisfying the Dirichlet’'s conditions by the
trigonometric polynomial

W(x) = aoYo(X) + a1 (X) + @Wa(X) +Baa(X) + -+ an¥n(X) = Y & (X)
i=0
whose basis functiongo(x), ¥1(X), ¥2(X), ¥3(X), ..., ¥n(X),are linearly inde-

pendent and satisfy the condition (4.6).

4.1 Fundamental Interpolation Methods

4.1.1 The Piecewise Linear Interpolation

The essence of the piecewise linear interpolation of a given discrete furygtion
y(%i), wherei =0, 1,2,3,...,n,isillustrated in Fig. 4.4.

Y3

1 y(x)
L(x)

Fig. 4.4
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For each value of the variabbelying in the approximation interval, the corre-
sponding value of an interpolating function can be calculated from the formula:

k
L(x) = yo+2r(i)+r(k+1)XkX_—Xk

i=1

4.8
+1 — Xk 48)

wherer (i) = y; — yi—1 andk is the largest index value for whioty < X.

4.1.2 The Lagrange Interpolating Polynomial

The problem of interpolation by the power polynomial consists in finding a poly-
nomial P(x) of degree not greater tham which for the given values of;, where

i =0,123,...,n,takes the same values as the approximated fungtieny(x;).
There is a mathematical proof that there exists only one polynomial,

n
Po(X) = a0+ a;x + X + agx® + -+ ax" = ) _ax (4.9)
i—0

having g + 1) coefficientsag, a1, @, as, ..., as. In order to determine them, we
should formulater{ + 1) reasonably stated conditions. According to the idea of the
interpolation, see Fig. 4.1, these conditions are:

Yo = Pn(X0) = @ + @1Xo + @2X3 + + - - + @anXJ

y1 = Pa(X1) = @0 + @1Xy + @XZ + + - - + anX{
Y2 = Pa(X2) = @0 + a1Xo + @X3 + - - - + anXy (4.10)

Yo = Pa(Xn) = @0 + au1Xn +8.2X§+--- + anX]]

The equation system (4.10) can be written in the following matrix form:

1 x} %32 ..00x) a Yo
1 xt x2 xP a i
1 x3 x3 X [ la|=|Y (4.11)
1 xt x2 ...0x0 an Yn

As we see, this equation system is linear with respect to the unknown coefficients
ag, a1, @, ag, ..., ap and has a unique solution, because the determinant of the ma-
trix of coefficients (called the Vandermonde’s determinant) cannot be equal to zero.
The system of equations (4.11) can be solved using one of the methods presented
in Chap. 1. We must, however, emphasize that in many cases the equation systems
formulated in such a way may be ill-conditioned and as a consequence of this fact,
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considerable computational errors may occur. Therefore, usefulness of a polynomial
found in this way may be sometimes doubtful. This effect is particularly dangerous
when we are dealing with polynomials of large degredt may be considerably
eliminated, when we use the algorithm for determination of interpolating polyno-
mial, introduced by Lagrange. The Lagrange interpolation consists in finding such
polynomial P,(x) = L(x) of degree not greater thanwhich at interpolation points

Xo, X1, X2, . . . , Xn takes the same values as the interpolated fungtiea y(x;), i.e.:

Lan(Xi)=Vyi =y(x) fori=01,23, ..., n (4.12)
At the beginning of the procedure of evaluating such polynomial, let us consider
an auxiliary problem consisting in finding the polynomiglx), satisfying the con-

ditions:

S5i(xj)=0  forj #i

s0q)=1 forj—i (4.13)
wherei = 0,1,2,3,...,n. An example of such polynomia (x) is shown in
Fig. 4.5.
Conditions (4.13) can be expressed by means of the Kronecker symbol. The poly-
nomials; (x) is equal to zero forxp, X1, X2, ..., Xi_1, Xi+1, ..., Xn), and therefore
can be written as the following product:
n
5 () =a][(x=x) (4.14)

j=0
P #i

wherec; is a certain coefficient. This coefficient may be easily found from the re-
lations (4.14) and (4.13), precisely(x;) = 1. After the uncomplicated substitution
we obtain:

a0

T N

Il |
o T L

Xo X1 X2 X Xn-1  Xn

Fig. 4.5
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1

(X —X0) (Xi = X1) ... (X = Xi—1) (X — Xxq1) - - - (Xi — Xn—1) (X — Xn)
(4.15)

G =

Introducing formula (4.15) to the relation (4.14) we get:

(X = X0) (X = Xa) ... (X = Xi—1) (X = Xi51) - . . (X = Xn—2) (X — Xn)
(% —X0) (X — X1) ... (X = Xi—1) (Xi = Xi41) ... (Xi = Xn-1) (Xi — Xn)
(4.16)
The Lagrange interpolation polynomial is defined as the linear combination of the
polynomials (4.16), in which all coefficients are equal to the corresponding values
of an interpolated function, namely:

i (x) =

La(¥) =Y ¥idi (x) (4.17)
i=0

We can prove that the polynomial (4.17) represents a unigue solution of the problem
stated above.

Example 4.1 et us assume that the discrete functipr= y(x;) is defined as:xp =
1.0, yo = 2.0), (X = 3.0, y1 = 3.5), (X2 = 5.0, y, = 3.7) and &3 = 7.0, y3 = 3.5).
The Lagrange interpolating polynomial evaluated for this function is:

X=3)y(x=5x-=7)
L= i yaa-y =0
X-=1)xX-5x-7 .
3% e-pE-9@e-n =Y
x-D(x-=3)(x=7)
G-DG-36G-7)
x-1D(x-3)(x-5
7-1(7-3)(7-5)

+37. (i =2

+35. (i =3)

After rearrangement, this polynomial can be written in the traditional power form,
namelyLs(x) = 0.018753 — 0.33125? 4 1.8312% + 0.48125. Identical values

of the coefficientay = 0.48125,a; = 1.83125,a, = —0.33125 andhg = 0.01875

can be found when we solve the following equation system formulated for this
problem:

1 1 2 137 [a 2.0
13 & 3| |al|_|[35
18 8 5| |al|” |37
17 7P | a 35

The above equation system corresponds to the system (4.11).
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4.1.3 The Aitken Interpolation Method

The Lagrange interpolating polynomis¥,(x) can be evaluated using a series of
linear interpolations [7]. Thus, let us assume that the peiftx;, Xz, X3, ..., Xn,
and valuesyo = y(Xo), Y1 = Y(X1), Y2 = ¥(X2), Y3 = Y(X3),.-., Yn = Y(Xn)

of the functiony(x) being interpolated are given. According to Aitken interpolation
method, the interpolating polynomid,(x) can be evaluated by using the following
n-iterativealgorithm.

4.1.3.1 First Iteration

At the beginning,n polynomialsWy of degree 1 are created in the following
manner:

X — Xk X — Xg 1 Yo X —Xo
W = ~|— =
Ok yOXo—Xk kak—Xo Xo— Xk | Yk X — Xk
wherek = 1, 2, 3, 4,..., n. The set of these polynomials is written in third

column of the Table 4.1.

4.1.3.2 Second lteration

PolynomialsWy x evaluated above allow us to create the set-6fl polynomials of
degree 2, i.e.:

X — X X — X1 1 Wo1 X—Xi
Wo.11 = W, + W, = '
oL "% —x X —x  xa—x [Wor X=X
wherel = 2, 3,4, ..., n. These polynomial8\p 1, are written in the fourth column

of Table 4.1.

4.1.3.3 Third lteration

In the same way, the set of— 2 polynomials

X — Xm X — Xo 1 Wo12 X —Xo
Wo,1,2m = Wo,1,2 +Wo,1m = Wh s
X2 — Xm Xm — Xo Xm — X2 0.1m X — Xm
of degree 3 is created. In this case= 3, 4, ..., n.
Table 4.1
Xo Yo
Xt y1 Woi

X2 Yo Woo Woio

X3 Y3 Wo3z Woi13 Woi .23

X4 Yo Wos Woi1s4 Woz 24

“ e cee cee . WO,l,Z,S,“.,n—Z,n—l

Xn Yo Won Woin Wor.2n ... Wo123..n-2n Wo123..n-2n-1n
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4.1.3.4 Successive lterations

In successive iterations the polynomials of higher degrees, see Table 4.1, are
evaluated analogously.

4.1.3.5 Last lteration

Only one polynomiaMb 123..n = Wa(X) of degreen is evaluated in the last
(n) iteration. This polynomial is identical to the Lagrange polynomial (4.17) being
sought.

In order to illustrate the algorithm presented above, let us consider again the inter-
polation problem described in Example 4.1. The intermediate polynomials evaluated
for this interpolation problem are:

Wo,1 = 0.75x + 1.25, Wy, = 0.425x + 1.575 Wp 3 = 0.25x + 1.75

Wo.12 = —0.1625¢% 4 1.4x 4 0.7625 Wy 1.3 = —0.125¢* 4 1.25x + 0.875
Wo.123 = 0.01875¢ — 0.331252 + 1.83125 + 0.48125

The polynomialWp 1 2.3(X) is the same as the polynomiak(x), which was

obtained by Lagrangian interpolation, see Example 4.1. Undoubtedly, this identity
confirms the validity of that algorithm.

4.1.4 The Newton—-Gregory Interpolating Polynomial

The Newton—Gregory polynomial interpolating the functign= y(x;) at (n + 1)
points (nodes) has the form:

Nn(X) = ao + a1(X — Xo) + @(X — Xo)(X — X1) + ag(X — Xo)(X — X1)(X — X2)
+oo A (X = Xo)(X — X1)(X — X2) ... (X — Xn—1)

(4.18)
The coefficients;, fori = 0,1,2,3,...,n, of this polynomial can be deter-
mined from the system oh¢ 1) equations written below:
a = Yo
A+ a1 (X1 —X) =Y
A + a1 (X2 — Xo) + a2 (X2 — Xo) (X2 — X1) = ¥2
. (4.19)

ap + a1 (Xn — Xo) + @2 (Xn — Xo) (Xn — X1) + - - -
+an (Xn — Xo) (Xn — X1) . . . (Xn — Xn—1) = ¥n

The matrixA of coefficients of the equation system (4.19) has the triangular
form, which makes of course the solution of this system much easier. We may use
here, for example the second stage of Gaussian elimination method. Consequently,
we can write:
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a = Yo
1
a = m [y1 — ag]
1
P = (X2 — Xo) (X2 — X1) [y2 —ap — a1 (X2 — Xo)]
as 1 [ya—ag—as (X3—Xg) — a2 (X3 — Xo) (X3 — X1)]

" (Xa — X0) (Xa — X1) (s — X2)

: 1 m—1 k—1
an = ———— {ym_ao_2|: _H(Xm_xj):“
i=0

nﬁl (Xm - Xi) =t
i=0

(4.20)

The recursive formulas that follows represent the generalized relation (4.20),
satisfied for 2< m < n. The problem of calculating the coefficierdag can be

simplified, if the interpolation pointsx§, X1, X2,..., Xn) are equally spaced by
the step

h= Xit1 — X (4.21)
Applying the relation (4.21) to the equations (4.19) we get:

Yo = Qo
yi=a+a-h
Y2 =a+a&(2h)+a;-(2h)-h

Yn = a9 + a1 (nh)+a, (nh) (n—1) h + ag(nh)(n — L)h(n — 2)h + - - - +a, (n!) h"
(4.22)
The following coefficients represent the solution of equation system (4.22)

a = Yo
— A
ay = Y1 - Yo _ %
2o = o5 102 = ) — (01— Yol = 2
The coefficientsa,, form = 1, 2, 3,..., n, can be written in the following
general form:
am = AT (4.23)

(m!) hm
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whereA™My; is the finite difference of orden. Values of the finite differences used
for calculation of the coefficienta,, can be evaluated according to the following
multi-step algorithm:

e differences of the first ordem = 1
Ayo=Y1— Yo
Ay1=Y2— V1
AYn_1 = Yn — Yn-1
e (differences of the second ordemn,= 2

A?yo = Ayr — Ayo
A%y = Ay, — Ay
(4.24)

AZYn—2 = AYn—l - Ayn—2
e (differences of the third ordem = 3
A3yy = A%y; — A2y
A3y, = A%y, — A%y,
ASyn—3 = AZYn—2 - AZYn—a
e (differences of then — order
Amyo — Amflyl _ Amflyo
AMyy = ALy, — ATty
A"Ynm = Arn_lynJrlfm — Am_:Lynfm

Finite differences of an arbitrary orderd m < n can be expressed directly by
means of the valueg of the interpolated function.

m(m—!_l)ym_z o+ (DM (4.25)

A™Yo = Ym — Myin_1 + >

The formula (4.25) may be generalized for finite differences calculated at the
point X

m(m—!_l)meri—z + -+ (1) (4.26)

A"Yi = Ymyi — Myngi-1+ 5
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After introducing relation (4.23) into the polynomial (4.18) we obtain the standard
form of Newton—Gregory interpolation polynomial, namely:

A A?
N(X) = Yo + 20X = Xo) + 7550 (X — Xo)(X — Xa) + - -
h 2hh (4.27)
A" '
F Gy X0 =)0 =) (¢~ o)
By introducing a new variable
X — Xo
t= 4.28
- (4.28)
for which
X—Xy X—Xo—h X — Xo
X = Xo +th, - h =t—-1, T_t—Z,.
X — Xn-1
—=t- 1
h n-+
the polynomial (4.27) can be written as:
tt-1 tt—1)t -2
N(Xo +th) = yo +t Ayo + %AZYO + %Asyo o
: : (4.29)
tt—-21)t—-2)...t—n+1
§ D=2 ) A"y,

The polynomial (4.29) can be used for interpolation of a given funcios=
y(x;) over the whole intervalXy, x,]. For the sake of computing precision, it is
however recommended to reduce the interpolation intervadgtoc}], assuring that
t < 1. For different values of the variable as for example < X < Xj 1, we
should takex; instead ofxp. In this case, for = 1, 2, 3, ..., n—1, this interpolation
polynomial has the form:

t(t_l)Azy +WA3y- +.--
- I 3' !

NOG +th) =y + Ay + ——;

+t(t—l)(t—Zr)];..(t—n+1)Anyi

(4.30)

which in the literature is known as the first Newton—Gregory polynomial for the
forward interpolation. Polynomial (4.30) is used chiefly to determine the values of
a given function, lying in the left-half of the interpolation intervap|[x,]. Justifi-
cation of this fact may be explained in the following manner. The finite differences
AMy; are calculated on the basis of valugs Vi11, Vit2, Yit3s---» Yizm, When

i +m < n. Fori close ton, the finite differences of higher orders are not calculated.
For example, ifi = n — 3, the polynomial (4.30) contains only the differences
Ayi, A%y, and A%y;. When the points lying in the right-half of the interpolation
interval [Xo, Xn] are concerned, it is recommended to use the polynomial



4.1 Fundamental Interpolation Methods 81

t(t+1) t(t+ 1)t + 2)

N + th) = Yo + tAyn1 + = —A%n 2+ T A%y g+ -
. t(t+1)(t+22].!..(t+n—1)Any0
(4.31)
defined for
=X _hX“ <0 (4.32)

This version of polynomial is called the Newton—Gregory polynomial for back-
ward interpolation.

Example 4.2The functiony; = y(x;) defined in Example 4.1 interpolates the poly-
nomial (4.18) whose coefficients a@; = 2, a = 0.75, a, = —0.1625 and
az = 0.01875. Some values of this polynomial are given in Table 4.2

Example 4.3As next example, let us calculate the valiv$0.1) andNs(0.9) of the
first and second Newton—Gregory polynomials interpolating the fungtien y(x;)
given in the first and second columns of Table 4.3.

In the remaining columns of this table, values of finite differences calculated
from the formulas (4.24) are given. Far= 0.1 we obtaint = (X — Xp)/h =
(0.1-0)/0.2=05.

According to the formula (4.30)

05(05-1
N5(0.1) = 1.2715+ 0.5 x 1.1937+ %(—0.0146)
05(05-1)(05-2 0.5(05-1)(05-2)(05—-3
+ ( X )o.ooo7+ ( X X ) (—0.0001)
6 24
= 1.8702

Table 4.2
X 15 30 45 55 6 7
N3(x) 2546094 3500000 3722656 3652344 3593750 3500000
Table 4.3
X; Vi Ay, A%y, A3y; A%y, A%y
0.0 1.2715

1.1937
0.2 2.4652 —0.0146

1.1791 Q0007
0.4 36443 —0.0139 —0.0001

1.1652 00006 Q0000
0.6 4.8095 —0.0133 —0.0001

1.1519 00005
0.8 59614 —0.0128

1.1391

1.0 7.1005
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Value of the polynomiaNs(0.9) should be calculated according to the formula
(4.31) by introducing = (x — X,)/h = (0.9 — 1)/0.2 = —0.5. In this case

0.5(—05+ 1
Ns(0.9) =7.1005+ 05 1.1391— 2205+ 1)

_ 05(-05+ é)(—‘l5 *2) 0.0005)

0.5(—0.5 + 1)(—0.5 + 2)(—0.5 + 3)
B 24

(—0.0128)

(—0.0001)= 6.5325

4.1.5 Interpolation by Cubic Spline Functions

The spline function used for the interpolation of the functipn= y(X;), where
i=0,1,23,...,n,is defined as a set ofconjugate trinomials. The properties of
such trinomials will be discussed below on the example of the cubic spline function,
composed of three trinomials, i.e.:

Oh(X) = Kio + kiaX + kipx? 4 kyax3
G2(X) = kao + kaaX + koox? + kaax® (4.33)
03(X) = kao + Ka1X + Kaox? + kaax®

Of course, the above approach does not limit the generality of our considerations.
The spline function (4.33) interpolates a functign= y(x;) defined at four points,
as shown in Fig. 4.6.

y(xi)
f(x)

Y3

Yo

Y

X0 X1 Xo X3

Fig. 4.6
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According to the general concept of interpolation, these trinomials should satisfy
the following requirements:

t1(Xo) = Yo
Ou(X1) = d2(X1) = V1
G2(X2) = U3(X2) = Y2
ds(Xs) = Y3

(4.34)

Moreover, it is required that the corresponding first and second derivatives of the
trinomials, calculated at internal interpolation points should be equal to each other.
This requirement can be expressed as follows:

0y (X1) = d5(Xa)
ay (X1) = 03 (x1)
0a(%2) = g3(x2)
0;(%2) = g3(x2)

(4.35)

Similar equations can be formulated for the second derivatives of the first and the
last (third) trinomials. These derivatives, calculated for the first and last (external)
interpolation points, should be equal to zero.

0y (%) = d3(x3) = 0 (4.36)

Equations (4.34), (4.35) and (4.36) formulated above, form the system of 12
linear equations with 12 unknown coefficients of the polynomig(x), g(x) and
gs(x), see relations (4.33). It can be solved by using one of the methods described
in Chap. 1. For example, the Gaussian elimination with the choice of the pivotal
element is suitable for this purpose.

Example 4.4Given the following discrete functiory, = y(X;) defined at three
points: ko = 1, Yo = 2), (X1 = 3,y1 = 3.5) and & = 5,y, = 3.7). The cor-
responding interpolating spline function composed of two trinomials has the form:

A1(X) = Kao + Ki1X + KioX? 4+ Kiax®,  02(X) = Koo + Ka1X + KooX? + koax®

According to the idea of interpolation we can formulate the set of eight equations
for these trinomials, i.e.:

qh(l)=2 h(3)—ax(3)=0
@) =35 g/(3)—a;(3)=0
(3)=35  g/(1)=0
(5 =37, g,;(5)=0

The equations formulated above can be written in the matrix form with respect
to coefficientkyg, ki1, K12, K13, Koo, ko1, koo andksz being SOUght.
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111 10 0 0 0] [ ko 2
139270 0 O ol | kn 35
000 01 3 9 27 |k 35
000 01 5 25 125 |ks| |37
01 6 27 0-1 -6 27| |kol| | O
002 18 0 0 -2 -18 ko1 0
002 60 0 O 0l | ko 0
000 00 0 2 30 |ks| | 0]

The solution of this equation system gy = 1.128125k;; = 0.790625k;, =
0.121875ky3 = —0.040625 k0 = —1.065624 ko1 = 2.984375k,, = —0.609375
andky3 = 0.040625. It follows from our above considerations that, in case-(1)
interpolation points, the number of interpolating trinomials eqoadsd the number
of the coefficients in all trinomials ism. The total number of coefficients can be
considerably reduced by using the set of properly correlated trinomials [2, 8]. Here,
we have some examples of such trinomials:

G =t Y+t yia+Ax[(ka—d) t-t?—(k—d)-t>-t] (4.37)

where

Ay, (o XX

=2 t= , t=1-t
AXi AXi

AXi = X —Xi—1, Ayi=Y —Vi_1, 0
i=212...,m

Each trinomial (4.37) has only two coefficierits ; andk;. When the form of
the first trinomialg [t(x)] (having the coefficiently andk;) is given, then only one
new unknown coefficient is added when we pass to the next trinomial. The following
conclusions result from the relations (4.37):

1. Forx = x_1
t=0 t=1 q[tX)]=y- (4.38)
2. Forx =x;
t=1 t=0 gt =y

Moreover, we can find in the literature the proof of the fact that trinomials (4.37)
satisfy automatically the requirement of equality of the corresponding first deriva-
tives at the internal interpolation points. Similar requirements formulated for second
derivatives have the form:

Ki—1AXi 11+ 2K (A% 4 AXi41) + Kip1AX = 3(di AXi 41 + dip1AX) (4.39)

In case of the external interpolation points the requirement:
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A [t(x0)] =0, gult(xm)] =0
is satisfied when

2ko + kg = 3d;
I(m—l + ka = 3dm

Equations (4.38), (4.39) and (4.40) form the following systemmnofinear
equations

(4.40)

2 1 0 0o ... 0 0 0 ko
AXZ 2(AX1 + AXg) AXl o ... 0 0 0 kl
0 AX3 Z(AXQ + AX3) AXZ e 0 0 0 k2
O 0 0 O N AXm Z(Axm—l + AXm) Axm_l km—l
0 0 0 0 ... O 1 2 Km
th
dlAXZ + dzAXl
dzAXg + d3AX2
dm_1A%m + dnAXm_1
O
Solution of this system is identical to the vectég,ky, ko, . . ., k] of the de-

sired coefficients. The matri& of coefficients of the above equation system is the
particular case of the sparse square matrix known in the literature under the name of
the ribbon or, more specifically, tri-diagonal matrix. When we solve lange (LO)
systems of linear equations having tri-diagonal matrices of coeffichgrasmethod

of fast elimination proves to be very useful. It may be interpreted as a modification
of the Gaussian elimination method described in Chap. 1. In the Russian language
literature, this method is known under the name of “progonka”. Similarly, as in
the case of the Gaussian elimination, we distinguish here two stages, namely the
forward and backward movement. Due to the ribbon structure of the coefficient
matrix A, computing formulas describing this method are not complicated and can
be expressed in the simple recursive form. The algorithm of this special numerically
effective method is described in Appendix C.

Example 4.3Consider an application of the cubic spline function (4.37) to interpo-
lation of the following discrete functionx§ = 1, yo = 2), (X1 = 3,y1 = 3.5),

(X2 =5,y, = 3.8) and k3 = 7, y3 = 3). The differencedx;, Ay; and coefficients

d; calculated for this function are:

AXy = 2, AXZ =2, AXz =2
Ay; =15 Ay, =03, Ay;=-08
d; = 0.75, d,=0.15 d3=-04
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The quantities given by (4.38), (4.39) and (4.40), can be used to formulate the
following system of four linear equations:

2 1 0 07 ko 2.25
2 2(2+2) 2 0| |k 5.4
0 2 22+2) 2| | k|~ | -15
0 0 1 2] | ks 12

with respect to the desired coefficients. Solution of this system is equal to:

ko =0.873333 k; =0.503333 k; =—-0.186666 k; = —0.506666

4.1.6 Interpolation by a Linear Combination of Chebyshev
Polynomials of the First Kind

Let f(x) be a real function of one variable defined at least in the interval fL].
This function can be interpolated over the intervall| 1] by means of finite, linear
sum of the Chebyshev polynomialg(x) of the first kind

N
Pu(X) = CoTo(X) + C1Ta(X) + CoTo(X) + -+ + e T (X) = D ¢ Tj(x)  (4.41)
j=0

The coefficientg;, j =0,1,2,3,..., N, of the interpolating polynomiaPy (x)
can be found using the following relations:

N
ZTi(Xk)Ti (xx) =0 fori # j

k=0
N
N+1 o
ZTi(Xk)Tj (%) = 5 fori=j#0 (4.42)
k=0

N

D To()Tolxe) = N +1
k=0

that are satisfied only when

2k+1
2N +2

Xk=COS<Tr ) k=0,1,23, ..., N (4.43)

The property expressed by relations (4.42) is often called conditional orthogo-
nality, because it takes place only for the set of discrete vajudsfined above. For
arbitrary values of the variabbe the Chebyshev polynomials, see relations (4.52),



4.1 Fundamental Interpolation Methods 87

do not form the set of orthogonal functions with the weigh{g) = 1. In order
to determine the coefficients, see (4.41), let us consider the products of the dis-

crete values of the interpolating polynomigj(xx) = f(x«) and the Chebyshev
polynomialT; (x), wherek = 0,1,2,3,...,N,0<i < N.

f(X0) Ti (X0) = CoTi (X0) To(X0) + C1Ti (X0) Te(X0) + - - - + Cn Ti (X0) Tn (X0)
f(x0)Ti(X1) = CoTi(X1) To(X1) + CaTi (X)) Ta(Xq) + - - - + CnTi (X1) T (X1)
f(x2)Ti (x2) = CoTi(X2) To(X2) + C1Ti (X2) Te(X2) + - - - + N Ti (X2) Tn(X2)

FO0OTH6) = €T (06)To0) + 2T ) Ta(xi2) + - - + o T () Tra(%)

(x0T () = CoTs (k) Tolxn) + 1T () Ta(a) -+ - - - -+ O T (k) Toa ()
(4.44)

Taking the sums of the terms on the left and right sides of the relations (4.44) we
obtain:

kio f () Ti(X) = Co é'ﬁ (X)To(X) + €1 % Ti (%) Ta(Xe) + c2 é-ﬁ () T2()

440G k%OTi ()T (%) + -+ +cn kZ Ti (%) T (%)

(4.45)
Using the property (4.42), the sums written above simplify to the form:

N N N+1
D TOT =0 ) TiTi)=c——. i#0  (446)
k=0 k=0

According to the relation (4.46), the desired coefficignis:

2
¢ =NT1 Z f(x)Ti(x) forl<i<N (4.47)
In case whem = 0:
= N1 Z f (%) To(X) (4.48)

The interpolation method described above can be generalized to the case of an
arbitrary real functionf (t) defined over an interval], t,], wheret, # —1 and

t, # 1. To this end, we write the variableas a function of a new variabteusing
the transformation:
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t—t,
th —ta

x=x(t)=-1+2 (4.49)

The changes of the variabiever the intervalt}, ty] correspond here to respec-
tive changes of the variableover the interval 1, 1].

Example 4.6As an illustration example, let us evaluate a polynomial of third degree
P3[x(t)] interpolating the functionf (t) = 3exp(0.1t) over an interval [0, 10].
The values ofxy, calculated folkk = 0, 1, 2, 3, are given in the second column of
Table 4.4.

The third column of this table presents valuesotalculated fort, = 0 and
t, = 10 according to the following relatian= t(x) = 0.5[(1 — x)ta + (1 + X)tp],
which is the inverse of the transformation (4.49). In the last two columns of the table,
only the values off>(xx) andTs(xk) are given, becausk(xx) = 1 andT;(Xk) = X.
The coefficients;, wherej = 0, 1, 2, 3, calculated by means of (4.48) and (4.47),
are equal tocp = 1.935105711 ¢; = —0.938524669 c, = 0.116111001 and
c3 = —9.595734359x 10-2. Hence the interpolating polynomial being evaluated
has the form:

P3[x(t)] = 1.93510571% 0.938524668 + 0.116111001(2? — 1)
—9.595734359% 1073(4x® — 3x)

The maximum absolute deviatid®Rs max = max| f (t) — Ps[x(t)]|, computed for
0 <t < 10, does not exceed@9 x 10~*. This deviation can be reduced us-
ing the interpolating polynomial of higher degree. As an example, the interpolating
polynomial of the fifth degreen(= 5) has been found:

Ps[x(t)] = 1.935105840- 0.93852491% + 0.116112773(2% — 1)
—9.62656957k 1073(4x>—3x)+6.00149745 10~4(8x* — 8x% + 1)
—3.061124322¢ 107°(16x° — 20x° + 5x)

In this case, the maximum deviatioRsmax = max| f(t) — Ps[x(t)]| is not
greater than 2107 and about 320 times less than the deviatRyax On the
basis of the functiorf (t) and the corresponding interpolating polynonmfgal[x(t)],
it is possible to determine the deviation functiBg (t) = f(t) — Pn[x(t)], which
is undoubtedly the quality measure of the performed interpolation. For majority of
the real functionsf (t), the deviation functiorRy (t) has similar shape as the equal

k X = X(tx) ty f(t) Ta(Xk) Ta(Xk)

0 0.923879564 919397819 1146452546 07106897 (B82683659
1 0.382683456 ®13417279 H02710580 —-0.707106745 —0.923879562
2
3

—0.382683426 386582869 203294992 —0.707106790 (23879525
—0.923879504 (880624789 B87964725 (r07106676 —0.382683227
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Fig. 4.7

ripple waveform over the interpolation intervigl <t < t,, —1 < x(t) < 1, and
absolute values of its local extreme values are close to the maximum edRjahte.

This conclusion is well confirmed by the numerical results obtained for the function
Rs(t) = f(t) — Ps[x(t)] shown in Fig. 4.7.

The properties mentioned just above have considerably decided about numerous
applications of the interpolation method for various scientific and engineering prob-
lems. The simplicity of the algorithm constructed for evaluation of the interpolating
polynomial Py (x) has also contributed to its popularity, see relations (4.41), (4.47)
and (4.48).

4.2 Fundamental Approximation Methods
for One Variable Functions

4.2.1 The Equal Ripple (Chebyshev) Approximation

Approximation of the constant function over a given limited interval, by a polyno-
mial providing the equal ripple (Chebyshev) deviations, has found many applica-
tions for solving a great number of various engineering problems. As an example,
let us consider the design problem for the low-pass filter (LPF) with the insertion
loss functionL () [dB] similar to that shown in Fig. 4.8(b).

The insertion loss function (expressed in dB) of an any passive two-port electrical
circuit is defined as:
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a)
Zy uq(t) LPF u,(t) Zy
b)
' L(f),dB
f
—
0 f,
c)
A
L.| L(h,daB

.
N
3
N

Uy (f)
Uz(f)

L(f)[dB] = 20 log

(4.50)

whereU;(f) andU,(f) denote complex amplitudes of the input and output volt-
ages, respectively. The design of a LPF with the “ideal” insertion loss function
L(f) [dB] similar to that shown in Fig. 4.8(b) is not possible, because such filter
would be composed of an infinite number of reactive elements, i.e., capacitors and
inductors. In other words, this function would not satisfy the condition of physical
realizability. In this situation, it is necessary to replace (interpolate or approximate)
this function by another one, satisfying simultaneously the problem requirements
and conditions of a physical realizability. Limitations imposed on the permissible
(acceptable) functior(f) [dB] are illustrated in Fig. 4.8(c). This curve repre-
senting the assumed functidr( f) [dB] should pass through the nondashed area
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Low - pass filter

—
-}

\i

Fig. 4.9

defined by the cut-off frequencyc, permissible attenuatioh, in the pass-band,
lower frequencyf, of the stop-band and minimum valleg, of attenuation in the
stop-band. The requirements formulated above can be satisfied by many different
functions, satisfying simultaneously the condition of physical realizability. In elec-
trical engineering, the functionis(f) [dB] having the form of polynomials of a
possible lowest degree are used most frequently. The LPF realized on a basis the
polynomial function can take the ladder structure similar to that shown in Fig. 4.9,
[9, 10].

One example of such classical function is:

L(f)[dB] = 10 log[1 + e T2(x)] (4.51)

wherex = f/f. is a normalized frequency,is the parameter determining permis-
sible losses in the pass-band an@x) is the Chebyshev polynomial of the first kind
of degreen. The Chebyshev polynomialk,(x) can be easily computed from the
following recursive formulas:

To(X) =1
Ti(x) = x
To(x) =2x* -1 (4.52)

Ta(X) = 2XT_1(X) — Th2(X), n=23,4,...

Fig. 4.10 presents the Chebyshev polynomiglx) of degrees 0, 1, 2 and 3.

It follows from Fig. 4.10 that over the intervatl, 1], polynomialsT,(x) take the
extreme values equal to 1 erl. Moreover, polynomiald,(x) are even functions
for even degrees and respectively odd functions for odd degree3his property
is expressed by the formula:

To(=x) = (=1)"Ta(x) (4.53)

The Chebyshev polynomialk,(x) are often written in their trigonometric form
presented below:
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Tn(X) = cosjnarccosk)] when |x| <landn=0, 1, 2, 3,... (4.54)
Tna(X) = ch[narchk)] when |x] >1andn=0, 1, 2, 3,... (4.55)

In an interval -1, 1] the polynomiald,(x) take the zero value for

(2k + 1)
=CcoS| ————— 4.56
= cos| E (4.56)
wherek = 0,1,2,3,...,n— 1andn > 1. The values (4.56) are sometimes called

the Chebyshev interpolating points, because they represent the coordinates of inter-
section points of the polynomidh(x) and the approximated functior{x) = 0.

If we want to determine the parameterandn of the function (4.51), we must
know the values off;, fa, L, andL,, see Fig. 4.8(c). Thus, let us assume now that

fo = 10MHz, f; = 13MHz, L, = 0.3dB andL, = 15dB. From the formula
(4.51) we obtain:

L(f = fc) =10 log[1+ eT2(1)] = L,, dB
L(f = fy) = 10 log[1+ eT2(1.3)] > L,, dB

A

Th(¥)

Fig. 4.10
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These expressions can be transformed to the form:

105710 — 1 = £T?(1) = ¢ = 0.071519305
1019 — 1 = 30.622776< £T2(1.3)

From the above relations follows the inequality. @389 < T,(1.3). This
inequality is satisfied by the polynomial at least of fifth degree=£ 5), i.e.,
taking the valueTs(1.3) = 21.96688. The insertion loss function( f)[dB] =
10log[1+ eT2(x)] evaluated in this wayn( = 5, ¢ = 0.071519305,L, =
10log(1+ ¢) = 0.3 dB) is shown in Fig. 4.11. It deserves noting that maximum
values of all ripples of the evaluated functibf )[dB] are equal to each other over
the frequency range ¥ (f/fc) < 1. Equality of amplitudes of these deviations
justifies the title of present section.

The LPF implementing this insertion loss function contains five reactive elements
creating thd_C ladder structure shown in Fig. 4.12.

I L, Ly
:D VY SNV
I L

Zy Cy Cs Cs
_

Fig. 4.12 |

Zy

I
T.
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The values of particular capacitances and inductances can be computed from the
formulas:

1
C = i fori=1, 3 5 4.57
: 202'1T fc gl r ’ ’ ( )
Zy .
Li=———0; forj=24
'™ 2w 9i J ’
wheregi, k = 1,2, ...,5 are parameters of the prototype LPF, determined on the

basis of the evaluated insertion loss function. According to [9]

2a;

14
day_18¢
k= —7

Pk—10k—1

01 =

fork=2, 3, 4and 5 (4.58)

where

y:sh(zx—n) n=>5

K—1
u] fork=1, 2 3.4 5 n=5

= Sin
& [ 2n

k
bk=y2+sin2<7ﬂ) fork=12 34,5 n=5

Forn =5andL, = 0.3dB we obtaing; = g5 = 1.4817,0, = g4 = 1.2992 and
g3 = 2.3095. Let us assume that the designed filter is loaded on both sides by the
real impedances, = 50(). Thus, the filter capacitances and inductances calculated
from formulas (4.57) are equal t€; = Cs = 471633 pF,C3 = 735140 pF,
Ly =Ls=1.034uH.

4.2.2 The Maximally Flat (Butterworth) Approximation

In the literature on the linear electrical circuits, including different kinds of filters
and impedance matching circuits, the kind of approximation mentioned in the title
of this section is called maximally flat or Butterworth approximation [9]. Approxi-
mation of the constant function= y(x) = const over a limited interval, according

to the criterion of maximum flatness, consists in determination of the polynomial
Bn(x) of degreen, satisfying the following conditions:
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Bn(%o0) = Y(Xo) (4.59)
BW(x) =0 fork=1,23,...,n—1
wherexg is an arbitrary point of the approximation interval and the indexde-
notes the derivative of degréewith respect tox calculated atg. Moreover, the
approximating polynomiaB,(x) should satisfy the condition of the physical real-
izability defined for the circuit being designed. In order to concretize our further
considerations, let us consider once again the problem of designing the LPF with
the insertion loss function similar to that shown in Fig. 4.8(b). As in the previous
case, see Sect. 4.2.1, this function should be approximated by another one satisfying
the requirements specified Hy, f,, Ly andL, in Fig. 4.13.

The insertion loss function satisfying the above requirements, criterion (4.59)
and the condition of physical realizability determined for a ladder LPF, see Fig. 4.9,
should have the form:

P f\2
Bn(f) = P_e —14¢ <f—> (4.60)
wy c

The function (4.60) is known in the literature as the Butterworth polynomial of
degreen. It is most frequently presented in the logarithmic form:

2n
B()[dB] = 10log [1+ P <3> } (4.61)

We

wherew = 2w f is an angular frequency. A number of curves, calculated from
formula (4.61) fore = 1 and some values af, are shown in Fig. 4.14.

The functionB,(w)[dB] similar to that shown in Fig. 4.8(b) (marked in Fig. 4.14
by a broken line) corresponds to the limit case> oco. Let us assume that func-
tion (4.61) satisfies the requirements specifiedfpy= 10 MHz, f, = 13 MHz,

L, = 3.1dB andL, = 15dB in Fig. 4.13. These requirements are satisfied by the
polynomial B, (w)[dB] of the seventh degrea (= 7) taking for f,/f. = 1.3 value
B;(fa)[dB] = 10log[1+ (1.3)'4] = 16.06 which exceeds the value bf, = 15dB,

Fig. 4.15.

Fig. 4.13
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The LPF, see Fig. 4.9, designed on the basis of the insertion loss function evalu-
ated abover( = 7, ¢ = 1) contains seven reactive elements, namely four capacitors
and three inductors. Values of these elements can be calculated from

Ci = , fori=1,3,57 4.62
i ZQZﬂfcgl ( )
0 .
Li=——qg forj=246
! wacgj J T
[
L, dB I
I
I
10 '
I
I
I
I
5
I
301 — — —- - — — — - '
I
I
1.3
0 }
0 0.5 1.0 15

Fig. 4.15
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wheregy, k = 1,2, 3,...,7 are parameters of the corresponding prototype LPF,
[9]. These parameters fer= 1 andL, = 3.01dB can be calculated by using the
following simple formula:
C[(2k—2)m

Ok = Zsm[ on } (4.63)
wherek = 1,2, 3,...,7andn = 7. Let us assume that the designed filter is loaded
on both sides by real impedancg&s = 75 (). With this assumption the filter ca-
pacitances and inductances afg: = C; = 94.431pFK C3 = Cs = 382396 pF,
L, = Lg = 1.488uH andL, = 2.387uH. As it was mentioned at the begin-
ning of this section, the Butterworth approximation is used also for designing the
impedance matching circuits. This fact is well confirmed by the Example 3.4, which
presents the design algorithm for the broadband nonsynchronous noncommensurate
impedance transformer composed of four noncommensurate TEM transmission line
segments.

4.2.3 Approximation (Curve Fitting) by the Method
of Least Squares

In order to explain an idea of the least squares method, let us assume that the
approximated functiory; = y(x;) is defined for § + 1) pointsx;, wherei =
0,1,2,3,...,n. Let us assume also that the approximating polynomial

f(X) = ap + aX + aX> + - - - 4+ amx™ (4.64)

is of degreem. The approximation quality measure for the functipgn=y(x;)
approximated by the functiori(x) according to the least squares criterion is the
norm:

Rs(2o. a1, @, .... am) = »_[f(4)— yi]® (4.65)
i=0

The essence of this approximation form, called frequently the least squares ap-
proximation, is the evaluation of such values of coefficiemtsy, a, as, ..., am
for which the norm (4.65) achieves its minimum. According to the corresponding
theorems of the differential calculus, concerning the functions of many variables,
the norm (4.65) achieves the minimum when

aRs_()Rs_(")Rs_ _aRs_O
day day  dap  dam

(4.66)
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After introducing the functiory; = y(X;) and polynomial (4.64) into conditions
(4.66) we obtain the following equations:

IR A
E§=ZZX%+mN+aﬂﬁ%~+&ﬁﬁ—wfl=0
i=0
IR &
aTxS =2) (ao+aX +ax + - +anx"—¥) % =0
1 i=0
IR n (4.67)
?; :22(a0+a1xi +3.2Xi2+"'+amxim_yi)'xi2=0
i=0
.aR &
a?‘: =2) (ao+aX +ax +- - +an" —y%)-x"=0
i=0
Rearrangement of the equation system (4.67) yields:
— n n n T
M+1) D> x> x> X" T ]
=0 i—0 i—0 PR
n n n n i=0
in inz ZXIS inerl n N
i—0 i—0 i—0 i—0 ZO 2%y
n . ; n 1 =0
DR IS D Y A Y LA I Bl 3 xy, (4.68)
i=0 i=0 i=0 i=0 : i—0 I
am
.
n n n n X-my'
inm inerl inerZ inerm _; ! I_
Li=0 =0 i=0 i=0 -

Solution of the system ofnf + 1) linear equations obtained above can be per-
formed by means of one of the direct methods described in Chap. 1, as for example
the Gauss elimination method with the choice of the pivotal element.

The polynomial (4.64) is only a particular version of the generalized one, namely:

g(X) = a1q1(X) + a2q2(X) + - - - + amdm(x) (4.69)

composed of linearly independent basis functign&), gz(x), gz(X), . .., gm(X).
Coefficientsay, ap, as, . . . , am Of this generalized polynomial can also be obtained
from relations (4.66), expressed as:
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| i;qf(xi) 2; Q(X)(%) - _Xn;,ql(xi )Gm(%i) | [ Xn: DY |
i= = 1= i=0
i 02(%i )0 (%) i Bea) io (% )am(%:) Zl Xn: %X Vi
i= = i= 2 i=0
i G3(%)ch (%) g Gs(Xi)a(X) .. é 30X )am (%) a% B Z (%)Y
i= ' i=0

am .

_Xn; Gm(%i)G(X) io Om(X)0(X) - iqri(xi) Xn: Om(Xi)Yi

| 1= 1= 1= i L i=0 -

Also in this more general case the obtained equation system is linear with respect
to desired coefficientay, a,, as, . .., an. Due to this linearity, this system can be
solved by using one of the direct methods described in Chap. 1. When the basis
functions of the polynomial (4.69) constitute an orthogonal set of functions, for
which

Y k(x)ai(x) =0 forj #k (4.70)
i=0

the matrix of coefficients of the equation system formulated above is the diagonal
matrix. In this special case

> i)y

a =0 (4.71)

> ai(x)
=0

wherej = 1,2,3,..., m. Of course, in this special case the computation process
becomes much simpler.

Historically, the first and the most useful sets of functions, orthogonal over the
interval 0< x < mr, are the following sets of trigonometric functions:

1, cosk), cos(x), cos(X), ..., cosfx), ... (4.72)

sin(x), sin(2x), sin(3x), ..., sin(nx), ... (4.73)
Combination of functions (4.72) and (4.73), i.e.:

1, cos), sin(x), cos(X), sin(2x), cos(X), sin(3x), ..., coshx), sin(nx), .. .
(4.74)
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gives a new set of orthogonal functions over the interval < x < . Variablex
appearing in these functions can be treated as linear function of a new varitle
example:

T
—t

X = (4.75)

tm

wheret, represents a fixed maximum value of the variablehus, the sets of func-
tions (4.72) and (4.73) can be written as:

1, cos Ty , CoS 214 , Cos 3¢ ,...,CO0S nTt (4.76)
tm tm tm tm
sin( ~t ,sin 214 ,sin 3¢ ,...,Sin nTt 4.77)
tm tm tm tm

Itis easy to prove that functions (4.76) and (4.77) are orthogonal over the interval
[0, tm]. The set of functions (4.74) transformed in the same way, i.e.:

K . ™ m . K m
1,cos{ —t),sin{ —t),cos({2—t),sin{2—t),...,cos|n—t ),

sin (n?t) e (4.78)

m

is orthogonal for-t,, <t < ty. There, it should be pointed out that not only the
trigonometric functions have the property of orthogonality. Some polynomials can
also be orthogonal over the intervat], 1]. In order to determine one such set of
polynomials, let us consider the functions

1,x x%,x3, ..., x" (4.79)

First two functions of this set are orthogonal because

1
/1 - xdx = %[12 —(-1¥]1=0 (4.80)

-1

Consequently, we can assume tRgfx) = 1 andPy(x) = x. The functionx?
of the set (4.79) is not orthogonal with respecf§x) = 1. Therefore, we assume
the polynomialP,(x) as linear combination of first three functions of the set (4.79),
namelyP,(x) = ax?+ bx+ c. The coefficients, b andc of this polynomial should
ensure its orthogonality with respect®g(x) = 1 andP;(X) = x. This requirement
is expressed by the following equations:
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1
/(ax2+bx+c)~1dx= §a+2c=0
- (4.81)
2
/(ax2+bx+c)~xdx=§b=0
21

The system of equations (4.81) is satisfieddfets 0 anda = —3c. Therefore, the
desired polynomial i$(x) = c(—3x? + 1), wherec is an arbitrary constant. Value
of this constant can be evaluated from an additional condition which is usually taken
in the formP,(1) = 1. The normalized polynomid®,(x) becomes:

Py(X) = %(sz -1 (4.82)

Similarly, we evaluate other polynomials, orthogonal over the intervdl, [1].
Some of them are given below:

P3(X) = %(5X3 —3x)

Ps(x) = é(35x4 —30x2 +3) (4.83)

1
Ps5(x) = 5(63x5 — 70x3 + 15x)

Polynomials of higher degrees, far> 3, can be evaluated from the following
recursive formula:

2n+1 n
Pnia(X) = mx Pa(x) — 1

Pn—l(x)

In the literature polynomial®,(x), wheren =0, 1, 2, 3, ... are called spherical
functions or the Legendre polynomials. Also in this case, varighlian be treated
as a linear function of a new varialiefor example:

x= Tt (4.84)

tm

wherety, is a fixed maximum value of the variable The Legendre polynomials
expressed in terms of the varialtlg.e.:
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Polx(t)] =1

PX(O] = -t
2
Po[x(t)] = % [3 <$t> - 1} = % [tiztz - 1] (4.85)

3
Pax(t)] = [5 (tit) 3 (titﬂ -3 [tiats _ tit]

are orthogonal over the intervatfm, tm].

Example 4.7As an illustration of the least squares method we evaluate the polyno-
mial of the second degreen(= 2) approximating the functiog; = y(x;) given in
the second and third columns of Table 4.5.

According to the algorithm described above we obtain the following equation
system:

5 112500 309375 ao 114800
112500 309375 949218 || & | = | 29.2875
30.9375 949218 3097617 ap 90.8719

whose solution isag = 4.717444 a; = —3.733289 andy, = 0.966215. Hence the

desired approximating polynomial i§{x) = 4.717444-3.73328% +0.96621%?.
Values of this polynomialf (x;) and the corresponding differences (deviations)

f(x) — vy are given in the fourth and fifth columns of Table 4.5. The more precise

approximating polynomial of the third degrem (= 3) evaluated in the similar

manner has a formf (x) = 5.165683— 4.572444 + 1.39273&? — 0.06316X°.

In this case may| f (x;) — vyi|} < 0.041125, wheré =0, 1, 2, 3 and 4.

4.2.4 Approximation of Periodical Functions by Fourier Series

The orthogonal series in one variable is defined as the following linear sum:

Table 4.5

i Xi i = y(xi) f(xi) f(xi)—Vi
0 0.75 2.50 2.460973 ~0.039027
1 150 1.20 1.291494 091494
2 2.25 1.25 1.209008 —0.040992
3 3.00 2.25 2.213513 —0.036486
4 375 4.28 4.305012 .025012
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W(X) = agpo(x) + ara(X) + a2v2(X) + ag¥a(X) + - -+ + @ ¥n(X) + - --

=S a0 (4.0
i=0

whose basis functiongo(x), ¥1(X), ¥2(X), ¥3(X), ..., ¥n(X), ... form the orthog-
onal set fora < x < b. When we consider the approximation of an arbitrary,
bounded functiorf (x) by the series (4.86) over a limited interval p], it is first of

all necessary to answer the following questions:

— whether an arbitrary limited functioi(x) can be approximated with sufficient
accuracy by the series (4.86) over the interaal], and
— how to determine the coefficiendg, a;, a, ag, . .. of this series.

The answer for the first above question is positive, because the basis functions
of the approximating series form the complete orthogonal set. Some examples of
such sets are given by (4.72), (4.73), (4.74), (4.76), (4.77) and (4.78), each within a
corresponding properly chosen orthogonality interval. Assume that the series (4.86)
approximate a functiorf (x) defined over the intervah] b]. According to this as-
sumption

b b
/fmme=fwmmmm

b

b
=%/wmmwm+m/mmmmw

a

b
+@/mwwww (4.87)

b b
+aaf1ﬂ3(x)1/fi(x)dx—l----+aa/wiz(x)dx+-~-

Owing to the orthogonality of basic functions of the series (4.86), the integral
(4.87) reduces to the following form:

b b b
[ 10ama0x = [ wooun ek =a [ wEax (4.88)
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Consequently, we can write:

b
/ F () ()
a = ab— (4.89)
/ YA

wherei = 0,1,2,3,.... Relation (4.89) can be used to determine coefficients
ag, a1, ay, ag, . . .of the series (4.86) whose basis functions create the orthogonal
and complete set. As an illustration example, we choose the series:

P(X) =ap+ Z a cos(x) (4.90)
i=1

of the functions (4.72), approximating the functidrix) over the interval [O].
According to the relation (4.89) coefficients of this series are equal to:

f(x)-1dx
ao—/1T /f(x)dx

/11dx

0

/f(x)cos(x)dx
a =2 _ = %/ f(x)cosfx)dx fori > 1.
/ co(ix)dx 0
0

Another approximation series composed of basis functions (4.73) has the form:
W(x) = > by sin(x) (4.91)
i=1

The coefficients of this series are calculated from the formula:
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/f(x)sinax)dx
=2 = %/ f(x)sin(x)dx fori > 1

i

/sinz(ix)dx 0

0

In the same manner, we determine the coefficients of the series:

f(x) = W(x) = ap + i [a cos{x) + by sin(x)] (4.92)
i=1

involving the functions (4.74). According to the relation (4.89) we obtain:

/ f(x)-1dx .
e 1
ao:ﬂ—zﬁf f(x)dx
/1~ 1 dx o
/f(x) cos(x)dx
a=—— = %/ f (x) cos{x)dx
/cos?(ix)dx -
/f(x)sin@x)dx .
e 1 .
b =—— = ;/ f (x) sin{ix)dx
/ sir(ix)dx -

-7

The approximating series given by relations (4.90), (4.91) and (4.92) are com-
monly known as the Fourier series and serve as theoretical basis for the frequency
(spectral) analysis of signals [11, 12]. Another Fourier series often used in the spec-
tral analysis is:

f(t)=¥(t)=a+ i [a.~ cos(i tlt) + by sin (i tﬂtﬂ (4.93)

i=1 m
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The basis functions of this series are orthogonal over the intertal trm]. Co-
efficientsag, a1, az, as, . .. of this “stretched” series can be calculated according to
the formulas:

tm

/f(t)-ldt o

—t 1
= = f(t)dt
20 =" | 1O

/1~ldt “m

—tm

tm
/ f(t)~cos(i tL) dt
a =" =
/ cog <i t1t> dt

/ f(t) - S|n< —t) dt
 Jee(E)e i wele)e

_tm

tm
1
— —/ f(t)~cos<i Et) dt
tm tm
—tm

wherei > 1. The series (4.93) can also be presented in the following form having a
univocal physical interpretation

W(t) = co + i G cos[(i %t - (pi>] (4.94)

i=1
where
5 5 b .
Co = Ao, C = a‘i+bi’ tg((ﬁ)za, |Zl

The coefficientcy denotes the constant component andy; are the amplitude
and phase angle of théh harmonic component, respectively.

Example 4.8 et us assume that the output current of the half-wave rectifier is de-
scribed by the function:
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0 for -T/2<t=<0
it)=f(t)= 5
Imsin(?wt) for O0<t<T/2

whereT is the period, as in Fig. 4.16.

The current functiom(t) can be approximated (replaced) by a sum of the constant
component and an infinite number of harmonic components. In order to determine
values of the constant component and amplitudes of the particular harmonic compo-
nents, we should approximate the current funciiopby the series (4.93), assuming
thatt, = T /2. Using relations given above we obtain:

T/2 T/2 2
1 . Im . ™
- t)dt = 0+ - T
©=5772 / '® Ty /Sm(T )
-T/2 -T/2

| I
= [ cosfr) 4 cos(0)]= —
21 oy
T/2 T/2

a = Ti/z / i(t) COS(I ﬁt> d =0+ 2_:_—m / sin <2%Tt) cos<| 2_|_—Trt) dt

-T/2 0

2 [ 2im [1 T2
= T+ m [ Zgin| i
=5 / [T(1+|)t]dt+ T /Zsm[_l_(l |)t]dt
0 0

Im {—cosfr(1+i)]+ 1} +

—217(1—1— 3 —(1_i){—cos[rr(1—i)]+1}

i(t)

Y

—TI2 0 T/2 T
Fig. 4.16
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Finally, we have

a=0 fori=135,...

a=_2|m~_21 fori =2,4,6, ...
T i2—
T/2 5 T/2 5 )
b; =Ti/2 / |(t)sm<|vt> dt—O+_:_—/sin(%Tt> sin(i?nt) dt
-T/2 0
2l T/21 2| T/21 2
m m T .
=5 EC s[—(1—|)t} dt—? Ecos[?(lﬂ)t] dt
0 0
__Im {sin[m(1—1i)] — O} I {sin[m(1+1)] — O}
T om@_po 2n@ i
Fori =1
_m sinfmn(1—i)]  Inm
b= inm—a-n ~—2
Fori > 1,b =0.

The relations determined above make possible the approximation of the current
functioni (t) by the following infinite series:

cos(2<a>0t)
4k2 —

i(t)=w(t) = —’“ I sin(wet) — 2m Z
where

wo=2m/Tandk=1,23,...

Example 4.9The purpose of this example is to find the Fourier series approximating
a periodic functionf (t) presented in Fig. 4.17.

The functionf (t) is characterized by the coefficients 8, y andt, which must
satisfy the following conditions:

a>0, >0, y>0 ao+B+y+1=<1

The function under consideration can be approximated by series (4.93), i.e.:

W(t) =ap + i [a. cos(i 2T—7Tt> + b; sin (i Z_F—Trt)]
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A
(t)
A.. —_ e e pe———  — — — — o — —_

t/T

T o

[ [ ol
< < >

Fig. 4.17

in whicht,, = T /2. Coefficients of this series can be calculated from the following
formulas:

1
ao=§A(Ol+2.3+)/)

A 1
a=——|—[cosiwg(t +a) T —coSiwetT]
2i2m2 |«
1 . .
——[cos,|wo(r+a+ﬁ+y)T—COSIwo(r+a+ﬁ)T]}
Y
A 1 . -
b = 572 |:(; [siniwg(t +a) T —sin iwetT]
1
——[Siniwo(r+a+ﬂ+y)T—Siniwo(f+0l+,3)T]}
14

wherewg = 2nw/T,1 = 1,2,3,.... By an appropriate choice of the coefficients
a, B, v, t and adding the constant component we may shape the funéfion
Examples of periodical functions formed in this way are shown in Fig. 4.18.

These functions can be approximated by using the relations given above. For
example, inthe case whéh=1, r = 0.1, 8 = 0.2, « = 0.0001 andy = 0.0002
we obtain:

ap = 0.20015 a; = 0.115428 b; = 0.356203..., az = —0.162921
b; = —0.118956..., as = —0.000299 bs = —0.000012....

The Fourier serie®’(t) discussed in the Examples 4.8 and 4.9 approximate the
given functions (t) and f (t), see Figs. 4.16 and 4.17, within their appropriate in-
tervals equal to one periotl. Validity of this approximation for-co < t < oo
can be justified by notifying that basis functions of these seFig} are themselves
periodic functions, whose periods are also equal to the periods of the functions ap-
proximated by them. Exact evaluation of the seH&¥) is not possible because they
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a)
A - T -
fi(t)
t
b)
A
fo(t) T
| |
/ t
c)
A
fa(t) T ~
|
t
Fig. 4.18

contain an infinite number of terms. Due to that reason, a given function can be ap-
proximated only by a series having finite number of terms. Consequently, it yields to
a certain approximation error. This error is most clearly visible in the neighborhood
of the points of discontinuity of the first kind, in which the approximated series has
the waveform similar to that shown in Fig. 4.19(b).

If the number of terms increases, the “oscillations” of the approximating series
tend to concentrate in the smaller and smaller neighborhood of the discontinuity
point to. The decay of this oscillation process is possible only after taking into
account the infinite number of terms. In electronic engineering, this effect of the
sharp oscillations at the “sharp” edges of the pulses is known under the name of the
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Fig. 4.19

Gibbs effect. It is the direct consequence of the finite frequency bandwidth of the
electronic systems processing these pulse signals.

4.3 Examples of the Application of Chebyshev Polynomials
in Synthesis of Radiation Patterns of the In-Phase Linear
Array Antenna

By the antenna array we understand a system composed of many identical radiat-
ing elements (simple antennas) equally spaced along the straight line, as shown in
Fig. 4.20.

In the case when all radiating elements of the antenna array are supplied by cur-
rents of equal amplitudes and equal phases (uniform and in-phase excitation) the
level of the side lobes is equal te13.2dB. Such relatively high-side lobes lead
in case of a transmitting antenna to scattering a considerable part of the electro-
magnetic energy in the undesired directions and in consequence to reduction of the
antenna directivity. In case of a receiving antenna, the high-side lobes reduce its
immunity against different electromagnetic disturbances. In both cases it is recom-
mended to reduce the side lobes to the possibly minimum value. For this purpose, it

central plane

PL.I‘/ o

" "
an ap a, ‘ a; ap an

L (2N-1)d
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is necessary to change the amplitudes of currents supplying the particular radiating
elements. As a rule, these amplitudes decrease with growing distance between the
central plane of the antenna and radiating element, see Fig. 4.20. However, this leads
in turn to broadening the main lobe of the radiation pattern. It is therefore possible
to find such current amplitude distribution for which an optimum will be achieved
according to one of the criterions given below.

Criterion 1 The optimum amplitude distribution of the currents supplying the
in-phase linear array, having a fixég\ ratio, whereL is the total length of the an-
tenna, is understood as the distribution for which the side lobe level attains the
minimum for a given 3 dB width of the main lobe andis the length of the ra-
diated/received wave.

Criterion 2 By the optimal amplitude distribution of the currents supplying the
in-phase linear array antenna, having a fixe@ ratio and a given side lobe level,
we understand such distribution, for which the 3 dB width of the main lobe attains
the minimum.

The essence of the design algorithm for a linear array antenna, optimum accord-
ing to criterion 2, is presented below as an example of the linear antenna including
even number (R) of equally spaced radiating elements, Fig. 4.21.

Let us assume that allN2 radiating elements of this antenna array are isotropic.
Moreover, let the complex amplitude of the electrical field initiated at fixed g@int
of the distant zone, by the first radiating element, is:

E; = age 111 = ageiArogif 500t (4.95)
(2N-1)d /2
d dr2

ay a

O 1 O
"

" an

1 O
"

M

to point P

Fig. 4.21
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wherea; is the coefficient proportional to the absolute value of complex amplitude
of the currentl;. Similarly, we can determine the complex amplitude of electri-
cal field initiated by a radiating element situated in symmetric position denoted in
Fig. 4.21 by the index-1. In this case

E—l — a_lefj/g'r—l — &1efjﬂ‘r087jﬂ‘%‘coi0) (496)

Assuming further that the current amplitude distribution is symmetric with re-
spect to the central plane of the antenna. Thusafoe= a ; we can write the
expression:

Ei+E 1= a1e_jﬂ'r° . [e_m‘%‘cos(g) + ejﬁ'%'cos(a)]
,'ﬁ.r d
=a;e 1" . 2cos| B - R cos(9) (4.97)
Using the same approach to the remaining pairs of radiating elements, complex

amplitude of the resulting electrical field, initiated at poktof the distant zone,
can be found as:

N
E=elFfT Z 2ay cos[(Zkz_ &) g-d- cos(e)] (4.98)
k=1

It follows from expression (4.98) that the not normalized radiation pattern of the
antenna array under discussion is:

N

f(0) =2 accos[(2k — 1) - u] (4.99)
k=1

whereu = g-(d/2)-cos(0) = (w-d/\) cos(p). Consequently, the radiation pattern
(4.99) can be presented in the form of a polynomial of degréke{2) with respect
to variablex = cos{), i.e.:

N 2N-1

f(0)=2) accos[(2k—1)-u] = Y Bix (4.100)
k=1 i=1

Justification

Each term of the sum (4.100) can be treated as a polynomial of the variable
X = cosf). This conclusion results from the trigonometric identities given below
[13, 14].
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cos(@) = 2cod(a) — 1
cos(3x) = 4 cos(«) — 3cosf)

cosh - a) = 2" 1 cod\(w) — %2”‘3 cos () + M2”‘5 cos*(«)

! 2!
_ n(n - 43)'(n — 5)2n77 C0§76(O{)
n n(n —5)(n—6)(n—7)

n—9 -8
ai 2" %cos %) — - -

Using some simple arithmetic operations one can easily show that the sum
of polynomials in one variable is itself the polynomial in this variable, what
naturally proves validity of the expression (4.100). CoefficieBts wherei =
1,2,3,...,2N — 1, are simply sums of the current coefficiemtsof the terms
containing variablex = cos) in the same poweir. The essence of the synthesis
method, known in the literature as the Dolph—Chebyshev method, consists in ap-
proximation of the function (4.100) by the Chebyshev polynomial of the first kind
and of degree ® — 1) [15, 16]. We can write therefore

2N—-1
fO)=> Bx =T 1(e-X) (4.101)

i=1

Basic properties of Chebyshev’s polynomialgx) of the first kind are described
in Sect. 4.2.1. As an illustration, the curii(x)| is represented in Fig. 4.22.

A

[ To(x) |

\j

Fig. 4.22
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For an arbitraryn the polynomialT,(x) takes values from the interval [11]
if —1 < x < 1. According to (4.101), the functioff (9)| takes its maximum value
| Ton—1(e)|, because the variable= cos(i) takes the maximum value equal to 1 for

u= “Td cosf) =0 (4.102)

It means that valug = 1 corresponds to the direction of the maximum radiation
6 = 90, see Fig. 4.21, because for this valuedhe Eq. (4.102) is satisfied. It is
not difficult to prove that for all angles &f for which —1 < x < 1, the amplitudes
of side lobes are equal to 1. According to the above conclusion, we can write the
ratio of Epmax to the amplitude of the main lold&,y, i.€.:

1

Ton-1

(o) (4.103)

‘ Eb max

Emax

where Ep.max and Enax denote the maximum values of the main and side lobes,
respectively. For a given ratio = |Epmax/Emaxl, from Eq. (4.103) we find the value

of the parametex. Next, using the developed trigonometric form of the polynomial
Ton—1(a - X), we determine the coefficienB, wherei = 1,2,3,...,2N—1. These
coefficientsB; are related to the desired current coefficiemtsay, as, ..., an by
equation system which can be written in the following general form:

By = fi(a1, @, as, ..., an)
Bz = fz(al, ap,ag, ..., aN)
Bz = fa(a1, @, &, ..., an) (4.104)
Bn = fn(as, a2, a3, ..., an)
Solving this equation system we obtain the desired coefficeants, as, . . ., an,

those according to our assumption are proportional to amplitudes of currents driving
particular radiating elements.

Example 4.1As an illustration of the Dolph—Chebyshev algorithm, let us design
the linear in-phase antenna array for the following datd: 2 8, |[Emax/Ebmax] =

100 andd = 0.7\. Solving the equation: /IT7(«) = 0.01 we obtain the parameter

o = 1.30038731. Next, according to the relation (4.100), we determine the system
of equations relating the current coefficieatsay, as, . . ., ay with coefficientsB;,

Bs, Bs and B;. In this case
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4
f (8) =2 aqgcos[(2n — 1) u] = 2a cos{s) + 2a, [4 cos (u) — 3 cos()]

n=1
+ 2a3 [16 cos (u) — 20 cos(u) + 5cos()]
+ 2a4[64 cos(u) — 112 coS(u) + 56 cos(u) — 7 cos()]
= B, cos(l) + B3 cos(u) + Bs cos'(u) + B; cos (u)

where

By = 2a; — 6ay + 10a3 — 14ay,
Bs = 8ay, — 40a3 + 1122,
Bs = 32a3 — 224a,,
B; = 128,
From the above linear equations it results that

as = B;/128
ag = (Bs + 224a4) /32

az = (B3 — 11224 4 40a3)/8

a1 = (B + 6a, — 1083 + 14a4)/2

Developing the polynomial7(« - X) = T7[« - cos{)] with respect tax = cosf)
we obtain:

B; = 64@)’, Bs = —112@)°, B3 = 56()*, B; = —7«

After introducing the above coefficients into the equation system formulated
above we obtain the desired soluticay = 3.143974851a; = 8.993198987,
a, = 16.34309675p = 21.51976369. Hence the current amplitudes normalized
with respect to the maximum componentare equal to:

li=1_1=1 Iy=1_p=0.759445
l3=1_3=0417904 and ls=1_4 = 0.146097

The normalized radiation pattef(6) = f(0)/fnax(0) of the designed antenna
is shown in Fig. 4.23.

According to our assumptiofEpmax/Emaxl = 0.01, the level of side lobes is
equal to 20log(M1) = —40dB what well confirms the validity of the performed
design process.

Example 4.1TThis example presents the results of the synthesis performed for
a linear in-phase antenna array characterized by the following data=2 16,
|Epmax/Emax] = 0.01 andd = 0.70\. Similar as in the previous example, we shall
calculate the parameterby solving the following equation:
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Emax

Ton_1(a) = ‘ — L =100 (4.105)

b max

For large degrees (2 — 1) of the Chebyshev polynomial, Eq. (4.105) can be
solved more easily, if we use the following mathematical identity validXpe- 1

Tn(X) = ch[N arch)] (4.106)
The identity (4.106) makes possible to write Eq. (4.105) in the form:
ch[(2N — 1)archf)]— L =0 (4.107)

The solution of equation (4.107) may be simplified when we introduce two aux-
iliary variables:

W = (2N — 1)arch)

P — exp(W) (4.108)

Equation (4.107) expressed in terms of the auxiliary varidbleas the simple
form of a quadratic equatioR? — 2LP + 1 = 0 whose first root (greater than 1) is
equal to:

Pb=L++L2-1=100++10% -1
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Having the rootP; we can find the parametearfrom the formula:

1 1
@=3 (s+ 5) (4.109)
where
S =ex ! In(Py)
=OPIoNnT1 "

The formula (4.109) represents the inverse relations with respect to (4.108).
Thus, for the data assumed in this design example we oBjain 199995002747,
s = 1423643589 and = 1.063033294. For the second stage of the synthesis
procedure, we shall formulate the systemNbfinear equations wittiN unknown
variablesax, wherek = 1,2, 3,..., N, representing amplitudes of the currents
driving the particular radiating elements of the designed antenna array. When the
number of radiating elements is very largé\(2- 10), this task becomes very diffi-
cultand cumbersome. In such case, itis recommended to use the specially developed
iterative computational formulas. One of them, namely:

(2N —1)(@+ N — 2)!
@ K'a+k - DI(N — o)l

N
ac=y (-)N %>t (4.110)
q=k

proved itself to be very useful for this purpose [16, 17]. The current amplitdes
Ik calculated according to (4.110) and normalized with respect to the maximum
valuea; = 21.98914 are equal to:

l1 =1_1=1000000 I,=1_,=0.935381 I3=1_3=0.816304
la=1_4=0.661368 I5=1_5=0.492615 Is=1_=0.331950
l7=1_7=0.196367 Ilg=1_g=0.113761

The group radiation patterfa(0) corresponding to the current distribution given
above is shown in Fig. 4.24.

Examples presented in this section illustrate the design methodology for the lin-
ear, regular and in-phase antenna arrays with evl) (imber of radiating ele-
ments. Design of a linear, regular and in-phase array composed of andd 12
number of radiating elements can be performed in the similar manner [16].

Many linear arrays spaced parallely on the common plane create a planar array
antenna. An example of application of such planar array antenna in a mobile radar
equipment is shown in Fig. 4.25.
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4.3 Examples of the Application of Chebyshev Polynomials in Synthesis

O, degrees

Fig. 4.24

Fig. 4.25
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4 Methods for the Interpolation and Approximation of One Variable Function
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Chapter5
Methods for Numerical Integration of One
and Two Variable Functions

The subject of considerations in the first part of this chapter is the definite integral
of one variable given in the closed interval p], namely:

b
/ f(x)dx (5.1)

This integral can be easily calculated when an integrable funcfipg is
bounded and continuous over this interval and when the primitive funétioa),
such thatf (x) = F’(x) is known. In this fortunate case, the fundamental Newton
formula can be used, namely:

b

/ f(x)dx = F(b) — F(a) (5.2)

a

In other cases, however, determination of the primitive funci@r) may be
very difficult or even impossible. Such situation may occur, for example, if only
discrete valuey;, = f(x), fori = 0,1,2,3,...,n, of the integrand are known.

In this case, we cannot speak about the primitive function. In other words, relation
(5.2) is useless in such cases. Hence there is a necessity for calculating approxi-
mate values of definite integrals by means of appropriate numerical methods. In this
chapter, these methods have been divided into three groups, see Fig. 5.1, only for
didactic reasons.

First group (1) includes methods in which the integrah¢k) is replaced (in-
terpolated or approximated) by a series of elementary functions which are easy to
integrate by means of analytical methods. After performing integration of individual
terms of the series, we obtain a new series composed of finite or infinite number
of terms. This series makes possible calculation of an integral with an arbitrary
prescribed accuracy. The integration understood as defined above will be discussed
in Sect. 5.1. Most numerous is the second group (Il), see Fig. 5.2, which includes
the methods commonly known and is most frequently applied in the electrical
engineering.

S. RostoniecFundamental Numerical Methods for Electrical Engineering 121
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Methods for numerical integration

Fig. 5.1

Algorithms of these methods are described below in the same order as in Fig. 5.2,
in the Sects. 5.2.1-5.2.5, respectively. The third group (lll) contains the methods
known in general as the Gaussian methods. Basic feature of these methods is the in-
terpolation (approximation) of integrarfdx) by the orthogonal Legendre, Jacobi or
Chebyshev polynomials [1-3]. The essential problem consists here in determining
the interpolation points (nodes) and coefficients\; of the following expression:

Division of interval [a b]
into “n” equal parts

—— Method of rectangles

—— Trapezoidal method

—— Simpson method (n - even)

— Newton - Cotes method

Fig. 5.2 —— Spline function method
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b n
/ fogdx ~ > A F(x), (5.3)
3 i=0

called the mechanical Gaussian quadrature or briefly the quadrature. The algorithms
used for evaluation of interpolation pointsand coefficientsd;, according to the
Gauss and Chebyshev quadratures, are described in Sect. 5.2.6. The problem of
numerical calculation of double integral, i.e., an integral of a function of two vari-
ablesf (x, y), defined on the two-dimensional area, is considered in Sect. 5.3. The
simplest practical numerical algorithms, such as the algorithm of small (elementary)
cells and the Simpson algorithm are described here. In the final section of this chap-
ter, Sect. 5.4, we can find an example of numerical integration applied to determine
the counted position of a moving object.

5.1 Integration of Definite Integrals by Expanding the Integrand
Function in Finite Series of Analytically Integrable Functions

In case when the integranfdx) defined over an intervad[ b] can be represented by

a series of elementary functions, easily integrable by means of analytical methods,
the definite integral of this function can also be represented by the similar series.
This property is illustrated in the following examples.

Example 5.1n the spectral analysis of signals, there is a constant need of calculat-
ing the integral sine function defined as:

Si(x) = / Sirt'(t)dt

0

Corresponding integrand can be represented by the following infinite series:

sint) 1 3 t5 7 2+t
=—|t——4+==—=+.. + (1) —+...
t t[ ate Attt et

which is convergent foroo <t < oo. After introducing this series into the integral
and performing integration of its individual terms we obtain:

3 X5 X7 X2n+1

X
00 =x— 4+ X X Ly
S =x-33*ss " mt TV aioemint

B 0 1y X2n+1
- ;0 =1 (2n+ 1)!(2n + 1)
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This series of functions makes possible calculation of the funcligr) with
assumed accuracy. For example,oe 2 andn = 5, we obtain:

siz)_p 8,32 128 512 2048
=% 187600 35280 3265920 439084800
o 22n+l
_qy ~ 1.605412
+n2=;( Y ent Dien+ 1)

Consecutive seventh term (not taken into account in the above calculation) takes
the value~ 8.192/(8.095 x 107) which is much smaller than 16.

Example 5.2The following definite integral is very useful for the probabilistic
calculations:

e t*/2dt

]

It can be computed using the approach similar to that used in Example 5.1. For
this end, we represent the integrand by a series similar to the series representing the
exponential function, i.e.:

2 3 n
. X x2 X WX
€ _1_E+5_§+.”+(_1)H+.”

that is valid for—oo < x < oco. After introducing the variabl& = t2/2 into the
above series we obtain:

t2 t2 21 t2 31 t2\" 1
—t2/2 n
2 <2> 2! (2> 3! ( ) <2> n!

x5 x’
o [X_ 2.3 21255 387

+( 1)n X2n+1 N
ni2n2n+1)
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Forx = 2 andn = 19, the calculated probability integral is represented by the
sum

2
1 e 1 8 32 128 512
L [evrgo L [, 8,32 128, 512
271/ x/zn[ 620 336 3456
0
2084 21
At ey
2220 T YV s T }

equal to 0477249868. The next term of the above series is less thatt.10

Although the approach presented above seems to be very attractive, it should be
applied very carefully. In other words, the series representing the computed integral
have to converge to the limit equal to exact value of this integral. This obligatory
condition may be verified by using the suitable mathematical criterions or numerical
simulations described in the more advanced literature.

5.2 Fundamental Methods for Numerical Integration
of One Variable Functions

5.2.1 Rectangular and Trapezoidal Methods of Integration

Given an integrang = f (x) defined over a closed interval,[b] = [xo, X,]. In order

to calculate the definite integral of this function, we divide the interaab] into n
different segments (subintervals), = x; —x;j_1, fori = 1,2, 3, ..., n. Theoretical
basis for the methods of numerical calculation of definite integrals presented in this
section is founded by the theorem about the limit of integral sum defined by the
formula:

S=S+S+S+...+S5=). 5= f(&E)Ax (5.4)
i=1 i=1

whereg; is an arbitrarily chosen value of the varialdgtaken from the subinterval
e, Xi_1 <& <X.

5.2.1.1 Theorem About the Limit of an Integral Sum

If an integrandf (x) is bounded and continuous over the closed intetaah], then
there exists a limit of the integral sum (5.4)

n b
lim > f(&)Ax :/ f (x)dx (5.5)
i=1 a

AX (max)—> 0
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f(x), S

Y

Xo X1 Xp X3 X4

Fig. 5.3

The value of this limit is independent from the partition of the interaab] into
elementary subintervaldx; = X — X;_; and from the choice of;. Geometrical
interpretation of the integral sum (5.4), for the cdg&) > 0 with xg < X < X, is
shown in Fig. 5.3.

5.2.1.2 The Rectangular Method of Integration

The simplest computation method used for definite integrals is the method of rectan-
gles. Different manners of calculating elementary terms (a®asx 1, 2,3, ..., n,
used in this method are illustrated in Fig. 5.4.

According to the notation used in Fig. 5.4(a, b, c), the approximate values of the

b
integral [ f (x)dx are, respectively:
a

l=)" F(x-1)(X — Xi-1).

i=1

o= F(x)( —Xi-1), (5.6)
i=1
[2 = : f<x|_1—+x, (X — Xi_1)

The common limit of these approximations when nigx— x_1} — 0 is equal
to the accurate value of the integral under computation.
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a)

b)

c)

A f(x)
— \4‘
\I & = 5(Xig + X))
X
: T T >-
Xic1 3 X
Fig. 5.4

5.2.1.3 The Trapezoid Method of Integration

The essence of the trapezoid method of integration is explained in Fig. 5.5.

127

In this case, elementary terms are calculated according to the formula defining
the surface of a trapezoid, namely:
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f(x)

Fig. 5.5

_ Yi-1+ Vi

S 2

X —x-1) 1i=123,...,n (5.7)

Of course, this fact justifies the name of that method. When all subintervals
AX; = X — Xj_1 have the same lengths equahte= (b — a)/n, then

b n
/f(X)dX%%Zh-(Yi—l—l-yi)=| (5.8)
a i=1

Formula (5.8), called the complete formula of the trapezoidal method, serves
for calculation of an approximate value of definite integral over the given interval
[a, b]. Naturally, the difference between the exact and approximate values of the
integral under consideration depends on the integrifx) and on the numben
of subintervalsn and their length$Ax; = x; — X;_1|. This difference is a measure
of a quality of integration and for this reason it is often called the integration error
[4]. This error is a subject of considerations presented belowAlLetlenotes the
following partial integral:

X +h
Al = f f(x)dx = F(x +h) — F(x) (5.9)

Xi

The approximate value of integral (5.9) calculated by means of the trapezoidal
method is

h
ALY = S [F00+h) + f(x)] (5.10)
Taking the difference of relations (5.9) and (5.10) we obtain a partial error:

(Er)i = F(x +h) — F(x) — g[f(xi +h) + f(x)] (5.11)



5.2 Fundamental Methods for Numerical Integration of One Variable Functions 129

The primitive functionF (x; + h) included in relation (5.11) can be replaced by
its Taylor series written as:

h? h3
F(xi +h)=F()+hF(x)+ > F’(xi) + gF”’(Xi) +O(h?) (5.12)
Also the integrand (x; + h) can be written in an analogous form, i.e.:
h? h3
f(x +h)= () +hf'(x)+ > (i) + 3 f”(x) + O(h*) (5.13)

As it has been assumed at the beginning that the fundgtipd) is a primitive
function with respect to integrantl(x) and due to this fact the following relations
are valid:

N E ) — dF(Xi)
f(x)=F'(x) = ax
' p d?F(x)
f'(x) = F"(x) = e (5.14)
" " dSF(Xi)
F(xi) = F7(6) = —.3

After introducing the relations (5.12), (5.13) and (5.14) into formula (5.11) we
obtain:

h3
(Eni = —151"(x) + O(n")

Finally, the total error of integration determined over the whole intevab]is:

n-1 h3 n-1

3
Er =3[ ~55 ') + 00| = Lol (519

i=0

It follows from relation (5.15) that the integral sum approximates the definite
integral more accurately, if the largest of elementary subintetvals= x; — x;_1 is
smaller. It is easy to explain, because in this case the integrand is interpolated more
accurately by the step function in case of the rectangle method, or by the broken
line in the trapezoid method. In other words, reducing the length of subintervals
reduces interpolation error. We must, however, remember that the partition of inte-
gration interval into smaller and smaller elementary subinterd&lsncreases the
number of subintervals and the amount of necessary computations. Another nega-
tive consequence of such strategy is therefore an increasing of computation error
(computer processing error). It follows from the relations explained above that for
each particular case there exists such optimal partition numlder which the sum
of interpolation and computation errors would attain the minimum.
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5.2.2 The Romberg Integration Rule

The Romberg integration rule known also as Romberg method can be treated as
a numerically effective combination of the trapezoid method and the Richardson’s
extrapolation procedure [4]. In order to explain the corresponding algorithm, let us
consider once more the formula (5.8) written in a slightly different form for the
function f (x), integrable over an intervaa] b]

h n-1
| =§|:f(a)+f(b)+22f(xj):| (5.16)

=1

whereh = (a —b)/n, x; = a+ j - h. Itis not difficult to explain the fact that when
the numben is increased, the approximation error becomes smaller.

b
error = / f(x)dx — | (5.17)

In case of the Romberg method, this error increases two times in each subsequent
iteration, according to the formula:

n=21t (5.18)

wherek = 1, 2, 3, ..., m andm is a positive integer. It means that in each consecu-
tive iteration, the integration step is reduced twice, as shown in Fig. 5.6.

b—-a 1
he = T = Ehk,l (5.19)

Numerical value of the integral calculated according to (5.9) for a fixed (given)

parametek, is denoted in the English language literature usuallyRuy [5, 6].
According to this notation

Rt =2 [f(@) +  (b)
Ro1 = % [f(a)+ f(b)+2f(@+hy)] (5.20)

1hy hy hy 1 1 hy
5@+ 101+ 21 (a4 ) = GRut gt (a+ )
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Fig. 5.6 f(b)

X

Py

Rs1 = %[f(a)+ f(b) + 2 (a + h) + 2f (a + 2hs) + 2f (a + 3h3)]

= 2% t@+ 1) +2f(a+ hz)]+%[f <a+%> + 1 <a+3%>]

1 1 hy hy

Proceeding in a similar way, we may prove that in general case

k=2

1 1 .
Rc1= > Re-11+ Ehkfl ; f[a+ (@ —0.5)hk 1] (5.21)

The recursive formula (5.21) makes possible reducing the number of calculations
necessary to compute the integral (5.8) with a prescribed accuracy. Further conver-
gence improvement of approximatioi 1, of the desired accurate value of the
integral, can be achieved using the Richardson extrapolating procedure, described
by the formula:

- 220YRj1-Royja
4= 22(i-1) — 1

(5.22)

wherei = 1,2,3,....mandj = 2,3,...,i. This extrapolation gives approxi-
mate valuesk ; of the integral, which can be represented in form of the following
triangular table
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Ro1 Roo
Rs31 Rs2 Rsz (5.23)
Rs1 Rsz2 Raz Ruas

It was theoretically proved and confirmed by numerous experiments that values
of R j, lying on the main diagonal of the table, approach exact value of the integral
faster than the approximatiorig ; lying in the first column. As the criterion for
ending the computations, the following condition is used most frequently.

}Rm,m - Rmfl,mfl} =e (5.24)

wheres is a given sufficiently small positive number.

Example 5.3n Table 5.1 we find several consecutive value®of, R i, Ri — R.1
and| Ri— Ri_l,i_1| computed by means of the Romberg method for the integral

1

4
/ ——dx =7 = 3.141592653589. .
1-x?
0
Table 5.1
i Ri1 R.i Ri—Ri1 IR, — R_1i_1]
1 3.000000000 300000000
2 3100000000 333333333 B33x 1072 1.333x 10!
3 3131176470 342117647 094 x 1072 8.784x 1073
4 3138988494 341585783 597 x 1072 5.318x 10*
5 3140941612 341592665 B10x 104 6.881x 10°°
6 3141429893 3141592653 $27x 1074 1.163x 1078
7 3141551963 3141592653 DH69x 10°° 4.852x 1071
8 3141582481 3141592653 D17x 10°° 7.110x 104

Results given above confirm the fact that the valRgslying on the main diag-
onal of the triangular table (5.16) approach accurate value of the integral faster than
approximationsR, ; placed in the first column.

5.2.3 The Simpson Method of Integration

One of the numerical integration methods, most frequently used for solving practical
problems, is the Simpson method. In order to introduce this algorithm, let us divide
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an integration intervalb{, x,] into n/2 equal sections, whereis an even number.
The elementary segments (subintervals) obtained in this way

[Xo, X2], [X2, Xa], [Xa, Xe], - - -, [Xn—2, Xn] (5.25)

have equal lengthd?= 2(b — a)/n. On each elementary subinterval, the integrand
f (x) is interpolated by the Lagrange polynomial of second degree

LO(x) ~ f(x)forxi 1 <X < X1 (5.26)

wherei =1,3,5,...,n—1, see Fig. 5.7.
The interpolating polynomial (5.26), written according to the notation as in
Fig. 5.7, has the form:

(X = Xi)(X = Xi+1) Vioi+ (X = Xi—1)(X = Xi41)

(ir— X)) (-1 — XivD) T (% — X)X — Xi41)
(X =X —1)(X = Xi)

(X1 — Xi—1)(Xi1 — %)

L) =

1+1

%30 o) - )
= 2= %) =% = h) = L (x = x; +h)(x = x — h)
+ 2= %+ h)X — X)

The value of elementary ter®, see Fig. 5.7, is

Fig. 5.7
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S = XfIHLg)(x)dx— oz leh(x X)(x =% —h)dx
" xi+h
_L) / (X—% +h)(x—x —h}dx  (5.27)
o
2;21 / (x — % + h)(x — x)dx

X —

Calculating this integral we obtain:

h
S = §(yi—1+4' Yi + Vis1) (5.28)

wherei = 1,3,5,...,n— 1. The sum of all term&§ determined over the whole
interval [Xo, Xn] is equal to:

h
S= §(yo+4y1+yz+yz+4y3+y4+y4+4y5+ye+ ......
+VYn—a +4Yn_3+ Yn—2 + Yn—2 + 4¥Yn_1 + yn)

After grouping of terms, the sum (5.29) can be written in the following simpler
form:

h
S= §[yo+4(y1+Y3+YS+- ot Vo) +H2(Y2+ Yat Yo+ - - -+ Yn2)+ Yn] (5.30)

known in the literature as the Simpson integral formula. Simplicity of its comput-
ing algorithm, accompanied by relatively good accuracy, constitutes very precious
property of this algorithm. It was proved in the literature that the difference between
accurate value of this integral and its approximation, given by the sum (5.30), is
a second order quantity. It means that reducing twice the length of the subinterval
Ax; = h, this difference decreases no less th4a-D6 times. The rule given in
Sect. 5.2.1, concerning optimal partition of integration interval, saying that the sum
of interpolation (method) errors and computation (computer processing) errors at-
tains minimum, refers also to the Simpson method. Further accuracy improvement
can be received by repeated calculation of the integral for different lengths of the
subintervals It) and appropriate “processing” of the results. As an example, let us
consider the Aitken extrapolation procedure, in which computation of an integral is
performed three times, i.e., the integration intenaald] is divided into the subin-
tervals with length;, h, andhg, respectively, related according to the formula[7]:

h hy
hy  hy
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Assume that we have three values of the integral obtained for different lengths
hy, h, andhs of subintervals, i.e.:

I =1(hy), la=1(hy), Ilz=1(h3)

A more accurate value of the integrhlis found according to the following
relation:

(I — 12)?

| =1y — —1t 2
T2, 1 15

Precision of the integral calculated in this way is of the omdeR(hP), where:

P~ " (1)

andh is the longest subinterval amohg, h, andhs.

Example 5.4As an illustration of the Simpson method algorithm and confirmation
of conclusions given above, let us calculate the integral

1

/ +x2

0

assuming that an integration interval was partitioned imte 10 equal subintervals
of the lengthh = 0.1. Discrete values of; and related to them valugs = f(x;)
of the integrand are given below.

Xo=0.0, yo= f(xg) =1.000000000
x1 =01, y; = f(xg) =0.990099009
Xo =02, Yy, = f(x2) =0.961538461
x3=0.3, y3= f(x3) =0.917431192
X4 =04, ys= f(xq) =0.862068965
x5 = 0.5, y5= f(xs) =0.800000000
xg = 0.6, ys= f(xg) =0.735294117
x7 =0.7, y7;= f(x7) =0.671140939
xg = 0.8, yg= f(xg) =0.609756097
Xg = 0.9, Yo = f(xg) = 0.552486187
X10 = 1.0, yi0= f(X10) = 0.500000000

According to Simpson formula (5.30) we can write:

0.1
S= ?[yo+4(y1+ys+ys+y7+y9)+2(yz+y4+ye+ys)+ylo] = 0.785398153
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This integral can be also calculated using the analytical formula:

1

/ ;dx = arctg(1l)— arctg(0)=

~ 0.785398163
14+ x2

T
4
0

Analytical and numerical results give the same answer up to eight significant
digits, thus confirming our conclusion about relatively high accuracy of computation
achieved.

5.2.4 The Newton—Cotes Method of Integration
Assume that discrete valugs= f (x;) of integrandf (x) are defined for

X =Xo+i-h (5.31)
wherei =0,1,2,3,...,n,h=(b—a)/n, Xo = aandx, = b. The main feature of

the Newton—Cotes method is the interpolation of the integsand f(x;) defined
above by the Lagrange polynomial of degree

Ln () =D ¥idi () (5.32)
i=0

where the function:

(X =X0) (X = X0) (X = X2) ... (X = Xj—1) (X = Xi11) ... (X = Xn—1) (X — Xn)
(% —X0) (% —X1) (Xi = X2) ... (% —Xi—1) (% — Xi11) ... (% — Xn—1) (X — Xn)

8 (x) =

denotes a polynomial assigned to the térwrf the series (5.32). Introducing the
parameters

X — Xo

9=—F: Qn=9(d-1)@-2)@-3)...@-n+1)@—-n) (533)

polynomials; (x) can be written in the form:

hgh(q — 1)h(q — 2)...h(g—i +1)h(g—i —1)...h(g — n+ 1)h(g — n)

500 = = = Dh( — 2)h.. . @h(=Dh...[—("— 1 + LI~ — )]

which after multiplying the numerator and the denominator dpy-(i), and some
elementary simplifying transformations takes finally the form:

h"Qn
ithi(—1)"-Thn=i(n—i)! q

1 o1 N
= ey 2

5i(x) = i(n—i) q-i

(5.34)
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Thus, the interpolating polynomial (5.32) is equal to:

L =3 [(—1)“—i ﬁ . qQ_“i } (5.35)

After replacing integrand (x) by polynomial (5.35) we obtain:

b b i
~ _ . . _qyn-i 1 Qn = n (K
a/f(x)dxwa/Ln(x)dx—;;yl (—1) i!(n—i)!){q—idx _gylAl

(5.36)
Formula (5.36) is known in the literature as the Newton—Cotes quadrature. Co-
efficientsA;, wherei =0, 1,2, 3,..., n, of this quadrature are often represented in
the form of a product:

A = (X — Xo)Hi = (b —a)H; (5.37)

where

n

I PRI | Qn
H= Y e g
0

is thei-Cotes coefficient. Relation (5.37) can be obtained by introducing new vari-
ables takingX = q - h — xo,dx = h - dg, h = (b — a)/n) and putting the integra-
tion limits as in the expression (5.36) defining the coefficiéntFrom the relation
(5.37), it follows that:

n
> H=1 H=Hy fori=01.23...n (5.38)
i—0

Values of the Cotes coefficients calculated fioe= 1, 2, 3,4 and 5 are given in
Table 5.2 [3].

Example 5.5As an example illustrating the algorithm of Newton—Cotes method,
consider the integral

Table 5.2

n dnHOa dn Hn dn Hl» dn Hn—l dn H27 dn Hn—2 dn HS, dn Hn—3 dn

1 1 2

2 1 4 6

3 1 3 8

4 7 32 12 90
5 19 75 50 288
6 41 216 27 272 840
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5x —|—x

O\H

which can be calculated analytically and equals 1.5. The integféx)is the poly-
nomial of degree 4, and therefore an integration interval J[&hould be divided
into four equal partsh( = 0.25). According to this partition and Table 5.1 we obtain
the values

Xo = 0.00, Yo = f(Xo) =0, Ho = 7/90
—0.25 vy = f(x)=0.26953125 H,; = 32/90
— 050, y,= f(x;) = 0.8125 H, = 12/90
— 075 ys= f(xs) = 233203125 Hs = 32/90

xs =100, ys= f(xs) =6, H, = 7/90

which we introduce to Egs. (5.37) and (5.36) obtaining

1
7 3
(5" + x)dx = 1. | ~ -0+ >2.0.26953125¢ =~ . 0.8125
/ X+ x)dx [90 Tl 5’L
0

32 7
5% 233203125+ - 6| =15
90 > 50 }

In this particular case, numerical result is the same as the accurate value of the
integral obtained analytically. This is a direct consequence of the fact that this in-
tegrand function is a polynomial, and that the Lagrange interpolating polynomial is
identically the same.

5.2.5 The Cubic Spline Function Quadrature

Acting in the same manner as shown in the previous section, we divide the whole
integration intervald, b] = [xo, X,] into n identical subintervals of the length

Assume that for a given set afi (+ 1) interpolation points
Xi=X +1i-h, 1i=0123...,n

discrete valuey; = f(X;) of the integrand are known. When we calculate the defi-
nite integral



5.2 Fundamental Methods for Numerical Integration of One Variable Functions 139
b
/ f (x)dx (5.39)
a

using the spline function method, the integrain) is interpolated over the whole
interval [Xo, X,] by the spline function composed oftrinomials of the form:

a(X) =a +bi (X —X_1) +C(X—Xx_1)?+ di(x — x_1)° (5.40)

wherex;_; < x < X,i = 1,2, 3,...,n [5]. Values of the coefficients;, b;, ¢

and d; of individual trinomials (5.40) are determined similarly as described in
Sect. 4.1.5. Using general rules of integration calculus, the definite integral (5.39)
can be transformed as follows:

b n Xi n X
/f(x)dx:Z/ f(x)dX%Z/qi(x)dx (5.41)
2 i=1 i=1

X1 T Xi-1

Substituting the trinomial (5.40) into the expression (5.41) and performing ele-
mentary integration we get:

b n
1, ., 1 . 1. .,
/f(x)dx:é(a.—-h+§bi~h +36 h +Zdi~h> (5.42)
J —

Using the following equations

Yo1=0(X=X_1) =&
Yi =G(x=%)=a +bh+ch®+dh3

and following from the interpolation rule concerning the trinomials (5.40), the
guadrature (5.42) can be written in the form:

1

b n n
/ f(x)dx = % > oh(yioa+yi) - - > h3(2c + 3d;h) (5.43)
a i=1 i=1

having a simple physical interpretation. First sum of the equation (5.43) is nothing
else but an approximate value of the integral computed by means of the method of
trapezoids. The second sum is a correction term showing the difference between the
results obtained using the spline function and the result given by the much simpler
method of trapezoids.
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5.2.6 The Gauss and Chebyshev Quadratures

It results from the considerations described in the previous sections that the definite
integral of one variable can be expressed by the following general relation:

b n
/ fegdx =" A f(x) (5.44)
a i=1

which in the literature is called the quadrature. Let us assume that the integrand
function f (x) is interpolated by the polynomid\,(x) of degreen over the inter-

val [a, b]. At this assumption it is obvious that the values of coefficiefstof the
guadrature (5.44) depend on degreand interpolation nodes . The essence of

the Gauss and Chebyshev quadratures presented below is that these nodes are not
equally spaced over the interval, [b].

5.2.6.1 The Gauss Quadrature

Let us consider again the definite integral

1 n
/ f(t)dt = Z A f(t) (5.45)
‘1 i=1
defined over the interval-{1, 1]. Nodesty, t5, t3, ..., t, and coefficientsA, Ao,
As, ..., A, of the Gauss quadrature (5.45) should take such values for which this

guadrature will be accurate for the integraind) in the form of a polynomiaf (t) =

W (t) of possibly highest degres. The total number of nodesand coefficient#\

of the quadrature (5.45) is equal to.Z'he same number of independent coefficients
has a polynomiaW,(t) of degreem = 2n — 1. Thus the quadrature being evaluated
should be accurate for polynomials

fi(t) = t& (5.46)
wherek =0,1,2,3,..., m=2n—1. This requirement is expressed by the follow-
ing equations:

1 n n
/tkdt =Y Aft)=) At fork=0123....2n-1  (5.47)
i) i=1 i=1

Let us assume that the integrand is a linear combination of polynomials (5.46),
2n—1
e, f(t) = > cctk, wherec, denoteskth real coefficient. It is not difficult to
k=0
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1
justify using Eq. (5.47) that the integrgl f(t)dt can be written in the following
-1

form:
1 2n—1 1 2n—1 n n 2n—1 n
/ ftydt= )" ck/tkdt =D a) A=) A atf =) Af()
) k=0 ) k=0  i=1 i=1 k=0 i=1
(5.48)
identical as the quadrature (5.45). Thus, in order to evaluate the fiotess, . . . , t,
and coefficientd\;, Az, As, ..., A, of the quadrature (5.48) it is necessary to solve
the equation system (5.47) written as follows:
1 n
/ dt=) A =2
1 i=1
1 n
/ tdt=>) At =0
el i=1
1 n
/tzdt =Y A= 2
: 241
i=1 (5.49)

Unfortunately, the equation system (5.49) is nonlinear with respect to nodes and
for this reason rather difficult to solve. The approach presented below makes it pos-
sible much easier. In its first stage, the notie$,, t3, ..., t, are evaluated in an
indirect manner. For this purpose, the following property

1
/tkPn(t)dt =0 when k<nn=123,...

-1

of Legendre polynomial$,(t), see relations (4.84) and (4.85), is utilized. Let us
assume that the functiof(t) has the form:

f(t) = t“Py(t) (5.50)



142 5 Methods for Numerical Integration of One and Two Variable Functions

wherek = 0,1,2,3,...,n— 1. For0< k < n — 1, the function (5.50) can be
treated as a polynomial of degree at mast-21. For such integrand function the
quadrature (5.45) should be accurate. The above requirement is expressed by the
following equations:

1 n
/tkPn(t)dt =Y AtP(t). k=0123...n-1 (5.51)

e i=1

Left side of equation (5.51) is equal to O due to the orthogonality of the Legen-
dre polynomialsP,(t) and polynomialg® over the interval {-1, 1] whenk < n.
According to this conclusion

n
> AtP(t)=0 k=0123...n-1 (5.52)
i=1

Thus, Eq. (5.52) is satisfied for any coefficiertsif
P.t)=0 for i=1,23,...,n (5.53)

It may be concluded from condition (5.53) that for fixed value of degree
the nodedy, tp, ts, . . ., ty of the quadrature (5.45) should be the same as roots of
the Legendre polynomial of the same degreévalues of noded;, to, ts, ..., t,
determined in this way fon = 2, 3,4 and 5 are given in Table 5.3. For these
nodes, the equation system (5.49) becomes linear with respect to desired coefficients
A1, Ay, A, ..., Ay Consequently, these coefficients can be evaluated by means of
one of the direct methods described in Chap. 1. Naturally, the Gauss elimination
method with the choice of the main element is the most suitable for this purpose.
Values of coefficientdA;, As, As, ..., A, evaluated in this manner for = 2, 3, 4
and 5 are also given in Table 5.3 [3].

Table 5.3

n— 2 3 4 5

ty —0.577350269 —0.774596669 —-0.861136311 —0.906179846
to 0.577350269 (00000000 —0.339981043 —0.538469310
t3 0.774596669 (839981043 (M0O0000000
ty 0.861136311 (638469310
ts 0.906179846
A 1.000000000 (55555555 (B47854845 (236926885
A 1.000000000 (B88888888 (652145155 2478628670
Az 0.555555555 (652145155 (568888888
A4 0.347854845 2478628670
As 0.236926885
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For example, whem = 3 the nodes of the Gauss—Legendre quadrature are:
t; = —/3/6 = —0.7745966691, = 0 andtz = /3/5 = 0.774596669. In this
case, equations (5.49) take the form:

A+ A+ A3 =0

—/3/5A1+0- A+ /3/5A3=0
(3/5)A1+0- Ay + (3/5)A3 = 2/3

The solution of this linear equation system #s; = Az = 5/9 ~ 0.555555555
and A, = 8/9 ~ 0.888888888. Finally, the three-node Gauss—Legendre quadrature
can be written as:

1
/ f(t)dt = é [5. f(—/3/5)+8- f(0)+5- f(\/%)] (5.54)
-1

Of course, the Gauss—Legendre quadrature can be generalized for definite in-
tegrals defined in arbitrary closed interval p] different from [—1, 1]. This can
be done in a manner similar to that described in further part of this section, see
transformation formulas (5.60) and (5.61). This problem is also illustrated by the
Example 5.7.

Example 5.8t is concluded in the literature that the five-node Gauss—Legendre

guadrature ensures the relatively good accuracy of integration for the most appli-
cations. The results of calculations presented below confirm well the validity of the

above conclusion. Thus, let us calculate the definite integral

1

/ " Jlr 2dx =1n(3) — In(1) = In(3)

-1

by means of the five-node Gauss—Legendre quadrature. Using general formula
(5.45) and values of appropriate £ 5) nodes and coefficients given in Table 5.3
we can write:

1 1 1
dx ~ 0.23692688
/ X+ 2 X lE<—O.906179846«1L 2 * 0.906179846+ 2)

-1
+ 0.47862867 ! + !
’ —0.538469310+ 2  0.538469310+ 2

1
+ 0.568888884 —— | = 1.098609241
0+2

In this example, the numerical approximation of the given integral differs from
accurate value In(3y 1.098612289 less thanBx 1076,
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5.2.6.2 The Chebyshev Quadrature

The Chebyshev method considered in this section represents the methods belonging
to the third group (lll), see Fig. 5.1, called in general the Gaussian methods. Short
description of methods of this kind was given at the beginning of this chapter. The
quadrature introduced by Chebyshev can be written in the following general form:

1 n
/ f)dt=>" A - f(t) (5.55)
e i=1
whereA;, fori = 1,2, 3, ..., nare the fixed coefficients, [3]. The main idea of the

Chebyshev method is the determination of such discrete valugdaf which:

— All coefficients A; are equal,
— The quadrature (5.55) is accurate if the integrdrft) is the polynomial of the
degree not greater tham

First condition is satisfied for the coefficierds = Ao = Az = ... = A, = A
determined from relation (5.55), assuming tliét) = 1 is the polynomial of degree
0 (zero). According to this relation:

1

/1-dt=2=ZAi~1=nA

2 i=1

Hence

2
A=A=fo=Ag=..= A= (5.56)

After introducing coefficients (5.56) in Eq. (5.55) we obtain relation:

1 n
f f(t)dt = %Z f(t) (5.57)
‘1 i=1

known in the literature as the Chebyshev quadrature formula. This quadrature, ac-
cording to the above assumption, should be accurate for integrigibpe/hich are
polynomials:t, t2, t3,t4, ... t". This condition formulated for the polynomial of
degreek, i.e., for f (t) = tX, can be written as:

1
2. 1 2
thdt ==Y t\= — [1— (1) =t +th+t¥+ ...+t (5.58
Jrai=E R = - (U= D ) 659
-1 =
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Equation (5.58), formulated fde = 1, 2, 3, ..., n, respectively, constitutes the
following nonlinear system:

i+t +t3+...+t7=0
tf+t§+t§+...+t§=g
B+ +t3+... +t3=0
tf+t§‘+t§+...+t;‘=g (5:59)

n[1 — (=)™
2n+1)

Solutions of this system, evaluated for= 2,3,4,5,6 and 7, are given in
Table 5.4. We should emphasize the fact that the equation system (5.59) has no
real solutions fon = 8 andn > 10. This fact constitutes some kind of limitation
for the method presented above [3].

The Chebyshev quadrature formula can be generalized to definite integrals
defined in an arbitrary closed interval, b], different from [-1, 1]. Any definite
integral

b
/ f (x)dx (5.60)
a
can be transformed to the canonical form (5.55) using the following relation:
2X b+a 2
t(x) = - dt = d
0 b—a b-a’ b_a

transforming the intervaH, b], (a < x < b) intothe interval 1, 1], (-1 <t < 1).
Resulting formula has now the form:

b
b—a b a 2

/ f(x)dx = Z t) = (5.61)

a -
Table 5.4
n t,th=—-1 t,tho1=—1 3, th2=—13 4, thz=—14
2 —0.577350
3 —0.707107 0
4 —0.794654 —0.187592
5 —0.832498 —0.374541 0
6 —0.866247 —0.422519 —0.266635
7 —0.883862 —0.529657 —0.323912 0
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where
b+a b-a
=0 0 (5.62)
The values of roots, wherei =1,2,3,...,n < 7, are given in Table 5.4.

Example 5.7As an illustration of the Chebyshev quadrature method, let us calculate
the integral

1

X
d
/1+xx
0

taking the valuen = 7. The points (nodesy), wherei = 1,2, 3, ..., 7, calculated
according to (5.62), and related to them vald€x;) of the integrand are equal to:

x1 = 0.5+ 0.5(—0.883862)= 0.0580690 f (x1) = 0.054882054
Xp = 0.5+ 0.5(—0.529657)= 0.2351715 f(x,) = 0.190395827
X3 = 0.5+ 0.5(~0.323912)= 0.3380440 f(x3) = 0.252640421
x4 = 0.5+ 0.5(0) = 0.5 f (x4) = 0.333333333
xs = 0.5+ 0.5(0.323912)= 0.6619560  f(xs) = 0.398299353
X6 = 0.5+ 0.5(0.529657)= 0.7648285  f(xg) = 0.433372040
X7 = 0.5+ 0.5(0.883862)= 0.9411931  f(x7) = 0.485048644

Introducing these values of the functidifx;), wherei = 1,2, 3,...,7, into the
formula (5.61) we obtain:

1 7
1-0 1
/ X dxa~ > > f(x) = = - 2.147971672= 0.306853096
1+ X 7 = 7
, -

The calculated value of this quadrature is very close to the value of the integral
found analytically, that is:

1 1 1

1
/ X dx:/1~dx—/ dx=1-0-1In(2) — In(1)] = 0.306852819
1+X 1+x
0 0 0

Correctness of our computations as well as the fact that precision of the method
is sufficient for practical applications can be considered as confirmed.
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5.3 Methods for Numerical Integration of Two
Variable Functions

5.3.1 The Method of Small (Elementary) Cells

One of the simplest methods for numerical computation of double definite integral

| = @S f(x, y)dx dy (5.63)
G

is the method of elementary cells. By a cell, see Fig. 5.8, we understand such small
rectangular are®;;:

Xi <X <X + AX
yj <y <Y+ Ay,

for which the following relation can be formulated:

Ax Ay )

64
2,y,+2 (5.64)

@ f(x, y)dxdy~ Ax; - Ay; - f <xi +

Dj;

The above formula, used for each elementary (small) @rgeermits to substitute
the integral (5.44) by its approximation written in form of the following double sum

@5 f(x, y)dx dy~ ZZ f (x. .y + l)Axi - Ay; (5.65)

i=1 j=1

In the literature we can find a proof of the fact that an approximation error intro-
duced by the relation given above is a second order quantity with respextaod
Ay. When the are& is not a rectangle, in many cases it can be transformed into
the rectangular one by means of changing the variables. To illustrate this procedure

|
I::::”:|::::”::::.
1 T -
oD IAVJ
y | 1 1l _
’ ’ |

x

Fig. 5.8 a Xi b
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Fig. 5.9 Ay
®,(X)

| (Pl(x) |

assume that an integration ai@das the form of a curvilinear quadrangle shown in
Fig 5.9.
Coordinates of each point of this area are defined by the relations:

a<x<b
P1(X) <Y < 92(x) (5.66)

This area can be transformed into the rectangular cell in the coordinate system
(x, t) by means of the following new variable:

P 1) M S (5.67)

() —ei(¥) T T

5.3.2 The Simpson Cubature Formula

Better approximation, as compared with the one obtained by means of the formula
(5.64) can be obtained using the relation called often the Simpson type mechanic
cubature [3, 8]. Let us begin with an assumption that we have rectangular integration
areaD;; given by the relations:

Xi—h<x<x+h,

5.68
yi—k<y=<yj+k (5:69)

and having nine characteristic points, which are shown in Fig. 5.10.
Double integral defined on this area can be written in the following form:

xi+h| yj+k Xi+h yj+k
@f(x, y)dxdy:/ / f(x,y)dy|dx = / dx/ f(x,y)dy (5.69)
i xi—h |yj—k X —h yj—k

The integrandf (x, y) appearing in the second integral can be interpreted as the
function of one variabley, depending on the parameter Single integral of this
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Fig. 5.10 A

function, depending on the parameter, can be calculated using the quadrature Simp-
son formula (5.28). After introducing (5.28) to the formula (5.69) we obtain:

Xi+h
k
ﬁ f(x, y)dx dy= / dx- é[f(x, yj —K)+41(x,y;)+ (X, y; +K)]
Di xi—h
‘ i +h . xi++h ) % h (5.70)
=3 / f(x,yj —kydx+4- 3 / f(x, yj)dx—i-é / f(x,yj +Kk)dx
Xi—h Xi—h Xi—h

Using for the second time the Simpson quadrature formula with respect to each
of the single integrals given above, we obtain the following formula:

k-h
@ f(x, y)dxdy= ==[f06—h, y; —k)+4 (., y;—K)+ (6 +h, y; — K]

Di

k-h
—|—4~T[f(xi —h, yj)~|—4f(Xi,yj)+ f(Xi + h, yj)]

K-h
+ T[f(xi—h, Yi +K)+41 (i, yj+K)+ f(xi+h, y; +K)]
(5.71)

known in the literature under the name of the Simpson cubature formula, or me-
chanical cubature presented often in the form:

k-h
@f(x, y)dxdy= == (Aj +4- B +16- Cy) (5.72)
Di

where

Aj = f0i=hyj—k)+ (i +h, yj—k)+ f(x —h,y; + k) + f(x +h,y; + k)
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Bj =T,y — K+ f(x,y; +K+ f(x —hy)+ f(xi +h,y;)
Cij = f(xi,y))

Example 5.8Jsing the Simpson cubature formula (5.72) we calculate the integral
10
| = (p—dxd

defined on the surface of the rectand@lg: (2 < x < 24,4 <y < 4.6). In this
caseh = (24 —-2)/2 = 02,k = (46 —4)/2 =03,x = (2+ 24)/2 = 2.2,

yi = (4 + 4.6)/2 = 4.3. Values of the integrand needed for the computation, see
Fig. 5.9, are given in Table 5.5.

The partial sums calculated according to Eqg. (5.72) are equal to:

Ajj = 1.25+ 1.041666666+ 1.086956522 0.905797101= 4.284420289
Bi; = 1.136363636-0.988142292-1.162790698-0.968992248-4.256288874
Ci; = 1.057082452

Finally, we obtain the following numerical approximation of the integral:
In = 0.2.0.3/9(4.284420289-4-4.256288874-16-1.057082452)= 0.254819296
The accurate value of the same integral can be found analytically and is equal to:
la = 10-In(2.4/2) - In(4.6/4) = 0.254816148
Next, we find relative error of this numerical approximation

0.254819296- 0.254816148
= ~ 1.235-10°°
8 0.254816148 35-10°

which is fully acceptable for the majority of applications. In case when dimensions
of the integration areR are large, in order to assure sufficient computation accuracy
the whole area should be divided intax m sufficiently small identical rectangles
Dij, wherei = 1,2,3,...,n,j = 1,2,3,..., m, and the sides are parallel to
the axesx andy. Using the above procedure to all such rectangles we obtain the

Table 5.5

Yj /% — 2.0 2.2 2.4

4.0 1250000000 1136363636 1041666666
4.3 1162790698 1057082452 (68992248

4.6 1086956522 (88142292 05797101
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Fig. 5.11 Ay

P v)

v

set of partial results, the sum of which constitutes the approximate value of the
calculated integral. In the similar way, we proceed when the integrationGisa
the curvilinear quadrangle, as shown in Fig. 5.11.

This area should be approximated (with a surplus) by &sstmposed ofi x m
rectangled;;, on which we define the following auxiliary integrand

f(x,y), (x,y)CcG
f*(x,y) = (5.73)
0, x.y)¢zG

For such integrand we can write:

@S f(x, y)dx dy= @S f*(x, y)dx dy (5.74)
R

G

The double integral standing on the right-side of Eq. (5.55) can be found using
the procedure similar to that described above.

5.4 An Example of Applications

The basic goal of navigation is the determination of a geographical position (posi-
tion) of an object moving in a three-dimensional (3D) space, in order to guide this
object to the predetermined position in that space with a predetermined accuracy and
at the right time. This problem is usually solvable using the autonomous methods,
which utilize different board instruments. Historically, the first magnetic, mechan-
ical and optical instruments of this kind were various types of compasses, mag-
netometers, logs, gyrocompasses, optical locators, sextants and infrared direction
finders. Such equipments made possible determination of the geographic position of
an object on the base of the Earth magnetic field measurements, position of the Sun,
the Moon, as well as other celestial bodies. In the modern navigation systems, the
satellites play a role of “reference points”, whose position with respect to the Earth
(more precisely with respect to the center of the Earth and the adopted map gratic-
ule) at any moment of universal time (UT) is known and monitored systematically.
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A special three-dimensional ellipsoidal model of the Earth surface was developed
and its WGS84 version (World Geodetic System, standard USA) is broadly used
in the majority of multi-channel global positioning system (GPS) and differential
global positioning system (DGPS,) receivers. All these systems and corresponding
measurement equipment make possible the determination of the soatadieded
position Another position used for navigation purposes isdbented positionlts
proper meaning defines position of an object determined on the base of its last ob-
served position and of its trajectory, counted by means of the on-board measurement
equipment. As an example, let us consider a procedure serving for determination the
counted position of a submarine, which, at the emergency time, is located at point
Py = (Xo, Yo, Zo = 0), as shown in Fig. 5.12.

Assume now that this observed position was determined for the fixed moment
of timet = tp, on the basis of data received from Navy Navigation Satellite Sys-
tem (NNSS — TRANSIT) or GPS systems. At emergence time, measurement of the
temperature and atmospheric pressure at the water surface is also performed. To
simplify our further considerations, let us assume that the g&jig identical to the
origin of a dextrose Cartesian coordinate systgny( z), in which thex-axis points
to the north (N). Every one hour the actual position is recorded in the deck log. This
position is being determined each time in the full submergence conditions based on
the following data:

— last observed position,
— north direction indicated by the gyrocompass,

a) A

b) A
z
Sea level
Z, / X, X(N)
— t £
|
N Lo,
Pl

Fig. 5.12
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vertical direction indicated by the gravity force,
indications of the vector speedometer,
indications of the vector accelerometer, and
indication of the board clock.

On the basis of indications of the on-board instruments mentioned above we form
the sets of discrete values of the speed vector components, that is:

ux(ti) = vx(to +1 - At)
vy(ti) = vy(to +1 - At) (5.75)
va(t) = vo(to +1i - At)

wherei = 1,2,3,...,n, andAt is a small interval determining the sampling fre-
guency. These values serve to determine (by interpolation) the funei@iisvy (t),
v,(t), continuous in the time intervay <t < t; = tg + n - At. The coordinates
(X1, y1. Z1) of the first counted position are equal to:

ty

n:m+/wmm

to
t

y1= Yo+ / vy(t)dt

o
t

A=m+fw®m
to
ti =t +n-At

(5.76)

Integrals (5.57) are usually computed by means of one of the methods presented
earlier in this chapter. In the full draught time only one of the desired coordinates
can be experimentally verified. It is not difficult to guess that we are interested in
the z;-coordinate, because it defines the draught depth. The draughtldepthy
with respect to the water surface can be found on the base of hydrostatic pressure
measurement. Hydrostatic pressure, at a certain degiecomes greater than the
pressure on the water surface, and the difference is equaktog - p - h, where
g is the earth gravity known for this sea area, ani a given (measured) water
density. Measurement of this pressure is performed by means of mechanical in-
strument whose operation principle is similar to that of an aneroid, broadly used in
meteorology. Each consecutive counted position is accompanied by the greater error
than the previous one, and it is therefore necessary to correct this position as quickly
as possible by determining the next observed position.
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Chapter 6
Numerical Differentiation of One
and Two Variable Functions

A moment of reflection on the usefulness of function derivatives in one or many
variables for natural and technical sciences would certainly make us aware of the
importance of problems considered in the present chapter. Although formulation of
clear and exhaustive conclusions on this subject is not an easy task, it induces us to
a reflection that introduction of derivatives made in great extent possible and accel-
erated the development of science and technology. It is not necessary to convince
anybody that derivatives still play a fundamental role, because they offer mathe-
matical, rigorous manner of describing dynamics of various changes taking place in
isolated environments or in technical devices. For example, the instant sfhged

the first derivative of functior. (t) describing relation of the path to timet. The

time derivative of instant speed is in turn a measure of acceleration. Acceleration
is therefore, mathematically speaking, the second derivative of thelyggthwith
respect to time. As another example, we analyze changes in time of the charge
Q(t) stored on the plates of a capacitor. The current flowing through this capaci-
tor is proportional to the first derivative of functid@(t). We may give numerous
examples of this kind, because all processes which we meet in our environment
are dynamic processes representing changes in function with respect to time. In
this context the stationary process, understood as a process in which there are no
changes, is a purely abstract process, nonexisting in real-world. Moreover, the very
notion of time and its scale is difficult to define for such fictitious process. In order
to specify our future considerations, let us assume that a real process is described by
function f (x), bounded and continuous over an intenall]. The first derivative

of the functionf (x), defined at an arbitrary poing of this interval, is given by the
following limit:

df(x)
dx

f (X0 + AX) — f(Xo)
AX

= F'(x0) = lim_ (6.1)

in which an incremenax can be positive or negative. We therefore have to do with
right-sided or left-sided limits, respectively. If both limits are equal then the function
f’(x) is continuous foix = Xo. Derivatives of many elementary functions such as

polynomials, exponential, logarithmic, hyperbolic, trigonometric functions as well

S. RostoniecFundamental Numerical Methods for Electrical Engineering 155
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as their various combinations can be in most cases described by similar kinds of
functions, as we may see looking at some examples given below.

Function First derivative
X" %x“ =nx"-1
e %ex e
In(x), x # 0 % In(x) = =
1 L d _
ch(x) = E(ex +e7%) dx [ch(x)] = sh(x)
1 i d B (6.2)
sh(x) = S(e* —e™) 3 [sh00] = ch(x)
e —eX d 1
th(x) = g ax [th(X)] = )
cosk) % cosf) = — sin(x)
sin(x) di sin(x) = cosf)
900 = S0 cosg) £0 tgx) =

osk)’ co(x)
Second derivatives of this functions can be determined according to the following
general rule of differential calculus:

f(x) — [% f(x)] (6.3)

dx2

In most cases, the expressions found in this way are also combinations of ele-
mentary functions mentioned above. For example

2

1
G500 = 800 = |3~ e = Flet - (e = ot (6.4)
Some more compound functions can also be written in the form of elementary
function series containing finite or infinite number of terms. A classical example
of such functions, broadly used in electrodynamics and for description of the angle
modulated signals, are the Bessel functions of the first kind [1, 2].

T N ) B T R

Jn(x) = [ n 1(n+1)! * 2I(n+2)!  3l(n+3)!
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wheren = 0, 1, 2, 3... andx is the real positive number. First derivatives of these
functions are obtained by differentiating series (6.5) term after term, obtaining the
recursive formula:

g[mwa“1_<n+maﬁw“ (n+4)x/2M° ]

d
ax =5 | = 1 + 1)! 210 + 2)!

_ /2t [n ~(n+2)(x/27  (n+4)(x/2)!

Second derivatives of the Bessel functions (6.5) are in turn calculated using prin-
ciple (6.3), that is by differentiating all terms of the series (6.6)

d? _1n(n—1)(x/2" 2 (n+2)(n+ 1)(x/2)"
a0l =7 [ ! T 1+ 1)

(6.7)

(N+4)(n +3)(x/2"2 }
2I(n + 2)!

The above considerations would help us to remind the basic principles of ana-
lytical calculating derivatives of one variable functions. They confirm implicitly an
important conclusion saying that analytical method is the most appropriate form of
calculation of derivatives, and that numerical methods, used to obtain approximate
solutions should be used only in cases, when it cannot be avoided.

6.1 Approximating the Derivatives of One Variable Functions

Assume that we define the functioi(x), over an interval §, b] = [Xo, X,], for

which we are not able to determine the derivatives analytically, i.e., in the manner
described above. In such cases, it is necessary to determine the approximate val-
ues of these derivatives according to the formulas given below. For this end, we
divide the interval §, b] = [Xo, X,] into n identical small subintervals of length

h = (b — a)/n. Thus we have constructed a set of points.

Xi =Xo+i-h (6.8)

where:ii =0,1,2,3..., seeFig. 6.1.
For each point of the set (6.8) we assign a value of the function

fi = f(x)= f(Xo+i-h) (6.9)

First derivative of the functiorf (x), defined at an arbitrary poing of the set
(6.8), can be approximated by means of the following quotients of finite differences
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A -

Xi3 X2 X1 i Xisr Xis2 Xiss

Fig. 6.1

— Left-sided approximation

_fxi —h)—f(x)  fig—fi

f/ = A1
| h h (6.10)
— Right-sided approximation
p oo fi+h) — () fisa— i
fo~ h = h (6.11)
— Two-sided (central) approximation
£ Fxi+h) — i —h) _ fiza—fia (6.12)

2h 2h
Magnitude of the error emerging during numerical differentiation of the function
f(x), according to the formula (6.12), can be evaluated developing this function in

the Taylor series foAx = h andAx = —h. In case whe\x = h, we obtain the
formula:

f(x +h)=f(x)+ fO)h+ 1 f@(x)h? + Z 1 £ 0 (x; )h¥ (6.13)
2! ki

where f ®(x;) is the derivative of ordek, calculated foxx = x;. The series (6.13)
can be written in the form:

f(x +h)= )+ FO)h+ % f@(x)h? + 0 (hd) (6.14)
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where

=1 h3
A3 — S 2 0k — 23 -
0 (h)_k§=3:k!f (x)h _3!f (c1), c1€[x.,% +h]

is the truncation error [3, 4]. Similarly, fakx = —h
1
f(x —h)=f(x)— f®x)h+ o f@(x)h? + 0O (hd) (6.15)
where
Oy - Sk L c@apk - e
0% = " (-1 FP ) = - 19(c), e [x.x —h]
— k! 3!

is also the truncation error. Taking the difference of the series (6.14) and (6.15), we
obtain the following equation:

f(x +h)— f(x —h) =2fD(x)h + [0 (h) — 0D (h?)]

which can be written in the form:

fxi+h)—f(x —h)

fOx) = oh

- % [0D)(h?) — 0O)(h?)] (6.16)

The comparison of expressions (6.12) and (6.16) shows that the first derivative
calculated according to the formula (6.12) is loaded by an error of the second order
O(h?). Similarly, we can easily prove that the approximation error following from
the application of Egs. (6.10) and (6.11) is the first order quaitly). In order
to obtain a formula serving for approximate computing of second derivative of the
function f (x) we add side-by-side the series (6.14) and (6.15). In consequence, we
obtain the following expression:

f(x +h)+ f(x —h)=2f(x)+ f@x)h?+ 0D (h* + 09(h*)  (6.17)

where:

=1 h*
0P =3 =t 0 )h = - £@(cy), o e [x.% +h]
ki 41

= 1 h?
0O =3 (-1 FO)N = - 19(c2). ez € [xi.x —h]
— k! 4!

are truncation errors. Equation (6.17) can be represented in an equivalent form:
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f(xi+h)—2f(x)+ f(x —h)

f@(x) = h2

+[0P(h?) + 0O (h?)]

which after neglecting the truncation errors is the desired difference formula:

fxi +h)—2f(x)+ f(x —h) fi1—2fi+ fi,q

o - (6.18)

1) ~

Approximation error of second derivative of the functiéx), emerging when
using the formula (6.18), is the second order quar@iti?). The expressions (6.12)
and (6.18), which we have just found, are called in the English language literature
the central difference formulas of the second order. First and second derivatives of
the considered functiorf (x) can be calculated more accurately by means of the
following, however more complicated expressions:

—fi2+8fi 1 —8fii+ fis
12h

—fiy2 +16fj,, — 30f; + 161 — fj_»
12h?

fD(x) ~ (6.19)

f@(x) ~ (6.20)

called central difference formulas of the fourth order. In order to develop the first
of them and to evaluate the corresponding approximation error, let us develop the
functions f (x; + h), f(x — h), f(xi + 2h), f(x — 2h) in the Taylor series, taking
into account only the first six terms. First two functions are approximated by the
series:
1 1 1
f(x +h)y~ f(x)+ FOx)h+ o f@(x)h? + 3 f O (x)h® + 2 f @ (x)h*
1 5 5
+5 f®(x)h
1 1 1
f(xi —h)~ f(x)— fOx)h+ i f@(x)h? — o f®(x)h® + 7 f@(x)h*

1
~ 5 fO(x)h®

which make possible to write an expression:
W 16 . @)yt o 16 ¢ 6) 1y \pS
8[f(xi +h)— f(x —h)]~ 16f'“(x)h+ §f (x)h® + gf (xi)h> (6.21)
Proceeding in the similar way, one can prove that:
W 16 @ e o 2% £ 6)x )pS
f(x +2h) — f(x —2h) ~4f"(x)h+ §f (xi)h* + ﬁf (xi)h”> (6.22)

Subtracting expressions (6.21) and (6.22) side-by-side we obtain:
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8[f(x +h) — f(x —h)] —[f(x +2h) — f(x — 2n)] ~ 12 D(x)h
(6.23)
— 0.4fO(x)h® = 12f D(x)h + O(hS)

After rearranging and dividing both sides by the tdimexpression (6.23) takes
the form:

8f(x +h) —8f(x —h)— f(x + 2h) + f(x — 2h)

FO(x) ~
(%) 12h

+ O(h%) (6.24)

which, neglecting the truncation err@(h?), is identical to the formula (6.19). Sim-
ilarly, we develop the Eqg. (6.20) and formulas for calculating third order derivatives,
given in Tables 6.1 and 6.2, [4].

Example 6.1Using Egs. (6.18) and (6.20), approximate values of the second deriva-
tive for function f (x) = e — x?/2, wherex = 0.5, were determined. Calculations
were performed for four different values daix = h equal to 02, 0.1, 0.01 and

0.001, respectively. These obtained results, see the second and fourth columns of
Table 6.3, were compared with exact valt/@(0.5) = "5 — 1 = 0.648721271.

As it follows from our above discussion, one of the means for obtaining precision
increase when using differential formulas in derivative computing, is the increase
of the numbem of function valuesf; = f(x;) used in these formulas. Yet, with

Table 6.1

Central difference formulas of the second or@¢h?)
foxi+h) —fxi—=h) _ fina—fia

FO(x) ~ h
f(xi +h)—2f(x)+ f(x —h fiza —2fi 4+ fi_
f(z)(xi)% ( i ) h(zl) ( i ) _ i+1 h2| i—1
@ f(xi +2h) —2f(x +h)+2f(x; —h)— f(x —2h)
fEX) ~ T
_ fipe =2 +2fi0— fio
- 2h3
Table 6.2

Central difference formulas of the fourth ord&(h?)
8f(xi +h) —8f(xi —h)— f(x +2h)+ f(x —2h)

fO(x) ~ oh

_ —fia+8fiya —8fii+ fip

- 12h
© —£(% + 2h) + 16F (x; + h) — 30f (x;) + 16f (xi — h) — f(x — 2h)
fEx) ~ 1o

— fiy2 +16fi ;1 — 30f; +16f_1 — fi_»

- 12n2

)y o O30 81 (X +20) — 13 x ) + 13 (x — h) — 8T(x —20) + f(x — 3h)
)~

8h3
_ —fia+8fip —13fi 1 +13fi1 —8fi o+ fis
- 8h3
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Table 6.3

Steph Formula (6.18) Error of the for- Formula (6.20) Error of the for-
0o(h?) mula (6.18) 0o(h%) mula (6.20)

0.2 0.654224341 $03x 1073 0.648691855 —2.941x 10°°

0.1 0.650095663 B74x 1073 0.648719437 —1.834x 107

0.01 0648735010 B74x 10°° 0.648721270 ~1x107°

0.001 0648721408 B70x 1077 0.648721270 ~1x107°

an increase in the numbar these expressions become more complicated. It leads
directly to the increase of the amount of computations and of the processing error
involved. In practical cases, we take most frequentl< 4, but more accurate
approximation of the derivative may be achieved using Runge or Romberg proce-
dures [4, 5]. In order to explain the essence of the Runge procedure, assume that the
derivative f (x) is approximated by means of a differential expresdi¢x, h) where

h = Ax is a fixed calculation step. L& be the approximation error, for which the
principal term can be written in the forh¢(x), that is:

R = hPg(x) + 0(hP*Y) (6.25)

wherep is the precision order of the given differential formula. With this assumption
we can write:

f(x) = f(x, h) +hPp(x) + 0(hP*L) (6.26)
Derivative (6.26) written for the different stédp = k - h has the form:

f(x) = f(x,k-h)+ (k-h)Pp(x) + O[(k - h)P™]

6.27
= f(x,k-h)+kP-hPp(x) + kPTLO(hP*L) ( )

Subtracting expressions (6.26) and (6.27) side-by—side, we obtain principal term
of approximation error:

foch) = focke ) 1=k o (6.28)

hPe(x) = kP —1 1—kP

After introducing Eg. (6.28) into (6.26) we obtain the following formula:

f(x,h) — f(x,k-h)

f(x)= f(x,h)+ 1

+0(hPY (6.29)

known in the literature as the Runge extrapolation formula [5]. It makes possible
more accurate calculation of the derivative based on the calculation results obtained
by means of chosen differential formulas for two different steps, namatydk - h.

The effective order of approximation precision obtained in this way is greptet ]

than precision order) of the differential formula used above by one. Another ex-
ample of similarly “constructed” two-step extrapolation procedure is the Richardson
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Table 6.4
X 1.8 19 20 21 22
F(x) 5.832 6859 8000 9261 10648

procedure [6]. Among other procedures, for which the number of steps is greater
than two i1, hy, hs, .., hg), the most popular is the Romberg procedure.

Example 6.2n Table 6.4, some discrete values of functfx) = x° are given, for
which the derivativef (x) = 3x? for x = 2 takes the valud (2) = 12.00.

Central approximations for two values of the derivati, h), calculated ac-
cording to the formula (6.12), where = 2,h = 0.1 andh; = 2-h = 0.2 are
equal to:

9.261— 6.859 10.648— 5.832
f(2,01)= —— =1201, f(202)= —— =1204
(2.0.1) 2.01 0 (2.0.2) 2.0.2 0
Differential formula (6.12) is the second order expressiprH 2). Introducing
these numbers into the Runge formula (6.29) we get the following, more accurate
approximation of the derivative

12.01— 1204
f(2) = 1201+ ~=———— = 1200

which in this case is equal to the exact value obtained analytically.

6.2 Calculating the Derivatives of One Variable Function
by Differentiation of the Corresponding Interpolating
Polynomial

Essence of the algorithms serving for determination of one variable function deriva-
tive, introduced in the present section, may be found simply when reading its ti-
tle. First, the functionf (x) considered above, as shown in Egs. (6.8) and (6.9),
is interpolated by one of the polynomials introduced in Chap. 4 or by their linear
combination, which has the form of a spline function.

6.2.1 Differentiation of the Newton—Gregory Polynomial
and Cubic Spline Functions

As first example of interpolating function used for calculation of derivatives, let us
consider the Newton—Gregory polynomial described in Sect. 4.1.3. This polynomial,
for i < x < %11 has the following form:
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t(t — 1) t(t — 1)t — 2)

N(x; +t-h)= fi +tAf + A% + A% 4.
2! 3! (6.30)
tt-2)t—-2)...(t — 1 ’
....... RSN

wheret = (x — x;)/h andAf;, A%f;, A3f;, A%f;, ... are finite differences of the
degree. Polynomial (6.30) is known in the literature as the first Newton—Gregory
forward interpolation polynomial. As a rule, it is used to calculate values of the
function at points lying in the left-half of the interpolation intervab[x,]. This
circumstance can be justified in the following way. Finite different8d; can be
found using the value§, fi 1, fii2, fiis, ..., fizm, withi +m < n. Fori close to

n, finite differences of higher orders are not calculated. For exampglexifhh — 3,

only the differences\ f;, A% f;, A3f; are present in the polynomial (6.30). If our
task is to determine values of the function at points belonging to the right-half of the
interpolation interval o, X,], it is recommended to use the polynomial

tt+1 tt+D)t+2
N +th) = fn +tAfo_1 + (2| )Azfn,z+$

+t(t+1)(t+23];..(t+n—1)Anfo

A3 fng+...

(6.31)

defined fort = (x — xp)/h < 0 [7]. This form of a polynomial is called sec-
ond Newton—Gregory backward interpolation polynomial. Differentiating polyno-
mial (6.30) with respect to the variabbelying in the subinterval %;, X 11], we
obtain approximate value of the first derivative of the interpolated
function f (x):

dN(x) 1 dN 1 2t—1 3t2 — 6t +2
W)y — N _ = 20 = ST a2 O TN T A3
fH(x) ~ i~ h h<Af.+ T Afi + 3 A
4t% — 182 + 22t — 6 5t4 — 40t3 + 1052 — 10Qx + 24
+ - A% 4+ - NS+
4 5!
(6.32)
Second derivative of the interpolated functib(x) is:
1 6t—6 122 — 36t + 22
@)~ (A2F 4 S P34 2 2T o pay
h2 3! 4! (6.33)
20t° — 1202 4 21 — 100 '
+ 5l Afs+...)

Similar relations can be obtained differentiating the interpolation polynomial
(6.31) with respect ta.

Example 6.3or the function given in the first and second columns of Table 6.5,
calculate the approximate values of first and second derivatives=a0.05. From
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Table 6.5
Xi f (Xi) A fi A2 fi A3 fi A4 fi A® fi
0.0 1.000000
0.205171
0.1 1205171 0011060
0.216231 1163x 1072
0.2 1421402 0012224 1223 x 104
0.228456 1285x 1072 1.287x 10°°
0.3 1649858 0013509 1352 % 1074
0.241965 1421 x 1073
0.4 1891824 0014930
0.256896
0.5 2148721

Table 6.5, we find that = 0.1. Thereforef = (X — Xg)/h = (0.05— 0.00)/0.1 =
0.5. Using Egs. (6.32), (6.33) and Table 6.5 we can write:
1 2.05-1
f1(0.05) ~ —[0.205171+ ————=0.011
(0.05) o.1[0 05171+ ~——-0.011060
3-(05%—-6-05+2
* 6
4.(0.5)° - 18-(05°+22.-05-6
+
24
5.(0.5)* — 40- (0.5)° + 105- (0.5 — 100- 0.5+ 24
+ 120

1.163.10°°

1.223.10°4

1.287-107°

+. ] — 2051271

1
01y
12. (0.5)% — 36- 0.5+ 22
+ 24
20- (0.5)% — 120- (0.5)2 + 210- 0.5 — 100
+ 120

6'0'—5_61 163-10°3

£(0.05) ~ [0.011060+

1.223.10%

1.287.10°

+. ] = 1.051175

Example 6.4Recalculate the first and second derivatives of the function analyzed
in Example 6.3 at poink = 0.15. In this case, we obtairt: = (x — x;)/h =
(0.15-0.10)/0.1 = 0.5

2-05

1 -1
f1(0.15) ~ o1 [0.216231+ T0.012224

3.(0.52 —6-0.5+2
+ 6

1.285.107°
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N 4.(0.5)° - 18-(05%+22.-05-6

1.352.10°*
24
. 4_40. 3 ) 2 _100.
N 5.(0.5)* — 40- (0.5)° + 105- (0.5)2 — 100 o.5+24O _ 5161831
120
6-05—6
£(0.15) ~ 017 [0.012224+ — = ~1285.10°
12.(0.5)2 — 36- 0.5+ 22
+ 05 o + 1.352.104+0+...} = 1.162093

The derivatives calculated in the Examples 6.3 and 6.4 are very close to corre-
sponding values evaluated analytically. It has been possible because vafygg of
given in Table 6.6 are only discrete values of functibfx) = exp() + x. This
calculation examples confirm the conclusion established in the literature that the
method discussed above reveals good precision, sufficient for practical applications,
and has unsophisticated computation algorithm. These unquestionable advantages
were very important in the past “pre-computer” times. We must however remember
that the degrea of the interpolation polynomial, regardless of its form (power,
Lagrange or Newton—Gregory), increases with the number of nodes, and the deriva-
tives calculated on the basis of the polynomial of high degree can be charged with
considerable errors. This remark only to a small extent refers to the spline function,
see Sect. 4.4. Each polynomial of this function has the form:

a4 (X) = kio + kitx + kiox? + kisx® (6.34)

where:i = 1,2,3, X1 < X < X, andkio, ki1, ki2, kiz are fixed coefficients.
Determination of derivatives by means of the trinomials (6.34) is an elementary
operation, which need not be explained further. Differentiation of the polynomial
(6.35) given below, serving for the same purpose, is a little bit more difficult
task [3, 5]

Glte)l =t fi+t- fisg+Ax [(kog—di) -t 12— (k —d)-t* ]
=t fi + (L —t)fi_g+Ax [(ki_g — d) (= 2t2 + 1)] (6.35)
—Ax; [(k —di) (t% = t9)]

Table 6.6

i 0 1 2 3
X 1.0 30 50 7.0
f(x) 2.0 35 38 30
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where

Afi t:X—Xi,1

A, =h=x—Xj_1, Afi=fi—fi_1, d = A_Xi’ A t=1-t.
First derivative of the trinomial (6.35) with respect to the variable:
dglt()] _dg(t) dt 1 dg(t)
dx ~ dt dx Ax dt
1
= (= fioa) (ks — d)(E — 4t 1) — (k —d)(2t —3t)
|
(6.36)

Differentiating the expression (6.36) with respect to the variablge obtain the
formula used for calculating the second derivative, namely:

d?gift(x)] 2
dx2  (Ax)?

[(ki—1 —di)(3t — 2) + (ki —di)(3t — 1)] (6.37)

Example 6.9n Table 6.6 some discrete values of the functidx) interpolated by
a spline functionQ(x) composed of three trinomials of the type (6.35) are given.

Coefficientsk;, wherei = 0, 1, 2 and 3, appearing in these trinomials are equal
to ko = 0.855555k; = 0.538889k, = —0.311111 ands = —0.044444. Chosen
values of the functioQ(x) ~ f(x) and its derivatives @(x)/dx and #Q(x)/dx?
are given in Table 6.7.

Table 6.7

X Q(x) ~ f(x) dQ(x)/dx d?Q(x)/dx?
1.0 2.0 0855555 <10°©

15 2.424479 (835763 —0.039583
2.0 2.829166 /76389 —0.079166
25 3.194270 677430 —0.118750
2.9 3.444554 (69764 —0.150416
3.0 3.5 0538889 —0.158333
31 3.552287 (06680 —0.163750
35 3.727604 (867013 —0.185416
4.0 3.862500 (0168055 —0.212500
45 3.891145 —0.057986 —0.239558
49 3.828462 —0.258319 —0.261249
5.0 3.8 -0.311111 —0.266666
51 3.766333 -0.361111 —0.233333
55 3.591666 —0.494444 —0.100000
6.0 3.333333 —-0.511111 0066666
6.5 3.108333 —-0.361111 0233336

7.0 3.0 —0.044444 0400000
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Fig. 6.2

Remaining results of the calculations have been used to draw up curves of these
functions, which are shown in Fig. 6.2.

From analysis of the derivatives shown in Fig. 6.2(b, c) it follows that they are
continuous in the internal interpolation points, the fact which confirms correctness
of our calculation and illustrates implicitly properties of the applied interpolation
method.

6.3 Formulas for Numerical Differentiation of Two
Variable Functions

Let us consider a function with two variablé$x, y), for which chosen discrete val-
uesf(x, y;j), defined forx, = xo+i-hy, y; = yo+j-ho, wherei =0,1,2,3,...,n
andj =0,1,2 3,..., m, are shown in Fig. 6.3.
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First partial derivatives of this function can be approximated using the quotients
of finite differences calculated for sufficiently small values of steps
andh,.

fxy)  fx+hyy) - fixy)

aX hl
6.38
P10y) | FOy+ho) — F(x.y) (6389
ay hy

At an arbitrary pointX;, y;) derivatives (6.38) can be expressed by the discrete
values of functionf (x, y) specified in Fig. 6.3.

af ~ firnj — fij
0X i hl

(ﬂ) ~ fij+1— i
Y /i h,

As we can see, relations (6.39) describe right-sided approximation of the desired
derivatives. In the same manner as in case of the functions with one variable, see
relations (6.10), (6.11) and (6.12), we can also find the left-sided and central ap-
proximations of these derivatives. In order to determine the central approximation,
characterized by augmented accuracy, we develop the funtiary) in the bino-
mial Taylor series:

(6.39)
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f(x + AXx, y + Ay)

af af
= f(x, —A —A
x,y) + o X + 3y y

1 [0%f 2¢ 2¢
+ (a—szJrza AxAy+‘37Ay2>

21\ ox2 IXay

1 [o3f > f > f > f

[ —=Ax® +3——Ax?Ay +3 AXAY? + —Ay? | + ...
+3! <6x3 < X290y xay+ IXay? XAy + ay3 )+

(6.40)
Forx = x;j, Ax = hy, y = yj, Ay = 0, series (6.40) can be written as:

of 1 [o?f , 1 (83f 3
f(Xi+h1, y,) = fi+1qj = fi,j+<&>ij h1+§ (W)ij h1+§ (m)ij hl+

(6.41)
Similarly, forx = x;, Ax = —hy, y = y;j, Ay = 0 series (6.40) takes the form:

of 1 /9°f 1 /9%f
ij : ij : i]

(6.42)
Subtracting expressions (6.41) and (6.42) side-by-side we can obtain the relation:

of
fivrj — ficyy =2y <&>ij + O(h®)

from which we obtain the central second order formula serving for calculating the

first partial derivative with respect to variabte

of fipn) — ficvj o fivng — ficej
AL R I e Y o V(A TE) I eeat M T 6.43

Adding up side-by-side both series (6.41) and (6.42), we obtain the relation:
2, ,(9f 4
fipej+ ficay =2f; + Ehl T ; + O(h1%)

which can be written in the following equivalent form:

(82f> - fipr) — 2f5 + fi_g B O(hlz)% fiqnj —2F5 + fi_y (6.44)
ij

ox2 h,2 hy2

The formula we have just obtained is called the second order central difference
formula for calculating the second partial derivative with respect to variable
the similar way, the difference formulas serving for calculating the approximate
values of first and second derivatives with respect to variglilan be determined.
Consequently,
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(ﬂ) %M(“_i) LBk N R P
ay /i 2h; IX= /i hz

Expressions (6.45), similarly as their equivalents (6.43) and (6.44), are called
central difference formulas of the second order. A function of two variables can have
in general 2 = 4 different second derivatives, including two mixed derivatives. If
the mixed derivatives are continuous, then according to the Schwartz theorem they
are also equal. Functions which can be expanded in the Fourier series satisfy this
assumption, and therefore approximate values of these derivatives can be calculated
according to the following central difference formula of the second order:

<82f ) _ ( o f ) o it = fivja—fiajn+fiajag (6.46)

which can be derived similarly as the previous one presented above. Values of the
function f (x, y), shown in Fig. 6.3, correspond to different expansions of the series
(6.40). Based on these values and related Fourier series expansions, more accurate
formulas for calculating partial derivatives can also be developed. In Table 6.8, some
examples of several relations obtained in this way are given. They proved to be
particularly useful to solve the Laplace equation in a two-dimensional space as well
as for some optimization strategies.

Example 6.6Table 6.9 contains nine discrete values of the functidqn, y) =
1/(x? + 2y?), which were determined in close neighborhood of the paint=
1Ly=1).

Approximate values of partial derivatives of this function calculated at point
(x = 1,y = 1) by means of formulas (6.43), (6.44), (6.45) and (6.46) are given
in the second column of Table 6.10.

These approximate values are very close to their accurate ones, given in the third
column. All results presented in Table 6.10 confirm well correctness of difference
formulas under discussion, as well as their usefulness for engineering calculations.

Table 6.8

Central difference formulas of the fourth orde(hs, hi)

At fijr— ficat fivnja— ficn
dx ij 4h1

(ﬂ) ~ fiptjer— fignj1+ ficgje— ficnja
ay ij 4h,

Ix2 12']12

02f  —fiiaj +16fi.1 ) —30f; + 161 — fi_z

827]( - —fi1j+2+16fi,j+1—30fij +16fi1171— fin,z
ayZ 12'.]22
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Table 6.9

yl/x— 0.95 1.00 1.05
0.95 0369344413 (856506238 (843938091
1.00 Q344530577 (B33333333 (822320709
1.05 0321802091 (812012480 (802343159
Table 6.10

Derivative Approximate value Accurate value Relative error
2—; —0.222098 —0.222222 —5.580x% 10~*
% —0.444937 —0.444444 M09 % 1073

9% f 3

0.594739 0.592592 .823x 10~

Xy

a2 f

el 0.073848 0.074074 —3.051x 103
a2 f 4
B 0.740820 0.740740 .080x 10~

6.4 An Example of the Two-Dimensional Optimization Problem
and its Solution by Using the Gradient Minimization
Technique

One of the popular plays in times of my childhood was blowing bubbles with the
soap solution. A piece of straw, small plate filled with water and a little bit of gray
soap was all that needed to conjure up beautiful, lazily moving spherical envelopes.
The blown soap bubble is nothing else but a closed, very thin water layer sur-
rounding a portion of heated air. Due to the surface tension, this envelope adopts
spontaneously the spherical shape, by which its surface attains the minimum. In
such simple, but at the same time in a suggestive manner the nature proves that the
sphere is such optimal geometric solid, for which the ratio of the total lateral area to
the volume is the smallest possible; that is it attains the minimum. In other words,
the process of shaping of this soap bubble is the optimization process, in the sense
of the criterion defined above. This observation draws us to the conclusion that all
containers used for gas substances, designed according to this criterion should have
spherical shape. For such form, the quantity of stuff used for their manufacturing
would be smallest. Each departure from this principle should be well justified — the
fact that each designer should always have in his mind. Following the rule just ex-
plained, let us design a parallelepiped tin container having the volunde=efl m®
under condition that one of its geometrical dimensions, see Fig. 6.4, cannot be less
than 13 m.

It is known from the elementary mathematics that volume of this container is:

V=x-y-z=1m?
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Fig. 6.4

UNRRA CONTAINER

A
Y

and that one of its geometrical dimensions, for exanaptean be expressed by two
remaining, i.e.:

\Y, 1
zZ=—=— (6.47)
Xy X-y

The quantity, which should attain minimum, is the total lateral surface of the
containerS(x, y, z) = 2(xy + yz+ x2), which after introducing relation (6.47) can

be calculated using the formula:

1 1
S(X,y) =2 (xy+ X + 9) (6.48)

While performing minimization process for the surface (6.48) we cannot forget
about the given design constraint saying that one of the dimensions, for example
should not be less than3m. This limitation can be taken into account during the
minimization (optimization) process by adding to the relation (6.48) the following
easily analytically differentiable term:

X
P(x) = exp[t (1 . 1—3)] (6.49)
wheret is a positive fixed parameter with an appropriate value.

Two typical curves of the function (6.49) calculated fee 100 andt = 200 are
shown in Fig. 6.5.

For sufficiently large values of paramete(for example,t > 300) the penalty
component (6.49) is small in comparison with the expected value of the function
(6.48), if onlyx belongs to the area of acceptable solutions [8, 9]. If a current solu-
tion is located close to the boundary of the acceptable area, or outside this boundary,
then the penalty component (6.49) becomes large in comparison with the value of
the minimized function (6.48). In this case, the penalty term, more precisely its
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Fig. 6.5

gradient, “pushes” the point corresponding to this solution towards the accept-
able area. As our current problem is concerned, the area of acceptable solution is
bounded by the inequality > 1.3 + Ax, whereAx is the width of a relatively
narrow boundary area, see Fig. 6.5(b). Similarly, we can take into account the limi-
tations for the variablg, which should always be positive.

Q(y) = exp(-t - y) (6.50)

After adding the relations (6.49) and (6.50) to (6.48), we obtain the following
extended objective function:

1 1 X

F(x,y,t)=2 (xy+ X + ;) + exp[t (1 — 1—3)] + explt-y) (6.51)
which can be minimized by means of one of the gradient optimization methods.
It has been confirmed experimentally that the relatively simple steepest descent
method is suitable for this purpose [9, 10]. Thus, let us consider its algorithm step-
by-step for didactic reasons. Before we discuss the merits of this algorithm, let us
remind the basic concept of the gradient defined for many variable functions, and
explain why it is used in iterative optimization strategies. The gradient of a function
f(x1, X2, ..., Xy) = f(X) is the vector, whose coordinates are partial derivatives of
this function determined with respect to particular variables, i.e.:
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(6.52)

Vf(x)z<af of af)

Xy aXe T 9Xq

It is not difficult to prove that the gradient (6.52) is a vector pointing at the
steepest growth direction of the functidrixy, Xz, ..., X,) = f(X), in close neigh-
borhood of then—dimensional pointXs, Xz, ..., Xn) = (X). The vector—V f(x)
would of course point the direction of steepest descent, and this property is used for
searching minimum of the function being optimized [9, 10]. In case of the objective
function (6.51), the gradient will have two components:

B =5~ 13991 (- 75)]
aF

ay

> (6.53)
=2x—?—t-exp(—t~y)

Equations (6.53) serve to determine the unitary vector pointing at minimization
directiond = (dx, dy), having the following components:

P L
TOIVEeG YL ox (6.54)

g 1 oF
YTVFE(x, y)l ay

IVF(x, y)l = \/<%>2 * (%)2

As defined in (6.54), absolute value of the veatioe= (dy, dy) is equal to 1.
The steepest descent method is an iterative method; that is the result obtained in
thei iteration is subsequently used as the “starting point” for computation executed
during next iteration. Assume now that we know the coordinate of the pqiny;{
belonging to the admissible region. At this point we determine the minimization
vectord® using relations (6.53) and (6.54). Position of the new pointy( yi 1) is
established, making the search along the line

where

X=X +j-h df
| (6.55)
y=yi+j-h-df

whereh is the step, angl is the parameter taking consecutive values of 1, 2,.3;0r

each subsequent value of the paramgtéine objective function (6.51) is calculated
and compared with the value obtained previously; that i§ fed.. If the value of the
objective function is decreasing, then the process of searching for its minimal value
along the line (6.55) is continued. Component values (6.55), for which the objective
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function begins to increase are taken as the desired coordinates of the optimal point
(Xi4+1, Yi+1). For this point, we determine a new vectr?) and continue the com-
puting in the new iteration ¢ 2) using the same algorithm. The following condition

is most frequently used as the criterion of ending the computation process.

2 2
IVE(X, y)| = \/@—i) + <%> <e (6.56)

The parametet is an arbitrary small positive number. In Table 6.11 we have
summarized some results obtained by means of the algorithm explained above for
the following data: Xo, Yo] = [1.5, 1], h = 0.0001 t = 1000 anct = 0.15.

In Table 6.12 we have shown for comparison similar results obtained with an
assumption that all dimensions of our container can take arbitrary values. For op-
timization the problem is formulated in such a way that only the function (6.48) is
minimized.

Comparing the subsequent valuesofiven in the second column of Table 6.11
we deduce that the solution of our design problem lies very close to the boundary
of the acceptable region< (= 1.3 m). Assuming that the penalty term is absent
and would not modify the original goal function, we would obtain the following
optimization resultx = 1.3, y = 0.877058019. Total surface area of such container
would be equal td5 = 6.099163239 A Using these results we can find relative
error of the approximation obtained above, that is:

_6.104739- 6.099163239

~9.142.107%

6.099163239
Table 6.11
Iteration ‘§” Xi, m i, m S, m? [VE(X,Y)|
0 1.500000 1000000 6333333 1494847
1 1.304662 0824196 6110166 20835037
2 1310161 0824284 6112767 0366847
50 1309949 0863675 6105203 0131874
100 1309677 0873755 6104739 0131963
Table 6.12
Iteration §” Xi, m Vi, m S, m? [VS(X, y)|
0 1.500000 1000000 6333333 1.494847
1 1277011 0799310 6109770 0.686100
2 1.127286 1031168 6038563 0.615014
5 0.999044 0985557 6000453 6918 x 1072

8 1002596 1002465 6000039 <1x107?
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This error is rather small and this fact confirms practical usefulness of the method

explained above. Surface area of an equivalent spherical container having the same
volumeV = 1 m?, equals 4335976 m and is approximately 1.262 times less than
the total area of the cubicoidal container designed above.
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Chapter7
Methods for Numerical Integration of Ordinary
Differential Equations

The equations containing one or more derivatives are called differential equations.
Depending on the number of independent variables and corresponding number of
derivatives these equations are divided into:

— ordinary differential equations formulated for functions of one variable and
— partial differential equations formulated for functions of many variables.

Subject of our considerations in the present chapter is the ordinary differential
equations, with some additional requirements for the function in question and some
of its derivatives. If these requirements, given for the function and eventually for
some of their derivatives, are defined only for one value of the independent vari-
able, they are called initial conditions. In such cases, the problem of evaluating the
function satisfying given differential equation with an initial condition is called the
initial value problem, proposed originally by Cauchy [1, 2]. In case when these re-
quirements are defined not for one, but for more values of the independent variables,
they are called boundary conditions. Correspondingly, the problem of determining
a function satisfying given differential equations and the boundary conditions is
known as the boundary problem. In case of the initial value problem, time plays
often the role of independent variable. Classical example of such problem is a math-
ematical description of free motion of the infinitesimally small material body, sus-
pended on a long, infinitesimally thin, inextensible thread. Initial condition for this
problem is defined by position and speed of this body in a chosen moment of time,
sayty = 0. For the pendulum considered in this example, one can also formulate
boundary conditions defining the trajectory of this body in a given time interval.

7.1 The Initial Value Problem and Related Solution Methods

Let us consider the initial value problem consists in evaluation of a fungtigh
that satisfies the following equation:

dy(x)
= f [x, y(x 7.1
T = 1D Y] (7.1)
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with initial condition yo = y(Xo). Numerical solution of this equation consists in
evaluation of the set of discrete valugs= y(xn) = Y(Xo + n - h) of the unknown
function, wheren = 1, 2, 3, ..., andh = Ax is an adopted integration step. Several
methods for findingy, are known. In the literature they are often classified as:

— one-step (self-starting) methods, and
— multi-step methods, called briefly the predictor—corrector methods.

As compared with equivalent one-step methods, the multi-step methods ensure
better numerical efficiency. In other words, they make possible in obtaining more
accurate approximation with less necessary computations. Unfortunately, they are
not self-starting and several initial points must be given in advance. It means that
knowledge of some first (approximate or accurate) values of the desired function
is necessary. These values, called commonly initial sections, are determined most
often using one-step methods of the same order, as for example the Runge—Kutta
(RK 4) method described in Sect. 7.2.3.

7.2 The One-Step Methods

7.2.1 The Euler Method and its Modified Version

The simplest representative of the one-step methods is the Euler method, discussed
below on the basis of Fig. 7.1.

Process of finding the consecutive valygs= y(x,) = y(Xo + n - h) forn =
1,2,3,..., begins from the starting poify = (Xo, Yo), at which

dy(x)
dx

= f [xo0. y(X0)] = f [Xo. o] (7.2)

b yx)

Yo 1

\j

Fig. 7.1
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In other words, the value of the functioi(Xo, Yo) is equal to the tangent of the
angle, at which the tangent to the curyg) satisfying Eq. (7.2) is inclined with
respect to the-axis. Therefore, first computed value of the desired function is:

Y1 =Y(Xo +h) = yo+h- f[Xo, y(X0)]

Thus we have obtained the poiRy = (X1, y1), which can be treated as the
starting point in the process of finding, related to the point, = (X, Y»).
Repeating this procedure several times, the set of discrete vgluafsthe func-
tion approximating desired solutioy(x) is evaluated. Approximation accuracy of
the functiony(x), obtained from the set of discrete valugs = y(x,), calcu-
lated using the Euler method is rather small. The modified version of this method
is therefore most frequently applied in practice. The pdigat: = (Xni1, Ynt1),
wheren = 0,1, 2, 3, ..., computed using standard Euler method, is placed at the
intersection of the line, tangent to the integral curve at the pBint= (X, Yn),
and a line parallel to theg-axis, satisfying the abscissq@,1 = x, + h. Con-
siderable increase of accuracy may be obtained when the slope coefficient of the
tangent line is calculated not at the poiRf = (x,, yn), but at the new point
Qn having the coordinatx = x, + h/2 and lying on the integral curve, see
Fig. 7.2.

Unfortunately, determination of the coordinatat the pointQ, is not possible,
and therefore this point is replaced (approximated) in the algorithm of the modified
Euler method by another poif, whose coordinates are:

X+h
n 27

h
Yn + 5 f(Xn, Yn)
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Slope coefficient of the line tangent to the integral curve at pRjns equal to:

h h
f [xn F oyt Dt yn)} (7.3)

The line having the slope (7.3) and passing by the pBir& (x,, yn), Obtained
by intersection with a line, .1 = X, + h and parallel to they-axis, determines a
new point having the coordinate:

h h
Ynyr=Yn+h-f I:Xn+§»Yn+§f(Xn»Yn):|

The coordinatey, 1 at this new point is treated as the next discrete value of the
desired solution. After introduction of the notation

h k
kl:hf(xn1 Yn)s k2:hf<xn+§,yn+51>
the value ofy,; can be written as:

Yn+1 = Yn + k2 (7.4)

Another version of the Euler method is the Heun method discussed in Sect. 7.2.2.

7.2.2 The Heun Method

Let us assume that the approximate vajye= y(x,) of the desired functioy(x) is
known, see Fig. 7.3.

A

y(x)
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In case of the Heun method, an auxiliary coordinate is calculated first

y:+1 = Yn + hf(Xn, ¥n) (7.5)

and used next to determine the quantity

f (Xns1, Yogt)

expressing the slope coefficient of the tangent to the curve described by Eq. (7.2)
and passing through the poiRt. 1" = (Xn11, Yni1™) being first approximation of

the desired solution. The point, which gives a much better approxima®jon,=

(Xn+1, Ynt1), has the coordinatg,, ; calculated from the formula:

1
Yn+1 = ¥n + éh [f(Xn, Yn) + f(Xns1, y:+1] (7.6)

It is not difficult to see that the slope of the line passing through the pé&ints
and P, is the arithmetical mean of the slopes of tangents at p&its: (X, Yn)
and Pry1* = (Xn+1, Ynt+1"). The pointP,.1 determined in this way plays the role
of starting point to the computation performed during next iteration- ). This
algorithm can be described by the following formulas:

k1 = hf(xn, Yn), ko =hf(X, + h, yn + ki)
1 (7.7)
Yn+1 = Yn + E(kl + ko)

wheren = 1,2, 3,... In comparison with the Euler method presented earlier, the
Heun method ensures greater accuracy and better numerical stability. To determine
the order of accuracy we develop the functigfx) in the Taylor series, in close
neighborhood of the point,

Y00+ 1) = Y0) + Ry 0x0) + %Y 0) 4. 79)

Assume also that only first three terms of the series (7.8) will be taken into
account. Second derivatiwg'(x,) visible in the third term of this series can be
approximated as follows:

Ay y(xa+h) — y'(xn)
AX h

Y’ (%) ~
Hence, the sum of three initial terms of the series (7.8) is equal to:

y (X +h) — y/(Xn)}

YO+ 1) = Y0) + () + 51 [ LD

X (7.9)
= y(xn) + Eh [Y (X2 + h) + Y (xn)]
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and is identical, as in the formula (7.6). According to our previous assumption, about
neglecting the terms of the series containing the multigiferfor n > 3, the Heun
methods may be classified to the group of methods of the second order. In other
words, it guarantees accuracy comparable to the Taylor series approximation (7.8),
in which all initial terms are present, including the term with second derivative.
Acting in much the same way, it is possible to prove that the modified Euler method
discussed earlier has the same (second) order accuracy. In the extrapolating formula
(7.9), expressing the essence of the Heun method, second derivative is represented
by the term containing two values of the first derivative defined for the left and
right end of the subintervak], x,.1]. In order to express third derivative in terms

of the finite differences, knowledge of the second derivative at two different points

is necessary. Hence, there is a necessity of defining the slope of the desired curve
at one additional point, which lies inside a subintervgl, k.,1]. Reasoning in a
similar way as above, we come to the conclusion that in order to determine higher
derivatives we must compute the slopes of the desired function at many points inside
a subintervalX,, Xn+1]. This last conclusion becomes starting point for elaborating
the whole group of one-step methods, such as the Runge—Kutta method.

7.2.3 The Runge—Kutta Method (RK 4)

The Runge—Kutta method of the fourth order, denoted in the literature as RK 4,
is an important representative of one-step methods. In this iteration methadhthe
approximate valug, = y(x,) of the evaluated function forms a basis for calculation
of the next (14 1) approximate valug,,1 = y(xn+h), whereh denotes the adopted
integration step. The calculations are performed according to formula:

1
Ynt1 = ¥n + é(kl + 2ko + 2k3 + ka) (7.10)

where:

h k
ks = hf (%o, Yn). ko = ht (xn+§,yn+31)

h k.
k3=hf(xn+§,yn+§), ke = N (0 + 1, Yo + ko)

The derivation of these recursive formulas is behind the scope of the present
handbook. It can be found in more advanced books on numerical analysis; for
example in [3]. The Runge—Kutta RK 4 method is one of the most popular and
broadly used methods in the field of engineering. According to the opinion estab-
lished in the literature, it guarantees the accuracy sufficient in most applications (of
the fourth order in the sense of the Taylor series accuracy) and is sufficiently stable.
Another advantage of this method is also the simplicity of computation algorithm,
see formula (7.10), for which the starting point is defined by initial condition. The
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computation formulas given above can be generalized for the case of a system of
first-order differential equations. The system of two= 2) first-order equations is
especially useful in the field of engineering, and for that reason it is written below
together with appropriate initial conditions.

D09 — 1%, 0, Y2001 Ya0) = o
400 (7.11)
X — f2[X, y1(x), Y2(X)] . Y2(X0) = ¥2.0

Let us assume that the values of the functigns = yi(xn) andyzn = Y2(Xn),
calculated during the iterations are known. Subsequent discrete valygs: =
Yi(Xn+1) and yoni1 = Yo(Xny1) are determined using the following recursive
formulas:

1
Yin4l = Yin + é(kl + 2ka + 2k3 + Kq)

) (7.12)
Yontl = Yon + 6('1 + 25+ 23 +1y)

where
ki = hfi(Xn, Yin, Yon), l1=hf2(Xn, Yin, Y2n)

h k | h kq |
k2=hf1<Xn+ , Yin + l,yz,n-i-%), |2=hf2< ,Y1n+ ,y2n+21>

h k | h ko |
ks = hfy (Xn‘i‘z,yl,n‘i‘izaYZ,n‘i‘Ez)» Iz3=hf, (Xn+ ,Yint+—= »YZn+22>
Koy = hfi(%n + N, yin +Ks, Yan +13), l4=hf(Xy + N, yin +Ks, Yo +13)

Example 7.1in order to illustrate the algorithm of the Runge—Kutta RK 4 method,
let us determine a functioy(t) satisfying the following differential equation:

d’y(t) ,dy(t)

Gz A gr TYm=0
with an initial condition:
yt=0)=0 %t:o) = -2
By using a substitution
Yo =y0. 2=y

dt
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the second order differential equation given above can be replaced by the equivalent
system of two differential equations of the first order, namely:

a0 _
TR LY

d
0 a0 - 3n0)

Consequently, the initial conditions argi(t = 0) = 0 andy,(t = 0) = —2.
Calculations of discrete values of the functigi(t) = y(t) have been performed
according to (7.12), for the integration st&p= h = 0.001. Some resaults obtained
in this way are given in the second column of Table 7.1.

The differential equation under integration has an analytic solution
y(t) = € — e*, which has been used to find comparative results given in the third
column.

7.2.4 The Runge—Kutta—Fehlberg Method (RKF 45)

The methods of numerical solution of the differential equations can be characterized
by constant stefh in the whole given integration range. Magnitude of this step
should be chosen in such a way that the sum of the method and machine (process-
ing) errors is as small as possible. One of the simplest ways to guarantee sufficient
accuracy of the solution obtained is to solve the same problem for two different
integration steps, most frequenttlyandh/2. Discrete values of the two solutions
obtained in this way are next compared at poiatsorresponding to the larger step

of the two. If the differences between two solutions compared are not sufficiently
small, the whole computation process should be repeated for the step reduced two
times. Multiple solution of the same equation system, up to the moment when the
two consecutive solutions are sufficiently close, generates the necessity of perform-
ing many directly useless computations.

Another, more efficient manner serving to guarantee the sufficiently accurate so-
lution, is the integration of differential equations using variable step adjusted auto-
matically at each poink, of the independent variable. An example of the method
in which this concept is used is the Runge—Kutta—Fehlberg method, denoted in the

Table 7.1
t y(t) y(t)

Numerical solution Analytical solution
0.000 0.000 000 000 0.000 000 000
0.001 —0.002 004 004 —0.002 004 027
0.100 —0.244 687 903 —0.244 687 795

1.000 —17.367 257 827 —17.367 252 349
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literature by the symbol RKF 45. The relatively simple selection procedure for the
integration stefh can be made based on the two calculated approximate solutions.
The preselected admissible error control tolerance, denoted in the majority of nu-
merical formulas by the symbdiol, is the parameter of this procedure. In order
to obtain possibly accurate description of the RKF45 algorithm assume that the
following differential equation is given

dy(x)
T2 = X y()] (7.13)

with an initial conditionyy = y(Xg). According to [2] for each pointX,, y, =
y(Xn)], wheren =0, 1, 2, 3, ... ., the following parameters are calculated:

ki =h- f(Xn, Yn)

1 1
k2:h'f(xn+zhvyn+zk1>

3 3
kg=nh-f (xn+ g+ g5kt 32k2)

8
12, 1 7200, 72 7.14
et (s 932k oo 96k3 (7.14)
3"t 21074 T 21072 2107
439 3680, _ 845
ke=h- f h e — 8k -
5 (X” + 0 Yo+ 216 8ot gk 4104k4)
1 3544 1859 11
“Z”f@+?”" 7t e %ﬁ“WEW‘%Q

The symboh denotes the optimal step determined for previous value of the inde-
pendent variable, namely foy,_; with n >1. Whenn =1, the stefh is determined
a priori. Parameterky, ks, ks, ks andkg are then used to calculate first the approxi-
mate value ofy,,1, according to the following fourth order formula

25 1408 2197 1
o+ — Zk 7.15
216 2565¢ T 2104 T 5 (7.15)

Yn+1 = ¥n +

Secondly, more accurate value of the desired solution, denotgg byis calcu-
lated according to the fifth order formula, namely:

16 6656, 2856 9 2
Cyog 20y K - Ot 2k 71
Il = Yot 13Kt 15825% T 56430 T 50°° T 55°° (7.16)

Optimum step sizg, 1 - h for this case is obtained multiplying the step didey
the correction coefficient

Tol-h  \Y* Tol-h  \"*
Shi1= <—> ~ 0.84(—) (7.17)
2|Zn41 — Yntal 1Znt1 = Yl
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whereTol denotes a given tolerance error defining approximation accuracy of the
desired solutiory, = y(xn). Knowing the optimum integration step value equal to
Sht1-h, the function valusy, 1 = y(Xn11) is then calculated by means of Egs. (7.14)
and (7.15) given above. The valuewf.; = y(Xn+1) and stefh = s,1 - h play the

role of starting values for calculating the next poirg >, y(Xn+2)] of the desired
solution. In the procedure of finding the integration step described by Eq. (7.17)
we use absolute value of the difference between approximations (7.15) and (7.16).
In case when it is less than a given sufficiently small positive numbéhat is
when|z, 11 — Ynt1| <&, this integration step should be incremented by a reasonably
limited value, for example, less than two times. In Example 7.2 given below, we
tooke = 1 x 1071% and the rule that preserving the inequality,1 — Yni1| < ¢,

the integration step becomes increased/#times.

Example 7.2 et us assume that the following differential equation is given

dy(x)
dx

1
=24 2y?
+35Y°(x)

with an initial conditiony(x = 0) = 0. Taking initial integration step equal to=0.1

and tolerance errofol=1x1077, this equation has been solved by means of the
RKF 45 method over the range,[D5]. Obtained results are presented in the second
and third columns of Table 7.2. The corresponding exact reg@s= 2 - tan(x),

found analytically, are given in the fourth column. Absolute differences (found on
the base of these solutions) given in the fifth column prove good quality of per-
formed numerical calculations. For tutorial reasons, the initial value problem dis-
cussed in this example has been additionally solved using the RK 4 method. The
results obtained for fixed stdp=0.1 are shown in Table 7.3. All results presented
above confirm fully the opinion known from the literature that the RKF 45 method,
as compared with the RK 4, can be treated as more accurate and less sensitive with
respect to the given (initial) size of the integration step.

Table 7.2

n Xn Yn 2tan(x) [Yn — 2tan(x)
1 0.095 216 216 0.191 010017 0.191 010013 .368x 10°°
2 0.185939 677 0.376 225 189 0.376 225 203 408 % 10°8
3 0.267 491 821 0.548 119 411 0.548 119 366 504 x 108
4 0.341 017 815 0.709 764 917 0.709 764 897 .98B8x 1078
5 0.408 932 224 0.866 724 642 0.866 724 669 778x 1078
49 1.313911 477 7.613 576 896 7.613573 551 .343x 10°°
50 1.319 331 445 7.785 044 767 7.785 041 333 433x 10°°
51 1.323 546 921 7.923 491 828 7.923 488 616 213 x 10°¢
559 1.500 295 103 28.321 312 327 28.321 310 043 .288x 10°°
560 1.500 461 817 28.388 665 044 28.388 641 357 .362x 10°°
561 1.500 528 679 28.415 767 236 28.415 746 688 .052x 10°°
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Table 7.3

n Xn Yn 2 tan(x) [yn — 2tan(x)
1 0.10 0.200 669 181 0.200 669 348 .611x 1077
2 0.20 0.405 419 762 0.405 420 065 .032x 1077
3 0.30 0.618 672 088 0.618 672 430 A34x 1077
4 0.40 0.845 585 997 0.845 586 478 .8@8x 1077
5 0.50 1.092 604 632 1.092 604 994 .6B9x 1077
10 1.00 3.114 812 975 3.114 815 473 A8 x 1076
11 1.10 3.929 493 277 3.929 519 891 .6@Lx 107°
12 1.20 5.144 143 807 5.144 304 275 .64 x 1074
13 1.30 7.203 127 497 7.204 206 943 .079- 1073
14 1.40 11.583 951 747 11.595 766 067 181 x 1072
15 1.50 27.673 314 419 28.202 840 805 2% x 1071

7.3 The Multi-step Predictor—Corrector Methods

In case of all one-step methods discussed in the previous section, the value
Vi1 = Y(Xnr1) of the determined function is calculated on the basis of only
one valuey, = y(x,), computed during the previous iteration. In the multi-step
methods we use for this end not only the valjye= y(x,) but alsoy, ;1 =
Y(Xn-k+1), Yn—ks+2 = Y(Xn-k+2), Yn—k+3=Y(Xn—k+3), - - -, Yn=Y(Xn), where the num-

ber of stepk = 1, 2, 3, ... determines also order of the method. In order to deter-
mine integral expression constituting theoretical base of all multi-step methods, let
us consider the following first-order differential equation:

dy(x)
dx

= f[x, y(X)] (7.18)

in which we integrate both sides over an interval frggmto X, 1. Integrating the
left-side of the equation (7.18) we obtain:

Xn41

/ dz(;()dx = y(Xn+l) - y(xn) ~ Yn+1— Yn (7-19)

Xn

In case of th&k—step method, the following discrete values of the function con-
stituting the right-side of the equation (7.18) are known:

fock+1 = F(Xnkt1, Yn—k+1)

fn—k-t,-2 = f(Xn—k+27 Yn—k+2)
(7.20)
fook+s = F(Xn—k+3> Yn—k+3)

fn = f(Xnv yn)
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These discrete values are represented by the corresponding points specified in
Fig. 7.4.

In order to integrate the discrete function, constituting right-side of equation
(7.18), it should be first interpolated or approximated over an interyak[1, Xn]-
On the basis of values (7.20), the interpolation polynorRjah (x) of degree kK — 1)
is formed most frequently for this purpose. Next, this polynomial is used afterwards
to extrapolate (predict) the functioh[X, y(x)] over the intervalXn, Xn11], yelding:

/f[x, y(x)]dx ~ / Pc_1(X)dx (7.22)

Xn Xn
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Comparison of integrals (7.19) and (7.21) gives the following general expression:

Xni1

Yos1 = Yo+ / P1(x)dx (7.22)

Xn

making the theoretical basis for the group of multi-step methods, called in gen-
eral the Adams methods. In case wHenr= 1, see relation (7.22), we deal with

the simplest Adams method, which is identical to the one-step Euler method, dis-
cussed in the previous section. In practice, the four-step methed4), assuring
accuracy comparable to that obtained when using the Runge—Kutta fourth order
method (RK 4), is commonly used. In this case it is convenient to use the third
degree Newton—Gregory interpolating polynomial (see section 4.1.3) expanded with

respect tok,.
Pa-1(x) = N3(X) = ao + a1(X — Xn)
+ @(X — Xn)(X — Xn-1) (7.23)
+ ag(X — Xn)(X — Xn—1)(X — Xn_2)
Assume that numerical integration of Eq. (7.18) is performed with a constant step
h. Hence we obtain,_1 = x, —h, Xp_2» = X, —2h andx,_3 = X, — 3h. Polynomial
(7.23) takes at points,, Xn—1 = Xp — h, Xn_2 = X, — 2h andx,_3 = X, — 3h the
following values:
P3(%n) = fn = a0
P3(Xn-1) = fno1 = @+ ay(—h)
P3(Xn—2) = fn2 = a0 +ai(—2h) + ax(—2h)(-h)
P3(Xn-3) = Yn-3 = @ + a1(—3h) + ax(—3h)(—2h) + ag(—3h)(-2h)(-h)

These values make possible in evaluating the polynomial coefficignés, a,
andagz from the formulas:

ap = 1:n
a — fo— foo1 _ Af,
h h
a— fo—2fn 1+ foo _ A% (7.24)
2h2 2h2
ag— fn—3fh—1+3fh2— fn3 _ A3 f,
6h3 6h3

Hence, by using relations (7.24) and introducing a new varigblex — x,, the
interpolating polynomial can be written as:
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Af, A2f, A3,
Po(t) = fo+ =0 -t gttt 4+ h) o ottt + h)(t + 2h) -
= f +Af” t+A2f" (t2+th)+A3fn (t3 + 3ht? + 2h?t) |
- " Th 2h? 6h3

Changes of variablg in an intervalx, < X < Xy,1 = X, + h correspond to the
variations of variablé in an interval 0< t < h. It implies that polynomial (7.25)
should be integrated over the interval ). This integration yelds the formula:

h h
Afp Azfn 2 A31:n 3 2 2
/Pg(t)dt_/[fn+T~t+ o+ (7 th) -3t (430t 4-2h t)]dt

h 5h 3h
= f,h+ EAfn + 1—2A2 fn + §A3 fn

(7.26)

which defines the incrementy,. After introduction of the integral (7.26) into (7.22)
we obtain the following extrapolating formula:

1 5 3
Vi1 =Yn+h (fn + EM” + 1—2A2 fr+ éAS fn> (7.27)

for the four-step Adams method [3]. The finite differences appearing in this last
formulaA f,, A2 f, andAS f,, are related to the values 6f, f,_1, fn_» and f,_3 in
the following manner, see also relations (7.24)

Afn = fn - fn—l

A%y = fp—2f 1+ fro (7.28)

A3 fn = fn - 3fnfl + 3fn72 - fn73

Substituting the above expressions into formula (7.27) we obtain finally

(fn - 2fnfl + fn—2)

1 5
Yn+1 = yn+h|:fn+§(fn— fnfl)'f‘l_2

3
+ é(fn —3f1+3f2— fn—3)i|
h
= Yo+ 54(55%0 = 591 + 37fr o — 9Fn ) (7.29)

This formula, equivalent to (7.27), is called the explicit extrapolating formula of
the four-step Adams, or Adams—Bashforth method. It was elaborated in 1855 by
Adams on request of the famous British artilleryman Bashforth. Adams elaborated
this method using the Lagrange polynomial of third degree to interpolate the func-
tion f[x, y(x)]. The equivalence of relations (7.27) and (7.29) proved above is not
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accidental. It relults directly from a fact that Newton—Gregory and Lagrange polyno-
mials used to interpolate the functidiix, y(x)] are identical. The identity of these
interpolating polynomials can be confirmed in turn by means of the corresponding
Weierstrass theorem.

7.3.1 The Adams—Bashforth—Moulthon Method

The valuesf,, f,_1, fn_2 and f,_3 specified in Fig. 7.4(a) serve, according to for-
mula (7.29), to determine predicted approximate valyga = y(Xn.1) of the de-
sired function. At the same time, the value of the functiap; = f[Xn11 Ynt1] IS
computed. The valueg, ;1 = Y(Xn+1) and fr1 = f[Xpt1 Ynsa] found in this man-
ner make possible generalization of the Adams—Bashforth method discussed above
by adding the correction stage in which consecutive, more accurate approximations
of yny1 = Y(Xny1) are evaluated, namely:

Yaia Yoo Yo Vs - (7.30)

In order to explain the essence of this stage, we find the Lagrange third order

polynomial interpolating the functiof[x, y(x)] at points &n—2, fn—2), Xn-1. fn-1),
(Xn, fn) and at the newly determined poimxi (1 foi1). In case wheng,_» = xp—2h,
Xn_1 = Xn — h andx,.1 = X, + h the interpolating polynomial takes the form:

(X — Xn + h)(X — X3)(X — X, — h)

La(X) = fa2

—6h3
n fn7l(x — Xn + 2h)(X — Xp)(X — Xn — h)
2n® (7.31)
n fn(x — Xn + 2h)(X — Xy + h)(X — X, — h)
—on3
I (X — Xn + 2h)(X — Xp + h)(X — Xn)
6h3

After introduction of an auxiliary variable = x — x,, this polynomial can be
written in the following more convenient form for further integration:

t3 — th? t3 + ht? — 2h%t
La() = fo2- —5+ for ——5——
—6h 2h (7.32)
; t3 4+ 2ht2 — h%t — 2h8 t3 4+ 3ht2 4+ 2h2t
+ n-* —2h3 + n+1° T

More accurate valueg,;1 = y(Xny1) can be found by means of a formula,
similar to expression (7.22), in which the polynomigl_1(x) is repalced by another
polynomial, namely by (7.31). According to the correction rule discussed above we
can write the following general formula to evaluate the consecutive approximations

Of Yni1 = Y(Xny1):
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h
foz (1 1
yr(wl-:rll) = Yn+ / La(t)dt =y, + _n 2 (Zh4 _ EhZhZ)

6h?
0
f
- ( h* + h h3 — h2h2)
i 1 (7.33)
ht + 2h-h® — Lhehz — 2n%h
* o < 3 2 )
f
+ E;hgl( h*+h- h3+h2h2>

= Vot 214 [ fnoa —5fp_1+19f, + 9,11 (Yr(:ll)]

wherei =0, 1, 2,3, ... The formula (7.33) is called the implicit Adams—Moulthon
correction formula. The word implicit means here that computation of the consecu-
tive (I 4+ 1) approximation ofy,; is found using the valud, ;1 dependent on the
approximationy,,; determined in the previous iterationThe correction process is
continued iteratively until the following condition is satisfied:

v =YD < e (7.34)

wheree is a positive, arbitrary small number. When condition (7.34) is satisfied the
valueyrﬂ'fll) is accepted ag,, 1. Naturally, such evaluated valyg, ; is used in the

next step § + 2), aiming at finding the valug, > = y(Xn12) by means of similar
two-stage procedure, whene= 0, 1, 2, 3, ... Predictor (7.29) and corrector (7.33)
constitute theoretical basis for two-stage prediction and correction method, called

commonly the Adams—Boshforth—Moulthon method.

7.3.2 The Milne—Simpson Method

Another popular predictor—corrector method is the Milne—Simpson method. The
predictor (extrapolation formula) of this method can be determined on the base of
the general relation:

Xnt1
Yn+1 = Yn-3 + / La(x)dx (7.35)

Xn-3

wherelL 3(x) is the Lagrange polynomial of third degree, interpolating the function
f[x, y(x)], standing on the right-side of Eq. (7.18). The points (nodes) of this in-
terpolation arex,_3 fn_3), (Xn—2, fn_2), (Xn—1, fn_1) @and s, f,). In the special case
whenx,_3 = X, — 3h, Xp_2 = X, — 2h andx,_1 = X, — h, the interpolating
polynomial has the following form:
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(X = Xn + 2h)(X — Xa + h)(X — Xn)

La(x) = fo_s s
o, (X — Xn 4+ 3h)(X — Xn + h)(X — Xn)
2h? (7.36)
n fn71(x — Xn + 3h)(X — X + 2h)(X — Xn)
_2h3
Lt (X — Xn + 3N)(X — Xp + 2h)(X — X, + h)
6h3

After substitution of an auxiliary variable= x — x, into polynomial (7.36) it
transforms itself to:

- (t3 4 3ht? + 2h?t)

Ls(t) = fn—3 . 6h3

2h3 - (t3 4 4ht? + 3h?t)
(7.37)

- (t3 4 5ht? + 6h2t)

+ fao-

f 1
+ n-1- _2h3

- (t% + 6ht2 + 11h%t + 6h%)

1
I Gne

According to formula (7.35), the polynomial (7.36) should be integrated over

the interval k, — 3h, X, + h]. In case of using an equivalent polynomial (7.37),
integration is performed from-3h to h. The process of integration is described by

h
fr 1
/ La(t)dt = —== ( he_ 8 7 h-h? - h2mhe 4+ h2he h29h2>

—3h

fa2 (1 4 8144 53, 4 3, 300 3 om2
<—h —h +§h-h +§h27h —i-éh h éh %h

2h3 4
for (1 81 5 5
L (el —h4 Zh-h®+ Zh27h3 + 3h2h? — 3h29h2
+ —2h3 ( + 3 + 3 * )
f 81
h4 — _h4 2h - h3 4+ 2h27h3
+ o ( + +

+ 7h2h2 — Ehzgh2 + 6h3h + 6h3h>
4h
= 3(0' fas+2f_2 — foo1 4+ 2f,)

Finally, we get:

h
4h
b =oat [ LaOdt =Yoot T @0~ fat2hd)  (7:38)

—3h
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This formula serves to determine first approximationygf; and f,,; =
f[Xn+1. Yn+1]. The corrector can be determined in a similar way. For this end, we
evaluate for the second time the Lagrange polynomial of third degree, interpolating
the function f [x, y(x)] at points &n—2, fn_2), Xn—1, fn—1), (Xn, fn) and at the newly
found point (node)Xn+1, frr1):

(X — Xn + h)(X — Xp)(X — Xp — h)

L3(x) = fn2 e
n fn7l(x — Xn + 2h)(X — Xn)(X — X, — h)
2h? (7.39)
. fn(x — Xn + 2h)(X — X, + h)(X — Xp — h)
—2h3
I (X — Xp + 2h)(X — Xn + h)(X — X,)
6h3

Next, the polynomial (7.39) is integrated over the rangge {, X,+1]. The result
of this integration is the following relation:

Xn4+1 Xn+h

/Lg(X)dXZ / La(x)dx
Xn—1 Xn—h
o fo1 ., 1, 1, 15,
= —on7 <4h 4h 2h h< 4 2h h
fnfl 1 4 1 4 1 3 1 3 22 22
+2h3<Zh an +§hh+§hh h“h® + hh

b (L, 1, 2 5, 2 5 1.,
<—h Zh+§hh+§hh Ehh

—2h3 \ 4 (7.40)

1
+ Eh2h2 —2h%h — 2h3h>

fria 14 14 3 3 2h2 2h2
Ghs(zh ah*+h-h®4h-h®+h?h? —h?h

h
= 5(0' faz + fro1 +4f0 + fopr)

h
= §( fn+l + 4'fn + fn—l)

that is similar to the Simpson formula given by (5.11). Thus the correction procedure
is continued iteratively, according to the formula:

Xn4+1

. h .
yr(wl-:ll) = Yn-1+ f La(X)dX =Yn-1+ 3 [fn+l (Xn-&-l’ yr(g—l) +4f, + fn—l]

Xn-1

(7.41)
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This process is continued until the following condition is satisfied:

Yo =YD <e (7.42)

whereeg is a positive, arbitrary small number. When the condition (7.42) is satisfied
we takeyn 1 = y,ﬂ'jll) and pass to the next step-€ 2) in order to find, by means of
similar two-stage technique, the valugs, = y(Xn12), forn=0,1,2,3,.... One
modification of the Milne—Simpson method consists in adding the following term:

28
AMyyy = 2—9(Yn — Pn) (7.43)

(modifier) to the predictor formula (7.38). Consequently, the better approximation
of the predictor is calculated recursively from the formulas:

4h
Pn+1 = Yn-3+ ?(2 fn - fnfl +2 fn72)

28
Mpt1 = Pnt1 + 2—9(Yn — Pn)
(7.44)

farr = F(Xnp1, Mny1)
h
Yn+1 = Yn-1+ §(fn—l + 4+ fhpa)

Naturally, the corrected value (corrector) of the desired solujon is evalu-
ated in the same manner, i.e. by using approach expressed by formulas (7.41) and
(7.42) [3].

7.3.3 The Hamming Method

A predictor stage of the Hamming method is the same as the predictor stage of the
Milne—Simpson method discussed above. It means that the first approximation of
the desired solution is calculated according to the formula (7.38), i.e.:

h

4h
1™ Prsa = Yot [ LaOdt =Yoot g @0~ foa+2)  (7.49)
—3h

wheren = 3,4, 5, ... This first approximation is next used in the process of finding
consecutive approximations of the desired solution, which are calculated iteratively
according to the following corrector formula [4]:
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i ~Yn2+9 3h i
ylg‘:ll) = % + E [_ fn—l + 2fn + fn+1 (Xn+1, yr(.:j_l)il (746)

The value of the functiorf,; included in this formula is calculated on the basis
of y,ﬂ'il evaluated during the previous iterationThe iterative corrector process
is interrupted, when the difference between two consecutive approximations, i.e.,

y,(f}rl - ygj11> , is smaller than the assumed admissible esror

Example 7.3The subject of considerations in this example is an initial value prob-
lem formulated for the following differential equation:

dy(x) 2
A 2% —
ax X+ 2X — y(x)
with the conditiony(x = 0) = 1. This equation was solved by using the

Hamming method for O< x < 3,dx = h = 0.01 ande = 10~*2. Initial section

(Yo, Y1, Y2, ¥3), of the desired solution was determined by using the Runge—Kutta

method RK 4. Some of predicted and corrected results obtained over the inte-
gration range [03] are presented in the second and third columns of Table 7.4,

respectively.

The exact solution (obtained analytically) of the initial value problem under dis-
cussion isy(x) = e + x°. It makes possible to evaluate the maximum absolute
value of the approximation error. It was verified that foxx < 3 such error does
not exceed the value of ¥ 10-°. Undoubtedly, the presented results confirm well
the general opinion that the Hamming method is quite accurate, stable and easy to
program. Thus, it is suitable for the most engineering purposes.

Table 7.4
n Xn Pn Yn
0 0.00 1.000 000 000
1 0.01 0.990 149 833
2 0.02 0.980 598 673
3 0.03 0.971 345533

Start Predicted value Corrected value
4 0.04 0.962 389 439 213 0.962 389 438 629
5 0.05 0.953 729 423 796 0.953 729 423 952
6 0.06 0.945 364 533 329 0.945 364 533 037
7 0.07 0.937 293 819 408 0.937 293 819 357
8 0.08 0.929 516 345 914 0.929 516 345 839
9 0.09 0.922 031 184 774 0.922 031 184 725
10 0.10 0.914 837 417 539 0.914 837 417 492
300 3.00 9.049 787 068 288 9.049 787 068 285
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7.4 Examples of Using the RK 4 Method for Integration
of Differential Equations Formulated for Some Electrical
Rectifier Devices

7.4.1 The Unsymmetrical Voltage Doubler

Figure 7.5 presents the electrical scheme of an unsymmetrical voltage doubler in-
vestigated in the present section.

The electronic circuit of this type, often called the Villard’s doubler, generates a
guasi constant output voltage(t) = ux(t) with relatively small ripples. The maxi-
mum value of this output valtage is close to the doubled amplitude of the alternating
control voltageus(t). In the analysis presented below, node voltagg€s) andu,(t)
have been used as the state variables in the following equations:

. dus(t du
iea(t) = Cl% - Cld_tl

() = Is [exp[%i(t)] _ 1} . 1s=108 A, Vy=0026V

iga(t) = Is [exp[%ﬁjza)] — 1] (7.47)
ica(t) = Czdl:jzt(t)

. 1
IR = §u2(t)

According to Kirchhoff’s law, sums of the currents at nodes 1 and 2, see Fig. 7.5,
have to be equal to zero. This law is satisfied when:

i ; ; dus(t duq(t —un(t
i1 +ig1 — a2 =C u()—C1 ul()+|s|:exp|: 3/1()}_1]
T

dt dt
— s [exp[w} — 1:| =0

T

Fig. 7.5
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uy(t) — ua(t) du(t) 1
—VT :| — l] — Cz dt — §U2(t) =0

2 — i —ir=ls |:exp|:

The above equations can be replaced by the following system of two first-order
differential equations:

dx(t) _ dus(t) , s [exp[—x(t)} ~ 1] s [exp[x(t) - y(t)] B 1}

dt dt C. Vi C, Vi
f1[t, x(t), y(t)]

dyt) _ 1s [ [X(®) =y
dat TG [EXP[ Vr

] - 1] - 2 Y0 = BILXO.YO] (749

wherex(t) = uy(t) andy(t) = u,(t). Equation system (7.48) with the initial condi-
tionsx(tg) = %o andy(tp) = Yo constitute the initial value problem. For solving this
problem the Runge—Kutta method RK 4 have been used, see Sect. 7.2.3. Thus, the
following formulas have been implemented in the computer program P7.5 written
for this purpose:

1
Xnt1 = Xn + é(kl + 2Ky + 2Kz + ky4)

) (7.49)
Ynt1 = Yn + é(ll + 25+ 23+ |4)

where

ky = At - f1 (th, Xn, Yn)
[1 = At fa(th, Xn, Yn)

=

At k
kQZAt~f1<tn+—,Xn+ =

2 Evyn-f-

N

=

At k
|2:At.f2<tn+7xn+51,yn+

N

At K
k3=At.f1(tn+7,xn+52,yn+

oo N

N
N~ — N e

At ko
la=At. f + — + —= + =
3 t 2<tn 27Xn 2vyn 2

kg = At - 1 (th + At, Xn + Ka, Yn +13)
lg = At - fo(th + At, Xn + Ka, Yn +13)

The calculations ofi;(t) = x(t) anduy(t) = y(t) have been performed for the
following data:ug(t) = 1(t) - 5- sin(2r - 50-t), V, ui(t = 0) = Xo = 0, uy(t = 0)
= Yo =0, R=10000Q, C; = 0.001F C, = 0.001F At = 0.000001 s, where
1(t) is the unit step function. Some of the most interesting results (transient state
and a fragment of the steady-state) are given in Tables 7.5 and 7.6 and illustrated in
Figs. 7.6 and 7.7, respectively.
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Table 7.5 (Transient state)

t,s ws(t), V up(t), V up(t), V

0.000 Q000000 0000000 0000000
0.001 1545085 1008232 0356839
0.002 2938926 1703043 1235775
0.003 4045085 2251987 1792836
0.004 4755282 2599078 2155744
0.005 5000000 2698879 2300436
0.006 4755282 2445129 2309237
0.007 4045085 1734932 2309006
0.008 2938926 0628773 2308775
0.009 1545085 —0.489326 2308544
0.010 Q000000 —0.490678 2308313
0.015 —5.000000 —0.416423 2307159
0.016 —4.755282 —0.153684 2306929
0.017 —4.045085 0556514 2306698
0.018 —2.938926 1662673 2306467
0.019 —1.545085 2917029 2445720
0.020 Q000000 3690106 3217445
0.021 1545085 4461840 3990436
0.022 2938926 5156479 4689203
0.023 4045085 5705252 5246091
0.024 4755282 6052173 5608822
0.025 5000000 6151825 5753318

Table 7.6 (Steady-state)

t,s ws(t), V up(t), V uy(t), V

0.200 Q000000 4608779 9179598
0.201 1545085 6153864 9178680
0.202 2938926 7547709 9177763
0.203 4045085 8653863 9176845
0.204 4755282 9364059 9175928
0.205 5000000 9588190 9195594
0.206 4755282 9335794 9202352
0.207 4045085 8625595 9201432
0.208 2938926 7519436 9200512
0.209 1545085 6125594 9199592
0.210 Q000000 4580508 9198672
0.211 —1.545085 3035424 9197752
0.212 —2.938926 1641583 9196833
0.213 —4.045085 0635425 9195913
0.214 —4.755282 —0.174770 9194993
0.215 —5.000000 —0.399888 9194074
0.216 —4.755282 —0.144122 9193154
0.217 —4.045085 06566076 9192235
0.218 —2.938926 1672236 9191316
0.219 —1.545085 3066078 9190397

0.220 Q000000 4611163 9189478




202 7 Methods for Numerical Integration of Ordinary Differential Equations

a)

uS (t)rv
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b)

Uy (t)rv
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Fig. 7.6
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a)
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b)
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Fig. 7.7
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All the results presented above are fully consistent with the corresponding re-
sults obtained by means of the PSpice simulation program intented for analysis of
electrical and electronic circuits [5].

7.4.2 The Full-Wave Rectifier Integrated with the Three-Element
Low-Pass Filter

The electrical scheme of the full-wave rectifier with a three-element low-pass filter
is shown in Fig. 7.8.

Let us assume that the circuit is supplied by alternating voltage, which after
transformation is equal tos(t) = 10 sin(2r -50-t), V. The time-domain analysis of
this circuit consists in determining the functions of voltagé), currenti (t) and
voltageu,(t), which are treated as the state variables. The instant values of currents
and voltages in the individual branches, see Fig. 7.8, are related with state variables
mentioned above by the following differential equations:

a) =620 g = 0

iL(t) = ica(t) +ir(t)

dip(t)
at
_,®
io(t) = czd‘:;t(t), io(t) = Is [exp[%} _ 1}
ip(t) =ica(t) +iL(t)

uL(t) = uz(t) —ua(t) = L (7.50)

where

)
Vr

it) = Is[exp[

} - 1] ., 1s=108A, Vr=0026V

Fig. 7.8
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is the current—voltage characteristic of one diode of the Gretz bridge [6]. After some
rearrangements, Eq. (7.50) can be written in the form of the equivalent equation
system:

du(t) 1 1
it G iL(t) - R’ us(t)
di(t)y 1 1
qi = v - u® (7.51)
dup(t) 1 |us(t)] — uz(t) 1.
R e e R R

In the last equation of this system, only absolute values of the control voltage
|us(t)| are used. This is the consequence of rectifying properties and symmetry of
the Gretz bridge being used. By assuming the notation

ug(t) = x(t), iL(t) = y(t), ua(t) = z(t)

the equation system (7.51) can be written as follows:

dxt) 1 1
d
_gf) _ % () — % X(8) = folt, X(1), y(O), Z(t)] (7.52)

d 0 —
St [ee B 1) - & v = fitxw, v 2000

The above three differential equations together with the given initial conditions:
to, Xo = X(to), Yo = Y(to), Zo = z(to), and the time dependent control voltaggt)
constitute the initial value problem. Also, in this case the Runge—Kutta method RK 4
has been used for solving this problem. Consequently, the following computational
formulas have been implemented in the computer program P7.8 written for this
purpose.

1
Xn+1 = Xn + é(kl + 2Ky + 2K3 + kg4)
1
Yni1=Yn + 6(|1+2|2+2|3+|4) (7.53)

1
Znt1 = Zn + é(ml + 2my + 2mgz + my)
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where

k1 = At - f1 (tna Xns Yn, Zn)
I1 =At- f2 (tn, Xns Yn, Zn)
my = At - f3(th, Xn, Yn, Zn)

kzzAt_fl<tn+%,xn+%ayn+|§1,2n+%>
|2:At.f2<tn+%,xn+%’yn+|§l,zn+%)
mzzm,f3<tn+%,xn+%,yn+%,zn+%>
kszm.fl(tn+%,xn+%’y“+|§2’z”+%>
Iszm.f2<tn+%,xn+%,yn+|§2,zn+%)
ms:At,f3<tn+%,xn+%,yn+'z zn+%)

Es
k4:At fl(tn+At,Xn+k3, yn+|3,Zn+m3)
l4 = At - f5 (t, + At, Xn + Kz, Yo + |3, Zy + Mg)
My = At - f31(th + At, X + Ka, Y + |3, Zn + M3)

The computer program P7.8 mentioned above makes it possible calculating the
discrete values of functiong (t), i (t) anduy(t). The calculations have been carried
out for the following data:

Uit =0) =0, i_(t = 0) =0, up(t = 0) = 0, us(t) = 10sin(2r - 50- t) - 1(t), V

R=050, , C; =C,=100Q pF, L =0.1, H, At =0.00001

where 1f) is the unit step function. This unit step function is implemented by clos-
ing the key K at = 0. Most interesting results (transient state and a fragment of the
steady-state) obtained in this example are shown in Tables 7.7 and 7.8 and illustrated
in Figs. 7.9 and 7.10.

The voltage functions;(t) andu,(t) presented in Fig. 7.11 have been evaluated
additionally over the steady-state for the large loading resist&nee200(), i.e.,
for the smaller output current.

Also of interest is evaluating the voltage functiangt) andux(t) over the turn-
off range. It can be done by assuming that at any momgeat the steady-state,
the control voltageus(t) rapidly decays, i.eus(t) = 0 whent > ty. Of course,
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Table 7.7 (Transient state)

t,s w(t), V iL(t), A up(t), V

0.000 Q000000 0000000 0000000
0.001 0001599 0007073 2075171
0.002 0023661 0042071 4870406
0.003 0092803 0101948 7097102
0.004 0229249 0179322 8543801
0.005 0444541 0264967 9093901
0.006 Q740428 0349458 8900919
0.007 1111088 0427389 8511956
0.008 1547555 0497010 8049006
0.009 2039629 0557010 7521143
0.010 2576131 0606309 6938546
0.011 3145120 0644011 6312390
0.012 3734136 0669482 5654603
0.013 4332514 0690456 7083565
0.014 4945724 0722844 8524475
0.015 5581145 0758900 9052700
0.016 6238178 0789163 8685337
0.017 6905755 0806423 7898242
0.018 7569908 0808976 7089315
0.019 8216146 0796887 6285174
0.020 8830489 0770527 5500300
0.021 9399738 0730544 4748663
0.022 9911818 0678878 4858998
0.023 10365789 0637741 7084616
0.024 10777693 0610777 8527862
0.025 11158447 0589806 9063563

the moment, is a beginning of the turn-off range. Thus, the results presented in
Table 7.9 and illustrated in Fig. 7.12 have been performed foto = 1.01s.

The functionsuy(t) and u(t) depicted in Fig. 7.12 illustrate the process of
resonance discharging the filtering section LC. In the turn-off state, the Gretz
bridge “cuts-off” the filtering section from the network transformer, resulting in
total decay of the current flowing by the diodes of the Gretz bridge. A period of

Table 7.8 (Steady-state)

t,s w(t), V iL(t), A ux(t), V

1.000 8492006 0176141 8316112
1.002 8498514 0169047 7969746
1.004 8484778 0158276 8544541
1.006 8471246 0168583 9015204
1.008 8478055 0175986 8669466
1.010 8482006 0176141 8316112
1.012 8498514 0169047 7969746
1.014 8484778 0158276 8544521
1.016 8471246 0168583 9015204
1.018 8478055 0175986 8669466

1.020 8492006 0176141 8316112
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Fig. 7.9

oscillations illustrated in Fig. 7.12 is approximately equal'te- 0.044, s. A similar

value results directly from the fundamental known formlas 27, /L Cet5, Where

Cett =C1C2/(C1 + Cyp), C; =C,=100Q pF andL =0.1, H, see Fig. 7.8, [7]. The
identical responses corresponding to the ones presented above have been obtained
by using the specialized computer program PSpice [5].

7.4.3 The Quadruple Symmetrical Voltage Multiplier

The electrical scheme of the quadruple symmetrical voltage multiplier, analyzed in
this example, is shown in Fig. 7.13.

Let us assume that the multipler under analysis is supplied with alternating volt-
age, which after transformation is equalug(t) = 5- sin(2r - 50 - t), V. Instant
values of currents flowing in the individual branches of this nonlinear circuit can be
evaluated from the following differential equations.
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Table 7.9
t,s Ul(t), \Y iL(t), A Uz(t), \Y
1.010 8492006 0176141 8316112
1.020 8218277 0086650 6904247
1.030 6976727 —0.012062 6613545
1.040 5683332 0027273 6652177
1.050 5361434 0118177 5886333
1.060 5483350 0100836 4676457
1.070 4952076 0004697 4149416
1.080 3901983 —0.016669 4314053
1.090 3359306 0056850 4145133
1.100 3508353 0092291 3314867
1.180 1281827 0032062 1765368
1.190 1476182 0050058 1297615
1.200 1491962 0008155 0977724
|
\
I uy(t)
|
5
|
|
' /.
u,(t
| 1.01 2(t)
0 | |
1.0 1.05 11 115 s 1.2
Fig. 7.12
uS
0

Fig. 7.13
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iea(t) = Cld[uS(t)d; ui®] _ Cldl;st(t) B Cldl:jlt(t)

g (t) = Is [exp[ 1(0} - 1],

iga(t) = Is [exp[M] - 1} (7.54)
ica(t) = nglézt(t)

O = ng[us(t)d; us(t)] _ Cde:t(t) B CBdL(J;(t)

iga(t) = I [exp[”\f)} - 1]

a(t) = czd‘;“t(t)

1) = (U200 — ()]

whereu;(t), us(t), us(t) andugy(t) are the desired functions of nodal voltages. The
function

i(t) = Is [exp[““(t)] - 1] . ls=108A, V;=0.026V
T

represents the current—voltage characteristic of the individual diode [6]. According
to Kirchhoff’s law, sums of currents at nodes21 3, 4, are equal to zero. In conse-
guence, the following equations can be formulated:

. . . dus(t dug(t —uq(t
1 +ig1 —la2 =C4 dst( ) _ Cy dlt( ) + ls |:9Xp|:V—lT()} - 1]

o]

ig2—ico —ir = Is [exp[%f‘”}—l]—czd‘(‘jzt(t)—%[uz(t)—u4(t)] =0

. . . dus(t dus(t us(t
icg —ldz3+1ida = Cs dst( ) _ Cs dst() —ls [exp[%} - 1:|

15 exp| 2O ] o

Vr

ir —lca—lga= —%[Uz(t)—u4(t)]—c4dtjt(t)—|s [eXp[%Tug(t)}—l] =0

Naturally, the above differential equations can be written in the form of the equiv-
alent equation system, namely:
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dug(t)  dus(t) s —us(t) ls ua(t) — up(t)
dt ~ dt +c_1[eXp[ Vi }_1]_0_1[6)('0[ Vr }_1]
dUz(t) . |5 [exp[ul(t) — Uz(t)

1
i _ L - ]—1}—E[U2(t)—u4(t)] (7.55)

dus(t) _ dust) | 1s [exp[Us_(t)} . 1} L [exp[M} - 1}

dt dt Cs Vr Cs V7

d . _
o = gl — u] - & [exp| MO |

In order to simplify the description of this equation system the following aux-
iliary notation p(t) = uy(t), q(t) = ux(t), v(t) = us(t), z(t) = uy(t) have been
introduced. Consequently, the system (7.55) takes the form:

dp(t)  dus(t) | s —P(t) Is p(t) —q(t)

B ot G Il B -1 Rl B
= fit. p(t), q(t)]

da) _ Is [exp[ p(t) — at)

dt G, Vs

du(t)  dus(t) | s u(t) ls 2(t) — v(t)
A A R AL B BE

= fa[t, q(t), v(t), z(t)]

d . _
S = mg o0 - 201 - & [exe| U] - 1) = ot a0 0, 20

} _ 1} - %[q(t) —z(1)] = f2t, p(t), q(t), z(t)]
(7.56)

Such formulated equation system together with the given control voligge
and initial conditionsp(tp) = po, q(to) = do, v(to) = vo, z(tg) = z9, has a form
of the typical four-dimensional initial value problem. Also, in this case the Runge—
Kutta method RK 4 have been used for the numerical solving. Thus, the following
formulas have been implemented in the corresponding computer program P7.13.

1
Pn+1 = Pn + é(kl + 2k2 + 2k3 —+ k4)
1
On+1 =0On + é(ll + 2+ 23+ |4)
(7.57)

1
Unt1l = Un + é(ml + 2my + 2mz + my)

1
Zny1=17Zn+ 6(”1 + 2N + 2n3 + Na)
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where

ki = At fi(tn, Pn, Gn, vn, Zn)
Iy = At - fa(th, Pn, On, Vo, Zn)
= At - f3(th, Pn. Oh. Un, Zn)
= At - f4(ta, Pn. O, vn, Zn)

At k [ m n
L Gnt o vn ;

At kq | m n
kZZAt'f1<tn+ ,pn+2 q+§l’ Un+71,2n+31>
2 27 )

o =At- fo(th + — —=
2 2(n+2»pn+2,

At k I m n
f3<tn+ -, Pn+ 1»Qn+§la Un+_lszn+ 1>

2 2

,pn k17C]n+|El,Un—‘,—%,Zn+%>

ks = At - 1(tn+ . ot kz’qn+|§2,vn+%,zn+n_22)
I3 = At - (tn+ . Pt k27qn+%,vn+%,zn+%>
m3=At'f3(tn+%» pn+%,qn+|§2,vn+%,zn+%>
”3:At'f4(tn+%, pn+%,qn+%,vn+%,zn+n—22>

ky = At - fi(th + At, pn+Ks, Oy + 13, va + Mg, Z4+N3)
4 = At - fo(th + At, pn+Ks, On + 13, vy + M3, Z, + N3)
Mg = At - fa(tn + At, pn+ks, On + 13, vn + Mg, zn +ng)
Ng = At - fa(ty + At, pn+Ka, On + I3, vn + M3, Zn + N3)

The above mentioned computer program P7.13 has been used to calculate dis-
crete values of functiong, (t), ux(t), us(t) andug(t).

The calculations have been performed for the following input dat@:= 0) =
Po=0,ux(t =0)=0o=0,u3(t =0) =vp =0, uyt =0) =2 =0,C; =10,
wF, C; =100 wF R =50, Q, At = 0.00001 s andug(t) = 5-sin(2r - 50 t) -
1(t), V, where 1f) is the unit step function. Most interesting results, representing
the transient state and a fragment of the steady-state, are given in Tables 7.10 and
7.11 and illustrated in Fig. 7.14.
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Table 7.10 (Transient state)

t,s ws(t), V up(t), vV uy(t), V us(t), V uy(t), vV
0.000 Q000000 0000000 0000000 0000000 0000000
0.001 1545085 0978257 0566722 0429552 0000105
0.002 2938926 1672884 1265473 0425420 0000568
0.003 4045086 221521 1822217 0417301 0001346
0.004 4755283 2568218 2184708 0401478 0002356
0.005 5000000 2667626 2328880 0356556 0003492
0.006 4755283 2413791 2336832 0093816 0004658
0.007 4045086 1703594 2335659 —0.504612 —0.105937
0.008 2938926 0597435 2334309 —1.061272 —0.654085
0.009 1545085 —0.429459 2332646 —1.759503 —1.348033
0.010 Q000000 —0.430811 2330615 —2.531708 —2.118882
0.011 —1.545085 —0.429552 2328197 —3.362416 —2.890840
0.012 —2.938926 —0.425420 2325409 —3.995884 —3.588426
0.013 —4.045086 —0.417301 2322306 —4.543367 —4.143999
0.014 —4.755283 —0.401478 2318975 —4.888928 —4.505304
0.015 —5.000000 —0.356556 2315519 —4.987330 —4.648163
0.016 —4.755283 —0.093816 2312035 —4.733279 —4.654013
0.017 —4.045086 0616381 2308553 —4.023081 —4.650531
0.018 —2.938926 1722540 2305075 —2.916922 —4.647054
0.019 —1.545085 2914734 2503234 —1.523081 —4.643565
0.020 Q000000 3686072 3273218 0022003 —4.639802
0.021 1545085 4455915 4044310 0429552 —4.635652
0.022 2938926 5148521 4741028 0425420 —4.631134
0.023 4045086 5695146 5295731 0417301 —4.626303
0.024 4755283 6039861 5656154 0401478 —4.621244
0.025 5000000 6137514 5798036 0356555 —4.616063

Table 7.11 (Steady-state)

t,s ws(t), V u(t), VvV uy(t), V us(t), vV u(t), vV

200 Q000000 4661485 9012270 —4.472649 -9.106814
201 1545085 6206570 2003215 —2.927564 —9.097759
202 2938926 7600412 8994169 —1.533723 —9.088713
203 4045086 8706569 8985132 —0.427565 —9.079676
204 4755283 9386994 9005873 0282363 —9.070646
205 5000000 9484338 9144166 0356519 —9.061567
206 4755283 9229748 9144936 0093794 —9.052465
207 4045086 8519549 9135842 —0.616401 —9.043370
208 2938926 7413389 9126757 —1.722561 —9.034285
209 1545085 6019547 9117681 —3.116403 —9.025209
210 Q000000 4474462 9108614 —4.661488 —-9.016142
211 —1.545085 2929377 9099556 —6.206573 —9.007084
212 —2.938926 1535536 9090507 —7.600414 —8.998036
213 —4.045086 0429379 2081467 —8.706572 —8.988795
214 —4.755283 —0.280568 9072435 -9.388717 —9.008014
215 —5.000000 —0.356516 2063354 —9.486269 —9.140971
216 —4.755283 —0.093792 9054249 —9.231679 —9.146865
217 —4.045086 0616403 9045153 —8.521480 —9.137769
218 —2.938926 1722562 9036066 —7.415320 —9.128682
219 —1.545085 3116404 9026989 —6.021478 —9.119604

220 Q000000 4661489 9017920 —4.476393 —9.110535
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Correctness of the presented results has been confirmed by comparison of them
with the corresponding results obtained by means of the PSpice simulator. Also, in
this case an excellent conformability has been achieved.

7.5 An Example of Solution of Riccati Equation Formulated
for a Nonhomogenous Transmission Line Segment

Sections of nonhomogenous transmission lines are broadly used in the UHF and
microwave equipment, such as the broadband impedance transformers or different
kinds of filters. A description of such distributed circuits is usually made by using
the reflection coefficient functioh(x, f), defined at any plane (cross-section), for
example at the planeas shown in Fig. 7.15.
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The following differential equation of Riccati type has been derived in the litera-
ture for the reflection coefficient functidi(x) determined for O< x < | and a fixed
value of frequencyf [8]:

dI'(x)

ot j2BT(x) + N(X) [1 - T?(x)] =0 (7.58)
where

N(x) = %ﬁdjix) - %% IN[Z(x)]

= 2 260
B = % is the propagation constant(f) is the wavelength and@(x) is the

function of the characteristic impedance (see Example 2.1).

In general, the reflection coefficieli(x, f) is a complex quantity]'(x) =
a(x) + jb(x), and therefore Eq. (7.58) is equivalent to the following system of two
differential equations of the first order:
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dzg() =28 b(x) = N(x) [1 - 8(x) + b*(x)]
(7.59)
dg(;() = —28-a(x) + 2N(x) - a(x) - b(x)

The function of local reflectionBl(x) fully determines changes of the character-
istic impedanceZ(x) for 0 < x < |. In the simplest case, whe¥(x) = 0 means
that the impedancg(x) is constant. Naturally, in this situation the transmission line
section under analysis is homogenous and transmission line equation (known also
as the Smith chart transformation) can be used for its analysis [8, 9]. Another case
of interest is when

N(x) =05«

Z(X) =Zn exp@ . X) (760)

where

1 (2
a:l—In(Z—O2>,Zm=Z(x:O),Zc)g:Z(x:I),nggI.
01

In this case, the absolute value of the reflection coefficient function, defined at
the input plane + 1’ is

I'x=1,0)=I')] =05 |a -] %@)' (7.612)
where
27l
=0(f)= NO) =B

is an electrical length of the line section expressed in radians. A modified version of
the above line section is an exponential compensated line section, for which:

2
N(x) = 0.5« [1— 0.84cos(T—X)} ,0<x<|

Z(x) = Zmexp[a <x —0.134-1sin (27|T—X>>]

(7.62)

where

1, (2
a=>-In(Z2), 20 =2Z(x=0),Zpp=Z(x =1), 0<x <.
I\ Zos
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Also in this case the solutiofi(x = I, ) can be found analytically. However, in
the present example it has been evaluated numerically by integrating the equation
system (7.59). The Runge—Kutta method RK 4 has been used for this purpose. The
integration has been performed for:

[ =0.3m, A =0.3m, Zp; = 500}, Zg, = 1001,
0 =10, 0.25r, 0.57, 0.75r, 7, 1.257, 1.57, 1.757, 27, 2.257, 2.57, 37]
h = dx = 0.00001

and initial conditions
ax=0)=0
b(x=0)=0

Some values oé(0) andb(f) obtained in this way are given in the second and
third columns of the Table 7.12. The next column of this table includes correspond-
ing values of ['(8)| = /a2(8) + b2(6).

The normalized values of a functiofi(0)|, = |I'(9)|/|T'(6 = 0)| are given in the
fifth column of Table 7.12 and illustrated in Fig. 7.16.

The values ofT'(9)| = +/a2(9) + b%(9) obtained numerically are in good agree-
ment with the corresponding exact values calculated from the following
formula:

IT(x =1,6)| = |T(6)] = 0.5- o -]

H 2
sin6)| 11 _ 084"
0 92 — 72

whered = 6(f) = 2xl/N(f) = gl is the electrical length of the line section
expressed in radians [8].

Table 7.12

0, rad av) b(0) I'(©)] [U'(0)In
10 °x —0.333335 0000000 0333335 1000000
0.25m —0.229729 0220941 0318733 0956199
0.50m —0.009067 0277122 0277271 0831813
0.75m 0.147260 0158500 0216351 0649054
1.00m 0.147989 0004931 0148072 0444216
1.25w 0.062342 —0.059095 0085900 0257700
1.50m 0.000816 —0.039566 0039574 0118723
1.75w —0.008419 —0.008699 0012106 0036319
2.00m —0.000476 —0.000006 0000476 0001428
2.25m 0.001068 —0.001045 0001494 0004484
2.50m —0.000001 —0.000010 0000010 0000032
2.75m 0.000625 0000639 0000894 0002682

3.00m 0.000035 0000000 0000035 0000106
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7.6 An Example of Application of the Finite Difference Method
for Solving the Linear Boundary Value Problem

Solution of the boundary problem consists in determining such fungtion which
satisfies a given ordinary differential equation and at least two boundary conditions
y(x = a) = y, andy(x = b) = y,. An example of such problem can be given as
the solutiony(x) satisfying the following differential equation:

d?y(x) _
dx2

2. x4+ 3y(x) (7.63)

and boundary conditiong(0) = 0, y(1) = 1. One of the efficient numerical
methods, used for solving boundary problems with two boundary conditions, is the
method of finite differences. Essential feature of this method consists in replacing
the differential equation by an approximating difference equation. For this end, an
integration interval &, b] should be divided inte equal subintervals (parts) deter-
mined by coordinates

X =Xo+i-h (7.64)

wherei = 1,2,3,....n, X = a,X, = bandh = (b —a)/n. Lety, = y(x)
denote a discrete value of the desired funcéx). The values of;, = y(x;) make
it possible to determine approximate values of derivatives of the fungt{®@husing
the difference expressions (6.12) and (6.18), derived in Chap. 6. Thus, we can write:
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dy(x 1 7
)(;(xl) =y(x)~ %h (Yit1 — Yi-1) (7.65)
d?y(x; 1
Y)EZI) y,,(xi)%—hz(yi 1— 2y +¥i-1)

The second formula of above presented makes it possible to replace differential
equation (7.63) by its difference equivalent, namely:

1
ﬁ(ym —2Yi +V¥i-1) =2- % + 3y (7.66)

wherei = 1,2, 3,...,n. Writing the difference equation (7.66) for= 1,2, 3, ..,

n — 1, we obtain the system of — 1 algebraic equations, which are linear in this
case. To focus our discussion, let us assumerthat10 and correspondingly =

(1 —0)/10= 0.1. According to (7.63) and (7.66) we obtain:

Y2 — 2.03y1 + (Yo = 0) = 0.002
y3 — 2.03y, 4+ y; = 0.004

y4 — 2.03y3 + Y, = 0.006

ys — 2.03y, + y3 = 0.008

Y6 — 2.03ys + y, = 0.010 (7.67)
y7 — 2.03ys + y5 = 0.012

ys — 2.03y7 + Y = 0.014

Yo — 2.03ys + y7 = 0.016

(Y10 = 1) — 2.03yg + yg = 0.018

The equation system (7.67) would now be presented in the matrix form, espe-
cially convenient when the Gauss elimination method is used for solving, i.e.:

203 1 0 0 O 0 0 0 07 [ww] [ 00027
1 20 1 0 0 0 O 0 O ¥ 0.004
0 1 -203 1 0 0 O O O ¥3 0.006
0O 0 1 -203 1 0 0 0 0 Vs 0.008
0o 0 0 1 -203 1 0 0 0 |-|ys|=]| 0010
0o 0 0 ©0 1 -203 1 0 0 Yo 0.012
o 0o 0 0 O0 1 -203 1 0 y7 0.014
o o o0 ©0 O0 0 1 —203 1 Yo 0.016

. o o o o0 0 0 0 1 -203] |y| |[-0982]

The matrixA of coefficients of the equation system written above is the special
case of the sparse square matrix, and is called in the literature as the ribbon matrix,
or more precisely three-diagonal matrix. Thus, for solving the equations formulated
above the method of fast elimination is recommended, see also Example 4.4. The
algorithm of this simple and efficient numerical method is described in Appendix C.
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Table 7.13

Xi Yi y(%) Vi — y(X)
0.0 0.000000 0000000 0000000
0.1 0.039417 0039307 0000110
0.2 0.082017 0081820 0000197
0.3 0.131078 0130767 0000311
0.4 0.190071 0189679 0000392
0.5 0.262766 0262317 0000449
0.6 0.353344 0352868 0000476
0.7 0.466523 0466062 0000461
0.8 0.607697 0607308 0000389
0.9 0.783102 0782859 0000243
1.0 1.000000 1000000 0000000

The valuesy; given in the second column of Table 7.13 constitute the desired
solution obtained in this manner.

For comparison, the third column of Table 7.13 includes the corresponding values
y(x) of the exact solution evaluated analytically [10].

x) = 5 sinh(/3-x) 2 -x
=3 sinh(/3) 3

The measure of approximation of the differential equation (7.63) by the differ-
ence equation (7.66) is the set of deviations given in the fourth column.

The considered problem is an example of the linear boundary problem, for which
the differential equation can be presented in the following general form:

YO () = fa10)Y"I) + fa200YT20) + .+ F1()Y(X) + fo(x) (7.68)

wherey®(x) denotes a derivative of ordkrand f,(x) is thek—function, bounded

and continuous over a given interval p]. In the case of problems concerning non-
linear differential equations, corresponding systems of algebraic equations are also
nonlinear. Consequently, the nonlinear boundary problem becomes more difficult to
solve.
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Chapter 8
The Finite Difference Method Adopted
for Solving Laplace Boundary Value Problems

In mathematics, the boundary value problem is understood as the problem of finding
a function of many variables(> 2) satisfying a given partial differential equation
and taking fixed values at prescribed points of an integration region. As an exam-
ple of such problem, let us consider the following second order partial differential
equation:

2(y) 2(><y)

2
( y) Lo,y Y

A(x, y) +BX, Y)———

(8.1)

df(x, af(x,
D(x. y) gx y) (ay y)

+ E(x.y) +FXy)-f(x,y)=0

formulated for the functiorf (x, y). The unknown functionf (x, y) should take at
prescribed points of the two-dimensional region the fixed values, called boundary
conditions. This name reflects the fact that for the majority of boundary value
problems, formulated for description of various physical phenomena, values of
the unknown functionf (x, y) are defined on the border of the given integra-
tion region. The function?\(x, y), B(X, y), C(x, y), D(X, y), E(x, y) and F(x, y)

play the role of coefficients and for this reason they should be bounded and con-
tinuous over the given integration region. In case of many equations describ-
ing specific engineering problems, these functions take constant values as it is
illustrated below by Egs. (8.2), and (8.4). In the mathematical literature, equa-
tions of the type (8.1) are often classified according to the value of discriminant
A(X, y) = B2(x, y)—4A(X, y)-C(x, y) into one of the following groups: hyperbolic
whenA(x, y) > 0, parabolic when\(x, y) = 0 and elliptic whenA(x,y) < O.

The examples of partial differential equations, formulated for various physical
problems are:

— Laplace equation
V2U(x,y,2) =0 (8.2)
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— Poisson equation
VAU(x,y,2)+ f(x,y,2) =0 (8.3)
— Helmholtz equation
V2U(X,y,2) + k?U(x,y,2) =0 (8.4)

— wave equation

20U (X, y, 2, t)

V2U(x,y,2) —a 3 =0 (8.5)

Triangular grid

AV AV

Fig. 8.2
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Fig. 8.3 Trapezodial grid

/

i

— diffusion equation

L,0U(X,y, zt) _

v? -
Ux,y,2)—b o

0 (8.6)

where the Laplace operator is defined as:

2U(X,y,2) d2U(x,y,2) d2U(X,y,z
(y)Jr (y)Jr (x.y,2)

v? =

Equations (8.2)—(8.6) ennumerated above can also be written in other coordi-
nate systems, different from cartesian one. The most common are the cylindrical

Polar grid

Fig. 8.4
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(p, ¢, Z) and the spherical (¢, 0) systems. Corresponding formulas for calculating
the Laplacian can be found in the literature available on this subject, for example
in [1-4]. The essence of the finite difference method adopted for solving the above
partial differential equations is replacement of the Laplacian of the desired function
by its difference equivalent. For every specific boundary problem, we should choose
such coordinate system and the discretization grid, for which the equivalent differ-
ence equation will approximate most accurately the original differential equation.
Also, the boundary conditions would be satisfied to an acceptable extent. This prob-
lem is treated extensively in the literature, for example in [2]. Therefore, only a few
examples of the girds commonly used are presented in Figs. 8.1, 8.2, 8.3 and 8.4.

8.1 The Interior and External Laplace Boundary Value Problems

For the Laplace equation (8.2), two boundary value problems (in the sense of Dirich-
let) can be formulated. In order to explain their essential meaning, let us assume that
aregionV is given, for which the edg8belongs to th€? class (piecewise smooth).
The interior boundary value problem consists in finding such harmonic furidtion
that satisfies Eq. (8.2) and at every poit— Ps € Sthe limit of this function
achieves valudél (Ps) that is equal to valug(S)s_p, of the given boundary function
9(9). The external boundary value problem, in the sense of Dirichlet, consists also in
finding the functiornU satisfying the Laplace equation (8.2) in the regignbeing

the complement of the regiow, i.e., Ve = E — V, whereE denotes the Euclidean
space. Moreover, for every poifs belonging to the edgé& of the regionVg, the
unknown function should satisfy the following conditions:

U(Ps) = g(Ps)
1
U <r_) — 0 when r=x24+y2+722 > o0
For the Laplace equation, apart from the Dirichlet boundary value problems de-
scribed above, we can formulate also Neumann boundary value problems, which
can also be considered as internal and exterior problems. Solution of the interior

Neumann problem consists in finding a function satisfying the Laplace equation
(8.2) in a given regiotY, and the following condition:

(%)P:PS — k(P

in whichn denotes the normal direction to the surf&andk(P) is a given bound-
ary function determined over the surfa8and satisfying the following condition:

S/k(P)ds:O
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In case of the external Neumann boundary value problem, the solution should

satisfy the Laplace equation (8.2) in the complementary regioand the following
conditions:

(&)
N ) p_pg

r=+/X2+y2+ 72— oo.

() — 0 when

=k(Ps), U <r}> — 0 and

In most algorithms for numerical solving of boundary value problems, condition

(&)
N /) p_pg

is usually taken into account by introducing additional fictious nodes with corre-
sponding values of the unknown functibh For this end, the square or rectangular
grid should be placed in such a way that its nodes lie on both sides of the border
line S. An example of the procedure of introducing additional fictious nodes, as for
example nodé>, is shown in Fig. 8.5.

The line Pr Pg, perpendicular to the edggand crossing this edge at poiRg,
is drawn through the noder. Such new poinP is then determined on this line for
which |PsP| = |PsPg|. Now the fictious potentidUg of the fictious nodePg can
be calculated from the formula:

= Kk(Ps)

Ur =Up+k(Ps)~|PsP| (87)

y Pr S\:_ Ps P
N

Pc Pp Pe

V>

Fig. 8.5
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in which Up = U(P) is the coefficient calculated using the linear interpolation
method, from the values of the unknown function at poik¢sand Pr. In a similar

way, knowing two valued,Ja = U(Pa) andUg = U(Pg), potentialUg = U (PR)

is then found. In the case whé&Ps) = 0, desired value dJr = U(Pg) is equal

toUp = U(P). In particular case whek(Ps) = 0 and the edg&is a straight line
oriented in parallel with respect to horizontal and vertical sides of the grid, deter-
mination of fictious nodes and corresponding fictious values of the desired function
becomes much more easier. One simple algorithm serving to solve this particular
problem will be described in Example 8.4 given below.

8.2 The Algorithm for Numerical Solving of Two-Dimensional
Laplace Boundary Problems by Using the Finite
Difference Method

The Laplace equation (8.2) formulated for the functidfx, y), written in the sys-
tem of rectangular coordinates has the form:

U (X, y) N PUX,y)
Ix? ay2

0 (8.8)

Numerical solution of this equation, also by means of the finite difference
method, consists in replacing the second order partial derivatives of this equation
by corresponding differential expressions, similar to (6.44) derived in Chap. 6. Let
us assume that functidni(x, y) is analyzed in the close neighborhood of the point
P.j = (x,y;) atwhichU(P, ;) = U; j, see Fig. 8.6.

A
y
o — L —
| h
Y — —o©
|Pi—lj
|
Yji-1 + —| —
| | | .
Xj—1 X Xi+1

Fig. 8.6
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The difference formula approximating the Laplacian (8.8) can be obtained by
developing the functiokd = U(x, y) in the form of Taylor series, namely:

ou 1 9%U 1 a3U
U +:i=U:—h(Z —h2 == ——nd ... (8.9
i—1,j i.j <6X>P,J + ol (3X2>P._j 3l <8X3> + (8.9)

ou 1 92U 0°U
Ui _U"+qh<ax> g <a7) o (T)
93U

_ au 1 ,,(0°U 1 oh?
Ui’Hl_Ui'j—'—ph(a_y)Pv—i_Eph(ay2> 3P h a—

(B

' (8.10)

(8 11)
1 2 1 (:)3
Uij- 1—UIJ—rh<aU> +—r2h2(ﬂ> ——r3h3<—U) +...
iy /Jp, 2! ay2 ), 3 0y )
(8.12)
whereUi_1j; = U(R_1j).Uijs1 = U(R j11).Uis1j = U(R4aj).Uij1 =

U(R j-1) andU; ; = U(R ;). After multiplying both sides of the series (8.9) by
the coefficiengg and adding them to the series (8.10) we obtain the expression:

1 9°U
QULs + Uiy = (@4 0)- Uy + 3 +) (57 ) +00)
. .

Neglecting the terms including stéyn the third and higher powers, it becomes:

92U 12U, i 2Ui j 2U; i ]
— + — — : 8.13
(6x2> h2[1+q ad+a) g (6.13)

In the similar way, using the series (8.11) and (8.12), multiplied by the coeffi-
cientsr and p, respectively, the following difference expression approximating the
second order partial derivative with respecytoan be written as:

32U> 1 |: 2Ui 1 2Ui 1 2U; j:|
i ~ . + : — : 8.14
<6y2 p(p+r) r(p+r) r-p (6149

Adding both sides of relations (8.13) and (8.14) we obtain the general equation:

2Ui_q 2Ui1 2U; j+1 2U; 1 _ 2U; | _ 2U;
1+q q(1+q) p(p+r) r(p+r) q r-p

-0 (8.15)

called the difference Laplace equation of the ord&rFor the regular grid with
rectangular mesheg & 1, p =r), this equation takes a simpler form:
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Uijyi | Uija
PP

2U;
— ?

Ui—1j + Uit + =0 (8.16)

Particular case of the regular grid with rectangular meshes is the “square” grid,
(p =q =r = 1), for which the difference equation (8.15) reduces itself to:

Ui_1j + Uit + Ui js1+ Ui jm1—4-Ui ;=0 (8.17)

The difference Laplace equation in the form (8.15), (8.16) or (8.17), should be
satisfied at every internal point of any given two-dimensional re@orand this
property refers of course also to each point (node) of the grid defined in this region,
asin Fig. 8.7.

Writing the difference Laplace equation for each internal node of the introduced
grid, the system of linear equations can be obtained. The unknown variables of this
system are values of the desired functidn= U(x, y) at individual nodes. At
intersection points of the grid with the edge (contoQrdf the regionG, values of
the desired function are known, because they are equal to corresponding values of
the given boundary functiog(C). The number of equations should be in general
the same as the number of unknown values of the desired function. It is rather easy
to prove that this number is the same as the number of nodes of the introduced grid.
Solution of the system of linear equations obtained in this way may be obtained
using several methods described in Chap. 1, such as the Jacobi, Gauss—Seidel, as
well as the successive over-relaxation method (SOR) [4, 5]. For using the iterative
methods mentioned above, the difference Laplace equation (8.15) should be written
in the following equivalent form:

Square grid

9(C)=1v

RegionV ~ —

| B N N

g(C)=ov

Fig. 8.7
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_ _bar [Ui_l,j Uite Ui j+1 Ui,i—l]
pr+qlLl+qg ql+q) p(p+r) r(p+r)

i (8.18)

Particular cases of this equation written for rectangular and square grids are,
respectively:

p Uijr1 |, Uij
Ui=———|U_1i + U1 . _ 8.19
i] 2(1+ pz) |: i—1,j + i+1,j + p2 + p2 ( )
1
U = Z[Uifl,j 4+ Uisyj + Ui+ Ui 1] (8.20)

The method of simultaneous substitutions (Jacobi method, see Sect. 1.2.2) is the
simplest iteration method, which can be used for calculating consecutive approxi-
mations of the unknown functiod; ; = U(xi, y;), according to formulas (8.18),
(8.19) or (8.20). Let us assume therefore thapproximations of the function
Ui,; = U(xi,y;) are known for all internal nodes of the introduced grid, namely
UY = U®(x. y)). Next, i.e. k+ 1) approximations of this function are calculated
using the appropriate formula (8.18), (8.19) or (8.20), on the basis of the previ-
ous values of this function, determined during the previous iter&iofvhen the
approximationsK + 1) for all internal nodes are known, they are substituted simul-
taneously in place of the previous approximate vallues (obtained during the iteration
k). Thanks to that, the sequence of computations performed for individual internal
nodes of the grid does not influence the values of consecutive approximations. As
the criterion for terminating the calculations the following condition is used most
commonly:

max {|JU*D(x,y) —UB, )|} <e¢

2=i=l-1 (8.21)

2<j=J-1

wheree is an arbitrarily small, positive number, determining the accuracy of the
evaluated approximate solution. The method of simultaneous substitutions is sel-
dom used for practical purposes, because convergence of its calculation process
is insufficient. A more efficient version of this iterative method is the method of
subsequent substitutions known also as Liebmann computional procedure.

8.2.1 The Liebmann Computational Procedure
It is well known that the method of simultaneous substitutions (Jacobi), presented

in the previous subsection, does not ensure sufficiently good convergence. The
reason of this disadvantege is that new more accurate values of the evaluated
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function are not introduced until they are calculated for all internal nodes of the
grid. In the subsequent substitution method (Gauss—Seidel, see Sect. 1.2.2), each
consecutive approximation is used |mmed|ately after its determination. Accord-

ing to this rule, value of the funct|0bJ = U®(x,y;) calculated ink itera-
tion for the internal nodex, y;) is used |mmed|ately for calculating value of this
function in the adjacent node, namd.lyk) = U®(xi 1, yj), and so on. Such

organized computational process is often called the Liebmann iteration method
or Liebmann computational procedure. Figure 8.8 presents flow diagram of the
computational algorithm related to this procedure adopted for solving the differ-
ence Laplace equation discussed above. The first stage of this algorithm is shown
in Fig. 8.8 (b) (a). At the beginning, the data defining geometrical shape of the
boundaryC delimitating the interior regiorG = V, parameterg,q andr of

the adopted grid, as well as the boundary valu¢®:) = g(Pc) for the desired
function are introduced. In this cad® denotes the point of intersection of the
grid with the given contou€. Simultaneously, a corresponding “flag” is assigned
to each internal node of the grid, showing which expressions, (8.18), (8.19) or
(8.20), should be used to compute a consecutive approximation of the unknown
functionU; ; = U(x,Y;). Integral part of this preparative stage is a procedure
called “Initial approximation”, serving to determine the initial, approximate val-
ues of the functiorJ; ;© = U©(x;, y;), on the basis of the known boundary
functiong(C).

A theoretical basis for this auxiliary procedure makes the formula (8.18). The
corresponding calculation process is illustrated in Example 8.1. It has been con-
firmed experimentally that application of this initial procedure reduces the number
of iterations, necessary to obtain satisfactory, sufficiently exact approximation of the
desired solution. Omission of this procedure is equivalent to assumption that at all
internal nodes of the grid, initial values of the desired function are equal to zero,
namelyU; ;@ = UO(x, y;) =0

The second stage of the algorithm under discussion is illustrated in Fig. 8.8 (b).
For each internal node, the calculations W{x;, yj) are performed iteratively
according to appropriate difference formula giving consecutive, more and more
accurate approximations of the desired function. The quantity used in the present
algorithm to evaluate the accuracy of an approximate solution is the maximum
deviation, defined for each iteration:

R = max{|U; ;® —u; ;&) (8.22)

where:k = 1,2,3,4,...,2 <i <1 —-1,2 < j < J — 1. This deviation is
determined on the basis of nodal values of the functipn = U(x, y;), cal-
culated for the two consecutive iterations. In case when this deviation is not less
than a predetermined positive numhefdefining accuracy of the solution), the
calculation process is continued during the consecutive iterakioh {). In the
opposite case, solution obtained durkgteration can be assumed as sufficiently
accurate. In the example presented below it is justified that the calculation process
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renee ? Csmer )

Data:

- border C of the internal region V
- border function g(C)

- grid parameters: I, J

- solution parameter: €

Evaluating the coefficients p, g and r
for particular interial grid nodes

Evaluating the values U(P¢) of the
desired potential function at border
grid nodes

—
/
Calculating the initial values U ©(x;, y;)
\ of the desired potential function at
Interial grid nodes
\
- .

®

organized in such way is always convergent. It means that it is always possible
to achieve good approximation of the desired solution for wHgh— 0, see
formula (8.22).

Example 8.IFigure 8.9 (a) presents a transverse section of two perfect conductors
with different electrical potentials. In fact, these conductors may be treated as the
TEM transmission line for which the Laplace boundary value problem can be for-

mulated. However, a transmission line of this type is not optimum in many aspects
and therefore it is not recommended for telecommunication applications. It is con-
sidered here only for didactic reasons.
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Print No

U(x.y;)

( STOP )

Fig. 8.8 (b)

Let us assume that electrical potentials of these conductors are equal to 1 and
0V, respectively. RegiotV, for which the Laplace boundary value problem can
be formulated, is the internal region limited by these conductors. Potential function
U = U(X, y) defined over this region can be determined numerically, using rectan-
gular grid, similar to the one shown in Fig. 8.9 (b). At all points (nodes), common to
the grid and contour of the integration region, the solution takes values equal to the
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corresponding potentials of the conductors. As the value of potential function in the
slot between the two conductors, we take the arithmetical mean of potentials of both
conductors. As shown in Fig. 8.9, the square grid being applied has the following
parametersa = 12mmb = 6mm | =7, = 4,9 =1, p =r = 1. Atthe
boundary nodes the desired solutldn= U (x, y) takes the following values:

U(X1, y1) =U(x7,y1) =05,V

U(xi,yn) =1V for2<i<®6

_ (8.23)
UX, Yj) =U(x7,y)) =0,V for2<j=<4
U(X,Ys) =0,V forl<i<7

As it is assumed above that the discretization grid adopted for this example has
square meshes, and therefore relation (8.17) can be used to compute the values of
functionU = U(x, y) at (I — 2)(J — 2) = 10 internal nodes. Difference equations
formulated in this way form the following equation system:
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Ufy+Uzz+Usz2+Us  —4-Uz=0
Uz2+Uz3+Ug2+Uz; —4-Uz2=0
Us2+Ugs+Uso+Ug; —4-Us2=0
Ug2+Usz+Ug2+UZ; —4-Us2=0
Us2+Uss+ U7, +Ug; —4-Us2 =0
Ufs+Uj,+Uss+Uz2—4-Uz3=0 8.24)
Uo3+ U3, +Ugs+Us2—4-Uz3=0
Uss+ Uz, +Uss+Us2—4-Uys=0

In this equation system boundary values (8.23) are additionally marked off by
asterisks. Of course, the system (8.24) can be written in the following matrix form:

Usz+Ug,+Uss+Usp—4-
U5,3+U§4+U;3+U6,2_4'

U5’3 = O
Us3=0

T4 -1 0 0 0-1 0 0 0 0] [Uz] Ui, +U;,
-1 4 -1 0 0 0-1 0 0 0| |Us Uz,
0 -1 4 -1 0 0 0 -1 0 Of |Usp Uss
0 0 -1 4 -1 0 0 0 -1 0 |Us, Usy
0O 0 0-1 4 0 O 0 O0-1 Us.2 Ug:1+U72
-1 0 0 0 0 4-1 0 0 0| |Uz Uis+ Uz,
0 -1 0 0 0-1 4 -1 0 0 |Usz Uss
0 0-1 0 O O0-1 4 -1 0 Uss Uia
0 0 0-1 0 0 O0-1 4 -1 Uss Us,

L. 0 0 0 0-1 0 0 0 -1 4] |Ugs] Ugs+U7s

(8.25)

The coefficient matrix of equation system (8.25) is a diagonally dominant matrix,
and therefore convergence of the calculation process used for solving this system by
means of the Gauss—Seidel iterative method is guaranteed, see Chap. 1. For this end,
let us transform the equation system (8.25) into the following equivalent form:

1

U2,2 = Z(Uiz + U2,3 + U3,2 + U;,l)
1

Uz, = Z(Uz,z +Usz3+Ug2+Uzy)
1

Ugo = Z(Us,z + U3+ Us2+Uyg,)

1
Us, = Z(U4’2 +Us3+Ug2+Us )

1
= Z(US’Z +Ussz+ U7, +Ug )
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Uzs = 3(Uja+ U+ Uss + Uz2) (8.26)
Uss = %(Uz,s + U3z, +Usz+Uzp)
Ugs = %(Us,s + Uz +Usz+Us2)
Uss = %(U4,3 + Uz, + Us3z+ Usp)

1
Ugsz = Z(Us,s +Ug 4+ U734+ Us2)

It is not difficult to verify that similar difference equations should be written
for using the Liebmann computational procedure. This fact confirms the conclusion
that the Liebmann method is identical to the Gauss—Seidel method, provided that
equations of the system are written in appropriate order. For solving this system
of linear equations by means of an arbitrary iterative method, the initial values of
Ui j© = UO(x;, y;) have to be known. Naturally, the final soultion should be
independent of the adopted initial approximation. Nevertheless, the initial values
of Uy ;@ = UO(x, y;) have significant influence on divergence of the calculation
process. In general, that process can begin from vake® = UO(x, y;) = 0,
but such approach is usually inefficient. In order to find a “more precise” initial ap-
proximation, it is possible to use a formula similar to Eq. (8.18) and given boundary
conditions. As an example, let us calculug’% = UO(xs, y3), that is initial value
of the solution evaluated at poifs 3 = P(i =5, ] = 3), see Figs. 8.9(b) and 8.10.

For an arbitrary internal node

© _ (1O oy PAr [UXLyY;) | UiLy) | U, ys) | U, y)
Uil =UT,y)) =
pr+q| 1l+gq q(1+q) p(p+r) r(p+r)

A y
b Uss
C3
as bs
i=3
Ups Us3 Uzs
d3
Usa a x
i=5

Fig. 8.10
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where
o G b1 =1 J—j b |
|0=|0(|,J)—(,;u—a -1 i_1,q=q(l)—&—i_ :
oG b I-1 j-1
o S
Fora = 12mmb = 6mm | = 7,J = 4,,i = 5,] = 3, the parameters

introduced above take the following valugs= 1/4,q = 1/2 andr = 1/2. Thus,

© _ 0 _ _Par
U5,3 =U (XSa Y3) pr + q

U(X1,¥3) U(x7,y3) U(xs,ya) U(xs, yl)i|
1+9 q@+q) p(p+r) r(p+r)

1To o 0o 17 8
_fo 0 0 118 2666666 V
10 [3/2 t3atzet 3/8] 30 ®

Initial valuesU; ;@ = U©(x;, y;), calculated similarly for all internal nodes of the
grid, are given in Table 8.1

Next approximationsk = 1,2, 3, ...) of the desired functionJ; ;® = U®
(xi, y;), are calculated according to the algorithm shown in Fig. 8.8 (b), where dif-
ference formula (8.20) is used, because meshes of the introduced discretization grid
are square. Some calculation results obtained in the first, fifth, tenth and fifteenth
iterations are written in Tables 8.2, 8.3, 8.4 and 8.5, respectively.

Fore < 1077, see formula (8.22), conditioR < e is satisfied only by the
approximate solution obtained in the 18th iteratidn=(18, R = 5.15 x 1078).

8.2.2 The Successive Over-Relaxation Method (SOR)

In order to explain the main feature of the SOR method, let us consider its algorithm
adopted to solving the Laplace boundary problem. In case when the grid with square
meshes, i = q = r = 1) is used, the difference equation approximating the
original differential equation has the form similar to one described by (8.17). The

Table 8.1 (k = 0)

i/i— 2 3 4 5 6
2 0.47619047 (63333333 (64545454 (63333333 07619047
3 0.23809523 (26666666 ®7272727 (26666666 ®3809523

Table 8.2 (k =1, Ry = 6.07 x 1072)
i/i > 2 3 4 5 6

2 0.44285714 (66374458 (69245129 (8382711 045548058
3 0.17738095 25346320 ®7814529 ®7501691 (18262437
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Table 8.3 (k = 5, R = 7.98 x 10°%)

i/i— 2 3 4 5 6
2 043754156 (57635557 060879599 (657625900 M3757975
3 017395714 ®5804123 8129719 ®5790405 (7387095

Table 8.4 (k = 10, R, = 2.20 x 10°5)

j/i = 2 3 4 5 6
2 0.43739010 ®7577734 (60809664 ®7576701 3737746
3 0.17374866 ®5758931 8081889 ®5758219 7373991

Table 8.5 (k = 15 R = 5.36 x 1077)

i/i — 2 3 4 5 6
2 043737411 (57575802 (60808116 (57575782 (43737382
3 017373763  ®5757606 (28080832  (®5757589 (17373743

notion of residuum of this equation formulated for nodg §;) is now introduced,
namely

Res,j = Uifl,j +Ui+1,j +Ui,j+1+Ui,j,1—4- Ui,j (8.27)

In general, the value of residuum (8.27) can be negative, zero or positive. Of
course, the Eq. (8.27) is exactly satisfied at nogey(), if Res ; = 0. According
to (8.27), residuum Res will change by—4, if the functionU; ; = U (x;, y;) will
be incremented by 1. Simultaneously, residua evaluated at four adjacent nodes will
increase by 1. Consequently, if we intend to reduce the residug Rpgo zero it is
necessary to add (Rg3/4 to the function valu®); j = U(x;, yj) computed for this
node, that isX;, y;). This operation will of course result in unproportional changes
of residua in the adjacent nodes. Reducing in this way residug Rescessively in
each internal node, we obtain more precise approximations of the desired solutions.
After terminating calculations for all internal nodes, the process should be repeated
from the beginning in the next iteration. The computational process organized in
this way (relaxation method) is identical to the method of successive substitutions
(Liebmann computational procedure), which is in turn a particular version of the
Gauss—Seidel method. It has been confirmed by numerous numerical experiments
that significant acceleration of convergence of the calculational process can be
achieved by changing the mesh point valug; = U(x;, y;) by an increment,
greater than (Res)/4. A method extrapolating this unique property is called the
SOR method [5, 6]. Seeking possibly precise description of the relevant algorithm,
let us assume that the value of the functldn; = U(x;, y;) obtained using this
method in theK — 1) iteration is equal tdJ; (k Y = uk-D(x, yj). Let us assume
also thatU(" ¥ = ULR(x, y;) denotes the value of this function obtained during
the k—1) |terat|0n by means of the Liebmann successive substitution method. When
the functionU; ; = U (x;, y;) is determined using the SOR method, its discrete value
in thek iteration is calculated from the following, extrapolating formula:



240 8 The Finite Difference Method Adopted for Solving Laplace Boundary Value Problems

Table 8.6 (k = 1, Ry = 7.17 x 10°2)

/i 2 3 4 5 6

2 0.43766388 (56698200 (60070873 (59407990 045521657

3 016642121 ®4917477 ®8013625 27985568 (17530401
U =0+ 0. U -0k (8.28)

where 1< w < 2 is the relaxation coefficient. Naturally, the convergence speed
of the iterative computational process depends on the value of coefficiémthe
extreme case, whem = 1, this speed attains its minimum, and the SOR method
transforms itself to the Liebmann successive substitution method. Evaluating the
optimum value ofw, for which the most rapid convergence can be achieved is a
rather complex issue, remaining beyond the scope of this book. In practice, it is
evaluated most frequently from the following formula:

W= 4 (8.29)

- 2+ \/4 — [costZ;) + cos(JL_l)]2

wherel andJ are maximum indexes of the applied rectangular grid [4].

Example 8.2Some consecutive approximate solutions of the boundary problem pre-
sented in previous example, calculated by means of the SOR method, are given in
Tables 8.6, 8.7 and 8.8. All calculations have been performed forl.16 evaluated
according to formula (8.29). Initial approximatioris £ 0), for these solutions are
given in Table 8.1.

Fore < 1077, see formula (8.22), the conditidR, < ¢ is satisfied by the ap-
proximate solution obtained in the 11th iteratidn £ 11, R, = 8.88 x 1078).
According to the results obtained in Example 8.1, the method of successive sub-
stitutions v = 1) makes it possible obtaining a good approximate solution (the
same order of accuracy, defined By < ¢ = 1077), only after 18 iterations
(k = 18, R = 5.15 x 10°8). An influence of the over-relaxation coefficienton
the convergence obtained in the present example (expresdeghbys illustrated
by the data written in Table 8.9.

Minimum numbersn,i, of necessary iterations, given in Table 8.9 has been de-
termined forR < ¢ = 10~". These results fully confirm usefulness of the relation
(8.29) for computing the over-relaxation coefficient taking the value close to
optimum.

Table 8.7 (k =5, Rc = 1.79 x 1079)
i/i — 2 3 4 5 6

2 0.43818196 B7607508 (60825387 (67582314 (43739248
3 0.17408658 ®5770889 (8088501 ®5760877 (17374662
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Table 8.8 (k = 10, R¢ = 4.64 x 10°7)

i/i— 2 3 4 5 6
2 043737384 B7575764 0650808084 B7575759 M3737374
3 017373741 ®5757581 (8080809 ®5757576 7373737

Another, equally important problem consists in choosing the mesthsif¢he
grid, which undoubtedly influences on accuracy of the calculational process. It has
been confirmed in the literature that the approximate solution is a function of even
powers inh and is related to the accurate solutidp of the differential equation
(but not of the difference equation) by the following formulg; (h) = Ur+azh?+
ash*+. .., inwhichay, a4, . . . are constant coefficients [2]. This formula constitutes
a theoretical basis of the Richardson extrapolation procedure. An essence of this
procedure consists in multiple solution of the boundary problem for different values
of the step sizé and on subsequent extrapolation of these results for théncase.
This problem is illustrated below by computational results given in Example 8.3.

Example 8.3n present example, the problem considered in Examples 8.1 and 8.2
has been solved again (five times) by using the grids with different square meshes.
The corresponding grid parameters and mesh $iz@s millimetres) are given in

the three first rows of the Table 8.10.

In the last row of this table, the values of the approximate solutipn =
U(x, y;) evaluated at the poirR are given, see Fig. 8.11. Coordinates of the point
Paare:x = 2mm andy = 2 mm. The following conditiorR, < ¢ = 10~% has been
adopted as the stop criterion, see formula (8.22). The presented valugshafve
been used to evaluate the extrapolating polynolhjgh) = Ug+ash?+azh* where
Ur = 0.439283788a, = —4.766666666< 10~* anday = —1.433600001x 107°.
Thus, the valudJa(h — 0) = Ur = 0.439283788 can be treated as the ex-
act value ofU, at the pointPa. In this case, the absolute value of difference
[Ug — U(h = 0.125) is less than B x 1075,

Here, it should be pointed out that poiRf is identical to all internal nodes (grid
points) ( —1)/6+ 1, (J — 1)/3 4 1) of each discretization grids being used.

Table 8.9

10) 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Kmin 18 16 14 12 11 12 13 16 19
Table 8.10

| 7 13 25 49 97

J 4 7 13 25 49

h 2 1 0.5 0.25 0.125

Wopt 1.155 1.427 1.659 1.812 1.901

Ua 0.437373737 0.438805713 0.439164532 0.439253991 0.439276340
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8.3 Difference Formulas for Numerical Calculation
of a Normal Component of an Electric Field Vector
at Good Conducting Planes

In the previous sections, it has been assumed that funidtipr= U (x;, y;), where
1<i<l,1<] <J,isthe function of scalar potential of the electric field. Ac-
cording to general principles of electrodynamics, the function of the scalar potential
makes it possible evaluating the vector electric figld = E(x;, y;) over the same
internal region, i.e., for 1< i < I,1 < j < J. For this purpose, the following
fundamental formula can be used:

U, yj) U6 yi)
X y

E(R )= -VU(,Y;) = —i
(RP.;) (xi,y;) | ox 3y

(8.30)

where:iy andiy are unity vectors (versors) of the utlilized cartesian coordinate sys-
tem. The partial derivatives appearing in the formula (8.30) can be calculated nu-
merically by using the appropriate difference formulas, discussed in Chap. 6. To this
end, the second order central difference formulas are used most frequently. Thus,

AU, y)) Ui, y) —UXi-1,¥) Uiz —Uiog
ox 2h - 2h

AU, y) UM, Yyj+1) —UX,Yyj-1)  Uijy—Uija
ay 2k - 2k

(8.31)
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whereh andk are sufficiently small “steps” referring to the variableandy, re-
spectively, see Fig. 8.1. For calculating the partial derivatives at external nodes lying
on the contou€ of the given inernal region, the appropriate one-side approximation

should be used, see relation (6.11).

Example 8.4Tables 8.11, 8.12 and 8.13 present some values of the furldtipe=
U(xi, y;), evaluated in the previous, namely 8.3 example for 1 < 97 and 1<

j <49.

The above values of functiod; ; = U(x;, yj) were subsequently used to cal-
culate the components, and E, of electric field vectorE at pointsPg = P33 33,
Pc = Pag33 and Pp = Pes 33, Which are also indicated in Fig. 8.11. The electric
field vectors, calculated according to (8.30) and (8.31), are equal to:

Ep = E(Pg) = —ix26.857048+ i,141680308 V/m
Ec = E(Pc) = ix0.000000+ i,151716468 V/m
Ep = E(Pp) = ix26.857048+ i,141680308 V/m

Vector Ec¢ is directed parallel to thg-axis (Ecx = 0). It confirms the fact that
numerical values of the functidd; ; = U(x;, y;j) we have found are symmetrically
distributed (mirror reflection symmetry) with respect to the symmetry Vinre y,

at which the pointPc = Pasg33 lies. The pointsPg

Ps333 and Pp = Pes s,

see Fig. 8.11, lie symmetrically with respect to lipe- y, and therefore compo-
nentskEy of the electric field vectors, determined at these points should be equal.
For the same reason, componeRisof these vectors should have equal absolute
values and opposite signs. These requirements are satisfied by \egtarsl Ep
evaluated above. It proves the fact that all calculations are correct and accuracy is

Table 8.11 (h = 0.125mm)

i/i —> 32 33 34

34 0240537830 (243837103 (246896645
33 0257934984 (261419628 (264649246
32 0275595163 (279257180 (282649139
Table 8.12 (h = 0.125mm)

i/ — 48 49 50

34 0267812180 (267900714 (267812180
33 0286679136 (286772204 (286679136
32 0305732516 (805829831 (B057322516
Table 8.13 (h = 0.125mm)

i/i > 64 65 66

34 0246896643 (243837101 (240537828
33 0264649244 (261419626 (257934982
32 0282649137 279257178 (275595161
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sufficient, R¢ < ¢ = 107°. The conductor configuration, shown in Figs. 8.9 and
8.11, has mirror reflection symmetry with respect to the ljne y, and there-

fore the region in which the functions; ; = U(x,y;) andE;; = E(x,Yj)

are calculated, can be limited to the subregion shown in Fig. 8.12. The function
Uij = U(x,y;) being calculated over this subregion should satisfy the following
condition:

U (X, )

=0 8.32
o (8.32)

at every point belonging to the division line— y. The directional derivative (8.32)

is calculated in the direction that is normal to liney — y at point P(x, y). In the
computational procedure the condition (8.32) can be easily taken into account in the
manner described in Sect. 8.1.

In the case of conductors shown in Fig. 8.12(a) it is necessary to introduce fic-
tious nodes, which are mirror reflections of the nodes lying closest to the division
liney — y. Assuming that = 7, J = 4, see Fig. 8.9(b), we obtain an equivalent
region, as in Fig. 8.12(b). Fictious nod€s B, 11 and 15 are mirror reflections of
the real nodes,, 11 and 15. Assume further thiatapproximations of the desired
functionU k = U®(x;, y)) atall internal nodes, (&, 8, 10, 11 and 12) are known.

In the next k + 1) iteration we first calculate values Uf(k“) = UkD(x, y;) at

nodes 67, 10 and 11, using the SOR. When the vaIueSJﬂ}’”) = UkHD(x, y))
evaluated at real nodes 7 and 11 (internal nodes lying closest to the division line
y — y) are known, then we assign these values also to the associated fictious nodes,
7 and 11, respectlvely Next, in the final stage of the{ 1) iteration, based on

the valuesU; +1) = UKD(x, y;) calculated at the real nodes % 11,16 and

fictious nodes 711, we calculate the apprOX|mat|0|h.s(k+1) = UkHD(x;, y;) of
the desired function at internal nodes 8 and 12 lying on the divisionylirey.
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Table 8.14 (h = 0.125mm)

i/i— 32 33 34

34 0.240537839 ®43837112 (246896654
33 0257934993 261419637 (264649255
32 0275595173 279257190 (282649149

The computational process described above is now repeated iteratively, until max-
imum differenceR, see formula (8.22), would be less than a given small number
¢ defining accuracy of calculations. Some valuesJof = U(x;, y;), obtained in
this manner foma = 12mmb = 6mm | = 49,J =49, h = 0.125mm and
e = 107° are given in Table 8.14

It should be pointed out that these values are very close to the corresponding
values written in Table 8.11. Undoubtedly, this fact confirms correctness of the ap-
proach being employed.

8.4 Examples of Computation of the Characteristic
Impedance and Attenuation Coefficient for Some TEM
Transmission Lines

The fundamental parameter of the TEM transmission line is its characteristic
impedanceZ,. Physical meaning of this circuit parameter is explained in Exam-
ple 2.1. According to [7, 8], the characteristic impedance of an arbitraryairf)

TEM transmission line can be calculated from the following general formula:

[Ho U mo U 1
Z = —_— e = _— = ./ - —_ =
0 €0 f E, - ds €0 Q/Bo Hogo C

S

1 1a @3
v

1
c’

whereng = uo/e0 = 120 =~ 377, Q) is the wave impedance of the open free
spaceU denotes the difference of potentials (voltage) between two conductors of
the line (inner and outer )E, is the normal component of electric field vector
defined on the borde®, of the external conductor, amtls denotes an infinites-
imally short section of the integration contour. In this case= 1/,/eoito ~
2.997925x 108 m/s is the velocity of light in free space ar@ denotes a line
capacity per unit length. The way to compute the characteristic impedénie
open if a distributiorE,(S;) of the componenE,, at the boundary lin&; is known.
Similar distributionE,(S) should be evaluated on the border lifgof the inner
conductor. These distributions make it possible calculating the attenuation coeffi-
ciente = Re[y = o + jB]. To this end, the following relation can be used:

¢ |Enl?-ds
1 €0 S+S

_ D[R sts 8.34
“T 255 o ¢ Eq-ds ( )
S
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whereo is conductivity of the material (metal) used to manufacture the conductors
andé denotes skin depth [8]. It follows from formulas (8.33) and (8.34) that basic
problem, which should be solved in order to fidg and «, is determination of

the distributions of normal component of electric field vector on the surfaces of two
conductors creating the transmission line. These distributions should be evaluated as
accurately as possible in the manner discussed in Sects. 8.2 and 8.3. Unfortunately,
we cannot use the central difference formulas for numerical calculation of partial
derivatives of the functiot); ; = U (x;, y;) at points lying on the boundaries of the
conductors. Only one-side approximations of the derivatives can be evaluated at
these external points (grid nodes). It is obvious that these approximations are less
accurate than corresponding approximations performed using the central difference
formulas. One simple and efficient method of increasing approximation accuracy of
derivatives is the Runge interpolation procedure, described in Example 6.1. In the
casek = 2, see relation (6.29), itis based on two one-side difference approximations
calculated for various step sizes, for exampland 4. An effective accuracy of

this two-step procedure is close to that obtained when using the central difference
formulas (8.31).

8.4.1 The Shielded Triplate Stripline

The transverse section of a shielded triplate stripline is shown in Fig. 8.13(a). An in-
ternal regionV of this TEM transmission line is limited to the space closed between
inner and outer conductors. Usually, this region is fulfiled by dry air that is homoge-
nous lossless medium with relative permittivily = 1 and relative permeability

wr =118, 9].

The presented transverse section has mirror reflection symmetry with respect
to linesx — x andy — y. Similar symmetry characterizes also distribution of the
potential functionU; j = U(x;, y;). Thanks to this double symmetry, the prob-
lem of finding distribution of the functiot); ; = U(x;, y;) in the regionV can
be reduced to the similar problem, solved for the four times smaller subregion
(V/4), shown in Fig. 8.13(b). Such reduced problem can be solved by means of the
method similar to that used in Example 8.4. Consequently, values of the function
Uij = U(x, Y;) at nodes lying on the division lines— x andy — y are calculated
by means of the fictious nodes being mirror reflections of the nodes situated very
near to these division lines. Grids, most appropriate to the analysis of this type of
the line, Fig. 8.13(a), are the ones having square meshes and thedipsen in
such a way that the distances between all adjacent nodes (internal and external)
are equal. Unfortunately, it is not always possible to satisfy this condition. In such
cases, some boundary lines of the conductors do not coincide with the lines of
the grids. For example, in case of nodes, situated most closely to the side edge
of the inner conductor of the line shown in Fig. 8.13(b), the distance from this
edge is less thah. Values of potential functiot; ; = U(x;, y;) at these nodes
should be calculated using the appropriate formula, (8.18) or (8.19), respectively.
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The normal component of electric field vectey at the border of the outer conduc-
tor is determined by means of two one-side approximations of partial derivatives of
the functionU; ; = U(x;, y;j), calculated for two different step size. For example,
computation ofg,, at pointP = P(i, 1), see Figs. 8.13(b) and 8.14, is performed as
follows.

First, the initial approximatiork, (i, 1) is calculated from

Ui, 2)— U, 1)

ENG. 1)~ -

The second approximation of the componEg(i, 1) is calculated using the step
2 - h, according to similar difference formula. Hence,
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Finally, the normal componett,(i, 1), evaluated according to the Runge proce-
dure, is:

EDG, 1) — EQ(, 1)
(2h/h)t —1

En(i, 1)~ EWG, 1) + =2-EMi,1) - EQG, 1)

The dimensions of the subregiol (4), under analysis, see Fig. 8.13(b), are:
a/2 = 10mmb/2 = 25mmt/2 = 0.5mm andW/2 = 2mm. Into this sub-
region the grid with square meshes determined by 201 Is = 161, J = 51
and Js = 41 have been introduced. Thus, the distances between all adjacent
nodes (including the distances between nodes situated inside and on the edge of
the subregion\(/4)) are the same and equal o = 0.05mm. The computa-
tion of discrete values of the potential functibh; = U(x, y;) have been per-
formed with accuracyR, < 1.34- 107 for the following internal grid points
(nodes):

P(i, j), where 2<i < 201 when 2< | < 40,

P(, ]), where 2<i < 160 when4l< j <51
Some final values of the functidgy ; = U(x;, y;), V are given in Table 8.15.
Normal component&, of the electric field vector have been calculated for the

following nodes:P(1, j) when2< j < 51 andP(i, 1) when 2< i < 201. Allthese
nodes lie on the border ling, of the outer conductor. The corresponding values of
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Table 8.15

/i > 98 99 100 101 102

51 01221401 01260761 01301396 01343347 01386661

50 01220789 01260128 01300741 01342670 01385960

49 01218944 01258222 01298769 01340631 01383852

21 00712702 0735313 00758620 0782645 00807408

20 00681315 0702914 00725179 0748126 0771777

19 00649281 00669851 00691053 00712904 00735422

3 00075850 (078237 (0080696 (0083228 (0085836

2 00037943 00039137 10040367 00041633 00042938
Table 8.16

i 98 99 100 101 102

Eni, 1), V/m 75.92194 78.30988 80.77040 83.30561 85.91492
Table 8.17

j— 38 39 40 41 42

En(Lj), V/m 6.72368 6.81143 6.89245 6.96666 7.03396
Uij =U(x,Y;), V, givenin Table 8.15, have been used to this end. Several instant

values ofE,, chosen from the sdtEn(1, j), En(i, 1)} defined above, are given in
Tables 8.16 and 8.17.

The values of normal componel}, evaluated above make it possible to calculate
the characteristic impedan@ of the transmission line under analysis. However,
it should be pointed out that subregiovi/4) is only one from the four symmet-
rical parts of the internal regiok. In other words, the distributions d, over
three remaining subregions are also symmetrical. Naturally, the distribitics)
evaluated over the whole boundayof the outer conductor has to be used to calcu-
late the characteristic impedangg according to formula (8.33). The characteristic
impedanceZ, of the shielded triplate stripline under consideration calculated in this
way is equal taZg = 55.65(). This approximate value differs only byB() from
the corresponding more accurate valu&Zgt= 55.62() given in the literature [10].
Increasing the widtW of the inner conductor, see Fig. 8.13(a), to 6 mm results in
decreasing the characteristic impedance to a level &&42. In opposite case of
decreasing the widthV to 2 mm, the characteristic impedangg attains the value
of 79.07Q.. These two impedances differ from the corresponding more accurate
values published in [10, 11] by less tha/@40().

8.4.2 The Square Coaxial Line

The transverse section of an air square coaxial line is shown in Fig. 8.15. This TEM
transmission line can be treated as the special case of shielded triplate stripline dis-
cussed earlier, see Fig. 8.13(a). Of course, in this aasd andW = t.



250 8 The Finite Difference Method Adopted for Solving Laplace Boundary Value Problems

ov '

Fig. 8.15

A procedure for numerical simulation of that transmission line includes:

— evaluation of the distribution of potential functidsy ; = U(x;, y;) over the
whole internal regiorV (limited space between the inner and outer conductors),
— evaluation of the distribution of electric field vectgy; = E(x;, y;) over the

whole internal regiotV and
— calculating the characteristic impedargg

At the first stage, the distribution of potential functidpn; = U(x;, y;) over the
whole internal regiorV is evaluated similarly as in the case of shielded triplate
stripline analyzed in Sect. 8.4.1. For clarity of further considerations, let us as-
sume that geometrical dimensions of the transmission line under discussion are:
b = 20mm and = 8 mm. It means that dimensions of the subregigi4) are:
10mm and 4 mm, respectively. Into this subregion the grid with square meshes
characterized by = J = 51 Is = Js = 31 and mesh sizd = 0.05mm
have been introduced. The calculations of discrete values of the potential function
Ui,; = U(x,y;) over the subregion\{/4) have been carried out with accuracy
R« < 8.94.107/, see relation (8.22). Some instance results of these iterative calcu-
lations are given in Table 8.18.

As it has been explained earlier the distributiordpf = U (x;, y;) constitutes a
basis for evaluating the related distribution of electric field veEfqr= E(x;, y;). It
should be pointed out once again that distributio&;of = E(x;, y;) has to be evalu-
ated as accurate as possible, especially at the bordes; lofeéhe outer conductor. In
the next stage, the distribution Bf= E(S;) = E,(S) is used to calculate character-
istic impedanceZy according to formula (8.33). The above approach implemented
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Table 8.18

/i > 18 19 20 21 22

51 05345663 (65685376 06028721 06375675 06726155
50 05343854 (6683555 06026919 06373909 06724456
49 05338403 (6678081 06021483 06368591 06719331
21 03003669 08189443 (3375928 8562825 (08749717
20 02851210 03025906 1200916 18375929 08550536
19 02698196 ©862051 18025904 08189443 08352270
3 00293639 (310278 (0326733 (0342972 (0358962
2 00146779 00155092 0163311 0171423 00179411
1 0.0000000 00000000 00000000 00000000 00000000
Table 8.19

t/b— 01 03 05 07 09
Zo(t/b), Q 13215 6681 3678 1802 507
Zo. Q) 13265 6687 3681 1802 507

in analysis of the square coaxial line under consideration yi&lds 49.78(). This
approximate value differs from the value.89(), obtained analytically by less than
0.04(), [11, 12]. Discrete values of the functiaty(t /b) obtained in much the same
way for different values of ratit/b, see Fig. 8.15, are written in the second row of
Table 8.19.

In the third row of the table the appropriate exact values of imped@gc€
(evaluated analytically) are given for comparison [11].

8.4.3 The Triplate Stripline

Figure 8.16 presents a transverse section of the unshielded triplate stripline fulfiled
by dry air that is homogenous lossless medium characterized by relative permittivity
& = 1 and relative permeability, = 1.

A width of its external, equipotential conducting planes (of the outer conductor)
should be sufficiently large for the electric field intensity in the regiors I and
2 — 2. Of course, this intensity should be sufficiently small in comparison with
the electric field intensity in the closest neighborhood of the inner conductor. The
triplate stripline, in which this condition is satisfied, can be analyzed similarly as
the shielded stripline discussed earlier, in the case, when the side walls (of height
b) are sulfficiently distant from the inner conductor. The condition for vanishing of
the electric field vector at side walls should be of course satisfied for this distance.
A correctness of that approach can be justified by the calculation results given in
Table 8.20. Presented values of the normal compoignof the electric vector
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En, have been evaluated at the side walls 2 = 2.5mm,t/2 = 0.5mm,
W/2=2mm, h = 0.05mm and some values @f/2. The appropriate values
of potential functionU; ; = U(x;, y;) have been calculated with an accuracy of
R« < 1.18 x 1078, using the square grid with mesh sizeho& 0.05 mm.

Table 8.20

a/2, mm 40 6.0 80 10 12
En(1,51),V/m 3501233 906190 256384 73217 21164
En(1,41),V/m 3280744 860941 243859 69666 20160
En(1,31),V/m 2685441 730280 207430 59292 17178
En(1,21),V/m 186.2990 528722 150698 43101 12504
En(1,11),V/m 94.4789 277189 79228 22673 06586
Zo(a), Q 52.3963 553969 556321 556492 556495
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A minimum widtha of the shielded triplate stripline, see Fig. 8.13(a), for which
it can be treated as equivalent to unshielded one under discussion, Fig. 8.16, is
determined most frequently according to the criterion of the minimum change of
the characteristic impedan@g(a). It has been confirmed numerically that function
Zo(a) calculated for the shielded triplate stripline has a one-side “saturation region”.
It is therefore not recommended to increase the waltteyond some threshold
value ofa’. This conclusion, significant for practical applications, is well illustrated
by values of characteristic impedance written in the seventh row of Table 8.20. They
show that characteristic impedance of the air unshielded triplate stripline, for which:
b =5mm,t = 1mm andW = 4 mm, attains maximum value &fy = 55.65()
when the widtha’ of its semi-opened outer conductor is greater than 20 mm.

8.4.4 The Shielded Inverted Microstrip Line

Another version of the shielded stripline widely used in the microwave technology
is the shielded inverted microstrip line. The transverse section of this transmission
line is shown in Fig. 8.17(a).

The thin ¢ << b) lossless dielectric layer with small permittivity plays mainly
the role of mechanical support, holding the inner conductor (strip) of widtim
proper position with respect to the surrounding outer conductor. The transverse sec-
tion presented here has mirror reflection symmetry with respect to vertical plane
y — y. Due to this symmetry, the problem of determining the potential function
Ui,; = U(xi, yj) over the internal regiolv can be reduced to a similar problem
solved for two times smaller subregiovi (2), shown in Fig. 8.17(b). This region is
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Fig. 8.17 (Continued)
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electrically inhomogenous, because permittivityof the dielectrical layer differs

from 1, i.e.,sy > 1. In order to guarantee the clarity of further considerations, let us
assume that border line of the inner and outer conductors coincides with the lines
of the used discretization grid with square meshes. This assumption holds also for
the border line of the dielectric layer. For the problem defined in this manner, values
of the potential functiorJ; ; = U(x;, y;) at internal nodes which do not belong

to the border air—dielectric are calculated using formulas (8.20) and (8.28). In case
of nodes situated on this border, see Fig. 8.18(a), the Laplace equation (8.2) is not
satisfied and consequently, formula (8.20) resulting from this equation cannot be
used [13]. For these nodes, the following more general formula is suitable:

Ui — Uijrate -Upjo1 Uiigj + Uiy
b 2(1+ &) 4

(8.35)

The difference formula (8.35), see Appendix E, results from the following equa-
tion of electrodynamics

V.D=V-(e6VU)=0 (8.36)

telling that at a surface of dielectric substrate no storage of electrical charge occurs.

For methodological reasons, it is recommended to divide the inhomogenous region

(V/2) into four smaller, electrically homogenous similar to those shown in Fig. 8.19.
Values of potential functiot); ; = U(x;, y;), at points belonging to the symme-

try planey — vy, that is at side edges of the subregio¥gZ):, (V/2)s, (V/2)4, can

be found identically as these are described in the previous examples. Fictious nodes

used for this purpose are placed at nodes of the grid, which are closest to the line

y — y. For calculating potential functiod; ; = U(x;, y;) at nodes situated on the

borders between two subregions with different permittivity the relation (8.35)



8.4 Examples of Computation of the Characteristic Impedance 255

a)
h
A .~
ol b
air
! !
VA VA VA /A VA
V2 A/ /A TR B ™
Y 7/ /A T
| A/ 2 (/2NN 7
v\ M/ dielectic 7/ /| ww
N Y o
i—1 i i+1
b)

2/ /A l V24 l Va
j+14 J

2/ VA /A /4 T// /A VA /4

VA /A /A T/ /A

"N A (A

air h

y

Fig. 8.18

should be used, remembering about proper interpretation of the adopted notation. In
other words, relation (8.35) is satisfied at points situated on the border between two
media shown in Fig. 8.18(a). In case of dielectric media in reverse configuration,
see Fig. 8.18(b), the appropriate formula corresponding to (8.35) is:

~Uijjaater Ui Uisaj +Uig

= 37
Ui 2(1+ &) 4 (8.37)

The methodical recommendations given above have been employed in the analysis
of the transmission line shown in Fig. 8.17 and characterizedaby 310- h,
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b=60-hc=24-h,d=12-h,t = 1-handW = 60- h, whereh =
0.0508 mm (2 mils) is the size of the grid mesh. The permittivity of the dielectric
layer is equal tae; = 2.65. For these parameters, grid lines defined by 1,
i =1 =156, =126,j = 1,) = J = 61,Js = 24, J41 = 25, Jg2 = 37
agree with corresponding borders of the inner and outer conductors, as well as with
the border of the dielectric layer. Table 8.21 contains some discrete values of the
functionU; ; = U(x, y;), evaluated with accuracy d® < 1.132x 10°°. As it
was repeated many times the potential functipn = U(x;, y;) constitutes a basis
for evaluating distribution of the electric field vect(x;, y;). In order to calculate
this distribution at the surface of the outer conductor the extrapolating procedure
described in Sect. 8.4.1 is recommended. Some valuEg,@falculated in this way
in the region close to the surface of the outer conductor, are written in Tables 8.22
and 8.23.

According to the laws of electrodynamics, the surface charge density at an arbi-
trary pointP of a conducting surface t(P) = &o- & (P)- En(P). Hence, an electric
charge stored on the unit length of the outer line surfads equal to:

Q=¢0- y{ e (P) - En(P)ds (8.38)
S

wheregg = 8.85418410~%?, F/m is permittivity of the free space. Dividing this unit
charge by voltage) = 1, V between inner and outer conductors yields the unit line
capacityC = Q/U. If the line medium is inhomogenous two stages are necessary
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Table 8.21

/i > 123 124 125 126 127

23 07194310 07702185 08291498 08911311 09166453

22 06901418 07325579 07771443 08187293 08462229

21 06572688 06927266 07281418 07604189 07856923

11 03178634 8277425 (3372938 (8464353 03550958

10 02854351 941333 08025497 08106194 03182848

9 02532179 Q2608053 (681526 ®752080 819243

3 00628770 (646617 (0663948 (0680658 (0696672

2 00314283 00323180 10331820 00340156 00348145

1 0.0000000 00000000 10000000 00000000 00000000
Table 8.22

. 123 124 125 126 127

Eni, 1), V/m 618.4661 635.9290 652.8858 669.2596 684.9518
Table 8.23

[ 2. 24 25 26.. 59

En(Lj), V/m 0.355955 7.018490 7.221045 7.288838 0.709235

to evaluate characteristic impedarégand effective line permittivityess, [8, 10].

In the first stage, the unit line capaci = C(er = 1) is evaluated when the
dielectric layer is removed. Naturally, in the second stage the unit line cagacity

is evaluated in the same manner when the dielectric layer is present. When the unit
capacitiesCy andC, are known, it is possible to find the characteristic impedance
Zo and the phase velocity from the following formulas:

Zo=1 21-.0
v /CoC’

= (8.39)

UV =UVp,/ = =

C 7 Jeert

wherevp = ¢ = 2.997925 10°, m/s is the light velocity in free space. An effective
line permittivity eq¢¢ occurring in the above formulas is definedsas: = C; /Co.

In case of the shielded inverted microstrip line under discussion, see Fig. 8.17,
Co = 5.508917- 10, F/m, C, = C(e, = 2.65) = 6.810233- 107, F/m,

Zo = 54.458 Q) andv = v - 0.899398. An influence of permittivity, of the
dielectric layer orC,, Zp andv is illustrated by the data given in Table 8.24.

Table 8.24

&r C;, pF/m Zo, Q) v/vo
1.00 5508917 6055 1000000
2.65 6810233 5446 0899398

3.74 7381895 5231 0863870
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8.4.5 The Shielded Slab Line

The transverse section of a shielded slab line is shown in Fig. 8.20(a). This kind of
TEM transmission line is widely used in the microwave technology because their
use offers several manufacturing advantages and excellent electrical properties. As
most of air—dielectric lines the shielded slab line is particularly recommended for
operation at high peak and average powers. Therefore, the computation of its char-
acteristic impedancg&g and attenuation coefficieat is a problem of considerable
importance for practice. In the present section, it is shown how this problem can be
effectively solved by means of the finite difference method.

Also in this case the three-stage approach specified at the beginning of Sect. 8.4.2
will be adopted. It follows from Fig. 8.20 that a distribution of the potential function
Ui,; = U(xi, y;) over the internal regiol (limited by inner and outer conductors)
is mirror reflection symmetrical with respect to the horizontal bine x and ver-
tical line y — y. Due to this double symmetry, the problem of finding distribution

a) y
a 1
< I >
I
d|b
x4 — — — — f—-|—]—x
oV 1V ]
oV I v
|
y
b)
y
r_rJ
X 71 /| T e J X
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| " |br2
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ov |
v Tt
1 i Ir [
| al?2 |
N '|
y

Fig. 8.20
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Fig. 8.21
of Uj; = U(x;, y;) can be reduced to the solution of similar problem over the

four times smaller subregioV/(/4), shown in Fig. 8.20(b). Mesh sizésandk of
the rectangular discretization grid should be chosen in a such manner that its lines
coincide with the border of outer conductor and the symmetry knes andy —y.
This requirement is satisfied whén= a/[2(] — 1)] andk = b/[2(J — 1)], where
I andJ are maximum values of indexesnd j, respectively. Unfortunately, due to
circular shape of the inner conductor the adopted rectangular grid cross its border at
points situated at unequal distances with respect to the closest grid points (nodes).
In Fig. 8.21 border nodes determined in this way are denoted by small circles.

To each border node one of the parametei® g defining the distance to the
nearest grid node (coastal) lying on the same vertical or horizontal line, should be
assigned. Similarly as in the previous examples, it is assumed that potential func-

tion U ; = U(x;, y;) takes at the border nodes of the inner conductor the value
of U = 1V, and potential of the outer conductor is equalllo= 0V. Values
of the functionU; ; = U(x;, y;) at coastal nodes, marked in Fig. 8.21 by dots,

should be computed using the general formula (8.18). In case of remaining, inter-
nal nodes of the subregiol {(4), consecutive approximated values of the potential

functionU; ; = U(x, yj) are next calculated according to formula (8.19), where
p = k/h. As it has been mentioned above the distribution of the potential function
Ui,; = U(xi, yj) has mirror reflection symmetry with respect to lines- x and

y — y. Thus, values olJ;j ; = U(x, y;) at nodes belonging to these symmetry

lines can be calculated using the manner, in which auxiliary fictious nodes are intro-
duced. Essential features of this simple computation technique have been explained
and illustrated in the previous examples. According to the recommendations given
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above, in the first stage of computation process, the coordinates of nodes lying on
the inner conductor, see Figs. 8.20 and 8.21, should be determined. For example, the
coordinates of border nod#, belonging to the inner conductor and grid horizontal

line denoted by index are

ym=(j _1)k7 Xm=a/2_ \/rz_(b/z_ym)2 (8-40)

wherea, b andr = d/2 are geometrical dimensions of the transverse section shown
in Fig. 8.20(b). The coordinates (8.40) can be represented by the infderesg ()
defined as:

j = ym/k+1,ig(j) = int(xm/h) + 2 (8.41)
where the function inf) assigns to the argumeatthe greatest integer not exceed-

ing a. Similarly, coordinates of border nod#,, 1, belonging to the vertical line
denoted by indek, can be calculated using the formulas:

Xmi1 = (i = D, Y1 = b/2 = V12— (@/2 — Xm11)? (8.42)
The indexes corresponding to coordinates (8.8) are:
I =Xmi1/h+1, jg(i) = int(Yms1/K) + 2 (8.43)

The formulas (8.40, 8.41, 8.43) make it possible to calculate the coordinates and
related to them indexes of all border nodes lying on the inner conductor and belong-
ing to the subregion\(/4). When coordinates of these border nodes are known, it
is possible to determine the indexeand j of the corresponding coastal nodes. For
instance, with the border nod#,, see Fig. 8.21, the coastal nodéis connected,
which lies on the same line with an index= int(x,/h) + 1. Coefficientq, deter-
mining the distance between these nodes, is equal £o frac(xm/h), where the
function fracé) assigns the fractional part to the arguman®imilarly, we can find
indexes of coastal nodes with respect to the border nodes lying on the vertical lines
of the grid. The nod&V, shown in Fig. 8.21, is also a coastal node with respect to
border nodeB, 1, on the basis of which relations (8.42) have been derived. Hence,
the indexj of nodeW can be evaluated from the formuja= int(ym,1/k) + 1,
in which coordinateyy 1 is described by relation (8.42). Value of the parameter
defining the distance between the nodzs 1 andW under consideration, is equal
to p = frac(Yms1/K).

All computations, performed during the first stage described above, have the
character of preparatory single-time calculations. The computations of the second
stage are also single-time. They serve to determine initial approximation of the de-
sired solutionJ; j = U(x;, y;). They are performed similarly, as in Example 8.1,
based on the values &fi ; = U(x;, y;) given for the border points (nodes) of the
subregion Y /4), as in Fig. 8.22.
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In the computer program SSL elaborated for this purpose the following initial
(border) values of the potential functidh ; = U(x;, y;)have been used:

— edgeAB — U ; =U(x,y;) =0V,

— edgeAE — Ui.j = U(x, y]) =0V,

- EdQECD — Ui,j = U(Xi, yj) =1V,

— edgeU; ; = U(x, y;) varies linearly along the edggC from 0, V at pointB to
1,V at pointC,

— functionU; j = U(x, y;) varies linearly along the edgeD from 0, V at point
E to 1 V at pointD.

During the third computation stage the consecutive approximations of the func-
tionU; j = U(x, yj) have been evaluated by means of the SOR method. As the stop
condition, the inequality, < 9.53 x 10~’ has been used. Some discrete values of
the potential functiotd; ; = U(x;, y;) obtained in this way are given in Table 8.25.

The calculations have been carried out 2 = 12mm b/2 =25mm r =
d/2 = 1.3712mm anch = k = 0.05mm In this case, indexes of the introduced
discretization grid satisfy the inequalitiesli < | =241and 1< j < J = 51.
Some values of normal componegi of the electric field vector calculated on the
basis of thel; ; = U (x;, y;) distribution are given in Tables 8.26 and 8.27.
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Table 8.25
j/i— 198 199 200 201 202
51 05996876 06193628 06397175 6607763 06825693
50 05993603 06190230 06393644 06604101 06821886
49 05983796 06180045 06383060 6593112 06810468
20 03244321 (B342438 443144 B546471 652439
3 0.0355999 (00366335 00376900 (00387693 0398711
2 0.0178057 00183224 (00188508 00193903 00199410
1 0.0000000 (00000000 00000000 (0000000 00000000
Table 8.26
i — 198 199 200 201 202
En(i,1),V/m 356.2306 366.5601 377.1306 387.9214 398.9308
Table 8.27

j — 2 24 25 26.. 51

En(1,j). V/m 0.0495018 1.0373171 1.0735520 1.1087151 1.5610012

Finally, the characteristic impedang of the shielded slab line under analysis
have been calculated according to formula (8.33). The result of the calculations is
Zo = 50.057 Q. This value differs from 502, calculated by means of formula
(2.34), by less than.06 (). In this case, the influence of side walls on the distri-
bution of Ui ; = U(x;, y;) and indirectly also on the characteristic impedadge
is negligibly small. This conclusion confirms also the computational results given
in Tables 8.26 and 8.27. The intensity of the electric field at side walls is relatively
small in comparison with its value evaluated at the central line plang, 202).

When side walls of the outer conductor are sufficiently distant from the inner round
conductor, the electrical parameters of the shielded slab line are very close to corre-
sponding parameters of the unshielded slab line with the same geometrical dimen-
sionsb andd, discussed already in Example 2.2.

In a special case when= b = 5 mm, see Fig. 8.20, the line under consideration
becomes a coaxial line with the square outer conductor. Tables 8.28, 8.29 and 8.30
present some values b&f ; = U(x, y;), En(i, 1), V/m andE,(1,]), V/m calcu-
lated for the line in question assuming tiat k = 0.05 mm. In this case, indexes
of the grid satisfy the inequalites4 i < | =51 and 1< j < J = 51. Compu-
tations of the potential functiod; ; = U(x;, y;) over the suitable subregiol (4)
have been performed with an accuracy determined by condRjon 8.94 x 107,
see expression (8.22).

The characteristic impedance of this special line version is equalyto=
40.602 () and differs by less than.@6 Q from the value ofZ, = 40547, Q
given in Table 4.1 of the handbook [11]. Performing similar computations using
the grid with smaller meshe$ (= k = 0.025 mm) the characteristic impedance
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Table 8.28

i/i > 18 19 20 21 22

51 07091850 07575211 070557 8577519 097104

50 07086132 07569216 08064758 8573708 (0092808

49 07068861 07550766 8045543 (B554748 (080939

é 0.0343164 0363016 00382766 00402396 00421886

2 0.0171561 00181429 00191353 00201164 00210903

1 0.0000000 (00000000 00000000 (00000000 00000000
Table 8.29

i — 2... 24 25 26.. 51
En(i,1),V/m 20.2578 460.1502 479.0576 497.7260 777.4435
Table 8.30

j = 2... 24 25 26.. 51
En(1,j),V/m 20.2579 460.1514 479.0587 497.7277 777.4435

of value Zg = 40.579 Q) is achieved. This final result differs from the value of
Zo = 40.547 ) by less than @4 (). In this situation further reduction of meshes of
the discretization grid is unnecessary.

8.4.6 Shielded Edge Coupled Triplate Striplines

The finite difference method presented in this chapter can be easily adopted to
analysis of coupled TEM transmission lines. One of them is the air—dielectric edge
coupled triplate stripline whose transverse section is shown in Fig. 8.23(a).

The conducting surfaces of this transmission line are distributed symmetrically
with respect to the plang—y. Due to this symmetry, it can be analyzed by means of
the method of even mode-(+) and odd mode{—) excitations, explained already
in Example 3.3. The circuit representing the coupled lines for even mode excitation
is a single transmission line with a transverse section as shown in Fig. 8.23(b).
The characteristic impedance of this transmission line is denoteffBy= Zqe.
Similarly, the circuit representing the coupled lines for odd mode excitation is
also a single transmission line with a transverse section as shown in Fig. 8.23(c).
Its characteristic impedance is denoted Zgl‘ = Zgo. Both transverse sections
shown in Fig. 8.23(b) and 8.23(c) are symmetrical with respect to the plang.

Thus, the problem of evaluation of the potential functl.d;h*” = USD(x,y))
over the region {/2)** can be reduced to the similar problem over the subre-
gion (V/4)** shown in Fig. 8.24(a). In the similar way, the functll;)l,‘fjr ) =
U®)(x, yj) can be evaluated on the basis of the subregi¥mf™— shown in
Fig. 8.24(b).
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The distribution of the potential functiob, ++ = U**(x,y;) over the sub-
region (V/4)t*, see Fig. 8.24(a), can be evaluated in the manner similar to that
employed in Sect. 8.4.1 for analysis of the shielded triplate stripline. Of course, the
same approach is suitable for evaluating the distribution of the funttfﬁiﬁ) =
U&)(x, y;) over the subregion\(/4)*~ shown in Fig. 8.24(b). These distribu-
tions make a basis for evaluating the corresponding distributions of the electric
field vector, i.e.,EiJ_”j+ = E**(x, y;) and Eifj‘ = E*(x.,Y;), respectively. The
appropriate difference formulas described in detail in previous sections (for instance
in Sect. 8.4.1) can be used for this purpose. Integral parts of these electric field
vector distributions are distributions of the normal component of the electric field
vector evaluated on the surfacBsand S, of outer conductors of the transmission
lines shown in Figs. 8.23(b) and 8.23(c), respectively. These distributions, namely
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Ert = EfT(S) and B~ = Ef () make it possible to calculate the character-
istic impedance&j* = Zge and Z§~ = Zg according to general formula (8.33).
The computation procedure outlined above has been employed for analysis of the
shielded air—dielectric edge coupled striplines, see Fig. 8.23(a), with the following
parametersa = 40.00 mm,b = 5.00 mm,S = 2.40 mm,t = 1.00 mm and
W = 4.00 mm. Equal rectangular grids have been used for covering the subregions
(V/4)* and (V/4)"~, see Fig. 8.24. Node positions of these grids are defined by
indexes, i, j), where 1< i < | =251 and 1< j < J = 51. The dimen-
sions:a = 4000 mm,b = 5.00mm and indexe$ = 251,J = 51 define
sizes of the grid meshes univocally, that are= (a/2)/(1 — 1) = 0.08 mm and
-h = (b/2)/(J — 1) = 0.05 mm. In order to find initial approximation
U++(°) = UT+O(x, y;) of the functionU;"[" = U (x;, yj) it was assumed that
th|s function takes on the borders of the subregkz);ftéK)J“Jr the following values:

U@ =ov fori=1 1<j<J

U@ =o0v forj=11<i <1
i—1 . .

Ui“fj*(o)zl- V o forj=J1<i<Iw

lw—1’
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U @=1v forj=J lw<i<ls
UL @ =1-11-ut00. )] =e.v forj=J ls<i <
U++(o) U++(0)(| J)- l_l fori=1,1<j<J

where:lg = 236, |y = 186, Js = 41 and

r 1 1 0
UiJ,erO)(l"]): Piadiarg [

+ +
Prafis+dia L1+as  aa@+ais)  pLa(pa+ra)

0
+—]v
roa(pia+ri9)

is an initial value of the determined potential function at the terminal nbdé)(
Thanks to symmetry of the coupled lines under consideration (see Figs. 8.6 and
8.23),q,.5 = landp,y =3 = b/S = 2.5. Hence, initial value of the poten-

tial function at node I, J) is equal toUijT(O)(I, J) = b?/(b? + ) = 25/29, V.

Table 8.31 presents some values of potential fundﬂgﬁ = U*t(x, y;) deter-
mined by means of the SOR method. As the stop criterion the condRior<
1.013 x 1078 has been used, see relation (8.22).

Some values of the distributionfE = E*(S) evaluated on the basis of the
potential functior;;" = U™*(x;, y;) are given in Table 8.32.

Finally, the characteristic impedance calculated on the basis of the distribution
Eff = EFf(S) is equal toZ++ = Zoe = 59.3999(). As it has been mentioned
above the funct|omJ+] *t7(xi, yj) is evaluated in the similar manner over the
subregion ¥ /4)", see F|g 8.24(b). Some values of this function calculated with
accuracy defined bR, < 1.014 x 1078, are given in Table 8.33.

Table 8.31

/i > 234 235 236 237 228

40 09648619 09595679 09465962 09012761 08623688
39 09307016 0221351 09058289 8736286 08413264
38 08979273 08877244 08712706 08460212 08189873
20 04338699 01297129 01253570 01208516 01162554
3 00453387 00449792 00446116 00442398 00438680
2 00226683 0224887 00223054 0221199 00219343
1 0.0000000 00000000 00000000 00000000 00000000
Table 8.32

i 2. 235 236 237.. 251

Eq(i, 1), V/m 0.0065168 449.7598 446.1025 442.3996 408.8472
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Table 8.33

i/i > 234 235 236 237 228

40 09501752 (0389871 0128662 (8249545 07437695
39 09023052 08838077 08498692 07844080 07150580
38 08572562 (B346599 07991868 07453806 6853173
20 03457720 (B313840 3158930 (2993351 ®817674
3' . 0.0341457 00326655 00310969 00294421 00277045
2 0.0170641 00163241 00155399 00147129 00138445
1 0.0000000 (00000000 00000000 (0000000 00000000

The characteristic impedance calculated on the basis of this distribution is equal
t0 Z§~ = Zg = 50.6935().

The analysis procedure presented above has been repeated many times for vari-
ous thickness of the internal strips, see Fig. 8.23(a). Calculation results, illustrating
an influence of this thickness on characteristic impedazggs Zg, and coupling
coefficientk = (Zoe — Zoo)/(Zoe + Zoo) are given Table 8.34.

Values of impedancegpe, Zoo calculated fot = 0, mm anda — oo differ by
less than B9, () from the exact valueZoe = 79.9899 () andZp, = 71.3354 ().
These reference values have been found from the following formulas:

Mr K,(ke)
Zoe = 29.976- 7 |21 . ,
e Ve Kike)

i K (ko)
e K(ko) ’

(8.44)
Zoo=29976- 1

where:

T W+S aW T W+S

ke_th( )th( b ) ko = th<2b> th( b )
wr = 1ande, = 1. The term K(k) denotes the complete elliptic integral of the first
kind, and K(Kk) is the same integral associated (complementary) with K(k), [7][14].
The calculation of integral K(k), when its modulus k is known, is not complicated,
and can be done by using the effective algorithm described in Appendix F. It should
also be pointed out that the same algorithm can be applied to calculate the comple-
mentary integral KKk).

Table 8.34 (a =40.0mm b =50mm S=24mm W = 4.0, mm)

t, mm Zoe, Q Z0oo, QO k R«
1.000 593999 506935 0079082 1014 x 1076
0.500 679508 590282 0070268 1098 x 1076

0.000 791041 707488 0055756 1013x 1078
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Table 8.35 (a=40.0mm b =50mm S=24mm W = 4.0, mm)

t, mm Zoe () Z0oo, () k R«

1.000 596877 507736 0080699 <107°
0.500 682943 591456 0071788 <107°
0.000 797297 711520 0056850 <10°°

The difference B9, () of impedances evaluated above shows that the performed
numerical caclulations are not accurate enough. Therefore, numerical analysis of
the coupled lines under consideration has been repeated for the new grid with twice
reduced mesh sizes now equahte- k = 0.025 mm. The results of these improved
calculations are given in Table 8.35.

In this case impedancesge, Zoo evaluated numerically for the coupled lines
with infinitely thin inner conductorst (=~ 0) differ from their exact valueZoe =
79.9899 ), Zp, = 713354 () by less than 27, Q). This difference seems to be
acceptable for the most applications.
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Appendix A
Equation of a Plane in Three-Dimensional Space

Let us assume that in three-dimensional space (x;, y = X2, Z = X3) the vector
R = [Xo — 0,y0 — 0,z — 0] is perpendicular (normal) to the plar&at point
R = (Xo, Yo, 20), as itis shown in Fig. A.1.

The planeScan be treated as an infinite set of poi@ts= (X, v, z), for which the
vectorQ = [X — Xo, Y — Yo, Z — 2] is perpendicular to the vect®t. VectorsR and
Q are perpendicular, if and only if their dot product is equal to zero. This condition
can be written in the form of equation as:

R-Q=(X0—0)x =)+ (Yo-0)y = Yo) + (20— 0)z-2) =0 (A1)

Fig. A.1

269



270 A Equation of a Plane in Three-Dimensional Space
Equation (A.1) can be easily transformed to the following equivalent form:
Xo- X+ Yo Y+20-2= (¢ +YE+2) (A.2)

similar to linear equations occurring in the system (1.8).



Appendix B
The Inverse of the Given Nonsingular
Square Matrix

Let A be a square nonsingular matrix:

a1 a2 ... aun
dp; Ayy ... Qo

A=| . . . (B.1)
dn1 @2 ... ann

whose determinarid # 0. The matrixA—! is the inverse of the matriX, when their
product is equal to the unitary matrix, i.&,- A= = A~1. A = E. Determinant
of the inverse matrixA~! equals 1D. In order to determine the inverge !, we
introduce the notion of the minor of an element and the cofactor; of this
element. Minor of elemerd;; of the square matriA is defined as the determinant
of the matrix of the rankr( — 1) obtained by crossing out the ravand columnj
from the original matriXA. The cofactorA;; of the elemeng;; of the matrixA is the
product of the minor of this element and the multiplied(?+1). When the cofactors
of all elements of the matriA and its determinand are known, the inverse of this
matrix can be written as:

Air Ay ... An

1 1 A12 A22 S An2
A= : : (B.2)

Aln A2n oo Ann

Example B.1 et us consider the nonsingular matrix:

2 -1
A:|:3 1:|, detA=5

The cofactors evaluated for this matrix afg; = (—1)?- 1 =1, A, = (—1)°-
3=-3,A;=(-1)P-(-1)=1andAy, = (—1)*- 2 = 2. Thus, the inverse of the
matrix A is:
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272 B The Inverse of the Given Nonsingular Square Matrix

T [All Aﬂ 1[ 1 1} doa 112 -31_5 1

T detA | Az An| 5|-3 2 55 5 5 25 5

The product - A~ is equal to the unitary matri&, namely:

T TER R

In this simple manner, the correctness of the performed calculations has been
confirmed.



Appendix C
The Fast Elimination Method

The fast elimination method discussed below can be treated as a simplified version
of the Gauss elimination method adopted for solving large linear equation systems
with tridiagonal matrices of coefficients. The term “fast” emphasizes a fact that the
computational process is relatively faster because only tridiagonal coefficients are
taken into account. In its first stage, pairs of auxiliary coefficients are recursively
determined for each af — 1 equations creating the system. During the second
stage, these coefficients are then used to find the values of the unknowns. In order
to explain an essence of this method, let us consider a tridiagonal equation system
written in the following general form:

b1X1 + c1%2 =0
aXy + boxo + Coxs =d
agXz + baxs + Caxy =d3 (C.1)

An—1Xn—2 + Pn_1Xn—1 4+ Ch—1Xn = On_1
anXn_1 + ann = dn

For further considerations it is assumed that all the coefficients of the main di-
agonalb;, wherei = 1,2,3,...,n, are different from zero. It follows from the
literature that this condition is satisfied by majority of equation systems describing
the real engineering problems. In case of the method under discussion, similarly as
in the Gauss elimination method, two stages are distinguished, namely the upward
and backward movement. During the first stage, each unknown varghidere
i=123,...,n—1,is expressed in the form of a linear function:

X = AXiy1+ B (C.2)

whereA; andB; are recursive coefficients. Following this rule, from the first equa-
tion of the system (C.1) it follows that:

C d
X1 = ——1X2 + == Ai1xo + By (C.3)
by by

273



274 C The Fast Elimination Method

where A; = —c;/b; andB; = d;/b;. The relation (C.3) introduced into the sec-
ond equation of the system (C.1) makes it possible to write the following relation
ap(AaXo + B1) + boxp + Cox3 = dy as:

C dr —ayBy

Xo = — X3 +
2 a AL+ by 3 AL+ by

= AxX3+ By (C.49)

where A, = —Cp/(ax A1 + by), B, = (d2 — axBy)/(a2 A1 + by). Similarly, for 1 <
i < n—1the remaining coefficients are:

G d —aBi_1
A=——+———| = —— C.5
aA_1+b’ T aA 1+h (€9
The values of all coefficientd\, B;, Ao, By, ..., Ar_1, Bh_1, evaluated in this

manner have to be stored in the computer memory. In the second stage (backward
movement) values of the unknowmrs are consecutively calculated, starting from
Xn. The unknowrk, is computed by solving the following equation system:

Xn—1 = An_1Xn + Bn_1 (C.6)
anXn—1 + bnXp = dy

formulated from (C.2) defined far = n — 1 and the last equation of the original
system (C.1). A solution of the equation system (C.6) is:

o dn - aan—l

= = C.7
anAn_1 + by (€7

n

The remaining unknowns, are next calculated using the relation (C.2) and the
coefficientsA; andB; evaluated in the first stage. Theoretically, in the computational
process described above an operation of division by zero, or infinitesimal number
may occur, see relations (C.5) and (C.7). It has been proved in the literature that
such “danger” is absent, if for £ i < n the following inequalities are satisfied:

bil > la| + |Gl (C.8)

and at least one of the inequalities (C.8) is acute. In other words, matrix of coeffi-
cientsA should be diagonally dominant.



Appendix D

The Doolittle Formulas Making Possible
Presentation of a Nonsingular Square Matrix
in the form of the Product of Two

Triangular Matrices

The matrix equationg;]nn = A = L - U discussed in Sect. 1.1.3 is equivalent to
the system oh? linear equations:

r
aj = Zliq -Ugj, Wherer = min(, j) (D.1)
q=1

In the Crout method it is assumed that all the diagonal elements of the rdatrix
are equal 1, i.ey; = 1fori = 1,2, 3,...,n. Due to this assumption, the sum
of elements of the triangular matricesand U, determined in the process of LU
decomposition reduces t&. In order to find the calculation formulas, appropriate
for this particular decomposition, consider the general Eq. (D.1), written for the
elementg of the rowi and columnj, assuming that > k.

K k-1
aik ZZqu 'quzzliq - Ugk =+ lik - Uk (D.2)
g=1 g=1

From equation (D.2), assuming thaf = 1, we obtain the following recursive
formula:

k—1
lic =ak — ) _lig-Ugk. Wherei =k k+1k+2....n (D.3)
g=1

Let us consider Eq. (D.1) again, written for an elemagtof the rowk and
columnj, assuming thaj > k.

k k—1
i Zzlkq'“m’ ZZIKQ'UQj+Ikk‘Ukj (D.4)
g=1 g=1
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276 D The Doolittle Formulas Making Possible Presentation

After some elementary transformations, Eq. (A.4) takes the form:
1 k—1
U = | a; — Y lkg-Ug |. wherej =k+1k+2....n (D5
kk
q=1

Equations (D.3) and (D.5) derived above are particular cases of the Doolittle
formulas. They constitute a theoretical basis for the computer program CROUT,
which has been used to decomposite the matrix L - U given below.

A
1 2 3 4 5 6
2 7 12 17 22 27
4 13 28 43 58 7
7 22 46 80 114 14
11 34 70 120 185 25
16 49 100 170 260 37
L U

1 0 0 0 0 O 1 2 3 45 6

2 3 0 0 0 oO 01 2 3 45

=14 5 6 0 0 O 0 01 2 3 4

7 8 9 10 0 O 0 001 2 3

11 12 13 14 15 0 0001 2

16 17 18 19 20 2 0 00 0 O01



Appendix E

Difference Formula for Calculation

of the Electric Potential at Points Lying on the
Border Between two Looseless Dielectric Media
Without Electrical Charges

Let us consider the vectoD of the electric induction determined at points
E =X +h)W= (X —hy)N= (XY +handS = (x, yo — h)
of the inhomogeneous dielectric area shown in Fig. E.1.

The components of this electric induction vedat these particular points can
be approximated by the following differences:

Ue — Up
h
Up — Uw
h

Lte. _ 1te Un—Uo
2 INTHT h

1+8rE _81+8r.Uo—Us
y$=507) h

Dye ~ 1-60- Exe = ¢

Dyw ~ & - &0 - Exw = &r - €0
(E.1)

Dys~ g

The differences (E.1) make it possible replacing the differential equ&tidh =
V - (ere0VU) = 0, defined at pointD = (X, Yo), by the following difference
equivalent:

9D, 9D, Dyg—D Dyn — D
V- Do, o) = o5+ ot~ o L
Ue — Uo Uo — Uw (I+e&) Un—Uo
=t g CE0 g et g gp B2
_Ate) Uo—Us
o2 2ne
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278 E Difference Formula for Calculation of the Electric Potential

A interface
y
Yo+t h+
Yot
A /N |
Es
nonoun |
Yo—h+ e
i | Ug
X
Xo—h Xg Xg+ h
Fig. E.1

Performing some elementary transformations, Eq. (E.2) simplifies to the form:

U_UE+8r-UW Un + Us
°T T2+ &) 4

(E.3)

identical to relation (8.35).



Appendix F
Complete Elliptic Integrals of the First Kind

The complete elliptic integral of the first kind (k) is defined as:

(F.1)

1
dt
0= 0/ Ja-o)a-ko

wherek (0 < k < 1) is the modulus oK (k). The associated (complementary)
integralK’(K) is defined as:

K’'(k) = K(k') (F.2)
wherek’ = +/1 — k2 is the complementary modulus.
The calculation of integraK (k), when its modulus is known, is not com-

plicated, and can be done by using the algorithm presented below. Hence, let us
consider two infinite mathematical serieg)and @,) defined as:

ap=1+k bh=1-k

a = b1 = agh
1 5 1 oo (F.3)
+ bn
ant1 = 2 bn+1 = anbn

Series defined in this manner converge to a common limit, usually denoted as
m(@o, bo) = (k). Then:

Nim (an) = lim (bn) = (k) (F.4)

Finally, the value of integraK (k) is related to limitu (k) as follows:

I

K0 =505 (F.5)
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280 F Complete Elliptic Integrals of the First Kind

wherew = 3.141592653589.. The integralK’(k) can be calculated in a similar
way. Of course, in this case the limit(k") has to be calculated instead @fk).

The seriesd,) and pn) are rapidly convergent, and in the most cases only a few
iterations, for instanca = 5, must be taken into account. Some calculation results
for the complete elliptic integrals of the first kind are given in Table F.1.

Table F.1
k2 K () K'(K)

0.00 1.570 796 326 794 NS

0.01 1.574 745 561 317 3.695 637 362 989
0.10 1.612 441 348 720 2.578 092 113 348
0.50 1.854 074 677 301 1.854 074 677 301
0.90 2.578 092 113 348 1.612 441 348 720
0.99 3.695 637 362 989 1.574 745 561317

1.00 — 00 1.570 796 326 794




Subject Index

A

Adams method, 191, 192
Aitken procedure, 76, 134
Algebraic equations, 29, 36
Antenna array, 111, 116
Approximation, 69, 89
Array antenna, 111, 118

B

Back substitution, 6

Bairstow method, 29, 30

Bashforth’s method, 193

Bessel function, 156, 157

Bisection method (binary search method),
37,38

Boundary conditions, 219, 223

Boundary value problem, 223, 226

Butterworth polynomial, 72, 95

C

CAD, CAM, 8

Cauchy problem, 179

Central difference formulas, 160, 170
Characteristic impedance, 45
Chebyshev polynomials, 86, 91
Chebyshev quadrature, 140, 146
Cofactor, 271

Complete elliptic integrals, 279
Corrector, 194, 196, 197
Cotes—Newton method, 136
Coupled slab lines, 58

Coupled triplate striplines, 263
Cramer rule (method), 4

Crout method, 11

Cubic spline function, 82

Curve fitting, 97

D
Derivatives (derivative approximations),
157, 163

Determinant of a matrix, 8, 9
Diagonal dominance, 19
Difference Laplace equation, 229
Differentation, 155, 162
Differential equations, 221
Divided differences, 68
Dolph—Chebyshev method, 114
Doolittle—Crout formulas, 11
Doolittle formulas, 14

E

Eccentric transmission line, 46

Elliptic integrals of the first kind,
279, 280

Euler method (formulas), 181, 188

Even mode excitation characteristic
impedance, 59, 91, 263

Extrapolating polynomial, 192, 194

Extrapolation, 194

F

False position method, 38

Fast elimination method, 273
Fictitious nodes, 254

Finite difference method, 219, 220
Fourier series, 102

Function of insertion losses, 63

G

Gauss elimination method, 5, 6, 8
Gauss—Jordan method, 9

Gauss quadrature, 140, 142, 143
Gauss—Seidel method, 18, 22
Gibbs effect, 111

Global minimum (extremum), 42, 56
Golden ratio search, 37

GPS (NavStar), 152

Gradient, 58, 172
Gregory—Newton polynomial, 77
Gretz bridge, 202
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H

Hamming method, 197
Helmholtz equation, 224
Heun method, 182

|

Impedance transformer, 62, 65

Initial conditions, 179

Initial value problem, 179

Insertion loss function, 89

Integral (definite and indefinite integrals), 121
Integrand, 123

Integration (numerical integration), 121
Interpolation, 69

Inverse of matrix, 14, 271

Inverted microstrip line, 253

J
Jacobian, 53
Jacobi method, 20

K

Kirchhoff’s laws, 23, 24, 199, 211
Kronecker’s symbol, 74
Kutta—Runge method, 186

L

Lagrange polynomial, 69, 73, 74
Laguerre method, 35

Laplace boundary problem, 228
Laplace equation, 228

Least squares method, 97
Legendre polynomial, 101, 141-142
Liebmann computational procedure, 231
Linear interpolation, 72

Lin method, 30, 31

Low—pass filter, 91

M
Matrix

column, 1

diagonal, 99

lower triangular, 2, 12

square, 1, 2, 3, 15, 18, 20, 85, 220, 271,

272,275

tridiagonal, 273

upper triangular, 2, 7

unitary, 15, 271-272
Method of bisection, 37, 38
Method of cells, 147
Method of chords (secants), 38
Method of direct iterations, 49
Method of golden section, 43
Method of least squares, 97

Subject Index

Method of LU decomposition, 11

Method of rectangles, 122

Method of steepest descent, 174

Method of tangents, 40

Milne method, 194
Moulthon—Adams—Basfhforth method, 193

N

Neumann boundary conditions, 226

Newton—Cotes method, 136

Newton—-Gregory polynomia, 77

Newton method (Newton Raphson method),
40, 52

Nodes, fictitious nodes, 254

Noncommensurate impedance transformers,
62, 65

Nonhomogenous transmission line, 215, 216

Nonlinear equations, 29, 42

Nonsingular matrix, 11, 271

O

Objective function, 174

Odd mode excitation characteristic impedance,
60, 263

Optimization, optimization methods, 56, 172,
173

Ordinary differential equations, 179

Over relaxation method, 230, 238

=]
Partial differential equations, 223, 226
Penalty function, 173

Periodic function, 108, 109

Predictor, 189, 194

Predictor corrector methods, 189

Q
Quadratures, 140, 144

R

Rectifier, ful-wave recifier, 199
Relaxation parameter, 239

Riccatii equation, 215

Richardson extrapolation rule, 130
Romberg method, 130

Runge extrapolating formula, 248
Runge—Kutta—Felhberg method, 186
Runge—Kutta method, 184

S

Secant method, 38

Simpson cubature, 148, 149

Simpson quadrature, Simpson method of
integration, 132
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Slab transmission line, 44 UNRRA (United Nations Relief and
Spline function, 82, 85 Rehabilitation Administration), 173
Square coaxial line, 250 Unsymmetrical voltage doubler, 199
Steepest descent method, 175 Upper triangular matrix, 2, 7

Successive over relaxation method (SOR), 23&JT (Universal time, formely referred to as
Greenwich Mean Time), 151

T

Taylor series, 158, 229

TEM transmission line, 44, 58, 250

Trancation error, 176

Transcendential equations, 39, 47

Trapezoidal method of integration, 122, 125

Triangular matrix, 2, 7

Tridiagonal matrix, 85, 220

Trigonometric series, 92, 99

\Y

Vandermonde determinant, 73
Vector dot product, 269

Villard voltage doubler, 199
\oltage doubler, 199

Voltage multipler, 208

Triplate stripline, 246 W
Wall (electric or magnetic), 264
) Wave equation, 224

Unitary matrix, 2 WGS84, 152



