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Introduction

Stormy development of electronic computation techniques (computer systems and
software), observed during the last decades, has made possible automation of data
processing in many important human activity areas, such as science, technology,
economics and labor organization. In a broadly understood technology area, this
development led to separation of specialized forms of using computers for the design
and manufacturing processes, that is:

– computer-aided design (CAD)
– computer-aided manufacture (CAM)

In order to show the role of computer in the first of the two applications men-
tioned above, let us consider basic stages of the design process for a standard piece
of electronic system, or equipment:

– formulation of requirements concerning user properties (characteristics, parame-
ters) of the designed equipment,

– elaboration of the initial, possibly general electric structure,
– determination of mathematical model of the system on the basis of the adopted

electric structure,
– determination of basic responses (frequency- or time-domain) of the system, on

the base of previously established mathematical model,
– repeated modification of the adopted diagram (changing its structure or element

values) in case, when it does not satisfy the adopted requirements,
– preparation of design and technological documentation,
– manufacturing of model (prototype) series, according to the prepared documen-

tation,
– testing the prototype under the aspect of its electric properties, mechanical dura-

bility and sensitivity to environment conditions,
– modification of prototype documentation, if necessary, and handing over the

documentation to series production.

The most important stages of the process under discussion are illustrated in
Fig. I.1.

xi
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Fig. I.1
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According to the diagram presented above, the design process begins with the
formulation of user requirements, which should be satisfied by the designed system
in presence of the given construction and technological limitations. Next, among
various possible solutions (electrical structures represented by corresponding struc-
tures), the ones, which best satisfy the requirements adopted at the start are chosen.
During this stage, experience (knowledge and intuition) of the designer has decisive
influence on the design process. For general solution chosen in this manner (values
of system elements can be changed), mathematical model, in the form of transfer
function, insertion losses function or state equations, is next determined. On the
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base of the adopted mathematical model, frequency- or time-domain responses of
the designed system are then calculated. These characteristics are analyzed during
the next design stage. In case when the system fully satisfies the requirements taken
at the start, it is accepted and its electric structure elaborated in this manner can be
considered as the base for preparation of the construction and technological doc-
umentation. In the opposite case, the whole design cycle is repeated for changed
values of elements of the adopted electrical structure. When modification of the
designed system is performed with participation of the designer (manual control),
the process organized in this way is called interactive design. It is also possible to
modify automatically the parameters of the designed system, according to appro-
priate improvement criterions (goal function), which should take usually minimal
or maximal values. Design process is then called optimization. During the stage of
constructing mathematical model of the designed system, as well as during the stage
of analysis, there is a constant need for repeated performing of basic mathematical
procedures, such as:

– solving systems of linear algebraic equations,
– solving systems of nonlinear algebraic equations,
– approximation or interpolation of one or many variable functions,
– integration of one or many variable functions,
– integration of ordinary differential equations,
– integration of partial differential equations,
– solving optimization problems, the minimax problem included.

The second process mentioned above, namely the CAM, can be considered in
a similar way. The author is convinced that efficient use of computer in both pro-
cesses considered, requires extensive knowledge of mathematical methods for solv-
ing the problems mentioned above, known commonly under the name of numerical
methods. This is, among other things the reason, why numerical methods became
one of the basic courses, held in technical universities and other various kinds of
schools with technical profile Considerable cognitive virtues and specific beauty of
this modern area of mathematics is the fact, which should also be emphasized here.

This book was worked out as education aid for the course “Numerical Methods in
Radio Electronics“ lead by the author on the Faculty of Electronics and Information
Technology of Warsaw University of Technology. During its elaboration, consider-
able emphasis was placed on the transparency and completeness of discussed issues,
and presented contents constitute sufficient base for writing calculation programs in
arbitrary programming language, as for example in Turbo Pascal. Each time, when it
was justified for editorial reasons, vector notation of the equation systems and vec-
tor operations were deliberately abandoned, the fact that facilitates undoubtedly the
understanding of methods and numerical algorithms explained in this book. Numer-
ous examples of engineering problems taken from electronics and high-frequency
technology area serve for the same purpose.



Chapter 1
Methods for Numerical Solution
of Linear Equations

As already mentioned in the Introduction, in many engineering problems there is
a constant need for solving systems of linear equations. It could be said with full
responsibility that solving of such equations constitutes one of the most common
and important problems of the numerical mathematics [1–5]. The system ofn linear
equations can be written in the following expanded form:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn

(1.1)

Using the definitions (notions) of the square matrix and the column matrix
(vector), the system (1.1) can be represented by the following equivalent matrix
equation:

A · X = B (1.2)

where

A =

⎡
⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann

⎤
⎥⎥⎦ is the square matrix of coefficients

B = [b1, b2, . . . , bn]T is the vector of free terms
X = [x1, x2, . . . , xn]T is the vector of variables

The transposition symbol “T” is used for the vectorsB = [b1, b2, . . . , bn]T and
X = [x1, x2, . . . , xn]T, which are in fact column matrices. Solution of the equation
system (1.1) consists in finding such values for every component of the vector of
unknownsX that all equations of the system (1.1) are simultaneously satisfied.
This assertion is legitimate only when it is assumed that such solution exists. In

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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2 1 Methods for Numerical Solution of Linear Equations

the opposite case, the whole effort, undertaken in order to determine such solution,
would be in vain. In order to avoid such undesirable conditions, we should inves-
tigate in advance the existence of a unique nontrivial solution – the task for which
the analysis of the square coefficient matrixA and calculation of its determinant can
help. The fundamental forms of square matrices and the formula used for calculating
their determinants are given below for the particular case of the third-order square
matrix (n = 3).

Symmetric matrix

A =
⎡
⎣

2 1 −1
1 3 2

−1 2 4

⎤
⎦ , (ai j = aji )

Upper triangular matrix

U =
⎡
⎣

1 2 3
0 −1 1
0 0 2

⎤
⎦

Lower triangular matrix

L =
⎡
⎣

1 0 0
2 −1 0
4 0 2

⎤
⎦

Diagonal unitary matrix

E =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

Zero matrix

0 =
⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦

The variableD(detA) defined by Eq. (1.3) is called the determinant of the square
matrixA of ordern:

D =

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣
=
∑

(−1)k a1αa2β . . . anω (1.3)
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where the indexesα, β, . . . , ω denote all among then! possible permutations of the
numbers 1, 2, 3, . . . , n, andk is the number of inversions in a particular permutation.

According to this definition, the determinant of the second-order matrix
(n = 2) is

detA = a11a22 − a12a21 (1.4)

In case of the third-order matrix (n = 3), we have

detA = a11a22a33+a12a23a31+a21a32a13−a13a22a31−a11a23a32−a33a12a21 (1.5)

In the general case (n>3), the calculation of the determinant of the square matrix
is a cumbersome task. Therefore, as a rule, we use an indirect method based on the
properties of the triangular matrixT (upper or lower), having the determinant equal
to

detT = t11 · t22 · t33 · . . . · tkk · . . . · tnn (1.6)

wheretkk is thekth element of the main diagonal of this matrix. Another property
that can also be used for this purpose is the equality of determinants of a square
matrix A and the equivalent triangular matrixT, if only the rows and columns are
not permuted in the process of the transformation of the matrixA into the matrix
T [3, 6]. This transformation can be made by eliminating the unknowns, i.e., in the
same way as in case of the elimination process described step by step in Sect. 1.1.1.
According to the formula (1.6), we have detE = 1 and det0 = 0. The necessary
and sufficient condition for the existence of a solution of the equation system (1.1) is
that the determinantD of the coefficient matrixA is distinct from zero. The matrix
for which this condition is satisfied is called nonsingular. WhenD = 0, the equation
system under consideration can have either no solution or an infinite number of so-
lutions. This property has the following simple geometrical interpretation in the case
n = 3. Each equation of the system (1.1) describes a plane in the three-dimensional
space, as proved in Appendix A. The intersection of the two planesP1 and P2,
shown in Fig. 1.1, represents the straight line that intersects the third planeP3 at
point S. The coordinates (x1s, x2s, x3s) of this point represent the solution being
sought.

In case whenD = 0, some of these planes are parallel or identical. The methods
used for numerical solution of the systems of linear equations can be classified as
follows:

– direct (simple) methods
– iteration methods

In case of the direct methods, explicit recursive formulas are used to determine
the components of the vectorX constituting the solution, and it is not necessary to
know the initial approximate solution (starting point). A classical example of such
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x20

x1s

x1
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Fig. 1.1

direct method is the Cramer’s rule explained below for solving a system of two
equations.

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
(1.7)

D =
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21, D1 =
∣∣∣∣
b1 a12

b2 a22

∣∣∣∣ = b1a22 − b2a21

D2 =
∣∣∣∣
a11 b1

a21 b2

∣∣∣∣ = a11b2 − b1a21, x1 = D1/D, x2 = D2/D whenD �= 0.

In case of larger equation systems (n > 2), this rule is numerically ineffective
and hence is of little practical use. The main advantages of direct methods are their
simplicity and universality. The most important disadvantages are the necessity to
store (in the computer memory) the whole coefficient matrixA during the com-
puting process and the effect of computing error accumulation, which is specially
inconvenient in case of very large equation systems, such as forn>100. The effect
of computing error accumulation is absent when we use the iteration methods of-
ten called the consecutive iterations methods. They are mainly used for solving the
large equation systems. Unfortunately, the knowledge of an approximate solution,
ensuring convergence of the computation process, is necessary to start the solving
procedure. The basic methods belonging to both groups will be discussed in this
chapter, see Fig. 1.2.
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Methods for solving linear equations

Direct methods Iterative methods

Gauss elimination

Gauss - Jordan elimination

LU decomposition

Inverse matrix method

Jacobi method

Gauss - Seidel method

Direct iteration method

Hybrid methods (direct + iterative)

Fig. 1.2

1.1 Direct Methods

1.1.1 The Gauss Elimination Method

In order to explain the main concept of the Gauss elimination method, let us consider
the following system of three equations in three unknowns:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(1.8)

In order to eliminate the unknown variablex1 from the second equation, we add
the first equation to the second equation multiplied by−a21/a11. In a similar way,
we multiply the first equation by−a31/a11 and we add it to the third equation. Now
we have the following equation system:

a11x1 + a12x2 + a13x3 = b1

a′
22x2 + a′

23x3 = b′
2

a′
32x2 + a′

33x3 = b′
3

(1.9)

wherea′
22 = a22 − a12a21/a11, a′

23 = a23 − a13a21/a11, b′
2 = b2 − b1a21/a11,

a′
32 = a32 − a12a31/a11, a′

33 = a33 − a13a31/a11, andb′
3 = b3 − b1a31/a11
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Subsequently, we can eliminate the variablex2 from the third equation of the
system (1.9). For this end, we multiply the second equation by the term−a′

32/a′
22

and add it to the third equation of the system. Finally, we obtain the system:

a11x1 + a12x2 + a13x3 = b1

a′
22x2 + a′

23x3 = b′
2

a′′
33x3 = b′′

3

(1.10)

wherea′′
33 = a′

33 − a′
23a

′
32/a′

22 andb′′
3 = b′

3 − b′
2a′

32/a′
22.

This transformed equation system (1.10) is mathematically completely equiva-
lent to the system (1.8). The coefficient matrix of this system has the triangular
form, which means that the first stage of the procedure, called the elimination stage
or, more colloquially, the upward movement, is completed. According to the formula
(1.6), the determinant of this matrix is equal toD = a11 · a′

22 · a′′
33 and has the same

value as the determinant of the coefficient matrixA of the equation system (1.8).
In case this determinant is different from zero, the transition to the second stage
of the procedure is legitimate. This second stage is called the substitution stage, or
the backward movement, and begins with the determination ofx3 from the third
equation and substitution of the value ofx3 obtained in this way in the second equa-
tion. After this substitution, the second equation of the system (1.10) contains only
one unknown variable, namelyx2, which can be found in the elementary way. The
values ofx3 andx2 calculated in this way are then substituted in the first equation
of the system (1.10), which reduces to the one-variable equation inx1, which can be
solved in an equally simple way. The second and the third equation of the system
(1.9) can be interchanged in order to obtain the condition in which the coefficients
in the main diagonal have the maximum absolute values. In this manner, the numer-
ical error of the method is reduced. Additionally, the interruption of the count after
the incidental occurrence of the division by zero becomes impossible. The method
improved in this way is called the Gauss elimination method with the choice of
the main (pivotal) element, called the pivoting strategy. For the arbitraryn ≥ 3, the
variable elimination process used in the Gauss method (stage 1) can be considered as
determination of the matrix series:A(1) = A, A(2), A(3), . . . , A(i ), . . ., A(n); B(1) = B,
B(2), B(3), . . . , B(i ), . . ., B(n), where the matricesA(i ) andB(i ) have the form

A(i ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . a(1)
1i . . . a(1)

1n

0 a(2)
22 . . . a(2)

2i . . . a(2)
2n

...
... . . .

... . . .
...

. . . . . . . . . .

. . . . . . . . . .

0 0 . . . a(i )
i i . . . a(i )

in
. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

0 0 . . . a(i )
ni . . . a(i )

nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(i ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(1)
1

b(2)
2
.

.

.

b(i )
i
.

.

.

b(i )
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.11)
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According to the procedure of elimination of the consecutive unknown variables
described above, the elements of these matrices are determined by using the follow-
ing expressions:

a(i+1)
jk = a(i )

jk − a(i )
j i

a(i )
i i

· a(i )
ik , b(i+1)

j = b(i )
j − a(i )

j i

a(i )
i i

· b(i )
i (1.12)

wherei = 1, 2, 3, . . . , n; j = i + 1, i + 2, i + 3, . . . , n; andk = i + 1, i + 2,

i + 3, . . . , n.
In a case when a(i )i i ≈ 0 dividing by zero may accour, see formula (1.12). Such

computational menace can be eliminated by an appropriate choice of the pivotal
element, also called pivot. This protection consists in the choice, among elements
a(i )

i i , a(i )
i+1.i , a(i )

i+2.i · · · · , a(i )
n,i belonging to thei – column, of the element having the

largest nonzero absolute value. Let the rowk– of the matrixA(i ) be the row, for which

∣∣∣a(i )
ki

∣∣∣ = max
∣∣∣a(i )

j i

∣∣∣ , i ≤ j ≤ n (1.13)

Then, the rowk of the matrixA(i ) should be interchanged with thei th row. At
the same time, the elementsb(i )

i andb(i )
k of the column matrix (vector)B(i ) should

be interchanged. In a similar way, the process of calculating the matricesA(i ) and
B(i ) should be continued up to the positioni = n. The resulting equation system,
equivalent to the original systemA · X = B, is

A(n) · X = B(n) (1.14)

in which the coefficient matrixA(n) is the upper triangular matrix. In the process of
finding the pivot in thei th iteration, if we obtain

∣∣∣a(i )
ki

∣∣∣ = max
∣∣∣a(i )

j i

∣∣∣ ≤ ε (1.15)

whereε is a given, sufficiently small positive number (e.g.,ε = 10−16), the whole
process should be interrupted, because it means that the determinantD of the matrix
of coefficients (A, A(n)) is equal to zero. In the opposite case (D �= 0), we should
pass to the next substitution stage. The essential meaning of this uncomplicated
stage was explained above using an example of the three equations in three variables.
Whenn ≥ 3, the particular terms of the desired solution can be found by using the
following recursive formula:

xi = 1

a(n)
i i

⎡
⎣b(n)

i −
n∑

j =i+1

a(n)
i j · xj

⎤
⎦ (1.16)

wherei = n, n − 1, n − 2, . . . , 1.
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Example 1.1Let us solve the system of three linear equations by using the Gauss
elimination method:

10x1 − 7x2 + 0x3 = 7
−3x1 + 2x2 + 6x3 = 4

5x1 − 1x2 + 5x3 = 6

In the first step, we eliminate the variablex1 from the second and the third equa-
tion. For this purpose, we multiply both sides of the first equation by the number 0.3
and add it to the second equation. In a similar way, we multiply the first equation by
−0.5 and add it to the third equation. As a result of these operations, we obtain

10x1 − 7x2 + 0x3 = 7

−0.1x2 + 6x3 = 6.1

2.5x2 + 5x3 = 2.5

In order to reduce the rounding error, the second and the third equation should
be interchanged.

10x1 − 7x2 = 7

2.5x2 + 5x3 = 2.5

−0.1x2 + 6x3 = 6.1

Our next step is the elimination of the variablex2 from third equation. For this
end, the second equation should be multiplied by 1/25 and then added to the third
equation. After this operation, we obtain the system

10x1 − 7x2 = 7

2.5x2 + 5x3 = 2.5

6.2x3 = 6.2

The coefficient matrix of this transformed equation system has the form of a
triangular matrix. The determinant of this matrix, calculated using the formula (1.6),
equalsD = 10 · 2.5 · 6.2 = 155. The nonzero value of this determinant shows
that the equation system under consideration has one nontrivial solution. It follows
directly from the third equation thatx3 = 1. After substituting the valuex3 = 1 in
the second equation, we obtain 2.5x2 + 5 · 1 = 2.5. This equation is satisfied by
x2 = −2.5/2.5 = −1. Substitutingx3 = 1 andx2 = −1 in the first equation, we
obtainx1 = 0. Finally, our complete solution is as follows:x1 = 0, x2 = −1, and
x3 = 1.

The formulas and the procedure for choosing the pivoting element, explained in
this section, served as a base for the design of the computer program GAUSS. This
program was subsequently used to solve the following system of six linear equations
(n = 6):
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⎡
⎢⎢⎢⎢⎢⎢⎣

6 −3 2 1 −1 1
−3 −7 0 4 −2 1

4 −3 6 −1 2 1
2 4 5 −7 −3 2

−1 5 −4 0 8 −2
3 0 4 −2 5 −6

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

11
−5
28
−6
25
−4

⎤
⎥⎥⎥⎥⎥⎥⎦

During the elimination process, accompanied by an operation of choosing the
pivots, this equation system is being transformed to the following equivalent form:

⎡
⎢⎢⎢⎢⎢⎢⎣

6 −3 2 1 −1 1
0 −8.5 1 4.5 −2.5 1.5
0 0 4.921569 −4.686275 −4.137255 2.549020
0 0 0 2.135458 6.784861 −2.199203
0 0 0 0 5.264925 0.1343285
0 0 0 0 0 −6.612686

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

11
0.5

−9.372549
29.270920
27.1306

−39.67612

⎤
⎥⎥⎥⎥⎥⎥⎦

Solution of this equation system, determined during the second, substitution
stage, is the vectorX ≡ (x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6).

1.1.2 The Gauss–Jordan Elimination Method

In order to explain the essence of the Gauss–Jordan method, let us reconsider the
system of three linear equations in three unknownsI1, I2, andI3, interpreted here as
the complex amplitudes of the currents in a three-mesh electrical circuit.

R11I1 + R12I2 + R13I3 = V1

R21I1 + R22I2 + R23I3 = V2

R31I1 + R32I2 + R33I3 = V3

(1.17)

It is obvious that multiplying both sides of each of the equations (1.17) by a
constant and summing them up does not change the values of the unknown cur-
rentsI1, I2, andI3. Hence, by using this operation repeatedly, in order to eliminate
some of the unknowns, it is possible to transform the equation system (1.17) to the
following form:
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1 · I1 + 0 · I2 + 0 · I3 = C1

0 · I1 + 1 · I2 + 0 · I3 = C2

0 · I1 + 0 · I2 + 1 · I3 = C3

(1.18)

in which the transformed matrix of coefficientsA is the diagonal unitary matrix. It
follows directly from the equations (1.18) thatI1 = C1, I2 = C2, andI3 = C3. One
of the procedures serving to eliminate some unknowns from the particular equations
was demonstrated using Example 1.2.

Example 1.2Assume that the equation system (1.17) has the same coefficients, as
the system analyzed in Example 1.1, i.e.,

10I1 − 7I2 = 7
−3I1 + 2I2 + 6I3 = 4

5I1 − I2 + 5I3 = 6

Using the transformations shown in Example 1.1, this equation system can be
written in the following equivalent triangular form:

10I1 − 7I2 = 7

2.5I2 + 5I3 = 2.5

6.2I3 = 6.2

Dividing all three equations by their diagonal coefficients, we obtain

I1 − 0.7I2 = 0.7

I2 + 2I3 = 1

I3 = 1

Now we shall eliminate the variableI2 from the first equation. To do this, we
may add to it the second equation multiplied by 0.7. Resulting equation system has
the form

I1 + 0 · I2 + 1.4I3 = 1.4

I2 + 2I3 = 1

I3 = 1

Next we shall eliminate the variableI3 from the first and the second equation. It
can be done by multiplying the third equation by the constant−1.4 and adding it
to the first equation. Similarly, the third equation should be multiplied by−2 and
added to the second equation. Finally, we obtain the following system of equations:
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I1 + 0 · I2 + 0 · I3 = 0

I2 + 0 · I3 = −1

I3 = 1

for which the matrix of coefficientsA is diagonal and unitary and has the solution
I1 = 0, I2 = −1, and I3 = 1. During the transformation of the equation sys-
tem (1.17) to the form (1.18), the vector of currentsI remains unchanged and the
operation is made with respect to the matrix of coefficients and vector of voltages.
Creation of the so-called augmented matrix of ordern×(n+1) therefore proves very
useful. In case of the system of three equations (n = 3) discussed in this section, the
augmented matrix has the form:

R =
[

R
...V

]
=
⎡
⎣

R11 R12 R13 V1

R21 R22 R23 V2

R31 R23 R33 V3

⎤
⎦ (1.19)

Matrix R may be transformed through the full elimination process, after which it
takes the form

⎡
⎣

1 0 0 I1

0 1 0 I2

0 0 1 I3

⎤
⎦ (1.20)

For this purpose, the computation algorithm given in the literature can be used
[8, 9].

1.1.3 The LU Matrix Decomposition Method

Let us now consider the task of solving repeatedly the system of linear equations

A · X = B (1.21)

each time for the same matrix of coefficientsA, but for different excitation vectors
B. The Gauss and Gauss–Jordan elimination methods are not effective for solving
this particular problem, because the repeated transformation of the matrixA and
vectorB is needed even though the matrixA remains the same always. In such case,
one of the LU decomposition methods, as for example the Crout method [7, 8], may
prove to be more convenient. In this last method, decomposition of the nonsingular
matrix A of the ordern into the productA = L · U of the two triangular matrices
(lowerL and upperU) is used. Structures of the two matricesL andU of this product
are described by the following general relation:
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⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

. . . . . . .

an−1,1 an−1,2 an−1,3 . . . an−1,n

an1 an2 an3 . . . ann

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
. . . . . . .

ln−1,1 ln−1,2 ln−1,3 . . . 0
ln1 ln2 ln3 . . . lnn

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

1 u12 u13 . . . u1n

0 1 u23 . . . u2n

0 0 1 . . . u3n

. . . . . . .

0 0 0 . . . un−1,n

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The equations of the system (1.21), which we want to solve, should be written
in such an order that the diagonal elementsaii of the coefficient matrixA are dif-
ferent from zero and possibly have the greatest absolute values. Then the diagonal
elementsl i i of the lower triangular matrixL will also be different from zero. Sub-
stituting the relationA = L · U in Eq. (1.21), we obtain

L · U · X = B (1.22)

Assume initially that the triangular matricesL andU are known. In consequence,
solving the equation system (1.22) with respect to the column vectorX can be per-
formed in the two simple stages. In the first stage, from the equation

L · D = B (1.23)

we determine the vectorD. According to Eq. (1.22), this vector satisfies the equation

U · X = D (1.24)

involving also the desired solution. The second stage therefore consists in determin-
ing the vectorX from Eq. (1.24). Both stages of the solution process mentioned
above can be performed in a relatively simple way, thanks to the triangular form of
the L andU matrices. For example, in case of three equations, the system (1.23)
takes the form

l11d1 = b1

l21d1 + l22d2 = b2

l31d1 + l32d2 + l33d3 = b3

(1.25)

and its solution with respect to the vectorD ≡ [d1, d2, d3]T may be obtained without
serious difficulties. In the general case (n > 3), the componentsdi of the auxiliary
vectorD can be found by using the following recursive formula
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d1 = b1

l11

dk = 1

lkk
·
[

bk −
k−1∑
i=1

lki · di

]
, k = 2, 3, . . . , n

(1.26)

When the column vectorD is known we can solve the matrix equation (1.24)
which forn = 3 takes the following form.

1x1 + u12x2 + u13x3 = d1

1x2 + u23x3 = d2

1x3 = d3

(1.27)

The solutionX ≡ [x1, x2, x3]T of these equations can be found in a similarly
uncomplicated way, i.e., using the method of consecutive substitutions.

For an arbitraryn > 3, the matrix equation (1.24) has the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 u12 u13 . . . u1n

0 1 u23 . . . u2n

0 0 1 . . . u3n

. . . . . . .

0 0 0 . . . un−1,n

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

.

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

.

dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.28)

In order to find the solution vectorX ≡ [x1, x2, x3, . . . , xn]T, the method of
consecutive substitutions should be applied. It is defined this time by the following
recursive computation formula

xj = dj −
n∑

k= j +1

u jk · xk (1.29)

where j = n, n − 1, n − 2, . . . , 1.
According to Eqs. (1.23) and (1.24), after substituting the new vectorB, we need

to determine only the new vectorD and next we must calculate the vectorX, which
is the desired solution to our problem. The matricesL andU need not be reprocessed
and this fact diminishes essentially the amount of calculations. It is due to the fact
that these matrices were assumed to be known. In the general case, they can be
determined using the following recursive relations:
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l i 1 = ai 1

l i j = ai j −
j −1∑
k=1

l ik · ukj for i ≥ j > 1

u1 j = a1 j

l11

ui j = 1

l i i

(
ai j −

i−1∑
k=1

l ik · ukj

)
for 1 < i < j

(1.30)

which are in the literature often referred to as the Doolittle formulas [9, 10]. The
termai j , where 1≤ i ≤ n, 1 ≤ j ≤ n, appearing in these relations, is the element
of a given nonsingular matrix of coefficientsA. These relations are developed in
Appendix D, using the standard rule of multiplying two matrices of the same order.

Example 1.3Consider the following system of equations

⎡
⎢⎢⎣

1 2 3 4
2 11 20 29
3 8 16 24
4 14 25 40

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4.0
20.6
17.4
27.8

⎤
⎥⎥⎦

The triangular matricesL and U determined using the relations (1.30) are
equal to

L =

⎡
⎢⎢⎣

1 0 0 0
2 7 0 0
3 2 3 0
4 6 1 4

⎤
⎥⎥⎦ U =

⎡
⎢⎢⎣

1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦

The determinant of the matrix of coefficients satisfies the equation detA = detL ·
detU = 84 · 1 = 84. The solution obtained by using the LU decomposition method
is x1 = 1.0, x2 = 0.7, x3 = 0.4, andx4 = 0.1.

1.1.4 The Method of Inverse Matrix

The method of inverse matrix also finds an application for the task of repeatedly
solving the system of linear equations

A · X = B (1.31)
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for which the matrix of coefficientsA remains unchanged. In other words, the
equation system is being solved for different values of the free terms forming the
vectorB.

As we know from the extensive literature on the subject, application of the above
method is legitimate, if the number of solution processes applied to the equation
system (1.31) is greater than 2n, wheren is the rank of the matrixA, equal to the
number of equations in the system. The inverseA−1 of a nonsingular square matrix
A (having the determinantD different from zero) is also the nonsingular square
matrix of the same rank. Product of these matrices, i.e.,

A−1 · A = A · A−1 = E (1.32)

is equal to the unitary matrixE, having also the same rank. The equation system
(1.31) will remain unchanged after multiplication of both sides by an inverse matrix,
i.e.,

A−1 · A · X = A−1 · B (1.33)

Substituting relation (1.32) in the expression (1.33), we obtain

E · X = A−1 · B (1.34)

The product of the unitary matrixE of the rankn by a column vectorX with
n elements is identical to the vectorX. Due to this property, Eq. (1.34) can be
written as

X = A−1 · B (1.35)

expressing the essence of the method under consideration. It follows from the above
equation that the solution vectorX can be found by simple multiplication of the
inverse matrixA−1 by the vector of free termsB. Determination of the inverse matrix
A−1 therefore constitutes an essential and most difficult problem, which must be
solved in the first stage. Different algorithms available in the literature on linear
algebra can be used for this purpose. In case of the matrix of a small rank (n ≤ 3),
the relations given in Appendix B may prove to be useful. One of the most popular
algorithms used for calculating the inverse matrix is presented below. Assume that
a square nonsingular matrixA is given. Denote the elements of this matrix byai j ,
where 1≤ i ≤ n, 1 ≤ j ≤ n. Elements (terms) of the inverse matrixA−1 are
denoted byxi j , where 1≤ i ≤ n, 1 ≤ j ≤ n. Product of this two matrices, i.e.,

A · A−1 = E (1.36)

can be presented in the following equivalent form:
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n∑
k=1

aik xk j =δi j (1.37)

whereδi j is the Kronecker symbol taking the value 1 fori = j and the value 0
for i �= j . It follows from Eq. (1.37) that, if we want to determine elements of the
column j of the matrixA−1, the following system of equations should be solved:

a11x1 j + a12x2 j + . . . + a1nxnj = 0
a21x1 j + a22x2 j + . . . + a2nxnj = 0
....................................................

aj 1x1 j + aj 2x2 j + . . . + ajnxnj = 1
....................................................

an1x1 j + an2x2 j + . . . + annxnj = 0

(1.38)

In order to find all elements of the matrixA−1, the equation system (1.38) should
be solvedn times, namely forj = 1, 2, 3, . . . , n. The matrix of coefficientsA of
this system remains unchanged, and therefore, it can be effectively solved by using
the LU decomposition method described in the previous section. The product (1.32)
can be used to evaluate precision obtained for the calculated inverse matrixA−1. In
case this precision is not satisfactory, the main equation system can be solved once
more, this time by using the relation (1.35).

Example 1.4Solve the following system of equations using the method of inverse
matrix

⎡
⎣

1 −2 3
−1 1 2

2 −1 −1

⎤
⎦ ·

⎡
⎣

x1

x2

x3

⎤
⎦ =

⎡
⎣

12
8
4

⎤
⎦

The inverseA−1 of the coefficients matrixA of the system given below is equal
to (see Appendix B)

A−1 = 1

8

⎡
⎣

−1 5 7
−3 7 5

1 3 1

⎤
⎦

According to the relation (1.35), we have

⎡
⎣

x1

x2

x3

⎤
⎦ = 1

8

⎡
⎣

−1 5 7
−3 7 5

1 3 1

⎤
⎦ ·

⎡
⎣

12
8
4

⎤
⎦ =

⎡
⎣

7
5
5

⎤
⎦

Finally, we find our solution:x1 = 7, x2 = 5, andx3 = 5.
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1.2 Indirect or Iterative Methods

1.2.1 The Direct Iteration Method

In this section, we consider the direct iteration method, the first one belonging to the
class of iterative methods. Let us consider the system ofn linear equations:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

.................................................

an1x1 + an2x2 + . . . + annxn = bn

(1.39)

Assume that the approximate solution [x(0)
1 , x(0)

2 , x(0)
3 , . . . , x(0)

n ] was previously
found by using one of the direct methods described earlier in this chapter. After
substituting this approximate solution in the equation system (1.39), we obtain

a11x
(0)
1 + a12x

(0)
2 + · · · + a1nx(0)

n = b(0)
1

a21x
(0)
1 + a22x

(0)
2 + · · · + a2nx(0)

n = b(0)
2

.........................................................

an1x(0)
1 + an2x(0)

2 + · · · + annx(0)
n = b(0)

n

(1.40)

Let us now introduce the corrections determined with respect to the final solution

X = [x1, x2, x3, . . . , xn]T and to the vectorB = [b1, b2, b3, . . . , bn]T, i .e.,
ε

(0)
i = xi − x(0)

i for i = 1, 2, 3, . . . , n
r (0)

i = bi − b(0)
i for i = 1, 2, 3, . . . , n

By subtracting the equation system (1.40) from (1.39), we obtain the system ofn
linear equations in which the unknowns form the appropriate correction vector:

a11ε
(0)
1 + a12ε

(0)
2 + . . . + a1nε

(0)
n = r (0)

1

a21ε
(0)
1 + a22ε

(0)
2 + . . . + a2nε

(0)
n = r (0)

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1ε
(0)
1 + an2ε

(0)
2 + . . . + annε

(0)
n = r (0)

n

(1.41)

Solving the system (1.41) with respect to the correctionsε
(0)
1 , ε

(0)
2 , . . . , ε(0)

n , we
obtain the second, more accurate approximation of the desired solution, i.e.,

x(1)
1 = x(0)

1 + ε
(0)
1

x(1)
2 = x(0)

2 + ε
(0)
2

. . . . . . . . . . . . . . . .

x(1)
n = x(0)

n + ε(0)
n

(1.42)



18 1 Methods for Numerical Solution of Linear Equations

Repeating the process described above several times, one can obtain such accu-
racy that two solutions obtained in the two consecutive iterations will differ neg-
ligibly. It means that the vector [r1

(k), r2
(k), r3

(k), . . . , rn
(k)] will approach the zero

vector [0, 0, 0, . . . , 0]. We shall underline here the fact that in the process of solving
the equation systems, similar to the one described by Eq. (1.41), with respect to the
consecutive corrections, the matrix of coefficientsA remains unchanged and only
the column vector [r1, r2, . . . , rn] varies from one consecutive solution to the next.
Hence, application of the LU decomposition method appears to be useful in case of
such equation systems.

1.2.2 Jacobi and Gauss–Seidel Methods

Let us consider the following system ofn linear equations inn unknowns, for which
the coefficient matrixA is nonsingular.

1 · x1 + a12x2 + a13x3 + . . . + a1nxn = b1

a21x1 + 1 · x2 + a23x3 + . . . + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + an3x3 + . . . + 1 · xn = bn

(1.43)

Now assume that the initial approximation of the desired solution [x(0)
1 , x(0)

2 , x(0)
3 ,

. . . , x(0)
n ] is known. The majority of linear equation systems, formulated in connec-

tion with various engineering problems, can be transformed into the canonical form
(1.43) simply by interchanging individual equations and dividing each of them by
its respective diagonal coefficient. The equations should be arranged in such a way
that the nonzero coefficients having the largest modules (absolute values) occupy
the main diagonal.

1.2.2.1 The Jacobi Method

The matrix of coefficientsA of the equation system (1.43) can be expressed as the
sum of three square matrices of the same rank, i.e.,

A = L + E + U (1.44)

whereL is the lower diagonal matrix,E the diagonal unitary matrix, andU an upper
diagonal matrix. After substituting relation (1.44) in Eq. (1.43), we obtain

A · X = (L + E + U) · X = B (1.45)

Eq. (1.45) can be used to obtain directly iterative Jacobi formula.

E · X = −(L + U) · X + B (1.46)
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which after some elementary matrix transformations can be written as

X = −(L + U) · X + B

This formula can often be found in the literature in the different, but equivalent
form:

X = C · X + B (1.47)

whereC = −(L + U) = E − A is the Jacobi matrix. According to this formula,
elementsci j of the matrixC are equal to

ci j =
{

−ai j for i �= j, i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , n

1 − ai j for i = j

Consecutive (k + 1) approximation of an exact solution can be calculated from
the formula (1.47), based on the approximation obtained from the previous
iteration,k:

X(k+1) = C · X(k) + B (1.48)

wherek = 0, 1, 2, 3, . . .. The series of consecutive iterations obtained in this way
is convergent to an exact solution, if the coefficient matrixA is strictly diagonally
dominant or strict column diagonally dominant [3, 7].

1.2.2.2 Supplement

The square nonsingular matrixA is called diagonally dominant if the sum of
the absolute values of its elements on the main diagonal is greater than or equal
to the sum of the absolute values of the remaining elements of the analyzed row of
the matrix, i.e.,

|aii | ≥
n∑

k = 1
k �= i

|aik |

wherei = 1, 2, 3, . . . , n. The matrixA is strictly diagonally dominant if all above
inequalities are strict. The square matrixA is column diagonally dominant if its
transposeAT is diagonally dominant.
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Table 1.1

↓ Iteration x1 x2 x3 x4

0 1.000000000 1.000000000 1.000000000 1.000000000

1 2.500000000 1.050000000 2.200000000 3.050000000

2 1.585000000 −0.495000000 1.070000000 1.992500000

3 2.059750000 0.449250000 1.985000000 3.063750000

4 1.592475000 −0.246750000 1.272700000 2.322187500

5 1.954811250 0.316201250 1.801980000 2.922920000

. . . . . . . . . . . . . . .

10 1.767227058 −0.080484505 1.492187444 2.595988039

. . . . . . . . . . . . . . .

50 1.810208660 0.060535363 1.558382308 2.668661047

Example 1.5Solve the following equation system using the Jacobi method

⎡
⎢⎢⎣

5 −1 3 0.5
0.6 0.3 1 2
0.6 0.6 3 1.2

2 4 0.6 1.2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

15
8
9
8

⎤
⎥⎥⎦

taking the initial approximation [x(0)
1 = 1, x(0)

2 = 1, x(0)
3 = 1, x(0)

4 = 1]. Proceeding
according to the algorithm described above, in the first stage the given equation
system is transformed to the canonical form

⎡
⎢⎢⎣

1 −0.2 0.6 0.1
0.5 1 0.15 0.3
0.2 0.2 1 0.4
0.3 0.15 0.5 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
2
3
4

⎤
⎥⎥⎦

The Jacobi iteration formula obtained based on this system of equations gives

⎡
⎢⎢⎢⎢⎣

x(k+1)
1

x(k+1)
2

x(k+1)
3

x(k+1)
4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0 0.2 −0.6 −0.1
−0.5 0 −0.15 −0.3
−0.2 −0.2 0 −0.4
−0.3 −0.15 −0.5 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

x(k)
1

x(k)
2

x(k)
3

x(k)
4

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

3
2
3
4

⎤
⎥⎥⎦

Some consecutive approximations of the exact solution obtained from this for-
mula are given in Table 1.1.

1.2.2.3 The Gauss–Seidel Method

Consider the equally simple algorithm of Gauss–Seidel iteration method, presented
below for the case of the system of three linear equations:
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a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(1.49)

Assume that the elementsaii of the main diagonal are different from zero. In
the opposite case, the equations should be rearranged. We determine the unknowns
x1, x2, andx3 from the first, second, and third equation, respectively:

x1 = 1

a11
(b1 − a12x2 − a13x3) , a11 �= 0

x2 = 1

a22
(b2 − a21x1 − a23x3) , a22 �= 0

x3 = 1

a33
(b3 − a31x1 − a32x2) , a33 �= 0

(1.50)

We assume a certain nonzero approximate solution:x1 = x(0)
1 , x2 = x(0)

2 , and
x3 = x(0)

3 . Substituting these values in the first equation of the system (1.50) yields

x(1)
1 = 1

a11

(
b1 − a12x

(0)
2 − a13x

(0)
3

)

Using x(1)
1 and x(0)

3 we determinex(1)
2 from the second equation of system

(1.50), i.e.

x(1)
2 = 1

a22

(
b2 − a21x

(1)
1 − a23x

(0)
3

)
,

Substitutingx(1)
1 andx(1)

2 in the third equation, we calculate

x(1)
3 = 1

a33

(
b3 − a31x

(1)
1 − a32x

(1)
2

)

In this way the first iteration of the solving process has been completed. Of course
the whole process should be repeated many times until the solutionX ≡ [x1, x2, x3]
similar to the solution resulting from the previous iteration is obtained. The process
described above is convergent if

|aii | ≥
∑
i �= j

∣∣ai, j

∣∣ for i = 1, 2, 3, . . . , n (1.51)

with a condition that at least one of the above inequalities should be strict. Condition
(1.51) is sufficient but not necessary, and for some equation systems, the computa-
tion process may prove to be convergent even when this condition is not satisfied.
According to this conclusion, the equations should be rearranged in such a way that
the elements of the main diagonal have largest absolute values. It follows from the
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comparison of the algorithms of both methods presented above that they have much
in common. In the Jacobi method, a consecutive, (k + 1) approximation of the de-
sired exact solution is determined exclusively based on the approximation obtained
in previousk iteration. In case of the Gauss–Seidel method, individual components
of each consecutive approximationx(k+1)

j , where j = 1, 2, 3, . . . , n, are determined
based on an approximation obtained in the previousk iteration and of newly calcu-
lated componentsx(k+1)

i , wherei < j . This property guarantees faster convergence
and numerical stability of the Gauss–Seidel method. During the analysis of many
technical and economical problems, we meet the necessity of solving large systems
of equations (e.g., forn ≥ 100). To solve very large equation systems, iterative
methods are chiefly used, as for example the Gauss–Seidel method described above.
At the beginning, we meet here the problem of initial approximation of the desired
solution, which can be obtained solving the system in question by the Gauss elimina-
tion method. The initial solution obtained in this way should guarantee convergence
of the calculation process.

Example 1.6In order to illustrate an application of the Gauss–Seidel method, we
will find some approximate solutions to the following equation system:

⎡
⎢⎢⎢⎢⎢⎢⎣

4 −1 1 0 0 0
2 6 −1 0 0 2
1 2 −5 1 0 1
1 −1 1 4 0 0.5
1 0 0 1 5 2
0 0 1 −1 2 7

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

4
6.4
0.3
2.9
2.6

−1.1

⎤
⎥⎥⎥⎥⎥⎥⎦

Calculation process begins with the following initial approximation:x(0)
1 =

1.0, x(0)
2 = 0.8, x(0)

3 = 0.6, x(0)
4 = 0.4, x(0)

5 = 0.2, andx(0)
6 = 0.0. Diagonal

elements of the matrix of coefficients (elements on the main diagonal) satisfy con-
dition (1.51), which is the sufficient condition for convergence of the calculation
process. Numerical values of some approximations of the exact solution (x1 =
1.077511712, x2 = 0.883357158, x3 = 0.573309477, x4 = 0.563250046, x5 =
0.288218927, x6 = −0.240928187) are given in Table 1.2

Table 1.2

X Number of iterations

1 5 10

x1 1.049999999 1.077607126 1.077511712
x2 0.816666687 0.883261359 0.883357158
x3 0.556666673 0.573347946 0.573309477
x4 0.527500028 0.563184419 0.563250046
x5 0.204499975 0.288186709 0.288218927
x6 −0.219738086 −0.240933952 −0.240928187
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In case of rearranging an arbitrary equation pair of the analyzed system (as, for
example, Eqs. (1.5) and (1.6)), the solution obtained for the vectorX would remain
unchanged. Unfortunately, condition (1.51) will no longer be satisfied and the cal-
culation process may become divergent.

1.3 Examples of Applications in Electrical Engineering

Example 1.7The electric diagram of the six-element ladder circuit driven by a volt-
age sourcee(t) = Eg cos(ωt + 0) with an internal impedanceZg is shown in
Fig. 1.3.

The voltage waveformul (t) across the loading impedanceZl can be found by
using the mesh current method formulating balance equations for complex ampli-
tudes of the voltage in the independent closed loops [11, 12]. This method is based
on Kirchhoff’s law, stating that the sum of voltages in each closed loop of an elec-
tric circuit is equal to zero. According to this law, we can formulate the following
equations for the meshes chosen as in Fig. 1.3:

Z1I1 + Z2(I1 − I2) + ZgI1 = Eg

Z3I2 + Z4(I2 − I3) + Z2(I2 − I1) = 0

Z5I3 + Z6Zl /(Z6 + Zl )I3 + Z4(I3 − I2) = 0

(1.52)

where Eg = Eg exp(j 0), I1, I2, I3 are the complex amplitudes of the control
voltage and currents flowing in the meshes having the same orientations and
Z1, Z2, Z3, Z4, Z5, Z6, andZl are the impedances determined according to the rules
of the symbolic calculus [4]. After rearranging, the system of equations (1.52) can
be written in the following matrix form:

⎡
⎢⎢⎣

Z1 + Z2 + Zg −Z2 0
−Z2 Z2 + Z3 + Z4 −Z4

0 −Z4 Z4 + Z5 + Z6Zl

Z6 + Zl

⎤
⎥⎥⎦×

⎡
⎣

I1

I2

I3

⎤
⎦ =

⎡
⎣

Eg

0
0

⎤
⎦

(1.53)

Eg Z1 Z3 Z5

Zg I1 I2Z2 Z4 I3 Z6 Ul Zl

Fig. 1.3
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Elements of the coefficient matrix of the equation system (1.53) are the complex
numbers, as in case of the complex amplitudes of currents that we calculate. This
equation system can be solved by using the Gauss elimination method described in
Sect. 1.1. In this case, the operations of addition, subtraction, multiplication, and
division should be performed according to the rules concerning complex numbers.
Prior to solving the equation system, individual equations should be placed in such
an order that the complex coefficients of the main diagonal have possibly largest ab-
solute values. Solving the system (1.53), we obtain complex amplitudes of the mesh
currents, including the amplitudeI3 = I3 exp(jϕ3). Finally, the evaluated voltage
waveformul (t) is described by

ul (t) = Re

[
I3

Z6Zl

Z6 + Zl
exp(jωt)

]
=
∣∣∣∣I3

Z6Zl

Z6 + Zl

∣∣∣∣ cos(ωt + ϕ3 + ψ) (1.54)

where the symbol Re [ ] denotes the real part of the expression given in the square
brackets, andψ is the phase angle of the complex numberZ6Zl /(Z6 + Zl ). In order
to perform the calculations, we take the valuesZg = 1�, Zl = 1M�, Z1 = Z3 =
Z5 = 1/ ( j ωC), Z2 = Z4 = Z6 = 10k�, whereC = 470pF,Eg = 10V, and
ω = 2π f = 2π (104) rad/s. The equation system (1.53) can be formulated in the
following matrix form:

⎡
⎣

10001− j33862.75 −10000 0
−10000 20000− j33862.75 −10000

0 −10000 19900.99− j33862.75

⎤
⎦×

⎡
⎣

I1

I2

I3

⎤
⎦

=
⎡
⎣

10
0
0

⎤
⎦

The solution for these equations are the following current amplitudes:I1 =
0.0643 + j 0.2616mA, I2 = −0.0499 + j 0.0437mA, andI3 = −0.0160 −
j 0.0053mA. The output voltage, determined according to the expression (1.54), is
ul (t) = 0.3354 cos(ωt + 3.4614)V.

Example 1.8An another method largely used in the electrical engineering is the
analysis of nodal potentials [11, 12]. In order to explain its essence, let us evaluate
the voltageu2(t) across the output terminals of the circuit “double T” shown in
Fig. 1.4.

For the analysis we assume that the system is supplied by the current source
i g(t) = Ig cos(ωt + 0) with an internal admittanceYg. The nodal voltage method
is based on Kirchhoff’s theorem, stating that the sum of currents entering and that
leaving a node of the electric circuit is always equal to zero. It is not too difficult to
prove that this law applies also for the case of complex amplitudes of these currents.
In consequence, we can formulate the following equations for the analyzed circuit:
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C C3

R R4 21ig

Yg R / 2 2 C U2 Yl

Fig. 1.4

I g − YgU1 − G(U1 − U4) − pC(U1 − U3) = 0

G(U4 − U2) + pC(U3 − U2) − Yl U2 = 0 (1.55)

pC(U1 − U3) − 2GU3 − pC(U3 − U2) = 0

G(U1 − U4) − G(U4 − U2) − 2pCU4 = 0

whereI g = Ig exp(j 0), U1, U2, U3, U4 are respectively the complex amplitude of
the control current and voltage complex amplitudes determined at the corresponding
nodes 1, 2, 3, and 4, see Fig. 1.4,G = 1/R andp = jω = j2π f is the operator of
the applied symbolic calculus. After arranging, the equation system (1.55) takes the
form

⎡
⎢⎢⎣

Yg + G + pC 0 −pC −G
0 G + pC + Yl −pC −G

−pC −pC 2G + 2pC 0
−G −G 0 2G + 2pC

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

I g

0
0
0

⎤
⎥⎥⎦

(1.56)

As in case of the previous example, the equation system (1.56) can be solved
by using the Gauss elimination method, and we obtain the vector of nodal voltages
complex amplitudes, includingU2 = U2 exp(j ϕ2). According to the principles of
the symbolic calculus, the desired voltage waveformu2(t) is

u2(t) = Re[U2 exp(j ωt)] = U2 cos(ωt + ϕ2) (1.57)

Complex amplitudes ofU1, U2, U3, andU4 calculated forR = 10 k�, C = 1nF,
Yg = Yl = 1μS, Ig = 1mA, and for several values of the angular frequency� are
given in Table 1.3.

It follows from the analysis of amplitudes of the voltageU2 given in the third
column of the Table 1.3 that it attains the minimum for the angular frequencyω0 =
2� f0 = 1/(RC) = 105rad/s. In other words, the analyzed two-pole filter has a
selective frequency responseβ(ω) = U2(ω)/U1(ω), Fig. 1.5(a).

Due to the above property, this two-port filter (Fig. 1.4) can be applied in the low
frequency harmonic oscillator as it is shown in Fig. 1.5(b).
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Table 1.3

ω (rad/s) U1(V) U2(V) U3(V) U4(V)

0.98× 105 5.0502
–j4.9998

–0.0495
−j0.0515

2.4875
+j0.0126

0.0129
−j2.5383

0.99× 105 5.0249
−j4.9749

−0.0246
−j0.0254

2.4875
+j0.0125

0.0126
−j2.5126

1.00× 105 4.9998
−j4.9502

0.0000
+j0.0000

2.4875
+j0.0124

0.0124
−j2.4875

1.01× 105 4.9749
−j4.9259

0.0244
+j0.0246

2.4875
+j0.0123

0.0121
−j2.4629

1.02× 105 4.9503
−j4.9017

0.0485
+j0.0485

2.4875
+j0.0121

0.0119
−j2.4387

0.010

(a)

U2
U1

0.005

0.000
0.95 1.0 1.05f / f0

C C

(b)

R R

R1

A

R / 2 2C R2
u(t)

Fig. 1.5
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In this circuit, the “double T” two-port network was placed in the negative
feedback loop, and this feedback attains the minimum absolute value for angular
frequencyω0 = 1/(RC). The positive feedback needed for ensuring the genera-
tion condition is implemented by using a properly designed frequency-nonselective
resistance divider, (R1, R2).

References

1. Akai T.J., Applied numerical methods for engineers. John Wiley and Sons, New York, 1994
2. Atkinson K.E., An introduction to numerical analysis (2nd edition). John Wiley and Sons,

New York, 1988
3. Berezin L.S. and N.P. Zhidkov, Computing methods. Pergamon Press, Elmsford, NY, 1965
4. Faddeev D.K. and V.N. Fadeeva, Computational methods of linear algebra. W.H. Freeman and

Co., San Francisco, CA, 1963
5. Forsythe G.E. and C.B. Moler, Computer solution of linear algebraic systems. Prentice-Hall,

Inc., Englewood Cliffs, NJ, 1967
6. Dahlquist G. and A. Bjorck, Numerical methods. Prentice-Hall, Englewood Cliffs, NY, 1974
7. Mathews J.H., Numerical methods for mathematics, science and engineering. Prentice-Hall

International, Inc., Englewood Cliffs, NJ, 1992
8. Shoup T.E., Applied numerical methods for the microcomputer. Prentice-Hall, Inc., Engle-

wood Cliffs, NJ, 1984
9. Forsythe G.E., M.A. Malcolm and C.B. Moler, Computer methods for mathematical compu-

tations. Prentice-Hall, Englewood Cliffs, NJ, 1977
10. Mathews J.H., Numerical methods for mathematics, science and engineering. Prentice-Hall,

Inc., Englewood Cliffs, NJ, 1987
11. Chua L.O. and P.M. Lin, Computer aided analysis of electronics circuits. Algorithms and

computational techniques. Prentice-Hall, Englewood Cliffs, NJ, 1975
12. Irwin J.D. and C.-H. Wu, Basic engineering circuit analysis (6th edition). John Wiley and

Sons, Inc., New York, 1999



Chapter 2
Methods for Numerical Solving the Single
Nonlinear Equations

Numerous scientific and technical problems can be described by means of single
equations with one variable or systems ofn equations withn variables. According
to the character of functions appearing in these equations, they can be linear or
nonlinear. The corresponding classification of algebraic equations is given in the
diagram of Fig. 2.1.

In this diagram, the class of single nonlinear equations is divided into polynomial
and transcendent equations. They will be discussed in this order in the following
sections of the present chapter. For presentation of the Bairstow’s method, some
formulas were used, which are developed later in Sect. 3.3. These expressions rep-
resent in fact a special case of Newton’s method, used for solving systems ofn
nonlinear equations withn variables, [2] [7] [8].

Algebraic equations

One equation System of n equations

Linear Nonlinear Linear Nonlinear

Polynomial Transcendential

Fig. 2.1

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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2.1 Determination of the Complex Roots of Polynomial
Equations by Using the Lin’s and Bairstow’s Methods

The polynomial equations are expressed by sums of finite number of terms contain-
ing powers of the variablex. Thus, equations of this kind can be presented in the
following general form:

F(x) ≡ Wn(x) = xn + a1xn−1 + a2xn−2

+a3xn−3 + · · · + an−1x + an = 0 (2.1)

The class of polynomial equations includes also equations, in which the function
F(x) has the form of a rational function, i.e., the quotient of two nonzero poly-
nomials. In any case, equations described by means of a rational function can be
transformed to the canonical form (2.1). The well-known quadratic equation:

ax2 + bx + c = 0, a �= 0 (2.2)

is the simplest case of a nonlinear polynomial equation. Real or complex roots of
this equation can be calculated by using the following simple formulas:

x1 = −b + √
�

2a
, x2 = −b − √

�

2a
(2.3)

where the discriminant is equal to� = b2 − 4ac. The similar explicit formulas
found by Nicollo Fontana (1500–1557) for cubic equations are much more compli-
cated. In the mathematical bibliography they are often unjustly called as Cardan’s
formulas. In case of the equations of higher orders (n ≥ 4) finding roots by means
of analytical methods is extremely difficult. Therefore, numerical methods are used
for this purpose, among which the methods of Lin’s and Bairstow’s [1–3] are most
commonly used.

2.1.1 Lin’s Method

The Lin’s and Bairstow’s methods are based on the fact that the equation (2.1) can
be written as:

(x2 + px + q)(xn−2 + b1xn−3 + b2xn−4 + · · · + bn−3x + bn−2)

+Rx+ S = 0 (2.4)

In this expression,Rx + S is a linear remainder term that we desire to be zero.
A zero remainder would mean that the original polynomial (2.1) is exactly divisible
by the quadratic factor (x2 + px + q). Coefficientsp, q, b1, b2, b3, . . ., bn−2, R and
S of the Eq. (2.4) are related to the coefficients 1,a1, a2, a3, a4, . . ., an of Eq. (2.1)
as follows:
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b1 = a1 − p
b2 = a2 − pb1 − q
b3 = a3 − pb2 − qb1
...
bi = ai − pbi−1 − qbi−2
...
bn−2 = an−2 − pbn−3 − qbn−4

R = an−1 − pbn−2 − qbn−3

S = an − qbn−2

(2.5)

Expressions (2.5) can be obtained by comparison of coefficients of the cor-
responding terms of Eqs. (2.1) and (2.4) containing the same power of the un-
known variablex. If the term (Rx + S) appearing in the Eq. (2.4) is equal to zero
(R = 0, S = 0), then the roots of the quadratic factor (x2 + px + q) are also the
roots of Eq. (2.1). Assuming that the coefficientsp andq of the factor (x2+ px+q)
are real, the rootsx1 = c + jd and x2 = c − jd form the pair of the complex
conjugate numbers. The real partc and the imaginary partd of this roots are related
to the coefficientsp andq in the following way:

p = −2c, q = c2 + d2 (2.6)

The mathematical basis of the Lin’s and Bairstow’s methods consists in finding
such values of the coefficientsp, q, b1, b2, b3, . . ., bn−2, for which R = 0 andS = 0.
In other words, the polynomial (2.1) should be divisible (without remainder) by the
factor (x2 + px + q). This condition can be expressed by the equations:

R = an−1 − pbn−2 − qbn−3 = 0

S = an − qbn−2 = 0
(2.7)

from which consecutive more accurate values of the coefficients can be found.

q′ = an

bn−2
, bn−2 �= 0

p′ = an−1 − q′bn−3

bn−2

(2.8)

The process of determining the coefficientsp andq by the Lin’s method is per-
formed in the following manner. In the first iteration, for given (initial) values of the
coefficientsp andq, the coefficientsb1, b2, b3, . . ., bn−2, R andS are found using
formulas (2.5). If the coefficientsR and S are different from zero then, according
to (2.8), the successive, more accurate values ofp and q are determined. In the
next iteration, they are used to calculate new values of coefficientsb1, b2, b3, . . .,
bn−2, R and S. This process is continued until the coefficientsR and S become
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close to zero within the predetermined accuracy. It follows from the character of
the expressions (2.8) that Eqs. (2.7) are solved using the Gauss–Seidel method,
but the coefficientsbn−2 andbn−3 of these equations have different values for each
iteration. In other words, these coefficients are functions ofp andq, see formu-
las (2.5). When conditionsR = 0 and S = 0 are satisfied, Eq. (2.4) takes the
form:

(x2 + px + q)(xn−2 + b1xn−3 + b2xn−4 + · · · + bn−3x + bn−2)

= (x2 + px + q) · Wn−2(x) = 0
(2.9)

First roots of this equation are the rootsx1 = c+ jd andx2 = x∗
1 of the quadratic

factor (x2 + px + q) determined according to (2.3) or (2.6). The consecutive roots
of the Eq. (2.9), and at the same time of the Eq. (2.1), are determined by solving the
equation:

Wn−2(x) = 0 (2.10)

If the order of reduced polynomialWn−2(x), that is (n − 2), becomes greater
than 2, then these roots can be determined in much the same way as described
above. The remaining roots of the Eq. (2.1) can be of course found by means of
the same procedure. During the final phase of the computation, the order of the
successive reduced polynomialWn−2k(x), wherek = 1, 2, 3, . . . , n/2, is not greater
than 2, and determining its roots terminates the process of solving Eq. (2.1). It is
known from the numerous cases described in the literature that the Lin’s method
just presented can be characterized by slow convergence of the process of calcu-
lating the coefficientsp andq, until R = 0 andS = 0. Moreover, by unfortunate
choice of the initial values of these coefficients, the whole process can be diver-
gent. These shortcomings were eliminated in the Bairstow’s method, in which the
system of equations (2.7) is being solved using the Newton’s method described in
Sect. 3.3.

2.1.2 Bairstow’s Method

By determining the roots of polynomial equation (2.1) using the Bairstow’s method,
the system (2.7) is being iteratively solved by means of the Newton’s method. Ac-
cording to the Eqs. (3.16) and (3.17), the successive, (n + 1) approximations of the
coefficientsp andq are calculated from the following formulas:

p(n+1) = p(n) − 1

J

(
R · �S

�q
− S · �R

�q

)

q(n+1) = q(n) + 1

J

(
R · �S

�p
− S · �R

�p

) (2.11)
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where

J = �R

�p
· �S

�q
− �S

�p
· �R

�q
�= 0

During the calculation of the partial derivatives appearing in the above formulas,
we shall be aware of the fact that the coefficientsR andSare functions of the coeffi-
cientsb1, b2, b3, . . ., bn−2. The later are in turn dependent onp andq, see formulas
(2.5). It is therefore necessary to determine the sequence of partial derivatives of the
coefficientsb1, b2, b3, . . ., bn−2, R andS with respect top andq. These sequences
can be described in the following way:

�b1

�p
= c1 = −1

�b2

�p
= c2 = −b1 − p

(
�b1

�p

)
= −b1 − pc1 = −b1 + p

�b3

�p
= c3 = −b2 − p

(
�b2

�p

)
− q

(
�b1

�p

)
= −b2 − pc2 − qc1

... (2.12)

�bi

�p
= ci = −bi−1 − p

(
�bi−1

�p

)
− q

(
�bi−2

�p

)
= −bi−1 − pci−1 − qci−2

...

�bn−2

�p
= cn−2 = −bn−3 − p

(
�bn−3

�p

)
− q

(
�bn−4

�p

)
= −bn−3 − pcn−3 − qcn−4

�R

�p
= −bn−2 − p

(
�bn−2

�p

)
− q

(
�bn−3

�p

)
= −bn−2 − pcn−2 − qcn−3 (2.13)

�S

�p
= −q

(
�bn−2

�p

)
= −qcn−2

�b1

�q
= d1 = 0

�b2

�q
= d2 = −p

(
�b1

�q

)
− 1 = −pd1 − 1 = −1

�b3

�q
= d3 = −p

(
�b2

�q

)
− b1 − q

(
�b1

�q

)
= −b1 − pd2 − qd1

... (2.14)

�bi

�q
= di = −p

(
�bi−1

�q

)
− bi−2 − q

(
�bi−2

�q

)
= −bi−2 − pdi−1 − qdi−2

...
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�bn−2

�q
= dn−2 = −p

(
�bn−3

�q

)
− bn−4 − q

(
�bn−4

�q

)
= −bn−4 − pdn−3 − qdn−4

�R

�q
= −p

(
�bn−2

�q

)
− bn−3 − q

(
�bn−3

�q

)
= −bn−3 − pdn−2 − qdn−3 (2.15)

�S

�q
= −bn−2 − q

(
�bn−2

�q

)
= −bn−2 − qdn−2

The coefficientsR(p, q), S(p, q) used in expressions (2.11) and their partial
derivatives described by (2.13) and (2.15) are computed forp = p(n) andq = q(n).
After calculatingp(n+1) andq(n+1) they are used for computing the new values of
the coefficientsbi , R and S of the Eq. (2.4). The coefficientsbi , R and S, where
i = 1, 2, 3, . . . , n − 2, can be calculated from formulas (2.5). Next, we use ex-
pressions (2.12), (2.13), (2.14) and (2.15) to find new values of partial derivatives
of the coefficientsR andS with respect top andq correspondingly. Values of this
derivatives, in accordance with formulas (2.11), make possible finding of thep(n+2)

andq(n+2) approximations of the coefficients, which we are due to find. The succes-
sive approximations of the coefficientsp andq can be found iteratively in similar
way as described previously. These computations are continued until coefficients
R and S become close to zero with prescribed accuracy. Assume now that, as the
result of computations described above such valuesp = p∗ and q = q∗ were
determined, for whichR(p∗, q∗) = 0 andS(p∗, q∗) = 0. Then rootsx1 = c + jd
andx2 = c − jd of the equation to be solved are identical to the roots of quadratic
equation (x2 + p∗x + q∗) = 0. The real partc and the imaginary partd of these
roots are:

c = − p∗

2
, d =

√
q∗ − c2 (2.16)

Similarly, as for all iterative methods, computations according to the Bairstow’s
method begin from the (initial) approximationp = p(0) andq = q(0), which should
be chosen in such a way that the computing process just described is convergent.
The relations presented above form the theoretical basis to the elaboration of the
computer program P2.1, in which it was takenp(0) = 0, q(0) = 0.

Example 2.1The computer program mentioned above has been used to solve the
equation:

W7(x) = x7 − 4x6 + 25x5 + 30x4 − 185x3 + 428x2 − 257x − 870= 0 (2.17)

having the following roots:x1 = 2, x2 = −1, x3 = 1 + j 2, x4 = 1 − j 2, x5 =
2+ j 5, x6 = 2− j 5, x7 = −3, wherej = √−1. After finding the rootsx1 andx2,
the Eq. (2.17) can be written in the following product form:

W7(x) = (x−x1)(x−x2)W5(x) = (x2−x−2)(x5−3x4+24x3+48x2−89x+435)= 0
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The successive roots of the Eq. (2.17) we solve arex3 = 1+ j 2 andx4 = 1− j 2,
being the roots of the reduced equationW5(x) = 0, which can be written as:

W5(x) = (x − x3)(x − x4)W3(x) = (x2 − 2x + 5)(x3 − x2 + 17x + 87) = 0

Solving the equationW3(x) = 0 we obtain the rootsx4 = 2+ j 5 andx5 = 2− j 5.
Hence, the equationW3(x) = 0 can be written in the form of the following product:

W3(x) = (x − x4)(x − x5)W1(x) = (x2 − 4x + 29)(x + 3) = 0

which gives the value of the last root we wanted to determine, i.e.,x7 = −3.
By changing the initial approximation (p(0), q(0)) we can change also the or-

der of finding successive roots of the equation. This order does not influence ob-
viously the values of the roots but can indirectly decide on the convergence of
the performed calculations. This conclusion justifies the fact that by changing the
order of determining the roots, the coefficients of reduced polynomialsWn−2(x),
Wn−4(x) change also their values. For example, whenp(0) = 10 andq(0) = 0,
the roots of the Eq. (2.17) calculated by means of the program P2.1 are equal to:
x1 = −1, x2 = −3, x3 = 1+ j 2, x4 = 1− j 2, x5 = 2+ j 5, x6 = 2− j 5, x7 = 2.
In this case, the Eq. (2.17) is transformed in the following way:

W7(x) = (x − x1)(x − x2)W5(x)

= (x2 + 4x + 3)(x5 − 8x4 + 54x3 − 162x2 + 301x − 290)= 0

where

W5(x) = (x − x3)(x − x4)W3(x) = (x2 − 2x + 5)(x3 − 6x2 + 37x − 58)

W3(x) = (x − x4)(x − x5)W1(x) = (x2 − 4x + 29)(x − 2)

W1(x) = x − 2

The results obtained in this example are good illustration of the general rule
saying that the nontrivial polynomial equation of thenth order hasn roots which
can be uniquely determined. If all coefficients of this equations are real numbers,
then its complex roots form pairs of the complex conjugate numbers.

2.1.3 Laguerre Method

It is concluded in the monography [3] that the Laguerre method for finding the roots
of polynomial equations is the most effective method and is sufficiently convergent.
In order to illustrate its algorithm, let us assume that thekth approximation of any
root xk of the equationWn(x) = 0 is known. Next, i.e., (k + 1)th approximation of
this root is calculated by using the following formula:
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xk+1 = xk − nWn(xk)
dWn(xk)

dx
± √

H (xk)
(2.18)

where

H (x) = (n − 1)

{
(n − 1)

[
dWn(x)

dx

]2

− nWn(x)
d2Wn(x)

dx2

}

Sign ± in the denominator of expression (2.18) should be chosen so as to ob-
tain the smallest value of the difference|xk+1 − xk|. Values of polynomialWn(xk)
and its derivatives needed for each iteration can be effectively calculated using the
following formulas:

Wn(xk) = bn;
dWn(x)

dx
= cn−1;

d2Wn(x)

dx2
= 2dn−2 (2.19)

where

b0 = 1, bi = xbi−1 + ai , i = 1, 2, 3, . . . , n

c0 = 1, ci = xci−1 + bi , i = 1, 2, 3, . . . , n − 1

d0 = 1, di = xdi−1 + ci , i = 1, 2, 3, . . . , n − 2

After calculating the first rootx1, the equationWn(x) = 0 can be written in the
following product form:Wn(x) = (x − x1)Wn−1(x) = 0. Consecutive roots of the
equationWn(x) = 0 are evaluated from formulas (2.18) and (2.19) with respect to
the reduced equationWn−1(x) = 0. The process is continued until all the roots of the
equationWn(x) = 0 are not evaluated. If all the coefficients of the polynomialWn(x)
are real and the rootxi is complex, we can assume that the next rootxi+1 = (xi )∗.
In this case, the product (x − xi )(x − xi+1) is a quadratic factor (x2 + px + q) with
real coefficientsp andq. Extracting this factor from the equation being solved we
obtain the new equation with reduced second order.

2.2 Iterative Methods Used for Solving Transcendental Equations

According to the type of the functionF(x) describing the equationF(x) = 0,
this equation belongs to the class of the algebraic or transcendental equations. If
the functionF(x) has the form of a polynomial or of a rational function (quotient
of the two polynomials), then this equation belongs to the class of the algebraic
equations. Classical example of this class is the polynomial equation considered in
previous sections. In case when the functionF(x) has the form of the exponential,
logarithmic, trigonometric function, or their combination, such equation belongs un-
doubtedly to the class of transcendental equations. Only some simple transcendental
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equations can be solved by means of direct methods allowing to express the solution
(roots) by means of a closed-form mathematical formulas. Hence, majority of the
transcendental equations describing diverse scientific and technical problems can-
not be solved by means of direct methods. In such cases, the iterative numerical
methods, consisting usually of two stages [4–6] should be used. In the first stage,
an initial approximation of the solution is determined, and in the next (in the second
stage) the more accurate solutions are obtained, and the order of accuracy deter-
mines the prescribed admissible error. In the frame of this chapter, the following
iterative methods will be described:

– bisection (dividing by two) method
– secant method
– tangents (Newton–Raphson) method
– indirect method based on transformation of the given problem into an equivalent

optimization problem, which can be subsequently solved by means of the golden
or Fibonacci cut methods.

If we want to perform computations using the methods mentioned above we must
know the closed interval [a, b], in which only one solution exists. This interval is
usually determined using the uniform search method, as shown in Fig. 2.2.

Testing the functionF(x) is performed with a constant small step�x. All over as-
sumed interval [a, b] we search a such small subinterval�xi = [xi−1, xi ] for which
F(xi−1) · F(xi ) < 0. It means that the desired solutionx∗, for which F(x∗) = 0,
belongs to this interval. In the next stage of the solution method the subinterval�xi

is treated as an initial one and often also denoted by [a, b].

2.2.1 Bisection Method of Bolzano

Let us have the small closed interval [a, b] including a single solution (real root) of
the nonlinear equationF(x) = 0, see Fig. 2.3.

F(x)

0 xa b

Δx

Δx 2Δx 3Δx iΔx

Fig. 2.2
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F(x)

0

a

b xx2

x1

Fig. 2.3

Further search for solution can be performed by means of the bisection method
of Bolzano, called briefly bisection method [3, 7]. Using this method, in the first it-
eration we determinex1 = (a+b)/2 and calculate the value of the functionF(x1). If
the valuesF(a) andF(x1) have the same signs, then the searched interval decreases,
when we assumea = x1. Similarly, if the valuesF(x1) andF(b) have equal signs,
then we decrease the searched interval by takingb = x1. Using the same procedure,
in the second iteration we calculatex2 = (a + b)/2 and the value of the function
F(x2). When the valuesF(x2) andF(b) have identical signs, the searched interval
becomes smaller by exclusion of the section [x2, b], that is by takingb = x2. In
the opposite case, i.e., whenF(a) · F(x2) > 0 reduction of the search interval is
obtained by takinga = x2. This process is continued iteratively up to the moment
when the length of this interval attains the value which is less than expected, or until
the absolute value of the function at the ends of the interval becomes smaller than the
prescribed accuracy. The criterion of ending the calculation, formulated in this way,
is described by the inequality|F(x)| ≤ ε, whereε is an arbitrarily small positive
number. The bisection method is used mostly in case of solving equations for which
the functionF(x) satisfies the Dirichlet’s conditions, that it has finite number of dis-
continuities of the first order in the initial interval [a, b], and it is bilaterally bounded
inside this interval. Having in mind that we do not use the values of the derivative
of the functionF(x) in the calculation process, this method is very effective in the
sense that always leads to the solution, but in many cases is ineffective because of
the amount of calculations.

2.2.2 The Secant Method

Next, we shall consider the secant method (known also as the false position method),
used for the purpose of plotting the functionF(x) shown in Fig. 2.4.
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F(x)
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Fig. 2.4

To fix our attention, we assume that the functionF(x) takes on the limits of the
interval [a, b] the values having different signs, that isF(b) < 0. As the first approx-
imation of the desired solution (root), we take the value ofx being the coordinate of
the intersection point of the secant, passing by the pointsA andB with thex-axis,
i.e., x1. In order to determine the equation of this secant, it is necessary to find the
coordinates at its arbitrary pointP(x, y), using for this purpose the similarity of the
triangles marked in Fig. 2.4.

F(a) − y

F(a) − F(b)
= x − a

b − a
(2.20)

According to Fig. 2.4, the coordinates of the intersection point of the secant and
the x-axis are equal tox = x1 and y = 0. After introducing these values of the
intersection point to the Eq. (2.20), we obtain:

x1 = a − b − a

F(b) − F(a)
F(a) (2.21)

Comparing the signs of the valuesF(a) and F(x1) we come to the conclusion
that the desired solution belongs to the interval [a, x1], becauseF(a) · F(x1) < 0.
According to this conclusion, the search interval can be narrowed by removing the
section [x1, b]. In the second iteration, we pose the secant through the pointsA
and B1 ≡ [x1, y = F(x1)], see Fig. 2.4. This secant intersects thex-axis at the
point having the coordinatesx = x2 andy = 0. Proceeding in the similar way, we
narrow the searched interval unilaterally, obtaining a convergent series of approx-
imations {x1, x2, x3, . . . , xn} of the solution we search for. The iteration process
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just presented should be repeated until the value of the function|F(xn)| is smaller
than an arbitrarily small positive numberε. The method of secants, similar to the
bisection method, is effective (always leads to the solution), and in comparison with
bisection method is more effective in the numerical sense. This effectiveness should
be interpreted as the amount of calculation necessary to obtain the solution. Simi-
larly, as in case of the bisection method we assume that the functionF(x) satisfies
the Dirichlet conditions in the initial interval [a, b].

2.2.3 Method of Tangents (Newton–Raphson)

In order to solve the nonlinear equations with one unknown, the method of tangents
is often used, which is the particular case of the Newton method [7].

In this case, it is necessary that the functionF(x) be bounded and differentiable
at the given interval [a, b], in which one single solution exists. As an illustration of
the basic idea of this method, let us consider the problem of solving the equation
F(x) = 0; geometric interpretation of which is shown in Fig. 2.5.

We start choosing an arbitrary interior pointx0 of the interval [a, b], for which
the functionF(x) takes the valuey0 = F(x0). For this value we calculate the value
of derivativeF ′(x0) = F ′(x = x0), necessary for determining the equation of the
tangent to the curvey = F(x) at P(x0, y0). The coordinatesx andy at an arbitrary
point P(x, y) lying on this tangent satisfy the equation:

y − F(x0) = F ′(x0) · (x − x0) (2.22)

According to Fig. 2.5 the tangent intersects thex-axis at the point having the co-
ordinatesx = x1 andy = 0. Therefore, after introducing these values into Eq. (2.22)

F(x)

x0 a x0
x1 x2

b

y
0 P

P1

P2

x3

Fig. 2.5
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we obtain:

x1 = x0 − F(x0)

F ′(x0)
, F ′(x0) �= 0 (2.23)

It is easy to show that (n + 1)th approximation of the solution is related to the
previous,nth solution, by the following formula:

xn+1 = xn − F(xn)

F ′(xn)
, F ′(xn) �= 0 (2.24)

The criterion at the end of calculations for this method has often been the form
of the following inequality:

|F(xn)| ≤ ε (2.25)

whereε is an optionally small positive number. On the basis of the literature on the
subject, it is possible to formulate the conclusion that the amount of calculations
in each iteration of the tangent method is greater than the corresponding amount of
calculations performed by using bisection or secant method. It is mainly due to the
necessity of calculation of the derivative of the functionF(x) during each iteration.
Nevertheless, the number of iterations necessary to determine the solution is much
lower, which makes this method more convergent. It was proved in the literature
that the tangent method has very good convergence in the (near) neighborhood of
the desired solution. This method is therefore willingly used in the final stage of the
mixed method and used in case when an extremely high accuracy is required. At the
preliminary stages the methods of uniform search and bisection are usually applied.

One disadvantage of the method under discussion is that it requires to evaluate the
derivative of functionF(xn) wheren = 0, 1, 2, 3, . . .. Unfortunately, for many real
functions it is inconvenient to find their derivatives analytically. In such situations a
corresponding approximation (difference formula) should be used. If the derivative
F ′(xn) in the Newton method formula (2.24) is replaced by means of two successive
functional approximations in the formula

F ′(xn) ≈ F (1)
r (xn) = F(xn) − F(xn−1)

xn − xn−1
, xn �= xn−1 (2.26)

the new iteration formula becomes

xn+1 = xn− F(xn)

F (1)
r (xn)

= xn− xn − xn−1

1 − F(xn−1)/F(xn)
, F(xn) �= F(xn−1) �= 0 (2.27)

The Newton–Raphson method modified in this manner is known as the secant
method [7]. As with the Newton method, the search of the root by the secant tech-
nique may be terminated when consecutive values ofx agree to be within some
acceptable error or when the function value,F(xn), is acceptably close to zero,
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see condition (2.25). The secant method has the same convergence difficulties at
a multiple root as does the method of Newton iteration discussed earlier.

2.3 Optimization Methods

The problem of solving the nonlinear equation with one unknown can be trans-
formed into the corresponding, one-dimensional optimization problem. Solution of
the equationF(x) = 0 is obviously equivalent to the problem of finding the global
minimum (equal to zero) of the unimodal function|F(x)|. The idea of this transfor-
mation is shown in Fig. 2.6.

F(x)

0 b x

a

bk

F(x)

0

a

b x

a)

b)

ak xk

x1 x1'

xk'

Fig. 2.6
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The process of evaluation of the global minimum of the function|F(x)| can be
effectively performed by means of the golden or Fibonacci cut methods [6]. As an
example, let us consider the algorithm of the golden cut method. In the first iteration,
for a given interval [a, b], we determine the interior points (coordinates)x1 andx′

1,
see Fig. 2.6(b), from the following formulas:

x1 = a + (b − a) /s2

x′
1 = a + (b − a) /s

(2.28)

where

s = (1 +
√

5)/2 = 1.618 033 989

Next, we calculate the values|F(x1)| and
∣∣F(x′

1)
∣∣. When|F(x1)| <

∣∣F(x′
1)
∣∣, we

take the new search interval as [a, x′
1]. In the opposite case, i.e., when|F(x1)| >∣∣F(x′

1)
∣∣, the searching interval is reduced by removing the section [a, x1]. When

the values|F(x1)| and
∣∣F(x′

1)
∣∣ of the function are equal, the new interval is chosen

as an arbitrary one among the subintervals determined above, that is [a, x′
1] or

[x1, b]. In a similar way, we perform each successive iteration. Next, the above
process is repeated several times in order to make the search interval narrower. After
performingn iterations, the length of this interval is reduced to:

|bn − an| = |b − a|
sn−1

(2.29)

As the criterion for the end of calculation, the following condition can be used:

|bk − ak| < ε (2.30)

whereε is an arbitrarily small positive number. It is worth emphasizing the fact that
in eachkth iteration, wherek = 2, 3, . . . , n, only one of the coordinates is deter-
mined;xk or x′

k and the corresponding value of the function, i.e.,|F(xk)| or
∣∣F(x′

k)
∣∣.

Due to the adopted procedure of determination of the coordinates, see Eq. (2.28), it
is possible that one of the coordinates,xk or x′

k, is the same as one of the coordinates
determined in the previous iteration. This precious property leads to the reduction
of the calculations almost by two. The parameters, appearing in the relation (2.28),
is the inverse of the parametert = (−1 + √

5)/2 describing the golden cut of
a line segment; hence justification of the name of the method. The Fibonacci cut
method differs from the one described earlier chiefly due to the manner in which the
coordinatesxk andx′

k are evaluated.
Numerous comparative calculations made by means of both methods prove that

the golden cut method is only a little less effective. Nevertheless, this method is more
frequently used, because the Fibonacci cut method requires previous determination
of the number of iterations, which is not always easy to determine.
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2.4 Examples of Applications

Example 2.2As a first example of applications of numerical methods presented
above, we consider the problem of designing the lossless slab line. The cross-section
of this TEM transmission line is shown in Fig. 2.7.

The distributions of the electricalE and magneticH fields are shown in Fig. 2.8.
The line under consideration belongs to the class of the dispersionless, two-

conductor waveguides, in which the TEM electromagnetic waves are propagated
(Transverse Electro Magnetic Mode). The external conductor of the line is formed
by two, parallel equipotential conductive planes. As in the case of other config-
urations of the TEM transmission lines, circuit parameters, such as the complex
amplitudes (phasors) of the voltageU and of the currentI , as well as characteristic
impedanceZ0 can be used for a description of them. In order to explain the meaning
of these parameters, we assume that a variable voltage (difference of potentials)
exists between two arbitrary pointsA and B lying on the surfaces of the internal
and external conductors.

u(t) = U0 cos(ωt + ϕu) (2.31)

At any fixed moment of timet this voltage is equal to:

u(t) =
∫ B

A
E(t)dl (2.32)

and the integration is performed along an arbitrary line joining the pointsA andB.
The quantity

U = U0 exp(j ϕu) (2.33)

b d

ε , μr r

Fig. 2.7
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E

H

Fig. 2.8

representing the formulas (2.31) and (2.32) is called the complex amplitude (phasor)
of the voltage. The variable electric field in the lineE(t) is always accompanied
by a variable magnetic fieldH(t), having the field lines surrounding the internal
conductor of the line. According to the Ampere law, the total current flowing in the
internal conductor of the line is:

i (t) = I0 cos(ωt + ϕi ) =
∮

C

H(t)dl (2.34)

whereC is an arbitrary closed line surrounding the conductor. The quantity

I = I0 exp(j ϕi ) (2.35)

representing the formula (2.34) is called complex amplitude of the current. The ratio
of the complex amplitude of the voltage to the complex amplitude of the current is
called characteristic impedance of the line:

Z0 = U
I

(2.36)

The characteristic impedanceZ0 should not be confused with the wave impedance
defined as:

ξ = E
H

(2.37)

The characteristic impedanceZ0 of the slab line depends on its geometrical di-
mensionsb, d, see Fig. 2.7, and the electrical parametersσ, εr , μr of the dielec-
tric. In general case, the impedanceZ0 can be evaluated by solving the appropriate
Laplace’s boundary value problem described in detail in Chap. 8 of the present book.
Such an approach, however, is rather complicated and strenous. Therefore, for this
reason many approximating closed-form design formulas have been elaborated. It is
concluded in [9, 10] that the Wheeler’s analysis formula is the most accurate and a
convenient one for using in an engineering practice. The advantage of this formula
lies also in its simple mathematical form, namely:
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Z0

(
d

b

)
= 59.952

√
μr

εr

(
ln

√
X + √

Y√
X − Y

− R4

30
+ 0.014R8

)
, � (2.38)

where

R = �

4
· d

b
, X = 1 + 2sh2 (R) , Y = 1 − 2 sin2 (R) � = 3.141 592 653. . .

εr – the relative permittivity of the dielectric substrate

μr – the relative permeability of the dielectric substrate.

According to the results published in [9, 11], the above formulas make it possible
in determining the impedanceZ0 with high accuracy (�Z0/Z0 < 0.001) for 0.05 ≤
d/b < 1. The design of the slab line on the basis of (2.38) consists in evaluating
such a ratiod/b for which the following equation is satisfied:

V

(
d

b

)
= Z0

(
d

b

)
− Z0 = 0 (2.39)

whereZ0 is the given value of the characteristic impedance. The functionV(d/b)
assumes its minimum value (zero) at pointd/b being sought. This point solution
can be effectively evaluated by means of the golden cut method. Some calculation
results obtained in this way are presented in Table 2.1.

Example 2.3Figure 2.9 presents cross-section of the eccentric coaxial line, the in-
ner conductor of which is laterally displaced from its normal position to the axis
location.

The characteristic impedance of this TEM transmission line can be evaluated
analytically by a field analysis and the resulting expression is:

Z0(x) = 59.952

√
μr

εr
ln
(

x +
√

x2 − 1
)

, [�] (2.40)

where
εr – the relative permittivity of the dielectric substrate;
μr – the relative permeability of the dielectric substrate;

x = x(b) = b + (
a2 − 4c2

)/
b

2a

Table 2.1

Z0, � εr μr d/b

30 3.78 1 0.4790
50 1 1 0.5486
75 1 1 0.3639
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c a
b

ε , μr r

Fig. 2.9

We can easily see that whenc = 0, the line under discussion becomes the normal
coaxial line for which:

Z0

(a

b

)
= 59.952

√
μr

εr
ln
(a

b

)
, � (2.41)

For given values ofa = 7 × 10−3 m, c = 10−4 m andZ0 = 50, �, designing
the eccentric coaxial line on the basis of formula (2.40) consists in evaluating such
diameterb, see Fig 2.9, for which the following equation is satisfied:

|Z0 [x(b)] − Z0| = 0 (2.42)

Solving the Eq. (2.42) using the golden cut method we obtainb = 3.038 ×
10−3 m. Performing similar calculations for the eccentricityc = 0 (the eccentric
line becomes the normal coaxial line) we obtainb = 3.040× 10−3 m. Identical
result can be obtained analytically by using the formula:

b = a · exp

[ −Z0

59.952
√

μr /εr

]
(2.43)

which is the inverted form of (2.41).
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Chapter 3
Methods for Numerical Solution
of Nonlinear Equations

In this chapter, we consider the systems ofn arbitrary equations:

F1(x1, x2, . . . , xn) ≡ F1(x) = 0
F2(x1, x2, . . . , xn) ≡ F2(x) = 0
...
Fn(x1, x2, . . . , xn) ≡ Fn(x) = 0

(3.1)

with n unknowns, creating the vectorx = [x1, x2, . . . , xn]. In the case when at least
one of the functionsFi (x) of the system, wherei = 1, 2, 3, . . . , n, is nonlinear with
respect to at least one unknown (variable)xj , wherej = 1, 2, 3, . . . , n, the system is
nonlinear. The nonlinearity of the functionFi (x) with respect to the variablexj ⊂ x
should be understood in the following way. Value changes of these functions and
related changes of the corresponding variables are not related by means of constant
coefficients, independently of the value of variables. Contrary to the linear case, the
systems of nonlinear equations cannot be solved by means of direct (simple) meth-
ods, because such methods are not elaborated up to now. In consequence, in case of
the systems of nonlinear equations, the iterative numerical methods are chiefly used
and the most popular among them are:

– Method of direct iterations;
– Iterative parameter perturbation procedure;
– Newton iterative method and
– Equivalent minimization strategies.

3.1 The Method of Direct Iterations

The algorithm of the method of direct iterations is very similar to that of the Gauss–
Seidel method used for solving systems of linear equations, see Sect. 1.2.2. During
the first stage of the procedure, the system of equations (3.1) is transformed to the
following equivalent form:

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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x1 = f1(x2, x3, . . . , xn)
x2 = f2(x1, x3, . . . , xn)
...
xn = fn(x1, x2, . . . , xn−1)

(3.2)

We begin our calculation by taking the approximate initial solution, i.e.:

x1 = a1, x2 = a2, x3 = a3, . . . , xn = an

Then the expressions which permit to find successive, more accurate, approxi-
mations of the solution can be written in the following form:

x1 = f1(a2, a3, . . . , an−1, an)
x2 = f2(x1, a3, . . . , an−1, an)
...
xi = fi (x1, x2, . . . , xi−1, ai+1, . . . , an)
...
xn = fn(x1, x2, . . . , xn−2, xn−1)

(3.3)

The calculating process, performed according to the formula (3.3) has iterative
form, and it means that the approximate solution obtained in the current iteration
constitutes the initial approximation (starting point) for the next iteration. These
calculations are continued, until the difference

R =
n∑

i=1

|xi − ai | (3.4)

obtained from the two consecutive solutions (found in the previous and the current
iteration) would become sufficiently small. In the limit case (for an infinite number
of iterations) the differenceR should attain the value equal to zero. The applicability
condition for this method is simply identical to the convergence of the vectorx, see
(3.3), towards a certain limit solution[x∗]. In order to satisfy the above condition,
the initial approximation by which the iteration process begins, should be chosen
in a possibly close neighborhood of the desired solution. The initial approximation
satisfying the above condition is frequently determined by means of the optimiza-
tion methods. This problem will be explained later in the present chapter. Another
indirect way to solve this problem is the application of the iterative parameter per-
turbation procedure presented in Sect. 3.2.
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3.2 The Iterative Parameter Perturbation Procedure

In order to clarify the essence of this procedure, let us reconsider the task of finding
the solution of the equation system (3.1) written in the form:

Fi (x) = 0 (3.5)

wherei = 1, 2, 3, . . . , n. Evaluation of this solution using the procedure of direct it-
erations is not possible when the initial approximation guaranteeing the convergence
of the calculation process is not known. In such cases, it is possible to introduce
the second auxiliary equation system ofn equations (linear or nonlinear) withn
unknowns

Gi (x) ≡ G(0)
i (x) = 0 (3.6)

for which the solution is already known. The systems of equations (3.5) and (3.6)
constitute the base of the generalized equation system, defined as follows:

G(k+1)
i (x) = G(k)

i (x) + [Fi (x) − G(k)
i (x)]

k

N
(3.7)

Parameterk of this system is an integer taking the values from the interval 0 to
N, whereN is a fixed integer (e.g.,≥ 10) determining the digitization step. It can
be easily shown that fork =0, the system (3.7) is identical to the system described
by auxiliary equations (3.6), whose solution is assumed to be known. For the second
limiting value of the parameterk, that is fork = N, the system (3.7) transforms to
the system (3.5). When the value ofN is sufficiently great, changing the value of the
parameterk with constant step equal to 1 leads to the “almost smooth” transforma-
tion of the equation system (3.6) into the system (3.5). For each fixed value of the
parameterk = k′, beginning fromk = 1 and ending whenk = N, the system (3.7)
is being solved by the simple iterations method described in the previous section.
The solution obtained for this value of the parameterk = k′ is used as the initial
approximation for the solution to be obtained in the next cycle, i.e., fork = k′+1. As
the system of equationsG(k+1)

i (x) differs small from the systemG(k)
i (x) solved in the

previous cycle, the convergence probability of the calculations performed by means
of the direct iterations is very high. This probability can be increased by diminishing
the iteration step; that is by increasing the value ofN. Unfortunately, it causes an
increase of the number of cycles needed for obtaining the solution of an equation
system (3.7) using the method of direct iterations. It does not lead hopefully to
the increase of calculation errors, because there is no error accumulation when we
use iteration methods. The method we have just explained can be called a “forced
method”, because the difficult task of finding the solution of the equation system
(3.5) has been obtained for the price of big number of auxiliary calculations [1–3].
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3.3 The Newton Iterative Method

In this section, we consider the system ofn nonlinear equations withn unknowns
forming the vectorx = [x1, x2, . . . , xn]:

F1(x1, x2, . . . , xn) ≡ F1(x) = 0
F2(x1, x2, . . . , xn) ≡ F2(x) = 0
...
Fn(x1, x2, . . . , xn) ≡ Fn(x) = 0

(3.8)

Assume that the approximation obtained for the solution of the system (3.8) in
thekth iteration is equal to:

x1 = a1, x2 = a2, x3 = a3, . . . , xn = an

Solution of this system using the Newton method consists in finding such correc-
tions�xi , wherei = 1, 2, 3, . . . , n, defined for the particular unknowns for which
the vector

x = [
x1 = a1 + �x1, x2 = a2 + �x2, . . . , xn = an + �xn

] = a + �x (3.9)

constitutes the solution being sought. Let us develop the functions on the left-
side of the system (3.8) into the Taylor series at the known point (vector)a =
[a1, a2, a3 . . . , an]

F1(x) ≈ F1(a) + �F1

�x1
�x1 + �F1

�x2
�x2 + · · · + �F1

�xn
�xn + · · ·

F2(x) ≈ F2(a) + �F2

�x1
�x1 + �F2

�x2
�x2 + · · · + �F2

�xn
�xn + · · ·

...

Fn(x) ≈ Fn(a) + �Fn

�x1
�x1 + �Fn

�x2
�x2 + · · · + �Fn

�xn
�xn + · · ·

(3.10)

According to our previous assumption the vectorx, see (3.9), should be the
solution of the equation system (3.8). It means that the functionsFi (x), where
i = 1, 2, 3, . . . , n, should be equal to zero. After considering this property we
obtain:
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�F1

�x1
�x1 + �F1

�x2
�x2 + · · · + �F1

�xn
�xn = −F1(a)

�F2

�x1
�x1 + �F2

�x2
�x2 + · · · + �F2

�xn
�xn = −F2(a)

...
�Fn

�x1
�x1 + �Fn

�x2
�x2 + · · · + �Fn

�xn
�xn = −Fn(a)

(3.11)

In order to assure some clarity to our further considerations, we write the
equation system (3.11) in an equivalent matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�F1

�x1

�F1

�x2
. . .

�F1

�xn

�F2

�x1

�F2

�x2
. . .

�F2

�xn
...

... . . .
...

�Fn

�x1

�Fn

�x2
. . .

�Fn

�xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

�x1

�x2
...

�xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−F1(a)
−F2(a)

...
−Fn(a)

⎤
⎥⎥⎥⎦ (3.12)

In the consecutive developments of the functionsFi (x), wherei = 1, 2, 3, . . . , n,
at the pointa, only the first linear terms of the Taylor series, for all the unknowns
xj , j = 1, 2, 3, . . . , n, have been taken into account. The desired vectorx = a+ �x
represents therefore only a consecutive, better approximation of the desired solution.
All partial derivatives of the functionsFi (x) are determined at the pointa. It is easy
to show that the system of equations (3.12) obtained in this way is linear with respect
to the corrections�x = [�x1, �x2, �x3, . . . , �xn] formulated for all the unknown
variables.

This system is usually being solved by the Gauss elimination method with
the choice of pivoting (principal) element. After determination of the corrections
[�x1, �x2, �x3, . . . , �xn], new approximation is made by takinga = x and the cal-
culations are repeated according to the same algorithm. The iteration process can
be stopped only after obtaining the vectorx satisfying equations (3.8) up to the
desired accuracy. For each iteration, it is necessary to verify whether the equation
system (3.12) is not singular. Thus, it is necessary to verify whether the determinant
of the coefficient matrix (Jacobian) is not equal to zero or not infinitely small. In
case when the absolute value of this determinant (Jacobian) is too small, the ex-
cessive calculation errors may occur. This situation happens most frequently in the
final phase of calculations, during which the calculated vectorx becomes very close
to the final solution. In such case the derivatives of the functionsFi (x) constituting
the coefficient matrix are close to zero. In the engineering practice, we often meet
the common problem of solving the system of two nonlinear equations with two
unknowns. Therefore, let us consider especially this problem more in detail:
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F1(x1, x2) = 0

F2(x1, x2) = 0
(3.13)

Assume first that thenth approximation of the desired solution, that isx(n)
1 and

x(n)
2 , is known. According to the theory presented above, the equation system (3.12)

formulated for this task has the form:

W(x(n)) · �x = −F(a(n)) (3.14)

where

W(x(n)) =

⎡
⎢⎢⎣

�F1

�x1

�F1

�x2

�F2

�x1

�F2

�x2

⎤
⎥⎥⎦ (3.15)

Solving this equation system with respect to the correction vector�x we obtain
the next (n+1)th, better approximation of the desired solution. For that purpose, let
us multiply both sides of the equation system (3.14) by the inverse of the coefficient
matrix, namelyW−1(x(n)). After this multiplication we obtain:

W−1(x(n)) · W(x(n)) · �x = −W−1(x(n)) · F(a(n)) (3.16)

According to the relations (2.24) and (2.25) given in the preceding chapter,
Eq. (3.16) can be written as:

�x = −W−1(x(n)) · F(a(n)) (3.17)

The left-side of the Eq. (3.17) represents the correction vector, which added to
the previous approximation forms a new more accurate approximation. The next,
(n + 1)th approximation of the desired solution is:

x(n+1) = x(n) − W−1(x(n)) · F(a(n)) (3.18)

The crucial problem we meet when we want to implement the algorithm ex-
plained above, in order to determine the next approximation of the needed solution,
is finding the inverse of the coefficient matrix described by the relation (3.12). This
matrix can be easily found using the algorithm presented in Appendix 2. Finally, we
obtain:

x(n+1)
1 = x(n)

1 − 1

J

[
F1

�F2

�x2
− F2

�F1

�x2

]

x(n+1)
2 = x(n)

2 + 1

J

[
F1

�F2

�x1
− F2

�F1

�x1

] (3.19)
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where

J =

⎡
⎢⎢⎣

�F1

�x1

�F1

�x2

�F2

�x1

�F2

�x2

⎤
⎥⎥⎦ = �F1

�x1
· �F2

�x2
− �F1

�x2
· �F1

�x2
�= 0 (3.20)

FunctionsF1, F2 appearing in the relations (3.19) and (3.20) and their deriva-
tives are determined at the point [x(n)

1 , x(n)
2 ]. During the calculation of the (n + 1)th

approximation of the desired solution it may occur that the JacobianJ turns out
to be equal to zero. In such case, the whole calculation process will be interrupted,
because the division by zero is prohibited. In order to prevent such events, the corre-
sponding security procedures should be included into the program. We usually adopt
the following practical procedure. After finding out that the JacobianJ is equal
to zero, a small incrementε (negative or positive) is added to one, freely chosen
variable, for examplex(n)

1 . For such incremented value [x(n)
1 + ε, x(n)

2 ] the functions
F1, F2, their derivatives and the determinantJ is next calculated. When absolute
value of the determinantJ exceeds the given positive, nonzero value then the new
approximation [x(n+1)

1 , x(n+1)
2 ] can be calculated according to formulas (3.19). In the

opposite case, we add the incrementε to the different variable and repeat the whole
process once more. Sometimes the whole calculation process may be divergent with
respect to the limit equal to the solution, because the distance (in then-dimensional
space) of the assumed initial approximation (starting point) from the solution is too
large. In such cases, we can transform the problem described by the Eqs. (3.8) into
an equivalent optimization problem, according to the method described in Sect. 3.4.

Example 3.1As an illustration for the algorithm of the Newton method presented
above we propose to evaluate the solutions of the following pair of equations:

F1(x) ≡ x2
1 + x2

2 − 5 = 0

F2(x) ≡ x2
1 − x2

2 + 3 = 0

We assume that the initial approximation of the solution, i.e., the starting point
(x(0)

1 , x(0)
2 ) ≡ (0.5, 1) is known. The approximate values of the solution (1, 2), found

in the consecutive iterations are given in Table 3.1.

Table 3.1

n 0 1 2 3 4

x(n)
1 0.5 1.25 1.025 1.0003 1

x(n)
2 1 2.5 2.05 2.0006 2

F1 −3.75 2.8125 0.2531 3.051×10−3 0
F2 2.25 −1.6875 −0.1519 −1.830× 10−3 0
J −4 −25 −16.81 −16.0097 –16
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The solution (1, 2) evaluated above is only one of the set of four solutions:
(1, 2), (−1, 2), (−1, −2) and (1,−2) placed in the particular quadrants of the two-
dimensional space (plane)x1x2. The consecutive solutions mentioned above can be
evaluated in the similar manner by appropriate choice of the initial approximation
(starting point). Of course the point (0, 0) is not suitable for this purpose. This
restriction is justified by the fact that at this central point the Jacobian (3.20) takes
zero value.

Example 3.2When we use the Bairstow’s method to find the roots of a polynomial
equation (2.1), the system of equations (2.7) is being solved by means of the New-
ton iterative method. According to the formulas (3.19) and (3.20), the consecutive,
(n + 1)th approximation of the coefficientsp andq, which we must determine, is
calculated by means of the following relations

p(n+1) = p(n) − 1

J

(
R · �S

�q
− S · �R

�q

)

q(n+1) = q(n) + 1

J

(
R · �S

�p
− S · �R

�p

) (3.21)

where

J = �R

�p
· �S

�q
− �S

�p
· �R

�q
�= 0

During the process of calculation of the partial derivatives appearing in the above
formulas it should be remembered that the coefficientsR andSare functions of the
coefficientsb1, b2, b3, . . . , bn−2. These coefficients depend in turn onp andq, see
formulas (2.5). Therefore, we have to determine the sequence of partial derivatives
of the coefficientsb1, b2, b3, . . . , bn−2, R and S with respect top and q. These
derivatives can be found by using relations (2.12–2.15) given in the Sect. 2.1.

3.4 The Equivalent Optimization Strategies

In Sect. 2.3, the problem of finding solution of the one nonlinear equation with
one unknown was transformed into an equivalent optimization problem, which was
subsequently solved by means of the golden cut method. This approach can be gen-
eralized to the form useful in case of the system ofn arbitrary equations withn
unknowns. For this end, we take the functionFi (x), see the equation system (3.1),
and construct the new function which attains the global minimum equal to zero for
the vectorx, which represents the desired solution. The examples of such functions
are:
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U (x) =
n∑

i=1

[Fi (x)]2 (3.22)

V(x) =
n∑

i=1

|Fi (x)| (3.23)

In practice, the function (3.22) is most frequently used, because it is easier to
differentiate, than the function (3.23). When applied to the problem considered in
Example 3.1, the functionU (x) has the form:

U (x1, x2) = (x2
1 + x2

2 − 5)2 + (x2
1 − x2

2 + 3)2 (3.24)

The function (3.24) assumes the minimum value equal to zero at the point [1, 2],
which is the desired solution. Outside this point, i.e., for the arbitrary values of the
variablesx1, x2 this function remains positive. This property is shown in Fig. 3.1.

In the close neighborhood of the point (1, 2) the analyzed function describes the
surface of the shape similar to the paraboloid of revolution. Therefore, starting at an
arbitrary pointP(x1, x2) lying on that surface and moving in the directiond(x1, x2),
pointing to the region in which the function in question decreases, we approach the
desired solution. The trajectory from the starting point, up to the point corresponding
to the solution may of course consist of several linear sections, positions of which in
the two-dimensional spacex1, x2 (on the plane) define the corresponding directions
of improvement, that isdi (x1, x2). The simplest representative of the functions de-
scribing the minimization directiond is the anti-gradient function defined by:

U

0 d

D convergence area

x2

x1

Fig. 3.1
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−∇U (x1, x2) = −k1
�U

�x1
− k2

�U

�x2
(3.25)

wherek1 andk2 are the unit vectors (versors) corresponding to the variablesx1 and
x2, respectively. In general case, when we are dealing with a functionU depending
onn independent variables, the anti-gradient of this function is:

−∇U (x1, x2, x3, . . . , xn) = −∇U (x) = −
n∑

i=1

k i
�U (x)

�xi
(3.26)

wherek i is the versor related to the variablexi . The direction of minimization, eval-
uated by (3.26) constitutes the basis for the simplest gradient optimization method,
known as the steepest descent method [4, 5]. This method is most effective in the
initial phase of searching, when the partial derivatives of the functionU (x) are con-
siderably different from zero. As we approach the solution, values of these deriva-
tives decrease, and in consequence the directiond is determined with decreasing
precision. For this reason, the process of searching for the solution in the close
neighborhood should be continued by means of more effective methods, as the
Fletcher–Reeves and Davidon–Fletcher–Powell method. The algorithms of these
methods and corresponding application examples can be found in the literature [4–6].

3.5 Examples of Applications in the Microwave Technique

Example 3.3As the first example of application of the numerical methods discussed
above, let us design the air coupled slab lines for given values of characteristic
impedancesZ0e and Z0o [7, 8]. The cross-section of these lossless TEM transmis-
sion lines is shown in Fig. 3.2.

s

d h

ε  , μ0 0

Fig. 3.2
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The outer conductor of these lines is formed by two parallel equipotential
conducting planes. The lines of this type are used broadly in various microwave
devices such as different kinds of filters, directional couplers, etc., chiefly intended
to work at medium- and high-power levels. Due to the circular geometry of the inner
conductors, they are easy to manufacture and make possible in obtaining the good
impedance and constructional matchings with respect to adjacent coaxial lines. Ba-
sic electrical parameters of the coupled lines are the two characteristic impedances
defined for the symmetrical (in-phase) and antisymmetrical excitations, denoted by
Z0e andZ0o, respectively. The coupled lines are excited symmetrically, even-mode
(++), if the voltages applied to their inner conductors are:

u1(t) = U0 cos(ωt + ϕ0)

u2(t) = U0 cos(ωt + ϕ0)
(3.27)

The electric field distribution obtained for such symmetrical excitation is shown
in Fig. 3.3(a).

The ratio of complex amplitudes of the voltageU = U0 exp(j ϕ0) and the currents
I flowing in each conductor is called the even-mode characteristic impedance and
is denoted asZ0e. In the case when the voltages applied to the inner conductors has
the phase lag at an angle 180◦, that is:

u1(t) = U0 cos(ωt + ϕ0)

u2(t) = U0 cos(ωt + ϕ0 + �)
(3.28)

(a)

(b)

Fig. 3.3
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the excitation is called antisymmetrical, odd-mode (+−). The corresponding
electrical field distribution is given in Fig. 3.3(b). In this case there is a strong elec-
trical field between the inner conductors, which may cause a breakdown. The odd-
mode characteristic impedance,Z0o, is defined as the ratio of the complex amplitude
of the voltageU = U0 exp(j ϕ0) to the complex amplitude of the currentsI flowing
through each inner conductors. For each pair of the design parametersx = d/h and
y = s/h, see Fig. 3.2, the impedancesZ0e andZ0o satisfy the following condition:

Z0o ≤ Z0 ≤ Z0e (3.29)

whereZ0 is the characteristic impedance of the lines without coupling. The impe-
dancesZ0e andZ0o are equal, if the distances between the inner conductors of the
line is sufficiently large (theoretically infinite). In the microwave technology, the
pair of coupled lines is often characterized by the coupling coefficient defined by:

k = Z0e − Z0o

Z0e + Z0o
(3.30)

It follows from the inequalities (3.29) that 0≤ k ≤ 1. The characteristic impe-
dancesZ0e and Z0o of lines under consideration depend on geometrical dimen-
sions b, h, s, see Fig. 3.2. Similarly for the single slab line, see Example 2.2,
the impedancesZ0e and Z0o can be evaluated by solving the appropriate Laplace
boundary value problem described in detail in Chap. 8. However, such field ap-
proach is rather complicated, and therefore inconvenient for engineering practice.
Therefore, for this reason many approximating closed-form design formulas have
been elaborated. The example of such formulas useful for engineering is presented
below [8].

Z0e(x, y) = 59.952 ln

[
0.523962

f1(x) f2(x, y) f3(x, y)

]
, �

Z0o(x, y) = 59.952 ln

[
0.523962f3(x, y)

f1(x) f4(x, y)

]
, �

(3.31)

where

x = d/h

y = s/h

f1(x) = x
a(x)

b(x)

f2(x, y) =
{

c(y) − xd(y) + e(x)g(y) for y < 0.9

1 + 0.004 exp (0.9 − y) for y ≥ 0.9
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f3(x, y) = th

(
�

x + y

2

)

f4(x, y) =
{

k(y) − xl(y) + m(x)n(y) for y < 0.9
1 for y ≥ 0.9

a(x) = 1 + exp(16x − 18.272)

b(x) =
√

5.905− x4

c(y) = −0.8107y3 + 1.3401y2 − 0.6929y + 1.0892+ 0.014002

y
− 0.000636

y2

d(y) = 0.11− 0.83y + 1.64y2 − y3

e(x) = −0.15 exp(−13x)

g(y) = 2.23 exp
(−7.01y + 10.24y2 − 27.58y3)

k(y) = 1 + 0.01

(
−0.0726− 0.2145

y
+ 0.222573

y2
− 0.012823

y3

)

l (y) = 0.01

(
−0.26+ 0.6866

y
+ 0.0831

y2
− 0.0076

y3

)

m(x) = −0.1098+ 1.2138x − 2.2535x2 + 1.1313x3

n(y) = −0.019− 0.016

y
+ 0.0362

y2
− 0.00234

y3

The relations given above guarantee the accuracy of the impedancesZ0e(x, y)
andZ0o(x, y) not worse than 0.7% for 0.1 ≤ x ≤ 0.8 and 0.1 ≤ y.

For given values of impedancesZ0e = Z′
0e and Z0o = Z′

0o the design of these
lines consists in determining such values of parametersx = d/h andy = s/h, see
Fig. 3.2, for which the following equations are satisfied:

V1(x, y) = Z0e(x, y) − Z′
0e = 0

V2(x, y) = Z0o(x, y) − Z′
0o = 0

(3.32)

The system of nonlinear equations (3.32) can be effectively solved by using the
Newton method described in Sect. 3.3. Thus, the (n + 1)th approximation of the
desired solution is:

x(n+1) = x(n) − 1

J

(
V1

�V2

�y
− V2

�V1

�y

)

y(n+1) = y(n) + 1

J

(
V1

�V2

�x
− V2

�V1

�x

) (3.33)
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where

J =

⎡
⎢⎢⎣

�V1

�x

�V1

�y
�V2

�x

�V2

�y

⎤
⎥⎥⎦ �= 0

and (x(n), y(n)) is the nth (previous) approximation. The functionsV1(x, y) and
V2(x, y) appearing in the expressions (3.32) and their derivatives are calculated at
point (x(n), y(n)). Before execution of the (n+1)th iteration, the value of the Jacobian
J should be verified. When its value is different from zero, the calculations can
be continued. In the opposite case, we should perform a small shift of the point
(x(n), y(n)), by adding a small numberε to one of the variables in order to satisfy the
condition J �= 0. After this “small perturbation” the calculations can be continued
according to the formulas (3.33). The initial approximation assuring convergence of
the calculation process of this algorithm can be found according to the following
expressions:

x(0) = 4

π
exp

( −Z0

59.952
√

0.987− 0.171k − 1.723k3

)

y(0) = 1

π
ln

(
r + 1

r − 1

)
− x(0)

(3.34)

where

Z0 =
√

Z0eZ0o

k = Z0e − Z0o

Z0e + Z0o
r =

(
4

πx(0)

)0.001+1.117k−0.683k2

As the criterion allowing to stop the calculations, the following condition is most
frequently used:

V2
1 (x, y) + V2

2 (x, y) ≤ Z0eZ0o × 10−6 (3.35)

This inequality guarantees the precision not worse than 0.1%. An example of
such calculations is presented in Table 3.2.

Example 3.4This example deals with a problem concerning design of the non-
commensurate four-section impedance transformer with the maximally flat inser-
tion loss function. Calculations will be performed for different values of the ratio
R = Z02/Z01 of impedances that are to be matched. The electrical scheme of the
designed transformer is shown in Fig. 3.4(a).
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Table 3.2

εr = 1, μr = 1

Z0e � Z0o � x = d/h y = s/h

51.607 48.443 0.5483 0.7882
52.895 47.263 0.5460 0.6119
55.277 45.227 0.5418 0.4439
59.845 41.774 0.5286 0.2802
69.371 36.038 0.4893 0.1460

The insertion loss function of this transformer is:

L = Pwe

Pwy
= 1 + |T21|2 = 1 + T2

21 (3.36)

where

T21 = C{D − 2 cos(2a2θ ) + E cos(2θ + 2a2θ ) − F [2 cos(2θ ) − cos(2a2θ − 2θ )]}
C = (R − 1)(R2 + 1)(R + 1)2/(16R2

√
R), D = 2(R2 + 1)/(R + 1)2

E = (R + 1)2/(R2 + 1), F = (R − 1)2/(R2 + 1)

Z01 Z01 Z01Z02 Z02 Z02  = R Z01

θ θa  θ2a  θ2

(a)

L

(b)

Ld

1
x

f1 f0 f2

Fig. 3.4
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Design of the transformer of this type consists in finding such values of electrical
lengthsθ ( f0) and a2θ ( f0) of the particular sections, for which the insertion loss
function (3.36) will satisfy the following conditions:

L[θ ( f0), a2] = 1

L (k)[θ = θ ( f0), a2] = 0
(3.37)

where the indexk = 1, 2, 3 describes the derivative of the orderk with respect to
θ ( f ) calculated at the pointθ = θ ( f0). It follows from analysis of the relation (3.36)
that conditions (3.37) are satisfied if:

1

C
T21[θ ( f0), a2] = 0

d

dθ

{
1

C
T21[θ = θ ( f0), a2]

}
= 0

(3.38)

The derivative appearing in the system of equations (3.38) can be determined
using the following explicit formula:

d

dθ

[
1

C
T21(θ, a2)

]
= 4a2 sin(2a2θ ) − E(2 + 2a2) sin(2θ + 2a2θ )

− F [−4 sin(2θ ) + (2a2 − 2) sin(2a2θ − 2θ )]
(3.39)

where the coefficientsE and F are defined by the relation (3.36). The system of
equations (3.38) can be effectively solved by means of the Newton method, that is
in the similar way as the previous Example 3.2. Convergence of the iteration process
is guaranteed, when the following initial approximation is adopted:

θ0(R) = 0.273 exp(0.188− 0.131R + 0.004R2),

a2(R) = 2.948+ 0.175R
(3.40)

Results of some chosen calculations performed by means of the algorithm pre-
sented above are given in Table 3.3.

For the three transformers designed in this way (see the columns 1, 4 and 5 of
the Table 3.3), the frequency responses of the voltage standing wave ratio (VSWR)
have been evaluated. The corresponding plots are presented in Fig. 3.5.

Table 3.3

R θ0( f0, R), rad a2(R) θ( f0, R), rad a2

1.5 0.2702 3.1395 0.2734 3.1341
2 0.2475 3.2104 0.2592 3.2168
3 0.2304 3.4072 0.2306 3.4104
4 0.2074 3.6093 0.2067 3.6058
5 0.1904 3.7979 0.1876 3.7929
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R = 4

2

1.5

1.10
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1.00
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VSWR

Fig. 3.5

These responses have been evaluated by using the formula:

VSWR = 1 + |�|
1 − |�| (3.41)

where

|�| = |T21|√
1 + |T21|2

The formula (3.41) was determined for the case, when the analyzed transformers
are lossless. Such assumption is fully justified in case of the small transformers
operating in the UHF band and at lower frequencies of the microwave range.

Example 3.5Let us consider once again the design problem for the noncommen-
surate four-section impedance transformer whose electrical scheme is shown in
Fig. 3.4(a). The insertion loss functionL( f ) of this transformer should be sim-
ilar to that shown in Fig. 3.6. In other words, the insertion loss functionL( f )
of the designed transformer should be equal to ripples similar as the insertion

Fig. 3.6

L

L r

f1 f2
f1e f2e f3e

1.0
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loss function of the corresponding Chebyshev transformer composed of quarter
wavelength sections [9].

We assume that the ratioR = Z02/Z01 of impedance that are to be matched and
the band coverage coefficientx = f2/ f1 = θ ( f2)/θ ( f1) are given. The problem
formulated above leads to the conclusion that we should find such electrical length
θ = θ ( f1) and the coefficienta2, see Fig. 3.4(a), for which the curveL( f ) will be
similar to that shown in Fig. 3.6. It is clearly visible that this response should take
the identical extreme values at the three points representing different frequencies
f1e = f1, f2e, f3e = f2 lying inside the given bandwidth (f1− f2). This requirement
can be described by the following nonlinear equations:

T21(θa, a2) − T21(θa · f3e/ f1e, a2) = 0

T21(θa, a2) + T21(θa · f2e/ f1e, a2) = 0
(3.42)

whereT21(θ, a2) is the element of the wave transmission matrix described by the for-
mula (3.36). The system of equations (3.42) can be solved by means of the Newton–
Raphson method when the appropriate initial approximation [θ (0)(R, x), a(0)

2
(R, x)] is known. Of course, this initial approximation should ensure convergence
of the calculation process. In other words, the initial approximation must lie in
the sufficiently close neighborhood of the desired solution. The two-variable func-
tions θ (0)(R, x) andα

(0)
2 (R, x) satisfying this requirement can be found in the fol-

lowing way. Assume that the solution of the equation system (3.42) is known
at the arbitrary point (R0, x0) of our region of interest. This solution should be
treated as an initial approximation for the solution of this system of equations for
R = R0 + �R1, x = x0 + �x1, where�R1 and�x1 represent small increments,
for which convergence of the calculation process is assured. The solution obtained
in this way serves as initial approximation used subsequently to obtain next solu-
tion of the system (3.42) forR = R0 + �R1 + �R2 and x = x0 + �x1 + �x2.
Proceeding in a similar way, we can determine the set of solutions guaranteeing
convergence of the calculation process performed by means of the Newton method,
in our region of interestD : [Rmin ≤ R ≤ Rmax, xmin ≤ x ≤ xmax]. The set of
discrete solutions evaluated in this manner for 1.3 ≤ R ≤ 10 and 1.4 ≤ x ≤ 2.6 has
been subsequently approximated by using the following uncomplicated continuous
functions [9]:

θ (0)(R, x) = θ ( f1) = V4(r, x)

1 + x

a(0)
2 (R, x) = f3(r ) + f4(r )(2 − x)

V4(r, x)

(3.43)
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where

r = R − 1.5, V4(r, x) = f1(r ) + f2(r )(x − 2)

f1(r ) = 0.629575 exp(−0.115156r + 0.004939r 2 − 0.000074r 3)

f2(r ) = 0.105558 exp(−0.046644r − 0.001213r 2 + 0.000267r 3)

f3(r ) = 1.614779 exp(−0.079409r + 0.003701r 2 − 0.000075r 3)

f4(r ) = 0.251327− 0.123151 exp(−0.219819r + 0.016291r 2 − 0.000646r 3)

Formulas (3.43) make it possible the effective solution of the system of equa-
tions (3.42) for 1.3≤R≤10 and 1.4≤x≤2.6. Some calculation results, obtained by
using these approximating formulas are given in Tables 3.4 and 3.5.

The VSWR(f/ f1) responses obtained for two four-section transformers des-
igned for (R = 2, x = 2) and (R = 4, x = 1.9) are shown in Figs. 3.7 and 3.8,
respectively.

Similar to (3.43) closed-form formulas for designing the more broadband non-
synchronous transmission line transformers composed of six and eight noncom-
mensurate sections are described in papers [10, 11]. It deserves noting that the

Table 3.4

R = Z02/Z01 x = f2/ f1 θ( f1), rad a2 VSWRmax

4 1.3 0.1845 3.4618 1.0430
4 1.9 0.1642 2.8787 1.2759
4 2.6 0.1500 2.3205 1.6492

Table 3.5

R = Z02/Z01 x = f2/ f1 θ( f1), rad a2 VSWRmax

1.5 2 0.2098 2.5659 1.0740
2 2 0.1996 2.6058 1.1340
3 2 0.1790 2.6969 1.2359
4 2 0.1619 2.7849 1.3253
5 2 0.1482 2.8655 1.4074

R = 2

1.340

1.4

1.2

1.0
0.8 1.0 1.2 1.4 1.6 1.8 2.0 f / f1

VSWR

Fig. 3.7
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R = 4

1.2759

f / f1

1.4

1.2

1.0
0.8 1.0 1.2 1.4 1.6 1.8 2.0

VSWR

Fig. 3.8

eight-section transformer described in [11] has been used as a prototype circuit
for designing the eight-way power divider/combiner implemented in the L-band
rotary joint. Moreover, a similar multi-section nonsynchronous noncommensurate
transmission line structures can be applied to matching two-frequency dependent
complex impedances over the given frequency band. The corresponding design al-
gorithm and examples of applications are described in [12, 13].
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Chapter 4
Methods for the Interpolation
and Approximation of One Variable Function

Each professionally active engineer usually has to do with large number of numer-
ical data acquired during the calculation or experimenting process. It is therefore
obvious that statistical processing of this data or assignment of the corresponding re-
lations in the form of analytic functions has major importance for practical purposes.
The methods of interpolation and approximation discussed in this chapter serve,
among other goals, for this purpose. By interpolation we understand the process of
assignment, for the given functiony = y(x), continuous or discrete, of a continuous
function f (x) which for a finite number of values ofxi takes the same values, that
is f (xi ) = yi = y(xi ), wherei = 0, 1, 2, 3, . . . , n. The values ofxi andyi represent
the coordinates of the points (see Fig. 4.1), called the interpolation points (nodes).
The coordinatesxi are therefore often identified with this names [1–4].

In most practical cases, we are concerned with interpolation of a discrete function
yi = y(xi ) by means of a continuous functionf (x). This problem may be solved
in many different ways but the methods most frequently used for this purpose are:
piecewise linear interpolation, using the Lagrange or Newton–Gregory interpolation
polynomial, interpolation by means of cubic spline functions and interpolation using
a finite linear combination of Chebyshev polynomials of the first kind. All these
methods are discussed in Sect. 4.1. Slightly different, but a more general problem
is the approximation of a given, continuous or discrete functiony = y(x), by a
continuous functionf (x). In this case, both functions can take the same values
f (xi ) = yi = y(xi ), for a finite number of pointsxi , but it is not a necessary
condition. Such a particular case is shown in Fig. 4.2.

In case of approximating the discrete functionyi = y(xi ), wherei = 0, 1, 2,

3, . . . , n, by a continuous functionf (x), the most frequently used measure of the
quality of the approximation (norm) is the following sum:

R1 =
n∑

i=0

∣∣ f (xi ) − yi

∣∣ (4.1)

which should take the possibly smallest value. When the approximated function
y = y(x) satisfies the Dirichlet’s conditions in an approximation interval [a, b] (is
bounded and has a finite number of discontinuities of the first kind), we can evaluate:

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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y(xi 
) 

f(x)

x

x0 x1 x2 xn–1 xn

f(x)
y0

y1

y2

yn – 1

yn

Fig. 4.1

R2 = 1

|b − a|

b∫

a

∣∣ f (x) − y(x)
∣∣dx (4.2)

The norm given by formula (4.2) has a simple geometrical interpretation. It is
equal to the ratio of the hatched area in Fig. 4.3 to the length of the approximation
interval.

Another example of the norm used for approximation of a continuous function
y(x) by a function f (x) is:

R3 = 1

|b − a|

b∫

a

[
f (x) − y(x)

]2
dx (4.3)

The approximation methods used most frequently in the engineering can be
discriminated in consideration of the approximating functionf (x) or the adopted
approximation norm. In general, an approximating function can be a linear combina-
tion of linearly independent component functionsϕk(x), wherek = 0, 1, 2, 3, . . . , m

x0 x1 x2 x3 x4 x5

x

f(x)

f(x)

y(xi ) 

y0

y1

y2

y3
y4

y5

Fig. 4.2
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y(x)

f(x)

f(x)

y(x)

a b

x

Fig. 4.3

f (x) = a0ϕ0(x) + a1ϕ1(x) + a2ϕ2(x) + a3ϕ3(x) + · · · + amϕm(x) =
m∑

k=0

akϕk(x)

(4.4)

The set of functionsϕk(x) is called linearly independent, when no such function
belonging to this set exists that can be expressed as the linear combination of the
remaining functions. It means that the identity

m∑
k=0

αkϕk(x) = 0 (4.5)

cannot be satisfied for an arbitrary set of coefficientsa0, a1, a2, a3, . . . , am different
from zero. The simplest example of the linearly independent functions is the set of
power functions: 1, x, x2, x3, . . . , xm. The problem of approximation by means of
the function (4.4) can be solved very easily in case when a given system of linearly
independent functions is orthogonal [5, 6]. In order to explain this property, we
formulate the relation:

b∫

a

ϕi (x)ϕk(x)dx ≡ ϕi (x)ϕk(x) = 0 for i �= k (4.6)

If each arbitrarily chosen pair of functions belonging to the set of linearly inde-
pendent functions satisfies the condition (4.6), then such a set is orthogonal in an
interval [a, b]. Moreover, if the following condition is simultaneously satisfied

ϕ2
i (x) ≡ Ni = 1 for i = 0, 1, 2, 3, . . . , m (4.7)

then the set of functions is said to be orthonormal in an interval [a, b].
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The approximation methods presented in Sect. 4.2 will be discussed in the
following order:

– approximation of a constant functiony(x) = const in the limited interval [a, b]
by the Chebyshev polynomialTn(x);

– approximation of a constant function,y(x) = const in the interval [a, b] by the
Butterworth polynomialBn(x);

– approximation of a discrete functionyi = y(xi ), wherei = 0, 1, 2, 3, . . . , n, by
the polynomial

�(x) = a0ϕ0(x) + a1ϕ1(x) + a2ϕ2(x) + a3ϕ3(x) + · · · + anϕn(x) =
n∑

i=0

ai ϕi (x)

according to the least squares criterion;
– approximation of periodic functions satisfying the Dirichlet’s conditions by the

trigonometric polynomial

	(x) = a0ψ0(x)+a1ψ1(x)+a2ψ2(x)+a3ψ3(x)+· · ·+anψn(x) =
n∑

i=0

ai ψi (x)

whose basis functionsψ0(x), ψ1(x), ψ2(x), ψ3(x), . . . , ψn(x),are linearly inde-
pendent and satisfy the condition (4.6).

4.1 Fundamental Interpolation Methods

4.1.1 The Piecewise Linear Interpolation

The essence of the piecewise linear interpolation of a given discrete functionyi =
y(xi ), wherei = 0, 1, 2, 3, . . . , n, is illustrated in Fig. 4.4.

y(x)

L(x)

x

r(5)

x0 x1 x2 x3 x4 x5

L(x)

y0

y2

y4

y3

y5

y1

Fig. 4.4



4.1 Fundamental Interpolation Methods 73

For each value of the variablex lying in the approximation interval, the corre-
sponding value of an interpolating function can be calculated from the formula:

L(x) = y0 +
k∑

i=1

r (i ) + r (k + 1)
x − xk

xk+1 − xk
(4.8)

wherer (i ) = yi − yi−1 andk is the largest index value for whichxk < x.

4.1.2 The Lagrange Interpolating Polynomial

The problem of interpolation by the power polynomial consists in finding a poly-
nomial P(x) of degree not greater thann, which for the given values ofxi , where
i = 0, 1, 2, 3, . . . , n, takes the same values as the approximated functionyi = y(xi ).
There is a mathematical proof that there exists only one polynomial,

Pn (x) = a0 + a1x + a2x2 + a3x3 + · · · + anxn =
n∑

i=0

ai x
i (4.9)

having (n + 1) coefficientsa0, a1, a2, a3, . . . , an. In order to determine them, we
should formulate (n + 1) reasonably stated conditions. According to the idea of the
interpolation, see Fig. 4.1, these conditions are:

y0 = Pn(x0) = a0 + a1x0 + a2x2
0 + · · · + anxn

0
y1 = Pn(x1) = a0 + a1x1 + a2x2

1 + · · · + anxn
1

y2 = Pn(x2) = a0 + a1x2 + a2x2
2 + · · · + anxn

2
...
yn = Pn(xn) = a0 + a1xn + a2x2

n + · · · + anxn
n

(4.10)

The equation system (4.10) can be written in the following matrix form:

⎡
⎢⎢⎢⎢⎢⎣

1 x1
0 x2

0 . . . xn
0

1 x1
1 x2

1 . . . xn
1

1 x1
2 x2

2 . . . xn
2

...
...

... . . .
...

1 x1
n x2

n . . . xn
n

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

a2
...

an

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

y0

y1

y2
...
yn

⎤
⎥⎥⎥⎥⎥⎦

(4.11)

As we see, this equation system is linear with respect to the unknown coefficients
a0, a1, a2, a3, . . . , an and has a unique solution, because the determinant of the ma-
trix of coefficients (called the Vandermonde’s determinant) cannot be equal to zero.
The system of equations (4.11) can be solved using one of the methods presented
in Chap. 1. We must, however, emphasize that in many cases the equation systems
formulated in such a way may be ill-conditioned and as a consequence of this fact,
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considerable computational errors may occur. Therefore, usefulness of a polynomial
found in this way may be sometimes doubtful. This effect is particularly dangerous
when we are dealing with polynomials of large degreen. It may be considerably
eliminated, when we use the algorithm for determination of interpolating polyno-
mial, introduced by Lagrange. The Lagrange interpolation consists in finding such
polynomialPn(x)≡ Ln(x) of degree not greater thann, which at interpolation points
x0, x1, x2, . . . , xn takes the same values as the interpolated functionyi = y(xi ), i.e.:

Ln(xi ) = yi = y(xi ) for i = 0, 1, 2, 3, . . . , n (4.12)

At the beginning of the procedure of evaluating such polynomial, let us consider
an auxiliary problem consisting in finding the polynomialδi (x), satisfying the con-
ditions:

δi (xj ) = 0 for j �= i
δi (xj ) = 1 for j = i

(4.13)

where i = 0, 1, 2, 3, . . . , n. An example of such polynomialδi (x) is shown in
Fig. 4.5.

Conditions (4.13) can be expressed by means of the Kronecker symbol. The poly-
nomialδi (x) is equal to zero for (x0, x1, x2, . . . , xi−1, xi+1, . . . , xn), and therefore
can be written as the following product:

δi (x) = ci

n∏
j = 0
j �= i

(
x − xj

)
(4.14)

whereci is a certain coefficient. This coefficient may be easily found from the re-
lations (4.14) and (4.13), preciselyδi (xi ) = 1. After the uncomplicated substitution
we obtain:

x

δi (x) 

1

0

x0 x1 x2 xi xn–1 xn

Fig. 4.5
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ci = 1

(xi − x0) (xi − x1) . . . (xi − xi−1) (xi − xx+1) . . . (xi − xn−1) (xi − xn)
(4.15)

Introducing formula (4.15) to the relation (4.14) we get:

δi (x) = (x − x0) (x − x1) . . . (x − xi−1) (x − xi+1) . . . (x − xn−1) (x − xn)

(xi − x0) (xi − x1) . . . (xi − xi−1) (xi − xi+1) . . . (xi − xn−1) (xi − xn)
(4.16)

The Lagrange interpolation polynomial is defined as the linear combination of the
polynomials (4.16), in which all coefficients are equal to the corresponding values
of an interpolated function, namely:

Ln(x) =
n∑

i=0

yi δi (x) (4.17)

We can prove that the polynomial (4.17) represents a unique solution of the problem
stated above.

Example 4.1Let us assume that the discrete functionyi = y(xi ) is defined as: (x0 =
1.0, y0 = 2.0), (x1 = 3.0, y1 = 3.5), (x2 = 5.0, y2 = 3.7) and (x3 = 7.0, y3 = 3.5).
The Lagrange interpolating polynomial evaluated for this function is:

L3 (x) = 2 · (x − 3) (x − 5) (x − 7)

(1 − 3) (1 − 5) (1 − 7)
(i = 0)

+ 3.5 · (x − 1) (x − 5) (x − 7)

(3 − 1) (3 − 5) (3 − 7)
(i = 1)

+ 3.7 · (x − 1) (x − 3) (x − 7)

(5 − 1) (5 − 3) (5 − 7)
(i = 2)

+ 3.5 · (x − 1) (x − 3) (x − 5)

(7 − 1) (7 − 3) (7 − 5)
(i = 3)

After rearrangement, this polynomial can be written in the traditional power form,
namelyL3(x) = 0.01875x3 − 0.33125x2 + 1.83125x + 0.48125. Identical values
of the coefficientsa0 = 0.48125,a1 = 1.83125,a2 = −0.33125 anda3 = 0.01875
can be found when we solve the following equation system formulated for this
problem:

⎡
⎢⎢⎣

1 11 12 13

1 31 32 33

1 51 52 53

1 71 72 73

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2.0
3.5
3.7
3.5

⎤
⎥⎥⎦

The above equation system corresponds to the system (4.11).
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4.1.3 The Aitken Interpolation Method

The Lagrange interpolating polynomialWn(x) can be evaluated using a series of
linear interpolations [7]. Thus, let us assume that the pointsx0, x1, x2, x3, . . . , xn,
and valuesy0 = y(x0), y1 = y(x1), y2 = y(x2), y3 = y(x3), . . . , yn = y(xn)
of the functiony(x) being interpolated are given. According to Aitken interpolation
method, the interpolating polynomialWn(x) can be evaluated by using the following
n-iterativealgorithm.

4.1.3.1 First Iteration

At the beginning,n polynomialsW0,k of degree 1 are created in the following
manner:

W0,k = y0
x − xk

x0 − xk
+ yk

x − x0

xk − x0
= 1

x0 − xk

∣∣∣∣
y0 x − x0

yk x − xk

∣∣∣∣

wherek = 1, 2, 3, 4, . . . , n. The set of these polynomials is written in third
column of the Table 4.1.

4.1.3.2 Second Iteration

PolynomialsW0,k evaluated above allow us to create the set ofn−1 polynomials of
degree 2, i.e.:

W0,1,l = W0,1
x − xl

x1 − xl
+ W0,l

x − x1

xl − x1
= 1

x1 − xl

∣∣∣∣
W0,1 x − x1

W0,l x − xl

∣∣∣∣

wherel = 2, 3, 4, . . . , n. These polynomialsW0,1,l are written in the fourth column
of Table 4.1.

4.1.3.3 Third Iteration

In the same way, the set ofn − 2 polynomials

W0,1,2,m = W0,1,2
x − xm

x2 − xm
+ W0,1,m

x − x2

xm − x2
= 1

xm − x2

∣∣∣∣
W0,1,2 x − x2

W0,1,m x − xm

∣∣∣∣

of degree 3 is created. In this case,m = 3, 4, . . . , n.

Table 4.1

x0 y0
x1 y1 W0,1
x2 y2 W0,2 W0,1,2
x3 y3 W0,3 W0,1,3 W0,1,,2,3
x4 y4 W0,4 W0,1,4 W0,1,,2,4
. . . . . . . . . . . . . . . . . . W0,1,2,3,...,n−2,n−1
xn yn W0,n W0,1,n W0,1,,2,n . . . W0,1,2,3,...,n−2,n W0,1,2,3,...,n−2,n−1,n
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4.1.3.4 Successive Iterations

In successive iterations the polynomials of higher degrees, see Table 4.1, are
evaluated analogously.

4.1.3.5 Last Iteration

Only one polynomialW0,1,2,3,...,n ≡ Wn(x) of degreen is evaluated in the last
(n) iteration. This polynomial is identical to the Lagrange polynomial (4.17) being
sought.

In order to illustrate the algorithm presented above, let us consider again the inter-
polation problem described in Example 4.1. The intermediate polynomials evaluated
for this interpolation problem are:

W0,1 = 0.75x + 1.25, W0,2 = 0.425x + 1.575, W0,3 = 0.25x + 1.75

W0,1,2 = −0.1625x2 + 1.4x + 0.7625, W0.1,3 = −0.125x2 + 1.25x + 0.875

W0,1,2,3 = 0.01875x3 − 0.33125x2 + 1.83125x + 0.48125

The polynomialW0,1,2,3(x) is the same as the polynomialL3(x), which was
obtained by Lagrangian interpolation, see Example 4.1. Undoubtedly, this identity
confirms the validity of that algorithm.

4.1.4 The Newton–Gregory Interpolating Polynomial

The Newton–Gregory polynomial interpolating the functionyi = y(xi ) at (n + 1)
points (nodes) has the form:

Nn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + a3(x − x0)(x − x1)(x − x2)
+ · · · + an(x − x0)(x − x1)(x − x2) . . . (x − xn−1)

(4.18)

The coefficientsai , for i = 0, 1, 2, 3, . . . , n, of this polynomial can be deter-
mined from the system of (n+ 1) equations written below:

a0 = y0

a0 + a1 (x1 − x0) = y1

a0 + a1 (x2 − x0) + a2 (x2 − x0) (x2 − x1) = y2
...
a0 + a1 (xn − x0) + a2 (xn − x0) (xn − x1) + · · ·

+an (xn − x0) (xn − x1) . . . (xn − xn−1) = yn

(4.19)

The matrixA of coefficients of the equation system (4.19) has the triangular
form, which makes of course the solution of this system much easier. We may use
here, for example the second stage of Gaussian elimination method. Consequently,
we can write:
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a0 = y0

a1 = 1

(x1 − x0)
[y1 − a0]

a2 = 1

(x2 − x0) (x2 − x1)
[y2 − a0 − a1 (x2 − x0)]

a3 = 1

(x3 − x0) (x3 − x1) (x3 − x2)
[y3−a0−a1 (x3−x0) − a2 (x3 − x0) (x3 − x1)]

...

am = 1
m−1∏
i=0

(xm − xi )

{
ym − a0 −

m−1∑
k=1

[
ak

k−1∏
j =0

(xm − xj )

]}

(4.20)

The recursive formulas that follows represent the generalized relation (4.20),
satisfied for 2≤ m ≤ n. The problem of calculating the coefficientsam can be
simplified, if the interpolation points (x0, x1, x2, . . . , xn) are equally spaced by
the step

h = xi+1 − xi (4.21)

Applying the relation (4.21) to the equations (4.19) we get:

y0 = a0

y1 = a0 + a1 · h
y2 = a0 + a1 (2h) + a2 · (2h) · h
...
yn = a0 + a1 (nh)+a2 (nh) (n−1) h + a3(nh)(n − 1)h(n − 2)h + · · · + an (n!) hn

(4.22)

The following coefficients represent the solution of equation system (4.22)

a0 = y0

a1 = y1 − y0

h
= �y0

h

a2 = 1

2h2
[(y2 − y1) − (y1 − y0)] = �2y0

2h2

. . .

The coefficientsam, for m = 1, 2, 3, . . . , n, can be written in the following
general form:

am = �my0

(m!) hm
(4.23)
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where�my0 is the finite difference of orderm. Values of the finite differences used
for calculation of the coefficientsam can be evaluated according to the following
multi-step algorithm:

� differences of the first order,m = 1

�y0 = y1 − y0

�y1 = y2 − y1

...

�yn−1 = yn − yn−1

� differences of the second order,m = 2

�2y0 = �y1 − �y0

�2y1 = �y2 − �y1

...

�2yn−2 = �yn−1 − �yn−2

(4.24)

� differences of the third order,m = 3

�3y0 = �2y1 − �2y0

�3y1 = �2y2 − �2y1

...

�3yn−3 = �2yn−2 − �2yn−3

� differences of them – order

�my0 = �m−1y1 − �m−1y0

�my1 = �m−1y2 − �m−1y1

...

�myn−m = �m−1yn+1−m − �m−1yn−m

Finite differences of an arbitrary order 1≤ m ≤ n can be expressed directly by
means of the valuesyi of the interpolated function.

�my0 = ym − mym−1 + m(m − 1)

2!
ym−2 + · · · + (−1)my0 (4.25)

The formula (4.25) may be generalized for finite differences calculated at the
point xi

�myi = ym+i − mym+i−1 + m(m − 1)

2!
ym+i−2 + · · · + (−1)myi (4.26)
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After introducing relation (4.23) into the polynomial (4.18) we obtain the standard
form of Newton–Gregory interpolation polynomial, namely:

N(x) = y0 + �y0

h
(x − x0) + �2y0

(2!)h2
(x − x0)(x − x1) + · · ·

+ �ny0

(n!)hn
(x − x0)(x − x1)(x − x2) . . . (x − xn−1)

(4.27)

By introducing a new variable

t = x − x0

h
(4.28)

for which

x = x0 + th,
x − x1

h
= x − x0 − h

h
= t − 1,

x − x2

h
= t − 2, . . .

x − xn−1

h
= t − n + 1

the polynomial (4.27) can be written as:

N(x0 + th) = y0 + t �y0 + t(t − 1)

2!
�2y0 + t(t − 1)(t − 2)

3!
�3y0 + · · ·

+ t(t − 1)(t − 2) . . . (t − n + 1)

n!
�ny0

(4.29)

The polynomial (4.29) can be used for interpolation of a given functionyi =
y(xi ) over the whole interval [x0, xn]. For the sake of computing precision, it is
however recommended to reduce the interpolation interval to [x0, x1], assuring that
t < 1. For different values of the variablex, as for examplexi < x < xi+1, we
should takexi instead ofx0. In this case, fori = 1, 2, 3, . . . , n−1, this interpolation
polynomial has the form:

N(xi + th) = yi + t �yi + t(t − 1)

2!
�2yi + t(t − 1)(t − 2)

3!
�3yi + · · ·

+ t(t − 1)(t − 2) . . . (t − n + 1)

n!
�nyi

(4.30)

which in the literature is known as the first Newton–Gregory polynomial for the
forward interpolation. Polynomial (4.30) is used chiefly to determine the values of
a given function, lying in the left-half of the interpolation interval [x0, xn]. Justifi-
cation of this fact may be explained in the following manner. The finite differences
�myi are calculated on the basis of valuesyi , yi+1, yi+2, yi+3, . . . , yi+m, when
i +m ≤ n. For i close ton, the finite differences of higher orders are not calculated.
For example, ifi = n − 3, the polynomial (4.30) contains only the differences
�yi , �2yi and �3yi . When the points lying in the right-half of the interpolation
interval [x0, xn] are concerned, it is recommended to use the polynomial
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N(xn + th) = yn + t�yn−1 + t(t + 1)

2!
�2yn−2 + t(t + 1)(t + 2)

3!
�3yn−3 + · · ·

+ t(t + 1)(t + 2) . . . (t + n − 1)

n!
�ny0

(4.31)

defined for

t = x − xn

h
≤ 0 (4.32)

This version of polynomial is called the Newton–Gregory polynomial for back-
ward interpolation.

Example 4.2The functionyi = y(xi ) defined in Example 4.1 interpolates the poly-
nomial (4.18) whose coefficients are:a0 = 2, a1 = 0.75, a2 = −0.1625 and
a3 = 0.01875. Some values of this polynomial are given in Table 4.2.

Example 4.3As next example, let us calculate the valuesN5(0.1) andN5(0.9) of the
first and second Newton–Gregory polynomials interpolating the functionyi = y(xi )
given in the first and second columns of Table 4.3.

In the remaining columns of this table, values of finite differences calculated
from the formulas (4.24) are given. Forx = 0.1 we obtaint = (x − x0)/h =
(0.1 − 0)/0.2 = 0.5.

According to the formula (4.30)

N5(0.1) = 1.2715+ 0.5 × 1.1937+ 0.5(0.5 − 1)

2
(−0.0146)

+ 0.5(0.5 − 1)(0.5 − 2)

6
0.0007+ 0.5(0.5 − 1)(0.5 − 2)(0.5 − 3)

24
(−0.0001)

= 1.8702

Table 4.2

x 1.5 3.0 4.5 5.5 6 7
N3(x) 2.546094 3.500000 3.722656 3.652344 3.593750 3.500000

Table 4.3

xi yi �yi �2yi �3yi �4yi �5yi

0.0 1.2715
1.1937

0.2 2.4652 −0.0146
1.1791 0.0007

0.4 3.6443 −0.0139 −0.0001
1.1652 0.0006 0.0000

0.6 4.8095 −0.0133 −0.0001
1.1519 0.0005

0.8 5.9614 −0.0128
1.1391

1.0 7.1005
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Value of the polynomialN5(0.9) should be calculated according to the formula
(4.31) by introducingt = (x − xn)/h = (0.9 − 1)/0.2 = −0.5. In this case

N5(0.9) =7.1005+ 0.5 · 1.1391− 0.5(−0.5 + 1)

2
(−0.0128)

− 0.5(−0.5 + 1)(−0.5 + 2)

6
(0.0005)

− 0.5(−0.5 + 1)(−0.5 + 2)(−0.5 + 3)

24
(−0.0001)= 6.5325

4.1.5 Interpolation by Cubic Spline Functions

The spline function used for the interpolation of the functionyi = y(xi ), where
i = 0, 1, 2, 3, . . . , n, is defined as a set ofn conjugate trinomials. The properties of
such trinomials will be discussed below on the example of the cubic spline function,
composed of three trinomials, i.e.:

q1(x) = k10 + k11x + k12x2 + k13x3

q2(x) = k20 + k21x + k22x2 + k23x3

q3(x) = k30 + k31x + k32x2 + k33x3

(4.33)

Of course, the above approach does not limit the generality of our considerations.
The spline function (4.33) interpolates a functionyi = y(xi ) defined at four points,
as shown in Fig. 4.6.

x0 x1 x2 x3

y0

y1

y2

y3

y(xi ) 

f(x) 

x

q1(x)

q3(x)

q (x)2

Fig. 4.6
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According to the general concept of interpolation, these trinomials should satisfy
the following requirements:

q1(x0) = y0

q1(x1) = q2(x1) = y1

q2(x2) = q3(x2) = y2

q3(x3) = y3

(4.34)

Moreover, it is required that the corresponding first and second derivatives of the
trinomials, calculated at internal interpolation points should be equal to each other.
This requirement can be expressed as follows:

q′
1(x1) = q′

2(x1)

q′′
1 (x1) = q′′

2 (x1)

q′
2(x2) = q′

3(x2)

q′′
2 (x2) = q′′

3 (x2)

(4.35)

Similar equations can be formulated for the second derivatives of the first and the
last (third) trinomials. These derivatives, calculated for the first and last (external)
interpolation points, should be equal to zero.

q′′
1 (x0) = q′′

3 (x3) = 0 (4.36)

Equations (4.34), (4.35) and (4.36) formulated above, form the system of 12
linear equations with 12 unknown coefficients of the polynomialsq1(x), q2(x) and
q3(x), see relations (4.33). It can be solved by using one of the methods described
in Chap. 1. For example, the Gaussian elimination with the choice of the pivotal
element is suitable for this purpose.

Example 4.4Given the following discrete functionyi = y(xi ) defined at three
points: (x0 = 1, y0 = 2), (x1 = 3, y1 = 3.5) and (x2 = 5, y2 = 3.7). The cor-
responding interpolating spline function composed of two trinomials has the form:

q1(x) = k10 + k11x + k12x
2 + k13x

3, q2(x) = k20 + k21x + k22x
2 + k23x

3

According to the idea of interpolation we can formulate the set of eight equations
for these trinomials, i.e.:

q1(1) = 2, q′
1(3) − q′

2(3) = 0

q1(3) = 3.5, q′′
1 (3) − q′′

2 (3) = 0

q2(3) = 3.5, q′′
1 (1) = 0

q2(5) = 3.7, q′′
2 (5) = 0

The equations formulated above can be written in the matrix form with respect
to coefficientsk10, k11, k12, k13, k20, k21, k22 andk23 being sought.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0
1 3 9 27 0 0 0 0
0 0 0 0 1 3 9 27
0 0 0 0 1 5 25 125
0 1 6 27 0 −1 −6 −27
0 0 2 18 0 0 −2 −18
0 0 2 6 0 0 0 0
0 0 0 0 0 0 2 30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k10

k11

k12

k13

k20

k21

k22

k23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3.5
3.5
3.7
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The solution of this equation system is:k10 = 1.128125,k11 = 0.790625,k12 =
0.121875,k13 = −0.040625,k20 = −1.065624,k21 = 2.984375,k22 = −0.609375
andk23 = 0.040625. It follows from our above considerations that, in case (m + 1)
interpolation points, the number of interpolating trinomials equalsm and the number
of the coefficients in all trinomials is 4m. The total number of coefficients can be
considerably reduced by using the set of properly correlated trinomials [2, 8]. Here,
we have some examples of such trinomials:

qi [t (x)] = t · yi + t̄ · yi−1 + �xi
[
(ki−1 − di ) · t · t̄2 − (ki − di ) · t2 · t̄

]
(4.37)

where

�xi = xi − xi−1, �yi = yi − yi−1, di = �yi

�xi
, t = x − xi−1

�xi
, t̄ = 1 − t

i = 1, 2, . . . , m

Each trinomial (4.37) has only two coefficientski−1 andki . When the form of
the first trinomialq1 [t(x)] (having the coefficientsk0 andk1) is given, then only one
new unknown coefficient is added when we pass to the next trinomial. The following
conclusions result from the relations (4.37):

1. Forx = xi−1

t = 0, t̄ = 1, qi [t(x)] = yi−1 (4.38)

2. Forx = xi

t = 1, t̄ = 0, qi [t(x)] = yi

Moreover, we can find in the literature the proof of the fact that trinomials (4.37)
satisfy automatically the requirement of equality of the corresponding first deriva-
tives at the internal interpolation points. Similar requirements formulated for second
derivatives have the form:

ki−1�xi+1 + 2ki (�xi + �xi+1) + ki+1�xi = 3(di �xi+1 + di+1�xi ) (4.39)

In case of the external interpolation points the requirement:
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q′′
1 [t(x0)] = 0, q′′

m[t(xm)] = 0

is satisfied when

2k0 + k1 = 3d1

km−1 + 2km = 3dm
(4.40)

Equations (4.38), (4.39) and (4.40) form the following system ofm linear
equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 . . . 0 0 0
�x2 2(�x1 + �x2) �x1 0 . . . 0 0 0
0 �x3 2(�x2 + �x3) �x2 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . �xm 2(�xm−1 + �xm) �xm−1

0 0 0 0 . . . 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k0

k1

k2

...
km−1

km

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1

d1�x2 + d2�x1

d2�x3 + d3�x2

...
dm−1�xm + dm�xm−1

dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Solution of this system is identical to the vector [k0, k1, k2, . . . , km] of the de-
sired coefficients. The matrixA of coefficients of the above equation system is the
particular case of the sparse square matrix known in the literature under the name of
the ribbon or, more specifically, tri-diagonal matrix. When we solve large (n ≥ 10)
systems of linear equations having tri-diagonal matrices of coefficientsA, a method
of fast elimination proves to be very useful. It may be interpreted as a modification
of the Gaussian elimination method described in Chap. 1. In the Russian language
literature, this method is known under the name of “progonka”. Similarly, as in
the case of the Gaussian elimination, we distinguish here two stages, namely the
forward and backward movement. Due to the ribbon structure of the coefficient
matrix A, computing formulas describing this method are not complicated and can
be expressed in the simple recursive form. The algorithm of this special numerically
effective method is described in Appendix C.

Example 4.5Consider an application of the cubic spline function (4.37) to interpo-
lation of the following discrete function: (x0 = 1, y0 = 2), (x1 = 3, y1 = 3.5),
(x2 = 5, y2 = 3.8) and (x3 = 7, y3 = 3). The differences�xi , �yi and coefficients
di calculated for this function are:

�x1 = 2, �x2 = 2, �x3 = 2

�y1 = 1.5, �y2 = 0.3, �y3 = −0.8

d1 = 0.75, d2 = 0.15, d3 = −0.4
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The quantities given by (4.38), (4.39) and (4.40), can be used to formulate the
following system of four linear equations:

⎡
⎢⎢⎣

2 1 0 0
2 2(2+ 2) 2 0
0 2 2(2+ 2) 2
0 0 1 2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

k0

k1

k2

k3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2.25
5.4

−1.5
−1.2

⎤
⎥⎥⎦

with respect to the desired coefficients. Solution of this system is equal to:

k0 = 0.873333, k1 = 0.503333, k2 = −0.186666, k3 = −0.506666.

4.1.6 Interpolation by a Linear Combination of Chebyshev
Polynomials of the First Kind

Let f (x) be a real function of one variable defined at least in the interval [−1, 1].
This function can be interpolated over the interval [−1, 1] by means of finite, linear
sum of the Chebyshev polynomialsTj (x) of the first kind

PN(x) = c0T0(x) + c1T1(x) + c2T2(x) + · · · + cNTN(x) =
N∑

j =0

cj Tj (x) (4.41)

The coefficientscj , j = 0, 1, 2, 3, . . . , N, of the interpolating polynomialPN(x)
can be found using the following relations:

N∑
k=0

Ti (xk)Tj (xk) = 0 for i �= j

N∑
k=0

Ti (xk)Tj (xk) = N + 1

2
for i = j �= 0

N∑
k=0

T0(xk)T0(xk) = N + 1

(4.42)

that are satisfied only when

xk = cos

(
�

2k + 1

2N + 2

)
, k = 0, 1, 2, 3, . . . , N (4.43)

The property expressed by relations (4.42) is often called conditional orthogo-
nality, because it takes place only for the set of discrete valuesxk defined above. For
arbitrary values of the variablex the Chebyshev polynomials, see relations (4.52),
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do not form the set of orthogonal functions with the weightsp(x) = 1. In order
to determine the coefficientscj , see (4.41), let us consider the products of the dis-
crete values of the interpolating polynomialPN(xk) = f (xk) and the Chebyshev
polynomialTi (xk), wherek = 0, 1, 2, 3, . . . , N, 0 ≤ i ≤ N.

f (x0)Ti (x0) = c0Ti (x0)T0(x0) + c1Ti (x0)T1(x0) + · · · + cNTi (x0)TN(x0)

f (x1)Ti (x1) = c0Ti (x1)T0(x1) + c1Ti (x1)T1(x1) + · · · + cNTi (x1)TN(x1)

f (x2)Ti (x2) = c0Ti (x2)T0(x2) + c1Ti (x2)T1(x2) + · · · + cNTi (x2)TN(x2)
...
f (xi )Ti (xi ) = c0Ti (xi )T0(xi ) + c1Ti (xi )T1(xi 1) + · · · + cNTi (xi )TN(xi )
...
f (xN)Ti (xN) = c0Ti (xN)T0(xN) + c1Ti (xN)T1(xN) + · · · + cNTi (xN)TN(xN)

(4.44)

Taking the sums of the terms on the left and right sides of the relations (4.44) we
obtain:

N∑
k=0

f (xk)Ti (xk) = c0

N∑
k=0

Ti (xk)T0(xk) + c1

N∑
k=0

Ti (xk)T1(xk) + c2

N∑
k=0

Ti (xk)T2(xk)

+ · · · + ci

N∑
k=0

Ti (xk)Ti (xk) + · · · + cN

N∑
k=0

Ti (xk)TN(xk)

(4.45)
Using the property (4.42), the sums written above simplify to the form:

N∑
k=0

f (xk)Ti (xk) = ci

N∑
k=0

Ti (xk)Ti (xk) = ci
N + 1

2
, i �= 0 (4.46)

According to the relation (4.46), the desired coefficientcj is:

ci = 2

N + 1

N∑
k=0

f (xk)Ti (xk) for 1 ≤ i ≤ N (4.47)

In case wheni = 0:

c0 = 1

N + 1

N∑
k=0

f (xk)T0(xk) (4.48)

The interpolation method described above can be generalized to the case of an
arbitrary real functionf (t) defined over an interval [ta, tb], where ta �= −1 and
tb �= 1. To this end, we write the variablex as a function of a new variablet using
the transformation:
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x ≡ x(t) = −1 + 2
t − ta
tb − ta

(4.49)

The changes of the variablet over the interval [ta, tb] correspond here to respec-
tive changes of the variablex over the interval [−1, 1].

Example 4.6As an illustration example, let us evaluate a polynomial of third degree
P3[x(t)] interpolating the functionf (t) = 3 exp(−0.1t) over an interval [0, 10].
The values ofxk, calculated fork = 0, 1, 2, 3, are given in the second column of
Table 4.4.

The third column of this table presents values oftk calculated forta = 0 and
tb = 10 according to the following relationt ≡ t(x) = 0.5[(1 − x)ta + (1 + x)tb],
which is the inverse of the transformation (4.49). In the last two columns of the table,
only the values ofT2(xk) andT3(xk) are given, becauseT0(xk) = 1 andT1(xk) = xk.
The coefficientscj , where j = 0, 1, 2, 3, calculated by means of (4.48) and (4.47),
are equal to:c0 = 1.935105711, c1 = −0.938524669, c2 = 0.116111001 and
c3 = −9.595734359× 10−3. Hence the interpolating polynomial being evaluated
has the form:

P3[x(t)] = 1.935105711− 0.938524669x + 0.116111001(2x2 − 1)

−9.595734359× 10−3(4x3 − 3x)

The maximum absolute deviationR3 max = max| f (t) − P3[x(t)]|, computed for
0 ≤ t ≤ 10, does not exceed 6.629× 10−4. This deviation can be reduced us-
ing the interpolating polynomial of higher degree. As an example, the interpolating
polynomial of the fifth degree (n = 5) has been found:

P5[x(t)] = 1.935105840− 0.938524911x + 0.116112773(2x2 − 1)

−9.626569571×10−3(4x3−3x)+6.001497450×10−4(8x4 − 8x2 + 1)

−3.061124322× 10−5(16x5 − 20x3 + 5x)

In this case, the maximum deviationR5 max = max| f (t) − P5[x(t)]| is not
greater than 2×10−6 and about 320 times less than the deviationR3 max. On the
basis of the functionf (t) and the corresponding interpolating polynomialPN [x(t)],
it is possible to determine the deviation functionRN(t) = f (t) − PN [x(t)], which
is undoubtedly the quality measure of the performed interpolation. For majority of
the real functionsf (t), the deviation functionRN(t) has similar shape as the equal

Table 4.4

k xk = x(tk) tk f (tk) T2(xk) T3(xk)

0 0.923879564 9.619397819 1.146452546 0.707106897 0.382683659
1 0.382683456 6.913417279 1.502710580 −0.707106745 −0.923879562
2 −0.382683426 3.086582869 2.203294992 −0.707106790 0.923879525
3 −0.923879504 0.380624789 2.887964725 0.707106676 −0.382683227
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ripple waveform over the interpolation intervalta ≤ t ≤ tb, −1 ≤ x(t) ≤ 1, and
absolute values of its local extreme values are close to the maximum equal toRN max.
This conclusion is well confirmed by the numerical results obtained for the function
R5(t) = f (t) − P5[x(t)] shown in Fig. 4.7.

The properties mentioned just above have considerably decided about numerous
applications of the interpolation method for various scientific and engineering prob-
lems. The simplicity of the algorithm constructed for evaluation of the interpolating
polynomialPN(x) has also contributed to its popularity, see relations (4.41), (4.47)
and (4.48).

4.2 Fundamental Approximation Methods
for One Variable Functions

4.2.1 The Equal Ripple (Chebyshev) Approximation

Approximation of the constant function over a given limited interval, by a polyno-
mial providing the equal ripple (Chebyshev) deviations, has found many applica-
tions for solving a great number of various engineering problems. As an example,
let us consider the design problem for the low-pass filter (LPF) with the insertion
loss functionL( f ) [dB] similar to that shown in Fig. 4.8(b).

The insertion loss function (expressed in dB) of an any passive two-port electrical
circuit is defined as:
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L( f )[dB] = 20 log

∣∣∣∣
U1( f )

U2( f )

∣∣∣∣ (4.50)

whereU1( f ) andU2( f ) denote complex amplitudes of the input and output volt-
ages, respectively. The design of a LPF with the “ideal” insertion loss function
L( f ) [dB] similar to that shown in Fig. 4.8(b) is not possible, because such filter
would be composed of an infinite number of reactive elements, i.e., capacitors and
inductors. In other words, this function would not satisfy the condition of physical
realizability. In this situation, it is necessary to replace (interpolate or approximate)
this function by another one, satisfying simultaneously the problem requirements
and conditions of a physical realizability. Limitations imposed on the permissible
(acceptable) functionL( f ) [dB] are illustrated in Fig. 4.8(c). This curve repre-
senting the assumed functionL( f ) [dB] should pass through the nondashed area
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defined by the cut-off frequencyfc, permissible attenuationLr in the pass-band,
lower frequencyfa of the stop-band and minimum valueLa of attenuation in the
stop-band. The requirements formulated above can be satisfied by many different
functions, satisfying simultaneously the condition of physical realizability. In elec-
trical engineering, the functionsL( f ) [dB] having the form of polynomials of a
possible lowest degree are used most frequently. The LPF realized on a basis the
polynomial function can take the ladder structure similar to that shown in Fig. 4.9,
[9, 10].

One example of such classical function is:

L( f )[dB] = 10 log
[
1 + εT2

n (x)
]

(4.51)

wherex = f/ fc is a normalized frequency,ε is the parameter determining permis-
sible losses in the pass-band andTn(x) is the Chebyshev polynomial of the first kind
of degreen. The Chebyshev polynomialsTn(x) can be easily computed from the
following recursive formulas:

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
...
Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, 4, . . .

(4.52)

Fig. 4.10 presents the Chebyshev polynomialsTn(x) of degrees 0, 1, 2 and 3.
It follows from Fig. 4.10 that over the interval [−1, 1], polynomialsTn(x) take the

extreme values equal to 1 or−1. Moreover, polynomialsTn(x) are even functions
for even degreesn and respectively odd functions for odd degreesn. This property
is expressed by the formula:

Tn(−x) = (−1)nTn(x) (4.53)

The Chebyshev polynomialsTn(x) are often written in their trigonometric form
presented below:
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Tn(x) = cos[n arccos (x)] when |x| < 1 andn = 0, 1, 2, 3, . . . (4.54)

Tn(x) = ch[narch(x)] when |x| > 1 andn = 0, 1, 2, 3, . . . (4.55)

In an interval [−1, 1] the polynomialsTn(x) take the zero value for

xk = cos

[
(2k + 1)π

2n

]
(4.56)

wherek = 0, 1, 2, 3, . . . , n − 1 andn ≥ 1. The values (4.56) are sometimes called
the Chebyshev interpolating points, because they represent the coordinates of inter-
section points of the polynomialTn(x) and the approximated functiony(x) = 0.

If we want to determine the parametersε andn of the function (4.51), we must
know the values offc, fa, Lr andLa, see Fig. 4.8(c). Thus, let us assume now that
fc = 10 MHz, fa = 13 MHz, Lr = 0.3 dB andLa = 15 dB. From the formula
(4.51) we obtain:

L( f = fc) = 10 log[1+ εT2
n (1)] = Lr , dB

L( f = fa) = 10 log[1+ εT2
n (1.3)] ≥ La, dB

T3 (x)

T2 (x)

T0 (x)

T1 (x)

–1

1

1
x

–1

0

Tn (x)

Fig. 4.10
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These expressions can be transformed to the form:

10Lr /10 − 1 = εT2
n (1) = ε = 0.071519305

10La/10 − 1 = 30.622776≤ εT2
n (1.3)

From the above relations follows the inequality 20.692389 ≤ Tn(1.3). This
inequality is satisfied by the polynomial at least of fifth degree (n = 5), i.e.,
taking the valueT5(1.3) = 21.96688. The insertion loss functionL( f )[dB] =
10 log

[
1 + εT2

n (x)
]

evaluated in this way (n = 5, ε = 0.071519305,Lr =
10 log(1+ ε) = 0.3 dB) is shown in Fig. 4.11. It deserves noting that maximum
values of all ripples of the evaluated functionL( f )[dB] are equal to each other over
the frequency range 1≤ ( f/ fc) ≤ 1. Equality of amplitudes of these deviations
justifies the title of present section.

The LPF implementing this insertion loss function contains five reactive elements
creating theLC ladder structure shown in Fig. 4.12.

Fig. 4.12

Z0 Z0

L2 L4

C1 C3 C5
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The values of particular capacitances and inductances can be computed from the
formulas:

Ci = 1

Z02� fc
gi for i = 1, 3, 5 (4.57)

L j = Z0

2� fc
gj for j = 2, 4

wheregk, k = 1, 2, . . . , 5 are parameters of the prototype LPF, determined on the
basis of the evaluated insertion loss function. According to [9]

g1 = 2a1

γ

gk = 4ak−1ak

bk−1gk−1
for k = 2, 3, 4 and 5 (4.58)

where

x = ln

[
cth

(
Lr

17.37

)]

γ = sh
( x

2n

)
n = 5

ak = sin

[
(2k − 1)�

2n

]
for k = 1, 2, 3, 4, 5, n = 5

bk = γ 2 + sin2

(
k�

n

)
for k = 1, 2, 3, 4, 5, n = 5

Forn = 5 andLr = 0.3 dB we obtain:g1 = g5 = 1.4817,g2 = g4 = 1.2992 and
g3 = 2.3095. Let us assume that the designed filter is loaded on both sides by the
real impedancesZ0 = 50�. Thus, the filter capacitances and inductances calculated
from formulas (4.57) are equal to:C1 = C5 = 471.633 pF,C3 = 735.140 pF,
L2 = L4 = 1.034μH.

4.2.2 The Maximally Flat (Butterworth) Approximation

In the literature on the linear electrical circuits, including different kinds of filters
and impedance matching circuits, the kind of approximation mentioned in the title
of this section is called maximally flat or Butterworth approximation [9]. Approxi-
mation of the constant functiony = y(x) = const over a limited interval, according
to the criterion of maximum flatness, consists in determination of the polynomial
Bn(x) of degreen, satisfying the following conditions:
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Bn(x0) = y(x0)

B(k)
n (x0) = 0 for k = 1, 2, 3, . . . , n − 1

(4.59)

wherex0 is an arbitrary point of the approximation interval and the index (k) de-
notes the derivative of degreek with respect tox calculated atx0. Moreover, the
approximating polynomialBn(x) should satisfy the condition of the physical real-
izability defined for the circuit being designed. In order to concretize our further
considerations, let us consider once again the problem of designing the LPF with
the insertion loss function similar to that shown in Fig. 4.8(b). As in the previous
case, see Sect. 4.2.1, this function should be approximated by another one satisfying
the requirements specified byfc, fa, Lr andLa in Fig. 4.13.

The insertion loss function satisfying the above requirements, criterion (4.59)
and the condition of physical realizability determined for a ladder LPF, see Fig. 4.9,
should have the form:

Bn( f ) = Pwe

Pwy
= 1 + ε

(
f

fc

)2n

(4.60)

The function (4.60) is known in the literature as the Butterworth polynomial of
degreen. It is most frequently presented in the logarithmic form:

Bn(ω)[dB] = 10 log

[
1 + ε

(
ω

ωc

)2n
]

(4.61)

whereω = 2� f is an angular frequency. A number of curves, calculated from
formula (4.61) forε = 1 and some values ofn, are shown in Fig. 4.14.

The functionBn(ω)[dB] similar to that shown in Fig. 4.8(b) (marked in Fig. 4.14
by a broken line) corresponds to the limit casen → ∞. Let us assume that func-
tion (4.61) satisfies the requirements specified byfc = 10 MHz, fa = 13 MHz,
Lr = 3.1 dB andLa = 15 dB in Fig. 4.13. These requirements are satisfied by the
polynomialBn(ω)[dB] of the seventh degree (n = 7) taking for fa/ fc = 1.3 value
B7( fa)[dB] = 10 log[1+ (1.3)14] = 16.06 which exceeds the value ofLa = 15 dB,
Fig. 4.15.

Fig. 4.13

L(f), dB

0

La

Lr

fc fa

f
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The LPF, see Fig. 4.9, designed on the basis of the insertion loss function evalu-
ated above (n = 7, ε = 1) contains seven reactive elements, namely four capacitors
and three inductors. Values of these elements can be calculated from

Ci = 1

Z02� fc
gi for i = 1, 3, 5, 7 (4.62)

L j = Z0

2� fc
gj for j = 2, 4, 6

L, dB

10

5

3.01

0
1.3

0 0.5 1.0 1.5f / fc

Fig. 4.15
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wheregk, k = 1, 2, 3, . . . , 7 are parameters of the corresponding prototype LPF,
[9]. These parameters forε = 1 andLr = 3.01 dB can be calculated by using the
following simple formula:

gk = 2 sin

[
(2k − 1)�

2n

]
(4.63)

wherek = 1, 2, 3, . . . , 7 andn = 7. Let us assume that the designed filter is loaded
on both sides by real impedancesZ0 = 75 �. With this assumption the filter ca-
pacitances and inductances are:C1 = C7 = 94.431 pF, C3 = C5 = 382.396 pF,
L2 = L6 = 1.488
H and L4 = 2.387
H. As it was mentioned at the begin-
ning of this section, the Butterworth approximation is used also for designing the
impedance matching circuits. This fact is well confirmed by the Example 3.4, which
presents the design algorithm for the broadband nonsynchronous noncommensurate
impedance transformer composed of four noncommensurate TEM transmission line
segments.

4.2.3 Approximation (Curve Fitting) by the Method
of Least Squares

In order to explain an idea of the least squares method, let us assume that the
approximated functionyi = y(xi ) is defined for (n + 1) points xi , where i =
0, 1, 2, 3, . . . , n. Let us assume also that the approximating polynomial

f (x) = a0 + a1x + a2x2 + · · · + amxm (4.64)

is of degreem. The approximation quality measure for the functionyi = y(xi )
approximated by the functionf (x) according to the least squares criterion is the
norm:

RS(a0, a1, a2, . . . , am) =
n∑

i=0

[ f (xi ) − yi ]
2 (4.65)

The essence of this approximation form, called frequently the least squares ap-
proximation, is the evaluation of such values of coefficientsa0, a1, a2, a3, . . . , am

for which the norm (4.65) achieves its minimum. According to the corresponding
theorems of the differential calculus, concerning the functions of many variables,
the norm (4.65) achieves the minimum when

�RS

�a0
= �RS

�a1
= �RS

�a2
= . . . = �RS

�am
= 0 (4.66)
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After introducing the functionyi = y(xi ) and polynomial (4.64) into conditions
(4.66) we obtain the following equations:

�RS

�a0
= 2

n∑
i=0

(a0 + a1xi + a2x2
i + · · · + amxm

i − yi ) · 1 = 0

�RS

�a1
= 2

n∑
i=0

(a0 + a1xi + a2x2
i + · · · + amxm

i − yi ) · xi = 0

�RS

�a2
= 2

n∑
i=0

(a0 + a1xi + a2x2
i + · · · + amxm

i − yi ) · x2
i = 0

...

�RS

�am
= 2

n∑
i=0

(a0 + a1xi + a2x2
i + · · · + amxm

i − yi ) · xm
i = 0

(4.67)

Rearrangement of the equation system (4.67) yields:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(n + 1)
n∑

i=0

xi

n∑
i=0

x2
i . . .

n∑
i=0

xm
i

n∑
i=0

xi

n∑
i=0

x2
i

n∑
i=0

x3
i . . .

n∑
i=0

xm+1
i

n∑
i=0

x2
i

n∑
i=0

x3
i

n∑
i=0

x4
i . . .

n∑
i=0

xm+2
i

...
...

... . . .
...

n∑
i=0

xm
i

n∑
i=0

xm+1
i

n∑
i=0

xm+2
i . . .

n∑
i=0

xm+m
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

a2
...

am

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=0

yi

n∑
i=0

xi yi

n∑
i=0

x2
i yi

...
n∑

i=0

xm
i yi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.68)

Solution of the system of (m + 1) linear equations obtained above can be per-
formed by means of one of the direct methods described in Chap. 1, as for example
the Gauss elimination method with the choice of the pivotal element.

The polynomial (4.64) is only a particular version of the generalized one, namely:

g(x) = a1q1(x) + a2q2(x) + · · · + amqm(x) (4.69)

composed of linearly independent basis functionsq1(x), q2(x), q3(x), . . . , qm(x).
Coefficientsa1, a2, a3, . . . , am of this generalized polynomial can also be obtained
from relations (4.66), expressed as:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i =0

q2
1(xi )

n∑
i =0

q1(xi )q2(xi ) . . .

n∑
i =0

q1(xi )qm(xi )

n∑
i =0

q2(xi )q1(xi )
n∑

i =0

q2
2(xi ) . . .

n∑
i =0

q2(xi )qm(xi )

n∑
i =0

q3(xi )q1(xi )
n∑

i =0
q3(xi )q2(xi ) . . .

n∑
i =0

q3(xi )qm(xi )

...
... . . .

...
n∑

i =0

qm(xi )q1(xi )
n∑

i =0

qm(xi )q2(xi ) . . .

n∑
i =0

q2
m(xi )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a1

a2

a3

...
am

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i =0

q1(xi )yi

n∑
i =0

q2(xi )yi

n∑
i =0

q3(xi )yi

...
n∑

i =0

qm(xi )yi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Also in this more general case the obtained equation system is linear with respect
to desired coefficientsa1, a2, a3, . . . , am. Due to this linearity, this system can be
solved by using one of the direct methods described in Chap. 1. When the basis
functions of the polynomial (4.69) constitute an orthogonal set of functions, for
which

n∑
i=0

qk(xi )qj (xi ) = 0 for j �= k (4.70)

the matrix of coefficients of the equation system formulated above is the diagonal
matrix. In this special case

aj =

n∑
i=0

qj (xi )yi

n∑
i=0

q2
j (xi )

(4.71)

where j = 1, 2, 3, . . . , m. Of course, in this special case the computation process
becomes much simpler.

Historically, the first and the most useful sets of functions, orthogonal over the
interval 0≤ x ≤ �, are the following sets of trigonometric functions:

1, cos(x), cos(2x), cos(3x), . . . , cos(nx), . . . (4.72)

sin(x), sin(2x), sin(3x), . . . , sin(nx), . . . (4.73)

Combination of functions (4.72) and (4.73), i.e.:

1, cos(x), sin(x), cos(2x), sin(2x), cos(3x), sin(3x), . . . , cos(nx), sin(nx), . . .
(4.74)
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gives a new set of orthogonal functions over the interval−� ≤ x ≤ �. Variablex
appearing in these functions can be treated as linear function of a new variablet , for
example:

x = �

tm
t (4.75)

wheretm represents a fixed maximum value of the variablet . Thus, the sets of func-
tions (4.72) and (4.73) can be written as:

1, cos

(
�

tm
t

)
, cos

(
2

�

tm
t

)
, cos

(
3

�

tm
t

)
, . . . , cos

(
n

�

tm
t

)
, . . . (4.76)

sin

(
�

tm
t

)
, sin

(
2

�

tm
t

)
, sin

(
3

�

tm
t

)
, . . . , sin

(
n

�

tm
t

)
, . . . (4.77)

It is easy to prove that functions (4.76) and (4.77) are orthogonal over the interval
[0, tm]. The set of functions (4.74) transformed in the same way, i.e.:

1, cos

(
�

tm
t

)
, sin

(
�

tm
t

)
, cos

(
2

�

tm
t

)
, sin

(
2

�

tm
t

)
, . . . , cos

(
n

�

tm
t

)
,

sin

(
n

�

tm
t

)
, . . . (4.78)

is orthogonal for−tm ≤ t ≤ tm. There, it should be pointed out that not only the
trigonometric functions have the property of orthogonality. Some polynomials can
also be orthogonal over the interval [−1, 1]. In order to determine one such set of
polynomials, let us consider the functions

1, x, x2, x3, . . . , xn (4.79)

First two functions of this set are orthogonal because

1∫

−1

1 · xdx = 1

2
[12 − (−1)2] = 0 (4.80)

Consequently, we can assume thatP0(x) ≡ 1 andP1(x) ≡ x. The functionx2

of the set (4.79) is not orthogonal with respect toP0(x) ≡ 1. Therefore, we assume
the polynomialP2(x) as linear combination of first three functions of the set (4.79),
namelyP2(x) = ax2 +bx+c. The coefficientsa, b andc of this polynomial should
ensure its orthogonality with respect toP0(x) ≡ 1 andP1(x) ≡ x. This requirement
is expressed by the following equations:
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1∫

−1

(ax2 + bx + c) · 1 dx = 2

3
a + 2c = 0

1∫

−1

(ax2 + bx + c) · x dx = 2

3
b = 0

(4.81)

The system of equations (4.81) is satisfied forb = 0 anda = −3c. Therefore, the
desired polynomial isP2(x) = c(−3x2 + 1), wherec is an arbitrary constant. Value
of this constant can be evaluated from an additional condition which is usually taken
in the formP2(1) = 1. The normalized polynomialP2(x) becomes:

P2(x) = 1

2
(3x2 − 1) (4.82)

Similarly, we evaluate other polynomials, orthogonal over the interval [−1, 1].
Some of them are given below:

P3(x) = 1

2
(5x3 − 3x)

P4(x) = 1

8
(35x4 − 30x2 + 3)

P5(x) = 1

8
(63x5 − 70x3 + 15x)

...

(4.83)

Polynomials of higher degrees, forn ≥ 3, can be evaluated from the following
recursive formula:

Pn+1(x) = 2n + 1

n + 1
x Pn(x) − n

n + 1
Pn−1(x)

In the literature polynomialsPn(x), wheren = 0, 1, 2, 3, . . . are called spherical
functions or the Legendre polynomials. Also in this case, variablex can be treated
as a linear function of a new variablet , for example:

x = 1

tm
t (4.84)

wheretm is a fixed maximum value of the variablet . The Legendre polynomials
expressed in terms of the variablet , i.e.:
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P0[x(t)] = 1

P1[x(t)] = 1

tm
t

P2[x(t)] = 1

2

[
3

(
1

tm
t

)2

− 1

]
= 1

2

[
3

t2
m

t2 − 1

]

P3[x(t)] = 1

2

[
5

(
1

tm
t

)3

− 3

(
1

tm
t

)]
= 1

2

[
5

t3
m

t3 − 3

tm
t

]

...

(4.85)

are orthogonal over the interval [−tm, tm].

Example 4.7As an illustration of the least squares method we evaluate the polyno-
mial of the second degree (m = 2) approximating the functionyi = y(xi ) given in
the second and third columns of Table 4.5.

According to the algorithm described above we obtain the following equation
system:

⎡
⎣

5 11.2500 30.9375
11.2500 30.9375 94.9218
30.9375 94.9218 309.7617

⎤
⎦ ·

⎡
⎣

a0

a1

a2

⎤
⎦ =

⎡
⎣

11.4800
29.2875
90.8719

⎤
⎦

whose solution is:a0 = 4.717444, a1 = −3.733289 anda2 = 0.966215. Hence the
desired approximating polynomial is:f (x) = 4.717444−3.733289x+0.966215x2.

Values of this polynomialf (xi ) and the corresponding differences (deviations)
f (xi ) − yi are given in the fourth and fifth columns of Table 4.5. The more precise
approximating polynomial of the third degree (m = 3) evaluated in the similar
manner has a form:f (x) = 5.165683− 4.572444x + 1.392736x2 − 0.063169x3.
In this case max{| f (xi ) − yi |} ≤ 0.041125, wherei = 0, 1, 2, 3 and 4.

4.2.4 Approximation of Periodical Functions by Fourier Series

The orthogonal series in one variable is defined as the following linear sum:

Table 4.5

i xi yi = y(xi ) f (xi ) f (xi ) − yi

0 0.75 2.50 2.460973 −0.039027
1 1.50 1.20 1.291494 0.091494
2 2.25 1.25 1.209008 −0.040992
3 3.00 2.25 2.213513 −0.036486
4 3.75 4.28 4.305012 0.025012
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	(x) = a0ψ0(x) + a1ψ1(x) + a2ψ2(x) + a3ψ3(x) + · · · + anψn(x) + · · ·

=
∞∑

i=0

ai ψi (x) (4.86)

whose basis functionsψ0(x), ψ1(x), ψ2(x), ψ3(x), . . . , ψn(x), . . . form the orthog-
onal set fora ≤ x ≤ b. When we consider the approximation of an arbitrary,
bounded functionf (x) by the series (4.86) over a limited interval [a, b], it is first of
all necessary to answer the following questions:

– whether an arbitrary limited functionf (x) can be approximated with sufficient
accuracy by the series (4.86) over the interval [a, b], and

– how to determine the coefficientsa0, a1, a2, a3, . . . of this series.

The answer for the first above question is positive, because the basis functions
of the approximating series form the complete orthogonal set. Some examples of
such sets are given by (4.72), (4.73), (4.74), (4.76), (4.77) and (4.78), each within a
corresponding properly chosen orthogonality interval. Assume that the series (4.86)
approximate a functionf (x) defined over the interval [a, b]. According to this as-
sumption

b∫

a

f (x)ψi (x)dx =
b∫

a

	(x)ψi (x)dx

= a0

b∫

a

ψ0(x)ψi (x)dx + a1

b∫

a

ψ1(x)ψi (x)dx

+ a2

b∫

a

ψ2(x)ψi (x)dx (4.87)

+ a3

b∫

a

ψ3(x)ψi (x)dx + · · · + ai

b∫

a

ψ2
i (x)dx+ · · ·

Owing to the orthogonality of basic functions of the series (4.86), the integral
(4.87) reduces to the following form:

b∫

a

f (x)ψi (x)dx =
b∫

a

	(x)ψi (x)dx = ai

b∫

a

ψ2
i (x)dx (4.88)
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Consequently, we can write:

ai =

b∫

a

f (x)ψi (x)dx

b∫

a

ψ2
i (x)dx

(4.89)

where i = 0, 1, 2, 3, . . .. Relation (4.89) can be used to determine coefficients
a0, a1, a2, a3, . . .of the series (4.86) whose basis functions create the orthogonal
and complete set. As an illustration example, we choose the series:

	(x) = a0 +
∞∑

i=1

ai cos(i x) (4.90)

of the functions (4.72), approximating the functionf (x) over the interval [0, �].
According to the relation (4.89) coefficients of this series are equal to:

a0 =

�∫

0

f (x) · 1 dx

�∫

0

1 · 1 dx

= 1

�

�∫

0

f (x)dx

ai =

�∫

0

f (x) cos(i x)dx

�∫

0

cos2(i x)dx

= 2

�

�∫

0

f (x) cos(i x)dx for i ≥ 1.

Another approximation series composed of basis functions (4.73) has the form:

	(x) =
∞∑

i=1

bi sin(i x) (4.91)

The coefficients of this series are calculated from the formula:
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bi =

�∫

0

f (x) sin(i x)dx

�∫

0

sin2(i x)dx

= 1

�

�∫

0

f (x) sin(i x)dx for i ≥ 1

In the same manner, we determine the coefficients of the series:

f (x) ≡ 	(x) = a0 +
∞∑

i=1

[ai cos(i x) + bi sin(i x)] (4.92)

involving the functions (4.74). According to the relation (4.89) we obtain:

a0 =

�∫

−�

f (x) · 1 dx

�∫

−�

1 · 1 dx

= 1

2�

�∫

−�

f (x)dx

ai =

�∫

−�

f (x) cos(i x)dx

�∫

−�

cos2(i x)dx

= 1

�

�∫

−�

f (x) cos(i x)dx

bi =

�∫

−�

f (x) sin(i x)dx

π∫

−π

sin2(i x)dx

= 1

�

�∫

−�

f (x) sin(i x)dx

The approximating series given by relations (4.90), (4.91) and (4.92) are com-
monly known as the Fourier series and serve as theoretical basis for the frequency
(spectral) analysis of signals [11, 12]. Another Fourier series often used in the spec-
tral analysis is:

f (t) ≡ 	(t) = a0 +
∞∑

i=1

[
ai cos

(
i

�

tm
t

)
+ bi sin

(
i

�

tm
t

)]
(4.93)
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The basis functions of this series are orthogonal over the interval [−tm, tm]. Co-
efficientsa0, a1, a2, a3, . . . of this “stretched” series can be calculated according to
the formulas:

a0 =

tm∫

−tm

f (t) · 1 dt

tm∫

−tm

1 · 1 dt

= 1

2tm

tm∫

−tm

f (t)dt

ai =

tm∫

−tm

f (t) · cos

(
i

�

tm
t

)
dt

tm∫

−tm

cos2
(

i
�

tm
t

)
dt

= 1

tm

tm∫

−tm

f (t) · cos

(
i

�

tm
t

)
dt

bi =

tm∫

−tm

f (t) · sin

(
i

�

tm
t

)
dt

tm∫

−tm

sin2

(
i

�

tm
t

)
dt

= 1

tm

tm∫

−tm

f (t) · sin

(
i

�

tm
t

)
dt

wherei ≥ 1. The series (4.93) can also be presented in the following form having a
univocal physical interpretation

	(t) = c0 +
∞∑

i=1

ci cos

[(
i

�

tm
t − ϕi

)]
(4.94)

where

c0 = a0, ci =
√

a2
i + b2

i , tg(ϕi ) = bi

ai
, i ≥ 1

The coefficientc0 denotes the constant component andci , ϕi are the amplitude
and phase angle of thei th harmonic component, respectively.

Example 4.8Let us assume that the output current of the half-wave rectifier is de-
scribed by the function:
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i (t) ≡ f (t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for −T/2 ≤ t ≤ 0

Im sin

(
2�

T
t

)
for 0 ≤ t ≤ T/2

whereT is the period, as in Fig. 4.16.

The current functioni (t) can be approximated (replaced) by a sum of the constant
component and an infinite number of harmonic components. In order to determine
values of the constant component and amplitudes of the particular harmonic compo-
nents, we should approximate the current functioni (t) by the series (4.93), assuming
thattm = T/2. Using relations given above we obtain:

a0 = 1

2T/2

T/2∫

−T/2

i (t)dt = 0 + Im

T

T/2∫

−T/2

sin

(
2�

T
t

)
dt

= Im

2�
[− cos(�) + cos(0)]= Im

�

ai = 1

T/2

T/2∫

−T/2

i (t) cos

(
i

�

T/2
t

)
dt = 0 + 2Im

T

T/2∫

0

sin

(
2�

T
t

)
cos

(
i
2�

T
t

)
dt

= 2Im

T

T/2∫

0

1

2
sin

[
2�

T
(1 + i )t

]
dt + 2Im

T

T/2∫

0

1

2
sin

[
2�

T
(1 − i )t

]
dt

= Im

2�(1 + i )
{− cos[�(1 + i )] + 1} + Im

2�(1 − i )
{− cos[�(1 − i )] + 1}

i(t)

TT / 20–T / 2

Im

t

Fig. 4.16
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Finally, we have

ai = 0 for i = 1, 3, 5, . . .

ai = −2Im

�
· 1

i 2 − 1
for i = 2, 4, 6, . . .

bi = 1

T/2

T/2∫

−T/2

i (t) sin

(
i

�

T/2
t

)
dt = 0 + 2Im

T

T/2∫

0

sin

(
2�

T
t

)
sin

(
i
2π

T
t

)
dt

= 2Im

T

T/2∫

0

1

2
cos

[
2�

T
(1 − i )t

]
dt − 2Im

T

T/2∫

0

1

2
cos

[
2�

T
(1 + i )t

]
dt

= Im

2�(1 − i )
{sin[�(1 − i )] − 0} − Im

2�(1 + i )
{sin[�(1 + i )] − 0}

For i = 1

b1 = Im

2
lim
i→1

sin[�(1 − i )]

�(1 − i )
= Im

2

For i > 1, bi = 0.
The relations determined above make possible the approximation of the current

function i (t) by the following infinite series:

i (t) ≡ 	(t) = Im

�
+ Im

2
sin(ω0t) − 2Im

�

∞∑
k=1

cos(2kω0t)

4k2 − 1

where

ω0 = 2�/T and k = 1, 2, 3, . . .

Example 4.9The purpose of this example is to find the Fourier series approximating
a periodic functionf (t) presented in Fig. 4.17.

The function f (t) is characterized by the coefficientsα, β, γ andτ , which must
satisfy the following conditions:

α > 0, β ≥ 0, γ > 0, α + β + γ + τ ≤ 1

The function under consideration can be approximated by series (4.93), i.e.:

	(t) = a0 +
∞∑

i=1

[
ai cos

(
i
2�

T
t

)
+ bi sin

(
i
2�

T
t

)]
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f(t)

A

0 t / T

1τ α β γ

Fig. 4.17

in which tm = T/2. Coefficients of this series can be calculated from the following
formulas:

a0 = 1

2
A (α + 2β + γ )

ai = A

2i 2�2

[
1

α
[cos i ω0 (τ + α) T − cos i ω0τT ]

− 1

γ
[cos i ω0 (τ + α + β + γ ) T − cos i ω0 (τ + α + β) T ]

]

bi = A

2i 2�2

[
1

α
[sin i ω0 (τ + α) T − sin i ω0τT ]

− 1

γ
[sin i ω0 (τ + α + β + γ ) T − sin i ω0 (τ + α + β) T ]

]

whereω0 = 2�/T , i = 1, 2, 3, . . .. By an appropriate choice of the coefficients
α, β, γ , τ and adding the constant component we may shape the functionf (t).
Examples of periodical functions formed in this way are shown in Fig. 4.18.

These functions can be approximated by using the relations given above. For
example, in the case whenA = 1, τ = 0.1, β = 0.2, α = 0.0001 andγ = 0.0002
we obtain:

a0 = 0.20015, a1 = 0.115428, b1 = 0.356203, . . . , a3 = −0.162921,

b3 = −0.118956, . . . , a5 = −0.000299, b5 = −0.000012, . . . .

The Fourier series	(t) discussed in the Examples 4.8 and 4.9 approximate the
given functionsi (t) and f (t), see Figs. 4.16 and 4.17, within their appropriate in-
tervals equal to one periodT . Validity of this approximation for−∞ < t < ∞
can be justified by notifying that basis functions of these series	(t) are themselves
periodic functions, whose periods are also equal to the periods of the functions ap-
proximated by them. Exact evaluation of the series	(t) is not possible because they
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f1(t)

T

a)

t

T

c)

f3(t)

t

T

b)

f2(t)

t

Fig. 4.18

contain an infinite number of terms. Due to that reason, a given function can be ap-
proximated only by a series having finite number of terms. Consequently, it yields to
a certain approximation error. This error is most clearly visible in the neighborhood
of the points of discontinuity of the first kind, in which the approximated series has
the waveform similar to that shown in Fig. 4.19(b).

If the number of terms increases, the “oscillations” of the approximating series
tend to concentrate in the smaller and smaller neighborhood of the discontinuity
point t0. The decay of this oscillation process is possible only after taking into
account the infinite number of terms. In electronic engineering, this effect of the
sharp oscillations at the “sharp” edges of the pulses is known under the name of the
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Ψ(t) Ψ(t)

tt

a) b)

t0 t0

Fig. 4.19

Gibbs effect. It is the direct consequence of the finite frequency bandwidth of the
electronic systems processing these pulse signals.

4.3 Examples of the Application of Chebyshev Polynomials
in Synthesis of Radiation Patterns of the In-Phase Linear
Array Antenna

By the antenna array we understand a system composed of many identical radiat-
ing elements (simple antennas) equally spaced along the straight line, as shown in
Fig. 4.20.

In the case when all radiating elements of the antenna array are supplied by cur-
rents of equal amplitudes and equal phases (uniform and in-phase excitation) the
level of the side lobes is equal to−13.2 dB. Such relatively high-side lobes lead
in case of a transmitting antenna to scattering a considerable part of the electro-
magnetic energy in the undesired directions and in consequence to reduction of the
antenna directivity. In case of a receiving antenna, the high-side lobes reduce its
immunity against different electromagnetic disturbances. In both cases it is recom-
mended to reduce the side lobes to the possibly minimum value. For this purpose, it

(2N – 1) d

d

a–N a–2 a–1 a1 a2 aN

central plane

Fig. 4.20
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is necessary to change the amplitudes of currents supplying the particular radiating
elements. As a rule, these amplitudes decrease with growing distance between the
central plane of the antenna and radiating element, see Fig. 4.20. However, this leads
in turn to broadening the main lobe of the radiation pattern. It is therefore possible
to find such current amplitude distribution for which an optimum will be achieved
according to one of the criterions given below.

Criterion 1 The optimum amplitude distribution of the currents supplying the
in-phase linear array, having a fixedL/� ratio, whereL is the total length of the an-
tenna, is understood as the distribution for which the side lobe level attains the
minimum for a given 3 dB width of the main lobe and� is the length of the ra-
diated/received wave.

Criterion 2 By the optimal amplitude distribution of the currents supplying the
in-phase linear array antenna, having a fixedL/� ratio and a given side lobe level,
we understand such distribution, for which the 3 dB width of the main lobe attains
the minimum.

The essence of the design algorithm for a linear array antenna, optimum accord-
ing to criterion 2, is presented below as an example of the linear antenna including
even number (2N) of equally spaced radiating elements, Fig. 4.21.

Let us assume that all 2N radiating elements of this antenna array are isotropic.
Moreover, let the complex amplitude of the electrical field initiated at fixed pointP
of the distant zone, by the first radiating element, is:

E1 = a1e− jβ·r1 = a1e− jβ·r0ejβ· d
2 ·cos(θ) (4.95)

(2N–1) d / 2

d

θ

d / 2

a–N a–2 a–1 a1 a2 aN

r0 r1r–1

to point  P

Fig. 4.21
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wherea1 is the coefficient proportional to the absolute value of complex amplitude
of the currentI1. Similarly, we can determine the complex amplitude of electri-
cal field initiated by a radiating element situated in symmetric position denoted in
Fig. 4.21 by the index−1. In this case

E−1 = a−1e− jβ·r−1 = a−1e− jβ·r0e− jβ· d
2 ·cos(θ) (4.96)

Assuming further that the current amplitude distribution is symmetric with re-
spect to the central plane of the antenna. Thus, fora1 = a−1 we can write the
expression:

E1 + E−1 = a1e− jβ·r0 ·
[
e− jβ· d

2 ·cos(θ) + ejβ· d
2 ·cos(θ)

]

= a1e− jβ·r0 · 2 cos

[
β · d

2
· cos(θ )

]
(4.97)

Using the same approach to the remaining pairs of radiating elements, complex
amplitude of the resulting electrical field, initiated at pointP of the distant zone,
can be found as:

E = e− j ·β·r0

N∑
k=1

2ak cos

[
(2k − 1)

2
β · d · cos(θ )

]
(4.98)

It follows from expression (4.98) that the not normalized radiation pattern of the
antenna array under discussion is:

f (θ ) = 2
N∑

k=1

ak cos[(2k − 1) · u] (4.99)

whereu = β · (d/2)·cos(θ ) = (� ·d/�) cos(θ ). Consequently, the radiation pattern
(4.99) can be presented in the form of a polynomial of degree (2N −1) with respect
to variablex = cos(u), i.e.:

f (θ ) = 2
N∑

k=1

ak cos[(2k − 1) · u] =
2N−1∑
i=1

Bi x
i (4.100)

Justification
Each term of the sum (4.100) can be treated as a polynomial of the variable
x = cos(u). This conclusion results from the trigonometric identities given below
[13, 14].
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cos(2α) = 2 cos2(α) − 1

cos(3α) = 4 cos3(α) − 3 cos(α)

cos(n · α) = 2n−1 cosn(α) − n

1!
2n−3 cosn−2(α) + n(n − 3)

2!
2n−5 cosn−4(α)

− n(n − 4)(n − 5)

3!
2n−7 cosn−6(α)

+ n(n − 5)(n − 6)(n − 7)

4!
2n−9 cosn−8(α) − · · ·

Using some simple arithmetic operations one can easily show that the sum
of polynomials in one variable is itself the polynomial in this variable, what
naturally proves validity of the expression (4.100). CoefficientsBi , where i =
1, 2, 3, . . . , 2N − 1, are simply sums of the current coefficientsai of the terms
containing variablex = cos(u) in the same poweri . The essence of the synthesis
method, known in the literature as the Dolph–Chebyshev method, consists in ap-
proximation of the function (4.100) by the Chebyshev polynomial of the first kind
and of degree (2N − 1) [15, 16]. We can write therefore

f (θ ) =
2N−1∑
i=1

Bi x
i = T2N−1 (α · x) (4.101)

Basic properties of Chebyshev’s polynomialsTn(x) of the first kind are described
in Sect. 4.2.1. As an illustration, the curve|T9(x)| is represented in Fig. 4.22.

–1 0 1

x

T9(x)

1

α

Fig. 4.22
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For an arbitraryn the polynomialTn(x) takes values from the interval [1,−1]
if −1 ≤ x ≤ 1. According to (4.101), the function| f (θ )| takes its maximum value
|T2N−1(α)|, because the variablex = cos(u) takes the maximum value equal to 1 for

u = � · d

�
cos(θ ) = 0 (4.102)

It means that valuex = 1 corresponds to the direction of the maximum radiation
θ = 90◦, see Fig. 4.21, because for this value ofθ the Eq. (4.102) is satisfied. It is
not difficult to prove that for all angles ofθ for which −1 ≤ x ≤ 1, the amplitudes
of side lobes are equal to 1. According to the above conclusion, we can write the
ratio ofEbmax to the amplitude of the main lobeEmax, i.e.:

∣∣∣∣
Eb max

Emax

∣∣∣∣ =
∣∣∣∣

1

T2N−1
(α)

∣∣∣∣ (4.103)

whereEb·max and Emax denote the maximum values of the main and side lobes,
respectively. For a given ratioL = |Ebmax/Emax|, from Eq. (4.103) we find the value
of the parameterα. Next, using the developed trigonometric form of the polynomial
T2N−1(α ·x), we determine the coefficientsBi , wherei = 1, 2, 3, . . . , 2N−1. These
coefficientsBi are related to the desired current coefficientsa1, a2, a3, . . . , aN by
equation system which can be written in the following general form:

B1 = f1(a1, a2, a3, . . . , aN)

B2 = f2(a1, a2, a3, . . . , aN)

B3 = f3(a1, a2, a3, . . . , aN) (4.104)

...

BN = fN(a1, a2, a3, . . . , aN)

Solving this equation system we obtain the desired coefficientsa1, a2, a3, . . . , aN ,
those according to our assumption are proportional to amplitudes of currents driving
particular radiating elements.

Example 4.10As an illustration of the Dolph–Chebyshev algorithm, let us design
the linear in-phase antenna array for the following data: 2N = 8, |Emax/Ebmax| =
100 andd = 0.7�. Solving the equation: 1/T7(α) = 0.01 we obtain the parameter
α = 1.30038731. Next, according to the relation (4.100), we determine the system
of equations relating the current coefficientsa1, a2, a3, . . . , aN with coefficientsB1,
B3, B5 andB7. In this case
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f (θ ) = 2
4∑

n=1

an cos[(2n − 1) u] = 2a1 cos(u) + 2a2
[
4 cos3 (u) − 3 cos(u)

]

+ 2a3
[
16 cos5 (u) − 20 cos3(u) + 5 cos(u)

]

+ 2a4
[
64 cos7(u) − 112 cos5(u) + 56 cos3(u) − 7 cos(u)

]

= B1 cos(u) + B3 cos3(u) + B5 cos5(u) + B7 cos7(u)

where

B1 = 2a1 − 6a2 + 10a3 − 14a4,

B3 = 8a2 − 40a3 + 112a4,

B5 = 32a3 − 224a4,

B7 = 128a4

From the above linear equations it results that

a4 = B7/128

a3 = (B5 + 224a4)/32

a2 = (B3 − 112a4 + 40a3)/8

a1 = (B1 + 6a2 − 10a3 + 14a4)/2

Developing the polynomialT7(α · x) = T7[α · cos(u)] with respect tox = cos(u)
we obtain:

B7 = 64(α)7, B5 = −112(α)5, B3 = 56(α)3, B1 = −7α

After introducing the above coefficients into the equation system formulated
above we obtain the desired solution:a4 = 3.143974851,a3 = 8.993198987,
a2 = 16.34309675,a1 = 21.51976369. Hence the current amplitudes normalized
with respect to the maximum componenta1 are equal to:

I1 = I−1 = 1, I2 = I−2 = 0.759445,

I3 = I−3 = 0.417904, and I4 = I−4 = 0.146097.

The normalized radiation patternF(θ ) = f (θ )/ fmax(θ ) of the designed antenna
is shown in Fig. 4.23.

According to our assumption|Ebmax/Emax| = 0.01, the level of side lobes is
equal to 20 log(0.01) = −40 dB what well confirms the validity of the performed
design process.

Example 4.11This example presents the results of the synthesis performed for
a linear in-phase antenna array characterized by the following data: 2N = 16,
|Ebmax/Emax| = 0.01 andd = 0.70�. Similar as in the previous example, we shall
calculate the parameterα by solving the following equation:
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Fig. 4.23

T2n−1(α) =
∣∣∣∣

Emax

Ebmax

∣∣∣∣ = L = 100 (4.105)

For large degrees (2N − 1) of the Chebyshev polynomial, Eq. (4.105) can be
solved more easily, if we use the following mathematical identity valid for|x| > 1

TN(x) = ch[N arch(x)] (4.106)

The identity (4.106) makes possible to write Eq. (4.105) in the form:

ch[(2N − 1) arch(α)] − L = 0 (4.107)

The solution of equation (4.107) may be simplified when we introduce two aux-
iliary variables:

W = (2N − 1)arch(α)
P = exp(W)

(4.108)

Equation (4.107) expressed in terms of the auxiliary variableP has the simple
form of a quadratic equationP2 − 2LP+ 1 = 0 whose first root (greater than 1) is
equal to:

P1 = L +
√

L2 − 1 = 100+
√

1002 − 1



118 4 Methods for the Interpolation and Approximation of One Variable Function

Having the rootP1 we can find the parameterα from the formula:

α = 1

2

(
s + 1

s

)
(4.109)

where

s = exp

[
1

2N − 1
ln(P1)

]

The formula (4.109) represents the inverse relations with respect to (4.108).
Thus, for the data assumed in this design example we obtainP1 = 199.995002747,
s = 1.423643589 andα = 1.063033294. For the second stage of the synthesis
procedure, we shall formulate the system ofN linear equations withN unknown
variablesak, wherek = 1, 2, 3, . . . , N, representing amplitudes of the currents
driving the particular radiating elements of the designed antenna array. When the
number of radiating elements is very large (2N ≥ 10), this task becomes very diffi-
cult and cumbersome. In such case, it is recommended to use the specially developed
iterative computational formulas. One of them, namely:

ak =
N∑

q=k

(−1)N−qα2q−1 (2N − 1)(q + N − 2)!

(q − k)!(q + k − 1)!(N − q)!
(4.110)

proved itself to be very useful for this purpose [16, 17]. The current amplitudesak ≡
I k calculated according to (4.110) and normalized with respect to the maximum
valuea1 = 21.98914 are equal to:

I1 = I−1 = 1.000000, I2 = I−2 = 0.935381, I3 = I−3 = 0.816304,

I4 = I−4 = 0.661368, I5 = I−5 = 0.492615, I6 = I−6 = 0.331950,

I7 = I−7 = 0.196367, I8 = I−8 = 0.113761

The group radiation patternF(θ ) corresponding to the current distribution given
above is shown in Fig. 4.24.

Examples presented in this section illustrate the design methodology for the lin-
ear, regular and in-phase antenna arrays with even (2N) number of radiating ele-
ments. Design of a linear, regular and in-phase array composed of an odd (2N − 1)
number of radiating elements can be performed in the similar manner [16].

Many linear arrays spaced parallely on the common plane create a planar array
antenna. An example of application of such planar array antenna in a mobile radar
equipment is shown in Fig. 4.25.
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Chapter 5
Methods for Numerical Integration of One
and Two Variable Functions

The subject of considerations in the first part of this chapter is the definite integral
of one variable given in the closed interval [a, b], namely:

b∫

a

f (x)dx (5.1)

This integral can be easily calculated when an integrable functionf (x) is
bounded and continuous over this interval and when the primitive functionF(x),
such thatf (x) ≡ F ′(x) is known. In this fortunate case, the fundamental Newton
formula can be used, namely:

b∫

a

f (x)dx ≡ F(b) − F(a) (5.2)

In other cases, however, determination of the primitive functionF(x) may be
very difficult or even impossible. Such situation may occur, for example, if only
discrete valuesyi = f (xi ), for i = 0, 1, 2, 3, . . . , n, of the integrand are known.
In this case, we cannot speak about the primitive function. In other words, relation
(5.2) is useless in such cases. Hence there is a necessity for calculating approxi-
mate values of definite integrals by means of appropriate numerical methods. In this
chapter, these methods have been divided into three groups, see Fig. 5.1, only for
didactic reasons.

First group (I) includes methods in which the integrandf (x) is replaced (in-
terpolated or approximated) by a series of elementary functions which are easy to
integrate by means of analytical methods. After performing integration of individual
terms of the series, we obtain a new series composed of finite or infinite number
of terms. This series makes possible calculation of an integral with an arbitrary
prescribed accuracy. The integration understood as defined above will be discussed
in Sect. 5.1. Most numerous is the second group (II), see Fig. 5.2, which includes
the methods commonly known and is most frequently applied in the electrical
engineering.

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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Ι ΙΙ ΙΙΙ

Methods for numerical integration

Fig. 5.1

Algorithms of these methods are described below in the same order as in Fig. 5.2,
in the Sects. 5.2.1–5.2.5, respectively. The third group (III) contains the methods
known in general as the Gaussian methods. Basic feature of these methods is the in-
terpolation (approximation) of integrandf (x) by the orthogonal Legendre, Jacobi or
Chebyshev polynomials [1–3]. The essential problem consists here in determining
the interpolation points (nodes)xi and coefficientsAi of the following expression:

Fig. 5.2

ΙΙ

Division of interval [a b]
into “n” equal parts

Method of rectangles

Trapezoidal method

Simpson method (n - even)

Newton - Cotes method

Spline function method
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b∫

a

f (x)dx ≈
n∑

i=0

Ai f (xi ), (5.3)

called the mechanical Gaussian quadrature or briefly the quadrature. The algorithms
used for evaluation of interpolation pointsxi and coefficientsAi , according to the
Gauss and Chebyshev quadratures, are described in Sect. 5.2.6. The problem of
numerical calculation of double integral, i.e., an integral of a function of two vari-
ables f (x, y), defined on the two-dimensional area, is considered in Sect. 5.3. The
simplest practical numerical algorithms, such as the algorithm of small (elementary)
cells and the Simpson algorithm are described here. In the final section of this chap-
ter, Sect. 5.4, we can find an example of numerical integration applied to determine
the counted position of a moving object.

5.1 Integration of Definite Integrals by Expanding the Integrand
Function in Finite Series of Analytically Integrable Functions

In case when the integrandf (x) defined over an interval [a, b] can be represented by
a series of elementary functions, easily integrable by means of analytical methods,
the definite integral of this function can also be represented by the similar series.
This property is illustrated in the following examples.

Example 5.1In the spectral analysis of signals, there is a constant need of calculat-
ing the integral sine function defined as:

Si(x) =
x∫

0

sin(t)

t
dt

Corresponding integrand can be represented by the following infinite series:

sin(t)

t
= 1

t

[
t − t3

3!
+ t5

5!
− t7

7!
+ . . . + (−1)n

t2n+1

(2n + 1)!
+ . . .

]

which is convergent for−∞ ≤ t ≤ ∞. After introducing this series into the integral
and performing integration of its individual terms we obtain:

Si(x) = x − x3

3!3
+ x5

5!5
− x7

7!7
+ . . . + (−1)n

x2n+1

(2n + 1)!(2n + 1)
+ . . .

=
∞∑

n=0

(−1)n
x2n+1

(2n + 1)!(2n + 1)
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This series of functions makes possible calculation of the functionSi(x) with
assumed accuracy. For example, forx = 2 andn = 5, we obtain:

Si(2) = 2 − 8

18
+ 32

600
− 128

35280
+ 512

3265920
− 2048

439084800

+
∞∑

n=6

(−1)n
22n+1

(2n + 1)!(2n + 1)
≈ 1.605412

Consecutive seventh term (not taken into account in the above calculation) takes
the value∼ 8.192/(8.095× 107) which is much smaller than 10−6.

Example 5.2The following definite integral is very useful for the probabilistic
calculations:

1√
2π

x∫

0

e−t2/2dt

It can be computed using the approach similar to that used in Example 5.1. For
this end, we represent the integrand by a series similar to the series representing the
exponential function, i.e.:

e−x = 1 − x

1!
+ x2

2!
− x3

3!
+ . . . + (−1)n

xn

n!
+ . . .

that is valid for−∞ ≤ x ≤ ∞. After introducing the variablex = t2/2 into the
above series we obtain:

e−t2/2 = 1 − t2

2
+
(

t2

2

)2
1

2!
−
(

t2

2

)3
1

3!
+ . . . + (−1)n

(
t2

2

)n
1

n!
+ . . .

Thus

1√
2π

x∫

0

e−t2/2dt = 1√
2π

x∫

0

1 · dt − 1√
2π

x∫

0

t2

2
dt + 1√

2π

x∫

0

(
t2

2

)2
1

2!
dt

− 1√
2π

x∫

0

(
t2

2

)3
1

3!
dt + . . . .

= 1√
2π

[
x − x3

2 · 3
+ x5

2!225
− x7

3!237
+ . . .

+(−1)n
x2n+1

n!2n(2n + 1)
+ . . .

]
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For x = 2 andn = 19, the calculated probability integral is represented by the
sum

1√
2π

2∫

0

e−t2/2dt = 1√
2π

[
2 − 8

6
+ 32

40
− 128

336
+ 512

3456

− 2084

42240
+ .. + (−1)n

22n+1

n!2n(2n + 1)
+ . . .

]

equal to 0.477249868. The next term of the above series is less than 10−14.
Although the approach presented above seems to be very attractive, it should be

applied very carefully. In other words, the series representing the computed integral
have to converge to the limit equal to exact value of this integral. This obligatory
condition may be verified by using the suitable mathematical criterions or numerical
simulations described in the more advanced literature.

5.2 Fundamental Methods for Numerical Integration
of One Variable Functions

5.2.1 Rectangular and Trapezoidal Methods of Integration

Given an integrandy = f (x) defined over a closed interval [a, b] ≡ [x0, xn]. In order
to calculate the definite integral of this function, we divide the interval [a, b] into n
different segments (subintervals)�xi = xi −xi−1, for i = 1, 2, 3, . . . , n. Theoretical
basis for the methods of numerical calculation of definite integrals presented in this
section is founded by the theorem about the limit of integral sum defined by the
formula:

S = S1 + S2 + S3 + . . . + Sn =
n∑

i=1

Si =
n∑

i=1

f (ξi )�xi (5.4)

whereξi is an arbitrarily chosen value of the variablex, taken from the subinterval
i , i.e.,xi−1 ≤ ξi ≤ xi .

5.2.1.1 Theorem About the Limit of an Integral Sum

If an integrandf (x) is bounded and continuous over the closed interval [a, b], then
there exists a limit of the integral sum (5.4)

lim
�xi (max)→0

n∑
i=1

f (ξi )�xi =
b∫

a

f (x)dx (5.5)
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f(x), S

n = 4

f(x)

0 x

x0 x1 x2 x3 x4

S1 S2 S3 S4

ξ1 ξ2 ξ3 ξ4

Fig. 5.3

The value of this limit is independent from the partition of the interval [a, b] into
elementary subintervals�xi = xi − xi−1 and from the choice ofξi . Geometrical
interpretation of the integral sum (5.4), for the casef (x) > 0 with x0 ≤ x ≤ xn, is
shown in Fig. 5.3.

5.2.1.2 The Rectangular Method of Integration

The simplest computation method used for definite integrals is the method of rectan-
gles. Different manners of calculating elementary terms (areas)Si , i = 1, 2, 3, . . . , n,
used in this method are illustrated in Fig. 5.4.

According to the notation used in Fig. 5.4(a, b, c), the approximate values of the

integral
b∫

a
f (x)dx are, respectively:

I1 =
n∑

i=1

f (xi−1)(xi − xi−1),

I2 =
n∑

i=1

f (xi )(xi − xi−1), (5.6)

I3 =
n∑

i=1

f

(
xi−1 + xi

2

)
(xi − xi−1)

The common limit of these approximations when max{xi − xi−1} → 0 is equal
to the accurate value of the integral under computation.
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f(x)

x

xi

Si

ξi = xi–1

x

ξi =     (xi–1 + xi) 1
2

f

x

a)

b)

c)

f(x)

xi–1

Si

Si

f(x)

ξi = xi

xixi–1

xixi–1 ξi

Fig. 5.4

5.2.1.3 The Trapezoid Method of Integration

The essence of the trapezoid method of integration is explained in Fig. 5.5.
In this case, elementary terms are calculated according to the formula defining

the surface of a trapezoid, namely:
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xixi – 1

x

Si

f(x)

yi – 1

y
i

Fig. 5.5

Si = yi−1 + yi

2
(xi − xi−1) i = 1, 2, 3, . . . , n (5.7)

Of course, this fact justifies the name of that method. When all subintervals
�xi = xi − xi−1 have the same lengths equal toh = (b − a)/n, then

b∫

a

f (x)dx ≈ 1

2

n∑
i=1

h · (yi−1 + yi ) = I (5.8)

Formula (5.8), called the complete formula of the trapezoidal method, serves
for calculation of an approximate value of definite integral over the given interval
[a, b]. Naturally, the difference between the exact and approximate values of the
integral under consideration depends on the integrandf (x) and on the numbern
of subintervalsn and their lengths|�xi = xi − xi−1|. This difference is a measure
of a quality of integration and for this reason it is often called the integration error
[4]. This error is a subject of considerations presented below. Let�Ii denotes the
following partial integral:

�Ii =
xi +h∫

xi

f (x)dx = F(xi + h) − F(xi ) (5.9)

The approximate value of integral (5.9) calculated by means of the trapezoidal
method is

�I (t)
i = h

2
[ f (xi + h) + f (xi )] (5.10)

Taking the difference of relations (5.9) and (5.10) we obtain a partial error:

(Er )i = F(xi + h) − F(xi ) − h

2
[ f (xi + h) + f (xi )] (5.11)
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The primitive functionF(xi + h) included in relation (5.11) can be replaced by
its Taylor series written as:

F(xi + h) = F(xi ) + hF′(xi ) + h2

2
F ′′(xi ) + h3

6
F ′′′(xi ) + O(h4) (5.12)

Also the integrandf (xi + h) can be written in an analogous form, i.e.:

f (xi + h) = f (xi ) + h f ′(xi ) + h2

2
f ′′(xi ) + h3

6
f ′′′(xi ) + O(h4) (5.13)

As it has been assumed at the beginning that the functionF(x) is a primitive
function with respect to integrandf (x) and due to this fact the following relations
are valid:

f (xi ) = F ′(xi ) ≡ d F(xi )

dx
,

f ′(xi ) = F ′′(xi ) ≡ d2F(xi )

dx2
, (5.14)

f ′′(xi ) = F ′′′(xi ) ≡ d3F(xi )

dx3

After introducing the relations (5.12), (5.13) and (5.14) into formula (5.11) we
obtain:

(Er )i = −h3

12
f ′′(xi ) + O(h4)

Finally, the total error of integration determined over the whole interval [a, b] is:

Er =
n−1∑
i=0

[
−h3

12
f ′′(xi ) + O(h4)

]
= −h3

12

n−1∑
i=0

f ′′(xi ) + O(h4) (5.15)

It follows from relation (5.15) that the integral sum approximates the definite
integral more accurately, if the largest of elementary subintervals�xi = xi − xi−1 is
smaller. It is easy to explain, because in this case the integrand is interpolated more
accurately by the step function in case of the rectangle method, or by the broken
line in the trapezoid method. In other words, reducing the length of subintervals
reduces interpolation error. We must, however, remember that the partition of inte-
gration interval into smaller and smaller elementary subintervals�xi increases the
number of subintervals and the amount of necessary computations. Another nega-
tive consequence of such strategy is therefore an increasing of computation error
(computer processing error). It follows from the relations explained above that for
each particular case there exists such optimal partition numbern, for which the sum
of interpolation and computation errors would attain the minimum.
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5.2.2 The Romberg Integration Rule

The Romberg integration rule known also as Romberg method can be treated as
a numerically effective combination of the trapezoid method and the Richardson’s
extrapolation procedure [4]. In order to explain the corresponding algorithm, let us
consider once more the formula (5.8) written in a slightly different form for the
function f (x), integrable over an interval [a, b]

I = h

2

⎡
⎣ f (a) + f (b) + 2

n−1∑
j =1

f (xj )

⎤
⎦ (5.16)

whereh = (a − b)/n, xj = a + j · h. It is not difficult to explain the fact that when
the numbern is increased, the approximation error becomes smaller.

error ≡
∣∣∣∣∣∣

b∫

a

f (x)dx − I

∣∣∣∣∣∣
(5.17)

In case of the Romberg method, this error increases two times in each subsequent
iteration, according to the formula:

n = 2k−1 (5.18)

wherek = 1, 2, 3, . . . , m andm is a positive integer. It means that in each consecu-
tive iteration, the integration step is reduced twice, as shown in Fig. 5.6.

hk = b − a

2k−1
= 1

2
hk−1 (5.19)

Numerical value of the integral calculated according to (5.9) for a fixed (given)
parameterk, is denoted in the English language literature usually byRk,1 [5, 6].
According to this notation

R1,1 = h1

2
[ f (a) + f (b)]

R2,1 = h2

2
[ f (a) + f (b) + 2 f (a + h2)] (5.20)

= 1

2

h1

2
[ f (a) + f (b)] + h1

2
f

(
a + h1

2

)
= 1

2
R1,1 + 1

2
h1 f

(
a + h1

2

)
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Fig. 5.6
f(x)
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f(a)

f(a+h4 
)

f(a+h2 
) = f(a+2h3 

) = f(a+4h4 
)

f(a+h3 
) = f(a+2h4 

) 

a b

x

h3

h4

h2

h1

f( )

R3,1 = h3

2
[ f (a) + f (b) + 2 f (a + h3) + 2 f (a + 2h3) + 2 f (a + 3h3)]

= 1

2

h2

2
[ f (a) + f (b) + 2 f (a + h2)] + h2

2

[
f

(
a + h2

2

)
+ f

(
a + 3

h2

2

)]

= 1

2
R2,1 + 1

2
h2

[
f

(
a + h2

2

)
+ f

(
a + 3

h2

2

)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proceeding in a similar way, we may prove that in general case

Rk,1 = 1

2
Rk−1,1 + 1

2
hk−1

2k−2∑
i=1

f
[
a + (i − 0.5)hk−1

]
(5.21)

The recursive formula (5.21) makes possible reducing the number of calculations
necessary to compute the integral (5.8) with a prescribed accuracy. Further conver-
gence improvement of approximationsRk,1, of the desired accurate value of the
integral, can be achieved using the Richardson extrapolating procedure, described
by the formula:

Ri, j = 22( j −1)Ri, j −1 − Ri−1, j −1

22( j −1) − 1
(5.22)

where i = 1, 2, 3, . . . , m and j = 2, 3, . . . , i . This extrapolation gives approxi-
mate valuesRi, j of the integral, which can be represented in form of the following
triangular table
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R1,1

R2,1 R2,2

R3,1 R3,2 R3,3 (5.23)

R4,1 R4,2 R4,3 R4,4

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rm,1 Rm,2 Rm,3 . . . . . . . . . . . . . Rm,m

It was theoretically proved and confirmed by numerous experiments that values
of Ri, j , lying on the main diagonal of the table, approach exact value of the integral
faster than the approximationsRi,1 lying in the first column. As the criterion for
ending the computations, the following condition is used most frequently.

∣∣Rm,m − Rm−1,m−1

∣∣ ≤ ε (5.24)

whereε is a given sufficiently small positive number.

Example 5.3In Table 5.1 we find several consecutive values ofRi,1, Ri,i , Ri,i − Ri,1

and
∣∣Ri,i − Ri−1,i−1

∣∣ computed by means of the Romberg method for the integral

1∫

0

4

1 − x2
dx = π = 3.141592653589. . .

Table 5.1

i Ri,1 Ri,i Ri,i − Ri,1

∣∣Ri,i − Ri −1,i −1

∣∣
1 3.000000000 3.000000000
2 3.100000000 3.133333333 3.333× 10−2 1.333× 10−1

3 3.131176470 3.142117647 1.094× 10−2 8.784× 10−3

4 3.138988494 3.141585783 2.597× 10−3 5.318× 10−4

5 3.140941612 3.141592665 6.510× 10−4 6.881× 10−6

6 3.141429893 3.141592653 1.627× 10−4 1.163× 10−8

7 3.141551963 3.141592653 4.069× 10−5 4.852× 10−11

8 3.141582481 3.141592653 1.017× 10−5 7.110× 10−14

Results given above confirm the fact that the valuesRi,i lying on the main diag-
onal of the triangular table (5.16) approach accurate value of the integral faster than
approximationsRi,1 placed in the first column.

5.2.3 The Simpson Method of Integration

One of the numerical integration methods, most frequently used for solving practical
problems, is the Simpson method. In order to introduce this algorithm, let us divide
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an integration interval [x0, xn] into n/2 equal sections, wheren is an even number.
The elementary segments (subintervals) obtained in this way

[x0, x2], [x2, x4], [x4, x6], . . . , [xn−2, xn] (5.25)

have equal lengths 2h = 2(b− a)/n. On each elementary subinterval, the integrand
f (x) is interpolated by the Lagrange polynomial of second degree

L (i )
2 (x) ≈ f (x) for xi−1 ≤ x ≤ xi+1 (5.26)

wherei = 1, 3, 5, . . . , n − 1, see Fig. 5.7.
The interpolating polynomial (5.26), written according to the notation as in

Fig. 5.7, has the form:

L (i )
2 (x) = (x − xi )(x − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
yi−1 + (x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)
yi

+ (x − xi−1)(x − xi )

(xi+1 − xi−1)(xi+1 − xi )
yi+1

= yi−1

2h2
(x − xi )(x − xi − h) − yi

h2
(x − xi + h)(x − xi − h)

+ yi+1

2h2
(x − xi + h)(x − xi )

The value of elementary termSi , see Fig. 5.7, is

f(x)

x

Si

yi–1

yi

yi+1

xi +1xi–1 xi

α   (x)(i)
2

Fig. 5.7
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Si =
xi+1∫

xi−1

L (i )
2 (x)dx = yi−1

2h2

xi +h∫

xi −h

(x − xi )(x − xi − h)dx

+
(
− yi

h2

) xi +h∫

xi −h

(x − xi + h)(x − xi − h)dx (5.27)

+ yi+1

2h2

xi +h∫

xi −h

(x − xi + h)(x − xi )dx

Calculating this integral we obtain:

Si = h

3
(yi−1 + 4 · yi + yi+1) (5.28)

wherei = 1, 3, 5, . . . , n − 1. The sum of all termsSi determined over the whole
interval [x0, xn] is equal to:

S = h

3
(y0 + 4y1 + y2 + y2 + 4y3 + y4 + y4 + 4y5 + y6 + . . . . . .

+yn−4 + 4yn−3 + yn−2 + yn−2 + 4yn−1 + yn)
(5.29)

After grouping of terms, the sum (5.29) can be written in the following simpler
form:

S = h

3
[y0+4(y1+ y3+ y5+ . . .+ yn−1)+2(y2+ y4+ y6+ . . .+ yn−2)+ yn] (5.30)

known in the literature as the Simpson integral formula. Simplicity of its comput-
ing algorithm, accompanied by relatively good accuracy, constitutes very precious
property of this algorithm. It was proved in the literature that the difference between
accurate value of this integral and its approximation, given by the sum (5.30), is
a second order quantity. It means that reducing twice the length of the subinterval
�xi ≡ h, this difference decreases no less than 24=16 times. The rule given in
Sect. 5.2.1, concerning optimal partition of integration interval, saying that the sum
of interpolation (method) errors and computation (computer processing) errors at-
tains minimum, refers also to the Simpson method. Further accuracy improvement
can be received by repeated calculation of the integral for different lengths of the
subintervals (h) and appropriate “processing” of the results. As an example, let us
consider the Aitken extrapolation procedure, in which computation of an integral is
performed three times, i.e., the integration interval [a, b] is divided into the subin-
tervals with lengthsh1, h2 andh3, respectively, related according to the formula[7]:

h2

h1
= h3

h2
= q
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Assume that we have three values of the integral obtained for different lengths
h1, h2 andh3 of subintervals, i.e.:

I1 = I (h1), I2 = I (h2), I3 = I (h3)

A more accurate value of the integralI is found according to the following
relation:

I = I1 − (I1 − I2)2

I1 − 2I2 + I3

Precision of the integral calculated in this way is of the orderp, R(hp), where:

p = 1

ln(q)
ln

(
I3 − I2

I2 − I1

)

andh is the longest subinterval amongh1, h2 andh3.

Example 5.4As an illustration of the Simpson method algorithm and confirmation
of conclusions given above, let us calculate the integral

1∫

0

1

1 + x2
dx

assuming that an integration interval was partitioned inton = 10 equal subintervals
of the lengthh = 0.1. Discrete values ofxi and related to them valuesyi = f (xi )
of the integrand are given below.

x0 = 0.0, y0 = f (x0) = 1.000000000

x1 = 0.1, y1 = f (x1) = 0.990099009

x2 = 0.2, y2 = f (x2) = 0.961538461

x3 = 0.3, y3 = f (x3) = 0.917431192

x4 = 0.4, y4 = f (x4) = 0.862068965

x5 = 0.5, y5 = f (x5) = 0.800000000

x6 = 0.6, y6 = f (x6) = 0.735294117

x7 = 0.7, y7 = f (x7) = 0.671140939

x8 = 0.8, y8 = f (x8) = 0.609756097

x9 = 0.9, y9 = f (x9) = 0.552486187

x10 = 1.0, y10 = f (x10) = 0.500000000

According to Simpson formula (5.30) we can write:

S = 0.1

3
[y0+4(y1+ y3+ y5+ y7+ y9)+2(y2+ y4+ y6+ y8)+ y10] = 0.785398153
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This integral can be also calculated using the analytical formula:

1∫

0

1

1 + x2
dx = arctg(1)− arctg(0)= π

4
≈ 0.785398163

Analytical and numerical results give the same answer up to eight significant
digits, thus confirming our conclusion about relatively high accuracy of computation
achieved.

5.2.4 The Newton–Cotes Method of Integration

Assume that discrete valuesyi = f (xi ) of integrandf (x) are defined for

xi = x0 + i · h (5.31)

wherei = 0, 1, 2, 3, . . . , n, h = (b−a)/n, x0 ≡ a andxn ≡ b. The main feature of
the Newton–Cotes method is the interpolation of the integrandyi = f (xi ) defined
above by the Lagrange polynomial of degreen

Ln (x) =
n∑

i=0

yi δi (x) (5.32)

where the function:

δi (x) = (x − x0) (x − x1) (x − x2) . . . (x − xi −1) (x − xi +1) . . . (x − xn−1) (x − xn)

(xi − x0) (xi − x1) (xi − x2) . . . (xi − xi −1) (xi − xi +1) . . . (xi − xn−1) (xi − xn)

denotes a polynomial assigned to the termi of the series (5.32). Introducing the
parameters

q = x − x0

h
, Qn = q(q − 1)(q − 2)(q − 3) . . . (q − n + 1)(q − n) (5.33)

polynomialδi (x) can be written in the form:

δi (x) = hqh(q − 1)h(q − 2) . . . h(q − i + 1)h(q − i − 1) . . . h(q − n + 1)h(q − n)

ih(i − 1)h(i − 2)h . . . (1)h(−1)h . . . [−(n − i + 1)]h[−(n − i )]h

which after multiplying the numerator and the denominator by (q − i ), and some
elementary simplifying transformations takes finally the form:

δi (x) = hnQn

i !hi (−1)n−i hn−i (n − i )!
· 1

q − i
= (−1)n−i 1

i !(n − i )!
· Qn

q − i
(5.34)
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Thus, the interpolating polynomial (5.32) is equal to:

Ln(x) =
n∑

i=0

yi

[
(−1)n−i 1

i !(n − i )!
· Qn

q − i

]
(5.35)

After replacing integrandf (x) by polynomial (5.35) we obtain:

b∫

a

f (x)dx ≈
b∫

a

Ln(x)dx =
n∑

i=0

yi

⎡
⎣(−1)n−i 1

i !(n − i )!

xn∫

x0

Qn

q − i
dx

⎤
⎦ =

n∑
i=0

yi Ai

(5.36)
Formula (5.36) is known in the literature as the Newton–Cotes quadrature. Co-

efficientsAi , wherei = 0, 1, 2, 3, . . . , n, of this quadrature are often represented in
the form of a product:

Ai = (xn − x0)Hi = (b − a)Hi (5.37)

where

Hi = 1

n
(−1)n−i 1

i !(n − i )!

n∫

0

Qn

q − i
dq

is thei -Cotes coefficient. Relation (5.37) can be obtained by introducing new vari-
ables taking (x = q · h − x0, dx = h · dq, h = (b − a)/n) and putting the integra-
tion limits as in the expression (5.36) defining the coefficientAi . From the relation
(5.37), it follows that:

n∑
i−0

Hi = 1, Hi = Hn−i for i = 0, 1, 2, 3, . . . , n (5.38)

Values of the Cotes coefficients calculated forn = 1, 2, 3, 4 and 5 are given in
Table 5.2 [3].

Example 5.5As an example illustrating the algorithm of Newton–Cotes method,
consider the integral

Table 5.2

n dn H0, dn Hn dn H1, dn Hn−1 dn H2, dn Hn−2 dn H3, dn Hn−3 dn

1 1 2
2 1 4 6
3 1 3 8
4 7 32 12 90
5 19 75 50 288
6 41 216 27 272 840



138 5 Methods for Numerical Integration of One and Two Variable Functions

1∫

0

(
5x4 + x

)
dx

which can be calculated analytically and equals 1.5. The integrandf (x) is the poly-
nomial of degree 4, and therefore an integration interval [0, 1] should be divided
into four equal parts (h = 0.25). According to this partition and Table 5.1 we obtain
the values

x0 = 0.00, y0 = f (x0) = 0, H0 = 7/90
x1 = 0.25, y1 = f (x1) = 0.26953125, H1 = 32/90
x2 = 0.50, y2 = f (x2) = 0.8125, H2 = 12/90
x3 = 0.75, y3 = f (x3) = 2.33203125, H3 = 32/90
x4 = 1.00, y4 = f (x4) = 6, H4 = 7/90

which we introduce to Eqs. (5.37) and (5.36) obtaining

1∫

0

(
5x4 + x

)
dx = 1 ·

[
7

90
· 0 + 32

90
· 0.26953125+ 12

90
· 0.8125

+32

90
· 2.33203125+ 7

90
· 6

]
= 1.5

In this particular case, numerical result is the same as the accurate value of the
integral obtained analytically. This is a direct consequence of the fact that this in-
tegrand function is a polynomial, and that the Lagrange interpolating polynomial is
identically the same.

5.2.5 The Cubic Spline Function Quadrature

Acting in the same manner as shown in the previous section, we divide the whole
integration interval [a, b] ≡ [x0, xn] into n identical subintervals of the length

h = b − a

n

Assume that for a given set of (n + 1) interpolation points

xi = x0 + i · h, i = 0, 1, 2, 3, . . . , n

discrete valuesyi = f (xi ) of the integrand are known. When we calculate the defi-
nite integral
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b∫

a

f (x)dx (5.39)

using the spline function method, the integrandf (x) is interpolated over the whole
interval [x0, xn] by the spline function composed ofn trinomials of the form:

qi (x) = ai + bi (x − xi−1) + ci (x − xi−1)2 + di (x − xi−1)3 (5.40)

wherexi−1 ≤ x ≤ xi , i = 1, 2, 3, . . . , n [5]. Values of the coefficientsai , bi , ci

and di of individual trinomials (5.40) are determined similarly as described in
Sect. 4.1.5. Using general rules of integration calculus, the definite integral (5.39)
can be transformed as follows:

b∫

a

f (x)dx =
n∑

i=1

xi∫

xi−1

f (x)dx ≈
n∑

i=1

xi∫

xi−1

qi (x)dx (5.41)

Substituting the trinomial (5.40) into the expression (5.41) and performing ele-
mentary integration we get:

b∫

a

f (x)dx =
n∑

i=1

(
ai · h + 1

2
bi · h2 + 1

3
ci · h3 + 1

4
di · h4

)
(5.42)

Using the following equations

yi−1 = qi (x = xi−1) = ai

yi = qi (x = xi ) = ai + bi h + ci h2 + di h3

and following from the interpolation rule concerning the trinomials (5.40), the
quadrature (5.42) can be written in the form:

b∫

a

f (x)dx = 1

2

n∑
i=1

h(yi−1 + yi ) − 1

12

n∑
i=1

h3(2ci + 3di h) (5.43)

having a simple physical interpretation. First sum of the equation (5.43) is nothing
else but an approximate value of the integral computed by means of the method of
trapezoids. The second sum is a correction term showing the difference between the
results obtained using the spline function and the result given by the much simpler
method of trapezoids.
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5.2.6 The Gauss and Chebyshev Quadratures

It results from the considerations described in the previous sections that the definite
integral of one variable can be expressed by the following general relation:

b∫

a

f (x)dx =
n∑

i=1

Ai f (xi ) (5.44)

which in the literature is called the quadrature. Let us assume that the integrand
function f (x) is interpolated by the polynomialWn(x) of degreen over the inter-
val [a, b]. At this assumption it is obvious that the values of coefficientsAi of the
quadrature (5.44) depend on degreen and interpolation nodesxi . The essence of
the Gauss and Chebyshev quadratures presented below is that these nodes are not
equally spaced over the interval [a, b].

5.2.6.1 The Gauss Quadrature

Let us consider again the definite integral

1∫

−1

f (t)dt =
n∑

i=1

Ai f (ti ) (5.45)

defined over the interval [−1, 1]. Nodest1, t2, t3, . . . , tn and coefficientsA1, A2,

A3, . . . , An of the Gauss quadrature (5.45) should take such values for which this
quadrature will be accurate for the integrandf (t) in the form of a polynomialf (t) ≡
Wm(t) of possibly highest degreem. The total number of nodesti and coefficientsAi

of the quadrature (5.45) is equal to 2n. The same number of independent coefficients
has a polynomialWm(t) of degreem = 2n−1. Thus the quadrature being evaluated
should be accurate for polynomials

fk(t) = tk (5.46)

wherek = 0, 1, 2, 3, . . . , m = 2n−1. This requirement is expressed by the follow-
ing equations:

1∫

−1

tkdt =
n∑

i=1

Ai fk(ti ) =
n∑

i=1

Ai t
k
i for k = 0, 1, 2, 3, . . . , 2n − 1 (5.47)

Let us assume that the integrand is a linear combination of polynomials (5.46),

i.e., f (t) =
2n−1∑
k=0

cktk, whereck denoteskth real coefficient. It is not difficult to
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justify using Eq. (5.47) that the integral
1∫

−1
f (t)dt can be written in the following

form:

1∫

−1

f (t)dt =
2n−1∑
k=0

ck

1∫

−1

tkdt =
2n−1∑
k=0

ck

n∑
i=1

Ai t
k
i =

n∑
i=1

Ai

2n−1∑
k=0

cktk
i =

n∑
i=1

Ai f (ti )

(5.48)
identical as the quadrature (5.45). Thus, in order to evaluate the nodest1, t2, t3, . . . , tn
and coefficientsA1, A2, A3, . . . , An of the quadrature (5.48) it is necessary to solve
the equation system (5.47) written as follows:

1∫

−1

1dt =
n∑

i=1

Ai = 2

1∫

−1

tdt =
n∑

i=1

Ai ti = 0

1∫

−1

t2dt =
n∑

i=1

Ai t
2
i = 2

2 + 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1∫

−1

tkdt =
n∑

i=1

Ai t
k
i = 1 − (−1)k+1

k + 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1∫

−1

t2n−1dt =
n∑

i=1

Ai t
2n−1
i = 0

(5.49)

Unfortunately, the equation system (5.49) is nonlinear with respect to nodes and
for this reason rather difficult to solve. The approach presented below makes it pos-
sible much easier. In its first stage, the nodest1, t2, t3, . . . , tn are evaluated in an
indirect manner. For this purpose, the following property

1∫

−1

tk Pn(t)dt =0 when k < n, n = 1, 2, 3, . . .

of Legendre polynomialsPn(t), see relations (4.84) and (4.85), is utilized. Let us
assume that the functionf (t) has the form:

f (t) = tk Pn(t) (5.50)
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wherek = 0, 1, 2, 3, . . . , n − 1. For 0 ≤ k ≤ n − 1, the function (5.50) can be
treated as a polynomial of degree at most 2n − 1. For such integrand function the
quadrature (5.45) should be accurate. The above requirement is expressed by the
following equations:

1∫

−1

tk Pn(t)dt =
n∑

i=1

Ai t
k
i Pn(ti ), k = 0, 1, 2, 3, . . . , n − 1 (5.51)

Left side of equation (5.51) is equal to 0 due to the orthogonality of the Legen-
dre polynomialsPn(t) and polynomialstk over the interval [−1, 1] whenk < n.
According to this conclusion

n∑
i=1

Ai t
k
i Pn(ti ) = 0, k = 0, 1, 2, 3, . . . , n − 1 (5.52)

Thus, Eq. (5.52) is satisfied for any coefficientsAi if

Pn(ti ) = 0 for i = 1, 2, 3, . . . , n (5.53)

It may be concluded from condition (5.53) that for fixed value of degreen
the nodest1, t2, t3, . . . , tn of the quadrature (5.45) should be the same as roots of
the Legendre polynomial of the same degreen. Values of nodest1, t2, t3, . . . , tn
determined in this way forn = 2, 3, 4 and 5 are given in Table 5.3. For these
nodes, the equation system (5.49) becomes linear with respect to desired coefficients
A1, A2, A3, . . . , An. Consequently, these coefficients can be evaluated by means of
one of the direct methods described in Chap. 1. Naturally, the Gauss elimination
method with the choice of the main element is the most suitable for this purpose.
Values of coefficientsA1, A2, A3, . . . , An evaluated in this manner forn = 2, 3, 4
and 5 are also given in Table 5.3 [3].

Table 5.3

n → 2 3 4 5

t1 −0.577350269 −0.774596669 −0.861136311 −0.906179846
t2 0.577350269 0.000000000 −0.339981043 −0.538469310
t3 0.774596669 0.339981043 0.000000000
t4 0.861136311 0.538469310
t5 0.906179846
A1 1.000000000 0.555555555 0.347854845 0.236926885
A2 1.000000000 0.888888888 0.652145155 0.478628670
A3 0.555555555 0.652145155 0.568888888
A4 0.347854845 0.478628670
A5 0.236926885
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For example, whenn = 3 the nodes of the Gauss–Legendre quadrature are:
t1 = −√

3/5 = −0.774596669,t2 = 0 andt3 = √
3/5 = 0.774596669. In this

case, equations (5.49) take the form:

A1 + A2 + A3 = 0

−√
3/5A1 + 0 · A2 + √

3/5A3 = 0

(3/5)A1 + 0 · A2 + (3/5)A3 = 2/3

The solution of this linear equation system is:A1 = A3 = 5/9 ≈ 0.555555555
andA2 = 8/9 ≈ 0.888888888. Finally, the three-node Gauss–Legendre quadrature
can be written as:

1∫

−1

f (t)dt = 1

9

[
5 · f (−

√
3/5) + 8 · f (0) + 5 · f (

√
3/5)

]
(5.54)

Of course, the Gauss–Legendre quadrature can be generalized for definite in-
tegrals defined in arbitrary closed interval [a, b] different from [−1, 1]. This can
be done in a manner similar to that described in further part of this section, see
transformation formulas (5.60) and (5.61). This problem is also illustrated by the
Example 5.7.

Example 5.6It is concluded in the literature that the five-node Gauss–Legendre
quadrature ensures the relatively good accuracy of integration for the most appli-
cations. The results of calculations presented below confirm well the validity of the
above conclusion. Thus, let us calculate the definite integral

1∫

−1

1

x + 2
dx = ln(3) − ln(1) = ln(3)

by means of the five-node Gauss–Legendre quadrature. Using general formula
(5.45) and values of appropriate (n = 5) nodes and coefficients given in Table 5.3
we can write:

1∫

−1

1

x + 2
dx ≈ 0.236926885

(
1

−0.906179846+ 2
+ 1

0.906179846+ 2

)

+ 0.478628670

(
1

−0.538469310+ 2
+ 1

0.538469310+ 2

)

+ 0.568888888

(
1

0 + 2

)
= 1.098609241

In this example, the numerical approximation of the given integral differs from
accurate value ln(3)≈ 1.098612289 less than 3.1 × 10−6.
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5.2.6.2 The Chebyshev Quadrature

The Chebyshev method considered in this section represents the methods belonging
to the third group (III), see Fig. 5.1, called in general the Gaussian methods. Short
description of methods of this kind was given at the beginning of this chapter. The
quadrature introduced by Chebyshev can be written in the following general form:

1∫

−1

f (t)dt =
n∑

i=1

Ai · f (ti ) (5.55)

whereAi , for i = 1, 2, 3, . . . , n are the fixed coefficients, [3]. The main idea of the
Chebyshev method is the determination of such discrete values ofti , for which:

– All coefficientsAi are equal,
– The quadrature (5.55) is accurate if the integrandf (t) is the polynomial of the

degree not greater thann.

First condition is satisfied for the coefficientsA1 = A2 = A3 = . . . = An = A
determined from relation (5.55), assuming thatf (t) ≡ 1 is the polynomial of degree
0 (zero). According to this relation:

1∫

−1

1 · dt = 2 =
n∑

i=1

Ai · 1 = n A

Hence

A = A1 = A2 = A3 = . . . = An = 2

n
(5.56)

After introducing coefficients (5.56) in Eq. (5.55) we obtain relation:

1∫

−1

f (t)dt = 2

n

n∑
i=1

f (ti ) (5.57)

known in the literature as the Chebyshev quadrature formula. This quadrature, ac-
cording to the above assumption, should be accurate for integrandsf (t) which are
polynomials:t, t2, t3, t4, . . . , tn. This condition formulated for the polynomial of
degreek, i.e., for f (t) ≡ tk, can be written as:

1∫

−1

tkdt = 2

n

n∑
i=1

tk
i = 1

k + 1
[1 − (−1)k+1] = 2

n
(tk

1 + tk
2 + tk

3 + . . . + tk
n ) (5.58)
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Equation (5.58), formulated fork = 1, 2, 3, . . . , n, respectively, constitutes the
following nonlinear system:

t1
1 + t1

2 + t1
3 + . . . + t1

n = 0

t2
1 + t2

2 + t2
3 + . . . + t2

n = n

3
t3
1 + t3

2 + t3
3 + . . . + t3

n = 0

t4
1 + t4

2 + t4
3 + . . . + t4

n = n

5
. . . . . . . . . . . . . . . . . . . . . . . . ..

tn
1 + tn

2 + tn
3 + . . . + tn

n = n[1 − (−1)n+1]

2(n + 1)

(5.59)

Solutions of this system, evaluated forn = 2, 3, 4, 5, 6 and 7, are given in
Table 5.4. We should emphasize the fact that the equation system (5.59) has no
real solutions forn = 8 andn ≥ 10. This fact constitutes some kind of limitation
for the method presented above [3].

The Chebyshev quadrature formula can be generalized to definite integrals
defined in an arbitrary closed interval [a, b], different from [−1, 1]. Any definite
integral

b∫

a

f (x)dx (5.60)

can be transformed to the canonical form (5.55) using the following relation:

t(x) = 2x

b − a
− b + a

b − a
, dt = 2

b − a
dx

transforming the interval [a, b], (a ≤ x ≤ b) into the interval [−1, 1], (−1 ≤ t ≤ 1).
Resulting formula has now the form:

b∫

a

f (x)dx = b − a

2

1∫

−1

f (t)dt = b − a

2
· 2

n

n∑
i=1

f (ti ) = b − a

n

n∑
i=1

f (xi ) (5.61)

Table 5.4

n t1, tn = −t1 t2, tn−1 = −t2 t3, tn−2 = −t3 t4, tn−3 = −t4

2 −0.577350
3 −0.707107 0
4 −0.794654 −0.187592
5 −0.832498 −0.374541 0
6 −0.866247 −0.422519 −0.266635
7 −0.883862 −0.529657 −0.323912 0
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where

xi = b + a

2
+ b − a

2
ti (5.62)

The values of rootsti , wherei = 1, 2, 3, . . . , n ≤ 7, are given in Table 5.4.

Example 5.7As an illustration of the Chebyshev quadrature method, let us calculate
the integral

1∫

0

x

1 + x
dx

taking the valuen = 7. The points (nodes)xi , wherei = 1, 2, 3, . . . , 7, calculated
according to (5.62), and related to them valuesf (xi ) of the integrand are equal to:

x1 = 0.5 + 0.5(−0.883862)= 0.0580690, f (x1) = 0.054882054

x2 = 0.5 + 0.5(−0.529657)= 0.2351715, f (x2) = 0.190395827

x3 = 0.5 + 0.5(−0.323912)= 0.3380440, f (x3) = 0.252640421

x4 = 0.5 + 0.5(0) = 0.5 f (x4) = 0.333333333

x5 = 0.5 + 0.5(0.323912)= 0.6619560, f (x5) = 0.398299353

x6 = 0.5 + 0.5(0.529657)= 0.7648285, f (x6) = 0.433372040

x7 = 0.5 + 0.5(0.883862)= 0.9411931, f (x7) = 0.485048644

Introducing these values of the functionf (xi ), wherei = 1, 2, 3, . . . , 7, into the
formula (5.61) we obtain:

1∫

0

x

1 + x
dx ≈ 1 − 0

7

7∑
i=1

f (xi ) = 1

7
· 2.147971672= 0.306853096

The calculated value of this quadrature is very close to the value of the integral
found analytically, that is:

1∫

0

x

1 + x
dx =

1∫

0

1 · dx −
1∫

0

1

1 + x
dx = 1 − 0 − [ln(2) − ln(1)] = 0.306852819

Correctness of our computations as well as the fact that precision of the method
is sufficient for practical applications can be considered as confirmed.
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5.3 Methods for Numerical Integration of Two
Variable Functions

5.3.1 The Method of Small (Elementary) Cells

One of the simplest methods for numerical computation of double definite integral

I =
�
G

f (x, y)dx dy (5.63)

is the method of elementary cells. By a cell, see Fig. 5.8, we understand such small
rectangular areaDi j :

xi ≤ x ≤ xi + �xi

yj ≤ y ≤ yj + �yj

for which the following relation can be formulated:

�
Di j

f (x, y)dx dy≈ �xi · �yj · f

(
xi + �xi

2
, yj + �yj

2

)
(5.64)

The above formula, used for each elementary (small) areaG, permits to substitute
the integral (5.44) by its approximation written in form of the following double sum

�
G

f (x, y)dx dy≈
m∑

i=1

n∑
j =1

f

(
xi + �xi

2
, yj + �yj

2

)
�xi · �yj (5.65)

In the literature we can find a proof of the fact that an approximation error intro-
duced by the relation given above is a second order quantity with respect to�x and
�y. When the areaG is not a rectangle, in many cases it can be transformed into
the rectangular one by means of changing the variables. To illustrate this procedure

Fig. 5.8

y

d
G

a b

c
x

xi

yj

Δyj

Δ xi

Dij
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Fig. 5.9 y

x

a b

G

ϕ2(x)

ϕ1(x)

assume that an integration areaG has the form of a curvilinear quadrangle shown in
Fig 5.9.

Coordinates of each point of this area are defined by the relations:

a ≤ x ≤ b

ϕ1(x) ≤ y ≤ ϕ2(x) (5.66)

This area can be transformed into the rectangular cell in the coordinate system
(x, t) by means of the following new variable:

t = y − ϕ1(x)

ϕ2(x) − ϕ1(x)
, 0 ≤ t ≤ 1 (5.67)

5.3.2 The Simpson Cubature Formula

Better approximation, as compared with the one obtained by means of the formula
(5.64) can be obtained using the relation called often the Simpson type mechanic
cubature [3, 8]. Let us begin with an assumption that we have rectangular integration
areaDi j given by the relations:

xi − h ≤ x ≤ xi + h,

yj − k ≤ y ≤ yj + k
(5.68)

and having nine characteristic points, which are shown in Fig. 5.10.
Double integral defined on this area can be written in the following form:

�
Di

f (x, y)dx dy=
xi +h∫

xi −h

⎡
⎢⎣

yj +k∫

yj −k

f (x, y)dy

⎤
⎥⎦dx =

xi +h∫

xi −h

dx

yj +k∫

yj −k

f (x, y)dy (5.69)

The integrandf (x, y) appearing in the second integral can be interpreted as the
function of one variabley, depending on the parameterx. Single integral of this
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Fig. 5.10 y
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function, depending on the parameter, can be calculated using the quadrature Simp-
son formula (5.28). After introducing (5.28) to the formula (5.69) we obtain:

�
Di

f (x, y)dx dy=
xi +h∫

xi −h

dx · k

3
[ f (x, yj − k) + 4 f (x, yj ) + f (x, yj + k)]

= k

3

xi +h∫

xi −h

f (x, yj − k)dx + 4 · k

3

xi +h∫

xi −h

f (x, yj )dx + k

3

xi +h∫

xi −h

f (x, yj + k)dx

(5.70)

Using for the second time the Simpson quadrature formula with respect to each
of the single integrals given above, we obtain the following formula:

�
Di

f (x, y)dx dy= k · h

9
[ f (xi −h, yj −k)+4 f (xi , yj −k)+ f (xi + h, yj − k)]

+ 4 · k · h

9
[ f (xi − h, yj ) + 4 f (xi , yj ) + f (xi + h, yj )]

+ k · h

9
[ f (xi −h, yj +k)+4 f (xi , yj +k)+ f (xi +h, yj + k)]

(5.71)

known in the literature under the name of the Simpson cubature formula, or me-
chanical cubature presented often in the form:

�
Di

f (x, y)dx dy= k · h

9
(Ai j + 4 · Bi j + 16 · Ci j ) (5.72)

where

Ai j = f (xi −h, yj −k)+ f (xi +h, yj −k)+ f (xi − h, yj + k) + f (xi + h, yj + k)
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Bi j = f (xi , yj − k) + f (xi , yj + k) + f (xi − h, yj ) + f (xi + h, yj )

Ci j = f (xi , yj )

Example 5.8Using the Simpson cubature formula (5.72) we calculate the integral

I =
�
Di

10

xy
dx dy

defined on the surface of the rectangleDi j : (2 ≤ x ≤ 2.4, 4 ≤ y ≤ 4.6). In this
caseh = (2.4 − 2)/2 = 0.2, k = (4.6 − 4)/2 = 0.3, xi = (2 + 2.4)/2 = 2.2,

yi = (4 + 4.6)/2 = 4.3. Values of the integrand needed for the computation, see
Fig. 5.9, are given in Table 5.5.

The partial sums calculated according to Eq. (5.72) are equal to:

Ai j = 1.25+ 1.041666666+ 1.086956522+ 0.905797101= 4.284420289

Bi j = 1.136363636+0.988142292+1.162790698+0.968992248=4.256288874

Ci j = 1.057082452

Finally, we obtain the following numerical approximation of the integral:

In = 0.2·0.3/9(4.284420289+4·4.256288874+16·1.057082452)= 0.254819296

The accurate value of the same integral can be found analytically and is equal to:

Ia = 10 · ln(2.4/2) · ln(4.6/4) = 0.254816148

Next, we find relative error of this numerical approximation

δ = 0.254819296− 0.254816148

0.254816148
≈ 1.235· 10−5

which is fully acceptable for the majority of applications. In case when dimensions
of the integration areaR are large, in order to assure sufficient computation accuracy
the whole area should be divided inton × m sufficiently small identical rectangles
Di j , where i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , m, and the sides are parallel to
the axesx and y. Using the above procedure to all such rectangles we obtain the

Table 5.5

yj ↓ /xi → 2.0 2.2 2.4

4.0 1.250000000 1.136363636 1.041666666
4.3 1.162790698 1.057082452 0.968992248
4.6 1.086956522 0.988142292 0.905797101



5.4 An Example of Applications 151

Fig. 5.11 y
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set of partial results, the sum of which constitutes the approximate value of the
calculated integral. In the similar way, we proceed when the integration areaG is
the curvilinear quadrangle, as shown in Fig. 5.11.

This area should be approximated (with a surplus) by a setR composed ofn×m
rectanglesDi j , on which we define the following auxiliary integrand

f ∗(x, y) =
∣∣∣∣∣∣

f (x, y), (x, y) ⊂ G

0, (x, y) �⊂ G
(5.73)

For such integrand we can write:

�
G

f (x, y)dx dy=
�
R

f ∗(x, y)dx dy (5.74)

The double integral standing on the right-side of Eq. (5.55) can be found using
the procedure similar to that described above.

5.4 An Example of Applications

The basic goal of navigation is the determination of a geographical position (posi-
tion) of an object moving in a three-dimensional (3D) space, in order to guide this
object to the predetermined position in that space with a predetermined accuracy and
at the right time. This problem is usually solvable using the autonomous methods,
which utilize different board instruments. Historically, the first magnetic, mechan-
ical and optical instruments of this kind were various types of compasses, mag-
netometers, logs, gyrocompasses, optical locators, sextants and infrared direction
finders. Such equipments made possible determination of the geographic position of
an object on the base of the Earth magnetic field measurements, position of the Sun,
the Moon, as well as other celestial bodies. In the modern navigation systems, the
satellites play a role of “reference points”, whose position with respect to the Earth
(more precisely with respect to the center of the Earth and the adopted map gratic-
ule) at any moment of universal time (UT) is known and monitored systematically.
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A special three-dimensional ellipsoidal model of the Earth surface was developed
and its WGS84 version (World Geodetic System, standard USA) is broadly used
in the majority of multi-channel global positioning system (GPS) and differential
global positioning system (DGPS,) receivers. All these systems and corresponding
measurement equipment make possible the determination of the so-calledobserved
position. Another position used for navigation purposes is thecounted position. Its
proper meaning defines position of an object determined on the base of its last ob-
served position and of its trajectory, counted by means of the on-board measurement
equipment. As an example, let us consider a procedure serving for determination the
counted position of a submarine, which, at the emergency time, is located at point
P0 ≡ (x0, y0, z0 = 0), as shown in Fig. 5.12.

Assume now that this observed position was determined for the fixed moment
of time t = t0, on the basis of data received from Navy Navigation Satellite Sys-
tem (NNSS – TRANSIT) or GPS systems. At emergence time, measurement of the
temperature and atmospheric pressure at the water surface is also performed. To
simplify our further considerations, let us assume that the pointP0 is identical to the
origin of a dextrose Cartesian coordinate system (x, y, z), in which thex-axis points
to the north (N). Every one hour the actual position is recorded in the deck log. This
position is being determined each time in the full submergence conditions based on
the following data:

– last observed position,
– north direction indicated by the gyrocompass,

x1x0

x (N)

y
a)

P1

y0

y1

x (N)x1

z
b)

P1

z0

z1

Sea level

Fig. 5.12
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– vertical direction indicated by the gravity force,
– indications of the vector speedometer,
– indications of the vector accelerometer, and
– indication of the board clock.

On the basis of indications of the on-board instruments mentioned above we form
the sets of discrete values of the speed vector components, that is:

vx(ti ) = vx(t0 + i · �t)

vy(ti ) = vy(t0 + i · �t)

vz(ti ) = vz(t0 + i · �t)

(5.75)

wherei = 1, 2, 3, . . . , n, and�t is a small interval determining the sampling fre-
quency. These values serve to determine (by interpolation) the functionsvx(t), vy(t),
vz(t), continuous in the time intervalt0 ≤ t ≤ t1 = t0 + n · �t . The coordinates
(x1, y1, z1) of the first counted position are equal to:

x1 = x0 +
t1∫

t0

vx(t)dt

y1 = y0 +
t1∫

t0

vy(t)dt

z1 = z0 +
t1∫

t0

vz(t)dt

t1 = t0 + n · �t

(5.76)

Integrals (5.57) are usually computed by means of one of the methods presented
earlier in this chapter. In the full draught time only one of the desired coordinates
can be experimentally verified. It is not difficult to guess that we are interested in
the z1-coordinate, because it defines the draught depth. The draught depthh ≡ z1

with respect to the water surface can be found on the base of hydrostatic pressure
measurement. Hydrostatic pressure, at a certain depthh, becomes greater than the
pressure on the water surface, and the difference is equal top = g · ρ · h, where
g is the earth gravity known for this sea area, andρ is a given (measured) water
density. Measurement of this pressure is performed by means of mechanical in-
strument whose operation principle is similar to that of an aneroid, broadly used in
meteorology. Each consecutive counted position is accompanied by the greater error
than the previous one, and it is therefore necessary to correct this position as quickly
as possible by determining the next observed position.
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Chapter 6
Numerical Differentiation of One
and Two Variable Functions

A moment of reflection on the usefulness of function derivatives in one or many
variables for natural and technical sciences would certainly make us aware of the
importance of problems considered in the present chapter. Although formulation of
clear and exhaustive conclusions on this subject is not an easy task, it induces us to
a reflection that introduction of derivatives made in great extent possible and accel-
erated the development of science and technology. It is not necessary to convince
anybody that derivatives still play a fundamental role, because they offer mathe-
matical, rigorous manner of describing dynamics of various changes taking place in
isolated environments or in technical devices. For example, the instant speedv(t) is
the first derivative of functionL(t) describing relation of the pathL to time t . The
time derivative of instant speed is in turn a measure of acceleration. Acceleration
is therefore, mathematically speaking, the second derivative of the pathL(t) with
respect to timet . As another example, we analyze changes in time of the charge
Q(t) stored on the plates of a capacitor. The current flowing through this capaci-
tor is proportional to the first derivative of functionQ(t). We may give numerous
examples of this kind, because all processes which we meet in our environment
are dynamic processes representing changes in function with respect to time. In
this context the stationary process, understood as a process in which there are no
changes, is a purely abstract process, nonexisting in real-world. Moreover, the very
notion of time and its scale is difficult to define for such fictitious process. In order
to specify our future considerations, let us assume that a real process is described by
function f (x), bounded and continuous over an interval [a, b]. The first derivative
of the function f (x), defined at an arbitrary pointx0 of this interval, is given by the
following limit:

d f (x)

dx
= f ′(x0) = lim

�x→0

f (x0 + �x) − f (x0)

�x
(6.1)

in which an increment�x can be positive or negative. We therefore have to do with
right-sided or left-sided limits, respectively. If both limits are equal then the function
f ′(x) is continuous forx = x0. Derivatives of many elementary functions such as
polynomials, exponential, logarithmic, hyperbolic, trigonometric functions as well

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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as their various combinations can be in most cases described by similar kinds of
functions, as we may see looking at some examples given below.

Function First derivative

xn d

dx
xn = nxn−1

ex d

dx
ex = ex

ln(x), x �= 0
d

dx
ln(x) = 1

x

ch(x) = 1

2
(ex + e−x)

d

dx
[ch(x)] = sh(x)

sh(x) = 1

2
(ex − e−x)

d

dx
[sh(x)] = ch(x)

th(x) = ex − e−x

ex + e−x

d

dx
[th(x)] = 1

ch2(x)

cos(x)
d

dx
cos(x) = − sin(x)

sin(x)
d

dx
sin(x) = cos(x)

tg(x) = sin(x)

cos(x)
, cos(x) �= 0

d

dx
tg(x) = 1

cos2(x)

(6.2)

Second derivatives of this functions can be determined according to the following
general rule of differential calculus:

d2

dx2
f (x) = d

dx

[
d

dx
f (x)

]
(6.3)

In most cases, the expressions found in this way are also combinations of ele-
mentary functions mentioned above. For example

d2

dx2
ch(x) = d

dx
sh(x) = d

dx

[
1

2
(ex − e−x)

]
= 1

2
[ex − (−e−x)] = ch(x) (6.4)

Some more compound functions can also be written in the form of elementary
function series containing finite or infinite number of terms. A classical example
of such functions, broadly used in electrodynamics and for description of the angle
modulated signals, are the Bessel functions of the first kind [1, 2].

Jn(x) =
[

(x/2)n

n!
− (x/2)n+2

1!(n + 1)!
+ (x/2)n+4

2!(n + 2)!
− (x/2)n+6

3!(n + 3)!
+ . . .

]
(6.5)
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wheren = 0, 1, 2, 3 . . . andx is the real positive number. First derivatives of these
functions are obtained by differentiating series (6.5) term after term, obtaining the
recursive formula:

d

dx
[ Jn(x)] = 1

2

[
n(x/2)n−1

n!
− (n + 2)(x/2)n+1

1!(n + 1)!
+ (n + 4)(x/2)n+3

2!(n + 2)!
− . . .

]

= 1

2

(x/2)n−1

n!

[
n − (n + 2)(x/2)2

1!(n + 1)
+ (n + 4)(x/2)4

2!(n + 1)(n + 2)
− . . .

]
(6.6)

Second derivatives of the Bessel functions (6.5) are in turn calculated using prin-
ciple (6.3), that is by differentiating all terms of the series (6.6)

d2

dx2
[ Jn(x)] = 1

4

[
n(n − 1)(x/2)n−2

n!
− (n + 2)(n + 1)(x/2)n

1!(n + 1)!

+ (n + 4)(n + 3)(x/2)n+2

2!(n + 2)!
− . . .

]
(6.7)

The above considerations would help us to remind the basic principles of ana-
lytical calculating derivatives of one variable functions. They confirm implicitly an
important conclusion saying that analytical method is the most appropriate form of
calculation of derivatives, and that numerical methods, used to obtain approximate
solutions should be used only in cases, when it cannot be avoided.

6.1 Approximating the Derivatives of One Variable Functions

Assume that we define the functionf (x), over an interval [a, b] ≡ [x0, xn], for
which we are not able to determine the derivatives analytically, i.e., in the manner
described above. In such cases, it is necessary to determine the approximate val-
ues of these derivatives according to the formulas given below. For this end, we
divide the interval [a, b] ≡ [x0, xn] into n identical small subintervals of length
h = (b − a)/n. Thus we have constructed a set of points.

xi = x0 + i · h (6.8)

where:i = 0, 1, 2, 3 . . ., see Fig. 6.1.
For each point of the set (6.8) we assign a value of the function

fi = f (xi ) = f (x0 + i · h) (6.9)

First derivative of the functionf (x), defined at an arbitrary pointxi of the set
(6.8), can be approximated by means of the following quotients of finite differences
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fi –3
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Fig. 6.1

– Left-sided approximation

f ′
l ≈ f (xi − h) − f (xi )

−h
= fi−1 − fi

−h
(6.10)

– Right-sided approximation

f ′
p ≈ f (xi + h) − f (xi )

h
= fi+1 − fi

h
(6.11)

– Two-sided (central) approximation

f ′
c ≈ f (xi + h) − f (xi − h)

2h
= fi+1 − fi−1

2h
(6.12)

Magnitude of the error emerging during numerical differentiation of the function
f (x), according to the formula (6.12), can be evaluated developing this function in
the Taylor series for�x = h and�x = −h. In case when�x = h, we obtain the
formula:

f (xi + h) = f (xi ) + f (1)(xi )h + 1

2!
f (2)(xi )h

2 +
∞∑

k=3

1

k!
f (k)(xi )h

k (6.13)

where f (k)(xi ) is the derivative of orderk, calculated forx = xi . The series (6.13)
can be written in the form:

f (xi + h) = f (xi ) + f (1)(xi )h + 1

2!
f (2)(xi )h

2 + O(+)(h3) (6.14)
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where

O(+)(h3) =
∞∑

k=3

1

k!
f (k)(xi )h

k = h3

3!
f (3)(c1), c1 ∈ [xi , xi + h]

is the truncation error [3, 4]. Similarly, for�x = −h

f (xi − h) = f (xi ) − f (1)(xi )h + 1

2!
f (2)(xi )h

2 + O(−)(h3) (6.15)

where

O(−)(h3) =
∞∑

k=3

(−1)k
1

k!
f (k)(xi )h

k = h3

3!
f (3)(c2), c2 ∈ [xi , xi − h]

is also the truncation error. Taking the difference of the series (6.14) and (6.15), we
obtain the following equation:

f (xi + h) − f (xi − h) = 2 f (1)(xi )h + [
O(+)(h3) − O(−)(h3)

]

which can be written in the form:

f (1)(xi ) = f (xi + h) − f (xi − h)

2h
− 1

2

[
O(+)(h2) − O(−)(h2)

]
(6.16)

The comparison of expressions (6.12) and (6.16) shows that the first derivative
calculated according to the formula (6.12) is loaded by an error of the second order
O(h2). Similarly, we can easily prove that the approximation error following from
the application of Eqs. (6.10) and (6.11) is the first order quantityO(h). In order
to obtain a formula serving for approximate computing of second derivative of the
function f (x) we add side-by-side the series (6.14) and (6.15). In consequence, we
obtain the following expression:

f (xi + h) + f (xi − h) = 2 f (xi ) + f (2)(xi )h
2 + O(+)(h4) + O(−)(h4) (6.17)

where:

O(+)(h4) =
∞∑

k=4

1

k!
f (k)(xi )h

k = h4

4!
f (4)(c1), c1 ∈ [xi , xi + h]

O(−)(h4) =
∞∑

k=4

(−1)k
1

k!
f (k)(xi )h

k = h4

4!
f (4)(c2), c2 ∈ [xi , xi − h]

are truncation errors. Equation (6.17) can be represented in an equivalent form:
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f (2)(xi ) = f (xi + h) − 2 f (xi ) + f (xi − h)

h2
+ [

O(+)(h2) + O(−)(h2)
]

which after neglecting the truncation errors is the desired difference formula:

f (2)(xi ) ≈ f (xi + h) − 2 f (xi ) + f (xi − h)

h2
= fi−1 − 2 fi + fi+1

h2
(6.18)

Approximation error of second derivative of the functionf (x), emerging when
using the formula (6.18), is the second order quantityO(h2). The expressions (6.12)
and (6.18), which we have just found, are called in the English language literature
the central difference formulas of the second order. First and second derivatives of
the considered functionf (x) can be calculated more accurately by means of the
following, however more complicated expressions:

f (1)(xi ) ≈ − fi+2 + 8 fi+1 − 8 fi−1 + fi−2

12h
(6.19)

f (2)(xi ) ≈ − fi+2 + 16 fi+1 − 30 fi + 16 fi−1 − fi−2

12h2
(6.20)

called central difference formulas of the fourth order. In order to develop the first
of them and to evaluate the corresponding approximation error, let us develop the
functions f (xi + h), f (xi − h), f (xi + 2h), f (xi − 2h) in the Taylor series, taking
into account only the first six terms. First two functions are approximated by the
series:

f (xi + h) ≈ f (xi ) + f (1)(xi )h + 1

2!
f (2)(xi )h

2 + 1

3!
f (3)(xi )h

3 + 1

4!
f (4)(xi )h

4

+ 1

5!
f (5)(xi )h

5

f (xi − h) ≈ f (xi ) − f (1)(xi )h + 1

2!
f (2)(xi )h

2 − 1

3!
f (3)(xi )h

3 + 1

4!
f (4)(xi )h

4

− 1

5!
f (5)(xi )h

5

which make possible to write an expression:

8[ f (xi + h) − f (xi − h)] ≈ 16 f (1)(xi )h + 16

3!
f (3)(xi )h

3 + 16

5!
f (5)(xi )h

5 (6.21)

Proceeding in the similar way, one can prove that:

f (xi + 2h) − f (xi − 2h) ≈ 4 f (1)(xi )h + 16

3!
f (3)(xi )h

3 + 64

5!
f (5)(xi )h

5 (6.22)

Subtracting expressions (6.21) and (6.22) side-by-side we obtain:
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8[ f (xi + h) − f (xi − h)] − [ f (xi + 2h) − f (xi − 2h)] ≈ 12 f (1)(xi )h

− 0.4 f (5)(xi )h5 = 12 f (1)(xi )h + O(h5)
(6.23)

After rearranging and dividing both sides by the termh, expression (6.23) takes
the form:

f (1)(xi ) ≈ 8 f (xi + h) − 8 f (xi − h) − f (xi + 2h) + f (xi − 2h)

12h
+ O(h4) (6.24)

which, neglecting the truncation errorO(h4), is identical to the formula (6.19). Sim-
ilarly, we develop the Eq. (6.20) and formulas for calculating third order derivatives,
given in Tables 6.1 and 6.2, [4].

Example 6.1Using Eqs. (6.18) and (6.20), approximate values of the second deriva-
tive for function f (x) = ex − x2/2, wherex = 0.5, were determined. Calculations
were performed for four different values of�x ≡ h equal to 0.2, 0.1, 0.01 and
0.001, respectively. These obtained results, see the second and fourth columns of
Table 6.3, were compared with exact valuef (2)(0.5) = e0.5 − 1 = 0.648721271.

As it follows from our above discussion, one of the means for obtaining precision
increase when using differential formulas in derivative computing, is the increase
of the numbern of function valuesfi = f (xi ) used in these formulas. Yet, with

Table 6.1

Central difference formulas of the second order,O(h2)

f (1)(xi ) ≈ f (xi + h) − f (xi − h)

2h
= fi +1 − fi −1

2h

f (2)(xi ) ≈ f (xi + h) − 2 f (xi ) + f (xi − h)

h2
= fi +1 − 2 fi + fi −1

h2

f (3)(xi ) ≈ f (xi + 2h) − 2 f (xi + h) + 2 f (xi − h) − f (xi − 2h)

2h3

= fi +2 − 2 fi +1 + 2 fi −1 − fi −2

2h3

Table 6.2

Central difference formulas of the fourth order,O(h4)

f (1)(xi ) ≈ 8 f (xi + h) − 8 f (xi − h) − f (xi + 2h) + f (xi − 2h)

12h

= − fi+2 + 8 fi+1 − 8 fi−1 + fi−2

12h

f (2)(xi ) ≈ − f (xi + 2h) + 16 f (xi + h) − 30 f (xi ) + 16 f (xi − h) − f (xi − 2h)

12h2

= − fi+2 + 16 fi+1 − 30 fi + 16 fi−1 − fi−2

12h2

f (3)(xi ) ≈ − f (xi + 3h) + 8 f (xi + 2h) − 13 f (xi + h) + 13 f (xi − h) − 8 f (xi − 2h) + f (xi − 3h)

8h3

= − fi+3 + 8 fi+2 − 13 fi+1 + 13 fi−1 − 8 fi−2 + fi−3

8h3
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Table 6.3

Steph Formula (6.18)
O(h2)

Error of the for-
mula (6.18)

Formula (6.20)
O(h4)

Error of the for-
mula (6.20)

0.2 0.654224341 5.503× 10−3 0.648691855 −2.941× 10−5

0.1 0.650095663 1.374× 10−3 0.648719437 −1.834× 10−6

0.01 0.648735010 1.374× 10−5 0.648721270 ≈ 1 × 10−9

0.001 0.648721408 1.370× 10−7 0.648721270 ≈ 1 × 10−9

an increase in the numbern, these expressions become more complicated. It leads
directly to the increase of the amount of computations and of the processing error
involved. In practical cases, we take most frequentlyn ≤ 4, but more accurate
approximation of the derivative may be achieved using Runge or Romberg proce-
dures [4, 5]. In order to explain the essence of the Runge procedure, assume that the
derivative f (x) is approximated by means of a differential expressionf (x, h) where
h ≡ �x is a fixed calculation step. LetR be the approximation error, for which the
principal term can be written in the formhpφ(x), that is:

R = hpφ(x) + 0(hp+1) (6.25)

wherep is the precision order of the given differential formula. With this assumption
we can write:

f (x) = f (x, h) + hpφ(x) + 0(hp+1) (6.26)

Derivative (6.26) written for the different steph1 = k · h has the form:

f (x) = f (x, k · h) + (k · h)pφ(x) + 0[(k · h)p+1]

= f (x, k · h) + kp · hpφ(x) + kp+10(hp+1)
(6.27)

Subtracting expressions (6.26) and (6.27) side-by–side, we obtain principal term
of approximation error:

hpφ(x) = f (x, h) − f (x, k · h)

kp − 1
− 1 − kp+1

1 − kp
0(hp+1) (6.28)

After introducing Eq. (6.28) into (6.26) we obtain the following formula:

f (x) = f (x, h) + f (x, h) − f (x, k · h)

kp − 1
+ 0′(hp+1) (6.29)

known in the literature as the Runge extrapolation formula [5]. It makes possible
more accurate calculation of the derivative based on the calculation results obtained
by means of chosen differential formulas for two different steps, namelyh andk · h.
The effective order of approximation precision obtained in this way is greater (p+1)
than precision order (p) of the differential formula used above by one. Another ex-
ample of similarly “constructed” two-step extrapolation procedure is the Richardson
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Table 6.4

x 1.8 1.9 2.0 2.1 2.2
F(x) 5.832 6.859 8.000 9.261 10.648

procedure [6]. Among other procedures, for which the number of steps is greater
than two (h1, h2, h3, .., hq), the most popular is the Romberg procedure.

Example 6.2In Table 6.4, some discrete values of functionF(x) = x3 are given, for
which the derivativef (x) = 3x2 for x = 2 takes the valuef (2) = 12.00.

Central approximations for two values of the derivativef (x, h), calculated ac-
cording to the formula (6.12), wherex = 2, h = 0.1 andh1 = 2 · h = 0.2 are
equal to:

f (2, 0.1) = 9.261− 6.859

2 · 0.1
= 12.01, f (2, 0.2) = 10.648− 5.832

2 · 0.2
= 12.04

Differential formula (6.12) is the second order expression (p = 2). Introducing
these numbers into the Runge formula (6.29) we get the following, more accurate
approximation of the derivative

f (2) = 12.01+ 12.01− 12.04

22 − 1
= 12.00

which in this case is equal to the exact value obtained analytically.

6.2 Calculating the Derivatives of One Variable Function
by Differentiation of the Corresponding Interpolating
Polynomial

Essence of the algorithms serving for determination of one variable function deriva-
tive, introduced in the present section, may be found simply when reading its ti-
tle. First, the functionf (x) considered above, as shown in Eqs. (6.8) and (6.9),
is interpolated by one of the polynomials introduced in Chap. 4 or by their linear
combination, which has the form of a spline function.

6.2.1 Differentiation of the Newton–Gregory Polynomial
and Cubic Spline Functions

As first example of interpolating function used for calculation of derivatives, let us
consider the Newton–Gregory polynomial described in Sect. 4.1.3. This polynomial,
for xi < x < xi+1 has the following form:
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N(xi + t · h) = fi + t� fi + t(t − 1)

2!
�2 fi + t(t − 1)(t − 2)

3!
�3 fi + . . .

. . . . . . . + t(t − 1)(t − 2) . . . (t − n + 1)

n!
�n fi

(6.30)

wheret = (x − xi )/h and� fi , �2 fi , �3 fi , �4 fi , . . . are finite differences of the
degreei . Polynomial (6.30) is known in the literature as the first Newton–Gregory
forward interpolation polynomial. As a rule, it is used to calculate values of the
function at points lying in the left-half of the interpolation interval [x0, xn]. This
circumstance can be justified in the following way. Finite differences�m fi can be
found using the valuesfi , fi+1, fi+2, fi+3, . . . , fi+m, with i +m ≤ n. For i close to
n, finite differences of higher orders are not calculated. For example, ifi = n − 3,
only the differences� fi , �2 fi , �3 fi are present in the polynomial (6.30). If our
task is to determine values of the function at points belonging to the right-half of the
interpolation interval [x0, xn], it is recommended to use the polynomial

N(xn + th) = fn + t� fn−1 + t(t + 1)

2!
�2 fn−2 + t(t + 1)(t + 2)

3!
�3 fn−3 + . . .

. . . . . . . + t(t + 1)(t + 2) . . . (t + n − 1)

n!
�n f0

(6.31)

defined fort = (x − xn)/h ≤ 0 [7]. This form of a polynomial is called sec-
ond Newton–Gregory backward interpolation polynomial. Differentiating polyno-
mial (6.30) with respect to the variablex lying in the subinterval [xi , xi+1], we
obtain approximate value of the first derivative of the interpolated
function f (x):

f (1)(x) ≈ d N(x)

dx
= 1

h
· d N

dt
≈ 1

h

(
� fi + 2t − 1

2!
�2 fi + 3t2 − 6t + 2

3!
�3 fi

+4t3 − 18t2 + 22t − 6

4!
�4 fi + 5t4 − 40t3 + 105t2 − 100t + 24

5!
�5 f5 + . . .

)

(6.32)

Second derivative of the interpolated functionf (x) is:

f (2)(x) ≈ 1

h2
(�2 fi + 6t − 6

3!
�3 fi + 12t2 − 36t + 22

4!
�4 fi

+20t3 − 120t2 + 210t − 100

5!
�5 f5 + . . .)

(6.33)

Similar relations can be obtained differentiating the interpolation polynomial
(6.31) with respect tox.

Example 6.3For the function given in the first and second columns of Table 6.5,
calculate the approximate values of first and second derivatives atx = 0.05. From
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Table 6.5

xi f (xi ) � fi �2 fi �3 fi �4 fi �5 fi

0.0 1.000000
0.205171

0.1 1.205171 0.011060
0.216231 1.163× 10−3

0.2 1.421402 0.012224 1.223× 10−4

0.228456 1.285× 10−3 1.287× 10−5

0.3 1.649858 0.013509 1.352× 10−4

0.241965 1.421× 10−3

0.4 1.891824 0.014930
0.256896

0.5 2.148721

Table 6.5, we find thath = 0.1. Therefore,t = (x − x0)/h = (0.05− 0.00)/0.1 =
0.5. Using Eqs. (6.32), (6.33) and Table 6.5 we can write:

f (1)(0.05) ≈ 1

0.1

[
0.205171+ 2 · 0.5 − 1

2
0.011060

+ 3 · (0.5)2 − 6 · 0.5 + 2

6
1.163· 10−3

+ 4 · (0.5)3 − 18 · (0.5)2 + 22 · 0.5 − 6

24
1.223· 10−4

+ 5 · (0.5)4 − 40 · (0.5)3 + 105· (0.5)2 − 100· 0.5 + 24

120
1.287· 10−5

+ . . .
]

= 2.051271

f (2)(0.05) ≈ 1

(0.1)2

[
0.011060+ 6 · 0.5 − 6

6
1.163· 10−3

+ 12 · (0.5)2 − 36 · 0.5 + 22

24
1.223· 10−4

+ 20 · (0.5)3 − 120· (0.5)2 + 210· 0.5 − 100

120
1.287· 10−5

+ . . .
]

= 1.051175

Example 6.4Recalculate the first and second derivatives of the function analyzed
in Example 6.3 at pointx = 0.15. In this case, we obtain:t = (x − x1)/h =
(0.15− 0.10)/0.1 = 0.5

f (1)(0.15) ≈ 1

0.1

[
0.216231+ 2 · 0.5 − 1

2
0.012224

+ 3 · (0.5)2 − 6 · 0.5 + 2

6
1.285· 10−3
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+ 4 · (0.5)3 − 18 · (0.5)2 + 22 · 0.5 − 6

24
1.352· 10−4

+ 5 · (0.5)4 − 40 · (0.5)3 + 105· (0.5)2 − 100· 0.5 + 24

120
0

]
= 2.161831

f (2)(0.15) ≈ 1

(0.1)2

[
0.012224+ 6 · 0.5 − 6

6
1.285· 10−3

+ 12 · (0.5)2 − 36 · 0.5 + 22

24
1.352· 10−4 + 0 + . . .

]
= 1.162093

The derivatives calculated in the Examples 6.3 and 6.4 are very close to corre-
sponding values evaluated analytically. It has been possible because values off (xi )
given in Table 6.6 are only discrete values of functionf (x) = exp(x) + x. This
calculation examples confirm the conclusion established in the literature that the
method discussed above reveals good precision, sufficient for practical applications,
and has unsophisticated computation algorithm. These unquestionable advantages
were very important in the past “pre-computer” times. We must however remember
that the degreen of the interpolation polynomial, regardless of its form (power,
Lagrange or Newton–Gregory), increases with the number of nodes, and the deriva-
tives calculated on the basis of the polynomial of high degree can be charged with
considerable errors. This remark only to a small extent refers to the spline function,
see Sect. 4.4. Each polynomial of this function has the form:

qi (x) = ki 0 + ki 1x + ki 2x2 + ki 3x3 (6.34)

where: i = 1, 2, 3, xi−1 ≤ x ≤ xi , and ki 0, ki 1, ki 2, ki 3 are fixed coefficients.
Determination of derivatives by means of the trinomials (6.34) is an elementary
operation, which need not be explained further. Differentiation of the polynomial
(6.35) given below, serving for the same purpose, is a little bit more difficult
task [3, 5]:

qi [t (x)] = t · fi + t̄ · fi−1 + �xi
[
(ki−1 − di ) · t · t̄2 − (ki − di ) · t2 · t̄

]

= t · fi + (1 − t) fi−1 + �xi
[
(ki−1 − di ) (t3 − 2t2 + t)

]

− �xi
[
(ki − di ) (t2 − t3)

] (6.35)

Table 6.6

i 0 1 2 3
xi 1.0 3.0 5.0 7.0
f (xi ) 2.0 3.5 3.8 3.0
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where

�xi ≡ h = xi −xi−1, � fi = fi − fi−1, di = � fi
�xi

, t = x − xi−1

�xi
, t̄ = 1−t.

First derivative of the trinomial (6.35) with respect to the variablex is:

dqi [t(x)]

dx
= dqi (t)

dt
· dt

dx
= 1

�xi
· dqi (t)

dt

= 1

�xi
( fi − fi−1) + (ki−1 − di )(3t2 − 4t + 1) − (ki − di )(2t − 3t2)

(6.36)

Differentiating the expression (6.36) with respect to the variablex, we obtain the
formula used for calculating the second derivative, namely:

d2qi [t(x)]

dx2
= 2

(�xi )2
[(ki−1 − di )(3t − 2) + (ki − di )(3t − 1)] (6.37)

Example 6.5In Table 6.6 some discrete values of the functionf (x) interpolated by
a spline functionQ(x) composed of three trinomials of the type (6.35) are given.

Coefficientski , wherei = 0, 1, 2 and 3, appearing in these trinomials are equal
to k0 = 0.855555,k1 = 0.538889,k2 = −0.311111 andk3 = −0.044444. Chosen
values of the functionQ(x) ≈ f (x) and its derivatives dQ(x)/dx and d2Q(x)/dx2

are given in Table 6.7.

Table 6.7

x Q(x) ≈ f (x) dQ(x)/dx d2Q(x)/dx2

1.0 2.0 0.855555 < 10−6

1.5 2.424479 0.835763 −0.039583
2.0 2.829166 0.776389 −0.079166
2.5 3.194270 0.677430 −0.118750
2.9 3.444554 0.569764 −0.150416
3.0 3.5 0.538889 −0.158333
3.1 3.552287 0.506680 −0.163750
3.5 3.727604 0.367013 −0.185416
4.0 3.862500 0.168055 −0.212500
4.5 3.891145 −0.057986 −0.239558
4.9 3.828462 −0.258319 −0.261249
5.0 3.8 −0.311111 −0.266666
5.1 3.766333 −0.361111 −0.233333
5.5 3.591666 −0.494444 −0.100000
6.0 3.333333 −0.511111 0.066666
6.5 3.108333 −0.361111 0.233336
7.0 3.0 −0.044444 0.400000
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Fig. 6.2

Remaining results of the calculations have been used to draw up curves of these
functions, which are shown in Fig. 6.2.

From analysis of the derivatives shown in Fig. 6.2(b, c) it follows that they are
continuous in the internal interpolation points, the fact which confirms correctness
of our calculation and illustrates implicitly properties of the applied interpolation
method.

6.3 Formulas for Numerical Differentiation of Two
Variable Functions

Let us consider a function with two variablesf (x, y), for which chosen discrete val-
ues f (xi , yj ), defined forxi = x0+i ·h1, yj = y0+ j ·h2, wherei = 0, 1, 2, 3, . . . , n
and j = 0, 1, 2, 3, . . . , m, are shown in Fig. 6.3.
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First partial derivatives of this function can be approximated using the quotients
of finite differences calculated for sufficiently small values of stepsh1

andh2.

� f (x, y)

�x
≈ f (x + h1, y) − f (x, y)

h1

� f (x, y)

�y
≈ f (x, y + h2) − f (x, y)

h2

(6.38)

At an arbitrary point (xi , yj ) derivatives (6.38) can be expressed by the discrete
values of functionf (x, y) specified in Fig. 6.3.

(
� f

�x

)

i j

≈ fi+1, j − fi j
h1(

� f

�y

)

i j

≈ fi, j +1 − fi j

h2

(6.39)

As we can see, relations (6.39) describe right-sided approximation of the desired
derivatives. In the same manner as in case of the functions with one variable, see
relations (6.10), (6.11) and (6.12), we can also find the left-sided and central ap-
proximations of these derivatives. In order to determine the central approximation,
characterized by augmented accuracy, we develop the functionf (x, y) in the bino-
mial Taylor series:
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f (x + �x, y + �y)

= f (x, y) + � f

�x
�x + � f

�y
�y

+ 1

2!

(
�2 f

�x2
�x2 + 2

�2 f

�x�y
�x�y + �2 f

�y2
�y2

)

+ 1

3!

(
�3 f

�x3
�x3 + 3

�3 f

�x2�y
�x2�y + 3

�3 f

�x�y2
�x�y2 + �3 f

�y3
�y3

)
+ . . .

(6.40)

For x = xi , �x = h1, y = yj , �y = 0, series (6.40) can be written as:

f (xi +h1, yj ) = fi+1, j = fi, j +
(

� f

�x

)

i j

h1+ 1

2!

(
�2 f

�x2

)

i j

h2
1+

1

3!

(
�3 f

�x3

)

i j

h3
1+. . . .

(6.41)
Similarly, for x = xi , �x = −h1, y = yj , �y = 0 series (6.40) takes the form:

f (xi −h1, yj ) = fi−1, j = fi, j −
(

� f

�x

)

i j

h1+ 1

2!

(
�2 f

�x2

)

i j

h2
1−

1

3!

(
�3 f

�x3

)

i j

h3
1+. . . .

(6.42)
Subtracting expressions (6.41) and (6.42) side-by-side we can obtain the relation:

fi+1, j − fi−1, j = 2h1

(
� f

�x

)

i j

+ O(h1
3)

from which we obtain the central second order formula serving for calculating the
first partial derivative with respect to variablex:

(
� f

�x

)

i j

≈ fi+1, j − fi−1, j

2h1
− O(h1

2) ≈ fi+1, j − fi−1, j

2h1
(6.43)

Adding up side-by-side both series (6.41) and (6.42), we obtain the relation:

fi+1, j + fi−1, j = 2 fi j + 2

2!
h1

2

(
�2 f

�x2

)

i j

+ O(h1
4)

which can be written in the following equivalent form:

(
�2 f

�x2

)

i j

≈ fi+1, j − 2 fi j + fi−1, j

h1
2 − O(h1

2) ≈ fi+1, j − 2 fi j + fi−1, j

h1
2 (6.44)

The formula we have just obtained is called the second order central difference
formula for calculating the second partial derivative with respect to variablex. In
the similar way, the difference formulas serving for calculating the approximate
values of first and second derivatives with respect to variabley can be determined.
Consequently,
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(
� f

�y

)

i j

≈ fi, j +1 − fi, j −1

2h2
,

(
�2 f

�x2

)

i j

≈ fi, j +1 − 2 fi j + fi, j −1

h2
2 (6.45)

Expressions (6.45), similarly as their equivalents (6.43) and (6.44), are called
central difference formulas of the second order. A function of two variables can have
in general 22 = 4 different second derivatives, including two mixed derivatives. If
the mixed derivatives are continuous, then according to the Schwartz theorem they
are also equal. Functions which can be expanded in the Fourier series satisfy this
assumption, and therefore approximate values of these derivatives can be calculated
according to the following central difference formula of the second order:

(
�2 f

�x�y

)

i j

=
(

�2 f

�y�x

)

i j

≈ fi+1, j +1 − fi+1, j −1 − fi−1, j +1 + fi−1, j −1

4h1h2
(6.46)

which can be derived similarly as the previous one presented above. Values of the
function f (x, y), shown in Fig. 6.3, correspond to different expansions of the series
(6.40). Based on these values and related Fourier series expansions, more accurate
formulas for calculating partial derivatives can also be developed. In Table 6.8, some
examples of several relations obtained in this way are given. They proved to be
particularly useful to solve the Laplace equation in a two-dimensional space as well
as for some optimization strategies.

Example 6.6Table 6.9 contains nine discrete values of the functionf (x, y) =
1/(x2 + 2y2), which were determined in close neighborhood of the point (x =
1, y = 1).

Approximate values of partial derivatives of this function calculated at point
(x = 1, y = 1) by means of formulas (6.43), (6.44), (6.45) and (6.46) are given
in the second column of Table 6.10.

These approximate values are very close to their accurate ones, given in the third
column. All results presented in Table 6.10 confirm well correctness of difference
formulas under discussion, as well as their usefulness for engineering calculations.

Table 6.8

Central difference formulas of the fourth orderO(h4
1, h4

2)(
� f

�x

)

i j

≈ fi +1, j +1 − fi −1, j +1 + fi +1, j −1 − fi −1, j −1

4h1

(
� f

�y

)

i j

≈ fi +1, j +1 − fi +1, j −1 + fi −1, j +1 − fi −1, j −1

4h2

�2 f

�x2
≈ − fi +2, j + 16 fi +1, j − 30 fi j + 16 fi −1, j − fi −2, j

12h1
2

�2 f

�y2
≈ − fi, j +2 + 16 fi, j +1 − 30 fi j + 16 fi, j −1 − fi, j −2

12h2
2
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Table 6.9

y ↓ /x → 0.95 1.00 1.05

0.95 0.369344413 0.356506238 0.343938091
1.00 0.344530577 0.333333333 0.322320709
1.05 0.321802091 0.312012480 0.302343159

Table 6.10

Derivative Approximate value Accurate value Relative error

� f

�x
–0.222098 –0.222222 −5.580× 10−4

� f

�y
–0.444937 –0.444444 1.109× 10−3

�2 f

�x�y
0.594739 0.592592 3.623× 10−3

�2 f

�x2
0.073848 0.074074 −3.051× 10−3

�2 f

�y2
0.740820 0.740740 1.080× 10−4

6.4 An Example of the Two-Dimensional Optimization Problem
and its Solution by Using the Gradient Minimization
Technique

One of the popular plays in times of my childhood was blowing bubbles with the
soap solution. A piece of straw, small plate filled with water and a little bit of gray
soap was all that needed to conjure up beautiful, lazily moving spherical envelopes.
The blown soap bubble is nothing else but a closed, very thin water layer sur-
rounding a portion of heated air. Due to the surface tension, this envelope adopts
spontaneously the spherical shape, by which its surface attains the minimum. In
such simple, but at the same time in a suggestive manner the nature proves that the
sphere is such optimal geometric solid, for which the ratio of the total lateral area to
the volume is the smallest possible; that is it attains the minimum. In other words,
the process of shaping of this soap bubble is the optimization process, in the sense
of the criterion defined above. This observation draws us to the conclusion that all
containers used for gas substances, designed according to this criterion should have
spherical shape. For such form, the quantity of stuff used for their manufacturing
would be smallest. Each departure from this principle should be well justified – the
fact that each designer should always have in his mind. Following the rule just ex-
plained, let us design a parallelepiped tin container having the volume ofV = 1 m3

under condition that one of its geometrical dimensions, see Fig. 6.4, cannot be less
than 1.3 m.

It is known from the elementary mathematics that volume of this container is:

V = x · y · z = 1m3
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Fig. 6.4

UNRRA CONTAINER

y

x

z

and that one of its geometrical dimensions, for examplez, can be expressed by two
remaining, i.e.:

z = V

x · y
= 1

x · y
(6.47)

The quantity, which should attain minimum, is the total lateral surface of the
containerS(x, y, z) = 2(xy+ yz+ xz), which after introducing relation (6.47) can
be calculated using the formula:

S(x, y) = 2

(
xy + 1

x
+ 1

y

)
(6.48)

While performing minimization process for the surface (6.48) we cannot forget
about the given design constraint saying that one of the dimensions, for examplex,
should not be less than 1.3 m. This limitation can be taken into account during the
minimization (optimization) process by adding to the relation (6.48) the following
easily analytically differentiable term:

P(x) = exp
[
t
(
1 − x

1.3

)]
(6.49)

wheret is a positive fixed parameter with an appropriate value.
Two typical curves of the function (6.49) calculated fort = 100 andt = 200 are

shown in Fig. 6.5.
For sufficiently large values of parametert (for example,t > 300) the penalty

component (6.49) is small in comparison with the expected value of the function
(6.48), if onlyx belongs to the area of acceptable solutions [8, 9]. If a current solu-
tion is located close to the boundary of the acceptable area, or outside this boundary,
then the penalty component (6.49) becomes large in comparison with the value of
the minimized function (6.48). In this case, the penalty term, more precisely its
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P(x)

(a) (b)

x

10

5

1

1.28 1.3 1.32

t =
 2

00

 
 

Δx

x

1.28 1.30 1.32

0

0.5

1
Boundary
area

Acceptable
area

t =
 1

00

P(x)

t =
 3

00
Fig. 6.5

gradient, “pushes” the point corresponding to this solution towards the accept-
able area. As our current problem is concerned, the area of acceptable solution is
bounded by the inequalityx ≥ 1.3 + �x, where�x is the width of a relatively
narrow boundary area, see Fig. 6.5(b). Similarly, we can take into account the limi-
tations for the variabley, which should always be positive.

Q(y) = exp(−t · y) (6.50)

After adding the relations (6.49) and (6.50) to (6.48), we obtain the following
extended objective function:

F(x, y, t) = 2

(
xy + 1

x
+ 1

y

)
+ exp

[
t
(
1 − x

1.3

)]
+ exp(−t · y) (6.51)

which can be minimized by means of one of the gradient optimization methods.
It has been confirmed experimentally that the relatively simple steepest descent
method is suitable for this purpose [9, 10]. Thus, let us consider its algorithm step-
by-step for didactic reasons. Before we discuss the merits of this algorithm, let us
remind the basic concept of the gradient defined for many variable functions, and
explain why it is used in iterative optimization strategies. The gradient of a function
f (x1, x2, . . . , xn) ≡ f (x) is the vector, whose coordinates are partial derivatives of
this function determined with respect to particular variables, i.e.:
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∇ f (x) ≡
(

� f

�x1
,

� f

�x2
, . . . ,

� f

�xn

)
(6.52)

It is not difficult to prove that the gradient (6.52) is a vector pointing at the
steepest growth direction of the functionf (x1, x2, . . . , xn) ≡ f (x), in close neigh-
borhood of then−dimensional point (x1, x2, . . . , xn) ≡ (x). The vector−∇ f (x)
would of course point the direction of steepest descent, and this property is used for
searching minimum of the function being optimized [9, 10]. In case of the objective
function (6.51), the gradient will have two components:

�F

�x
= 2y − 2

x2
− t

1.3
exp

[
t
(
1 − x

1.3

)]

�F

�y
= 2x − 2

y2
− t · exp(−t · y)

(6.53)

Equations (6.53) serve to determine the unitary vector pointing at minimization
directiond = (dx, dy), having the following components:

dx = −1

|∇F(x, y)| · �F

�x

dy = −1

|∇F(x, y)| · �F

�y

(6.54)

where

|∇F(x, y)| =
√(

�F

�x

)2

+
(

�F

�y

)2

.

As defined in (6.54), absolute value of the vectord = (dx, dy) is equal to 1.
The steepest descent method is an iterative method; that is the result obtained in
the i iteration is subsequently used as the “starting point” for computation executed
during next iteration. Assume now that we know the coordinate of the point (xi , yi )
belonging to the admissible region. At this point we determine the minimization
vectord(i ) using relations (6.53) and (6.54). Position of the new point (xi+1, yi+1) is
established, making the search along the line

x = xi + j · h · d(i )
x

y = yi + j · h · d(i )
y

(6.55)

whereh is the step, andj is the parameter taking consecutive values of 1, 2, 3,. . . For
each subsequent value of the parameterj , the objective function (6.51) is calculated
and compared with the value obtained previously; that is forj −1. If the value of the
objective function is decreasing, then the process of searching for its minimal value
along the line (6.55) is continued. Component values (6.55), for which the objective
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function begins to increase are taken as the desired coordinates of the optimal point
(xi+1, yi+1). For this point, we determine a new vectord(i+1) and continue the com-
puting in the new iteration (i +2) using the same algorithm. The following condition
is most frequently used as the criterion of ending the computation process.

|∇F(x, y)| =
√(

�F

�x

)2

+
(

�F

�y

)2

≤ ε (6.56)

The parameterε is an arbitrary small positive number. In Table 6.11 we have
summarized some results obtained by means of the algorithm explained above for
the following data: [x0, y0] ≡ [1.5, 1], h = 0.0001, t = 1000 andε = 0.15.

In Table 6.12 we have shown for comparison similar results obtained with an
assumption that all dimensions of our container can take arbitrary values. For op-
timization the problem is formulated in such a way that only the function (6.48) is
minimized.

Comparing the subsequent values ofxi given in the second column of Table 6.11
we deduce that the solution of our design problem lies very close to the boundary
of the acceptable region (x = 1.3 m). Assuming that the penalty term is absent
and would not modify the original goal function, we would obtain the following
optimization result:x = 1.3, y = 0.877058019. Total surface area of such container
would be equal toS = 6.099163239 m2. Using these results we can find relative
error of the approximation obtained above, that is:

δ = 6.104739− 6.099163239

6.099163239
≈ 9.142· 10−4

Table 6.11

Iteration “i ” xi , m yi , m S, m2 |∇F(x, y)|
0 1.500000 1.000000 6.333333 1.494847
1 1.304662 0.824196 6.110166 20.835037
2 1.310161 0.824284 6.112767 0.366847
. . . . . . . . . . . . . . .

50 1.309949 0.863675 6.105203 0.131874
. . . . . . . . . . . . . . .

100 1.309677 0.873755 6.104739 0.131963

Table 6.12

Iteration “i ” xi , m yi , m S, m2 |∇S(x, y)|
0 1.500000 1.000000 6.333333 1.494847
1 1.277011 0.799310 6.109770 0.686100
2 1.127286 1.031168 6.038563 0.615014
. . . . . . . . . . . . . . .

5 0.999044 0.985557 6.000453 6.918× 10−2

. . . . . . . . . . . . . . .

8 1.002596 1.002465 6.000039 < 1 × 10−2
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This error is rather small and this fact confirms practical usefulness of the method
explained above. Surface area of an equivalent spherical container having the same
volumeV = 1 m3, equals 4.835976 m2 and is approximately 1.262 times less than
the total area of the cubicoidal container designed above.

References

1. Abramowitz M. and I.A. Stegun, Handbook of mathematical functions. Dover, New York,
1954

2. Kong J.A., Electromagnetic wave theory. John Wiley and Sons, New York, 1983
3. Forsythe G.E., Malcolm M.A. and C.B. Moler, Computer methods for mathematical compu-

tations. Prentice-Hall, Englewood Cliffs, NJ, 1977
4. Mathews J.H., Numerical methods for mathematics, science and engineering. Prentice-Hall

Intern. Inc., Englewood Cliffs, NJ, 1992
5. Shoup T.E., Applied numerical methods for the microcomputer. Prentice-Hall Inc., Englewood

Cliffs, NJ, 1984
6. Mathews J.H., Numerical methods for mathematics, science and engineering. Prentice-Hall,

Inc., Englewood Cliffs, NJ, 1987
7. Turchak L.I. and P.W. Plotnikov, Fundamentals of numerical methods (2nd edition in Russian)

Publishing house “Physmathlit”, Moscow, 2002
8. Bazaraa M.S., Sherali H.D. and C.M. Shetty, Nonlinear programming. Theory and applica-

tions. John Wiley and Sons, New York, 1993
9. Himmelblau D.M., Applied nonlinear programming. McGraw-Hill, New York, 1972

10. Fletcher R., A review of methods for unconstrained optimization. Academic Press, New York,
1969



Chapter 7
Methods for Numerical Integration of Ordinary
Differential Equations

The equations containing one or more derivatives are called differential equations.
Depending on the number of independent variables and corresponding number of
derivatives these equations are divided into:

– ordinary differential equations formulated for functions of one variable and
– partial differential equations formulated for functions of many variables.

Subject of our considerations in the present chapter is the ordinary differential
equations, with some additional requirements for the function in question and some
of its derivatives. If these requirements, given for the function and eventually for
some of their derivatives, are defined only for one value of the independent vari-
able, they are called initial conditions. In such cases, the problem of evaluating the
function satisfying given differential equation with an initial condition is called the
initial value problem, proposed originally by Cauchy [1, 2]. In case when these re-
quirements are defined not for one, but for more values of the independent variables,
they are called boundary conditions. Correspondingly, the problem of determining
a function satisfying given differential equations and the boundary conditions is
known as the boundary problem. In case of the initial value problem, time plays
often the role of independent variable. Classical example of such problem is a math-
ematical description of free motion of the infinitesimally small material body, sus-
pended on a long, infinitesimally thin, inextensible thread. Initial condition for this
problem is defined by position and speed of this body in a chosen moment of time,
say t0 = 0. For the pendulum considered in this example, one can also formulate
boundary conditions defining the trajectory of this body in a given time interval.

7.1 The Initial Value Problem and Related Solution Methods

Let us consider the initial value problem consists in evaluation of a functiony(x)
that satisfies the following equation:

dy(x)

dx
= f [x, y(x)] (7.1)

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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with initial condition y0 = y(x0). Numerical solution of this equation consists in
evaluation of the set of discrete valuesyn = y(xn) = y(x0 + n · h) of the unknown
function, wheren = 1, 2, 3, . . . , andh = �x is an adopted integration step. Several
methods for findingyn are known. In the literature they are often classified as:

– one-step (self-starting) methods, and
– multi-step methods, called briefly the predictor–corrector methods.

As compared with equivalent one-step methods, the multi-step methods ensure
better numerical efficiency. In other words, they make possible in obtaining more
accurate approximation with less necessary computations. Unfortunately, they are
not self-starting and several initial points must be given in advance. It means that
knowledge of some first (approximate or accurate) values of the desired function
is necessary. These values, called commonly initial sections, are determined most
often using one-step methods of the same order, as for example the Runge–Kutta
(RK 4) method described in Sect. 7.2.3.

7.2 The One-Step Methods

7.2.1 The Euler Method and its Modified Version

The simplest representative of the one-step methods is the Euler method, discussed
below on the basis of Fig. 7.1.

Process of finding the consecutive valuesyn = y(xn) = y(x0 + n · h) for n =
1, 2, 3, . . . , begins from the starting pointP0 ≡ (x0, y0), at which

dy(x)

dx
= f [x0, y(x0)] = f [x0, y0] (7.2)

y(x)

y0 P0

x0 x1 x2 x3

x

P1

P2

P3

y(x)

Fig. 7.1
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In other words, the value of the functionf (x0, y0) is equal to the tangent of the
angle, at which the tangent to the curvey(x) satisfying Eq. (7.2) is inclined with
respect to thex-axis. Therefore, first computed value of the desired function is:

y1 = y(x0 + h) = y0 + h · f [x0, y(x0)]

Thus we have obtained the pointP1 ≡ (x1, y1), which can be treated as the
starting point in the process of findingy2, related to the pointP2 = (x2, y2).
Repeating this procedure several times, the set of discrete valuesyn of the func-
tion approximating desired solutiony(x) is evaluated. Approximation accuracy of
the function y(x), obtained from the set of discrete valuesyn = y(xn), calcu-
lated using the Euler method is rather small. The modified version of this method
is therefore most frequently applied in practice. The pointPn+1 ≡ (xn+1, yn+1),
wheren = 0, 1, 2, 3, . . ., computed using standard Euler method, is placed at the
intersection of the line, tangent to the integral curve at the pointPn ≡ (xn, yn),
and a line parallel to they-axis, satisfying the abscissaxn+1 = xn + h. Con-
siderable increase of accuracy may be obtained when the slope coefficient of the
tangent line is calculated not at the pointPn ≡ (xn, yn), but at the new point
Qn having the coordinatex = xn + h/2 and lying on the integral curve, see
Fig. 7.2.

Unfortunately, determination of the coordinatey at the pointQn is not possible,
and therefore this point is replaced (approximated) in the algorithm of the modified
Euler method by another pointRn whose coordinates are:

xn + h

2
, yn + h

2
f (xn, yn)

h

y(x)

x

xn

yn

Pn

Qn

Rn

xn + 1

Pn + 1

xn + h/2

t'

t''

t'' || t'

Fig. 7.2
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Slope coefficient of the line tangent to the integral curve at pointRn is equal to:

f

[
xn + h

2
, yn + h

2
f (xn, yn)

]
(7.3)

The line having the slope (7.3) and passing by the pointPn ≡ (xn, yn), obtained
by intersection with a linexn+1 = xn + h and parallel to they-axis, determines a
new point having the coordinate:

yn+1 = yn + h · f

[
xn + h

2
, yn + h

2
f (xn, yn)

]

The coordinateyn+1 at this new point is treated as the next discrete value of the
desired solution. After introduction of the notation

k1 = h f (xn, yn), k2 = h f

(
xn + h

2
, yn + k1

2

)

the value ofyn+1 can be written as:

yn+1 = yn + k2 (7.4)

Another version of the Euler method is the Heun method discussed in Sect. 7.2.2.

7.2.2 The Heun Method

Let us assume that the approximate valueyn = y(xn) of the desired functiony(x) is
known, see Fig. 7.3.

y(x)

y(x)

Pn

xn xn + 1

Pn + 1

h

x

Pn + 1
*

Fig. 7.3



7.2 The One-Step Methods 183

In case of the Heun method, an auxiliary coordinate is calculated first

y∗
n+1 = yn + h f (xn, yn) (7.5)

and used next to determine the quantity

f (xn+1, y∗
n+1)

expressing the slope coefficient of the tangent to the curve described by Eq. (7.2)
and passing through the pointPn+1

∗ ≡ (xn+1, yn+1
∗) being first approximation of

the desired solution. The point, which gives a much better approximation,Pn+1 ≡
(xn+1, yn+1), has the coordinateyn+1 calculated from the formula:

yn+1 = yn + 1

2
h
[

f (xn, yn) + f (xn+1, y∗
n+1

]
(7.6)

It is not difficult to see that the slope of the line passing through the pointsPn

and Pn+1 is the arithmetical mean of the slopes of tangents at pointsPn ≡ (xn, yn)
and Pn+1

∗ ≡ (xn+1, yn+1
∗). The pointPn+1 determined in this way plays the role

of starting point to the computation performed during next iteration (n + 2). This
algorithm can be described by the following formulas:

k1 = h f (xn, yn), k2 = h f (xn + h, yn + k1)

yn+1 = yn + 1

2
(k1 + k2)

(7.7)

wheren = 1, 2, 3, . . . In comparison with the Euler method presented earlier, the
Heun method ensures greater accuracy and better numerical stability. To determine
the order of accuracy we develop the functiony(x) in the Taylor series, in close
neighborhood of the pointxn

y(xn + h) = y(xn) + hy′(xn) + 1

2
h2y′′(xn) + . . . (7.8)

Assume also that only first three terms of the series (7.8) will be taken into
account. Second derivativey′′(xn) visible in the third term of this series can be
approximated as follows:

y′′(xn) ≈ �y′

�x
= y′(xn + h) − y′(xn)

h

Hence, the sum of three initial terms of the series (7.8) is equal to:

y(xn + h) = y(xn) + hy′(xn) + 1

2
h2

[
y′(xn + h) − y′(xn)

h

]

= y(xn) + 1

2
h
[
y′(xn + h) + y′(xn)

] (7.9)
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and is identical, as in the formula (7.6). According to our previous assumption, about
neglecting the terms of the series containing the multiplierhn, for n ≥ 3, the Heun
methods may be classified to the group of methods of the second order. In other
words, it guarantees accuracy comparable to the Taylor series approximation (7.8),
in which all initial terms are present, including the term with second derivative.
Acting in much the same way, it is possible to prove that the modified Euler method
discussed earlier has the same (second) order accuracy. In the extrapolating formula
(7.9), expressing the essence of the Heun method, second derivative is represented
by the term containing two values of the first derivative defined for the left and
right end of the subinterval [xn, xn+1]. In order to express third derivative in terms
of the finite differences, knowledge of the second derivative at two different points
is necessary. Hence, there is a necessity of defining the slope of the desired curve
at one additional point, which lies inside a subinterval [xn, xn+1]. Reasoning in a
similar way as above, we come to the conclusion that in order to determine higher
derivatives we must compute the slopes of the desired function at many points inside
a subinterval [xn, xn+1]. This last conclusion becomes starting point for elaborating
the whole group of one-step methods, such as the Runge–Kutta method.

7.2.3 The Runge–Kutta Method (RK 4)

The Runge–Kutta method of the fourth order, denoted in the literature as RK 4,
is an important representative of one-step methods. In this iteration method, thenth
approximate valueyn = y(xn) of the evaluated function forms a basis for calculation
of the next (n+1) approximate valueyn+1 = y(xn+h), whereh denotes the adopted
integration step. The calculations are performed according to formula:

yn+1 = yn + 1

6
(k1 + 2k2 + 2k3 + k4) (7.10)

where:

k1 = h f (xn, yn), k2 = h f

(
xn + h

2
, yn + k1

2

)

k3 = h f

(
xn + h

2
, yn + k2

2

)
, k4 = h f (xn + h, yn + k3)

The derivation of these recursive formulas is behind the scope of the present
handbook. It can be found in more advanced books on numerical analysis; for
example in [3]. The Runge–Kutta RK 4 method is one of the most popular and
broadly used methods in the field of engineering. According to the opinion estab-
lished in the literature, it guarantees the accuracy sufficient in most applications (of
the fourth order in the sense of the Taylor series accuracy) and is sufficiently stable.
Another advantage of this method is also the simplicity of computation algorithm,
see formula (7.10), for which the starting point is defined by initial condition. The
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computation formulas given above can be generalized for the case of a system ofk
first-order differential equations. The system of two (k = 2) first-order equations is
especially useful in the field of engineering, and for that reason it is written below
together with appropriate initial conditions.

dy1(x)

dx
= f1 [x, y1(x), y2(x)] , y1(x0) = y1,0

dy2(x)

dx
= f2 [x, y1(x), y2(x)] , y2(x0) = y2,0

(7.11)

Let us assume that the values of the functionsy1,n = y1(xn) andy2,n = y2(xn),
calculated during then iterations are known. Subsequent discrete valuesy1,n+1 =
y1(xn+1) and y2,n+1 = y2(xn+1) are determined using the following recursive
formulas:

y1,n+1 = y1,n + 1

6
(k1 + 2k2 + 2k3 + k4)

y2,n+1 = y2,n + 1

6
(l1 + 2l2 + 2l3 + l4)

(7.12)

where

k1 = h f1(xn, y1,n, y2,n), l1=h f2(xn, y1,n, y2,n)

k2 = h f1

(
xn + h

2
, y1,n + k1

2
, y2,n + l1

2

)
, l2=h f2

(
xn+ h

2
, y1,n+ k1

2
, y2,n+ l1

2

)

k3 = h f1

(
xn + h

2
, y1,n + k2

2
, y2,n + l2

2

)
, l3=h f2

(
xn+ h

2
, y1,n+ k2

2
, y2,n+ l2

2

)

k4 = h f1(xn + h, y1,n + k3, y2,n + l3), l4=h f2(xn + h, y1,n + k3, y2,n + l3)

Example 7.1In order to illustrate the algorithm of the Runge–Kutta RK 4 method,
let us determine a functiony(t) satisfying the following differential equation:

d2y(t)

dt2
− 4

dy(t)

dt
+ 3y(t) = 0

with an initial condition:

y(t = 0) = 0,
dy(t = 0)

dt
= −2.

By using a substitution

y(t) ≡ y1(t),
dy(t)

dt
≡ y2(t)
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the second order differential equation given above can be replaced by the equivalent
system of two differential equations of the first order, namely:

dy1(t)

dt
= y2(t)

dy2(t)

dt
= 4y2(t) − 3y1(t)

Consequently, the initial conditions are:y1(t = 0) = 0 andy2(t = 0) = −2.
Calculations of discrete values of the functiony1(t) ≡ y(t) have been performed
according to (7.12), for the integration step�t ≡ h = 0.001. Some resaults obtained
in this way are given in the second column of Table 7.1.

The differential equation under integration has an analytic solution
y(t) = et − e3t , which has been used to find comparative results given in the third
column.

7.2.4 The Runge–Kutta–Fehlberg Method (RKF 45)

The methods of numerical solution of the differential equations can be characterized
by constant steph in the whole given integration range. Magnitude of this step
should be chosen in such a way that the sum of the method and machine (process-
ing) errors is as small as possible. One of the simplest ways to guarantee sufficient
accuracy of the solution obtained is to solve the same problem for two different
integration steps, most frequentlyh andh/2. Discrete values of the two solutions
obtained in this way are next compared at pointsxn corresponding to the larger step
of the two. If the differences between two solutions compared are not sufficiently
small, the whole computation process should be repeated for the step reduced two
times. Multiple solution of the same equation system, up to the moment when the
two consecutive solutions are sufficiently close, generates the necessity of perform-
ing many directly useless computations.

Another, more efficient manner serving to guarantee the sufficiently accurate so-
lution, is the integration of differential equations using variable step adjusted auto-
matically at each pointxn of the independent variable. An example of the method
in which this concept is used is the Runge–Kutta–Fehlberg method, denoted in the

Table 7.1

t y(t) y(t)
Numerical solution Analytical solution

0.000 0.000 000 000 0.000 000 000
0.001 −0.002 004 004 −0.002 004 027
. . . . . . . . .

0.100 −0.244 687 903 −0.244 687 795
. . . . . . . . .

1.000 −17.367 257 827 −17.367 252 349
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literature by the symbol RKF 45. The relatively simple selection procedure for the
integration steph can be made based on the two calculated approximate solutions.
The preselected admissible error control tolerance, denoted in the majority of nu-
merical formulas by the symbolTol, is the parameter of this procedure. In order
to obtain possibly accurate description of the RKF45 algorithm assume that the
following differential equation is given

dy(x)

dx
= f [x, y(x)] (7.13)

with an initial conditiony0 = y(x0). According to [2] for each point [xn, yn =
y(xn)], wheren = 0, 1, 2, 3, . . ., the following parameters are calculated:

k1 = h · f (xn, yn)

k2 = h · f

(
xn + 1

4
h, yn + 1

4
k1

)

k3 = h · f

(
xn + 3

8
h, yn + 3

32
k1 + 9

32
k2

)

k4 = h · f

(
xn + 12

13
h, yn + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3

)

k5 = h · f

(
xn + h, yn + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4

)

k6 = h · f

(
xn + 1

2
h, yn − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5

)

(7.14)

The symbolh denotes the optimal step determined for previous value of the inde-
pendent variable, namely forxn−1 with n >1. Whenn =1, the steph is determined
a priori. Parametersk1, k3, k4, k5 andk6 are then used to calculate first the approxi-
mate value ofyn+1, according to the following fourth order formula

yn+1 = yn + 25

216
k1 + 1408

2565
k3 + 2197

4104
k4 − 1

5
k5 (7.15)

Secondly, more accurate value of the desired solution, denoted byzn+1, is calcu-
lated according to the fifth order formula, namely:

zn+1 = yn + 16

135
k1 + 6656

12825
k3 + 28561

56430
k4 − 9

50
k5 + 2

55
k6 (7.16)

Optimum step sizesn+1 ·h for this case is obtained multiplying the step sizeh by
the correction coefficient

sn+1 =
(

Tol · h

2 |zn+1 − yn+1|
)1/4

≈ 0.84

(
Tol · h

|zn+1 − yn+1|
)1/4

(7.17)
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whereTol denotes a given tolerance error defining approximation accuracy of the
desired solutionyn = y(xn). Knowing the optimum integration step value equal to
sn+1·h, the function valueyn+1 = y(xn+1) is then calculated by means of Eqs. (7.14)
and (7.15) given above. The value ofyn+1 = y(xn+1) and steph ≡ sn+1 · h play the
role of starting values for calculating the next point [xn+2, y(xn+2)] of the desired
solution. In the procedure of finding the integration step described by Eq. (7.17)
we use absolute value of the difference between approximations (7.15) and (7.16).
In case when it is less than a given sufficiently small positive numberε, that is
when|zn+1 − yn+1| ≤ ε, this integration step should be incremented by a reasonably
limited value, for example, less than two times. In Example 7.2 given below, we
took ε = 1 × 10−10 and the rule that preserving the inequality|zn+1 − yn+1| ≤ ε,
the integration step becomes increased by

√
2 times.

Example 7.2Let us assume that the following differential equation is given

dy(x)

dx
= 2 + 1

2
y2(x)

with an initial conditiony(x = 0)= 0. Taking initial integration step equal toh = 0.1
and tolerance errorTol= 1×10−7, this equation has been solved by means of the
RKF 45 method over the range [0, 1.5]. Obtained results are presented in the second
and third columns of Table 7.2. The corresponding exact resultsy(x) = 2 · tan(x),
found analytically, are given in the fourth column. Absolute differences (found on
the base of these solutions) given in the fifth column prove good quality of per-
formed numerical calculations. For tutorial reasons, the initial value problem dis-
cussed in this example has been additionally solved using the RK 4 method. The
results obtained for fixed steph=0.1 are shown in Table 7.3. All results presented
above confirm fully the opinion known from the literature that the RKF 45 method,
as compared with the RK 4, can be treated as more accurate and less sensitive with
respect to the given (initial) size of the integration step.

Table 7.2

n xn yn 2 tan(x) |yn − 2 tan(x)|
1 0.095 216 216 0.191 010 017 0.191 010 013 4.363× 10−9

2 0.185 939 677 0.376 225 189 0.376 225 203 1.404× 10−8

3 0.267 491 821 0.548 119 411 0.548 119 366 4.501× 10−8

4 0.341 017 815 0.709 764 917 0.709 764 897 1.983× 10−8

5 0.408 932 224 0.866 724 642 0.866 724 669 2.778× 10−8

. . . . . . . . . . . . . . .

49 1.313 911 477 7.613 576 896 7.613 573 551 3.345× 10−6

50 1.319 331 445 7.785 044 767 7.785 041 333 3.435× 10−6

51 1.323 546 921 7.923 491 828 7.923 488 616 3.211× 10−6

. . . . . . . . . . . . . . .

559 1.500 295 103 28.321 312 327 28.321 310 043 2.284× 10−6

560 1.500 461 817 28.388 665 044 28.388 641 357 2.368× 10−5

561 1.500 528 679 28.415 767 236 28.415 746 688 2.051× 10−5
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Table 7.3

n xn yn 2 tan(x) |yn − 2 tan(x)|
1 0.10 0.200 669 181 0.200 669 348 1.671× 10−7

2 0.20 0.405 419 762 0.405 420 065 3.022× 10−7

3 0.30 0.618 672 088 0.618 672 430 3.424× 10−7

4 0.40 0.845 585 997 0.845 586 478 4.808× 10−7

5 0.50 1.092 604 632 1.092 604 994 3.619× 10−7

. . . . . . . . . . . . . . .

10 1.00 3.114 812 975 3.114 815 473 2.498× 10−6

11 1.10 3.929 493 277 3.929 519 891 2.661× 10−5

12 1.20 5.144 143 807 5.144 304 275 1.604× 10−4

13 1.30 7.203 127 497 7.204 206 943 1.079· 10−3

14 1.40 11.583 951 747 11.595 766 067 1.181× 10−2

15 1.50 27.673 314 419 28.202 840 805 5.291× 10−1

7.3 The Multi-step Predictor–Corrector Methods

In case of all one-step methods discussed in the previous section, the value
yn+1 = y(xn+1) of the determined function is calculated on the basis of only
one valueyn = y(xn), computed during the previous iteration. In the multi-step
methods we use for this end not only the valueyn = y(xn) but alsoyn−k+1 =
y(xn−k+1), yn−k+2 = y(xn−k+2), yn−k+3=y(xn−k+3), . . . , yn=y(xn), where the num-
ber of stepsk = 1, 2, 3, . . . determines also order of the method. In order to deter-
mine integral expression constituting theoretical base of all multi-step methods, let
us consider the following first-order differential equation:

dy(x)

dx
= f [x, y(x)] (7.18)

in which we integrate both sides over an interval fromxn to xn+1. Integrating the
left-side of the equation (7.18) we obtain:

xn+1∫

xn

dy(x)

dx
dx = y(xn+1) − y(xn) ≈ yn+1 − yn (7.19)

In case of thek−step method, the following discrete values of the function con-
stituting the right-side of the equation (7.18) are known:

fn−k+1 = f (xn−k+1, yn−k+1)

fn−k+2 = f (xn−k+2, yn−k+2)

fn−k+3 = f (xn−k+3, yn−k+3)
. . . . . . . . . . . . . . . . . . . . . . . . .

fn = f (xn, yn)

(7.20)
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yn – 3

yn – 2
yn – 1
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yn + 1
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x
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fn – 1
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Interpolation
interval

Extrapolation
interval

Fig. 7.4

These discrete values are represented by the corresponding points specified in
Fig. 7.4.

In order to integrate the discrete function, constituting right-side of equation
(7.18), it should be first interpolated or approximated over an interval [xn−k+1, xn].
On the basis of values (7.20), the interpolation polynomialPk−1(x) of degree (k−1)
is formed most frequently for this purpose. Next, this polynomial is used afterwards
to extrapolate (predict) the functionf [x, y(x)] over the interval [xn, xn+1], yelding:

xn+1∫

xn

f [x, y(x)]dx ≈
xn+1∫

xn

Pk−1(x)dx (7.21)
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Comparison of integrals (7.19) and (7.21) gives the following general expression:

yn+1 = yn +
xn+1∫

xn

Pk−1(x)dx (7.22)

making the theoretical basis for the group of multi-step methods, called in gen-
eral the Adams methods. In case whenk = 1, see relation (7.22), we deal with
the simplest Adams method, which is identical to the one-step Euler method, dis-
cussed in the previous section. In practice, the four-step method (k = 4), assuring
accuracy comparable to that obtained when using the Runge–Kutta fourth order
method (RK 4), is commonly used. In this case it is convenient to use the third
degree Newton–Gregory interpolating polynomial (see section 4.1.3) expanded with
respect toxn.

P4−1(x) ≡ N3(x) = a0 + a1(x − xn)

+ a2(x − xn)(x − xn−1)

+ a3(x − xn)(x − xn−1)(x − xn−2)

(7.23)

Assume that numerical integration of Eq. (7.18) is performed with a constant step
h. Hence we obtainxn−1 = xn −h, xn−2 = xn −2h andxn−3 = xn −3h. Polynomial
(7.23) takes at pointsxn, xn−1 = xn − h, xn−2 = xn − 2h andxn−3 = xn − 3h the
following values:

P3(xn) = fn = a0

P3(xn−1) = fn−1 = a0 + a1(−h)

P3(xn−2) = fn−2 = a0 + a1(−2h) + a2(−2h)(−h)

P3(xn−3) = yn−3 = a0 + a1(−3h) + a2(−3h)(−2h) + a3(−3h)(−2h)(−h)

These values make possible in evaluating the polynomial coefficientsa0, a1, a2

anda3 from the formulas:

a0 = fn

a1 = fn − fn−1

h
= � fn

h

a2 = fn − 2 fn−1 + fn−2

2h2
= �2 fn

2h2

a3 = fn − 3 fn−1 + 3 fn−2 − fn−3

6h3
= �3 fn

6h3

(7.24)

Hence, by using relations (7.24) and introducing a new variablet = x − xn, the
interpolating polynomial can be written as:
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P3(t) = fn + � fn

h
· t + �2 fn

2h2
· t(t + h) + �3 fn

6h3
· t(t + h)(t + 2h)

= fn + � fn

h
· t + �2 fn

2h2
· (t2 + th) + �3 fn

6h3
· (t3 + 3ht2 + 2h2t)

(7.25)

Changes of variablex in an intervalxn ≤ x ≤ xn+1 = xn + h correspond to the
variations of variablet in an interval 0≤ t ≤ h. It implies that polynomial (7.25)
should be integrated over the interval [0, h]. This integration yelds the formula:

h∫

0

P3(t)dt =
h∫

0

[
fn+ � fn

h
· t+ �2 fn

2h2
· (t2 + th)+ �3 fn

6h3
· (t3+3ht2+2h2t)

]
dt

= fnh + h

2
� fn + 5h

12
�2 fn + 3h

8
�3 fn

(7.26)

which defines the increment�yn. After introduction of the integral (7.26) into (7.22)
we obtain the following extrapolating formula:

yn+1 = yn + h

(
fn + 1

2
� fn + 5

12
�2 fn + 3

8
�3 fn

)
(7.27)

for the four-step Adams method [3]. The finite differences appearing in this last
formula� fn, �2 fn and�3 fn are related to the values offn, fn−1, fn−2 and fn−3 in
the following manner, see also relations (7.24)

� fn = fn − fn−1

�2 fn = fn − 2 fn−1 + fn−2

�3 fn = fn − 3 fn−1 + 3 fn−2 − fn−3

(7.28)

Substituting the above expressions into formula (7.27) we obtain finally

yn+1 = yn + h

[
fn + 1

2
( fn − fn−1) + 5

12
( fn − 2 fn−1 + fn−2)

+ 3

8
( fn − 3 fn−1 + 3 fn−2 − fn−3)

]

= yn + h

24
(55 fn − 59 fn−1 + 37 fn−2 − 9 fn−3) (7.29)

This formula, equivalent to (7.27), is called the explicit extrapolating formula of
the four-step Adams, or Adams–Bashforth method. It was elaborated in 1855 by
Adams on request of the famous British artilleryman Bashforth. Adams elaborated
this method using the Lagrange polynomial of third degree to interpolate the func-
tion f [x, y(x)]. The equivalence of relations (7.27) and (7.29) proved above is not
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accidental. It relults directly from a fact that Newton–Gregory and Lagrange polyno-
mials used to interpolate the functionf [x, y(x)] are identical. The identity of these
interpolating polynomials can be confirmed in turn by means of the corresponding
Weierstrass theorem.

7.3.1 The Adams–Bashforth–Moulthon Method

The valuesfn, fn−1, fn−2 and fn−3 specified in Fig. 7.4(a) serve, according to for-
mula (7.29), to determine predicted approximate valueyn+1 = y(xn+1) of the de-
sired function. At the same time, the value of the functionfn+1 = f [xn+1,yn+1] is
computed. The valuesyn+1 = y(xn+1) and fn+1 = f [xn+1,yn+1] found in this man-
ner make possible generalization of the Adams–Bashforth method discussed above
by adding the correction stage in which consecutive, more accurate approximations
of yn+1 = y(xn+1) are evaluated, namely:

y(1)
n+1, y(2)

n+1, y(3)
n+1, y(4)

n+1, . . . (7.30)

In order to explain the essence of this stage, we find the Lagrange third order
polynomial interpolating the functionf [x, y(x)] at points (xn−2, fn−2), (xn−1, fn−1),
(xn, fn) and at the newly determined point (xn+1, fn+1). In case when,xn−2 = xn−2h,
xn−1 = xn − h andxn+1 = xn + h the interpolating polynomial takes the form:

L3(x) = fn−2
(x − xn + h)(x − xn)(x − xn − h)

−6h3

+ fn−1
(x − xn + 2h)(x − xn)(x − xn − h)

2h3

+ fn
(x − xn + 2h)(x − xn + h)(x − xn − h)

−2h3

+ fn+1
(x − xn + 2h)(x − xn + h)(x − xn)

6h3

(7.31)

After introduction of an auxiliary variablet = x − xn, this polynomial can be
written in the following more convenient form for further integration:

L3(t) = fn−2 · t3 − th2

−6h3
+ fn−1 · t3 + ht2 − 2h2t

2h3

+ fn · t3 + 2ht2 − h2t − 2h3

−2h3
+ fn+1 · t3 + 3ht2 + 2h2t

6h3

(7.32)

More accurate valuesyn+1 = y(xn+1) can be found by means of a formula,
similar to expression (7.22), in which the polynomialPk−1(x) is repalced by another
polynomial, namely by (7.31). According to the correction rule discussed above we
can write the following general formula to evaluate the consecutive approximations
of yn+1 = y(xn+1):
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y(i+1)
n+1 = yn +

h∫

0

L3(t)dt =yn + fn−2

−6h3

(
1

4
h4 − 1

2
h2h2

)

+ fn−1

2h3

(
1

4
h4 + 1

3
h · h3 − h2h2

)

+ fn

−2h3

(
1

4
h4 + 2

3
h · h3 − 1

2
h2h2 − 2h3h

)

+ fn+1

6h3

(
1

4
h4 + h · h3 + h2h2

)

= yn + h

24

[
fn−2 − 5 fn−1 + 19 fn + 9 fn+1

(
y(i )

n+1

)]

(7.33)

wherei = 0, 1, 2, 3, . . . The formula (7.33) is called the implicit Adams–Moulthon
correction formula. The word implicit means here that computation of the consecu-
tive (i + 1) approximation ofyn+1 is found using the valuefn+1 dependent on the
approximationyn+1 determined in the previous iterationi . The correction process is
continued iteratively until the following condition is satisfied:

∣∣∣y(i )
n+1 − y(i+1)

n+1

∣∣∣ ≤ ε (7.34)

whereε is a positive, arbitrary small number. When condition (7.34) is satisfied the
valuey(i+1)

n+1 is accepted asyn+1. Naturally, such evaluated valueyn+1 is used in the
next step (n + 2), aiming at finding the valueyn+2 = y(xn+2) by means of similar
two-stage procedure, wheren = 0, 1, 2, 3, . . . Predictor (7.29) and corrector (7.33)
constitute theoretical basis for two-stage prediction and correction method, called
commonly the Adams–Boshforth–Moulthon method.

7.3.2 The Milne–Simpson Method

Another popular predictor–corrector method is the Milne–Simpson method. The
predictor (extrapolation formula) of this method can be determined on the base of
the general relation:

yn+1 = yn−3 +
xn+1∫

xn−3

L3(x)dx (7.35)

whereL3(x) is the Lagrange polynomial of third degree, interpolating the function
f [x, y(x)], standing on the right-side of Eq. (7.18). The points (nodes) of this in-
terpolation are (xn−3, fn−3), (xn−2, fn−2), (xn−1, fn−1) and (xn, fn). In the special case
when xn−3 = xn − 3h, xn−2 = xn − 2h and xn−1 = xn − h, the interpolating
polynomial has the following form:
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L3(x) = fn−3
(x − xn + 2h)(x − xn + h)(x − xn)

−6h3

+ fn−2
(x − xn + 3h)(x − xn + h)(x − xn)

2h3

+ fn−1
(x − xn + 3h)(x − xn + 2h)(x − xn)

−2h3

+ fn
(x − xn + 3h)(x − xn + 2h)(x − xn + h)

6h3

(7.36)

After substitution of an auxiliary variablet = x − xn into polynomial (7.36) it
transforms itself to:

L3(t) = fn−3 · 1

−6h3
· (t3 + 3ht2 + 2h2t)

+ fn−2 · 1

2h3
· (t3 + 4ht2 + 3h2t)

+ fn−1 · 1

−2h3
· (t3 + 5ht2 + 6h2t)

+ fn · 1

6h3
· (t3 + 6ht2 + 11h2t + 6h3)

(7.37)

According to formula (7.35), the polynomial (7.36) should be integrated over
the interval [xn − 3h, xn + h]. In case of using an equivalent polynomial (7.37),
integration is performed from−3h to h. The process of integration is described by

h∫

−3h

L3(t)dt = fn−3

−6h3

(
1

4
h4 − 81

4
h4 + h · h3 + h27h3 + h2h2 − h29h2

)

+ fn−2

2h3

(
1

4
h4 − 81

4
h4 + 4

3
h · h3 + 4

3
h27h3 + 3

2
h2h2 − 3

2
h29h2

)

+ fn−1

−2h3

(
1

4
h4 − 81

4
h4 + 5

3
h · h3 + 5

3
h27h3 + 3h2h2 − 3h29h2

)

+ fn

6h3

(
1

4
h4 − 81

4
h4 + 2h · h3 + 2h27h3

+ 11

2
h2h2 − 11

2
h29h2 + 6h3h + 6h3h

)

= 4h

3
(0 · fn−3 + 2 fn−2 − fn−1 + 2 fn)

Finally, we get:

yn+1 = yn−3 +
h∫

−3h

L3(t)dt = yn−3+4h

3
(2 fn − fn−1 + 2 fn−2) (7.38)
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This formula serves to determine first approximation ofyn+1 and fn+1 =
f [xn+1,yn+1]. The corrector can be determined in a similar way. For this end, we
evaluate for the second time the Lagrange polynomial of third degree, interpolating
the function f [x, y(x)] at points (xn−2, fn−2), (xn−1, fn−1), (xn, fn) and at the newly
found point (node) (xn+1, fn+1):

L3(x) = fn−2
(x − xn + h)(x − xn)(x − xn − h)

−6h3

+ fn−1
(x − xn + 2h)(x − xn)(x − xn − h)

2h3

+ fn
(x − xn + 2h)(x − xn + h)(x − xn − h)

−2h3

+ fn+1
(x − xn + 2h)(x − xn + h)(x − xn)

6h3

(7.39)

Next, the polynomial (7.39) is integrated over the range [xn−1, xn+1]. The result
of this integration is the following relation:

xn+1∫

xn−1

L3(x)dx =
xn+h∫

xn−h

L3(x)dx

= fn−2

−6h3

(
1

4
h4 − 1

4
h4 − 1

2
h2h2 + 1

2
h2h2

)

+ fn−1

2h3

(
1

4
h4 − 1

4
h4 + 1

3
h h3 + 1

3
h h3 − h2h2 + h2h2

)

+ fn

−2h3

(
1

4
h4 − 1

4
h4 + 2

3
h h3 + 2

3
h h3 − 1

2
h2h2

+ 1

2
h2h2 − 2h3h − 2h3h

)

+ fn+1

6h3

(
1

4
h4 − 1

4
h4 + h · h3 + h · h3 + h2h2 − h2h2

)

= h

3
(0 · fn−2 + fn−1 + 4 fn + fn+1)

= h

3
( fn+1 + 4 fn + fn−1)

(7.40)

that is similar to the Simpson formula given by (5.11). Thus the correction procedure
is continued iteratively, according to the formula:

y(i+1)
n+1 = yn−1 +

xn+1∫

xn−1

L3(x)dx = yn−1 + h

3

[
fn+1

(
xn+1, y(i )

n+1

)
+ 4 fn + fn−1

]

(7.41)
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This process is continued until the following condition is satisfied:

∣∣∣y(i )
n+1 − y(i+1)

n+1

∣∣∣ ≤ ε (7.42)

whereε is a positive, arbitrary small number. When the condition (7.42) is satisfied
we takeyn+1 ≡ y(i+1)

n+1 and pass to the next step (n + 2) in order to find, by means of
similar two-stage technique, the valuesyn+2 = y(xn+2), for n = 0, 1, 2, 3, . . .. One
modification of the Milne–Simpson method consists in adding the following term:

�mn+1 = 28

29
(yn − pn) (7.43)

(modifier) to the predictor formula (7.38). Consequently, the better approximation
of the predictor is calculated recursively from the formulas:

pn+1 = yn−3 + 4h

3
(2 fn − fn−1 + 2 fn−2)

mn+1 = pn+1 + 28

29
(yn − pn)

fn+1 = f (xn+1, mn+1)

yn+1 = yn−1 + h

3
( fn−1 + 4 fn + fn+1)

(7.44)

Naturally, the corrected value (corrector) of the desired solutionyn+1 is evalu-
ated in the same manner, i.e. by using approach expressed by formulas (7.41) and
(7.42) [3].

7.3.3 The Hamming Method

A predictor stage of the Hamming method is the same as the predictor stage of the
Milne–Simpson method discussed above. It means that the first approximation of
the desired solution is calculated according to the formula (7.38), i.e.:

yn+1 ≈ pn+1 = yn−3 +
h∫

−3h

L3(t)dt = yn−3+4h

3
(2 fn − fn−1 + 2 fn−2) (7.45)

wheren = 3, 4, 5, . . . This first approximation is next used in the process of finding
consecutive approximations of the desired solution, which are calculated iteratively
according to the following corrector formula [4]:
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y(i+1)
n+1 = −yn−2 + 9yn

8
+ 3h

8

[
− fn−1 + 2 fn + fn+1

(
xn+1, y(i )

n+1

)]
(7.46)

The value of the functionfn+1 included in this formula is calculated on the basis
of y(i )

n+1 evaluated during the previous iterationi . The iterative corrector process
is interrupted, when the difference between two consecutive approximations, i.e.,∣∣∣y(i )

n+1 − y(i+1)
n+1

∣∣∣, is smaller than the assumed admissible errorε.

Example 7.3The subject of considerations in this example is an initial value prob-
lem formulated for the following differential equation:

dy(x)

dx
= x2 + 2x − y(x)

with the condition y(x = 0) = 1. This equation was solved by using the
Hamming method for 0≤ x ≤ 3, dx ≡ h = 0.01 andε = 10−12. Initial section
(y0, y1, y2, y3), of the desired solution was determined by using the Runge–Kutta
method RK 4. Some of predicted and corrected results obtained over the inte-
gration range [0, 3] are presented in the second and third columns of Table 7.4,
respectively.

The exact solution (obtained analytically) of the initial value problem under dis-
cussion isy(x) = e−x + x2. It makes possible to evaluate the maximum absolute
value of the approximation error. It was verified that for 0≤ x ≤ 3 such error does
not exceed the value of 7× 10−9. Undoubtedly, the presented results confirm well
the general opinion that the Hamming method is quite accurate, stable and easy to
program. Thus, it is suitable for the most engineering purposes.

Table 7.4

n xn pn yn

0 0.00 1.000 000 000
1 0.01 0.990 149 833
2 0.02 0.980 598 673
3 0.03 0.971 345 533

Start Predicted value Corrected value
4 0.04 0.962 389 439 213 0.962 389 438 629
5 0.05 0.953 729 423 796 0.953 729 423 952
6 0.06 0.945 364 533 329 0.945 364 533 037
7 0.07 0.937 293 819 408 0.937 293 819 357
8 0.08 0.929 516 345 914 0.929 516 345 839
9 0.09 0.922 031 184 774 0.922 031 184 725
10 0.10 0.914 837 417 539 0.914 837 417 492
. . . . . . . . . . . .

300 3.00 9.049 787 068 288 9.049 787 068 285
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7.4 Examples of Using the RK 4 Method for Integration
of Differential Equations Formulated for Some Electrical
Rectifier Devices

7.4.1 The Unsymmetrical Voltage Doubler

Figure 7.5 presents the electrical scheme of an unsymmetrical voltage doubler in-
vestigated in the present section.

The electronic circuit of this type, often called the Villard’s doubler, generates a
quasi constant output voltageuR(t) = u2(t) with relatively small ripples. The maxi-
mum value of this output valtage is close to the doubled amplitude of the alternating
control voltageus(t). In the analysis presented below, node voltagesu1(t) andu2(t)
have been used as the state variables in the following equations:

i c1(t) = C1
dus(t)

dt
− C1

du1

dt

id1(t) = Is

[
exp

[−u1(t)

VT

]
− 1

]
, Is = 10−8, A, VT = 0.026, V

id2(t) = Is

[
exp

[
u1(t) − u2(t)

VT

]
− 1

]

i c2(t) = C2
du2(t)

dt

i R = 1

R
u2(t)

(7.47)

According to Kirchhoff’s law, sums of the currents at nodes 1 and 2, see Fig. 7.5,
have to be equal to zero. This law is satisfied when:

i c1 + i d1 − i d2 = C1
dus(t)

dt
− C1

du1(t)

dt
+ Is

[
exp

[−u1(t)

VT

]
− 1

]

− Is

[
exp

[
u1(t) − u2(t)

VT

]
− 1

]
= 0

R

0

ic1 id 2 iR

ic 2

idl

us

C1

C2

D2

D1

u1 u2

Fig. 7.5
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i d2 − i c2 − i R = Is

[
exp

[
u1(t) − u2(t)

VT

]
− 1

]
− C2

du2(t)

dt
− 1

R
u2(t) = 0

The above equations can be replaced by the following system of two first-order
differential equations:

dx(t)

dt
= dus(t)

dt
+ Is

C1

[
exp

[−x(t)

VT

]
− 1

]
− Is

C1

[
exp

[
x(t) − y(t)

VT

]
− 1

]

= f1[t, x(t), y(t)]

dy(t)

dt
= Is

C2

[
exp

[
x(t) − y(t)

VT

]
− 1

]
− 1

RC2
y(t) = f2[t, x(t), y(t)] (7.48)

wherex(t) ≡ u1(t) andy(t) ≡ u2(t). Equation system (7.48) with the initial condi-
tionsx(t0) = x0 andy(t0) = y0 constitute the initial value problem. For solving this
problem the Runge–Kutta method RK 4 have been used, see Sect. 7.2.3. Thus, the
following formulas have been implemented in the computer program P7.5 written
for this purpose:

xn+1 = xn + 1

6
(k1 + 2k2 + 2k3 + k4)

yn+1 = yn + 1

6
(l1 + 2l2 + 2l3 + l4)

(7.49)

where

k1 = �t · f1 (tn, xn, yn)

l1 = �t · f2 (tn, xn, yn)

k2 = �t · f1

(
tn + �t

2
, xn + k1

2
, yn + l1

2

)

l2 = �t · f2

(
tn + �t

2
, xn + k1

2
, yn + l1

2

)

k3 = �t · f1

(
tn + �t

2
, xn + k2

2
, yn + l2

2

)

l3 = �t · f2

(
tn + �t

2
, xn + k2

2
, yn + l2

2

)

k4 = �t · f1 (tn + �t, xn + k3, yn + l3)

l4 = �t · f2 (tn + �t, xn + k3, yn + l3)

The calculations ofu1(t) ≡ x(t) andu2(t) ≡ y(t) have been performed for the
following data:us(t) = 1(t) · 5 · sin(2π · 50 · t), V, u1(t = 0) = x0 = 0, u2(t = 0)
= y0 = 0, R = 10000�, C1 = 0.001 F, C2 = 0.001 F, �t = 0.000001 s, where
1(t) is the unit step function. Some of the most interesting results (transient state
and a fragment of the steady-state) are given in Tables 7.5 and 7.6 and illustrated in
Figs. 7.6 and 7.7, respectively.
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Table 7.5 (Transient state)

t, s us(t), V u1(t), V u2(t), V

0.000 0.000000 0.000000 0.000000
0.001 1.545085 1.008232 0.356839
0.002 2.938926 1.703043 1.235775
0.003 4.045085 2.251987 1.792836
0.004 4.755282 2.599078 2.155744
0.005 5.000000 2.698879 2.300436
0.006 4.755282 2.445129 2.309237
0.007 4.045085 1.734932 2.309006
0.008 2.938926 0.628773 2.308775
0.009 1.545085 −0.489326 2.308544
0.010 0.000000 −0.490678 2.308313
· · · · · · · · · · · ·
0.015 −5.000000 −0.416423 2.307159
0.016 −4.755282 −0.153684 2.306929
0.017 −4.045085 0.556514 2.306698
0.018 −2.938926 1.662673 2.306467
0.019 −1.545085 2.917029 2.445720
0.020 0.000000 3.690106 3.217445
0.021 1.545085 4.461840 3.990436
0.022 2.938926 5.156479 4.689203
0.023 4.045085 5.705252 5.246091
0.024 4.755282 6.052173 5.608822
0.025 5.000000 6.151825 5.753318

Table 7.6 (Steady-state)

t, s us(t), V u1(t), V u2(t), V

0.200 0.000000 4.608779 9.179598
0.201 1.545085 6.153864 9.178680
0.202 2.938926 7.547709 9.177763
0.203 4.045085 8.653863 9.176845
0.204 4.755282 9.364059 9.175928
0.205 5.000000 9.588190 9.195594
0.206 4.755282 9.335794 9.202352
0.207 4.045085 8.625595 9.201432
0.208 2.938926 7.519436 9.200512
0.209 1.545085 6.125594 9.199592
0.210 0.000000 4.580508 9.198672
0.211 −1.545085 3.035424 9.197752
0.212 −2.938926 1.641583 9.196833
0.213 −4.045085 0.535425 9.195913
0.214 −4.755282 −0.174770 9.194993
0.215 −5.000000 −0.399888 9.194074
0.216 −4.755282 −0.144122 9.193154
0.217 −4.045085 0.566076 9.192235
0.218 −2.938926 1.672236 9.191316
0.219 −1.545085 3.066078 9.190397
0.220 0.000000 4.611163 9.189478
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All the results presented above are fully consistent with the corresponding re-
sults obtained by means of the PSpice simulation program intented for analysis of
electrical and electronic circuits [5].

7.4.2 The Full-Wave Rectifier Integrated with the Three-Element
Low-Pass Filter

The electrical scheme of the full-wave rectifier with a three-element low-pass filter
is shown in Fig. 7.8.

Let us assume that the circuit is supplied by alternating voltage, which after
transformation is equal tous(t) = 10 sin(2π ·50· t), V . The time-domain analysis of
this circuit consists in determining the functions of voltageu1(t), currenti L (t) and
voltageu2(t), which are treated as the state variables. The instant values of currents
and voltages in the individual branches, see Fig. 7.8, are related with state variables
mentioned above by the following differential equations:

i c1(t) = C1
du1(t)

dt
, i R(t) = u1(t)

R

i L (t) = i c1(t) + i R(t)

uL (t) = u2(t) − u1(t) = L
diL (t)

dt

ic2(t) = C2
du2(t)

dt
, i p(t) = Is

[
exp

[
|us(t)| − u(t)

2

2 · VT

]
− 1

]

i p(t) = i c2(t) + i L (t)

(7.50)

where

i (t) = Is

[
exp

[
ud(t)

VT

]
− 1

]
, Is = 10−8A, VT = 0.026 V

K

R
C2 C1 u1

iRiLL

uL

ip

ic 2 ic1

u2

us

Fig. 7.8
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is the current–voltage characteristic of one diode of the Gretz bridge [6]. After some
rearrangements, Eq. (7.50) can be written in the form of the equivalent equation
system:

du1(t)

dt
= 1

C1
· i L (t) − 1

C1R
· u1(t)

diL (t)

dt
= 1

L
· u2(t) − 1

L
· u1(t) (7.51)

du2(t)

dt
= 1

C2
· Is

[
exp

[ |us(t)| − u2(t)

2 · VT

]
− 1

]
− 1

C2
· i L (t)

In the last equation of this system, only absolute values of the control voltage
|us(t)| are used. This is the consequence of rectifying properties and symmetry of
the Gretz bridge being used. By assuming the notation

u1(t) ≡ x(t), i L (t) ≡ y(t), u2(t) ≡ z(t)

the equation system (7.51) can be written as follows:

dx(t)

dt
= 1

C1
· y(t) − 1

C1R
· x(t) = f1[t, x(t), y(t), z(t)]

dy(t)

dt
= 1

L
· z(t) − 1

L
· x(t) = f2[t, x(t), y(t), z(t)] (7.52)

dz(t)

dt
= 1

C2
· Is

[
exp

[ |us(t)| − z(t)

2 · VT

]
− 1

]
− 1

C2
· y(t) = f3[t, x(t), y(t), z(t)]

The above three differential equations together with the given initial conditions:
t0, x0 = x(t0), y0 = y(t0), z0 = z(t0), and the time dependent control voltageus(t)
constitute the initial value problem. Also, in this case the Runge–Kutta method RK 4
has been used for solving this problem. Consequently, the following computational
formulas have been implemented in the computer program P7.8 written for this
purpose.

xn+1 = xn + 1

6
(k1 + 2k2 + 2k3 + k4)

yn+1 = yn + 1

6
(l1 + 2l2 + 2l3 + l4) (7.53)

zn+1 = zn + 1

6
(m1 + 2m2 + 2m3 + m4)
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where

k1 = �t · f1 (tn, xn, yn, zn)

l1 = �t · f2 (tn, xn, yn, zn)

m1 = �t · f3 (tn, xn, yn, zn)

k2 = �t · f1

(
tn + �t

2
, xn + k1

2
, yn + l1

2
, zn + m1

2

)

l2 = �t · f2

(
tn + �t

2
, xn + k1

2
, yn + l1

2
, zn + m1

2

)

m2 = �t · f3

(
tn + �t

2
, xn + k1

2
, yn + l1

2
, zn + m1

2

)

k3 = �t · f1

(
tn + �t

2
, xn + k2

2
, yn + l2

2
, zn + m2

2

)

l3 = �t · f2

(
tn + �t

2
, xn + k2

2
, yn + l2

2
, zn + m2

2

)

m3 = �t · f3

(
tn + �t

2
, xn + k2

2
, yn + l2

2
, zn + m2

2

)

k4 = �t · f1 (tn + �t, xn + k3, yn + l3, zn + m3)

l4 = �t · f2 (tn + �t, xn + k3, yn + l3, zn + m3)

m4 = �t · f31 (tn + �t, xn + k3, yn + l3, zn + m3)

The computer program P7.8 mentioned above makes it possible calculating the
discrete values of functionsu1(t), i L (t) andu2(t). The calculations have been carried
out for the following data:

u1(t = 0) = 0, i L (t = 0) = 0, u2(t = 0) = 0, us(t) = 10 sin(2π · 50 · t) · 1(t), V

R = 50, �, C1 = C2 = 1000, μF, L = 0.1, H, �t = 0.00001

where 1(t) is the unit step function. This unit step function is implemented by clos-
ing the key K att = 0. Most interesting results (transient state and a fragment of the
steady-state) obtained in this example are shown in Tables 7.7 and 7.8 and illustrated
in Figs. 7.9 and 7.10.

The voltage functionsu1(t) andu2(t) presented in Fig. 7.11 have been evaluated
additionally over the steady-state for the large loading resistanceR = 200�, i.e.,
for the smaller output current.

Also of interest is evaluating the voltage functionsu1(t) andu2(t) over the turn-
off range. It can be done by assuming that at any momentt0 of the steady-state,
the control voltageus(t) rapidly decays, i.e.,us(t) = 0 whent ≥ t0. Of course,
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Table 7.7 (Transient state)

t, s u1(t), V iL (t), A u2(t), V

0.000 0.000000 0.000000 0.000000
0.001 0.001599 0.007073 2.075171
0.002 0.023661 0.042071 4.870406
0.003 0.092803 0.101948 7.097102
0.004 0.229249 0.179322 8.543801
0.005 0.444541 0.264967 9.093901
0.006 0.740428 0.349458 8.900919
0.007 1.111088 0.427389 8.511956
0.008 1.547555 0.497010 8.049006
0.009 2.039629 0.557010 7.521143
0.010 2.576131 0.606309 6.938546
0.011 3.145120 0.644011 6.312390
0.012 3.734136 0.669482 5.654603
0.013 4.332514 0.690456 7.083565
0.014 4.945724 0.722844 8.524475
0.015 5.581145 0.758900 9.052700
0.016 6.238178 0.789163 8.685337
0.017 6.905755 0.806423 7.898242
0.018 7.569908 0.808976 7.089315
0.019 8.216146 0.796887 6.285174
0.020 8.830489 0.770527 5.500300
0.021 9.399738 0.730544 4.748663
0.022 9.911818 0.678878 4.858998
0.023 10.365789 0.637741 7.084616
0.024 10.777693 0.610777 8.527862
0.025 11.158447 0.589806 9.063563

the momentt0 is a beginning of the turn-off range. Thus, the results presented in
Table 7.9 and illustrated in Fig. 7.12 have been performed fort ≥ t0 = 1.01 s.

The functionsu1(t) and u2(t) depicted in Fig. 7.12 illustrate the process of
resonance discharging the filtering section LC. In the turn-off state, the Gretz
bridge “cuts-off” the filtering section from the network transformer, resulting in
total decay of the current flowing by the diodes of the Gretz bridge. A period of

Table 7.8 (Steady-state)

t, s u1(t), V iL (t), A u2(t), V

1.000 8.492006 0.176141 8.316112
1.002 8.498514 0.169047 7.969746
1.004 8.484778 0.158276 8.544541
1.006 8.471246 0.168583 9.015204
1.008 8.478055 0.175986 8.669466
1.010 8.482006 0.176141 8.316112
1.012 8.498514 0.169047 7.969746
1.014 8.484778 0.158276 8.544521
1.016 8.471246 0.168583 9.015204
1.018 8.478055 0.175986 8.669466
1.020 8.492006 0.176141 8.316112
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oscillations illustrated in Fig. 7.12 is approximately equal toT = 0.044, s. A similar
value results directly from the fundamental known formula:T = 2π

√
LCef f , where

Cef f = C1C2/(C1 + C2), C1 = C2 = 1000, 
F andL = 0.1, H, see Fig. 7.8, [7]. The
identical responses corresponding to the ones presented above have been obtained
by using the specialized computer program PSpice [5].

7.4.3 The Quadruple Symmetrical Voltage Multiplier

The electrical scheme of the quadruple symmetrical voltage multiplier, analyzed in
this example, is shown in Fig. 7.13.

Let us assume that the multipler under analysis is supplied with alternating volt-
age, which after transformation is equal tous(t) = 5 · sin(2π · 50 · t), V. Instant
values of currents flowing in the individual branches of this nonlinear circuit can be
evaluated from the following differential equations.
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Table 7.9

t, s u1(t), V iL (t), A u2(t), V

1.010 8.492006 0.176141 8.316112
1.020 8.218277 0.086650 6.904247
1.030 6.976727 −0.012062 6.613545
1.040 5.683332 0.027273 6.652177
1.050 5.361434 0.118177 5.886333
1.060 5.483350 0.100836 4.676457
1.070 4.952076 0.004697 4.149416
1.080 3.901983 −0.016669 4.314053
1.090 3.359306 0.056850 4.145133
1.100 3.508353 0.092291 3.314867
. . . . . . . . . . . .
1.180 1.281827 0.032062 1.765368
1.190 1.476182 0.050058 1.297615
1.200 1.491962 0.008155 0.977724
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i c1(t) = C1
d[us(t) − u1(t)]

dt
= C1

dus(t)

dt
− C1

du1(t)

dt

id1(t) = Is

[
exp

[
u1(t)

VT

]
− 1

]
,

i d2(t) = Is

[
exp

[
u1(t) − u2(t)

VT

]
− 1

]
(7.54)

i c2(t) = C2
du2(t)

dt

ic3(t) = C3
d[us(t) − u3(t)]

dt
= C3

dus(t)

dt
− C3

du3(t)

dt

id3(t) = Is

[
exp

[
u3(t)

VT

]
− 1

]

i c4(t) = C2
du4(t)

dt

ir (t) = 1

R
[(u2(t) − u4(t)]

whereu1(t), u2(t), u3(t) andu4(t) are the desired functions of nodal voltages. The
function

i (t) = Is

[
exp

[
ud(t)

VT

]
− 1

]
, Is = 10−8A, VT = 0.026 V

represents the current–voltage characteristic of the individual diode [6]. According
to Kirchhoff’s law, sums of currents at nodes 1, 2, 3, 4, are equal to zero. In conse-
quence, the following equations can be formulated:

i c1 + i d1 − i d2 = C1
dus(t)

dt
− C1

du1(t)

dt
+ Is

[
exp

[−u1(t)

VT

]
− 1

]

− Is

[
exp

[
u1(t) − u2(t)

VT

]
− 1

]
= 0

i d2−i c2 − i r = Is

[
exp

[
u1(t)−u2(t)

VT

]
−1

]
−C2

du2(t)

dt
− 1

R
[u2(t)−u4(t)] = 0

i c3 − i d3 + i d4 = C3
dus(t)

dt
− C3

du3(t)

dt
− Is

[
exp

[
u3(t)

VT

]
− 1

]

+ Is

[
exp

[
u4(t) − u3(t)

VT

]
− 1

]
= 0

i r − i c4 − i d4 = − 1

R
[u2(t)−u4(t)]−C4

du4(t)

dt
− Is

[
exp

[
u4(t)−u3(t)

VT

]
−1

]
= 0

Naturally, the above differential equations can be written in the form of the equiv-
alent equation system, namely:
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du1(t)

dt
= dus(t)

dt
+ Is

C1

[
exp

[−u1(t)

VT

]
− 1

]
− Is

C1

[
exp

[
u1(t) − u2(t)

VT

]
− 1

]

du2(t)

dt
= Is

C2

[
exp

[
u1(t) − u2(t)

VT

]
− 1

]
− 1

RC2
[u2(t) − u4(t)] (7.55)

du3(t)

dt
= dus(t)

dt
+ Is

C3

[
exp

[
u3(t)

VT

]
− 1

]
+ Is

C3

[
exp

[
u4(t) − u3(t)

VT

]
− 1

]

du4(t)

dt
= 1

RC4
[u2(t) − u4(t)] − Is

C4

[
exp

[
u4(t) − u3(t)

VT

]
− 1

]

In order to simplify the description of this equation system the following aux-
iliary notation p(t) ≡ u1(t), q(t) ≡ u2(t), v(t) ≡ u3(t), z(t) ≡ u4(t) have been
introduced. Consequently, the system (7.55) takes the form:

dp(t)

dt
= dus(t)

dt
+ Is

C1

[
exp

[−p(t)

VT

]
− 1

]
− Is

C1

[
exp

[
p(t) − q(t)

VT

]
− 1

]

= f1[t, p(t), q(t)]

dq(t)

dt
= Is

C2

[
exp

[
p(t) − q(t)

VT

]
− 1

]
− 1

RC2
[q(t) − z(t)] = f2[t, p(t), q(t), z(t)]

(7.56)

dv(t)

dt
= dus(t)

dt
+ Is

C3

[
exp

[
v(t)

VT

]
− 1

]
+ Is

C3

[
exp

[
z(t) − v(t)

VT

]
− 1

]

= f3[t, q(t), v(t), z(t)]

dz(t)

dt
= 1

RC4
[q(t) − z(t)] − Is

C4

[
exp

[
z(t) − v(t)

VT

]
− 1

]
= f3[t, q(t), v(t), z(t)]

Such formulated equation system together with the given control voltageus(t)
and initial conditionsp(t0) = p0, q(t0) = q0, v(t0) = v0, z(t0) = z0, has a form
of the typical four-dimensional initial value problem. Also, in this case the Runge–
Kutta method RK 4 have been used for the numerical solving. Thus, the following
formulas have been implemented in the corresponding computer program P7.13.

pn+1 = pn + 1

6
(k1 + 2k2 + 2k3 + k4)

qn+1 = qn + 1

6
(l1 + 2l2 + 2l3 + l4)

vn+1 = vn + 1

6
(m1 + 2m2 + 2m3 + m4)

zn+1 = zn + 1

6
(n1 + 2n2 + 2n3 + n4)

(7.57)
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where

k1 = �t · f1(tn, pn, qn, vn, zn)

l1 = �t · f2(tn, pn, qn, vn, zn)

m1 = �t · f3(tn, pn, qn, vn, zn)

n1 = �t · f4(tn, pn, qn, vn, zn)

k2 = �t · f1

(
tn + �t

2
, pn + k1

2
, qn + l1

2
, vn + m1

2
, zn + n1

2

)

l2 = �t · f2

(
tn + �t

2
, pn + k1

2
, qn + l1

2
, vn + m1

2
, zn + n1

2

)

m2 = �t · f3

(
tn + �t

2
, pn + k1

2
, qn + l1

2
, vn + m1

2
, zn + n1

2

)

n2 = �t · f4

(
tn + �t

2
, pn + k1

2
, qn + l1

2
, vn + m1

2
, zn + n1

2

)

k3 = �t · f1

(
tn + �t

2
, pn + k2

2
, qn + l2

2
, vn + m2

2
, zn + n2

2

)

l3 = �t · f2

(
tn + �t

2
, pn + k2

2
, qn + l2

2
, vn + m2

2
, zn + n2

2

)

m3 = �t · f3

(
tn + �t

2
, pn + k2

2
, qn + l2

2
, vn + m2

2
, zn + n2

2

)

n3 = �t · f4

(
tn + �t

2
, pn + k2

2
, qn + l2

2
, vn + m2

2
, zn + n2

2

)

k4 = �t · f1(tn + �t, pn + k3, qn + l3, vn + m3, zn + n3)

l4 = �t · f2(tn + �t, pn + k3, qn + l3, vn + m3, zn + n3)

m4 = �t · f3(tn + �t, pn + k3, qn + l3, vn + m3, zn + n3)

n4 = �t · f4(tn + �t, pn + k3, qn + l3, vn + m3, zn + n3)

The above mentioned computer program P7.13 has been used to calculate dis-
crete values of functionsu1(t), u2(t), u3(t) andu4(t).

The calculations have been performed for the following input data:u1(t = 0) =
p0 = 0, u2(t = 0) = q0 = 0, u3(t = 0) = v0 = 0, u4(t = 0) = z0 = 0, C1 = 10,

F, C2 = 100, 
F R = 50, �, �t = 0.00001, s andus(t) = 5 · sin(2π · 50 · t) ·
1(t), V, where 1(t) is the unit step function. Most interesting results, representing
the transient state and a fragment of the steady-state, are given in Tables 7.10 and
7.11 and illustrated in Fig. 7.14.
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Table 7.10 (Transient state)

t, s us(t), V u1(t), V u2(t), V u3(t), V u4(t), V

0.000 0.000000 0.000000 0.000000 0.000000 0.000000
0.001 1.545085 0.978257 0.566722 0.429552 0.000105
0.002 2.938926 1.672884 1.265473 0.425420 0.000568
0.003 4.045086 2.221521 1.822217 0.417301 0.001346
0.004 4.755283 2.568218 2.184708 0.401478 0.002356
0.005 5.000000 2.667626 2.328880 0.356556 0.003492
0.006 4.755283 2.413791 2.336832 0.093816 0.004658
0.007 4.045086 1.703594 2.335659 −0.504612 −0.105937
0.008 2.938926 0.597435 2.334309 −1.061272 −0.654085
0.009 1.545085 −0.429459 2.332646 −1.759503 −1.348033
0.010 0.000000 −0.430811 2.330615 −2.531708 −2.118882
0.011 −1.545085 −0.429552 2.328197 −3.362416 −2.890840
0.012 −2.938926 −0.425420 2.325409 −3.995884 −3.588426
0.013 −4.045086 −0.417301 2.322306 −4.543367 −4.143999
0.014 −4.755283 −0.401478 2.318975 −4.888928 −4.505304
0.015 −5.000000 −0.356556 2.315519 −4.987330 −4.648163
0.016 −4.755283 −0.093816 2.312035 −4.733279 −4.654013
0.017 −4.045086 0.616381 2.308553 −4.023081 −4.650531
0.018 −2.938926 1.722540 2.305075 −2.916922 −4.647054
0.019 −1.545085 2.914734 2.503234 −1.523081 −4.643565
0.020 0.000000 3.686072 3.273218 0.022003 −4.639802
0.021 1.545085 4.455915 4.044310 0.429552 −4.635652
0.022 2.938926 5.148521 4.741028 0.425420 −4.631134
0.023 4.045086 5.695146 5.295731 0.417301 −4.626303
0.024 4.755283 6.039861 5.656154 0.401478 −4.621244
0.025 5.000000 6.137514 5.798036 0.356555 −4.616063

Table 7.11 (Steady-state)

t, s us(t), V u1(t), V u2(t), V u3(t), V u4(t), V

200 0.000000 4.661485 9.012270 −4.472649 −9.106814
201 1.545085 6.206570 9.003215 −2.927564 −9.097759
202 2.938926 7.600412 8.994169 −1.533723 −9.088713
203 4.045086 8.706569 8.985132 −0.427565 −9.079676
204 4.755283 9.386994 9.005873 0.282363 −9.070646
205 5.000000 9.484338 9.144166 0.356519 −9.061567
206 4.755283 9.229748 9.144936 0.093794 −9.052465
207 4.045086 8.519549 9.135842 −0.616401 −9.043370
208 2.938926 7.413389 9.126757 −1.722561 −9.034285
209 1.545085 6.019547 9.117681 −3.116403 −9.025209
210 0.000000 4.474462 9.108614 −4.661488 −9.016142
211 −1.545085 2.929377 9.099556 −6.206573 −9.007084
212 −2.938926 1.535536 9.090507 −7.600414 −8.998036
213 −4.045086 0.429379 9.081467 −8.706572 −8.988795
214 −4.755283 −0.280568 9.072435 −9.388717 −9.008014
215 −5.000000 −0.356516 9.063354 −9.486269 −9.140971
216 −4.755283 −0.093792 9.054249 −9.231679 −9.146865
217 −4.045086 0.616403 9.045153 −8.521480 −9.137769
218 −2.938926 1.722562 9.036066 −7.415320 −9.128682
219 −1.545085 3.116404 9.026989 −6.021478 −9.119604
220 0.000000 4.661489 9.017920 −4.476393 −9.110535
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Correctness of the presented results has been confirmed by comparison of them
with the corresponding results obtained by means of the PSpice simulator. Also, in
this case an excellent conformability has been achieved.

7.5 An Example of Solution of Riccati Equation Formulated
for a Nonhomogenous Transmission Line Segment

Sections of nonhomogenous transmission lines are broadly used in the UHF and
microwave equipment, such as the broadband impedance transformers or different
kinds of filters. A description of such distributed circuits is usually made by using
the reflection coefficient function�(x, f ), defined at any plane (cross-section), for
example at the planex as shown in Fig. 7.15.
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The following differential equation of Riccati type has been derived in the litera-
ture for the reflection coefficient function�(x) determined for 0≤ x ≤ l and a fixed
value of frequencyf [8]:

d�(x)

dx
+ j 2β�(x) + N(x)

[
1 − �2(x)

] = 0 (7.58)

where

N(x) = 1

2

1

Z(x)

d Z(x)

dx
= 1

2

d

dx
ln [Z(x)]

�(x) = Zin(x) − Z(x)

Zin(x) + Z(x)

β = 2π

�( f )
is the propagation constant,�( f ) is the wavelength andZ(x) is the

function of the characteristic impedance (see Example 2.1).
In general, the reflection coefficient�(x, f ) is a complex quantity,�(x) =

a(x) + jb(x), and therefore Eq. (7.58) is equivalent to the following system of two
differential equations of the first order:
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da(x)

dx
= 2β · b(x) − N(x)

[
1 − a2(x) + b2(x)

]

db(x)

dx
= −2β · a(x) + 2N(x) · a(x) · b(x)

(7.59)

The function of local reflectionsN(x) fully determines changes of the character-
istic impedanceZ(x) for 0 ≤ x ≤ l . In the simplest case, whenN(x) = 0 means
that the impedanceZ(x) is constant. Naturally, in this situation the transmission line
section under analysis is homogenous and transmission line equation (known also
as the Smith chart transformation) can be used for its analysis [8, 9]. Another case
of interest is when

N(x) = 0.5 · α

Z(x) = Z01 exp(α · x)
(7.60)

where

α = 1

l
ln

(
Z02

Z01

)
, Z01 = Z(x = 0), Z02 = Z(x = l ), 0 ≤ x ≤ l .

In this case, the absolute value of the reflection coefficient function, defined at
the input plane 1− 1′ is

|�(x = l , θ )| ≡ |�(θ )| = 0.5 · |α · l |
∣∣∣∣
sin(θ )

θ

∣∣∣∣ (7.61)

where

θ ≡ θ ( f ) = 2π l

�( f )
= βl

is an electrical length of the line section expressed in radians. A modified version of
the above line section is an exponential compensated line section, for which:

N(x) = 0.5 · α

[
1 − 0.84 cos

(
2πx

l

)]
, 0 ≤ x ≤ l

Z(x) = Z01 exp

[
α

(
x − 0.134· l sin

(
2πx

l

))] (7.62)

where

α = 1

l
ln

(
Z02

Z01

)
, Z01 = Z(x = 0), Z02 = Z(x = l ), 0 ≤ x ≤ l .
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Also in this case the solution�(x = l , θ ) can be found analytically. However, in
the present example it has been evaluated numerically by integrating the equation
system (7.59). The Runge–Kutta method RK 4 has been used for this purpose. The
integration has been performed for:

l = 0.3m, � = 0.3m, Z01 = 50�, Z02 = 100�,

θ = [0, 0.25π, 0.5π, 0.75π, π, 1.25π, 1.5π, 1.75π, 2π, 2.25π, 2.5π, 3π ]

h ≡ dx = 0.00001

and initial conditions

a(x = 0) = 0

b(x = 0) = 0

Some values ofa(θ ) andb(θ ) obtained in this way are given in the second and
third columns of the Table 7.12. The next column of this table includes correspond-
ing values of|�(θ )| =

√
a2(θ ) + b2(θ ).

The normalized values of a function|�(θ )|n = |�(θ )|/|�(θ = 0)| are given in the
fifth column of Table 7.12 and illustrated in Fig. 7.16.

The values of|�(θ )| =
√

a2(θ ) + b2(θ ) obtained numerically are in good agree-
ment with the corresponding exact values calculated from the following
formula:

|�(x = l , θ )| ≡ |�(θ )| = 0.5 · |α · l |
∣∣∣∣
sin(θ )

θ

∣∣∣∣
∣∣∣∣1 − 0.84

θ2

θ2 − π2

∣∣∣∣

whereθ ≡ θ ( f ) = 2π l/�( f ) = βl is the electrical length of the line section
expressed in radians [8].

Table 7.12

θ, rad a(θ) b(θ) |�(θ)| |�(θ)|n
10−9� −0.333335 0.000000 0.333335 1.000000
0.25� −0.229729 0.220941 0.318733 0.956199
0.50� −0.009067 0.277122 0.277271 0.831813
0.75� 0.147260 0.158500 0.216351 0.649054
1.00� 0.147989 0.004931 0.148072 0.444216
1.25� 0.062342 −0.059095 0.085900 0.257700
1.50� 0.000816 −0.039566 0.039574 0.118723
1.75� −0.008419 −0.008699 0.012106 0.036319
2.00� −0.000476 −0.000006 0.000476 0.001428
2.25� 0.001068 −0.001045 0.001494 0.004484
2.50� −0.000001 −0.000010 0.000010 0.000032
2.75� 0.000625 0.000639 0.000894 0.002682
3.00� 0.000035 0.000000 0.000035 0.000106



7.6 An Example of Application of the Finite Difference Method 219

θ, rad10 2 3

0.2

0.0

0.6

| Γ(θ) | n

0.4

1.0

Fig. 7.16

7.6 An Example of Application of the Finite Difference Method
for Solving the Linear Boundary Value Problem

Solution of the boundary problem consists in determining such functiony(x), which
satisfies a given ordinary differential equation and at least two boundary conditions
y(x = a) = ya andy(x = b) = yb. An example of such problem can be given as
the solutiony(x) satisfying the following differential equation:

d2y(x)

dx2
= 2 · x + 3y(x) (7.63)

and boundary conditionsy(0) = 0, y(1) = 1. One of the efficient numerical
methods, used for solving boundary problems with two boundary conditions, is the
method of finite differences. Essential feature of this method consists in replacing
the differential equation by an approximating difference equation. For this end, an
integration interval [a, b] should be divided inton equal subintervals (parts) deter-
mined by coordinates

xi = x0 + i · h (7.64)

where i = 1, 2, 3, . . . , n, x0 = a, xn = b and h = (b − a)/n. Let yi = y(xi )
denote a discrete value of the desired functiony(x). The values ofyi = y(xi ) make
it possible to determine approximate values of derivatives of the function,y(x) using
the difference expressions (6.12) and (6.18), derived in Chap. 6. Thus, we can write:
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dy(xi )

dx
= y,(xi ) ≈ 1

2h
(yi+1 − yi−1) (7.65)

d2y(xi )

dx2
= y,,(xi ) ≈ 1

h2
(yi+1 − 2yi + yi−1)

The second formula of above presented makes it possible to replace differential
equation (7.63) by its difference equivalent, namely:

1

h2
(yi+1 − 2yi + yi−1) = 2 · xi + 3yi (7.66)

wherei = 1, 2, 3, . . . , n. Writing the difference equation (7.66) fori = 1, 2, 3, ..,

n − 1, we obtain the system ofn − 1 algebraic equations, which are linear in this
case. To focus our discussion, let us assume thatn = 10 and correspondinglyh =
(1 − 0)/10 = 0.1. According to (7.63) and (7.66) we obtain:

y2 − 2.03y1 + (y0 = 0) = 0.002

y3 − 2.03y2 + y1 = 0.004

y4 − 2.03y3 + y2 = 0.006

y5 − 2.03y4 + y3 = 0.008

y6 − 2.03y5 + y4 = 0.010

y7 − 2.03y6 + y5 = 0.012

y8 − 2.03y7 + y6 = 0.014

y9 − 2.03y8 + y7 = 0.016

(y10 = 1) − 2.03y9 + y8 = 0.018

(7.67)

The equation system (7.67) would now be presented in the matrix form, espe-
cially convenient when the Gauss elimination method is used for solving, i.e.:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.03 1 0 0 0 0 0 0 0
1 −2.03 1 0 0 0 0 0 0
0 1 −2.03 1 0 0 0 0 0
0 0 1 −2.03 1 0 0 0 0
0 0 0 1 −2.03 1 0 0 0
0 0 0 0 1 −2.03 1 0 0
0 0 0 0 0 1 −2.03 1 0
0 0 0 0 0 0 1 −2.03 1
0 0 0 0 0 0 0 1 −2.03

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

−0.982

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrixA of coefficients of the equation system written above is the special
case of the sparse square matrix, and is called in the literature as the ribbon matrix,
or more precisely three-diagonal matrix. Thus, for solving the equations formulated
above the method of fast elimination is recommended, see also Example 4.4. The
algorithm of this simple and efficient numerical method is described in Appendix C.
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Table 7.13

xi yi y(xi ) yi − y(xi )

0.0 0.000000 0.000000 0.000000
0.1 0.039417 0.039307 0.000110
0.2 0.082017 0.081820 0.000197
0.3 0.131078 0.130767 0.000311
0.4 0.190071 0.189679 0.000392
0.5 0.262766 0.262317 0.000449
0.6 0.353344 0.352868 0.000476
0.7 0.466523 0.466062 0.000461
0.8 0.607697 0.607308 0.000389
0.9 0.783102 0.782859 0.000243
1.0 1.000000 1.000000 0.000000

The valuesyi given in the second column of Table 7.13 constitute the desired
solution obtained in this manner.

For comparison, the third column of Table 7.13 includes the corresponding values
y(xi ) of the exact solution evaluated analytically [10].

y(x) = 5

3
· sinh(

√
3 · x)

sinh(
√

3)
− 2

3
· x

The measure of approximation of the differential equation (7.63) by the differ-
ence equation (7.66) is the set of deviations given in the fourth column.

The considered problem is an example of the linear boundary problem, for which
the differential equation can be presented in the following general form:

y(n)(x) = fn−1(x)y(n−1)(x) + fn−2(x)y(n−2)(x) + . . . + f1(x)y(x) + f0(x) (7.68)

wherey(k)(x) denotes a derivative of orderk and fk(x) is thek−function, bounded
and continuous over a given interval [a, b]. In the case of problems concerning non-
linear differential equations, corresponding systems of algebraic equations are also
nonlinear. Consequently, the nonlinear boundary problem becomes more difficult to
solve.
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Chapter 8
The Finite Difference Method Adopted
for Solving Laplace Boundary Value Problems

In mathematics, the boundary value problem is understood as the problem of finding
a function of many variables (n ≥ 2) satisfying a given partial differential equation
and taking fixed values at prescribed points of an integration region. As an exam-
ple of such problem, let us consider the following second order partial differential
equation:

A(x, y)
�2 f (x, y)

�x2
+ B(x, y)

�2 f (x, y)

�x�y
+ C(x, y)

�2 f (x, y)

�y2
+

D(x, y)
� f (x, y)

�x
+ E(x, y)

� f (x, y)

�y
+ F(x, y) · f (x, y) = 0

(8.1)

formulated for the functionf (x, y). The unknown functionf (x, y) should take at
prescribed points of the two-dimensional region the fixed values, called boundary
conditions. This name reflects the fact that for the majority of boundary value
problems, formulated for description of various physical phenomena, values of
the unknown functionf (x, y) are defined on the border of the given integra-
tion region. The functionsA(x, y), B(x, y), C(x, y), D(x, y), E(x, y) and F(x, y)
play the role of coefficients and for this reason they should be bounded and con-
tinuous over the given integration region. In case of many equations describ-
ing specific engineering problems, these functions take constant values as it is
illustrated below by Eqs. (8.2), and (8.4). In the mathematical literature, equa-
tions of the type (8.1) are often classified according to the value of discriminant
�(x, y) = B2(x, y)−4A(x, y)·C(x, y) into one of the following groups: hyperbolic
when�(x, y) > 0, parabolic when�(x, y) = 0 and elliptic when�(x, y) < 0.
The examples of partial differential equations, formulated for various physical
problems are:

– Laplace equation

∇2U (x, y, z) = 0 (8.2)

S. Rosłoniec,Fundamental Numerical Methods for Electrical Engineering,
C© Springer-Verlag Berlin Heidelberg 2008
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j + 1

i + 1

j

h h

i – 1

j – 1

i

Pi, j

k

k

p = k /h

Rectangular grid

Fig. 8.1

– Poisson equation

∇2U (x, y, z) + f (x, y, z) = 0 (8.3)

– Helmholtz equation

∇2U (x, y, z) + k2U (x, y, z) = 0 (8.4)

– wave equation

∇2U (x, y, z) − a2 �2U (x, y, z, t)

�t2
= 0 (8.5)

Triangular grid

Fig. 8.2
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Fig. 8.3 Trapezodial grid

– diffusion equation

∇2U (x, y, z) − b2 �U (x, y, z, t)

�t
= 0 (8.6)

where the Laplace operator is defined as:

∇2U (x, y, z) = �2U (x, y, z)

�x2
+ �2U (x, y, z)

�y2
+ �2U (x, y, z)

�z2

Equations (8.2)–(8.6) ennumerated above can also be written in other coordi-
nate systems, different from cartesian one. The most common are the cylindrical

Fig. 8.4

Polar grid
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(ρ, ϕ, z) and the spherical (r, ϕ, θ ) systems. Corresponding formulas for calculating
the Laplacian can be found in the literature available on this subject, for example
in [1–4]. The essence of the finite difference method adopted for solving the above
partial differential equations is replacement of the Laplacian of the desired function
by its difference equivalent. For every specific boundary problem, we should choose
such coordinate system and the discretization grid, for which the equivalent differ-
ence equation will approximate most accurately the original differential equation.
Also, the boundary conditions would be satisfied to an acceptable extent. This prob-
lem is treated extensively in the literature, for example in [2]. Therefore, only a few
examples of the girds commonly used are presented in Figs. 8.1, 8.2, 8.3 and 8.4.

8.1 The Interior and External Laplace Boundary Value Problems

For the Laplace equation (8.2), two boundary value problems (in the sense of Dirich-
let) can be formulated. In order to explain their essential meaning, let us assume that
a regionV is given, for which the edgeSbelongs to theC2 class (piecewise smooth).
The interior boundary value problem consists in finding such harmonic functionU ,
that satisfies Eq. (8.2) and at every pointP → PS ∈ S the limit of this function
achieves valueU (PS) that is equal to valueg(S)S=PS of the given boundary function
g(S). The external boundary value problem, in the sense of Dirichlet, consists also in
finding the functionU satisfying the Laplace equation (8.2) in the regionVE being
the complement of the regionV , i.e.,VE = E − V , whereE denotes the Euclidean
space. Moreover, for every pointPS belonging to the edgeS of the regionVE, the
unknown function should satisfy the following conditions:

U (PS) = g(PS)

U

(
1

r

)
→ 0 when r =

√
x2 + y2 + z2 → ∞

For the Laplace equation, apart from the Dirichlet boundary value problems de-
scribed above, we can formulate also Neumann boundary value problems, which
can also be considered as internal and exterior problems. Solution of the interior
Neumann problem consists in finding a function satisfying the Laplace equation
(8.2) in a given regionV , and the following condition:

(
�U

�n

)

P=PS

= k(PS)

in whichn denotes the normal direction to the surfaceSandk(P) is a given bound-
ary function determined over the surfaceSand satisfying the following condition:

∫

S

k(P)ds = 0
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In case of the external Neumann boundary value problem, the solution should
satisfy the Laplace equation (8.2) in the complementary regionVE and the following
conditions:

∣∣∣∣∣
(

�U

�n

)

P=PS

∣∣∣∣∣ = k(PS),U

(
1

r

)
→ 0 and

�U (r )

�n
→ 0 when

r =
√

x2 + y2 + z2 → ∞.

In most algorithms for numerical solving of boundary value problems, condition

∣∣∣∣∣
(

�U

�n

)

P=PS

∣∣∣∣∣ = k(PS)

is usually taken into account by introducing additional fictious nodes with corre-
sponding values of the unknown functionU . For this end, the square or rectangular
grid should be placed in such a way that its nodes lie on both sides of the border
line S. An example of the procedure of introducing additional fictious nodes, as for
example nodePF , is shown in Fig. 8.5.

The line PF PQ, perpendicular to the edgeS and crossing this edge at pointPS,
is drawn through the nodePF . Such new pointP is then determined on this line for
which |PSP| = |PSPF |. Now the fictious potentialUF of the fictious nodePF can
be calculated from the formula:

UF = UP + k(PS) · |PSP| (8.7)

y

x

P

PD PEPC

PQ

PB PA

PR S PS PF

Fig. 8.5
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in which UP ≡ U (P) is the coefficient calculated using the linear interpolation
method, from the values of the unknown function at pointsPE andPR. In a similar
way, knowing two values,UA = U (PA) andUB = U (PB), potentialUR ≡ U (PR)
is then found. In the case whenk(PS) = 0, desired value ofUF ≡ U (PF ) is equal
to UP ≡ U (P). In particular case whenk(PS) = 0 and the edgeS is a straight line
oriented in parallel with respect to horizontal and vertical sides of the grid, deter-
mination of fictious nodes and corresponding fictious values of the desired function
becomes much more easier. One simple algorithm serving to solve this particular
problem will be described in Example 8.4 given below.

8.2 The Algorithm for Numerical Solving of Two-Dimensional
Laplace Boundary Problems by Using the Finite
Difference Method

The Laplace equation (8.2) formulated for the functionU (x, y), written in the sys-
tem of rectangular coordinates has the form:

�2U (x, y)

�x2
+ �2U (x, y)

�y2
= 0 (8.8)

Numerical solution of this equation, also by means of the finite difference
method, consists in replacing the second order partial derivatives of this equation
by corresponding differential expressions, similar to (6.44) derived in Chap. 6. Let
us assume that functionU (x, y) is analyzed in the close neighborhood of the point
Pi, j ≡ (xi , yj ) at whichU (Pi, j ) = Ui, j , see Fig. 8.6.

y

x

yj +1

Pi, j +1

Pi, j –1

Pi –1,j Pj +1,j

yj –1

xi –1 xi +1xi

y
j

h

r h

p h
q h

Pi, j

Fig. 8.6
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The difference formula approximating the Laplacian (8.8) can be obtained by
developing the functionU ≡ U (x, y) in the form of Taylor series, namely:

Ui−1, j = Ui, j − h

(
�U

�x

)

Pi, j

+ 1

2!
h2

(
�2U

�x2

)

Pi, j

− 1

3!
h3

(
�3U

�x3

)

Pi, j

+ . . . (8.9)

Ui+1, j = Ui, j + qh

(
�U

�x

)

Pi, j

+ 1

2!
q2h2

(
�2U

�x2

)

Pi, j

+ 1

3!
q3h3

(
�3U

�x3

)

Pi, j

+ . . .

(8.10)

Ui, j +1 = Ui, j + ph

(
�U

�y

)

Pi, j

+ 1

2!
p2h2

(
�2U

�y2

)

Pi, j

+ 1

3!
p3h3

(
�3U

�y3

)

Pi, j

+ . . .

(8.11)

Ui, j −1 = Ui, j − rh

(
�U

�y

)

Pi, j

+ 1

2!
r 2h2

(
�2U

�y2

)

Pi, j

− 1

3!
r 3h3

(
�3U

�y3

)

Pi, j

+ . . .

(8.12)

whereUi−1, j = U (Pi−1, j ),Ui, j +1 = U (Pi, j +1),Ui+1, j = U (Pi+1, j ),Ui, j −1 =
U (Pi, j −1) andUi, j = U (Pi, j ). After multiplying both sides of the series (8.9) by
the coefficientq and adding them to the series (8.10) we obtain the expression:

qUi−1, j + Ui+1, j = (1 + q) · Ui, j + 1

2!
h2q(1 + q)

(
�2U

�x2

)

Pi, j

+ O(h3)

Neglecting the terms including steph in the third and higher powers, it becomes:

(
�2U

�x2

)

Pi, j

≈ 1

h2

[
2Ui−1, j

1 + q
+ 2Ui+1, j

q(1 + q)
− 2Ui, j

q

]
(8.13)

In the similar way, using the series (8.11) and (8.12), multiplied by the coeffi-
cientsr and p, respectively, the following difference expression approximating the
second order partial derivative with respect toy can be written as:

(
�2U

�y2

)

Pi, j

≈ 1

h2

[
2Ui, j +1

p(p + r )
+ 2Ui, j −1

r (p + r )
− 2Ui, j

r · p

]
(8.14)

Adding both sides of relations (8.13) and (8.14) we obtain the general equation:

2Ui−1, j

1 + q
+ 2Ui+1, j

q(1 + q)
+ 2Ui, j +1

p(p + r )
+ 2Ui, j −1

r (p + r )
− 2Ui, j

q
− 2Ui, j

r · p
= 0 (8.15)

called the difference Laplace equation of the orderh2. For the regular grid with
rectangular meshes (q = 1, p = r ), this equation takes a simpler form:
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Ui−1,j + Ui+1,j + Ui, j +1

p2
+ Ui, j −1

p2
− 2Ui,j − 2Ui, j

p2
= 0 (8.16)

Particular case of the regular grid with rectangular meshes is the “square” grid,
(p = q = r = 1), for which the difference equation (8.15) reduces itself to:

Ui−1, j + Ui+1, j + Ui, j +1 + Ui, j −1 − 4 · Ui, j = 0 (8.17)

The difference Laplace equation in the form (8.15), (8.16) or (8.17), should be
satisfied at every internal point of any given two-dimensional regionG, and this
property refers of course also to each point (node) of the grid defined in this region,
as in Fig. 8.7.

Writing the difference Laplace equation for each internal node of the introduced
grid, the system of linear equations can be obtained. The unknown variables of this
system are values of the desired functionU ≡ U (x, y) at individual nodes. At
intersection points of the grid with the edge (contour)C of the regionG, values of
the desired function are known, because they are equal to corresponding values of
the given boundary functiong(C). The number of equations should be in general
the same as the number of unknown values of the desired function. It is rather easy
to prove that this number is the same as the number of nodes of the introduced grid.
Solution of the system of linear equations obtained in this way may be obtained
using several methods described in Chap. 1, such as the Jacobi, Gauss–Seidel, as
well as the successive over-relaxation method (SOR) [4, 5]. For using the iterative
methods mentioned above, the difference Laplace equation (8.15) should be written
in the following equivalent form:

Fig. 8.7

g(C) = 1V

g(C) = 0V

Square grid

Region V
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Ui, j = pqr

pr + q

[
Ui−1, j

1 + q
+ Ui+1, j

q(1 + q)
+ Ui, j +1

p(p + r )
+ Ui, j −1

r (p + r )

]
(8.18)

Particular cases of this equation written for rectangular and square grids are,
respectively:

Ui, j = p2

2(1+ p2)

[
Ui−1, j + Ui+1, j + Ui, j +1

p2
+ Ui, j −1

p2

]
(8.19)

Ui, j = 1

4

[
Ui−1, j + Ui+1, j + Ui, j +1 + Ui, j −1

]
(8.20)

The method of simultaneous substitutions (Jacobi method, see Sect. 1.2.2) is the
simplest iteration method, which can be used for calculating consecutive approxi-
mations of the unknown functionUi, j ≡ U (xi , yj ), according to formulas (8.18),
(8.19) or (8.20). Let us assume therefore thatk approximations of the function
Ui, j ≡ U (xi , yj ) are known for all internal nodes of the introduced grid, namely
U (k)

i, j ≡ U (k)(xi , yj ). Next, i.e. (k + 1) approximations of this function are calculated
using the appropriate formula (8.18), (8.19) or (8.20), on the basis of the previ-
ous values of this function, determined during the previous iterationk. When the
approximations (k + 1) for all internal nodes are known, they are substituted simul-
taneously in place of the previous approximate vallues (obtained during the iteration
k). Thanks to that, the sequence of computations performed for individual internal
nodes of the grid does not influence the values of consecutive approximations. As
the criterion for terminating the calculations the following condition is used most
commonly:

max
{∣∣U (k+1)(xi , yj ) − U (k)(xi , yj )

∣∣} ≤ ε

2 ≤ i ≤ I − 1

2 ≤ j ≤ J − 1

(8.21)

whereε is an arbitrarily small, positive number, determining the accuracy of the
evaluated approximate solution. The method of simultaneous substitutions is sel-
dom used for practical purposes, because convergence of its calculation process
is insufficient. A more efficient version of this iterative method is the method of
subsequent substitutions known also as Liebmann computional procedure.

8.2.1 The Liebmann Computational Procedure

It is well known that the method of simultaneous substitutions (Jacobi), presented
in the previous subsection, does not ensure sufficiently good convergence. The
reason of this disadvantege is that new more accurate values of the evaluated
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function are not introduced until they are calculated for all internal nodes of the
grid. In the subsequent substitution method (Gauss–Seidel, see Sect. 1.2.2), each
consecutive approximation is used immediately after its determination. Accord-
ing to this rule, value of the functionU (k)

i, j ≡ U (k)(xi , yj ) calculated ink itera-
tion for the internal node (xi , yj ) is used immediately for calculating value of this
function in the adjacent node, namelyU (k)

i+1, j ≡ U (k)(xi+1, yj ), and so on. Such
organized computational process is often called the Liebmann iteration method
or Liebmann computational procedure. Figure 8.8 presents flow diagram of the
computational algorithm related to this procedure adopted for solving the differ-
ence Laplace equation discussed above. The first stage of this algorithm is shown
in Fig. 8.8 (b) (a). At the beginning, the data defining geometrical shape of the
boundaryC delimitating the interior regionG ≡ V , parametersp, q and r of
the adopted grid, as well as the boundary valuesU (PC) = g(PC) for the desired
function are introduced. In this casePC denotes the point of intersection of the
grid with the given contourC. Simultaneously, a corresponding “flag” is assigned
to each internal node of the grid, showing which expressions, (8.18), (8.19) or
(8.20), should be used to compute a consecutive approximation of the unknown
function Ui, j ≡ U (xi , yj ). Integral part of this preparative stage is a procedure
called “Initial approximation”, serving to determine the initial, approximate val-
ues of the functionUi, j

(0) ≡ U (0)(xi , yj ), on the basis of the known boundary
functiong(C).

A theoretical basis for this auxiliary procedure makes the formula (8.18). The
corresponding calculation process is illustrated in Example 8.1. It has been con-
firmed experimentally that application of this initial procedure reduces the number
of iterations, necessary to obtain satisfactory, sufficiently exact approximation of the
desired solution. Omission of this procedure is equivalent to assumption that at all
internal nodes of the grid, initial values of the desired function are equal to zero,
namelyUi, j

(0) ≡ U (0)(xi , yj ) = 0.
The second stage of the algorithm under discussion is illustrated in Fig. 8.8 (b).

For each internal node, the calculations ofU (xi , yj ) are performed iteratively
according to appropriate difference formula giving consecutive, more and more
accurate approximations of the desired function. The quantity used in the present
algorithm to evaluate the accuracy of an approximate solution is the maximum
deviation, defined for each iteration:

Rk = max
{∣∣Ui, j

(k) − Ui, j
(k−1)

∣∣} (8.22)

where:k = 1, 2, 3, 4, . . . , 2 ≤ i ≤ I − 1, 2 ≤ j ≤ J − 1. This deviation is
determined on the basis of nodal values of the functionUi, j ≡ U (xi , yj ), cal-
culated for the two consecutive iterations. In case when this deviation is not less
than a predetermined positive numberε (defining accuracy of the solution), the
calculation process is continued during the consecutive iteration (k + 1). In the
opposite case, solution obtained duringk iteration can be assumed as sufficiently
accurate. In the example presented below it is justified that the calculation process
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Fig. 8.8 (a)

organized in such way is always convergent. It means that it is always possible
to achieve good approximation of the desired solution for whichRk → 0, see
formula (8.22).

Example 8.1Figure 8.9 (a) presents a transverse section of two perfect conductors
with different electrical potentials. In fact, these conductors may be treated as the
TEM transmission line for which the Laplace boundary value problem can be for-
mulated. However, a transmission line of this type is not optimum in many aspects
and therefore it is not recommended for telecommunication applications. It is con-
sidered here only for didactic reasons.

START
a)

A

Data:

- border C of the internal region V

- border function g(C)

- grid parameters: I, J

- solution parameter: ε

Evaluating the coefficients p, q and r 
for particular interial grid nodes

Evaluating the values U(PC 
) of the

desired potential function at border
grid nodes

Calculating the initial values U  

(0)(xi, yj 
)

of the desired potential function at
Interial grid nodes
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Fig. 8.8 (b)

Let us assume that electrical potentials of these conductors are equal to 1 and
0 V, respectively. RegionV , for which the Laplace boundary value problem can
be formulated, is the internal region limited by these conductors. Potential function
U ≡ U (x, y) defined over this region can be determined numerically, using rectan-
gular grid, similar to the one shown in Fig. 8.9 (b). At all points (nodes), common to
the grid and contour of the integration region, the solution takes values equal to the

Ab)

j = 2, Rm = 0

i = 2

V = U(xi,yj )

(8.18)
(8.19)
(8.20)
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Fig. 8.9

corresponding potentials of the conductors. As the value of potential function in the
slot between the two conductors, we take the arithmetical mean of potentials of both
conductors. As shown in Fig. 8.9, the square grid being applied has the following
parameters:a = 12 mm, b = 6 mm, I = 7, J = 4, q = 1, p = r = 1. At the
boundary nodes the desired solutionU ≡ U (x, y) takes the following values:

U (x1, y1) = U (x7, y1) = 0.5, V

U (xi , y1) = 1, V for 2 ≤ i ≤ 6

U (x1, yj ) = U (x7, yj ) = 0, V for 2 ≤ j ≤ 4

U (xi , y4) = 0, V for 1 ≤ i ≤ 7

(8.23)

As it is assumed above that the discretization grid adopted for this example has
square meshes, and therefore relation (8.17) can be used to compute the values of
functionU ≡ U (x, y) at (I − 2)(J − 2) = 10 internal nodes. Difference equations
formulated in this way form the following equation system:
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U ∗
1,2 + U2,3 + U3,2 + U ∗

2,1 − 4 · U2,2 = 0

U2,2 + U3,3 + U4,2 + U ∗
3,1 − 4 · U3,2 = 0

U3,2 + U4,3 + U5,2 + U ∗
4,1 − 4 · U4,2 = 0

U4,2 + U5,3 + U6,2 + U ∗
5,1 − 4 · U5,2 = 0

U5,2 + U6,3 + U ∗
7,2 + U ∗

6,1 − 4 · U6,2 = 0

U ∗
1,3 + U ∗

2,4 + U3,3 + U2,2 − 4 · U2,3 = 0

U2,3 + U ∗
3,4 + U4,3 + U3,2 − 4 · U3,3 = 0

U3,3 + U ∗
4,4 + U5,3 + U4,2 − 4 · U4,3 = 0

U4,3 + U ∗
5,4 + U6,3 + U5,2 − 4 · U5,3 = 0

U5,3 + U ∗
6,4 + U ∗

7,3 + U6,2 − 4 · U6,3 = 0

(8.24)

In this equation system boundary values (8.23) are additionally marked off by
asterisks. Of course, the system (8.24) can be written in the following matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 0 0 −1 0 0 0 0
−1 4 −1 0 0 0 −1 0 0 0

0 −1 4 −1 0 0 0 −1 0 0
0 0 −1 4 −1 0 0 0 −1 0
0 0 0 −1 4 0 0 0 0 −1

−1 0 0 0 0 4 −1 0 0 0
0 −1 0 0 0 −1 4 −1 0 0
0 0 −1 0 0 0 −1 4 −1 0
0 0 0 −1 0 0 0 −1 4 −1
0 0 0 0 −1 0 0 0 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U2,2

U3,2

U4,2

U5,2

U6,2

U2,3

U3,3

U4,3

U5,3

U6,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U ∗
1,2 + U ∗

2,1

U ∗
3,1

U ∗
4,1

U ∗
5,1

U ∗
6,1 + U ∗

7.2

U ∗
1,3 + U ∗

2,4

U ∗
3,4

U ∗
4,4

U ∗
5,4

U ∗
6,4 + U ∗

7.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.25)

The coefficient matrix of equation system (8.25) is a diagonally dominant matrix,
and therefore convergence of the calculation process used for solving this system by
means of the Gauss–Seidel iterative method is guaranteed, see Chap. 1. For this end,
let us transform the equation system (8.25) into the following equivalent form:

U2,2 = 1

4
(U ∗

1,2 + U2,3 + U3,2 + U ∗
2,1)

U3,2 = 1

4
(U2,2 + U3,3 + U4,2 + U ∗

3,1)

U4,2 = 1

4
(U3,2 + U4,3 + U5,2 + U ∗

4,1)

U5,2 = 1

4
(U4,2 + U5,3 + U6,2 + U ∗

5,1)

U6,2 = 1

4
(U5,2 + U6,3 + U ∗

7,2 + U ∗
6,1)
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U2,3 = 1

4
(U ∗

1,3 + U ∗
2,4 + U3,3 + U2,2) (8.26)

U3,3 = 1

4
(U2,3 + U ∗

3,4 + U4,3 + U3,2)

U4,3 = 1

4
(U3,3 + U ∗

4,4 + U5,3 + U4,2)

U5,3 = 1

4
(U4,3 + U ∗

5,4 + U6,3 + U5,2)

U6,3 = 1

4
(U5,3 + U ∗

6,4 + U ∗
7,3 + U6,2)

It is not difficult to verify that similar difference equations should be written
for using the Liebmann computational procedure. This fact confirms the conclusion
that the Liebmann method is identical to the Gauss–Seidel method, provided that
equations of the system are written in appropriate order. For solving this system
of linear equations by means of an arbitrary iterative method, the initial values of
Ui, j

(0) ≡ U (0)(xi , yj ) have to be known. Naturally, the final soultion should be
independent of the adopted initial approximation. Nevertheless, the initial values
of Ui, j

(0) ≡ U (0)(xi , yj ) have significant influence on divergence of the calculation
process. In general, that process can begin from valuesUi, j

(0) ≡ U (0)(xi , yj ) = 0,
but such approach is usually inefficient. In order to find a “more precise” initial ap-
proximation, it is possible to use a formula similar to Eq. (8.18) and given boundary
conditions. As an example, let us calculateU (0)

5,3 ≡ U (0)(x5, y3), that is initial value
of the solution evaluated at pointP5,3 ≡ P(i = 5, j = 3), see Figs. 8.9(b) and 8.10.

For an arbitrary internal node

U (0)
i, j ≡ U (0)(xi , yj ) = pqr

pr + q

[
U (x1, yj )

1 + q
+ U (xI , yj )

q(1 + q)
+ U (xi , yJ)

p(p + r )
+ U (xi , y1)

r (p + r )

]

y

b

xa

i = 5

j = 3
U1,3

U5,4

U7,3U5,3

U5,1

a5

c3

d3

b5

Fig. 8.10
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where

p ≡ p(i, j ) = cj

ai
= b

a
· I − 1

J − 1
· J − j

i − 1
, q ≡ q(i ) = bi

ai
= I − i

i − 1
,

r ≡ r (i, j ) = dj

ai
= b

a
· I − 1

J − 1
· j − 1

i − 1

For a = 12 mm, b = 6 mm, I = 7, J = 4, , i = 5, j = 3, the parameters
introduced above take the following values:p = 1/4, q = 1/2 andr = 1/2. Thus,

U (0)
5,3 ≡ U (0)(x5, y3) = pqr

pr + q

[
U (x1, y3)

1 + q
+ U (x7, y3)

q(1 + q)
+ U (x5, y4)

p(p + r )
+ U (x5, y1)

r (p + r )

]

= 1

10

[
0

3/2
+ 0

3/4
+ 0

3/16
+ 1

3/8

]
= 8

30
≈ 0.2666666, V

Initial valuesUi, j
(0) ≡ U (0)(xi , yj ), calculated similarly for all internal nodes of the

grid, are given in Table 8.1
Next approximations (k = 1, 2, 3, . . .) of the desired function,Ui, j

(k) ≡ U (k)

(xi , yj ), are calculated according to the algorithm shown in Fig. 8.8 (b), where dif-
ference formula (8.20) is used, because meshes of the introduced discretization grid
are square. Some calculation results obtained in the first, fifth, tenth and fifteenth
iterations are written in Tables 8.2, 8.3, 8.4 and 8.5, respectively.

For ε ≤ 10−7, see formula (8.22), conditionRk ≤ ε is satisfied only by the
approximate solution obtained in the 18th iteration, (k = 18, Rk = 5.15× 10−8).

8.2.2 The Successive Over-Relaxation Method (SOR)

In order to explain the main feature of the SOR method, let us consider its algorithm
adopted to solving the Laplace boundary problem. In case when the grid with square
meshes, (p = q = r = 1) is used, the difference equation approximating the
original differential equation has the form similar to one described by (8.17). The

Table 8.1 (k = 0)

j/ i → 2 3 4 5 6

2 0.47619047 0.53333333 0.54545454 0.53333333 0.47619047
3 0.23809523 0.26666666 0.27272727 0.26666666 0.23809523

Table 8.2 (k = 1, Rk = 6.07× 10−2)

j/ i → 2 3 4 5 6

2 0.44285714 0.56374458 0.59245129 0.58382711 0.45548058
3 0.17738095 0.25346320 0.27814529 0.27501691 0.18262437
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Table 8.3 (k = 5, Rk = 7.98× 10−4)

j/ i → 2 3 4 5 6

2 0.43754156 0.57635557 0.60879599 0.57625900 0.43757975
3 0.17395714 0.25804123 0.28129719 0.25790405 0.17387095

Table 8.4 (k = 10, Rk = 2.20× 10−5)

j/ i → 2 3 4 5 6

2 0.43739010 0.57577734 0.60809664 0.57576701 0.43737746
3 0.17374866 0.25758931 0.28081889 0.25758219 0.17373991

Table 8.5 (k = 15, Rk = 5.36× 10−7)

j/ i → 2 3 4 5 6

2 0.43737411 0.57575802 0.60808116 0.57575782 0.43737382
3 0.17373763 0.25757606 0.28080832 0.25757589 0.17373743

notion of residuum of this equation formulated for node (xi , yj ) is now introduced,
namely

Resi, j = Ui−1, j + Ui+1, j + Ui, j +1 + Ui, j −1 − 4 · Ui, j (8.27)

In general, the value of residuum (8.27) can be negative, zero or positive. Of
course, the Eq. (8.27) is exactly satisfied at node (xi , yj ), if Resi, j = 0. According
to (8.27), residuum Resi, j will change by−4, if the functionUi, j ≡ U (xi , yj ) will
be incremented by 1. Simultaneously, residua evaluated at four adjacent nodes will
increase by 1. Consequently, if we intend to reduce the residua Resi, j up to zero it is
necessary to add (Resi, j )/4 to the function valueUi, j ≡ U (xi , yj ) computed for this
node, that is (xi , yj ). This operation will of course result in unproportional changes
of residua in the adjacent nodes. Reducing in this way residua Resi, j successively in
each internal node, we obtain more precise approximations of the desired solutions.
After terminating calculations for all internal nodes, the process should be repeated
from the beginning in the next iteration. The computational process organized in
this way (relaxation method) is identical to the method of successive substitutions
(Liebmann computational procedure), which is in turn a particular version of the
Gauss–Seidel method. It has been confirmed by numerous numerical experiments
that significant acceleration of convergence of the calculational process can be
achieved by changing the mesh point valueUi, j ≡ U (xi , yj ) by an increment,
greater than (Resi, j )/4. A method extrapolating this unique property is called the
SOR method [5, 6]. Seeking possibly precise description of the relevant algorithm,
let us assume that the value of the functionUi, j ≡ U (xi , yj ) obtained using this
method in the (k − 1) iteration is equal toU (k−1)

i, j ≡ U (k−1)(xi , yj ). Let us assume

also thatU (L ,k)
i, j ≡ U (L ,k)(xi , yj ) denotes the value of this function obtained during

the (k−1) iteration by means of the Liebmann successive substitution method. When
the functionUi, j ≡ U (xi , yj ) is determined using the SOR method, its discrete value
in thek iteration is calculated from the following, extrapolating formula:
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Table 8.6 (k = 1, Rk = 7.17× 10−2)

j/ i → 2 3 4 5 6

2 0.43766388 0.56698200 0.60070873 0.59407990 0.45521657
3 0.16642121 0.24917477 0.28013625 0.27985568 0.17530401

U (k)
i, j = U (k−1)

i, j + ω · [U (L ,k)
i, j − U (k−1)

i, j ] (8.28)

where 1≤ ω < 2 is the relaxation coefficient. Naturally, the convergence speed
of the iterative computational process depends on the value of coefficientω. In the
extreme case, whenω = 1, this speed attains its minimum, and the SOR method
transforms itself to the Liebmann successive substitution method. Evaluating the
optimum value ofω, for which the most rapid convergence can be achieved is a
rather complex issue, remaining beyond the scope of this book. In practice, it is
evaluated most frequently from the following formula:

ω = 4

2 +
√

4 − [
cos( π

I −1) + cos( π
J−1)

]2 (8.29)

whereI andJ are maximum indexes of the applied rectangular grid [4].

Example 8.2Some consecutive approximate solutions of the boundary problem pre-
sented in previous example, calculated by means of the SOR method, are given in
Tables 8.6, 8.7 and 8.8. All calculations have been performed forω = 1.16 evaluated
according to formula (8.29). Initial approximations (k = 0), for these solutions are
given in Table 8.1.

For ε ≤ 10−7, see formula (8.22), the conditionRk ≤ ε is satisfied by the ap-
proximate solution obtained in the 11th iteration (k = 11, Rk = 8.88 × 10−8).
According to the results obtained in Example 8.1, the method of successive sub-
stitutions (ω = 1) makes it possible obtaining a good approximate solution (the
same order of accuracy, defined byRk ≤ ε = 10−7), only after 18 iterations
(k = 18, Rk = 5.15× 10−8). An influence of the over-relaxation coefficientω on
the convergence obtained in the present example (expressed bykmin) is illustrated
by the data written in Table 8.9.

Minimum numberskmin of necessary iterations, given in Table 8.9 has been de-
termined forRk ≤ ε = 10−7. These results fully confirm usefulness of the relation
(8.29) for computing the over-relaxation coefficientω, taking the value close to
optimum.

Table 8.7 (k = 5, Rk = 1.79× 10−3)

j/ i → 2 3 4 5 6

2 0.43818196 0.57607508 0.60825387 0.57582314 0.43739248
3 0.17408658 0.25770889 0.28088501 0.25760877 0.17374662
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Table 8.8 (k = 10, Rk = 4.64× 10−7)

j/ i → 2 3 4 5 6

2 0.43737384 0.57575764 0.60808084 0.57575759 0.43737374
3 0.17373741 0.25757581 0.28080809 0.25757576 0.17373737

Another, equally important problem consists in choosing the mesh sizeh of the
grid, which undoubtedly influences on accuracy of the calculational process. It has
been confirmed in the literature that the approximate solution is a function of even
powers inh and is related to the accurate solutionUR of the differential equation
(but not of the difference equation) by the following formulaUi, j (h) = UR+a2h2+
a4h4+ . . ., in whicha2, a4, . . . are constant coefficients [2]. This formula constitutes
a theoretical basis of the Richardson extrapolation procedure. An essence of this
procedure consists in multiple solution of the boundary problem for different values
of the step sizeh and on subsequent extrapolation of these results for the caseh = 0.
This problem is illustrated below by computational results given in Example 8.3.

Example 8.3In present example, the problem considered in Examples 8.1 and 8.2
has been solved again (five times) by using the grids with different square meshes.
The corresponding grid parameters and mesh sizesh (in millimetres) are given in
the three first rows of the Table 8.10.

In the last row of this table, the values of the approximate solutionUi, j ≡
U (xi , yj ) evaluated at the pointPA are given, see Fig. 8.11. Coordinates of the point
PA are:x = 2 mm andy = 2 mm. The following conditionRk ≤ ε = 10−9 has been
adopted as the stop criterion, see formula (8.22). The presented values ofUA have
been used to evaluate the extrapolating polynomialUA(h) = UR+a2h2+a4h4 where
UR = 0.439283788,a2 = −4.766666666× 10−4 anda4 = −1.433600001× 10−6.
Thus, the valueUA(h → 0) = UR = 0.439283788 can be treated as the ex-
act value ofUA at the pointPA. In this case, the absolute value of difference
|UR − U (h = 0.125)| is less than 7.5 × 10−6.

Here, it should be pointed out that pointPA is identical to all internal nodes (grid
points) ((I − 1)/6 + 1, (J − 1)/3 + 1) of each discretization grids being used.

Table 8.9

ω 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
kmin 18 16 14 12 11 12 13 16 19

Table 8.10

I 7 13 25 49 97
J 4 7 13 25 49
h 2 1 0.5 0.25 0.125
ωopt 1.155 1.427 1.659 1.812 1.901
UA 0.437373737 0.438805713 0.439164532 0.439253991 0.439276340
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Fig. 8.11

8.3 Difference Formulas for Numerical Calculation
of a Normal Component of an Electric Field Vector
at Good Conducting Planes

In the previous sections, it has been assumed that functionUi, j ≡ U (xi , yj ), where
1 ≤ i ≤ I , 1 ≤ j ≤ J, is the function of scalar potential of the electric field. Ac-
cording to general principles of electrodynamics, the function of the scalar potential
makes it possible evaluating the vector electric fieldEi, j ≡ E(xi , yj ) over the same
internal region, i.e., for 1≤ i ≤ I , 1 ≤ j ≤ J. For this purpose, the following
fundamental formula can be used:

E(Pi, j ) = −∇U (xi , yj ) = −ix
�U (xi , yj )

�x
− iy

�U (xi , yj )

�y
(8.30)

where:ix andiy are unity vectors (versors) of the utlilized cartesian coordinate sys-
tem. The partial derivatives appearing in the formula (8.30) can be calculated nu-
merically by using the appropriate difference formulas, discussed in Chap. 6. To this
end, the second order central difference formulas are used most frequently. Thus,

�U (xi , yj )

�x
≈ U (xi+1, yj ) − U (xi−1, yj )

2h
= Ui+1, j − Ui−1, j

2h
�U (xi , yj )

�y
≈ U (xi , yj +1) − U (xi , yj −1)

2k
= Ui, j +1 − Ui, j −1

2k

(8.31)
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whereh andk are sufficiently small “steps” referring to the variablesx and y, re-
spectively, see Fig. 8.1. For calculating the partial derivatives at external nodes lying
on the contourC of the given inernal region, the appropriate one-side approximation
should be used, see relation (6.11).

Example 8.4Tables 8.11, 8.12 and 8.13 present some values of the functionUi, j ≡
U (xi , yj ), evaluated in the previous, namely 8.3 example for 1≤ i ≤ 97 and 1≤
j ≤ 49.

The above values of functionUi, j ≡ U (xi , yj ) were subsequently used to cal-
culate the componentsEx andEy of electric field vectorsE at pointsPB ≡ P33,33,
PC ≡ P49,33 and PD ≡ P65,33, which are also indicated in Fig. 8.11. The electric
field vectors, calculated according to (8.30) and (8.31), are equal to:

EB = E(PB) = −ix26.857048+ iy141.680308, V/m

EC = E(PC) = ix0.000000+ iy151.716468, V/m

ED = E(PD) = ix26.857048+ iy141.680308, V/m

VectorEC is directed parallel to they-axis (ECx = 0). It confirms the fact that
numerical values of the functionUi, j ≡ U (xi , yj ) we have found are symmetrically
distributed (mirror reflection symmetry) with respect to the symmetry liney − y,
at which the pointPC ≡ P49,33 lies. The pointsPB ≡ P33,33 and PD ≡ P65,33,
see Fig. 8.11, lie symmetrically with respect to liney − y, and therefore compo-
nentsEy of the electric field vectors, determined at these points should be equal.
For the same reason, componentsEx of these vectors should have equal absolute
values and opposite signs. These requirements are satisfied by vectorsEB andED

evaluated above. It proves the fact that all calculations are correct and accuracy is

Table 8.11 (h = 0.125mm)

j/ i → 32 33 34

34 0.240537830 0.243837103 0.246896645
33 0.257934984 0.261419628 0.264649246
32 0.275595163 0.279257180 0.282649139

Table 8.12 (h = 0.125mm)

j/ i → 48 49 50

34 0.267812180 0.267900714 0.267812180
33 0.286679136 0.286772204 0.286679136
32 0.305732516 0.305829831 0.3057322516

Table 8.13 (h = 0.125mm)

j/ i → 64 65 66

34 0.246896643 0.243837101 0.240537828
33 0.264649244 0.261419626 0.257934982
32 0.282649137 0.279257178 0.275595161
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Fig. 8.12

sufficient, Rk ≤ ε = 10−9. The conductor configuration, shown in Figs. 8.9 and
8.11, has mirror reflection symmetry with respect to the liney − y, and there-
fore the region in which the functionsUi, j ≡ U (xi , yj ) and Ei, j ≡ E(xi , yj )
are calculated, can be limited to the subregion shown in Fig. 8.12. The function
Ui, j ≡ U (xi , yj ) being calculated over this subregion should satisfy the following
condition:

�U (x, y)

�n
= 0 (8.32)

at every point belonging to the division liney − y. The directional derivative (8.32)
is calculated in the directionn that is normal to liney − y at point P(x, y). In the
computational procedure the condition (8.32) can be easily taken into account in the
manner described in Sect. 8.1.

In the case of conductors shown in Fig. 8.12(a) it is necessary to introduce fic-
tious nodes, which are mirror reflections of the nodes lying closest to the division
line y − y. Assuming thatI = 7, J = 4, see Fig. 8.9(b), we obtain an equivalent
region, as in Fig. 8.12(b). Fictious nodes 3′, 7′, 11′ and 15′ are mirror reflections of
the real nodes 3, 7, 11 and 15. Assume further thatk approximations of the desired
functionU (k)

i, j ≡ U (k)(xi , yj ) at all internal nodes, (6, 7, 8, 10, 11 and 12) are known.

In the next (k + 1) iteration we first calculate values ofU (k+1)
i, j ≡ U (k+1)(xi , yj ) at

nodes 6, 7, 10 and 11, using the SOR. When the values ofU (k+1)
i, j ≡ U (k+1)(xi , yj )

evaluated at real nodes 7 and 11 (internal nodes lying closest to the division line
y − y) are known, then we assign these values also to the associated fictious nodes,
7′ and 11′, respectively. Next, in the final stage of the (k + 1) iteration, based on
the valuesU (k+1)

i, j ≡ U (k+1)(xi , yj ) calculated at the real nodes 4, 7, 11, 16 and

fictious nodes 7′, 11′, we calculate the approximationsU (k+1)
i, j ≡ U (k+1)(xi , yj ) of

the desired function at internal nodes 8 and 12 lying on the division liney − y.

b

a / 2

y

1V

0V

ya)

δU
δn  = 0
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Table 8.14 (h = 0.125mm)

j/ i → 32 33 34

34 0.240537839 0.243837112 0.246896654
33 0.257934993 0.261419637 0.264649255
32 0.275595173 0.279257190 0.282649149

The computational process described above is now repeated iteratively, until max-
imum differenceRk, see formula (8.22), would be less than a given small number
ε defining accuracy of calculations. Some values ofUi, j ≡ U (xi , yj ), obtained in
this manner fora = 12 mm, b = 6 mm, I = 49, J = 49, h = 0.125 mm and
ε = 10−9 are given in Table 8.14

It should be pointed out that these values are very close to the corresponding
values written in Table 8.11. Undoubtedly, this fact confirms correctness of the ap-
proach being employed.

8.4 Examples of Computation of the Characteristic
Impedance and Attenuation Coefficient for Some TEM
Transmission Lines

The fundamental parameter of the TEM transmission line is its characteristic
impedanceZ0. Physical meaning of this circuit parameter is explained in Exam-
ple 2.1. According to [7, 8], the characteristic impedance of an arbitrary air (ε0, μ0)
TEM transmission line can be calculated from the following general formula:

Z0 =
√

μ0

ε0
· U∮

S2

En · ds
=
√

μ0

ε0
· U

Q/ε0
= √

μ0ε0 · 1

C
= 1

υ
· 1

C
, � (8.33)

whereη0 = √
μ0/ε0 = 120π ≈ 377, � is the wave impedance of the open free

space,U denotes the difference of potentials (voltage) between two conductors of
the line (inner and outer ),En is the normal component of electric field vector
defined on the borderS1 of the external conductor, andds denotes an infinites-
imally short section of the integration contour. In this case,υ = 1/

√
ε0μ0 ≈

2.997925× 108 m/s is the velocity of light in free space andC denotes a line
capacity per unit length. The way to compute the characteristic impedanceZ0 is
open if a distributionEn(S1) of the componentEn at the boundary lineS1 is known.
Similar distributionEn(S2) should be evaluated on the border lineS2 of the inner
conductor. These distributions make it possible calculating the attenuation coeffi-
cientα = Re[γ = α + jβ]. To this end, the following relation can be used:

α = 1

2 · σ · δ
·
√

ε0

μ0
·

∮
S1+S2

|En|2 · ds

∮
S1

En · ds
(8.34)
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whereσ is conductivity of the material (metal) used to manufacture the conductors
andδ denotes skin depth [8]. It follows from formulas (8.33) and (8.34) that basic
problem, which should be solved in order to findZ0 and α, is determination of
the distributions of normal component of electric field vector on the surfaces of two
conductors creating the transmission line. These distributions should be evaluated as
accurately as possible in the manner discussed in Sects. 8.2 and 8.3. Unfortunately,
we cannot use the central difference formulas for numerical calculation of partial
derivatives of the functionUi, j

≡ U (xi , yj ) at points lying on the boundaries of the
conductors. Only one-side approximations of the derivatives can be evaluated at
these external points (grid nodes). It is obvious that these approximations are less
accurate than corresponding approximations performed using the central difference
formulas. One simple and efficient method of increasing approximation accuracy of
derivatives is the Runge interpolation procedure, described in Example 6.1. In the
casek = 2, see relation (6.29), it is based on two one-side difference approximations
calculated for various step sizes, for exampleh and 2h. An effective accuracy of
this two-step procedure is close to that obtained when using the central difference
formulas (8.31).

8.4.1 The Shielded Triplate Stripline

The transverse section of a shielded triplate stripline is shown in Fig. 8.13(a). An in-
ternal regionV of this TEM transmission line is limited to the space closed between
inner and outer conductors. Usually, this region is fulfiled by dry air that is homoge-
nous lossless medium with relative permittivityεr = 1 and relative permeability
μr = 1 [8, 9].

The presented transverse section has mirror reflection symmetry with respect
to linesx − x and y − y. Similar symmetry characterizes also distribution of the
potential functionUi, j ≡ U (xi , yj ). Thanks to this double symmetry, the prob-
lem of finding distribution of the functionUi, j ≡ U (xi , yj ) in the regionV can
be reduced to the similar problem, solved for the four times smaller subregion
(V/4), shown in Fig. 8.13(b). Such reduced problem can be solved by means of the
method similar to that used in Example 8.4. Consequently, values of the function
Ui, j ≡ U (xi , yj ) at nodes lying on the division linesx − x andy − y are calculated
by means of the fictious nodes being mirror reflections of the nodes situated very
near to these division lines. Grids, most appropriate to the analysis of this type of
the line, Fig. 8.13(a), are the ones having square meshes and the sizeh chosen in
such a way that the distances between all adjacent nodes (internal and external)
are equal. Unfortunately, it is not always possible to satisfy this condition. In such
cases, some boundary lines of the conductors do not coincide with the lines of
the grids. For example, in case of nodes, situated most closely to the side edge
of the inner conductor of the line shown in Fig. 8.13(b), the distance from this
edge is less thanh. Values of potential functionUi, j ≡ U (xi , yj ) at these nodes
should be calculated using the appropriate formula, (8.18) or (8.19), respectively.
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The normal component of electric field vectorEn at the border of the outer conduc-
tor is determined by means of two one-side approximations of partial derivatives of
the functionUi, j ≡ U (xi , yj ), calculated for two different step size. For example,
computation ofEn at pointP ≡ P(i, 1), see Figs. 8.13(b) and 8.14, is performed as
follows.

First, the initial approximationEn(i, 1) is calculated from

E(1)
n (i, 1) ≈ U (i, 2) − U (i, 1)

h

The second approximation of the componentEn(i, 1) is calculated using the step
2 · h, according to similar difference formula. Hence,
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E(2)
n (i, 1) ≈ U (i, 3) − U (i, 1)

2 · h

Finally, the normal componentEn(i, 1), evaluated according to the Runge proce-
dure, is:

En(i, 1) ≈ E(1)
n (i, 1) + E(1)

n (i, 1) − E(2)
n (i, 1)

(2h/h)1 − 1
= 2 · E(1)

n (i, 1) − E(2)
n (i, 1)

The dimensions of the subregion (V/4), under analysis, see Fig. 8.13(b), are:
a/2 = 10 mm, b/2 = 2.5 mm, t/2 = 0.5 mm andW/2 = 2 mm. Into this sub-
region the grid with square meshes determined byI = 201, IS = 161, J = 51
and JS = 41 have been introduced. Thus, the distances between all adjacent
nodes (including the distances between nodes situated inside and on the edge of
the subregion (V/4)) are the same and equal toh = 0.05 mm. The computa-
tion of discrete values of the potential functionUi, j ≡ U (xi , yj ) have been per-
formed with accuracyRk ≤ 1.34 · 10−6 for the following internal grid points
(nodes):

P(i, j ), where 2≤ i ≤ 201 when 2≤ j ≤ 40,

P(i, j ), where 2≤ i ≤ 160 when 41≤ j ≤ 51

Some final values of the functionUi, j ≡ U (xi , yj ), V are given in Table 8.15.
Normal componentsEn of the electric field vector have been calculated for the

following nodes:P(1, j ) when 2≤ j ≤ 51 andP(i, 1) when 2≤ i ≤ 201. All these
nodes lie on the border lineS1 of the outer conductor. The corresponding values of
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Table 8.15

j/ i → 98 99 100 101 102

51 0.1221401 0.1260761 0.1301396 0.1343347 0.1386661
50 0.1220789 0.1260128 0.1300741 0.1342670 0.1385960
49 0.1218944 0.1258222 0.1298769 0.1340631 0.1383852
. . . . . . . . . . . . . . . . . .

21 0.0712702 0.0735313 0.0758620 0.0782645 0.0807408
20 0.0681315 0.0702914 0.0725179 0.0748126 0.0771777
19 0.0649281 0.0669851 0.0691053 0.0712904 0.0735422
. . . . . . . . . . . . . . . . . .

3 0.0075850 0.0078237 0.0080696 0.0083228 0.0085836
2 0.0037943 0.0039137 0.0040367 0.0041633 0.0042938

Table 8.16

i → 98 99 100 101 102
En(i, 1), V/m 75.92194 78.30988 80.77040 83.30561 85.91492

Table 8.17

j → 38 39 40 41 42
En(1, j), V/m 6.72368 6.81143 6.89245 6.96666 7.03396

Ui, j ≡ U (xi , yj ), V, given in Table 8.15, have been used to this end. Several instant
values ofEn, chosen from the set{En(1, j ), En(i, 1)} defined above, are given in
Tables 8.16 and 8.17.

The values of normal componentEn evaluated above make it possible to calculate
the characteristic impedanceZ0 of the transmission line under analysis. However,
it should be pointed out that subregion (V/4) is only one from the four symmet-
rical parts of the internal regionV . In other words, the distributions ofEn over
three remaining subregions are also symmetrical. Naturally, the distributionEn(S1)
evaluated over the whole boundaryS1 of the outer conductor has to be used to calcu-
late the characteristic impedanceZ0 according to formula (8.33). The characteristic
impedanceZ0 of the shielded triplate stripline under consideration calculated in this
way is equal toZ0 = 55.65�. This approximate value differs only by 0.03� from
the corresponding more accurate value ofZ0 = 55.62� given in the literature [10].
Increasing the widthW of the inner conductor, see Fig. 8.13(a), to 6 mm results in
decreasing the characteristic impedance to a level of 42.96�. In opposite case of
decreasing the widthW to 2 mm, the characteristic impedanceZ0 attains the value
of 79.07�. These two impedances differ from the corresponding more accurate
values published in [10, 11] by less than 0.04�.

8.4.2 The Square Coaxial Line

The transverse section of an air square coaxial line is shown in Fig. 8.15. This TEM
transmission line can be treated as the special case of shielded triplate stripline dis-
cussed earlier, see Fig. 8.13(a). Of course, in this casea = b andW = t .
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Fig. 8.15

A procedure for numerical simulation of that transmission line includes:

– evaluation of the distribution of potential functionUi, j ≡ U (xi , yj ) over the
whole internal regionV(limited space between the inner and outer conductors),

– evaluation of the distribution of electric field vectorEi, j ≡ E(xi , yj ) over the
whole internal regionV and

– calculating the characteristic impedanceZ0.

At the first stage, the distribution of potential functionUi, j ≡ U (xi , yj ) over the
whole internal regionV is evaluated similarly as in the case of shielded triplate
stripline analyzed in Sect. 8.4.1. For clarity of further considerations, let us as-
sume that geometrical dimensions of the transmission line under discussion are:
b = 20 mm andt = 8 mm. It means that dimensions of the subregion (V/4) are:
10 mm and 4 mm, respectively. Into this subregion the grid with square meshes
characterized byI = J = 51, IS = JS = 31 and mesh sizeh = 0.05 mm
have been introduced. The calculations of discrete values of the potential function
Ui, j ≡ U (xi , yj ) over the subregion (V/4) have been carried out with accuracy
Rk ≤ 8.94 · 10−7, see relation (8.22). Some instance results of these iterative calcu-
lations are given in Table 8.18.

As it has been explained earlier the distribution ofUi, j ≡ U (xi , yj ) constitutes a
basis for evaluating the related distribution of electric field vectorEi, j ≡ E(xi , yj ). It
should be pointed out once again that distribution ofEi, j ≡ E(xi , yj ) has to be evalu-
ated as accurate as possible, especially at the border lineS1 of the outer conductor. In
the next stage, the distribution ofE ≡ E(S1) = En(S1) is used to calculate character-
istic impedanceZ0 according to formula (8.33). The above approach implemented

bt1V

0V
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Table 8.18

j/ i → 18 19 20 21 22

51 0.5345663 0.5685376 0.6028721 0.6375675 0.6726155
50 0.5343854 0.5683555 0.6026919 0.6373909 0.6724456
49 0.5338403 0.5678081 0.6021483 0.6368591 0.6719331
. . . . . . . . . . . . . . . . . .

21 0.3003669 0.3189443 0.3375928 0.3562825 0.3749717
20 0.2851210 0.3025906 0.3200916 0.3375929 0.3550536
19 0.2698196 0.2862051 0.3025904 0.3189443 0.3352270
. . . . . . . . . . . . . . . . . .

3 0.0293639 0.0310278 0.0326733 0.0342972 0.0358962
2 0.0146779 0.0155092 0.0163311 0.0171423 0.0179411
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 8.19

t/b → 0.1 0.3 0.5 0.7 0.9
Z0(t/b), � 132.15 66.81 36.78 18.02 5.07
Z0, � 132.65 66.87 36.81 18.02 5.07

in analysis of the square coaxial line under consideration yieldsZ0 = 49.78�. This
approximate value differs from the value 49.82�, obtained analytically by less than
0.04�, [11, 12]. Discrete values of the functionZ0(t/b) obtained in much the same
way for different values of ratiot/b, see Fig. 8.15, are written in the second row of
Table 8.19.

In the third row of the table the appropriate exact values of impedanceZ0, �
(evaluated analytically) are given for comparison [11].

8.4.3 The Triplate Stripline

Figure 8.16 presents a transverse section of the unshielded triplate stripline fulfiled
by dry air that is homogenous lossless medium characterized by relative permittivity
εr = 1 and relative permeabilityμr = 1.

A width of its external, equipotential conducting planes (of the outer conductor)
should be sufficiently large for the electric field intensity in the regions 1− 1′ and
2 − 2′. Of course, this intensity should be sufficiently small in comparison with
the electric field intensity in the closest neighborhood of the inner conductor. The
triplate stripline, in which this condition is satisfied, can be analyzed similarly as
the shielded stripline discussed earlier, in the case, when the side walls (of height
b) are sufficiently distant from the inner conductor. The condition for vanishing of
the electric field vector at side walls should be of course satisfied for this distance.
A correctness of that approach can be justified by the calculation results given in
Table 8.20. Presented values of the normal componentEn of the electric vector
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En, have been evaluated at the side walls for:b/2 = 2.5 mm, t/2 = 0.5 mm,
W/2 = 2 mm, h = 0.05 mm and some values ofa/2. The appropriate values
of potential functionUi, j ≡ U (xi , yj ) have been calculated with an accuracy of
Rk ≤ 1.18× 10−6, using the square grid with mesh size ofh = 0.05 mm.

Table 8.20

a/2, mm 4.0 6.0 8.0 10 12
En(1, 51), V/m 350.1233 90.6190 25.6384 7.3217 2.1164
En(1, 41), V/m 328.0744 86.0941 24.3859 6.9666 2.0160
En(1, 31), V/m 268.5441 73.0280 20.7430 5.9292 1.7178
En(1, 21), V/m 186.2990 52.8722 15.0698 4.3101 1.2504
En(1, 11), V/m 94.4789 27.7189 7.9228 2.2673 0.6586
Z0(a), � 52.3963 55.3969 55.6321 55.6492 55.6495
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A minimum widtha of the shielded triplate stripline, see Fig. 8.13(a), for which
it can be treated as equivalent to unshielded one under discussion, Fig. 8.16, is
determined most frequently according to the criterion of the minimum change of
the characteristic impedanceZ0(a). It has been confirmed numerically that function
Z0(a) calculated for the shielded triplate stripline has a one-side “saturation region”.
It is therefore not recommended to increase the widtha beyond some threshold
value ofa′. This conclusion, significant for practical applications, is well illustrated
by values of characteristic impedance written in the seventh row of Table 8.20. They
show that characteristic impedance of the air unshielded triplate stripline, for which:
b = 5 mm, t = 1 mm andW = 4 mm, attains maximum value ofZ0 = 55.65�
when the widtha′ of its semi-opened outer conductor is greater than 20 mm.

8.4.4 The Shielded Inverted Microstrip Line

Another version of the shielded stripline widely used in the microwave technology
is the shielded inverted microstrip line. The transverse section of this transmission
line is shown in Fig. 8.17(a).

The thin (t << b) lossless dielectric layer with small permittivityεr plays mainly
the role of mechanical support, holding the inner conductor (strip) of widthW in
proper position with respect to the surrounding outer conductor. The transverse sec-
tion presented here has mirror reflection symmetry with respect to vertical plane
y − y. Due to this symmetry, the problem of determining the potential function
Ui, j ≡ U (xi , yj ) over the internal regionV can be reduced to a similar problem
solved for two times smaller subregion (V/2), shown in Fig. 8.17(b). This region is
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Fig. 8.17 (Continued)
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electrically inhomogenous, because permittivityεr of the dielectrical layer differs
from 1, i.e.,εr > 1. In order to guarantee the clarity of further considerations, let us
assume that border line of the inner and outer conductors coincides with the lines
of the used discretization grid with square meshes. This assumption holds also for
the border line of the dielectric layer. For the problem defined in this manner, values
of the potential functionUi, j ≡ U (xi , yj ) at internal nodes which do not belong
to the border air–dielectric are calculated using formulas (8.20) and (8.28). In case
of nodes situated on this border, see Fig. 8.18(a), the Laplace equation (8.2) is not
satisfied and consequently, formula (8.20) resulting from this equation cannot be
used [13]. For these nodes, the following more general formula is suitable:

Ui, j = Ui, j +1 + εr · Ui, j −1

2(1+ εr )
+ Ui−1, j + Ui+1, j

4
(8.35)

The difference formula (8.35), see Appendix E, results from the following equa-
tion of electrodynamics

∇ · D = ∇ · (εr ε0∇U ) = 0 (8.36)

telling that at a surface of dielectric substrate no storage of electrical charge occurs.
For methodological reasons, it is recommended to divide the inhomogenous region
(V/2) into four smaller, electrically homogenous similar to those shown in Fig. 8.19.

Values of potential functionUi, j ≡ U (xi , yj ), at points belonging to the symme-
try planey − y, that is at side edges of the subregions (V/2)1, (V/2)3, (V/2)4, can
be found identically as these are described in the previous examples. Fictious nodes
used for this purpose are placed at nodes of the grid, which are closest to the line
y − y. For calculating potential functionUi, j ≡ U (xi , yj ) at nodes situated on the
borders between two subregions with different permittivityεr , the relation (8.35)
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should be used, remembering about proper interpretation of the adopted notation. In
other words, relation (8.35) is satisfied at points situated on the border between two
media shown in Fig. 8.18(a). In case of dielectric media in reverse configuration,
see Fig. 8.18(b), the appropriate formula corresponding to (8.35) is:

Ui, j = Ui, j −1 + εr · Ui, j +1

2(1+ εr )
+ Ui−1, j + Ui+1, j

4
(8.37)

The methodical recommendations given above have been employed in the analysis
of the transmission line shown in Fig. 8.17 and characterized by:a = 310 · h,
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Fig. 8.19

b = 60 · h, c = 24 · h, d = 12 · h, t = 1 · h and W = 60 · h, whereh =
0.0508 mm (2 mils) is the size of the grid mesh. The permittivity of the dielectric
layer is equal toεr = 2.65. For these parameters, grid lines defined byi = 1,
i = I = 156, IS = 126, j = 1, j = J = 61, JS = 24, Jd1 = 25, Jd2 = 37
agree with corresponding borders of the inner and outer conductors, as well as with
the border of the dielectric layer. Table 8.21 contains some discrete values of the
function Ui, j ≡ U (xi , yj ), evaluated with accuracy ofRk ≤ 1.132× 10−6. As it
was repeated many times the potential functionUi, j ≡ U (xi , yj ) constitutes a basis
for evaluating distribution of the electric field vectorE(xi , yj ). In order to calculate
this distribution at the surface of the outer conductor the extrapolating procedure
described in Sect. 8.4.1 is recommended. Some values ofEn, calculated in this way
in the region close to the surface of the outer conductor, are written in Tables 8.22
and 8.23.

According to the laws of electrodynamics, the surface charge density at an arbi-
trary pointP of a conducting surface isq(P) = ε0 ·εr (P) · En(P). Hence, an electric
charge stored on the unit length of the outer line surfaceS1 is equal to:

Q = ε0 ·
∮

S1

εr (P) · En(P)ds (8.38)

whereε0 = 8.854184·10−12, F/m is permittivity of the free space. Dividing this unit
charge by voltageU = 1, V between inner and outer conductors yields the unit line
capacityC = Q/U . If the line medium is inhomogenous two stages are necessary
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Table 8.21

j/ i → 123 124 125 126 127

23 0.7194310 0.7702185 0.8291498 0.8911311 0.9166453
22 0.6901418 0.7325579 0.7771443 0.8187293 0.8462229
21 0.6572688 0.6927266 0.7281418 0.7604189 0.7856923
. . . . . . . . . . . . . . . . . .

11 0.3178634 0.3277425 0.3372938 0.3464353 0.3550958
10 0.2854351 0.2941333 0.3025497 0.3106194 0.3182848
9 0.2532179 0.2608053 0.2681526 0.2752080 0.2819243
. . . . . . . . . . . . . . . . . .

3 0.0628770 0.0646617 0.0663948 0.0680658 0.0696672
2 0.0314283 0.0323180 0.0331820 0.0340156 0.0348145
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 8.22

i → 123 124 125 126 127
En(i, 1), V/m 618.4661 635.9290 652.8858 669.2596 684.9518

Table 8.23

j → 2. . . 24 25 26. . . 59
En(1, j), V/m 0.355955 7.018490 7.221045 7.288838 0.709235

to evaluate characteristic impedanceZ0 and effective line permittivityεef f , [8, 10].
In the first stage, the unit line capacityC0 = C(εr = 1) is evaluated when the
dielectric layer is removed. Naturally, in the second stage the unit line capacityCr

is evaluated in the same manner when the dielectric layer is present. When the unit
capacitiesC0 andCr are known, it is possible to find the characteristic impedance
Z0 and the phase velocityυ from the following formulas:

Z0 = 1
υ0

· 1√
C0·Cr

, �

υ = υ0

√
C0
Cr

= υ0√
εef f

(8.39)

whereυ0 ≡ c = 2.997925· 108, m/s is the light velocity in free space. An effective
line permittivity εef f occurring in the above formulas is defined asεef f = Cr /C0.
In case of the shielded inverted microstrip line under discussion, see Fig. 8.17,
C0 = 5.508917· 10−11, F/m, Cr = C(εr = 2.65) = 6.810233· 10−11, F/m,
Z0 = 54.458, � andυ = υ0 · 0.899398. An influence of permittivityεr of the
dielectric layer onCr , Z0 andυ is illustrated by the data given in Table 8.24.

Table 8.24

εr Cr , pF/m Z0, � υ/υ0

1.00 55.08917 60.55 1.000000
2.65 68.10233 54.46 0.899398
3.74 73.81895 52.31 0.863870
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8.4.5 The Shielded Slab Line

The transverse section of a shielded slab line is shown in Fig. 8.20(a). This kind of
TEM transmission line is widely used in the microwave technology because their
use offers several manufacturing advantages and excellent electrical properties. As
most of air–dielectric lines the shielded slab line is particularly recommended for
operation at high peak and average powers. Therefore, the computation of its char-
acteristic impedanceZ0 and attenuation coefficientα is a problem of considerable
importance for practice. In the present section, it is shown how this problem can be
effectively solved by means of the finite difference method.

Also in this case the three-stage approach specified at the beginning of Sect. 8.4.2
will be adopted. It follows from Fig. 8.20 that a distribution of the potential function
Ui, j ≡ U (xi , yj ) over the internal regionV (limited by inner and outer conductors)
is mirror reflection symmetrical with respect to the horizontal linex − x and ver-
tical line y − y. Due to this double symmetry, the problem of finding distribution

a
y

y

x x
bd

0 V

0 V 

1 V 

a / 2

y

y

b / 2

x x

h k

r

J

1

j

JR

0 V 

0 V 

1 V

1 i IIR

a)

b)

Fig. 8.20



8.4 Examples of Computation of the Characteristic Impedance 259

h

j + 1

j – 1

j

i – 1 i i + 1

k

y

xx
0

y

r

W
p h

q h

Bm + 1

Bm – 1

Bm

Fig. 8.21

of Ui, j ≡ U (xi , yj ) can be reduced to the solution of similar problem over the
four times smaller subregion (V/4), shown in Fig. 8.20(b). Mesh sizesh andk of
the rectangular discretization grid should be chosen in a such manner that its lines
coincide with the border of outer conductor and the symmetry linesx−x andy− y.
This requirement is satisfied whenh = a/[2(I − 1)] andk = b/[2(J − 1)], where
I andJ are maximum values of indexesi and j , respectively. Unfortunately, due to
circular shape of the inner conductor the adopted rectangular grid cross its border at
points situated at unequal distances with respect to the closest grid points (nodes).
In Fig. 8.21 border nodes determined in this way are denoted by small circles.

To each border node one of the parametersp or q defining the distance to the
nearest grid node (coastal) lying on the same vertical or horizontal line, should be
assigned. Similarly as in the previous examples, it is assumed that potential func-
tion Ui, j ≡ U (xi , yj ) takes at the border nodes of the inner conductor the value
of U = 1V, and potential of the outer conductor is equal toU = 0 V. Values
of the functionUi, j ≡ U (xi , yj ) at coastal nodes, marked in Fig. 8.21 by dots,
should be computed using the general formula (8.18). In case of remaining, inter-
nal nodes of the subregion (V/4), consecutive approximated values of the potential
function Ui, j ≡ U (xi , yj ) are next calculated according to formula (8.19), where
p = k/h. As it has been mentioned above the distribution of the potential function
Ui, j ≡ U (xi , yj ) has mirror reflection symmetry with respect to linesx − x and
y − y. Thus, values ofUi, j ≡ U (xi , yj ) at nodes belonging to these symmetry
lines can be calculated using the manner, in which auxiliary fictious nodes are intro-
duced. Essential features of this simple computation technique have been explained
and illustrated in the previous examples. According to the recommendations given
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above, in the first stage of computation process, the coordinates of nodes lying on
the inner conductor, see Figs. 8.20 and 8.21, should be determined. For example, the
coordinates of border nodeBm belonging to the inner conductor and grid horizontal
line denoted by indexj are

ym = ( j − 1)k, xm = a/2 −
√

r 2 − (b/2 − ym)2 (8.40)

wherea, b andr = d/2 are geometrical dimensions of the transverse section shown
in Fig. 8.20(b). The coordinates (8.40) can be represented by the indexesj andi B( j )
defined as:

j = ym/k + 1, i B( j ) = int(xm/h) + 2 (8.41)

where the function int(a) assigns to the argumenta the greatest integer not exceed-
ing a. Similarly, coordinates of border nodeBm+1, belonging to the vertical line
denoted by indexi , can be calculated using the formulas:

xm+1 = (i − 1)h, ym+1 = b/2 −
√

r 2 − (a/2 − xm+1)2 (8.42)

The indexes corresponding to coordinates (8.8) are:

i = xm+1/h + 1, jB(i ) = int(ym+1/k) + 2 (8.43)

The formulas (8.40, 8.41, 8.43) make it possible to calculate the coordinates and
related to them indexes of all border nodes lying on the inner conductor and belong-
ing to the subregion (V/4). When coordinates of these border nodes are known, it
is possible to determine the indexesi and j of the corresponding coastal nodes. For
instance, with the border nodeBm, see Fig. 8.21, the coastal nodeW is connected,
which lies on the same line with an indexi = int(xm/h) + 1. Coefficientq, deter-
mining the distance between these nodes, is equal toq = frac(xm/h), where the
function frac(a) assigns the fractional part to the argumenta. Similarly, we can find
indexes of coastal nodes with respect to the border nodes lying on the vertical lines
of the grid. The nodeW, shown in Fig. 8.21, is also a coastal node with respect to
border nodeBm+1, on the basis of which relations (8.42) have been derived. Hence,
the index j of nodeW can be evaluated from the formulaj = int(ym+1/k) + 1,
in which coordinateym+1 is described by relation (8.42). Value of the parameterp,
defining the distance between the nodesBm+1 andW under consideration, is equal
to p = frac(ym+1/k).

All computations, performed during the first stage described above, have the
character of preparatory single-time calculations. The computations of the second
stage are also single-time. They serve to determine initial approximation of the de-
sired solutionUi, j ≡ U (xi , yj ). They are performed similarly, as in Example 8.1,
based on the values ofUi, j ≡ U (xi , yj ) given for the border points (nodes) of the
subregion (V/4), as in Fig. 8.22.
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In the computer program SSL elaborated for this purpose the following initial
(border) values of the potential functionUi, j ≡ U (xi , yj )have been used:

– edgeAB → Ui, j ≡ U (xi , yj ) = 0, V,
– edgeAE → Ui, j ≡ U (xi , yj ) = 0, V,
– edgeC D → Ui, j ≡ U (xi , yj ) = 1, V,
– edgeUi, j ≡ U (xi , yj ) varies linearly along the edgeBC from 0, V at point B to

1, V at pointC,
– functionUi, j ≡ U (xi , yj ) varies linearly along the edgeE D from 0, V at point

E to 1, V at point D.

During the third computation stage the consecutive approximations of the func-
tion Ui, j ≡ U (xi , yj ) have been evaluated by means of the SOR method. As the stop
condition, the inequalityRk ≤ 9.53× 10−7 has been used. Some discrete values of
the potential functionUi, j ≡ U (xi , yj ) obtained in this way are given in Table 8.25.

The calculations have been carried out for:a/2 = 12 mm, b/2 = 2.5 mm, r =
d/2 = 1.3712 mm andh = k = 0.05 mm In this case, indexes of the introduced
discretization grid satisfy the inequalities 1≤ i ≤ I = 241 and 1≤ j ≤ J = 51.
Some values of normal componentEn of the electric field vector calculated on the
basis of theUi, j ≡ U (xi , yj ) distribution are given in Tables 8.26 and 8.27.
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Table 8.25

j/ i → 198 199 200 201 202

51 0.5996876 0.6193628 0.6397175 0.6607763 0.6825693
50 0.5993603 0.6190230 0.6393644 0.6604101 0.6821886
49 0.5983796 0.6180045 0.6383060 0.6593112 0.6810468
. . . . . . . . . . . . . . . . . .
20 0.3244321 0.3342438 0.3443144 0.3546471 0.3652439
. . . . . . . . . . . . . . . . . .
3 0.0355999 0.0366335 0.0376900 0.0387693 0.0398711
2 0.0178057 0.0183224 0.0188508 0.0193903 0.0199410
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 8.26

i → 198 199 200 201 202
En(i, 1), V/m 356.2306 366.5601 377.1306 387.9214 398.9308

Table 8.27

j → 2. . . 24 25 26. . . 51
En(1, j), V/m 0.0495018 1.0373171 1.0735520 1.1087151 1.5610012

Finally, the characteristic impedanceZ0 of the shielded slab line under analysis
have been calculated according to formula (8.33). The result of the calculations is
Z0 = 50.057 �. This value differs from 50�, calculated by means of formula
(2.34), by less than 0.06 �. In this case, the influence of side walls on the distri-
bution ofUi, j ≡ U (xi , yj ) and indirectly also on the characteristic impedanceZ0

is negligibly small. This conclusion confirms also the computational results given
in Tables 8.26 and 8.27. The intensity of the electric field at side walls is relatively
small in comparison with its value evaluated at the central line plane, (i = 202).
When side walls of the outer conductor are sufficiently distant from the inner round
conductor, the electrical parameters of the shielded slab line are very close to corre-
sponding parameters of the unshielded slab line with the same geometrical dimen-
sionsb andd, discussed already in Example 2.2.

In a special case whena = b = 5 mm, see Fig. 8.20, the line under consideration
becomes a coaxial line with the square outer conductor. Tables 8.28, 8.29 and 8.30
present some values ofUi, j ≡ U (xi , yj ), En(i, 1), V/m andEn(1, j), V/m calcu-
lated for the line in question assuming thath = k = 0.05 mm. In this case, indexes
of the grid satisfy the inequalities 1≤ i ≤ I = 51 and 1≤ j ≤ J = 51. Compu-
tations of the potential functionUi, j ≡ U (xi , yj ) over the suitable subregion (V/4)
have been performed with an accuracy determined by conditionRk ≤ 8.94× 10−7,
see expression (8.22).

The characteristic impedance of this special line version is equal toZ0 =
40.602 � and differs by less than 0.06 � from the value ofZ0 = 40.547, �
given in Table 4.1 of the handbook [11]. Performing similar computations using
the grid with smaller meshes (h = k = 0.025 mm) the characteristic impedance
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Table 8.28

j/ i → 18 19 20 21 22

51 0.7091850 0.7575211 0.8070557 0.8577519 0.9097104
50 0.7086132 0.7569216 0.8064758 0.8573708 0.9092808
49 0.7068861 0.7550766 0.8045543 0.8554748 0.9080939
. . . . . . . . . . . . . . . . . .
3 0.0343164 0.0363016 0.0382766 0.0402396 0.0421886
2 0.0171561 0.0181429 0.0191353 0.0201164 0.0210903
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 8.29

i → 2. . . 24 25 26. . . 51
En(i, 1), V/m 20.2578 460.1502 479.0576 497.7260 777.4435

Table 8.30

j → 2. . . 24 25 26. . . 51
En(1, j), V/m 20.2579 460.1514 479.0587 497.7277 777.4435

of value Z0 = 40.579 � is achieved. This final result differs from the value of
Z0 = 40.547� by less than 0.04 �. In this situation further reduction of meshes of
the discretization grid is unnecessary.

8.4.6 Shielded Edge Coupled Triplate Striplines

The finite difference method presented in this chapter can be easily adopted to
analysis of coupled TEM transmission lines. One of them is the air–dielectric edge
coupled triplate stripline whose transverse section is shown in Fig. 8.23(a).

The conducting surfaces of this transmission line are distributed symmetrically
with respect to the planey−y. Due to this symmetry, it can be analyzed by means of
the method of even mode (++) and odd mode (+−) excitations, explained already
in Example 3.3. The circuit representing the coupled lines for even mode excitation
is a single transmission line with a transverse section as shown in Fig. 8.23(b).
The characteristic impedance of this transmission line is denoted byZ++

0 ≡ Z0e.
Similarly, the circuit representing the coupled lines for odd mode excitation is
also a single transmission line with a transverse section as shown in Fig. 8.23(c).
Its characteristic impedance is denoted byZ+−

0 ≡ Z0o. Both transverse sections
shown in Fig. 8.23(b) and 8.23(c) are symmetrical with respect to the planex − x.
Thus, the problem of evaluation of the potential functionU (++)

i, j ≡ U (++)(xi , yj )
over the region (V/2)++ can be reduced to the similar problem over the subre-
gion (V/4)++ shown in Fig. 8.24(a). In the similar way, the functionU (+−)

i, j ≡
U (+−)(xi , yj ) can be evaluated on the basis of the subregion (V/4)+− shown in
Fig. 8.24(b).
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The distribution of the potential functionU++
i, j ≡ U++(xi , yj ) over the sub-

region (V/4)++, see Fig. 8.24(a), can be evaluated in the manner similar to that
employed in Sect. 8.4.1 for analysis of the shielded triplate stripline. Of course, the
same approach is suitable for evaluating the distribution of the functionU (+−)

i, j ≡
U (+−)(xi , yj ) over the subregion (V/4)+− shown in Fig. 8.24(b). These distribu-
tions make a basis for evaluating the corresponding distributions of the electric
field vector, i.e.,E++

i, j ≡ E++(xi , yj ) and E+−
i, j ≡ E+−(xi , yj ), respectively. The

appropriate difference formulas described in detail in previous sections (for instance
in Sect. 8.4.1) can be used for this purpose. Integral parts of these electric field
vector distributions are distributions of the normal component of the electric field
vector evaluated on the surfacesSe andSo of outer conductors of the transmission
lines shown in Figs. 8.23(b) and 8.23(c), respectively. These distributions, namely
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E++
n ≡ E++

n (Se) and E+−
n ≡ E+−

n (So) make it possible to calculate the character-
istic impedancesZ++

0 ≡ Z0e andZ+−
0 ≡ Z0o according to general formula (8.33).

The computation procedure outlined above has been employed for analysis of the
shielded air–dielectric edge coupled striplines, see Fig. 8.23(a), with the following
parameters:a = 40.00 mm,b = 5.00 mm, S = 2.40 mm, t = 1.00 mm and
W = 4.00 mm. Equal rectangular grids have been used for covering the subregions
(V/4)++ and (V/4)+−, see Fig. 8.24. Node positions of these grids are defined by
indexes, (i, j ), where 1 ≤ i ≤ I = 251 and 1≤ j ≤ J = 51. The dimen-
sions:a = 40.00 mm, b = 5.00 mm and indexesI = 251, J = 51 define
sizes of the grid meshes univocally, that areh = (a/2)/(I − 1) = 0.08 mm and
k = p · h = (b/2)/(J − 1) = 0.05 mm. In order to find initial approximation
U++(0)

i, j ≡ U++(0)(xi , yj ) of the functionU++
i, j ≡ U++(xi , yj ) it was assumed that

this function takes on the borders of the subregion (V/4)++ the following values:

U++(0)
i, j = 0, V for i = 1, 1 ≤ j ≤ J

U++(0)
i, j = 0, V for j = 1, 1 ≤ i ≤ I

U++(0)
i, j = 1 · i − 1

IW − 1
, V for j = J, 1 ≤ i ≤ IW
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U++(0)
i, j = 1, V for j = J, IW ≤ i ≤ IS

U++(0)
i, j = 1 − [1 − U++(0)

i, j (I , J)] · i−IS
I −IS

, V for j = J, IS ≤ i ≤ I

U++(0)
i, j = U++(0)

i, j (I , J) · j −1
J−1, V for i = I , 1 ≤ j ≤ J

where:Is = 236, IW = 186, Js = 41 and

U++(0)
i, j (I , J) = pI ,JqI ,Jr I ,J

pI ,Jr I ,J + qI ,J

[
1

1 + qI ,J
+ 1

qI ,J(1 + qI ,J)
+ 0

pI ,J(pI ,J + r I ,J)

+ 0

r I ,J(pI ,J + r I ,J)

]
, V

is an initial value of the determined potential function at the terminal node (I , J).
Thanks to symmetry of the coupled lines under consideration (see Figs. 8.6 and
8.23),qI ,J = 1 and pI ,J = r I ,J = b/S = 2.5. Hence, initial value of the poten-
tial function at node (I , J) is equal toU++(0)

i, j (I , J) = b2/(b2 + S2) = 25/29, V.
Table 8.31 presents some values of potential functionU++

i, j ≡ U++(xi , yj ) deter-
mined by means of the SOR method. As the stop criterion the conditionRk ≤
1.013× 10−6 has been used, see relation (8.22).

Some values of the distribution E++
n ≡ E++

n (Se) evaluated on the basis of the
potential functionU++

i, j ≡ U++(xi , yj ) are given in Table 8.32.
Finally, the characteristic impedance calculated on the basis of the distribution

E++
n ≡ E++

n (Se) is equal toZ++
0 ≡ Z0e = 59.3999�. As it has been mentioned

above the functionU+−
i, j ≡ U+−(xi , yj ) is evaluated in the similar manner over the

subregion (V/4)+−, see Fig. 8.24(b). Some values of this function calculated with
accuracy defined byRk ≤ 1.014× 10−6, are given in Table 8.33.

Table 8.31

j/ i → 234 235 236 237 228

40 0.9648619 0.9595679 0.9465962 0.9012761 0.8623688
39 0.9307016 0.9221351 0.9058289 0.8736286 0.8413264
38 0.8979273 0.8877244 0.8712706 0.8460212 0.8189873
. . . . . . . . . . . . . . . . . .
20 0.4338699 0.4297129 0.4253570 0.4208516 0.4162554
. . . . . . . . . . . . . . . . . .
3 0.0453387 0.0449792 0.0446116 0.0442398 0.0438680
2 0.0226683 0.0224887 0.0223054 0.0221199 0.0219343
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 8.32

i → 2 . . . 235 236 237. . . 251
En(i, 1), V/m 0.0065168 449.7598 446.1025 442.3996 408.8472
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Table 8.33

j/ i → 234 235 236 237 228

40 0.9501752 0.9389871 0.9128662 0.8249545 0.7437695
39 0.9023052 0.8838077 0.8498692 0.7844080 0.7150580
38 0.8572562 0.8346599 0.7991868 0.7453806 0.6853173
. . . . . . . . . . . . . . . . . .
20 0.3457720 0.3313840 0.3158930 0.2993351 0.2817674
. . . . . . . . . . . . . . . . . .
3 0.0341457 0.0326655 0.0310969 0.0294421 0.0277045
2 0.0170641 0.0163241 0.0155399 0.0147129 0.0138445
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

The characteristic impedance calculated on the basis of this distribution is equal
to Z+−

0 ≡ Z0o = 50.6935�.
The analysis procedure presented above has been repeated many times for vari-

ous thicknesst of the internal strips, see Fig. 8.23(a). Calculation results, illustrating
an influence of this thickness on characteristic impedancesZOe, Z0o and coupling
coefficientk = (ZOe − ZOo)/(ZOe + ZOo) are given Table 8.34.

Values of impedancesZOe, Z0o calculated fort = 0, mm anda → ∞ differ by
less than 0.89, � from the exact valuesZOe = 79.9899, � andZOo = 71.3354, �.
These reference values have been found from the following formulas:

Z0e = 29.976· π

√
μr

εr
· K

′
(ke)

K(ke)
, �

Z0o = 29.976· π

√
μr

εr
· K

′
(ko)

K(ko)
, �

(8.44)

where:

ke = th

(
πW

2b

)
th

(
π

2
· W + S

b

)
, ko = th

(
πW

2b

)
cth

(
π

2
· W + S

b

)
,

μr = 1 andεr = 1. The term K(k) denotes the complete elliptic integral of the first
kind, and K′(k) is the same integral associated (complementary) with K(k), [7][14].
The calculation of integral K(k), when its modulus k is known, is not complicated,
and can be done by using the effective algorithm described in Appendix F. It should
also be pointed out that the same algorithm can be applied to calculate the comple-
mentary integral K′(k).

Table 8.34 (a = 40.0 mm, b = 5.0 mm, S = 2.4 mm, W = 4.0, mm)

t, mm ZOe, � ZOo, � k Rk

1.000 59.3999 50.6935 0.079082 1.014× 10−6

0.500 67.9508 59.0282 0.070268 1.098× 10−6

0.000 79.1041 70.7488 0.055756 1.013× 10−6
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Table 8.35 (a = 40.0 mm, b = 5.0 mm, S = 2.4 mm, W = 4.0, mm)

t, mm ZOe, � ZOo, � k Rk

1.000 59.6877 50.7736 0.080699 < 10−9

0.500 68.2943 59.1456 0.071788 < 10−9

0.000 79.7297 71.1520 0.056850 < 10−9

The difference 0.89, � of impedances evaluated above shows that the performed
numerical caclulations are not accurate enough. Therefore, numerical analysis of
the coupled lines under consideration has been repeated for the new grid with twice
reduced mesh sizes now equal toh = k = 0.025, mm. The results of these improved
calculations are given in Table 8.35.

In this case impedancesZOe, Z0o evaluated numerically for the coupled lines
with infinitely thin inner conductors (t ≈ 0) differ from their exact valuesZOe =
79.9899, �, ZOo = 71.3354, � by less than 0.27, �. This difference seems to be
acceptable for the most applications.
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Appendix A
Equation of a Plane in Three-Dimensional Space

Let us assume that in three-dimensional space (x ≡ x1, y ≡ x2, z ≡ x3) the vector
R ≡ [x0 − 0, y0 − 0, z0 − 0] is perpendicular (normal) to the planeS at point
R ≡ (x0, y0, z0), as it is shown in Fig. A.1.

The planeScan be treated as an infinite set of pointsQ ≡ (x, y, z), for which the
vectorQ ≡ [x − x0, y − y0, z− z0] is perpendicular to the vectorR. VectorsR and
Q are perpendicular, if and only if their dot product is equal to zero. This condition
can be written in the form of equation as:

R · Q ≡ (x0 − 0)(x − x0) + (y0 − 0)(y − y0) + (z0 − 0)(z − z0) = 0 (A.1)
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Equation (A.1) can be easily transformed to the following equivalent form:

x0 · x + y0 · y + z0 · z = (x2
0 + y2

0 + z2
0) (A.2)

similar to linear equations occurring in the system (1.8).



Appendix B
The Inverse of the Given Nonsingular
Square Matrix

Let A be a square nonsingular matrix:

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ (B.1)

whose determinantD �= 0. The matrixA−1 is the inverse of the matrixA, when their
product is equal to the unitary matrix, i.e.,A · A−1 = A−1 · A = E. Determinant
of the inverse matrixA−1 equals 1/D. In order to determine the inverseA−1, we
introduce the notion of the minor of an elementai j and the cofactorAi j of this
element. Minor of elementai j of the square matrixA is defined as the determinant
of the matrix of the rank (n − 1) obtained by crossing out the rowi and columnj
from the original matrixA. The cofactorAi j of the elementai j of the matrixA is the
product of the minor of this element and the multiplier (−1)(i+ j ). When the cofactors
of all elements of the matrixA and its determinantD are known, the inverse of this
matrix can be written as:

A−1 = 1

D

⎡
⎢⎢⎢⎣

A11 A21 . . . An1

A12 A22 . . . An2
...

... . . .
...

A1n A2n . . . Ann

⎤
⎥⎥⎥⎦ (B.2)

Example B.1Let us consider the nonsingular matrix:

A =
[

2 −1
3 1

]
, det A = 5

The cofactors evaluated for this matrix are:A11 = (−1)2 · 1 = 1, A12 = (−1)3 ·
3 = −3, A21 = (−1)3 · (−1) = 1 andA22 = (−1)4 · 2 = 2. Thus, the inverse of the
matrixA is:
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A−1 = 1

detA

[
A11 A21

A12 A22

]
= 1

5

[
1 1

−3 2

]
, detA−1 = 1

5
· 2

5
−−3

5
· 1

5
= 5

25
= 1

5

The productA · A−1 is equal to the unitary matrixE, namely:

A · A−1 = 1

5

[
2 −1
3 1

]
·
[

1 1
−3 2

]
=
[

1 0
0 1

]

In this simple manner, the correctness of the performed calculations has been
confirmed.



Appendix C
The Fast Elimination Method

The fast elimination method discussed below can be treated as a simplified version
of the Gauss elimination method adopted for solving large linear equation systems
with tridiagonal matrices of coefficients. The term “fast” emphasizes a fact that the
computational process is relatively faster because only tridiagonal coefficients are
taken into account. In its first stage, pairs of auxiliary coefficients are recursively
determined for each ofn − 1 equations creating the system. During the second
stage, these coefficients are then used to find the values of the unknowns. In order
to explain an essence of this method, let us consider a tridiagonal equation system
written in the following general form:

b1x1 + c1x2 = d1

a2x1 + b2x2 + c2x3 = d2

a3x2 + b3x3 + c3x4 = d3 (C.1)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an−1xn−2 + bn−1xn−1 + cn−1xn = dn−1

anxn−1 + bnxn = dn

For further considerations it is assumed that all the coefficients of the main di-
agonalbi , wherei = 1, 2, 3, . . . , n, are different from zero. It follows from the
literature that this condition is satisfied by majority of equation systems describing
the real engineering problems. In case of the method under discussion, similarly as
in the Gauss elimination method, two stages are distinguished, namely the upward
and backward movement. During the first stage, each unknown variablexi , where
i = 1, 2, 3, . . . , n − 1, is expressed in the form of a linear function:

xi = Ai xi+1 + Bi (C.2)

whereAi andBi are recursive coefficients. Following this rule, from the first equa-
tion of the system (C.1) it follows that:

x1 = −c1

b1
x2 + d1

b1
= A1x2 + B1 (C.3)
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whereA1 = −c1/b1 and B1 = d1/b1. The relation (C.3) introduced into the sec-
ond equation of the system (C.1) makes it possible to write the following relation
a2(A1x2 + B1) + b2x2 + c2x3 = d2 as:

x2 = − c2

a2A1 + b2
x3 + d2 − a2B1

a2A1 + b2
= A2x3 + B2 (C.4)

whereA2 = −c2/(a2A1 + b2), B2 = (d2 − a2B1)/(a2A1 + b2). Similarly, for 1 ≤
i ≤ n − 1 the remaining coefficients are:

Ai = − ci

ai Ai−1 + bi
, Bi = di − ai Bi−1

ai Ai−1 + bi
(C.5)

The values of all coefficientsA1, B1, A2, B2, . . . , An−1, Bn−1, evaluated in this
manner have to be stored in the computer memory. In the second stage (backward
movement) values of the unknownsxi are consecutively calculated, starting from
xn. The unknownxn is computed by solving the following equation system:

xn−1 = An−1xn + Bn−1 (C.6)

anxn−1 + bnxn = dn

formulated from (C.2) defined fori = n − 1 and the last equation of the original
system (C.1). A solution of the equation system (C.6) is:

xn = dn − an Bn−1

an An−1 + bn
(C.7)

The remaining unknownsxi are next calculated using the relation (C.2) and the
coefficientsAi andBi evaluated in the first stage. Theoretically, in the computational
process described above an operation of division by zero, or infinitesimal number
may occur, see relations (C.5) and (C.7). It has been proved in the literature that
such “danger” is absent, if for 1≤ i ≤ n the following inequalities are satisfied:

|bi | ≥ |ai | + |ci | (C.8)

and at least one of the inequalities (C.8) is acute. In other words, matrix of coeffi-
cientsA should be diagonally dominant.



Appendix D
The Doolittle Formulas Making Possible
Presentation of a Nonsingular Square Matrix
in the form of the Product of Two
Triangular Matrices

The matrix equation [ai j ]nn ≡ A = L · U discussed in Sect. 1.1.3 is equivalent to
the system ofn2 linear equations:

ai j =
r∑

q=1

l iq · uq j , wherer = min(i, j ) (D.1)

In the Crout method it is assumed that all the diagonal elements of the matrixU
are equal 1, i.e.,uii = 1 for i = 1, 2, 3, . . . , n. Due to this assumption, the sum
of elements of the triangular matricesL andU, determined in the process of LU
decomposition reduces ton2. In order to find the calculation formulas, appropriate
for this particular decomposition, consider the general Eq. (D.1), written for the
elementaik of the rowi and columnj , assuming thati ≥ k.

aik =
k∑

q=1

l iq · uqk =
k−1∑
q=1

l iq · uqk + l ik · ukk (D.2)

From equation (D.2), assuming thatukk = 1, we obtain the following recursive
formula:

l ik = aik −
k−1∑
q=1

l iq · uqk, wherei = k, k + 1, k + 2, . . . , n (D.3)

Let us consider Eq. (D.1) again, written for an elementakj of the row k and
column j , assuming thatj > k.

akj =
k∑

q=1

lkq · uq j =
k−1∑
q=1

lkq · uq j + lkk · ukj (D.4)
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After some elementary transformations, Eq. (A.4) takes the form:

ukj = 1

lkk

⎡
⎣akj −

k−1∑
q=1

lkq · uq j

⎤
⎦ , where j = k + 1, k + 2, . . . , n (D.5)

Equations (D.3) and (D.5) derived above are particular cases of the Doolittle
formulas. They constitute a theoretical basis for the computer program CROUT,
which has been used to decomposite the matrixA = L · U given below.

A⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6
2 7 12 17 22 27
4 13 28 43 58 73
7 22 46 80 114 148

11 34 70 120 185 250
16 49 100 170 260 371

⎤
⎥⎥⎥⎥⎥⎥⎦

=

L⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
2 3 0 0 0 0
4 5 6 0 0 0
7 8 9 10 0 0

11 12 13 14 15 0
16 17 18 19 20 21

⎤
⎥⎥⎥⎥⎥⎥⎦

·

U⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6
0 1 2 3 4 5
0 0 1 2 3 4
0 0 0 1 2 3
0 0 0 0 1 2
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦



Appendix E
Difference Formula for Calculation
of the Electric Potential at Points Lying on the
Border Between two Looseless Dielectric Media
Without Electrical Charges

Let us consider the vectorD of the electric induction determined at points
E ≡ (x0 + h, y0), W ≡ (x0 − h, y0), N ≡ (x0, y0 + h) and S ≡ (x0, y0 − h)
of the inhomogeneous dielectric area shown in Fig. E.1.

The components of this electric induction vectorD at these particular points can
be approximated by the following differences:

Dx E ≈ 1 · ε0 · Ex E = ε0
UE − U0

h

DxW ≈ εr · ε0 · ExW = εr · ε0
U0 − UW

h

DyN ≈ ε0
1 + εr

2
EyN = ε0

1 + εr

2
· UN − U0

h

DyS ≈ ε0
1 + εr

2
EyS = ε0

1 + εr

2
· U0 − US

h

(E.1)

The differences (E.1) make it possible replacing the differential equation∇ ·D =
∇ · (εr ε0∇U ) = 0, defined at pointO ≡ (x0, y0), by the following difference
equivalent:

∇ · D(x0, y0) = �Dx

�x
+ �Dy

�y
≈ Dx E − DxW

2h
+ DyN − DyS

2h

= ε0
UE − U0

2h2
− εr ε0

U0 − UW

2h2
+ ε0

(1 + εr )

2
· UN − U0

2h2

− ε0
(1 + εr )

2
· U0 − US

2h2
= 0

(E.2)
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y

x

y0 + h

y0 – h

x0 – h x0 + hx0 

y0
UW

EW

US

ES

U0 UE

EE

UN

EN
ε  > 1r ε = 1r

interface

Fig. E.1

Performing some elementary transformations, Eq. (E.2) simplifies to the form:

U0 = UE + εr · UW

2(1+ εr )
+ UN + US

4
(E.3)

identical to relation (8.35).



Appendix F
Complete Elliptic Integrals of the First Kind

The complete elliptic integral of the first kindK (k) is defined as:

K (k) =
1∫

0

dt√
(1 − t2)(1 − k2t2)

(F.1)

wherek (0 ≤ k ≤ 1) is the modulus ofK (k). The associated (complementary)
integralK ′(k) is defined as:

K ′(k) = K (k′) (F.2)

wherek′ = √
1 − k2 is the complementary modulus.

The calculation of integralK (k), when its modulusk is known, is not com-
plicated, and can be done by using the algorithm presented below. Hence, let us
consider two infinite mathematical series (an) and (bn) defined as:

a0 = 1 + k b0 = 1 − k

a1 = a0 + b0

2
b1 = √

a0b0

· · · · · · · · · · · · · · · · · · · · · · · ·
an+1 = an + bn

2
bn+1 = √

anbn

(F.3)

Series defined in this manner converge to a common limit, usually denoted as
μ(a0, b0) = μ(k). Then:

lim
n→∞(an) = lim

n→∞(bn) = μ(k) (F.4)

Finally, the value of integralK (k) is related to limitμ(k) as follows:

K (k) = �

2μ(k)
(F.5)
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where� = 3.141592653589. . . The integralK ′(k) can be calculated in a similar
way. Of course, in this case the limitμ(k′) has to be calculated instead ofμ(k).
The series (an) and (bn) are rapidly convergent, and in the most cases only a few
iterations, for instancen = 5, must be taken into account. Some calculation results
for the complete elliptic integrals of the first kind are given in Table F.1.

Table F.1

k2 K (k) K ′(k)

0.00 1.570 796 326 794 → ∞
0.01 1.574 745 561 317 3.695 637 362 989
0.10 1.612 441 348 720 2.578 092 113 348
0.50 1.854 074 677 301 1.854 074 677 301
0.90 2.578 092 113 348 1.612 441 348 720
0.99 3.695 637 362 989 1.574 745 561317
1.00 → ∞ 1.570 796 326 794
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