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Foreword

This monograph is based on a series of 10 lectures at Ohio State University at
Columbus, March 23-27, 1987, sponsored by the Conference Board of the Math­
ematical Sciences and the National Science Foundation. The selection of topics
is quite personal and, together with the talks of the other speakers, the lectures
represent a story, as I saw it in March 1987, of many of the interesting things
that statisticians can do with splines. I told the audience that the priority order
for topic selection was, first, obscure work of my own and collaborators, sec­
ond, other work by myself and students, with important work by other speakers
deliberately omitted in the hope that they would mention it themselves. This
monograph will more or less follow that outline, so that it is very much slanted
toward work I had some hand in, although I will try to mention at least by refer­
ence important work by the other speakers and some of the attendees. The other
speakers were (in alphabetical order), Dennis Cox, Randy Eubank, Ker-Chau Li,
Douglas Nychka, David Scott, Bernard Silverman, Paul Speckman, and James
Wendelherger. The work of Finbarr O'Sullivan, who was unable to attend, in
extending the developing theory to the non-Gaussian and nonlinear case will also
playa central role, as will the work of Florencio Utreras.

Now, a bit of background is given. The (univariate, natural) polynomial
spline s(x) = s~(x) is a real-valued function on [a, b] defined with the aid of n
so-called knots -00 ~ a < Xl < X2 < ... < X n < b < 00 with the following prop­
erties: (i) s E 7rm - 1, X E [a, xd, X E [xn , b), (ii) s E 7r2m- l , X E [Xi, XHl], i =

1, ... ,n-1, (iii) s E C2m- 2 , X E (-00,00), where 7rk is the polynomials of degree
k or less, and C k is the class of functions with k continuous derivatives. In words,
s(·) is a piecewise polynomial in each interval [a, Xl], [Xi, XHI] i = 1,2, ... , n-1,
[xn , b) with the pieces joined at the knots so that s has 2m - 2 continuous deriva­
tives. It takes m coefficients to define s to the left of XI, m coefficients to define
s to the right of X n , and (n - 1) 2m coefficients to define s in the (n - 1) in­
terior intervals for a total of 2mn coefficients. The continuity conditions (iii)
provide (2m - 1)n coefficients and (it can be shown that) the values of s(x) at
the n points (Xl,'" ,xn ) then provide the remaining n coefficients to define s(x)
uniquely. Schoenberg (1964a, 1964b) considered the following problem. Find f
in the Sobolev space W m of functions with m-1 continuous derivatives and mth
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derivative square integrable, to minimize

(0.0.1)

subject to (iv) I(Xi) = Ii, i = 1,2, ... , n. He showed that, provided n 2:: m, this
minimizer was the unique natural polynomial spline satisfying (i)-(iv). He called
this object a spline, due to its resemblance (when m = 2) to the mechanical spline
used by draftsmen. The mechanical spline is a thin reedlike strip that was used
to draw curves needed in the fabrication of cross sections of ships' hulls. Ducks
or weights were placed on the strip to force it to go through given points, and
the free portion of the strip would assume a position in space that minimized
the (two-dimensional) bending energy. With m = 2, the quantity (0.0.1) is the
(one-dimensional) curvature. The terminology "natural" comes from the fact
that if (0.0.1) is replaced by

in the minimization problem then the solutions to the two problems will co­
incide in [Xl, Xn], with the solution to the latter problem satisfying the so­
called Neumann or "natural" boundary conditions I(j) (xI) = I(j) (xn ) = 0, j =
m, m + 1, ... , 2m - 1.

Statisticians are generally interested in smoothing rather than interpolating
data. Consider the data model

Yi = I(Xi) + fi, i = 1,2, ... , n (0.0.2)

where f = (fl,"" f n )' ,...., N(O, a 2 I) and 1 is only known to be "smooth." Con­
sider, as an estimate of I, the solution to the following minimization problem.
Find 1 in Wm to minimize

(0.0.3)

for some A > O. This expression represents a tradeoff between fidelity to the
data, as represented by the residual sum of squares, and "smoothness" of the
solution, as represented by the square integral of the mth derivative. It was
again shown by Schoenberg that the minimizer is a natural polynomial spline. It
no longer interpolates the noisy data Y = (YI, ... ,Yn), but smoothes it, with the
smoothing parameter Acontrolling the tradeoff between fidelity and smoothness.
It is data smoothing problems such as (0.0.3) and their myriad variations that
we will be interested in, in this monograph.

Numerical analysts who were typically interested in exact data soon
found wonderful things to do with spline functions, because of their ease
of handling in the computer coupled with their good approximation theo­
retic properties. As an example of a good approximation theoretic prop­
erty, suppose 1 is a function with m - 1 continuous derivatives on [Xl, Xn],
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J:1n (fCm)(X))2 dx ::; c2 and max IXi+1 - xii < h; then the natural spline of
interpolation sf that interpolates to f at Xl, ... , X n , satisfies

k = 0,1, ... ,r.n- 1,

with even higher rates of convergence if further conditions are imposed on f (see
Schultz (1973a,b)). Other important references on splines from the point of view
of numerical analysis with exact data are Golomb and Weinberger (1959), de­
Boor and Lynch (1966), deBoor (1978), Schumaker (1981), Prenter (1975), and
the conference proceedings edited by Greville (1968) and Schoenberg (1969).
We will not concern ourselves with exact data here, however. Returning to noisy
data, a discrete version of problems such as (0.0.3) were considered in the actu­
arialliterature under the rubric graduation by Whittaker (1923), who considered
smoothing YI, ... ,Yn discretely by finding f = (II, ... , f n) to minimize

n-3

1 "" 2 "" 2- L-(Yi -Ii) + AL-(fi+3 - 31i+2 + 31i+l -Ii) .
n . I

t=

Here we will primarily be concerned with estimating functions f defined on
continuous index sets (as opposed to vectors) and will only mention in passing
recent related work by Green (1985, 1987), Green and Yandell (1985), Green,
Jennison, and Seheult (1983, 1985), and Steinberg (1983, 1984a,b) in the discrete
setting. Steinberg's work relates some of the present results to the work of the
English Bayesian school.

The first generalizations of (0.0.3) that are of interest concern the replace-

ment of Ja\jcm) (X»2 dx with more general quadratic penalty functionals, for

example J:(Lm f)2(x) dx, where Lm is an r.nth order differential operator sat­
isfying some conditions, and the replacement of the evaluation functionals
f (Xi) ,i = 1, 2, ... ,n by more general observational functionals Lit, where Li

is a bounded linear functional on an appropriate space, for example,

b

Lit = 1wi(x)f(x) dx,

or
Lit = j'(xd·

Characterization of the solution to these generalized variational problems and
more abstract variational problems was given in Kimeldorf and Wahba (1971).
Historically that work is very close to that of Golomb and Weinberger (1959)
and deBoor and Lynch (1966), and later work on characterizing solutions to vari­
ational problems arising in smoothing has, I believe, been made easier by the
variational lemmas given there. George Kimeldorf and I also demonstrated the
connection between these variational problems and Bayes estimates in Kimeldorf
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and Wahba (1970a,b), thus leading the way to showing that smoothing splines
possess a double whammy-good approximation theoretic properties for models
(0.0.2) and its generalizations, both when f is a fixed "smooth" function with
certain properties, and when f is considered to be a sample function from a
stochastic process. This connection between Bayes estimation and variational
problems has its historical roots in the work of Parzen (1962, 1970). This work
was done when George and I were both visitors at the Mathematics Research
Center at the University of Wisconsin-Madison and we benefited from the stim­
ulating atmosphere created there by Profs. Schoenberg, Greville, deBoor, and
numerous visitors, including Larry Schumaker.

The formulas in Kimeldorf and Wahba (1971) were not very well suited to
the computing capabilities of the day (they were essentially impractical) and
the work did not attract much attention from statisticians. In fact offshoots of
these papers were rejected in the early 1970s by mainstream statistics journals
as being too "far out." Possibly the first spline paper in a mainstream statistics
journal is the paper on histosplines by Boneva, Kendall, and Stefanov (1971).
That paper lacks a certain rigor but certainly is of historical importance. Even
well into the mid 1970s not very much was seen about splines in the statis-
tics literature although the approximation theoretic literature was growing by
leaps and bounds. In the later 1970s a number of things happened to propel
splines to a popular niche in the statistics literature-computing power became
available, which made the computation of splines with large data sets feasi-
ble, and, later, inexpensive; a good data-based method for choosing A became
available, and most importantly, splines engaged the interest of a number of cre-
ative researchers, notably including Bernard Silverman and some of the other
speakers. Simultaneously the work of Duchon (1977), Meinguet (1979), Utreras
(1979), Wahba and Wendelberger (1980), and others on multivariate thin-plate
splines led to the development of a practical multivariate smoothing method,
which (unlike the univariate spline) had few real competitors in the so-called
"nonparametric curve smoothing" literature. Thin plate splines and "kriging"
estimates, another multivariate smoothing method, are closely related (see Sec-
tion 2.4 and Chapter 3). There rapidly followed splines and vector splines on the
sphere, partial splines and interaction splines, variational problems where the-­
data are non-Gaussian and where the observation functionals are nonlinear, and
where linear inequality constraints areknowlilolioid~Atong-;:ithtnese·general­

izations came improved numerical methods, publicly available efficient software,
numerous results in good and optimal theoretical properties, confidence state­
ments and diagnostics, and many interesting and important applications. The
body of spline methods available and under development provide a rich family of
estimation and model building techniques that have found use in many scientific
disciplines. Today it is hard to open an issue of the Journal of the American
Statistical Association, the Annals of Statistics, or the Journal of the Royal Sta­
tistical Society without finding the word "spline" somewhere. It is certainly a
pleasure to be associated with such a blossoming and important area of research.

The variational problems that we will be discussing can be treated from a
unified point of view as optimization problems in a reproducing kernel Hilbert
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space. We will assume that the reader has a knowledge of the basic properties
of Hilbert spaces of real-valued functions including the notion of bounded lin­
ear functional and the Riesz representation theorem. This background can be
obtained by reading the first 39 pages of Akhiezer and Glazman (1963) or the
first 34 pages of Halmos (1957). We will review the properties of reproducing
kernels (r.k.'s) and reproducing kernel Hilbert spaces (r.k.h.s.'s) that we need.
For further background the reader may refer to Aronszajn (1950). Although
many of the results here can be obtained without the Hilbert space machinery
(in particular, Schoenberg used mainly integration by parts), the fact that the
solution to all of the quadratic optimization problems we discuss can be char­
acterized in terms of a relevant reproducing kernel saves one from proving the
same theorems over and over in different contexts. The r.k. in its reincarnation
as a covariance also provides the crucial link to Bayesian estimation. Under a
variety of circumstances the convergence rates of the various estimates can be
related to the rate of decay of the eigenvalues of the reproducing kernel and
the Fourier-Bessel coefficients of the function being estimated with respect to
the eigenfunctions. I trust that the manuscript will be accessible to a second or
third year graduate student in statistics who has read the aforementioned parts
of Akhiezer and Glazman (1963) or Halmos (1957). I would like to assure the
reader that the effort to master the basic properties of r.k.h.s., which regrettably
are not part of the graduate statistics curriculum at many institutions, will be
worth the effort.

All of the splines that we discuss in this book may be obtained as solutions
to variational problems. We remark that there is a rich theory of multivariate
piecewise polynomial splines that do not arise naturally as the solution to a
variational problem. These splines are beyond the scope of the present work.
The reader is referred to Hollig (1986) or Chui (1988).

The conference (and by extension, this monograph) was made possible by
Prof. Sue Leurgans, who persuaded the National Science Foundation to sponsor
the conference and whose superb organizational skills induced many of the active
researchers in the field to attend; some carne from great distances. She provided
a flawless ambiance for scientific interaction, and made sure that the speaker got
her homework done in time. Thanks are also due to the warm hospitality of Prof.
and Mrs. Jagdish Rustagi, and other members of the Statistics Department at
Ohio State University.

Of course very few researchers work in a vacuum, and the work of mine that is
presented here owes much to nearly 20 years of a stimulating and supportive en­
vironment in the Statistics Department at the University of Wisconsin-Madison,
and before that as a graduate student at Stanford University. Manny Parzen, my
thesis advisor there, will recognize some of the introductory material from his
class notes. For many' years my research in splines was supported by the Office
of Naval Research while Ed Wegman was Director of Probability and Statis­
tics and then Director of Mathematics there. While managing a large program,
Ed himself made some important contributions to the development of splines in
statistics while prodding me On (see Wegman and Wright (1983)). My work on
splines has more recently been supported by the National Science Foundation,
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and at present by the Air Force Office of Scientific Research. This support has
been, and continues to be, invaluable.

September 1987

Unfortunately, we must tell the dear reader that many months passed from
the writing of the first draft until the completion of the book. In that time the
literature has continued to increase at an impressive rate. We have included brief
mention of a few important topics for which results have become available since
the CBMS conference. These include system identification, interaction splines
and numerical methods for multiple smoothing parameters, and experimental
design with noisy data (Sections 9.7, 10.1, 10.2, 11.3, 11.4, and 12.2).

I thank my patient typist, Thomas F. Orowan, S. Gildea and P. Cheng, who
graciously provided LaTex macros, Jim Bucklew, Su-Yun Chen, Zehua Chen,
Feng Gao, Chong Gu, Bill Studden, and Dave Reboussin, who helped proofread,
and C. David Callan, for listening.

April 1989



CHAPTER 1
Background

1.1 Positive-definite functions, covariances, and reproducing kernels.

We begin with a general index set T. Examples of T that are of interest follow:

T

T -
T -
T -
T -
T -

(l,2, ... ,N)

(... ,-1,0,1, ... )
[0,1]
Ed (Euclidean d-space)

S (the unit sphere)

the atmosphere (the volume between two concentric spheres),

etc. The text below is generally written as though the index set were continuous,
but the discrete examples are usually special cases. A symmetric, real-valued
function R(s, t) of two variables s, t E T is said to be positive definite if, for any
real aI, ... , an, and t1 , ••• ,tn E T

n

L aiaj R(ti, tj) ~ 0,
i,j=l

and strictly positive definite if ">" holds. If R(·, .) is positive definite, then we
can always define a family X(t), t E T of zero-mean Gaussian random variables
with covariance function R, that is,

E X (s)X (t) = R( s, t), s,t E T. (1.1.1)

All functions and random variables in this book will be real valued unless
specifically noted otherwise.

The existence of such a well-defined family of random variables in the
continuous case is guaranteed by the Kolmogorov consistency theorem (see, e.g.,
Cramer and Leadbetter (1967, Chap. 3)). Given a positive-definite function
R(·, .) we are going to associate with it a reproducing kernel Hilbert space
(r.k.h.s.). A (real) r.k.h.s. is a Hilbert space of real-valued functions on T with
the property that, for each t E T, the evaluation functional L t , which associates

1
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f with f(t), Ltf ~ f(t), is a bounded linear functional. The boundedness means
that there exists an M = M t such that

ILtfl = If(t)1 ::; Mllfll for all f in the r.k.h.s.,

where II-II is the norm in the Hilbert space. We remark that the familiar Hilbert
space £2[0,1] of square integrable functions on [0,1] does not have this property,
no such M exists, and, in fact, elements in £2[0,1] are not even defined pointwise.

If 1t is an r .k. h.s., then for each t E T there exists, by the Riesz representation
theorem, an element Rt in 1t with the property

Ltf =< Rt , f >= f(t), f E 1t. (1.1.2)

Rt is called the representer of evaluation at t. Here, and elsewhere, we will use
< ',' > for the inner product in a reproducing kernel space. This inner product
will, of course, depend on what space we are talking about. This leads us to the
following theorem.

THEOREM 1.1.1. To every r.k.h.s. there corresponds a unique positive­
definite function (called the reproducing kernel (r.k.)) and conversely, given a
positive-definite function R on TxT we can construct a unique r.k.h.s. of
real-valued functions on T with R as its r.k.

The proof is simple. If 1t is an r.k.h.s., then the r.k. is R(s, t)
< R~, R t >, where for each s, t, R s and R t are the representers of evaluation at
sand t. R(·,·) is positive definite since, for any t ll ... , tn E T, al, ... , an,

L aiaj R(ti, tj )
i,j i,j

Conversely, given R we construct 1t = 1tR as follows. For each fixed t E T,
denote by Rt the real-valued function with

R t (-) = R(t, .). (1.1.3)

By this is meant: Rt is the function whose value at s is R(t, s). Then construct
a linear manifold by taking all finite linear combinations of the form

(1.1.4)

for all choices of n, al, ... , an, t l , ... , tn with the inner product

< ~ai Rtl , ~bj R Sj >= L aibj < Rti , RSj >= ~aibjR(ti,Sj).
ij

This is a well-defined inner product, since R is positive definite, and it is easy to
check that for any f of the form (1.1.4) < R t , f >= f(t). In this linear manifold,
norm convergence implies pointwise convergence, since

Ifn(t) - l(t)1 = I < In - I, R t > Is Illn - III IIRtll·
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Thus, to this linear manifold we can adjoin all limits of Cauchy sequences of
functions in the linear manifold, which will be well defined as pointwise limits.
The resulting Hilbert space is seen to be the r.k.h.s. 1tR with r.k. R.

R is called the reproducing kernel, since

< Rs , Rt >=< R(s, '), R(t,') >= R(s, t).

We will frequently denote by 1tR the r.k.h.s. with r.k. R, and its inner product
by < ',' >R or just < ',' > if it is clear which inner product is meant.
As a positive-definite function, under some general circumstances, R has an
eigenvector-eigenvalue decomposition that generalizes the eigenvector-eigenvalue
decomposition of a positive-definite matrix ~, ~ = r Dr' with r orthogonal
and D diagonal. Below we will show why the squared norm 11111 2 = 1I111h can
be thought of as a generalization of the expression f'~-l1 with 1 a vector
that appears in the multivariate normal density function with covariance ~. In
particular, suppose R(s, t) continuous and

hh R2 (s, t) ds dt < 00. (1.1.5)

Then there exists an orthonormal sequence of continuous eigenfunctions,
<Ill, <Il2, ... in £2[71 and eigenvalues Al ~ A2 ~ ... ~ 0, with

l R(s, t)<Ilv(t) dt = Av<Ilv(S), v = 1,2, ... ,

00

R(s, t) = L Av<Ilv(S)<Ilv(t),
v=l

11 R2 (s, t) ds dt = f:: A~ < 00.
T T v=l

(1.1.6)

(1.1. 7)

(1.1.8)

See the Mercer-Hilbert-Schmidt theorems of Riesz and Sz.-Nagy (1955, pp. 242­
246) for proofs of (1.1.6)-(1.1.8). Note that if we rewrite this result for the case
T = (1,2, ... ,N), then (1.1.6)-(1.1.8) become

trace R 2

Av<Ilv,

fDr' ,
N

LA~,
v=l

where R is the N x N matrix with ijth entry R( i, j), <Ilv is the vector with jth
entry <IlvU), D is the diagonal matrix with vvth entry Av, and f is the orthogonal
matrix with vth column <Ilv.

We have the following lemma.
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LEMMA 1.1.1. Suppose (1.1.5) holds. II we let

(1.1.9)

then I E HR il and only il

and

II/II~ = f ~~.
v::::: 1 v

(1.1.10)

(1.1.11 )

Proof. The collection of all functions I with r:,(f~/ Av) < 00 is clearly a
Hilbert space with 11/11 2 = r:,(f~/Av). We must show that R with

is its r.k. That is, we must show that Rt E H~ and

< I, Rt >= l(t), /I E HR , t E T

for Rt (s) = R(t, s). Expanding I and R(t, .) in Fourier series with respect to
q) I, q)2, ... , we have

v

v

v

using the inner product induced by the norm in (1.1.11). But

v v

and the result is proved.

We remark that if we begin with R satisfying (1.1.5) and construct the Hilbert
space of functions with L(f~/ Av ) < 00, it is easy to show that the evaluation
functionals are bounded:

- IIfIIVR(t, t) = 11/11 IIRtll·
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We remind the reader of the Karhunen-Loeve expansion. Suppose R is a
covariance for which (1.1.5) holds, and let X(t), t E T be a family of zero-mean
Gaussian random variables with EX(s)X(t) :::;: R(s, t) = L:~=l Av<Pv(S)<Pv(t).
Then X (t), t E T has a (quadratic mean) representation

00

X(t) "'- L Xv<Pv(t),
1.'=1

where Xl, X 2 , ••. are independent, Gaussian random variables with

EXv = 0, EX~ = AI.'

and

(1.1.12)

The integral in (1.1.12) is well defined in quadratic mean (see Cramer and
Leadbetter (1967)). However, sample functions of X( t), t E T are not (with
probability 1) in HR, if R has more than a finite number of nonzero eigenvalues.
We do not prove this (see Hajek (1962a)), but merely consider the following
suggestion of this fact. Let

K

XK(t) = L Xv<Pv(t),
1.'=1

t E T,

then for eac:h fixed t, X K(t) tends to X (t) in quadratic mean, since

00 00

EIXK(t) - X(t)1 2 = EI L X v<P v(t)1 2 = L Av<P~(t) ~ 0;
K+l K+l

however,
K X2

EI!XK(')!I2 = EL A: = K - 00 as K - 00.

1.'=1

This very important fact, namely, that the assumptions that f E HR and f a
sample function from a zero-mean Gaussian stochastic process are not the same,
will have important consequences later.

1.2 Reproducing kernel spaces on [0,1] with norms involving
derivatives.

We remind the reader of Taylor's theorem with remainder: If f is a real- valued
function on [0,1] with m - 1 continuous derivatives and fCm) E £2[0,1], then we
may write

{

m-l tV } {11
(t )m-l }f(t) = ""' -fCv)(o) + - u + fCm)(u) du ,

L v! 0 (m - I)!
1.'=0

(1.2.1 )
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where (x)+ = x for x ~ 0 and (x)+ = 0 otherwise. Let Bm denote the class of
functions satisfying the boundary conditions f(v) (0) = 0, 1I = 0,1 ... ,m - 1. If
f E Bm then

f(t) _ t (t - U)~-l f(m) (u) du
Jo (m - I)!

- 10' Gm(t, u)j(m)(u) du, say, (1.2.2)

where
Gm(t, u) = (t - u)~-l /(m - I)!. (1.2.3)

Gm is the Green's function for the problem Dm f = g, f E Bm, where Dm denotes
the mth derivative. Equation (1.2.2) can be verified by interchanging the order
of integration in f(t) = J; dtm-l J;m-l dtm-2'" J;l f(m)(u) duo Denote by
W~ the collection of functions on [0, 1] with

{f: f E 8 m, f, 1', ... I f(m-l) absolutely continuous, f(m) E £2}'

It is not hard to show that W~ is a Hilbert space with square norm IIfl1 2 =
Jo1(J(m)(t))2 dt. We claim that W~ is an r.k.h.s. with r.k.

R(s,t) = 10' Gm(t,u)Gm(s,u)du. (1.2.4)

To show that the evaluation functionals are bounded, note that for f E W~ we
have

j(s) = 10' Gm(s, u)j(m)(u) du

so that by the Cauchy-Schwarz inequality

(1.2.5)

If(s)1 < 11

G~(s,u)du 1\f(m)(u))2dU

JR (s, s) 11111·

To show that R(·,·) is the r.k. for W~ we must show that Rt (-) = R(t,') is in
W~ and that < Rt, f >= f(t), all f E W~. But

R,(v) = 10' Gm(v, u)Gm(t, u) du

and hence Rt is in W~,
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as can be seen by letting f = R t in (1.2.5). Thus

7

1

< f, R t >=< R t , f >= 1Gm(t, v)!'m) (v) dv = f(t).

Now let ¢v(t) = tv- 1 /(v - 1)! for v = 1,2, ... , m and denote the m­
dimensional space of polynomials of degree m - 1 or less spanned by ¢1, ... ¢m
as ?to. Note that Dm(?to) = O. Since

(DIL-I¢v)(O) 1,

- 0,

?to endowed with the squared norm

J-l-=v

J-l- =j:. v, J-l-, v = 1, ... ,m,

m-l
1I¢11 2 = L [(D V ¢)(0)]2,

v=o

is an m-dimensional Hilbert space with ¢1, ... ,¢m as an orthonormal basis, and
it is not hard to show that then the r.k. for ?to is

m

L ¢v(s)¢v(t).
v=1

To see this, let R t (·) = L:~1 ¢v(t)¢v(')j then

m

< R t , ¢o >= L ¢v(t) < ¢v, ¢a >= ¢a(t), Q: = 1,2, ... , m.
v=1

We are now ready to construct the so-called Sobolev-Hilbert space Wm;

Wm : Wm[O, 1] = {f: f, 1', ... ,f m- 1absolutely contiuuous,!(m) E LZ}.

There are a number of ways to construct a norm on Wm' The norm we give
here is given in Kimeldorf and Wahba (1971) and has associated with it an r.k.
that will be particularly useful for our purposes. Different (but topologically
equivalent) norms on this space will be introduced below and in Section 10.2.
"Sobolev space" is the general term given for a function space (not necessarily
a Hilbert space) whose norm involves derivatives. For more on Sobolev spaces,
see Adams (1975). Each element in Wm has a Taylor series expansion (1.2.1) to
order m and hence a unique decomposition

! = fa +!I

with fa E ?to and !I E W~, given by the first and second terms in brackets
in (1.2.1). Furthermore, fo1((Dm fO)(u))2du = 0 and L:~:ol[(DV!I)(O)F = O.
Thus, denoting W~ by ?t 1, we claim
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and, if we endow Wm with the square norm

m-I I

11111 2 = L [(D V 1)(0)]2 +1(Dm1)2(u) du
v=o a

then Ho and HI will be perpendicular. With this norm, it is not hard to show
that the r .k. for Wm is

m I

R( .• , t) = ~ <l>v(s)<Pv(t) +1Gm(s, u)Gm(t, u) du

where Gm is given by (1.2.3). The reproducing kernel for the direct sum of
two perpendicular subspaces is the sum of the r.k. 's (see Aronszajn (1950)). An
important geometrical fact that we will use later is that the penalty functional
Jm(j) = foI (jCm)(u))2 du may be written

Jm(j) = IIPI111~m

where PI is the orthogonal projection of 1 onto 'HI in Wm .

We may replace Dm in foI
(Dm 1)2 du by more general differential operators.

Let aI, a2,' .. ,am be strictly positive functions with ai(O) = 1 and as many
derivatives as needed and let

Also let

- I (the identity)

D_1

am

D_1_D~
am-I am

and let WI, ... ,Wm be defined by

WI (t) - am(t)

W2 (t) Um(t) l' Um-l (tm-l) dtm_l



Note that

BACKGROUND 9

1,

- 0,

J.L=v

J.L =f:. v, J.L, v = 1, ... , m.

The {Wv } are an "extended Tchebycheff system" and share the following property
with the polynomials <PI,"" <Pm. Let t I , ... , tn be distinct, with n ~ m; then
the n x m matrix T with i, vth entry wv(ti) is of rank m (see Karlin (1968)).

Now, let Bm denote the class of functions satisfying the boundary conditions

(Mvf)(O) = 0; v = 0,1, ... ,m - 1,

and let Gm be the Green's function for the problem Lml = g, f E Bm. We have
I E Bm =:;>

f(t) =am(t) 1.' am-I (tm-tl dtm- I

t rn
-

1 t 1

. Jo am-2(tm-2) dtm-2'" Jo (Lmf)(u) du

= 1.'(Lmfl (u) du{ am (t) l "I (tIl dtl

.it a2(t2) dt2'" it am-I(tm-d dtm-d
tl t rn -2

= it Gm(t, u)(Lmf)(u) du,

(1.2.6)

where Gm(t, m) is equal to the expression in brackets in (1.2.6).
Let W~ he the collection of functions on [0, 1] given by

{I: I E 13m, Mol, MIl,"" Mm~II absolutely continuous, Lml E L2}.

Then by the same arguments as before, W~ is an r.k.h.s. with the .squared norm

11/11 2 = JoI
(L tn /)2(u) du, and reproducing kernel

R(s, t) = l Gm(s, u)Gm(t, u) duo

Letting 'Ho he span {WI," ., wm} and 'HI be W~, then letting Wm be the Hilbert
space

Wm = 'Ho EEl 'HI,

we have that Wm is an r.k.h.s. with

m-l 1

11/11 2 ~ I: [(Mv f)(0)]2 +1(Lm /)2 du
v=o a
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and r.k.
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m-l 1

Lwv(s)wv(t)+1Gm(s,u)Gm(t,u)du.
1"=0 0

Furthermore, we have the geometrical relation

1

f (Lmf)2 du = IIPlfll~ ,Jo m

where PI is the ortho~onal projection in Wm onto HI.
We have, for f E W m , the generalized Taylor series expansion

m t

f(t) = L wv(t)(Mv- 1 f)(0) +1Gm(t, u)(Lmf)(u) duo
1"=1 0

We remark that Wm and Wm are topologically equivalent; they have the same
Cauchy sequences. Another topologically equivalent norm involving boundary
rather than initial values will be introduced in Section 10.2.

1.3 The special and general spline smoothing problems.

The data model associated with the special spline smoothing problem is

i = 1,2, ... ,n (1.3.1)

where t E T = [0,1], f E Wm , and ( = ((1, ... , (n)' f'W N(O, (j21). An estimate of
f is obtained by finding fEWm to minimize

(1.3.2)

The data model associated with the general spline smoothing problem is

Yi = Ld + (i, i = 1,2, ... ,n (1.3.3)

where ( is as before. Now T is arbitrary, f E HR, a given r.k.h.s. of functions
on T, and L 1, • •• , L n are bounded linear functionals on HR' HR is supposed to
have a decomposition

HR = Ho EB HI

where dim Ho = M ::; n. An estimate of f is obtained by finding f E HR to
minimize

n

~ L(Yi - Ld)2 + AIIPdllh,
i=l

(1.3.4)

where PI is the orthogonal projection of f onto HI, in HR.
One of the useful properties of reproducing kernels is that from them one can

obtain the representer of any bounded linear functional. Let 17i be the representer
for L i , that is,
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Then
'r/i(S) =< 'r/i, R s >= LiRs = Li(·)R(s,·) (1.3.5)

where L i (.) means L i is applied to what follows as a function of (-). That is, one
can apply Li to R(s, t) considered as a function oft, to obtain 'r/i(S). For example,
ifLd = fWi(U)j(u)du, then'r/i(s) = fWi(U)R(s,u)du, andifLd = f'(td, then
'r/i(S) = (8/8u)R(s,u)lu=t,. On the other hand Li is a bounded linear functional
on HR only if 'r/i(') obtained by 'r/i(S) = Li(.)R(s,·) is a well-defined element
of HR- To see the argument behind this note that if Ld = Lt atj(tt) for any
finite sum, then its representer is 'r/i = Lt at R te , and any 'r/i in HR will be a
limit of sums of this form and will be the representer of the limiting bounded
linear functional. As an example, Ld = j' (t i ) a bounded linear functional in
HR => 'r/i = limh-+O(l/h)(Rti+h - R ti ), where the limit is in the norm topology,
which then entails that

8
8tR(t, s)lt=ti = 'r/i(S) with'r/i E HR"

j(k)(td can be shown to be a bounded linear functional in Wm for k =
0,1, . _. ,m - 1. More details can be found in Aronszajn (1950).

We will now find an explicit formula for the minimizer of (1.3.4), which can
now be written

(1.3.6)

THEOREM 1.3.1. Let cPI' _.. , cPM span the null space (Ho) oj PI and let the
n x M matrix TnxM defined by

(1.3.7)

be oj full column rank. Then 1>.. , the minimizer oj (1.3.6), is given by

M n

1>. = L dvcPv + L Ciei
v=I i=l

(1.3.8)

where

(1.3.9)

- Pl7]i,

(T' M-IT)-IT' M-Iy,

M- 1(1- T(T' M-1T)-IT'M- I )y,

~ + n>..I,

{<ei,ej>}'

M

~ -

ei
d = (d I , ... ,dM )'

C = (c1, .. - , cn )'

(Do not confuse the index M and the matrix M _)
Before giving the proof we make a few remarks concerning the ingredients of

the minimizer. Letting HR = Ho E9 HI, with Ho 1. Hh where
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and Rn is the r.k. for H n, Q' = 0,1, we then have

< P l 7Ji, Rt >=< 7Ji, P1R t >
< 7Ji, R: >
LiR: (1.3.10)

where R; is the representer of evaluation at t in HI. We have used that the
projection PI is self-adjoint. Furthermore,

< ~i, ~j >=< 7Ji, ~j >

since < 7Ji - ~i, ~j >= 0, so that

To prove the theorem, let the minimizer f>.. be of the form

M n

f>.. = L dv4>v + L Ci~i + P
v=I i=l

(1.3.11)

where p is some element in HR perpendicular to 4>1, ... , 4>M, 6,··· I ~n' Any
element in HR has such a representation by the property of Hilbert spaces.
Then (1.3.6) becomes

(1.3.12)

and we must find c, d, and p to minimize this expression. It is then obvious that
IIpl12 = 0, and a straightforward calculation shows that the minimizing c and d
of

are given by

d

C

1-Ily - (~c + Td)112 + AC'~C
n

(T' M-1T)-lT' M-1y,

M-1(I - T(T' M-1T)-lT' M-1)y.

(1.3.13)

(1.3.14)

(1.3.15)

These formulae are quite unsuitable for numerical work, and, in fact, were
quite impractical when they appeared in Kimeldorf and Wahba (1971). Utreras
(1979) provided an equivalent set of equations with more favorable properties,
and another improvement was given in Wahba (1978b) with the aid of an
anonymous referee, who was later unmasked as Silverman. Multiplying the left
and right sides of (1.3.15) by M and substituting in (1.3.14) gives (1.3.16) and
multiplying (1.3.15) by T' gives (1.3.17):

Mc+Td y,

T'c - 0,

(1.3.16)

(1.3.17)
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(1.3.21 )

these being equivalent to (1.3.14) and (1.3.15).
To compute e and d, let the QR decomposition (see Dongarra et al. (1979))

ofT be

T = (QI: Q2) ( ~ ) (1.3.18)

where QI is n x M and Q2 is n x (n - M), Q = (QI : Q2) is orthogonal and R
is upper triangular, with T'Q2 = OMx(n-M)' Since T'e = 0, e must be in the
column space of Q2, giving e = Q2/ for some / an n - M vector. Substituting
e = Q2/ into (1.3.16) and multiplying through by Q~, recalling that Q~T = 0,
gIveS

Q~MQ2/ = Q~Y,

e = Q2/ = Q2(Q~MQ2)-IQ~Y, (1.3.19)

and multiplying (1.3.16) by Q~ gives

Rd = Qi(y - Me). (1.3.20)

For later use the influence matrix A(A.) will play an important role. A(A.) is
defined as the matrix satisfying

( £1/' ) = A(A.)y.

Lnf>..

To obtain a simple formula for I - A(A.) we observe by substitution in (1.3.11)
with p = 0 that

(

LIb. )
: = Td + ~e.

Lnf>..

Subtracting this from (1.3.16) gives

(I - A(A.))y = nA.c = nA.Q2(Q~MQ2)-IQ~y

for any y, thus

(1.3.22)

1- A(A.) = nA.Q2(Q~MQ2)-IQ~. (1.3.23)

Of course Q2 may be replaced by any n x (n - M) matrix whose columns are
any orthonormal set perpendicular to the M columns of T. We will discuss
efficient numerical methods for computing e and d in conjunction with data­
based methods for choosing A. later.

For the special spline smoothing problem we will demonstrate that f>.. of
(1.3.8) is a natural polynomial spline. Here
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and

It is easy to check that here
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~i(-) E 1r
2m

-
1 for s E [0, til

E 1r
m - 1 for s E [ti, 1],

and

Thus

m n

f>..(t) = L dv<Pv(t) + LCi~i(t) E 1r
m

-
1 for t E [tn, 1]

v=l i=l

E 1r
2m

-
1 for t E [ti, ti+l]

E C2m- 2 .

We will show that the condition T'c = 0 guarantees that f>.. E 1r
m - 1 for t E [0, til,

as follows. For t < t}, we can remove the "+" in the formula for ~i and write

(1.3.24)

But L:~=I cit~ = 0 for k = 0,1, ... ,m - 1 since T'c = 0, so that (1.3.24) is 0 for
t < ti and the result is proved.

We remark that it can be shown that lim).--+oo f). is the least squares
regression onto <PI, ... , <PM and lim).--+o f>.. is the interpolant to Ld = Yi in
1t that minimizes lIP} fll. The important choice of A from the data will be
discussed later.

1.4 The duality between r.k.h.s. and stochastic processes.

Later we will show how spline estimates are also Bayes estimates, with a certain
prior on f. This is no coincidence, but is a consequence of the duality between
the Hilbert space spanned by a family of random variables and its associated
r.k.h.s. The discussion of this duality follows Parzen (1962, 1970).

Let X(t), t E T be a family of zero-mean Gaussian random variables with
EX(s)X(t) = R(s, t). Let X be the Hilbert space spanned by X(t), t E T. This
is the collection of all random variables of the form

(1.4.1)

tj E T, with inner product < ZI, Z2 >= EZ1Z2, and all of their quadratic
mean limits, i.e. Z is in X if and only if there is a sequence Zl, 1 = 1,2, ...
of random variables each of the form (1.4.1), with liml--+oo E(Z - ZI)2 =
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liZ - zll12 ---+ O. Letting 'HR be the r.k.h.s. with r.k. R, we will see that
'HR is isometrically isomorphic to X, that is, there exists a 1:1 inner product
preserving correspondence between the two spaces. The correspondence is given
by Table 1.1. This correspondence is clearly 1:1 and preserves inner products,

TABLE 1.1

The 1:1 correspondence between 'HR and X.

smce

X

X(t)

~ajX(tj)

lim~ajX(tj)

'HR

"'" Rt

"'" ~ajRtJ

"'" lim ~ajRtj'

< X(s),X(t) >= EX(s)X(t) = R(s,t) =< Rs,Rt >.

Let L be a bounded linear functional in 'HR with representer 1]. Then 1] is the
limit of a sequence of elements of the form ~atIRt" by construction of 'HR'
The random variable Z corresponds to 1] if Z is the (quadratic mean) limit of
the corresponding sequence of random variables ~atlX (td and we can finally
denote this limiting random variable by LX (although X ¢ 'HR and we do not
think of L as a bounded linear functional applied to X). Then EZX(t) =
< 1], Rt >= 1](t) = LRt· Examples are Z = Jw(t)X(t) dt and Z = X'(t), if they
exist.

We are now ready to give a simple example of the duality between Bayesian es­
timation on a family of random variables and optimization in an r.k.h.s. Consider
X(t), t ETa zero-mean Gaussian stochastic process with EX(s)X(t) = R(s, t).
Fix t for the moment and compute E{X(t)IX(td = Xl, ... , X(tn) = xn}. The
joint covariance matrix of X(t), X(td, ... , X(tn) is

R(t, t) R(t, td, .. ·, R(t, tn)
R(t, h)

where Rn is the n x n matrix with ijth entry R(ti, tj)' We will assume for
simplicity in this example that Rn is strictly positive definite. Using properties
of the multivariate normal distribution, as given, e.g., in Anderson (1958), we
have

E{X(t) I X(ti) = Xi, i = 1, ... , n}

= (R(t, td, ... , R(t, tn)) R;:lX = j(t), (1.4.2)

say. The Gaussianness is not actually being used, except to call j(t) a conditional
expectation. If j(t) were just required to be the minimum variance unbiased
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linear estimate of X(t), given the data, the result j(t) would be the same,
independent of the form of the joint distribution and depending only on the
first and second moments.

Now consider the following problem. Find I E ?-in, the r.k.h.s. with r.k. R,
to minimize 11/11 2 subject to IUd = Xi, i = 1, ... , n. By a special case of the
argument given before, I must be of the form

n

1= L Cj RtJ + P
j=1

for some p J... to R t1 , ••. , R tn , that is, p satisfies < R ti , P >= p(ti ) ::::: 0, i :::::
1, .. " n. 11/112= c'Rnc + IIpl12 and so IIpll = O. Setting I(ti) ::::: 2:;=1 CjRtj (t i ) :::::

Xi, i = 1, ... , n gives X = (Xl,"" X n )' = Rnc, and so the minimizer is I given
by

which is exactly equal to j of (1.4.2)!

1.5 The smoothing spline and the generalized smoothing spline as
Bayes estimates.

We first consider

where wZ, has the r.k.

1 t (.'I - U)~-1 (t - U)~-1
R (.'I, t) = io (m _ I)! (m _ I)! duo

Let

(1.5.1)

(1.5.2)
t (t - U)~-1

X(t) = io (m _ I)! dW(u)

where W(·) is the Wiener process. Formally, X c 8 m, DmX = dW :::::
"white noise." X(.) is the m - 1 fold integrated Wiener process described
in Shepp (1966). We remind the reader that the Wiener process is a zero­
mean Gaussian stochastic process with stationary independent increments and
W(O) = O. Stationary, independent increments means, for any 81,82,83,84, the
joint distribution of W(S2) - W(sI) and W(S4) - W(S3) is the same as that of
W(.'l2 + h) - W(Sl + h) and W(S4 + h) - W(S3 + h), and, if the intervals [81,82]

and [83,84] are nonoverlapping then W(S2) - W(sd and W(S4) - W(S3) are
independent. Integrals of the form

11

g(u) dW (u) (1.5.3)
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are defined as quadratic-mean limits of the Riemann-Stieltjes sums
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(1.5.4)

(1.5.6)

for partitions {Ul, ... ,UL} of [0,1] (see Cramer and Leadbetter (1967, Chap. 5)).
It can be shown to follow from the stationary independent increments property,
that E[W(u + h) - W(u)F = const. h, for some constant, which we will take
here to be 1. Using the definition of (1.5.3) as a limit of the form (1.5.4), it can
be shown using the independent increments property, that if gl and g2 are in
£2 [0, 1], then

E t gl(u)dW(u) t g2(u)dW(u) = t gl(U)g2(U)du. (1.5.5)
h h· h

Thus,

-1 1 (t - u)~-l (s - ur~~·-l 1
EX(s)X(t) - ( )' ( ) du = R ell, t)

o m-1. m-1!

and the Hilbert space spanned by the m - 1 fold integrated Wiener process is
isometrically isomorphic to W~.

We will consider two types of Bayes estimates, both of which lead to a
smoothing spline estimate. The first was given in Kimeldorf and Wahba (1971)
and might be called the "fixed effects" model, and the second might be called
the "random effects model with an improper prior," and was given in Wahba
(1978b).

The first model is

F(t)
m

L ().A)I/(t) + bl
/

2 X(t), t E [0,1],
1/=1

Yi - F(ti) + fi, i = 1, ... , n.

(1.5.7)

Here () = (()1,"" ~)' is considered to be a fixed, but unknown, vector, b is a 9)1
positive constant, X(t), t E [0,1] is a zero-mean Gaussian stochastic process
with covariance R1(.~, t) of (1.5.6), and f '" N(O, (T2 I). We wish to construct an
estimate of F(t), t E T, given Yi = Yi, i = 1, ... , n.

An estimate F(t) of F(t) will be called unbiased with respect to () if

E(F(t)I()) = E(F(t)I()).

(Here, t is considered fixed.) Let F( t) be the minimum variance, unbiased (with
respect to ()) linear estimate of F(t) given Yi = Yi, i = 1,. " ,n. That is,

n

F(t) = L {3j (t)Yj
j=l

for some {3j (t) (linearity), and F( t) minimizes

E(F(t) - F(t))2
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(minimum variance) subject to
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E(F(t) - F(t)I(}) = 0 for all t E [0,1].

We have the following theorem.

THEOREM 1.5.1. Let f>,. be the minimizer in W m of

Then
F(t) = f>.(t)

with), = a 2 /nb.

Proof. A proof can be obtained by straightforward calculation (see Kimeldorf
and Wahba (1971)).

The general version of this theorem follows. Let H = Ho EEl HI where Ho is
spanned by 1>1,"" 1>M, and HI has r.k. R1 (s, t). Let

M

F(t) = L (}v1>v(t) + b1
/

2 X(t), t E T
1'=1

where (} is as before and EX(s)X(t) = R 1 (s, t). Let L1 , •• • , L n be bounded linear
functionals on H; then E;:1 (}vLi1>v is a well-defined constant and b1

/
2 LiX is a

well-defined random variable in the Hilbert space spanned by X(t), t E T. Let

where E is as before. Here and elsewhere it is assumed that the n x M matrix
T with ivth element Li1>v is of rank M (that is, least squares regression on
1>1, ... ,1>Mis uniquely defined). Let Lo be another bounded linear functional on
H. The goal is to estimate LoF (again a well-defined random variable), given- -Yi = Yi, i = 1, ... , n. Call the estimate LoF. Let LoF be the minimum variance,
linear, unbiased with respect to (} estimate. Then

n

0= L(3jYj
j=1

where (3 = ((31, ... ,(3n) is chosen to minimize

- 2E(LoF - LoF)

subject to
E[(O - LoF)I(}] = o.

We have the following theorem.
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THEOREM 1.5.2.

----LoF = Lo!>.

where!>. is the minimizer in 1t of
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with A= (1"2/nb.
This theorem says that if you want to estimate LoF, then you can find the

generalized smoothing spline f>.. for the data and take Lo!>. as the estimate.
A practical application of this result that we will return to later is the

estimation of f' (t) given data:

One can take the smoothing spline for the data and use its derivative as an
estimate of f'.

The second, or "random effects model with an improper prior ," leads to the
same smoothing spline, and goes as follows:

F(t)
M

L Ovr/Jv(t) + bl
/

2 X(t),
v=l
LiF + Ei,

(1.5.8)

where everything is as before except 0, which is assumed to be N(O, aI), and we
will let a ~ 00.

THEOREM 1.5.3. Let

Fa(t) = E(F(t)lYi = Yi, i = 1, ... , n)

and let 1>. be the minimizer of

1~ 2 2
- L)Yi - Li/) + AIlP1flln .

i=l

with A = (1"2/nb. Then, for each fixed t,

lim Fa(t) = !>.(t).
a-+oo

To prove this, by the correspondence between 1tR l and the Hilbert space
spanned by X(t), t E T, we have

E(LiX)X(t)

ELiXLjX

Li(s)R1(s, t) = ~i(t),

Li(s)Lj(t)R1(s, t) =< ~i, ~j > .
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Then, let ting Y = (Y1 , ... , ~~)', we have

+ b ( 'lit) ) ,
~n( t)

EYY' = aTT' + b~ + (72 ]

where T and ~ are aH in (1.3.7) and (1.3.9).
Setting). = (72Inb, rl = alb and M = ~ + n).] gives

(1.5.9)

E(Fa(t)IY = y) = (cP1(t), ... , cPM(t))TJT'(TJTT' + M)-ly

+ (6(t), ... ,~n(t))(TJTT' + M)-ly. (1.5.10)

Comparing (1.3.14), (1.3.15), and (1.5.8), it only remains to show that

lim rJT'(rJTT' + M)-l = (T'M-1T)~lT'M- 1

T/-->oo

and

lim ("ITT' + M)-l = M-1(I - T(T'M-1T)-lT'M- 1).
7/-->00

It can be verified that

(1.5.11)

(1.5.12)

("ITT' + M)-l

= M- 1 - M- 1T(T'M- 1T)-1 {] + TJ-1(T'M~lT)-l} -1 T'M-1,

expanding in powers of "I and letting rJ ---> 00 completes the proof.
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More Splines

2.1 Splines on the circle.

Splines on the circle can be obtained by imposing periodic boundary conditions
on splines in Wm , but it is more instructive to describe splines on the circle
from the beginning since the eigenfunctions and eigenvalues of the associated
reproducing kernel have a particularly simple form.

Let W~ (per) be the collection of all functions on [0,1] of the form

00 00

f(t) '" v'2L av cos 271"vt + v'2L bv sin 271"vt
v=l v=l

with
00

L(a~ + b~)(271"v)2m < 00.

v=l

(2.1.1)

Since
d

m
{ cos 271"vt, } = (271"v)m X {

dtm sin 271"vt

then if (2.1.1) holds, we have

± sin 271" vt }
±cos 271"vt l

(2.1.2)

•
It is easy to see that the r.k. R1(s,t) for W~ (per) is

00 2
R

1
(s, t) = ~ (271"v)2m [cos 271"vs cos 271"vt

+ sin 271"vs sin 271"vt]
00 2

- ~ (271"v)2m cos 271"V (8 - t).

(2.1.3)

(2.1.4)

(2.1.5)

The eigenvalues of the reproducing kernel are all of multiplicity 2 and are
Av == (271"v)-2m, and the eigenfunctions are v'2 sin 271"vt and v'2 cos 271"vt.

21
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Elements in W~ (per) satisfy the boundary conditions

/.' f(u) du

11
f(k)(u)du

0,

k = 1, ... ,m.

(2.1.6)

To remove the condition J~ f( u) du = 0, we may adjoin the one-dimensional
subspace 11.0 spanned by {I}, and let

Wm(per) = {I} Eft W~(per).

Wm (per), endowed with the norm

[

1 ] 2 1
IIfl1 2 = 1 f(u) du +1(f(m)(u))2 du,

has the r.k.

<Xl 1
R(s, t) = 1 + R

1
(s, t) = 1 + 2~ (21r1l)2m cos 21r1l(s - t). (2.1. 7)

Wm (per) is the subspace of Wm satisfying the periodic boundary conditions
f(II)(I) = f(II)(O), 1I = 0,1,2, ... , m - 1.

A closed form expression for R 1 (s, t) of (2.1.5) using Bernoulli polynomials
was given by Craven and Wahba (1979). Recall that the Bernoulli polynomials
Br(t), r = 0,1, ... , t E [0,1] satisfy the recursion relations

Bo(t) = 1

1 d 11

--d Br(t) = Br- 1(t), Br(u) du = 0,
r t 0

Ahramowitz and Stegun (1965) give the formula

<Xl

) _ (m-1 , "'"' cos 21rllx
B2m(X - -1) 2(2m).~ (21r1l)2m'

r = 1,2, ....

x E [0,1]

so that R 1 of (2.1.5) is given by

1 _ (_I)m-l
R (s, t) - (2m)! B2m([s - t])

where [s - t] is the fractional part of s - t. R 1(s, t) is a stationary covariance
on the circle, whose associated stochastic process X(t), t E [0,1] possess exactly
m - 1 quadratic-mean derivatives and satisfies Dm X = dW, and the periodic
boundary conditions X(II)(O) = X(II)(I), 1I = 0,1,2, ... , m - 1.
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It is instructive to look at the "frequency response" of the smoothing spline
in this case. Let n be even and consider

Yi = f (~) + Ei, i = 1,2, ... ,n

with fEWm (per) and E as before. To simplify the argument, we will look at
an approximation to the original minimization problem, namely, find fA of the
form

n/2-1 n/2-1

h.(t) =ao+ L avV2cos21wt+ L bvV2sin21rvt+an/2cos1rnt (2.1.8)

to minimize

v=1 v=1

:,~ (Yi - f (~))' + >.l'(f(m) ( U ) ) 2 du

Using the orthogonality relations

(2.1.9)

o J1 i= v, J1, v = 0,1, . ". ,n/2,

2 n . "

- "" cos 21rv':' cos 21rJ1':'
nL-J n n

i=1

2
n . .

""'2 '/,'2 '/,- L-J sm 1rV- sm 1rJ1-
n . n n

t=1

1 n ( ")2
-;~ cos 21rV;

1 n . .

- "" cos 21rv':' sin 21rJ1':'
nL-J n n

i=1

we have

1

1

1,

o

J1 = v = 1, ... ,n/2 - 1,

J1 = v = 1, . ". ,n/2 - 1,

v = 0,n/2,

ao

v = 1,2, .. " n/2 - 1,

v = 1,2, ... ,n/2 - 1,

and letting

~ n .

av V-; L Yi cos 21rv : '
i=1
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(2.1.9) becomes

CHAPTER 2

/!;
n .

- L Yi sin 27T'lI :: l

n n
i=1

{f
n

- LYi,
n.

1=1

{f
n

- L Yi cos 7T'i,
n.

1=1

n/2 n/2-1 n/2-1

~(av - itv)2 + ~ (bv - ;'v)2 + A[ ~ (a~ + b~)(2"v)2m + ~a~/2("n)2m].

The minimizing values are

v = 1,2, ... l n/2 - 1,
bv = bv /(1 + A(27T'v)2m),
ao = ao,
an/2 = an/2/(1 + !A(27T'v)2m),

and
n/2-1 A

!>.(t) = aO + ~ (1 + A~;7T'v)2m) cos 27T'vt

+

+

n/2-1 A

"" bv
. 2

~ (1 + A(27T'vpm) sm 7T'vt
v=1

A

__:;-a_n...../2 cos 7T'nt.
(1 + !A(7T'npm)

Thus, the smoothing spline obtained with the penalty functional
fo\f Cm )(u))2 du may be viewed as a generalization of the so-called Butterworth
filter, which smooths the data by downweighting the component at frequency v
by the weight w(v) = (1 + A(27T'v)2m)-1.

2.2 Splines on the sphere, the role of the iterated Laplacian.

We will see that the iterated Laplacian plays a role in splines on the circle, the
sphere, the line, and the plane and other index sets on which the Laplacian
operator commutes with the group operation. In d dimensions the Laplacian is

(2.2.1)
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(2.2.3)

and the (surface) Laplacian on the (unit) sphere is

1 1
Af = 2 4>f88 + ----;..(cos4>f¢J)¢J (2.2.2)

cos cos't'

where (J is the longitude (0 ~ (J < 211") and 4> is the latitude (-11"/2 < 4> ~ 11"/2).
Here we use subscripts (J and 4> to indicate derivatives with respect to (J and 4>, not
to be confused with a subscript A that indicates dependence on the smoothing
parameter A. On the circle we have

82

Af = 8x2f

and if fEWm (per) then we can integrate by parts to obtain

l.'u(ml(u))2 dU = (_l)m I.' f(u)f(2m J(u)du

(_l)m I.' f(u)t>m f(u) duo

The eigenfunctions {v'2 cos 211"vt, v'2 sin 211"vt} of the r.k. R 1 of Wm (per) are
the eigenfunctions of the mth iterated Laplacian Am on the circle, while the
eigenvalues {A,.. = (21l"v)-2m} are the inverses of the eigenvalues of Am:

that is,
n 2m cos 21l"vt = (_I)m(211"v)2m cos 211"vt,

n 2m sin 21l"vt = (_I)m(21l"v)2m sin 211"vt.

The generalization to the sphere is fairly immediate. The eigenfunctions
of the (surface) Laplacian on the sphere are the spherical harmonics Yes, 8 =
-i, ... ,i, i = 0,1, ... , where

YfB((J,4» - (JiB cos 8(JP1(sin 4», 0 < 8 ~ i, i = 0,1, ...

- (JiB sin 8(Jp~BI(sin 4», -i ~ 8 < 0

- (JiOPi (sin4», 8 = 0

where

(JiB v'2 2l + 1 (i- Isl)!
siO-

(i + 181)!'411"

f¥l s = O.- 411" '

Pi, i = 0,1, ... are the Legendre polynomials and PI are the Legendre functions,
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The spherical harmonics are the eigenfunctions of the mth iterated Laplacian,

(2.2.4)

and provide a complete orthonormal sequence for L2(S), where S is the unit
sphere (see Sansone (1959)).

Let P = (8,1» and let

Letting

CXJ i [ 1 ]m
R(P, P') = 1 +~S~i f(f + 1) Yls(P)Yls(P')

1 + R1 (P, P'), say. (2.2.5)

fis = Lf(P)Yls(P) dP,

the Hilbert space 1{ with r.k. R of (2.2.5) is the collection of all functions on the
sphere with foo < 00 and

CXJ i

L L ffs[f(f + l)]m
i=l s=-i

l (6.m/21)2 dP < 00. (2.2.6)

Splines and generalized splines on the sphere have been studied by Wahba (1981d,
1982a), Freeden (1981), and Shure, Parker, and Backus (1982).

There is an addition formula for spherical harmonics analogous to the
addition formula for sines and cosines

cos 21l" V S cos 21l"vt + sin 21l"vs sin 21l"vt = cos 21l" V (t - s),

it is
i

'" , 2f + 1 ')L...J Yis(P)Yls(P) = 41l" Pi(COS,(P,P )
s=-i

(2.2.7)

where, is the angle between P and P' (see Sansone (1959)). Thus R1 (P, P')
collapses to

1 , ~2f+1 1 ,
R (P,P) =~ 41l" [l(f+ l)]mPi(cos,(P,P )), (2.2.8)

with the stationarity (dependence only on ,(P, P')) being evident. Closed form
expressions for R 1 for m = 2 and (in terms of the dilogarithms) for m = 3 were
given by Wendelberger (1982), but it appears that closed form expressions for

~ 2f+1
~ [f(f + l)]m Pi(Z) (2.2.9)
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are not available for larger m. Reproducing kernels Ql that approximate R 1 for
m = 2,3,. ", and for which closed form expressions are available have been found
in Wahba (1981d, 1982a). The eigenvalues Als = (l(l + 1))-m that appear in
(2.2.5) and (2.2.8) are replaced by ~ls = [(l +!Hi + 1)(l + 2) ... (l + 2m -1)]-1,
to get

00 l

L L ~lsYls(P)Yls(pl)
l=1 s=-l

1
00

1
211" ~ (l + 1)(l + 2) ... (l + 2m - 1) Pl(cos,(P, pI)).

Since

~ls < Als ~ m2m~ls,

Ql -< R1 j m2mQl

where A j B means B - A is nonnegative definite, and 7tQl and 7tR l are
topologically equivalent. Closed form expressions for Ql for m = 2,5/2,3, ... ,
were obtained via the symbol manipulation program MACSYMA.

Another way of computing an approximate spline on the sphere, given noisy
data from the model

is to let I be of the form

N l

I = 100 + L L Its Yls,
l=1 s=-l

and choose the Its to minimize

(2.2.10)

(2.2.11)

(2.2.12)

Arranging the index set {(l, s)} in a convenient order, and letting I be the vector
of Its and X be the matrix with i, lsth entry Yls(Pi ), we have that (2.2.11)
becomes

111 2 I- Y - XIII + AI DI
n

where D is the diagonal matrix with is, lsth entry [(l)(l+ 1)tm
. The minimizing

vector !>. is
I>. = (X'X + AD)-1 X'y.

Methods of computing I>. for large nand N will be discussed later. Splines on the
sphere have found application to the interpolation and smoothing of geophysical
and meteorological data. Historical data can be used to choose the Als (see, for
example, Stanford (1979)).
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2.3 Vector splines on the sphere.

Vector splines on the sphere, for use in smoothing vector fields on the sphere
(such as horizontal wind, or magnetic fields), can also be defined. Let the vector
field be V = (V, V) where V = V(P) is the eastward component and V = V(P)
is the northward component at P. By the Helmholtz theorem, there exist two
functions wand <I> defined on S, called the stream function and the velocity
potential, respectively, with the property that

1 (8W 1 8<I»
V = ~ ~ 8¢ + cos ¢ 8e '

V _ ! (_1_8W + 8<I»
- a cos ¢ 8e 8¢ ,

where a is the radius of the sphere. Furthermore, letting the vorticity ( and the
divergence D of V be defined (as usual) by

we have

1 [ 8 8V]( = - - (V cos ¢) + - ,
acos ¢ 8¢ 8e

1 [8V 8 ]D = -8 + -8 (V cos ¢) ,
a cos ¢ e ¢

(2.3.2)

(= 6w, D = 6<I>, (2.3.3)

where now the (surface) Laplacian on the sphere of radius a is

1 [ 1 1 ]6f = 2" 2 f(Je + --(cos¢f¢)¢ .
a cos ¢ cos¢

(2.3.4)

Wand <I> are uniquely determined up to a constant, which we will take to be
determined by is w(P) dP = is <I>(P) dP = O.

Given data (Vi, Vi) from the model

(2.3.5)

V(Pi ) + Ef, i = 1,2, ... ,n,
V(Pi ) + Ey

(2.3.6)

where the t-f and Ey are random errors, one can define a vector smoothing spline
for this data as V>.8 = (V>.,8, V>.,8) where

! (_ 8w >',6 + _1_ 8 <I> >',8)
a 8¢ cos¢ 8e '

! (_1_8W>"8 + 8<I>>.8)
a cos ¢ 8e 8¢'

(2.3.7)
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and 'If >. 6, <I> >. 6 are the minimizers of, ,

1 n ( 1 [ 8'll 1 8<I> ] ) 2- L Ui - - --(Pi) + --(Pi)
n i=1 a 8¢ cos ¢ 80

1 n ( 1 [ 1 8'll 8<I>] ) 2+- L Vi - - --(Pi) + -(Pi)
n i=1 a cos ¢ 80 8¢

+A [Is (~m/2w)2dP + ~ Is(~m/2<p)2dP] .

Dom/ 2'll can, of course, be defined for noninteger m/2. If

then

29

(2.3.8)

Dom/ 2'll rv L[f(f + 1)]m/2'llis Yls
is

whenever the sum converges in quadratic mean.
An approximation to the minimizer of (2.3.8) may be obtained by letting 'll

and <I> be of the form
N i

'll = L L aisYls,
i=1 s=-i
N i

<I> = L L {3isYls.
i=1 s=-i

(2.3.9)

Now let Xl be the matrix with i, fsth entry (8/8¢)Yls(P)!P=Pi and X2

be the matrix with i, fsth entry (1/ cos ¢)(8/80)Yls(P)lp=p" and let U =
(U1 , ••• , Un); V = (Vi, ... ,Vn ), then (2.3.8) becomes

.!.IIU - ~(-Xla + X 2(3) 11
2

n a

+.!:.IIV - ~(X2a + X 1(3) 11
2

n a

+-\ [aIDa + ~{31D{3]

where D is as in (2.2.12).
Given the noisy data U and V, one may estimate the vorticity and divergence

as

N i

L L f(f + 1)a~~6Yis,
i=1 s=-i
N i

L L f(f + l){3i/Yls
i=1 s=-i
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(2.4.1)

where a>.,8 and {3>.,8 are the minimizing values of a and {3 in (2.3.10). This
method was proposed in Wahba (1982b)j see also Swarztrauber (1981).

2.4 The thin-plate spline on Ed.

The theoretical foundations for the thin-plate spline were laid by Duchon (1975,
1976, 1977) and Meinguet (1979), and some further results and applications to
meteorological problems were given in Wahba and Wendelberger (1980). Other
applications can be found in Hutchinson and Bischof (1983) and Seaman and
Hutchinson (1985). In two dimensions (d = 2, m = 2, 1 = I(XI,X2)), the
thin-plate penalty functional is

J2(f) = i: i: (f;IXI + 2/;IX2 + 1;2xJ dXI dX2

and, in general,

(2.4.2)

For d = 3, m = 2, the thin-plate penalty functional is

J2(1) = i:i: (/;lXI + 1;2X2+ 1;3X3+ 2[/;IX2 + 1;IX3 + 1;2X3]) dXI dX2 dX3

(2.4.3)
and the form for general d, m is

m' JCXJ JCXJJ:!n (I) = L " , ...
al··· .ad· -CXJ -CXJoq +...+ad=m

(
am1 )2

. axfl ... ax~d n: dXj.
J

A formula analogous to (2.2.3) holds here.
Letting

m! JCXJ JCXJ< 1,9 >= L , , ...
al··· .ad· -CXJ -CXJal+ ...+ad=m

we note that a formal integration by parts results in

(2.4.4)

(2.4.5 )

(2.4.6)

where B represents boundary values at infinity.
We will suppose 1 E X, a space of functions whose partial derivatives of total

order m are in £2 (Ed) (see Meinguet (1979) for more details on X). We want X
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endowed with the seminorm J~(f) to be an r.k.h.s., that is, we want to have the
evaluation functionals be bounded in X. For this it is necessary and sufficient
that 2m - d > O.

Now, let the data model be

Yi = f(Xl(i), ... , xd(i)) + {i , i = 1, ... , n, (2.4.7)

where f E X and {= ({ll .. ',{n)' rv N(0,a 2I). A thin-plate smoothing spline
is the solution to the following variational problem. Find f E X to minimize

(2.4.8)

We will use the notation t = (Xl, ... ,Xd) and t i = (xl(i), ... ,Xd(i)). The null

space of the penalty functional J~ is the M = ( d + ~ - 1 ) -dimensional space

spanned by the polynomials in d variables of total degree < m - 1. For example,
for d = 2, m = 2, then M = 3 and the null space is spanned by ¢1, ¢2, and ¢3
given by

In general, we will denote the M monomials of total degree less than m by

¢1l"" ¢M.
Duchon (1977) showed that, if t 1 , .•. , tn are such that least squares regression

on 4>1, ... , ¢M is unique, then (2.4.8) has a unique minimizer f>.., with represen­
tation

M n

f>..(t) = L dv¢v(t) + L CiEm(t, t i ),
v=l i=l

where Em is a Green's function for the m-iterated Laplacian. Letting

(2.4.9)

where

E(r) = Bm,dlr!2m-dlnlrl
= Bm,dlr I

2m-d
if 2m - d an even integer,
otherwise,

(2.4.10)

(_1)d/2+1+m
B d----..,...:,-----'------­
m, - 22m-11rd/2(m - l)!(m - d/2)!

B _ r(d/2-m)
m,d - 22m1rd/2(m - I)!

if 2m - d is an even integer,

otherwise,

Em(s, t) = E(ls - tl).

Formally,

(2.4.11)

(2.4.12)
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where Otl is the Dirac delta function, so that

6,Tn f>..(t) = 0 for t =f. ti, i = 1, ... , n, (2.4.13)

analogous to the univariate polynomial spline case where (82Tn /8x 2Tn )f>..(x) = 0
for x =f. Xl, ... , x n . The functions ETn(t, td, i = 1, ... , n, play the same role
as ei (t) = R I (ti, t) in Section 1.3, except that ETn (', .) is not positive definite.
Ern (-, .) is conditionally positive definite, a property that turns out to be enough.
To explain the notion of conditional positive definiteness, we need the notion
of a generalized divided difference. Given it 1 ••• ,tn E Ed, let T be the n x M
matrix with ivth entry ¢v (td. In one dimension, T is always of full column
rank if the ti's are distinct. In two and higher dimensions it must be an explicit
assumption that T is of full column rank, which we will always make. If, for
example, t l , . . , ,tn fall on a straight line on the plane this assumption will fail
to hold. Now let c E En be any vector satisfying T' c = O. Then (CI, ... , cn ),
associated with t l , . .. ,tn, is called a generalized divided difference (g.d.d.) of
order m, since it annihilates all polynomials of total degree less than m, that is,
L~=l ci¢v(td = 0, v = 1,2, ... , M. Recall that the ordinary first-order divided
differences are of the form (J(ti+d - !(td)/(ti+l - ti) and annihilate constants,
second-order divided differences are of the form

and annihilate constants and linear functions, and so forth, thus a g.d.d. is a
generalization of an ordinary divided difference.

Duchon (1977) and Matheron (1973) both have proved the following: Given
t l , .. . , tn such that T is of rank M, let K nxn be the n x n matrix with ijth entry
Em(ti , t j ). Then

c'K C > 0 (2.4.14)

for any g.d.d. C of order m, that is, for any c such that T'c = O. ETn is then
called m-conditionally (strictly) positive definite.

Now, let E t (·) = ETn(t,') and write

(2.4.15)

A formal integration by parts yields

Et(s) + B

E Tn (s, t) + B. (2.4.16)
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This calculation is not legitimate, since the boundary values at 00 will be infinite.
However, it is known from the work of Duchon and Meinguet that if we let

n

g(8) = L CiBm(S, ti)
i=l

where C = (Cl,'" 1 Cn )' is a g.d.d., then 9 has appropriate behavior at infinity
and we can write

< g,g >
n n

< L CiErn(', td, L cjErn (-, tj) >
i=l j=l

- L CiCj Em(ti , tj)
i,j

c'Kc> O. (2.4.17)

By substituting (2.4.9) into (2.4.8) and using (2.4.17), we obtain that c, dare
the minimizers of

.!..lly - Td - KcI1 2+ Ac'Kc (2.4.18)
n

subject to T' C = O. To find the minimizers C and d of this expression, we let the
QR decomposition of T be

(2.4.19)

where (Ql : Q2) is orthogonal and R is lower triangular. Ql is n x M
and Q2 is n x (n - M). Since T'c = 0, C must be in the column space of
Q2, C = Q2'Y for some m - M vector 'Y. By the orthogonality of (Ql : Q2) we
have IIxl12 = IIQ~xI12 + IIQ~xI12 for any x E En. Using this and substituting Q2!
for C in (2.4.18) gives

.!..IIQ~y - Q~KQ2'Y112 + .!..IIQ~y - Rd - Q~KQ2'Y112 + )..'Y'Q~KQ2'Y. (2.4.20)
n n

It is seen that the minimizers d and 'Y satisfy

and
Q~y = (Q~KQ2 -t!'1)..Ih·

These relations can be seen to be equivalent to

(2.4.21)

(2.4.22)

Mc+Td

T'c

y,

o
(2.4.23)

(2.4.24)

with M = K + n)..I, by multiplying (2.4.23) by Q~ and letting C = Q~'Y. The
columns of Q2 are all the g.d.d. 'so
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It is possible to come to the same result for the minimizer of (2.4.8) via
reproducing kernels. Let S I, ... , S M be any M fixed points in Ed such that least
squares regression on the M-dimensional space of polynomials of total degree
less than m at the points Sl, ... , SM is unique, that is, the M x M matrix S,
with ivth entry 1>v (sd is of full rank. (In this case we call the points SI, ... , SM
unisolvellt.) Let PI, ... ,PM be the (unique) polynomials of total degree less than
Tn satisfying pi(8j) = 1, i = j, = 0, i =I- j, and let

M

L Pv(t)Em(sv, s)
v=1

M

L PIJ (s )Em(t, slJ)
1J=1

M

+ L PIJ(s)Pv(t)Em(slJ'sv).
lJ,v=1

(2.4.25)

Letting

we have
M

Ri(8) = Em (s, t) - L Pv (t) Em (Sv, s) + 11"t (S)
v=1

(2.4.26)

(2.4.27)

(2.4.28)

where for fixed t, 11"t ( .) is a polynomial of degree m - 1 in s. Now for fixed t,
consider the points (t, SI, ... , SM) and coefficients (1, -PI(t), ... , -PM(t)). These
coefficients together with the points (t, S I, ... , S M) constitute a g.d.d., since

M

1>(t) - L 1>(sv)Pv(t) - 0
v=l

for any polynomial 1> of total degree less than m. Equation (2.4.28) follows since
the sum in (2.4.28) is a polynomial of degree less than m that interpolates to 1>
at a set of M unisolvent points, therefore it must be zero. In fact,

< Ri,R~ >= RI(s,t).

R 1(sv,8v) = 0, V = 1,2, ... , M, but R I is positive semidefinite. R I is an
r.k. for HI, the subspace of X of codimension M of functions satisfying
f("~v) = 0, v = 1,2, ... , M, and X is the direct sum of Ho = span {PI,'" ,PM}
and HI with J~(f) = II Plf11 2

• It follows from Section 1.3 that f>.. has a
representation

M n

f>.(t) = L dv1>v(t) + L CiRi; (t)
v=l i=l

(2.4.29)

for some d, c, with T' c = O. The end result from (2.4.29) can be shown to be the
same as (2.4.9) since L~=l ciEm(t, t i ) and L~=l ca#; (t) differ by a polynomial
of total degree less than m in t if c is a g.d.d.
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2.5 Another look at the Bayes model behind the thin-plate spline.

Returning to (1.5.7), consider the "fixed effects" model

where
M

F(t) = L (}vcPv(t) + b1j2 X(t), t E T.
v=1

(2.5.1 )

One such model that will result in the thin-plate spline is: {cPll"" cPM} span
Ha, the space of polynomials of total degree less than m, and

EX(s)X(t) = R 1(s, t),

with R1(s, t) given by (2.4.25). The points S1, ... , 8M used in defining Rl were
arbitrary, and it can be seen that it is not, in fact, necessary to know the entire
covariance of X(t), t E T. Any covariance for which the g.d.d.'s of X satisfy

E L clX(tL) L CkX(tk) = L CICkBm(tl, tk)
I k lk

whenever Lt CtcPv(tL) = 0, v = 1,2, ... ,M, will result in the same thin-plate
spline. Looking at this phenomenon from another point of view, one can replace

- M - -
X(t), t E T in the model (2.5.1) by X(t) = X(t) + LV=l (}vcPv(t) where the (}v
are arbitrary, without changing the model. The estimation procedure assigns
as much of the "explanation" of the data vector as possible to () in (2.5.1) and
not B. This kind of reasoning was behind the development of "kriging" due to
a South African mining engineer, David Krige (see the references in Delfiner
(1975)). The motivation for Krige's work was to estimate the total ore content
of a volume of earth from observations from core samples. It was assumed that
the ore density was a random process Y(t), tEEd, whose generalized divided
differences were stationary, and that it had a so-called variogram E(r) with the
property that

ELcIY(SI) LCkY(Sk) = LLCICkElsl- Ski
I k I k

whenever the {ct, Sl} constituted a g.d.d., and a "drift," or mean-value function,
of the form

The kriging estimate Y(t), t E T, was defined as the mllllmum variance,
conditionally unbiased (with respect to ()) linear estimate of Y (t) given Yi = Yi,
and if Y(t) is the estimate of Y(t), then In Y(t) dt is the conditionally unbiased,
minimum variance estimate of In Y(t) dt (compare Section 1.5).

This connection between spline estimation and kriging was demonstrated
in Kimeldorf and Wahba (1971, §7,) although the word kriging was never
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mentioned. We had not heard of it at the time. Duchon (1975, 1976) gave
a general version of this result in French, and various connections between the
two lines of research, which have been carried out fairly independently until the
last few years, have been rediscovered a number of times.

Matheron (1973) characterized the class of k-conditionally positive-definite
functions on Ed, in particular, letting

k

K(T) = 2:)-1)P+lapT 2P+l

p=o

where the coefficients ap satisfy

~ a p r(~(2p + 1 + d)) -d-2p+l > a
f='o 7r2p+2+d/2 r[l + ~(2p + 1)] P -

for any p ;::: O. Matheron showed that

E(s, t) = K(ls - tl)

(2.5.2)

(2.5.3)

is k-conditionally positive definite. (Note that if E( s, t) is k-conditionally positive
definite, it is k + 1 conditionally positive definite.) Much of the work on kriging
involves variograms of the form

E(s, t) = Is - tl 3 -,BIs - tl

or
E(s, t) = Is - tl 5

- .811s - tl 3 + .821s - tl,

where the .8'8 are estimated from the data. See Delfiner (1975), Journel and
Huijbregts (1978), and Cressic and Horton (1987).

We will now make some remarks concerning the variational problem associ­
ated with generalized covariances of the form E( s, t) = K(ls - tl), where K is
as in (2.5.2). It is easy to see what happens to the analogous case on the circle.
Letting s, t E [0,1], let

C' ( _ 2~ cos 27rv(s - t)
c'm S, t) - L...- (27rv)2m

v=l

and let
m+k

R(s, t) = L O:l-m£l(S, t)
l=m

with 0:0 = 1. Then the eigenvalues of Em are Av(£m)

eigenvalues Av(R) of Rare

(2.5.4)

(27rV)-2m and the

m+k k
A ( - ~ O:l~m _ 1 ~ .(2 )2j

v R) - L...- (2 )21 - (2 )2(m+k) L...- O:k-J 7rV .
l=m 7rV 7rV j=O

(2.5.5)
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In order for R of (2.5.4) to be a covariance, it is necessary that Av(R) > 0, for
this it is sufficient that E~=o o.k_ jp2j ~ 0 for all p> O. In the discussion below,
we will assume that the o.j'S are such that Av(R) > O. Letting f~ = c~ + s~

where Cv = -12 J f(t) cos 21rvt, Sv = -12 J f(t) sin 21rvt, then we have that the
squared norms associated with em and R are, respectively,

00

L: (21rv )2mf~
v=l

(2.5.6)

and

(2.5.7)

( )

-1
k o..

= 1 + Jf; (21rv)2j

where

H(v) = (21f'v)2k

E~=o o.k_j(21rv)2 j

As v -+ 00, H(v) -+ 1. If E7=1(o.j/(21rv)2 j ) is bounded strictly above -1, then
the two norms satisfy

for some a < a < b < 00. Then f E 'HR if and only if f E 'Hem and the two
spaces are topologically equivalent.

We now return to Ed and the thin plate penalty functional. Since we are
running out of symbols we will use (0.1, ... ,o.d) as a multi-index below, not to be
confused with the a's in the definition of R above. Observing that the Fourier
transform of 8m f /8xr 1

••• 8X~d is

where I't' denotes Fourier transform and that

we have

(2.5.8).J::'U) = i:··· i: l121rwI1 2m li(w)12 If dWI

The argument below is loosely adapted from a recent thesis by Thomas-Agnan
(1987), who considered general penalty functionals of the form
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The penalty functional associated with the variogram E;:-:: o:.l-mEl where
El is defined as in (2.4.11) must be

(2.5.9)

This can be conjectured by analogy to (2.5.7). For rigorous details in the d = 1
case, see Thomas-Agnan (1987).

In going from the circle to Ed we must be a little more careful, however.
Letting

we have

since H (w) ---t 1 as w ---t 00, the tail behavior of the Fourier transforms of
functions for which J~ and j~ are finite will be the same. This tail behavior
ensures that the total derivatives of order m are in L2' However, we have
limw.....o H(w) = 0, in particular, limw.....o(H(w)1I21rwIl2m)/1I21rwI12(m+k) ---t 1/0:.k.
It can be argued heuristically that the polynomials of total degree less than m +k
are in the null space of j~ (J), by writing

j~(f) = / / 1121rwIl
2
(m+k)lj(w)1

2 TI d
. . . 1121rw11 2k + 0:.11121rwIl 2(k-1) + ... + o:.k l Wi

--
/ /

1182(m+k) /11 2

. . . 1121rw1l 2k + 0:.11l21rwI1 2(k-l) + ... + o:.k IfdWl

(2.5.10)

--where 82(m+k) / is the Fourier transform of the 2(m + k)th total derivative of /.
If (2.5.10) is valid then j~(J) = 0 for / a polynomial of total degree less than
m+k.

Let 51, ... , SM be a unisolvent set of

points in Ed, and let
m+k

E(s, t) = L o:.l-mEl(S, t)
l=m

where the 0:. 's satisfy conditions ensuring that E(s, t) is m + k conditionally
positive definite. Letp1,'" 'PM be the if polynomials satisfyingpi(5j) = 1, i =



j, and 0, i i- j, and let

MORE SPLINES

!VI
LPv(t)E(sv, s)
v:=l

!VI
L p~(s)E(t, s~)
~:=l

!VI
+ L p~(s)Pv(t)E(s~, sv).

~,v:=l

39

One can argue analogously to Section 2.4 that Rl must be a positive-definite
function that has the reproducing kernel property under the norm defined by
j~(J).





CHAPTER 3
Equivalence and Perpendicularity, or,
What's So Special About Splines?

3.1 Equivalence and perpendicularity of probability measures.

In Section 1.2 we considered a penalty functional that is a seminorm in WTn

and a penalty functional that is a seminorm in WTn, a topologically equivalent
space. Note that it took several additional parameters (the ai's) to specify the
serninorrn in Wm . Aside from some computational advantages (considerable in
the case of polynomial splines) why, in practical work, should we choose one
penalty functional over another?

Continuing with this inquiry, one may ask if there is a particular reason for
using a kriging estimator with K( r) of (2.5.2) given by

k

K(r) = L(-1)P+l apr2P+1,
p=o

where the ap must be estimated from the data, rather than the thin-plate spline
el:'timate, that corresponds to the simpler

How far should one go in estimating parameters in the penalty functional
when valid prior information is not otherwise available? The theory of
equivalence and perpendicularity gives an answer to this question. We will now
describe the results we need.

A probability measure PI is said to dominate another measure P2 (PI ~ P2 )

if PI(A) = 0 => P2 (A) = O. PI is said to be equivalent to P2 (PI =P2 ) if P2 -< PI
and P2 ~ Pl' PI is said to be perpendicular to P2 if there exists an event A such
that PI(A) = 0 and P2 (A) = 1. It is known that Gaussian measures are either
equivalent or perpendicular. Any two nontrivial Gaussian measures on E I are
equivalent, and two Gaussian measures on Ed are equivalent if the null spaces
of their covariance matrices coincide, otherwise they are perpendicular.

Considering Gaussian measures on infinite sequences of zero-mean indepen­
dent random variables Xl, X 2 , • •• , Hajek (1962a,b) has given necessary and suf­
ficient conditions for equivalence. Let EX~ = (7~(1) under PI and 0"~(2) under
P2 • If a~(l) > 0 and 0"~(2) = 0 or (]"~(l) = 0 and 0"~(2) > 0 for some 1I, then the

41
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two processes are perpendicular. Suppose 0"~(1) and 0"~(2) are positive or zero
together. Then PI = P2 if and only if L~=I (1 - 0"~(1)/0"~(2))2 < 00.

Let us now consider a stochastic process X(t), t E T with the Karhunen­
Loeve expansion (see Section 1.1)

00

X(t) = :E XII \lfll(t),
11=1

(3.1.1)

where {\If II} is an orthonormal sequence in £2 (T) and the {XII} are independent j

zero-mean Gaussian random variables with EX~ = O"~(i) > 0 under Pi, i = 1,2.
Then it follows from Hajek's result that PI and P2 will be equivalent or
perpendicular accordingly as L~=1 (1 - 0"~(1)/0"~(2))2 is finite or infinite.

Now consider the following example of Section 2.1:

PI and P2 will be equivalent if b1 = b2 and ml = m2, and perpendicular
otherwise. (Here ml and m2 need not be integers.)

Suppose we have a prior distribution with O"~ = b. (211"v) -2m., where b. and
m* are unknown. The perpendicularity fact above means that we can expect to
find a consistent estimator for (b, m) given X (h), ... , X (tn ) as t I , ... , tn become
dense in T. To see this, let (b*, m.) be any fixed value of (b, m). Then there exists
a set A(b*, m*) in the sigma field for {X(t), t E T}, equivalently in the sigma
field for {X I ,X2, ... } such that P({Xl,X2, ... } E A(b*,m*)):= 1 if (b*,m*) is
true and zero otherwise. Thus the estimate is formed by determining in which
A(b, m) {XI, X 2 , ••• } lies. Under some mild regularity conditions (for example,
X(t), t E T continuous in quadratic mean), it is sufficient to observe X(t) only
for t in a dense subset of T.

Now consider the case with 0"~(1) = (211"v)-2m and 0"~(2) = [(211"v)2m +
02(27rv)2{m-I)t I . By considering the problem in its usual complex form (we
omit the details), the {0"~(2)} can be shown to be the eigenvalues associated with
the penalty fo1

[/(m) (t) + 0J{m-l) (t)]2 dt for the periodic spline case of Section
2.1.

Then
0"2 (1) 02
_11- = 1+ _
0"~(2) (27rv)2

and

DO ( 0"~(1))2 DO [ 02 ]2
~ 1 - 0"~(2) = ~ (27rv)2 < 00

so that PI and P2 are equivalent. This means that there cannot be a consistent
estimate of 0, since if there were we would know 0 "perfectly" (w.pr.1) given
X(t), t E T, and then we could tell w.pr.1 which of PI or P2 is true, which
contradicts the fact that they are equivalent.
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Hajek (1962a) considers the nonperiodic case on a finite interval of the real
line. The result, loosely stated, is that if X(t) formally satisfies

m

"" a(i) ,X(j) = dWL- m-J
j=O

(3.1.2)

under Pi, 'i = 1,2 and the boundary random variables are equivalent, then
_ . (1) (2) . (1) (2)

PI = P2 If ao = ao and PI 1. P2 If ao # ao . Thus aI,' .. ,am-I cannot be
eHtimated consistently from data on a finite interval. More generally, if X is the
restriction to a finite interval of a stationary Gaussian process on the real line
with spectral density

I

"q(i) b(i) (iw)k 12
J() L.Jk=O q-k

W = "p(i) (i) (')k '
L.Jk=O ap _ k zw

i = 1,2

then PI = P2 if q(l) - p(l) = q(2) - p(2) and ao(l)jbo(l) = ao(2)jbo(2) and
PI 1. P2 otherwise (see Hajek (1962b, Thm. 2.3) for further details). Parzen
(1963) discusses conditions for the equivalence and perpendicularity in terms of
the properties of reproducing kernels.

3.2 Implications for kriging.

Now we will examine the periodic version of the prior related to kriging, from
the d-dimensional version of (2.5.4), to see which coefficients in the variogram
should be consistently estimable from data on a bounded region. To see what
happens most easily in the d-dimensional periodic case, it is convenient to
think of the eigenfunctions of the reproducing kernel in complex form. Letting
II = (VI, V2,"" Vd), then the eigenfunctions <P1I are

Vj = ... - 1,0, 1, ...
j = 1,2, ... , d.

Observing that

~<P1I [(211"VI)2 + ... + (211"Vd)2] <P1I

11 211"1111 2 <P1I

it is not hard to see that the a'f, 's for the d-dimensional periodic stochastic
process corresponding to the thin-plate spline penalty functional are

and the eigenvalues corresponding to the d-dimensional periodic version of
kriging, given by the d-dimensional version of the covariance of (2.5.4) are, from
(2.5.5),

(3.2.1)
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where we have set 00 = 1. Then

CHAPTER 3

Looking at the lowest order term in (3.2.2)

we estimate the sum by

J 1 1 1 J 1 d-I'" -II11 4dxI " .dXd = ... 4'r dr
Ilxll>I x r>l r

(3.2.2)

(3.2.3)

where IIxl1 2 = xt + ., . + x~ and the expression on the right is obtained by
transforming to polar coordinates. The expression on the right will be finite if
4 - (d - 1) = 5 - d > 1. In particular, it will be finite for d = 1,2, and 3. Thus
the right-hand side of (3.2.3) will be finite for d = 1,2, and 3, and the conclusion
to be drawn is that PI and P2 here are equivalent, and OJ, ••• ,Ok cannot be
estimated consistently. One can argue that the situation is analogous for the
stochastic process with variogram

E(r) = Ir12m
-

I + oIlrl 2m+I + ... + oklrI2m+2k-I, (2m - 1) > d (3.2.4)

and if this is so, then 011 ... ,Ok cannot be estimated consistently from data in a
bounded region for d = 1,21 and 3. Thus, in practice, if prior information is not
available concerning °1, ... , Ok, one might as well set °1, ... ,Ok to zero, that is,
use the thin-plate spline. I made observations to this effect in Wahba (1981b).
In an elegant series of papers Stein (1985, 1987a, 1987b) has obtained results
that imply the same thing.



CHAPTER 4
Estimating the Smoothing Parameter

4.1 The importance of a good choice of A.

Figures 4.1, 4.2, and 4.3 from Wahba and Wold (1975) were part of the results of
a Monte Carlo study to examine the behavior of ordinary cross validation (aCV)
for estimating the smoothing parameter in a cubic smoothing spline. The dashed
line in each of these figures is a plot of f(x) = 4.26(e- X

- 4e- 2x + 3e-3x ), and
the dots enclosed in boxes represent values of

Yi = f (~) + Ei, i = 1, ... , 100, (4.1.1 )

where the Ei'8 come from a random number generator simulating indepen­
dently and identically distributed N(0,0"2) random variables, with standard
deviation 0" = .2. The solid line in each figure is f>.., the minimizer of
1/11. L:~l (Yi - f(i/n))2 + A Jo

1
(/" (x))2dx. In Figure 4.1 A is too small, in Fig­

ure 4.2 too big, and in Figure 4.3 "about right." The parameter A in Figure
4.3 was estimated by acv, also known as the "leaving-out-one" method, to be
described. Evidently the visual appearance of the picture is quite dependent on
A, which is not surprising as we recall that as A runs from zero to 00, />.. runs
from an interpolant to the data, to the straight line best fitting the data in a
least squares sense. Figures 4.4~4.8 provide a two-dimensional example. Figure
4.4 gives a plot of a test function used by Franke (1979), this function is a linear
combination of four normal density functions. Figure 4.5 gives a schematic plot
of the data Yi = f(X1(i),X2(i)) + Ei, where the Ei come from a random number
generator as before. The (x 1, X2) take on values on a 7 x 7 regular grid and the
n = 49 Yi'S have been joined by straight lines in an attempt to make the picture
clearer. Figure 4.6 gives a plot of f>.., the minimizer of

with A evidently too large, Figure 4.7 gives />.. with A too small, and Figure
4.8 gives h. with A "about right." Figures 4.4-4.8 are from Wahba (1979c).
Generalized cross validation (to be discussed) was used to choose A in Figure
4.8.
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FIG. 4.1. Data generated according to the model (4.1.1). Dashed curve is f(x). Solid

curve is fitted spline with >. too small.
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FIG. 4.2. Same data as in Figure 4.1. Spline (solid curve) is fitted with>' too big.
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FIG. 4.3. Same data as in Figure 4.2. Spline (solid curve) is fitted with the OCV estimate

of >...

4.2 Ordinary cross validation and the "leaving-out-one" lemma.

Next we will explain these methods. Ordinary cross validation (OCV) goes as
follows. Let Ilk] be the minimizer of

(4.2.1)

Then the "ordinary cross-validation function" Vo(>') is

(4.2.2)

and the OCV estimate of >. is the minimizer of Vo(>'). More generally, if we let
Ilk) be the minimizer of

(4.2.3)

(assumed unique), then

(4.2.4)
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FIG. 4.4. The actual surface.
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FIG. 4.5. The data.
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FIG. 4.6. 1>. with A too large, A = lOO,x.
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FIG. 4.7. f>.., with A too small, A = .01,x.
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FIG. 4.8. 1>, with>. estimated by GOV.

oev was suggested by Allen (1974) in the context of regression and by Wahba
and Wold (1975) in the context of smoothing splines, after hearing Mervyn Stone
discuss it in the context of determining the degree of a polynomial in polynomial
regression. The idea of leaving out one or several no doubt is quite old (see, e.g.,
Mosteller and Wallace (1963)).

We now prove the "leaving-out-one" lemma (Craven and Wahba (1979)).
LEMMA 4.2.1. Let flk] be the solution to the following problem. Find f E 7-lR

to minimize
1 n

n L(Yi - LiI)2 + -XII P lfI1 2
.

1=1
I#k

Fix k and z and let hArk, z] be the solution to the following problem. Find f E 7-lR
to minimize

(4.2.5)



ESTIMATING THE SMOOTHING PARAMETER 51

[k] [k]
Then h>..[k, Lkl>.. ] = I>.. .

Proof Let ilk = Lkllk], let h = Ilk], and let I be any element in 1-lR different
from h. Then

~ [(ii, -L.h)' + t(Yi - Lih)'] + ,XIIP1hIl 2

,#k

1 n

- L)Yi - L ih)2 + ,XIIP1 h11 2

n i=l

i#k

1 n

< n L(Yi - Ld)2 + ,XIIPl/I12
,=1
I#k

< : fUi. -Lki)' + t(Y, - Ld)' + AIIP,JII'] .
L '#

Now consider the following identity:

where

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

* Lk!>.. - Lkll
kl

akk = [k] .
Yk - Lkl>..

By the leaving-out-one lemma, and by letting Yk = Lkllk] and noting that
Lkl>.. = Lkh>..[k, Yk] by definition, we can write

* Lkh>..[k, Yk] - Lkh>..[k, Yk]
akk = - .

Yk - Yk

Thus, looking at Lkl>.. as a function of the kth data point, we see that akk('x) is
nothing more than a divided difference of this function taken at Yk and Yk.
However, Lkl>.. is linear in each data point, so we can replace this divided
difference by a derivative. Thus, we have shown that

* 8Lk!>..
akk('x) = 8 = akk('x),

Yk

where akk('x) is the kkth entry of the influence matrix A('x), given in (1.3.23).
Thus, we have the following OCV identity.
THEOREM 4.2.1.

(4.2.11)
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Later, we will generalize the optimization problem of (1.3.4) as follows. Find
1 E C C 'HR to minimize

(4.2.12)

where C is some closed convex set in 'HR, and Nil is a (possibly) nonlinear
functional. Suppose that the N i and C are such that (4.2.12) has a unique
minimizer in C, as does (4.2.12) with the kth term deleted. Then it is easy to see
that the inequalities of (4.2.6) still hold, with L i replaced by N i . Therefore, if

11k
] is the minimizer in C of (4.2.12) with the kth term deleted, and h>.[k, z]

is the minimizer in C of (4.2.12) with Yk replaced by z, then, as before,

h>.[k, Nkltl ] = 11k
]. Thus the DeV identity generalizes to

where

(4.2.13)

(4.2.14)

with Yk = N kl1k
]. Now, however, (8Nkf>./8Yk)IYk' if it exists, will only be, in

general, an approximation to akk(A) of (4.2.14).

4.3 Generalized cross validation.

Generalized cross validation (GCV) for the problem of (1.3.4) is obtained by
replacing akk(A) by J-Ll(A) = l/n E7=1 aii(A) = l/n Tr A(A). The GeV function
V (A) is defined by

V(A)

(4.3.1)

V (A) may be viewed as a weighted version of Vo (A), since

where Wkk(A) = (1- akk(A))2/(1- J..tl(A))2. If akk(A) is independent of k, then
VO(A) =V(A). The "generalized" version was an attempt to achieve certain
desirable invariance properties that do not generally hold for ordinary cross
validation. Let f be any n x n orthogonal matrix, and consider a new data
vector ii = fy and a new set of bounded linear functionals (£1,"" £n)' =
f(L 1 , ... , Ln ),. The problem of estimating 1 from data

iii = £il + €i , i = 1, ... , n,
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where t = rt is the same as the problem of estimating f from

Yi = Ld + ti, i = 1, ... , n,

53

since f '" N(O, (;21). However, it is not hard to see that, in general, OCV
can give a different value of A. The GCV estimate of A is invariant under this
transformation.

The original argument by which GCV was obtained from OCV can be
described most easily with regards to a ridge regression problem (see Golub,
Heath, and Wahba (1979)). Let

Y = X,B + f, (4.3.2)

where t '" N(O, (;21), and to avoid irrelevant discussion suppose X is n x n. ,B
will be estimated as the minimizer of

Let the singular value decomposition (see Dongarra et al. (1979)) of X be UDV',
and write

fj = Dr + t (4.3.3)

where fj = U'y, r = V',B, and f = U't. The problem is invariant under this
transformation. On the other hand, since

(4.3.4)

where di is the iith entry of D, it is fairly clear that a leaving-out-one method
of choosing A is not going to work too well since the rows are uncoupled.
(In fact, VO(A) is independent of A!) However, if the singular values of
D come in pairs, there is an orthogonal matrix W for which W DW' is a
symmetric circulant matrix, and symmetric circulant matrices may be viewed
as having rows that are maximally coupled. Recall that a circulant matrix
has the property that if the first row is (0o, Ol," ., On-d, then the jth row
is (On-j, ... , On-I,OO,OI, ... ,On-j-d. The matrix W is the discrete Fourier
transform matrix and Wand D are given, for even n, in Table 4.1. Transforming
(4.3.3) by W gives

z=WDW'6+~ (4.3.5)

where z = W fj, 6 = W r, ~ = W t, and W DW' is circulant. Intuitively, the design
matrix D has "maximally uncoupled" rows, while the design matrix W DW',
being circulant, has "maximally coupled" rows. The influence matrix A(A) for
the problem (4.3.5) is circulant and hence constant down the diagonal. GCV is
equivalent here to transforming the original problem (4.3.2) into the "maximally
coupled" form (4.3.5)' doing OCV, and transforming back.

The GCV estimate ~ of A is known to have a number of favorable properties,
both from practical experience and theoretically. For some Monte Carlo
experimental results, see, e.g., Craven and Wahba (1979), Merz (1980), Nychka
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TABLE 4.1

The discrete Fourier transform matrix Wand corresponding diagonal matrix D.

W=

where

1
Co yIn(l, ... , 1),

112 n
Cv . ~(cos 21rlJ-, cos 21rlJ-, ... , cos 21rlJ-),

yn n n n
1. 1. 2 . n

Sv . ~(sm21rlJ-,sm21rlJ-, ... ,sm21rlJ-).
yn n n n

D=

o dn / 2 - 1
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et al. (1984), Vogel (1986), Shahrary and Anderson (1989), Scott and Terrell
(1987), Woltring (1985), the rejoinder in HardIe, Hall, and Marron (1988), etc.
The so-called "weak cross-validation theorem" was proposed and nearly proved
for the smoothing spline case in Craven and Wahba (1979). Utreras (1978,
1981b) completed the proof by obtaining rigorously certain properties of some
eigenvalues necessary to complete the proof. Properties of eigenvalues in other
cases were obtained by Utreras (1979, 1981b), Cox (1983), and others. See also
Wahba (1977a). Strong theorems were obtained by Speckman (1985), Li(1985,
1986, 1987). Generalizations are discussed in Hurvich (1985), O'Sullivan (1986a),
Altman (1987), Gu (1989b), Friedman and Silverman (1989). The arguments
below are adapted from Craven and Wahba (1979) and Wahba (1985e).

4.4 Properties of the GCV Estimate of ,x.

GCV is a predictive mean-square error criteria, which is not surprising given its
source. Define the predictive mean-square error T(,x) as

(4.4.1)

The GCV estimate of ,x is an estimate of the minimizer of T(,x). T(,x) depends
on the unknown 1 as well as the unknown E1, ••• , En. The expected value of
T(,x), ET(,x) is given by

Letting g = (L11, .. . , Lnj)' we have (L 11>.,···, Ln1>.)'
A(,x)(g + E), and

A(,x)y

ET(,x)
1
-EIIA(,x)(g + E) - g1l2
n

.!.II(I - A(,x))gI12 + 0-

2
Tr A2(,x)

n n
b2(,x) + 0-

2Jl2(,x), say.

These terms are known as the bias and variance terms, respectively. Using the
representation for 1- A(,x) given in (1.3.23),

letting the eigenvector eigenvalue decomposition of Q~:EQ2 be U DU', where U
is (n - M) x (n - M) orthogonal and D is diagonal and f = Q2 U, we have

Letting

1- A(,x) = n,xf(D + n,xI)-lf/.

h = f'g

(4.4.2)
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we have

/12 (>.)

CHAPTER 4

(4.4.3)

where hvn , lJ = 1, ... , n - M are the components of h, and >'vn are the diagonal
entries of D. If f is in the null space of PI, that is, f is of the form

then g = (Llf, ... ,Lnf)' = TO, where 0 = (Ol, ... ,OM)', and then h =
r'g = U'Q~g = U'Q~TO = 0, by the construction of Q2 in (1.3.18). Then
/12(>') is a monotone decreasing function of >. and is minimized for>. = 00,
which correspon?s to f 00 being the leastn~ar~s regression 0; the, data on span
{<Ph .. ' ,<PM}, WIth /12(00) = Min. If L

V
=1 hvn > 0, then b (>.) IS a monotone

increasing function of >., with (dld>')b2 (>.)I.x=o = 0, while /12(>') is a monotone
decreasing function of >. with strictly negative derivative at >. = 0, so that ET(>.)
will have (at least) one minimizer >'* > 0.

The "weak GCV theorem" says that there exists a sequence (as n ~ 0) of
minimizers ~ of EV(>.) that comes close to achieving the minimum value of
min>. ET(>'). That is, let the expectation inefficiency J* be defined by

r = ET(~) .
ET( >.*)

Then, under some general circumstances to be discussed, r ! 1 as n ~ 00.
We will outline the argument. First,

where

1 [n-M >'vn ]
/11(>') = - L >. >. +M .

n v=l vn + n

As before, if lIPl f1l 2 = 0, then b2 (>.) = 0, and

(72 n-M ( n>' ) 2 (1 n-M n>. ) 2

EV(>.) = -;;:?; >'vn + n>' / n?; >'vn + n>. '

(4.4.4)

(4.4.5)

(4.4.6)

which is minimized for>. = 00, the same as for ET(>'), so in this case J* = 1.
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We now proceed to the general case. First, some algebraic manipulations
give

and so

where

IET(.-\) - (EV(.-\) - 0-
2 )1 < h(.-\)

ET(.-\) -
(4.4.7)

[
Jli(.-\)] 1

h(.-\) = 2Jll(.-\) + Jl2(.-\) (1 _ Jll(.-\))2· (4.4.8)

Now, using the fact that Jl2(.-\) ~ Jli (.-\) , for all .-\, it ft>Hows that EV(.-\) ~ 0-2,
so that (4.4.7) gives

ET(.-\)(l - h(.-\)) < EV(.-\) - 0-2 < ET(.-\)(l + h(.-\)), for all .-\.

Letting X" be the minimizer of ET(.-\), we obtain

EV(.-\*) - 0-2 < ET(.-\*)(l + h(.-\*))

(4.4.9)

and there must be (at least) one minimizer Aof EV(.-\) in the nonempty set
A = {.-\ : EV(.-\) - 0-2 ::; EV(.-\*) - 0-2} (see Figure 4.9). Thus

ET(A)(l- h(A)) < EV(A) - 0-2 < EV(.-\*) - 0-2 < ET(.-\*)(l + h(.-\*)). (4.4.10)

Then (provided h(A) < 1),

ET(A) 1 + h(.-\*)_-.::.-..:..- < - ,
ET(.-\*) - 1 - h(.-\)

and, if h(.-\*) and h(A) ~ 0, then

(4.4.11)

(4.4.12)
ET(A)
ET(.-\*) i 1.

h(.-\*) and h(~) will tend to zero if Jll(.-\*),Jll(~),Jli(.-\*)/(Jl2(.-\*)) and
Jli(~)/(Jl2(~)) tend to zero.

In many interesting cases the eigenvalues .-\vn behave roughly as do nv-q for
some real number q > 1, and the expressions

1 n-M ( .-\vn ) 'T 1 1
-"" ...... _"" 7=12n ~ .-\vn + n.-\ - n ~ (1 + .-\vq)'T' ,

1 J 1 c'Tq
...... n (1 +.-\xq)'T ::::: n.-\l/q' 7 = 1,2, q> 1

are valid to the accuracy needed in the proofs.
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ET (1 + h)

EV. (7"2

ET

ET (1 - h)

FIG. 4.9. Graphical suggestion of the proof of the weak GCV theorem.

We only give the reader a very crude argument in support of (4.4.12) and refer
the reader to Cox (1988), Utreras (1978) for more rigorous results. The crude
argument, for roughly equally spaced evaluation functionals, goes as follows.
Suppose

00

R(s, t) = L Av<I>v(S)<I>v(t),
v=1

consider the matrix L with ijth entry
00

(4.4.13)

v=1

If
1 n J-; L <I>v(tc)<I>j.t (tE) '::: <I>v(s)<I>j.t(s)ds = tij.t,v

l=1

then roughly (1/ y'n<I>v(tt} , 0'" l/y'n<I>v(tn))', lJ = 1,. 0 0, n are the eigenvectors
of 'E and (again roughly), nAv , lJ = 1,2,. 0 0 are the eigenvalues of 'Eo The
asymptotic behavior of the eigenvalues of Q~'EQ2 does not differ "much" from
the asymptotic behavior of the eigenvalues of 'E. In particular, if Ct:l ~ .0. > Ct:n

are the eigenvalues of'E and Aln, 0 • 0 ,An-M,n are the eigenvalues of Q~'EQ2, then,
by the variational definition of eigenvalues,

Ct:l 2: Al,n > Ct:M+l
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an-M > >'n-M,n 2: an,

For the reproducing kernel of W~ (per) of (2.1.4) it is easy to see that (4.4.13)
holds (exactly, for tl = lin), and >'vn :::: n(21rv)-2m. If R is a Green's function
for a linear differential operator, then the eigenvalues of R can be expected to
behave as do the inverses of the eigenvalues of the linear differential operator
(see Naimark (1967)).

To study b2 (>.), we have the lemma:

(4.4.14)

The proof follows upon letting 9 = (L 1 f, ... , Lnf)' and noting that A(>.)g =
(L1f!, ... , Lnf!)', where f! is the solution to the following problem. Find
h E 'Hn to minimize

Then

.!:.II(I - A(>.))gI12 + >.IIP1f!1I 2

n
n

- ~ I)9i - Ld!)2 + >'IIP1f! 11
2

i=l

1~ 2 2< - L)gi - Ld) + >'IIP1fll
n

i=l

>'IIP1fI1 2
.

If JL2(>') :::: O(l/n>.l/q), then

ET(>.) S 0(>') + 0 (n>.II / Q) (4.4.15)

and thus ET(>.) 1 0 provided>' -+ 0 and n>.l/Q -+ 00. Furthermore, it can be
argued that if >. does not tend to zero (and of course if n>.l/Q does not tend to
infinity), then ET(>.) cannot tend to zero. Thus JL.,.(X") -+ O. Now EV(~) 1 (72,

since EV(~) - (72 S ET(X")(1 + h(X")) -+ O. If L h~n > 0 it is necessary that
~ -+ 0, n~l/Q -+ 00 in order that EV(~) 1 (72 so that the following can be
concluded:

r 11.

Figure 4.10 gives a plot of T(>.) and V(>.) for the test function and
experimental data of Figures 4.4 and 4.5. It can be seen that V(>') roughly
behaves as does T(>.) + (72 in the neighborhood of the minimizer of T(>.). The
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FIG. 4.10. The mean square error T(>') and the cross validation function V(>.).

sample size was n = 49 here. This behavior of V relative to T generally becomes
more striking in Monte Carlo experiments as n gets large.

We remark that the parameter m in the penalty functional for polynomial and
thin-plate splines can also be estimated by GCV (see Wahba and Wendelberger
(1980), Gamber (1979)): V is minimized for each fixed value of m and then the
rn with the smallest V(A) is selected.

4.5 Convergence rates with the optimal A.

rt can be seen from (4.4.15) that if J.t2(A) = O(I/nA1
/

q
) and A is taken as

O(I/nQ/ Cq+1)), then ET(A*) ~ O(I/nQ/ CQ+1)). If additional conditions hold on
the Ld (that is, on the sequence (LIn],"', LnnJ), n = 1,2, ... ) then higher
rates of convergence can be obtained.

Considering (4.4.3) for the bias, we have

<

n-M ( ) 2.!. L nAhvn
n Avn + nA

v=1

n-M ( A )2-P (h2 / )AP n vn n?; Avn + nA (Avn/n + A)P

n-M 2

AP L (hvn/n) for any p E [0,2].
v=I (Avn/n)P

(4.5.1)
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If L~:~((h~n/n)/()..vn/n)P)is bounded as n ~ 00 for some p in (1,21, then

b2
()..) ~ O()..P)

as ).. ~ 0, and if J!2()..) = O(l/n)..1/q), then

ET()..) ~ O()..P) + 0 (n)..lI /
Q

) ,

(4.5.2)

(4.5.3)

and upon taking).. = O(l/nq/(pQ+I)) we have

ET()..*) ~ 0 (npQ/(~Q+l) ) .

We know from (4.4.14) that (4.5.2) always holds for p = 1; we show this fact

another way, by proving that E~:~(h~n/)..vn) ~ IIPI f11 2
. Letting fo be that

element in 1tn that minimizes IIPIfol12 subject to

Lilo = Lil - gi, say,

we have, using the calculations in Chapter 1, with Yi = gi and)" = 0, that

n M

fo = Le?~i + Ld~¢v
i=l v=I

where cO and dO satisfy 'Eeo+Tdo = g, Tleo = 0, and so cO = Q2(Q~'EQ2)-lQ~g.

Now IIPdl1 2 ~ IIPl!o112 = eO''Eeo = gIQ2(Q~'EQ2)-IQ~g = E::~ h~n/)..vn'
An example to show when (4.5.1) holds for some p > 1 goes as follows. In the

case 1in = Wm (per) with Lil = f(i/n), f(t) = E fviPv(t) (the iPv are sines
and cosines here), then hvn ~ JTifv by the same argument as that leading up
to (4.4.13), )..vn ::: n(211"v)-2m, and if Jo1(f(pm)(x))2 dx < 00, then

Let
00

RP(s, t) = L )"~iPv(s)iPv(t)
v=I

for some p E (1,2]. ! E 1tnp if and only if

where

(4.5.4)
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A general argument similar to that surrounding (4.4.13), (4.5.2), and (4.5.3)
would suggest that if the Li's are roughly uniformly spaced evaluation functionals
and f E 'HRP, and ..\V = O(v-q ), then convergence rates of O(l/npq/(pq+l»)

are available. For more general L i , see Wahba (1985e). Convergence rates
for smoothing splines under various assumptions have been found by many
authors. See, e.g., Davies and Anderssen (1985), Cox (1983, 1984, 1988), Craven
and Wahba (1979), Johnstone and Silverman (1988), Lukas (1981), Ragozin
(1983), Rice and Rosenblatt (1983), Silverman (1982), Speckman (1985), Utreras
(1981b), Wahba (1977a), and Wahba and Wang (1987).

4.6 Other estimates of ..\ similar to GCV.

We remark that a variety of criteria C(..\) have been proposed such that ..\ is
estimated as the minimizer of C(..\), where C(..\) is of the form

C(..\) = 11(1 - A(..\))yI12c(..\) (4.6.1)

(4.6.2)

where c(..\) = 1 + 2j.Ll (..\) + O(j.Ll (..\)) when j.Ll -+ 0 (see HardIe, Hall, and Marron
(1988)). Such estimates will have a sequence of minimizers that satisfy the weak
GCV theorem.

Note that

1n-M ( n..\ ) 2 2 (1 n-M n..\ ) 2

V(..\) = n?; ..\vn + n..\ Zvn/ ;,?; ..\vn + n..\

where Zn = (Zln, ... , Zn-M,n)' = fly, where f = Q2U as in (4.4.2). Provided
the ..\vn are nonzero,

( )

21 zvn 2 1 1
lim V(..\) = - L -2 / - L - > O.
>. .......0 n ..\vn n ..\vn

(4.6.3)

However, unless c(..\) has a pole of order at least 1/..\2 as ..\ -+ 0, then C(..\) of
(4.6.1) will be zero at zero, so that in practice the criterion is unsuitable. For n
large, the ..\vn may be very small, and the calculation of V or C in the obvious
way may be unstable near zero; this fact has possibly masked the unsuitability
of certain criteria of this form C in Monte Carlo studies.

4.7 More on other estimates.

When (72 is known, an unbiased risk estimate is available for..\. This type of
estimate was suggested by Mallows (1973) in the regression case, and applied
to spline smoothing by Craven and Wahba (1979) (see also Hudson (1974)).
Recalling that ET(..\) = (1/n)lI(1 - A(..\))gIl2 + (72 In) Tr A2(..\), we let

1 (72 (72
T(..\) = -11(1 - A(..\)yI12 - - Tr(I - A(..\))2 + - Tr A2(..\). (4.7.1)

n n n

It is not hard to show that ET(..\) = ET(..\). The numerical experiments in
Craven and Wahba show that the GCV estimate and the unbiased risk estimate
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behave essentially the same, to the accuracy of the experiment, when the same a 2

is used in (4.7.1) as in generating the experimental data. It is probably true that
a fairly good estimate of a 2 would be required in practice to make this method
work well. Several authors have suggested the so-called discrepancy method:
Choose A so that

(4.7.2)

The left-hand side is a monotone nondecreasing function of A, and if (ljn)II(1 ­
A(oo))yI12 (= the residual sum of squares after regression on the null space of
II PI (.) 11

2
) is at least as large as a 2

, there will be a unique A satisfying (4.7.2).
We claim that this is not a very good estimate of the minimizer of T(A). Wahba
(1975) showed that if A* is the minimizer of ET(A), then

where k is a factor less than one. The experimental results in Craven and
Wahba are consistent with these results, the discrepancy estimate Adis of A being
naturally larger than A* with T(Adis)jT(Aopd» T(AGCV)jT(Aopd, Aopt being
the minimizer of T(A).

By analogy with regression, I have suggested that Tr A(A) be called the
degrees of freedom for signal when A is used. (Note that M ~ dJ. signal
~ n), and this suggests an estimate for a2 , as

where Ais the GCV estimate of A. Good numerical results for &2 were obtained
in Wahba (1983) although no theoretical properties of this estimate were given.
Other estimates for a 2 have been proposed (see, for example Buja, Hastie, and
Tibshirani (1989). Hall and Titterington (1987) have proposed estimating A as
the solution to

11(1 - A(A))yIl2 2

Tr(1 - A(A)) = a

when a 2 is known. It is not known how this estimatOe would compare, say, with
the unbiased risk estimate.

4.8 The generalized maximum likelihood estimate of A.

A maximum likelihood estimate of A based on the Bayes model was suggested by
Anderssen and Bloomfield (1974) in the case of a stationary time series, and by
Wecker and Ansley (1983) in the smoothing spline case (see also Barry (1983)).

Beginning with the stochastic model, (1.5.8) gives

Y f"V N(O, b(1]TT' + ~ + nA1))

where 1] = ajb and a, b, T, and A are as in (1.5.9), and A = a 2 jnb.

(4.8.1)
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(4.8.2)

where Q~T = 0, as in (1.3.18). Then

Z rv N(O, b(Q~EQ2 + nAI)),

lim Ezw' = 0,
TJ-+CXl

lim Eww' = b(T'T)(T'T).
TJ-+CXl

(4.8.3)

It was argued in Wahba (1985e) that the maximum likelihood estimate of A
here should be based on (4.8.3) since the distribution of w is independent of A.
This estimate was called the GML estimate. A straightforward maximization of
the likelihood of (4.8.3) with respect to b and A gives the GML estimate of A as
the minimizer of

M(A)
[det (Q~EQ2 + nAI)-lj1/(n-M)

Y'Q2(Q~EQ2+ nAI)-lQ~Y

[det (Q~EQ2 + nAI)-lj1/(n-M)'

Multiplying the top and bottom of this expression by nA results in an expression
that is readily compared with V(A), viz.

M A _ y'(I - A(A))Y
( ) - [det+(I - A(A)))1/(n-M)

(4.8.4)

where det+ is the product of the nonzero eigenvalues. We remark that Wecker
and Ansley (1983) included the M components of w as unknown parameters in
the likelihood function. After minimizing with respect to w, they got a (slightly)
different equation for "the" maximum likelihood estimate of A. (See O'Hagan
(1976) for other examples of this phenomenon.) We also note that if either (J2 or
b were known then a different expression for the maximum likelihood estimate
of A would be obtained.

It is shown in Wahba (1985e) that if II P lfll 2 > ° and
L~:~(h~n/n)/(Avn/n)P is bounded as n ---+ 00 and J.Ll (A) and J.L2(A) are
O(1/nA1

/
2q) for some p E (1,2], q > 1 then (d/dA)M(A) = ° for A =

AGML = O(l/nQ/(Q+l)), independent of p. Thus, asymptotically, AGML

is smaller than A* = O(l/nQ/(PQ+l)), and an easy calculation shows that
limn-+CXl(ET(AGML)/ET(A*)) i 00. On the other hand, it is argued in Wahba
(1985e) that, if f is a sample function from a stochastic process with Ef(s)f(t) =
R(s, t), then the minimizers of both V(A) and M(A) estimate (J2/nb. Thus, it is
inadvisable to use the maximum likelihood estimate of A since it is not robust
against deviations from the stochastic model.
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4.9 Limits of GCV.

65

The theory justifying the use of GCV is an asymptotic one. Good results cannot
be expected for very small sample sizes when there is not enough information in
the data to separate signal from noise. To take an extreme example, imagine,
say, n = 5 data points (Yi, Xi) with Xi on the line. For arbitrary scattered values
of the Yi'S, given no further information, a curve interpolating the points, or the
least squares straight line regression to the points, could be equally reasonable,
and V(A) may well have minima at both zero and infinity. However, if even the
order of magnitude of (j2 is known in an example like this, then one could likely
decide between these two extremes. My own Monte Carlo studies with smooth
"truth" and independent and identically distributed Gaussian noise have resulted
in generally reliable estimates of A for n upwards of 25 or 30. It is to be noted
that even for larger n, say n = 50, in extreme Monte Carlo replications there
may be a handful of unwarranted extreme estimates (A = 0 or A = 00), say a
few percent, while the remaining estimates are all reasonable and more or less
clustered together. This effect has been noted in Wahba (1983) and Section 6.3.
Generally, if only (j2 is known to within an order of magnitude, the occasional
extreme case can be readily identified. As n gets larger, this effect becomes
weaker, although it still defies ordinary statistical intuition. Even with "nice"
examples with n = 200, there may be an occasional (2 or 3 out of 1,000, say)
outliers in an otherwise "pleasant" population of sample A's. One imagines that
the theoretical distribution of A can have (small) mass points at A = 0 and
A = 00 for moderate n.

My experience with GCV is that it is fairly robust against nonhomogeneity of
variances and non-Gaussian errors (see, e.g., Villalobos and Wahba (1987)), and
appears to work well when the t"i'S are due to quantization (see, e.g., Shahrary
and Anderson (1989)). Andrews (1988) has recently provided some favorable
theoretical results for unequal variances. However, the method is quite likely
to give unsatisfactory results if the errors are highly correlated. It has given
poor results when used to smooth a sample cumulative distribution Fn , for
example, where Fn(xd - F(Xi) and Fn(xj) - F(xj) are correlated (Nychka,
1983) whereas differencing the data (see, e.g., Nychka et al. (1984)) so that the
t"i'S are nearly independent has given good results. In a recent thesis, Altman
(1987) discusses GCV in the presence of correlated errors. Of course if the noise
is highly correlated, it becomes harder to distinguish it from "signal" by any
nonparametric method that does not "know" anything about the nature of the
correlation.

Trouble can arise with GCV if one has "exact" data (Le., (j2 = 0) and some of
the AIm appearing in (4.6.3) are insufficiently distinguishable from machine zero
even though (in theory) they are strictly positive. In this case the theoretically
"right" A is zero, but in practice the numerical calculations with A = 0 or A
near machine 0 can cause numerical instabilities and an unsatisfactory solution.
Behavior of the AIm in some well-known problems is discussed later.





CHAPTER 5
"Confidence Intervals"

5.1 Bayesian "confidence intervals."

Continuing with the Bayesian model

M

F(t) - L: (}v¢v(t) + b1
/

2 X(t), t E T,
1'=1

Yi - LiF + €i

as in (1.5.8), we know that

lim E(F(t)IYi = Yi, i = 1, ... , n) = !>.(t)
a ...... co

with A = a 2 /nb. The covariance of !>.(8) and !>.(t), call it C).(8,t), can be
obtained by standard multivariate techniques. A formula is given in Wahba
(1983), which we do not reproduce here. (This formula also involves b.)

By the arguments in Section 1.5,

and it is not hard to show that the covariance of Lo!>. and Loo !>. is
Lo(s)Loo(t)c). (8, t).

An important special case that will be used to construct "confidence
intervals" is: The covariance matrix of (L 1 !>., ... , Ln!>.) is

(5.1.1)

One way to derive (5.1.1) is to consider the Bayes model of (1.5.8) before letting
a ~ 00. Then the joint covariance matrix of (L1F, ... , LnF, Y1 , ... , Yn ) is

Then we have

(

aTT' +b~

aTT' + b~

aTT' + b~

aTT' + b~ +<7'1 ) .
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where A<l(,,\) = (aTT' + bY:,)(aTT' + bY:, + a 2I)-I, with ,,\ = a 2 /nb. It can be
verified using the limit formulae (1.5.11) and (1.5.12) that lima.....ooAa(,,\) . A("\).
Then

with covariance

lim [(I - Aa("\))(aTT' + bY:,)(1 - Aa(,,\)) + a 2Aa(,,\). Aa(,,\)].
U ..... CXl

(5.1.2)

The colicction of terms in (5.1.2) shows that the quantity in brackets in (5.1.2)
is equal to a 2AU(,,\), giving the result.

Considering the case LiF = F(li), we have that (5.1.1) suggests using as a
confidence interval

!>..(li) ± ZQ/2 ViJ2aii (J..),

where A and 17 2 are appropriate estimates of ,,\ and a 2 and ZQ/2 is the 0./2 point
of the normal distribution.

The estimate
,2 RSS("\)a = --_~-'--~

Trace (I - A(A))
(5.1.3)

where RSS(A) is the residual sum of squares, was used in the example below.
Although to the author's knowledge theoretical properties of this estimate have
not been published, good numerical results in simulation studies have been found
by several authors (see, e.g., O'Sullivan and Wong (1988), Nychka (1986a,b,
1988), Hall and Titterington (1987)). The argument is that trace A(A) should
be considered the degrees of freedom (dJ.) for signal, by analogy with the
regression case, and trace (I - A(A)) is the dJ. for noise. On a hunch, it was
decided to study these "confidence intervals" numerically with smooth functions
and the GCV estimates Aof "\.

Figure 5.1 gives a test function from Wahba (1983). Data were generated
according to the model

(
2i + 1 2j + 1 ) . .

Yij = f 2N' 2N + tij, 'l, J = 1, ... , N

with N = 13, giving n = N 2 = 169 data points. The peak height of f was
approximately 1.2 and a was taken as .03. h was the thin·plate spline of Section
2.4 with d = 2, m = 2. Figure 5.2 gives four selected cross sections for four fixed
values of Xl, Xl = (2i + 1)/N, for i = 7,9,11,13. In each cross section is plotted
f((2i + 1)/N,X2), O::S X2 < 1 (solid line), h((2i + 1)/N,X2), 0 <X2 ~ 1, where
h .. is the thin plate smoothing line (dashed line), the data Yij, j = 1, ... ,13, for
i fixed, and confidence bars, which extend between
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FIG. 5.1. Test function for confidence intervals.
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Of the 169 confidence intervals, 162 or 95.85 percent covered the true value of
f(xI(i), X2(j)).

We take pains to note that these "confidence intervals" must be interpreted
"across the function," as opposed to pointwise. If this experiment were repeated
with the same f and new (ij'S then it would be likely that about 95 percent of
the confidence intervals would cover the corresponding true values, but it may
be that the value at the same (Xl, X2) is covered each time. This effect is more
pronounced if the true curve or surface has small regions of particularly rapid
change. In an attempt to understand why these Bayesian confidence intervals
have the frequentist properties that they apparently do, it was shown that

2 n

ET(>.*) = a: L aii(>'*)(l + 0(1)),
i=l

(5.1.4)

where>' * is the minimizer of ET( >.*) and, in the case of the univariate polynomial
spline of degree 2m - 1 with equally spaced data, a E [( 1 + 114m) (1 - 112m), 1],
that is, (0-2In) Tr A(>.*) is actually quite close to ET(>'*) = b2(>.*) + 0-2,u2(>'*)'
Nychka (1986a,b, 1988) and Hall and Titterington (1987) later showed that
the lower bound obtained, and Nychka gave a nice argument rigorizing the
interpretation of intervals as confidence intervals "across the function" by
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FIG. 5.2. Cross sections of f,!>., and "confidence intervals."

working with the "average coverage probability" (ACP), defined by

where C. 95 (td is the ith confidence interval. These and similar confidence
intervals have also been discussed by Silverman (1984) and O'Sullivan (1986a).

Nychka (see also Shiau (1985)) argued that a confidence interval based
on the distribution N(O, J.i~ + 0';) should not be, in a practical sense,
too far from correct when the true distribution is N(J.ii, erT), provided
that J.i~ is not large compared to err. Here let J.ii = Eh(ti) - !(ti)
and err E(h(td - EfJ..(td)2. We are, "on the average," replac-

ing N(J.ii, erT) with N(O, J.i~ + ern, since lin L~=l (J.i; + ern = b2(A) + er 2 J.i2(A)
~ b2(A*) + er 2J.i2(A*) = Qer2 In L~=l aii(A*)(l + 0(1)) by (5.1.4). The minimiza­
tion of T(A) with respect to A entails that the square bias b2(A*) be of the same
order as the variance er 2 J.i2(A *). In examples it tends to be of moderate size with
respect to the variance.

Considering the case of univariate spline smoothing in Wm,we remark that if!
is going to be in 7-iRP of (4.5.4) for some p > 1, then! must satisfy some boundary
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conditions. For example, let p = 1 + kim for some k < m; then j E 'HRl+k/m if
j(k+m)t£2 and j(v)(O) = j(v)(I) =°for v = m, m + 1, ... ,m + k - 1. Thus j
can be "very smooth" in the interior of [0,1] in the sense that j(k+m)t£2, but
if j does not satisfy the additional boundary conditions, then the higher-order
convergence rates will not hold (see Rice and Rosenblatt (1983)).

In the case of confidence intervals, if j is "very smooth" in the interior, but
fails to satisfy the higher-order boundary conditions, this would tend to cause the
5 percent of coverage failures for 95 percent confidence intervals to repeatedly
fall near the boundary. This is similar to the way that the failed confidence
intervals tend to repeat over a break in the first derivative of the true j if it
occurs in the interior of [0, 1]. (See Wahba (1983) for examples of this.) Nychka
(1988) has proposed procedures for excluding the boundaries.

5.2 Estimate-based bootstrapping.

Another approach to confidence interval estimation may be called "estimate­
based bootstrapping" (see also Efron (1982), Efron and Tibshirani (1986)). It
goes as follows. From the data obtain h. and a2 (A), then, pretending that h. is
the "true" j, generate data

where fi /"V N(o, a2(~)), from a random number generator. (Here we are
supposing that Lij = j(td.) Then find 1>., based on the data y. Upon repeating
this calculation 1 times (with 1 different f), one has a distribution of 1 values of
h(ti) at each t, and the 0./2 lth and (1 - 0./2) lth values can be used for a
"confidence interval" (see, for example O'Sullivan (1988a)). The properties of
these "confidence intervals" are not known. Plausible results have been obtained
in simulation experiments, however. It is possible that the results will be too
"rosy," since h. can be expected to display less "fine structure" than j. It would

be a mistake to take the raw residuals ~\(~) = Yi - h.(td, i = 1, ... , nand
generate data by

iii = h. (td + fi

where fi is drawn from the population {ii(~),"" €n(A)}, since lin L i~(A) =

RSS(A) ~ (]"2/Tr (1 - A(A)), the fi should be corrected for dJ. noise first if this
approach were to be used.

Other important diagnostic tools are discussed in Eubank (1984, 1985).





CHAPTER 6
Partial Spline Models

6.1 Estimation.

As before, let ?t == ?to $?t1 , where ?to is M-dimensional, and let L1, ... , Ln be
n bounded linear functionals on ?t. Let 1/11, ... I 1/Jq be q functions such that the
n x q matrix S with irth entry

is well defined and finite. Letting the matrix TnxM have ivth entry Ld>v as
before, where ¢l,"" ¢M span ?to, we will need to suppose that the n x (M +q)
matrix

X = (8 : T) (6.1.1)

is of full column rank (otherwise there will be identifiability problems). The
original abstract spline model was

Yi = Ld + fi, i == 1, ... , n

Find 1>. E 1-£ to minimize

The partial spline model is

q

Yi = Lf3rL i'¢r + Ld + fi, i = 1, ... ,n
r=1

where
f E ?t = ?to $ ?t1,

as before. Now we find f3 = ({31' ... , {3q )' and f f?t to minimize

~ ~ (Yi - tf3,.L,'iJr - L;j) 2 + ).1IP,f1l~.
73

(6.1.2)

(6.1.3)
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I originally believed I was the first to think up these wonderful models around
1983 while enjoying the hospitality of the Berkeley Mathematical Sciences
Research Center. Their generation was an attempt to extend the applicability
of thin-plate splines to semiparametric modeling of functions of several variables
with limited data, and the result appears in Wahba (1984b, 1984c). The work
was also motivated by the ideas in Huber (1985) on projection pursuit concerning
"interesting directions." I soon found that the idea of partial splines, which has a
wealth of applications, had occurred to a number of other authors in one form or
another~Ansleyand Wecker (1981), Anderson and Senthilselvan (1982), Shiller
(1984), Laurent and Utreras (1986), Eubank (1986), Engle, Granger, Rice and
Weiss (1986), to mention a few. (The work of Laurent and Utreras and Engle et
al. appears earlier in unpublished manuscripts in 1980 and 1982, respectively.)

The application of Engle et al. is quite interesting. They had electricity sales
Yi billed each month i for four cities, over a period of years. They also had
price 'l/J1, income 'l/J2, and average daily temperatures x, for each month, by city.
The idea was to model electricity demand h as the sum of a smooth function
f of monthly temperature x, and linear functions of 'l/J1 and 'l/J2, along with 11
monthly dummy variables 'l/J3,' .. , 'l/J13, that is, the model was

13

h(x, 'l/J1,.· ., 'l/J13) = L I3r'I/Jr + f(x)
/.1=1

where f is "smooth."
Engle et al. did not observe the daily electricity demand directly, but only

certain weighted averages Lih of it resulting from the fact that the total monthly
sales billed reflected the staggered monthly billing cycles. Thus, their model was

13

Yi = L f3r Li'I/Jr + Ld + €i, i = 1,2, ... , n.
r=l

An additional twist of their model was the assumption that, rather than being
independent, the €i'S followed a first-order autoregressive scheme

where the 6i 's are independently and identically distributed for some p. This
assumption appeared reasonable in the light of the staggered data collection
scheme. For the right p the quasi-differences

Yi = Yi - PYi-1

result in a new model with independent errors

13

iii = L I3r L i'I/Jr + Ld + 6i , i = 1, ... , n,
1'=1

where Li = Li - pL i - 1. They fit the model (6.1.2) with II P1fll 2 = J(/' (x))2dx,
using gridpoint discretization, whereby the function f is approximated by a



PARTIAL SPLINE MODELS 75

vector of its values on a (fine) grid. Lil is a linear combination of the values
of f, fU" (x))2dx is replaced by a sum of squares of second divided differences,
and so forth. The influence matrix A(>') can be found and the GCV estimate
>. = >'p found. Little detail was given on their selection of p but Engle et al.
noted that all of their estimates for p appeared to be quite similar. Altman
(1987) has reiterated that care must be taken when the errors are correlated and
has studied in depth some procedures appropriate in that case, including the
selection of p.

Returning to the abstract partial spline model, from the geometric point of
view of Kimeldorf and Wahba (1971), we have not done anything new, except
adjoin span {'l/Jr} ~=I to 1i, giving a new Hilbert space it

?t = 1ioo EB 1io EB HI,

where 1ioo = span{'l/Jr }. Then ?to = Hoo EB 1io is the (new) null space of the
penalty functional. By the same argument as in Kimeldorf and Wahba, one
shows that

q M n

h = L {3r'l/Jr + L dv¢v + L Ci~i,
r=1 v=1 i=1

and the problem becomes: Find {3, C, d to minimize

1-Ily - S{3 - Td - ~c112 + >'c'~c.
n

Letting 0: = ( ~ ), we get

1-Ily - Xo: - ~c112 + >'c'~c,
n

(~ + n>.I) C + X 0: = y,

X'c=O 1

(6.1.4)

and the GCV estimate of >. can be obtained as before.
We did not say anything concerning properties of the functions 'l/JI, ... , 'l/Jq,

other than the fact that the Li'l/Jr must be well defined and the columns of
X = (S : T) must be linearly independent with q + M ::; n. It does not
otherwise matter whether or not the 'l/Jr are, say, in 1i as the following way of
looking ~t the problem from a geometric point of view will show.

Let 1i be a Hilbert space with elements

h = (ho, fo, It)

where ho€Hoo = span {'l/Jr}, fo€Ho and It€H I , 1io ~nd 1i1 being as before. We
define the projection operators Poo , Po, and PI in H as

Pooh (ho, 0, 0),

Poh (0, fo, 0),

PIh (0,0, It),



76

and the squared norm

CHAPTER 6

Ilhll~ IIholl~oo + IIfoll~o + Ilhll~1

IIPoohll~ + IIPohll~ + IIPlhll~·

By convention Lih = Liho + Lilo +- Lill. Now consider the following three
problems.

PROBLEM 1. Find h\l), the minimizer in it of

PROBLEM 2. Find /3(2) and h\2) , the minimizer in (Eq, it) of

It is not hard to convince oneself that, if

then

and

where
/3 = (/31'''' ,/3q)', d= (dll ... ,dM )'.

What this says is that explicitly representing an element of a particular subspace
in the sum of squares term effectively puts it in the null space of the penalty
functional, whether or not it is there already.

Another important application of partial spline models is to model a function
of one or several variables as a function that is smooth except for a discontinuity
in a low-order derivative at a specific location. Here, let fEWm and let

q

h(x) = L (3T~T(X) + f(x)
T=l



PARTIAL SPLINE MODELS 77

where ~)r (x) = (x - X r rt. Here h will have jumps in its derivatiyes at xr,

lim h(qr ) ( x) - lim h(qr ) ( x) = {3r . qr!
X!X r xjx r

This problem was discussed by Ansley and Wecker (1981), and Laurent and
Utreras (1986). Shiau (1985) considered various classes of jump functions in
several variables, and Shiau, Wahba, and Johnson (1986) considered a particular
type of jump function in two dimensions that is useful in modeling two­
dimensional atmosphere temperature (as a function of latitude and height, say)
where it is desired to model the sharp minimum that typically occurs at the
tropopause.

Figure 6.1 from Shiau, Wahba, and Johnson (1986), gives a plot of atmo­
spheric temperature h(z, l) as a function of height z and latitude l. In keeping
with meteorological convention, this figure is tipped on its side. The model was

h(z, l) = (37/J(z, l) + f(z, l)

where f is a thin plate spline and

7/J(z, 1) = Iz - z*(l)/.

z* (l) is shown in Figure 6.2 and 7/J(z, 1) is shown in Figure 6.3.

6.2 Convergence of partial spline estimates.

We will only give details for q = 1. The results below can be extended to the
&enera} case of q << n - M. We want to obtain a simple representation for
{3 = {3>.., to examine the squared bias and variance. The calculations below
follow Shiau (1985), Heckman (1986), and Shiau and Wahba (1988). The model
IS

Yi = {3Li 7/J + Ld + ti, i = 1, ... ,n

and the partial spline estimator of {3 and f E 1i is the minimizer of

1~ 2 2- L- (Yi - (3L i 7/J - Ld) + >'IIPI fll .
n

i=I

(6.2.1 )

(6.2.2)

Let s = (L I 7/J, ... , Ln 7/J)' and Ao(>.) be the influence matrix for the problem
(6.2.2) if {3 is identically zero. It is easy to see that, for any fixed {3,

(
£1,1> ) = Ao(>')(y _ s(3),

L n !>..

by minimizing (6.2.2) with (y - s(3) as "data."
As in Section 4.5, letting PI!>.. = ECi~i, we have IIPI f>..11 2 = c'Ee, and,

since n>.e = (I - Ao(>'))(Y - s(3), after some algebra, we obtain that n>.e'Ee =

(y - s(3)'Ao(>.)(I - Ao(>'))(y - s(3) and (6.2.2) is equal to

'!'(y - s(3)'(1 - Ao(>'))(y - s(3).
n
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FIG. 6.1. Estimated temperature h(z, f) as a function of height z and latitude f.

Minimizing over (3 (and relying on the assumption that Aos =f. s, which follows
from the assumption that s and the columns of T are linearly independent, recall
that the the columns of T are the eigenvectors of Ao with unit eigenvalue), we
have

/3>. = (s'(1 - AO)s)-1 s'(I - Ao)Y·

Letting g = (L 1 /, ••. , Lnf)', we have

/3>. - (3 = s'(1 - Ao)(g + f)
s'(I - Ao)s

so that

s'(1 - Ao)g
s'(1 - Ao)s

s'(1 - Ao)2s
(72 -:--'----_---'-~

[s'(1 - Ao)s]2 .

Let Ao be as in (1.3.23) and (4.4.2), that is,

1 - AO(A) = nAQ2(Q~(~ + nA1)Q2)-IQ~,

(6.2.3)

(6.2.4)

(6.2.5)
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FIG. 6.2. The tropopause, z .. (f).

FIG. 6.3. The tropopause break function 'I/J(z, f).
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Let

Then we have

CHAPTER 6

h=r'g, u=r's.

(bias) (/3>.)

Asymptotic theory for the squared bias and variance of /3>.. has been developed
by several authors under various assumptions.

Heckman (1986) considered the case where the components of s (and hence
the uvn ) behaved as white noise, and II Pdl1 2 = Jo

1
(j(m)(u))2du. She proved

that if nA 1
/

2m ~ 00 and either A ~ 0, or IIP1fll 2 = 0, then y'n(/3>.. - (3) is
asymptotically normal with mean zero and finite variance. See also Chen (1988).
In this case we note that a parametric rate for MSE(,B>..) is obtained in the case of
an infinite-dimensional "nuisance" parameter g. See Severini and Wong (1987)
for a discussion on infinite-dimensional nuisance parameters.

Rice (1986) considered the case where Si = s(td + 6i where s(.) is "smooth"
and 6i behaves like white noise, and found that the parametric rate 1/y'n cannot
hold.

Shiau and Wahba (1988) considered the case where Si = s(td with s a
"smooth" function, such that

and

r.: -p
U vn ~ ynv , (6.2.7)

hvn ~ ynv-q ,

Avn ~ nv-2m , v = 1, ... ,n - M.

We also assumed that q > p > ~ so that s is "rougher" than I, and s E £2.
To analyze the behavior of bias2 (/3>..) and var (/3>..), one substitutes (6.2.7)

into (6.2.6) and sums, using the lemma

'f kfJ-l <1 -k- r
(6.2.8)

if kfJ-l > r
k '

good for r > 0, () > °and k > 1. Some of the results are given in Table 6.1. The
third column of Table 6.1, Aopt, is the rate of decay for A that minimizes MSE

~ 2 ~ ~

((3>.) = bias ((3>..) + var(f3>..), and the fourth column is the MSE for A = Aopt.
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TABLE 6.1

Bias, variance, >'opt, and MSE (>'opd for (JA.

81

bias2 (fJA) var(fJA) >'oPt (fJA) MSEAopt (fJA)

2m> p +q-1
~ 2p-l 2m -2(q-p)

>. 2m (n>. 2m )-1 n - 2"q=T n 2q 1

P + q - 1 > 2m > 2p - 1
2(2m-2p+l) (n>. 2t;/ )-1 - 2m -2(2m-2p+l)

>. 2m n 4m 2p+l n 4m 2p+l

2p -1> 2m 0(1)

We now compare the rates of convergence of >'* and >'oPt, where >'* is the
optimal rate for minimizing the predictive mean-square error T(>.) in smoothing
splines. We have

ET(>.) .!.Ellg + 8(3 - gA - 8fJAI1 2

n

.!.EII(g + 8(3) - Ao(>.)(g + s(3 + € - SfJA) - sr1A1I 2
n

.!.EII(1 - Ao(>.))(g - S(fJA - (3)) - Ao(>')€11 2

n

.!.EII(1 - Ao(>.))(g - s(s'(1 - Ao(>.))s)-1 8'(1 - Ao(>.))g)
n

-(1 - Ao(>.))s(s'(1 - AO(>'))8)-I(s'(1 - Ao(>'))€) - Ao(>')€11 2

.!.1l(1 - Ao(>.))(g - s· (bias(fJA))) 11 2 (squared bias term)
n
a 2

+ -{trA6(>') + 2s'(1 - Ao(>'))Ao(>')(1 - Ao(>.))s[s'(1 - Ao(>'))S]-1
n

+ 8'(1 - AO(>.))2 s var(fJA)/a2
} (variance term).

We just consider the case 2m - 2q + 1 > O. Then under the assumption we
have made on the hvn and >'vnl we have that the two main terms in the squared
bias term are:

1 2 A-11(1 - Ao(>,))sIl2 bias ((3A)
n

0(>.(2p-l)/2m).0(>.2(Q-p)/2m)

0(>.(2q-l)/2m)

and it can be shown that the variance term is dominated by

2
~ tr A6(>') = O(n- l >. -1/2m).
n
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If there is no cancellation in the squared bias term, then we get

Squared bias + variance = 0(A(2q-l)/2m) + O(n- l A-1/2m)

and
A* = 0(n-2m/2q ),

whereas from Table 6.1, we have

AoPt(J3~) = 0(n-2m/(2
q
-l») when 2m > p + q - 1.

So that in this case, Aopt (J3~) goes to zero at a faster rate than A*.
Speckman (1988) and Denby (1986) have proposed an estimator {3~ that can

have a faster convergence rate than i3~ of (6.2.3). It was motivated as follows.
Let y = (1 - Ao(A))Y be the residuals after removing the "smooth" part

AO(A)Y, and let s _ (I - AO(A))S. Then by regressing y on s, the Denby­
Speckman estimate (3~ of (3 is obtained:

i3~ = (s'S)-l s'y = [s'(1 - AO(A))2 st 1S'(1 - AO(A))2 y.

Formulas analogous to (6.2.6) for {3~ are obvious. Table 6.2 gives the square bias,
variance Aopt, and MSE (Aopd for (3~, from Shiau and Wahba (1988).

TABLE 6.2

Bias, variance Aopt, and MSEopt for f3~.

2m > ti.<l.=..!2

p+q-l > 2m > 2p-l
2 2

2(q-p)
A---rm-

2(4m-2p+l)A 2m

2mn- 2 q-l

2mn- 8m 2p+l

2(q-p)
n-2"q"=1

2{4m-2p+l)
n- 8m 2p+l

2p;1 > 2m 0(1)

It can be seen by comparison of Tables 6.1 and 6.2 that there are combinations
of p, q, and m for which MSE~oPt (i3~) is of smaller order than MSE~oPt(J3~), and
combinations for which they are the same order (see Shiau and Wahba (1988)
for more details).

6.3 Testing.

Returning to our Bayes model of

M

Yi = L (JvLi</)v + bl
/

2LiX + €i, i = 1, ... , n,
v=1

(6.3.1)
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we wish to test the null hypothesis

M

b = 0, Yi = L BvLi<pv + Ei, i = 1, ... , n
v=l

versus the alternative
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(6.3.2)

b =1= 0. (6.3.3)

Letting TnxM = {Li<pv}, and ~ = {Li(s)Lj(t)Q(s, tn, where EX(s)X(t)
Q(s, t), we have

Y '" N(TB, b~ + 0'2 I)

under the "fixed effects" model, and

Y '" N(O, ~TT' + b~ + 0'2 I)

under the "random effects" model.
The most interesting special case of this is

with the null hypothesis f a low-degree polynomial, versus the alternative,
f "smooth." Yanagimoto and Yanagimoto (1987) and Barry and Hartigan
(1988) considered maximum likelihood tests for this case. Cox and Koh (1986)
considered the case f E Wm and obtained the locally most powerful (LMP)
invariant test. Cox, Koh, Wahba, and Yandell (1988) considered the LMP
invariant test in the general case, and obtained a relation between the LMP
invariant and the GCV test (to be described). In preparation for the CBMS
conference, I obtained a similar relation for the GML test (to be described) and
did a small Monte Carlo study to compare the LMP invariant, GML, and GCV
tests.

Let T = (Ql : Q2) ( ~ ) as in (1.3.18). As before

T'Q2 = 0.

Let

W2 = Q~y;

then
W2 '" N(O, bQ~~Q2 + 0'2 I)

for either the fixed or random effects model. Letting UDU' = Q~~Q2 and

z = U'W2

we obtain
(6.3.4)
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where the diagonal entries of Dare AVn1 v = 1, ... , n - M, that is

Zv rv N(O,bAvn +0-
2

), v=I, ... ,n-M.

Cox and Koh (1986) showed that the LMP test (at b = 0), invariant under
translation by columns of T, rejects when

n-M

tLMP = L Avn z~
v::::: 1

(6.3.5)

is too large.
A test based on the GCV estimate for A may be obtained by recalling that

A = 00 corresponds to f>.. tHo. In the notation of this section, we have

11(1 - A(A))yIl2
(tr(I - A(A)))2

n-M 2 (n-M )2L nA 2 L nAv~l (nA + Avn) Zv / Fl nA + Avn
(6.3.6)

We have the following theorem.
THEOREM 6.3.1. V(A) has a (possibly loca~ minimum at A = 00, whenever

(6.3.7)

- n-M
where A = l/(n - M)Lv:::::l Avn .

Proof. Let"( = l/nA, and define Vb) as V(A) with l/nA replaced by "(, that
IS,

n- M ( 1 ) 2 / (n- M 1 ) 2

n-1Vb) =?; 1 + "(Avn z~ ?; 1 + "(Avn

Differentiating Vb) with respect to "(, one obtains that

(6.3.8)

We note that L::~z~ is the residual sum of squares after regression of y
onto the columns of T, that is, the residual sum of squares after fitting the null
model.

An approximate LMP invariant test when 0-
2 is unknown is to use

n-M n-M

tLMP approx = L Avn z;/ L z~.
v::::: 1 v::::: 1
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The GCV test is

where :y = l/nA.
The (invariant) likelihood ratio test statistic tGML for A = (T2/nb = 00 is

M(A)
tGML = const. M(oo) ,

where Aminimizes M(A) of (4.8.4). Upon letting,:y = l/nA, we have
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It can also be shown that M(A) has a (possibly local) minimum at A = 00,

whenever (6.3.7) holds.
An experiment was designed to examine the relative power of tLMP, tGCV, and

tGML by simulation. It was to be expected that tLMP would have the greatest
power for nearby alternatives but would not be so good for "far out" alternatives,
and it was tentatively conjectured that tGML would be better than GCV for
"random" alternatives (to be defined) but GCV would be better for "smooth"
alternatives. We considered the one-dimensional cubic smoothing spline with
n = 100 data points at Xi = i / n; there are 98 eigenvalues Avn , which are plotted
in Figure 6.4. This corresponds to the null hypothesis that I is linear. We also
considered a two-dimensional thin-plate spline with m = 2 on a 12 x 12 regular
grid with (Xl, X2) = (i /12, j /12), i = j = 1, ... ,12, thus n = 144, n - M = 141.
The null hypothesis corresponds to I(xl, X2), a plane. The 141 eigenvalues are
also plotted in Figure 6.4. The eigenvalues Avn for these splines decay at the
rate 1I-2m/ d where m = 2 here and d is the dimension of X; here d = 1 and d = 2.
The decay rate of the eigenvalues is readily evident.

The random alternative was

where the size of b controlled the distance of the alternative from the null
hypothesis, and, without loss of generality we set (T2 = 1. The "smooth" fixed
function corresponded to

Zv "V N (Vbhvn , (T2)

with L(h~n/Avn ) < 00. Here the hvn are related to I(x) by
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* Univariate

a Bivariate

o
o
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i
d
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bO -50-
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-7
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FIG. 6.4. Univariate (n = 98) and bivariate (n = 141) eigenvalues.

Figure 6.5 gives a plot of the univariate alternative f(x) at x(i), i = 1, ... , n
with b = 1; actually f was chosen so that the first four hvn's were 1,1,-1, and
1 and the rest O. Figure 6.6 gives a plot of the bivariate smooth alternative
f(Xl, X2)' This function was chosen so that the first three hvn's were 1 and the
rest O.

The distributions of tLMP, tGCV, and tGML for the univariate example under
the null hypothesis were estimated by drawing 1,000 replicates of n - M =
98 N(O,I) zv's, and computing 1,000 values of each statistic. Global search
in increments of log, was used for the minimizations of the GCV and GML
functions. Care must be taken that the search increment is sufficiently fine and
over a sufficiently wide range.

Figures 6.7 and 6.8 give histograms of -log tGCV and -log tGML under the
null hypothesis. If V or M is minimized for, = 1/A = 00, then -log tGCV
or -log tGML is zero. We note that these were 581 samples of -log tGCV = 0
and 628 samples of -logtGML = O. Defining S/N = (b'LAvn/n(J"2)1/2 and
(b 'L h~n/n(J"2)1/2 for the random and smooth alternatives, respectively, 1,000
replicates of tLMP, tGCV, and tGML for a series of values of S/N were generated.
The same 98 x 1,000 random numbers were used for the different values of
SIN, so the data in Figures 6.7-6.14 are not independent. The histograms
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FIG. 6.5. The univariate alternative.

FIG. 6.6. The bivariate alternative.
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for - log tGCV and - log tGML for the univariate smooth function case for
SIN = .102 appear in Figures 6.7 and 6.8. It can be seen that a nonnegligible
mass point appears at zero. Using the 95 percent points of the simulated null
distributions as cutoff points, the probability of accepting the null hypothesis
for various values of SIN was estimated by counting how many of the 1,000
simulated values of t fell below the cutoff. These estimated type-two errors are
plotted for the three statistics for the univariate smooth alternative in Figure
6.9, for the univariate random alternative in Figure 6.10, and for the bivariate
smooth alternative in Figure 6.11. It appears that tGCV is slightly better in
the deterministic example and tGML in the random example, but we do not
believe these experiments are definitive. The sampling error is fairly large (and
its magnitude is not evident in the plots because the same random numbers were
used for different SIN), and in other experiments the reverse was found. The
results can also be surprisingly sensitive to the search procedure used.

Figures 6.12-6.14 show the histograms for the three test statistics for
six values of SIN. We remark that in practice Monte Carlo estimation of
distributions such as these can be important.

The distributions of the test statistics - log tGCV and -log tGML have a
mass point at zero, which shrinks as SIN becomes larger. This mass point
is not plotted separately in the histograms of Figures 6.12 and 6.13, but is
displayed in Figures 6.7 and 6.8. The continuous part of some of the distributions
appears to have a bimodal density, although to see the exact behavior near zero
probably would require a more delicate search procedure than we have used.
Simple asymptotic approximations to the distributions are, in our opinion, not
necessarily trustworthy for practical use due to the complex structure of these
distributions.
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FIG. 6.13. Histograms for -logtGML, univariate deterministic example.
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Null Model SiN = 0.0408
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CHAPTER 7
Finite-Dimensional Approximating
Subspaces

7.1 Quadrature formulae, computing with basis functions.

Suppose we wish to compute the minimizer in 'HR of

n
1", 2 2
- L(Yi - Ld) + >'IIP1III
n.

1=1

(7.1.1)

where either n is very large, and/or, we do not have a closed form expression for

If, for example,

then

Ld = l K(ti, u)l(u) du,

ei(t) = In K(ti , u)R1(t, u) du, (7.1.2)

and, if a closed form expression is not available for ei(t), it would appear that a
quadrature or other approximation to (7.1.2) would be necessary.

A quadrature formula in the context of 'HR can be obtained as follows. Let
SlJ ... , SN be N (distinct) points in T such that the N x M matrix with lvth
entry ¢lI(SI) is of rank M, and, for any 1 E 'HR, let 10 be that element in 'HR
that minimizes IIP11011 2 subject to 10(sl) = I(SI), l = 1, ... , N. Then, if 1] is the
representer of integration in 'HR

< 1],1 >= JI(s) ds, (7.1.3)

we approximate < 1],1 > by < 1],10 >, which is a linear com­
bination of the values of 1 at SI,"" SN (Le., a quadrature formula).
Certain classical quadrature formulae can be obtained this way (see
Schoenberg (1968)). Now define r, by the relationship < r,,1 >=
< 1],10 >, all f E 'HR. Since < r,,1 > depends ·on 1 only through
I(sr), ... , I(SN), it follows that r, is in span {RS1 "'" R SN }, where R S1 is the
representer of evaluation at S,. Thus < r,,1 - 10 >= 0, for any 1 E 'HR. It can
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also be shown that < fJ - ~,f >= 0 for any f E 'Ho, that is, the quadrature
approximation is exact for I E 'Ho. This is equivalent to fJ - ~ J... 'Ho. These
facts result in the so-called hypercircle inequality (see Golomb and Weinberger
(1959), Wahba (1969)), which goes as follows. Since < r" I >=< fJ, fa >, we
have

< fJ - rl, I >=< fJ, I - 10 >=< '7 - r" 1- 10 >=< fJ - ~, PI (f - 10) >

=< PI(fJ - ~), P1(f - 10) >
so that

I < fJ, I > - < ~, I> I < IIPI(fJ - ~)II . IIP1(f - 10)11·
High-order convergence rates for IIP1(f - 10)11 are available in the context
of univariate splines (see Schultz (1973a), Schumaker (1981)), and thin-plate
splines (Duchon (1978)). The famous "optimal quadrature" problem can be
formulated as the problem of choosing S I, ... , S N to minimize II PI (fJ - r,) II or
sUPfE£ IIPI(f - 10)/1 for some class [; (see Schoenberg (1968) and Section 12.2).

This kind of quadrature was discussed in Nychka et al. (1984) in the context
of numerically minimizing (7.1.1) and it was noted that essentially the same
accuracy can be obtained in a computationally much simpler way by minimizing
(7.1.1) in a certain subspace 'HN spanned by N suitably chosen basis functions.
Given basis functions B l , .. . , B N , one sets

substitutes this expression into (7.1.1), and solves for the coefficients el, ... , eN.
We next discuss the choice of basis functions.

In Wahba (1980b) it was proposed, in the context of Ld = l(ti) with
very large n, that a good subspace 'HN of basis functions can be chosen as
follows. Choose Sl, ... ,SN points distributed "nicely" over T, and let the basis
functions B l , ... , BN be chosen as follows. Let B ll ... , BM be ¢l,.··, ¢M' Let
Ui = (u ll, ... , UN{)', l = 1, 2, ... , N - M be N - M linearly independent vectors
with the property

and let

N

LUkl¢v(Sk) =0, l=l, ... ,N-M, lJ=l, ... ,M
k=l

(7.1.4)

(7.1.5)
N

BM+i = LUkiPIRSk' l= 1, ... ,N-M.
k=l

We have that for any I E 'HR, 10, that element in 'HR, which minimizes I/P1/ ol1 2

subject to lo(sd = I(si), l = 1, ... , N, is in 'HN' It so happens in Wm [O,l]
(but not in general), that there exist coefficients Uki in (7.1.5) so that the
B M +i , l = 1,2, ... , N -M have compact support. This special case is important,
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so we will describe it in some detail. The coefficients are those that characterize
ordinary divided differences. We show this next., Here, M = m and we let
SI < S2 < ... < SN. Using the reproducing kernel for Wm[O, 1] given in Section
1.2 we have, for any fixed s,

Recall that, for fixed s, ~s, considered as a function of t, satisfies

~s E 1r
2m - 1, t E [D,s],

Es E 1r
m - 1

, t E [s, 1],

Es has 2m - 2 continuous derivatives, and Es(t) is symmetric in sand t. Let
[SI, . .. ,SI+2m]~s denote the 2mth divided difference of ~s with respect to s, for
example, a first divided difference is [SI' S2]~s = (~S2 - ~Sl )/(S2 - sd. Let

Bm+1 = [SI, .. . SI+2m]~s, l = 1, .. " N - 2m.

Then Bm +1 (considered as a function of t) is a linear combination of
~Sl' ~Sl+l' ••• '~SI+2m' B m +1 is hence a piecewise polynomial of degree at most
2m - 1 with knots at SI, . .. ,SI+2m, and possessing 2m - 2 continuous deriva­
tives. We next show that Bm+l(t) =°for t f/. [SI' SI+2m]. For any fixed t :::; SI :::; S
we may write

m-l
~s(t) = L SV Iv(t), S~ SI ~ t,

v=o

for some lv's, since ~s (t) is a polynomial of degree m - 1 in S for S ~ t. Similarly,
for t > SI+2m 2: S we may write

2m-l
Es(t) = L SV lv(t)

v=o

for some Iv. Since [SI, ... , SI+2m]sT = °for any r = 1,2, ... , 2m - 1, it follows
that

[SI, ... ,SI+2m]~s(t)=Bm+l(t) = 0, t f/. [SI, SI+2m]

This gives N - 2m basis functions with compact support; the remaining m may
be obtained, e.g., as

BN-m+k = [SN-2m+k, . .. ,SN]~s, k = 1, ... ,m,

and then BN-m+k(t)(t) = 0, for t :::; SN-2m+k.
Basis functions with compact support that span the space of natural

polynomial splines with knots SI, ... , Sn, Si E [0,1] are studied in some detail
in Schumaker (1981, §8.2). n - 2m of these basis functions are so-called B
splines. These B splines are piecewise polynomials of degree 2m -1, with 2m - 2
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continuous derivatives, have exactly 2m + 1 knots, Sl,"" Sl+2m, and are zero
outside [Sl' SI+2m]. It is known that (nontrivial) piecewise polynomials of the
given degree and order of continuity cannot be supported on fewer knots. For
equally spaced knots, with spacing h, the B splines are translated and scaled
versions of the convolution of 2m uniform distributions on [0, h]. In general,
they are nonnegative hill-shaped functions. They are very popular as basis
functions both for their good approximation theoretic properties and their ease of
computation. Simple recursion relations are available to generate them directly
(see Lyche and Schumaker (1973), deBoor (1978), Schumaker (1981)). Software
for generating B-spline bases given arbitrary knots Sl is publicly available (see
Chapter 11).

Given basis functions Bl, ... , B N we now seek iN,>. of the form

N

iN,>. = L CkBk

k=l

to minimize

where

and

For J-lR = Wm [O,I],

and (Jkl will be zero if B k and B1 have no common support. Then

C = C>. = (X' X + n'x1":)-1 X'y

and

A('x) = X(X' X + n'x1":)-1 X'. (7.1.6)

Here, we really have two smoothing parameters, namely, ,X and N, the number
of basis functions, assuming the distribution of S1, . .. ,SN for each N is fixed.
In principle one could compute V(N,'x) and minimize over both N and ,X. We
think that, to minimize errors due to numerical approximation, one wants to
make N as large as is convenient or feasible on the computing equipment, or at
least large enough to ensure that no "resolution" is lost at this stage, and then
choose ,X to minimize V.
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7.2 Regression splines.

A number of authors have suggested using regression splines (Le., ..\ = 0),
particularly in the case L i f = f (ti)' Then N is the smoothing parameter. In this
case V is particularly easy to compute, since trace A(N) = N/n. von Golitschek
and Schumaker (1987) show, under general circumstances, that if f f/. HN, then
it is always better to do smoothing as opposed to regression. They show that
there is always some ..\ > a that is better than ..\ = a in the sense that, if f f/. HN,
then ET(..\) defined by

n

E"L(Ld - Ld>.)2
i=l

satisfies (d/d)..\ET(..\)I>.=o < O.
Furthermore, for Ld = f(t i ), and HR = Wm , Agarwal and Studden (1980)

have shown that the optimal N is O(1/n1/ 2m+1 ) = O(1/n1/ 5 ) for m = 2, say.
For n of the order of, say 100, the optimal N for B-spline regression will be
quite small and the estimate will not "resolve" multiple peaks that could easily
be resolved by a smoothing spline. Nevertheless, arguments have been made for
the use of regression splines in the case of extremely large data sets, and/or in
situations where one does not expect to recover much "fine structure" in the
estimates. (That is, when the true f is believed to be approximately in HN for
small N.) If the knots, that is the Sk, are also considered free variables, then
more flexibility is available. If the knots are chosen to minimize the residual
sum of squares, then trace A(N) can be expected to be an underestimate of the
degrees of freedom for signal in the denominator of the GCV function. Friedman
and Silverman (1987) and Friedman (1989) have proposed correction factors for
this.





(8.1.1)

CHAPTER 8
Fredholm Integral, Equations of the
First Kind

8.1 Existence of solutions, the method of regularization.

An equation of the form

g(t) =LK(t, s)/(s) ds, t E T

is known as a Fredholm integral equation of the first kind. Rewriting (8.1.1) as

g= KI, (8.1.2)

we have that Picard's theorem (Courant and Hilbert (1965, p.160)) says that
K(£2) = 'HK*K, where

K * K(u, v) = LK(u, s)K(v, s) ds.

Therefore a solution 1 in £2 for (8.1.2) exists provided 9 E 'HK*K. Nashed and
Wahba (1974) showed that K('HR) ='HQl where

Q(u,v) = rr K(u, s)R(s,t)K(v,t) dsdt. (8.1.3)
JJnxn

Therefore 9 E 'HQ ensures that there exist at least one solution 1 E 'HR. (If
K has a nontrivial null space in 'HR then the solution is not unique but a
unique generalized inverse can be defined; see Nashed and Wahba (1974).) The
numerical solution of such equations has been a subject of intensive study over
a long period of time. Until 1969 however (see Wahba (1969)) the literature
concerned the case where 9 was presumed known exactly.

Brute force discretization of (8.1.1) to obtain a matrix equation and then
solving the resultant linear system was doomed to failure because under very mild
smoothness conditions on K(·,') adjacent rows of the matrix will become closer
and closer as the discretization becomes finer and finer, and the calculation will
become numerically unstable. Pretending to have infinite precision arithmetic,
and infinitely accurate data, one could ask for 10 E 'HR to minimize IIPI 10 II
subject to

g(ti) =JK(ti , s)/o(s) ds, i = 1,2, ... , n.

101
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In the computation of fo, the matrix M of (1.3.9) is replaced by E (since ,,\ = 0),
which has ijth entry Q(ti, tj). The condition number of E is the ratio of the
largest to smallest eigenvalue. If the ti's are roughly uniformly distributed, then
the eigenvalues of E will (roughly) behave as n times the eigenvalues of Q.
If K and R behave as Green's functions for kth order and 2mth order linear
differential operators, respectively, then the eigenvalues of Q will decay at the
rate v-(2m+2k) and the estimate of the condition number of E is O(n-(2m+2k)).
If K is analytic, the eigenvalues will decay exponentially. Even with double
precision on supercomputers, such an exact solution is numerically unstable for
even moderate n.

Tikhonov (1963) suggested solving

9 (~) = JK (~, s) f (s) ds

approximately by (roughly), finding (f(1/n), . .. ,f(n/n)) to minimize

;t (0 (~) -~ tK (~, *) I (~) ) 2

+A~ (le:1)-21(~)+le:1)r (8.1.4)

(8.2.1)

He suggested choosing ,,\ by trial and error. Phillips (1962) and Cook (1963)
suggested a similar approach, and these and related methods are sometimes
called Tikhonov-P hillips regularization.

The minimization of (1.3.4) was proposed in Wahba (1969) and the use of
GCV to choose ,,\ in this context appears in Wahba (1977a).

We mention only a few other references, which are directly related to the
approach discussed here: Wahba (1980a, 1981a, 1981c, 1982c), Merz (1980),
Crump and Seinfeld (1982), Mendelsson and Rice (1982), Nychka, Wahba,
Goldfarb, and Pugh (1984), Cox and O'Sullivan (1985), O'Sullivan (1986a),
Nychka and Cox (1989), Girard (1987a,b,c). See also the books of Groetsch
(1984) and the books edited by Anderson, deHoog, and Lukas (1980), and
Baker and Miller (1982). A recent translation from the Russian (Tikhonov
and Goncharsky (1987)), gives a number of applications of Tikhonov-Phillips
regularization to ill-posed problems in various fields. The discrepancy method
and trial and error for choosing ,,\ are used in the examples reported there.

8.2 Further remarks on ill-posedness.

The typical integral equation arising in practice can be very ill-posed; basically
t his means that very large data sets can contain a surprisingly small amount
of information about the desired solution. As an example, consider Fujita's
equation considered in Wahba (1979b) and references cited there. It is

l
smax ()se-(Jst

g(t) = 0 [1- e-(Js]f(s) ds
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where () is given. This equation relates optical density along a tube after
centrifugation (g(t), t = distance along the tube) to I(s), the molecular weight
distribution of the contents of the tube. One should always look at the
eigenvalues {Avn } of the problem

gi = Lil =< 'f/i, 1 >,

which consist of M ones and the n - M eigenvalues of Q~~Q2, where ~ is the
n x n matrix with ijth entry < Pl'f/i, P1'f/j >. For the example of Fujita's equation
considered in Wahba (1979b), with n = 41 and M = 0, we obtained the first
five eigenvalues as 1, 10-3.5,10-7,10-10.5, and 10-14 . The remaining eigenvalues
were "computer zero." Loosely speaking, even with extremely accurate data (say
to eight figures), there are still only at most three linearly independent pieces of
information in the data for this problem. The "number of independent pieces of
information in the data" was considered in Wahba (1980a). Let

Yi =< 'f/i, 1 > +€i, i = 1, ... ,n

and let the n x n matrix with ijth entry < 'f/i, 'f/j > satisfy

{< 'f/i, 'f/j >} = ~ = r Dr'.

Let (:J = D-
1

/

2

r' OJ '
and let z be the transformed data

z = r'y.

Then
Zv = A < 1./Jv, 1 > +iv,

where Av is the ith diagonal entry of D and i = (i1, ... ,in)' '" N(O, a 2I). If
Av < 1./Jv,1 >2 is large compared to a 2 , then one can obtain a good estimate
of < 1./Jv, 1 >, and, if it is not, one cannot. One might identify "the number of
independent pieces of information in the data" with the number of v's for which
Av /a 2 » 1.

We note that
()se-()st

K(t,s) = [ _() ]1- e s

of (8.2.1) is infinitely differentiable in t. The "smoother" K(·,·) is, the more
ill-posed the integral equation. K(t, s) = (t - sr~-1 /(m - I)! corresponds to
gem) = 1 for m some positive integer. The larger m is, the more ill-posed the
problem. For m < 1 we have Abel's equations (see Anderssen and Jakeman
(1975), Nychka et al. (1984)). A plot of the relevant eigenvalues appears in
Nychka et al. Abel's equations are only mildly ill-posed. The equations arising
in computerized tomography (Radon transforms; see e.g., Wahba (1981c) and
references cited there) are also only mildly ill-posed.
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8.3 Mildly nonlinear integral equations.

Remote sensing experiments frequently involve the observation of data on mildly
nonlinear functions. For example, upwelling radiation above the atmosphere is
related to the atmospheric vertical temperature distribution, and this radiation
is measured from sensors aboard satellites (see, e.g., Fritz et al. (1972)). It is
desired to recover the vertical temperature distribution from this data for the
purpose of estimating initial conditions for numerical weather prediction. With
some idealizations the relation is

l
top

Rv(T) = 8v(T(x))T~(X) dx
surface

where T(x) is the temperature at vertical coordinate x along a column of the
atmosphere in the line of sight of the satellite sensor, R v is upwelling radiance
at wavenumber v, and Bv is Planck's function

3
B [T(x)] _ Cl v

v - eC2vIT(x) _ 1 (8.3.2)

where Cl and C2 are known physical constants and Tv is the transmittance (usually
assumed known). The data model is

Yv = Rv(T) + f v , v = 1, ... ,n.

The following approach was proposed in O'Sullivan and Wahba (1985).
Let

N

T(x) ~ L CkBk(X)
k=l

where the Bk are B-splines, and let

R_(T) '" N_(e) = J8_ (~ekEk(X)) T~(X) dx.

Find C = (Cll ... , CN)' to minimize

~ E(Yi - N i(c))2 + ,xC'~C
t=l

(8.3.3)

(8.3.4)

(8.3.5)

where ~ = {O"ij} , O"ij =< P1Bi , P1Bj >. Fix,x, and use a Gauss-Newton
iteration to find C = c(,x): For C = c(I) l the lth iterate, we have

N 8N..
Ni(c) ~ Ni(c(l») + L --!. (Ck - c~'»).

k=l 8Ck c=c(l)

Let X(l) be the n x N matrix with ikth entry 8Ni/8cklc=c(l) , and let the
"pseudodata" y(l) be

(8.3.6)



INTEGRAL EQUATIONS OF THE FIRST KIND

The minimization problem becomes: Find c(l+l) to minimize

and
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(8.3.7)

C(l+l) = (X(!)' X(l) + n).~)-lX(I)1 yCl),

This iteration is run to convergence, say until 1= L =L().). Then the quadratic
approximation to the original optimization problem (8.3.4) in the neighborhood
of c(L) has the influence matrix A(L) ().),

(8.3.8)

and the GCV function can be evaluated for this ). as

~ RSS()')

and the process repeated for a new)..

8.4 The optimal ). for loss functions other than predictive
mean-square error.

The GCV estimate of Ahas been shown to be good for estimating the ). that
minimizes

Suppose that one is really interested in choosing ). to minimize some other loss
function, for example,

D()') = J(!>,(t) - f(t))2 dt.

If T()') and D()') have to a good approximation the same minimizer, then it
is sufficient to use i Examples where this is so numerically appear in Craven
and Wahba (1979). Suggestions for modifying the GCV function for other loss
functions have been made, notably in O'Sullivan (1986a). In the comments to
that paper I argued that, if the original problem is ill-conditioned, then the
computation of the modified GCV function is also likely to be ill-conditioned.
In any case it would be nice to know when T and D (or other loss functions)
are likely to have (approximately) the same minimizer. A number of authors
have provided convergence rate calculations that contribute to an answer to this
question, including those in Section 4.5.

In Wahba and Wang (1987) we examined a simple family of cases that
suggests the range of results that might be obtainable in general. The result
is that under a range of circumstances the optimal rate of decay of ). is the same
for a variety of loss functions, and under other circumstances the optimal rate
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of decay is different for different loss functions. We summarize the results here.
We let

g(t) = 11

h(t - s)f(s) ds, t E [0,1]'

Yi = 9 (~) + fi

and we assumed that
00

g(t) L 2gv cos 27rvt,
v=l

00

h(t) L 2hv cos 27rvt,
v=1
00

f(t) - L 2fv cos 27rvt,
v=l

thus gv = hvfv. f is estimated as a periodic function that integrates to zero ani
minimizes

1 n ( 11

(.) )2 A 11

- '" Yi - h': - s f(s) ds + (fCm >(t))2dt.
n L n (27r)2m

i=1 0 0

Letting

then, to an approximation good enough for our purposes

n

1>.,(S) ::::: 2 L iv cos 27rVS
v=1

where

furt hermore,

g),(t) = 11

h(t - s)f),(s)ds:::: 2tavcOS27rvt
o v=l

with
av = hvJv.

Then the mean-square error in the solution is

1 n1(f),(s) - f(s))2 ds::::: L(Jv - fv)2,
o v=l
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the mean-square prediction error is

n
~ 2 A 2= Lh,AJv - Jv) ,
v=l
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and the mean-square error in the lth derivative of the solution, if it exists, is

Now

where f-v '" N(O, 0'2 In) giving

A ( AV2m ) 2 h20'2
E(fv - Jv)2 ~ h~ + AV2m f: + (h~ +vAv2m )2'

Wahba and Wang (1987) considered loss functions of the form

for

(8.4.1)

(8.4.2 )

(8.4.3)

Thus, = 0 corresponds to mean-square solution error, , = -2(3 corresponds
to mean-square prediction error, and, = 2m corresponds to IIJ - J>.lIk.
Substituting (8.4.3) and (8.4.1) into (8.4.2), one obtains

(8.4.4)

and the optimal A for the interesting combinations of 0:, (3", and m were found.
We only consider the case (3 > 0 (which guarantees a bona fide convolution
equation), 0: + (3 > 1 (which guarantees that 9 is in a reproducing kernel space),
and m > ~. We only repeat the results for, = 0 and -2(3 here. Let AD
minimize (8.4.4) for, = 0 (mean-square solution error (domain error)) and A*
be the minimizer for, = -2(3 (mean-square prediction error). The results are:

(A) Suppose ~ < 0: < 2m + 1. Then



108 CHAPTER 8

(B.1) Suppose 2m + 1 < a and f3 > (a - (2m + ! )). Then

(B.2) Suppose 2m + 1 < a and f3 :::; (a - (2m + ! )). Then A* does not
(otherwise) depend on a and



CHAPTER 9
Further Nonlinear Generalizations

9.1 Partial spline models in nonlinear regression.

Consider the nonlinear partial spline model

(9.1.1)

where 0 = (Ot, ... ,Oq) is unknown, 'I/J(ti,O) is given, f E HR, and E =
(El, ... ,En )' -N(O,(J2I).

We can fit this data by finding 0 E Eq, f E H to minimize

(9.1.2)

Note that we have used a norm rather than a seminorm in the penalty functional
in (9.1.2). Here any part of the "signal" for which there is to be no penalty should
be built into 'I/J, to avoid hard-to-analyze aliasing when (9.1.2) is minimized
using iterative methods. In most applications, f would be a smooth nuisance
parameter, and testing whether or not it is zero would be a way of testing whether
or not the model 'I/J(t, 0) is adequate.

It is easy to see that the minimizer!>. of (9.1.2) must be of the form

n

f = LCiRti
i=l

where Rt, is the representer of evaluation at ti, in HR. Letting 'I/J(O) =
('I/J(ft,O), ... ,'I/J(tn,O))' and ~ be the n x n matrix with ijth entry R(ti,tj ),

we have that the minimization problem of (9.1.2) becomes the following. Find
oE Eq and C E En to minimize

1-lly - 'I/J(O) - ~c1I2 + AC'~C.
n

For any fixed 0, we have (assuming ~ is of full rank), C = c(O) satisfies

(~ + nAI)c(O) = y - 'I/J(O).
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(9.1.3)

(9.1.4)



110 CHAPTER 9

gives

Substituting (9.1.4) into (9.1.3), (9.1.3) becomes the following. Find 0 to
mInImIZe

A(Y -1/J(O))'(I:. + nAI)-l(y -1/J(O)). (9.1.5)

The Gauss-Newton iteration goes as follows.
Let T(l) be the n x q matrix with illth entry {)1/J(fi, O)/{)OvlfJ=fJ(/) , where OCI)

is the [th iterate of O. Expanding 1/J(O) in a first-order Taylor series gives

1/J(O) := 1/J(OCI») - T(l)O(I) + T(l)O.

Letting
Z(l) = y _1/J(OCI)) + T(l)O(I) ,

we have that 0(1+1) is the minimizer of

(z(l) - T(l)O)'(I:. + nAI)-l(z(l) - T(l)O).

That is, 0(1+1) satisfies

T(l)' (I:. + nAI)-lT(I)O(I+l) = T(l)' (I:. + nAI)-l z(l).

Letting
I:. = UDU'

T(l)' U(D + nAI)-lU'T(l)O(l+l) = T(l)U(D + nAI)-IU'z(l),

so that the same n x n matrix decomposition can be used for all iterations and
values of A.

For fixed A, the iteration is carried to convergence, [ = L = L(A), say, and
the solution (0),, c>,) is the solution to the linearized problem

1
:;;: IIz(L) - T(L)O - I:.c11 2 + AC'I:.C, (9.1.6)

for which the influence matrix A(A) = A(L) (A) is given by the familiar formula

1 - A(L)(A) = nAQ~L)(Q~L)'I:.Q~L) + nAI)-IQ~L)1 (9.1.7)

where

T(L) = (Qi
Y

) : Q~L») ( R~L) ).

One has nAc = (I - A(L)) Z (L), and the GCV function can be defined as

111(1 - A(L)(A))z(L)112
V (A) - -'-=..n--::--- _

- (~Tr (I - A(L)(A)))2 .

The matrix A(L) has q eigenvalues that are one, thus this formula is assigning
q degrees of freedom for signal to the estimation of (0 1, ... , Oq). It has been noted
by many authors (see the comments in Friedman and Silverman (1989)) that
when q parameters enter nonlinearly q may not be the real equivalent degrees
of freedom. It is an open question whether a correction needs to be made here,
and what modifications, if any, to the hypothesis testing procedure in Section
6 when the null space is not a linear space. See the recent book by Bates and
Watts (1988) for more on nonlinear regression.
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9.2 Penalized GLIM models.

Suppose

111

Yi"'" Binomial (1, p(ti )), i = 1, ... , n, (9.2.1)

and let the logit f(t) be f(t) = log[p(t)/(l - p(t))), where f is assumed to be
in 'HR, and it is desired to estimate f. The negative log-likelihood £(y) of the
data is

n

£(y) = - 2:)Yi logp(ti) + (1 - Yi) log (1 - p(ti )))
i=l

and, since p = ef /(1 + ef ),

n

£(y) = 2:)log (1 + ef(t,)) - Yif(ti)) = Q(y, I), say.
i=l

(9.2.2)

(9.2.3)

McCullagh and NeIder (1983) in their book on GLIM (generalized linear models)
suggest assuming that f is a parametric function (for example, f(t) = (h + ()2t),
and estimating the parameters by minimizing Q(y, I) = Q(y, ()). O'Sullivan
(1983) and O'Sullivan, Yandell, and Raynor (1986) considered the estimation
of f by supposing that f E 'HR and finding f to minimize the penalized log­
likelihood

h(y, I) = Q(y, I) + ,\,II PlfI1 2
, (9.2.4)

and extended GCV to this setup.
Penalized likelihood estimates with various penalty functionals have been

proposed by a number of authors. (See the references in O'Sullivan (1983); we
note only the work of Silverman (1978) and Tapia and Thompson (1978) where
the penalty funetionals are seminorms in reproducing kernel spaces. See also
Leonard (1982).)

If (9.2.1) is replaced by

Yi"'" Poisson (A(ti))

and f(t) = log A(t), we have

n

Q(y, I) = L {ef(t.) - Yd(ti) + log(Yi!)} .
i=l

(9.2.5)

Of course Yi ,.... N(f(ti), 0"2) is the model we have been considering all along, and
the setup we are discussing works whenever Yi has an exponential density of the
form

P(Yi) = e-[{b(f(t.))-Yi!(t,)}!a,]+c(y;) (9.2.6)

where ai, b, and c are given.
Here we note for further reference that EYi = b'(f(ti )) and var Yi =

b" (f(ti) )ai, and below we will let ai = 1.
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Approximating f by a suitable basis function representation in 'HR, we have

and we need to find c = (CI, ... ,CN)' to minimize

N

+). 2: CkCk' < PIBk, P1Bk' > .
k,k'=l

(9.2.7)

Using a Newton-Raphson iteration this problem can be solved iteratively, and at
the last step of the iteration one can obtain an approximating quadratic problem,
from which one can extract a GCV function.

The second-order Taylor expansion of 1>.. (c) for the lth iterate cO) is

where the gradient \71>.. is given by

(
a1>.. a1>.,) I\71>...= -, ... ,--
aCI aCN c=c(1)

and the Hessian \721>.. is the N x N matrix with j kth entry

Then C = c(l+l), the minimizer of (9.2.8), is given by

(9.2.8)

(9.2.9)

(9.2.10)

(9.2.11)

Letting X be the n x N matrix with ikth entry Bk(ti) and ~ be the N x N
matrix with kk'th entry < PIBk, PIBk' >, we have that (9.2.7) becomes

n

1>..(c) = 2: b((XC)i) - y'X C + ).C/~C,
i=l

where (XC)i is the ith entry of the vector Xc. We have

\7 I~ = X' (J.L( c) - y) + 2)'~c

\72 h, = X'D(c)X + 2)'~

(9.2.12)

(9.2.13)
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where D(c) is the n x n diagonal matrix with iith entry b" (I(ti)) = b" ((XC)i)'
Substituting (9.2.12) and (9.2.13) into (9.2.11) gives the Newton-Raphson

update

C(l+l) = cCl) - (X'D(cCl))X + 2>.~)-1(-X'(y - /L(c(l))) + 2>.~cCl)) (9.2.14)

= (X'D(cCl))X + 2>.~)-1 X'Dl/2(cCl))zCl) (9.2.15)

where the pseudodata zCl) is

Then cCl+1) is the minimizer of

(9.2.17)

The predicted value £Cl) = D 1 / 2 X c of zCl) is related to zCl) by

£Cl) = A(>.)zCl)

where

(9.2.18)

Running (9.2.14) to convergence, (9.2.17) at convergence becomes

(9.2.19)

and letting w = D- I /2(C)y and w= D-I/2/L(C), it is seen that

8w-
-8~ ::: (A(>'))ij

Wj

resulting in the GCV function

IID-I/2(c)(y - /L(c))11 2

V(>.) = (Tr (I - A(>.)))2

evaluated at the converged value of c.
Properties of these estimates are discussed in O'Sullivan (1983), Cox and

O'Sullivan (1989a,b), and Gu (1989a). The method has been extended to the
Cox proportional hazards model and other applications by O'Sullivan (1986b,
1988b).

9.3 Estimation of the log-likelihood ratio.

Suppose one is going to draw a sample of ni observations from population 1
with density hI (t), t E T, and a sample of n2 observations from population 2
with density h2 (t), and it is desired to estimate /(t) = log (h l (t)jh2 (t)), the
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log-likelihood ratio. Without loss of generality we will suppose nl = n2 = nj2.
(Details for removing this limitation may be found in Villalobos and Wahba
(1987).) Suppose the n observations are labeled t l , ... , tn, and with each
observation is at tached a tag Yi, i = 1, ... ,n that is 1 if t i came from population
1, and 0 if ti came from population 2.

Given that an observation has value ti, the conditional probability that
its tag Yi is 1, is hl(ti)j(hl(ti ) + h2(ti )) = p(ti ), and we have that f(t) =
log (p(t)j(l - p(t)) = log (h l(t)jh2(t)). f can be estimated by minimizing
Q(y,1) + >.IIPl fI1 2

, where Q is given by (9.2.3). This way of looking at log
likelihood estimation is due to Silverman (1978).

Note that if hI and h2 are d-variate normal densities, (t = (Xl, ... , Xd)), then
f is quadratic in Xl," " Xd and will be in the null space of the thin plate penalty
functional for m = 3 (provided 6 - d > 0; see Section 2.4). Thus, if hI and h2

are believed to be "close" to IIl_ lltivariate normal, then this penalty functional is
a natural one (see Silverman (1982)).

9.4 Linear inequality constraints.

Suppose we observe

and it is known a priori that f E C C 11R where C is a closed convex set.
We want to find f E 11R to minimize

1~ 2 2
- L)Yi - Li!) + >.IIPlfll
n.

~=1

(9.4.1)

(9.4.2)

subject to f E C. Since any closed convex set can be characterized as the
intersection of a family of half planes, we can write

C={f:<Xs,f>?a(s), SES},

for some family {XS, s E S}. Frequently, we can approximate C by CL ,

CL = {f: < Xs,f > >a(s), s = Sl,··· ,SL},

where XSl"" ,XSL is a discrete approximation to {XS, s E S}. For example, if
C = {f: f(t) > 0, t E T}, then we have {XS, s E S} = {Rs, sET}, and
if T = [0,1]' we may approximate C by CL = {RIlL, R 2/L , ... , R LIL }. If CL
is a good approximation to C, one may frequently find after minimizing (9.4.2)
subject to f E CL that the result is actually in C. Letting 'fJi be the representer
of Li and ei = PI'fJi, and letting Pj = PIXs j , it is known from Kimeldorf and
Wahba (1971), that if

has a unique minimizer in 110, then (9.4.2) has a unique minimizer in CL , and it
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must have a representation

n L M

L Ciei + L bjpj + L dv1>v
i=l j==l v==l
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for some coefficient vectors a = (C' : b')', and d. The coefficients a and
d are found by solving the following quadratic programming problem. Find
a E En+L l dEEd to minimize

(9.4.3)

subject to

where
~l = (~ll : ~12),

~2 = (~21 : ~22),

E = ( :: )

and the ~ij and Ti are given in Table 9.1 (~12

(Q(sI), ... , Q(SL))'.

TABLE 9.1

Definitions of ~ij and Ti .

(9.4.4)

(9.4.5)

(9.4.6)

(9.4.7)

Matrix
~ll

~12

~22

T1

T2

Dimension
nXn
nxL
LxL
nxM
LxM

ijth entry
< ei,ej >
< ei,pj >
< Pi, Pj >
< 'TJi, 1>j >
< XSil 1>j >

A GCV function can be obtained for constrained problems via the "leaving­
out-one" lemma of Section 4.2.

Let flk
] be the minimizer in CL of

(supposed unique) and let

(9.4.8)
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where h[k,8] is the minimizer of (9.4.2) in CL with Yk replaced by Yk + 8. If
there are no active constraints, then Lkf>.. is linear in the components of Y and

(9.4.9)

where akk(A) is the kkth entry of the influence matrix of (1.3.23). From Theorem
4.2.1, we have that the ordinary cross-validation function VO(A) satisfies

(9.4.10)

where 15k = Lkflk] - Yk. By analogy with the linear case, the GCV function is
defined as

(9.4.11)

To evaluate V (A) for a single value of A we need to solve n quadratic programming
problems in n + L - M variables. To avoid this it is suggested in Wahba (19S2c)
that the approximate GCV function

where

1. "n (Y- _ L-f\)2
V; (A) = n L.."i=l ~ t /\

app (1 - ~ L~=l akk(A))2
(9.4.12)

(9.4.13)akk(A) = 8Lkf>..1
8Yk y

be used. The right-hand side of (9.4.13) is well defined and continuous in A
except at boundaries when a constraint changes from active to inactive or vice
versa.

We can obtain 8Lkf>..j8Yk for the constrained problem by examining an
approximating quadratic minimization problem. It is not hard to see that the
approximating problem is found as follows. Fix A, and solve the quadratic
programming problem of (9.4.3) and (9.4.4). Find all the active constraints
(suppose there are 1). Now let f: 1 , f: 2 , f:, TI , and T2 , and it, be defined as the
corresponding elements in (9.4.5), (9.4.6), (9.4.7), and Table 9.1 with all rows
andjor columns corresponding to inactive constraints deleted. Then c, d, and
the nonzero values of b in the solution to quadratic programming problems of
(9.4.3) and (9.4.4) are given by t.!te solution to the following equality constrained
minimization problem. Find a, d to minimize

(9.4.14)

subject to

(9.4.15)
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To write the solution to this minimization problem quickly, let
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(

Inxn

W~ =
Olxn

Onxl )

~Ilxl

and consider the following minimization problem. Find a and d to minimize

(9.4.16)

where

It is not hard to see that the minimizer of (9.4.16) satisfies

ria = 0,

(9.4.17)

(9.4.18)

for any We with ~ > 0, and if we let ~ -+ 0 we get the minimizer of (9.4.14)
subject to (9.4.15). _

Let the QR decomposition of T be

and letting W = Wo, we can derive, following the arguments leading to (1.3.19),

Now

~ (X) = ta + i'd,

and subtracting (9.4.20) from (9.4.17) gives

( Y ~ iJ ) = n,XWa = n'xWQ2(Q~(t + n'xW)Q2)-lQ~Y,

(9.4.19)

(9.4.20)

(9.4.21 )

so for j = 1, ... , n, the jjth entry in the matrix on the right of (9.4.21) is
1 - (8L j !>.j8Yj)ly. Thus

n

L ajj('x) = n - n'x tr h. (c1> + n'xh.)-l
j=l

where

and
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furthermore,

CHAPTER 9

n+l-M

tr 6. (<1> + n..\6.)-1 = L
j=1

where WI, ... , Wn+l-M are the eigenvalues of the real symmetric eigenvalue
problem

6.Uj = Wj<1>Uj, j = 1, ... ,n + l- M.

These arguments are from Villalobos and Wahba (1987). (The derivations there
are modified to apply directly to thin-plate splines.) A numerical strategy for
carrying out the computation of Vapp (..\) is given there. It uses an "active set"
algorithm of Gill et al. (1982) for the quadratic optimization problem. This
type of algorithm is known to converge rapidly when a good starting guess is
available for the active constraint set. If the set of active constraints changes
slowly with ..\, then a good guess for the active set for an updated ..\ is the
active set for the preceding..\. The unconstrained problem is solved to obtain
a starting guess. Discontinuities in Vapp (..\) as the active constraint set changed
were evident in the examples tried in Villalobos and Wahba (1987), but were not
a practical problem. Another recent work on inequality constraints is Elfving
and Andersson (1986).

9.5 Inequality constraints in in~posed problems.

In the solution of Fredholm integral equations of the first kind, if the number of
linearly independent pieces of information in the data (see Section 8.2) is small,
the imposition of known linear inequality constraints may add crucial missing
information. A numerical experiment that illustrates this fact was performed
in Wahba (1982c) and here we show two examples from that study. Data were
generated according to the model

1
1 .

Yi = k(:: - u)f(u)du + Ei,
o n

i=I,''',n (9.5.1)

with n = 64, Ei f'V N(o, (72) and (7 = .05. The periodic convolution kernel
k is shown in Figure 9.1. The two example f's from that paper are the
solid black lines in Figures 9.2(a) and 9.3(a). (The explicit formulae may be
found in Wahba (1982c).) The dashed curves in Figures 9.2(a) and 9.3(a) are

g(x) = fo1
k(x - u)f(u)du, and the circles are the data Yi. f was estimated as

the minimizer of

(9.5.2)

in a 64-dimensional space of sines and cosines, using GCV to estimate..\. The
numerical problem here is much simplified over that in Section 9.4 due to the
periodic nature of the problem and the equally spaced data. The estimates
are given as the finely dashed curves marked h. in Figures 9.2(b) and 9.3(b).
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FIG. 9.1. The convolution kernel.
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Then (9.5.2) was minimized in the same space of sines and cosines, subject to
I( ~) ~ 0, i = 1, ... , n, and Vapp of (9.4.12) used to choose A. The result is
the coarsely dashed curves in the same figures, marked It. It can be seen that
the imposition of the positivity constraints reduces the erroneous side lobes in
the solution as well as improves the resolution of the peaks. We remark that
although in theory there are 64 strictly positive eigenvalues, in this problem the
ratio (A42/ AI)1/2 was 10-7 .

9.6 Constrained nonlinear optimization with basis functions.

Let

Yi = Nil + €i

where N i is a nonlinear functional, and suppose it is known that

< Xs, I > > o:(s), S E S.

Approximating I by
N

I::: 2: CkBk

k=l

and S by {Sl"'" sJ}, we seek to find C to minimize

(9.6.1)

(9.6.2)

(9.6.3)

(9.6.4)
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FIG. 9.2. Example 1.
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FIG. 9.3. Example 2.
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(9.6.5)
N

LCk < Xsr,Bk > 2:: a(Sr), r = 1, ... ,J.
k=l

Here, E is the N x N matrix with ijth entry < P1Bi , P1Bj >, as in Section 7.l.
Letting

N

Ni(c) ~ Ni(c(l)) + L ~Ni (Ck - c~))
k=l Ck

as in (8.3.5), and letting X(l) be the n x N matrix with i kth entry aNdaCk Ic=c(l),

and letting

y(l) = y _ ( Nt (~(l») ) + X(l) cO)

Nn(c(l))

be as in (8.3.5)~(8.3.7), at the lth step of an iterative solution we have that the
problem is to find c to minimize

subject to
Cc> a

where C is the J x N matrix with rkth entry < XSr' Bk >, and a =
(o:(sd, ... ,a(sJ))'. In principle at least, this problem can be iterated to
convergence for fixed .\, and Vapp for constrained functions can be evaluated.
Here the influence matrix for Vapp is

A(L)(.\) = X(L) F'(FX(L)' X(L) F' + n.\FEF')-l F X(L)'

where X(L) is the converged value of X(l), and, if there are J' active constraints
and C(L) is the J' x N submatrix of C corresponding to these J' constraints,
then F is any N - J' x N matrix with F'F = IN-J' and FC(L) = ON-J'xJ.

9.7 System identification.

The key idea in this section (equation (9.7.14)), which allows the use of GCV
in the system identification problem, has been adapted from O'Sullivan (1986a).
Kravaris and Seinfeld (1985) have proposed the method of (9.7.4) below that,
adopting the nomenclature of the field, might be called the penalized output
least squares method. Another important recent reference is O'Sullivan (1987b),
where convergence properties of the method are discussed.

The dynamic flow of fluid through a porous medium is modeled by a diffusion
equation

au(x, t) a { a }
at - ax p(x) ax u(x, t) = q(x, t), x E n, t E [tmin, tmaxJ (9.7.1)
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subject to prescribed initial and boundary conditions, for example, U(X,O) =
uo(x) (initial condition) and 8u/8w = 0 where w is the direction normal to the
boundary. Here, if x = (Xl, ... ,Xd) then 8/ax = E:=18/8xa . Here u is, say,
pressure, q represents a forcing function (injection of fluid into the region), and
p is the transmittivity or permeability of the medium. If uo and q are known
exactly, then for fixed p in some appropriate class (p(x) > 0, in particular), u is
determined (implicitly) as a function of p. Typically, p must be nonnegative to
be physically meaningful, and such that there is measurable flow.

The practical problem is, given measurements

(9.7.2)

on u, the initial boundary functions, and q, estimate p.
We remark that if 8/8xu(x, t) is zero for x in some region no c n, all t, then

there is no information in the experiment concerning p(x) for x E no. Although
the algorithm below may provide an estimate for p(x) for x E no, in this case
the information is coming from the prior, and not the experiment.

This is an extremely important practical problem; see, e.g., the references in
O'Sullivan (1986a) and Kravaris and Seinfeld (1985). Deveaux and Steele (1989)
study a somewhat different but related inverse problem.

The problem will be solved approximately in the span of a suitable set of N
basis functions

N

p(x) = L CkBk(X),
k=l

and since p must be nonnegative, we put a sufficiently large number of linear
inequality constraints on c = (Cl, ... ,CN), that is,

N

LCkBk(X) ~ 0
k=l

(9.7.3)

for x in some finite set, so that the estimate is positive. If stronger information
than just positivity is known, then it should be used. We seek to find c subject
to (9.7.3) to minimize

I)Yij - u(x(i), tj, c))2 + AC'~C,
ij

(9.7.4)

where c'~c = II P IPI12. For the moment we suppose that Uo and q are known
exactly. Then

u(x(i), tj, p) ~ u(x(i), tj; c)

is a nonlinear functional of c, but only defined implicitly. If u(x(i), tj; c) could
be linearized about some reasonable starting guess

N

Po(x) = L ciO) Bk(X)
k=l
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then the methods of Section 9.6 could be used to numerically find the minimizing
CA and to choose A by GCV.

Given a guess c(l) for c, we would like to be able to linearize about c(l),

where

u(x(i),tj;c) ~ u(x(i),tj;c(l»)

+ L Xijk(Ck - cil»),
k

(9.7.5)

X ijk = aau (x(i), tj; c) (9.7.6)
Ck c=c(l)

If this could be done, then c and A could be determined, at least in principle,
via the constrained Gauss-Newton iteration and the GCV procedure described
in Section 9.6.

Let

(9.7.7)

let
B = {u: u satisfies the given initial and boundary conditions, }

Bo = {u: u satisfies homogeneous initial and boundary conditions, }

and let
6k = (0, ... ,0,6,0, ... ,0), 6 in the kth position.

Let U c be the solution to
Lcuc = q, U c E B,

let UC+6k be the solution to

and let

Observe that a a
L c+6k = L c - 6ax Bk(X) ax;

then substituting (9.7.9) into (9.7.10) gives

(Lc - 6:xBk(X) :x) (uc + 6hc,k(6)) = q,

U c + 6hc,k(6) E B.

Subtracting (9.7.8) from (9.7.12) and dividing through by 6 gives

a a
Lchc k(6) = -a Bk(X)-a (uc + 6hc k(6))., x x '

(9.7.8)

(9.7.9)

(9.7.10)

(9.7.11)

(9.7.12)

(9.7.13)
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Assuming that we can take limits as 6 -+ 0, and letting limo--+o hc,k (6) = hc,k,
this gives that hc,k is the solution to the problem

a a
Lch = ax Bk(X) ax U c

hE Bo.

Thus if everything is sufficiently "nice," Xij~ can be obtained by solving

(9.7.14)

and evaluating the solution at x(i), tj'

O'Sullivan (1988a) has carried out this program on a one-dimensional
example.

We emphasize that this is a nonlinear ill-posed problem complicated by the
fact that the degree of nonlinearity as well as the degree of ill-posedness can
depend fairly strongly on the unknown solution. To see more clearly some of the
issues involved, let us examine a problem sitting in Euclidean n-space that has
many of the features of the system identification problem. Let Xl, ... ,XN be
N ::; n matrices each of dimension (n - M) x n, let B be an M x n matrix of
rank M, and let u E En, q E E n- M , and b E EM be related by

(tckXk) U= q
k=l

Bu= b.

(9.7.15)

Think of c, q, and b, respectively, as stand-ins for p, the forcing function, and the
initial/boundary conditions.

Suppose q and b are known exactly and it is known a priori that Ck ~ Qk >
0, k = 1, ... , N, and that this condition on the Ck'S ensures that the matrix

(
~kBCkXk)' ISh bL...i is lllvertib e. uppose t at one 0 serves

Yi = Ui + Ei, i = 1, ... ,n

where Ui is the ith component of u. Letting Wij(C) be the ijth entry of

( Lk~kXk ) -1, we may estimate c as the minimizer of

t (Yi - nJt_

M

1

Wij(C)qj - t Wij(C)bj-(n-M)) 2 + Ac'Ec,
• j=n-M+l

(9.7.16)

subject to Ck > Qk. The ability to estimate the c's can be expected to be quite
sensitive to the true values of C as well as q and b.



FURTHER NONLINEAR GENERALIZATIONS 125

Returning to the original system identification problem, we now consider the
case where the boundary conditions are not completely known. If (as in a one­
dimensional, steady-state problem) there are only M << n unknowns in the
initial/boundary values, then the analogue of (9.7.16) could (in principle) be
mini mized with respect to c and b = (b}, ... , bM ) .

More generally, suppose that the forcing function q and the boundary
conditions 8u/8w = 0 are known exactly, but the initial conditions u(x,O) =
uo(x) are observed with error, that is

Zi = uo(x(i)) + Ei·

Modeling uo(x) as
M

uo(x) ~ L bvBv(x)
v=1

(9.7.17)

where the B v are appropriate basis functions (not necessarily the same as before)
and letting b = (b 1 , ... ,bM ), we have

u ~ u(x, t; c, b)

and we want to choose band c, subject to appropriate constraints, to minimize

(9.7.18)

where b'Eb is an appropriate penalty on uo. The penalty functionals c'~c and
b'Eb may be quite different, since the first contains prior information about the
permeability and the second about the field. This expression assumes that all
the measurement errors have the same variance.

For fixed ..\1 and ..\2 this minimization can, in principle, be done as before,
provided we have a means of calculating

(9.7.19)

(9.7.20)

The Zijv can be found by the same method used for the X ijk . Let Uc,b be the
solution to the problem

L 8Uc,b = 0
cUc,b = q, 8w '

Let 8v = (0, ... ,8, ... ,0),8 in the vth position, and let UC ,b+6v be the solution to

8Uc,b+6v - (""" - ))LcUc,b+6v = q, 8w = 0, Uc,b+6v (x, 0) = 8Bv + ~ bfJ-BfJ-(x (9.7.21)
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and let
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h (8) = Uc,b+6" - Uc,b .
c,b,v 8 (9.7.22)

(9.7.23)

Then, subtracting (9.7.21) from (9.7.20) as before, we see that hc,b,v(8) =
hc,b,v(O) is the solution to the problem

au -
Lcu = 0, aw = 0, u(x, 0) = Bv(x).

V(AI, A2) can be minimized, at least in principle, to estimate good values of A1
and A2 by GCV.
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Additive and Interaction Splines

10.1 Variational problems with multiple smoothing parameters.

Let it be an r.k. space and let 1i be a (possibly proper) subspace of if. of the
form

1i = 1io 671i 1

where 1io is span {1>1,.'" 1>M} and 1i1 is the direct sum of p orthogonal
subspaces 1i1, .•. , 1iP ,

P

1i1 = L 671i,8.
,8=1

Suppose we wish to find 1 E 1i to minimize

(10.1.1)

(10.1.2)

where p,8 is the orthogonal projection in it onto 1i,8 and 0,8 ?:: o. If 0,8 = 0, then
the minimizer of (10.1.2) is taken to satisfy IIP,8 111 2 = O.

We can find the minimizer of (10.1.2) using the results of Chapter 1 by making
some substitutions. Let the r.k. for 1i,8 be R,8(t, t'). Then the r.k. for 1i1 with
the squared norm IIP1111~ = E~=1 IIP,8III~ is R 1(t, t') = E~=1 R,8(t, t'); this
follows since the r.k. for a direct sum of orthogonal subspaces is the sum of the
individual r.k.'s (see Aronszajn (1950)). If we change the squared norm on 1i1

from E~=1 IIP,8 III~ to E~=1 O;11IP,8 III~, then the r.k. for 1i1 changes from
E~=1 R,8(t, t') to E~=1 O,8R,8(t, t'). Using these facts and making the relevant
substitutions in Chapter 1, it can be seen that the minimizer of (10.1.2) is of the
form (1.3.8) with

P

{i =L P,8{i
,8=1

replaced everywhere by
P

{f = L O,8P,8{i
,8=1

127

(10.1.3)
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and that 2: in (1.3.9) is of the form
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where the 'ijth entry of 2:,B is

The minimizer of (10.1.2) is then given by

M n p

fA,B = L dv<Pv +L Ci L (},Bp,B ~i
v=1 i=1 ,B=1

(10.1.4)

(10.1.5)

where the coefficient vectors C and d satisfy (1.3.16) and (1.3.17) with 2: given
by (10.1.4). 1- A(A) of (1.3.23) then becomes

(10.1.6)

where T'Q2 = OMX(n-M) as before, so that the GCY function V(A) = V(A,(}) of
(4.3.1) becomes

(10.1. 7)

where

The problem of choosing A and () = ((}l, ... , (}p)' by GCY is then the problem
of choosing A and () to minimize (10.1.7), where, of course, any (A,()) with the
same values of Ar = A/(}r, r = 1, ... ,p are equivalent. Numerical algorithms for
doing this will be discussed in Section 11.3. For future reference we note that

and so

and

n

p,B fA,B = (},B L ciP,B~i
i=1

n

L(LiP,B fA,B)2 = (}~II2:,BcI12.
i=1

(10.1.8)

(10.1.9)

(10.1.10)

Quantities (10.1.9) and (10.1.10) can be used to decide whether the iJth
components are significant.
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10.2 Additive and interaction smoothing splines.

The additive (smoothing) splines and their generalizations, the interac~ion

(smoothing) splines, can be put in the framework of Section 10.1, where 1i is
the tensor product space ®dWm'

The additive splines are functions of d variables, which are a sum of d
functions of one variable (main effects splines)

d

f(X1,' .. , Xd) = fo + L fa(x a ),
a=l

the two factor interaction splines are of the form

d

f(X1, ... , Xd) = fo + L fa(x a ) + L fa/3(x a , x/3),
a=1 a</3

and so forth, where certain side conditions on the fa's, fa/3's etc., that guarantee
uniqueness must hold. The additive spline models have become popular in
the analysis of medical data and other contexts (see Stone (1985, 1986),
Burman (1985), Friedman, Grosse, and Stuetzle, (1983), Hastie and Tibshirani
(1986), Buja, Hastie, and Tibshirani (1989), and references cited therein). The
interaction spline models have been discussed by Barry (1983,1986), Wahba
(1986), Gu et al. (1989), Gu and Wahba (1988), and Chen (1987, 1989). These
models, which in a sense generalize analysis of variance to function spaces, have
strong potential for the empirical modeling of responses to economic and medical
variables, given large data sets of responses with several independent variables,
and represent a major advance over the usual multivariate parametric (mostly
linear) models. They represent a nonparametric compromise in an attempt to
overcome the "curse of dimensionality," since estimating a more general function
f(X1' ... ,Xd) will require truly large data sets for even moderate d.

To describe these splines, it will be convenient to endow Wm[O, 1] with a norm
slightly different from the one given in Section 1.2.

Let

and note that

Let

M v! = 10
1

!(v)(x) dx, v = 0,1, ... , m. - 1

Mvf = f(V-1) (1) - f(V-1) (0), v = 1, ... ,m - 1.

m-1 1

Ilfll?v
m

= L (Mvf) 2 +1(f(m)(u))2du.
v=o 0

(10.2.1 )

(10.2.2)

Let kl(X) = Bl(x)/l!, where Bl is the lth Bernoulli polynomial (see Abramowitz
and Stegun (1965)); we have MvBI = Ov-l where Oi = 1, i = 0, and zero
otherwise. With this norm, Wm can be decomposed as the direct sum of m
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orthogonal one-dimensional subspaces {k, }, I = 0,1, ... ,m - 1, where {k,} is
the one-dimensional subspace spanned by k" and 1i., which is the subspace
(orthogonal to EB,{k,}) satisfying M v ! = 0, v = 0,1, ... , m - 1. That is,

Wm = {ko} EB {ktl EB ... EB {km-d EB 1i•.

This construction can be found in, e.g., Craven and Wahba (1979). Letting
0 dW m be the tensor product of W m with itself d times, we have

d d
o Wm =0 [{ko} EB .•. EB {km-tl EB 1i.]

and 0 dWm may be decomposed into the direct sum of (m + l)d fundamental
subspaces, each of the form

[ ] 0 [ ] 0 ... 0 [] (d boxes) (10.2.3)

where each box ([ ]) is filled with either {k,} for some I, or 1i•. Additive and
interaction spline models are obtained by letting 1io and the 1i13 's of Section 10.1
be direct sums of various of these (m + l)d fundamental subspaces (1io must,
of course, be finite-dimensional). To obtain (purely) additive spline models, one
retains only those subspaces of the form (10.2.3) above whose elements have a
dependency on at most one variable. This means that (at most) one box is filled
with an entry other than {ko} ={I}.

The form of the induced norms on the various subspaces can most easily be
seen by an example. Suppose d = 4 and consider, for example, the subspace

[{kill 0 [1i.] 0 [1i.] 0 [{kr }],

which we will assign the index I"T. Then the squared norm of the projection of
! in 0 4Wm onto this subspace is

where Mk(xo.) means Mk applied to what follows as a function of xc):.
The reproducing kernel (r.k.) for {kz} is kl(x)k,(X') and the r.k. for 1i.

(found in Craven and Wahba (1979)) is K(x, x') given by

(10.2.4)

where [T] is the fractional part of T.
Since the r.k. for a tensor product of two r.k. spaces is the product of the

two r.k. 's (see Aronszajn (1950) for a proof), the r.k. for this subspace, call it
K,··r(Xl, X2, X3, X4; X'I' x~, x3,X4) = K,.,r(X; x'), is
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For more on the properties of tensor products ofr.k. spaces, see Aronszajn (1950)
and Weinert (1982). Tensor products of W m were also studied by Mansfield
(1972). If Ld = f(x(i)), where x(i) is the ith value of x, then

(Pl·or{i)(X) = Kloor(x(i),x)

and
< Ploor{i, Plo·r{j >= Kl·or(x(i), xU)).

In the purely additive model, f(XI, ... , Xd) is of the form

d

f(XI' ..• ,Xd) = J.L + L ga(xa )
a=1

(10.2.5)

where ga E {kd EB ... EB {km-d EB?t. and the penalty term in (10.1.2) is taken
as

At O;;I t [~:~a] 2 dxa. (10.2.6)
a=l Jo a

To make the identifications with (10.2.3) and Section 10.1, for the purely additive
spline model, ?to is the direct sum of the M = 1+(m-1)d fundamental subspaces
of the form (10.2.3) with {ko} in all the boxes except at most one, which contains
some {kz} with I > O. ?t1 = EB~=I?ta where ?ta is of the form (10.2.3) with ?t.
in the ath box and {ko} in the other boxes.

If f of the form (10.2.5) is the additive spline minimizer of (10.1.2), with
Ld = f(x(i)), then the Ua in (10.2.5) have a representation

m-I n

ga(xa ) = L dvakv(xa ) + Oa L CiK(Xa , xa(i))
v=l i=l

where K is given by (10.2.4).
To discuss (two factor) interaction splines, it is convenient to consider the

cases m = 1 and m = 2,3, ... , separately. For m = 1, we have

d d
o Wm =0 [{ko} EB ?t.].

In this case ?to consists ofthe single fundamental subspace 0 d [{ko}], there are
d main effects subspaces, and there is one type of 2-factor interaction subspace,
namely, one where the d boxes of (10.2.3) have ?t. in two boxes and {ko} in the
other d - 2. For m = 2,3, ... we have two-factor interaction spaces that involve
two {kl}'S, with I > 0 (parametric-parametric). These may all be grouped
in ?to. Complicating matters, we may have interactions involving a {kl} and
?t. (parametric-smooth) as well as two fi. 's (smooth-smooth). For example,
for m = 2 there are d (smooth) main effects subspaces, d(d - 1) fundamental
subspaces with {kd -?t. interactions, and d(d - 1)/2 subspaces with ?t. -fi.
interactions. Similar calculations can be made for larger m and 3-factor and
higher interactions. For d = 4, m = 1, we have 4 + 6 = 10 main effects and
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2-factor interaction spaces. Fitting such a model with 10 smoothing parameters
has proved to be difficult but not impossible in some examples we have tried.
(See the discussion in Section 11.3.) However, m = 1 plots tend to be visually
somewhat unpleasantly locally wiggly. This is not surprising since the unknown
1 is not even assumed to have continuous first derivatives. However, for d = 4,
m = 2, there are 4 (smooth) main effects subspaces, 12 {kd -1-l", interaction
spaces and 6 1-l", - 1-l", interaction spaces. We would not recommend trying to
estimate 22 smoothing parameters with the present technology.

To fit additive and interaction spline models then, strategies for model sim­
plification (selection) and numerical methods for multiple smoothing parameters
are needed. Gu (1988) has suggested that the m = 1 case be used as a screening
device. If one fits an m = 1 model and decides that the a:,Bth interaction is not
present, then one may feel confident in eliminating both types of a:,B interaction
in an m = 2 model. Similarly, if smooth main effects can be deleted in an m ::;: 1
model, it can be assumed they are not present in an m = 2 model. (Recall that
1 E Wm ;=} 1 E Wm - 1 , etc.) In Section 11.3 we discuss numerical methods
for finding the GCV estimates of multiple smoothing parameters that have been
used successfully in some examples with p as large as 10. If the GCV estimate
~ I ~ ~

A~ = (){3/ A is zero, then IIP{3/x,eI1 2 = 0, and the subspace 1-l{3 can be deleted

from the model. However, the probability that A~l is greater than zero when the

true 1 satisfies IIp{3111 2 = 0 may be fairly large. (Recall the numerical results for
the null model in the hypothesis tests of Section 6.3.) Thus it is desirable to have
further strategies for deleting component subspaces. Possible strategies are the
following. Delete 1-l{3 if, say, the contribution of this subspace to the estimated
signal is small as judged by the size of

Observing that

n

L(LiP{31>.,e)2 = ()~IIE{3cI12.
i=l

(10.2.7)

(

Llf>.,e ) p

= Td + L (){3E{3c

Lnf>.,e {3=1

one could consider deleting as many of the smaller terms as possible so that

p

IITd + L 8{3E{3cI1 2 ~ .9511Td + L 8{3E{3cI1 2

r:::i~:d {3= I

just holds. One could also compare (10.2.7) to an estimate of 0-2 based on
the most complex reasonable model. In principle, one could generalize the
GCV and GML tests of Section 6.3, to test H o,1 E 1-lo $ L~:~ 1-l{3 versus
1 E 1-lo $ L~=l 1-l{3. Here, the test statistic would be the ratio of V or M
minimized over the larger model to V or M minimized over the smaller model.
Unfortunately, the distribution of the test statistic under H o will contain the
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nuisance parameters ()l,"" ()p-l . In principle one could generate reference
distributions by Monte Carlo methods, but simplifications would no doubt be
necessary to make the problem tractable. This is an area of active research (Gu
(1989a), Chen (1989)).





CHAPTER 11
Numerical Methods

11.1 Numerical methods that use special structure.

We have noted that a basis for an (n - m )-dimensional subspace of span
Rtl , ••• , Rtn in Wm[O, 1] may be obtained that has compact support. This results
in a band structure for certain matrices, and numerical methods that make use
of this structure should be faster than those that do not. See Reinsch (1971)
for a fast algorithm for computing the univariate smoothing spline when A is
given. Various authors have come upon this special structure from different
points of view. Looking at the m - 1 fold integrated Weiner process X (t) of
(1.5.2) it can be seen that it is an m-ple Markov process in the sense of Dolph
and Woodbury (1952), Hida (1960). This means that the prediction of X(s) for
any s > t, given X(u), u E [0, t] is a function of X(v)(t), v = 0,1, ... , m - 1.
Starting with this or similar reasoning, fast recursive formulas for the univariate
polynomial smoothing spline have been obtained by various authors (see, e.g.,
Weinert and Kailath (1974)). Ansley and Kohn (1987) used this kind of reasoning
to obtain a fast algorithm that included the computation of the GCV estimate
of A. Recently Shiau (1988) has used similar results to obtain fast algorithms for
partial spline models in Wm with jumps. For some time it was an open question
whether or not the special structure inherent in smoothing in Wm could be used
to obtain an O(n) algorithm for computing the univariate polynomial smoothing
spline along with the GCV estimate of A. Hutchinson and deHoog (1985) and
O'Sullivan (1985b) appear to be the first to provide such an algorithm. A fast,
accurate, user-friendly code based on the Hutchinson and deHoog paper, with
some improvements, has been implemented by Woltring (1985, 1986) and may
be obtained from netlib over the internet, as may O'Sullivan's code. Netlib is
a robot library system run by Jack Dongarra and Eric Grosse and its internet
address is netlib@research.att.com. If you write to netlib with "send index"
in the body of the message, the robot mailserver will return instructions for
using the system. O'Sullivan's and Woltring's code may be obtained this way.
Code for generating B-splines based on deBoor's book may also be obtained this
way. Earlier, Utreras (1983) provided a cheap way of evaluating trace A(.>.) in
the equally spaced data case in Wm I based on good approximate values for the
relevant eigenvalues. This method is implemented in Version 8 et seq of IMSL
(1986).
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11.2 Methods for unstructured problems.

Basic references for numerical linear algebra and optimization methods are Golub
and Van Loan (1983) and Gill, Murray, and Wright (1981), respectively. The
LINPACK manual (Dongarra et al. (1979)) is a good place to read about the
singular value decomposition, the QR decomposition, Cholesky decomposition,
Householder transformations, and other useful tools for computing the estimates
in this book. See also the EISPACK manual (Smith et al. (1976)). Generally,
the most computer-intensive part of the calculation of cross-validated estimates
discussed in this book is going to be the calculation of trace I - A('x) in the
denominator of the GCV function. The optimization of that calculation will
usually dictate the manner in which the remaining calculations are done.

Considering the case where N basis functions are used, as in Secton 7.1, let

A('x) = X(X'X + n,XE)-l X'

=X(X'X + n,XI)-l X'

where X = XE- 1/ 2 , where E- 1/ 2 is any square root of E-1 . For small-to­
moderate problems E- 1/ 2 may be obtained numerically as L -1 where LL' is the
Cholesky decomposition of E, L being lower triangular, and hence numerically
easy to invert (if it is not too ill-conditioned). Then

N 2

tr (I - A('x)) = n - L 2 Sy ,X
y:::l Sy + n

where the Sy'S are the singular values of X. The singular value decomposition
(SVD) in LINPACK (Dongarra et al. (1979)) can be used to compute the
Sy's. Elden (1984) proposed a method for computing trace A('x) based
on a bidiagonalization of X that is much faster than using the singular
value decomposition of X (see also Elden (1977)). Bates and Wahba (1982)
proposed a method for_ cOJ.!lputing trace A('x) based on truncating a pivoted
QR decomposition of X, X =QR. (Recall that Q is n x n orthogonal and R
is n x N upper triangular; see Dongarra et al., Chap. 9 for the pivoted QR
decomposition.) The pivoted QR decomposition permutes the columns of X so
that R has the property that its entries rij satisfy

j

r~k ~ L r;j'
i:::k

If R is replaced by Rtrunc, which is obtained by setting rij to zero for i =
k + 1, ... ,N, then the Weilandt-Hoffman theorem (Golub and Van Loan (1983,
p.270) says that

N N

trace (X - Xtrunc)(X - Xtrunc)' = L L r;j = T, say.
i=k+l j=i



NUMERICAL METHODS 137

Thus k can be chosen so that the tolerance T is less than a prespecified small
amount. This method can be expected to be useful when nand N are large and
X has a large number of eigenvalues near zero. In these kinds of cases it has
sometimes been found that the LINPACK SVD will converge quickly on Rtrunc

when it converges slowly or not at all on X. It is implemented in GCVPACK
(Bates et al. (1987)) and the code is available through netlib. GCVPACK also
has a code for partial spline models where the smooth part is a thin-plate spline.
Hutchinson and Bischof (1983) and Hutchinson (1984, 1985) have developed
transportable code for thin-plate splines using the thin-plate basis functions of
Wahba (1980b) described in (7.1.4) and (7.1.5). Recently, Girard (1987a,b) has
proposed an ingenious method for estimating trace A(.>t) when n is very large,
based on the fact that, if f "'" N(o, I), then Ef'A(.>t)f = traceA(.>t). A random
vector (; is generated and A(.>t)f obtained in O(n) operations by solving a linear
system. A formula for the standard deviation of f' A(.>t)f is given, and if this
standard deviation is too large, then the average of k replications of this estimate
can be taken; the standard deviation will go down as 1/v'k. Hutchinson (1989)
has studied this approach with the fi plus or minus one with probability ~.

Gu et al. (1989) have considered the general unstructured case when V is
defined by (4.3.1) with A as in (1.3.23),

( )

2
1 - 1 -

V(.>t) = ~z'(~+n.>tI)-2z/ ~tr(~+n.>tI)-1 (11.2.1)

where E = Q~~Q2 and z = Q~y. An outline of the major steps goes as follows.
(1) Tridiagonalize E as

U'EU = ~

where U is orthogonal and ~ is tridiagonal. This can be done by successively
applying the Householder transformation (see Dongarra et al. (1979)). A
distributed truncation method is provided in Gu et al. (1988) for speeding up
this step. Letting x = U z, then

1 (1 )2V(.>t) = ~x'(n.>tI + ~)-2x/ ~ tr (n.>tI + ~)-l

(2) Compute the Cholesky decomposition (n.>tI + ~) = C'C, where

C=
an-M-I bn-M-I

an-M

is upper diagonal.
(3) Calculate tr(C-1C- 1') using a trick due to Elden (1984). Letting the ith

row of C-I be c~, then we have tr(C-1C- 1') = E7:1MllciI12.
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From

al

bl a2

b2

C-l 'C' = (Cl,'" Cn-M) = I

an-M-l

bn-M-l an-M

we have

=en-M

= ei - biCi+l, i = n - M - 1, ... , 1

where the ei's are unit vectors. Because C- 1' is lower triangular, Ci+l is
orthogonal to ei, giving the recursive formula

IIcn _M11 2

Ilci 11
2

-2
an - M ,

(1 + b;llci+lI12)a;2, i = n - M -1, ... ,1.

11.3 Methods for multiple smoothing parameters, with application
to additive and interaction splines

The algorithm of Gu et al. (1989) has been used as a building block by Gu and
Wahba (1988) in an algorithm for minimizing V(A, B) of (10.1.7), thus allowing
the calculation of additive and interaction splines with multiple smoothing
parameters chosen by GCV. The software appears in Gu (1989b) and can be
obtai~ed from netli~. Here recall that V(A, B) is given by (11.2.1) with E replaced
by BlE l + ... + BpEp,

(11.3.1)V(A, B) = ~Z'(BlEl + ... + BpEp+ nAI)-2 z

(~tr (BlE l + ., .+ Bpf:: p+ nAI)-l) 2'

As noted previously, all sets (B, A) with A(3 = A!B(3 are equivalent. However
a minimization of (11.3.1) in A is "cheap" compared to a minimization in
components of B. We briefly describe the algorithm. The algorithm works
iteratively by first fixing B and minimizing V(AIB) by the algorithm in Gu et
al. (1988). Then, for fixed A, the gradient and Hessian of V(BIA) are evaluated
with respect to the variables P(3 = log B(3, and the P(3 are updated by a modified
Newton method. In this sort of optimization it is important to get good (relative)
starting values for the B's. The default starting values in Gu and Wahba (1988)
are obtained as follows. The initial B(3's are taken as

B~O) = (trf::(3)-l.

Then V (AI B) is minimized. (By this we mean V (A, B) is considered as a function
of A with B given.) This results in a trial fA,fl, with IIp(3fA,fl1l 2 = (B~O»)2c'f::(3C,
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from (10.1.9). New starting values (11
) of the 0{3'8 are taken as

0(1) - (O(O»)2c'E c{3 - {3 (3 ,

where c is associated with the trial fA,e. V(AIO(I») is then minimized with respect

to A via the algorithm of Gu et al. (1989). (12
) and successive O{3's are obtained

by the modified Newton update, alternating minimizations with respect to A.
The algorithm has been observed to converge rapidly in a number of examples.

Here convergence is defined in terms of minimizing V(O, A), and is declared
to have occurred if the gradient is small and V no longer decreases. In examples
this has also been seen to drive the predictive mean-square error T(A,O) to a
minimum. This does not necessarily mean that a particular A{3 = A/O{3 has
converged, since if the predictive mean-square error T(A,O) is insensitive to
certain variations in the A{3, then so will be V(A, 0), and these cannot be sorted
out by minimizing V (A, 0). For predictive mean-square error purposes, one would
presumably be indifferent to them. Loosely speaking, Ao will be more or less
distinguishable from A{3, according to whether Tr Eo E{3 is small or large.

In Figures 11.1 and 11.2 we present the results of a Monte Carlo example of
an additive model with d = 4, m = 2, n = 100. The data were generated by

Yi = f(x(i)) + fi, i = 1, ... , n

with fi "" N(O, 0-
2) with 0- = 1, and x = (Xl, X2, X3, X4) with

f(XI' X2, X3, X4) ~ 10 sin(1rX2) + exp(3x3)
+106x~I(1 - X4)6 + 104x~(1- X4)lO

- !2(X2) + !3(X3) + f4(X4), say.

Thus the truth is additive with no parametric or main effects component for
Xl. The x(i) were random uniform variables on the unit 4-cube. Figure 11.1
gives a scatter plot of the xo(i), i = 1,2,3,4 and Yi. The dashed lines in Figure
11.2 are the fOl.(xOI.), with fl(XI) =0, and the solid lines are the estimates.
The main effects are uniquely determined by the fact that their average values
are zero. They have been shifted in the plots to match the means of the fOi. 'So

(The constant component of the model was estimated to better than the visual
resolution of the picture.)

Table 11.1 gives the value of V(A,O) and T(A,O) after each iteration cycle
(after the A-step). It can be seen that convergence was quite rapid and T appears
to decrease along with V.

11.4 Applications to components of variance, a problem from
meteorology

A similar algorithm for minimizing the GML function

(11.4.1)
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FIG. 11.1. Scatter plot matrix for the additive model.



NUMERICAL METHODS

20 20

15 15

10 10

5 5

0 0 ..

0.0 0.4 0.8 0.0 0.4 0.8

It h

20 20

15 15

10 10

5 5

0 0

0.0 0.4 0.8 0.0 0.4 0.8

h 14

FIG. 11.2. Estimates (solid) and "truth" (dashed) for the additive model.
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TABLE 11.1
V and T, iterated values.

Iteration No.
o
1
2
3
4

5.

V
1.50409
1.50180
1.45412
1.41040
1.40893
1.40893

T
.291176
.232195
.273181
.243224
.234954
.234726

(compare (4.8.4)), is given in Gu et al. (1989) and Gu and Wahba (1988). The
problem of minimizing M((},'x) comes up in components of variance.

An important example comes from meteorology. We outline the mathemati­
cal ideas here, and further details can be found in Wahba (1989).

Let f be a meteorological field of interest (for example, atmospheric temper­
ature, wind, geopotential, humidity), and let the data from the ,Bth data source
(sensor or forecast) be

Yi{3 = L?f + €? , i = 1, ... ,n{3, ,B = 0,1, ... ,q, (11.4.2)

and suppose the €{3 = (€~, ... , €~(3)' are independent, N(O, W{3 'f:.(3) , where the ~{3
are known. For purposes of estimating f, it is desirable to know the relative
values of the weights w{3 for the different data sources. If these relative values
were known, all of the ingredients would be available to estimate f from the
pooled data of (11.4.2) by minimizing the appropriate weighted residual sum of
squares plus a penalty functional.

Suppose we can find q + 1 matrices B{3 of dimension n x n{3, ,B =0,1, ... , q
such that

q

L B{3L{3 = 0,
{3=O

where L{3 = (L~, ... , L~fl)" Then

u =t B{3y{3 rv N (0, t W{3B{3'f:.{3B~)
{3=O {3=O

where y{3 = (y~, ... , Y~fl)" Suppose that Bo'f:.oBh is well-conditioned. Then
taking the eigenvalue eigenvector decomposition Bo'f:.oBh =Unu', and letting

z = D- 1/ 2U'u,

we have
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where t{3 - n- 1/ 2U''f:-{3un- I / 2 • Letting Wo = (72 n >. and w{3 = (72(}{3' one
can minimize the negative log-likelihood for z with respect to (72 explicitly.
Substituting in the resulting 1'72 ,one is left with an expression of the form
of (11.4.1) to minimize. In order to get good estimates of >'{3 = >'/(}{3, it
is necessary that the correlation structure of the different data sets B{3y{3 be
sufficiently different. Some examples where this is likely to happen in practice
are given in Lonnberg and Hollingsworth (1986). For some other examples of
the use of multiple smoothing parameters in meteorological applications, see
Wahba (1982d), Hoffman (1984, 1985), and Legler, Navon, and O'Brien (1989).
A. Hollingsworth (1989) informs us that development of new data analysis for
estimating initial conditions for use in the European Center for Medium-Range
Weather Forecasts is following along lines suggested by Wahba (1982d).





CHAPTER 12
Special Topics

12.1 The notion of "high frequency" in different spaces.

Let Wv (t) = J2 cos 21rvt, v = 1, 2, ... and let 1i be the collection of all functions
of d variables with a representation

00 00

f(xI, ... , Xd) = L ." L fVl, ... ,Vd WV1 (Xl)'" WVd (Xd)
vI=1 vd=l

such that
00

L (21rvd2m ... (21rVd)2m f~l"",Vd < 00.

Vl, ... ,Vd=1

We see that the left-hand side of (12.1.2) is then equal to

(12.1.1)

(12.1.2)

(12.1.3)

which we may take as the squared norm in 1i. (We could let the Wv's be sines
as well as cosines and get the same result; to avoid cumbersome notation we will
not do this.)

Alternatively, consider the collection of functions of the form (12.1.1) for
which

00

L [(21rVI)2 + ... + (21rVd)2]m f~l,,,,,Vd < 00.

Vl,.",Vd=1

It is not hard to see that (12.1.4) is equal to

(12.1.4)

(12.1.5)

The Hilbert spaces with squared norms (12.1.2) and (12.1.4) are quite different.
The eigenvalues of the r.k. for the first space are

AV1,oo"Vd = [(21rVI)(21rV2) ... (21rVd)t2m,
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and if these are lined up in size place, it can be shown that the nth largest is of
the order of [((logn)d-l/n )]2m. To see this, observe that the number of lattice
points (VI, . .. ,Vd) on the lattice of d tuples of positive integers that satisfies

d

IT Va < k
a=l

is, to first order, given by (1/(d-1)!)k(log k )d-l (1 +0(1)). This is obtained from
the volume approximation given by

J.
k .. . lk/x3 ...xd-l lk/x2 ...xd-l k k d-l

dXl ... dXd-l = (d )' (log k) .
Xl'" Xd-l - 1 .

(For a sharper approximation, see Ivic (1985, Chap. 3).) Letting An be the nth
largest eigenvalue, we obtain

Setting
n = [k(log k)d-l /(d - I)!]

gives
1/(21r)dk2m = 0 [(logn)d-l /n]2m = An.

Similarly, for the space of (12.1.4) the eigenvalues of the r.k. are

(

d )-m
.A = 21rV 2vl, ... ,Vd L( a) ,

a=1

and we use the volume inside a sphere to estimate the number of lattice points
for which 2::=1 V~ :::; k. The result is the nth largest eigenvalue is of the order
of n-2m/d .

We have noted that the rate of decay of the eigenvalues of the r.k. plays a
role in convergence rates of estimates with noisy data.

Below is a handy theorem giving lower bounds on the r.k. norm of the error,
when the data are exact and the estimate is an orthogonal projection.

THEOREM 12.1.1 (Micchelli and Wahba (1981)). Let HR be an r.k.h.s. with
r.k. R and eigenvalues and eigenfunctions (.Av ,4>v), V = 1,2, .... Let Vn be any
n-dimensional subspace in HR and let Pv."g be the orthogonal projection of g m
HR onto Vn . Then, for any p > 1, there exists g E HR with

g(t) = l RP/2(t, u)p(u) du

with p E .c2[T], IT p2(u) du = 1, such that

Jig - Pvn gl1 2
~ .A~~~.

(12.1.6)

(12.1. 7)
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To see why this theorem is true, let

Cp = {g: g(t) =£RP/2(t, u)p(u) du }

147

with p E (,2 and

Then

g(t) = ! f A~/2~v(t)ipv(u)p(u) du,
v=l

00

9 = L A~/2pv~v
v=l

where

pv::;:: ! ~v(u)p(u) du

and

Consider

We have the following game. You choose Vn to minimize IIg - PVng11 and
nature chooses 9 to maximize it. The optimal strategy is to choose Vn =
span (~1"'" ~n)' Then nature chooses Pv all zero except Pn+l = 1, then

9 = Ar:!:l ipn+1 and

II - P 11 2 - II ,p/2 iF.. 11 2 _ A~+l _ ,p-19 vng - An+1 """n+1 - -,- - An+1'
An+1

There are examples (with T = [0,11) for which Vn = span {Rh , .. " Rtn } is also
an optimal strategy. The t 1 , ..• , t n are the n zeros of the (n + 1)st eigenfunction
(see Melkman and Micchelli (1978)).

This is, of course, a theorem giving lower bounds on interpola­
tion error. To see this, let Vn be spanned by "11, ... , "1n and let
gi =< g, "1i >, i = 1, ... , n; then Pvng is that element 9 in fiR minimizing
Ilgll subject to < 9, "1i >= gi, i = 1, ... , n. Note that any element in fiR has a
representation as a multiple of an element in Cp for p = 1 (to which this theo­
rem does not apply). As an application, consider Wm, with the r.k. of Chapter
10. Then C2 is the collection of functions that satisfy j(2m) E {,2 and certain
boundary conditions. Since the eigenvalues of the r.k. decay at the rate v-2m ,
this theorem says that if one interpolates to j at the points ti, i = 1, ... ,n, then
1/n2m is a lower bound on the best achievable convergence rate of IIg - PVn gl1 2

for 9 E C2•
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Note that if the loss were measured as Ilg - PVngll~2' where the subscript
indicates the (,2 norm rather than the r. k. norm, the game would be the same,
with

12.2 Optimal quadrature and experimental design.

Let
f(t) = bg(t) + X(t), t E T

where X is a zero-mean Gaussian stochastic process with EX(s)X(t) = R(s, t).
One will observe f(t) for t ::::: t l , ... , tn, 9 is known, and it is desired to estimate
b. The Gauss-Markov estimate of b is

~ j'r.-lg
b:::::---

g'r.~lg

where f = (f(h) ... f(t n))', 9 ::::: (g(t l ), ... ,g(tn))' and r. is the n x n matrix
with ijth entry R(ti, t j ). The variance of bis (g'r.-1g)-1 = IIPvngll- 2 , where PVn
is the orthogonal projection onto R t1 , ... , R tn . Letting Vn be span Rh , ... , R tn ,

we have that this experimental design problem then is equivalent to: Choose
h, ... , tn to minimize

Ilg - Pvn gll 2
•

Lower bounds on Ilg - Pvn gll 2 follow from (12.1.7) in the case 9 E 'HRP for p > 1.
This problem was posed and studied by Sacks and Ylvisaker (1969), and studied
by a number of authors (see Wahba (1971) and references there, also Wahba
(1976, 1978c) and Athavale and Wahba (1979)). Let

Lh = / p(u)h(u) du

and suppose one wishes to estimate Lh, given data
h(ti ) =< Rtt,h >, i = 1, ... ,n. Let Vn be span Rtll ".,Rtn . Let Pvnh be
the minimal norm interpolant to this data; then

fh = Jp(u) (Pvnh)(u) du

gives a quadrature formula, that is, a formula of th~~lorm

.-
Lh = r.wih(ti).

Letting h be the representer for L,

h(s) == JR(s, u)p(u) du,

we have .-
Lh =< h,Pvnh >=< Pvng,h >

(12.2.1 )



and

SPECIAL TOPICS 149

The optimal quadrature problem then becomes the problem of choosing t1 , .. . , tn

to minimize IIg - PVn g1l 2
. Note that 9 of (12.2.1) is in 'HRP with p = 2.

The major T = [0,1] results are loosely described as follows. (For technical
details, see the references.) Let the r.k. R(s, t) be a Green's function for a 2mth
order linear differential operator (as in Section 1.2, for example), or equivalent
to such an R. Let the characteristic discontinuity of R be

82m- 1 82m- 1
lim 8 2 1 R(s, t) -lim 8 2 1 R(s, t) = (-I)m a (t)
s!t S m- sit S m-

for some a(t) > 0. Let g(s) = Jo1 R(s, t)p(t) dt where p is strictly positive and
has a bounded first derivative on [0,1]. Then an asymptotically optimal design
Rtl , .•. , Rtn for minimizing /lg - PVn g/l 2 is given by t 1 , ... ,tn satisfying

t i

[l(u)a(u)]1/(2m+1) = i r1
[p2(u)a(u)jl/(2m+1) du, i = 1, ... , n. (12.2.2)

Jo nh
These results have been used in a sequential procedure that involves starting
with a trial design, estimating p, and then using (12.2.2) to obtain an additional
set of design points, etc., (see Athavale and Wahba (1979)).

Very little is known of optimal designs for T other than [O,IJ. Optimal
designs in the tensor product space associated with (12.1.2) can be expected to be
different from those for the (thin-plate) space associated with (12.1.4), because
the eigenfunctions associated with the largest eigenvalues are different. Some
very curious examples for tensor product spaces are given in Wahba (1978c). The
designs given there are for evaluation functionals and their span approximates
the span of the eigenfunctions with large eigenvalues. These designs are known as
blending function designs (see Delvos and Posdorf (1977)). Some recent related
work can be found in Donoho and Johnstone (1989).

The noisy data case is of some importance but very little is known. Here let

Yi =< rJi,f > +Ei, i = 1, ... ,n

as before with E - (E1"'" En) '" N(o, (72 I) and let f>., be the minimizer (for
simplicity) of

n

L(Yi- < rJi, f »2 + -XllfI1 2
.

i=1

The problem is to choose rJl , ... , rJn so that some loss function depending on f - 1>..
is small. One may require that rJi = Rt , for some t 1 , . •• , tn, or one may have more
freedom to choose the rJi'S. In this latter case where the IlrJill must be bounded
to make the problem nontrivial; we set IlrJill = 1. Plaskota (1989), has recently
shown that if f is a Gaussian stochastic process with Ef(s)f(t) = R(s, t), then
to minimize expected squared .c2-norm of the error (with the expectation taken
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(12.2.3)

over f as well as the Ei 's), the optimal 'fJi'S are in the span of a proper subset of
the first n eigenfunctions 4lv , with replications.

Suppose the design is 'fJl, ... ,'fJN with 'fJi replicated ni times, E[:l ni = n.
Then the information available is assumed to be equivalent to

Yi =< 'fJi, f > +Ei, i = 1, ... ,N,

where EE~ = a2 /ni' Here Yi is the average of the ni observations involving 'fJi,
and I is estimated as the minimizer of

N

L ni(Yi- < 'fJi, I »2 + n'x11/1I 2
.

i=l

Let us see what happens if it is assumed that the 'fJi'S are in span {4l}, ... , -Pn }.

Let 'fJv = ~-Pv: this ensures that lI'fJvllR = 1. Then < 'fJv, I > = Iv/~, where
Iv = J I(t)-Pv(t)dt. After some calculations one obtains 1>.. = E~=l iv-Pv, where
iv = ~(nv/(nv +n'x))Yv. Further calculation then gives the expected squared
L:2-norm of the error as

Plaskota's assumption that EI(s)/(t) = R(s, t) entails that E{; = 'xv and the
optimum n'x averaged over sample functions is a2 • Making these substitutions
in (12.2.4), we obtain

+

(12.2.5)

Ignoring the requirement that the nv be integers we have that E~=l 'xv/(nv+a2
)

is minimized over n}, ... , nN subject to E~=l nv = n when (nv + a2
) is

proportional to ,Xy2. This gives
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The optimal N is then the greatest integer for which

151

(~N A1/2)A1/2
u2 LJp,=l p, N < A

n + Nu2 - N

If it is only assumed that 1 E fiRl or 1 E Cp , then an optimal design would
depend on the strategy for choosing A, among other things. It appears plausible
that such designs will involve replications of eigenfunctions of the r.k., however.

The nature of optimal designs when 11/11 2 is replaced by !IPl/l12 in (12.2.3)
is an open question.
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