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CHAPTER 1 
 

Section 1.1 
 
1.  

a. Houston Chronicle, Des Moines Register, Chicago Tribune, Washington Post 
 
b. Capital One, Campbell Soup, Merrill Lynch, Pulitzer 

 
c. Bill Jasper, Kay Reinke, Helen Ford, David Menedez 

 
d. 1.78, 2.44, 3.5, 3.04 

 
 
2.  

a. 29.1 yd., 28.3 yd., 24.7 yd., 31.0 yd. 
 

b. 432, 196, 184, 321 
 

c. 2.1, 4.0, 3.2, 6.3 
 

d. 0.07 g, 1.58 g, 7.1 g, 27.2 g 
 
 
3.  

a. In a sample of 100 VCRs, what are the chances that more than 20 need service while 
under warrantee?  What are the chances than none need service while still under 
warrantee? 

 
b. What proportion of all VCRs of this brand and model will need service within the 

warrantee period? 
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4.  
a. Concrete: All living U.S. Citizens, all mutual funds marketed in the U.S., all books 

published in 1980.  
Hypothetical:  All grade point averages for University of California undergraduates 

during the next academic year.  Page lengths for all books published during the next 
calendar year.  Batting averages for all major league players during the next baseball 
season. 

b. Concrete: Probability: In a sample of 5 mutual funds, what is the chance that all 5 have 
rates of return which exceeded 10% last year? 

Statistics:  If previous year rates-of-return for 5 mutual funds were 9.6, 14.5, 8.3, 9.9 
and 10.2, can we conclude that the average rate for all funds was below 10%? 

Conceptual: Probability: In a sample of 10 books to be published next year, how likely is 
it that the average number of pages for the 10 is between 200 and 250? 

Statistics: If the sample average number of pages for 10 books is 227, can we be 
highly confident that the average for all books is between 200 and 245? 

 
 

5.  
a. No, the relevant conceptual population is all scores of all students who participate in the 

SI in conjunction with this particular statistics course. 
 
b. The advantage to randomly choosing students to participate in the two groups is that we 

are more likely to get a sample representative of the population at large.  If it were left to 
students to choose, there may be a division of abilities in the two groups which could 
unnecessarily affect the outcome of the experiment. 

 
c. If all students were put in the treatment group there would be no results with which to 

compare the treatments. 
 
 
6. One could take a simple random sample of students from all students in the California State 

University system and ask each student in the sample to report the distance form their 
hometown to campus.  Alternatively, the sample could be generated by taking a stratified 
random sample by taking a simple random sample from each of the 23 campuses and again 
asking each student in the sample to report the distance from their hometown to campus.  
Certain problems might arise with self reporting of distances, such as recording error or poor 
recall.  This study is enumerative because there exists a finite, identifiable population of 
objects from which to sample. 

 
 
7. One could generate a simple random sample of all single family homes in the city or a 

stratified random sample by taking a simple random sample from each of the 10 district 
neighborhoods.  From each of the homes in the sample the necessary variables would be 
collected.  This would be an enumerative study because there exists a finite, identifiable 
population of objects from which to sample. 
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8.  
a. Number observations equal 2 x 2 x 2 = 8 
 
b. This could be called an analytic study because the data would be collected on an existing 

process. There is no sampling frame. 
  
9.  

a. There could be several explanations for the variability of the measurements.  Among 
them could be measuring error, (due to mechanical or technical changes across 
measurements), recording error, differences in weather conditions at time of 
measurements, etc. 

 
b. This could be called an analytic study because there is no sampling frame. 

 
 

Section 1.2 
 
10.  

a. Minitab generates the following stem-and-leaf display of this data: 
 
     

5 9  
6 33588  
7 00234677889 
8 127  
9 077 stem: ones 

10 7 leaf: tenths 
11 368  

 
 

 What constitutes large or small variation usually depends on the application at hand, but 
an often-used rule of thumb is: the variation tends to be large whenever the spread of the 
data (the difference between the largest and smallest observations) is large compared to a 
representative value. Here, 'large' means that the percentage is closer to 100% than it is to 
0%.  For this data, the spread is 11 - 5 = 6, which constitutes 6/8 = .75, or, 75%, of the 
typical data value of 8.  Most researchers would call this a large amount of variation. 

 
b. The data display is not perfectly symmetric around some middle/representative value.  

There tends to be some positive skewness in this data. 
 
c. In Chapter 1, outliers are data points that appear to be very different from the pack.  

Looking at the stem-and-leaf display in part (a), there appear to be no outliers in this data.  
(Chapter 2 gives a more precise definition of what constitutes an outlier). 

 
d. From the stem-and-leaf display in part (a), there are 4 values greater than 10.  Therefore, 

the proportion of data values that exceed 10 is 4/27 = .148, or, about 15%. 
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11.  
6l 034  
6h 667899  
7l 00122244  
7h  Stem=Tens 
8l 001111122344 Leaf=Ones 
8h 5557899  
9l 03  
9h 58  

 
This display brings out the gap in the data:   
There are no scores in the high 70's. 

 
 
12. One method of denoting the pairs of stems having equal values is to denote the first stem by 

L, for 'low', and the second stem by H, for 'high'.  Using this notation, the stem-and-leaf 
display would appear as follows: 

 
3L 1   
3H 56678   
4L 000112222234  
4H 5667888   
5L 144   
5H 58 stem: tenths  
6L 2 leaf: hundredths 
6H 6678   
7L    
7H 5   

 
The stem-and-leaf display on the previous page shows that .45 is a good representative value 
for the data.  In addition, the display is not symmetric and appears to be positively skewed.  
The spread of the data is .75 - .31 = .44, which is.44/.45 = .978, or about 98% of the typical 
value of .45. This constitutes a reasonably large amount of variation in the data.  The data 
value .75 is a possible outlier  
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13.  
a.  
    

12 2 Leaf  = ones 
12 445 Stem = tens  
12 6667777   
12 889999   
13 00011111111   
13 2222222222333333333333333   
13 44444444444444444455555555555555555555 
13 6666666666667777777777   
13 888888888888999999   
14 0000001111   
14 2333333   
14 444   
14 77   

 
The observations are highly concentrated at 134 – 135, where the display suggests the 
typical value falls. 

 
b.  
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The histogram is symmetric and unimodal, with the point of symmetry at approximately 
135. 
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14.  
a.  

2 23  stem units: 1.0 
3 2344567789  leaf units: .10 
4 01356889   
5 00001114455666789  
6 0000122223344456667789999 
7 00012233455555668  
8 02233448   
9 012233335666788  

10 2344455688   
11 2335999   
12 37   
13 8   
14 36   
15 0035   
16    
17    
18 9   

 
   

b. A representative value could be the median, 7.0. 
 
c. The data appear to be highly concentrated, except for a few values on the positive side. 

 
d. No, the data is skewed to the right, or positively skewed. 
 
e. The value 18.9 appears to be an outlier, being more than two stem units from the previous 

value. 
 

 
15.  

Crunchy  Creamy 
 2 2 

644 3 69 
77220 4 145 
6320 5 3666 
222 6 258 
55 7  
0 8  

 
Both sets of scores are reasonably spread out.  There appear to be no 
outliers.  The three highest scores are for the crunchy peanut butter, the 
three lowest for the creamy peanut butter. 
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16.  
a.  

beams   cylinders 
9 5 8 

88533 6 16 
98877643200 7 012488 

721 8 13359 
770 9 278 

7 10  
863 11 2 

 12 6 
 13  
 14 1 

 
The data appears to be slightly skewed to the right, or positively skewed.  The value of 
14.1 appears to be an outlier.  Three out of the twenty, 3/20 or .15 of the observations 
exceed 10 Mpa. 
 

b. The majority of observations are between 5 and 9 Mpa  for both beams and cylinders, 
with the modal class in the 7 Mpa range.  The observations for cylinders are more 
variable, or spread out, and the maximum value of  the cylinder observations is higher. 

 
c. Dot Plot 

 
    . .  .  :..  : .: . . .   :         .        .         . 

          -+---------+---------+---------+---------+---------+-----
cylinder 
         6.0       7.5       9.0      10.5      12.0      13.5 
 
 
17.  

a.  
 Number 
 Nonconforming Frequency  RelativeFrequency(Freq/60) 
  0 7       0.117 
 1 12       0.200 
 2 13       0.217 
 3 14       0.233 
 4 6       0.100 
 5 3       0.050 
 6 3       0.050 
 7 1       0.017 
 8 1       0.017 
                 doesn't add exactly to 1 because relative frequencies have been rounded 1.001 
 

b. The number of batches with at most 5 nonconforming items is 7+12+13+14+6+3 = 55, 
which is a proportion of 55/60 = .917.   The proportion of batches with (strictly) fewer 
than 5 nonconforming items is 52/60 = .867.  Notice that these proportions could also 
have been computed by using the relative frequencies: e.g., proportion of batches with 5 
or fewer nonconforming items = 1- (.05+.017+.017) = .916; proportion of batches with 
fewer than 5 nonconforming items = 1 - (.05+.05+.017+.017) = .866.  
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c. The following is a Minitab histogram of this data.  The center of the histogram is 

somewhere around 2 or 3 and it shows that there is some positive skewness in the data.  
Using the rule of thumb in Exercise 1, the histogram also shows that there is a lot of 
spread/variation in this data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18.  

a.  
The following histogram was constructed using Minitab: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The most interesting feature of the histogram is the heavy positive skewness of the data. 

Note: One way to have Minitab automatically construct a histogram from grouped data 
such as this is to use Minitab's ability to enter multiple copies of the same number by 
typing, for example, 784(1) to enter 784 copies of the number 1.  The frequency data in 
this exercise was entered using the following Minitab commands: 

MTB > set c1 
DATA> 784(1) 204(2) 127(3) 50(4) 33(5) 28(6) 19(7) 19(8) 
DATA> 6(9) 7(10) 6(11) 7(12) 4(13) 4(14) 5(15) 3(16) 3(17) 
DATA> end  
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b. From the frequency distribution (or from the histogram), the number of authors who 

published at least 5 papers is 33+28+19+…+5+3+3 = 144, so the proportion who 
published 5 or more papers is 144/1309 = .11, or 11%.  Similarly, by adding frequencies 
and dividing by n = 1309, the proportion who published 10 or more papers is 39/1309 =  
.0298, or about 3%.  The proportion who published more than 10 papers (i.e., 11 or more) 
is 32/1309 = .0245, or about 2.5%. 

 
c. No.  Strictly speaking, the class described by ' ≥15 ' has no upper boundary, so it is 

impossible to draw a rectangle above it  having finite area (i.e., frequency). 
 

d. The category 15-17 does have a finite width of 2, so  the cumulated frequency of 11 can 
be plotted as a rectangle of height 6.5 over this interval.  The basic rule is to make the 
area of the bar equal to the class frequency, so area  = 11 = (width)(height) = 2(height) 
yields a height of 6.5. 

 
 
19.  

a. From this frequency distribution, the proportion of wafers that contained at least one 
particle is (100-1)/100 = .99, or 99%.  Note that it is much easier to subtract 1 (which is 
the number of wafers that contain 0 particles) from 100 than it would be to add all the 
frequencies for 1, 2, 3,… particles.  In a similar fashion, the proportion containing at least 
5 particles is (100 - 1-2-3-12-11)/100 = 71/100 = .71, or, 71%. 

 
b. The proportion containing between 5 and 10 particles is (15+18+10+12+4+5)/100 = 

64/100 = .64, or 64%.  The proportion that contain strictly between 5 and 10 (meaning 
strictly more than 5 and strictly less than 10) is (18+10+12+4)/100 = 44/100 = .44, or 
44%. 

 
c. The following histogram was constructed using Minitab.  The data was entered using the 

same technique mentioned in the answer to exercise 8(a).  The histogram is almost 
symmetric and unimodal; however, it has a few relative maxima (i.e., modes) and has a 
very slight positive skew.  
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20.  

a. The following stem-and-leaf display was constructed: 
 

0 123334555599   
1 00122234688 stem: thousands 
2 1112344477 leaf: hundreds  
3 0113338   
4 37   
5 23778   

 
A typical data value is somewhere in the low 2000's.  The display is almost unimodal (the 
stem at 5 would be considered a mode, the stem at 0 another) and has a positive skew. 
 

b. A histogram of this data, using classes of width 1000 centered at 0, 1000, 2000,  6000 is 
shown below.  The proportion of subdivis ions with total length less than 2000 is 
(12+11)/47 = .489, or 48.9%.  Between 200 and 4000, the proportion is (7 + 2)/47 = .191, 
or 19.1%.   The histogram shows the same general shape as depicted by the stem-and-leaf 
in part (a). 
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21.  
a. A histogram of the y data appears below.  From this histogram, the number of 

subdivisions having no cul-de-sacs (i.e., y = 0) is 17/47 = .362, or 36.2%.  The proportion 
having at least one cul-de-sac (y ≥ 1) is  (47-17)/47 = 30/47 = .638, or 63.8%.  Note that 
subtracting the number of cul-de-sacs with y = 0 from the total, 47, is an easy way to find 
the number of subdivisions with y ≥ 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. A histogram of the z data appears below.  From this histogram, the number of 
subdivisions with at most 5 intersections (i.e., z ≤ 5) is 42/47 = .894, or 89.4%.  The 
proportion having fewer than 5 intersections (z < 5) is  39/47 = .830, or 83.0%. 
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22. A very large percentage of the data values are greater than 0, which indicates that most, but 

not all, runners do slow down at the end of the race.   The histogram is also positively skewed, 
which means that some runners slow down a lot compared to the others.  A typical value for 
this data would be in the neighborhood of 200 seconds.  The proportion of the runners who 
ran the last 5 km faster than they did the first 5 km is very small, about 1% or so. 

 
 
 
23.  

a.  
   
 

 
The histogram is skewed right, with a majority of observations between 0 and 300 cycles.  
The class holding the most observations is between 100 and 200 cycles. 
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b.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c [proportion ≥ 100] = 1 – [proportion < 100] = 1 - .21 = .79 
 

 
24.  
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25. Histogram of original data: 

 
 

 
 
 
Histogram of transformed data: 

 
The transformation creates a much more symmetric, mound-shaped histogram. 
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26.  
a.  

 
 

Class Intervals Frequency Rel. Freq. 
.15 -< .25 8 0.02192 
.25 -< .35 14 0.03836 
.35 -< .45 28 0.07671 
.45 -< .50 24 0.06575 
.50 -< .55 39 0.10685 
.55 -< .60 51 0.13973 
.60 -< .65 106 0.29041 
.65 -< .70 84 0.23014 
.70 -< .75 11 0.03014 

 n=365 1.00001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. The proportion of days with a clearness index smaller than .35 is ( )
06.

365
48

=
+ , or  6%. 

 

c. The proportion of days with a clearness index of at least .65 is ( )
26.

365
1184

=
+ , or 26%. 

 

0.750.700.650.600.550.500.450.350.250.15

6

5

4

3

2

1

0

clearness

D
en

si
ty



Chapter 1:  Overview and Descriptive Statistics 

 16 

27.  
a. The endpoints of the class intervals overlap.  For example, the value 50 falls in both of the 

intervals ‘0 – 50’ and ’50 – 100’. 
 
b.  

Class Interval Frequency Relative Frequency 
0 - <  50 9 0.18 

50 - < 100 19 0.38 
100 - < 150 11 0.22 
150 - < 200 4 0.08 
200 - < 250 2 0.04 
250 - < 300 2 0.04 
300 - < 350 1 0.02 
350 - < 400 1 0.02 

>= 400 1 0.02 
 50 1.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The distribution is skewed to the right, or positively skewed.  There is a gap in the 
histogram, and what appears to be an outlier in the ‘500 – 550’ interval. 
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c.  
 

Class Interval Frequency Relative Frequency 
2.25 - <  2.75 2 0.04 
2.75 - < 3.25 2 0.04 
3.25 - < 3.75 3 0.06 
3.75 - < 4.25 8 0.16 
4.25 - < 4.75 18 0.36 
4.75 - < 5.25 10 0.20 
5.25 - < 5.75 4 0.08 
5.75 - < 6.25 3 0.06 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  
 

The distribution of the natural logs of the original data is much more symmetric than the 
original.   

 
d. The proportion of lifetime observations in this sample that are less than 100 is  .18 + .38 

= .56, and the proportion that is at least 200 is .04 + .04 + .02 + .02 + .02 = .14. 
 
 
28. There are seasonal trends with lows and highs 12 months apart. 
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29.  
Complaint Frequency Relative Frequency 

B 7 0.1167 
C  3 0.0500 
F 9 0.1500 
J 10 0.1667 
M 4 0.0667 
N 6 0.1000 
O 21 0.3500 
 60 1.0000 

 
30.  

 
1. incorrect comp onent 
2. missing component 
3.   failed component 
4. insufficient solder 
5. excess solder 
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31.  
 

  Relative  Cumulative Relative  

Class Frequency Frequency Frequency 

0.0 - under 4.0 2 2 0.050 

4.0 - under 8.0 14 16 0.400 

8.0 - under 12.0 11 27 0.675 

12.0 - under 16.0 8 35 0.875 

16.0 - under 20.0 4 39 0.975 

20.0 - under 24.0 0 39 0.975 

24.0 - under 28.0 1 40 1.000 

 
 
 
32.  

a. The frequency distribution is: 
 
             Relative           Relative  
       Class     Frequency            Class           Frequency 

     0-< 150   .193     900-<1050   .019 
 150-< 300    .183   1050-<1200   .029 
 300-< 450   .251   1200-<1350   .005 
 450-< 600   .148   1350-<1500   .004 
 600-< 750    .097   1500-<1650   .001 
 750-< 900   .066   1650-<1800   .002 

1800-<1950   .002 
 

  The relative frequency distribution is almost unimodal and exhibits a large positive 
skew.  The typical middle value is somewhere between 400 and 450, although the 
skewness makes it difficult to pinpoint more exactly than this. 

 
b. The proportion of the fire loads less than 600 is .193+.183+.251+.148 = .775.  The 

proportion of loads that are at least 1200 is .005+.004+.001+.002+.002 = .014. 
 
c. The proportion of loads between 600 and 1200 is 1 - .775 - .014 = .211. 
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Section 1.3 
 
33.  

a. 57.192=x , 189~ =x . The mean is larger than the median, but they are still 
fairly close together.  

 
b. Changing the one value, 71.189=x , 189~ =x . The mean is lowered, the 

median stays the same. 
 

c. 0.191=trx . 07.14
1 =  or 7% trimmed from each tail. 

 
d. For n = 13, Σx = (119.7692) x 13 = 1,557 

For n = 14, Σx = 1,557 + 159 = 1,716 

5714.122
14

1716
==x  or 122.6 

 
 
34.  

a. The sum of the n = 11 data points is 514.90, so x  = 514.90/11 = 46.81. 
 
b. The sample size (n = 11) is odd, so there will be a middle value.  Sorting from smallest to 

largest: 4.4   16.4   22.2   30.0   33.1   36.6   40.4   66.7   73.7   81.5   109.9.   The sixth 
value, 36.6 is the middle, or median, value.   The mean differs from the median because 
the largest sample observations are much further from the median than are the smallest 
values. 

 
c. Deleting the smallest (x = 4.4) and largest (x = 109.9) values, the sum of the remaining 9 

observations is 400.6.  The trimmed mean trx  is 400.6/9 = 44.51.  The trimming 

percentage is 100(1/11) ≈ 9.1%.  trx  lies between the mean and median. 

 
35.  

a. The sample mean is x = (100.4/8) = 12.55. 
 

The sample size (n = 8) is even.  Therefore, the sample median is the average of the (n/2) 
and (n/2) + 1 values. By sorting the 8 values in order, from smallest to largest:  8.0   8.9   
11.0   12.0   13.0   14.5   15.0   18.0, the forth and fifth values are 12 and 13.  The sample 
median is (12.0 + 13.0)/2 = 12.5. 
 
The 12.5% trimmed mean requires that we first trim (.125)(n) or 1 value from the ends of 
the ordered data set.  Then we average the remaining 6 values. The 12.5% trimmed mean 

)5.12(trx  is 74.4/6 = 12.4. 

 
All three measures of center are similar, indicating little skewness to the data set. 
 

b. The smallest value (8.0) could be increased to any number below 12.0 (a change of less 
than 4.0) without affecting the value of the sample median. 
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c. The values obtained in part (a) can be used directly.  For example, the sample mean of 

12.55 psi could be re-expressed as  

(12.55 psi) x ksi
psi

ksi
70.5

2.2
1

=







. 

 
36.  

a. A stem-and leaf display of this data appears below: 

 
32 55 stem: ones 
33 49 leaf: tenths 
34   
35 6699  
36 34469  
37 03345  
38 9  
39 2347  
40 23  
41   
42 4  

 
The display is reasonably symmetric, so the mean and median will be close. 
 

b. The sample mean is x  = 9638/26 = 370.7.  The sample median is  
x~   = (369+370)/2 = 369.50. 
 

c. The largest value (currently 424) could be increased by any amount.  Doing so will not 
change the fact that the middle two observations are 369 and 170, and hence, the median 
will not change.  However, the value x = 424 can not be changed to a number less than 
370 (a change of 424-370 = 54) since that will lower the values(s) of the two middle 
observations. 

 
d. Expressed in minutes, the mean is (370.7 sec)/(60 sec) = 6.18 min;  the median is 6.16 

min. 
 
 
37. 01.12=x , 35.11~ =x , 46.11)10( =trx .  The median or the trimmed mean would be good 

choices because of the outlier 21.9. 
 
 
38.  

a. The reported values are (in increasing order) 110, 115, 120, 120, 125, 130, 130, 135, and 
140. Thus the median of the reported values is 125. 

 
b. 127.6 is reported as 130, so the median is now 130, a very substantial change. When there 

is rounding or grouping, the median can be highly sensitive to small change. 
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39.  

a. 475.16=Σ lx  so 0297.1
16
475.16

==x  

  009.1
2

)011.1007.1(~ =
+

=x  

 
b. 1.394 can be decreased until it reaches 1.011(the largest of the 2 middle values) – i.e. by 

1.394 – 1.011 = .383,  If it is decreased by more than .383, the median will change. 
 
 
40. 8.60~ =x  

3083.59)25( =trx  

3475.58)10( =trx  

54.58=x  
All four measures of center have about the same value. 

 
 
41.  

a. 70.10
7 =  

 
b. 70.=x = proportion of successes  
 

c. 80.
25

=
s

 so s = (0.80)(25) = 20 

total of 20 successes 
20 – 7 = 13 of the new cars would have to be successes 

 
 
42.  

a. cx
n
nc

n
x

n
cx

n
y

y iii +=+
Σ

=
+Σ

=
Σ

=
)(

 

=y~ the median of =+++ ),...,,( 21 cxcxcx n median of 

cxcxxx n +=+ ~),...,,( 21  

 

b. xc
n
xc

n
cx

n
y

y iii =
Σ

=
⋅Σ

=
Σ

=
)(

 

=y~ ),...,,( 21 ncxcxcx xcxxxmedianc n
~),...,,( 21 =⋅=  

 
 

43. median = 0.68
2

)7957(
=

+
, 20% trimmed mean = 66.2, 30% trimmed mean = 67.5. 
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Section 1.4 
 
44.  

a. range = 49.3 – 23.5 = 25.8 
 
b.  

   ix      )( xxi −   2)( xxi −   2
ix  

29.5 -1.53 2.3409 870.25
49.3 18.27 333.7929 2430.49
30.6 -0.43 0.1849 936.36
28.2 -2.83 8.0089 795.24
28.0 -3.03 9.1809 784.00
26.3 -4.73 22.3729 691.69
33.9 2.87 8.2369 1149.21
29.4 -1.63 2.6569 864.36
23.5 -7.53 56.7009 552.25
31.6 0.57 0.3249 998.56

3.310=Σx  0)( =−Σ xx i  801.443)( 2 =−Σ xx i  41.072,10)( 2 =Σ ix  

 
03.31=x  

 

3112.49
9
801.443

1

)( 2

12 ==
−

−Σ
= =

n

xx
s

i

n

i  

 

c. 0222.72 == ss  
 

d. 3112.49
9

10/)3.310(41.072,10
1

/)( 222
2 =

−
=

−
Σ−Σ

=
n

nxx
s   

 
 
45.  

a.  x  =  ∑
i

in x1  = 577.9/5 = 115.58.  Deviations from the mean:   

 116.4 - 115.58 = .82, 115.9 - 115.58 = .32, 114.6 -115.58 = -.98,  
 115.2 - 115.58 = -.38, and 115.8-115.58 = .22. 
 

b.        s2 = [(.82)2 + (.32)2 + (-.98)2 + (-.38)2 + (.22)2]/(5-1) = 1.928/4 =.482,  
 so s = .694. 

 

c. ∑
i

ix 2
  = 66,795.61,  so s2  = 




















− ∑∑−

2

12
1

1

i
in

i
in xx  =                      

[66,795.61 - (577.9)2 /5]/4 = 1.928/4 = .482. 
d. Subtracting 100 from all values gives 58.15=x , all deviations are the same as in 

part b, and the transformed variance is identical to that of part b. 
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46.  

a. x  =  ∑
i

in x1  = 14438/5 = 2887.6.  The sorted data is: 2781   2856   2888   2900   3013, 

so the sample median is x~  = 2888. 
 

b. Subtracting a constant from each observation shifts the data, but does not change its  
sample variance (Exercise 16).  For example, by subtracting 2700 from each observation 
we get the values 81, 200, 313, 156, and 188, which are smaller (fewer digits) and easier 
to work with.  The sum of squares of this transformed data is 204210 and its sum is 938, 
so the computational formula for the variance gives s2  = [204210-(938)2/5]/(5-1) = 
7060.3. 

 
 

47. The sample mean, ( ) 2.116162,1
10
11

==== ∑ xx
n

x i . 

The sample standard deviation,  

( ) ( )
75.25

9
10
162,1

992,140

1

22

2

=
−

=
−

−
=

∑ ∑

n
n

x
x

s

i
i

 

On average, we would expect a fracture strength of 116.2.  In general, the size of a typical 
deviation from the sample mean (116.2) is about 25.75.  Some observations may deviate from 
116.2 by more than this and some by less. 

 
 

48. Using the computational formula, s2 = 



















− ∑∑−

2

12
1

1

i
in

i
in xx  =  

[3,587,566-(9638)2/26]/(26-1)  = 593.3415, so s = 24.36.   In general, the size of a typical 
deviation from the sample mean (370.7) is about 24.4.  Some observations may deviate from 
370.7 by a little more than this, some by less. 

 
 
49.  

a. 80.5601.3...75.2 =++=Σx , 8040.197)01.3(...)75.2( 222 =++=Σx  
 

b. ,5016.
16
0252.8

16
17/)80.56(8040.197 2

2 ==
−

=s  708.=s  
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50. First, we need ( ) 37.747179,20
27
11

=== ∑ ix
n

x .  Then we need the sample standard 

deviation 

( )
89.606

26
27
179,20

511,657,24
2

=
−

=s .  The maximum award should be 

16.1961)89.606(237.7472 =+=+ sx , or in dollar units, $1,961,160.  This is quite a 
bit less than the $3.5 million that was awarded originally. 

 
 
51.  

a. 2563=Σx  and 501,3682 =Σx , so 
 

766.1264
18

]19/)2563(501,368[ 2
2 =

−
=s  and 564.35=s  

 
b. If y = time in minutes, then y = cx where 60

1=c , so 

  351.
3600

766.1264222 === xy scs  and 593.
60
564.35

=== xy css  

 
 
52. Let d denote the fifth deviation.  Then 03.10.19.3. =++++ d  or 05.3 =+ d , so 

5.3−=d .  One sample for which these are the deviations is ,8.31 =x  ,4.42 =x  

,5.43 =x  ,8.44 =x  .05 =x  (obtained by adding 3.5 to each deviation; adding any other 

number will produce a different sample with the desired property) 
 
 
53.  

a. lower half: 2.34 2.43 2.62 2.74 2.74 2.75 2.78 3.01 3.46 
       upper half: 3.46 3.56 3.65 3.85 3.88 3.93 4.21 4.33 4.52 
       Thus the lower fourth is 2.74 and the upper fourth is 3.88. 
 

b. 14.174.288.3 =−=sf  

 

c. sf  wouldn’t change, since increasing the two largest values does not affect the upper 

fourth. 
 
d. By at most .40 (that is, to anything not exceeding 2.74), since then it will not change the 

lower fourth. 
 
e. Since n is now even, the lower half consists of the smallest 9 observations and the upper 

half consists of the largest 9.  With the lower fourth = 2.74 and the upper fourth = 3.93, 
19.1=sf . 
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54.  
a. The lower half of the data set:  4.4  16.4  22.2  30.0  33.1  36.6, whose median, and 

therefore, the lower quartile, is 
( )

.1.26
2

0.302.22
+

+
 

The top half of the data set:  36.6  40.4  66.7  73.7  81.5  109.9, whose median, and 

therefore, the upper quartile, is 
( )

2.70
2

7.737.66
=

+
. 

So, the IQR = (70.2 – 26.1) = 44.1 
 

b.  
 A boxplot (created in Minitab) of this data appears below: 

 There is a slight positive skew to the data.  The variation seems quite large.  There are no 
outliers. 

 
c. An observation would need to be further than 1.5(44.1) = 66.15 units below the lower 

quartile ( )[ ]units05.4015.661.26 −=−  or above the upper quartile 

( )[ ]units35.13615.662.70 =+  to be classified as a mild outlier.  Notice that, in this 
case, an outlier on the lower side would not be possible since the sheer strength variable 
cannot have a negative value. 

 
 An extreme outlier would fall (3)44.1) = 132.3 or more units below the lower, or above 

the upper quartile.  Since the minimum and maximum observations in the data are 4.4 
and 109.9 respectively, we conclude that there are no outliers, of either type, in this data 
set. 

 
d. Not until the value x = 109.9 is lowered below 73.7 would there be any change in the 

value of the upper quartile.  That is, the value x = 109.9 could not be decreased by more 
than (109.9 – 73.7) = 36.2 units. 

 

100500

sheer strength
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55.  
a. Lower half of the data set: 325   325   334   339   356   356   359   359   363   364   364   

366   369, whose median, and therefore the lower quartile, is 359 (the 7th observation in 
the sorted list).  

  The top half of the data is 370   373   373   374   375   389   392   393   394   397   402   
403   424, whose median, and therefore the upper quartile is 392.   So, the IQR = 392 - 
359 = 33. 

 
b. 1.5(IQR) = 1.5(33) = 49.5  and 3(IQR) = 3(33) = 99.  Observations that are further than 

49.5 below the lower quartile (i.e., 359-49.5 = 309.5 or less) or more than 49.5 units 
above the upper quartile (greater than 392+49.5 = 441.5) are classified as 'mild' outliers.  
'Extreme' outliers would fall 99 or more units below the lower, or above the upper, 
quartile.  Since the minimum and maximum observations in the data are 325 and 424, we 
conclude that there are no mild outliers in this data (and therefore, no 'extreme' outliers 
either).  

 
c. A boxplot (created by Minitab) of this data appears below.  There is a slight positive 

skew to the data, but it is not far from being symmetric.  The variation, however, seems 
large (the spread 424-325 = 99 is a large percentage of the median/typical value) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

d. Not until the value x = 424 is lowered below the upper quartile value of 392 would there 
be any change in the value of the upper quartile.  That is, the value  x = 424 could not be 
decreased by more than 424-392 = 32 units. 

 

420370320

Escape time



Chapter 1:  Overview and Descriptive Statistics 

 28 

56. A boxplot (created in Minitab) of this  data appears below. 

 
There is a slight positive skew to this data.  There is one extreme outler (x=511).  Even when 
removing the outlier, the variation is still moderately large. 

 
 
57.  

a. 1.5(IQR) = 1.5(216.8-196.0) =  31.2  and 3(IQR) = 3(216.8-196.0) = 62.4. 
 Mild outliers:       observations below 196-31.2 = 164.6 or above 216.8+31.2 = 248.  

Extreme outliers: observations below 196-62.4 = 133.6 or above 216.8+62.4 = 279.2.  Of 
the observations given, 125.8 is an extreme outlier and 250.2 is a mild outlier. 

 
b. A boxplot of this data appears below.  There is a bit of positive skew to the data but, 

except for the two outliers identified in part (a), the variation in the data is relatively 
small. 

 

x120    140    160    180    200    220    240    260

* *

 
 
 
58. The most noticeable feature of the comparative boxplots is that machine 2’s sample values 

have considerably more variation than does machine 1’s sample values.  However, a typical 
value, as measured by the median, seems to be about the same for the two machines.  The 
only outlier that exists is from machine 1. 

 

5004003002001000

aluminum
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59.  
a. ED:  median  = .4 (the 14th value in the sorted list of data).  The lower quartile (median of 

the lower half of the data, including the median, since n is odd) is  
  ( .1+.1 )/2 =  .1.  The upper quartile is (2.7+2.8)/2 = 2.75.  Therefore,  
  IQR =  2.75 - .1 = 2.65. 
 

Non-ED: median = (1.5+1.7)/2 = 1.6.  The lower quartile (median of the lower 25 
observations) is .3;  the upper quartile (median of the upper half of the data) is 7.9.  
Therefore, IQR = 7.9 - .3 = 7.6. 

 
b. ED:  mild outliers are less than .1 - 1.5(2.65) =  -3.875 or greater than 2.75 + 1.5(2.65) = 

6.725.  Extreme outliers are less than .1 - 3(2.65) =  -7.85 or greater than 2.75 + 3(2.65) = 
10.7.  So, the two largest observations (11.7, 21.0) are extreme outliers and the next two 
largest values (8.9, 9.2) are mild outliers.  There are no outliers at the lower end of the 
data. 

 
Non-ED: mild outliers are less than .3 - 1.5(7.6) = -11.1 or greater than 7.9 + 1.5(7.6) = 
19.3.  Note that there are no mild outliers in the data, hence there can not be any extreme 
outliers either. 

 
c. A comparative boxplot appears below.  The outliers in the ED data are clearly visible.  

There is noticeable positive skewness in both samples;  the Non-Ed data has more 
variability then the Ed data; the typical values of the ED data tend to be smaller than 
those for the Non-ED data. 

 
 
 
 
 
 
 
 
 
 

20100

Concentration (mg/L)

ED
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60. A comparative boxplot (created in Minitab) of this data appears below. 
 

 The burst s trengths for the test nozzle closure welds are quite different from the burst 
strengths of the production canister nozzle welds. 

 
 The test welds have much higher burst strengths and the burst strengths are much more 

variable. 
 
 The production welds have more consistent burst strength and are consistently lower than the 

test welds.  The production welds data does contain 2 outliers. 
 
61. Outliers occur in the 6 a.m. data.  The distributions at the other times are fairly symmetric.  

Variability and the 'typical' values in the data increase a little at the 12 noon and 2 p.m. times.   
 

8000700060005000

test
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Supplementary Exercises 
 
62. To somewhat simplify the algebra, begin by subtracting 76,000 from the original data.  This 

transformation will affect each date value and the mean.  It will not affect the standard 
deviation. 

 

831,048,1,683 21 === yxx              

324,3)831)(4( ==xn  so, 324,34321 =+++ xxxx  

and 593,1324,3 4132 =−−=+ xxxx  and ( )23 593,1 xx −=  

Next, ( )
( )


















−

==
∑

3
4

3324

180

2
2

22
ix

s  

 

So, 444,859,22 =∑ ix , 444,859,22
4

2
3

2
2

2
1 =+++ xxxx  and 

651,294,1444,859,2 2
4

2
1

2
3

2
2 =+−=+ xxxx  

 
By substituting ( )23 1593 xx −=  we obtain the equation 

( ) 0651,294,1593,1 2
2

2
2 =−−+ xx . 

0499,621593,1 2
2 =+− xxx  

Evaluating for 2x we obtain 8635.6822 =x  and 1365.9108635.682593,13 =−=x .  

Thus, 910,76683,76 32 == xx . 
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63. Flow  Lower Upper 
 rate   Median quartile quartile IQR 1.5(IQR) 3(IQR) 
  125 3.1 2.7  3.8 1.1 1.65  .3 
 160 4.4 4.2 4.9 .7 1.05  .1 
 200 3.8 3.4 4.6 1.2 1.80 3.6 
 
 There are no outliers in the three data sets.  However, as the comparative boxplot below 

shows, the three data sets differ with respect to their central values (the medians are different) 
and the data for flow rate 160 is somewhat less variable than the other data sets.  Flow rates 
125 and 200 also exhibit a small degree of positive skewness. 

 

543

200

160

125

Uniformity (%)

Flow rate
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64.  
 

6 34 stem=ones 
7 17 leaf=tenths 

8 4589   

9 1   

10 12667789   

11 122499   

12 2   

13 1   

6.14)3.2)(5.1(15.11
4.5)3.2)(5.1(85.8

3.2
27

7594.1
6.10~,9556.9

=+
=−

=
=
=

==

sf
n
s

xx

lower fourth = 8.85, upper fourth = 11.15 

 
no outliers 

 

 There are no outliers.  The distribution is skewed to the left. 
 
 

131211109876

Radiation
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65.  

a. HC data: ∑
i

ix 2
 = 2618.42  and ∑

i
ix =  96.8,   

  so s 2 = [2618.42 - (96.8)2/4]/3 = 91.953  
  and the sample standard deviation is  s = 9.59.   
 

  CO data: ∑
i

ix 2
 = 145645 and ∑

i
ix =735, so s2 = [145645 - (735)2/4]/3 = 

3529.583 and the sample standard deviation is  s = 59.41.  
 

b.  The mean of the HC data is 96.8/4 = 24.2; the mean of the CO data is 735/4 = 
183.75.  Therefore, the coefficient of variation of the HC data is 9.59/24.2 = .3963, 
or 39.63%.  The coefficient of variation of the CO data is 59.41/183.75 = .3233, or 
32.33%.  Thus, even though the CO data has a larger standard deviation than does 
the HC data, it actually exhibits less variability (in percentage terms) around its 
average than does the HC data. 

 
 
66.  

a. The histogram appears below.   A representative value for this data would be x = 90.  
The histogram is reasonably symmetric, unimodal, and somewhat bell-shaped.  The 
variation in the data is not small since the spread of the data (99-81 = 18) constitutes 
about 20% of the typical value of 90. 

 

99  9 7 95  93  91  89  87  85  8 3 81  

.20  

.10  

0 

Fracture strength (MPa) 

Relat ive f requency 

 
b. The proportion of the observations that are at least 85 is 1 - (6+7)/169 = .9231.  The 

proportion less than 95 is 1 - (22+13+3)/169 = .7751. 
 

c. x = 90 is the midpoint of the class 89-<91, which contains 43 observations (a relative 
frequency of 43/169 = .2544.  Therefore about half of this frequency, .1272, should 
be added to the relative frequencies for the classes to the left of x = 90.  That is, the 
approximate proportion of observations that are less than 90 is .0355 + .0414 + .1006 
+ .1775 + .1272 = .4822.   
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67.  

 
 
68.  

a. 
{ }

∑ ∑ ∑∑∑
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b.       ( ) ( )∑∑ −− .22 µii xhanissmallertxx  

 
 
69.  

a.  
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b.  

( )
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5
9
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5
9
,

2
2

2 ==





==

=+=

==

yy ss

y

FyCx οο

 

( ) ( )

( ) ( ) 65.1060.10
2
1

70.10
2
1

%10
10
1

100
15
2

100
2
1

15
1

100
2
1

60.10
11

7.136.158.85.82.163
%

15
2

100

70.10
13

6.155.82.163
%

15
1

100

2.163

=+=

=





=






+






∴

=
−−−−

=







=
−−

=







=∑

ntrimmedmea

ntrimmedmea

ntrimmedmea

x i



Chapter 1:  Overview and Descriptive Statistics 

 36 

70.  
a.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
There is a significant difference in the variability of the two samples.  The weight training 
produced much higher oxygen consumption, on average, than  the treadmill exercise, 
with the median consumptions being approximately 20 and 11 liters, respectively. 

 
b. Subtracting the y from the x for each subject, the differences are 3.3, 9.1, 10.4, 9.1, 6.2, 

2.5, 2.2, 8.4, 8.7, 14.4, 2.5, -2.8, -0.4, 5.0, and 11.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The majority of the differences are positive, which suggests that the weight training 
produced higher oxygen consumption for most subjects. The median difference is about 6 
liters. 
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71.  
a. The mean, median, and trimmed mean are virtually identical, which suggests symmetry.  

If there are outliers, they are balanced.  The range of values is only 25.5, but half of the 
values are between 132.95 and 138.25. 

 
b.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The boxplot also displays the symmetry, and adds a visual of the outliers, two on the 
lower end, and one on the upper. 
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72. A table of summary statistics, a stem and leaf display, and a comparative boxplot  are below.  
The healthy individuals have higher receptor binding measure on average than the individuals 
with PTSD.  There is also more variation in the healthy individuals’ values.  The distribution 
of values for the healthy is reasonably symmetric, while the distribution for the PTSD 
individuals is negatively skewed.  The box plot indicates that there are no outliers, and 
confirms the above comments regarding symmetry and skewness. 

 
 PTSD Healthy 

Mean 32.92 52.23 
Median 37 51 
Std Dev 9.93 14.86 

Min 10 23 
Max 46 72 

 
 
 
 

 1 0 stem = tens 
3 2 058 leaf = ones 

9 3 1578899  

7310 4 26  

81 5   

9763 6   

2 7   
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73.  
0.7 8 stem=tenths 
0.8 11556 leaf=hundredths 
0.9 2233335566  
1.0 0566  

0.8 0.9 1.0

Cadence

 
The data appears to be a bit skewed toward smaller values (negatively skewed).  
There are no outliers.  The mean and the median are close in value.  
 
 

74.  
a. Mode = .93.  It occurs four times in the data set.  
 
b. The Modal Category is the one in which the most observations occur. 
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75.  
a. The median is the same (371) in each plot and all three data sets are very symmetric.  In 

addition, all three have the same minimum value (350) and same maximum value (392).  
Moreover, all three data sets have the same lower (364) and upper quartiles (378).  So, all 
three boxplots will be identical. 

 
b. A comparative dotplot is shown below.  These graphs show that there are differences in 

the variability of the three data sets.  They also show differences in the way the values are 
distributed in the three data sets. 

             .                        . 
             :         .              :::              .        :. 
          -----+---------+---------+---------+---------+---------+- Type 1       
 
             .    .     .    . .   ..  . . . .    .   .     .    . 
          -----+---------+---------+---------+---------+---------+- Type 2       
                                              . 
             .            . . :. .     .      :  .:              . 
          -----+---------+---------+---------+---------+---------+- Type 3       
           352.0     360.0     368.0     376.0     384.0     392.0 

 
c. The boxplot in (a) is not capable of detecting the differences among the data sets.  The 

primary reason is that boxplots give up some detail in describing data because they use 
only 5 summary numbers for comparing data sets.  Note:   The definition of lower and 
upper quartile used in this text is slightly different than the one used by some other 
authors (and software packages).   Technically speaking, the median of the lower half of 
the data is not really the first quartile, although it is generally very close.  Instead, the 
medians of the lower and upper halves of the data are often called the lower and upper 
hinges.   Our boxplots use the lower and upper hinges to define the spread of the middle 
50% of the data, but other authors sometimes use the actual quartiles for this purpose.  
The difference is usually very slight, usually unnoticeable, but not always.  For example 
in the data sets of this exercise, a comparative boxplot based on the actual quartiles (as 
computed by Minitab) is shown below.  The graph shows substantially the same type of 
information as those described in (a) except the graphs based on quartiles are able to 
detect the slight differences in variation between the three data sets. 
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76. The measures that are sensitive to outliers are:  the mean and the midrange.  The mean is 
sensitive because all values are used in computing it.  The midrange is sensitive because it 
uses only the most extreme values in its computation. 

The median, the trimmed mean, and the midhinge are not sensitive to outliers. 

 The median is the most resistant to outliers because it uses only the middle value (or values) 
in its computation. 

 The trimmed mean is somewhat resistant to outliers.  The larger the trimming percentage, the 
more resistant the trimmed mean becomes. 

 The midhinge, which uses the quartiles, is reasonably resistant to outliers because both 
quartiles are resistant to outliers. 

 
 
 
77.  

a.  
0 2355566777888  
1 0000135555  
2 00257  
3 0033  
4 0057  
5 044  
6  stem: ones 
7 05 leaf: tenths 
8 8  
9 0  

10 3  
HI 22.0 24.5  
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b.  
Interval Frequency Rel. Freq. Density 

0 -< 2 23 .500 .250 
2 -< 4 9 .196 .098 

4 -< 6 7 .152 .076 
6 -< 10 4 .087 .022 

10 -< 20 1 .022 .002 

20 -< 30 2 .043 .004 
 

 
 
 
78.  

a. Since the constant   x  is subtracted from each x value to obtain each y value, and 

addition or subtraction of a constant doesn’t affect variability,  
22
xy ss =  and  xy ss =  

b. Let  c = 1/s, where s is the sample standard deviation of the x’s and also (by a ) of the y’s.  
Then s z = csy = (1/s)s = 1, and sz

2 = 1.  That is, the “standardized” quantities z1, … , zn 
have a sample variance and standard deviation of 1. 
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79.  

a. 
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 When the expression for 1+nx  from a is substituted, the expression in braces simplifies to 

the following, as desired: 
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80.  
a.  
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b. Proportion less than 552.
391
216

20 =





=  

Proportion at least 102.
391
40

30 =





=  

c. First compute (.90)(391 + 1) = 352.8.  Thus, the 90th percentile should be about the 352nd 
ordered value.  The 351st ordered value lies in the interval 28 - < 30.  The 352nd ordered 
value lies in the interval 30 - < 35.  There are 27 values in the interval 30 - < 35.  We do 
not know how these values are distributed, however, the smallest value (i.e., the 352nd 
value in the data set) cannot be smaller than 30.  So, the 90th percentile is roughly 30. 

d. First compute (.50)(391 + 1) = 196.  Thus the median (50th percentile) should be the 196 
ordered value.  The 174th ordered value lies in the interval  16 -< 18.  The next 42 
observation lie in the interval 18 - < 20.  So, ordered observation 175 to 216 lie in the 
intervals 18 - < 20.  The 196th observation is about in the middle of these.  Thus, we 
would say, the median is roughly 19. 

 
81. Assuming that the histogram is unimodal, then there is evidence of positive skewness in the 

data since the median lies to the left of the mean (for a symmetric distribution, the mean and 
median would coincide).   For more evidence of skewness, compare the distances of the 5th 
and 95th percentiles from the median:  median - 5th percentile = 500 - 400 = 100  while 95th 
percentile -median = 720 - 500 = 220.   Thus, the largest 5% of the values (above the 95th 
percentile) are further from the median than are the lowest 5%.  The same skewness is evident 
when comparing the 10th and 90th percentiles to the median: median - 10th percentile = 500 - 
430 = 70  while 90th percentile -median = 640 - 500 = 140.   Finally, note that the largest 
value (925) is much further from the median (925-500 = 425) than is the smallest value (500 - 
220 = 280), again an indication of positive skewness. 
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82.  
a. There is some evidence of a cyclical pattern. 

b. 
.,2.4823.48)7.47)(9(.)53)(1(.9.1.

7.47)47)(9(.)54)(1(.9.1.

233

122

etcxxx
xxx

≈=+=+=
=+=+=

 

 
t 1.. =αforxt  5.. =αforxt  

1 47.0 47.0 
2 47.7 50.5 
3 48.2 51.8 
4 48.4 50.9 
5 48.2 48.4 
6 48.0 47.2 
7 47.9 47.1 
8 48.1 48.6 
9 48.4 49.8 
10 48.5 49.9 
11 48.3 47.9 
12 48.6 50.0 
13 48.8 50.0 
14 48.9 50.0 

α= .1 gives a smoother series. 
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Thus, (x bar)t depends on xt and all previous values.  As k increases, the coefficient on xt-

k decreases (further back in time implies less weight). 
 

d. Not very sensitive, since (1-α)t-1 will be very small. 
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83.  
a. When there is perfect symmetry, the smallest observation y1 and the largest 

observation yn  will be equidistant from the median, so 1yxxyn −=− .  

 Similarly, the second smallest and second largest will be equidistant from 
the median, so 21 yxxyn −=−−  

  and so on.  Thus, the first and second  numbers in each pair will be equal, so that 
each point in the plot will fall exactly on the 45 degree line.  When the data is 

positively skewed, yn will be much further from the median than is y1, so xyn
~−  

will considerably exceed 1
~ yx −  and the point )~,~( 1yxxyn −−   will fall 

considerably below the 45 degree line.  A similar comment aplies to other points in 
the plot. 

 
b. The first point in the plot is (2745.6 – 221.6, 221.6 0- 4.1) = (2524.0, 217.5).  The 

others are: (1476.2, 213.9), (1434.4, 204.1), ( 756.4, 190.2), ( 481.8, 188.9), ( 267.5, 
181.0), ( 208.4, 129.2), ( 112.5, 106.3), ( 81.2, 103.3), ( 53.1, 102.6), ( 53.1,  92.0), 
(33.4,  23.0), and (20.9, 20.9).  The first number in each of the first seven pairs 
greatly exceed the second number, so each point falls well below the 45 degree line.  
A substantial positive skew (stretched upper tail) is indicated. 

 
 
 
 
 
 
 
 
 



 

47 

CHAPTER 2 
 

Section 2.1 
 
1.  

a. S = { 1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 
3241, 4213, 4231 } 

 
b. Event A contains the outcomes where 1 is first in the list: 

A = { 1324, 1342, 1423, 1432 } 
 

c. Event B contains the outcomes where 2 is first or second: 
B = { 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231 } 

  
d. The compound event A∪B contains the outcomes in A or B or both: 

A∪B = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231 } 
 
 
2.  

a. Event A = { RRR, LLL, SSS } 
 
b. Event B = { RLS, RSL, LRS, LSR, SRL, SLR } 
 
c. Event C = { RRL, RRS, RLR, RSR, LRR, SRR } 
 
d. Event D = { RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, 

SSL, SRS, SLS, RSS, LSS } 
 
e. Event D′ contains outcomes where all cars go the same direction, or they all go different 

directions: 
D′ = { RRR, LLL, SSS, RLS, RSL, LRS, LSR, SRL, SLR } 

   
Because Event D totally encloses Event C, the compound event C∪D = D: 
C∪D = { RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, 
SSL, SRS, SLS, RSS, LSS } 

 
Using similar reasoning, we see that the compound event C∩D = C: 
C∩D  = { RRL, RRS, RLR, RSR, LRR, SRR } 
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3.  
a. Event A = { SSF, SFS, FSS } 
 
b. Event B = { SSS, SSF, SFS, FSS } 
 
c. For Event C, the system must have component 1 working ( S in the first position), then at 

least one  of the other two components must work (at least one S in the 2nd and 3rd 
positions:  Event C = { SSS, SSF, SFS } 

 
d. Event C′ = { SFF, FSS, FSF, FFS, FFF } 

Event A∪C = { SSS, SSF, SFS, FSS } 
Event A∩C = { SSF, SFS } 
Event B∪C = { SSS, SSF, SFS, FSS }   
Event B∩C = { SSS SSF, SFS } 

 
4.  

a.  
 Home Mortgage Number 

Outcome 1 2 3 4 
1 F F F F 
2 F F F V 
3 F F V F 
4 F F V V 
5 F V F F 
6 F V F V 
7 F V V F 
8 F V V V 
9 V F F F 

10 V F F V 
11 V F V F 
12 V F V V 
13 V V F F 
14 V V F V 
15 V V V F 
16 V V V V 

 
b. Outcome numbers 2, 3, 5 ,9 
 
c. Outcome numbers 1, 16 
 
d. Outcome numbers 1, 2, 3, 5, 9 
 
e. In words, the UNION described is the event that either all of the mortgages are variable, 

or that at most all of them are variable: outcomes 1,2,3,5,9,16.  The INTERSECTION 
described is the event that all of the mortgages are fixed: outcome 1. 

 
f. The UNION described is the event that either exactly three are fixed, or that all four are 

the same:  outcomes 1, 2, 3, 5, 9, 16.  The INTERSECTION in words is the event that 
exactly three are fixed AND that all four are the same.  This cannot happen. (There are no 
outcomes in common) : b ∩ c = ∅. 
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5.  

a.  
  

Outcome  
Number Outcome 

1 111 
2 112 
3 113 
4 121 
5 122 
6 123 
7 131 
8 132 
9 133 
10 211 
11 212 
12 213 
13 221 
14 222 
15 223 
16 231 
17 232 
18 233 
19 311 
20 312 
21 313 
22 321 
23 322 
24 323 
25 331 
26 332 
27 333 

 
b. Outcome Numbers 1, 14, 27 
 
c. Outcome Numbers 6, 8, 12, 16, 20, 22 
 
d. Outcome Numbers 1, 3, 7, 9, 19, 21, 25, 27 
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6.  
a.  

Outcome  
Number Outcome 

1 123 
2 124 
3 125 
4 213 
5 214 
6 215 
7 13 
8 14 
9 15 
10 23 
11 24 
12 25 
13 3 
14 4 
15 5 

 
b. Outcomes  13, 14, 15 
 
c. Outcomes  3, 6,  9, 12, 15 
 
d. Outcomes  10, 11, 12, 13, 14, 15 

 
 
7.  

a. S = {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, 
BABABAA, BABAABA, BABAAAB, BAABBAA, BAABABA, BAABAAB, 
BAAABBA, BAAABAB, BAAAABB, ABBBAAA, ABBABAA, ABBAABA, 
ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, 
ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB, 
AABAABB, AAABBBA, AAABBAB, AAABABB, AAAABBB} 

 
b. {AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB} 
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8.  
a. A1 ∪ A2 ∪ A3  

 
b. A1 ∩ A2 ∩ A3 

 
c. A1 ∩ A2′  ∩ A3′ 
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d. (A1 ∩ A2′∩ A3 ′) ∪ (A1′  ∩ A2 ∩ A3 ′) ∪ (A1 ′∩ A2 ′∩ A3 ) 
 

 
e. A1 ∪ (A2 ∩ A3) 
 
 
 



Chapter 2:  Probability 

 53 

9.  
a. In the diagram on the left, the shaded area is (A∪B)′.  On the right, the shaded area is A ′, 

the striped area is B′, and the intersection A ′ ∩ B′ occurs where there is BOTH shading 
and stripes.  These two diagrams display the same area. 

 
b. In the diagram below, the shaded area represents (A∩B)′.  Using the diagram on the right 

above, the union of  A ′ and  B′ is represented by the areas that have either shading or 
stripes or both.  Both of the diagrams display the same area. 

 
10.  

a. A = {Chev, Pont, Buick}, B = {Ford, Merc}, C = {Plym, Chrys} are three mutually 
exclusive events. 

 
b. No, let E = {Chev, Pont}, F = {Pont, Buick}, G = {Buick, Ford}.  These events are not 

mutually exclusive (e.g. E and F have an outcome in common), yet there is no outcome 
common to all three events. 
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Section 2.2 
 
11.  

a. .07 
 
b. .15 + .10 + .05 = .30 
 
c. Let event A = selected customer owns stocks.  Then the probability that a selected 

customer does not own a stock can be represented by  
P(A′) = 1 - P(A) = 1 – (.18 + .25) = 1 - .43 = .57.  This could also have been done easily 
by adding the probabilities of the funds that are not stocks. 

 
 
12.  

a. P(A ∪ B) = .50 + .40 - .25 = .65 
 
b. P(A ∪ B)′ = 1 - .65 = .35 
 
c. A ∩ B′ ; P(A ∩ B′) = P(A) – P(A ∩ B) = .50 - .25 = .25 

 
 
13.  

a. awarded either #1 or #2 (or both): 
P(A1 ∪ A2) = P(A1) + P(A2) - P(A1 ∩ A2) = .22 + .25 - .11 = .36 

 
b. awarded neither #1 or #2: 

 P(A1′ ∩ A2′) = P[(A1 ∪ A2) ′] = 1 - P(A1 ∪ A2) = 1 - .36 = .64 
 

c. awarded at least one of #1, #2, #3: 
 P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3) - P(A1 ∩ A2) - P(A1 ∩ A3) –  

    P(A2 ∩ A3) + P(A1 ∩  A2 ∩  A3)  
= .22 +.25 + .28 - .11 -.05 - .07 + .01 = .53 

d. awarded none of the three projects: 
 P( A1′ ∩  A2′ ∩  A3′ ) = 1 – P(awarded at least one) = 1 - .53 = .47. 
 

e. awarded #3 but neither #1 nor #2: 
 P( A1′ ∩  A2′ ∩  A3 ) = P(A3) - P(A1 ∩ A3) – P(A2 ∩ A3)  

+ P(A1 ∩  A2 ∩  A3)  
          = .28 - .05 - .07+ .01      = .17 
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f. either (neither #1 nor #2) or #3:  
P[( A1′ ∩  A2′ ) ∪  A3 ] = P(shaded region) = P(awarded none) + P(A3)         

= .47 + .28 = .75 

 
Alternatively, answers to a – f can be obtained from probabilities on the accompanying 
Venn diagram 
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14.  
a. P(A ∪ B) = P(A) + P(B) - P(A ∩ B),  

so P(A ∩ B) = P(A) + P(B) - P(A ∪ B) 
        = .8 +.7 - .9 = .6 
 

b. P(shaded region) = P(A ∪ B) - P(A ∩ B) = .9 - .6 = .3 
 Shaded region = event of interest = (A ∩ B′) ∪ (A′ ∩ B) 

 
 
15.   

a. Let event E be the event that at most one purchases an electric dryer.  Then E′ is the event 
that at least two purchase electric dryers. 

P(E′) = 1 – P(E) = 1 - .428 = .572 
 

b. Let event A be the event that all five purchase gas.  Let event B be the event that all five 
purchase electric.  All other possible outcomes are those in which at least one of each 
type is purchased.  Thus, the desired probability = 

 1 – P(A) – P(B) = 1 - .116 - .005 = .879 
 
 

16.  
a. There are six simple events, corresponding to the outcomes CDP, CPD, DCP, DPC, PCD, 

and PDC.  The probability assigned to each is 6
1 . 

 

b. P( C ranked first) = P( {CPD, CDP} ) = 333.6
2

6
1

6
1 ==+  

 
c. P( C ranked first and D last) = P({CPD}) = 6

1  
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17.  
a. The probabilities do not add to 1 because there are other software packages besides SPSS 

and SAS for which requests could be made. 
 
b. P(A′) = 1 – P(A) = 1 - .30 = .70 
 
c. P(A ∪ B) = P(A) + P(B) = .30 + .50 = .80  

(since A and B are mutually exclusive events) 
 
d. P(A′ ∩ B′) = P[(A ∪ B) ′] (De Morgan’s law) 
   = 1 - P(A ∪ B) 

       =1 - .80 = .20 
 
 
18. This situation requires the complement concept.  The only way for the desired event NOT to 

happen is if a 75 W bulb is selected first.  Let event A be that a 75 W bulb is selected first, 
and P(A) = 15

6 .  Then the desired event is event A ′. 

So P(A′) = 1 – P(A) = 60.1 15
9

15
6 ==−  

 
 
19. Let event A be that the selected joint was found defective by inspector A. P(A) = 000,10

724 .  Let 

event B be analogous for inspector B. P(B) = 000,10
751 .  Compound event A∪B is the event that 

the selected joint was found defective by at least one of the two inspectors. P(A∪B) = 000,10
1159 . 

 
a. The desired event is (A∪B)′, so we use the complement rule: 

P(A∪B)′ = 1 - P(A∪B) = 1 - 000,10
1159  = 000,10

8841  = .8841 

 
b. The desired event is B ∩ A′.   P(B ∩ A′) = P(B) - P(A ∩ B). 

P(A ∩ B) = P(A) + P(B) - P(A∪B), 
           = .0724 + .0751 - .1159 = .0316 

So P(B ∩ A′) = P(B) - P(A ∩ B) 
       = .0751 - .0316 = .0435 

 
 
20. Let S1, S2 and S3 represent the swing and night shifts, respectively.  Let C1 and C2 represent 

the unsafe conditions and unrelated to conditions, respectively. 
a. The simple events are {S1,C1}, {S1,C2}, {S2,C1}, {S2,C2},{S3,C1}, {S3,C2}. 
 
b. P({C1})= P({S1,C1},{S2,C1},{S3,C1})= .10 + .08 + .05 = .23 
 
c. P({S1}′) = 1 - P({S1,C1}, {S1,C2}) = 1 – ( .10 + .35) = .55 
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21.  
a. P({M,H}) = .10 
 
b. P(low auto) = P[{(L,N}, (L,L), (L,M), (L,H)}] = .04 + .06 + .05 + .03 = .18 Following a 

similar pattern, P(low homeowner’s) = .06 + .10 + .03 = .19 
 
c. P(same deductible for both) = P[{ LL, MM, HH }] = .06 + .20 + .15 = .41 
 
d. P(deductibles are different) = 1 – P(same deductibles) = 1 - .41 = .59 
 
e. P(at least one low deductible) = P[{ LN, LL, LM, LH, ML, HL }] 

      = .04 + .06 + .05 + .03 + .10 + .03 = .31 
 

f. P(neither low) = 1 – P(at least one low) = 1 - .31 = .69 
 
 
22.  

a. P(A1 ∩ A2) = P(A1) + P(A2) - P(A1 ∪ A2) = .4 + .5 - .6 = .3 
 
b. P(A1 ∩ A2′) = P(A1) - P(A1 ∩ A2) = .4 - .3 = .1 
 
c. P(exactly one) = P(A1 ∪ A2) - P(A1 ∩ A2) = .6 - .3 = .3 
 
 

23. Assume that the computers are numbered 1 – 6 as described.  Also assume that computers 1 
and 2 are the laptops.  Possible outcomes are (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) 
(3,4) (3,5) (3,6) (4,5) (4,6) and (5,6). 

 

a. P(both are laptops) = P[{ (1,2)}] = 15
1 =.067 

 
b. P(both are desktops) = P[{(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)}] = 15

6 = .40 

 
c. P(at least one desktop) = 1 – P(no desktops) 

     = 1 – P(both are laptops) 
     = 1 – .067 = .933 

 
d. P(at least one of each type) =  1 – P(both are the same) 

  =  1 – P(both laptops) – P(both desktops) 
  =  1 - .067 - .40 = .533 
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24. Since A is contained in B, then B can be written as the union of A and  
(B ∩ A′), two mutually exclusive events.  (See diagram). 

From Axiom 3, P[A ∪ (B ∩ A′)] = P(A) + P(B ∩ A′). Substituting P(B), 
P(B) = P(A) + P(B ∩ A′) or P(B) - P(A) = P(B ∩ A′) .    From Axiom 1,  
P(B ∩ A′) ≥ 0, so P(B) ≥ P(A) or P(A) ≤ P(B).  For general events A and B, P(A ∩ B) ≤ P(A), 
and P(A ∪ B) ≥ P(A). 
 

 
25. P(A ∩ B) =  P(A) + P(B) - P(A∪B) = .65 

P(A ∩ C) = .55,  P(B ∩ C) = .60 
P(A ∩ B ∩ C) = P(A ∪ B ∪ C) – P(A) – P(B) – P(C)  

   + P(A ∩ B) + P(A ∩ C) + P(B ∩ C)  
              = .98 - .7 - .8 - .75 + .65 + .55 + .60 
              = .53 
 

a. P(A ∪ B ∪ C) = .98, as given. 
 
b. P(none selected) = 1 - P(A ∪ B ∪ C) = 1 - .98 = .02 
 
c. P(only automatic transmission selected) = .03 from the Venn Diagram 
 
d. P(exactly one of the three) = .03 + .08 + .13 = .24 
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26.  
a. P(A1′) = 1 – P(A1) = 1 - .12 = .88 
 
b. P(A1 ∩ A2 ) = P(A1) + P(A2) - P(A1 ∪ A2 ) = .12 + .07 - .13 = .06 
 
c. P(A1 ∩ A2 ∩ A3′) = P(A1 ∩ A2 ) -  P(A1 ∩ A2 ∩ A3 ) = .06 - .01 = .05 
 
d. P(at most two errors)  = 1 – P(all three types)  

= 1 - P(A1 ∩ A2 ∩ A3 )  
= 1 - .01 = .99 

 
 
27. Outcomes: (A,B) (A,C1) (A,C2) (A,F) (B,A) (B,C1) (B,C2) (B,F) 

(C1,A) (C1,B) (C1,C2) (C1,F) (C2,A) (C2,B) (C2,C1) (C2,F) 
(F,A) (F,B) (F,C1) (F,C2) 

a. P[(A,B) or (B,A)] = 1.10
1

20
2 ==  

 
b. P(at least one C) = 7.10

7
20
14 ==  

 
c. P(at least 15 years) = 1 – P(at most 14 years) 

= 1 – P[(3,6) or (6,3) or (3,7) or (7,3) or (3,10) or (10,3) or (6,7) or (7,6)] 
= 6.4.11 20

8 =−=−  

 
 

28. There are 27 equally likely outcomes. 
a. P(all the same) = P[(1,1,1) or (2,2,2) or (3,3,3)] = 9

1
27
3 =  

 
b. P(at most 2 are assigned to the same station) = 1 – P(all 3 are the same) 

= 9
8

27
24

27
31 ==−  

 
c. P(all different) = [{(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)}]  

= 9
2

27
6 =  
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Section 2.3 
 
29.  

a. (5)(4) = 20 (5 choices for president, 4 remain for vice president) 
 
b. (5)(4)(3) = 60 

c. 10
!3!2

!5
2
5

==







 (No ordering is implied in the choice) 

 
30.  

a. Because order is important, we’ll use P8,3 = 8(7)(6) = 336. 
 
b. Order doesn’t matter here, so we use C30,6  = 593,775. 
 

c. From each group we choose 2:  160,83
2

12
2

10
2
8

=







•








•








 

d. The numerator comes from part c and the denominator from part b:  14.
775,593

160,83
=  

e. We use the same denominator as in part d.  We can have all zinfandel, all merlot, or all 
cabernet, so  P(all same) = P(all z) + P(all m) + P(all c) = 

002.
775,593

1162

6
30

6
12

6
10

6
8

==


















+








+









 

 
 
31.  

a. (n1)(n2) = (9)(27) = 243 
 
b. (n1)(n2)(n3) = (9)(27)(15) = 3645, so such a policy could be carried out for 3645 

successive nights, or approximately 10 years, without repeating exactly the same 
program. 
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32.  

a. 5×4×3×4 = 240 
 
b. 1×1×3×4 = 12 
 
c. 4×3×3×3 = 108 
 
d. # with at least on Sony = total # - # with no Sony = 240 – 108 = 132 
 
e. P(at least one Sony) = 55.240

132 =  

 
P(exactly one Sony) = P(only Sony is receiver) 

   + P(only Sony is CD player) 
   + P(only Sony is deck) 

   

413.
240
99

240
363627

240
1334

240
3314

240
3331

==

++
=

×××
+

×××
+

×××
=

 

 
 

33.  

a. 130,53
!20!5

!25
5
25

==







 

 

b. 1190
1

17
4
8

=







•








 

c. P(exactly 4 have cracks) = 022.
130,53

1190

5
25

1
17

4
8

==



























 

 
d. P(at least 4) = P(exactly 4) + P(exactly 5) 

= 023.001.022.

5
25

0
17

5
8

5
25

1
17

4
8

=+=



























+



























 

 
 



Chapter 2:  Probability 

 63 

34.  

a. .760,38
6
20

=






  P(all from day shift) = 0048.
060,145,8

760,38

6
45

0
25

6
20

==



























 

 

b. P(all from same shift) =



























+



























+



























6
45

0
35

6
10

6
45

0
30

6
15

6
45

0
25

6
20

 

      = .0048 + .0006 + .0000 = .0054 
 

c. P(at least two shifts represented) = 1 – P(all from same shift) 
       = 1 - .0054 = .9946 
 
d. Let A1 = day shift unrepresented, A2 = swing shift unrepresented, and A3 = graveyard 

shift unrepresented.  Then we wish P(A1 ∪ A2 ∪ A3). 
P(A1) = P(day unrepresented) = P(all from swing and graveyard) 

P(A1) = 



















6
45
6
25

,   P(A2) = 



















6
45
6
30

,   P(A3) = 



















6
45
6
35

, 

 

P(A1 ∩ A2) = P(all from graveyard) = 



















6
45
6

10

 

P(A1 ∩ A3) = 



















6
45
6

15

,  P(A2 ∩ A3) = 



















6
45
6
20

, P(A1 ∩ A2 ∩ A3) = 0, 

So P(A1 ∪ A2 ∪ A3) = 



















6
45
6
25

+ 



















6
45
6
30

+ 



















6
45
6
35

- 



















6
45
6

10

- 



















6
45
6

15

- 



















6
45
6
20

 

   = .2939 - .0054 = .2885 
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35. There are 10 possible outcomes -- 







2
5

 ways to select the positions for B’s votes:  BBAAA, 

BABAA, BAABA, BAAAB, ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB.  
Only the last two have A ahead of B throughout the vote count.  Since the outcomes are 

equally likely, the desired probability is 20.10
2 = . 

 
 
36.  

a. n1 = 3, n2 = 4, n3 = 5, so n1 × n2 × n3 = 60 runs 
 
b. n1 = 1, (just one temperature), n2 = 2, n3 = 5 implies that there are 10 such runs. 

 
 

37. There are 







5
60

ways to select the 5 runs.  Each catalyst is used in 12 different runs, so the 

number of ways of selecting one run from each of these 5 groups is 125.  Thus the desired 

probability is 0456.

5
60

125

=









. 

 
 
38.  

a. P(selecting 2 -  75 watt bulbs) = 2967.
455

915

3
15

1
9

2
6

=
⋅

=



























 

 

b. P(all three are the same) = 0747.
455

20104

3
15

3
6

3
5

3
4

=
++

=


















+








+









 

 

c. 2637.
455
120

1
6

1
5

1
4

==























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d. To examine exactly one, a 75 watt bulb must be chosen first. (6 ways to accomplish this).  
To examine exactly two, we must choose another wattage first, then a 75 watt. ( 9 × 6 
ways).  Following the pattern, for exactly three, 9 × 8 × 6 ways; for four, 9 × 8 × 7 × 6; 
for five, 9 × 8 × 7 × 6 × 6.   

 
 P(examine at least 6 bulbs) = 1 – P(examine 5 or less)  

       = 1 – P( examine exactly 1 or 2 or 3 or 4 or 5) 
       = 1 – [P(one) + P(two) + … + P(five)]  
 







××××
××××

+
×××

×××
+

××
××

+
×
×

+−=
1112131415

66789
12131415

6789
131415
689

1415
69

15
6

1

  
= 1 – [.4 + .2571 + .1582 + .0923 + .0503] 
= 1 - .9579 = .0421  

 
 
39.  

a. We want to choose all of the 5 cordless, and 5 of the 10 others, to be among the first 10 

serviced, so the desired probability is 0839.
3003
252

10
15

5
10

5
5

==



























 

 
b. Isolating one group, say the cordless phones, we want the other two groups represented in 

the last 5 serviced.  So we choose 5 of the 10 others, except that we don’t want to include 
the outcomes where the last five are all the same.   

So we have 










−








5
15

2
5
10

. But we have three groups of phones, so the desired probability is 

2498.
3003

)250(3

5
15

2
5

10
3

==


















−








⋅

. 

 
c. We want to choose 2 of the 5 cordless, 2 of the 5 cellular, and 2 of the corded phones: 

1998.
5005
1000

6
15

2
5

2
5

2
5

==


































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40.  
a. If the A’s are distinguishable from one another, and similarly for the B’s, C’s and D’s, 

then there are 12! Possible chain molecules.  Six of these are: 
A1A2A3B2C3C1D3C2D1D2B3B1, A1A3A2B2C3C1D3C2D1D2B3B1 
A2A1A3B2C3C1D3C2D1D2B3B1, A2A3A1B2C3C1D3C2D1D2B3B1 
A3A1A2B2C3C1D3C2D1D2B3B1, A3A2A1B2C3C1D3C2D1D2B3B1 

These 6 (=3!) differ only with respect to ordering of the 3 A’s.  In general, groups of 6 
chain molecules can be created such that within each group only the ordering of the A’s 
is different.  When the A subscripts are suppressed, each group of 6 “collapses” into a 
single molecule (B’s, C’s and D’s are still distinguishable).  At this point there are 

!3
!12 molecules.  Now suppressing subscripts on the B’s, C’s and D’s in turn gives 

ultimately 600,3694)!3(
!12 =  chain molecules. 

 
b. Think of the group of 3 A’s as a single entity, and similarly for the B’s, C’s, and D’s.  

Then there are 4! Ways to order these entities, and thus 4! Molecules in which the A’s are 
contiguous, the B’s, C’s, and D’s are also.  Thus, P(all together) = 

00006494.600.369
!4 = . 

 
 
41.  

a. P(at least one F among 1st 3) = 1 – P(no F’s among 1st 3) 

= 1 - 9286.0714.1
336
24

1
678
234

=−=−=
××
××

 

An alternative method to calculate P(no F’s among 1st 3) 
would be to choose none of the females and 3 of the 4 males, as follows: 

0714.
56
4

3
8

3
4

0
4

==



























, obviously producing the same result. 

 

b. P(all F’s among 1st 5) = 0714.
56
4

5
8

1
4

4
4

==



























 

 
c. P(orderings are different) = 1 – P(orderings are the same for both semesters) 

= 1 – (# orderings such that the orders are the same each semester)/(total # of 
possible orderings for 2 semesters) 

99997520.
)12345678()12345678(

12345678
1 =

××××××××××××××××
×××××××

−=  
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42. Seats: 

  

P(J&P in 1&2)  0667.
15
1

123456
123412

==
×××××
×××××

=  

 
P(J&P next to each other)  = P(J&P in 1&2) +  … + P(J&P in 5&6) 

    = 333.
3
1

15
1

5 ==×  

P(at least one H next to his W) = 1 – P( no H next to his W) 
We count the # of ways of no H next to his W as follows: 
# if orderings without a H-W pair in seats #1 and 3 and no H next to his W = 6* × 4 × 1* × 2# 
× 1 × 1  = 48 
*= pair, # =can’t put the mate of seat #2 here or else a H-W pair would be in #5 and 6. 

   
# of orderings without a H-W pair in seats #1 and 3, and no H next to his W = 6 × 4 × 2# × 2 × 
2 × 1 = 192 
#= can’t be mate of person in seat #1 or #2. 
So, # of seating arrangements with no H next to W = 48 + 192 = 240 

And P(no H next to his W) = 
3
1

123456
240

=
×××××

= , so 

P(at least one H next to his W) = 1 - 
3
2

3
1

=  

 
 
 
43. # of 10 high straights = 4×4×4×4×4 ( 4 – 10’s, 4 – 9’s , etc) 

P(10 high straight) = 000394.
960,598,2

1024

5
52
45

==









 

P(straight) = 003940.

5
52
4

10
5

=









×  (Multiply by 10 because there are 10 different card 

values that could be high: Ace, King, etc.)  There are only 40 straight flushes (10 in each suit), 
so  

P(straight flush) = 00001539.

5
52
40

=









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44. 







−

=
−

=
−

=







kn

n

kkn
n

knk
n

k
n

!)!(
!

)!(!
!

 

 
The number of subsets of size k = the number of subsets of size n-k, because to each subset of 
size k there corresponds exactly one subset of size n-k (the n-k objects not in the subset of 
size k). 
 
 

Section 2.4 
 
45.  

a. P(A) =  .106 + .141 + .200 = .447, P(C) =.215 + .200 + .065 + .020 = .500  P(A ∩ C) = 
.200 

 

b. P(A|C) = 400.
500.
200.

)(
)(

==
∩
CP

CAP
.  If we know that the individual came from ethnic 

group 3, the probability that he has type A blood is .40. P(C|A) = 

447.
447.
200.

)(
)(

==
∩
AP

CAP
.  If a person has type A blood, the probability that he is 

from ethnic group 3 is .447 
 
c. Define event D = {ethnic group 1 selected}.   We are asked for P(D|B′) = 

400.
500.
200.

)(
)(

==
′

′∩
BP

BDP
.  P(D∩B′)=.082 + .106 + .004 = .192, P(B′) = 1 – P(B) = 

1 – [.008 + .018 + .065] = .909 
 

 
 
46. Let event A be that the individual is more than 6 feet tall.  Let event B be that the individual is 

a professional basketball player. Then  P (AB) = the probability of the individual being more 
than 6 feet tall, knowing that the individual is a professional basketball player, and P (BA) = 
the probability of the individual being a professional basketball player, knowing that the 
individual is more than 6 feet tall.   P (AB) will be larger. Most professional BB players are 
tall, so the probability of an individual in that reduced sample space being more than 6 feet 
tall is very large.  The number of individuals that are pro BB players is small in relation to the 
# of males more than 6 feet tall. 
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47.  

 

a. P(BA) = 50.
50.
25.

)(
)(

==
∩
AP

BAP
 

 

b. P(B′A) = 50.
50.
25.

)(
)(

==
′∩

AP
BAP

 

 

c. P(AB) = 6125.
40.
25.

)(
)(

==
∩
BP

BAP
 

 

d. P(A′B) = 3875.
40.
15.

)(
)(

==
∩′
BP

BAP
 

e. P(AA∪B) = 7692.
65.
50.

)(
)]([

==
∪

∪∩
BAP

BAAP
 

 
 
48.  

a. P(A2A1) = 50.
12.
06.

)(
)(

1

21 ==
∩
AP

AAP
 

b. P(A1 ∩ A2 ∩ A3A1) = 0833.
12.
01.

=  

 

c. We want P[(exactly one)  (at least one)].   
P(at least one)  = P(A1 ∪ A2 ∪ A3) 

   = .12 + .07 + .05 - .06 - .03 - .02 + .01 = .14 
 Also notice that the intersection of the two events is just the 1st event, since “exactly one” 

is totally contained in “at least one.”   

So P[(exactly one)  (at least one)]= 3571.
14.

01.04.
=

+
 

 
d. The pieces of this equation can be found in your answers to exercise 26 (section 2.2): 

833.
06.
05.

)(
)(

)|(
21

321
213 ==

∩
′∩∩

=∩′
AAP

AAAP
AAAP  
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49. The first desired probability is P(both bulbs are 75 wattat least one is  75 watt). 
P(at least one is  75 watt)   = 1 – P(none are 75 watt) 

    = 1 - 
105
69

105
36

1

2
15
2
9

=−=



















. 

Notice that P[(both are 75 watt)∩(at least one is 75 watt)]  

= P(both are 75 watt) =  
105
15

2
15
2
6

=



















.  

So P(both bulbs are 75 wattat least one is  75 watt) = 2174.
69
15

105
69

105
15

==  

Second, we want P(same rating at least one NOT 75 watt). 
P(at least one NOT 75 watt) = 1 – P(both are 75 watt) 

     = 1 - 
105
90

105
15

= . 

Now, P[(same rating)∩(at least one not 75 watt)] = P(both 40 watt or both 60 watt). 

P(both 40 watt or both 60 watt) = 
105
16

2
15

2
5

2
4

=


















+









 

Now, the desired conditional probability is 1778.
90
16

105
90

105
16

==  

 
50.  

a. P(M ∩ LS ∩ PR) = .05, directly from the table of probabilities 
 

b. P(M ∩ Pr) = P(M,Pr,LS) + P(M,Pr,SS) = .05+.07=.12 
 
c. P(SS) = sum of 9 probabilities in SS table = 56, P(LS) = 1 = .56 = .44 
 
d. P(M) = .08+.07+.12+.10+.05+.07 = .49 

P(Pr) = .02+.07+.07+.02+.05+.02 = .25 
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e. P(M|SS ∩ Pl) = 533.
03.08.04.

08.
)(

)(
=

++
=

∩
∩∩
PlSSP

PlSSMP
 

 

f. P(SS|M ∩ Pl) = 444.
10.08.

08.
)(

)(
=

+
=

∩
∩∩
PlMP

PlMSSP
 

 P(LS|M  Pl) = 1 - P(SS|M  Pl) = 1 - .444 = .556 
 
 
51.  

a. P(R from 1st ∩ R from 2nd ) = P(R from 2nd | R from 1st ) • P(R from 1st ) 

   = 436.
10
6

11
8

=•  

b. P(same numbers)  = P(both selected balls are the same color) 

   = P(both red) + P(both green) = 581.
10
4

11
4

436. =•+  

 
 
 
52. Let A1 be the event that #1 fails and A2 be the event that #2 fails.  We assume that P(A1) = 

P(A2) = q and that P(A1 | A2) = P(A2 | A1) = r.  Then one approach is as follows:   

P(A1 ∩ A2) = P(A2 | A1) • P(A1) = rq = .01 
P(A1 ∪ A2) = P(A1 ∩ A2) + P(A1′∩  A2) + P(A1 ∩ A2′) = rq + 2(1-r)q = .07 
These two equations give 2q - .01 = .07, from which q = .04 and r = .25.  Alternatively, with t 
= P(A1′∩  A2) = P(A1 ∩ A2′) , t + .01 + t = .07, implying t = .03 and thus q = .04 without 
reference to conditional probability. 

 
 

53. P(BA) = 
)(
)(

)(
)(

AP
BP

AP
BAP

=
∩

 (since B is contained in A, A ∩ B = B) 

= 0833.
60.
05.

=  
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54. P(A1) = .22, P(A2) = .25, P(A3) = .28, P(A1 ∩ A2) = .11, P(A1 ∩ A3) = .05, P(A2 ∩ A3) = .07,  
P(A1 ∩ A2 ∩ A3) = .01 
 

a. P(A2A1) = 50.
22.
11.

)(
)(

1

21 ==
∩
AP

AAP
 

 

b. P(A2 ∩ A3A1) = 0455.
22.
01.

)(
)(

1

321 ==
∩∩

AP
AAAP

 

 

c. 
)(

)]()[(
)(

)]([
)|(

1

3121

1

321
132 AP

AAAAP
AP

AAAP
AAAP

∩∪∩
=

∪∩
=∪  

682.
22.
15.

)(
)()()(

1

3213121 ==
∩∩−∩+∩

=
AP

AAAPAAPAAP
 

 

d. 0189.
53.
01.

)(
)(

)|(
321

321
321321 ==

∪∪
∩∩

=∪∪∩∩
AAAP
AAAP

AAAAAAP  

 This is the probability of being awarded all three projects given that at least one project 
was awarded. 

 
 
55.  

a. P(A  B) = P(B|A)•P(A) = 0111.
56
12

34
12

=
×
×

×
×
×

 

 
b. P(two other H’s next to their wives | J and M together in the middle)  

).....(
)]..()..()..[(

middletheinJMorMJP
HWorWHandJMorMJandHWorWHP

−−
−−−−−−

 

numerator = 
!6

16
123456
121214

=
×××××
×××××

 

denominator = 
!6

48
123456
121234

=
×××××
×××××

 

so the desired probability = 
3
1

48
16

= . 
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c. P(all H’s next to W’s | J & M together)  
= P(all H’s next to W’s – including J&M)/P(J&M together) 

= 2.
240
48

!6
1234125

!6
121416

==
××××××

×××××

 

 
 
56. If P(B|A) > P(B), then P(B’|A) < P(B’). 

Proof by contradiction.  
Assume    P(B’|A) ≥ P(B’). 
Then 1 – P(B|A) ≥ 1 – P(B). 

    - P(B|A) ≥  – P(B). 
      P(B|A) ≤ P(B). 

This contradicts the initial condition, therefore P(B’|A) < P(B’). 
 
 

57. 1
)(
)(

)(
)()(

)(
)(

)(
)(

)|()|( ==
∩′+∩

=
∩′

+
∩

=′+
BP
BP

BP
BAPBAP

BP
BAP

BP
BAP

BAPBAP

 
 

58. 
)(

)]()[(
)(

))[(
)|(

CP
CBCAP

CP
CBAP

CBAP
∩∪∩

=
∩∪

=∪  

)(
)()()(

CP
CBAPCBPCAP ∩∩−∩+∩

=  

= P(A|C) + P(B|C) – P(A ∩ B | C) 
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59.  

a.  P(A2 ∩ B) = .21 
 

b. P(B) = P(A1 ∩ B) + P(A2 ∩ B) + P(A3 ∩ B) = .455 
 

c. P(A1|B) = 264.
455.
12.

)(
)( 1 ==

∩
BP

BAP
 

P(A2|B) = 462.
455.
21.

= , P(A3|B) = 1 - .264 - .462 = .274 

 
 
60.  

 

a. P(not disc | has loc) = 067.
42.03.

03.
).(

)..(
=

+
=

∩
lochasP

lochasdiscnotP
 

 

b. P(disc | no loc) = 509.
55.
28.

).(
).(

==
∩

locnoP
locnodiscP

 

 

)|()()(12.3.4. 11 ABPAPBAP •=∩==×

)(21.6.35. 2 BAP ∩==×

)(125.5.25. 3 BAP ∩==×
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61. P(0 def in sample | 0 def in batch) = 1 
 

P(0 def in sample | 1 def in batch) = 
800.

2
10
2
9

=


















 

P(1 def in sample | 1 def in batch) = 200.

2
10
1
9

=



















 

P(0 def in sample | 2 def in batch) = 
622.

2

10

2

8

=

















 

P(1 def in sample | 2 def in batch) = 356.

2
10

1
8

1
2

=






















 

 P(2 def in sample | 2 def in batch) = 022.

2
10
1

=







 

a. P(0 def in batch | 0 def in sample) = 578.
1244.24.5.

5.
=

++
 

P(1 def in batch | 0 def in sample) = 278.
1244.24.5.

24.
=

++
 

P(2 def in batch | 0 def in sample) = 144.
1244.24.5.

1244.
=

++
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b. P(0 def in batch | 1 def in sample) = 0 

P(1 def in batch | 1 def in sample) = 457.
0712.06.

06.
=

+
 

P(2 def in batch | 1 def in sample) = 543.
0712.06.

0712.
=

+
 

 
 
62. Using a tree diagram, B = basic, D = deluxe, W = warranty purchase, W’ = no warranty  

We want P(B|W) = 2857.
42.
12.

12.30.
12.

)(
)(

==
+

=
∩
WP

WBP
 

 
 

)(12.3.4. WBP ∩==×

)(28.7.4. WBP ′∩==×

)(30.5.6. WDP ∩==×

)(30.5.6. WDP ′∩==×
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63.  
a.  

 
b. P(A ∩ B ∩ C) = .75 × .9 × .8 = .5400 
 
c. P(B ∩ C) = P(A ∩ B ∩ C) + P(A′ ∩ B ∩ C) 

          =.5400+.25×.8×.7 = .6800 
 

d. P(C) = P(A ∩ B ∩ C)+P(A′ ∩ B ∩ C) + P(A ∩ B′ ∩ C) + P(A′ ∩ B′ ∩ C) 
  = .54+.045+.14+.015 = .74 

e. P(A|B ∩ C) = 7941.
68.
54.

)(
)(

==
∩

∩∩
CBP

CBAP
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64.  

 
a. P(+) = .0588 
 

b. P(has d | +) = 6735.
0588.
0396.

=  

 

c. P(doesn’t have d | - ) = 9996.
9412.
9408.

=  

 
 
65.  

 
P(satis) = .51 

P(mean | satis) = 3922.
51.
2.

=  

P(median | satis) = .2941 
P(mode | satis) = .3137 
So Mean (and not Mode!) is the most likely author, while Median is least. 
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66. Define events A1, A2, and A3 as flying with airline 1, 2, and 3, respectively.  Events 0, 1, and 

2 are 0, 1, and 2 flights are late, respectively.  Event DC = the event that the flight to DC is 
late, and event LA = the event that the flight to LA is late. Creating a tree diagram as 
described in the hint, the probabilities of the second generation branches are calculated as 
follows:  For the A1 branch, P(0|A1) = P[DC′∩LA′] = P[DC′] ⋅ P[LA ′] = (.7)(.9) = .63;                    
P(1|A1) = P[(DC′∩LA) ∪ (DC∩LA′)] = (.7)(.1) + (.3)(.9) = .07 + .27 = .34; P(2|A1) = 
P[DC∩LA] = P[DC] ⋅ P[LA] = (.3)(.1) = .03 
Follow a similar pattern for A2 and A3.   
 
From the law of total probability, we know that  

P(1) = P(A1∩1) + P(A2∩1) + P(A2∩1)  
= (from tree diagram below) .170 + .105 + .09 = .365. 
   
We wish to find P(A1|1),  P(A2|1),  and P(A2|1).    
 
 

 

 

P(A1/1) = 466.
365.
170.

)1(
)11(

==
∩

P
AP

;  

P(A2/1) = 288.
365.
105.

)1(
)12(

==
∩

P
AP

;  

P(A3/1) = 247.
365.
090.

)1(
)13(

==
∩

P
AP

;  
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67.  

a. P(U ∩ F ∩ Cr) = .1260 
 

b. P(Pr ∩ NF ∩ Cr) = .05 
 

c. P(Pr ∩ Cr) = .0625 + .05 = .1125 
 

d. P(F ∩ Cr) = .0840 + .1260 + .0625 = .2725 
 
e. P(Cr) = .5325 
 

f. P(PR | Cr) = 2113.
5325.
1125.

)(
)(Pr

==
∩
CrP

CrP
 

 
 



Chapter 2:  Probability 

 81 

Section 2.5 
 
68. Using the definition, two events A and B are independent if P(A|B) = P(A); 

P(A|B) = .6125; P(A) = .50;  .6125 ≠ .50, so A and B are dependent. 
Using the multiplication rule, the events are independent if  

P(A ∩ B)=P(A)• P(B); 
P(A ∩ B) = .25; P(A) • P(B) = (.5)(.4) = .2.  .25 ≠ .2, so A and B are dependent. 

 
 
69.  

a. Since the events are independent, then A ′ and B′ are independent, too. (see paragraph 
below equation 2.7.  P(B′ |A′) = .  P(B′) = 1 - .7 = .3 

 

b. P(A ∪ B)=P(A) + P(B) – P(A)⋅P(B) = .4 + .7 + (.4)(.7) = .82 
 

c. P(AB′ | A∪ B) = 146.
82.
12.

)(
)(

)(
))((

==
∪

′
=

∪
∪∩′

BAP
BAP

BAP
BABAP

 

 
 

70. P(A1 ∩ A2) = .11, P(A1) • P(A2) = .055.  A1 and A2 are not independent. 
P(A1 ∩ A3) = .05, P(A1) • P(A3) = .0616.  A1 and A3 are not independent. 
P(A2 ∩ A3) = .07, P(A1) • P(A3) = .07.  A2 and A3 are independent. 

 
 

71. P(A′ ∩ B) = P(B) – P(A ∩ B) = P(B) - P(A) • P(B) = [1 – P(A)] • P(B) = P(A′)• P(B). 

Alternatively, 
)(

)()(
)(

)(
)|(

BP
BAPBP

BP
BAP

BAP
∩−

=
∩′

=′  

).()(1
)(

)()()(
APAP

BP
BPAPBP ′=−=

⋅−
=  

 
 
72. Using subscripts to differentiate between the selected individuals,  

P(O1 ∩ O2) = P(O1)•P(O2) = (.44)(.44) = .1936 
P(two individuals match) = P(A1∩A2)+P(B1∩B2) + P(AB1∩AB2) + P(O1∩O2)  
        = .422 + .102 + .042 + .442 = .3816 

 
 
73. Let event E be the event that an error was signaled incorrectly.  We want P(at least one 

signaled incorrectly) = P(E1 ∪ E2  ∪ …∪ E10) = 1 - P(E1′ ∩ E2′   ∩ …∩ E10′) .   P(E′) =1 - .05 
= .95.  For 10 independent points, P(E1′ ∩ E2′   ∩ …∩ E10′) = P(E1′  )P(E2′  )…P(E10′) so = P(E1 
∪ E2  ∪ …∪ E10) = 1 -  [.95]10 = .401.   Similarly, for 25 points, the desired probability is =1 -  
[P(E′)]25 =1 -  (.95)25=.723 
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74. P(no error on any particular question) = .9, so P(no error on any of the 10 questions) =(.9)10 = 

.3487.  Then P(at least one error) = 1 – (.9)10 = .6513.  For p replacing .1, the two probabilities 
are (1-p)n and 1 – (1-p)n. 

 
 
75. Let q denote the probability that a rivet is defective. 
 

a. P(seam need rework) = .20 = 1 – P(seam doesn’t need rework) 
= 1 – P(no rivets are defective) 

= 1 – P(1st isn’t def ∩ … ∩ 25th isn’t def) 
= 1 – (1 – q)25, so .80 = (1 – q)25, 1 – q = (.80)1/25, and thus q = 1 - 
.99111 = .00889.  
 

b. The desired condition is .10 = 1 – (1 – q)25, i.e. (1 – q)25 = .90, from which q = 1 - .99579 
= .00421.  

 
 
76. P(at least one opens) = 1 – P(none open) = 1 – (.05)5 = .99999969 

P(at least one fails to open) = 1 = P(all open) = 1 – (.95)5 = .2262 
 
 

77. Let A1 = older pump fails, A2 = newer pump fails, and x = P(A1 ∩ A2).  Then P(A1) = .10 + x, 
P(A2) = .05 + x, and x = P(A1 ∩ A2) = P(A1) •P(A2) = (.10 + x)( .05 + x) .  The resulting 
quadratic equation, x2 - .85x + .005 = 0, has roots x = .0059 and x = .8441.  Hopefully the 
smaller root is the actual probability of system failure. 

 
 

78. P(system works) = P( 1 – 2 works ∪ 3 – 4 works) 
= P( 1 – 2 works) + P( 3 – 4 works) - P( 1 – 2 works ∩ 3 – 4 works) 
= P(1 works ∪ 2 works) + P(3 works ∩ 4 works) – P( 1 – 2 ) • P(3 – 4) 
= ( .9+.9-.81) + (.9)(.9) – (.9+.9-.81)(.9)(.9) 
= .99 + .81 - .8019 = .9981 
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79.  

 
Using the hints, let P(A i) = p, and x = p2, then P(system lifetime exceeds t0)   = p2 + p2 – p4 = 
2p2 – p4 = 2x – x2.  Now, set this equal to .99, or 2x – x2 = .99 ⇒ x2 – 2x + .99 = 0.  Use the 

quadratic formula to solve for x:  1.1
2

2.2
2

)99)(.4(42
±=

±
=

−±
=  = .99 or 1.01  

Since the value we want is a probability, and has to be = 1, we use the value of .99. 
 
 

80. Event A:  { (3,1)(3,2)(3,3)(3,4)(3,5)(3,6) }, P(A) = 6
1 ;   

Event B:  { (1,4)(2,4)(3,4)(4,4)(5,4)(6,4) }, P(B) = 6
1 ;  

Event C:  { (1,6)(2,5)(3,4)(4,3)(5,2)(6,1) }, P(C) = 6
1 ;     

Event A∩B: { (3,4) }; P(A∩B) = 36
1 ; 

Event A∩C: { (3,4) }; P(A∩C) = 36
1 ; 

Event B∩C: { (3,4) }; P(A∩C) = 36
1 ; 

Event A∩B∩C: { (3,4) }; P(A∩B∩C) = 36
1 ; 

P(A)⋅P(B)=  36
1

6
1

6
1 =⋅ =P(A∩B) 

P(A)⋅P(C)=  36
1

6
1

6
1 =⋅ =P(A∩C) 

P(B)⋅P(C)=  36
1

6
1

6
1 =⋅ =P(B∩C) 

The events are pairwise independent. 

P(A)⋅P(B) ⋅P(C)=  36
1

216
1

6
1

6
1

6
1 ≠=⋅⋅ = P(A∩B∩C) 

The events are not mutually independent 
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81. P(both detect the defect) = 1 – P(at least one doesn’t) = 1 - .2 = .8 
 

a. P(1st detects ∩ 2nd doesn’t) = P(1st detects) – P(1st does ∩ 2nd does) 
  = .9 - .8 = .1 

Similarly, P(1st doesn’t ∩ 2nd does) = .1, so P(exactly one does)= .1+.1= .2 
 

b. P(neither detects a defect) = 1 – [P(both do) + P(exactly 1 does)] 
 = 1 – [.8+.2] = 0 

   so P(all 3 escape) = (0)(0)(0) = 0. 
 
 
82. P(pass) = .70 
 

a. (.70)(.70)(.70) = .343 
 
b. 1 – P(all pass) = 1 - .343 = .657 
 
c. P(exactly one passes) = (.70)(.30)(.30) + (.30)(.70)(.30) + (.30)(.30)(.70) = .189 
 

d. P(# pass ≤ 1) = P(0 pass) + P(exactly one passes) = (.3)3 + .189 = .216 
 
e. P(3 pass | 1 or more pass) = 

353.
973.
343.

).1(
).3(

).1(
).1.3(

==
≥

=
≥

≥∩
=

passP
passP

passP
passpassP

 

 
 
83.  

a. Let D1 = detection on 1st fixation, D2 = detection on 2nd fixation. 
P(detection in at most 2 fixations) = P(D1) + P(D1′ ∩ D2) 

    = P(D1) + P(D2 | D1′ )P(D1) 
    = p + p(1 – p) = p(2 – p). 
 

b. Define D1, D2, … , Dn as in a.  Then P(at most n fixations) 

= P(D1) + P(D1′ ∩ D2) + P(D1′ ∩ D2′ ∩  D3) + …+  P(D1′ ∩ D2′ ∩ … ∩ Dn-1′ ∩  Dn)  
= p + p(1 – p) + p(1 – p)2 + … + p(1 – p)n-1 

= p [ 1 + (1 – p) + (1 – p)2 + … + (1 – p)n-1] = n
n

p
p

p
p )1(1

)1(1
)1(1

−−=
−−

−−
•  

Alternatively, P(at most n fixations) = 1 – P(at least n+1 are req’d) 
    = 1 – P(no detection in 1st n fixations) 

    = 1 – P(D1′ ∩ D2′ ∩ … ∩ Dn′ ) 
    = 1 – (1 – p)n 
 

c. P(no detection in 3 fixations) = (1 – p)3 
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d. P(passes inspection) = P({not flawed} ∪ {flawed and passes}) 
= P(not flawed) + P(flawed and passes) 

= .9 + P(passes | flawed)• P(flawed) = .9+(1 – p)3(.1) 
 

e. P(flawed | passed) = 
3

3

)1(1.9.
)1(1.

)(
)(

p
p

passedP
passedflawedP

−+
−

=
∩

 

 For p = .5, P(flawed | passed) = 0137.
)5(.1.9.

)5(.1.
3

3

=
+

 

 
 

84.  

a. P(A) = 02.
000,10

2000
= , P(B) = P(A ∩ B) + P(A′ ∩  B) 

= P(B|A) P(A) + P(B|A′) P(A′) = 2.)8(.
9999
2000

)2(.
9999
1999

=•+•  

P(A ∩ B) = .039984; since P(A ∩ B) ≠ P(A)P(B), the events are not independent. 
 

b. P(A ∩ B) = .04.  Very little difference. Yes. 
 

c. P(A) = P(B) = .2, P(A)P(B) = .04, but P(A ∩ B) = P(B|A)P(A) = 0222.10
2

9
1 =⋅ , so the 

two numbers are quite different. 
In a, the sample size is small relative to the “population” size, while here it is not. 
 
 

85. P(system works) = P( 1 – 2 works ∩ 3 – 4 – 5 – 6 works ∩ 7 works) 
= P( 1 – 2 works) • P( 3 – 4 – 5 – 6 works) •P( 7 works) 
= (.99) (.9639) (.9) = .8588 

 With the subsystem in figure 2.14 connected in parallel to this subsystem,  
P(system works) = .8588+.927 – (.8588)(.927) = .9897 
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86.  
a. For route #1, P(late) = P(stopped at 2 or 3 or 4 crossings) 

   =  1 – P(stopped at 0 or 1) = 1 – [.94 + 4(.9)3(.1)]  
   = .0523 

For route #2, P(late) = P(stopped at 1 or 2 crossings) 
       = 1 – P(stopped at none) = 1 - .81 = .19 

thus route #1 should be taken. 
 

b. P(4 crossing route | late) = 
)(

)sin4(
lateP

lategcrosP ∩
 

 

= 216.
)19)(.5(.)0523)(.5(.

)0523)(.5.(.
=

+
 

 
 

87.  

P(at most 1 is lost) = 1 – P(both lost) 

        = 1 –  π2 
P(exactly 1 lost) = 2π(1 - π) 

P(exactly 1 | at most 1 ) = 
21

)1(2
)1.(
)1(

π
ππ

−
−

=
mostatP

exactlyP
 

 

2π

π

π

π−1

)1( ππ −

ππ )1( −

2)1( π−π−1 π

π−1
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Supplementary Exercises 
 
88.  

a. 1140
3
20

=







 

b. 969
3

19
=








 

c. # having at least 1 of the 10 best =  1140 - # of crews having none of 10 best   = 1140 - 

1140
3

10
=








- 120 = 1020 

d. P(best will not work) = 85.
1140
969

=  

 
 
89.  

a. P(line 1) = 333.
1500
500

= ;   

P(Crack) = 
( ) ( ) ( )

444.
1500
666

1500
60040.40044.50050.

==
++

 

 
b. P(Blemish | line 1) = .15 
 

c. P(Surface Defect) =
( ) ( ) ( )

1500
172

1500
60015.40008.50010.

=
++

 

P(line 1 and Surface Defect) = 
( )

1500
50

1500
50010.

=  

So P(line 1 | Surface Defect) = 291.
1500

172

1500
50

==  

 
90.  

a. The only way he will have one type of forms left is if they are all course substitution 
forms.  He must choose all 6 of the withdrawal forms to pass to a subordinate.  The 

desired probability is 00476.

6
10
6
6

=
















 

 
b. He can start with the wd forms: W-C-W-C or with the cs forms: C-W-C-W: 

# of ways: 6 × 4 × 5 × 3 + 4 × 6 × 3 × 5 = 2(360) = 720; 
The total # ways to arrange the four forms: 10 × 9 × 8 × 7 = 5040. 
The desired probability is 720/5040 = .1429 
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91. P(A∪B) = P(A) + P(B) – P(A)P(B) 
   .626    =  P(A) + P(B) - .144 
 
So P(A) + P(B) = .770 and P(A)P(B) = .144.    
Let x = P(A) and y = P(B), then using the first equation, y = .77 – x, and substituting this into 
the second equation, we get x ( .77 – x ) = .144 or  
x2 - .77x + .144 = 0.  Use the quadratic formula to solve:  

32.
2

13.77.
2

)144)(.4(77.77. 2

=
±

=
−±

 or .45   

So P(A) = .45 and  P(B) = .32 
 

 
92.  

a. (.8)(.8)(.8) = .512 
 
b.  

 
.512+.032+.023+.023 = .608 
 

c. P(1 sent | 1 received) = 7835.
5432.
4256.

1(
)11(

==
∩
receivedP

receivedsentP
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93.  
a. There are 5×4×3×2×1 = 120 possible orderings, so P(BCDEF) = 0083.120

1 =  

 

b. # orderings in which F is 3rd = 4×3×1*×2×1 = 24, ( * because F must be here), so         
P(F 3rd) = 2.120

24 =  

 

c. P(F last) = 2.
120

11234
=

××××
 

 
 
94. P(F hasn’t heard after 10 times) = P(not on #1 ∩ not on #2 ∩…∩  not on #10) 

= 1074.
5
4 10

=







 

 
 

95. When three experiments are performed, there are 3 different ways in which detection can 
occur on exactly 2 of the experiments: (i)  #1 and #2 and not #3  (ii) #1 and not #2 and #3; 
(iii) not#1 and #2 and #3.  If the impurity is present, the probability of exactly 2 detections in 
three (independent) experiments is (.8)(.8)(.2) + (.8)(.2)(.8) + (.2)(.8)(.8) = .384.  If the 
impurity is absent, the analogous probability is 3(.1)(.1)(.9) = .027.  Thus 
P(present | detected in exactly 2 out of 3) =  

)2...(det
)2...(det

exactlyinectedP
presentexactlyinectedP ∩

 

= 905.
)6)(.027(.)4)(.384(.

)4)(.384(.
=

+
 

 
 
96. P(exactly 1 selects category #1 | all 3 are different) 

= 
)..(

)..1#.1.(
differentareallP

differentareallselectsexactlyP ∩
 

Denominator = 5556.
9
5

666
456

==
××
××

 

Numerator = 3 P(contestant #1 selects category #1 and the other two select two different 
categories) 

= 
666
345

666
451

3
××
××

=
××
××

×  

The desired probability is then 5.
2
1

456
345

==
××
××
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97.  

 

a. P(pass inspection) = P(pass initially ∪ passes after recrimping) = P(pass initially) + P( 
fails initially ∩ goes to recrimping ∩ is corrected after recrimping)  
= .95 + (.05)(.80)(.60) (following path “bad-good-good” on tree diagram) 
= .974 

 

b. P(needed no recrimping | passed inspection) = 
).(

).(
inspectionpassedP
initiallypassedP

 

       = 9754.
974.
95.

=  

 
 
98.  

a. P(both + ) = P(carrier  ∩ both + ) + P(not a carrier ∩ both + ) 
=P(both +  | carrier) x P(carrier)  

+ P(both  +  | not a carrier) x P(not a carrier) 
= (.90)2(.01) + (.05)2(.99) = .01058 

P(both – ) = (.10)2(.01) + (.95)2(.99) = .89358 
P(tests agree) = .01058 + .89358 = .90416 

b. P(carrier | both + ve) = 7656.
01058.

)01(.)90(.
).(

).( 2

==
∩

positivebothP
positivebothcarrierP

 

 
 

99. Let A = 1st functions, B = 2nd functions, so P(B) = .9, P(A ∪ B) = .96, P(A ∩ B)=.75.  Thus, 
P(A ∪ B) = P(A) + P(B) - P(A ∩ B) = P(A) + .9 - .75 = .96, implying P(A) = .81. 

This gives P(B | A) = 926.
81.
75.

)(
)(

==
∩
AP

ABP
 

 
 

100. P(E1 ∩ late) = P( late | E1 )P(E1) = (.02)(.40) = .008 
 



Chapter 2:  Probability 

 91 

101.  
a. The law of total probability gives 

P(late) = ∑
=

⋅
3

1

)()|(
i

ii EPElateP  

     = (.02)(.40) + (.01)(.50) + (.05)(.10) = .018 
 

b. P(E1′ | on time) = 1 – P(E1 | on time) 

   = 601.
982.

)4)(.98(.
1

).(
).(

1 1 =−=
∩

−
timeonP

timeonEP
 

 
 
102. Let B denote the event that a component needs rework.   Then  

P(B) = ∑
=

⋅
3

1

)()|(
i

ii APABP = (.05)(.50) + (.08)(.30) + (.10)(.20) = .069 

 Thus  P(A1 | B) = 362.
069.

)50)(.05(.
=  

P(A2 | B) = 348.
069.

)30)(.08(.
=  

 P(A3 | B) = 290.
069.

)20)(.10(.
=  

 
 
103.  

a. P(all different) = 883.
)365(

)356)...(364)(365(
10

=  

P(at least two the same) = 1 - .883 = .117 
 

b. P(at least two the same) = .476 for k=22, and  = .507 for k=23 
 
c. P(at least two have the same SS number) = 1 – P(all different) 

      = 
10)1000(

)991)...(999)(1000(
1−  

      = 1 - .956 = .044 

Thus P(at least one “coincidence”) = P(BD coincidence ∪ SS coincidence)  
     = .117 + .044 – (.117)(.044) = .156  
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104.  

 

a. P(G | R1 < R2 < R3) = 67.
075.15.

15.
=

+
, P(B | R1 < R2 < R3) = .33, classify as granite. 

 

b. P(G | R1 < R3 < R2) = 2941.
2125.
0625.

=  < .05, so  classify as basalt. 

P(G | R3 < R1 < R2) = 0667.
5625.
0375.

= , so  classify as basalt. 

 
c. P(erroneous classif) = P(B classif as G) + P(G classif as B) 

= P(classif as G | B)P(B) + P(classif as B | G)P(G) 
= P(R1 < R2 < R3 | B)(.75) + P(R1 < R3 < R2 or R3 < R1 < R2 | G)(.25) 
= (.10)(.75) + (.25 + .15)(.25) = .175 
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d. For what values of p will P(G | R1<R2<R3) > .5, P(G | R1 < R3 < R2) > .5,  
P(G | R3 < R1 < R2) > .5? 

P(G | R1 < R2 < R3) = 5.
5.1.

6.
)1(1.6.

6.
>

+
=

−+ p
p

pp
p

 iff 
7
1

>p  

P(G | R1 < R3 < R2) = 5.
)1(2.25.

25.
>

−+ pp
p

 iff 
9
4

>p  

P(G | R3 < R1 < R2) = 5.
)1(7.15.

15.
>

−+ pp
p

 iff 
17
14

>p  (most restrictive) 

If 
17
14

>p  always classify as granite. 

 
 
105. P(detection by the end of the nth glimpse) = 1 – P(not detected in 1st n) 

= 1 – P(G1′ ∩ G2′ ∩ … ∩ Gn′ ) = 1 - P(G1′)P(G2′) … P(Gn′) 

= 1 – (1 – p1)(1 – p2) … (1 – pn) = 1 - )1(
1 i

n

i
p−

=
π  

 
106.  

a. P(walks on 4th pitch) = P(1st 4 pitches are balls) = (.5)4 = .0625 
 
b. P(walks on 6th) = P(2 of the 1st 5 are strikes, #6 is a ball) 

= P(2 of the 1st 5 are strikes)P(#6 is a ball) 
= [10(.5)5](.5) = .15625 
 

c. P(Batter walks) = P(walks on 4th) + P(walks on 5th) + P(walks on 6th) 
   = .0625 + .15625 + .15625 = .375 
d. P(first batter scores while no one is out) = P(first 4 batters walk) 
      =(.375)4 = .0198 

 
107.  

a. P(all in correct room) = 0417.
24
1

1234
1

==
×××

 

 
b. The 9 outcomes which yield incorrect assignments are: 2143, 2341, 2413, 3142, 3412, 

3421, 4123, 4321, and 4312, so P(all incorrect) = 375.
24
9

=  
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108.  

a. P(all full) = P(A ∩ B ∩ C) = (.6)(.5)(.4) = .12 
P(at least one isn’t full) = 1 –  P(all full) = 1 - .12 = .88 
 

b. P(only NY is full) = P(A ∩ B′  ∩ C′) = P(A)P(B′)P(C′) = .18 
Similarly, P(only Atlanta is full) = .12 and P(only LA is full) = .08 
So P(exactly one full) = .18 + .12 + .08 = .38 

 
 
109. Note: s = 0 means that the very first candidate interviewed is hired.  Each entry below is the 

candidate hired for the given policy and outcome. 
 

Outcome s=0 s=1 s=2 s=3 Outcome s=0 s=1 s=2 s=3 

1234 1 4 4 4 3124 3 1 4 4 

1243 1 3 3 3 3142 3 1 4 2 

1324 1 4 4 4 3214 3 2 1 4 

1342 1 2 2 2 3241 3 2 1 1 

1423 1 3 3 3 3412 3 1 1 2 

1432 1 2 2 2 3421 3 2 2 1 

2134 2 1 4 4 4123 4 1 3 3 

2143 2 1 3 3 4132 4 1 2 2 

2314 2 1 1 4 4213 4 2 1 3 

2341 2 1 1 1 4231 4 2 1 1 

2413 2 1 1 3 4312 4 3 1 2 

2431 2 1 1 1 4321 4 3 2 1 

s 0 1 2 3 

P(hire#1) 
24
6  

24
11  

24
10  

24
6  

  So s = 1 is best. 
 
110. P(at least one occurs) = 1 – P(none occur) 

= 1 – (1 – p1) (1 – p2) (1 – p3) (1 – p4) 
= p1p2(1 – p3) (1 – p4) + …+ (1 – p1) (1 – p2)p3p4  
+ (1 – p1) p2p3p4 + … + p1 p2p3(1 – p4) + p1p2p3p4 

 

111. P(A1) = P(draw slip 1 or 4) = ½; P(A2) = P(draw slip 2 or 4) = ½; 

P(A3) = P(draw slip 3 or 4) = ½; P(A1 ∩ A2) = P(draw slip 4) = ¼; 
P(A2 ∩ A3) = P(draw slip 4) = ¼;  P(A1 ∩ A3) = P(draw slip 4) = ¼ 
Hence P(A1 ∩ A2) = P(A1)P(A2) = ¼, P(A2 ∩ A3) = P(A2)P(A3) = ¼, 
 P(A1 ∩ A3) = P(A1)P(A3) = ¼, thus there exists pairwise independence 
P(A1 ∩ A2 ∩ A3) = P(draw slip 4) = ¼  ≠ 1/8 = P(A1)p(A2)P(A3), so the events are not 
mutually independent. 
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CHAPTER 3 
 

Section 3.1 
 
1.  

S: FFF SFF FSF FFS FSS SFS SSF SSS 

X: 0 1 1 1 2 2 2 3 

 
 
2. X = 1 if a randomly selected book is non-fiction and X = 0 otherwise 

X = 1 if a randomly selected executive is a female and X = 0 otherwise 
X = 1 if a randomly selected driver has automobile insurance and X = 0 otherwise 

 
 
3. M = the difference between the large and the smaller outcome with possible values 0, 1, 2, 3, 

4, or 5; W = 1 if the sum of the two resulting numbers is even and W = 0 otherwise, a 
Bernoulli random variable. 

 
 
4. In my perusal of a zip code directory, I found no 00000, nor did I find any zip codes with four 

zeros, a fact which was not obvious.  Thus possible X values are 2, 3, 4, 5 (and not 0 or 1).  X 
= 5 for the outcome 15213, X = 4 for the outcome 44074, and X = 3 for 94322. 

 
 
5. No.  In the experiment in which a coin is tossed repeatedly until a H results, let Y = 1 if the 

experiment terminates with at most 5 tosses and Y = 0 otherwise.  The sample space is 
infinite, yet Y has only two possible values. 

 
 
6. Possible X values are1, 2, 3, 4, … (all positive integers) 
 

Outcome: RL AL RAARL RRRRL AARRL 

X: 2 2 5 5 5 
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7.  
a. Possible values are   0, 1, 2, …, 12; discrete 
 
b. With N = # on the list, values are 0, 1, 2, … , N; discrete 
 
c. Possible values are 1, 2, 3, 4, … ; discrete 
 
d. { x: 0< x < ∞ } if we assume that a rattlesnake can be arbitrarily short or long; not 

discrete 
 
e. With c = amount earned per book sold, possible values are 0, c, 2c, 3c, … , 10,000c; 

discrete 
 
f. { y: 0 < y < 14} since 0 is the smallest possible pH and 14 is the largest possible pH; not 

discrete 
 
g. With m and M denoting the minimum and maximum possible tension, respectively, 

possible values are { x: m < x < M }; not discrete 
 
h. Possible values are 3, 6, 9, 12, 15, … --   i.e. 3(1), 3(2), 3(3), 3(4), …giving a first 

element, etc,; discrete 
 
 
8. Y = 3 : SSS;  Y = 4:  FSSS;  Y = 5:  FFSSS, SFSSS; 

Y = 6: SSFSSS, SFFSSS, FSFSSS, FFFSSS; 
Y = 7: SSFFS, SFSFSSS, SFFFSSS, FSSFSSS, FSFFSSS, FFSFSSS, FFFFSSS 

 
 
9.  

a. Returns to 0 can occur only after an even number of tosses; possible S values are 2, 4, 6, 
8, …(i.e. 2(1), 2(2), 2(3), 2(4),…) an infinite sequence, so x is discrete. 

 
b. Now a return to 0 is possible after any number of tosses greater than 1, so possible values 

are 2, 3, 4, 5, … (1+1,1+2, 1+3, 1+4, …, an infinite sequence) and X is discrete 
 
10.  

a. T = total number of pumps in use at both stations.  Possible values: 0, 1, 2, 3, 4, 5, 6,  7, 
8, 9, 10 

 
b. X: -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 
 
c. U: 0, 1, 2, 3, 4, 5, 6 
 
d. Z: 0, 1, 2 
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Section 3.2 
 
11.  

a.  

x 4 6 8  

P(x) .45 .40 .15  

 
b.  

 
c. P(x = 6) = .40 + .15 = .55  P(x > 6) = .15 

 
 
12.  

a. In order for the flight to accommodate all the ticketed passengers who show up, no more 
than 50 can show up.  We need y = 50.    
P(y = 50) = .05 + .10 + .12 + .14 + .25 + .17 = .83 

 
b. Using the information in a. above, P(y > 50) = 1 - P(y = 50) = 1 - .83 = .17 
 
c. For you to get on the flight, at most 49 of the ticketed passengers must show up.  P(y = 

49) = .05 + .10 + .12 + .14 + .25 = .66.  For the 3rd person on the standby list, at most 47 
of the ticketed passengers must show up.  P(y = 44) = .05 + .10 + .12 = .27 

 
 

87654
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13.  
a. P(X ≤ 3) = p(0) + p(1) + p(2) + p(3) = .10+.15+.20+.25 = .70 
 
b. P(X < 3) = P(X ≤ 2) = p(0) + p(1) + p(2) = .45 
 
c. P(3 ≤ X) = p(3) + p(4) + p(5) + p(6) = .55 
 
d. P( 2 ≤X≤ 5) = p(2) + p(3) + p(4) + p(5) = .71 
 
e. The number of lines not in use is 6 – X , so 6 – X = 2 is equivalent to X = 4, 6 – X = 3 to 

X = 3, and 6 – X = 4 to X = 2.  Thus we desire P( 2 ≤X≤ 4) = p(2) + p(3) + p(4) = .65 
 
f. 6 – X ≥ 4 if 6 – 4 ≥ X, i.e. 2 ≥ X, or X ≤ 2, and P(X ≤ 2) = .10+.15+.20 = .45 

 
 
14.  

a. ∑
=

5

1

)(
y

yp  = K[1 + 2 + 3 + 4 + 5] = 15K = 1 15
1=⇒ K  

 
b. P(Y ≤ 3) = p(1) + p(2) + p(3) = 4.15

6 =  

 

c. P( 2 ≤Y≤ 4) = p(2) + p(3) + p(4) = 6.15
9 =  

 

d. 1
50
55

]2516941[
50
1

50

5

1

2

≠=++++=






∑
=y

y
; No 

 
 

15.  
a. (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) 
 
b. P(X = 0) = p(0) = P[{ (3,4) (3,5) (4,5)}] = 3.10

3 =  

P(X = 2) = p(2) = P[{ (1,2) }] = 1.10
1 =  

P(X = 1) = p(1) = 1 – [p(0) + p(2)] = .60, and p(x) = 0 if x ≠ 0, 1, 2 
 

c. F(0) = P(X ≤ 0) = P(X = 0) = .30 
F(1) = P(X ≤ 1) = P(X = 0 or 1) = .90 
F(2) = P(X ≤ 2) = 1 

 
The c.d.f. is  

 

 F(x) = 











1
90.
30.
0

 

x
x
x

x

≤
<≤
<≤

<

2
21
10

0
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16.  

a.  

x Outcomes p(x) 

0 FFFF (.7)4                =.2401 

1 FFFS,FFSF,FSFF,SFFF 4[(.7)3(.3)]       =.4116 

2 FFSS,FSFS,SFFS,FSSF,SFSF,SSFF 6[(.7)2(.3)2]     =.2646 

3 FSSS, SFSS,SSFS,SSSF 4[(.7)(.3)3]       =.0756 

4 SSSS (.3)4                =.0081 

 

 
b.  

 
c. p(x) is largest for X = 1 
 
d. P(X ≥ 2) = p(2) + p(3) + p(4) = .2646+.0756+.0081 = .3483 
 This could also be done using the complement. 

 
 
17.  

a. P(2) = P(Y = 2) = P(1st 2 batteries are acceptable) 
         = P(AA) = (.9)(.9) = .81 

 
b. p(3) = P(Y = 3) = P(UAA or AUA) = (.1)(.9)2 + (.1)(.9)2 = 2[(.1)(.9)2] = .162 
 
c. The fifth battery must be an A, and one of the first four must also be an A.  Thus, p(5) = 

P(AUUUA or UAUUA or UUAUA or UUUAA) = 4[(.1)3(.9)2] = .00324 
 
d. P(Y = y) = p(y) = P(the y th is an A and so is exactly one of the first y – 1) 
  =(y – 1)(.1)y-2(.9)2, y = 2,3,4,5,… 
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.40
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18.  
a. p(1) = P(M = 1 ) = P[(1,1)] = 36

1  

 p(2) = P(M = 2 ) = P[(1,2) or (2,1) or (2,2)] = 36
3  

 p(3) = P(M = 3 ) = P[(1,3) or (2,3) or (3,1) or (3,2) or (3,3)] = 36
5  

 Similarly, p(4) = 36
7 ,  p(5) = 36

9 , and p(6) = 36
11  

 

b. F(m) =  0 for m < 1, 36
1  for 1 ≤ m < 2,  

  F(m) = 

















1

0

36
25
36
16
36
9
36
4
36
1

 

6
65
54
43
32
21
1

≥
<≤
<≤
<≤
<≤
<≤
<

m
m
m
m
m
m
m

 

19. Let A denote the type O+ individual ( type O positive blood) and B, C, D, the other 3 
individuals.  Then p(1) – P(Y = 1) = P(A first) = 4

1  = .25 

p(2) = P(Y = 2) = P(B, C, or D first and A next) = 25.4
1

3
1

4
3 ==⋅  

p(4) = P(Y = 3) = P(A last) = 25.4
1

2
1

3
2

4
3 ==⋅⋅  

So p(3) = 1 – (.25+.25+.25) = .25 
 
 
20. P(0) = P(Y = 0) = P(both arrive on Wed.) = (.3)(.3) = .09 
 P(1) = P(Y = 1) = P[(W,Th)or(Th,W)or(Th,Th)]  

    = (.3)(.4) + (.4)(.3) + (.4)(.4) = .40 
 P(2) = P(Y = 2) = P[(W,F)or(Th,F)or(F,W) or (F,Th) or (F,F)] = .32 
 P(3) = 1 – [.09 + .40 + .32] = .19 
 
 

876543210
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21. The jumps in F(x) occur at x = 0, 1, 2, 3, 4, 5, and 6, so we first calculate F( ) at each of these 
values: 

  F(0) = P(X ≤ 0) = P(X = 0) = .10 
  F(1) = P(X ≤ 1) = p(0) + p(1) = .25 
  F(2) = P(X ≤ 2) = p(0) + p(1) + p(2) = .45 
  F(3) = .70, F(4) = .90, F(5) = .96, and F(6) = 1. 
 The c.d.f. is  

  F(x) = 



















00.1
96.
90.
70.
45.
25.
10.
00.

 

x
x
x
x
x
x
x
x

≤
<≤
<≤
<≤
<≤
<≤
<≤
<

6
65
54
43
32
21
10
0

 

 Then P(X ≤ 3) = F(3) = .70, P(X < 3) = P(X ≤ 2) = F(2) = .45,  
P(3 ≤ X) = 1 – P(X ≤ 2) = 1 – F(2) = 1 - .45 = .55,  
and P(2 ≤ X ≤ 5) = F(5) – F(1) = .96 - .25 = .71 

 
 
22.  

a. P(X = 2) = .39 - .19 = .20 
 
b. P(X > 3) = 1 - .67 = .33 
 
c. P(2 ≤ X ≤ 5) = .92 - .19 = .78 
 
d. P(2 < X < 5) = .92 - .39 = .53 
 
 

23.  
a. Possible X values are those values at which F(x) jumps, and the probability of any 

particular value is the size of the jump at that value.  Thus we have: 
 

x 1 3 4 6 12 

p(x) .30 .10 .05 .15 .40 

 
b. P(3 ≤ X ≤ 6) = F(6) – F(3-) = .60 - .30 = .30 

P(4 ≤ X) = 1 – P(X < 4) = 1 – F(4-) = 1 - .40 = .60 
 
 
24. P(0) = P(Y = 0) = P(B first) = p 

P(1) = P(Y = 1) = P(G first, then B) = P(GB) = (1 – p)p 
P(2) = P(Y = 2) = P(GGB) = (1 – p)2p 
Continuing, p(y) = P(Y=y) = P(y G’s and then a B) = (1 – p)yp for y = 0,1,2,3,… 
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25.  
a. Possible X values are 1, 2, 3, … 

 P(1) = P(X = 1 ) = P(return home after just one visit) = 3
1  

 P(2) = P(X = 2) = P(second visit and then return home) = 3
1

3
2 ⋅  

 P(3) = P(X = 3) = P(three visits and then return home) = ( ) 3
12

3
2 ⋅  

 In general p(x) = ( ) ( )3
11

3
2 −x

 for x = 1, 2, 3, … 

 
b. The number of straight line segments is Y = 1 + X (since the last segment traversed 

returns Alvie to O), so as in a, p(y) = ( ) ( )3
12

3
2 −y

 for y =  2, 3, … 

 
c. Possible Z values are 0, 1, 2, 3 , … 
 p(0) = P(male first and then home) = 6

1
3
1

2
1 =⋅ , 

 p(1) = P(exactly one visit to a female) = P(female 1st, then home) + P(F, M, home) + 
P(M, F, home) + P(M, F, M, home)  

 = ( )( ) ( )( )( ) ( )( )( ) ( )( )( )( )3
1

3
2

3
2

2
1

3
1

3
2

2
1

3
1

3
2

2
1

3
1

2
1 +++  

 = ( )( )( ) ( )( )( )( ) ( )( )( ) ( )( )( )( )3
1

3
5

3
2

2
1

3
1

3
5

2
1

3
1

3
2

3
2

2
1

3
1

3
2

2
1 11 +=+++  

 where the first term corresponds to initially visiting a female and the second term 
corresponds to initially visiting a male.  Similarly,  

 p(2) = ( )( ) ( )( ) ( )( ) ( )( )3
1

3
52

3
2

2
1

3
1

3
52

3
2

2
1 + .  In general, 

 

 p(z) = ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 22
3
2

54
24

3
1

3
522

3
2

2
1

3
1

3
522

3
2

2
1 −−− =+ zzz

 for z = 1, 2, 3, … 
 
 

26.  
a. The sample space consists of all possible permutations of the four numbers 1, 2, 3, 4: 
  
  

outcome y value outcome y value outcome y value 
1234 4 2314 1 3412 0 
1243 2 2341 0 3421 0 
1324 2 2413 0 4132 1 
1342 1 2431 1 4123 0 
1423 1 3124 1 4213 1 
1432 2 3142 0 4231 2 
2134 2 3214 2 4312 0 
2143 0 3241 1 4321 0 

      
 
b. Thus p(0) = P(Y = 0) = 24

9 , p(1) = P(Y = 1) = 24
8 , p(2) = P(Y = 2) = 24

6 , 

p(3) = P(Y = 3) = 0, p(3) = P(Y = 3) = 24
1 . 
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27. If x1 < x2, F(x2) = P(X ≤ x2) = P( {X ≤ x1} ∪ { x1 < X ≤ x2})  
   = P( X ≤ x1) + P( x1 < X ≤ x2 ) ≥ P( X ≤ x1) = F(x1). 
 F(x1) = F(x2) when P( x1 < X ≤ x2 ) = 0. 
 
 

Section 3.3 
 
28.  

a. E (X) = ∑
=

⋅
4

0

)(
x

xpx  

   = (0)(.08) + (1)(.15) + (2)(.45) + (3)(.27) + (4)(.05) = 2.06 
 

b. V(X) = ∑
=

⋅−
4

0

2 )()06.2(
x

xpx = (0 – 2.06)2(.08) + …+ (4 – 2.06)2(.05) 

  = .339488+.168540+.001620+.238572+.188180 = .9364 
 

c. σx= 9677.9364. =  
 

d. V(X) = 2
4

0

2 )06.2()( −







⋅∑

=x

xpx = 5.1800 – 4.2436 = .9364 

 
 
29.  

a. E (Y) = ∑
=

⋅
4

0

)(
x

ypy = (0)(.60) + (1)(.25) + (2)(.10) + (3)(.05) = .60 

 

b. E (100Y2) = ∑
=

⋅
4

0

2 )(100
x

ypy = (0)(.60) + (100)(.25)  

    + (400)(.10) + (900)(.05) = 110 
 
 
30. E (Y) = .60;  

E (Y2) = 1.1 
V(Y) = E(Y2) – [E(Y)]2  = 1.1 – (.60)2 = .74 

σy= 8602.74. =  
E (Y) ± σy= .60 ± .8602 = (-.2602, 1.4602) or ( 0, 1). 
P(Y = 0) + P(Y =1) = .85 
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31.  
a. E (X) = (13.5)(.2) + (15.9)(.5) + (19.1)(.3) = 16.38, 

E (X2) = (13.5)2(.2) + (15.9)2(.5) + (19.1)2(.3) = 272.298, 
V(X) = 272.298 – (16.38)2 = 3.9936 

 
b. E (25X – 8.5) = 25 E (X) – 8.5 = (25)(16.38) – 8.5 = 401 
 
c. V(25X – 8.5) = V(25X) = (25)2V(X) = (625)(3.9936) = 2496 
 
d. E[h(X)] = E[X - .01X2] = E(X) - .01E(X2) = 16.38 – 2.72 = 13.66 

 
 
32.  

a. E(X2) = ∑
=

⋅
1

0

2 )(
x

xpx = (02)((1 – p) + (12)(p) = (1)(p) = p 

 
b. V(X) = E(X2) – [E(X)]2  = p – p2 = p(1 – p) 
 
c. E(x79) = (079)(1 – p) + (179)(p) = p 

 
 

33. E(X) = ∑∑∑
∞

=

∞

=

∞

=

=⋅=⋅
1

2
1

3
1

1
)(

xxx x
c

x
c

xxpx , but it is a well-known result from the theory of 

infinite series that ∑
∞

=1
2

1

x x
 < ∞, so E(X) is finite. 

 
 
34. Let h(X) denote the net revenue (sales revenue – order cost) as a function of X.  Then h3(X) 

and h4(X) are the net revenue for 3 and 4 copies purchased, respectively.  For x = 1 or 2 , 
h3(X) = 2x – 3, but at x = 3,4,5,6 the revenue plateaus. Following similar reasoning, h4(X) = 
2x – 4 for x=1,2,3, but plateaus at 4 for x = 4,5,6. 

 

x 1 2 3 4 5 6 

h3(x) -1 1 3 3 3 3 

h4(x) -2 0 2 4 4 4 

p(x) 15
1  15

2  15
3  15

4  15
3  15

2  

  

E[h3(X)] = ∑
=

⋅
6

1
3 )()(

x

xpxh = (-1)( 15
1 ) + … + (3)( 15

2 ) = 2.4667 

Similarly, E[h4(X)] = ∑
=

⋅
6

1
4 )()(

x

xpxh = (-2)( 15
1 ) + … + (4)( 15

2 ) = 2.6667 

Ordering 4 copies gives slightly higher revenue, on the average. 
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35.  

P(x) .8 .1 .08 .02 

x 0 1,000 5,000 10,000 

H(x) 0 500 4,500 9,500 

 
E[h(X)] = 600.  Premium should be $100 plus expected value of damage minus deductible or 
$700. 

 
 

36. E(X) = ∑∑
==

+
=



 +

=





=






⋅

n

x

n

x

nnn
n

x
nn

x
11 2

1
2

)1(111
 

 E(X2) = ∑∑
==

++
=



 ++

=





=






⋅

n

x

n

x

nnnnn
n

x
nn

x
1

2

1

2

6
)12)(1(

6
)12)(1(111

 

 So V(X) = 
12

1
2

1
6

)12)(1( 22 −
=






 +

−
++ nnnn

 

 
 

37. E[h(X)] = E 408.
1

6
1

)(
11 6

1

6

1

==⋅





=






 ∑∑

== xx x
xp

xX
, whereas 286.

5.3
1

= , so you 

expect to win more if you gamble. 
 
 

38. E(X) = ∑
=

⋅
4

1

)(
x

xpx  = 2.3, E(X2) = 6.1, so V(X) = 6.1 – (2.3)2 = .81 

 
Each lot weighs 5 lbs, so weight left = 100 – 5x.   
Thus the expected weight left is 100 – 5E(X) = 88.5,  
and the variance of the weight left is  
V(100 – 5X) = V(-5X) = 25V(x) = 20.25. 

 
 
39.  

a. The line graph of the p.m.f. of –X is just the line graph of the p.m.f. of X reflected about 
zero, but both have the same degree of spread about their respective means, suggesting 
V(-X) = V(X). 

 
b. With a = -1, b = 0, V(aX + b) = V(-X) = a2V(X). 
 
 

 

40. V(aX + b) = ∑∑ +−+=⋅+−+
xx

xpbabaXxpbaXEbaX )()]([)()]([ 22 µ  

 ).()(][)()]([ 2222 XVaxpXaxpaaX
xx

=−=−= ∑∑ µµ  
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41.  
a. E[X(X-1)] = E(X2) – E(X),  ⇒E(X2) = E[X(X-1)] + E(X) = 32.5 
 
b. V(X) = 32.5 – (5)2 = 7.5 
 
c. V(X) = E[X(X-1)] + E(X) – [E(X)]2 

 
 
42. With a = 1 and b = c, E(X – c) = E(aX + b) =  aE(X) + b = E(X) – c.  When    c = µ,  E(X - µ) 

= E(X) - µ = µ - µ = 0, so the expected deviation from the mean is zero. 
 
 
43.  

a.  
 

k 2 3 4 5 10 

2

1
k

 .25 .11 .06 .04 .01 

 
 

b. 64.2)(
6

0

=⋅= ∑
=x

xpxµ , ,37.2)( 2
6

0

22 =−







⋅= ∑

=

µσ
x

xpx 54.1=σ  

Thus µ - 2σ = -.44, and µ + 2σ = 5.72,  
so P(|x-µ| ≥ 2σ) = P(X is lat least 2 s.d.’s from µ) 

          = P(x is either ≤-.44 or ≥ 5.72) = P(X = 6) = .04. 
 Chebyshev’s bound of .025 is much too conservative.  For K = 3,4,5, and 10, P(|x-µ| ≥ 

kσ) = 0, here again pointing to the very conservative nature of the bound 
2

1
k

.  

 
c. µ = 0 and 3

1=σ , so P(|x-µ| ≥ 3σ) = P(| X | ≥ 1) 

  = P(X = -1 or +1) = 9
1

18
1

18
1 =+ , identical to the upper bound. 

 

d. Let p(-1) = 25
24

50
1

50
1 )0(,)1(, ==+ pp . 
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Section 3.4 
 
44.  

a. b(3;8,.6) = 53 )4(.)6(.
3
8









 = (56)(.00221184) = .124 

 

b. b(5;8,.6) = 35 )4(.)6(.
5
8









 = (56)(.00497664) = .279 

 
c. P( 3 ≤ X ≤ 5) = b(3;8,.6) + b(4;8,.6) + b(5;8,.6) = .635 
 

d. P(1 ≤ X) = 1 – P(X = 0 ) = 1 - 120 )9(.)1(.
0

12








 = 1 – (.9)12 = .718 

 
 
45.  

a. B(4;10,.3) = .850 
 
b. b(4;10,.3) = B(4;10,.3) - B(3;10,.3) = .200 
 
c. b(6;10,.7) = B(6;10,.7) - B(5;10,.7) = .200 
 
d. P( 2 ≤ X ≤ 4) = B(4;10,.3) - B(1;10,.3) = .701 
 
e. P(2 < X) = 1 - P(X ≤ 1) = 1 - B(1;10,.3) = .851 
 
f. P(X ≤ 1) = B(1;10,.7) = .0000 
 
g. P(2 < X < 6) = P( 3 ≤ X ≤ 5) = B(5;10,.3) - B(2;10,.3) = .570 

 
 
46. X ~ Bin(25, .05) 

a. P(X ≤ 2) = B(2;25,.05) = .873 
 
b. P(X ≥ 5) = 1 - P(X ≤ 4) = 1 –  B(4;25,.05) = .1 - .993 = .007 
 
c. P( 1 ≤ X ≤ 4) = P(X ≤ 4) – P(X ≤ 0) = .993 - .277 = .716 
 
d. P(X = 0) = P(X ≤ 0) = .277 
 
e. E(X) = np = (25)(.05) = 1.25 

V(X) = np(1 – p) = (25)(.05)(.95) =1.1875 
σx = 1.0897 
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47. X ~ Bin(6, .10) 

a. P(X = 1) = xnx pp
x
n −−








)1()( = 3543.)9(.)1(.

1
6 51 =








 

 
b. P(X ≥ 2) = 1 – [P(X = 0) + P(X = 1)].   

From a , we know P(X = 1) = .3543, and P(X = 0) = 5314.)9(.)1(.
0
6 60 =








. 

Hence P(X ≥ 2) = 1 – [.3543 + .5314] = .1143 
 

c. Either 4 or 5 goblets must be selected 

i) Select 4 goblets with zero defects: P(X = 0) = 6561.)9(.)1(.
0
4 40 =








. 

ii) Select 4 goblets, one of which has a defect, and the 5th is good: 

 26244.9.)9(.)1(.
1
4 31 =×
















 

So the desired probability is  .6561 + .26244 = .91854 
 
 
48. Let S = comes to a complete stop, so p = .25 , n = 20 
 

a. P(X ≤ 6) = B(6;20,.25) = .786 
 
b. P(X = 6) = b(6;20,.20) = B(6;20,.25) - B(5;20,.25) = .786 - .617 = .169 
 
c. P(X ≥ 6) = 1 – P(X ≤ 5) = 1 - B(5;20,.25) = 1 - .617 = .383 
 
d. E(X) = (20)(.25) = 5.  We expect 5 of the next 20 to stop. 
 

 
49. Let S = has at least one citation.  Then p = .4, n = 15 
 

a. If at least 10 have no citations (Failure), then at most 5 have had at least one (Success): 
 P(X ≤ 5) = B(5;15,.40) = .403 
 
b. P(X ≤ 7) =  B(7;15,.40) =  .787  
 
c. P( 5 ≤ X ≤ 10) = P(X ≤ 10) – P(X ≤ 4) = .991 - .217 = .774 
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50. X ~ Bin(10, .60) 
a. P(X ≥ 6) = 1 – P(X ≤ 5) = 1 - B(5;20,.60) = 1 - .367 = .633 
 
b. E(X) = np = (10)(.6) = 6;  V(X) = np(1 – p) = (10)(.6)(.4) = 2.4; 

σx = 1.55 
E(X) ± σx = ( 4.45, 7.55 ). 
We desire P( 5 ≤ X ≤ 7) = P(X ≤ 7) – P(X ≤ 4) = .833 - .166 = .667 

 
c. P( 3 ≤ X ≤ 7) = P(X ≤ 7) – P(X ≤ 2) = .833 - .012 = .821 

 
 
51. Let S represent a telephone that is submitted for service while under warranty and must be 

replaced.  Then p = P(S) = P(replaced | submitted)⋅P(submitted) = (.40)(.20) = .08.  Thus X, 
the number among the company’s 10 phones that must be replaced, has a binomial 

distribution with n = 10, p = .08, so p(2) = P(X=2) = 1478.)92(.)08(.
2

10 82 =







 

 
 
52. X ∼ Bin (25, .02) 

a. P(X=1) = 25(.02)(.98)24 = .308 
 
b. P(X=1) = 1 – P(X=0) = 1 – (.98)25 = 1 - .603 = .397 
 
c. P(X=2) = 1 – P(X=1) = 1 – [.308 + .397] 
 

d. 5.)02(.25 ==x ;  7.49.)98)(.02(.25 ==== npqσ   

9.14.15.2 =+=+ σx  So P(0 = X = 1.9 = P(X=1) = .705 
 

e. 03.3
25

)3(5.24)5.4(5.
=

+
 hours 

 
 
53. X = the number of flashlights that work.  

Let event B = {battery has acceptable voltage}.   
Then  P(flashlight works) = P(both batteries work) = P(B)P(B) = (.9)(.9) = .81  We must 
assume that the batteries’ voltage levels are independent. 
X∼ Bin (10, .81).   P(X=9) = P(X=9) + P(X=10) 

( ) ( ) ( ) 407.122.285.81.
10
10

19.81.
9

10 109 =+=







+








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54. Let p denote the actual proportion of defectives in the batch, and X denote the number of 
defectives in the sample. 

 
a. P(the batch is accepted) = P(X ≤ 2) = B(2;10,p) 
  

p .01 .05 .10 .20 .25 

P(accept) 1.00 .988 .930 .678 .526 

 
 
b.  

 
c. P(the batch is accepted) = P(X ≤ 1) = B(1;10,p)  

p .01 .05 .10 .20 .25 

P(accept) .996 .914 .736 .376 .244 

 
d. P(the batch is accepted) = P(X ≤ 2) = B(2;15,p)  

p .01 .05 .10 .20 .25 

P(accept) 1.00 .964 .816 .398 .236 

  
e. We want a plan for which P(accept) is high for p ≤ .1 and low for p > .1 

The plan in  d seems most satisfactory in these respects. 
 
 

1.00.90.80.70.60.50.40.30.20.10.0

1.0

0.5

0.0

p

P(
ac

c
ep

t)
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55.  
a. P(rejecting claim when p = .8) = B(15;25,.8) = .017 
 
b. P(not rejecting claim when p = .7) = P(X ≥ 16 when p = .7) 

= 1 - B(15;25,.7) = 1 - .189 = .811; for p = .6, this probability is  
= 1 - B(15;25,.6) = 1 - .575 = .425. 
 

c. The probability of rejecting the claim when p = .8 becomes B(14;25,.8) = .006, smaller 
than in a above.  However, the probabilities of b above increase to .902 and .586, 
respectively. 

 
 
56. h(x) = 1 ⋅ X + 2.25(25 – X) = 62.5 – 1.5X, so E(h(X)) = 62.5 – 1.5E(x) 
 = 62.5 – 1.5np – 62.5 – (1.5)(25)(.6) = $40.00 
 
 
57. If topic A is chosen,  when n = 2, P(at least half received)  

= P(X ≥ 1) = 1 – P(X = 0) = 1 – (.1)2 = .99 
If B is chosen, when n = 4, P(at least half received)  

 = P(X ≥ 2) = 1 – P(X ≤ 1) = 1 – (0.1)4 – 4(.1)3(.9) = .9963 
 Thus topic B should be chosen.  

If p = .5, the probabilities are .75 for A and .6875 for B, so now A should be chosen. 
 
 
58.  

a. np(1 – p) = 0 if either p = 0  (whence every trial is a failure, so there is no variability in 
X) or if p = 1 (whence every trial is a success and again there is no variability in X) 

 

b. [ ])1( pnp
dp
d

−  = n[(1 – p) + p(-1)] = n[1 – 2p = 0   ⇒  p = .5, which is easily 

seen to correspond to a maximum value of V(X). 
 
 
59.  

a. b(x; n, 1 – p) = xnx pp
x
n −−








)()1( = xxn pp

xn
n

)1()( −







−

−  = b(n-x; n, p) 

 Alternatively, P(x S’s when P(S) = 1 – p) = P(n-x F’s when P(F) = p), since the two 
events are identical), but the labels S and F are arbitrary so can be interchanged (if P(S) 
and P(F) are also interchanged), yielding P(n-x S’s when P(S) = 1 – p) as desired. 

 
b. B(x;n,1 – p)  = P(at most x S’s when P(S) = 1 – p)  
   = P(at least n-x F’s when P(F) = p) 
   = P(at least n-x S’s when P(S) = p)  
   = 1 – P(at most n-x-1 S’s when P(S) = p) 
   = 1 – B(n-x-1;n,p) 
 
c. Whenever p > .5, (1 – p) < .5 so probabilities involving X can be calculated using the 

results a and b in combination with tables giving probabilities only for p ≤ .5 
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60. Proof of E(X) = np: 
 

E(X)  = xnx
n

x

n

x

xnx pp
xnx

n
xpp

x
n

x −

==

− −
−

⋅=−



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n

x
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pp
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n
nppp
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=

−

=

−
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−− ∑∑ )1(
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)1(

)!()!1(
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 = yny
n

y

pp
yny

n
np −−

=

−
−−

−∑ 1

0

)1(
)!1()!(

)!1(
 (y replaces x-1) 

 = 








−






 −
∑

−

=

−−
1
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1)1(
1n

y

yny pp
y

n
np  

The expression in braces is the sum over all possible values y = 0, 1, 2,  … , n-1 of a binomial 
p.m.f. based on n-1 trials, so equals 1, leaving only np, as desired. 
 
 

61.  
a. Although there are three payment methods, we are only concerned with S = uses a debit 

card and F = does not use a debit card.  Thus we can use the binomial distribution.  So n 
= 100 and p = .5.  E(X) = np = 100(.5) = 50, and V(X) = 25. 

 
b. With S = doesn’t pay with cash, n = 100 and p = .7, E(X) = np = 100(.7) = 70, and V(X) 

= 21. 
 
 
62.  

a. Let X = the number with reservations who show, a binomial r.v. with n = 6 and p = .8.  
The desired probability is  
P(X = 5 or 6) = b(5;6,.8) + b(6;6,.8) = .3932 + .2621 = .6553 

 
b. Let h(X) = the number of available spaces.  Then 

When x is: 0 1 2 3 4 5 6  
H(x) is: 4 3 2 1 0 0 0  

E[h(X)] = ∑
=

⋅
6

0

)8,.6;()(
x

xbxh  = 4(.000) + 3(.002) = 2(.015 + 3(.082) = .277 

 
c. Possible X values are 0, 1, 2, 3, and 4.  X = 0 if there are 3 reservations and none show or 

…or 6 reservations and none show, so 
P(X = 0) = b(0;3,.8)(.1) + b(0;4,.8)(.2) + b(0;5,.8)(.3) + b(0;6,.8)(.4)  

 = .0080(.1) + .0016(.2) + .0003(.3) + .0001(.4) = .0013 
P(X = 1) = b(1;3,.8)(.1) + … + b(1;6,.8)(.4) = .0172 
P(X = 2) = .0906, P(X = 3) = .2273, 
P(X = 4) = 1 – [ .0013 + … + .2273 ] = .6636 
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63. When p = .5, µ = 10 and σ = 2.236, so 2σ = 4.472 and 3σ = 6.708.   
 The inequality |X – 10| ≥ 4.472 is satisfied if either X ≤ 5 or X ≥ 15, or P(|X - µ| ≥ 2σ) = P(X 

≤ 5 or X ≥ 15) = .021 + .021 = .042. 
 
 In the case p = .75, µ = 15 and σ = 1.937, so 2σ = 3.874 and 3σ = 5.811. P(|X - 15| ≥ 3.874) = 

P(X ≤ 11 or X ≥ 19) = .041 + .024 = .065, whereas  P(|X - 15| ≥ 5.811) = P(X ≤ 9) = .004.  All 
these probabilities are considerably less than the upper bounds .25(for k = 2) and .11 (for k = 
3) given by Chebyshev. 

 
 
 

Section 3.5 
 
64.  

a. X ∼ Hypergeometric N=15, n=5, M=6 
 

b. P(X=2) = 280.
3003
840

5
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3
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P(X=2) = P(X=0) + P(X=1) + P(X=2) 

573.
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=  

P(X=2) = 1 – P(X=1) = 1 – [P(X=0) + P(X=1)] = 706.
3003

756126
1 =

+
−  

 

c. E(X) = 2
15
6

5 =

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
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; V(X) = 857.
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65. X∼h(x; 6, 12, 7) 

a. P(X=5) = 114.
924
105

6
12

1
5

5
7

==



























 

 
b. P(X=4) = 1 – P(X=5) = 1 – [P(X=5) + P(X=6)] = 

879.121.1
924

7105
1
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c. E(X) = 5.3
12

76
=






 ⋅

; ( )( )( )( ) 892.795.6 12
5

12
7

11
6 ===σ                                 

P(X > 3.5 + .892) = P(X > 4.392) = P(X=5) = .121 (see part b) 
 
d. We can approximate the hypergeometric distribution with the binomial if the population 

size and the number of successes are large:  h(x;15,40,400) approaches b(x;15,.10).  So 
P(X=5) ˜ B(5; 15, .10) from the binomial tables = .998 

 
 
66.  

a. P(X = 10) = h(10;15,30,50) = 2070.

15
50

5
20

10
30

=
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

 

b. P(X ≥ 10) = h(10;15,30,50) + h(11;15,30,50) + … + h(15;15,30,50) 
   = .2070+.1176+.0438+.0101+.0013+.0001 = .3799 
 
c. P(at least 10 from the same class) = P(at least 10 from second class [answer from b]) + 

P(at least 10 from first class).  But “at least 10 from 1st class” is the same as “at most 5 
from the second”  or P(X ≤ 5). 

   
P(X ≤ 5) = h(0;15,30,50) + h(1;15,30,50) + … + h(5;15,30,50) 
         = 11697+.002045+.000227+.000150+.000001+.000000 

         = .01412  
So the desired probability = P(x ≥ 10) + P(X ≤ 5) 
     = .3799 + .01412 = .39402 
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d. E(X) = 9
50
30

15 =⋅=⋅
N
M

n  

V(X) = ( ) 5714.2
50
30

19
49
35

=

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 −








 

σx = 1.6036 
 

e. Let Y = 15 – X.  Then E(Y) = 15 – E(X) = 15 – 9 = 6 
V(Y) = V(15 – X) – V(X) = 2.5714, so σY = 1.6036 

 
 
67.  

a. Possible values of X are 5, 6, 7, 8, 9, 10. (In order to have less than 5 of the granite, there 
would have to be more than 10 of the basaltic).  

 P(X = 5) = h(5; 15,10,20) = 0163.
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.   

 Following the same pattern for the other values, we arrive at the pmf, in table form 
below. 

x 5 6 7 8 9 10 

p(x) .0163 .1354 .3483 .3483 .1354 .0163 
 
 
b. P(all 10 of one kind or the other) = P(X = 5) + P(X = 10) = .0163 + .0163 = .0326 

 

c. E(X) = 5.7
20
10

15 =⋅=⋅
N
M

n ; V(X) = ( ) 9868.
20
10

15.7
19
5

=

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






;                     

σx = .9934 
 

µ ± σ = 7.5 ± .9934 = (6.5066, 8.4934), so we want  
P(X = 7) + P(X = 8) = .3483 + .3483 = .6966 

 
 
68.  

a. h(x; 6,4,11) 
 

b. 18.2
11
4

6 =

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

⋅  
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69.  
a. h(x; 10,10,20)  (the successes here are the top 10 pairs, and a sample of 10 pairs is drawn 

from among the 20) 
 
b. Let X = the number among the top 5 who play E-W.  Then P(all of top 5 play the same 

direction) = P(X = 5) + P(X = 0) = h(5;10,5,20) +  h(5;10,5,20) 

  = 033.
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c. N = 2n; M = n; n = n 

h(x;n,n,2n) 

E(X) = n
n

n
n

2
1

2
=⋅ ; 

V(X) = 







⋅⋅








−
=






 −⋅⋅








−
=






 −⋅⋅⋅








−
−

2
1

2122
1

2122
1

212
2 n

n
n

n
nn

n
n

n
n

n
n

n
n

nn
 

 
 
70.  

a. h(x;10,15,50) 
 

b. When N is large relative to n, h(x; n,M,N) ,,; 





=

N
M

nxb&  

so h(x;10,150,500) ( )3,.10;xb=&  
 

c. Using the hypergeometric model, E(X) = 3
500
150

10 =





⋅  and  

V(X) = 06.2)1.2(982.)7)(.3)(.10(
499
490

==  

Using the binomial model, E(X) = (10)(.3) = 3, and  
V(X) = 10(.3)(.7) = 2.1 
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71.  
a. With S = a female child and F = a male child, let X = the number of F’s before the 2nd S.  

Then P(X = x) = nb(x;2, .5) 
 
b. P(exactly 4 children) = P(exactly 2 males) 
      = nb(2;2,.5) = (3)(.0625) = .188 
 
c. P(at most 4 children) = P(X ≤ 2)  

  = ∑
=

2

0

)5,.2;(
x

xnb = .25+2(.25)(.5) + 3(.0625) = .688 

 

d. E(X) = 2
5.

)5)(.2(
= , so the expected number of children = E(X + 2)  

= E(X) + 2 = 4 
 
 
72. The only possible values of X are 3, 4, and 5. 

p(3) = P(X = 3) = P(first 3 are B’s or first 3 are G’s) = 2(.5)3 = .250 
p(4) = P(two among the 1st three are B’s and the 4th is a B) + P(two among the 1st three are 

G’s and the 4th is a G) = 375.)5(.
2
3

2 4 =







⋅  

p(5) = 1 – p(3) – p(4) = .375 
 
 
73. This is identical to an experiment in which a single family has children until exactly 6 females 

have been born( since p = .5 for each of the three families), so p(x) = nb(x;6,.5) and E(X) = 6 
( = 2+2+2, the sum of the expected number of males born to each one.) 

 
 

74. The interpretation of “roll” here is a pair of tosses of a single player’s die(two tosses by A or 

two by B). With S = doubles on a particular roll, p = 6
1 .  Furthermore, A and B are really 

identical (each die is fair), so we can equivalently imagine A rolling until 10 doubles appear.  
The P(x rolls) = P(9 doubles among the first x – 1 rolls and a double on the xth roll = 

1010910
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Section 3.6 
 
75.  

a. P(X ≤ 8) = F(8;5) = .932 
 
b. P(X = 8) = F(8;5) - F(7;5) = .065 
 
c. P(X ≥ 9) = 1 – P(X ≤ 8) = .068 
 
d. P(5 ≤ X ≤ 8) = F(8;5) – F(4;5) = .492 
 
e. P(5 < X < 8) = F(7;5) – F(5;5) = .867-.616=.251 

 
 
76.  

a. P(X ≤ 5) = F(5;8) = .191 
 
b. P(6 ≤ X ≤ 9) = F(9;8) – F(5;8) = .526 
 
c. P(X ≥ 10) = 1 – P(X ≤ 9) = .283 
 

d. E(X) = λ= 10,  σX = 83.2=λ , so P(X > 12.83) = P(X ≥ 13) = 1 – P(X ≤ 12) =1 - 
.936 = .064 

 
77.  

a. P(X ≤ 10) = F(10;20) = .011 
 

b. P(X > 20) = 1 – F(20;20) = 1 - .559 = .441 
 
c. P(10 ≤ X ≤ 20) = F(20;20) – F(9;20) = .559 - .005 = .554 
 P(10 < X < 20) = F(19;20) – F(10;20) = .470 - .011 = .459 

 

d. E(X) = λ= 20,  σX = 472.4=λ  
P(µ - 2σ < X < µ + 2σ )  =  P(20 – 8.944 < X < 20 + 8.944) 

    = P(11.056 < X < 28.944)  
    = P(X ≤ 28) - P(X ≤ 11) 
    = F(28;20) - F(12;20)] 
    = .966 - .021 = .945 

 
 
78.  

a. P(X = 1) = F(1;2) – F(0;2) = .982 - .819 = .163 
 
b. P(X ≥ 2) = 1 – P(X ≤ 1) = 1 – F(1;2) = 1 - .982 = .018 
 
c. P(1st doesn’t ∩ 2nd doesn’t) = P(1st doesn’t) ⋅ P(2nd doesn’t) 

 = (.819)(.819) = .671 
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79. 
200

1
=p ; n = 1000; λ = np = 5 

a. P(5 ≤ X ≤ 8) = F(8;5) – F(4;5) = .492 
 
b. P(X ≥ 8) = 1 – P(X ≤ 7) = 1 - .867 = .133 

 
 
80.  

a. The experiment is binomial with n = 10,000 and p = .001,  

so µ = np = 10 and σ = 161.3=npq . 
 

b. X has approximately a Poisson distribution with λ = 10,  
so P(X > 10) ˜ 1 – F(10;10) = 1 - .583 = .417 

 
c. P(X = 0) ˜ 0  

 
 
81.  

a. λ = 8 when t = 1, so P(X = 6) = F(6;8) – F(5;8) =.313 -  .191  = .122,  
 P(X ≥ 6) = 1 - F(5;8) = .809, and P(X ≥ 10) = 1 - F(9;8) = .283 
 
b. t = 90 min = 1.5 hours, so λ = 12; thus the expected number of arrivals is 12 and the SD 

= 464.312 =  
 
c. t = 2.5 hours implies that λ = 20; in this case, P(X ≥ 20) = 1 – F(19;20) = .530 and P(X ≤ 

10) = F(10;20) = .011. 
 
 
82.  

a. P(X = 4) = F(4;5) – F(3;5) = .440 - .265 = .175 
 

b. P(X ≥ 4) = 1 - P(X ≤ 3) = 1 - .265 = .735 
 
c. Arrivals occur at the rate of 5 per hour, so for a 45 minute period the rate is  λ = (5)(.75) 

= 3.75, which is also the expected number of arrivals in a 45 minute period. 
 
 
83.  

a. For a two hour period the parameter of the distribution is  λt = (4)(2) = 8,  
so  P(X = 10) = F(10;8) – F(9;8) = .099. 

 
b. For a 30 minute period, λt = (4)(.5) = 2, so  P(X = 0) = F(0,2) = .135 
 
c. E(X) = λt = 2 
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84. Let X = the number of diodes on a board that fail. 
 

a. E(X) = np = (200)(.01) = 2, V(X) = npq = (200)(.01)(.99) = 1.98, σX = 1.407 
 
b. X has approximately a Poisson distribution with λ = np = 2,  

so P(X ≥ 4) = 1 – P(X ≤ 3) = 1 – F(3;2) = 1 - .857 = .143 
 

c. P(board works properly) = P(all diodes work) = P(X = 0) = F(0;2) = .135 
 Let Y = the number among the five boards that work, a binomial r.v. with n = 5 and p = 

.135.  Then P(Y ≥ 4) = P(Y = 4 ) + P(Y = 5) = 

054 )865(.)135(.
5
5

)865(.)135(.
4
5









+








 = .00144 + .00004 = .00148 

 
 

85. α = 1/(mean time between occurrences) = 2
5.
1

=  

a. αt = (2)(2) = 4 
 
b. P(X > 5 ) 1 – P(X ≤ 5) = 1 - .785 = .215 
 
c. Solve for t , given α = 2: 
 .1 = e-αt 
 ln(.1) = -αt 

 t = 15.1
2

3026.2
≈ years 

 
 

86. E(X) = λ
λ

λ
λ

λ
λλ λλλλ

==== ∑∑∑∑
∞

=

−∞

=

−∞

=

−∞

=

−

0110 !!!! y

y

x

x

x

x

x

x

y
e

x
x

e
x

x
e

x
x

e
x  

 
 
87.  

a. For a one-quarter acre plot, the parameter is (80)(.25) = 20,  
 so P(X ≤ 16) = F(16;20) = .221 

 
b. The expected number of trees is λ⋅(area) = 80(85,000) = 6,800,000. 
 
c. The area of the circle is πr2 = .031416 sq. miles or 20.106 acres.  Thus X has a Poisson 

distribution with parameter 20.106 
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88.  
a. P(X = 10 and no violations) = P(no violations | X = 10) ⋅ P(X = 10) 
    = (.5)10 ⋅ [F(10;10) – F(9;10)] 
    = (.000977)(.125) = .000122 
 
b. P(y arrive and exactly 10 have no violations)  

= P(exactly 10 have no violations | y arrive) ⋅ P(y arrive)  

= P(10 successes in y trials when p = .5) ⋅ 
!
)10(10

y
e

y
−  

= 
)!10(!10

)5(
!
)10(

)5(.)5(.
10

10
101010

−
=







 −
−−

y
e

y
e

y yy
y  

 

c. P(exactly 10 without a violation) = ∑
∞

=

−

−10

10

)!10(!10
)5(

y

y

y
e

  

  = ∑
∞

=

−−

−
⋅

10

101010

)!10(
)5(

!10
5

y

y

y
e

 = ∑
∞

=

− ⋅

0

1010

)!(
)5(

!10
5

u

u

u
e

 = 5
1010

!10
5

e
e

⋅
⋅−

 

  = 
!10
5105 ⋅−e

 = p(10;5).   

 In fact, generalizing this argument shows that the number of “no-violation” arrivals 
within the hour has a Poisson distribution with parameter 5; the 5 results from λp = 
10(.5). 

 
 
89.  

a. No events in (0, t+∆t) if and only if no events in (o, t) and no events in (t, t+∆t).  Thus, P0 
(t+∆t) = P0(t) ⋅P(no events in (t, t+∆t))  
= P0(t)[1 - λ ⋅ ∆t – o(∆t)] 
 

b. 
t
to

tP
t
t

tP
t

tPttP
∆
∆

⋅−
∆′
∆′

−=
∆

−∆+ )(
)()(

)()(
00

00 λ  

c. [ ]te
dt
d λ−  = -λe-λt = -λP0(t) , as desired. 

d. 
!

)(
!

)(
!

)( 1

k
tek

k
te

k
te

dt
d ktktkt −−−−

+
−

=






 λλλλλ λλλ

 

 

= =
−

+−
−−−

)!1(
)(

!
)( 1

k
te

k
te ktkt λ

λ
λ

λ
λλ

  -λPk(t) + λPk-1(t) as desired. 
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Supplementary Exercises 
 
90. Outcomes are(1,2,3)(1,2,4) (1,2,5) … (5,6,7); there are 35 such outcomes. Each having 

probability 35
1 .  The W values for these outcomes are 6 (=1+2+3), 7, 8, …, 18.  Since there is 

just one outcome with W value 6, p(6) = P(W = 6) = 35
1 .  Similarly, there are three outcomes 

with W value 9 [(1,2,6) (1,3,5) and 2,3,4)], so p(9) = 35
3 .  Continuing in this manner yields 

the following distribution: 
 

W 6 7 8 9 10 11 12 13 14 15 16 17 18 

P(W) 35
1  35

1  35
2  35

3  35
4  35

4  35
5  35

4  35
4  35

3  35
2  35

1  35
1  

Since the distribution is symmetric about 12, µ = 12, and ∑
=

−=
18

6

22 )()12(
w

wpwσ  

 = 35
1 [(6)2(1) + (5)2(1) + … + (5)2(1) + (6)2(1) = 8 

 
 
91.  

a. p(1) = P(exactly one suit) = P(all spades) + P(all hearts) + P(all diamonds)  

 + P(all clubs) = 4P(all spades) = 00198.

5
52
5

13

4 =



















⋅  

p(2) = P(all hearts and spades with at least one of each) + …+ P(all diamonds and clubs 
with at least one of each)  
= 6 P(all hearts and spades with at least one of each) 
= 6 [ P( 1 h and 4 s) + P( 2 h and 3 s) + P( 3 h and 2 s) + P( 4 h and 1 s)] 

= 14592.
960,598,2

616,44590,18
6

5
52

2
13

3
13

2

5
52

1
13

4
13

26 =






 +
=















































⋅+



























⋅⋅  

 p(4) = 4P(2 spades, 1 h, 1 d, 1 c) = 26375.

5
52

)13)(13)(13(
2

13
4

=


















⋅

 

 p(3) = 1 – [p(1) + p(2) + p(4)] = .58835 
 

b. µ = ,114.3)(
4

1

=⋅∑
=x

xpx ( ) 636.,405.114.3)( 2
4

1

22 ==−







⋅= ∑

=

σσ
x

xpx  
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92. p(y) = P(Y = y) = P(y trials to achieve r S’s) = P(y-r F’s before rth S)  

= nb(y – r;r,p) = ryr pp
r
y −−








−
−

)1(
1
1

, y = r, r+1, r+2, … 

 
 
93.  

a. b(x;15,.75) 
 
b. P(X > 10) = 1 - B(9;15, .75) = 1 - .148 
 
c. B(10;15, .75) - B(5;15, .75) = .314 - .001 = .313 
 
d. µ = (15)(.75) = 11.75, σ2= (15)(.75)(.25) = 2.81 
 
e. Requests can all be met if and only if X ≤ 10, and 15 – X ≤ 8, i.e. if  7 ≤ X ≤ 10, so P(all 

requests met) = B(10; 15,.75) - B(6; 15,.75) = .310 
 
 
94. P( 6-v light works) = P(at least one 6-v battery works) = 1 – P(neither works)  
 = 1 –(1 – p)2.   P(D light works) = P(at least 2 d batteries work) = 1 – P(at most 1 D battery 

works) = 1 – [(1 – p)4 + 4(1 – p)3].  The 6-v should be taken if  1 –(1 – p)2   ≥ 1 – [(1 – 
p)4 + 4(1 – p)3]. 

 Simplifying, 1 ≤ (1 – p)2 + 4p(1- p)  ⇒  0  ≤ 2p – 3p3  ⇒ p ≤ 3
2 . 

 
 
95. Let X ~ Bin(5, .9).  Then P(X ≥ 3) = 1 – P(X ≤ 2) = 1 – B(2;5,.9) = .991 
 
 
96.  

a. P(X ≥ 5) = 1 - B(4;25,.05) = .007 
 
b. P(X ≥ 5) = 1 - B(4;25,.10) = .098 
 
c. P(X ≥ 5) = 1 - B(4;25,.20) = .579 
 
d. All would decrease, which is bad if the % defective is large and good if the % is small. 

 
 
97.  

a. N = 500, p = .005, so np = 2.5 and b(x; 500, .005) =&p(x; 2.5), a Poisson p.m.f. 
 
b. P(X = 5) = p(5; 2.5) - p(4; 2.5) = .9580 - .8912 = .0668 
 
c. P(X ≥ 5) = 1 – p(4;2.5) = 1 - .8912 = .1088 
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98. X  ~ B(x; 25, p).   
a. B(18; 25, .5) – B(6; 25, .5) = .986 
 
b. B(18; 25, .8) – B(6; 25, .8) = .220 
 
c. With p = .5, P(rejecting the claim) = P(X ≤ 7) + P(X ≥ 18)  =  .022 + [1 - .978] = .022 + 

.022 = .044 
 

d. The claim will not be rejected when 8 ≤ X ≤ 17.   
With p=.6, P(8 ≤ X ≤ 17) = B(17;25,.6) – B(7;25,.6) = .846 - .001 = .845. 
With p=.8, P(8 ≤ X ≤ 17) = B(17;25,.8) – B(7;25,.8) = .109 - .000 = .109. 
 

e. We want P(rejecting the claim) = .01.  Using the decision rule “reject if   X = 6 or X ≥ 
19” gives the probability .014, which is too large.  We should use “reject if   X = 5 or X ≥ 
20” which yields  P(rejecting the claim) = .002 + .002 = .004. 

 
 
99. Let Y denote the number of tests carried out.  For n = 3, possible Y values are 1 and 4.  P(Y = 

1) = P(no one has the disease) = (.9)3 = .729 and P(Y = 4) = .271, so E(Y) = (1)(.729) + 
(4)(.271) = 1.813, as contrasted with the 3 tests necessary without group testing. 

 
 
100. Regard any particular symbol being received as constituting a trial.  Then p = P(S) = 

P(symbol is sent correctly or is sent incorrectly and subsequently corrected) = 1 – p1 + p1p2.  
The block of n symbols gives a binomial experiment with n trials and p =  1 – p1 + p1p2. 

 
 
101. p(2) = P(X = 2) = P(S on #1 and S on #2) = p2 

p(3) = P(S on #3 and S on #2 and F on #1) = (1 – p)p2 
p(4) = P(S on #4 and S on #3 and F on #2) = (1 – p)p2 
p(5) = P(S on #5 and S on #4 and F on #3 and no 2 consecutive S’s on trials prior to #3) = [ 1 
– p(2) ](1 – p)p2 
p(6) = P(S on #6 and S on #5 and F on #4 and no 2 consecutive S’s on trials prior to #4) = [ 1 
– p(2) – p(3)](1 – p)p2 
In general, for x = 5, 6, 7, …:  p(x) = [ 1 – p(2) - … – p(x - 3)](1 – p)p2 
For p = .9, 

x 2 3 4 5 6 7 8 

p(x) .81 .081 .081 .0154 .0088 .0023 .0010 
 
So P(X ≤ 8) = p(2) + … + p(8) = .9995 

 
 
102.  

a. With X ~ Bin(25, .1),P(2 ≤ X ≤ 6) = B(6;25,.1 – B(1;25,.1) = .991 - .271 = 720 
 

b. E(X) = np = 25(.1) = 2.5, σX = 50.125.2)9)(.1(.25 ===npq  

 
c. P(X ≥ 7 when p = .1) = 1 – B(6;25,.1) = 1 - .991 = .009 
 
d. P(X ≤6 when p = .2) = B(6;25,.2) = = .780, which is quite large 
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103.  
a. Let event C = seed carries single spikelets, and event P = seed produces ears with single 

spikelets.  Then P( P ∩ C) = P(P | C) ⋅ P(C) = .29 (.40) = .116.  Let X = the number of 
seeds out of the 10 selected that meet the condition P ∩ C. Then X ~ Bin(10, .116).     

P(X = 5) = 002857.)884(.)116(.
5

10 55 =







 

 
b. For 1 seed, the event of interest is P  = seed produces ears with single spikelets.          

P(P) =  P( P ∩ C) + P( P ∩ C′) = .116 (from a) + P(P | C′) ⋅ P(C′)  
= .116 + (.26)(.40) = .272. 
Let Y = the number out of the 10 seeds that meet condition P.   
Then Y ~ Bin(10, .272), and P(Y = 5) = .0767. 
P(Y ≤ 5) = b(0;10,.272) + … + b(5;10,.272) = .041813 + … + .076719 = .97024 

 
 
104. With S = favored acquittal, the population size is N = 12, the number of population S’s is M = 

4, the sample size is n = 4, and the p.m.f. of the number of interviewed jurors who favor 

acquittal is the hypergeometric p.m.f. h(x;4,4,12). E(X) = 33.1
12
4

4 =





⋅  

 
105.  

a. P(X = 0) = F(0;2) 0.135 
 
b. Let S = an operator who receives no requests.  Then p = .135 and we wish P(4 S’s in 5 

trials) = b(4;5,..135) = 00144.)884(.)135(.
4
5 14 =








 

 

c. P(all receive x) = P(first receives x) ⋅ … ⋅ P(fifth receives x) = 

52

!
2








 −

x
e x

, and P(all 

receive the same number ) is the sum from x = 0 to ∞. 
 

 

106. P(at least one) = 1 – P(none) = 1 - 
!0

)( 02
2 R

e R λπλπ ⋅−  = 1 - 
2Re λπ− = .99 ⇒ 

2Re λπ− = .01  

 ⇒ 
λπ

)01(.12 n
R

−
=  = .7329 ⇒ R = .8561 

 
 

107. The number sold is min (X, 5), so E[ min(x, 5)] = ∑
∞

)4;()5,min( xpx  

= (0)p(0;4) + (1) p(1;4) + (2) p(2;4) + (3) p(3;4) + (4) p(4;4) + ∑
∞

=5

)4;(5
x

xp  

 = 1.735 + 5[1 – F(4;4)] = 3.59 
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108.  
a. P(X = x) = P(A wins in x games) + P(B wins in x games)  

= P(9 S’s in 1st x-1 ∩ S on the xth) + P(9 F’s in 1st x-1 ∩ F on the xth) 

= ppp
x x 109 )1(

9
1 −−






 −
 + )1()1(

9
1 109 ppp

x x −−






 − −  

= [ ]10101010 )1()1(
9

1 −− −+−






 − xx pppp
x

 

 
b. Possible values of X are now 10, 11, 12, …( all positive integers ≥ 10). Now  

 P(X = x) = [ ]10101010 )1()1(
9

1 −− −+−






 − xx qqpp
x

  for x = 10, … , 19,  

 So P(X ≥ 20) = 1 – P(X < 20) and P(X < 20) = ∑
=

=
19

10

)(
x

xXP  

 
 
109.  

a. No; probability of success is not the same for all tests  
 
b. There are four ways exactly three could have positive results.  Let D represent those with 

the disease and D′ represent those without the disease. 
 

Combination Probability 

D D′  

0 
 

3 

















⋅















 2350 )1(.)9(.
3
5

)8(.)2(.
0
5

=(.32768)(.0729) = .02389 
 

1 2 

















⋅















 341 )1(.2)9(.
2
5

)8(.)2(.
1
5

=(.4096)(.0081) = .00332 
 

2 1 

















⋅















 4132 )1(.)9(.
1
5

)8(.)2(.
2
5

=(.2048)(.00045) = .00009216 
 

3 0 

















⋅















 5023 )1(.)9(.
0
5

)8(.)2(.
3
5

=(.0512)(.00001) = .000000512 
 
Adding up the probabilities associated with the four combinations yields 0.0273. 
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110. k(r,x) = 
!

))...(2)(1(
x

xrxrxrx −+−+−+
 

With r = 2.5 and p = .3, p(4) = 1068.)7(.)3(.
!4

)5.2)(5.3)(5.4)(5.5( 45.2 =  

Using k(r,0) = 1, P(X ≥ 1) = 1 – p(0) = 1 – (.3)2.5 = .9507 
 
 
111.  

a. p(x;λ,µ) = );();( 2
1

2
1 µλ xpxp + where both p(x;λ) and p(x; µ) are Poisson p.m.f.’s 

and thus ≥ 0, so p(x; λ,µ) ≥ 0.  Further, 

1
2
1

2
1

);(
2
1

);(
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1

),;(
000

=+=+= ∑∑∑
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∞
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∞

= xxx

xpxpxp µλµλ  

 
b. );(4.);(6. µλ xpxp +  
 

c. E(X) = );(
2
1

);(
2
1

)];(
2
1

);(
2
1

[
000

µλµλ xpxxpxxpxpx
xxx
∑∑∑

∞

=

∞

=

∞

=

+=+  
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+
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d. E(X2) = )(
2
1

)(
2
1

);(
2
1

);(
2
1 22

0

2

0

2 µµλλµλ +++=+ ∑∑
∞

=

∞

=

xpxxpx
xx

(since for a 

Poisson r.v., E(X2) = V(X) + [E(X)]2 = λ + λ2),  

so V(X) = [ ]
2222

1 22
22 µλµλµλ

µµλλ
+

+





 −
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


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112.  

a. 1
)1()1(

)(
),;(

),;1(
>

−
⋅

+
−

=
+

p
p

x
xn

pnxb
pnxb

  if np – (1 – p) > x, from which the stated 

conclusion follows. 
 

b. 1
)1();(

);1(
>

+
=

+
xxp

xp λ
λ

λ
  if  x < λ - 1 , from which the stated conclusion follows.  If 

λ is an integer, then λ - 1 is a mode, but p(λ,λ) = p(1 - λ, λ) so λ is also a mode[p(x; λ)] 
achieves its maximum for both x = λ - 1 and x = λ. 
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113. P(X = j) = ∑
=

10

1i

P (arm on track i ∩ X = j) = ∑
=

10

1i

P (X = j | arm on i  ) ⋅ pi 

  = ∑
=

10

1i

P (next seek at I+j+1 or I-j-1) ⋅ pi  = ∑
=

−−++ +
10

1
11 )(

i
ijiji pPp  

  where pk = 0 if k < 0 or k > 10. 
 
 

114. E(X) = =


















−
−










⋅∑
=

n

x

n
N

xn
MN

x
M

x
0

∑
=


















−
−

⋅
−−n

x

n
N

xn
MN

xMx
M

1

)!()!1(
!

 

 =









−
−









−
−









−
−

⋅ ∑
=

n

x

n
N

xn
MN

x
M

N
M

n
1

1
11

1
∑

−

=









−
−









−−

−−−








 −
⋅

1

0

1
1

1
)1(1

1n

y

n
N

yn
MN

y
M

N
M

n  

 
N
M

nNMnyh
N
M

n
n

y

⋅=−−−⋅ ∑
−

=

1

0

)1,1,1;(  

 
 

115. Let A = {x: |x - µ| ≥ kσ}.  Then σ2 = ∑∑ ≥−
AA

xpkxpx )()()()( 22 σµ .  But  

∑
A

xp )( = P(X is in A) = P(|X - µ| ≥ kσ), so  σ2 ≥ k2σ2⋅ P(|X - µ| ≥ kσ), as desired. 

 
 
116.  

a. For [0,4],  λ = ∫ +4

0

6.2 dte t  = 123.44, whereas for [2,6], λ = ∫ +6

2

6.2 dte t  = 409.82 

 

b. λ = ∫ +9907.0

0

6.2 dte t   = 9.9996 ≈ 10, so the desired probability is F(15, 10) = .951. 
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CHAPTER 4 
 

Section 4.1 
 
1.  

a. P(x ≤ 1) = ] 25.)(
1

0
2

4
1

1

0 2
1

1
=== ∫∫ ∞−

xxdxdxxf  

 

b. P(.5 ≤ X ≤ 1.5) = ] 5.
5.1

5.
2

4
1

5.1

5. 2
1 ==∫ xxdx  

 

c. P(x > 1.5) = ] 438.)( 16
72

5.1
2

4
1

2

5.1 2
1

5.1
≈=== ∫∫

∞
xxdxdxxf  

 
 
2. F(x) = 10

1  for –5 ≤ x ≤ 5, and = 0 otherwise 

a. P(X < 0) = 5.
0

5 10
1 =∫−

dx  

 

b. P(-2.5 < X < 2.5) = 5.
5.2

5.2 10
1 =∫−

dx  

 

c. P(-2 ≤ X ≤ 3) = 5.
3

2 10
1 =∫−

dx  

 

d. P( k < X < k + 4) = ] 4.])4[(10
14

10

4

10
1 =−+== ++

∫ kkdx k
k

x
k

k
 

 
3.  

a. Graph of  f(x) = .09375(4 – x2)  

 

3210-1-2-3

0.5

0.0

-0.5

x1

f(x
1)
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b. P(X > 0) = 5.)
3

4(09375.)4(09375.
2

0

32

0

2 =



−=−∫

x
xdxx  

 

c. P(-1 < X < 1) = 6875.)4(09375.
1

1

2 =−∫−
dxx  

 

d. P(x < -.5 OR x > .5) = 1 – P(-.5 ≤ X ≤ .5) = 1 - ∫−
−

5.

5.

2 )4(09375. dxx  

      = 1 - .3672 = .6328 
 
 
4.  

a. ] 1)1(0);( 0
2/

0

2/
2

2222

=−−=−==
∞−∞ −∞

∞− ∫∫ θθ

θ
θ xx edxe

x
dxxf  

 

b. P(X ≤ 200) = ∫∫ −

∞−
=

200

0

2/
2

200 22

);( dxe
x

dxxf x θ

θ
θ  

] 8647.11353.
200

0
2/ 22

=+−≈−= − θxe  

P(X  < 200) = P(X ≤ 200) ≈  .8647, since x is continuous. 
P(X ≥ 200) = 1 - P(X ≤ 200) ≈  .1353 

 

c. P(100 ≤ X ≤ 200) = =∫
200

100
);( dxxf θ ] 4712.

200

100
000,20/2

≈− −xe  

 
d. For x > 0, P(X ≤ x) = 

=∫ ∞−

x
dyyf );( θ ∫ −x y dxe

e
y

0

2/
2

22 θ ] 2222 2/
0

2/ 1 θθ xxy ee −− −=−=  

 
 
5.  

a. 1 = ( )] ( ) 8
3

3
82

03

2

0

2 3
)( =⇒=== ∫∫

∞

∞−
kkkdxkxdxxf x  

 

b. P(0 ≤ X ≤ 1) = ] 125.8
11

0
3

8
1

1

0

2
8
3 ===∫ xdxx  

 

c. P(1 ≤ X ≤ 1.5) = ] ( ) ( ) 2969.1 64
193

8
13

2
3

8
15.1

1
3

8
1

5.1

1

2
8
3 ≈=−==∫ xdxx  

 

d. P(X ≥ 1.5) = 1 - ] ( )[ ] 5781.101 64
37

64
273

2
3

8
15.1

0
3

8
1

5.1

0

2
8
3 ≈=−=−−==∫ xdxx  
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6.  
a.  

b. 1 = ∫∫ −
=⇒=−=−−

1

1

24

2

2

4
3

3
4

]1[])3(1[ kduukdxxk  

 

c. P(X > 3) = 5.])3(1[
4

3

2
4
3 =−−∫ dxx  by symmetry of the p.d.f 

 

d. ( ) 367.
128
47

])(1[])3(1[
4/1

4/1

2
4
3

4/13

4/11

2
4
3

4
13

4
11 ≈=−=−−=≤≤ ∫∫ −

duudxxXP  

 
e. P( |X-3| > .5) = 1 – P( |X-3| ≤ .5) = 1 – P( 2.5 ≤ X ≤ 3.5) 

     = 1 - 313.
16
5

])(1[
5.

5.

2
4
3 ≈=−∫−

duu  

 
 
7.  

a. f(x) = 10
1  for 25 ≤ x ≤ 35 and = 0 otherwise 

 

b. P(X > 33) = 2.
35

33 10
1 =∫ dx  

 

c. E(X) = 30
20

35

25

235

25 10
1 =




=⋅∫

x
dxx  

30 ± 2 is from 28 to 32 minutes:  

P(28 < X < 32) = ] 4.32
2810

1
32

28 10
1 ==∫ xdx  

 

d. P( a ≤ x ≤ a+2) = 2.
2

10
1 =∫

+a

a
dx , since the interval has length 2. 

 

543210

2

1

0

x

f(
x)
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8.  
a.  

 

b. dyyydydyyf )()(
10

5 25
1

5
2

5

0 25
1 ∫∫∫ −+=

∞

∞−
 = 

10

5

2

5

0

2

50
1

5
2

50 









 −+




yy

y
 

 = 1
2
1

2
1

)
2
1

2()24(
2
1

=+=



 −−−+  

 

c. P(Y ≤ 3) = =∫ ydy
3

0 25
1 18.

50
9

50

5

0

2

≈=


y
 

 

d. P(Y ≤ 8) = 92.
25
23

)(
8

5 25
1

5
2

5

0 25
1 ≈=−+= ∫∫ dyyydy  

 

e. P( 3 ≤ Y ≤ 8) = P(Y ≤ 8) - P(Y < 3) = 74.
50
37

50
9

50
46

==−  

 

f. P(Y < 2 or Y > 6) = 4.
5
2

)(
10

6 25
1

5
2

3

0 25
1 ==−+= ∫∫ dyyydy  

 
 
9.  

a. P(X ≤ 6) = duedxe ux ∫∫ −−− ==
5.5

0

15.6

5.

)5(15. 15.15.  (after u = x - .5) 

= ] 562.1 825.5.5
0

15. ≈−= −− ee u  
 

b. 1 - .562 = .438; .438 
 
c. P( 5 ≤ Y ≤ 6) = P(Y ≤ 6) - P(Y ≤ 5) ≈ .562 - .491 = .071 

1050

0.5

0.4

0.3

0.2

0.1

0.0

x

f(
x)
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10.  
a.  

 
 
 
 
 
 
       θ 

b. 1
1

),;( 1 ==









−⋅===

∞
∞

+

∞

∞− ∫∫ k

k

k
k

k

k

x
dx

x
k

dxkxf
θ
θ

θ
θ

θ
θ

θ
 

 

c. P(X ≤ b) = 

kb

k
kb

k

k

bx
dx

x
k







−=










−⋅=∫ +

θ
θ

θ

θ
θ

1
1

1  

 

d. P(a ≤ X ≤ b) = 

kkb

a
k

kb

a k

k

bax
dx

x
k







−






=










−⋅=∫ +

θθ
θ

θ 1
1  

 

Section 4.2 
 
11.  

a. P(X ≤ 1) = F(1) = 25.4
1 =  

 
b. P(.5 ≤ X ≤ 1) = F(1) – F(.5) = 1875.16

3 =  

 
c. P(X > .5) = 1 – P(X ≤ .5) = 1 – F(.5) = 9375.16

15 =  

 

d. .5 = 414.12~2~
4

~
)~( 2

2

≈=⇒=⇒= µµ
µ

µF  

 
e. f(x) = F′(x) = 2

x  for 0 ≤ x < 2, and = 0 otherwise 

f. E(X) = 333.1
6
8

62
1

2
1

)(
2

0

32

0

22

0
≈=




==⋅=⋅ ∫∫∫

∞

∞−

x
dxxxdxxdxxfx  

 

g. E(X2) = ,2
82

1
2
1

)(
2

0

42

0

32

0

22 =



=== ∫∫∫

∞

∞−

x
dxxxdxxdxxfx   

So Var(X) = E(X2) – [E(X)]2 = ( ) 222.2 36
82

6
8 ≈=− , σx ≈ .471 

 
h. From g , E(X2) = 2 
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12.  
a. P(X < 0) = F(0) = .5 
 
b. P(-1 ≤ X ≤ 1) = F(1) – F(-1) = 6875.16

11 =  

 
c. P(X > .5) = 1 – P(X ≤ .5) = 1 – F(.5) = 1 - .6836 = .3164 
 

d. F(x) = F′(x) = 

















−+

3
4

32
3

2
1 3x

x
dx
d

= ( )2
2

409375.
3

3
4

32
3

0 x
x

−=







−+  

 

e. ( ) 5.~ =µF  by definition. F(0) = .5 from a above, which is as desired. 
 

 
13.  

a. 3
3

1)1)(
3

(013
3

11
1

1 4
=⇒=⇒−−=⇒−−=⇒=

∞
∞

∫ k
kkkdx

x
k x  

 

b. cdf:  F(x)= 
3

3

1
1

4 1
113

3
33)(

x
xdyydyyf y

x
xx

−=+−=−−== −−

∞− ∫∫ .  So 

( )
1
1

,1
,0

3 >
≤





−
= − x

x
x

xF  

 
c. P(x > 2) = 1 – F(2) = 1 – ( ) 8

1
8
11 =−  or .125; 

( ) ( ) 088.875.963.11)2()3()32( 8
1

27
1 =−=−−−=−=<< FFxP  

 

d. 
2
3

2
3

02
2
333

)(
1

1 31 4
=+=−−=






=






= ∫∫

∞∞ x
x

dx
x

dx
x

xxE  

330133
)( 3

1
1 21 4

22 =+=−−=





=






= ∫∫

∞∞ x
x

dx
x

dx
x

xxE  

4
3

4
9

3
2
3

3)]([)()(
2

22 =−=





−=−= xExExV  or .75  

866.)( 4
3 === xVσ  

 
e. )366.2()366.2()866.5.1866.5.1( FxPxP =<=+<<−

9245.)366.2(1 3 =−= −  
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14.  
a. If X is uniformly distributed on the interval from A to B, then 

3
)(,

2
1

)(
22

2 BABA
XE

BA
dx

AB
xXE

B

A

++
=

+
=

−
⋅= ∫  

V(X) = E(X2) – [E(X)]2 = 
( )

2

2AB −
. 

With A = 7.5 and B = 20, E(X) = 13.75, V(X) = 13.02 
 

b. F(X) = 







−

1
5.12
5.7

0
x

 

20
205.7

5.7

≥
<≤

<

x
x

x
 

 
c. P(X ≤ 10) = F(10) = .200; P(10 ≤ X ≤ 15) = F(15) – F(10) = .4 
 
d. σ = 3.61, so µ ± σ = (10.14, 17.36)   

 Thus, P(µ - σ ≤ X ≤ µ + σ) = F(17.36) – F(10.14) = .5776 
 Similarly, P(µ - σ ≤ X ≤ µ + σ) = P(6.53 ≤ X ≤ 20.97) = 1 
 
15.  

a. F(X) = 0 for x ≤ 0, = 1 for x ≥ 1, and for 0 < X < 1,  

∫∫∫ −=−==
∞−

xxx
dyyydyyydyyfXF

0

98

0

8 )(90)1(90)()(  

  ( )] 109
0

10
10
19

9
1 91090 xxyy

x
−=−   

 

0.0 0.5 1.0

0.0

0.5

1.0

x

F(
x)

 
 

b. F(.5) = 10(.5)9 – 9(.5)10 ≈ .0107 
 
c. P(.25 ≤ X ≤ .5) = F(.5) – F(.25) ≈ .0107 – [10(.25)9 – 9(.25)10]  

     ≈ .0107 – .0000 ≈ .0107  
 

d. The 75th percentile is the value of x for which F(x) = .75  
⇒ .75 = 10(x)9 – 9(x)10  ⇒ x ≈ .9036 
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e. E(X) = ∫∫∫ −=−⋅=⋅
∞

∞−

1

0

91

0

8 )1(90)1(90)( dxxxdxxxxdxxfx  

] 8182.9 11
91

0
11

11
9010 ≈=−= xx  

 E(X2) = ∫∫∫ −=−⋅=⋅
∞

∞−

1

0

101

0

822 )1(90)1(90)( dxxxdxxxxdxxfx  

  ] 6818.
1

0
12

12
9011

11
90 ≈−= xx  

 
 V(X) ≈  .6818 – (.8182)2 = .0124, σx = .11134. 
 

f. µ ± σ = (.7068, .9295). Thus, P(µ - σ ≤ X ≤ µ + σ) = F(.9295) – F(.7068) 
 = .8465 - .1602 = .6863 

 
 
16.  

a. F(x) = 0 for x < 0 and F(x) = 1 for x > 2.  For 0 ≤ x ≤ 2,  

F(x) = ] 3
8
1

0
3

8
1

0

2
8
3 xydyy

xx
==∫  

210

1.0

0.5

0.0

x

F(
x)

 
b. P(x ≤ .5) = F(.5) = ( ) 64

13
2
1

8
1 =  

 

c. P(.25 ≤ X ≤ .5) = F(.5) – F(.25)  = ( ) 0137.512
73

4
1

8
1

64
1 ≈=−   

 

d. .75 = F(x) = 3
8
1 x  ⇒  x3 = 6 ⇒ x ≈ 1.8171 

 

e. E(X) =  ( ) ( )] 5.1)( 2
32

0
4

4
1

8
3

1

0

3
8
3

2

0

2
8
3 ====⋅=⋅ ∫∫∫

∞

∞−
xdxxdxxxdxxfx  

 E(X2) =  ( ) ( )] 4.25 5
122

05
1

8
3

1

0

4
8
3

2

0

2
8
3 ====⋅ ∫∫ xdxxdxxx  

 V(X) = ( ) 15.20
32

2
3

5
12 ==−  σx = .3873 

 
f. µ ± σ = (1.1127, 1.8873). Thus, P(µ - σ ≤ X ≤ µ + σ) = F(1.8873) – F(1.1127) = .8403 - 

.1722 = .6681 
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17.  

a. For 2 ≤ X ≤ 4, ∫∫ −−==
∞−

xx
dyydyyfXF

2

2
4
3 ])3(1[)()( (let u = y-3) 








 −
−−=








−=−=

−

−

−

−∫ 3
)3(

3
7

4
3

34
3

]1[
33

1

33

1

2
4
3 x

x
u

uduu
x

x
. Thus 

F(x) = 







−−−

1
])3(73[

0
3

4
1 xx  

4
42
2

>
≤≤
<

x
x
x

 

 
b. By symmetry of f(x), 3~ =µ  

 

c. E(X) =  ∫∫ −
−+=−−⋅

1

1

2
4
3

4

2

2
4
3 )1)(3(])3(1[ dxyydxxx  

   34
4
3

42
3

4
3

1

1

4
3

2

=⋅=







−−+=

−

y
y

y
y  

 

V(X) = ( )∫∫ −−⋅−=−
∞

∞−

4

2

222 ])3(1[3
4
3

)()( dxxxdxxfx µ  

    = 2.
5
1

15
4

4
3

)1(
4
3 1

1

22 ==⋅=−∫−
dyyy  

 
 
18.  

a. F(X) = 
AB
Ax

−
−

 = p  ⇒ x = (100p)th percentile = A + (B - A)p 

 

b. ( )
2

1
2
1

2
11

)( 22
2 BA

AB
AB

x
AB

dx
AB

xXE
B

A

B

A

+
=−⋅

−
⋅=




⋅

−
=

−
⋅= ∫  

( )
3

1
3
1

)(
22

332 BABA
AB

AB
XE

++
=−⋅

−
⋅=   

 

( ) ( )
,

1223
)(

2222 ABBABABA
XV

−
=






 +

−






 ++
=  

12
)( AB

x
−

=σ  

 

c. 
))(1(

1
)(

11

ABn
AB

dx
AB

xXE
nnB

A

nn

−+
−

=
−

⋅=
++

∫  
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19.  
a. P(X ≤ 1) = F(1) = .25[1 + ln(4)] ≈ .597 
 
b. P(1 ≤ X ≤ 3) = F(3) – F(1) ≈ .966 - .597 ≈ .369 
 
c. f(x) = F′(x) = .25 ln(4) - .25 ln(x) for o < x < 4 

 
 
20.  

a. For 0 ≤ y ≤ 5, F(y) = 
5025

1 2

0

y
udu

y
=∫  

For  5 ≤ y ≤ 10, F(y) = ∫∫∫ +=
yy

duufduufduuf
5

5

00
)()()(  

  1
505

2
255

2
2
1 2

0
−−=






 −+= ∫

y
ydu

uy
 

1050

1.0

0.5

0.0

x1

F
(x

1)

 

b. For 0 < p ≤ .5, p = F(yp) = ( ) 2/1
2

50
50

py
y

p

p

=⇒  

 For  .5 < p ≤ 1, p = )1(25101
505

2
2

py
y

y p
p

p −−=⇒−−  

 
c. E(Y) = 5 by straightforward integration (or by symmetry of f(y)), and similarly V(Y)= 

1667.4
12
50

= .  For the waiting time X for a single bus,  

 E(X) = 2.5 and V(X) = 
12
25

  

 

21. E(area) = E(πR2) = ( )∫∫ −−





=

∞

∞−

11

9

222 )10(1
4
3

)( drrrdrrfr ππ  

( ) πππ 21002099
4
3

)20100(1
4
3 11

9

43211

9

22 ⋅=−+−=+−−





= ∫∫ drrrrdrrrr  
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22.  

a. For 1 ≤ x ≤ 2,  F(x) = ,4
1

2
1

2
1

12
1

1 2
−






 +=












+=








−∫ x

x
y

ydy
y

x
x

 so 

F(x) = ( )







−+

1
42

0
1
xx  

2
21
1

>
≤≤
<

x
x
x

 

 

b. p
x

x
p

p =−









+ 4

1
2 ⇒ 2xp

2 – (4 – p)xp + 2 = 0 ⇒ xp = ]84[ 2
4
1 ppp +++   To 

find µ~ , set p = .5 ⇒ µ~  = 1.64 
 

c. E(X) = 614.1)ln(
2

2
1

2
1

12
2

1

22

1

2

1 2
=












−=






 −=






 −⋅ ∫∫ x

x
dx

x
xdx

x
x  

E(X2) = ( ) ⇒=











−=−∫ 3

8
3

212
2

1

32

1

2 x
x

dxx   Var(X) = .0626 

 
d. Amount left = max(1.5 – X, 0), so 

 E(amount left) = 061.
1

1)5.1(2)()0,5.1max(
5.1

1 2

2

1
=






 −−=− ∫∫ dx

x
xdxxfx  

 
 

23. With X = temperature in °C, temperature in °F = ,32
5
9

+X   so 

,24832)120(
5
9

32
5
9

=+=



 +XE  96.12)2(

5
9

32
5
9 2

2

=⋅





=



 +XVar , 

so σ = 3.6 
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24.  

a. E(X) = 
11

1 1

1 −
=




+−

==⋅
∞+−∞∞

+ ∫∫ k
k

k
xk

dx
x

kdx
x
k

x
kk

k
k

k

k θθ
θ

θ

θ
θθ

 

 
b. E(X) = ∞ 
 

c. E(X2) = 
2

1 2

1 −
=∫

∞

− k
k

dx
x

k
k

k θ
θ

θ
, so  

Var(X) = 
( )( )2

222

1212 −−
=








−
−








− kk

k
k
k

k
k θθθ

 

 
d. Var(x) = ∞, since E(X2) = ∞. 
 

e. E(Xn) = ∫
∞ +−

θ
θ dxxk knk )1( , which will be finite if n – (k+1) < -1, i.e. if n<k. 

 
 
25.  

a. P(Y ≤ 1.8 µ~  + 32) = P(1.8X + 32 ≤ 1.8 µ~  + 32) = P( X ≤ µ~ ) = .5 

 
b. 90th for Y = 1.8η(.9) + 32 where η(.9) is the 90th percentile for X, since  

P(Y ≤ 1.8η(.9) + 32) = P(1.8X + 32 ≤ 1.8η(.9) + 32) 
 = (X ≤ η(.9) ) = .9 as desired. 

 
c. The (100p)th percentile for Y is 1.8η(p) + 32, verified by substituting p for .9 in the 

argument of b.  When Y = aX + b, (i.e. a linear transformation of X), and the (100p)th 
percentile of the X distribution is η(p), then the corresponding (100p)th percentile of the 
Y distribution is a⋅η(p) + b. (same linear transformation applied to X’s percentile) 
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Section 4.3 
 
26.  

a. P(0 ≤ Z ≤ 2.17) = Φ(2.17) -   Φ(0) = .4850 
 
b. Φ(1) -   Φ(0) = .3413 
 
c. Φ(0) -   Φ(-2.50) = .4938 
 
d. Φ(2.50) -   Φ(-2.50) = .9876 
 
e. Φ(1.37) = .9147 
 
f. P( -1.75 < Z) + [1 – P(Z < -1.75)] = 1 - Φ(-1.75) = .9599 
 
g. Φ(2) - Φ(-1.50) = .9104 
 
h. Φ(2.50) -   Φ(1.37) = .0791 
 
i. 1 - Φ(1.50)  = .0668 
 
j. P( |Z| ≤ 2.50 ) = P( -2.50 ≤ Z ≤ 2.50) = Φ(2.50) -   Φ(-2.50) = .9876 
 

 
27.  

a. .9838 is found in the 2.1 row and the .04 column of the standard normal table so c = 2.14. 
 
b. P(0 ≤ Z ≤ c) = .291 ⇒ Φ(c) = .7910 ⇒ c = .81 
 
c. P(c ≤ Z) = .121 ⇒  1 - P(c ≤ Z) = P(Z < c) = Φ(c) = 1 - .121 = .8790 ⇒    c = 1.17 
 
d. P(-c ≤ Z ≤ c) = Φ(c) - Φ(-c) = Φ(c) – (1 - Φ(c)) = 2Φ(c) – 1  

⇒ Φ(c) = .9920 ⇒ c = .97 
 

e. P( c ≤ | Z | ) = .016  ⇒  1 - .016 = .9840 = 1 – P(c ≤ | Z | ) = P( | Z |  < c ) 
 = P(-c < Z < c) = Φ(c) - Φ(-c) = 2Φ(c) – 1 
 ⇒ Φ(c) = .9920   ⇒  c = 2.41 
 
 



Chapter 4:  Continuous Random Variables and Probability Distributions 

 142 

28.  
a. Φ(c) = .9100  ⇒  c ≈ 1.34  (.9099 is the entry in the 1.3 row, .04 column) 
 
b. 9th percentile = -91st percentile = -1.34 
 
c. Φ(c) = .7500  ⇒  c ≈ .675 since .7486 and .7517 are in the .67 and .68 entries, 

respectively. 
 
d. 25th = -75th = -.675 
 
e. Φ(c) = .06  ⇒  c ≈ .-1.555  (both .0594 and .0606 appear as the –1.56 and –1.55 entries, 

respectively). 
 

 
29.  

a. Area under  Z curve above z.0055 is .0055, which implies that  
Φ( z.0055) = 1 - .0055 = .9945, so z.0055  = 2.54 

 
b. Φ( z.09) = .9100  ⇒  z = 1.34 (since .9099 appears as the 1.34 entry). 
 
c. Φ( z.633) = area below z.633 = .3370 ⇒ z.633 ≈ -.42 

 
 
30.  

a. P(X ≤ 100) = 





 −

≤
10

80100
zP = P(Z ≤ 2) = Φ(2.00) = .9772 

 

b. P(X ≤ 80) = 





 −

≤
10

8080
zP = P(Z ≤ 0) = Φ(0.00) = .5 

 

c. P(65 ≤ X ≤ 100) = 





 −

≤≤
−

10
80100

10
8065

zP = P(-1.50 ≤ Z ≤ 2)  

= Φ(2.00) - Φ(-1.50) = .9772 - .0668 = .9104 
 

d. P(70 ≤ X) = P(-1.00 ≤ Z) = 1 - Φ(-1.00) = .8413 
 
e. P(85 ≤ X ≤ 95) = P(.50 ≤ Z ≤ 1.50) = Φ(1.50) - Φ(.50) = .2417 
 
f. P( |X – 80 | ≤ 10) = P(-10 ≤ X - 80 ≤ 10) = P(70 ≤ X ≤ 90) 

    P(-1.00 ≤ Z ≤ 1.00) = .6826 
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31.  

a. P( X  ≤ 18) = 





 −

≤
25.1

1518
zP = P(Z  ≤ 2.4) = Φ(2.4) = .9452 

 
b. P(10 ≤ X ≤ 12) = P(-4.00 ≤ Z ≤ -2.40) ≈ P(Z ≤ -2.40) =  Φ(-2.40) = .0082 
 
c. P( |X – 10| ≤ 2(1.25) ) = P(-2.50 ≤ X-15 ≤ 2.50) = P(12.5 ≤ X ≤ 17.5) 

P(-2.00 ≤ Z ≤ 2.00) = .9544 
 
 

32.  
a. P(X > .25) = P(Z > -.83) = 1 - .2033 = .7967 
 
b. P(X ≤ .10) = Φ(-3.33) = .0004 
 
c. We want the value of the distribution, c, that is the 95th percentile (5% of the values are 

higher).  The 95th percentile of the standard normal distribution = 1.645.  So c = .30 + 
(1.645)(.06) = .3987.  The largest 5% of all concentration values are above .3987 mg/cm3. 

 
 
33.  

a. P(X ≥ 10) = P(Z ≥ .43) = 1 - Φ(.43) = 1 - .6664 = .3336. 
P(X > 10) = P(X ≥ 10) = .3336, since for any continuous distribution, P(x = a) = 0. 

 
b. P(X > 20) = P(Z > 4) ≈ 0 
 
c. P(5 ≤ X ≤ 10) = P(-1.36 ≤ Z ≤ .43) = Φ(.43) - Φ(-1.36) = .6664 - .0869 = .5795 
 
d. P(8.8 – c ≤ X ≤ 8.8 + c) = .98, so 8.8 – c and 8.8 + c are at the 1st and the 99th percentile 

of the given distribution, respectively.  The 1st percentile of the standard normal 
distribution has the value –2.33, so  
8.8 – c = µ + (-2.33)σ = 8.8 – 2.33(2.8) ⇒ c = 2.33(2.8) = 6.524. 
 

e. From a, P(x > 10) = .3336.  Define event A as {diameter > 10}, then P(at least one A i) = 

1 – P(no A i) = 8028.1972.1)3336.1(1)(1 44 =−=−−=′− AP   
 
 
34. Let X denote the diameter of a randomly selected cork made by the first machine, and let Y be 

defined analogously for the second machine. 
P(2.9 ≤ X ≤ 3.1) = P(-1.00 ≤ Z ≤ 1.00) = .6826 
P(2.9 ≤ Y ≤ 3.1) = P(-7.00 ≤ Z ≤ 3.00) = .9987 
So the second machine wins handily. 
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35.  
a. µ + σ⋅(91st  percentile from std normal) = 30 + 5(1.34) = 36.7 
 
b. 30 + 5( -1.555) = 22.225 
 
c. µ = 3.000 µm; σ = 0.140.  We desire the 90th percentile: 30 + 1.28(0.14) = 3.179 

 
 
36. µ = 43; σ = 4.5 

a. P(X < 40) = 





 −

≤
5.4
4340

zP = P(Z < -0.667) = .2514 

P(X > 60) = 





 −

>
5.4
4360

zP = P(Z > 3.778) ≈ 0 

 
b. 43 + (-0.67)(4.5) = 39.985 
 

 

37. P(damage) = P(X < 100) = 





 −

<
300

200100
zP = P(Z < -3.33) = .0004 

P(at least one among five is damaged)  = 1 – P(none damaged)  
= 1 – (.9996)5 = 1 - .998 = .002 
 

 
38. From Table A.3, P(-1.96 ≤ Z ≤ 1.96) = .95.  Then P(µ - .1 ≤ X ≤ µ + .1) = 







 <<

−
σσ
1.1.

zP implies that
σ
1.

= 1.96, and thus that 0510.
96.1
1.

==σ  

 
 
39. Since 1.28 is the 90th z percentile (z.1 = 1.28) and –1.645 is the 5th z percentile (z.05 = 1.645), 

the given information implies that µ + σ(1.28) = 10.256 and  µ + σ(-1.645) = 9.671, from 
which σ(-2.925) = -.585, σ = .2000, and µ = 10. 

 
40.  

a. P(µ - 1.5σ  ≤ X ≤ µ + 1.5σ) = P(-1.5 ≤ Z ≤ 1.5) = Φ(1.50) - Φ(-1.50) = .8664 
 
b. P( X < µ - 2.5σ or X > µ + 2.5σ) = 1 - P(µ - 2.5σ  ≤ X ≤ µ + 2.5σ) 

= 1 - P(-2.5 ≤ Z ≤ 2.5) = 1 - .9876 = .0124 
 

c. P(µ - 2σ  ≤ X ≤ µ - σ or µ + σ  ≤ X ≤ µ + 2σ) = P(within 2 sd’s) – P(within 1 sd) = P(µ - 
2σ  ≤ X ≤ µ + 2σ) - P(µ - σ  ≤ X ≤ µ + σ)  
= .9544 - .6826 = .2718 
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41. With µ = .500 inches, the acceptable range for the diameter is between .496 and .504 inches, 
so unacceptable bearings will have diameters smaller than .496 or larger than .504.  The new 
distribution has µ = .499 and σ =.002. P(x < .496 or x >.504) = 

( ) ( )5.25.1
002.

499.504.
002.

499.496.
>+−<=






 −

>+





 −

< zPzPzPzP

( )( ) 073.0062.0068.5.21)5.1( =+=Φ−+−Φ , or 7.3% of the bearings will be 
unacceptable. 

 
 
42.  

a. P(67 ≤ X ≤ 75) = P(-1.00 ≤ Z ≤ 1.67) = .7938 
 

b. P(70 – c  ≤ X ≤ 70 + c) = 9750.)
3

(95.1)
3

(2
33

=Φ⇒=−Φ=





 ≤≤

− ccc
Z

c
P  

88.596.1
3

=⇒= c
c

 

 
c. 10⋅P(a single one is acceptable) = 9.05 
 
d. p = P(X < 73.84) = P(Z < 1.28) = .9, so P(Y ≤ 8) = B(8;10,.9) = .264 

 
 
43. The stated condition implies that 99% of the area under the normal curve with µ = 10 and σ = 

2 is to the left of  c – 1, so c – 1 is the 99th percentile of the distribution.  Thus c – 1 = µ + 
σ(2.33) = 20.155, and c = 21.155. 

 
 
44.  

a. By symmetry, P(-1.72 ≤ Z ≤ -.55) = P(.55 ≤ Z ≤ 1.72) = Φ(1.72) - Φ(.55)  
 
b. P(-1.72 ≤ Z ≤ .55) = Φ(.55) - Φ(-1.72) = Φ(.55) – [1 - Φ(1.72)] 

No, symmetry of the Z curve about 0. 
 
 

45. X ∼N(3432, 482) 

a. ( ) ( )18.1
482

34324000
4000 >=






 −

>=> zPZPxP  

1190.8810.1)18.1(1 =−=Φ−=

( ) 





 −

<<
−

=<<
482

34324000
482

34323000
40003000 ZPxP

( ) ( ) 6969.1841.8810.90.18.1 =−=−Φ−Φ=  
 

b. ( ) 





 −

>+





 −

<=><
482

34325000
482

34322000
50002000 ZPZPorxxP  

( ) ( )[ ] 0021.0006.0015.25.3197.2 =+=Φ−+−Φ=  
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c. We will use the conversion 1 lb = 454 g, then 7 lbs = 3178 grams, and we wish to find 

( ) 7019.)53.(1
482

34323178
3178 =−Φ−=






 −

>=> ZPxP  

 
d. We need the top .0005 and the bottom .0005 of the distribution.  Using the Z table, both 

.9995 and .0005 have multiple z values, so we will use a middle value, ±3.295.   Then 
3432±(482)3.295 = 1844 and 5020, or the most extreme .1%  of all birth weights are less 
than 1844 g and more than 5020 g. 

 
e. Converting to lbs yields mean 7.5595 and s.d. 1.0608.  Then  

( ) 7019.)53.(1
0608.1

5595.77
7 =−Φ−=






 −

>=> ZPxP   This yields the same 

answer as in part c. 
 
 
46. We use a Normal approximation to the Binomial distribution:  X ∼ b(x;1000,.03) ˜  

N(30,5.394)  

a. ( ) ( ) 





 −

≤−=≤−=≥
394.5

305.39
139140 ZPxPxP  

0392.9608.1)76.1(1 =−=Φ−=  
 

b. 5% of 1000 = 50:  ( ) 00.1)80.3(
394.5

305.50
50 ≈Φ=






 −

≤=≤ ZPxP  

 
 
47. P( |X - µ | ≥ σ ) = P( X ≤ µ - σ  or X ≥ µ + σ )  

= 1 – P(µ - σ ≤ X ≤ µ + σ) = 1 – P(-1 ≤ Z ≤ 1) = .3174 
 Similarly, P( |X - µ | ≥ 2σ ) = 1 – P(-2 ≤ Z ≤ 2) = .0456 
  And P( |X - µ | ≥ 3σ ) = 1 – P(-3 ≤ Z ≤ 3) = .0026 
 
 
48.  

a. P(20 - .5 ≤ X ≤ 30 + .5) = P(19.5 ≤ X ≤ 30.5) = P(-1.1 ≤ Z ≤ 1.1) = .7286 
 
b. P(at most 30) = P(X ≤ 30 + .5) = P(Z ≤ 1.1) = .8643. 

P(less than 30) = P(X < 30 - .5) = P(Z < .9) = .8159 
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49. P: .5 .6 .8 
µ: 12.5 15 20 
σ: 2.50 2.45 2.00 
a.  

P(15≤ X ≤20) P(14.5 ≤ normal ≤ 20.5) 

.5 .212 P(.80 ≤ Z ≤ 3.20)  = .2112  

.6 .577 P(-.20 ≤ Z ≤ 2.24)  = .5668 

.8 .573 P(-2.75 ≤ Z ≤ .25)  = .5957 

 
b.  

 
 
 
 
 
 
 
 
 

c.  
 
 
 
 
 
 
 
 

  
50.  P = .10; n = 200; np = 20, npq = 18 

a. P(X ≤ 30) = 






 −+
Φ

18
205.30

= Φ(2.47) = .9932 

 

b. P(X < 30) =P(X ≤ 29) = 






 −+
Φ

18
205.29

= Φ(2.24) = .9875 

 

c. P(15 ≤ X ≤ 25) = P(X ≤ 25) – P(X ≤ 14) = 






 −+
Φ−







 −+
Φ

18
205.14

18
205.25

 

Φ(1.30) - Φ(-1.30) = .9032 - .0968 = .8064 
 
 
51.  N = 500, p = .4, µ = 200,  σ   = 10.9545 

a. P(180 ≤ X ≤ 230) = P(179.5 ≤ normal ≤ 230.5) = P(-1.87 ≤ Z ≤ 2.78) = .9666 
 
b. P(X < 175) = P(X ≤ 174) = P(normal ≤ 174.5) = P(Z ≤ -2.33) = .0099 

 

P(X ≤15) P(normal ≤ 15.5) 

.885 P(Z ≤ 1.20)  = .8849 

.575 P(Z ≤ .20)  = .5793 

.017 P( Z ≤ -2.25)  = .0122 

P(20 ≤X) P(19.5 ≤ normal) 

.002 .0026 

.029 .0329 

.617 .5987 
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52. P(X ≤ µ + σ[(100p)th  percentile for std normal]) 

[ ]





 ≤

−
...

σ
µX

P = P(Z ≤ […]) = p as desired 

 
 
53.  

a. Fy(y) = P(Y ≤ y) = P(aX + b ≤ y) = 





 −

≤
a

by
XP

)(
 (for a > 0). 

Now differentiate with respect to y to obtain 

fy(y) = 
2

22 )]([
2

1

2
1

)(
bay

a
y e

a
yF

+−−
=′ µ

σ

σπ
so Y is normal with mean aµ + b 

and variance a2σ2. 
 

b. Normal, mean 23932)115(5
9 =+ , variance = 12.96 

 
 
54.  

a. P(Z ≥ 1) ≈ 1587.
165703

56235183
exp5. =








+
++

⋅  

 

b. P(Z > 3) ≈ 0013.
3333.399

2362
exp5. =






 −

⋅  

 

c. P(Z > 4) ≈ 0000317.
75.340

3294
exp5. =






 −

⋅ , so 

P(-4 < Z < 4) ≈ 1 – 2(.0000317) = .999937 
 

d. P(Z > 5) ≈ 00000029.
6.305

4392
exp5. =






 −

⋅  
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Section 4.4 
 
55.  

a. Γ(6) = 5! = 120 
 

b. 329.1
4
3

2
1

2
1

2
3

2
1

2
3

2
5

≈





=






Γ⋅⋅=






Γ=






Γ π  

 
c. F(4;5) = .371 from row 4, column 5 of Table A.4 
 
d. F(5;4) = .735 
 
e. F(0;4) = P(X ≤ 0; α= 4) = 0 

 
 
56.  

a. P(X ≤ 5) = F(5;7) = .238 
 
b. P(X < 5) = P(X ≤ 5) = .238 
 
c. P(X > 8) = 1 – P(X < 8) = 1 – F(8;7) = .313 
 
d. P( 3 ≤ X ≤ 8 ) = F(8;7) – F(3;7) = .653 
 
e. P( 3 < X < 8 ) =.653 
 
f. P(X < 4 or X > 6) = 1 – P(4 ≤ X ≤ 6 ) = 1 – [F(6;7) – F(4;7)] = .713 

 
 
57.  

a. µ = 20,  σ2 = 80  ⇒ αβ = 20, αβ2 = 80  ⇒ β = 20
80 , α = 5 

 

b. P(X ≤ 24) = 





 5;

4
24

F = F(6;5) = .715 

 
c. P(20 ≤ X ≤ 40 ) = F(10;5) – F(5;5) = .411 
 

 
58. µ = 24,  σ2 = 144  ⇒ αβ = 24, αβ2 = 144 ⇒ β = 6, α = 4 
 

a. P(12 ≤ X ≤ 24 ) = F(4;4) – F(2;4) = .424 
 
b. P(X ≤ 24 ) = F(4;4) = .567, so while the mean is 24, the median is less than 24. (P(X ≤ 

µ~ ) = .5); This is a result of the positive skew of the gamma distribution. 
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c. We want a value of X for which F(X;4)=.99. In table A.4, we see F(10;4)=.990.  So with 
β = 6, the 99th percentile = 6(10)=60. 

d. We want a value of X for which  F(X;4)=.995.  In the table, F(11;4)=.995, so t = 
6(11)=66.  At 66 weeks, only .5% of all transistors would still be operating. 

 
 
59.  

a. E(X) = 1
1

=
λ

 

 

b. 1
1

==
λ

σ  

 

c. P(X ≤ 4 ) = 982.11 4)4)(1( =−=− −− ee  
 

d. P(2 ≤ X ≤ 5) = [ ] 129.11 52)2)(1()5)(1( =−=−−− −−−− eeee  
 
 
60.  

a. P(X ≤ 100 ) = 7499.11 386.1)01386)(.100( =−=− −− ee  

P(X ≤ 200 ) = 9375.11 772.2)01386)(.200( =−=− −− ee  
P(100 ≤ X ≤ 200) = P(X ≤ 200 ) - P(X ≤ 100 ) = .9375 - .7499 = .1876 
 

b. µ = 15.72
01386.

1
= , σ = 72.15 

P(X > µ + 2σ) = P(X > 72.15 + 2(72.15)) = P(X > 216.45) = 

[ ] 0498.11 9999.2)01386)(.45.216( ==−− −− ee  
 

c. .5 = P(X ≤ µ~ ) ⇒ 5.5.1 )01386)(.~()01386)(.~( =⇒=− −− µµ ee  

 50~693.)5ln(.)01386(.~ =⇒==− µµ  
 
 

61. Mean = 000,25
1

=
λ

 implies λ = .00004 

a. P(X > 20,000) = 1 – P(X ≤ 20,000) = 1 – F(20,000; .00004) 449.)000,20)(00004(. == −e  

P(X ≤ 30,000) = F(30,000; .00004) 699.2.1 == −e  
P(20,000 ≤ X ≤ 30,000) =  .699 - .551 = .148 

 

b. 000,25
1

==
λ

σ , so P(X > µ + 2σ) = P( x > 75,000) =  

1 – F(75,000;.00004) = .05. 
Similarly, P(X > µ + 3σ) = P( x > 100,000) = .018 
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62.  

a. E(X) = αβ = ;
1

λλ
n

n =  for λ = .5, n = 10, E(X) = 20 

 

b. P(X ≤ 30) = 





 10;

2
30

F = F(15;10) = .930 

 
c. P(X ≤ t) = P(at least n events in time t) = P( Y ≥ n) when Y ∼ Poisson with parameter λt .  

Thus P(X ≤ t) = 1 – P( Y < n) = 1 – P( Y ≤ n – 1) 
( )

.
!

1
1

0
∑

−

=

−

−=
n

k

kt

k
te λλ

 

 
 
63.  

a. {X ≥ t} = A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5  
 

b. P(X ≥ t) =P( A1 ) ⋅ P( A2 ) ⋅ P( A3 ) ⋅ P( A4 ) ⋅ P( A5 ) = ( ) tt ee 05.5 −− =λ , so Fx(t) = P(X ≤ 

t) = 1 - te 05.− , fx(t) = te 05.05. −  for t ≥ 0.  Thus X also ha an exponential distribution , but 
with parameter λ = .05. 

 

c. By the same reasoning, P(X ≤ t) = 1 - tne λ− , so X has an exponential distribution with 
parameter nλ. 

 
 

64. With xp = (100p)th  percentile, p = F(xp) = 1 - pee pp xx −=⇒ −− 1λλ
, 

[ ]
λ

λ
)1ln(

)1ln(
p

xpx pp
−−

=⇒−=−⇒ .  For p = .5, x.5 = 
λ

µ
693.~ = . 

 
 
65.  

a. {X2 ≤ y} = { }yXy ≤≤−  
 

b. P(X2 ≤ y) = ∫−

−y

y

z dze 2/2

2
1
π

.  Now differentiate with respect to y to obtain the chi-

squared p.d.f. with ν = 1. 
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Section 4.5 
 
66.  

a. E(X) = 66.2
2
1

2
1

3
2
1

13 =





Γ⋅⋅=






 +Γ ,  

Var(X) = ( ) 926.1
2
1

1119 2 =













 +Γ−+Γ  

 

b. P(X ≤  6) = 982.111 4)3/6()/6( 2

=−=−=− −−− eee
αβ  

 

c. P(1.5 ≤  X ≤ 6) = [ ] 760.11 425.)3/5.1()3/6( 22

=−=−−− −−−− eeee  
 
 
67.  

a. P(X ≤ 250) = F(250;2.5, 200) = 8257.11 75.1)200/250( 5.2

≈−=− −− ee  
P(X < 250) = P(X ≤ 250) ≈ .8257 

P(X > 300) = 1 – F(300; 2.5, 200) = 0636.
5.2)5.1( =−e  

 
b. P(100 ≤ X ≤ 250) = F(250;2.5, 200) - F(100;2.5, 200) ≈ .8257 - .162 = .6637 
 
c. The median µ~  is requested.  The equation F( µ~ ) = .5 reduces to  

.5 = 
5.2)200/~(µ−e , i.e., ln(.5) ≈ 

5.2

200

~






−

µ
, so µ~  = (.6931).4(200) = 172.727. 

 
 
68.  

a. For x > 3.5, F(x) = P( X ≤ x) = P(X – 3.5 ≤ x – 3.5) = 1 - 
[ ]25.1

)5.3( −− x

e  
 

b. E(X – 3.5) = 





Γ

2
3

5.1 = 1.329 so E(X) = 4.829 

Var(X) = Var(X – 3.5) = ( ) ( ) 483.
2
3

25.1 22 =













Γ−Γ  

 

c. P(X > 5) = 1 – P(X ≤ 5) = [ ] 368.11 11 ==−− −− ee  
 

d. P(5 ≤ X ≤ 8) = [ ] 3678.0001.3679.11 9119 =−=−=−−− −−−− eeee  
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69. 
( )

∫
∞ −−⋅=

0

1 dxexx
x α

βα
αβ

α
µ  = (after y = 

α

β 






 x , dy = 
α

α

β
α 1−x

dx ) 







 +Γ⋅=∫

∞ −

α
ββ α

1
1

0

1

dyey y  by definition of the gamma function. 

 
 
70.  

a. ( ) ( )23/1~5. µµ −−== eF  ⇒ 

50.2~2383.6)5ln(.9~5. 29/ =⇒=−=⇒=− µµµe  
 

b. ( )[ ] ⇒=− −− 5.1
25.1/5.3~µe   ( )25.3~ −µ = -2.25 ln(.5) = 1.5596 ⇒ µ~  = 4.75 

 

c. P = F(xp) = 1 - 
( )αβ

px

e −
⇒ (xp/β)α = -ln(1 – p) ⇒ xp = β[ -ln(1-p)]1/α 

 
d. The desired value of t is the 90th percentile (since 90% will not be refused and 10% will 

be).  From c, the 90th percentile of the distribution of X – 3.5 is 1.5[ -ln(.1)]1/2 = 2.27661, 
so t = 3.5 + 2.2761 = 5.7761 

 
 
71. X ∼ Weibull: α=20,β=100 

a. ( ) ( ) ( ) 930.070.111,20,
20

100
105

=−=−=−= −−
eexF

x α

ββ  
 

b. ( ) ( ) ( ) 298.632.930.1930.100105 1 =−=−−=− −eFF  
 

c. 
( ) ( ) ( ) )50ln(.50.150. 20

100

20

100

20

100 =−⇒=⇒−= −− x
xx

ee  

( ) 18.98)50ln(.100)50ln(.
100

2020 =⇒=−⇒=





 −

xx
x

 

 
 
72.  

a. 97.123)( 82.42

2

===






 +

eeXE
σµ

 

( )( ) ( ) ( )( ) 53.776,138964.34.367,151)( 8.8.)5.4(2 2

==−⋅= −+ eeXV   

373.117=σ  
 

b. ( ) 5517.13.0
8.

5.4)100ln(
)100( =Φ=






 −

≤=≤ zPxP   

c. ( ) )200(1587.8413.100.11
8.

5.4)200ln(
)200( >==−=Φ−=






 −

≥=≥ xPzPxP

 



Chapter 4:  Continuous Random Variables and Probability Distributions 

 154 

73.  

a. E(X) = 
( ) 2/2.15.3 2+e = 68.0335; V(X) = ( ) ( ) ( )( ) 168.149071

22 2.12.15.32 =−⋅+ ee ; 

σx = 122.0949 
 

b. P(50 ≤ X ≤ 250) = 





 −

≤−





 −

≤
2.1

5.3)50ln(
2.1

5.3)250ln(
zPzP  

P(Z ≤ 1.68) – P(Z ≤ .34) = .9535 - .6331 = .3204. 
 

c. P(X ≤ 68.0335)  = 





 −

≤
2.1

5.3)0335.68ln(
zP = P(Z ≤ .60) = .7257.  The lognormal 

distribution is not a symmetric distribution. 
 
 
74.  

a. .5 = F( µ~ ) = 





 −

Φ
σ

µµ)~ln(
, (where µ~  refers to the lognormal distribution and µ and 

σ to the normal distribution).  Since the median of the standard normal distribution is 0, 

0)~ln( =−
σ

µµ
, so ln( µ~ ) = µ  ⇒ µ~ = µe .  For the power distribution, 

µ~ = 12.335.3 =e  

 

b. 1 - α = Φ(zα) = P(Z ≤ zα) = ))(ln(
)ln(

αα σµ
σ

µ
zXPz

X
+≤=






 ≤

−
 

= )( ασµ zeXP +≤ , so the 100(1 - α)th percentile is ασµ ze +
.  For the power distribution, 

the 95th percentile is 41.238474.5)2.1)(645.1(5.3 ==+ ee  
 
 
75.  

a. E(X) = 157.149005.52/)01(.5 ==+ ee ; Var(X) = ( ) 594.223101.)01(.10 =−⋅+ ee  
 
b. P(X > 125) = 1 – P(X ≤ 125) = 

( ) 9573.72.11
1.

5)125ln(
1 =−Φ−=






 −

≤−= zP  

 

c. P(110 ≤ X ≤ 125) ( ) 0414.0013.0427.
1.

5)110ln(
72.1 =−=






 −

Φ−−Φ=  

 

d. µ~ = 41.1485 =e   (continued) 

e. P(any particular one has X > 125) = .9573 ⇒ expected # = 10(.9573) = 9.573 
 

f. We wish the 5th percentile, which is 90.125)1)(.645.1(5 =−+e  
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76.  

a. E(X) = 024.102/99.1 2

=+e ; Var(X) = ( ) 395.125181.)81(.8.3 =−⋅+ ee , σx = 11.20 

 
b. P(X ≤ 10) = P(ln(X) ≤ 2.3026) = P(Z ≤ .45) = .6736 

P(5 ≤ X ≤ 10)  = P(1.6094 ≤ ln(X) ≤2.3026)  
= P(-.32 ≤ Z ≤ .45) = .6736 - .3745 = .2991 
 
 

77. The point of symmetry must be 2
1 , so we require that ( ) ( )µµ +=− 2

1
2
1 ff , i.e., 

( ) ( ) ( ) ( ) 1
2
11

2
11

2
11

2
1 −−−− −+=+− βαβα µµµµ , which in turn implies that α = β. 

 
 
78.  

a. E(X) = 
( ) 714.

7
5

25
5

==
+

, V(X) = 0255.
)8)(49(

10
=  

 

b. f(x) = 
( )

( ) ( ) ( ) ( )544 301
25

7
xxxx −=−⋅⋅

ΓΓ
Γ

 for 0 ≤ X ≤ 1, 

so P(X ≤ .2) = ( ) 0016.30
2.

0

54 =−∫ dxxx  

 

c. P(.2 ≤ X ≤ .4) = ( ) 03936.30
4.

2.

54 =−∫ dxxx  

 

d. E(1 – X) = 1 – E(X) = 1 - 286.
7
2

7
5

==  

 
 
79.  

a. E(X) = 
( )
( ) ( ) ( ) ( )

( ) ( ) ( )∫∫
−−− −

ΓΓ
+Γ

=−
ΓΓ
+Γ

⋅
1

0

11

0

11 11 dxxxdxxxx βαβα

βα
βα

βα
βα

 

( )
( ) ( )

( ) ( )
( )1

1
++Γ

Γ+Γ
⋅

ΓΓ
+Γ

βα
βα

βα
βα

 = 
( )

( ) ( )
( )

( ) ( ) βα
α

βαβα
βα

βα
αα

+
=

+Γ+
+Γ

⋅
ΓΓ

Γ
 

 

b. E[(1 – X)m] = ( ) ( )
( ) ( ) ( )∫

−− −
ΓΓ
+Γ

⋅−
1

0

11 11 dxxxx m βα

βα
βα

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )ββα
ββα

βα
βα βα

Γ++Γ
+Γ⋅+Γ

=−
ΓΓ
+Γ

= ∫
−+−

m
m

dxxx m1

0

11 1  

For m = 1, E(1 – X) = 
βα

β
+

. 
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80.  

a. E(Y) = 10 
βα

α
+

==




⇒

2
1

20
YE ; Var(Y) = 

28
1

2800
100

207
100 ==






⇒ YVar  

( ) ( )
3,3

12 ==⇒
+++

βα
βαβα

αβ
, after some algebra. 

 

b. P(8 ≤ X ≤ 12) = 





−






 3,3;

20
83,3;

20
12 FF = F(.6;3,3) – F(.4; 3,3).   

The standard density function here is  30y2(1 – y)2,  

so P(8 ≤ X ≤ 12) = ( ) 365.130
6.

4.

22 =−∫ dyyy . 

 
c. We expect it to snap at 10, so P( Y < 8 or Y > 12) = 1 - P(8 ≤ X ≤ 12)  

= 1 - .365 = .665. 
 
 

Section 4.6 
 
81. The given probability plot is quite linear, and thus it is quite plausible that the tension 

distribution is normal. 
 
 
82. The z percentiles and observations are as follows: 
 

percentile observation 
-1.645 152.7 
-1.040 172.0 
-0.670 172.5 
-0.390 173.3 
-0.130 193.0 
0.130 204.7 
0.390 216.5 
0.670 234.9 
1.040 262.6 
1.645 422.6 

  -2 -1 0 1 2

200

300

400

z %ile

lif
et

im
e

 
The accompanying plot is quite straight except for the point corresponding to the largest 
observation.  This observation is clearly much larger than what would be expected in a normal 
random sample.  Because of this outlier, it would be inadvisable to analyze the data using any 
inferential method that depended on assuming a normal population distribution. 
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83. The z percentile values are as follows: -1.86, -1.32, -1.01, -0.78, -0.58, -0.40, -0.24,-0.08, 
0.08, 0.24, 0.40, 0.58, 0.78, 1.01, 1.30, and 1.86.  The accompanying probability plot is 
reasonably straight, and thus it would be reasonable to use estimating methods that assume a 
normal population distribution. 

 
 
84. The Weibull plot uses ln(observations) and the z percentiles of the p i values given.  The 

accompanying probability plot appears sufficiently straight to lead us to agree with the 
argument that the distribution of fracture toughness in concrete specimens could well be 
modeled by a Weibull distribution. 
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z %ile
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85. The (z percentile, observation) pairs are (-1.66, .736), (-1.32, .863),      (-1.01, .865), (-.78, 
.913), (-.58, .915), (-.40, .937), (-.24, .983), (-.08, 1.007), (.08, 1.011), (.24, 1.064), (.40, 
1.109), (.58, 1.132), (.78, 1.140), (1.01, 1.153), (1.32, 1.253), (1.86, 1.394). The 
accompanying probability plot is very straight, suggesting that an assumption of population 
normality is extremely plausible. 

 

 
 
86.  

a. The 10 largest z percentiles are 1.96, 1.44, 1.15, .93, .76, .60, .45, .32, .19 and .06; the 
remaining 10 are the negatives of these values.  The accompanying normal probability 
plot is reasonably straight.  An assumption of population distribution normality is 
plausible. 
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b. For a Weibull probability plot, the natural logs of the observations are plotted against 
extreme value percentiles; these percentiles are -3.68, -2.55, -2.01, -1.65, -1.37, -1.13, -
.93, -.76, -.59, -.44, -.30, -.16, -.02, .12, .26, .40, .56, .73, .95, and 1.31. The 
accompanying probability plot is roughly as straight as the one for checking normality (a 
plot of ln(x) versus the z percentiles, appropriate for checking the plausibility of a 
lognormal distribution, is also reasonably straight - any of 3 different families of 
population distributions seems plausible.) 
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W %ile

ln
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lif
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87. To check for plausibility of a lognormal population distribution for the rainfall data of 

Exercise 81 in Chapter 1, take the natural logs and construct a normal probability plot.  This 
plot and a normal probability plot for the original data appear below.  Clearly the log 
transformation gives quite a straight plot, so lognormality is plausible.  The curvature in the 
plot for the original data implies a positively skewed population distribution - like the 
lognormal distribution. 
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88.   
a.  The plot of the original (untransformed) data appears somewhat curved.   

210-1-2

5

4

3

2

1

0

z %iles

pr
ec

ip

 
b. The square root transformation results in a very straight plot.  It is reasonable that this 

distribution is normally distributed. 

-2 -1 0 1 2
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z %iles
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c. The cube root transformation also results in a very straight plot.  It is very reasonable that 

the distribution is normally distributed. 
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89. The pattern in the plot (below, generated by Minitab) is quite linear. It 
is very plausible that strength is normally distributed. 

P-Value:   0.008
A-Squared: 1.065

Anderson-Darling Normality Test

N: 153
StDev: 4.54186
Average: 134.902

145135125

.999

.99

.95

.80

.50

.20

.05

.01

.001

P
ro

ba
bi

lit
y

strength

Normal Probability Plot

 
 
 
90. We use the data (table below) to create the desired plot. 

ordered absolute 
values (w's) probabilities 

z 
values 

0.89 0.525 0.063 
1.15 0.575 0.19 
1.27 0.625 0.32 
1.44 0.675 0.454 
2.34 0.725 0.6 
3.78 0.775 0.755 
3.96 0.825 0.935 
12.38 0.875 1.15 
30.84 0.925 1.44 
43.4 0.975 1.96 

454035302520151050

2

1

0

wi

z 
va

lu
e

s

 
This half-normal plot reveals some extreme values, without which the distribution may appear 
to be normal.  
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91. The (100p)th percentile η(p) for the exponential distribution with λ = 1 satisfies F(η(p)) = 1 – 
exp[-η(p)] = p, i.e., η(p) = -ln(1 – p).  With n = 16, we need η(p) for p = 16

5.15
16

5.1
16
5 ,...,, .  

These are .032, .398, .170, .247, .330, .421, .521, .633, .758, .901, 1.068, 1.269, 1.520, 1.856, 
2.367, 3.466.  this plot exhibits substantial curvature, casting doubt on the assumption of an 
exponential population distribution.  Because λ is a scale parameter (as is σ for the normal 
family), λ = 1 can be used to assess the plausibility of the entire exponential family. 

 

 
 

Supplementary Exercises 
 
 
92.  

a. P(10 ≤ X ≤ 20) = 4.
25
10

=  

 

b. P(X ≥ 10) = P(10 ≤ X ≤ 25) = 6.
25
15

=  

 

c. For  0 ≤ X ≤ 25, F(x) = 
2525

1
0

x
dy

x
=∫ .  F(x)=0 for x < 0 and = 1 for x > 25. 

 

d. E(X) = 
( ) ( )

5.12
2

250
2

=
+

=
+ BA

; Var(X) = 
( )

083.52
12
625

12

2

==
− AB
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93.  

a. For  0 ≤ Y ≤ 25, F(y) = 

y
y uuu

u
0

32

0

2

36224
1

1224
1













−=








−∫ .  Thus  

F(y) = 


















−

1
1848

1
0

3
2 y

y  

12
120

0

>
≤≤

<

y
y

y
  

 
b. P(Y ≤ 4) = F(4) = .259, P(Y > 6) = 1 – F(6) = .5 

P(4 ≤ X ≤ 6) = F(6) – F(4) = .5 - .259 = .241 
 

c. E(Y) = 6
48324

1
12

1
24
1

12

0

4312

0

2 =







−=






 −∫

yydyyy  

E(Y2) = 2.43
12

1
24
1 12

0

3 =




 −∫ dyyy , so V(Y) = 43.2 – 36 = 7.2 

 
d. P(Y < 4 or Y > 8) = 1 - P(4 ≤ X ≤ 8) = .518 
 
e. the shorter segment has length min(Y, 12 – Y) so 

E[min(Y, 12 – Y)] = ∫∫ ⋅−=⋅−
6

0

12

0
)()12,min()()12,min( dyyfyydyyfyy  

∫∫∫ ⋅−+⋅=⋅−+
12

6

6

0

12

6
)()12()()()12,min( dyyfydyyfydyyfyy  = 75.3.

24
90

=  

 
 
94.  

a. Clearly f(x) ≥ 0.  The c.d.f. is , for x > 0,  

( ) ( ) ( )2
0

20 3 4
16

1
4

32
2
1

4
32

)()(
+

−=




+
⋅−=

+
== ∫∫ ∞− xy

dy
y

dyyfxF
x

xx
 

( F(x) = 0 for x ≤ 0.) 

Since F(∞) = ,1)( =∫
∞

∞−
dyyf  f(x) is a legitimate pdf. 

 
b. See above 
 

c. P(2 ≤ X ≤ 5) = F(5) – F(2) = 247.
36
161

81
161 =






 −−−  

(continued) 
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d. 
( ) ( )

dx
x

xdx
x

xdxxfxxE 303 4

32
)44(

4

32
)()(

+
⋅−+=

+
⋅=⋅= ∫∫∫

∞∞

∞−

∞

∞−
 

  

( ) ( )
448

4

32
4

4

32
0 30 2 =−=

+
−

+
= ∫∫

∞∞
dx

x
dx

x
 

 

e. E(salvage value) = 
( ) ( )

67.16
)64)(3(

3200

4

1
3200

4

32
4

100
0 40 3 ==

+
=

+
⋅

+
= ∫∫

∞∞
dx

y
dx

yx
 

 
 
95.  

a. By differentiation, 
 

f(x) = 








−

0
4
3

4
7

2

x

x
 

otherwise

y

x

3
71

10

≤≤

<≤
 

 

b. P(.5 ≤ X ≤ 2) = F(2) – F(.5) = 
( )

917.
12
11

3
5.

2
4
3

4
7

2
3
7

2
1

1
3

==−




 ⋅−





 −−  

 

c. E(X) = 213.1
108
131

4
3

4
73

7

1

1

0

2 ==





 −⋅+⋅ ∫∫ dxxxdxxx  

 
 
96. µ = 40 V;  σ = 1.5 V 

a. P(39 < X < 42) = 





 −Φ−






 −Φ

5.1
4039

5.1
4042

 

= Φ(1.33) - Φ(-.67) = .9082 - .2514 = .6568 
 

b. We desire the 85th percentile:  40 + (1.04)(1.5) = 41.56 
 

c. P(X > 42) = 1 – P(X ≤ 42) = 1  





 −Φ−

5.1
4042

= 1 - Φ(1.33) = .0918 

Let D represent the number of diodes out of 4 with voltage exceeding 42. 

P(D ≥ 1 ) = 1 – P(D = 0) = ( ) ( )40 9082.0918.
0
4

1 







− =1 - .6803 = .3197 
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97. µ = 137.2 oz.;  σ = 1.6 oz 

a. P(X > 135) = 1 





 −Φ−

6.1
2.137135

= 1 -  Φ(-1.38) = 1 - .0838 = .9162 

 
b. With Y = the number among ten that contain more than 135 oz,  

Y ~ Bin(10, .9162, so P(Y ≥ 8) = b(8; 10, .9162) + b(9; 10, .9162)  
+ b(10; 10, .9162) =.9549. 

 

c. µ = 137.2; 33.165.1
2.137135

=⇒−=
−

σ
σ

 

 
 
98.  

a. Let S = defective.  Then p = P(S) = .05; n = 250 ⇒ µ = np = 12.5, σ = 3.446.  The 
random variable X = the number of defectives in the batch of 250.  X ~ Binomial.  Since 
np = 12.5 ≥ 10, and nq = 237.5 ≥ 10, we can use the normal approximation. 

P(Xbin ≥ 25) ≈ 1 ( ) 0003.9997.148.31
446.3

5.125.24 =−=Φ−=





 −Φ−  

 
b. P(Xbin = 10) ≈ P(Xnorm ≤ 10.5) - P(Xnorm ≤ 9.5) 

 = ( ) ( ) 0888.1922.2810.87.58. =−=−Φ−−Φ  
 
 
99.  

a. P(X > 100) = 1 ( ) 3859.6141.129.1
14

96100 =−=Φ−=





 −Φ−  

 

b. P(50 < X < 80) = 





 −Φ−






 −Φ

14
9650

14
9680

 

= Φ(-1.5) - Φ(-3.29) = .1271 - .0005 = .1266. 
 

c. a = 5th percentile = 96 + (-1.645)(14) = 72.97. 
 b = 95th percentile = 96 + (1.645)(14) = 119.03.  The interval (72.97, 119.03) contains the 

central 90% of all grain sizes. 
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100.  

a. F(X) = 0 for x < 1 and = 1 for x > 3.  For 1 ≤ x ≤ 3, ∫ ∞−
=

x
dyyfxF )()(  






 −=⋅+= ∫∫ ∞− x

dy
y

dy
x 1151.11
2
30

1 2

1
 

 
b. P(X ≤ 2.5) = F(2.5) = 1.5(1 - .4) = .9; P(1.5 ≤ x ≤ 2.5) =  

F(2.5) – F(1.5) = .4 
 

c. E(X) = ] 648.1)ln(5.1
1

2
31

2
3 3

1

3

1

3

1 2 ===⋅⋅= ∫∫ xdx
x

dx
x

x  

 

d. E(X2) = 3
2
31

2
3 3

1

3

1 2
2 ==⋅⋅= ∫∫ dxdx

x
x , so V(X) = E(X2) – [E(X)]2 = .284,  

σ =.553 
 

e. h(x) = 






−
1

5.1
0

x   

35.2
5.25.1

5.11

≤≤
≤≤

≤≤

x
x

x
 

so E[h(X)] = ( ) 267.
1

2
3

1
1

2
3

5.1
3

5.2 2

5.2

5.1 2 =⋅⋅+⋅⋅−= ∫∫ dx
x

dx
x

x  

 
 
101.  

a.  

3210-1-2

0.4

0.3

0.2

0.1

0.0

x

f(
x)

 
b. F(x) = 0 for x < -1 or == 1 for x > 2.  For –1 ≤ x ≤ 2, 

( )
27
11

3
4

9
1

4
9
1

)(
3

1

2 +





−=−= ∫−

x
xdyyxF

x
 

 
c. The median is 0 iff F(0) = .5.  Since F(0) = 27

11 , this is not the case.  Because 27
11 < .5, the 

median must be greater than 0. 
 
d. Y is a binomial r.v. with n = 10 and p = P(X > 1) = 1 – F(1) = 27

5  
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102.  

a. E(X) = 
λ
1

 = 1.075, 
λ

σ
1

=  = 1.075 

 
b. P(3.0 < X) = 1 – P(X ≤ 3.0) = 1 – F(3.0) = 3-.93(3.0) = .0614 

P(1.0 ≤ X ≤  3.0) = F(3.0) – F(1.0) = .333 
 

c. The 90th percentile is requested; denoting it by c, we have  

  .9 = F(c) = 1 – e-(.93)c, whence c = 476.2
)93.(
)1ln(.

=
−

 

 
 
103.  

a. P(X ≤ 150) = 368.)1exp()]0exp(exp[
90

)150150(
expexp =−=−=














 −−

− , where 

exp(u) = eu.  P(X ≤ 300) = 828.)]6667.1exp(exp[ =−− ,  

and P(150 ≤ X ≤  300) = .828 - .368 = .460. 
 

b. The desired value c is the 90th percentile, so c satisfies  

.9 = 













 −−

−
90

)150(
expexp

c
.  Taking the natural log of each side twice in succession 

yields ln[ ln(.9)] = 
90

)150( −− c
, so c = 90(2.250367) + 150 = 352.53. 

 

c. f(x) = F′(X) = 
( ) ( )








 −−⋅














 −−−⋅
β

α
β

α
β

xx expexpexp1
 

 
d. We wish the value of x for which f(x) is a maximum; this is the same as the value of x for 

which ln[f(x)] is a maximum.  The equation of 
( )

0
])([ln

=
dx

xfd
 gives 

( )
1exp =







 −−
β

αx
, so 

( )
0=

−−
β

αx
, which implies that x = α.  Thus the mode is α. 

 
e. E(X) = .5772β + α = 201.95, whereas the mode is 150 and the median is  

–(90)ln[-ln(.5)] + 150 = 182.99.  The distribution is positively skewed. 
 
 
104.  

a. E(cX) = cE(X) = 
λ
c

 

 

b. E[c(1 - .5eax)] = ( )
a

ac
dxeec xax

−
−

=⋅−∫
∞ −

λ
λ

λ λ ]5[.
5.1

0
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105.  
a. From a graph of f(x; µ, σ) or by differentiation,  x* = µ. 
 
b. No; the density function has constant height for A ≤ X ≤ B. 
 
c. F(x;λ) is largest for x = 0 (the derivative at 0 does not exist since f is not continuous 

there) so x* = 0. 
 

d. ( ) ( ) ( )( ) ( )
;

)ln(1lnln],;ln[
β

ααββα α x
xxf −−+Γ−−=  

 

( ) βα
β

α
βα )1(*

11
],;ln[ −==⇒−

−
= xx

x
xf

dx
d

 

 

e. From d ( ) .221
2

* −=





 −= ννx  

 
 
106.  

a. 15.5.1.1.)(
0

2.0 2. =+=+= ∫∫∫
∞ −

∞−

∞

∞−
dxedxedxxf xx  

 

b. For x < 0, F(x) = xx y edye 2.2.

2
1

1. =∫ ∞−
. 

For x ≥ 0, F(x) = xx y edye 2.

0

2.

2
1

11.
2
1 −− −=+ ∫ . 

 

c. P(X < 0) = F(0) = 5.
2
1

= , P(X < 2) = F(2) = 1 - .5e-.4 = .665, 

P(-1 ≤ X ≤ 2) – F(2) – F(-1) = .256, 1 - (-2 ≤ X ≤ 2) = .670 
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107.  

a. Clearly f(x; λ1, λ2, p) ≥ 0 for all x, and ∫
∞

∞−
dxpxf ),,;( 21 λλ  

= ( )[ ] ( )∫ ∫∫
∞ ∞ −−∞ −− −+=−+
0 0 210 21

2121 11 dxepdxepdxepep xxxx λλλλ λλλλ   

= p + (1 – p) = 1 
 

b. For x > 0, F(x; λ1, λ2, p) = ).1)(1()1(),,;( 21

0 21
xxx

epepdypyf λλλλ −− −−+−=∫  

 

c. E(X) = [ ]∫
∞ −− −+⋅
0 21 ))1() 21 dxepepx xx λλ λλ  

( )
21

0 20 1

1
)1( 21

λλ
λλ λλ pp

dxexpdxexp xx −
+=−+= ∫∫

∞ −∞ −  

 

d. E(X2) = 
( )

2
2

2
1

122
λλ

pp −
+ , so Var(X) = 

( )
2
2

2
1

122
λλ

pp −
+

( ) 2

21

1







 −
+−

λλ
pp

 

 

e. For an exponential r.v., CV = 1
1

1
=

λ

λ .  For X hyperexponential,  

CV = 

( )

( )

2
1

2

21

2
2

2
1 1

1

122























−








 −
+

−
+

λλ

λλ

pp

pp

= 
( )

( )

2
1

1
)1(

)1(2
2

12

2
1

2
2












−

−+
−+

λλ
λλ

pp

pp
 

 = [2r – 1]1/2   where r = 
( )

( )2
12

2
1

2
2

)1(
)1(
λλ
λλ

pp
pp

−+
−+

.  But straightforward algebra shows that r > 

1 provided 21 λλ ≠ , so that CV > 1. 
 

f. 
λ

µ
n

= ,  
2

2

λ
σ

n
= ,  so 

λ
σ

n
=  and CV = 11 <

n
 if n > 1. 
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108.  

a. ( ) α
α

α α
α

−
−∞

−=⇒
−

⋅== ∫ 1
1

5
51

1
5

1 kkdx
x
k

 where we must have α > 1. 

 

b. For x ≥ 5, F(x) = 
1

11
1

5

5
1

1
5

1
5

−

−−
− 





−=



 −=∫

α

αα
α

α xx
dy

y
kx

. 

 

c. E(X) = 
( )25 25 15 −⋅

=⋅=⋅
−

∞

−

∞

∫∫ αααα

k
dx

x
k

xdx
x
k

x , provided α > 2. 

 

d. ( ) ( )
1

5
5

155
55

ln
−






−==≤=





 ≤=








≤







α

y
yyy

e
eFeXPe

X
Py

X
P  

( ) ye 11 −−− α , the cdf of an exponential r.v. with parameter α - 1. 
 
 
109.  

a. A lognormal distribution, since 








i

o

I
I

ln  is a normal r.v. 

 

b. ( ) 









≤





−=










>





=





>=> 2lnln12lnln22

i

o

i

o

i

o
io I

I
P

I
I

P
I
I

PIIP  

( ) 114.61
05.

12ln1 =−Φ−=





 −Φ−  

 

c. ,72.22/0025.1 ==






 +e
I
I

E
i

o  ( ) 0185.10025.0025.2 =−⋅=






 + ee
I
I

Var
i

o  

 
 



Chapter 4:  Continuous Random Variables and Probability Distributions 

 171 

110.  
a.  

250200150100500

1.0

0.5

0.0

C1

C
2

 
 

b. P(X > 175) = 1 – F(175; 9, 180) = 
( ) 4602.

9

180
175

=−e  
P(150 ≤ X ≤ 175) = F(175; 9, 180) - F(150; 9, 180)  
= .5398 - .1762 = .3636 

 
c. P(at least one) = 1 – P(none) = 1 – (1 - .3636)2 = .5950  
 

d. We want the 10th percentile:  .10 = F( x; 9, 180) = 
( )9
1801
x

e−− .  A small bit of algebra 
leads us to x = 140.178.  Thus 10% of all tensile strengths will be less than 140.178 MPa. 

 
 

111. F(y) = P(Y ≤ y) = P(σZ + µ ≤ y) = 
( ) ( )

∫
−

∞−

−=





 −≤ σ

µ

πσ
µ y

z dzeyZP
2

2
1

2

1
.  Now 

differentiate with respect to y to obtain a normal pdf with parameters µ and σ. 
 
 
112.  

a. FY(y) = P(Y ≤ y) = P(60X ≤ y) = .;
6060 








=






 ≤ α

β
y

F
y

XP   Thus fY(y) 

=
( ) ( )αββ

α
β α

βα

Γ
=⋅








−

−

6060
1

;
60

601
y

eyy
f , which shows that Y has a gamma distribution 

with parameters α and 60β. 
 
b.  With c replacing 60 in  a, the same argument shows that cX has a gamma distribution 

with parameters α and cβ. 
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113.  
a. Y = -ln(X) ⇒ x = e-y = k(y), so k′(y) = -e-y.  Thus since f(x) = 1,  

g(y) = 1 ⋅ | -e-y | = e-y for 0 < y < ∞, so y has an exponential distribution with parameter λ 
= 1. 

 

b. y = σZ + µ ⇒ y = h(z) = σZ + µ ⇒ z = k(y) = 
( )

σ
µ−y

 and k′(y) = 
σ
1

, from which the 

result follows easily. 
 

c. y = h(x) = cx ⇒ x = k(y) = 
c
y

 and k′(y) = 
c
1

, from which the result follows easily. 

 
 
114.  

a. If we let 2=α  and σβ 2= , then we can manipulate f(v) as follows: 

( )
( ) ( )222222 12/12

2
2/

2
2/

2
2

2
2

2
)( β

να
α

σνσνσν ν
β
α

ν
σ

ν
σσ

ν
ν −−−−−− ==== eeeef , 

which is in the Weibull family of distributions. 
 

b. ( ) ∫
−

=
25

0
800

400
ν

ν
ν

ν

deF ; cdf: ( ) 800

2

2 112,2;
v

eeF
−

−=−=





−

σ

ν

σν , so 

( ) 542.458.112,2;25 800
625

=−=−=
−

eF  
 
 
115.  

a. Assuming independence, P(all 3 births occur on March 11) = ( ) 00000002.3
365

1 =  

 

b. ( ) 0000073.)365(3
365
1 =  

 
c. Let X = deviation from due date.  X∼N(0, 19.88).  Then the baby due on March 15 was 4 

days early.  P(x = -4) ˜ P(-4.5 < x < -3.5) 

( ) ( ) 0196.4090.4286.237.18.
88.19
5.4

88.19
5.3 =−=−Φ−−Φ=






 −Φ−






 −Φ= .  

Similarly, the baby due on April 1 was 21 days early, and P(x = -21) 

˜ ( ) ( ) 0114.1401.1515.08.103.1
88.19

5.21
88.19

5.20 =−=−Φ−−Φ=





 −Φ−






 −Φ . 

The baby due on April 4 was 24 days early, and P(x = -24) ˜ .0097 
 
Again, assuming independence, P( all 3 births occurred on March 11) = 
( )( )( ) 00002145.0097.0114.0196. =  
 

d. To calculate the probability of the three births happening on any day, we could make 
similar calculations as in part c for each possible day, and then add the probabilities. 
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116.  

a. F(x) = xe λλ −  and F(x) = xe λ−−1 , so r(x) = λ
λ

λ

λ

=−

−

x

x

e
e

, a constant (independent of X);  

this is consistent with the memoryless property of the exponential distribution. 
 

b. r(x) = 1−







 α
αβ

α
x ; for α > 1 this is increasing, while for α < 1 it is a decreasing function. 

 

c. ln(1 – F(x)) = 










−−

−=⇒







−−=








−− ∫ β

α

β
α

β
α 2

2
2

1)(
2

1
xx

exF
x

xdx
x

, 

f(x) = 










−−









− β

α

β
α 2

2

1
xx

e
x

   0 ≤ x ≤ β 

 
 
117.  

a. FX(x) = ( ) ( ) ( )xeUPxUPxUP λλ
λ

−≥−=−≥−=





 ≤−− 1)1ln(1ln1

 

( ) xx eeUP λλ −− −=−≤= 11 since FU(u) = u (U is uniform on [0, 1]).  Thus X has an 

exponential distribution with parameter λ. 
 

b. By taking successive random numbers u1, u2, u3, …and computing ( )ii ux −−= 1ln
10
1

, 

… we obtain a sequence of values generated from an exponential distribution with 
parameter λ = 10. 

 
 
118.  

a. E(g(X)) ≈ E[g(µ) + g′(µ)(X - µ)] = E(g(µ)) + g′(µ)⋅E(X - µ), but E(X) - µ = 0 and E(g(µ)) 
= g(µ) ( since g(µ) is constant), giving E(g(X)) ≈ g(µ). 
V(g(X)) ≈ V[g(µ) + g′(µ)(X - µ)] = V[g′(µ)(X - µ)] = (g′(µ))2⋅V(X - µ) = (g′(µ))2⋅V(X). 

 

b. 
2)(,)(

I
v

Ig
I
v

Ig
−

=′= , so ( )
20

)(
vv

IgE
I

R =≈=
µ

µ  

( ) ( )
80020

,)( 2)(

2

2

vv
IV

v
IgV IIg

I

=⋅≈⋅






 −
≈ σσ

µ
 

 
 
119. g(µ) + g′(µ)(X - µ) ≤ g(X) implies that E[g(µ) + g′(µ)(X - µ)] = E(g(µ)) = g(µ) ≤ E(g(X)), i.e. 

that g(E(X)) ≤ E(g(X)). 
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120. For  y > 0, 










≤=








≤=








≤=≤=

22
2)()(

2
2

2

2 y
XPyXPyXPyYPyF

ββ
β

.  Now 

take the cdf of X (Weibull), replace x by 
2

yβ
, and then differentiate with respect to y to 

obtain the desired result fY(y). 
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CHAPTER 5 
 

Section 5.1 
 
1.  

a. P(X = 1, Y = 1) = p(1,1) = .20 
 
b. P(X ≤ 1 and Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .42 
 
c. At least one hose is in use at both islands.  P(X ≠ 0 and Y ≠ 0) = p(1,1) + p(1,2) + p(2,1) 

+ p(2,2) = .70 
 
d. By summing row probabilities, px(x) = .16, .34, .50 for x = 0, 1, 2, and by summing 

column probabilities, py(y) = .24, .38, .38 for y = 0, 1, 2.  P(X ≤ 1) = px(0) + px(1) = .50 
 
e. P(0,0) = .10, but px(0) ⋅  py(0) = (.16)(.24) = .0384 ≠ .10, so X and Y are not independent. 

 
 
2.  

a.  
    y    
 p(x,y) 0 1 2 3 4  

 0 .30 .05 .025 .025 .10 .5 
x 1 .18 .03 .015 .015 .06 .3 
 2 .12 .02 .01 .01 .04 .2 

  .6 .1 .05 .05 .2  
 

b. P(X ≤ 1 and Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .56  
= (.8)(.7) = P(X ≤ 1) ⋅ P(Y ≤ 1) 

 
c. P( X + Y = 0) = P(X = 0 and Y = 0) = p(0,0) = .30 
 
d. P(X + Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) = .53 

 
 
3.  

a. p(1,1) = .15, the entry in the 1st row and 1st column of the joint probability table. 
 
b. P( X1 = X2 ) = p(0,0) + p(1,1) + p(2,2) + p(3,3) = .08+.15+.10+.07 = .40 
 
c. A = { (x1, x2): x1 ≥ 2 + x2 } ∪  { (x1, x2): x2 ≥ 2 + x1 } 

P(A) = p(2,0) + p(3,0) +  p(4,0) + p(3,1) +  p(4,1) + p(4,2) + p(0,2) + p(0,3) + p(1,3) =.22 
 

d. P( exactly 4) = p(1,3) + p(2,2) + p(3,1) + p(4,0) = .17 
P(at least 4) = P(exactly 4) + p(4,1) + p(4,2) + p(4,3) + p(3,2) + p(3,3) + p(2,3)=.46 
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4.  
a. P1(0) = P(X1 = 0) = p(0,0) + p(0,1) + p(0,2) + p(0,3) = .19 

P1(1) = P(X1 = 1) = p(1,0) + p(1,1) + p(1,2) + p(1,3) = .30, etc. 
 

x1 0 1 2 3 4 

p1(x1) .19 .30 .25 .14 .12 

 
b. P2(0) = P(X2 = 0) = p(0,0) + p(1,0) + p(2,0) + p(3,0) + p(4,0) = .19, etc 
 

x2 0 1 2 3 

p2(x2) .19 .30 .28 .23 

 
c. p(4,0) = 0, yet p1(4) = .12 > 0 and p2(0) = .19 > 0 , so p(x1 , x2) ≠ p1(x1) ⋅ p2(x2) for every  

(x1 , x2), and the two variables are not independent. 
 
 
5.  

a. P(X = 3, Y = 3) = P(3 customers, each with 1 package)  
= P( each has 1 package | 3 customers) ⋅ P(3 customers) 
= (.6)3 ⋅ (.25) = .054 

 
b. P(X = 4, Y = 11) = P(total of 11 packages | 4 customers) ⋅ P(4  customers) 

 Given that there are 4 customers, there are 4 different ways to have a total of 11 
packages: 3, 3, 3, 2 or 3, 3, 2, 3 or 3, 2, 3 ,3  or 2, 3, 3, 3.  Each way has probability 
(.1)3(.3), so p(4, 11) = 4(.1)3(.3)(.15) = .00018 

 
 
6.  

a. p(4,2) = P( Y = 2 | X = 4) ⋅ P(X = 4) = 0518.)15(.)4(.)6(.
2
4 22 =⋅
















 

 
b. P(X = Y) = p(0,0) + p(1,1) + p(2,2) + p(3,3) + p(4,4) = .1+(.2)(.6) + (.3)(.6)2 + (.25)(.6)3 

+ (.15)(.6)4 = .4014 
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c. p(x,y) = 0 unless y = 0, 1, …, x; x = 0, 1, 2, 3, 4.  For any such pair,  

p(x,y) = P(Y = y | X = x) ⋅ P(X = x) = )()4(.)6(. xp
y
x

x
yxy ⋅







 −  

 
py(4) = p(y = 4) = p(x = 4, y = 4) = p(4,4) = (.6)4⋅(.15) = .0194 

py(3) = p(3,3) + p(4,3) =  1058.)15)(.4(.)6(.
3
4

)25(.)6(. 33 =







+  

py(2) = p(2,2) + p(3,2) + p(4,2) = )25)(.4(.)6(.
2
3

)3(.)6(. 22








+  

 2678.)15(.)4(.)6(.
2
4 22 =








+  

py(1) = p(1,1) + p(2,1) + p(3,1) + p(4,1) = )3)(.4)(.6(.
1
2

)2)(.6(. 







+  

 3590.)15(.)4)(.6(.
1
4

)25(.)4)(.6(.
1
3 32 =








+








 

py(0) = 1 – [.3590+.2678+.1058+.0194] = .2480 
 
 
7.  

a. p(1,1) = .030 
 
b. P(X ≤ 1 and Y ≤ 1 = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .120 
 
c. P(X = 1) = p(1,0) + p(1,1) + p(1,2) = .100; P(Y = 1) = p(0,1) + … + p(5,1) = .300 
 
d. P(overflow) = P(X + 3Y > 5) = 1 – P(X + 3Y ≤ 5) = 1 – P[(X,Y)=(0,0) or …or (5,0) or 

(0,1) or (1,1) or (2,1)] = 1 - .620 = .380 
 
e. The marginal probabilities for X (row sums from the joint probability table) are px(0) = 

.05, px(1) = .10 , px(2) = .25,  px(3) = .30, px(4) = .20, px(5) = .10; those for Y (column 
sums) are py(0) = .5, py(1) = .3, py(2) = .2.  It is now easily verified that for every (x,y), 
p(x,y) = px(x) ⋅ py(y), so X and Y are independent. 
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8.  

a. numerator = ( )( )( ) 240,30124556
1

12
2

10
3
8

==























 

denominator = 775,593
6

30
=








; p(3,2) = 0509.

775,593
240,30

=  

 

b. p(x,y) = 

( )































+−

















0
6

30
6

12108
yxyx

 

otherwise

yx
thatsuchegers
negativenonareyx

60
__int

__,

≤+≤

−

 

 
 
9.  

a. ∫ ∫∫ ∫ +==
∞

∞−

∞

∞−

30

20

30

20

22 )(),(1 dxdyyxKdxdyyxf  

∫∫∫ ∫∫ ∫ +=+=
30

20

230

20

230

20

30

20

230

20

30

20

2 1010 dyyKdxxKdxdyyKdydxxK  

000,380
3

3
000,19

20 =⇒





⋅= KK  

 

b. P(X < 26 and Y < 26) = ∫∫ ∫ =+
26

20

226

20

26

20

22 12)( dxxKdxdyyxK  

    3024.304,384
26

20

3 == KKx  

  
c.  

 
 
 
 
 
 
 
 
 

  P( | X – Y | ≤ 2 ) = ∫∫
III
region

dxdyyxf ),(  

    ∫∫∫∫ −−
III

dxdyyxfdxdyyxf ),(),(1  

    ∫ ∫∫ ∫
−

+
−−

30

22

2

20

28

20

30

2
),(),(1

x

x
dydxyxfdydxyxf  

    = (after much algebra) .3593 
 

I

II

2+= xy 2−= xy

20

20

30

30

III
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d. fx(x) = 

30

20

3
230

20

22

3
10)(),(

y
KKxdyyxKdyyxf +=+= ∫∫

∞

∞−
 

   = 10Kx2 + .05,   20 ≤ x ≤ 30 
 

e. fy(y) is obtained by substituting y for x in (d);  clearly f(x,y) ≠ fx(x) ⋅ fy(y), so X and Y are 
not independent. 

 
 
10.  

a. f(x,y) = 



0
1

 
otherwise

yx 65,65 ≤≤≤≤
 

since fx(x) = 1, fy(y) = 1 for 5 ≤ x ≤ 6, 5 ≤ y ≤ 6 
 

b. P(5.25 ≤ X ≤ 5.75, 5.25 ≤ Y ≤ 5.75) = P(5.25 ≤ X ≤ 5.75) ⋅ P(5.25 ≤ Y ≤ 5.75) = (by 
independence) (.5)(.5) = .25 

 
c.  
 
 
 
 
 
 

 
 

 P((X,Y) ∈ A) = ∫∫
A

dxdy1  

  = area of A = 1 – (area of I + area of II ) 

  = 306.
36
11

36
25

1 ==−  

 
 
11.  

a. p(x,y) = 
!! y

e
x

e yx µλ µλ −−

⋅  for x = 0, 1, 2, …; y = 0, 1, 2, … 

 

b. p(0,0)  + p(0,1) + p(1,0) = [ ]µλµλ ++−− 1e  
 

c. P( X+Y=m ) = ∑∑
=

=
−−

= −
=−==

m

k

kmkm

k kmk
ekmYkXP

00 )!(!
),(

µλµλ  

!
)(

!

)(

0

)(

m
e

k
m

m
e mm

k

kmk µλ
µλ

µλµλ +
=







 +−

=

−
+−

∑ , so the total # of errors X+Y also has a 

Poisson distribution with parameter µλ + . 

I

II

6/1+=xy 6/1−=xy

5

5

6

6
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12.  

a. P(X> 3) = 050.
33 0

)1( == ∫∫ ∫
∞ −∞ ∞ +− dxedydxxe xyx  

 

b. The marginal pdf of X is xyx edyxe −∞ +− =∫0
)1(  for 0 ≤ x; that of Y is 

23

)1(

)1(
1
y

dxxe yx

+
=∫

∞ +−  for 0 ≤ y.  It is now clear that f(x,y) is not the product of  

the marginal pdf’s, so the two r.v’s are not independent. 
 

c. P( at least one exceeds 3) = 1 – P(X ≤ 3 and Y ≤ 3)  

= ∫ ∫∫ ∫ −−+− −=−
3

0

3

0

3

0

3

0

)1( 11 dyexedydxxe xyxyx  

= 300.25.25.)1(1 1233

0

3 =−+=−− −−−−∫ eedxee xx  

 
 
13.  

a. f(x,y) = fx(x) ⋅ fy(y) = 


 −−

0

yxe
 

otherwise
yx 0,0 ≥≥

 

 
b. P(X ≤ 1 and Y ≤ 1) = P(X ≤ 1) ⋅ P(Y ≤ 1) = (1 – e-1) (1 – e-1) = .400 
 

c. P(X + Y ≤ 2) = [ ]∫∫ ∫ −−−− −− −=
2

0

)2(2

0

2

0
1 dxeedxdye xxx yx  

= 594.21)( 222

0

2 =−−=− −−−−∫ eedxee x  

 

d. P(X + Y ≤ 1) = [ ] 264.211 11

0

)1( =−=− −−−−∫ edxee xx ,  

so P( 1 ≤ X + Y ≤ 2 ) = P(X + Y ≤ 2) – P(X + Y ≤ 1) = .594 - .264 = .330 
 
 
14.  

a. P(X1 < t, X2 < t, … , X10 < t) = P(X1 < t) … P( X10 < t) = 10)1( te λ−−  
 

b. If “success” = {fail before t}, then p = P(success) = te λ−−1 ,  

and P(k successes among 10 trials) = ktt ee
k

k −−−−






 10)(1
10 λλ  

 
c. P(exactly 5 fail) = P( 5 of λ’s fail and other 5 don’t) + P(4 of λ’s fail,  µ fails, and other 5 

don’t) = ( ) ( ) ( ) ( ) 5445
)(11

4
9

)(1
5
9 tttttt eeeeee λµλµλλ −−−−−− −−








+−








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15.  
a. F(y) = P( Y ≤ y ) = P [(X1 ≤y) ∪ ((X2 ≤ y) ∩ (X3 ≤ y))] 

= P (X1 ≤ y) + P[(X2 ≤ y) ∩ (X3 ≤ y)] - P[(X1 ≤ y) ∩ (X2 ≤ y) ∩ (X3 ≤ y)] 

=  32 )1()1()1( yyy eee λλλ −−− −−−+−  for y ≥ 0 
  

b. f(y) = F′(y) = ( ) ( )yyyyy eeeee λλλλλ λλλ −−−−− −−−+ 2)1(3)1(2  

 =  yy ee λλ λλ 32 34 −− −   for y ≥ 0 
 

E(Y) = ( )
λλλ

λλ λλ

3
2

3
1

2
1

234
0

32 =−





=−⋅∫

∞ −− dyeey yy  

 
 
16.  

a. f(x1, x3) = ( )∫∫
−−∞

∞−
−=

311

0 23212321 1),,(
xx

dxxxkxdxxxxf  

( )( )2
3131 1172 xxxx −−−   0 ≤ x1, 0 ≤ x3, x1 + x3 ≤ 1 

 

b. P(X1 + X3 ≤ .5) = ∫ ∫
−

−−−
5.

0

5.

0 12
2

3131
1

)1)(1(72
x

dxdxxxxx  

    = (after much algebra) .53125 
 

c. ( )( )∫∫ −−−==
∞

∞− 3
2

31313311 1172),()(
1

dxxxxxdxxxfxf x  

   5
1

3
1

2
11 6364818 xxxx −+−  0 ≤ x1 ≤ 1 

 
 
17.  

a. ( ),( YXP within a circle of radius ) ∫∫==
A

R dxdyyxfAP ),()(2  

25.
4
1..1

22
==== ∫∫ R

Aofarea
dxdy

R A ππ
 

 
b.  

  
 
 
 
 
 
 
 
 

 
ππ
1

22
,

22 2

2

==





 ≤≤−≤≤−

R
RR

Y
RR

X
R

P  
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c.  

  
 

 
 
 
 
 
 
 

ππ
22

22
,

22 2

2

==







≤≤−≤≤−

R
RR

Y
RR

X
R

P  

 

d. ( )
2

22

2

21
),(

22

22 R
xR

dy
R

dyyxfxf
xR

xRx ππ
−

=== ∫∫
−

−−

∞

∞−
  for –R ≤ x ≤ R  and 

similarly for fY(y).   X and Y are not independent since e.g. fx(.9R) = fY(.9R) > 0, yet 
f(.9R, .9R) = 0 since (.9R, .9R) is outside the  circle of radius R. 

 
 
18.  

a. Py|X(y|1) results from dividing each entry in x = 1 row of the joint probability table by 
px(1) = .34: 

2353.
34.
08.

)1|0(| ==xyP  

5882.
34.
20.

)1|1(| ==xyP  

1765.
34.
06.

)1|2(| ==xyP  

 
b. Py|X(x|2) is requested; to obtain this divide each entry in the y = 2 row by  

px(2) = .50: 
 

y 0 1 2 

Py|X(y|2) .12 .28 .60 

 
c. P( Y ≤ 1 | x = 2) = Py|X(0|2) + Py|X(1|2) = .12 + .28 = .40 
 
d. PX|Y(x|2) results from dividing each entry in the y = 2 column by py(2) = .38: 

 
   

x 0 1 2 

Px|y(x|2) .0526 .1579 .7895 
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19.  

a. 
05.10

)(
)(
),(

)|(
2

22

| +
+

==
kx

yxk
xf
yxf

xyf
X

XY   20 ≤ y ≤ 30 

05.10
)(

)|(
2

22

| +
+

=
ky

yxk
yxf YX  20 ≤ x ≤ 30  








=

000,380
3

k  

 

b. P( Y ≥ 25 | X = 22 ) = ∫
30

25 | )22|( dyyf XY  

         = ∫ =
+

+30

25 2

22

783.
05.)22(10
))22((

dy
k

yk
 

P( Y ≥ 25 ) = 75.)05.10()(
30

25

230

25
=+= ∫∫ dykydyyfY  

 

c. E( Y | X=22 ) = dy
k

yk
ydyyfy XY 05.)22(10

))22((
)22|(

2

2230

20| +
+

⋅=⋅ ∫∫
∞

∞−
 

   = 25.372912 

E( Y2 | X=22 ) = 028640.652
05.)22(10
))22((

2

2230

20

2 =
+

+
⋅∫ dy

k
yk

y  

V(Y| X = 22 ) = E( Y2 | X=22 ) – [E( Y | X=22 )]2 = 8.243976 
 
 
20.  

a. ( )
),(
),,(

,|
21,

321
213,|

21

213 xxf
xxxf

xxxf
xx

xxx =   where =),( 21, 21
xxf xx  the marginal joint pdf 

of (X1, X2) = 3321 ),,( dxxxxf∫
∞

∞−
 

 

b. ( )
)(

),,(
|,

1

321
132|,

1

132 xf
xxxf

xxxf
x

xxx =   where 

∫ ∫
∞

∞−

∞

∞−
= 323211 ),,()(

1
dxdxxxxfxf x  

 
 

21. For every x and y, fY|X(y|x) = fy(y), since then f(x,y) = fY|X(y|x)  ⋅ fX(x) = fY(y)  ⋅ fX(x), as  
required. 

 
 



Chapter 5:  Joint Probability Distributions and Random Samples 

 184 

Section 5.2 
 
22.  

a. E( X + Y ) = )02)(.00(),()( +=+∑∑
x y

yxpyx  

10.14)01)(.1510(...)06)(.50( =+++++  
 

b. E[max (X,Y)] = ∑∑ ⋅+
x y

yxpyx ),()max(  

60.9)01)(.15(...)06)(.5()02)(.0( =+++=  
 
 

23. E(X1 – X2) = ( )∑ ∑
= =

⋅−
4

0

3

0
2121

1 2

),(
x x

xxpxx =  

(0 – 0)(.08) + (0 – 1)(.07) + … + (4 – 3)(.06) = .15  
(which also equals E(X1) – E(X2) = 1.70 – 1.55) 

 
 
24. Let h(X,Y) = # of individuals who handle the message. 
 

   y     

 h(x,y) 1 2 3 4 5 6 

 1 - 2 3 4 3 2 

 2 2 - 2 3 4 3 

x 3 3 2 - 2 3 4 

 4 4 3 2 - 2 3 

 5 3 4 3 2 - 2 

 6 2 3 4 3 2 - 

 

Since p(x,y) = 30
1  for each possible (x,y), E[h(X,Y)] = 80.2),( 30

84
30
1 ==⋅∑∑

x y

yxh  

 
 

25. E(XY) = E(X) ⋅ E(Y) = L ⋅ L = L2 
 
 
26. Revenue = 3X + 10Y, so E (revenue) = E (3X + 10Y) 

4.15)2,5(35...)0,0(0),()103(
5

0

2

0

=⋅++⋅=⋅+= ∑∑
= =

ppyxpyx
x y
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27. E[h(X,Y)] = ( )∫ ∫∫ ∫ ⋅−=⋅−
1

0 0

21

0

1

0

2 626
x

ydydxxyxydxdyxyx  

 

( )
3
1

6
1212

1

0

51

0 0

223 ==− ∫∫ ∫ dx
x

dydxyxyx
x

 

 
 

28. E(XY) = ∑∑∑ ∑∑∑ ⋅=⋅⋅=⋅
y

y
x y x

x
x y

yx yypxxpypxpxyyxpxy )()()()(),(  

= E(X) ⋅ E(Y).  (replace Σ with ∫ in the continuous case) 

 
 

29. Cov(X,Y) = 
75
2

−  and 
5
2

== yx µµ .   E(X2) = ∫ ⋅
1

0

2 )( dxxfx x  

5
1

60
12

)1(12
1

0

23 ==−= ∫ dxxx , so Var (X) = 
25
1

25
4

5
1

=−  

Similarly, Var(Y) =
25
1

, so 667.
75
50

25
1

25
1

75
2

, −=−=
⋅

=
−

YXρ  

 
 
30.  

a. E(X) = 5.55, E(Y) = 8.55, E(XY) = (0)(.02) + (0)(.06) + … + (150)(.01) = 44.25, so 
Cov(X,Y) = 44.25 – (5.55)(8.55) = -3.20 

 

b. 15.19,45.12 22 == YX σσ , so 207.
)15.19)(45.12(

20.3
, −=

−
=YXρ  

 
 
31.  

a. E(X) = [ ] )(329.2505.10)(
30

20

230

20
YEdxKxxdxxxfx ==+= ∫∫  

E(XY) = 447.641)(
30

20

30

20

22 =+⋅∫ ∫ dxdyyxKxy  

111.)329.25(447.641),( 2 −=−=⇒ YXCov  
 

b. E(X2) = [ ] )(8246.64905.10 230

20

22 YEdxKxx ==+∫ ,  

so Var (X) = Var(Y) = 649.8246 – (25.329)2 = 8.2664 

0134.
)2664.8)(2664.8(

111.
−=

−
=⇒ ρ  
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32. There is a difficulty here.  Existence of ρ  requires that both X and Y have finite means and 

variances.  Yet since the marginal pdf of Y is 
( )21

1

y−
 for y ≥ 0, 

( )
( )
( ) ( ) ( )∫∫∫∫

∞∞∞∞

+
−

+
=

+

−+
=

+
=

0 200 20 2 1

1
1

1

1

11

1
)( dy

y
dy

y
dy

y

y
dy

y

y
yE , and the 

first integral is not finite.  Thus ρ  itself is undefined. 
 
 
33. Since E(XY) = E(X) ⋅ E(Y), Cov(X,Y) = E(XY) – E(X) ⋅ E(Y) = E(X) ⋅ E(Y) - E(X) ⋅ E(Y) = 

0, and since Corr(X,Y) = 
yx

YXCov
σσ

),(
, then Corr(X,Y) = 0 

 
 
34.  

a. In the discrete case, Var[h(X,Y)] = E{[h(X,Y) – E(h(X,Y))]2} = 

∑∑∑∑ −=−
x yx y

YXhEyxpyxhyxpYXhEyxh 222 ))],(([)],(),([),())],((),([

 with ∫∫ replacing ∑∑ in the continuous case. 

 
b. E[h(X,Y)] = E[max(X,Y)] = 9.60, and E[h2(X,Y)] = E[(max(X,Y))2] = (0)2(.02) 

+(5)2(.06) + …+ (15)2(.01) = 105.5, so Var[max(X,Y)] = 105.5 – (9.60)2 = 13.34 
 
 
35.  

a. Cov(aX + b, cY + d) = E[(aX + b)(cY + d)] – E(aX + b) ⋅ E(cY + d) 
= E[acXY + adX + bcY + bd] – (aE(X) + b)(cE(Y) + d) 
= acE(XY) – acE(X)E(Y) = acCov(X,Y) 

 
b. Corr(aX + b, cY + d) = 

)()(||||
),(

)()(
),(

YVarXVarca
YXacCov

dcYVarbaXVar
dcYbaXCov

⋅⋅
=

++
++

 

= Corr(X,Y) when a and c have the same signs. 
 

c.   When a and c differ in sign, Corr(aX + b, cY + d) = -Corr(X,Y). 
 
 
36. Cov(X,Y) = Cov(X, aX+b) = E[X⋅(aX+b)] – E(X) ⋅E(aX+b) = a Var(X),  

so Corr(X,Y) = 
)()(

)(
)()(

)(
2 XVaraXVar

XaVar
YVarXVar

XaVar

⋅
=

⋅
= 1 if a > 0, and –1 if a < 0 
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Section 5.3 
 
37.  
 

 P(x1) .20 .50 .30 

P(x2) x2 | x1 25 40 65 

.20 25 .04 .10 .06 

.50 40 .10 .25 .15 

.30 65 .06 .15 .09 

 
a.  

x  25 32.5 40 45 52.5 65 

( )xp  .04 .20 .25 .12 .30 .09 

  
 ( ) µ==+++= 5.44)09(.65...)20(.5.32)04)(.25(xE  
 
b.   

s2 0 112.5 312.5 800 

P(s2) .38 .20 .30 .12 

  
 E(s2) = 212.25 = σ2 

 
 
38.  

a.  

T0 0 1 2 3 4 

P(T0) .04 .20 .37 .30 .09 

 
b. µµ ⋅=== 22.2)( 00

TET  

 

c. 
222

0
2

0
2 298.)2.2(82.5)()(
0

σσ ⋅==−=−= TETET  
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39.  

x 0 1 2 3 4 5 6 7 8 9 10 

x/n 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

p(x/n) .000 .000 .000 .001 .005 .027 .088 .201 .302 .269 .107 

 
X is a binomial random variable with p = .8. 

 
 
40.  

a. Possible values of M are: 0, 5, 10.   M = 0 when all 3 envelopes contain 0 money, hence 
p(M = 0) = (.5)3 = .125.   M = 10 when there is a single envelope with $10, hence p(M = 
10) = 1 – p(no envelopes with $10) = 1 – (.8)3 = .488.   
p(M = 5) = 1 – [.125 + .488] = .387. 

 

M 0 5 10 

p(M) .125 .387 .488 

 
An alternative solution would be to list all 27 possible combinations using a tree diagram 
and computing probabilities directly from the tree. 

 
b. The statistic of interest is M, the maximum of x1, x2, or x3, so that M = 0, 5, or 10.  The 

population distribution is a s follows: 

x 0 5 10 

p(x) 1/2 3/10 1/5 

 
Write a computer program to generate the digits 0 – 9 from a uniform distribution.  
Assign a value of 0 to the digits 0 – 4, a value of 5 to digits 5 – 7, and a value of 10 to 
digits 8 and 9.  Generate samples of increasing sizes, keeping the number of replications 
constant and compute M from each sample.  As n, the sample size, increases, p(M = 0) 
goes to zero, p(M = 10) goes to one.  Furthermore, p(M = 5) goes to zero, but at a slower 
rate than p(M = 0). 
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41.  
Outcome 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4  

Probability .16 .12 .08 .04 .12 .09 .06 .03  

x  1 1.5 2 2.5 1.5 2 2.5 3  

r 0 1 2 3 1 0 1 2  

 

Outcome 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4  

Probability .08 .06 .04 .02 .04 .03 .02 .01  

x  2 2.5 3 3.5 2.5 3 3.5 4  

r 2 1 0 1 3 2 1 2  

a.  

x  1 1.5 2 2.5 3 3.5 4 

( )xp  .16 .24 .25 .20 .10 .04 .01 
 

 
b. P ( )5.2≤x = .8 
 
c.  

r 0 1 2 3 

p(r) .30 .40 .22 .08 
 

 

d. )5.1( ≤XP = P(1,1,1,1) + P(2,1,1,1) + … + P(1,1,1,2) + P(1,1,2,2) + … + P(2,2,1,1) + 
P(3,1,1,1) + … + P(1,1,1,3)  

 = (.4)4 + 4(.4)3(.3) + 6(.4)2(.3)2 + 4(.4)2(.2)2  = .2400 
 
 
42.  

a.  

x  27.75 28.0 29.7 29.95 31.65 31.9 33.6 

( )xp  30
4  30

2  30
6  30

4  30
8  30

4  30
2  

 
b.  

x  27.75 31.65 31.9 

( )xp  3
1  3

1  3
1  

  
c. all three values are the same:  30.4333 
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43. The statistic of interest is the fourth spread, or the difference between the medians of the 
upper and lower halves of the data.  The population distribution is uniform with A = 8 and B 
= 10.   Use a computer to generate samples of sizes n = 5, 10, 20, and 30 from a uniform 
distribution with A = 8 and B = 10.  Keep the number of replications the same (say 500, for 
example).  For each sample, compute the upper and lower fourth, then compute the 
difference.  Plot the sampling distributions on separate histograms for n = 5, 10, 20, and 30. 

 
 
44. Use a computer to generate samples of sizes n = 5, 10, 20, and 30 from a Weibull distribution 

with parameters as given, keeping the number of replications the same, as in problem 43 
above.  For each sample, calculate the mean.  Below is a histogram, and a normal probability 
plot for the sampling distribution of x  for n = 5, both generated by Minitab.  This sampling 
distribution appears to be normal, so since larger sample sizes will produce distributions that 
are closer to normal, the others will also appear normal.  

 
 
45. Using Minitab to generate the necessary sampling distribution, we can see that as n increases, 

the distribution slowly moves toward normality.  However, even the sampling distribution for 
n = 50 is not yet approximately normal.  
n = 10 

 
n = 50 
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Section 5.4 
 
46. µ = 12 cm σ = .04 cm 

a. n = 16  cmXE 12)( == µ    cm
n
x

x 01.
4
04.

===
σ

σ  

 

b. n = 64   cmXE 12)( == µ    cm
n
x

x 005.
8
04.

===
σ

σ  

 

c. X is more likely to be within .01 cm of the mean (12 cm) with the second, larger, 

sample.  This is due to the decreased variability of  X  with a larger sample size. 
 
 
47. µ = 12 cm σ = .04 cm 

a. n = 16   P( 11.99 ≤ X  ≤ 12.01) = 





 −

≤≤
−

01.
1201.12

01.
1299.11

ZP  

     = P(-1 ≤ Z ≤ 1) 
     = Φ(1) - Φ(-1)  
     =.8413 - .1587 
     =.6826 
 

b. n = 25    P( X  > 12.01) = 





 −

>
5/04.
1201.12

ZP = P( Z > 1.25) 

       = 1 - Φ(1.25) 
       = 1 - .8944 
       =.1056 
 
48.  

a. 50== µµ X , 10.
100
1

===
n
x

x
σ

σ  

P( 49.75 ≤ X  ≤ 50.25) = 





 −

≤≤
−

10.
5025.50

10.
5075.49

ZP  

     = P(-2.5 ≤ Z ≤ 2.5) = .9876 
 

b. P( 49.75 ≤ X  ≤ 50.25) ≈ 





 −

≤≤
−

10.
8.4925.50

10.
8.4975.49

ZP  

     = P(-.5 ≤ Z ≤ 4.5) = .6915 
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49.  
a. 11 P.M. – 6:50 P.M. = 250 minutes.  With T0 = X1 + … + X40 = total grading time, 

240)6)(40(
0

=== µµ nT  and ,95.37
0

== nT σσ  so P( T0 ≤ 250) ≈ 

( ) 6026.26.
95.37
240250

=≤=





 −

≤ ZPZP  

 

b. ( ) ( ) 2981.53.
95.37
240260

2600 =>=





 −

>=> ZPZPTP  

 
 
50. µ = 10,000 psi  σ = 500 psi 

a. n = 40 

P( 9,900 ≤ X  ≤ 10,200) ≈ 






 −
≤≤

−
40/500

000,10200,10
40/500
000,10900,9

ZP  

     = P(-1.26 ≤ Z ≤ 2.53)  
     = Φ(2.53) - Φ(-1.26)  
     = .9943 - .1038 

= .8905 
b. According to the Rule of Thumb given in Section 5.4, n should be greater than 30 in 

order to apply the C.L.T., thus using the same procedure for n = 15 as was used for n =   
40 would not be appropriate. 

 
 
51. X ~ N(10,4).  For day 1, n = 5 

P( X  ≤ 11)= 8686.)12.1(
5/2

1011
=≤=







 −
≤ ZPZP  

   
 For day 2, n = 6 

 P( X  ≤ 11)= 8888.)22.1(
6/2

1011
=≤=







 −
≤ ZPZP  

 For both days, 

 P( X  ≤ 11)= (.8686)(.8888) = .7720 
 
 
52. X ~ N(10), n =4 

40)10)(4(
0

=== µµ nT  and ,2)1)(2(
0

=== nT σσ   

We desire the 95th percentile:  40 + (1.645)(2) = 43.29 
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53. µ = 50, σ = 1.2  
a. n = 9 

P( X ≥ 51) = 0062.9938.1)5.2(
9/2.1

5051
=−=≥=







 −
≥ ZPZP  

 
b. n = 40 

P( X ≥ 51) = 0)27.5(
40/2.1

5051
≈≥=







 −
≥ ZPZP  

 
 
54.  

a. 65.2== µµ X , 17.
5
85.

===
n
x

x
σ

σ  

P( X  ≤ 3.00)= 9803.)06.2(
17.

65.200.3
=≤=






 −

≤ ZPZP  

P(2.65 ≤ X  ≤ 3.00)= 4803.)65.2()00.3( =≤−≤= XPXP  
 

b. P( X  ≤ 3.00)= 99.
/85.

65.200.3
=







 −
≤

n
ZP  implies that ,33.2

/85
35.

=
n

 from 

which n = 32.02.  Thus n = 33 will suffice. 
 
 

55. 20== npµ  464.3== npqσ  

a. P( 25 ≤ X ) ≈ 0968.)30.1(
464.3

205.24
=≤=






 ≤

−
ZPZP  

 

b. P( 15 ≤ X ≤ 25) ≈ 





 −

≤≤
−

464.3
205.25

464.3
205.14

ZP  

8882.)59.159.1( =≤≤−= ZP  
 
56.  

a. With Y = # of tickets, Y has approximately a normal distribution with 50== λµ , 

071.7== λσ , so P( 35 ≤ Y ≤ 70) ≈ 





 −

≤≤
−

071.7
505.70

071.7
505.34

ZP  = P( -2.19 

≤ Z ≤ 2.90) = .9838 
 

b. Here 250=µ , 811.15,2502 == σσ , so P( 225 ≤ Y ≤ 275) ≈ 







 −

≤≤
−

811.15
2505.275

811.15
2505.224

ZP  = P( -1.61 ≤ Z ≤ 1.61) = .8926 
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57. E(X) = 100, Var(X) = 200, 14.14=xσ , so P( X ≤ 125) ≈ 





 −

≤
14.14
100125

ZP  

= P( Z ≤ 1.77) = .9616 
 
 

Section 5.5 
 
58.  

a. E( 27X1 + 125X2 + 512X3 ) = 27 E(X1) + 125 E(X2) + 512 E(X3)  
= 27(200) + 125(250) + 512(100) = 87,850 

V(27X1 + 125X2 + 512X3) = 272 V(X1) + 1252 V(X2) + 5122 V(X3) 
    = 272 (10)2 + 1252 (12)2 + 5122 (8)2 = 19,100,116 
 

b. The expected value is still correct, but the variance is not because the covariances now 
also contribute to the variance. 

 
 
59.  

a. E( X1 + X2 + X3 ) = 180, V(X1 + X2 + X3) = 45, 708.6
321

=++ xxxσ  

P(X1 + X2 + X3 ≤ 200) = 9986.)98.2(
708.6

180200
=≤=






 −

≤ ZPZP  

P(150 ≤ X1 + X2 + X3 ≤ 200) = 9986.)98.247.4( ≈≤≤− ZP  
  

b. 60== µµ X , 236.2
3

15
===

n
x

x
σ

σ  

9875.)236.2(
236.2

6055
)55( =−≥=






 −

≥=≥ ZPZPXP  

( ) 6266.89.89.)6258( =≤≤−=≤≤ ZPXP  
 

c. E( X1 - .5X2 -.5X3 ) = 0;  

V( X1 - .5X2 -.5X3 ) = ,5.2225.25. 2
3

2
2

2
1 =++ σσσ sd = 4.7434 

P(-10 ≤ X1 - .5X2 -.5X3 ≤ 5) = 





 −

≤≤
−−

7434.4
05

7434.4
010

ZP  

( )05.111.2 ≤≤−= ZP  =  .8531 - .0174 = .8357 
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d. E( X1 + X2 + X3 ) = 150,  V(X1 + X2 + X3) = 36, 6
321

=++ xxxσ  

P(X1 + X2 + X3 ≤ 200) = 9525.)67.1(
6

150160
=≤=






 −

≤ ZPZP  

We want P( X1 + X2 ≥ 2X3), or written another way,  P( X1 + X2 - 2X3 ≥ 0)  
E( X1 + X2 - 2X3 ) = 40 + 50 – 2(60) = -30,   

V(X1 + X2 - 2X3) = ,784 2
3

2
2

2
1 =++ σσσ 36, sd = 8.832, so  

P( X1 + X2 - 2X3 ≥ 0) = 0003.)40.3(
832.8

)30(0
=≥=






 −−

≥ ZPZP  

 
 

60. Y is normally distributed with ( ) ( ) 1
3
1

2
1

54321 −=++−+= µµµµµµY , and 

7795.1,167.3
9
1

9
1

9
1

4
1

4
1 2

5
2
4

2
3

2
2

2
1

2 ==++++= YY σσσσσσσ . 

Thus, ( ) 2877.)56(.
7795.1

)1(0
0 =≤=






 ≤

−−
=≤ ZPZPYP   and  

( ) 3686.)12.10(
7795.1
2

011 =≤≤=





 ≤≤=≤≤− ZPZPYP  

 
 
61.  

a. The marginal pmf’s of X and Y are given in the solution to Exercise 7, from which E(X) 
= 2.8, E(Y) = .7, V(X) = 1.66, V(Y) = .61.  Thus E(X+Y) = E(X) + E(Y) = 3.5, V(X+Y) 
= V(X) + V(Y) = 2.27, and the standard deviation of X + Y is 1.51 

 
b. E(3X+10Y) = 3E(X) + 10E(Y) = 15.4, V(3X+10Y) = 9V(X) + 100V(Y) = 75.94, and the 

standard deviation of revenue is 8.71 
 
 
62. E( X1 + X2 + X3 ) = E( X1) + E(X2 ) + E(X3 ) = 15 + 30 + 20 = 65 min., 

 V(X1 + X2 + X3) = 12 + 22 + 1.52 = 7.25, 6926.225.7
321

==++ xxxσ  

 Thus, P(X1 + X2 + X3 ≤ 60) = 0314.)86.1(
6926.2

6560
=−≤=






 −

≤ ZPZP  

 
 
63.  

a. E(X1) = 1.70, E(X2) = 1.55, E(X1X2) = 33.3),(
1 2

2121 =∑∑
x x

xxpxx , so Cov(X1,X2) = 

E(X1X2) - E(X1) E(X2) = 3.33 – 2.635 = .695 
 
b. V(X1 + X2) = V(X1) +  V(X2) + 2 Cov(X1,X2)  

= 1.59 + 1.0875 + 2(.695) = 4.0675 
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64. Let X1, …, X5 denote morning times and X6, …, X10 denote evening times. 
a. E(X1 + …+ X10) = E(X1) + … + E(X10) = 5 E(X1) + 5 E(X6)  

= 5(4) + 5(5) = 45 
 

b. Var(X1 + …+ X10) = Var(X1) + … + Var(X10) = 5 Var(X1) + 5Var(X6) 

33.68
12
820

12
100

12
64

5 ==



 +=  

 
c. E(X1 – X6) = E(X1) - E(X6) = 4 – 5 = -1 

Var(X1 – X6) = Var(X1) + Var(X6) = 67.13
12

164
12

100
12
64

==+  

 
d. E[(X1 + … + X5) – (X6 + … + X10)] = 5(4) – 5(5) = -5 

Var[(X1 + … + X5) – (X6 + … + X10)]  
= Var(X1 + … + X5) + Var(X6 + … + X10)] = 68.33 

 
 
65. µ = 5.00, σ = .2 

a. ;0)( =− YXE  0032.
2525

)(
22

=+=−
σσ

YXV , 0566.=−YXσ  

 

( ) ( ) 9232.77.177.11.1. =≤≤−≈≤−≤−⇒ ZPYXP  (by the CLT) 
 

b. 0022222.
3636

)(
22

=+=−
σσ

YXV , 0471.=−YXσ  

( ) ( ) 9660.12.212.21.1. =≤≤−≈≤−≤−⇒ ZPYXP  
 
 
66.  

a. With M = 5X1 + 10X2, E(M) = 5(2) + 10(4) = 50,  
Var(M) = 52 (.5)2 + 102 (1)2 = 106.25, σM = 10.308. 

 

b. P( 75 < M ) = 0075.)43.2(
308.10

5075
=<=






 <

−
ZPZP  

 
c. M = A1X1 + A2X2 with the A I’s and XI’s all independent, so  

E(M) = E(A1X1) + E(A2X2) = E(A1)E(X1) + E(A2)E(X2) = 50 
 

d. Var(M) = E(M2) – [E(M)]2.   Recall that for any r.v. Y,  

E(Y2) = Var(Y) + [E(Y)]2.  Thus, E(M2) = ( )2
2

2
22211

2
1

2
1 2 XAXAXAXAE ++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
2

2
22211

2
1

2
1 2 XEAEXEAEXEAEXEAE ++=  

(by independence) 
= (.25 + 25)(.25 + 4) + 2(5)(2)(10)(4) + (.25 + 100)(1 + 16) = 2611.5625, so Var(M) = 
2611.5625 – (50)2 = 111.5625 

 



Chapter 5:  Joint Probability Distributions and Random Samples 

 197 

e. E(M) = 50 still, but now 

)(),(2)()( 2
2
221211

2
1 XVaraXXCovaaXVaraMVar ++=  

 = 6.25 + 2(5)(10)(-.25) + 100 = 81.25 
 
 
67. Letting X1, X2, and X3 denote the lengths of the three pieces, the total length is  

X1 + X2 - X3.   This has a normal distribution with mean value 20 + 15 – 1 = 34, variance 
.25+.16+.01 = .42, and standard deviation .6481.  Standardizing gives  
P(34.5  ≤ X1 + X2 - X3 ≤ 35) = P(.77 ≤ Z ≤ 1.54) = .1588 

 
 
68. Let X1 and X2 denote the (constant) speeds of the two planes. 

a. After two hours, the planes have traveled 2X1 km. and 2X2  km., respectively, so the  
second will not have caught the first if 2X1 + 10 > 2X2, i.e. if X2 – X1 < 5. X2 – X1 has a 
mean 500 – 520 = -20, variance 100 + 100 = 200, and standard deviation 14.14.  Thus, 

.9616.)77.1(
14.14

)20(5
)5( 12 =<=






 −−

<=<− ZPZPXXP  

 
b. After two hours, #1 will be 10 + 2X1 km from where #2 started, whereas #2 will be 2X2 

from where it started.  Thus the separation distance will be al most 10 if  |2X2 – 10 – 2X1| 
≤ 10, i.e. –10 ≤ 2X2 – 10 – 2X1 ≤ 10,  
i.e. 0 ≤ X2 – X1 ≤ 10.  The corresponding probability is  
P(0 ≤ X2 – X1 ≤ 10) = P(1.41 ≤ Z ≤ 2.12) = .9830 - .9207 = .0623. 

 
 
69.  

a. E(X1 + X2 + X3) = 800 + 1000 + 600 = 2400. 
 
b. Assuming independence of X1, X2 , X3, Var(X1 + X2 + X3)  

= (16)2 + (25)2 + (18)2 = 12.05 
 

c. E(X1 + X2 + X3) =  2400 as before, but now Var(X1 + X2 + X3)  
= Var(X1) + Var(X2) + Var(X3) + 2Cov(X1,X2) + 2Cov(X1, X3) + 2Cov(X2, X3) = 1745, 
with sd = 41.77 

 
 
70.  

a. ,5.)( =iYE  so 
4

)1(
5.)()(

11

+
==⋅= ∑∑

==

nn
iYEiWE

n

i

n

i
i  

 

b. ,25.)( =iYVar  so 
24

)12)(1(
25.)()(

1

2

1

2 ++
==⋅= ∑∑

==

nnn
iYVariWVar

n

i

n

i
i  
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71.  

a. ,722211

12

02211 WXaXaxdxWXaXaM ++=++= ∫  so 

E(M) = (5)(2) + (10)(4) + (72)(1.5) = 158m 

( ) ( ) ( ) ( ) ( ) ( ) 25.43025.721105.5 2222222 =++=Mσ , 74.20=Mσ  

 

b. 9788.)03.2(
74.20
158200

)200( =≤=





 −

≤=≤ ZPZPMP  

 
 
72. The total elapsed time between leaving and returning is To = X1 + X2 + X3 + X4, with 

,40)( =oTE  402 =
oTσ , 477.5=

oTσ . To  is normally distributed, and the desired value t 

is the 99th percentile of the lapsed time distribution added to 10 A.M.:  10:00 + 
[40+(5.477)(2.33)] = 10:52.76 

 
 
73.  

a. Both approximately normal by the C.L.T. 
 
b. The difference of two r.v.’s is just a special linear combination, and a linear combination 

of normal r.v’s has a normal distribution, so YX −  has approximately a normal 

distribution with 5=−YXµ  and 621.1,629.2
35
6

40
8 22

2 ==+= −− YXYX σσ  

 

c. ( ) 





 −

≤≤
−−

≈≤−≤−
6213.1

51
6213.1

51
11 ZPYXP &

0068.)47.270.3( ≈−≤≤−= ZP  
 

d. ( ) .0010.)08.3(
6213.1

510
10 =≥=






 −

≥≈≥− ZPZPYXP &   This probability is 

quite small, so such an occurrence is unlikely if 521 =− µµ , and we would thus doubt 
this claim. 

 
 

74. X is approximately normal with 35)7)(.50(1 ==µ  and 5.10)3)(.7)(.50(2
1 ==σ , as 

is Y with 302 =µ  and 122
2 =σ .  Thus 5=−YXµ  and 5.222 =−YXσ , so  

( ) 4826.)011.2(
74.4
0

74.4
10

55 =≤≤−=





 ≤≤

−
≈≤−≤− ZPZPYXp  
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Supplementary Exercises 
 
75.  

a. pX(x) is obtained by adding joint probabilities across the row labeled x, resulting in pX(x) 
= .2, .5, .3 for x = 12, 15, 20 respectively.  Similarly, from column sums py(y) = .1, .35, 
.55 for y = 12, 15, 20 respectively. 

 
b. P(X ≤ 15 and Y ≤ 15) = p(12,12) + p(12,15) + p(15,12) + p(15,15) = .25 
 
c. px(12) ⋅ py(12) = (.2)(.1) ≠ .05 = p(12,12), so X and Y are not independent. (Almost any 

other (x,y) pair yields the same conclusion). 
 

d. 35.33),()()( =+=+ ∑∑ yxpyxYXE  (or =  E(X) + E(Y) = 33.35) 

 

e. 85.3),()( =+=− ∑∑ yxpyxYXE  

 
 
76. The roll-up procedure is not valid for the 75th percentile unless 01 =σ  or 02 =σ  or both 

1σ  and 02 =σ , as described below. 

Sum of percentiles: ))(()()( 21212211 σσµµσµσµ +++=+++ ZZZ  

Percentile of sums: 22
21 21

)( σσµµ +++ Z  

These are equal when Z = 0 (i.e. for the median) or in the unusual case when 
22

21 21
σσσσ +=+ , which happens when 01 =σ  or 02 =σ  or both 1σ  and 

02 =σ . 
 
77.  

 
 
 
 
 
 
 

a. ∫ ∫∫ ∫∫ ∫
−−

−

∞

∞−

∞

∞−
+==

30

20

30

0

20

0

30

20
),(1

xx

x
kxydydxkxydydxdxdyyxf  

250,81
3

3
250,81

=⇒⋅= kk  

 

b. 






+−=

−=
=

∫
∫

−

−

−

)30450(

)10250(
)(

3
2
1230

0

230

20

xxxkkxydy

xxkkxydy
xf x

x

x
X  

3020
200

≤≤
≤≤

x
x

 

 and by symmetry fY(y) is obtained by substituting y for x in fX(x).  Since fX(25) > 0, and 
fY(25) > 0, but f(25, 25) = 0 , fX(x) ⋅ fY(y) ≠ f(x,y) for all x,y  so X and Y are not 
independent. 

30=+ yx

20=+ yx
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c. ∫ ∫∫ ∫
−−

−
+=≤+

25

20

25

0

20

0

25

20
)25(

xx

x
kxydydxkxydydxYXP  

    355.
24

625,230
250,81
3

=⋅=  

 

d. ( ){∫ −⋅=+=+
20

0

2102502)()()( dxxxkxYEXEYXE  

 

( ) }∫ +−⋅+
30

20

3
2
1230450 dxxxxkx     969.25)67.666,351(2 == k  

 

e. ∫ ∫∫ ∫
−

−

∞

∞−

∞

∞−
=⋅=

20

0

30

20

22),()(
x

x
dydxykxdxdyyxfxyXYE  

   4103.136
3

000,250,33
3

30

20

30

0

22 =⋅=+ ∫ ∫
− k

dydxykx
x

, so 

 Cov(X,Y) = 136.4103 – (12.9845)2 = -32.19, and E(X2) = E(Y2) = 204.6154, so 

0182.36)9845.12(6154.204 222 =−== yx σσ and 894.
0182.36

19.32
−=

−
=ρ  

 
f. Var (X + Y) = Var(X) + Var(Y) + 2Cov(X,Y) = 7.66 

 
 

78. FY(y) = P( max(X1, …, Xn) ≤ y) = P( X1 ≤ y, …, Xn ≤ y) = [P(X1 ≤ y)]n 
ny







 −

=
100

100
 for 

100 ≤ y ≤ 200.   

Thus fY(y) = ( ) 1100
100

−− n
n

y
n

 for 100 ≤ y ≤ 200. 

( ) ( )∫∫ −− +=−⋅=
100

0

1200

100

1 100
100

100
100

)( duuu
n

dyy
n

yYE n
n

n
n

 

100
1
12

1
100100

100
100

100

0
⋅

+
+

=
+

+=+= ∫ n
n

n
n

duu
n n

n
 

 
 

79. 34002000900500)( =++=++ ZYXE  

014.123
365

180
365

100
365
50

)(
222

=++=++ ZYXVar , and the std dev = 11.09. 

1)0.9()3500( ≈≤=≤++ ZPZYXP  
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80.  
a. Let X1, …, X12 denote the weights for the business-class passengers and Y1, …, Y50 

denote the tourist-class weights.  Then T = total weight  
= X1 + … + X12 + Y1 + … + Y50 = X + Y 
E(X) = 12E(X1) = 12(30) = 360; V(X) = 12V(X1) = 12(36) = 432. 
E(Y) = 50E(Y1) = 50(40) = 2000; V(Y) = 50V(Y1) = 50(100) = 5000. 
Thus E(T) = E(X) + E(Y) = 360 + 2000 = 2360 
And V(T) = V(X) + V(Y) = 432 + 5000 = 5432, std dev = 73.7021 

 

b. ( ) 9713.90.1
7021.73

23602500
)2500( =≤=






 −

≤=≤ ZPZPTP  

 
 
81.  

a. E(N) ⋅ µ = (10)(40) = 400 minutes 
 
b. We expect 20 components to come in for repair during a 4 hour period,  

so E(N) ⋅ µ = (20)(3.5) = 70 
 
 
82. X ~ Bin ( 200, .45) and Y ~ Bin (300, .6).  Because both n’s are large, both X and Y are 

approximately normal, so X + Y is approximately normal with mean (200)(.45) + (300)(.6) = 
270, variance 200(.45)(.55) + 300(.6)(.4) = 121.40, and standard deviation 11.02.  Thus, P(X 

+ Y ≥ 250) ( ) 9686.86.1
02.11

2705.249
=−≥=






 −

≥= ZPZP  

 
 

83. 0.95 = 







≤≤

−
=+≤≤−

n
Z

n
PXP

/01.
02.

/01.
02.

)02.02.( &µµ  

= ( ),2.2. nZnP ≤≤−  but ( ) 95.96.196.1 =≤≤− ZP  so 

.9796.12. =⇒= nn  The C.L.T. 
 
 
84. I have 192 oz.  The amount which  I would consume if there were no limit is To = X1 + …+ 

X14 where each XI is normally distributed with µ = 13 and σ = 2.  Thus To is normal with 
182=

oTµ  and 483.7=
oTσ , so P(To < 192) = P(Z < 1.34) = .9099. 

 
 
85. The expected value and standard deviation of volume are 87,850 and 4370.37, respectively, so 

9973.)78.2(
37.4370

850,87000,100
)000,100( =≤=






 −

≤=≤ ZPZPvolumeP  

 
86. The student will not be late if X1 + X3 ≤ X2 , i.e. if X1 – X2 + X3 ≤ 0.  This linear combination 

has mean –2, variance 4.25, and standard deviation 2.06, so 

8340.)97.(
06.2

)2(0
)0( 321 =≤=






 −−

≤=≤+− ZPZPXXXP  



Chapter 5:  Joint Probability Distributions and Random Samples 

 202 

 
 
87.  

a. .2),(2)( 222222
yYXxyx aaYXaCovaYaXVar σρσσσσσ ++=++=+  

Substituting  
X

Ya
σ
σ

=  yields ( ) 0122 2222 ≥−=++ ρσσρσσ YYYY , so 1−≥ρ  

 
b. Same argument as in a 
 

c. Suppose 1=ρ .  Then ( ) ( ) 012 2 =−=− ρσ YYaXVar , which implies that 

kYaX =−  (a constant), so kaXYaX −=− , which is of the form baX + . 
 
 

88. ∫ ∫ ⋅−+=−+
1

0

1

0

22 .),()()( dxdyyxftyxtYXE   To find the minimizing value of t, 

take the derivative with respect to t and equate it to 0: 

tdxdyyxtfyxftyx =⇒=−−+= ∫ ∫∫ ∫
1

0

1

0

1

0

1

0
),(0),()1)((20  

 )(),()(
1

0

1

0
YXEdxdyyxfyx +=⋅+= ∫ ∫ , so the best prediction is the individual’s 

expected score ( = 1.167). 
 
 
89.  

a. With Y = X1 + X2, 

( )
( ) ( ) 12

2
1

2
2

1
2

2
2/0 0

1
2/

2121

121

1

1 2/2
1

2/2
1

dxdxexxyF
xx

y xy

Y




⋅
Γ




⋅
Γ

=
+

−−−−

∫ ∫
νν

νν νν
.  

But the inner integral can be shown to be equal to 

( ) ( )
( ) 2/1]2/[

21
2/

21

21 2/)(2
1 yey −−+

+ +Γ
νν

νν νν
, from which the result follows. 

 

b. By a, 2
2

2
1 ZZ +  is chi-squared with 2=ν , so ( ) 2

3
2
2

2
1 ZZZ ++  is chi-squared with 

3=ν , etc, until 22
1 ... nZZ ++  9s chi-squared with n=ν  

 

c. 
σ

µ−iX
 is standard normal, so 

2






 −
σ

µiX
is chi-squared with 1=ν , so the sum 

is chi-squared with n=ν . 
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90.  
a. Cov(X, Y + Z) = E[X(Y + Z)] – E(X) ⋅ E(Y + Z)  

= E(XY) + E(XZ) – E(X) ⋅ E(Y) – E(X)  ⋅  E(Z)  
= E(XY) – E(X)  ⋅ E(Y) + E(XZ) – E(X) ⋅ E(Z)  
= Cov(X,Y) + Cov(X,Z). 

 
b. Cov(X1 + X2 , Y1 +  Y2) = Cov(X1 , Y1) + Cov(X1 ,Y2) + Cov(X2 , Y1) + Cov(X2 ,Y2)  

(apply a twice) = 16. 
 

 
 
91.  

a. )()()()( 22
22

11 XVEWVEWVXV EW =+=+=+= σσ  and  

++=++= ),(),(),(),( 22121 EWCovWWCovEWEWCovXXCov  
2

211 )(),(),(),( wWVWWCovEECovWECov σ===+ .   

Thus, 22

2

2222

2

EW

W

EWEW

W

σσ
σ

σσσσ

σ
ρ

+
=

+⋅+
=  

 

b. 9999.
0001.1
1

=
+

=ρ  

 
 
92.  

a. Cov(X,Y)  = Cov(A+D, B+E) 
= Cov(A,B) + Cov(D,B) + Cov(A,E) + Cov(D,E)= Cov(A,B).       Thus 

2222

),(
),(

EBDA

BACov
YXCorr

σσσσ +⋅+
=  

2222

),(

EB

B

DA

A

BA

BACov

σσ

σ

σσ

σ
σσ +

⋅
+

⋅=  

 The first  factor in this expression is Corr(A,B), and (by the result of exercise 70a) the 
second and third factors are the square roots of Corr(X1, X2) and Corr(Y1, Y2), 
respectively.  Clearly, measurement error reduces the correlation, since both square-root 
factors are between 0 and 1. 

 

b. 855.9025.8100. =⋅ .  This is disturbing, because measurement error substantially 
reduces the correlation. 
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93. [ ] 26120),,,()( 20
1

15
1

10
1

4321 =++== µµµµhYE &  

The partial derivatives of ),,,( 4321 µµµµh  with respect to x1, x2, x3, and x4 are ,
2
1

4

x
x

−  

,
2
2

4

x
x

−  ,
2
3

4

x
x

−  and 
321

111
xxx

++ , respectively.  Substituting x1 = 10, x2 = 15, x3 = 20, and 

x4 = 120 gives –1.2, -.5333, -.3000, and .2167, respectively, so V(Y) = (1)(-1.2)2 + (1)(-
.5333)2 + (1.5)(-.3000)2 + (4.0)(.2167)2 = 2.6783, and the approximate sd of y is 1.64. 

 
 
 

94. The four second order partials are ,
2

3
1

4

x
x

,
2

3
2

4

x
x

,
2

3
3

4

x
x

and 0 respectively.  Substitution gives 

E(Y) = 26 + .1200 + .0356 + .0338 = 26.1894. 
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CHAPTER 6 
 

Section 6.1 
 
1.  

a. We use the sample mean, x to estimate the population mean µ .  

1407.8
27

80.219ˆ ==
Σ

==
n
x

x iµ  

 
b. We use the sample median, 7.7~ =x (the middle observation when arranged in 

ascending order). 
 

c. We use the sample standard deviation, 
( )

660.1
26

94.1860 27
8.219

2

2

=
−

== ss  

 
d. With “success” = observation greater than 10, x = # of successes = 4, and 

1481.ˆ
27
4 === n

xp  

 

e. We use the sample (std dev)/(mean), or 2039.
1407.8
660.1

==
x
s

 

 
 
2.  

a. With X = # of T’s in the sample, the estimator is ,10;ˆ == xp n
X  so 50.,

20
10ˆ ==p . 

 

b. Here, X = # in sample without TI graphing calculator, and x = 16, so 80.
20
16ˆ ==p  
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3.  
a. We use the sample mean, 3481.1=x  
 
b. Because we assume normality, the mean = median, so we also use the sample mean  

3481.1=x .  We could also easily use the sample median. 
 
c. We use the 90th percentile of the sample: 

( )( ) 7814.13385.28.13481.128.1ˆ)28.1(ˆ =+=+=+ sxσµ . 
 
d. Since we can assume normality, 

( ) ( ) 6736.45.
3385.

3481.15.15.1
5.1 =<=






 −

<=





 −

<≈< ZPZP
s

x
ZPXP  

 

e. The estimated standard error of 0846.
16

3385.ˆ
====

n
s

n
x

σ
 

 
 
4.  

a. ( ) ( ) ( ) 21 µµ −=−=− YEXEYXE ; 434.575.8141.8 =−=− yx  
 

b. ( ) ( ) ( )
2

2
2

1

2
122

nn
YVXVYXV YX

σσ
σσ +=+=+=−  

( ) ;
2

2
2

1

2
1

nn
YXVYX

σσ
σ +=−=−  The estimate would be 

5687.
20
104.2

27
66.1 22

2

2
2

1

2
1 =+=+=− n

s
n
s

s YX . 

 

c. 7890.
104.2
660.1

2

1 ==
s
s

 

 

d. ( ) ( ) ( ) 1824.7104.266.1 222
2

2
1 =+=+=+=− σσYVXVYXV  

 
 
5. N = 5,000 T = 1,761,300 

6.374=y  6.340=x  0.34=d  

000,703,1)6.340)(000,5(1̂ === xNθ  

300,591,1)0.34)(000,5(300,761,1ˆ
2 =−=−= dNTθ  

281.438,601,1
6.374
6.340

300,761,13̂ =





=








=

y
x

Tθ  
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6.  
a. Let )ln( ii xy =  for I = 1, .., 31.  It is easily verified that the sample mean and sample sd 

of the  sy i '  are 102.5=y  and .4961.=ys   Using the sample mean and sample sd 

to estimate µ  and σ , respectively, gives 102.5ˆ =µ  and 4961.ˆ =σ  (whence 

2461.ˆ 22 == ysσ ). 

 

b. 







+≡

2
exp)(

2σ
µXE .  It is natural to estimate E(X) by using µ̂  and 2σ̂ in place of 

µ  and 2σ in this expression: 

87.185)225.5exp(
2

2461.
102.5exp)ˆ( ==



 +=XE   

 
 
7.  

a. 6.120
10

1206ˆ ==== ∑
n

x
x iµ  

 
b. 000,10ˆ =τ  000,206,1ˆ =µ  
 
c. 8 of 10 houses in the sample used at least 100 therms (the “successes”), so 

.80.ˆ
10
8 ==p  

 
d. The ordered sample values are 89, 99, 103, 109, 118, 122, 125, 138, 147, 156,  from 

which the two middle values are 118 and 122, so 0.120
2

122118~~^ =
+

== xµ  

 
 
8.  

a. With q denoting the true proportion of defective components, 

150.
80
12

.
)..(#

ˆ ===
sizesample
sampleindefective

q  

 

b. P(system works) = p2 , so an estimate of this probability is 723.
80
68

ˆ
2

2 =





=p  
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9.  

a. ,)()( λµ === XEXE so X  is an unbiased estimator for the Poisson parameter 

λ ; ,317)1)(7(...)37)(1()18)(0( =+++=∑ ix  since n = 150, 

11.2
150
317ˆ === xλ . 

 

b. 
nn

x
λσ

σ == , so the estimated standard error is 119.
150

11.2ˆ
==

n
λ

 

 
 
10.  

a. 2
2

22 )]([)()( µ
σ

+=+=
n

XEXVarXE , so the bias of the estimator  2X is 
n

2σ
; 

thus 2X  tends to overestimate 2µ . 
 

b. 2
2

22222 )()()( σ
σ

µ k
n

SkEXEkSXE −+=−=− , so with 
n

k
1

= , 

222 )( µ=− kSXE . 
 
 
11.  

a. ( ) ( ) 2122
2

11
1

2
2

1
12

2

1

1 )(
1

)(
111

pppn
n

pn
n

XE
n

XE
nn

X
n
X

E −=−=−=







− . 

 

b. )(
1

)(
1

2

2

2
1

2

12

2

1

1

2

2

1

1 XVar
n

XVar
nn

X
Var

n
X

Var
n
X

n
X

Var 







+








=








+








=








−

( ) ( ) ,
11

2

22

1

11
2222

2
1112

1 n
qp

n
qp

qpn
n

qpn
n

+=+  and the standard error is the square 

root of this quantity. 
 

c. With 
1

1
1ˆ

n
x

p = , 11 ˆ1ˆ pq −= , 
2

2
2ˆ

n
x

p = , 22 ˆ1ˆ pq −= ,  the estimated standard error  is 

2

22

1

11 ˆˆˆˆ
n
qp

n
qp

+ . 

 

d. ( ) 245.880.635.
200
176

200
127ˆˆ 21 −=−=−=− pp  

 



Chapter 6:  Point Estimation 

 209 

e. 041.
200

)120)(.880(.
200

)365)(.635(.
=+  

 
 

12. 
( ) ( ) ( ) ( )

)(
2

1
)(

2
1

2
11 2

2
21

22
1

21

1

21

2
22

2
11 SE

nn
n

SE
nn

n
nn

SnSn
E

−+
−

+
−+

−
=








−+

−+−
 

( ) ( ) 22

21

22

21

1

2
1

2
1

σσσ =
−+

−
+

−+
−

=
nn

n
nn

n
. 

 
 

13. ( ) θ
θ

θ
3
1

64
1)(

1

1

321

1 2
1 =+=+⋅=

−
−∫

xx
dxxxXE   θ

3
1

)( =XE

 θ
3
1

)( =XE  θθθθ =





===⇒=

3
1

3)(3)3()ˆ(3ˆ XEXEEX  

 
 
14.  

a. min(xi) = 202 and max(xi) = 525, so the estimate of the number of planes manufactured is 
max(xi) - min(xi) + 1 = 525 – 202 + 1 = 324. 

 
b. The estimate will equal the true number of planes manufactured iff min(xi) = α  and 

max(xi) = β, i.e., iff the smallest serial number in the population and the largest serial 
number in the population both appear in the sample.  The estimator is not unbiased.  This 
is because max(xi) never overestimates β and will usually underestimate it ( unless 
max(xi) = β) , so that E[max(xi)] < β.  Similarly, E[min(xi)] > α ,so E[max(xi) - min(xi)] < 
β - α + 1;  The estimate will usually be smaller than β - α + 1, and can never exceed it. 

 
 
15.   

a. θ2)( 2 =XE  implies that θ=







2

2X
E .  Consider 

n

X i

2
ˆ

2∑=θ .  Then 

( ) ( )
θ

θθ
θ ====










= ∑∑∑

n
n

nn

XE

n

X
EE ii

2
2

2

2

22
ˆ

22

, implying that θ̂  is an 

unbiased estimator for θ . 
 

b. 1058.14902 =∑ ix , so 505.74
20

1058.1490ˆ ==θ  
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16.  

a. [ ] µµδδµδδδδ =−+=−+=−+ )1()()1()()1( YEXEYXE  
 

b. [ ]
nm

YVarXVarYXVar
2222

22 )1(4
)()1()()1(

σδσδ
δδδδ

−
+=−+=−+ .  

Setting the derivative with respect to δ equal to 0 yields 0
)1(82 22

=
−

+
nm

σδδσ
, 

from which 
nm

m
+

=
4

4
δ . 

 
 
17.  

a. ( )xr

x

pp
x
rx

rx
r

pE −⋅⋅






 −+
⋅

−+
−

= ∑
∞

=

1
1

1
1

)ˆ(
0

 
( ) ( ) ( )xr

x

xr

x

pp
x
rx

ppp
rx
rx

p −






 −+
=−⋅⋅

−
−+

= −
∞

=

−
∞

=
∑∑ 1

2
1

)!2(!
!2 1

0

1

0

 pprxnbp
x

=−= ∑
∞

=0

),1;( . 

 

b. For the given sequence, x = 5, so 444.
9
4

155
15ˆ ==
−+

−
=p  

 
 
18.  

a. 
( )








 −−

=
2

2

22

2
1

),;( σ
µ

σπ
σµ

x

exf , so 
σπ

σµµ
2
1

),;( 2 =f  and 

nnfn

22

2 24
2

)]([[4
1 σππσ

µ
⋅== ; since ,1

2
>

π
 ).()~( XVarXVar >  

 

b. 
π

µ
1

)( =f , so 
nn

XVar
467.2

4
)

~
(

2

=≈
π

. 
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19.  

a. 3.215.5. +=⇒+= pp λλ , so 3.2 −= λp  and ;3.23.ˆ2ˆ −





=−=

n
Y

p λ   

the estimate is 2.3.
80
20

2 =−







. 

 

b. ( ) ( ) pEEpE =−=−=−= 3.23.ˆ23.ˆ2)ˆ( λλλ , as desired. 

 

c. Here  ),3)(.3(.7. += pλ  so 
70
9

7
10

−= λp  and 
70
9

7
10

ˆ −





=

n
Y

p . 

 
 

Section 6.2 
 
20.  

a. We wish to take the derivative of ( ) 







−







 −xnx pp
x
n

1ln , set it equal to zero and solve 

for p. ( ) ( ) ( )
p
xn

p
x

pxnpx
x
n

dp
d

−
−

−=







−−++








1

1lnlnln ;  setting this equal to 

zero and solving for p yields 
n
x

p =ˆ .  For n = 20 and x = 3, 15.
20
3ˆ ==p  

 

b. ( ) ( ) ( ) pnp
n

XE
nn

X
EpE ===






=

11ˆ ; thus p̂ is an unbiased estimator of p. 

 

c. ( ) 4437.15.1 5 =−  
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21.  

a. ( ) 





 +Γ⋅=

α
β

1
1XE  and ( ) 






 +Γ=+=

α
β

2
1)]([)( 222 XEXVarXE , so the  

moment estimators α̂  and β̂  are the solution to 





 +Γ⋅=

α
β

ˆ
1

1ˆX , 







 +Γ=∑ α

β
ˆ
2

1ˆ1 22
iX

n
.  Thus 







 +Γ

=

α

β

ˆ
1

1

ˆ X
 , so once α̂  has been determined 







 +Γ

α̂
1

1  is evaluated and β̂  then computed.  Since 





 +Γ⋅=

α
β

ˆ
1

1ˆ 222X , 







 +Γ







 +Γ

=∑
α

α

ˆ
1

1

ˆ
2

1
1

2
2

2

X
X

n
i , so this equation must be solved to obtain α̂ . 

 

b. From a, 







 +Γ







 +Γ

==







α

α

ˆ
1

1

ˆ
2

1
05.1

0.28
500,16

20
1

2
2 , so 







 +Γ







 +Γ

==

α

α

ˆ
2

1

ˆ
1

1
95.

05.1
1

2

, and 

from the hint, 5ˆ2.
ˆ
1

=⇒= α
α

.  Then 
( ) ( )2.1

0.28
2.1

ˆ
Γ

=
Γ

=
x

β . 

 
 
22.  

a. ( )
2

1
1

2
1

1)(
1

0 +
−=

+
+

=+= ∫ θθ
θ

θ θ dxxxXE , so the moment estimator θ̂  is the 

solution to 
2ˆ

1
1

+
−=

θ
X , yielding 2

1
1ˆ −

−
=

X
θ .  Since .325ˆ,80. =−== θx  

 

b. ( ) ( ) ( )θθθ n
n

n xxxxxf ...1;,..., 211 += , so the log likelihood is 

( ) ( )∑++ ixn ln1ln θθ .  Taking 
θd

d
 and equating to 0 yields 

∑−=
+

)ln(
1 ix

n
θ

, so 1
)ln(

ˆ −−=
∑ iX

n
θ .  Taking ( )ixln for each given ix  

yields ultimately 12.3ˆ =θ . 
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23. For a single sample from a Poisson distribution, 

( )
!!...!

...
!

;,...,
11

1

11

n

xn

n

xx

n xx
e

x
e

x
e

xxf
n ∑

==
−−− λλλ

λ
λλλ

, so 

( )[ ] ( ) ( )∑∑ −+−= !lnln;,...,ln 1 iin xxnxxf λλλ .  Thus 

( )[ ][ ] x
n

xx
nxxf

d
d ii

n ==⇒=+−= ∑∑ λ
λ

λ
λ

ˆ0;,...,ln 1 .  For our problem, 

( )2111 ,;...,,..., λλnn yyxxf  is a product of the x sample likelihood and the y sample 

likelihood, implying that yx == 21
ˆ,ˆ λλ , and (by the invariance principle) 

( ) yx −=−
^

21 λλ . 
 
 

24. We wish to take the derivative of ( ) 







−







 −+ xr pp
x
rx

1
1

ln  with respect to p, set it equal 

to zero, and solve for p: 
p

x
p
r

pxpr
x
rx

dp
d

−
−=








−++







 −+
1

)1ln()ln(
1

ln  .  

Setting this equal to zero and solving for p yields 
xr

r
p

+
=ˆ .  This is the number of 

successes over the total number of trials, which is the same estimator for the binomial in 

exercise 6.20.  The unbiased estimator from exercise 6.17 is 
1

1ˆ
−+

−
=

xr
r

p , which is not the 

same as the maximum likelihood estimator. 
 
 
25.   

a. 16.395;4.384ˆ 2 === sxµ , so ( ) ( ) 64.35516.395
10
9ˆ1 22 ===−∑ σxx

n i  

and 86.1864.355ˆ ==σ  (this is not s). 
 
b. The 95th percentile is σµ 645.1+  , so the mle of this is (by the invariance principle) 

42.415ˆ645.1ˆ =+ σµ . 
 
 
26. The mle of  )400( ≤XP is (by the invariance principle) 

( ) 7881.80.
86.18

4.384400
ˆ

ˆ400
=Φ=






 −

Φ=





 −

Φ
σ

µ
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27.  

a. ( ) ( )
( )αβ

βα
α

βα

nn

x
n

n

iexxx
xxf

Γ
=

Σ−− /1
21

1
...

,;,..., , so the log likelihood is 

( ) ( ) ( ) ( )αβα
β

α Γ−−−− ∑∑ lnlnln1 nn
x

x i
i .  Equating both 

αd
d

 and 
βd
d

 to 

0 yields ( ) ( ) ( ) 0lnln =Γ−−∑ α
α

β
d
d

nnxi  and 0
2

==∑
β
α

β
nxi

, a very 

difficult system of equations to solve. 
 

b. From the second equation in a, µαβα
β

==⇒=∑ xn
xi

, so the mle of µ  is 

X=µ̂ . 
 
 
28.  

a. [ ] [ ] ( ) [ ]
n

i
nn

n x
xxx

x
x

x
θ

θ
θ

θ
θ

θ
2/exp

...2/exp...2/exp
2

1
22

1
1 Σ−

=





 −






 − .  The 

natural log of the likelihood function is  ( ) ( )
θ

θ
2

ln...ln
2
i

ni

x
nxx

Σ
−− .  Taking the 

derivative wrt θ  and equating to 0 gives 0
2 2

2

=
Σ

+−
θθ

ixn
, so 

2

2
ix

n
Σ

=θ  and 

n
x i

2

2Σ
=θ .  The mle is therefore 

n
X i

2
ˆ

2Σ
=θ , which is identical to the unbiased 

estimator suggested in Exercise 15. 
 

b. For x > 0 the cdf of X if ( ) ( )xXPxF ≤=θ;  is equal to 






−
−

θ2
exp1

2x
.  Equating 

this to .5 and solving for x gives the median in terms of θ :  






−
=

θ2
exp5.

2x
implies 

that ( )
θ2

5.ln
2x−

= , so 38630.1~ == µx .  The mle of µ~  is therefore 

( )2
1

ˆ38630.1 θ . 
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29.  
a. The joint pdf (likelihood function) is  

 ( )
( )





=
−Σ−

0
,;,...,1

θλλ
θλ

ixn

n

e
xxf  

otherwise
xx n θθ ≥≥ ,...,1  

Notice that θθ ≥≥ nxx ,...,1  iff ( ) θ≥ixmin ,  

and that ( ) λθλθλ nxx ii +Σ−=−Σ− .   

Thus likelihood = 
( ) ( )



 Σ−

0
expexp λθλλ nx i

n

 
( )
( ) θ

θ
<
≥

i

i

x
x

min
min

 

Consider maximization wrt θ .  Because the exponent λθn  is positive, increasing θ  

will increase the likelihood provided that ( ) θ≥ixmin ;  if we make θ  larger than 

( )ixmin , the likelihood drops to 0.  This implies that the mle of θ  is ( )ixminˆ =θ .  

The log likelihood is now ( )θλλ ˆ)ln( −Σ− ixn .  Equating the derivative wrt λ  to 0 

and solving yields ( ) θθ
λ ˆˆ
ˆ

nx

n

x

n

ii −Σ
=

−Σ
= . 

 

b. ( ) ,64.minˆ == ixθ  and 80.55=Σ ix , so 202.
4.680.55

10ˆ =
−

=λ  

 
 

30. The likelihood is ( ) ( ) yny pp
y
n

pnyf −−







= 1,;  where 

( ) λλλ 2424

0
124 −− =−=≥= ∫ edxeXPp x .  We know 

n
y

p =ˆ , so by the invariance 

principle 
( )[ ]

0120.
24

lnˆ24 =−=⇒=− n
y

n
y

e λλ  for n = 20, y = 15. 

 
 

Supplementary Exercises 
 

31. ( ) ( ) ( ) 






 −
<

−
+








>

−
=−<−+>−=>−

nn

X
P

nn

X
PXPXPXP

//// σ

ε

σ

µ

σ

ε

σ

µ
εµεµεµ

∫∫
−

∞−

−∞ − +=






 −
<+








>=

σε

σε ππσ
ε

σ
ε / 2/

/

2/ 22

2

1

2

1 n z

n

z dzedze
n

ZP
n

ZP .  

 As ∞→n , both integrals 0→  since ∫
∞ −

∞→
=

c

z

c
dze 0

2
1

lim 2/2

π
. 

 
 



Chapter 6:  Point Estimation 

 216 

32. sp 

a. ( ) ( ) ( ) ( ) ( )
n

nnY
y

yXPyXPyXyXPyYPyF 





=≤≤=≤≤=≤=
θ

...,..., 11  

for θ≤≤ y0 , so ( )
n

n

Y
ny

yf
θ

1−

= . 

b.  .
1

)(
0

1

θ
θ

+
=⋅= ∫

−

n
n

dy
n

ny
yYE

n

  While Y=θ̂  is not unbiased, Y
n

n 1+
 is, since 

( ) θθ =
+

⋅
+

=
+

=



 +

1
111

n
n

n
n

YE
n

n
Y

n
n

E , so 
n

n
K

1+
=  does the trick. 

 
 
33. Let x1 = the time until the first birth, x2 = the elapsed time between the first and second births, 

and so on.  Then ( ) ( ) ( ) kn kxnxnxx
n eneneexxf Σ−−−− =⋅= λλλλ λλλλλ !...2;,..., 21 2

1 .  Thus 

the log likelihood is ( ) ( ) kkxnn Σ−+ λλln!ln .  Taking 
λd

d
 and equating to 0 yields 

∑
=

=
n

k
kkx

n

1

λ̂ .  For the given sample, n = 6, x1 = 25.2, x2 = 41.7 – 25.2 = 16.5, x3 = 9.5, x4 = 

4.3, x5 = 4.0, x6 = 2.3; so 7.137)3.2)(6(...)5.16)(2()2.25)(1(
6

1

=+++=∑
=k

kkx  and 

0436.
7.137

6ˆ ==λ . 

 
 

34. ( ) ).()( 222 KSBiasKSVarKSMSE +=   

( )1)()( 222222 −=−=−= KKKSEKSBias σσσσ , and 

[ ] [ ]( ) ( ) ( ) 







−

−
+

=−==
22

4
222222222

1
1

)()()()( σ
σ

n
n

KSESEKSVarKKSVar  

( ) 42
2

1
1

2
σ








−+

−
= k

n
K

 .  To find the minimizing value of K, take 
dK
d

 and equate to 0;  

the result is 
1
1

+
−

=
n
n

K ; thus the estimator which minimizes MSE is neither the unbiased 

estimator (K = 1) nor the mle
n

n
K

1−
= . 

 
 



Chapter 6:  Point Estimation 

 217 

35.  
ji xx +

 
23.5 26.3 28.0 28.2 29.4 29.5 30.6 31.6 33.9 49.3 

23.5 23.5 24.9 25.7
5 

25.8
5 

26.4
5 

26.5 27.0
5 

27.5
5 

28.7 36.4 

26.3  26.3 
27.1

5 
27.2

5 
27.8

5 27.9 
28.4

5 
28.9

5 30.1 37.8 

28.0   28.0 28.1 28.7 28.75 29.3 29.8 
30.9

5 
38.6

5 

28.2    28.2 28.8 28.85 29.4 29.9 
31.0

5 
38.7

5 

29.4     29.4 29.45 30.0 30.5 
30.6

5 
39.3

5 

29.5      29.5 
30.0

5 
30.5

5 31.7 39.4 

30.6       30.6 31.1 
32.2

5 
39.9

5 

31.6        31.6 
32.7

5 
40.4

5 
33.9         33.9 41.6 
49.3          49.3 

 
There are 55 averages, so the median is the 28th in order of increasing magnitude. Therefore, 

5.29ˆ =µ  

 
 

36. With  ∑ = 86.555x  and ∑ = 490,152x ,  4687.11570.22 === ss .  The 

sxx i '~−  are, in increasing order, .02, .02, .08, .22, .32, .42, .53, .54, .65, .81, .91, 1.15, 

1.17, 1.30, 1.54, 1.54, 1.71, 2.35, 2.92, 3.50.  The median of these values is 
( )

86.
2

91.81.
=

+
.  The estimate based on the resistant estimator is then 275.1

6745.
86.

= .  

This estimate is in reasonably close agreement with s. 
 
 

37. Let 
( )

( ) 1
2

2

2
1

−

−

⋅Γ

Γ
=

n
n

n

c .  Then E(cS) = cE(S), and c cancels with the two Γ factors and the 

square root in E(S), leaving just σ .  When n = 20, 
( )

( ) 19
210

5.9

⋅Γ

Γ
=c .  ( ) !910 =Γ  and 

( ) ( )5.)5)(.5.1)...(5.7)(5.8(5.9 Γ=Γ , but ( ) π=Γ 5. .  Straightforward calculation 
gives c = 1.0132. 
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38.  
a. The likelihood is 

( ) ( )

( )
( ) ( )

22

22

2222

2221 2

1

2

1

2

1
σ

µµ

σ

µ

σ

µ

πσπσπσ






 −Σ+−Σ−−

−−−

=
=⋅Π

iiyiix
iiyiix

eee
n

n

i
.  The log 

likelihood is thus ( ) ( ) ( )( )
2

22

2
22ln

σ

µµπσ iiii yxn −Σ+−Σ−− .  Taking 
id

d
µ

 and equating to 

zero gives 
2

ˆ ii
i

yx +
=µ .  Substituting these estimates of the si 'µ̂  into the log 

likelihood gives 

( ) 















 +

−+





 +

−−− ∑ ∑
22

2
12

22
2ln 2

ii
i

ii
i

yx
y

yx
xn

σ
πσ

( ) ( )( )2
2
1

2
12

22ln ii yxn −Σ−−=
σ

πσ .  Now taking 
2σd

d
, equating to zero, and 

solving for 2σ  gives the desired result. 
 
 

b. ( ) ( )( ) ( )22

4
1

4
1ˆ YXE

n
YXE

n
E iii −Σ⋅=−Σ=σ , but 

( ) ( ) ( )[ ] 2222 202 σσ =+=−+−=− YXEYXVYXE iii .  Thus 

( ) ( )
2

2
4
1

2
4
1ˆ

2
222 σ

σσσ ==Σ= n
nn

E , so the mle is definitely not unbiased;  the 

expected value of the estimator is only half the value of what is being estimated! 
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CHAPTER 7 
 

Section 7.1 
 
1.  

a. 81.2
2

=αz  implies that ( ) 0025.81.212 =Φ−=α , so 005.=α  and the confidence 

level is ( ) %5.99%1100 =−α . 
 
b. 44.1

2
=αz  for ( )[ ] 15.44.112 =Φ−=α , and ( ) %85%1100 =−α . 

 
c. 99.7% implies that 003.=α , 0015.2 =α , and 96.20015. =z . (Look for cumulative 

area .9985 in the main body of table A.3, the Z table.) 
 
d. 75% implies 25.=α , 125.2 =α , and 15.1125. =z . 

 
2.  

a. The sample mean is the center of the interval, so 115
2

6.1154.114
=

+
=x . 

 
b. The interval (114.4, 115.6) has the 90% confidence level.  The higher confidence level 

will produce a wider interval. 
 
 
3.  

a. A 90% confidence interval will be narrower (See 2b, above)  Also, the z critical value for 
a 90% confidence level is 1.645, smaller than the z of 1.96 for the 95% confidence level, 
thus producing a narrower interval. 

 
b. Not a correct statement.  Once and interval has been created from a sample, the mean µ  

is either enclosed by it, or not.  The 95% confidence is in the general procedure, for 
repeated sampling. 

 
c. Not a correct statement.  The interval is an estimate for the population mean, not a 

boundary for population values. 
 
d. Not a correct statement.  In theory, if the process were repeated an infinite number of 

times, 95% of the intervals would contain the population mean µ . 
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4.  

a. 
( ) ( )5.59,1.5718.13.58

25
396.1

3.58 =±=±  

 

b. 
( ) ( )9.58,7.5759.3.58

100
396.1

3.58 =±=±  

 

c. 
( ) ( )1.59,5.5777.3.58

100
358.2

3.58 =±=±  

 
d. 82% confidence 09.18.82.1 2 =⇒=⇒=−⇒ ααα , so 34.109.2

== zzα  and 

the interval is 
( ) ( )7.58,9.57

100
334.1

3.58 =± . 

 

e. 
( )

62.239
1

358.22 2

=



=n  so n = 240. 

 
 
5.  

a. 
( )( )

=±=± 33.85.4
20

75.96.1
85.4  (4.52, 5.18). 

 

b. 33.201.2
02.

2
=== zzzα , so the interval is 

( )( )
=±

16
75.33.2

56.4  (4.12, 5.00). 

 

c. 
( )( )

02.54
40.

75.96.12 2

=



=n , so n = 55. 

 

d. 
( )( )

61.93
2.

75.58.22 2

=



=n , so n = 94. 

 
 
6.  

a. 
( )( )

=±=± 9.328439
25

100645.1
8439  (8406.1, 8471.9). 

 

b. 04.08.92.1 2 =⇒=⇒=− ααα  so 75.104.2
== zzα  
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7. If  
n

zL
σ

α
2

2=  and we increase the sample size by a factor of 4, the new length is 

22
1

2
4

2
22

L
n

z
n

zL =















==′ σσ

αα .  Thus halving the length requires n to be 

increased fourfold.  If  nn 25=′ , then 
5
L

L =′ , so the length is decreased by a factor of 5. 

 
 
8.  

a. With probability α−1 , ( )
21 αα

σ
µ z

n
Xz ≤








−≤ .  These inequalities can be 

manipulated exactly as was done in the text to isolate µ ;  the result is 

n
zX

n
zX

σ
µ

σ
αα 12

+≤≤− , so a ( )%1100 α−  interval is 









+−

n
zX

n
zX

σσ
αα 12

,  

 

b. The usual 95% interval has length 
n

σ
92.3 , while this interval will have length 

( )
n

zz
σ

αα 21
+ .  With 24.20125.1

== zzα  and 78.10375.2
== zzα , the length is 

( ) ,02.478.124.2
nn

σσ
=+  which is longer. 

 
 
9.  

a. 







∞− ,645.1

n
x

σ
.  From 5a, 85.4=x , 75.=σ , n = 20; 

5741.4
20
75.

645.185.4 =− , so the interval is ( )∞,5741.4 . 

 

b. 







∞− ,

n
zx

σ
α  

 
 

c. 







+∞−

n
zx

σ
α, ; From 4a, 3.58=x , 0.3=σ , n = 25; 

( )70.59,
25
3

33.23.58 ∞−=+  
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10.  

a. When n = 15, ∑ iXλ2 has a chi-squared distribution with 30 d.f.  From the 30 d.f. row 

of Table A.6, the critical values that capture lower and upper tail areas of .025 (and thus a 
central area of .95) are 16.791 and 46.979.  An argument parallel to that given in 

Example 7.5 gives 








 ∑∑
791.16

2
,

979.46

2 ii xx
 as a 95% C. I. for .

1
λ

µ =   Since 

2.63=∑ ix  the interval is (2.69, 7.53). 

 
b. A 99% confidence level requires using critical values that capture area .005 in each tail of 

the chi-squared curve with 30 d.f.; these are 13.787 and 53.672, which  replace 16.791 
and 46.979 in a. 

 

c. ( )
2

1
λ

=XV  when X has an exponential distribution, so the standard deviation is 
λ
1

, 

the same as the mean.  Thus the interval of a is also a 95% C.I. for the standard deviation 
of the lifetime distribution.  

 
 
11. Y is a binomial r.v. with n = 1000 and p = .95, so E(Y) = np = 950, the expected number of 

intervals that capture µ , and 892.6== npqYσ .  Using the normal approximation to 

the binomial distribution, P(940 ≤ Y ≤ 960) = P(939.5 ≤ Ynormal ≤ 960.5) = P(-1.52 ≤ Z ≤ 1.52) 
= .9357 - .0643 = .8714. 

 
 

Section 7.2 
 

12. ( )89,.73.08.81.
110
34.

58.281.58.2 =±=±=±
n
s

x  

 
 
13.  

a. ( )066.1,990.038.028.1
69

163.
96.1028.1025. =±=±=±

n
s

zx  

 

b. 
( )( ) ( )( ) ( ) 158544.12544.12

05.
16.96.1216.96.12

05. 2 ≈=⇒==⇒== nn
n

w
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14.  

a. ( )66.89,.54.8856.10.89
169
73.3

96.110.89 =±=± .  Yes, this is a very narrow 

interval.  It appears quite precise. 
 

b. 
( )( )

24686.245
5.

16.96.1 2

=⇒=



= nn . 

 
 
15.  

a. 84.=αz , and ( ) 80.7995.84. ≈=Φ , so the confidence level is 80%. 

 

b. 05.2=αz , and ( ) 98.9798.05.2 ≈=Φ , so the confidence level is 98%. 

 
c. 67.=αz , and ( ) 75.7486.67. ≈=Φ , so the confidence level is 75%. 

 
 
16. n = 46, 1.382=x , s = 31.5;  The 95% upper confidence bound = 

74.38964.71.382
46

5.31
645.11.382 =+=+=+

n
s

zx α  

 
 

17. 53.134865.39.135
153
59.4

33.239.13501. =−=−=−
n
s

zx    With a confidence 

level of 99%, the true average ultimate tensile strength is between (134.53, ∞). 
 
 

18. 90% lower bound: 06.4
75
30.1

28.125.410. =−=−
n
s

zx  

 
 

19. 5646.
356
201ˆ ==p ; We calculate a 95% confidence interval for the proportion of all dies 

that pass the probe: 

( )
( )

( )( ) ( )
( )

( )
( )615,.513.

01079.1
0518.5700.

356
96.1

1

3564
96.1

356
4354.5646.

96.1
3562
96.1

5646.

2

2

22

=
±

=
+

+±+

 
 



Chapter 7:  Statistical Intervals Based on a Single Sample 

 224 

20. Because the sample size is so large, the simpler formula (7.11) for the confidence interval for 
p is sufficient. 

( )( ) ( )163,.137.013.15.
4722

85.15.
58.215. =±=±  

 
 

21. 2468.
539
133ˆ ==p ; the 95% lower confidence bound is: 

( )
( )

( )( ) ( )
( )

( )
218.

005.1
0307.2493.

539
645.1

1

5394
645.1

539
7532.2468.

645.1
5392
645.1

2468.

2

2

22

=
−

=
+

+−+

 

 
 
22. 072.ˆ =p ; the 99% upper confidence bound is: 

( )
( )

( )( ) ( )
( )

( )
1043.

0111.1
0279.0776.

487
33.2

1

4874
33.2

487
928.072.

33.2
4872
33.2

072.

2

2

22

=
+

=
+

+++

 

 
 
23.  

a. 6486.
37
24ˆ ==p ; The 99% confidence interval for p is 

( )
( )

( )( ) ( )
( )

( )
( )814,.438.

1799.1
2216.7386.

37
58.2

1

374
58.2

37
3514.6486.

58.2
372
58.2

6486.

2

2

22

=
±

=
+

+±+

 

b. 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

01.
58.201.01.25.25.58.2401.58.225.58.22 4422 +−±−

=n  

659
01.

3282.3261636.3
≈

±
=  

 
 
24. n = 56, 17.8=x , s = 1.42;  For a 95% C.I., 96.1

2
=αz .  The interval is   

( )542.8,798.7
56
42.1

96.117.8 =







± .  We make no assumptions about the distribution if 

percentage elongation. 
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25.  

a. 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

381
01.

96.101.01.25.25.96.1401.96.125.96.12 4422

≈
+−±−

=n  

 

b. 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

339
01.

96.101.01.96.1401.96.196.12 4
3
2

3
1

3
2

3
142

3
2

3
12

≈
+−⋅⋅±−⋅

=n  

 
 

26. With  λθ = , X=θ̂  and 
n
λ

σ
θ

=ˆ  so 
n
X

=
θ

σ ˆˆ .  The large sample C.I. is then 

n
x

zx 2/α± .  We calculate ∑ = 203ix , so 06.4=x , and a 95% interval for λ  is 

( )62.4,50.356.06.4
50
06.4

96.106.4 =±=±  

 
 

27. Note that the midpoint of the new interval is 
2

2

2
zn

z
x

+

+
, which is roughly 

4
2

+
+

n
x

 with a 

confidence level of 95% and approximating 296.1 ≈ .  The variance of this quantity is 
( )

( )22

1

zn

pnp

+

−
, or roughly 

( )
4

1
+
−

n
pp

.  Now replacing p  with 
4
2

+
+

n
x

, we have 

4
4
2

1
4
2

4
2

2 +









+
+

−







+
+

±







+
+

n
n
x

n
x

z
n
x

α ; For clarity, let 2* += xx  and 4* += nn , then 

*

*
*ˆ

n
x

p =  and the formula reduces to *

**
* ˆˆ

ˆ
2 n

qp
zp α± , the desired conclusion.  For 

further discussion, see the Agresti article. 
 

Section 7.3 
 
28.  

a. 1.341 
 
b. 1.753 
 
c. 1.708 

 
d. 1.684 
 
e. 2.704 
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29.  
a. 228.210,025. =t  

 
b. 086.220,025. =t  

 

c. 845.220,005. =t  

 

d. 678.250,005. =t  

 
e. 485.225,01. =t  

 

f. 571.25,025. −=− t  

 
30.  

a. 228.210,025. =t  

 

b. 131.215,025. =t  

 
c. 947.215,005. =t  

 
 

d. 604.44,005. =t  

 

e. 492.224,01. =t  

 
f. 712.237,005. ≈t  

 

31.  

a. 812.110,05 =t  

 
b. 753.115,05. =t  

 
c. 602.215,01. =t  

 

d. 747.34,01. =t  

 
e. 064.224,025. =≈ t  

 
f. 429.237,01. ≈t  

 
32. d.f. = n – 1 = 7, so the critical value for a 95% C.I. is 365.27,025. =t .  The interval is 

( ) ( )8.32,6.276.22.30
8
1.3

365.22.30 =±=







± . 
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33.  
a. The boxplot indicates a very slight positive skew, with no outliers.  The data appears to 

center near 438.  
 

 
b. Based on a normal probability plot, it is reasonable to assume the sample observations 

came from a normal distribution. 
 
c. With d.f. = n – 1 = 16, the critical value for a 95% C.I. is 120.216,025. =t , and the 

interval is ( ) ( )08.446,51.430785.729.438
17
14.15

120.229.438 =±=







± .  

Since 440 is within the interval, 440 is a plausible value for the true mean.  450, however, 
is not, since it lies outside the interval. 

 
 
34. n = 14, 48.8=x , s = .79; 771.113,05. =t  

a. A 95% lower confidence bound: 11.837.48.8
14
79.

771.148.8 =−=







− .  With 

95% confidence, the value of the true mean proportional limit stress of all such joints lies 

in the interval ( )∞,11.8 .  If this interval is calculated for sample after sample, in the 
long run 95% of these intervals will include the true mean proportional limit stress of all 
such joints.  We must assume that the sample observations were taken from a normally 
distributed population. 

 

b. A 95% lower prediction bound: ( ) 03.745.148.8
14
1

179.771.148.8 =−=+− .  If 

this bound is calculated for sample after sample, in the long run 95% of these bounds will 
provide a lower bound for the corresponding future values of the proportional limit stress 
of a single joint of this type. 

 
 

420 430 440 450 460 470

polymer
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35. n = 5, 6.2887=x , s = .84.0; 776.24,025. =t  

a. A 95% C.I. for the mean: ( ) ( )9.2991,3.2783
5

84
776.26.2887 ⇒








±  

 

b. A 95% Prediction Interval: ( ) ( )1.3143,1.2632
5
1

184776.26.2887 ⇒+± .  The 

P.I. is considerably larger than the C.I., about 2.5 times larger. 
 
 
36. n = 26, 69.370=x , s = 24.36; 708.125,05. =t  

a. A 95% upper confidence bound: 

( ) 85.37816.869.370
26
36.24

708.169.370 =+=







+  

 
b. A 95% upper prediction bound: 

( ) 14.41345.4269.370
26
1

136.24708.169.370 =+=++  

 
c. Following a similar argument as that on p. 300 of the text, we need to find the variance of  

newXX − :  ( ) ( ) ( ) ( ) ( )( )28272
1 XXVXVXVXVXXV newnew ++=+=−  

( ) ( ) ( ) ( ) ( ) ( )284
1

274
1

282
1

272
1 XVXVXVXVXVXV ++=++=  







 +=++=

nn
1

2
1

4
1

4
1 222

2

σσσ
σ

.  We eventually arrive at ~
1

2
1

n

new

s

XX
T

+

−
= t 

distribution with n – 1 d.f., so the new prediction interval is nn stx 1
2
1

1,2/ +⋅± −α .  For 

this situation, we have 

( ) ( )53.400,47.3953.3069.370
26
1

2
1

36.24708.169.370 =±=+±  

 
 

37.  

a. A 95% C.I. : ( ) ( )9634,.8876.0379.9255.0181.093.29255. ⇒±=±  
 

b. A 95% P.I. : ( ) ( )0990.1,7520.1735.9255.10809.093.29255. 20
1 ⇒±=+±  

 
c. A tolerance interval is requested, with k = 99, confidence level 95%, and n = 20.  The 

tolerance critical value, from Table A.6, is 3.615.  The interval is 

( ) ( )2180.1,6330.0809.615.39255. ⇒± . 
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38. N = 25, 0635.=x , s = .0065 

a. 95% P.I. : ( ) ( )0772,.0498.0137.0635.10065.064.20635. 25
1 ⇒±=+± . 

 
b. 99% Tolerance Interval, with k = 95, critical value 2.972 (table A.6): 

( ) ( )0828,.0442.0065.972.20635. ⇒± . 
 
 
39.  

a.  

Average: 52.2308
StDev: 14.8557
N: 13

Anderson-Darling Normality Test
A-Squared: 0.360
P-Value:   0.392

30 50 70

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

volume

Normal Probability Plot

 
 
Based on the above plot, generated by Minitab, it is plausible that the population 
distribution is normal. 

 
b. We require a tolerance interval. (from table A6, with 95% confidence, k = 95, and n=13, 

the tcv = 3.081.  
( ) ( ) ( )002.98,460.6771.45231.52856.14081.3231.52 ⇒±=±=± stcvx  

 
c. A prediction interval, with 179.212,025. =t :  

( ) ( )824.85,638.18593.33231.521856.14179.2231.52 13
1 ⇒±=+±  
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40.  
a. We need to assume the samples came from a normally distributed population. 
 
b. A Normal Probability plot, generated by Minitab: 

P-Value:   0.008
A-Squared: 1.065

Anderson-Darling Normality Test

N: 153
StDev: 4.54186
Average: 134.902

145135125

.999

.99

.95

.80

.50

.20

.05

.01

.001

P
ro

ba
bi

lit
y

strength

Normal Probability Plot

 
 

The very small p-value indicates that the population distribution from which this data was 
taken is most likely not normal. 

 
c. 95% lower prediction bound: 

( ) ( )824.85,638.18593.33231.521856.14179.2231.52 13
1 ⇒±=+±  

 
 
41. The 20 d.f. row of Table A.5 shows that 1.725 captures upper tail area .05 and 1.325 captures 

uppertail area .10  The confidence level for each interval is 100(central area)%.  For the first 
interval, central area = 1 – sum of tail areas = 1 – (.25 + .05) = .70, and for the second and 
third intervals the central areas are 1 – (.20 + .10) = .70 and 1 – (.15 + .15) = 70.  Thus each 
interval has confidence level 70%.  The width of the first interval is 

( )
n

s
n

s 2412.725.1687.
=

+
, whereas the widths of the second and third intervals are 2.185 

and 2.128 respectively.  The third interval, with symmetrically placed critical values, is the 
shortest, so it should be used.  This will always be true for a t interval. 
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Section 7.2 
 
42.  

a. 307.222
15,1. =χ  (.1 column, 15 

d.f. row) 
 

b. 381.342
25,1. =χ  

 

c. 313.442
25,01. =χ  

 

d. 925.462
25,005. =χ  

 

e. 523.112
25,99. =χ  (from .99 

column, 25 d.f. row) 
 

f. 519.102
25,995. =χ  

 
43.  

a. 307.182
10,05. =χ  

 

b. 940.32
10,95. =χ  

c. Since 
2

22,975.987.10 χ=  and 
2

22,025.78.36 χ= , ( ) 95.2
22,025.

22
22,975. =≤≤ χχχP . 

 

d. Since 
2

25,95.61.14 χ=  and 
2

25,05.65.37 χ= , ( ) 90.2
25,05.

22
25,95. =≤≤ χχχP . 

 
 

44. n – 1 = 8 , 543.172
8,025. =χ , 180.22

8,975. =χ , so the 95% interval for 2σ  is 

( )98.28,60.3
180.2

)90.7(8
,

543.17
)90.7(8

=







.  The 95% interval for σ  is 

( ) ( )38.5,90.198.28,60.3 = . 
 
 
45. n = 22 implies that d.f. = n – 1 = 21, so the .995 and .005 columns of Table A.7 give the 

necessary chi-squared critical values as 8.033 and 41.399. 3.1701=Σ ix  and 

35.097,1322 =Σ ix , so 368.252 =s .  The interval for 2σ  is 

( ) ( ) ( )317.66,868.12
033.8

368.2521
,

399.41
368.2521

=







 and that for σ is ( )1.8,6.3   Validity of 

this interval requires that fracture toughness be  (at least approximately) normally distributed. 
 
 
46.  

a. Using a normal probability plot, we ascertain that it is plausible that this sample was 
taken from a normal population distribution. 

 
b. With s = 1.579 , n = 15, and  685.232

14,05. =χ the 95% upper confidence bound for σ  

is 
( )

214.1
685.23
579.114 2

=  
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Supplementary Exercises 
 
47.  

a. n = 48, 079.8=x , s2 = 23.7017, and s = 4.868.   
A 95% C.I. for µ = the true average strength is  

( )456.9,702.6377.1079.8
48
868.4

96.1079.896.1 =±=±=±
n
s

x  

 

b. 2708.
48
13ˆ ==p .  A 95% C.I. is 

( )
( )( )

( ) ( )410,.166.
0800.1

1319.3108.

48
96.1

1

484

96.1
48

7292.2708.
96.1

482
96.1

2708.

2

2

22

=±=
+

+±+
 

 
 
48. A 98% t C.I. requires 896.28,01.1,2/ ==− tt nα .  The interval is 

( )0.195,0.1810.70.188
9
2.7

896.20.188 =±=± . 

 
49.  

a. There appears to be a slight positive skew in the middle half of the sample, but the lower 
whisker is much longer than the upper whisker.  The extent of variability is rather 
substantial, although there are no outliers.  

50403020

%porevolume

 
 

b. The pattern of points in a normal probability plot is reasonably linear, so, yes, normality 
is plausible. 

 
c. n = 18, 66.38=x ,  s = 8.473, and 586.217,01. =t .  The 98% confidence interval is 

( )79.43,53.3313.566.38
18
473.8

586.266.38 =±=± . 



Chapter 7:  Statistical Intervals Based on a Single Sample 

 233 

 

50. =x  the middle of the interval = .633.231
2

502.233764.229
=

+
  To find s we use 

( ) 







=

n
s

twidth 4,025.2 , and solve for s.  Here, n = 5, 776.24,025. =t , and width = upper 

limit – lower limit = 3.738. ( ) ( )
( )

5055.1
776.22
738.35

5
27762738.3 ==⇒= s

s
.  So for 

a 99% C.I., 604.44,005. =t , and the interval is 

( )733.234,533.228100.3633.213
5

5055.1
604.4633.231 =±=± . 

 
 
51.  

a. ⇒== 680.
200
136

p̂  a 90% C.I. is  

( )
( )( )

( ) ( )732,.624.
01353.1

0547.6868.

200
645.1

1

2004
645.1

200
320.680.

645.1
2002
645.1

680.

2

2

22

=
±

=
+

+±+
 

b. 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

0025.
645.105.0025.25.25.645.1405.645.125.645.12 424222 +−±−

=n  

⇒=
±

= 7.1079
0025.

3530.13462.1
 use n = 1080 

 
c. No, it gives a 95% upper bound. 

 
 
52.  

a. Assuming normality, 753.115,05. =t , do s 95% C.I. for µ  is  

( )230,.198.016.214.
16

036.
753.1214. =±=±  

 

b. A 90% upper bound for σ , with 341.12
15,10. =χ ,  is 

( )
120.0145.

341.1
036.15 2

==  

 
c. A 95% prediction interval, with 131.215,025. =t , is 

( ) ( )2931,.1349.0791.214.1036.131.2214. 16
1 =±=+± . 
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53. With  ( ) 43213
1ˆ XXXX −++=θ , ( ) ( )43219

12
ˆ XVarXXXVar +++=

θ
σ  = 

4

2
4

3

2
3

2

2
2

1

2
1

9
1

nnnn
σσσσ

+





++ ;  

θ
σ ˆˆ  is obtained by replacing each 2ˆ

iσ  by 2
is  and taking the 

square root.  The large-sample interval for θ  is then 

( )
4

2
4

3

2
3

2

2
2

1

2
1

2/43213
1

9
1

n
s

n
s

n
s

n
s

zxxxx +







++±−++ α

.  For the given data, 50.ˆ −=θ , 

1718.ˆ ˆ =
θ

σ , so the interval is ( ) ( )16.,84.1718.96.150. −−=±− . 

 

54. ⇒== 2.
55
11

p̂  a 90% C.I. is  

( )
( )( )

( ) ( )2986,.1295.
0492.1

0887.2246.

55
645.1

1

554
645.1

55
8.2.

645.1
552

645.1
2.

2

2

22

=
±

=
+

+±+

. 

 
 

55. The specified condition is that the interval be length .2, so 
( )( )

86.245
2.

8.96.12 2

=



=n , so 

n = 246 should be used. 
 
 
56.  

a. A normal probability plot lends support to the assumption that pulmonary compliance is 
normally distributed.  Note also that the lower and upper fourths are 192.3 and 228,1, so 
the fourth spread is 35.8, and the sample contains no outliers. 

 

b. 131.215,025. =t , so the C.I. is 

( )62.222,88.19687.1275.209
16
156.24

131.275.209 =±=± . 

 
c. K = 95, n = 16, and the tolerance critical value is 2.903, so the 95% tolerance interval is 

( ) ( )875.279,625.139125.7075.209156.24903.275.209 =±=± . 
 
 

57. Proceeding as in Example 7.5 with Tr replacing iXΣ , the C.I. for 
λ
1

 is 











−
2

2,
2

2,1 22

2
,

2

r

r

r

r tt

αα χχ
 

where ( ) ....1 rrr yrnyyt −+++=   In Example 6.7, n = 20, r = 10, and tr = 1115.  With 
d.f. = 20, the necessary critical values are 9.591 and 34.170, giving the interval (65.3, 232.5).  
This is obviously an extremely wide interval.  The censored experiment provides less 
information about λ

1  than would an uncensored experiment with n = 20. 
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58.  
a. )~)max()min(,~(1))max(~)(min( µµµ <<−=≤≤ iiii XorXPXXP  

)~)(max())min(,~(1 µµ <−<−= ii XPXP   

)~,...,~()~,...,~(1 11 µµµµ <<−<<−= nn XXPXXP    

( ) ( ) ( ) 15.215.5.1 −−=−−= nnn
, from which the confidence interval follows. 

 
b. Since  44.1)min( =ix  and ,54.3)max( =ix  the C.I. is (1.44, 3.54). 

 
c. )~(),~(1)~( )1()2()1()2( µµµ <−<−=≤≤ −− nn XPXPXXP     

= 1 – P( at most one XI is below µ~ ) – P(at most one XI exceeds µ~ )  

( ) ( ) ( ) ( ) ( ) ( )5.5.
1

5.5.5.
1

5.1 111 −−








−−








−− nnnn nn

.   

( )( ) ( )( ) 15.115.121 −+−=+−= nn nn  

  Thus the confidence coefficient is ( )( ) 15.11 −+− nn , or in another way, a 

( )( )( )%5.11100 1−+− nn confidence interval. 
 
 
59.  

a. 
( )

( ) ]( )
( )

α
ααα

α

α

α
−=−−==

−− −∫ 1
22

1
/1

/1

/1

/1

2/1
2/

2/1

2/

1
n

n

n

n

nn udunu .  From the probability 

statement, 
( )

( )
( )

( )ii XX

nn

max
11

max

11

22
αα

θ
−

≤≤  with probability α−1 , so taking the 

reciprocal of each endpoint and interchanging gives the C.I. 
( )

( )
( )

( ) 








− nn

ii XX
11

22

max
,

1

max
αα

 

for θ . 
 

b. 1
)max(1

≤≤
θ

α iX
n  with probability α−1 , so 

( ) n
iX 1

1
max

1
α

θ
≤≤  with 

probability α−1 , which yields the interval ( ) ( )








n

i
i

X
X 1

max
,max

α
. 

 
c. It is easily verified that the interval of b is shorter – draw a graph of ( )ufU  and verify 

that the shortest interval which captures area α−1  under the curve is the rightmost such 
interval, which leads to the C.I. of b.  With ,05.=α  n = 5, max(xI)=4.2; this yields (4.2, 

7.65). 
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60. The length of the interval is  ( )
n
s

zz γαγ −+ , which is minimized when γαγ −+ zz  is 

minimized, i.e. when ( ) ( )γαγ +−Φ+−Φ −− 11 11  is minimized.  Taking 
γd
d

 and 

equating to 0 yields 
( ) ( )γαγ +−Φ

=
−Φ 1

1
1
1

  where ( )•Φ  is the standard normal p.d.f., 

whence 
2
α

γ = . 

 
 
61. ,2.76~ =x  the lower and upper fourths are 73.5 and 79.7, respectively, and .2.6=sf   The 

robust interval is ( ) ( )8.78,6.736.22.76
22
2.6

93.12.76 =±=







± . 

 33.77=x , s = 5.037, and 080.221,025. =t , so the t interval is  

( ) ( )6.79,1.7523.233.77
22
037.5

080.233.77 =±=







± .  The t interval is centered at 

x , which is pulled out to the right of x~  by the single mild outlier 93.7; the interval widths 
are comparable. 

 
 
62.  

a. Since iXΣλ2  has a chi-squared distribution with 2n d.f. and the area under this chi-

squared curve to the right of  
2

2,95. nχ  is .95, ( ) 95.22
2,95. =Σ< in XP λχ .  This implies 

that 
i

n

XΣ2

2
2,95.χ

 is a lower confidence bound for λ with confidence coefficient 95%.  Table 

A.7 gives the chi-squared critical value for 20 d.f. as 10.851, so the bound is 

( )
0098.

87.5502
851.10

= .  We can be 95% confident that λ  exceeds .0098. 

 

b. Arguing as in a, ( ) 95.2 2
2,05. =<Σ niXP χλ .  The following inequalities are equivalent 

to the one in parentheses: 

i

n

XΣ
<

2

2
2,05.χ

λ    
i

n

X

t
t

Σ

−
<−⇒

2

2
2,05.χ

λ    












Σ

−
<⇒ −

i

nt

X

t
e

2
exp

2
2,05.χλ .   

Replacing the iXΣ  by ixΣ  in the expression on the right hand side of the last inequality 

gives a 95% lower confidence bound for te λ− .  Substituting t = 100, 410.312
20,05. =χ  

and 87.550=Σ ix  gives .058 as the lower bound for the probability that time until 

breakdown exceeds 100 minutes. 
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CHAPTER 8 
 

Section 8.1 
 
1.  

a. Yes. It is an assertion about the value of a parameter. 
 

b. No. The sample median X~  is not a parameter. 
 
c. No.  The sample standard deviation s is not a parameter. 
 
d. Yes.  The assertion is that the standard deviation of population #2 exceeds that of 

population #1 
 

e. No. X  and  Y  are statistics rather than parameters, so cannot appear  in a hypothesis. 
 
f. Yes.  H is an assertion about the value of a parameter. 

 
 
2.  

a. These hypotheses comply with our rules. 
 
b. Ho is not an equality claim (e.g. 20=σ ), so these hypotheses are not in compliance. 
 
c. Ho should contain the equality claim, whereas Ha does here, so these are not legitimate. 
 
d. The asserted value of 21 µµ −  in Ho should also appear in Ha.  It does not here, so our 

conditions are not met. 
 
e. Each S2 is a statistic, so does not belong in a hypothesis. 
 
f. We are not allowing both Ho and Ha to be equality claims (though this is allowed in more 

comprehensive treatments of hypothesis testing). 
 
g. These hypotheses comply with our rules. 
 
h. These hypotheses are in compliance. 

 
 
3. In this formulation, Ho states the welds do not conform to specification.  This assertion will 

not be rejected unless there is strong evidence to the contrary.  Thus the burden of proof is on 
those who wish to assert that the specification is satisfied.  Using Ha: 100<µ  results in the 

welds being believed in conformance unless provided otherwise, so the burden of proof is on 
the non-conformance claim. 
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4. When the alternative is Ha: 5<µ , the formulation is such that the water is believed unsafe 
until proved otherwise.  A type I error involved deciding that the water is safe (rejecting Ho) 
when it isn’t (Ho is  true).  This is a very serious error, so a test which ensures that this error is 
highly unlikely is desirable.  A type II error involves judging the water unsafe when it is 
actually safe.  Though a serious error, this is less so than the type I error.  It  is generally 
desirable to formulate so that the type 1 error is more serious, so that the probability of this 
error can be explicitly controlled.  Using Ha: 5>µ , the type II error (now stating that the 
water is safe when it isn’t) is the more serious of the two errors. 

 
 
5. Let σ  denote the population standard deviation.  The appropriate hypotheses are 

05.: =σoH  vs 05.: <σaH .   With this formulation, the burden of proof is on the data 

to show that the requirement has been met (the sheaths will not be used unless Ho can be 
rejected in favor of Ha.   Type I error: Conclude that the standard deviation is < .05 mm when 
it is really equal to .05 mm.  Type II error: Conclude that the standard deviation is .05 mm 
when it is really < .05. 

 
 

6. 40: =µoH  vs 40: ≠µaH , where µ  is the true average burn-out amperage for this 

type of fuse.  The alternative reflects the fact that a departure from 40=µ  in either 
direction is of concern.  Notice that in this formulation, it is initially believed that the value of 
µ  is the design value of 40. 

 
 
7. A type I error here involves saying that the plant is not in compliance when in fact it is.  A 

type II error occurs when we conclude that the plant is in compliance when in fact it isn’t.  
Reasonable people may disagree as to which of the two errors is more serious.  If in your 
judgement it is the type II error, then the reformulation  150: =µoH  vs 150: <µaH  

makes the type I error more serious. 
 
8. Let =1µ the average amount of warpage for the regular laminate, and =2µ  the analogous 

value for the special laminate.  Then the hypotheses are 21: µµ =oH  vs 21: µµ >oH .  

Type I error:  Conclude that the special laminate produces less warpage than the regular, 
when it really does not.  Type II error:  Conclude that there is no difference in the two 
laminates when in reality, the special one produces less warpage. 
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9.  
a. R1  is most appropriate, because x either too large or too small contradicts p = .5 and 

supports p ≠ .5. 
 
b. A type I error consists of judging one of the tow candidates favored over the other when 

in fact there is a 50-50 split in the population.  A type II error involves judging the split to 
be 50-50 when it is not. 

 
c. X has a binomial distribution with n = 25 and p = 0.5. =α P(type I error) = 

187( ≥≤ orXXP  when X ~ Bin(25, .5)) = B(7; 25,.5) + 1 – B(17; 25,.5) = .044 
 

d. ( ) 178(4. ≤≤= XPβ when p = .4) = B(17; 25,.5) – B(7, 25,.4) = 0.845, and 

( ) 845.06. =β  also. ( ) ( )7.488.)3,.25;7()3,.25;17(3. ββ ==−= BB  
 
e. x = 6 is in the rejection region R1 , so Ho is rejected in favor of Ha. 

 
 
10.  

a. 1300: =µoH  vs 1300: >µaH  

 
b. x  is normally distributed with mean ( ) µ=xE  and standard deviation  

.416.13
20

60
==

n
σ

  When Ho is true, ( ) 1300=xE .  Thus 

26.1331( ≥= xPα when Ho is true) = 

( ) 01.33.2
416.13

130026.1331
=≥=






 −

≥ zPzP  

 
c. When 1350=µ , x  has a normal distribution with mean 1350 and standard deviation 

13.416, so ( ) 26.1331(1350 <= xPβ  when )1350=µ = 

( ) 0808.40.1
416.13

135026.1331
=−≤=






 −

≤ zPzP  

d. Replace 1331.26 by c, where c satisfies 645.1
416.13
1300

=
−c

 (since 

)05.)645.1( =≥zP .  Thus c = 1322.07.  Increasing α  gives a decrease in β ; now 

( ) ( ) 0188.08.21350 =−≤= zPβ . 
 

e. 26.1331≥x  iff 
416.13

130026.1331 −
≥z  i.e. iff 33.2≥z . 
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11.  
a. 10: =µoH  vs 10: ≠µaH  

 
b. (P=α rejecting Ho when Ho is true) = 1032.10( ≥xP  or )108968.9 =≤ µwhen .  

Since x is normally distributed with standard deviation 

,04.
5
2.

==
n

σ
01.005.005.)58.258.2( =+=−≤≥= orzPα  

 

c. When 1.10=µ , ( ) ,1.10=xE  so ( ) 1032.108968.9(1.10 <<= xPβ  when 

5319.)08.08.5()1.10 =<<−== zPµ .  Similarly, 

( ) 0078.)58.742.2(8.9 =<<= zPβ  
 
d. 58.2±=c  
 

e. Now 0632.
162.3
2.

==
n

σ
. Thus 10.1032 is replaced by c, where 96.1

0632.
10

=
−c

 

and so c = 10.124.  Similarly, 9.8968 is replaced by 9.876. 
 
f. 020.10=x . Since x is neither 124.10≥  nor 876.9≤ , it is not in the rejection 

region.  Ho is not rejected; it is still plausible that .10=µ  
 
g. 1032.10≥x  or 8968.9≤  iff 58.2≥z  or 58.2−≤ . 
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12.  
a. Let =µ true average braking distance for the new design at 40 mph.  The hypotheses are 

120: =µoH  vs 120: <µaH . 

 
b. R2 should be used, since support for Ha is provided only by an x  value substantially 

smaller than 120.  ( ( ) 120=xE  when Ho is true and , 120 when Ha is true). 
 

c. 6667.1
6
10

===
n

x
σ

σ , so 20.115( ≥= xPα  when )120=µ = 

( ) 002.88.2
6667.1

12020.115
=−≤=






 −

≤ zPzP .  To obtain 001.=α , replace 

115.20 by ( ) 87.1146667.108.3120 =−=c , so that 87.114( ≤xP  when 

)120=µ = ( ) 001.08.3 =−≤zP . 
 
d. ( ) 2.115(115 >= xPβ  when 4522.)12.()115 =>== zPµ  
 
e. 01.)33.2( =−≤= zPα , because when Ho is true Z has a standard normal 

distribution ( X  has been standardized using 120).  Similarly 002.)88.2( =−≤zP , 
so this second rejection region is equivalent to R2. 

 
 
13.  

a. 


























+

≥==+≥

n

n
zPwhen

n
xP

o

oo σ

σ
µ

µµ
σ

µ
33.2

)33.2(

( ) 01.33.2 =≥= zP , where Z is a standard normal r.v. 
 
b. P(rejecting Ho when 33.102()99 ≥== xPµ  when )99=µ  







 −

≥=
1

99102
zP  ( ) 0004.33.3 =≥= zP .  Similarly, ( ) 33.102(98 ≥= xPα  

when 0)33.4()98 =≥== zPµ .  In general, we have  P(type I error) < .01 when 
this probability is calculated for a value of µ less than 100.  The boundary value 

100=µ  yields the largest α . 
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14.  
a. 04.=xσ , so 8940.91004.10( ≤≥ orxP  when 

01.004.006.)65.251.2()10 =+=−≤≥== orzPµ  

 
b. ( ) 1004.108940.9(1.10 <<= xPβ  when 

5040.)01.15.5()1.10 =<<−== zPµ , whereas 

( ) .5596.)01.515.(9.9 =<<−= zPβ   Since 9.9=µ  and 1.10=µ  represent 
equally serious departures from Ho, one would probably want to use a test procedure for 
which ( ) ( )1.109.9 ββ = .  A similar result and comment apply to any other pair of 
alternative values symmetrically placed about 10. 

 
 

Section 8.2 
 
15.  

a. 88.1( ≥= zPα  when z has a standard normal distribution) ( ) 0301.88.11 =Φ−=  
 
b. 75.2( −≤= zPα  when z ~ N(0, 1) ( ) 003.75.2 =−Φ=  
 
c. =α  ( ) ( )( ) 004.88.2188.2 =Φ−+−Φ  

 
 
16.  

a. 733.3( ≥= tPα  when t has a t distribution with 15 d.f.) =.001, because the 15 d.f. 
row of Table A.5 shows that t .001,15 = .3733 

 
b. d.f. = n – 1 = 23, so 01.)500.2( =−≤= tPα  
 
c. d.f. = 30, and 10.05.05.)697.1()697.1( =+=−≤+≥= tPtPα  
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17.  

a. 33.256.2

16
1500

000,20960,20
>=

−
=z  so reject Ho. 

 

b. ( ) ( ) 8413.00.1
16/1500

500,20000,20
33.2:500,20 =Φ=







 −
+Φβ  

 

c. ( ) ( )
2.142

500,20000,20
645.133.21500

:05.500,20
2

=







−

+
== nβ , so use n = 143 

 
d. ( ) 0052.56.21 =Φ−=α  

 
 
18.  

a. 5.1
8.1

753.72
−=

−
 so 72.3 is 1.5 SD’s (of x ) below 75. 

 
b. Ho is rejected if 33.2−≤z ; since 5.1−=z  is not 33.2−≤ , don’t reject Ho. 
 

c. =α  area under standard normal curve below –2.88 ( ) 0020.88.2 =−Φ=  
 

d. ( ) 4602.1.
5/9
7075

88.2 =−Φ=





 −

+−Φ  so ( ) 5398.70 =β  

 

e. 
( )

95.87
7075

33.288.29 2

=





−
+

=n , so use n  = 88 

 

f. ( ) 33.2(76 −<= ZPα  when 9.72()76 <== XPµ  when )76=µ  

( ) 0003.44.3
9.

769.72
=−Φ=






 −

Φ=  
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19.  

a. Reject Ho if either 58.2≥z  or 58.2−≤z ; 3.0=
n

σ
, so 

27.2
3.0

9532.94
−=

−
=z .  Since –2.27 is not < -2.58, don’t reject Ho. 

 

b. ( ) ( ) ( ) 2266.91.575.
3.0

1
58.2

3.0
1

58.294 =−Φ−−Φ=





 −−Φ−






 −Φ=β  

 

c. 
( )

46.21
9495

28.158.220.1 2

=





−
+

=n , so use n = 22. 

 
 
20. With Ho: 750=µ , and Ha: 750<µ  and a significance level of .05, we reject Ho if z < -

1.645; z = -2.14 < -1.645, so we reject the null hypothesis and do not continue with the 
purchase.  At a significance level of .01, we reject Ho if z < -2.33; z = -2.14 > -2.33, so we 
don’t reject the null hypothesis and thus continue with the purchase. 

 
 

21. With Ho: 5.=µ , and Ha: 5.≠µ  we reject Ho if  1,2/ −> ntt α  or 1,2/ −−< ntt α  

a. 1.6 < t.025,12 = 2.179, so don’t reject Ho 
 
b. -1.6 > -t.025,12 = -2.179, so don’t reject Ho 
 
c. – 2.6 > -t.005,24 = -2.797, so don’t reject Ho 
 
d. –3.9 < the negative of all t values in the df = 24 row, so we reject Ho  in favor of Ha. 

 
 
22.  

a. It appears that the true average weight could be more than the production specification of  
200 lb per pipe. 

 
b. Ho: 200=µ , and Ha: 200>µ  we reject Ho if  699.129,05. => tt .  

699.180.5
16.1
73.6

30/35.6
20073.206

>==
−

=t , so reject Ho.  The test appears to 

substantiate the statement in part a. 
 
 

23. Ho: 360=µ  vs. Ha: 360>µ ; 
ns

x
t

/
360−

= ; reject Ho if  708.125,05. => tt ; 

708.124.2
26/36.24
36069.370

>=
−

=t .  Thus Ho should be rejected.  There appears to be a 

contradiction of the prior belief. 
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24. Ho: 3000=µ  vs. Ha: 3000≠µ ; 
ns

x
t

/
3000−

= ; reject Ho if  776.24,025. => tt ; 

776.299.2
5/84
30006.2887

−<−=
−

=t , so we reject Ho .  This requirement is not 

satisfied. 
 
 
25.  

a. Ho: 5.5=µ  vs. Ha: 5.5≠µ ;  for a level .01 test, (not specified in the problem 

description), reject Ho if either  58.2≥z  or 58.2−≤z .  Since 

58.233.3
075.

5.525.5
−≤−=

−
=z , reject Ho.   

 

b. ( ) ( ) ( )






 −

−−Φ+





 −

+Φ−=−
075.

1.
58.2

075.
1.

58.216.51 β  

( ) ( ) 105.91.325.11 =−Φ+Φ−=  
 

c. 
( )

97.216
1.

33.258.23. 2

=





−
+

=n , so use n = 217. 

 
 

26. Reject Ho if 645.1≥z ;  ,7155.=
n
s

 so 77.3
7155.

507.52
=

−
=z .     Since 3.77 is 

645.1≥ , reject Ho at level .05 and conclude that true average penetration exceeds 50 mils. 
 
 
27. We wish to test Ho: 75=µ  vs. Ha: 75<µ ;  Using 01.=α , Ho is rejected if 

423.241,01. −≈−≤ tt  (from the df 40 row of the t-table).  Since 09.2
42/9.5
751.73

−=
−

=t , 

which is not 423.2−≤ ,  Ho is not rejected.  The alloy is not suitable. 
 
 
28. With =µ true average recumbency time, the hypotheses are Ho: 20=µ  vs Ha: 20<µ .  

The test statistic value is 
ns

x
z

/
20−

=  , and Ho should be rejected if 28.110. −=−≤ zz   

Since 13.1
73/6.8
2086.18

−=
−

=z , which is not 28.1−≤ , Ho is not rejected.  The sample 

data does not strongly suggest that true average t ime is less than 20. 
 
 



Chapter 8:  Tests of Hypotheses Based on a Single Sample 

 246 

29.  
a. For n = 8, n – 1 = 7, and 895.17,05. =t , so Ho is rejected at level .05 if 895.1≥t .  

Since 442.
8
25.1

==
n
s

, 498.
442.

50.372.3
=

−
=t ;  this does not exceed 1.895, so 

Ho is not rejected. 
 

b. 40.
25.1

00.450.3
=

−
=

−
=

σ

µµod , and n = 8, so from table A.17, ( ) 72.0.4 ≈β  

 
 
30. n = 115, 3.11=x , 43.6=s  

1 Parameter of Interest: =µ true average dietary intake of zinc among males aged 65 
– 74 years. 

2 Null Hypothesis:  Ho: 15=µ  

3 Alternative Hypothesis: Ha: 15<µ  

4 
ns

x
ns

x
z o

/
15

/
−

=
−

=
µ

 

5 Rejection Region: No value of α was given, so select a reasonable level of 

significance, such as α= .05.  αzz ≤  or 645.1−≤z  

6 17.6
115/43.6

3.11
−=

−
= oz

µ
 

7 –6.17 < -1.645, so reject Ho.  The data does support the claim that average daily 
intake of zinc for males aged 65 - 74 years falls below the recommended daily 
allowance of 15 mg/day. 

 
 
31. The hypotheses of interest are Ho: 7=µ  vs Ha: 7<µ , so a lower-tailed test is appropriate;  

Ho should be rejected if  397.18,1. −=−≤ tt .  24.1
9/65.1
732.6

−=
−

=t .  Because  -1.24 is 

not 397.1−≤ , Ho (prior belief) is not rejected (contradicted) at level .01. 
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32. n = 12, 375.98=x , 1095.6=s  
a.  
1 Parameter of Interest: =µ true average reading of this type of radon detector when 

exposed to 100 pCi/L of radon. 
2 Null Hypothesis:  Ho: 100=µ  

3 Alternative Hypothesis: Ha: 100≠µ  

4 
ns

x
ns

x
t o

/
100

/
−

=
−

=
µ

 

5  201.2−≤t  or 201.2≥t  

6 9213.
12/1095.6

100375.98
−=

−
=t  

7 Fail to reject Ho.  The data does not indicate that these readings differ significantly 
from 100. 

 
b. σ = 7.5, β = 0.10.  From table A.17, df ≈ 29, thus n ≈30. 

 
 

33. ( ) ( ) ( )σσµβ αα // 2/2/ nznzo ∆−−Φ−∆+Φ=∆−

( ) ( )[ ]σσ αα //1 2/2/ nznz ∆−Φ+∆−−Φ−=   ( )∆+= oµβ           

(since 1 - Φ(c) = Φ(-c) ). 
 
 

34. For an upper-tailed test, ( ) ( )( )σµµµβ α /−+Φ== onz .  Since in this case we are 

considering oµµ > , µµ −o  is negative so ( ) −∞→− σµµ /on  as n ∞→ .  The 

desired conclusion follows since ( ) 0=∞−Φ .  The arguments for a lower-tailed and tow-
tailed test are similar. 

 

Section 8.3 
 
35.  

1 Parameter of interest:  p = true proportion of cars in this particular county passing 
emissions testing on the first try. 

2 Ho: p = .70 
3 Ha: p ≠ .70 

4 
( ) ( ) n

p
npp

pp
z

oo

o

/30.70.
70.ˆ

/1

ˆ −
=

−

−
=  

5 either z ≥ 1.96 or z ≤ -1.96 

6 
( )

469.2
200/30.70.
70.200/124

−=
−

=z  

7 Reject Ho.  The data indicates that the proportion of cars passing the first time on 
emission testing or this county differs from the proportion of cars passing statewide. 
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36.  
a.  

1 p = true proportion of all nickel plates that blister under the given 
circumstances. 

2 Ho: p = .10 
3 Ha: p > .10 

4 
( ) ( ) n

p
npp

pp
z

oo

o

/90.10.
10.ˆ

/1

ˆ −
=

−

−
=  

5 Reject Ho if  z ≥ 1.645  

6 
( )

33.1
100/90.10.
10.100/14

=
−

=z  

7 Fail to Reject Ho.  The data does not give compelling evidence for 
concluding that more than 10% of all plates blister under the 
circumstances. 

 
The possible error we could have made is a Type II error:  Failing to reject the null 
hypothesis when it is actually true. 

  

b. ( ) ( )
( )

( ) 4920.02.
100/85.15.

100/90.10.645.115.10.
15. =−Φ=











 +−
Φ=β .  When n = 

200, ( ) ( )
( )

( ) 2743.60.
200/85.15.

200/90.10.645.115.10.
15. =−Φ=











 +−
Φ=β  

 

c. 
( ) ( )

4.36101.19
10.15.

85.15.28.190.10.645.1 2

2

==












−
+

=n ,  so use n = 362 

 
 
37.  

1 p = true proportion of the population with type A blood  
2 Ho: p = .40 
3 Ha: p ≠ .40 

4 
( ) ( ) n

p
npp

pp
z

oo

o

/60.40.
40.ˆ

/1

ˆ −
=

−

−
=  

5 Reject Ho if  z ≥ 2.58  or z ≤ -2.58 

6 
( )

667.3
04.
147.

150/60.40.
40.150/82

==
−

=z  

7 Reject Ho.  The data does suggest that the percentage of the population with type A 
blood differs from 40%. (at the .01 significance level).  Since the z critical value for 
a significance level of .05 is less than that of .01, the conclusion would not change. 
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38.  
a. We wish to test Ho: p = .02 vs Ha: p < .02; only if Ho can be rejected will the inventory be 

postponed.  The lower-tailed test rejects Ho if z ≤ -1.645.  With 015.
1000

15ˆ ==p , z = 

-1.01, which is not ≤ -1.645.  Thus, Ho cannot be rejected, so the inventory should be 
carried out. 

 

b. ( ) ( )
( )

( ) 149.5
1000/99.01.

1000/98.02.645.101.02.
01. ≈Φ=











 +−
Φ=β  

 

c. ( ) ( )
( )

( ) 0005.30.3
1000/95.05.

1000/98.02.645.105.02.
05. =−Φ=











 +−
Φ=β , so is p = 

.05 it is highly unlikely that Ho will be rejected and the inventory will almost surely be 
carried out. 

 
 
39. Let p denote the true proportion of those called to appear for service who are black. We wish to 

test Ho: p = .25 vs Ha: p < .25.   We use 
( ) n

p
z

/75.25.
25.ˆ −

= , with the rejection region z ≤ -

z.01 = -2.33.  We calculate 1686.
1050
177ˆ ==p , and 1.6

0134.
25.1686.

−=
−

=z .  Because –

6.1 < -2.33, Ho is rejected.  A conclusion that discrimination exists is very compelling. 
 
 
40.  

a. P = true proportion of current customers who qualify. Ho: p = .05 vs Ha: p ≠ .05, 

( ) n
p

z
/95.05.

05.ˆ −
= , reject Ho if z ≥ 2.58  or z ≤ -2.58. 08.ˆ =p , so 

58.207.3
00975.

03.
≥==z , so  Ho is rejected.  The company’s premise is not correct. 

 

b. ( ) ( )
( )

( ) =−Φ=










 +−
Φ= 85.1

500/90.10.

500/95.05.58.210.05.
10.β .0332 
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41.  
a. The alternative of interest here is Ha: p > .50 (which states that more than 50% of all 

enthusiasts prefer gut), so the rejection region should consist of large values of X (an 
upper-tailed test).  Thus (15, 16, 17, 18, 19, 20) is the appropriate region. 

 
b. XP ≤= 15(α  when )5.=p = 1 – B(14; 20, .05) = .021, so this is a level .05 test.  

For R = {14, 15, …, 20}, α = .058, so this R does not specify a level .05 test and the 
region of a is the best level .05 test. (α ≤ .05 along with smallest possible β). 

 
c. β(.6) = B(14; 20, .6) = .874, and β(.8) = B(14; 20, .8) = .196. 
 
d. The best level .10 test is specified by R = (14, …, 20}  (with α = .052)  Since 13 is not in 

R, Ho is not rejected at this level. 
 
 
42. The hypotheses are Ho: p = .10 vs. Ha: p > .10, so R has the form {c, …, n}.  For n = 10, c = 3 

(i.e. R = {3, 4, …, 10}) yields α = 1 – B(2; 10, .1) = .07 while no larger R has α ≤ .10; 
however β(.3) = B(2; 10, .3) = .383.  For n = 20, c = 5 yields α = 1 – B(4; 20, .1) = .043, but 
again β(.3) = B(4; 20, .3) = .238.  For n = 25, c = 5 yields α = 1 – B(4; 25, .1) = .098 while 
β(.7) = B(4; 25, .3) = .090  ≤ .10, so n = 25 should be used. 

 
 

43. Ho: p = .035 vs Ha: p < .035.   We use 
( ) n

p
z

/965.035.
035.ˆ −

= , with the rejection region z ≤ -

z.01 = -2.33.  With 03.
500
15ˆ ==p , 61.

0082.
005.

−=
−

=z .  Because    -.61 isn’t ≤ -2.33, Ho 

is not rejected.  Robots have not demonstrated their superiority. 
 
 

Section 8.4 
 
44. Using α = .05, Ho should be rejected whenever p-value < .05. 

a. P-value = .001 < .05, so reject Ho 
 
b. .021 < .05, so reject Ho. 
 
c. .078 is not < .05, so don’t reject Ho. 
 
d. .047 < .05, so reject Ho ( a close call). 
 
e. .148 > .05, so Ho can’t be rejected at level .05. 
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45.  
a. p-value = .084 > .05 = α, so don’t reject Ho. 
 
b. p-value = .003 < .001 = α, so  reject Ho. 
 
c. .498 >> .05, so Ho can’t be rejected at level .05 
 
d. 084 < .10, so reject Ho at level .10 
 
e. .039 is not < .01, so don’t reject Ho. 
 
f. p-value = .218 > .10, so Ho cannot be rejected. 

 
 

46. In each case the p-value = ( )zΦ−1  
a. .0778 
 
b. .1841 
 
c. .0250 

 
d. .0066 
 
e. .4562 

 
 
47.  

a. .0358 
 
b. .0802 
 
c. .5824 

 
d. .1586 
 
e. 0 

 
 
48.  

a. In the df = 8 row of table A.5, t = 2.0 is between 1.860 and 2.306, so the p-value is 
between .025 and .05:  .025 < p-value < .05. 

 
b. 2.201 < | -2.4 | < 2.718, so .01 < p-value < .025. 
 
c. 1.341 < | -1.6 | < 1.753, so .05 < P( t < -1.6) < .10.  Thus a two-tailed p-value: 2(.05 < P( t 

< -1.6) < .10), or .10 < p-value < .20 
 
d. With an upper-tailed test and t = -.4, the p-value = P( t > -.4) > .50. 
 
e. 4.032 < t=5 < 5.893, so .001 < p-value < .005 
 
f. 3.551 < | -4.8 |, so P(t < -4.8) < .0005.  A two-tailed p-value = 2[ P(t < -4.8)] < 2(.0005), 

or p-value <  .001. 
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49. An upper-tailed test 
a. Df = 14, α=.05; 761.114,05. =t : 3.2 > 1.761,  so reject Ho. 

 
b. 896.218,01. =t ; 1.8 is not > 2.896, so don’t reject Ho. 

 
c. Df = 23, p-value > .50, so fail to reject Ho at any significance level. 

 
 
50. The p-value is greater than the level of significance  α = .01, therefore fail to reject Ho  that 

63.5=µ .  The data does not indicate a difference in average serum receptor concentration 
between pregnant women and all other women. 

 
 
51. Here we might be concerned with departures above as well as below the specified weight of 

5.0, so the relevant hypotheses are Ho: 0.5=µ  vs Ha: 0.5≠µ .  At level .01, reject Ho if 

either 58.2≥z  or  58.2−≤z .  Since 035.=
n
s

, 71.3
035.

13.
−=

−
=z , which is 

58.2−≤ , so Ho should be rejected.  Because 3.71 is “off” the z-table, p-value < 2(.0002) = 
.0004  (.0002 corresponds to z = -3.49). 

 
 
52.  

a. For testing Ho: p = .2 vs Ha: p > .2, an upper-tailed test is appropriate.  The computed Z is 
z = .97, so p-value = ( ) 166.97.1 =Φ− .  Because the p-value is rather large, Ho would 

not be rejected at any reasonable α (it can’t be rejected for any α < .166), so no 
modification appears necessary. 

 
b. With p = .5, ( ) ( )( )[ ] ( ) 9974.79.210645./0516.33.23.15.1 =−Φ−=+−Φ−=− β  
 
 

53. p = proportion of all physicians that know the generic name for methadone. 

Ho: p = .50 vs Ha: p < .50;  We can use a large sample test if both 100 ≥np  and 

( ) 101 0 ≥− pn ; 102(.50) = .51, so we can proceed. 102
47ˆ =p , so 

( )( )
79.

050.
039.50.

102
50.50.

102
47

−=
−

=
−

=z .  We will reject H0 if the p-value < .01.  For this lower 

tailed test, the p-value = Φ(z) = Φ(-.79) =.2148, which is not < .01, so we do not reject H0 at 
significance level .01. 
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54. =µ the true average percentage of organic matter in this type of soil, and the hypotheses are 

Ho: 3=µ  vs Ha: 3≠µ .  With n = 30, and assuming normality, we use the t test:  

759.1
295.
519.

295.
3481.2

/
3

−=
−

=
−

=
−

=
ns

x
t .  The p-value = 2[P( t > 1.759 )] = 2( .041 ) 

= .082.  At significance level .10, since .082 = .10, we would reject H0 and conclude that the 
true average percentage of organic matter in this type of soil is something other than 3.  At 
significance level .05, we would not have rejected H0. 

 
 
55. The hypotheses to be tested are Ho: 25=µ  vs Ha: 25>µ , and Ho should be rejected if  

782.112,05. =≥ tt .  The computed summary statistics are 923.27=x , 619.5=s , so 

559.1=
n
s

 and 88.1
559.1
923.2

==t .  From table A.8, P( t > 1.88) ˜ .041, which is less 

than .05, so Ho is rejected at level .05. 
 
 
56.  

a. The appropriate hypotheses are Ho: 10=µ  vs Ha: 10<µ  
 
b. P-value = P( t > 2.3) = .017, which is = .05, so we would reject Ho.  The data indicates 

that the pens do not meet the design specifications. 
 
c. P-value = P( t > 1.8) = .045, which is not = .01, so we would not reject Ho.  There is not 

enough evidence to say that the pens don’t satisfy the design specifications. 
 
d. P-value = P( t > 3.6) ˜ .001, which gives strong evidence to support the alternative 

hypothesis. 
 
 
57. =µ  true average reading, Ho: 70=µ  vs Ha: 70≠µ , and 

92.1
86.2
5.5

6/7
705.75

/
70

==
−

=
−

=
ns

x
t .  From table A.8, df = 5, p-value = 2[P(t> 1.92 )] 

˜ 2(.058) = .116.  At significance level .05, there is not enough evidence to conclude that the 
spectrophotometer needs recalibrating. 

 
 
58. With Ho: 60.=µ  vs Ha: 60.≠µ ,and a two-tailed p-value of .0711, we fail to reject Ho at 

levels .01 and .05 ( thus concluding that the amount of impurities need not be adjusted) , but 
we would reject Ho at level .10 (and conclude that the amount of impurities does need 
adjusting). 
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Section 8.5 
 
59.  

a. The formula for  β  is 







+−Φ−

4.9
33.21

n
, which gives .8980 for n = 100, .1049 for 

n = 900, and .0014 for n = 2500. 
 
b. Z = -5.3, which is “off the z table,” so p-value < .0002; this value of z is quite statistically 

significant. 
 
c. No.  Even when the departure from Ho is insignificant from a practical point of view, a 

statistically significant result is highly likely to appear; the test is too likely to detect 
small departures from Ho. 

 
 
60.  

a. Here 
( )








 +−
Φ=







 +−
Φ=

4073.
9320.01.

/4073.

/9320.01. n

n

n
β = .9793, .8554, .4325, 

.0944, and 0 for n = 100, 2500, 10,000, 40,000, and 90,000, respectively. 
 

b. Here nz 025.=  which equals .25, 1.25, 2.5, and 5 for the four n’s, whence p-value = 
.4213, .1056, .0062, .0000, respectively. 

 
c. No; the reasoning is the same as in 54 (c). 

 
 

Supplementary Exercises 
 
61. Because n = 50 is large, we use a z test here, rejecting Ho: 2.3=µ  in favor of Ha: 2.3≠µ  

if either  96.1025. =≥ zz  or 96.1−≤z .  The computed z value is 

12.3
50/34.
20.305.3

−=
−

=z .  Since –3.12 is 96.1−≤ , Ho should be rejected in favor of Ha. 

 
 
62. Here we assume that thickness is normally distributed, so that for any n a t test is appropriate, 

and use Table A.17 to determine n.  We wish ( ) 95.3 =π  when .667.
3.

32.3
=

−
=d   By 

inspection, n = 20 satisfies this requirement, so n = 50 is too large. 
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63.  
a. Ho: 2.3=µ  vs Ha: 2.3≠µ  (Because Ha: 2.3>µ  gives a p-value of roughly .15) 

 
b. With a p-value of .30, we would reject the null hypothesis at any reasonable significance 

level, which includes both .05 and .10. 
 
 
64.  

a. Ho: 2150=µ  vs Ha: 2150>µ  
 

b. 
ns

x
t

/
2150−

=  

 

c. 33.1
5.7

10
16/30
21502160

==
−

=t  

 
d. Since 341.115,10. =t , p-value > .10 (actually 10.≈ ) 

 
e. From d, p-value > .05, so Ho cannot be rejected at this significance level. 

 
 
65.  

a. The relevant hypotheses are Ho: 548=µ  vs Ha: 548≠µ .  At level .05, Ho will be 

rejected if  either 228.210,025. =≥ tt  or 228.210,025. −=−≤ tt .  The test statistic 

value is 9.12
02.3

39
11/10
548587

==
−

=t . This clearly falls into the upper tail of the 

two-tailed rejection region, so Ho should be rejected at level .05, or any other reasonable 
level). 

 
b. The population sampled was normal or approximately normal. 
 

 
66. 5300.6,7875.30,8 === sxn  

1 Parameter of interest: =µ  true average heat-flux of plots covered with coal dust 

2 Ho: 0.29=µ  

3 Ha: 0.29>µ  

4 
ns

x
t

/
0.29−

=  

5 RR: 1, −≥ ntt α  or 895.1≥t  

6 7742.
8/53.6

0.297875.30
=

−
=t  

7 Fail to reject Ho.  The data does not indicate the mean heat-flux for pots covered with 
coal dust is greater than for plots covered with grass. 
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67. N = 47, 215=x  mg, s = 235 mg.  Range 5 mg to 1,176 mg. 
a. No, the distribution does not appear to be normal, it appears to be skewed to the right.  It 

is not necessary to assume normality if the sample size is large enough due to the central 
limit theorem.  This sample size is large enough so we can conduct a hypothesis test 
about the mean. 

 
b.  

1 Parameter of interest: =µ  true daily caffeine consumption of adult 
women. 

2 Ho: 200=µ  

3 Ha: 200>µ  

4 
ns

x
z

/
200−

=  

5 RR: 282.1≥z  or if p-value 10.≤  

6 44.
47/235

200215
=

−
=z ; p-value = ( ) 33.44.1 =Φ−  

7 Fail to reject Ho. because .33 > .10. The data does not indicate that daily 
consump tion of all adult women exceeds 200 mg. 

 
 

68. At the .05 significance level, reject Ho because .043  <  .05.  At the level .01, fail to reject Ho 
because .043 > .01.  Thus the data contradicts the design specification that sprinkler activation 
is less than 25 seconds at the level .05, but not at the .01 level. 

 
 
69.  

a. From table A.17, when 5.9=µ , d = .625, df = 9, and 60.≈β , when 0.9=µ , d = 

1.25, df = 9, and 20.≈β . 
 
b. From Table A.17, 25.=β , d = .625, n 28≈  

 
 
70. A normality plot reveals that these observations could have come from a normally distributed 

population, therefore a t-test is appropriate.  The relevant hypotheses are Ho: 75.9=µ  vs 

Ha: 75.9>µ .  Summary statistics are n = 20, 8525.9=x , and s = .0965, which leads to a 

test statistic 75.4
20/0965.

75.98525.9
=

−
=t , from which the p-value = .0001. (From MINITAB 

output).  With such a small p-value, the data strongly supports the alternative hypothesis.  The 
condition is not met. 
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71.  

a. With Ho: p = 75
1  vs Ho: p 75

1≠ , we reject Ho if either 96.1≥z  or 96.1−≤z .  

With 02.
800
16ˆ ==p ,  

( )
645.1

800
98667.01333.

01333.02.
=

−
z , which is not in either 

rejection region.  Thus, we fail to reject the null hypothesis.  There is not evidence that 
the incidence rate among prisoners differs from that of the adult population.  The possible 
error we could have made is a type II. 

 
b. P-value = ( )[ ] [ ] 10.05.2645.112 ==Φ− .  Yes, since .10 < .20, we could reject Ho. 

 
 
72. A t test is appropriate;  Ho: 75.1=µ  is rejected in favor of Ha: 75.1≠µ  if the p-value 

>.05.  The computed t is 70.1
26/42.
75.189.1

=
−

=t .  Since 25,025.708.170.1 t==& ,  

10.)05(.2 ==&P  (since for a two-tailed test, 2/05. α= .), do not reject Ho; the data does 
not contradict prior research.  We assume that the population from which the sample was 
taken was  approximately normally distributed. 
 

 
 
73. Even though the underlying distribution may not be normal, a z test can be used because n is 

large.  Ho: 3200=µ  should be rejected in favor of Ha: 3200<µ  if  

08.3001. −=−≤ zz .  The computed z is 08.332.3
45/188

32003107
−≤−=

−
=z , so Ho 

should be rejected at level .001. 
 
 
74. Let p = the true proportion of mechanics who could identify the problem.  Then the 

appropriate hypotheses are Ho: p = .75 vs Ha: p < .75, so a lower-tailed test should be used.  

With po= .75 and 583.
72
42ˆ ==p , z = -3.28 and ( ) 0005.28.3 =−Φ=P .  Because this 

p-value is so small, the data argues strongly against Ho, so we reject it in favor of Ha. 
 
 

75. We wish to test Ho: 4=λ  vs Ha: 4>λ  using the test statistic 
n

x
z

/4
4−

= .  For the given 

sample, n = 36 and 444.4
36

160
==x , so 33.1

36/4
4444.4

=
−

=z .  At level .02, we reject 

Ho if 05.202. =≥ &zz  (since ( ) 0202.05.21 =Φ− ).  Because 1.33 is not 05.2≥ ,  Ho 

should not be rejected at this level. 
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76. Ho: 15=µ  vs Ha: 15>µ .  Because the sample size is less than 40, and we can assume the 
distribution is approximately normal, the appropriate statistic is 

4.6
390.

5.2
32/2.2
155.17

/
15

==
−

=
−

=
ns

x
t .  Thus the p-value is “off the chart” in the 20 df 

column of Table A.8, and so is approximately 05.0 < , so Ho is rejected in favor of the 
conclusion that the true average time exceeds 15 minutes. 

 
 

77. Ho: 25.2 =σ  vs Ha: 25.2 >σ .  The chi-squared critical value for 9 d.f. that captures 

upper-tail area .01 is 21.665.  The test statistic value is 
( )

11.12
25.
58.9 2

= .  Because 12.11 is 

not 665.21≥ , Ho cannot be rejected.  The uniformity specification is not contradicted. 
 
 

78. The 20 df row of Table A.7 shows that 58.826.82
20,99. <=χ  (Ho not rejected at level .01) 

and 
2

20,975.591.958.8 χ=<  (Ho rejected at level .025).  Thus .01 < p-value < .025 and Ho 

cannot be rejected at level .01 (the p-value is the smallest alpha at which rejection can take 
place, and this exceeds .01). 

 
 
79.  

a. ( ) σµ 33.2)(33.2)(33.2 +=+=+ SEXESXE , so SX 33.2ˆ +=θ  is 

approximately unbiased. 
 

b. ( )
nn

SVXVSXV
2

4289.5)(33.2)(33.2
22

2 σσ
+=+=+ .  The estimated 

standard error (standard deviation) is 
n
s

927.1 . 

 
c. More than 99% of all soil samples have pH less than 6.75 iff the 95th percentile is less 

than 6.75.  Thus we wish to test Ho: 75.633.2 =+ σµ  vs  Ha: 75.633.2 <+ σµ .  

Ho will be rejected at level .01 if 33.2≤z .  Since 0
0385.

047.
<

−
=z ,  Ho clearly cannot 

be rejected.  The 95th percentile does not appear to exceed 6.75. 
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80.  

a. When Ho is true, ∑=Σ
o

i
io

X
X

µ
λ 22  has a chi-squared distribution with df = 2n.  If 

the alternative is Ha: oµµ > , large test statistic values (large ixΣ , since x  is large) 

suggest that Ho be rejected in favor of Ha, so rejecting when 2
2,2 n

o

iX
αχ

µ
≥∑  gives a 

test with significance level α .  If the alternative is Ha: oµµ < , rejecting when 

2
2,12 n

o

iX
αχ

µ −≤∑  gives a level α  test.  The rejection region for Ha: oµµ ≠  is either  

2
2,2/2 n

o

iX
αχ

µ
≥∑  or 

2
2,2/1 nαχ −≤ . 

 

b. Ho: 75=µ  vs Ha: 75<µ .  The test statistic value is 
( )

65.19
75
7372

= .  At level .01, 

Ho is rejected if  260.82 2
20,99. =≤∑ χ

µo

iX
.  Clearly 19.65 is not in the rejection 

region, so Ho should not be rejected.  The sample data does not suggest that true average 
lifetime is less than the previously claimed value. 

 
 
81.  

a. P(type I error) = P(either γzZ ≥  or γα −≤ zZ ) (when Z is a standard normal r.v.) = 

( ) ( ) αγγαγγα =+−=Φ−+−Φ − zz 1 . 

 

b. ( )
n

z
Xor

n

z
XP oo

γαγ σ
µ

σ
µµβ −−≤+≥= (  when the true value is µ) = 








 −
+−Φ−







 −
+Φ −

n
z

n
z oo

// σ

µµ

σ

µµ
γαγ  

c. Let 
σ

λ
∆

= n ; then we wish to know when ( ) ( )λµπ γ −Φ−=∆+ zo 1  

( ) ( ) ( ) ( )∆−=+−Φ++Φ−>−−Φ+ −− ozzz µπλλλ γαγγα 1 .  Using the fact 

that ( ) ( )cc Φ−=−Φ 1 , this inequality becomes 

( ) ( ) ( ) ( )λλλλ γαγαγγ −Φ−+Φ>−Φ−+Φ −− zzzz .  The l.h.s. is the area under 

the Z curve above the interval ( )λλ γγ −+ zz , , while the r.h.s. is the area above 

( )λλ γαγα +− −− zz , .  Both intervals have width λ2 , but when γαγ −< zz , the first 

interval is closer to 0 (and thus corresponds to the large area) than is the second.  This 
happens when γαγ −> , i.e., when 2/αγ > . 
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82.  
a. 5( ≤= XPα  when p = .9) = B(5; 10, .9) = .002, so the region (0, 1, …, 5) does 

specify a level .01 test. 
 
b. The first value to be placed in the upper-tailed part of a two tailed region would be 10, 

but P(X = 10 when p = .9) = .349, so whenever 10 is in the rejection region, 349.≥α . 
 
c. Using the two-tailed formula for ß(p’) on p. 341, we calculate the value for the range of 

possible p’ values.  The values of p’ we chose, as well as the associated ß(p’) are in the 
table below, and the sketch follows.  ß(p’) seems to be quite large for a great range of p’ 
values. 

 
P’ Beta 
0.01 0.0000 
0.10 0.0000 
0.20 0.0000 
0.30 0.0071 
0.40 0.0505 
0.50 0.1635 
0.60 0.3594 
0.70 0.6206 
0.80 0.8696 
0.90 0.9900 
0.99 1.0000 
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CHAPTER 9 
 

Section 9.1 
 
1.  

a. ( ) ( ) ( ) 4.5.41.4 −=−=−=− YEXEYXE , irrespective of sample sizes. 
 

b. ( ) ( ) ( ) ( ) ( )
0724.

100
0.2

100
8.1 222

2
2

1 =+=+=+=−
nm

YVXVYXV
σσ

, and the s.d. 

of  2691.0724. ==− YX . 
 
c. A normal curve with mean and s.d. as given in a and b  (because m = n = 100, the CLT 

implies that both X  and Y  have approximately normal distributions, so YX −  does 
also).  The shape is not necessarily that of a normal curve when m = n = 10, because the 
CLT cannot be invoked.  So if the two lifetime population distributions are not normal, 

the distribution of YX −  will typically be quite complicated. 
 

 

2. The test statistic value is 

n
s

m
s

yx
z

2
2

2
1 +

−
= , and Ho will be rejected if either 96.1≥z  or 

96.1−≤z .  We compute 85.4
33.433

2100

45

1900

45
2200

400,40500,42
22

==

+

−
=z .  Since 4.85 > 

1.96, reject Ho and conclude that the two brands differ with respect to true average tread lives. 
 
 

3. The test statistic value is 
( )

n
s

m
s

yx
z

2
2

2
1

5000

+

−−
= , and Ho will be rejected at level .01 if 

33.2≥z . We compute 
( )

76.1
93.396

700

45

1500

45
2200

5000800,36500,43
22

==

+

−−
=z , which is not 

> 2.33, so we don’t reject Ho and conclude that the true average life for radials does not 
exceed that for economy brand by more than 500. 
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4.  
a. From Exercise 2, the C.I. is 

( ) ( ) ( ) 33.849210033.43396.1210096.1
2
2

2
1 ±=±=+±−

n
s

m
s

yx  

( )33.2949,67.1250= .  In the context of this problem situation, the interval is 
moderately wide (a consequence of the standard deviations being large), so the 
information about 1µ  and 2µ is not as precise as might be desirable. 

 
b. From Exercise 3, the upper bound is 

( ) 95.635295.652570093.396645.15700 =+=+ . 
 
 
5.  

a. Ha says that the average calorie output for sufferers is more than 1 cal/cm2/min below that 

for nonsufferers. 
( ) ( )

1414.
10
16.

10
04. 222

2
2
1 =+=+

nm
σσ

, so 

( ) ( )
90.2

1414.
105.264.

−=
−−−

=z .  At level .01, Ho is rejected if 33.2−≤z ; since –

2.90 < -2.33, reject Ho. 
 

b. ( ) 0019.90.2 =−Φ=P  
 

c. ( ) 8212.92.1
1414.

12.1
33.21 =−Φ−=






 +−

−−Φ−=β  

 

d. 
( )

( )
15.65

2.
28.133.22.

2

2

=
−

+
== nm , so use 66. 
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6.  

a. Ho should be rejected if 33.2≥z .  Since 
( )

33.253.3

32
96.1

40
56.2

87.1612.18
≥=

+

−
=z , Ho 

should be rejected at level .01. 
 

b. ( ) ( ) 3085.50.
3539.

01
33.21 =−Φ=






 −

−Φ=β  

 

c. 
( )

06.370529.
96.1

1169.
28.1645.1

196.1
40
56.2

2
=⇒=⇒=

+
=+ n

nn
, so use 

n = 38. 
 
d. Since n = 32 is not a large sample, it would no longer be appropriate to use the large 

sample test.  A small sample t procedure should be used (section 9.2), and the appropriate 
conclusion would follow. 

 
 
7.  

1 Parameter of interest: =− 21 µµ  the true difference of means for males and 

females on the Boredom Proneness Rating.  Let =1µ  men’s average and =2µ  
women’s average. 

2 Ho: 021 =− µµ  

3 Ha: 021 >− µµ  

4 
( ) ( )

n
s

m
s

yx

n
s

m
s

yx
z o

2
2

2
1

2
2

2
1

0

+

−−
=

+

∆−−
=  

5 RR: 645.1≥z  

6 
( )

83.1

148
68.4

97
83.4

26.940.10
22

=

+

∆−−
= oz  

7 Reject Ho.  The data indicates the Boredom Proneness Rating is higher for males 
than for females. 
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8.  
a.  

1 Parameter of interest: =− 21 µµ  the true difference of mean tensile strength of the 

1064 grade and the 1078 grade wire rod.  Let =1µ  1064 grade average and =2µ  
1078 grade average. 

2 Ho: 1021 −=− µµ  

3 Ha: 1021 −<− µµ  

4 
( ) ( ) ( )

n
s

m
s

yx

n
s

m
s

yx
z o

2
2

2
1

2
2

2
1

10

+

−−−
=

+

∆−−
=  

5 RR: α<− valuep  

6 
( ) ( )

57.28
210.

6

129
0.2

129
3.1

106.1236.107
22

−=
−

=

+

−−−
=z  

7 For a lower-tailed test, the p-value = ( ) 057.28 ≈−Φ , which is less than any α , 
so reject Ho.  There is very compelling evidence that the mean tensile strength of the 
1078 grade exceeds that of the 1064 grade by more than 10. 

 

b. The requested information can be provided by a 95% confidence interval for 21 µµ − :  

( ) ( ) ( ) ( )588.5,412.6210.96.1696.1
2
2

2
1 −−=±−=+±−

n
s

m
s

yx  . 

 
 
9.  

a. point estimate 2.67.139.19 =−=− yx .  It appears that there could be a difference. 
b.  

 Ho: 021 =− µµ ,Ha: 021 ≠− µµ , 
( )

14.1
44.5
2.6

60
8.15

60
1.39

7.139.19
22

==

+

−
=z , and 

the p-value = 2[P(z > 1.14)] = 2( .1271) = .2542.  The p value is larger than any 
reasonable α, so we do not reject H0. There is no significant difference. 
 

c. No. With a normal distribution, we would expect most of the data to be within 2 standard 
deviations of the mean, and the distribution should be symmetric.  2 sd’s above the mean 
is 98.1, but the distribution stops at zero on the left.  The distribution is positively 
skewed. 

 
d. We will calculate a 95%  confidence interval for µ, the true average length of  stays for 

patients given the treatment. ( )8.21,0.109.99.19
60

1.39
96.19.19 =±=±  
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10.  
a. The hypotheses are Ho: 521 =− µµ  and  Ha: 521 >− µµ .  At level .001, Ho should 

be rejected if  08.3≥z .  Since 
( )

08.389.2
2272.

58.596.65
<=

−−
=z , Ho cannot be 

rejected in favor of Ha at this level, so the use of the high purity steel cannot be justified. 
 

b. 121 =∆−− oµµ , so ( ) 2891.53.
2272.

1
08.3 =−Φ=






 −Φ=β  

 
 

11. ( )
n
s

m
s

zYX
2
2

2
1

2/ +±− α .  Standard error  = 
n
s

.  Substitution yields 

( ) ( ) ( )2
2

2
12/ SESEzyx +±− α .   Using ,05.=α   96.12/ =αz , so 

( ) ( ) ( ) ( )41.2,99.02.03.096.18.35.5 22 =+±− .  Because we selected ,05.=α  we 

can state that when using this method with repeated sampling, the interval calculated will 
bracket the true difference 95% of the time.  The interval is fairly narrow, indicating precision 
of the estimate. 

 

12. The C.I. is  ( ) ( ) 46.277.89104.58.277.858.2
2
2

2
1 ±−=±−=+±−

n
s

m
s

yx  

( )31.6,23.11 −−= .  With 99% confidence we may say that the true difference between the 
average 7-day and 28-day strengths is between -11.23 and -6.31 N/mm2. 

 
13. 05.21 == σσ , d = .04, 05.,01. == βα , and the test is one-tailed, so 

( )( )
38.49

0016.
645.133.20025.0025. 2

=
++

=n , so use n = 50. 

 
 

14. The appropriate hypotheses are Ho: 0=θ  vs. Ha: 0<θ , where 212 µµθ −= . ( 0<θ  is 

equivalent to 212 µµ < , so normal is more than twice schizo)  The estimator of θ  is 

YX −= 2θ̂ , with ( ) ( ) ( )
nm

YVarXVarVar
2
2

2
14

4ˆ σσ
θ +=+= , θσ   is the square root 

of ( )θ̂Var , and θσ̂ is obtained by replacing each 2
iσ  with 2

iS .  The test statistic is then 

θ
σ
θ

ˆ

ˆ
 (since 0=oθ ), and Ho is rejected if .33.2−≤z   With ( ) 97.35.669.22ˆ −=−=θ  

and 
( ) ( )

9236.
45
03.4

43
3.24ˆ

22

=+=θσ ,  05.1
9236.

97.
−=

−
=z ;  Because –1.05 > -2.33, 

Ho is not rejected. 
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15.  

a. As either m or n increases, σ  decreases, so 
σ
µµ o∆−− 21  increases (the numerator is 

positive), so 





 ∆−−

−
σ
µµ

α
oz 21 decreases, so 






 ∆−−

−Φ=
σ
µµ

β α
oz 21  

decreases. 
 

b. As β  decreases, βz  increases, and since βz  is the numerator of n , n increases also. 

 
 

16. 

nn
s

n
s

yx
z

2
2.

2
2

2
1

=

+

−
= .  For n = 100, z = 1.41 and p-value = ( )[ ] 1586.41.112 =Φ− .  

For n = 400, z = 2.83 and p-value = .0046.  From a practical point of view, the closeness of x  
and y  suggests that there is essentially no difference between true average fracture toughness 
for type I and type I steels.  The very small difference in sample averages has been magnified 
by the large sample sizes – statistical rather than practical significance.  The p-value by itself 
would not have conveyed this message. 

 
 

Section 9.2 
 
17.  

a. 
( )

( ) ( )
1743.17

44.1694.
21.37

99

2

10
62

10
5

2

10
6

10
5

22

22

≈=
+

=

+

+
=ν  

 

b. 
( )

( ) ( )
217.21

411.694.
01.24

149

2

15
62

10
5

2

15
6

10
5

22

22

≈=
+

=

+

+
=ν  

 

c. 
( )

( ) ( )
1827.18

411.018.
84.7

149

2

15
62

10
2

2

15
6

10
2

22

22

≈=
+

=

+

+
=ν  

 

d. 
( )

( ) ( )
2605.26

098.395.
84.12

2311

2

24
62

12
5

2

24
6

12
5

22

22

≈=
+

=

+

+
=ν  
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18. With Ho: 021 =− µµ  vs. Ha: 021 ≠− µµ , we will reject Ho if    α<− valuep .  

( )
( ) ( )

68.6

45

2

5
240.2

6
164.

2

5
240.

6
164.

22

22

≈=

+

+
=ν , and the test statistic 

17.6
1265.
78.95.2173.22

5
240.

6
164. 22

==
+

−
=t  leads to a p-value of 2[ P(t > 6.17)] < 2(.0005) =.001, 

which is less than most reasonable s'α , so we reject Ho and conclude that there is a 
difference in the densities of the two brick types. 

 
 

19. For the given hypotheses, the test statistic 20.1
007.3

6.3103.1297.115

6
38.5

6
03.5 22

−=
−

=
+

+−
=t , and 

the d.f. is 
( )

( ) ( )
96.9

5
8241.4

5
2168.4

8241.42168.4
22

2

=
+

+
=ν , so use d.f. = 9. We will reject Ho if  

;764.29,01. −=−≤ tt  since –1.20 > -2.764, we don’t reject Ho. 

 
 
20. We want a 95% confidence interval for  21 µµ − .  262.29,025. =t , so the interval is 

( ) ( )20.3,40.10007.3262.26.3 −=±− .  Because the interval is so wide, it does not 
appear that precise information is available. 

 
 
21. Let =1µ the true average gap detection threshold for normal subjects, and  =2µ the 

corresponding value for  CTS subjects.  The relevant hypotheses are Ho: 021 =− µµ  vs. 

Ha: 021 <− µµ , and the test statistic 46.2
3329.

82.
07569.0351125.

53.271.1
−=

−
=

+
−

=t .  

Using d.f. 
( )

( ) ( )
1.15

9
07569.

7
0351125.

07569.0351125.
22

2

=
+

+
=ν , or 15, the rejection region is 

602.215,01. −=−≤ tt .  Since –2.46 is not 602.2−≤ , we fail to reject Ho.  We have 

insufficient evidence to claim that the true average gap detection threshold for CTS subjects 
exceeds that for normal subjects. 
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22. Let =1µ  the true average strength for wire-brushing preparation and let =2µ  the average 
strength for hand-chisel preparation.  Since we are concerned about any possible difference 
between the two means, a two-sided test is appropriate.  We test 0: 210 =− µµH  vs. 

0: 21 ≠− µµaH . We need the degrees of freedom to find the rejection region: 

( )
( ) ( )

33.14
1632.0039.

3964.2

1111

2

5
01.42

12
58.1

2

12
01.4

12
58.1

22

22

=
+

=

+

+
=ν , which we round down to 14, so we 

reject Ho if 145.214,025. =≥ tt .  The test statistic is 

( ) 159.3
2442.1

93.313.2320.19

12
01.4

12
58.1 22

−=
−

=
+

−
=t , which is 145.2−≤ , so we reject Ho and 

conclude that there does appear to be a difference between the two population average 
strengths. 

 
 
23.  

a. Normal plots 
 

 
Using Minitab to generate normal probability plots, we see that both plots illustrate 
sufficient linearity.  Therefore, it is plausible that both samples have been selected from 
normal population distributions. 

 

P-Value:   0.344
A-Squared: 0.396

Anderson-Darling Normality  Tes t

N:  24
StDev : 0.444206
Average: 1.50833

2.31.81.30.8
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1.0 1.5 2.0 2.5

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

P :

Normal Probability Plot for Poor Quality Fabric



Chapter 9:  Inferences Based on Two Samples 

 269 

b.  

0.5 1.5 2.5

Comparative Box Plot for High Quality and Poor Quality Fabric

Quality
Poor

Quality
High

extensibility (%)

 

The comparative boxplot does not suggest a difference between average extensibility for 
the two types of fabrics. 

 

c. We test 0: 210 =− µµH  vs. 0: 21 ≠− µµaH . With degrees of freedom  

( )
5.10

00017906.
0433265. 2

==ν , which we round down to 10, and using significance level 

.05 (not specified in the problem), we reject Ho if 228.210,025. =≥ tt .  The test 

statistic is 
( )

38.
0433265.

08.
−=

−
=t , which is not 228.2≥  in absolute value, so we 

cannot reject Ho.  There is insufficient evidence to claim that the true average 
extensibility differs for the two types of fabrics. 

 

24. A 95% confidence interval for the difference between the true firmness of zero-day apples 

and the true firmness of 20-day apples is ( )
20
39.

20
66.

96.474.8
22

,025. +±− νt .  We 

calculate the degrees of freedom 
( ) ( )

83.30

1919

20
39.

20
66.

2

20
39.2

20
66.

222

22
=

+









+

=ν , so we use 30 df, and 

042.230,025. =t , so the interval is ( ) ( )13.4,43.317142.042.278.3 =± .  Thus, with 

95% confidence, we can say that the true average firmness for zero-day apples exceeds that of 
20-day apples by between 3.43 and 4.13 N. 
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25. We calculate the degrees of freedom 
( )

( ) ( )
95.53

3027

2

31
8.72

28
5.5

2

31
8.7

28
5.5

22

22

=

+

+
=ν , or about 54 (normally 

we would round down to 53, but this number is very close to 54 – of course for this large 
number of df, using either 53 or 54 won’t make much difference in the critical t value) so the 

desired confidence interval is ( ) 31
8.7

28
5.5 22

68.13.885.91 +±−  

( )131.6,269.931.22.3 =±= .  Because 0 does not lie inside this interval, we can be 

reasonably certain that the true difference 21 µµ − is not 0 and, therefore, that the two 
population means are not equal.  For a 95% interval, the t value increases to about 2.01 or so, 
which results in the interval 506.32.3 ± .  Since this interval does contain 0, we can no 
longer conclude that the means are different if we use a 95% confidence interval. 

 

26. Let =1µ the true average potential drop for alloy connections and let =2µ  the true average 
potential drop for EC connections.  Since we are interested in whether the potential drop is 
higher for alloy connections, an upper tailed test is appropriate.  We test  0: 210 =− µµH  

vs. 0: 21 >− µµaH .  Using the SAS output provided, the test statistic, when assuming 

unequal variances, is t = 3.6362, the corresponding df is 37.5, and the p-value for our upper 

tailed test would be ½ (two-tailed p-value) = ( ) 0004.0008.2
1 = .  Our p-value of .0004 is 

less than the significance level of .01, so we reject Ho.  We have sufficient evidence to claim 
that the true average potential drop for alloy connections is higher than that for EC 
connections. 

 

27. The approximate degrees of freedom for this estimate are 

( )
( ) ( )

83.8
175.101
59.893

75

2

8
3.82

6
3.11

2

8
3.8

6
3.11

22

22

==

+

+
=ν , which we round down to 8, so 306.28,025. =t  

and the desired interval is ( ) ( )4674.5306.29.18306.24.213.40 8
3.8

6
3.11 22

±=+±−  

( )5.31,3.6607.129.18 =±= .  Because 0 is not contained in this interval, there is strong 

evidence that 21 µµ − is not 0; i.e., we can conclude that the population means are not equal.  

Calculating a confidence interval for 12 µµ −  would change only the order of subtraction of 
the sample means, but the standard error calculation would give the same result as before.   
Therefore, the 95% interval estimate of 12 µµ −  would be ( -31.5, -6.3), just the negatives of 
the endpoints of the original interval.  Since 0 is not in this interval, we reach exactly the same 
conclusion as before; the population means are not equal. 
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28. We will test the hypotheses:  10: 210 =− µµH  vs. 10: 21 >− µµaH .  The test 

statistic is 
( )
( )

08.2
17.2
5.410

5
44.4

10
75.2 22

==
+

−−
=

yx
t   The degrees of freedom 

( )
( ) ( )

659.5
95.3
08.22

49

2

5
44.42

10
75.2

2

5
44.4

10
75.2

22

22

≈==

+

+
=ν  and the p-value from table A.8 is approx .04, 

which is < .10 so we reject H0 and conclude that the true average lean angle for older females 
is more than 10 degrees smaller than that of younger females. 

 

29. Let =1µ the true average compression strength for strawberry drink and let =2µ  the true 
average compression strength for cola.  A lower tailed test is appropriate.  We test 

0: 210 =− µµH  vs. 0: 21 <− µµaH . The test statistic is 

10.2
154.29

14
−=

+
−

=t .  
( )

( ) ( )
3.25

8114.77
36.1971

14
15

14
4.29

4.44
22

2

==
+

=ν , so use df=25.  

The p-value 023.)10.2( =−<≈ tP .  This p-value indicates strong support for the 

alternative hypothesis.  The data does suggest that the extra carbonation of cola results in a 
higher average compression strength. 

 

30.  

a. We desire a 99% confidence interval.  First we calculate the degrees of freedom: 

( )
( ) ( )

24.37

2626

2

26
3.42

26
2.2

2

26
3.4

26
2.2

22

22

=

+

+
=ν , which we would round down to 37, except that there is 

no df = 37 row in Table A.5.  Using 36 degrees of freedom (a more conservative choice), 

719.236,005. =t , and the 99% C.I. is 

( ) ( )83.6,98.11576.24.9719.28.424.33 26
3.4

26
2.2 22

−−=±−=+±− .  We are 

very confident that the true average load for carbon beams exceeds that for fiberglass 
beams by between 6.83 and 11.98 kN. 

 

b. The upper limit of the interval in part a does not give a 99% upper confidence bound.  
The 99% upper bound would be ( ) 09.79473.434.24.9 −=+− , meaning that the true 
average load for carbon beams exceeds that for fiberglass beams by at least 7.09 kN. 
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31.  
a.  

 
The mo st notable feature of these boxplots is the larger amount of variation present in the 
mid-range data compared to the high-range data.  Otherwise, both look reasonably 
symmetric with no outliers present. 
 

b. Using df = 23, a 95% confidence interval for rangehighrangemid −− − µµ  is 

( ) ( )54.9,84.769.885.069.245.4373.438 11
83.6

17
1.15 22

−=±=+±− .  Since 

plausible values for rangehighrangemid −− − µµ  are both positive and negative (i.e., the 

interval spans zero) we would conclude that there is not sufficient evidence to suggest 
that the average value for mid-range and the average value for high-range differ. 

 
 

32. Let =1µ the true average proportional stress limit for red oak and let =2µ  the true average 

proportional stress limit for Douglas fir.  We test 1: 210 =− µµH  vs. 1: 21 >− µµaH .  

The test statistic is 
( )

818.1
2084.
83.1165.648.8

10
28.1

14
79. 22

=
+

−−
=t .   With  degrees of freedom 

( )
( ) ( )

1485.13

913

2084.
2

10
28.12

14
79.

2

22
≈=

+

=ν , the p-value 046.)8.1( =>≈ tP .  This p-value 

indicates strong support for the alternative hypothesis since we would reject Ho at significance 
levels greater than .046.  There is sufficient evidence to claim that true average proportional 
stress limit for red oak exceeds that of Douglas fir by more than 1 MPa. 
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33. Let =1µ the true average weight gain for steroid treatment and let =2µ  the true average 
weight gain for the population not treated with steroids.  The exercise asks if we can conclude 
that 2µ  exceeds 1µ  by more than 5 g., which we can restate in the equivalent form: 

521 −<− µµ .  Therefore, we conduct a lower-tailed test of  5: 210 −=− µµH   vs. 

5: 21 −<− µµaH .  The test statistic is 

( ) ( ) ( )
2.223.2

2124.1
7.2

10
5.2

8
6.2

55.408.32
222

2
2
1

≈−=
−

=

+

−−−
=

+

∆−−
=

n
s

m
s

yx
t .  The approximate d.f. is 

( )
( ) ( )

876.14
1454.
1609.2

97

2

10
5.22

8
6.2

2

10
5.2

8
6.2

22

22

==

+

+
=ν , which we round down to 14. The p-value for a 

lower tailed test is P( t <  -2.2 ) = P( t > 2.2 ) = .022.  Since this p-value is larger than the 
specified significance level .01, we cannot reject Ho.  Therefore, this data does not support the 
belief that average weight gain for the control group exceeds that of the steroid group by more 
than 5 g. 

 

34.  

a. Following the usual format for most confidence intervals: statistic ± (critical 
value)(standard error), a pooled variance confidence interval for the difference between 

two means is ( ) nmpnm styx 11
2,2/ +⋅±− −+α . 

 
b. The sample means and standard deviations of the two samples are 90.13=x , 

225.11 =s , 20.12=y , 010.12 =s .  The pooled variance estimate is =2
ps  

( ) ( )222
2

2
1 010.1

244
14

225.1
244

14
2

1
2

1








−+
−

+







−+
−

=







−+
−

+







−+
−

s
nm

n
s

nm
m

 

260.1= , so 1227.1=ps .  With df = m+n-1 = 6 for this interval, 447.26,025. =t  and 

the desired interval is ( ) ( )( ) 4
1

4
11227.1447.220.1290.13 +±−  

( )64.3,24.943.17.1 −=±= .  This interval contains 0, so it does not support the 
conclusion that the two population means are different. 

 
c. Using the two-sample t interval discussed earlier, we use the CI as follows: First, we need 

to calculate the degrees of freedom. 
( )

( ) ( )
919.9

0686.
6302.

33

2

4
01.12

4
225.1

2

4
01.1

4
225.1

22

22

≈==

+

+
=ν   so 

262.29,025. =t  . Then the interval is 

( ) ( ) ( )50.3,10.7938.262.270.1262.22.129.13 4
01.1

4
225.1 22

−=±=+±− .  This 

interval is slightly smaller, but it still supports the same conclusion. 



Chapter 9:  Inferences Based on Two Samples 

 274 

35. There are two changes that must be made to the procedure we currently use.  First, the 

equation used to compute the value of the t test statistic is: 
( ) ( )

nm
s

yx
t

p
11

+

∆−−
=  where sp is 

defined as in Exercise 34 above.  Second, the degrees of freedom = m + n – 2.  Assuming 
equal variances in the situation from Exercise 33, we calculate sp as follows: 

( ) ( ) 544.25.2
16
9

6.2
16
7 22 =






+






=ps .    The value of the test statistic is, then, 

( ) ( )
2.224.2

10
1

8
1

544.2

55.408.32
−≈−=

+

−−−
=t .  The degrees of freedom = 16, and the p-

value is P ( t < -2.2) = .021.  Since .021 > .01, we fail to reject Ho.  This is the same 
conclusion reached in Exercise 33. 

 

Section 9.3 
 
36. 25.7=d , 8628.11=Ds  

1 Parameter of Interest: =Dµ true average difference of breaking load for fabric in 
unabraded or abraded condition. 

2 0:0 =DH µ  

3 0: >DaH µ  

4 
ns

d
ns

d
t

DD

D

/
0

/
−

=
−

=
µ

 

5 RR: 998.27,01. =≥ tt  

6 73.1
8/8628.11

025.7
=

−
=t  

7 Fail to reject Ho.  The data does not indicate a difference in breaking load for the two 
fabric load conditions. 
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37.  
a. This exercise calls for paired analysis.  First, compute the difference between indoor and 

outdoor concentrations of hexavalent chromium for each of the 33 houses.  These 33 

differences are summarized as follows:  n = 33, 4239.−=d , 3868.=ds , where d = 

(indoor value – outdoor value).  Then 037.232,025. =t , and a 95% confidence interval 

for the population mean difference between indoor and outdoor concentration is 

( ) ( )2868.,5611.13715.4239.
33

3868.
037.24239. −−=±−=








±− .  We can be 

highly confident, at the 95% confidence level, that the true average concentration of 
hexavalent chromium outdoors exceeds the true average concentration indoors by 
between .2868 and .5611 nanograms/m3. 

 
b. A 95% prediction interval for the difference in concentration for the 34th house is 

( ) ( )( ) ( )3758,.224.113868.037.24239.1 33
11

32,025. −=+±−=+± ndstd .  

This prediction interval means that the indoor concentration may exceed the outdoor 
concentration by as much as .3758 nanograms/m3 and that the outdoor concentration may 
exceed the indoor concentration by a much as 1.224 nanograms/m3, for the 34th house.  
Clearly, this is a wide prediction interval, largely because of the amount of variation in 
the differences. 

 
 
38.  

a. The median of the “Normal” data is 46.80 and the upper and lower quartiles are 45.55 
and 49.55, which yields an IQR of 49.55 – 45.55 = 4.00.  The median of the “High” data 
is 90.1 and the upper and lower quartiles are 88.55 and  90.95, which yields an IQR of 
90.95 – 88.55 = 2.40. The most significant feature of these boxplots is the fact that their 
locations (medians) are far apart. 

Normal :High:

90

80

70

60

50

40

Comparative Boxplots

for Normal and High Strength Concrete Mix
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b. This data is paired because the two measurements are taken for each of 15 test conditions.  
Therefore, we have to work with the differences of the two samples.  A quantile of the 15 
differences shows that the data follows (approximately) a straight line, indicating that it is 
reasonable to assume that the differences follow a normal distribution.  Taking 

differences in the order “Normal” – “High” , we find 23.42−=d , and 34.4=ds .  

With 145.214,025. =t , a  95% confidence interval for the difference between the 

population means is  

( ) ( )83.39,63.44404.223.42
15
34.4

145.223.42 −−=±−=







±− .  Because 0 is 

not contained in this interval, we  can conclude that the difference between the population 
means is not 0; i.e., we conclude that the two population means are not equal. 

 
 
39.  

a. A normal probability plot shows that the data could easily follow a normal distribution. 
 

b. We test 0:0 =dH µ  vs. 0: ≠daH µ , with test statistic 

7.274.2
14/228

02.167
/

0
≈=

−
=

−
=

ns
d

t
D

.  The two-tailed p-value is 2[ P( t > 2.7)] = 

2[.009] = .018.  Since .018 < .05, we can reject Ho .  There is strong evidence to support 
the claim that the true average difference between intake values measured by the two 
methods is not 0. There is a difference between them. 

 
 
40.  

a. Ho will be rejected in favor of Ha if either 947.215,005. =≥ tt  or 947.2−≤t .  The 

summary quantities are 544.−=d , and 714.=ds , so 05.3
1785.

544.
−=

−
=t .  

Because 947.205.3 −≤− , Ho is rejected in favor of Ha. 
 

b. 31.72 =ps , 70.2=ps , and 57.
96.
544.

−=
−

=t , which is clearly insignificant;  the 

incorrect analysis  yields an inappropriate conclusion. 
 
 

41. We test 0:0 =dH µ   vs. 0: >daH µ  .  With 600.7=d , and 178.4=ds , 

9.187.1
39.1
6.2

9/178.4
5600.7

≈==
−

=t . With degrees of freedom n – 1 = 8, the 

corresponding p-value is P( t > 1.9 ) = .047.  We would reject Ho at any alpha level greater 
than .047.  So, at the typical significance level of .05, we would (barely) reject Ho, and 
conclude that the data indicates that the higher level of illumination yields a decrease of more 
than 5 seconds in true average task completion time. 
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42.  
1 Parameter of interest: dµ  denotes the true average difference of spatial ability in 

brothers exposed to DES and brothers not exposed to DES.  Let 

.expexp osedunosedd µµµ −=  

2 0:0 =DH µ  

3 0: <DaH µ  

4 
ns

d
ns

d
t

DD

D

/
0

/
−

=
−

=
µ

 

5 RR: P-value < .05, df = 8 

6 
( )

2.2
5.0

07.136.12
−=

−−
=t , with corresponding p-value .029 (from Table A.8) 

7 Reject Ho.  The data supports the idea that exposure to DES reduces spatial ability. 
 
43.  

a. Although there is a “jump” in the middle of the Normal Probability plot, the data follow a 
reasonably straight path, so there is no strong reason for doubting the normality of the 
population of differences. 

 
b. A 95% lower confidence bound for the population mean difference is: 

( ) 14.4954.1060.38
15
18.23

761.160.3814,05. −=−−=







−−=








−

n

s
td d .  

Therefore, with a confidence level of 95%, the population mean difference is above (–
49.14). 

 
c. A 95% upper confidence bound for the corresponding population mean difference is 

14.4954.1060.38 =+  
 
44. We need to check the differences to see if the assumption of normality is plausible.  A 

probability chart will validate our use of the t distribution.  A 95% confidence interval:  

( ) 91.22263.2635
16
645.508

753.163.263515,05. +=







+=








+

n

s
td d  

( )54.2858,∞⇒  
 
 
45. The differences  (white – black) are –7.62, -8.00, -9.09, -6.06, -1.39, -16.07, -8.40, -8.89, and 

–2.88, from which 600.7−=d , and 178.4=ds .  The confidence level is not specified in 

the problem description; for 95% confidence, 306.28,025. =t , and the C.I. is 

( ) ( )389.4,811.10211.3600.7
9

178.4
306.2600.7 −−=±−=








±− . 

 
46. With ( ) ( )5,6, 11 =yx , ( ) ( )14,15, 22 =yx , ( ) ( )0,1, 33 =yx , and ( ) ( )20,21, 44 =yx , 

1=d  and 0=ds  (the d I’s are 1, 1, 1, and 1), while s1 = s2 = 8.96, so sp = 8.96 and t = .16. 
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Section 9.4 
 
47. Ho will be rejected if 33.201. −=−≤ zz .  With 150.ˆ1 =p , and 300.ˆ 2 =p , 

263.
800
210

600200
8030ˆ ==

+
+

=p , and 737.ˆ =q .  The calculated test statistic is 

( )( )( )
18.4

0359.
150.

737.263.

300.150.

600
1

200
1

−=
−

=
+

−
=z .  Because 33.218.4 −≤− , Ho is 

rejected; the proportion of those who repeat after inducement appears lower than those who 
repeat after no inducement. 

 
 
48.  

a. Ho will be rejected if 96.1≥z . With 2100.
300
63ˆ1 ==p , and 4167.

180
75ˆ 2 ==p , 

2875.
180300
7563ˆ =

+
+

=p , 
( )( )( )

84.4
0427.
2067.

7125.2875.

4167.2100.

180
1

300
1

−=
−

=
+

−
=z .  

Since 96.184.4 −≤− ,  Ho is rejected. 
 
b. 275.=p  and 0432.=σ , so power = 

( )( )[ ] ( )( )[ ]
=














 +−

Φ−





 +

Φ−
0432.

2.0421.96.1
0432.

2.0421.96.1
1  

( ) ( )[ ] 9967.72.254.61 =Φ−Φ− . 
 
 

49.  
1 Parameter of interest:  p1 – p2 = true difference in proportions of those responding to 

two different survey covers.  Let p1 = Plain, p2 = Picture. 
2 0: 210 =− ppH  

3 0: 21 <− ppH a  

4 
( )nmqp

pp
z

11

21

ˆˆ

ˆˆ

+

−
=  

5 Reject Ho if p-value < .10 

6 
( )( )( )

1910.
213

1
207
1

420
207

420
213

213
109

207
104

−=
+

−
=z ; p-value = .4247 

7 Fail to Reject Ho.  The data does not indicate that plain cover surveys have a lower 
response rate. 

 
 



Chapter 9:  Inferences Based on Two Samples 

 279 

50. Let 05.=α .   A 95% confidence interval is ( ) ( )n
qp

m
qpzpp 2211 ˆˆˆˆ

2/21 ˆˆ +±− α  

( ) ( )( ) ( )( ) ( )1708,.0160.0774.0934.
266395

96.1 266
140

266
126

395
171

395
224

266
126

395
224 =±=








+±−= . 

 
 
51.  

a. 210 : ppH =  will be rejected in favor of 21: ppH a ≠  if either 645.1≥z  or 

645.1−≤z .  With 193.ˆ1 =p , and 182.ˆ 2 =p , 188.ˆ =p , 48.1
00742.

011.
==z .  

Since 1.48 is not 645.1≥ , Ho is not rejected and we conclude that no difference exists. 
 
b. Using formula (9.7) with p1 = .2, p2 = .18, 1.=α , 1.=β , and 645.12/ =αz , 

( )( )( )
6582

0004.
1476.16.28.162.138.5.645.1

2

=
++

=n  

 
 
52. Let p1 = true proportion of irradiated bulbs that are marketable; p2 = true proportion of 

untreated bulbs that are marketable;  The hypotheses are 0: 210 =− ppH  vs. 

0: 210 >− ppH .  The test statistic is 
( )nmqp

pp
z

11

21

ˆˆ

ˆˆ

+

−
= . With 850.

180
153ˆ1 ==p , and 

661.
180
119ˆ 2 ==p , 756.

360
272ˆ ==p , 

( )( )( )
2.4

045.
189.

244.756.

661.850.

180
1

180
1

==
+

−
=z .  

The p-value = ( ) 02.41 ≈Φ− , so reject Ho at any reasonable level.  Radiation appears to be 
beneficial. 

 
 
53.  

a. A 95% large sample confidence interval formula for ( )θln  is 

( )
ny

yn
mx

xm
z

−
+

−
± 2/

ˆln αθ .  Taking the antilogs of the upper and lower bounds 

gives the confidence interval for θ  itself. 
 

b. 818.1ˆ
037,11

104

034,11
189

==θ , ( ) 598.ˆln =θ , and the standard deviation is 

( )( ) ( )( ) 1213.
104037,11

933,10
189034,11

845,10
=+ , so the CI for ( )θln  is 

( ) ( )836,.360.1213.96.1598. =± .  Then taking the antilogs of the two bounds gives 

the CI for θ  to be ( )31.2,43.1 . 
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54.  
a. The “after” success probability is p1 + p3 while the “before” probability is p1 + p2 , so p1 + 

p3 > p1 + p2  becomes p3 > p2;  thus we wish to test 230 : ppH =  versus 

23: ppH a > . 

 

b. The estimator of (p1 + p3) – (p1 + p2) is 
( ) ( )

n
XX

n
XXXX 232131 −

=
+−+

. 

 

c. When Ho is true, p2 = p3, so 
n

pp
n

XX
Var 3223 +

=





 −

, which is estimated by 

n
pp 32 ˆˆ +

.  The Z statistic is then 
32

23

32

23

ˆˆ XX
XX

n
pp

n
XX

+
−

=
+

−

. 

 

d. The computed value of Z is 68.2
150200

150200
=

+
−

, so ( ) 0037.68.21 =Φ−=P .  At 

level .01, Ho can be rejected but at level .001 Ho would not be rejected. 
 
 

55. 550.
40

715ˆ1 =
+

=p , 690.
42
29ˆ 2 ==p , and the 95% C.I. is 

( ) ( ) ( )07,.35.21.14.106.96.1690.550. −=±−=±− . 
 
 

56. Using p1 = q1 = p2 = q2 = .5, ( )
nnn

L 7719.225.25.96.12 =





 += , so L=.1 requires n=769. 

 
 

Section 9.5 
 
57.  

a. From Table A.9, column 5, row 8, 69.38,5,01. =F . 

 
b. From column 8, row 5, 82.45,8,01. =F . 

 

c. 207.
1

5,8,05.
8,5,95. ==

F
F . 
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d. 271.
1

8,5,05.
5,8,95. ==

F
F  

 
e. 30.412,10,01. =F  

 

f. 212.
71.4
11

10,12,01.
12,10,99. ===

F
F . 

 

g. 16.64,6,05. =F , so ( ) 95.16.6 =≤FP . 

 

h. Since 177.
64.5
1

5,10,99. ==F , 

( ) ( ) ( )177.74.474.4177. ≤−≤=≤≤ FPFPFP  94.01.95. =−= . 
 
 
58.  

a. Since the given f value of 4.75 falls between 33.310,5,05. =F  and 64.510,5,01. =F , we 

can say that the upper-tailed p-value is between .01 and .05. 
 
b. Since the given f of 2.00 is less than 52.210,5,10. =F , the p-value > .10. 

 
c. The two tailed p-value = ( ) 02.)01(.264.52 ==≥FP . 
 
d. For a lower tailed test, we must first use formula 9.9 to find the critical values: 

3030.
1

5,10,10.
10,5,90. ==

F
F , 2110.

1

5,10,05.
10,5,95. ==

F
F , 

0995.
1

5,10,01.
10,5,99. ==

F
F .  Since  .0995 < f = .200 < .2110,   .01 < p-value < .05 (but  

obviously closer to .05). 
 
e. There is no column for numerator d.f. of 35 in Table A.9, however looking at both df = 

30 and df = 40 columns, we see that for denominator df = 20, our f value is between F.01  
and F.001.  So we can say  .001< p-value < .01. 
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59. We test 
22

0 21
: σσ =H  vs. 

22
21

: σσ ≠aH .  The calculated test statistic is 

( )
( )

384.
44.4
75.2

2

2

==f . With numerator d.f. = m – 1 = 10 – 1 = 9, and denominator d.f. = n – 

1 = 5 – 1 = 4, we reject H0 if 00.64,9,05. =≥ Ff  or 

275.63.3
11

9,4,05.
4,9,95. ===≤ FFf .  Since .384 is in neither rejection region, we do 

not reject H0 and conclude that there is no significant difference between the two standard 
deviations. 

 
 
60. With =1σ  true standard deviation for not-fused specimens and =2σ  true standard 

deviation for fused specimens, we test 210 : σσ =H  vs. 21: σσ >aH .  The calculated 

test statistic is 
( )
( )

814.1
9.205
3.277

2

2

==f . With numerator d.f. = m – 1 = 10 – 1 = 9, and 

denominator d.f. = n – 1 = 8 – 1 = 7, 7,9,10.72.2814.1 Ff =<= .  We can say that the p-

value  > .10, which is obviously > .01, so we cannot reject Ho.  There is not sufficient 
evidence that the standard deviation of the strength distribution for fused specimens is smaller 
than that of not-fused specimens. 

 
 

61. Let =2
1σ  variance in weight gain for low-dose treatment, and =2

2σ  variance in weight 

gain for control condition.  We wish to test 2
2

2
10 : σσ =H  vs. 2

2
2
1: σσ >aH . The test 

statistic is 
2
2

2
1

s
s

f = , and we reject Ho at level .05 if 08.222,19,05. ≈> Ff .  

( )
( )

8.2085.2
32
54

2

2

≥==f , so reject Ho at level .05.  The data does suggest that there is 

more variability in the low-dose weight gains. 
 
 

62. 210 : σσ =H  will be rejected in favor of 21: σσ ≠aH  if either 56.44,47,975. ≈≤ Ff  

or if 8.144,47,025. ≈≥ Ff .  Because   22.1=f , Ho is not rejected.  The data does not 

suggest a difference in the two variances. 
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63. α
σ
σ

αα −=







≤≤ −−−−− 1

/
/

1,1,2/2
2

2
2

2
1

2
1

1,1,2/1 nmnm F
S
S

FP .  The set of inequalities inside the 

parentheses is clearly equivalent to 
2

1

1,1,2/
2
2

2
1

2
2

2
1

1,1,2/1
2
2

S

FS

S

FS nmnm −−−−− ≤≤ αα

σ
σ

.  Substituting 

the sample values 2
1s  and 2

2s  yields the confidence interval for 
2
1

2
2

σ
σ

, and taking the square 

root of each endpoint yields the confidence interval for  
1

2

σ
σ

.  m = n = 4, so we need 

28.93,3,05. =F  and 108.
28.9
1

3,3,95. ==F .  Then with s1 = .160 and  s2 = .074, the C. I. 

for 
2
1

2
2

σ
σ

 is (.023, 1.99), and for 
1

2

σ
σ

 is (.15, 1.41). 

 
 

64. A 95% upper bound for 
1

2

σ
σ

 is 
( ) ( )

( )
10.8

79.

18.359.3
2

2

2
1

9,9,05.
2
2 ==

s

Fs
.  We are 

confident that the ratio of the standard deviation of triacetate porosity distribution to that of 
the cotton porosity distribution is at most 8.10. 

 
 

Supplementary Exercises 
 
65. We test 0: 210 =− µµH   vs. 0: 21 ≠− µµaH .  The test statistic is 

( ) ( )
22.3

524.15
50

241
50

10
41

10
27

757807
222

2
2
1

===

+

−
=

+

∆−−
=

n
s

m
s

yx
t .  The approximate d.f. is 

( )
( ) ( )

6.15

9
1.168

9
9.72

241
22

2

=
+

=ν , which we round down to 15. The p-value for a two-

tailed test is approximately 2P( t > 3.22) = 2( .003) = .006.  This small of a p-value gives 
strong support for the alternative hypothesis.  The data indicates a significant difference. 
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66.  
a.  

 

 
Although the median of the fertilizer plot is higher than that of the control plots, the 
fertilizer plot data appears negatively skewed, while the opposite is true for the control 
plot data. 

 
b. A test of 0: 210 =− µµH   vs. 0: 21 ≠− µµaH yields a t value of -.20, and a two-

tailed p-value of .85. (d.f. = 13).  We would fail to reject Ho; the data does not indicate a 
significant difference in the means. 

 
c. With 95% confidence we can say that the true average difference between the tree density 

of the fertilizer plots and that of the control plots is somewhere between –144 and 120.  
Since this interval contains 0, 0 is a plausible value for the difference, which further 
supports the conclusion based on the p-value. 

 
 
67. Let p1 = true proportion of returned questionnaires that included no incentive; p2 = true 

proportion of returned questionnaires that included an incentive. The hypotheses are 

0: 210 =− ppH  vs. 0: 210 <− ppH .  The test statistic is 
( )nmqp

pp
z

11

21

ˆˆ

ˆˆ

+

−
= . 

682.
110
75ˆ1 ==p , and 673.

98
66ˆ 2 ==p .  At this point we notice that since 21 ˆˆ pp > , the 

numerator of the z statistic will be > 0, and since we have a lower tailed test, the p-value will 
be > .5.  We fail to reject Ho.  This data does not suggest that including an incentive increases 
the likelihood of a response. 
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Comparative Boxplot of Tree Density Between
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68. Summary quantities are m = 24, 66.103=x , s1 = 3.74, n = 11, 11.101=y , s2 = 3.60.  We 

use the pooled t interval based on 24 + 11 – 2 = 33 d.f.; 95% confidence requires 

03.233,025. =t .  With 68.132 =ps  and 70.3=ps , the confidence interval is 

( )( ) ( )28.5,18.73.255.270.303.255.2 11
1

24
1 −=±=+± .  We are confident that the 

difference between true average dry densities for the two sampling methods is between   -.18 
and 5.28.  Because the interval contains 0, we cannot say that there is a significant difference 
between them. 

 
 
69. The center of any confidence interval for 21 µµ − is always 21 xx − , so 

3.609
2

9.16913.473
21 =

+−
=− xx .  Furthermore, half of the width of this interval is 

( )
6.1082

2
3.4739.1691

=
−−

.  Equating this value to the expression on the right of the 

95% confidence interval formula, ( )
2

2
2

1

2
196.16.1082

n
s

n
s

+= , we find 

35.552
96.1

6.1082

2

2
2

1

2
1 ==+

n
s

n
s

.  For a 90% interval, the associated z value is 1.645, so 

the 90% confidence interval is then ( )( ) 6.9083.60935.552645.13.609 ±=±  

( )9.1517,3.299−= . 
 
 
70.  

a. A 95% lower confidence bound for the true average strength of joints with a side coating 

is ( ) 78.5945.323.63
10
96.5

833.123.639,025. =−=







−=








−

n
s

tx .  That is, 

with a confidence level of 95%, the average strength of joints with a side coating is at 
least 59.78 (Note:  this bound is valid only if the distribution of joint strength is normal.)  

 
b. A 95% lower prediction bound for the strength of a single joint with a side coating is 

( ) ( )( )10
11

9,025. 196.5833.123.631 +−=+− nstx   77.5146.1123.63 =−= . 

That is, with a confidence level of 95%, the strength of a single joint with a side coating 
would be at least 51.77. 

 
c. For a confidence level of 95%, a two-sided tolerance interval for capturing at least 95% 

of the strength values of joints with side coating is ±x (tolerance critical value)s.  The 
tolerance critical value is obtained from Table A.6 with 95% confidence, k = 95%, and n 
= 10.  Thus, the interval is 

( )( ) ( )37.83,09.4314.2023.6396.5379.323.63 =±=± .  That is, we can be 
highly confident that at least 95% of all joints with side coatings have strength values 
between 43.09 and 83.37. 
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d. A 95% confidence interval for the difference between the true average strengths for the 

two types of joints is ( ) ( ) ( )
10
96.5

10
59.9

23.6395.80
22

,025. +±− νt .  The 

approximate degrees of freedom is 
( )

( ) ( )
05.15

99

2
10
5216.352

10
9681.91

2
10
5216.35

10
9681.91

=

+

+
=ν , so we use 15 

d.f., and 131.215,025. =t .  The interval is , then, 

( )( ) ( )33.25,11.1061.772.1757.3131.272.17 =±=± .  With 95% confidence, we 
can say that the true average strength for joints without side coating exceeds that of joints 
with side coating by between 10.11 and 25.33 lb-in./in. 

 
 
71. m = n  = 40, 0.3975=x , s1 = 245.1, 0.2795=y , s2 = 293.7.  The large sample 99% 

confidence interval for 21 µµ −  is ( )
40

7.293
40

1.245
58.20.27950.3975

22

+±−  

( ) ( )1336,10245.15600.1180 ≈± .  The value 0 is not contained in this interval so we can 

state that, with very high confidence, the value of 21 µµ −  is not 0, which is equivalent to 

concluding that the population means are not equal. 
 
 
72. This exercise calls for a paired analysis.  First compute the difference between the amount of 

cone penetration for commutator and pinion bearings for each of the 17 motors.  These 17 

differences are summarized as follows: n = 17, 18.4−=d , 85.35=ds , where d = 

(commutator value – pinion value).  Then 120.216,025. =t , and the 95% confidence interval 

for the population mean difference between penetration for the commutator armature bearing 
and penetration for the pinion bearing is: 

( ) ( )25.14,61.2243.1818.4
17
85.35

120.218.4 −=±−=







±− .  We would have to say 

that the population mean difference has not been precisely estimated.  The bound on the error 
of estimation is quite large.  In addition, the confidence interval spans zero.  Because of this, 
we have insufficient evidence to claim that the population mean penetration differs for the 
two types of bearings. 
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73. Since we can assume that the distributions from which the samples were taken are normal, we 
use the two-sample t test.  Let 1µ  denote the true mean headability rating for aluminum killed 

steel specimens and 2µ denote the true mean headability rating for silicon killed steel.  Then 

the hypotheses are 0: 210 =− µµH  vs. 0: 21 ≠− µµaH .  The test statistic is 

25.2
086083.

66.
047203.03888.

66.
−=

−
=

+
−

=t .  The approximate degrees of freedom 

( )
( ) ( )

5.57

29
047203.

29
03888.

086083.
22

2

=
+

=ν , so we use 57.  The two-tailed p-value 

( ) 028.014.2 =≈ , which is less than the specified significance level, so we would reject Ho.  
The data supports the article’s authors’ claim. 

 
 
74. Let 1µ  denote the true average tear length for Brand A and let 2µ  denote the true average 

tear length for Brand B.  The relevant hypotheses are 0: 210 =− µµH  vs. 

0: 21 >− µµaH .  Assuming both populations have normal distributions, the two-sample t 

test is appropriate.  m = 16, 0.74=x , s1 = 14.8, n = 14, 0.61=y , s2 = 12.5, so the 

approximate d.f. is 
( )

( ) ( )
97.27

1315

2

14
5.122

16
8.14

2

14
5.12

16
8.14

22

22

=

+

+
=ν , which we round down to 27.  The test 

statistic is  6.2
0.610.74

14
5.12

16
8.14 22

≈
+

−
=t .  From Table A.7, the p-value = P( t > 2.6) = .007.  At a 

significance level of .05, Ho is rejected and we conclude that the average tear length for Brand 
A is larger than that of Brand B. 

 
 
75.  

a. The relevant hypotheses are 0: 210 =− µµH  vs. 0: 21 ≠− µµaH .  Assuming 

both populations have normal distributions, the two-sample t test is appropriate.  m = 11, 
1.98=x , s1 = 14.2, n = 15, 2.129=y , s2 = 39.1. The test statistic is 

84.2
252.120
1.31

9207.1013309.18
1.31

−=
−

=
+

−
=t .  The approximate degrees of 

freedom 
( )

( ) ( )
64.18

14
9207.101

10
3309.18

252.120
22

2

=
+

=ν , so we use 18.  From Table A.7, 

the two-tailed p-value ( ) 012.006.2 =≈ .  No, obviously, the results are different. 
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b. For the hypotheses 25: 210 −=− µµH  vs. 25: 21 −<− µµaH , the test statistic 

changes to 
( )

556.
252.120

251.31
−=

−−−
=t .  With degrees of freedom 18, the p-value 

( ) 278.6. =−<≈ tP .  Since the p-value is greater than any sensible choice of α , we 

fail to reject Ho.  There is insufficient evidence that the true average strength for males 
exceeds that for females by more than 25N. 

 
 
76.  

a. The relevant hypotheses are 0: 210 =− ∗∗ µµH  (which is equivalent to saying 

021 =− µµ ) versus 0: 21 ≠− ∗∗ µµaH  (which is the same as saying 

021 ≠− µµ ).  The pooled t test is based on d.f. = m + n – 2 = 8 + 9 – 2 = 15.  The 

pooled variance is =2
ps  2

2
2
1 2

1
2

1
s

nm
n

s
nm

m








−+
−

+







−+
−

 

( ) ( )22 6.4
298

19
9.4

298
18









−+
−

+







−+
−

49.22= , so 742.4=ps .  The test statistic 

is  0.304.3
742.4

0.110.18**

9
1

8
111

≈=
+

−
=

+

−
=

nmps

yx
t .  From Table A.7, the p-value 

associated with t = 3.0 is 2P( t > 3.0 ) = 2(.004) = .008.  At significance level .05, Ho is 

rejected and we conclude that there is a difference between ∗
1µ  and ∗

2µ , which is 

equivalent to saying that there is a difference between 1µ  and 2µ . 

 

b. No.  The mean of a lognormal distribution is ( ) 2/
2∗∗ += σµµ e , where 

∗µ  and 
∗σ  are 

the parameters of the lognormal distribution (i.e., the mean and standard deviation of 

ln(x)).  So when ∗∗ = 21 σσ , then ∗∗ = 21 µµ  would imply that 21 µµ = .  However, 

when ∗∗ ≠ 21 σσ , then even if ∗∗ = 21 µµ , the two means 1µ  and 2µ (given by the 

formula above) would not be equal. 
 
 
77. This is paired data, so the paired t test is employed.  The relevant hypotheses are 

0:0 =dH µ   vs. 0: <daH µ , where dµ denotes the difference between the population 

average control strength minus the population average heated strength.  The observed 
differences (control – heated) are: -.06, .01, -.02, 0, and -.05.  The sample mean and standard 

deviation of the differences are 024.−=d  and 0305.=ds .  The test statistic is 

8.176.1
024.

5
0305.

−≈−=
−

=t .  From Table A.7, with d.f. = 5 – 1 = 4, the lower tailed p-

value associated with t = -1.8 is P( t < -1.8) = P( t > 1.8 ) = .073.  At significance level .05, Ho 
should not be rejected.  Therefore, this data does not show that the heated average strength 
exceeds the average strength for the control population. 
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78. Let 1µ  denote the true average ratio for young men and 2µ denote the true average ratio for 

elderly men.  Assuming both populations from which these samples were taken are normally 
distributed, the relevant hypotheses are 0: 210 =− µµH  vs. 0: 21 >− µµaH .  The 

value of the test statistic is 
( )
( ) ( )

5.7

12
28.

13
22.

71.647.7
22

=

+

−
=t .  The d.f. = 20 and the p-value is 

P( t > 7.5) 0≈ .  Since the p-value is 05.=< α , we reject Ho.  We have sufficient evidence 
to claim that the true average ratio for young men exceeds that for elderly men. 

 
 
79.  
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A normal probability plot indicates the data for good visibility does not follow a normal 
distribution, thus a t-test is not appropriate for this small a sample size. 

 

80. The relevant hypotheses would be FM µµ =  versus FM µµ ≠  for both the distress and 
delight indices.  The reported p-value for the test of mean differences on the distress index 
was less than 0.001.  This indicates a statistically significant difference in the mean scores, 
with the mean score for women being higher.  The reported p-value for the test of mean 
differences on the delight index was > 0.05.  This indicates a lack of statistical significance in 
the difference of delight index scores for men and women. 
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81. We wish to test H0: 21 µµ =  versus Ha: 21 µµ ≠  
Unpooled: 

With Ho: 021 =− µµ  vs. Ha: 021 ≠− µµ , we will reject Ho if    α<− valuep .  

( )
( ) ( )

1695.15

1113

2

12
52.12

14
79.

2

12
52.1

14
79.

22

22

≈=

+

+
=ν , and the test statistic 

97.1
4869.

96.36.948.8

12
52.1

14
79. 22

−=
−

=
+

−
=t  leads to a p-value of 2[ P(t > 1.97)] 

( ) 062.031.2 ≈≈  

Pooled: 

The degrees of freedom 24212142 =−+=−== nmν   and the pooled variance 

is ( ) ( ) 3970.152.1
24
11

79.
24
13 22 =






+








, so 181.1=ps .  The test statistic is  

1.2
465.

96.

181.1

96.

12
1

14
1

−≈
−

=
+

−
=t .  The p-value = 2[ P( t24 > 2.1 )] = 2( .023) = .046.   

With the pooled method, there are more degrees of freedom, and the p-value is smaller than 
with the unpooled method. 
 
 

82. Because of the nature of the data, we will use a paired t test.  We obtain the differences by 
subtracting intake value from expenditure value.  We are testing the hypotheses H0: µd = 0 vs 

Ha: µd ? 0.  Test statistic 88.3
757.1

7
197.1

==t  with df = n – 1 = 6 leads to a p-value of 2[ P( t > 

3.88 ) ˜ .004.  Using either significance level .05 or .01, we would reject the null hypothesis 
and conclude that there is a difference between average intake and expenditure.  However, at 
significance level .001, we would not reject. 

 
 
83.  

a. With n denoting the second sample size, the first is m = 3n.  We then wish 

( )
nn

400
3
900

58.2220 += , which yields n = 47, m = 141. 

b. We wish to find the n which minimizes ( )
nn

z
400

400
900

2 2/ +
−α , or equivalently, the 

n which minimizes 
nn

400
400

900
+

−
.  Taking the derivative with respect to n and 

equating to 0 yields ( ) 0400400900 22 =−− −− nn , whence ( )22 40049 nn −= , or 

0000,64032005 2 =−+ nn .  This yields n = 160, m = 400 – n = 240. 
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84. Let p1 = true survival rate at Cο11 ; p2 = true survival rate at Cο30  ;  The hypotheses are 

0: 210 =− ppH  vs. 0: 21 ≠− ppH a .  The test statistic is 
( )nmqp

pp
z

11

21

ˆˆ

ˆˆ

+

−
= . With 

802.
91
73ˆ1 ==p , and 927.

110
102ˆ 2 ==p , 871.

201
175ˆ ==p , 129.ˆ =q  . 

( )( )( )
91.3

0320.
125.

129.871.

927.802.

110
1

91
1

−=
−

=
+

−
=z .  The p-value = 

( ) ( ) 0003.49.391.3 =−Φ<−Φ , so reject Ho at any reasonable level.  The two survival 
rates appear to differ. 

 
 

85.  

a. We test 0: 210 =− µµH  vs. 0: 21 ≠− µµaH .  Assuming both populations have 

normal distributions, the two-sample t test is appropriate. The approximate degrees of 

freedom 
( )

( ) ( )
4.11

11
0102083.

7
0325125.

042721.
22

2

=
+

=ν , so we use df = 11. 

437.411,0005. =t , so we reject  Ho if  437.4≥t  or  437.4−≤t  The test statistic is 

3.3
042721.

68.
≈=t , which is not 437.4≥ , so we cannot reject Ho.  At significance 

level .001, the data does not indicate a difference in true average insulin-binding capacity 
due to the dosage level. 

 
b. P-value = 2P( t > 3.3) = 2 (.004) = .008 which is > .001. 

 
 

86. 
( ) ( ) ( ) ( )[ ]

4
1111

ˆ
4321

2
44

2
33

2
22

2
112

−+++
−+−+−+−

=
nnnn

SnSnSnSn
σ   

( ) ( ) ( ) ( ) ( )[ ] 2

4321

2
44

2
33

2
22

2
112

4
1111

ˆ σ
σσσσ

σ =
−+++

−+−+−+−
=

nnnn
nnnn

E .  The estimate for 

the given data is 
( ) ( ) ( ) ( )[ ]

409.
50

1225.112601.76561.174096.15
=

+++
=  

 
 



Chapter 9:  Inferences Based on Two Samples 

 292 

87. 00 =∆ , 1021 == σσ , d = 1, 
nn
142.14200

==σ , so 







−Φ=

142.14
645.1

n
β , 

giving =β  .9015, .8264, .0294, and .0000 for n = 25, 100, 2500, and 10,000 respectively.  If 

the si 'µ  referred to true average IQ’s resulting from two different conditions, 121 =− µµ  

would have little practical significance, yet very large sample sizes would yield statistical 
significance in this situation. 

 
 

88. 0: 210 =− µµH  is tested against  0: 21 ≠− µµaH  using the two-sample t test, 

rejecting Ho at level .05 if either 131.215,025. =≥ tt  or if 131.2−≤t .  With 20.11=x , 

68.21 =s , 79.9=y , 21.32 =s , and m = n = 8, sp = 2.96, and t = .95, so Ho is not 
rejected.  In the situation described, the effect of carpeting would be mixed up with any 
effects due to the different types of hospitals, so no separate assessment could be made.  The 
experiment should have been designed so that a separate assessment could be obtained (e.g., a 
randomized block design). 

 
 

89. 210 : ppH =  will be rejected at level α  in favor of 21: ppH a >  if either 

645.105. =≥ zz .  With 10.ˆ
2500
250

1 ==p , 0668.ˆ
2500
167

2 ==p , and 0834.ˆ =p , 

2.4
0079.
0332.

==z , so Ho is rejected .  It appears that a response is more likely for a white 

name than for a black name. 
 
 

90. The computed value of Z is 34.1
4634

4634
−=

+
−

=z .  A lower tailed test would be 

appropriate, so the p-value ( ) 05.0901.34.1 >=−Φ= , so we would not judge the drug to 
be effective. 
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91.  
a. Let 1µ  and 2µ denote the true average weights for operations 1 and 2, respectively.  The 

relevant hypotheses are 0: 210 =− µµH  vs. 0: 21 ≠− µµaH .  The value of the 

test statistic is 
( )

( ) ( )
43.6

318083.7

39.17

30672.3011363.4

39.17

30
96.9

30
97.10

63.141924.1402
22

−=
−

=
+

−
=

+

−
=t .  

The d.f. 
( )

( ) ( )
5.57

29
30672.3

29
011363.4

318083.7
22

2

=
+

=ν , so use df = 57. 000.257,025. ≈t , 

so we can reject Ho at level .05.  The data indicates that there is a significant difference 
between the true mean weights of the packages for the two operations. 

 

b. 1400: 10 =µH  will be tested against 1400: 1 >µaH  using a one-sample t test 

with test statistic  
m

s

x
t

1

1400−
= .  With degrees of freedom = 29, we reject Ho if 

699.129,05. => tt .  The test statistic value is 1.1
00.2
24.2140024.1402

30
97.10

==
−

=t .  

Because 1.1 < 1.699, Ho is not rejected.  True average weight does not appear to exceed 
1400. 

 
 

92. ( )
nm

YXVar 21 λλ
+=−  and X=1̂λ , Y=2λ̂ , 

nm
YnXm

+
+

=λ̂ , giving 

nm

YX
Z

λλ ˆˆ +

−
= .  With 616.1=x  and 557.2=y , z = -5.3 and p-value = 

( )( ) 0006.3.52 <−Φ , so we would certainly reject 210 : λλ =H  in favor of 

21: λλ ≠aH . 

 
 

93. 62.11̂ == xλ , 56.2ˆ
2 == yλ , 77.1

ˆˆ
21 =+

nm
λλ

, and the confidence interval is  

( )( ) ( )59.,29.135.94.77.196.194. −−=±−=±−  
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CHAPTER 10 
 

Section 10.1 
 
1.  

a. Ho will be rejected if 06.315,4,05. =≥ Ff  (since I – 1 = 4, and I ( J – 1 ) = (5)(3) = 15 ).  

The computed value of F is 44.2
2.1094
3.2673

===
MSE
MSTr

f .  Since 2.44 is not 

06.3≥ , Ho is not rejected.  The data does not indicate a difference in the mean tensile 
strengths of the different types of copper wires. 

 

b. 06.315,4,05. =F  and 36.215,4,10. =F , and our computed value of 2.44 is between those 

values, it can be said that .05 < p-value < .10. 
 
 
2.  
 

Type of Box x  s 

1 713.00 46.55 

2 756.93 40.34 

3 698.07 37.20 

4 682.02 39.87 

 
Grand mean = 712.51 

 

( ) ( ) ( )[ 222 51.71207.69851.71293.75651.71200.713
14

6
−+−+−

−
=MSTr

 ( ) ] 0604.223,651.71202.682 2 =−+  

( ) ( ) ( )[ ( ) ] 9188.691,187.3920.3734.4055.46
4
1 2222 =+++=MSE  

678.3
9188.691,1
0604.223,6

===
MSE
MSTr

f  

10.320,3,05. =F  

3.678 > 3.10, so reject Ho.  There is a difference in compression strengths among the four box 
types. 
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3. With =iµ  true average lumen output for brand i bulbs, we wish to test 

3210 : µµµ ==H  versus :aH  at least two si 'µ  are unequal. 

60.295
2

2.591ˆ 2 === BMSTr σ ,  30.227
21

3.4773ˆ 2 === WMSE σ , so 

30.1
30.227
60.295

===
MSE
MSTr

f  For finding the p-value, we need degrees of freedom I – 1 = 

2 and I ( J – 1) = 21. In the 2nd row and 21st column of Table A.9, we see that 
57.230.1 21,2,10. =< F , so the p-value > .10.  Since .10 is not < .05 , we cannot reject Ho.  

There are no differences in the average lumen outputs among the three brands of bulbs. 
 
 

4. ( ) 08.16619.532 === •••• xIJx , so 
( )

95.49
32

08.166
91.911

2

=−=SST .  

( ) ( ) ][ 38.2019.536.6...19.539.48 22 =−++−=SSTr , so 

57.2938.2095.49 =−=SSE .  Then 43.6
28

57.29

3
38.20

==f .  Since 

95.243.6 28,2,05. =≥ F , 43210 : µµµµ ===H  is rejected at level .05.  There are 

differences between at least two average flight times for the four treatments. 
 
 

5. =iµ  true mean modulus of elasticity for grade i (i = 1, 2, 3).  We test  3210 : µµµ ==H  

vs. :aH  at least two si 'µ  are unequal.  Reject Ho if  49.527,2,01. =≥ Ff .  The grand 

mean = 1.5367, 

( ) ( ) ( ) ][ 1143.5367.142.15367.156.15367.163.1
2

10 222 =−+−+−=MSTr

( ) ( ) ( )[ ] 0660.26.24.27.
3
1 222 =++=MSE , 73.1

0660.
1143.

===
MSE
MSTr

f .  Fail to 

reject Ho.  The three grades do not appear to differ. 
 
 
6.  
 

Source Df SS MS F 

Treatments 3 509.112 169.707 10.85 

Error 36 563.134 15.643  

Total 39 1,072.256   

51.430,3,01.36,3,01. =≈ FF .  The comp uted test statistic value of 10.85 exceeds 4.51, so 

reject Ho in favor of Ha:  at least two of the four means differ. 
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7.  

Source Df SS MS F 

Treatments 3 75,081.72 25,027.24 1.70 

Error 16 235,419.04 14,713.69  

Total 19 310,500.76   

The hypotheses are 43210 : µµµµ ===H   vs.  :aH  at least two si 'µ  are unequal. 

46.270.1 16,3,10. =< F , so p-value > .10, and we fail to reject Ho. 

 
 
8. The summary quantities are  5.23321 =•x , 4.25762 =•x , 9.26253 =•x , 

5.28514 =•x , 2.30605 =•x , 5.446,13=••x , so CF = 5,165,953.21, SST = 75,467.58, 

SSTr = 43,992.55, SSE = 31,475.03, 14.998,10
4

55.992,43
==MSTr , 

17.1049
30

03.475,31
==MSE  and  48.10

17.1049
14.998,10

==f .  (These values should be 

displayed in an ANOVA table as requested.) Since 02.448.10 30,4,01. =≥ F , 

543210 : µµµµµ ====H  is rejected.  There are differences in the true average axial 

stiffness for the different plate lengths. 
 
 
9. The summary quantities are  3.341 =•x , 6.392 =•x , 0.333 =•x , 9.414 =•x ,  

8.148=••x , 68.9462 =ΣΣ ijx , so 
( )

56.922
24

8.148 2

==CF , 

12.2456.92268.946 =−=SST , 

( ) ( )
98.856.922

6
9.41...3.34 22

=−
++

=SSTr , 14.1598.812.24 =−=SSE . 

Source Df SS MS F 

Treatments 3 8.98 2.99 3.95 

Error 20 15.14 .757  

Total 23 24.12   

Since 20,3,01.20,3,05. 94.495.310.3 FF =<<= , 05.01. <−< valuep   and Ho is 

rejected at level .05. 
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10.  

a. ( ) ( )
µ

µ
=

Σ
=

Σ
= •

•• II
XE

XE ii . 

 

b. ( ) ( ) ( )[ ] 2
2

22
iiii J

XEXVarXE µ
σ

+=+= ••• . 

 

c. ( ) ( ) ( )[ ] 2
2

22 µ
σ

+=+= •••••• IJ
XEXVarXE . 

 

d. ( ) [ ] 










+
−








+

=−Σ= ∑••• 2

2

2

2
22

µ
σ

µ
σ

IJ
IJ

J
JXIJXJESSTrE

i
i    

( ) ( )222222 1 µµσµσµσ −Σ+−=−−Σ+= ii JIIJJI , so 

( ) ( ) [ ] ( )∑ −
−

+=−Σ=
−

= ••• 11

2
222

I
JXIJXJE

I
SSTrE

MSTrE i
i

µµ
σ . 

 

e. When Ho is true, µµµ === i...1 , so ( ) 02 =−Σ µµ i  and ( ) 2σ=MSTrE .  

When Ho is false,  ( ) 02 >−Σ µµ i , so ( ) 2σ>MSTrE  (on average, MSTr 

overestimates 2σ ). 

 

Section 10.2 
 

11. 37.415,5,05. =Q , 09.36
4

8.272
37.4 ==w . 

3 1 4  2 5 

437.5 462.0 469.3  512.8 532.1 

 
The brands seem to divide into two groups: 1, 3, and 4; and 2 and 5; with no significant 
differences within each group but all between group differences are significant. 
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12.  

3 1 4  2 5 

437.5 462.0 469.3  512.8 532.1 
      

 

Brands 2 and 5 do not differ significantly from one another, but both differ significantly from 
brands 1, 3, and 4.  While brands 3 and 4  do differ significantly, there is not enough evident 
to indicate a significant difference between 1 and 3 or 1 and 4. 

 
 
13.  

3 1 4 2 5 
427.5 462.0 469.3 502.8 532.1 

     
     
     

 
Brand 1 does not differ significantly from 3 or 4, 2 does not differ significantly from 4 or 5, 3 
does not differ significantly from1, 4 does not differ significantly from 1 or  2, 5 does not 
differ significantly from 2, but all other differences (e.g., 1 with 2 and 5, 2 with 3, etc.) do 
appear to be significant. 

 

14. I = 4, J = 8, so 87.328,4,05. ≈Q , 41.1
8
06.1

87.3 ==w . 

 

1 2 3 4 

4.39 4.52 5.49 6.36 

    
 

Treatment 4 appears to differ significantly from both 1 and 2, but there are no other 
significant differences. 

 

15. 75.436,4,01. =Q , 94.5
10

64.15
75.4 ==w . 

2 1 3 4 

24.69 26.08 29.95 33.84 
    

Treatment 4 appears to differ significantly from both 1 and 2, but there are no other 
significant differences. 
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16.  
a. Since the largest standard deviation (s4  = 44.51) is only slightly more than twice the 

smallest (s3 = 20.83) it is plausible that the  population variances are equal (see text p. 
406). 

 

b. The relevant hypotheses are 543210 : µµµµµ ====H  vs. :aH at least two 

si 'µ  differ.  With the given f of 10.48 and associated p-value of 0.000, we can reject Ho 

and conclude that there is a difference in axial stiffness for the different plate lengths. 
 
c.  

4 6 8 10 12 

333.21 368.06 375.13 407.36 437.17 
     
     

There is no significant difference in the axial stiffness for lengths 4, 6, and 8, and for 
lengths 6, 8, and 10, yet 4 and 10 differ significantly.  Length 12 differs from 4, 6, and 8, 
but does not differ from 10. 

 
 

17. iic µθ Σ=  where 5.21 == cc  and 13 −=c , so 396.5.5.ˆ
321 −=−+= ••• xxxθ  and 

50.12 =Σ ic .  With 447.26,025. =t  and MSE = .03106, the CI is (from 10.5 on page 418) 

( ) ( )( ) ( )091.,701.305.396.
3

50.103106.
447.2396. −−=±−=±− . 

 
 
18.  

a. Let =iµ  true average growth when hormone # i is applied. 510 ...: µµ ==H  will be 

rejected in favor of :aH at least two si 'µ  differ if 06.315,4,05. =≥ Ff .  With 

( )
20.3864

20
278 22

==••

IJ
x

 and 42802 =ΣΣ ijx , SST = 415.80. 

( ) ( ) ( ) ( ) ( )
50.4064

4
4046707151 222222

=
++++

=
Σ •

J
xi , so SSTr = 4064.50 – 

3864.20 = 200.3, and SSE = 415.80 – 200.30 = 215.50.  Thus 

075.50
4

3.200
==MSTr , 3667.14

15
5.215

==MSE , and 

49.3
3667.14
075.50

==f .  Because 06.349.3 ≥ , reject Ho.  There appears to be a 

difference in the average growth with the application of the different growth hormones. 
 



Chapter 10:  The Analysis of Variance 

 301 

b. 37.415,5,05. =Q , 28.8
4
3667.14

37.4 ==w .  The sample means are, in increasing 

order, 10.00, 11.50, 12.75, 17.50, and 17.75.  The most extreme difference is 17.75 – 
10.00 = 7.75 which doesn’t exceed 8.28, so no differences are judged significant.  
Tukey’s method and the F test are at odds. 

 
 

19. MSTr = 140, error d.f. = 12, so 
SSESSE

f
1680

12/
140

==  and 89.312,2,05. =F .  

SSE
SSE

J
MSE

Qw 4867.
60

77.312,3,05. === .  Thus we wish 89.3
1680

>
SSE

 

(significance of f) and 104867. >SSE  ( = 20 – 10, the difference between the extreme 

sx i '•  - so no significant differences are identified).  These become SSE>88.431  and 

16.422>SSE , so SSE = 425 will work. 
 
 

20. Now MSTr = 125, so 
SSE

f
1500

= , SSEw 4867.=  as before, and the inequalities 

become SSE>60.385  and 16.422>SSE .  Clearly no value of SSE can satisfy both 
inequalities. 

 
 
21.  

a. Grand mean = 222.167, MSTr = 38,015.1333, MSE = 1,681.8333, and f = 22.6.  The 
hypotheses are 610 ...: µµ ==H  vs.  :aH at least two si 'µ  differ . Reject Ho if 

78,5,01.Ff ≥  ( but since there is no table value for 782 =ν , use 

34.360,5,01. =≥ Ff )  With 34.36.22 ≥ , we reject Ho.  The data indicates there is a 

dependence on injection regimen. 
 

b. Assume 645.278,005. ≈t  

i) Confidence interval for ( )654325
1

1 µµµµµµ ++++− : 

( )
( )

J
cMSE

txc i
JIii

2

1,2/

Σ
±Σ −α    

( ) ( ) ( )64.35,16.99
14

2.18333.681,1
645.24.67 −−=±−= . 

ii) Confidence interval for ( ) 654324
1 µµµµµ −+++ :  

( ) ( ) ( )16.94,34.29
14

25.18333.681,1
645.275.61 =±=  

 
 



Chapter 10:  The Analysis of Variance 

 302 

Section 10.3 
 
22. Summary quantities are  4.2911 =•x , 6.2212 =•x , 4.2033 =•x , 5.2274 =•x ,  

9.943=••x , 07.497,49=CF , 07.078,502 =ΣΣ ijx , from which  581=SST , 

( ) ( ) ( ) ( )
07.497,49

5
5.227

4
4.203

4
6.221

5
4.291 2222

−+++=SSTr

50.45607.497,4957.953,49 =−= , and 50.124=SSE .  Thus 

17.152
3

50.456
==MSTr , 89.8

418
50.124

=
−

=MSE , and f = 17.12.  Because 

34.312.17 14,3,05. =≥ F , 410 ...: µµ ==H  is rejected at level .05.  There is a difference 

in yield of tomatoes for the four different levels of salinity. 
 
 
23. J1 = 5, J2 = 4, J3 = 4, J4 = 5, 28.581 =•x , 40.552 =•x , 85.503 =•x , 50.454 =•x , 

MSE = 8.89.  With 









+=










+⋅=

jiji
ij JJJJ

MSE
QW

11
2
89.8

11.4
11

214,4,05. , 

( ) ( )81.588.21221 ±=±− •• Wxx ; ( ) ( )81.543.71331 ±=±− •• Wxx *; 

( ) ( )48.578.121441 ±=±− •• Wxx *; ( ) ( )13.655.42332 ±=±− •• Wxx ; 

( ) ( )81.590.92442 ±=±− •• Wxx *; ( ) ( )81.535.53443 ±=±− •• Wxx ;       

*Indicates an interval that doesn’t include zero, corresponding to s'µ that are judged 
significantly different. 

 
4 3 2 1 

    
    

This underscoring pattern does not have a very straightforward interpretation. 
 
24.  

Source Df SS MS F 

Groups 3-1=2 152.18 76.09 5.56 

Error 74-3=71 970.96 13.68  

Total 74-1=73 1123.14   

Since 94.456.5 71,2,01. ≈≥ F , reject 3210 : µµµ ==H  at level .01. 
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25.  
a. The distributions of the polyunsaturated fat percentages for each of the four regimens 

must be normal with equal variances. 
 

b. We have all the sX i '. , and we need the grand mean: 

( ) ( ) ( ) ( )
017.43

52
9.2236

52
5.43141.43174.42130.438

.. ==
+++

=X  

( ) ( ) ( )222
... 017.434.4213017.430.438 −+−=−= ∑ xxJSSTr ii

( ) ( ) 334.8017.435.4313017.431.4317 22 =−+−+  

and 778.2
3
334.8

==MSTr        

( ) ( ) ( ) ( ) ( ) 79.772.1132.1163.1125.171 22222 =+++=−= ∑ sJSSTr i  and 

621.1
48

79.77
==MSE .  Then 714.1

621.1
778.2

===
MSE
MSTr

f   Since 

20.2714.1 50,3,10. =< F , we can say that the p-value is > .10.  We do not reject the 

null hypothesis at significance level .10 (or any smaller), so we conclude that the data 
suggests no difference in the percentages for the different regimens. 

 
 
26.  

a.  
i: 1 2 3 4 5 6  

JI: 4 5 4 4 5 4  

•ix : 56.4 64.0 55.3 52.4 85.7 72.4 2.386=••x  

•ix : 14.10 12.80 13.83 13.10 17.14 18.10 20.58502 =ΣΣ jx  

Thus SST = 113.64, SSTr = 108.19, SSE = 5.45, MSTr = 21.64, MSE = .273,  f = 79.3.  

Since 10.43.79 20,5,01. =≥ F , 610 ...: µµ ==H  is rejected.   

 
b. The modified Tukey intervals are as follows:  (The first number is •• − ji xx  and the 

second is  









+⋅=

ji
ij JJ

MSE
QW

11
201. .) 

Pair Interval Pair Interval Pair Interval 

1,2 37.130.1 ±  2,3 37.103.1 ±−  3,5 *37.131.3 ±−  

1,3 44.127. ±  2,4 37.130. ±−  3,6 *44.127.4 ±−  

1,4 44.100.1 ±  2,5 *29.134.4 ±−  4,5 *37.104.4 ±−  

1,5 *37.104.3 ±−  2,6 *37.130.5 ±−  4,6 *44.100.5 ±−  

1,6 *44.100.4 ±−  3,4 44.137. ±  5,6 37.196. ±−  
Asterisks identify pairs of means that are judged significantly different from one another. 
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c. The 99% t confidence interval is ( )
( )
i

i
JIii J

cMSE
txc

2

1,005.

Σ
±Σ −• .  

16.41214 62
1

5434
1

24
1

14
1 −=−−+++=Σ ••••••• xxxxxxxc ii , 

( )
1719.

2

=
Σ

i

i

J
c

, 

MSE = .273, 845.220,005. =t .  The resulting interval is 

( ) ( )( ) ( )54.3,78.462.16.41719.273.845.216.4 −−=±−=±− .  The interval 
in the answer section is a Scheffe’ interval, and is substantially wider than the t interval. 

 

27.  

a. Let =iµ  true average folacin content for specimens of brand I.  The hypotheses to be 

tested are 43210 : µµµµ ===H  vs.  :aH at least two si 'µ  differ . 

88.12462 =ΣΣ ijx  and 
( )

61.1181
24

4.168 22

==••

n
x

, so SST = 65.27. 

( ) ( ) ( ) ( )
10.1205

6
9.34

6
1.38

5
5.37

7
9.57 22222

=+++=
Σ •

i

i

J
x

, so 

49.2361.118110.1205 =−=SSTr . 

 
Source Df SS MS F 
Treatments 3 23.49 7.83 3.75 
Error 20 41.78 2.09  
Total 23 65.27   

With numerator df = 3 and denominator = 20, 
94.475.310.3 20,3,01.20,3,05. =<<= FF , so 05.01. <−< valuep , and since the 

p-value < .05, we reject Ho.  At least one of the pairs of brands of green tea has different 
average folacin content. 
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b. With =•ix 8.27, 7.50, 6.35, and 5.82 for I = 1, 2, 3, 4, we calculate the residuals 

•− iij xx  for all observations.  A normal probability plot appears below, and indicates 

that the distribution of residuals could be normal, so the normality assumption is 
plausible. 

210-1-2

2

1

0

-1

-2

prob

re
si

ds

Normal Probability Plot for ANOVA Residuals

 
 

c. 96.320,4,05. =Q  and 









+⋅=

ji
ij JJ

W
11

2
09.2

96.3 , so the Modified Tukey 

intervals are: 

Pair Interval Pair Interval 

1,2 37.277. ±  2,3 45.215.1 ±  

1,3 25.292.1 ±  2,4 45.268.1 ±  

1,4 25.245.2 ± * 3,4 34.253. ±  

 

4 3 2 1  

     
Only Brands 1 and 4 are different from each other. 
 
 

28. ( ){ } ( ) i
i

ii
i

ii
i

ii
i

i
ji

JXXJXXJXXJXXSSTr Σ+Σ−Σ=−Σ=−ΣΣ= ••••••••••••
2222

2
2222222 22 ••••••••••••••• −Σ=+−Σ=+−Σ= XnXJXnXnXJXnXXXJ iiiiiiiii

. 
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29. ( ) ( ) ( ) ( )2222
•••••• −Σ=−Σ= XnEXEJXnXJESSTrE iiiii

 

( ) ( )( )[ ] ( ) ( )( )[ ]22
•••••• +−+Σ= XEXVarnXEXVarJ iii  

( )










 Σ
+−








+Σ=

n
J

n
n

J
J ii

i
i

i

22
2

2 µσ
µ

σ
 

( ) ( ) ( )[ ]2221 iiii JJI αµαµσ +Σ−+Σ+−=  

( ) [ ]2222 21 iiiiii JJJJI Σ−Σ+Σ+Σ+−= µααµµσ   ( ) 221 iiJI ασ Σ+−= , from 

which E(MSTr) is obtained through division by ( )1−I . 
 
 
30.  

a. 021 == αα , 13 −=α , 14 =α , so 
( )( )

,4
1

11002 2222
2 =

+−++
=Φ  ,2=Φ  

and from figure (10.5), power 90.≈ . 
 

b. J5.2 =Φ , so J707.=Φ  and ( )142 −= Jν .  By inspection of figure (10.5), J = 
9 looks to be sufficient. 

 

c. 1, 154321 +==== µµµµµµ , so 5
1

1 += µµ , 5
1

4321 −==== αααα , 

5
4

4 =α , 
( )

60.1
1

2 25
20

2 ==Φ 26.1=Φ , 41 =ν , 452 =ν .  By inspection 

of figure (10.6), power 55.≈ . 
 
 

31. With 1=σ  (any other σ  would yield the same Φ ), 11 −=α ,  032 == αα , 14 =α ,  

( ) ( ) ( ) ( )( )
5.2

1
1505051525. 2222

2 =
+++−

=Φ , 58.1=Φ , 31 =ν , 142 =ν , and 

power 62.≈ . 
 
 

32. With Poisson data, the ANOVA should be done using ijij xy = .  This gives 

43.151 =•y , 15.172 =•y , 12.193 =•y , 01.204 =•y , 71.71=••y , 

79.2632 =ΣΣ ijy , CF = 257.12, SST = 6.67, SSTr = 2.52, SSE = 4.15, MSTr = .84, MSE = 

.26, f = 3.23.  Since 29.516,3,01. =F , Ho cannot be rejected.  The expected number of flaws 

per reel does not seem to depend upon the brand of tape. 
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33. ( )unu
n
x

xxg −=





 −= 11)(  where 

n
x

u = , so ( )[ ]∫ −−= duuuxh 2/11)( .  From a 

table of integrals, this gives ( ) 







==

n
x

uxh arcsinarcsin)(  as the appropriate 

transformation. 
 
 

34. ( ) 22222
2

2

11
1

AAA J
I

Jn
n

IJ
n

I
MSTrE σσσσσσ +=

−
−

+=







−

−
+=  

 
 
 

Supplementary Exercises 
 
35.  

a. 43210 : µµµµ ===H  vs.  :aH at least two si 'µ  differ ; 3.68 is not 

94.420,3,01. =≥ F , thus fail to reject Ho.  The means do not appear to differ. 

 
b. We reject Ho when the p-value  < alpha.  Since .029 is not < .01, we still fail to reject Ho. 

 
 
36.  

a. 510 ...: µµ ==H  will be rejected in favor of  :aH at least two si 'µ  differ if 

61.240,4,05. =≥ Ff .  With 82.30=••x , straightforward calculation yields 

278.55
4
112.221

==MSTr , 1098.16
5
4591.80

==MSE , and 

43.3
1098.16
278.55

==f .  Because 61.243.3 ≥ , Ho is rejected.  There is a difference 

among the five teaching methods with respect to true mean exam score. 
 
b. The format of this test is identical to that of part a.  The calculated test statistic is 

65.1
109.20
12.33

==f .  Since 61.265.1 < , Ho is not rejected.  The data suggests that 

with respect to true average retention scores, the five methods are not different from one 
another. 
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37. Let =iµ  true average amount of motor vibration for each of five bearing brands.  Then the 

hypotheses are 510 ...: µµ ==H  vs.  :aH at least two si 'µ  differ.  The ANOVA table 

follows: 
Source Df SS MS F 
Treatments 4 30.855 7.714 8.44 
Error 25 22.838 0.914  
Total 29 53.694   

49.644.8 25,4,001. => F , so p-value < .001, which is also < .05, so we reject Ho.  At least 

two of the means differ from one another.  The Tukey multiple comparison is appropriate. 
15.425,5,05. =Q  (from Minitab output.  Using Table A.10, approximate with 

17.424,5,05. =Q ).  620.16/914.15.4 ==ijW . 

 

Pair •• − ji xx  Pair •• − ji xx  

1,2 -2.267* 2,4 1.217 

1,3 0.016 2,5 2.867* 

1,4 -1.050 3,4 -1.066 

1,5 0.600 3,5 0.584 

2,3 2.283* 4,5 1.650* 

*Indicates significant pairs. 
 

5 3 1 4 2 
     
     

 
 
38. 48.151 =•x , 78.152 =•x , 78.123 =•x , 46.144 =•x , 94.145 =•x  44.73=••x , so 

,78.179=CF  SST = 3.62, SSTr = 180.71 – 179.78 = .93, SSE = 3.62 - .93 = 2.69. 

 
Source Df SS MS F 
Treatments 4 .93 .233 2.16 
Error 25 2.69 .108  
Total 29 3.62   

 
76.225,4,05. =F .  Since 2.16 is not 76.2≥ , do not reject Ho at level .05. 
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39. 165.
4

49.241.213.263.2
58.2ˆ =

+++
−=θ , 060.225,025. =t , MSE = .108, and 

( ) ( ) ( ) ( ) ( ) 25.125.25.25.25.1 222222 =−+−+−+−+=Σ ic , so a 95% confidence 

interval for θ  is 
( )( ) ( )474,.144.309.165.

6
25.1108.

060.2165. −=±=± .  This 

interval does include zero, so 0 is a plausible value for θ . 
 
 
40. σµµµµµµ −==== 154321 , , so σµµ 5

2
1 −= , σααα 5

2
321 === , 

σαα 5
3

54 −== .  Then  ∑=Φ 2

2
2

σ
α i

I
J

 

( ) ( )
632.1

23
5
6

2

2
5
3

2

2
5
2

=










 −
+=

σ
σ

σ
σ

 and 28.1=Φ , 41 =ν , 252 =ν .  By 

inspection of figure (10.6), power 48.≈ , so 52.≈β . 
 
 

41. This is a random effects situation. 0: 2
0 =AH σ  states that variation in laboratories doesn’t 

contribute to variation in percentage.  Ho will be rejected in favor of Ha if 
07.48,3,05. =≥ Ff .  SST = 86,078.9897 – 86,077.2224 = 1.7673, SSTr = 1.0559, and SSE 

= .7114.  Thus 96.3
8

7114.

3
0559.1

==f , which is not 07.4≥ , so Ho cannot be rejected at level 

.05.  Variation in laboratories does not appear to be present. 
 
 
42.  

a. =iµ  true average CFF for the three iris colors.  Then the hypotheses are 

3210 : µµµ ==H  vs.  :aH at least two si 'µ  differ.  SST = 13,659.67 – 13,598.36 

= 61.31, 
( ) ( ) ( )

00.2336.598,13
6

0.169
5

6.134
8

7.204 222

=−







++=SSTR  The 

ANOVA table follows: 
 

Source Df SS MS F 
Treatments 2 23.00 11.50 4.803 
Error 16 38.31 2.39  
Total 18 61.31   

 
Because 23.6803.463.3 16,2,01.16,2,05. =<<= FF ,  .01 < p-value < .05, so we reject 

Ho.  There are differences in CFF based on iris color. 
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b. 65.316,3,05. =Q  and 









+⋅=

ji
ij JJ

W
11

2
39.2

65.3 , so the Modified Tukey 

intervals are: 

Pair ( ) ijji Wxx ±− ••  

1,2 27.233.1 ±−  

1,3 15.258.2 ±− * 

2,3 42.225.1 ±−  
 

Brown Green Blue 
25.59 26.92 28.17 

   
 
The CFF is only significantly different for Brown and Blue iris color. 

 
 

43. ( )( )( ) ( )( )( ) 166.463.339.221 ,1,05. ==− −− InIFMSEI .  For 21 µµ − , c1 = 1, c2 = -

1, and c3 = 0, so 570.
5
1

8
12

=+=∑
i

i

J
c

.  Similarly, for 31 µµ − , 

540.
6
1

8
12

=+=∑
i

i

J
c

; for 32 µµ − , 606.
6
1

5
12

=+=∑
i

i

J
c

, and for 

322 5.5. µµµ −+ , 
( )

498.
6
1

5
5.

8
5. 2222

=
−

++=∑
i

i

J
c

. 

 
Contrast Estimate Interval 

21 µµ −  25.59 – 26.92 = -1.33 ( ) ( )( ) ( )04.1,70.3166.4570.33.1 −=±−  

31 µµ −  25.59 – 28.17 = -2.58 ( ) ( )( ) ( )33.,83.4166.4540.58.2 −−=±−  

32 µµ −  26.92 – 28.17 = -1.25 ( ) ( )( ) ( )27.1,77.3166.4606.25.1 −=±−  

322 5.5. µµµ −+  -1.92 ( ) ( )( ) ( )15.0,99.3166.4498.92.1 −=±−  

 
 The contrast between 1µ  and 3µ  since the calculated interval is the only one that does not 

contain the value (0). 
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44.  
Source Df SS MS F F.05 

Treatments 3 24,937.63 8312.54 1117.8 4.07 
Error 8 59.49 7.44   
Total 11 24,997.12    

 
Because 07.48.1117 ≥ , 43210 : µµµµ ===H  is rejected.  53.48,4,05. =Q , so 

13.7
3
44.7

53.4 ==w .  The four sample means are 92.294 =•x , 96.331 =•x , 

84.1153 =•x ,  and 30.1292 =•x .  Only 13.741 <− •• xx , so all means are judged 

significantly different from one another except for 4µ  and 1µ  (corresponding to  PCM and 
OCM). 

 
 

45. ( )•••• −=− XXcYY ijij  and ( )•••••• −=− XXcYY ii , so each sum of squares 

involving Y will be the corresponding sum of squares involving X multiplied by c2.  Since F 
is a ratio of two sums of squares, c2 appears in both the numerator and denominator so 
cancels, and F computed from Yij’s = F computed from Xij’s. 

 
 
46. The ordered residuals are –6.67, -5.67, -4, -2.67, -1, -1, 0, 0, 0, .33, .33, .33, 1, 1, 2.33, 4, 5.33, 

6.33.  The corresponding z percentiles are –1.91, -1.38, -1.09, -.86, -.67, -.51, -.36, -.21, -.07, 
.07, .21, .36, .51, .67, .86, 1.09, 1.38, and 1.91.  The resulting plot of the respective pairs (the 
Normal Probability Plot) is reasonably straight, and thus there is no reason to doubt the 
normality assumption. 
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CHAPTER 11 
 

Section 11.1 
 
1.  

a. 65.7
4

6.30
==MSA , 93.4

12
2.59

==MSE , 55.1
93.4
65.7

==Af .  Since 55.1  is 

not 26.312,4,05. =≥ F , don’t reject HoA. There is no difference in true average tire 

lifetime due to different makes of cars. 
 

b. 70.14
3

1.44
==MSB ,  98.2

93.4
70.14

==Bf .  Since 98.2  is not 

49.312,3,05. =≥ F , don’t reject HoB. There is no difference in true average tire lifetime 

due to different brands of tires. 
 
 
2.  

a. 1631 =•x , 1522 =•x , 1423 =•x , 1464 =•x , 2151 =•x , 1882 =•x , 

2003 =•x , 603=••x , 599,302 =ΣΣ ijx , 
( )

75.300,30
12

603 2

==CF , so SST = 

298.25, ( ) ( ) ( ) ( )[ ] 58.8375.300,30146142152163 2222
3
1 =−+++=SSA , 

,50.9175.300,3025.392,30 =−=SSB
17.12350.9158.8325.298 =−−=SSE .  

 
Source Df SS MS F 

A 3 83.58 27.86 1.36 

B 2 91.50 45.75 2.23 

Error 6 123.17 20.53  

Total 11 298.25   
 

76.46,3,05. =F , 14.56,2,05. =F .  Since neither f is greater than the appropriate critical 

value, neither HoA nor HoB  is rejected. 
 

b. 25.50ˆ == ••xµ , 08.4ˆ 11 =−= ••• xxα , 42.ˆ 2 =α , 92.2ˆ 3 −=α , 58.1ˆ 4 −=α , 

50.3ˆ
11 =−= ••• xxβ , 25.3ˆ

2 −=β , 25.ˆ
3 −=β . 
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3. 9271 =•x , 13012 =•x , 17643 =•x , 24534 =•x , 13471 =•x , 15292 =•x , 

16773 =•x , 18924 =•x , 6445=••x , 375,969,22 =ΣΣ ijx , 

( )
56.126,596,2

16
6445 2

==CF , 2.082,324=SSA , ,2.934,39=SSB  

4.248,373=SST ,  0.9232=SSE  
a.  

Source Df SS MS F 

A 3 324,082.2 108,027.4 105.3 

B 3 39,934.2 13,311.4 13.0 

Error 9 9232.0 1025.8  

Total 15 373,248.4   

Since 99.69,3,01. =F , both HoA and HoB  are rejected. 

 

b. 96.59,4,01. =Q , 4.95
4

8.1025
96.5 ==w  

i: 1 2 3 4 

:•ix  231.75 325.25 441.00 613.25 
 
All levels of Factor A (gas rate) differ significantly except for 1 and 2 

 
c. 4.95=w , as in b 

i: 1 2 3 4 

:jx•  336.75 382.25 419.25 473 

     
 

Only levels 1 and 4 appear to differ significantly. 
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4.  
a. After subtracting 400, 1511 =•x , 1372 =•x , 1253 =•x , 1244 =•x , 

1831 =•x , 1692 =•x , 1853 =•x ,  537=••x ,  98.159=SSA , ,00.38=SSB  

25.238=SST ,  67.40=SSE . 
Source Df SS MS f F.05 

A 3 159.58 53.19 7.85 4.76 

B 2 38.00 19.00 2.80 5.14 

Error 6 40.67 6.78   
Total 11 238.25    

 
b. Since 76.485.7 ≥ , reject HoA: 04321 ==== αααα :  The amount of coverage 

depends on the paint brand. 
 
c. Since 2.80 is not 14.5≥ , do not reject HoA: 0321 === βββ .  The amount of 

coverage does not depend on the roller  brand. 
 
d. Because HoB was not rejected. Tukey’s method is used only to identify differences in 

levels of factor A (brands of paint). 90.46,4,05. =Q , w = 7.37. 

i: 4 3 2 1 

:•ix  41.3 41.7 45.7 50.3 

     
Brand 1 differs significantly from all other brands. 

 
 
5.  

Source Df SS MS f 

Angle 3 58.16 19.3867 2.5565 

Connector 4 246.97 61.7425 8.1419 

Error 12 91.00 7.5833  
Total 19 396.13   

 
0: 43210 ==== ααααH ;   :aH at least one iα  is not zero. 

95.55565.2 12,3,01. =<= Ff A , so fail to reject Ho.  The data fails to indicate any effect 

due to the angle of pull. 
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6.  

a. 85.5
2

7.11
==MSA , 20.3

8
6.25

==MSE , 83.1
20.3
85.5

==f , which is not 

significant at level .05. 
 
b. Otherwise extraneous variation associated with houses would tend to interfere with our 

ability to assess assessor effects.  If there really was a difference between assessors, 
house variation might have hidden such a difference.  Alternatively, an observed 
difference between assessors might have been due just to variation among houses and the 
manner in which assessors were allocated to homes. 

 
 
7.  

a. CF = 140,454, SST = 3476, 

( ) ( ) ( )
78.28454,140

18
936913905 222

=−
++

=SSTr , 

67.2977454,140
3
295,430

=−=SSBl , SSE = 469.55, MSTr = 14.39, MSE = 

13.81, 04.1=Trf , which is clearly insignificant when compared to 51,2,05.F . 

 

b. 68.12=Blf , which is significant, and suggests substantial variation among subjects.  If 

we had not controlled for such variation, it might have affected the analysis and 
conclusions. 

 
 
8.  

a. 34.41 =•x , 43.42 =•x , 53.83 =•x ,  30.17=••x , 8217.3=SST , 

1458.1=SSTr , 9872.9763.9
3
8906.32

=−=SSBl ,  6887.1=SSE , 

5729.=MSTr , 0938.=MSE , f = 6.1.  Since 55.31.6 18,2,05. =≥ F , HoA is 

rejected; there appears to be a difference between anesthetics. 
 

b. 61.318,3,05. =Q , w = .35. 434.1 =•x , 443.2 =•x , 853.3 =•x , so both anesthetic 1 

and anesthetic 2 appear to be different from anesthetic 3 but not from one another. 
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9.  
Source Df SS MS f 

Treatment 3 81.1944 27.0648 22.36 

Block 8 66.5000 8.3125 6.87 

Error 24 29.0556 1.2106  

Total 35 176.7500   

01.324,3,05. =F .  Reject Ho.  There is an effect due to treatments. 

90.324,4,05. =Q ; ( ) 43.1
9

2106.1
90.3 ==w  

 
1 4 3 2 

8.56 9.22 10.78 12.44 
 
 
10.  

Source Df SS MS f 

Method 2 23.23 11.61 8.69 

Batch 9 86.79 9.64 7.22 

Error 18 24.04 1.34  

Total 29 134.07   
 

39.1069.801.6 18,2,001.18,2,01. =<<= FF , so .001 < p-value < .01, which is significant.  

At least two of the curing methods produce differing average compressive strengths. (With p-
value < .001, there are differences between batches as well.)    

61.318,3,05. =Q ; ( ) 32.1
10
34.1

61.3 ==w  

Method A Method B Method C 

29.49 31.31 31.40 
 

Methods B and C produce strengths that are not significantly different, but Method A produces 
strengths that are different (less) than those of both B and C. 
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11. The residual, percentile pairs are (-0.1225, -1.73), (-0.0992, -1.15), (-0.0825,   -0.81), (-
0.0758, -0.55), (-0.0750, -0.32), (0.0117, -0.10), (0.0283, 0.10), (0.0350, 0.32), (0.0642, 0.55), 
(0.0708, 0.81), (0.0875, 1.15), (0.1575, 1.73). 

210-1-2

0.1

0.0

-0.1

z-percentile

re
si

du
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s

Normal Probability Plot

 

The pattern is sufficiently linear, so normality is plausible. 
 
 

12. 38.28
4

5.113
==MSB , 20.3

8
6.25

==MSE , 87.8=Bf , 01.78,4,01. =F , and since 

01.787.8 ≥ , we reject Ho and conclude that 02 >Bσ . 
 
 

13.  

a. With dXY ijij += , dXY ii += •• , dXY jj += •• , dXY += •••• , so all 

quantities inside the parentheses in (11.5) remain unchanged when the Y quantities are 

substituted for the corresponding X’s (e.g., •••••• −=− XXYY ii , etc.). 

 
b. With ijij cXY = , each sum of squares for Y is the corresponding SS for X multiplied by 

c2.  However, when F ratios are formed the c2 factors cancel, so all F ratios computed 

from Y are identical to those computed from X.  If dcXY ijij += , the conclusions 

reached from using the Y’s will be identical to those reached using the X’s. 
 
 

14. ( ) ( ) ( ) 




 ΣΣ−





Σ=−=− •••••• ijjiijjii XE

IJ
XE

J
XEXEXXE

11
 

( ) ( )jijijij IJJ
βαµβαµ ++ΣΣ−++Σ=

11

ijjiijji JIJ
αβαµβαµ =Σ−Σ−−Σ++=

111
, as desired. 
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15.  

a. ,242 =Σ iα  so 125.1
16
24

4
32 =














=Φ , 06.1=Φ , ,31 =ν  ,62 =ν  and from 

figure 10.5, power 2.≈ .  For the second alternative, 59.1=Φ , and power 43.≈ . 
 

b. 00.1
16
20

5
41

2

2
2 =














=






=Φ ∑σ

β j

J
, so 00.1=Φ , ,41 =ν  ,122 =ν  and 

power 3.≈ . 
 

 

Section 11.2 
 
16.  

a.  
Source Df SS MS f 

A 2 30,763.0 15,381.50 3.79 

B 3 34,185.6 11,395.20 2.81 

AB 6 43,581.2 7263.53 1.79 

Error 24 97,436.8 4059.87  

Total 35 205,966.6   
 

b. 79.1=ABf  which is not 51.224,6,05. =≥ F , so HoAB cannot be rejected, and we 

conclude that no interaction is present. 
 
c. 79.3=Af  which is 40.324,2,05. =≥ F , so HoA is rejected at level .05. 

 
d. 81.2=Bf  which is not 01.324,3,05. =≥ F , so HoB   is not rejected. 

 

e. 53.324,3,05. =Q , 93.64
12

87.4059
53.3 ==w . 

3 1 2 

3960.02 4010.88 4029.10 
   

Only times 2 and 3 yield significantly different strengths. 
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17.  
a.  

Source Df SS MS f F.05 

Sand 2 705 352.5 3.76 4.26 
Fiber 2 1,278 639.0 6.82* 4.26 

Sand&Fiber 4 279 69.75 0.74 3.63 
Error 9 843 93.67   
Total 17 3,105    

There appears to be an effect due to carbon fiber addition. 
 

b.  
Source Df SS MS f F.05 

Sand 2 106.78 53.39 6.54* 4.26 
Fiber 2 87.11 43.56 5.33* 4.26 

Sand&Fiber 4 8.89 2.22 .27 3.63 
Error 9 73.50 8.17   
Total 17 276.28    

There appears to be an effect due to both sand and carbon fiber addition to casting 
hardness. 

 
c.  

Sand%  0 15 30 0 15 30 0 15 30 
Fiber%  0 0 0 0.25 0.25 0.25 0.5 0.5 0.5 
x  62 68 69.5 69 71.5 73 68 71.5 74 

 
The plot below indicates some effect due to sand and fiber addition with no significant 
interaction.  This agrees with the statistical analysis in part b 

0.00   
0.25   
0.50   

0 10 20 30

65

70

75

Sand%

m
ea

n
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18.  
Source Df SS MS f F.05 F.01 

Formulation 1 2,253.44 2,253.44 376.2** 4.75 9.33 
Speed 2 230.81 115.41 19.27** 3.89 6.93 

Formulation & 
Speed 2 18.58 9.29 1.55 3.89 6.93 

Error 12 71.87 5.99    
Total 17 2,574.7     

       
a. There appears to be no interaction between the two factors. 
 
b. Both formulation and speed appear to have a highly statistically significant effect on 

yield. 
 
c. Let formulation = Factor A and speed = Factor B. 

For Factor A: 03.1871 =•µ  66.1642 =•µ  

For Factor B: 83.1771 =•µ  82.1702 =•µ  88.1783 =•µ  

For Interaction: 47.18911 =µ  6.18012 =µ  03.19113 =µ  

 2.16621 =µ  03.16122 =µ  73.16633 =µ  

overall mean: 84.175=µ  

µµα −= •ii : 19.111 =α  18.112 −=α  

µµβ −= • jj : 99.11 =β  02.52 −=β  04.33 =β  

( )jiijijy βαµµ ++−= : 

   45.11 =y  41.112 −=y  96.13 =y  

   45.21 −=y  39.122 =y  97.23 −=y  

 
d.  
 

Observed Fitted Residual Observed Fitted Residual 
189.7 189.47 0.23 161.7 161.03 0.67 
188.6 189.47 -0.87 159.8 161.03 -1.23 
190.1 189.47 0.63 161.6 161.03 0.57 
165.1 166.2 -1.1 189.0 191.03 -2.03 
165.9 166.2 -0.3 193.0 191.03 1.97 
167.6 166.2 1.4 191.1 191.03 0.07 
185.1 180.6 4.5 163.3 166.73 -3.43 
179.4 180.6 -1.2 166.6 166.73 -0.13 
177.3 180.6 -3.3 170.3 166.73 3.57 
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e.  
i  Residual Percentile z-percentile 

1 -3.43 2.778 -1.91 
2 -3.30 8.333 -1.38 
3 -2.03 13.889 -1.09 
4 -1.23 19.444 -0.86 
5 -1.20 25.000 -0.67 
6 -1.10 30.556 -0.51 
7 -0.87 36.111 -0.36 
8 -0.30 41.667 -0.21 
9 -0.13 47.222 -0.07 
10 0.07 52.778 0.07 
11 0.23 58.333 0.21 
12 0.57 63.889 0.36 
13 0.63 69.444 0.51 
14 0.67 75.000 0.67 
15 1.40 80.556 0.86 
16 1.97 86.111 1.09 
17 3.57 91.667 1.38 
18 4.50 97.222 1.91 

 

 
The residuals appear to be normally distributed. 
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19.  
a.  

   j   

 •ijx  1 2 3 ••ix  

 1 16.44 17.27 16.10 49.81 

i 2 16.24 17.00 15.91 49.15 

 3 16.80 17.37 16.20 50.37 

 •• jx  49.48 51.64 48.21 33.149=•••x  

         CF = 1238.8583 
Thus SST = 1240.1525 – 1238.8583 = 1.2942, 

1530.
2
9991.2479

1525.1240 =−=SSE , 

( ) ( ) ( )
1243.8583.1238

6
37.5015.4981.49 222

=−
++

=SSA , 0024.1=SSB  

 
Source Df SS MS f F.01 

A 2 .1243 .0622 3.66 8.02 

B 2 1.0024 .5012 29.48* 8.02 

AB 4 .0145 .0036 .21 6.42 

Error 9 .1530 .0170   

Total 17 1.2942    
 
HoAB  cannot be rejected, so no significant interaction; HoA cannot be rejected, so varying 
levels of NaOH does not have a significant impact on total acidity; HoB is rejected:   type 
of coal does appear to affect total acidity. 

 

b. 43.59,3,01. =Q , 289.
6

0170.
43.5 ==w  

j: 3 1 2 

•• jx  8.035 8.247 8.607 

 
Coal 2 is judged significantly different from both 1 and 3, but these latter two don’t differ 
significantly from each other. 
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20. 85511 =•x , 90512 =•x , 84513 =•x , 70521 =•x , 73522 =•x , 67523 =•x , 

26051 =••x , 21152 =••x , 15601 =••x , 16402 =••x , 15203 =••x , 4720=•••x , 

150,253,12 =ΣΣΣ ijkx ,  CF = 1,237,688.89, 950,756,32 =ΣΣ •ijx , which yields the 

accompanying ANOVA table. 
 

Source Df SS MS f F.01 

A 1 13,338.89 13,338.89 192.09* 9.93 

B 2 1244.44 622.22 8.96* 6.93 

AB 2 44.45 22.23 .32 6.93 

Error 12 833.33 69.44   

Total 17 15,461.11    
 
Clearly, fAB = .32 is insignificant, so HoAB is not rejected.  Both HoA  and HoB are both 
rejected, since they are both greater than the respective critical values.  Both phosphor type 
and glass type significantly affect the current necessary to produce the desired level of 
brightness. 

 
 
21.  

a. 
( )

70.954,64
30
143,19

103,280,12
2

=−=SST , 

( )
50.253,15

2
699,529,24

103,280,12 =−=SSE , 

( )
80.941,22

30
143,19

10
901,380,122 2

=−=SSA , 53.765,22=SSB , 

[ ] 87.399350.253,1553.765,2280.941,2270.954,64 =++−=SSAB  
 

Source Df SS MS f 

A 2 22,941.80 11,470.90 98.2223.499
90.470,11 =  

B 4 22,765.53 5691.38 40.1123.499
38.5691 =  

AB 8 3993.87 499.23 .49 

Error 15 15,253.50 1016.90  

Total 29 64,954.70   
 

b. fAB = .49 is clearly not significant.  Since 46.498.22 8,2,05. =≥ F , HoA is rejected; since 

84.340.11 8,4,05. =≥ F , HoB is also rejected.  We conclude that the different cement 

factors affect flexural strength differently and that batch variability contributes to 
variation in flexural strength. 
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22. The relevant null hypotheses are 0: 43210 ==== ααααAH ; 0: 2
0 =BBH σ ; 

0: 2
0 =GABH σ . 

 

( )
83.591,20

24
598,16

492,499,11
2

=−=SST , 

( )
0.8216

2
552,982,22

492,499,11 =−=SSE , 

( ) ( ) ( ) ( ) ( )
5.1387

24
598,16

6
4137412242274112 22222

=−






 +++
=SSA , 

( ) ( ) ( ) ( )
08.2888

24
598,16

8
556456215413 2222

=−






 ++
=SSB , 

[ ] 25.821608.28885.13870.821683.591,20 =++−=SSAB  
 
 

Source Df SS MS f F.05 

A 3 1,387.5 462.5 34.=MSAB
MSA  4.76 

B 2 2,888.08 1,444.04 07.1=MSAB
MSB  5.14 

AB 6 8,100.25 1,350.04 97.1=MSE
MSAB  3.00 

Error 12 8,216.0 684.67   

Total 23 20,591.83    
 
 

Interaction between brand and writing surface has no significant effect on the lifetime of the 
pen, and since neither fA  nor  fB is greater than its respective critical value, we can conclude 
that neither the surface nor the brand of pen has a significant effect on the writing lifetime. 
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23. Summary quantities include 94101 =••x , 88352 =••x , 92343 =••x , 54321 =••x , 

56842 =••x , 56193 =••x , 55674 =••x , 51773 =••x , 479,27=•••x , 

69.898,779,16=CF , 081,872,2512 =Σ ••ix , 459,180,1512 =Σ •• jx , resulting in the 

accompanying ANOVA table. 
Source Df SS MS f 

A 2 11,573.38 5786.69 70.26=MSAB
MSA  

B 4 17,930.09 4482.52 68.20=MSAB
MSB  

AB 8 1734.17 216.77 38.1=MSE
MSAB  

Error 30 4716.67 157.22  

Total 44 35,954.31   

Since 17.338.1 30,8,01. =< F , HoG cannot be rejected, and we continue: 

65.870.26 8,2,01. =≥ F , and 01.768.20 8,4,01. =≥ F , so both HoA  and HoB are rejected.  

Both capping material and the different batches affect compressive strength of concrete 
cylinders. 

 
 
24.  

a. ( ) ( ) ( )ijkkjiijkkji XE
IJK

XE
JK

XXE ΣΣΣ−ΣΣ=−
11

.....  

( ) ( ) iiijjikjiijjikj IJKJK
αµαµγβαµγβαµ =−+=+++ΣΣΣ−+++ΣΣ=

11
 

 

b. ( ) ( ) ( ) ( ) ( )ijkkjiijkkiijkkjijkkij XE
IJK

XE
IK

XE
JK

XE
K

E ΣΣΣ+ΣΣ−ΣΣ−Σ=
1111

γ̂  

( ) ( ) ijjiijji γµβµαµγβαµ =++−+−+++=  
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25. With  ii ααθ ′−= , ( )jkiijkkjii XX
JK

XX ′′ −ΣΣ=−=
1ˆ

....θ , and since ii ′≠ , 

jkiijk andXX ′  are independent for every j, k.  Thus 

( ) ( ) ( )
JKJKJK

XVarXVarVar ii

222

....
2ˆ σσσθ =+=+= ′  (because ( ) ( ).... ii VarXVar ε=  

and  ( ) 2σε =ijkVar ) so 
JK
MSE2ˆ ˆ =

θ
σ .  The appropriate number of d.f. is IJ(K – 1), so 

the C.I. is ( )
JK
MSE

txx KIJii

2
)1(,2/.... −′ ±− α .  For the data of exercise 19, 15.49..2 =x , 

37.50..3 =x , MSE = .0170, 262.29,025. =t , J = 3, K = 2, so the  C.I. is 

( ) ( )05.1,39.117.22.1
6

0370.
262.237.5015.49 −−=±−=±− . 

 
 
26.  

a. 
( )
( ) 11 2

2

=+=
σ
σ GK

MSEE
MSABE

 if 02 =Gσ  and > 1 if  02 >Gσ , so 
MSE

MSAB
 is the 

appropriate F ratio. 
 

b. 
( )

( )
11

22

2

22

222

=
+

+=
+

++
=

G

A

G

AG

K
JK

K
JKK

MSABE
MSAE

σσ
σ

σσ
σσσ

 if  02 =Aσ  and > 1 if 

02 >Aσ , so 
MSAB
MSA

 is the appropriate F ratio. 
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Section 11.3 
 
27.  

a.  
Source Df SS MS f F.05 

A 2 14,144.44 7072.22 61.06 3.35 

B 2 5,511.27 2755.64 23.79 3.35 

C 2 244,696.39 122.348.20 1056.24 3.35 

AB 4 1,069.62 267.41 2.31 2.73 

AC 4 62.67 15.67 .14 2.73 

BC 4 331.67 82.92 .72 2.73 

ABC 8 1,080.77 135.10 1.17 2.31 

Error 27 3,127.50 115.83   

Total 53 270,024.33    
 

b. The computed f-statistics for all four interaction terms are less than the tabled values for 
statistical significance at the level .05.  This indicates that none of the interactions are 
statistically significant. 

 
c. The computed f-statistics for all three main effects exceed the tabled value for 

significance at level .05.  All three main effects are statistically significant. 
 

d. 27,3,05.Q  is not tabled, use 53.324,3,05. =Q , 
( )( )( ) 95.8

233
83.115

53.3 ==w .  All three 

levels differ significantly from each other. 
 
 
28.  

Source Df SS MS f F.01 

A 3 19,149.73 6,383.24 2.70 4.72 

B 2 2,589,047.62 1,294,523.81 546.79 5.61 

C 1 157,437.52 157,437.52 66.50 7.82 

AB 6 53,238.21 8,873.04 3.75 3.67 

AC 3 9,033.73 3,011.24 1.27 4.72 

BC 2 91,880.04 45,940.02 19.40 5.61 

ABC 6 6,558.46 1,093.08 .46 3.67 

Error 24 56,819.50 2,367.48   

Total 47 2,983,164.81    
 

The statistically significant interactions are AB and BC.  Factor A appears to be the least 
significant of all the factors. It does not have a significant main effect and the significant 
interaction (AB) is only slightly greater than the tabled value at significance level .01 
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29. I = 3, J = 2, K = 4, L = 4; ( )∑ −= 2
....... xxJKLSSA i ;  ( )∑ −= 2

....... xxIKLSSB j ; 

( )∑ −= 2
....... xxIJLSSC k . 

For level A: 781.3...1 =x  625.3...2 =x  469.4...3 =x  

For level B: 979.4..1. =x  938.2..2. =x  

For level C: 417.3.1.. =x  875.5.2.. =x  875..3.. =x  667.5.4.. =x  

  958.3.... =x  

SSA = 12.907; SSB = 99.976; SSC = 393.436 
a.  

Source Df SS MS f F.05* 

A 2 12.907 6.454 1.04 3.15 

B 1 99.976 99.976 16.09 4.00 

C 3 393.436 131.145 21.10 2.76 

AB 2 1.646 .823 .13 3.15 

AC 6 71.021 11.837 1.90 2.25 

BC 3 1.542 .514 .08 2.76 

ABC 6 9.805 1.634 .26 2.25 

Error 72 447.500 6.215   

Total 95 1,037.833    
 *use 60 df for denominator of tabled F. 
 

b. No interaction  effects are significant at level .05 
 
c. Factor B and C main effects are significant at the level .05 
 

d. 72,4,05.Q  is not tabled, use 74.360,4,05. =Q , 
( )( )( ) 90.1

423
215.6

74.3 ==w .  

Machine: 3 1 4 2 

Mean: .875 3.417 5.667 5.875 
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30.  
a. See ANOVA table 
b.  

Source Df SS MS f F.05 

A 3 .22625 .075417 77.35 9.28 

B 1 .000025 .000025 .03 10.13 

C 1 .0036 .0036 3.69 10.13 

AB 3 .004325 .0014417 1.48 9.28 

AC 3 .00065 .000217 .22 9.28 

BC 1 .000625 .000625 .64 10.13 

ABC 3 .002925 .000975   

Error -- -- --   

Total 15 .2384    
 

The only statistically significant effect at the level .05 is the factor A main effect: levels 
of nitrogen. 

 

c. 82.63,4,05. =Q  ;
( )( ) 1844.

22
002925.

82.6 ==w . 

1 2 3 4 

1.1200 1.3025 1.3875 1.4300 
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31.  

.ijx  B1 B2 B3 

A1 210.2 224.9 218.1 

A2 224.1 229.5 221.5 

A3 217.7 230.0 202.0 

.. jx  652.0 684.4 641.6 

 
 
 

kix .  A1 A2 A3 

C1 213.8 222.0 205.0 

C2 225.6 226.5 223.5 

C3 213.8 226.6 221.2 

..ix  653.2 675.1 649.7 

 
 

jkx.  C1 C2 C3 

B1 213.5 220.5 218.0 

B2 214.3 246.1 224.0 

B3 213.0 209.0 219.6 

kx..  640.8 675.6 661.6 
 

26.382,4352
. =ΣΣ ijx  74.156,4352

. =ΣΣ kix  36.666,4352
. =ΣΣ jkx  

92.157,305,12
.. =Σ jx  34.540,304,12

.. =Σ ix  56.774,304,12
.. =Σ kx  

Also, 40.386,1452 =ΣΣΣ ijkx , ,1978... =x  CF = 144,906.81, from which we obtain the 

ANOVA table displayed in the problem statement. 01.78,4,01. =F , so the AB and BC 

interactions are significant (as can be seen from the p-values) and tests for main effects are 
not appropriate. 
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32.  

a. Since 
( )

( ) 12

22

=
+

=
σ

σσ ABCL
MSEE

MSABCE
 if 02 =ABCσ  and > 1 if  02 >ABCσ , 

MSE
MSABC

 is the appropriate F  ratio for testing 0: 2
0 =ABCH σ .  Similarly, 

MSE
MSC

 is 

the F ratio for testing 0: 2
0 =CH σ ; 

MSABC
MSAB

 is the F ratio for testing allH :0  

0=AB
ijγ ; and 

MSAC
MSA

 is the F ratio for testing allH :0  0=iα . 

 
b.  

Source Df SS MS f F.01 

A 1 14,318.24 14,318.24 85.19=MSAC
MSA  98.50 

B 3 9656.4 3218.80 24.6=MSBC
MSB  9.78 

C 2 2270.22 1135.11 15.3=MSE
MSC  5.61 

AB 3 3408.93 1136.31 41.2=MSABC
MSAB  9.78 

AC 2 1442.58 721.29 00.2=MSABC
MSAC  5.61 

BC 6 3096.21 516.04 43.1=MSE
MSBC  3.67 

ABC 6 2832.72 472.12 31.1=MSE
MSABC  3.67 

Error 24 8655.60 360.65   

Total 47     
 

At level .01, no Ho’s can be rejected, so there appear to be no interaction or main effects 
present. 

 
 
33.  

Source Df SS MS f 

A 6 67.32 11.02  

B 6 51.06 8.51  

C 6 5.43 .91 .61 

Error 30 44.26 1.48  

Total 48 168.07   

 

 

Since .61 < 42.230,6,05. =F , treatment was not effective. 

 



Chapter 11:  Multifactor Analysis of Variance 

 333 

34.  

 1 2 3 4 5 6 

..ix  144 205 272 293 85 98 

.. jx  171 199 147 221 177 182 

kx..  180 161 186 171 169 230 

 

Thus 1097... =x , 
( )

03.428,33
36

1097 2

==CF , 219,422
)( =ΣΣ kijx , 423,2392

.. =Σ ix , 

745,2032
.. =Σ jx , 619.2032

.. =Σ kx  

 
 

Source Df SS MS f 

A 5 6475.80 1295.16  

B 5 529.47 105.89  

C 5 508.47 101.69 1.59 

Error 20 1277.23 63.89  

Total 35 8790.97   
 

Since 1.59 is not 71.220,5,05. =≥ F , HoC is not rejected; shelf space does not appear to affect 

sales. 
 
 
35.  

 1 2 3 4 5  

..ix  40.68 30.04 44.02 32.14 33.21 91.66302
.. =Σ ix  

.. jx  29.19 31.61 37.31 40.16 41.82 02.66052
.. =Σ jx  

kx..  36.59 36.67 36.03 34.50 36.30 92.64892
.. =Σ kx  

09.180... =x , CF = 1297.30, 60.13582
)( =ΣΣ kijx  

 
Source Df SS MS f 

A 4 28.89 7.22 10.78 

B 4 23.71 5.93 8.85 

C 4 0.69 0.17 0.25 

Error 12 8.01 .67  

Total 24 61.30   
F4,12 = 3.26, so both factor A (plant) and B(leaf size) appear to affect moisture content, but 
factor C (time of weighing) does not. 
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36.  
Source Df SS MS f F.01* 

A (laundry treatment) 3 39.171 13.057 16.23 3.95 

B (pen type) 2 .665 .3325 .41 4.79 

C (Fabric type) 5 21.508 4.3016 5.35 3.17 

AB 6 1.432 .2387 .30 2.96 

AC 15 15.953 1.0635 1.32 2.19 

BC 10 1.382 .1382 .17 2.47 

ABC 30 9.016 .3005 .37 1.86 

Error 144 115.820 .8043   

Total 215 204.947    
 *Because denominator degrees of freedom for 144 is not tabled, use 120. 

At the level .01, there are two statistically significant main effects (laundry treatment and 
fabric type).  There are no statistically significant interactions. 
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37.  
Source Df MS f F.01* 

A 2 2207.329 2259.29 5.39 

B 1 47.255 48.37 7.56 

C 2 491.783 503.36 5.39 

D 1 .044 .05 7.56 

AB 2 15.303 15.66 5.39 

AC 4 275.446 281.93 4.02 

AD 2 .470 .48 5.39 

BC 2 2.141 2.19 5.39 

BD 1 .273 .28 7.56 

CD 2 .247 .25 5.39 

ABC 4 3.714 3.80 4.02 

ABD 2 4.072 4.17 5.39 

ACD 4 .767 .79 4.02 

BCD 2 .280 .29 5.39 

ABCD 4 .347 .355 4.02 

Error 36 .977   

Total 71    
 *Because denominator d.f. for 36 is not tabled, use d.f. = 30 
 

SST = (71)(93.621) = 6,647.091.  Computing all other sums of squares and adding them up = 
6,645.702.  Thus SSABCD = 6,647.091 – 6,645.702 = 1.389 and 

347.
4
389.1

==MSABCD . 

 

At level .01 the statistically significant main effects are  A, B, C.  The interaction AB and AC 
are also statistically significant.  No other interactions are statistically significant. 
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Section 11.4 
 
38.  

a.  
Treatment 
Condition xijk. 1 2 

Effect 
Contrast 

( )
16

2contrastSS =  

.111)1( x=  404.2 839.2 1991.0 3697.0  

.211xa =  435.0 1151.8 1706.0 164.2 1685.1 

.121xb =  549.6 717.6 83.4 583.4 21,272.2 

.221xab =  602.2 988.4 80.8 24.2 36.6 

.112xc =  339.2 30.8 312.6 -285.0 5076.6 

.212xac =  378.4 52.6 270.8 -2.6 .4 

.122xbc =  473.4 39.2 21.8 -41.8 109.2 

.222xabc =  515.0 41.6 2.4 -19.4 23.5 

 

38.573,8822 =ΣΣΣΣ ijklx ;  
( )

3.335,28
16

3697
38.573,882

2

=−=SST  

b. The important effects are those with small associated p-values, indicating statistical 
significance.  Those effects significant at level .05 (i.e., p-value < .05) are the three main 
effects and the speed by distance interaction. 
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39.  

Condition Total 1 2 Contrast ( )
24

2contrastSS =  

111 315 927 2478 5485  

211 612 1551 3007 1307 A = 71,177.04 

121 584 1163 680 1305 B = 70,959.38 

221 967 1844 627 199 AB = 1650.04 

112 453 297 624 529 C = 11,660.04 

212 710 383 681 -53 AC = 117.04 

122 737 257 86 57 BC = 135.38 

222 1107 370 113 27 ABC = 30.38 

 

a. 38.54
24

7104536123151107737967584ˆ
......2.1 =

−−−−+++
=−= xxβ  

21.2
24

1107737710453967584612315ˆ11 =
+−+−−+−

=ACγ ; 

21.2ˆˆ 1121 =−= ACAC γγ . 

 

b. Factor SS’s appear above.  With 04.551,253,1
24

54852

==CF  and 

889,411,12 =ΣΣΣΣ ijklx , SST = 158,337.96, from which SSE = 2608.7.  The ANOVA 

table appears in the answer section. 49.416,1,05. =F , from which we see that the AB 

interaction and al the main effects are significant. 
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40.  
a. In the accompanying ANOVA table, effects are listed in the order implied by Yates’ 

algorithm. 16.47832 =ΣΣΣΣΣ ijklmx , 14.388..... =x , so 

56.72
32

14.36816.4783
2

=−=SST  and SSE = 72.56 – (sum of all other SS’s) = 

35.85. 
Source Df SS MS f  

A 1 .17 .17 < 1  

B 1 1.94 1.94 < 1  

C 1 3.42 3.42 1.53  

D 1 8.16 8.16 3.64  

AB 1 .26 .26 < 1  

AC 1 .74 .74 < 1  

AD 1 .02 .02 < 1  

BC 1 13.08 13.08 5.84  

BD 1 .91 .91 < 1  

CD 1 .78 .78 < 1  

ABC 1 .78 .78 < 1  

ABD 1 6.77 6.77 3.02  

ACD 1 .62 .62 < 1  

BCD 1 1.76 1.76 < 1  

ABCD 1 .00 .00 < 1  

Error 16 35.85 2.24   

Total 31     
 

b. 49.416,1,05. =F , so none of the interaction effects is judged significant, and only the D 

main effect is significant. 
 
 

41. 143,308,32 =ΣΣΣΣΣ ijklmx , 956,11..... =x , so 
( )

02.535,979,2
48
956,11 2

==CF , and 

SST = 328,607.98.  Each SS is 
( )

48

2rasteffectcont
 and SSE is obtained by subtraction.  The 

ANOVA table appears in the answer section. 15.432,1,05. ≈F , a value exceeded by the F 

ratios for AB interaction and the four main effects. 
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42. 817,917,322 =ΣΣΣΣΣ ijklmx , 371,39..... =x , 
( )

48

2contrast
SS = , and error d.f. = 32. 

Effect MS f Effect MS f 

A 16,170.02 3.42 BD 3519.19 < 1 

B 332,167.69 70.17 CD 4700.52 < 1 

C 43,140.02 9.11 ABC 1210.02 < 1 

D 20,460.02 4.33 ABD 15,229.69 3.22 

AB 1989.19 < 1 ACD 1963.52 < 1 

AC 776.02 < 1 BCD 10,354.69 2.19 

AD 16,170.02 3.42 ABCD 1692.19 < 1 

BC 3553.52 < 1 Error 4733.69  
 

5.732,1,01. ≈F , so only the B and C main effects are judged significant at the 1% level. 

 
 
43.  

Condition/E
ffect 

( )
16

2contrastSS =  f 
Condition/

Effect 
( )

16

2contrastSS =  f 

(1) --  D 414.123 1067.33 

A .436 1.12 AD .017 < 1 

B .099 < 1 BD .456 < 1 

AB .497 1.28 ABD .055 -- 

C .109 < 1 CD 2.190 5.64 

AC .078 < 1 ACD 1.020 -- 

BC 1.404 3.62 BCD .133 -- 

ABC .051 -- ABCD .681 -- 
 

SSE = .051 + .055 + 1.020 + .133 + .681 = 1.940, d.f. = 5, so MSE = .388. 61.65,1,05. =F , so 

only the D main effect is significant. 
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44.  
a. The eight treatment conditions which have even number of letters in common with abcd 

and thus go in the first (principle) block are (1), ab, ac, bc, ad, bd, cd, and abd; the other 
eight conditions are placed in the second block. 

 
b. and c. 

1290.... =x , 160,1052 =ΣΣΣΣ ijklx , so SST = 1153.75.  The two block totals are 639 

and 651, so 00.9
16

1290
8

651
8

639 222

=−+=SSBl , which is identical (as it must be 

here) to SSABCD computed from Yates algorithm. 

 

Condition/Effect Block ( )
16

2contrastSS =  f 

(1) 1 --  

A 2 25.00 1.93 

B 2 9.00 < 1 

AB 1 12.25 < 1 

C 2 49.00 3.79 

AC 1 2.25 < 1 

BC 1 .25 < 1 

ABC 2 9.00 -- 

D 2 930.25 71.90 

AD 1 36.00 2.78 

BD 1 25.00 1.93 

ABD 2 20.25 -- 

CD 1 4.00 < 1 

ACD 2 20.25 -- 

BCD 2 2.25 -- 

ABCD=Blocks 1 9.00 -- 

Total  1153.75  
 

75.5125.225.2025.200.9 =+++=SSE ; d.f. = 4, so MSE = 12.9375, 
71.74,1,05. =F , so only the D main effect is significant. 
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45.  
a. The allocation of treatments to blocks is as given in the answer section, with block #1 

containing all treatments having an even number of letters in common with both ab and 
cd, etc. 

 

b. 898,16..... =x , so 88.853,111
32
898,16054,035,9

2

=−=SST .  The eight 

nreplicatioblock × totals are 2091 ( = 618 + 421 + 603 + 449, the sum of the four 
observations in block #1 on replication #1), 2092, 2133, 2145, 2113, 2080, 2122,  and 

2122, so  88.898
32
898,16

4
2122...

4
2091 222

=−++=SSBl .  The remaining SS’s 

as well as all F ratios appear in the ANOVA table in the answer section.  With 
33.912,1,01. =F , only the A and B main effects are significant. 

 
 

46. The result is clearly true if either defining effect is represented by either a single letter (e.g., 
A) or a pair of letters (e.g. AB).  The only other possibilities are for both to be “triples” (e.g. 
ABC or ABD, all of which must have two letters in common.) or one a triple and the other 
ABCD.  But the generalized interaction of ABC and ABD is CD, so a two-factor interaction is 
confounded, and the generalized interaction of ABC and ABCD is D, so a main effect is 
confounded. 

 
 
47. See the text’s answer section. 
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48.  
a. The treatment conditions in the observed group are (in standard order) (1), ab, ac, bc, ad, 

bd, cd, and abcd.  The alias pairs are {A, BCD}, {B, ACD}, {C, ABD}, {D, ABC}, {AB, 
CD}, {AC, BD}, and {AD, BC}. 

 
b.  

 A B C D AB AC AD 

(1) = 19.09 - - - - + + + 

Ab = 20.11 + + - - + - - 

Ac = 21.66 + - + - - + - 

Bc = 20.44 - + + - - - + 

Ad = 13.72 + - - + - - + 

Bd = 11.26 - + - + - + - 

Cd = 11.72 - - + + + - - 

Abcd = 12.29 + + + + + + + 

Contrast 5.27 -2.09 1.93 -32.31 -3.87 -1.69 .79 

SS 3.47 .55 .47 130.49 1.87 .36 .08 

f 4.51 < 1 < 1 169.47 SSE=2.31 MSE=.770 

 

13.103,1,05. =F , so only the D main effect is judged significant. 
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49.  
  A B C D E AB AC AD AE BC BD BE CD CE DE 

a 70.4 + - - - - - - - - + + + + + + 

b 72.1 - + - - - - + + + - - - + + + 
c 70.4 - - + - - + - + + - + + - - + 

abc 73.8 + + + - - + + - - + - - - - + 

d 67.4 - - - + - + + - + + - + - + - 
abd 67.0 + + - + - + - + - - + - - + - 

acd 66.6 + - + + - - + + - - - + + - - 

bcd 66.8 - + + + - - - - + + + - + - - 
e 68.0 - - - - + + + + - + + - + - - 

abe 67.8 + + - - + + - - + - - + + - - 

ace 67.5 + - + - + - + - + - + - - + - 
bce 70.3 - + + - + - - + - + - + - + - 

ade 64.0 + - - + + - - + + + - - - - + 

bde 67.9 - + - + + - + - - - + + - - + 
cde 65.9 - - + + + + - - - - - - + + + 

abcde 68.0 + + + + + + + + + + + + + + + 

 

Thus  
( )

250.2
16

0.68...4.701.724.70 2

=
++−−

=SSA , SSB = 7.840, SSC = .360, SSD 

= 52.563, SSE = 10.240, SSAB = 1.563, SSAC = 7.563, SSAD = .090, SSAE = 4.203, SSBC 
= 2.103, SSBD = .010, SSBE = .123, SSCD = .010, SSCE = .063, SSDE = 4.840, Error SS = 
sum of two factor SS’s = 20.568, Error MS = 2.057, 04.1010,1,01. =F , so only the D main 

effect is significant. 
 
 

Supplementary Exercises 
 
50.  

Source Df SS MS f 

Treatment 4 14.962 3.741 36.7 

Block 8 9.696   

Error 32 3.262 .102  

Total 44 27.920   
 

0: 543210 ===== αααααH  will be rejected if 67.232,4,05. =≥= F
MSE
MSTr

f .  

Because 67.27.36 ≥ , Ho is rejected.  We conclude that expected smoothness score does 
depend somehow on the drying method used. 
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51.  

Source Df SS MS f 

A 1 322.667 322.667 980.38 

B 3 35.623 11.874 36.08 

AB 3 8.557 2.852 8.67 

Error 16 5.266 .329  

Total 23 372.113   
 

We first test the null hypothesis of no interactions ( 0:0 =ijH γ  for all I, j).  Ho will be 

rejected at level .05 if 24.316,3,05. =≥= F
MSE

MSAB
f AB .  Because 24.367.8 ≥ , Ho is 

rejected.  Because we have concluded that interaction is present, tests for main effects are not 
appropriate. 

 
 

52. Let =ijX  the amount of clover accumulation when the ith sowing rate is used in the jth plot = 

ijji e+++ βαµ .  0: 43210 ==== ααααH  will be rejected if 

86.39,3,05.)1)(1(,1, ==≥= −−− FF
MSE
MSTr

f JIIα  

 

Source Df SS MS f 

Treatment 3 3,141,153.5 1,040,751.17 2.28 

Block 3 19,470,550.0   

Error 9 4,141,165.5 460,129.50  

Total 15 26,752,869.0   

Because 86.328.2 < , Ho is not rejected.  Expected accumulation does not appear to depend 
on sowing rate. 
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53. Let A = spray volume, B = belt speed, C = brand. 

Condition Total 1 2 Contrast ( )
16

2contrastSS =  

(1) 76 129 289 592 21,904.00 

A 53 160 303 22 30.25 

B 62 143 13 48 144.00 

AB 98 160 9 134 1122.25 

C 88 -23 31 14 12.25 

AC 55 36 17 -4 1.00 

BC 59 -33 59 -14 12.25 

ABC 101 42 75 16 16.00 

 

The ANOVA table is as follows: 

Effect Df MS f 

A 1 30.25 6.72 

B 1 144.00 32.00  

AB 1 1122.25 249.39 

C 1 12.25 2.72 

AC 1 1.00 .22 

BC 1 12.25 2.72 

ABC 1 16.00 3.56 

Error 8 4.50  

Total 15   
 

32.58,1,05. =F , so all of the main effects are significant at level .05, but none of the 

interactions are significant.  
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54. We use Yates’ method for calculating the sums of squares, and for ease of calculation, we 
divide each observation by 1000. 

Condition Total 1 2 Contrast ( )
8

2contrastSS =  

(1) 23.1 66.1 213.5 317.2 - 

A 43.0 147.4 103.7 20.2 51.005 

B 71.4 70.2 24.5 44.6 248.645 

AB 76.0 33.5 -4.3 -12.0 18.000 

C 37.0 19.9 81.3 -109.8 1507.005 

AC 33.2 4.6 -36.7 -28.8 103.68 

BC 17.0 -3.8 -15.3 -118.0 1740.5 

ABC 16.5 -.5 3.3 18.6 43.245 

 

We assume that there is no three-way interaction, so the MSABC becomes the MSE for 
ANOVA: 

Source df MS f 

A 1 51.005 1.179 

B 1 248.645 5.750* 

AB 1 18.000 < 1 

C 1 1507.005 34.848* 

AC 1 103.68 2.398 

BC 1 1740.5 40.247* 

Error 1 43.245  

Total 8   

    

With 32.58,1,05. =F , the B and C main effects are significant at the .05 level, as well as the 

BC interaction.  We conclude that although binder type (A) is not significant, both amount of 
water (B) and the land disposal scenario (C) affect the leaching characteristics under study., 
and there is some interaction between the two factors. 
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55.  
a.  

Effect %Iron 1 2 3 
Effect 

Contrast SS 
 7 18 37 174 684  

A 11 19 137 510 144 1296 
B 7 62 169 50 36 81 

AB 12 75 341 94 0 0 
C 21 79 9 14 272 4624 

AC 41 90 41 22 32 64 
BC 27 165 47 2 12 9 

ABC 48 176 47 -2 -4 1 
D 28 4 1 100 336 7056 

AD 51 5 13 172 44 121 
BD 33 20 11 32 8 4 

ABD 57 21 11 0 0 0 
CD 70 23 1 12 72 324 

ACD 95 24 1 0 -32 64 
BCD 77 25 1 0 -12 9 

ABCD 99 22 -3 -4 -4 1 

We use 
p

contrast
estimate

2
=  when n = 1 (see p 472 of text) to get 

00.9
16

144
2

144ˆ
41 ===α , 25.2

16
36ˆ

1 ==β , 00.17
16

272
1̂ ==δ , 

00.21
16
336ˆ1 ==γ .  Similarly,  0

11

=





 ∧

αβ , 00.2
11

=





 ∧

αδ , 75.2
11

=





 ∧

αγ , 

75.
11

=





 ∧

βδ , 50.
11

=





 ∧

βγ ,  and 50.4
11

=





 ∧

δγ . 

 
b.  

210-1-2

20

10

0

z-percentile

ef
fe

ct

A

C

D

CD

 

The plot suggests main effects A, C, and D are quite important, and perhaps the 
interaction CD as well. (See answer section for comment.) 
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56. The summary quantities are: 

   j   

 •ijx  1 2 3 ••ix  

 1 6.2 4.0 5.8 16.0 

i 2 7.6 6.2 6.4 20.2 

 •• jx  13.8 10.2 12.2 2.36=•••x  

 

( )
6813.43

30
2.36 2

==CF , 560.452 =ΣΣΣ ijkx , so 

8787.16813.43560.45 =−=SST , 

 5120.
5

24.225
560.45 =−=SSE , 

( ) ( )
5880.

15
2.200.16 22

=−
+

= CFSSA , 

( ) ( ) ( )
6507.

10
2.122.108.13 222

=−
++

= CFSSB ,  

and by subtraction, SSAB = .128 

 
Analysis of Variance for Average Bud Rating       
Source        DF        SS        MS        F       
Health         1    0.5880    0.5880    27.56     
pH             2    0.6507    0.3253    15.25     
Interaction    2    0.1280    0.0640     3.00     
Error         24    0.5120    0.0213 
Total         29    1.8787 
 
Since 3.00 is not 40.324,2,05. =≥ F , we fail to reject the no interactions hypothesis, and we 

continue: 26.456.27 24,1,05. =≥ F , and 40.325.15 24,2,05. =≥ F , so we conclude that 

both the health of the seedling and its pH level have an effect on the average rating. 
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57. The ANOVA table is: 

Source df SS MS f F.01 

A 2 34,436 17,218 436.92 5.49 

B 2 105,793 52,897 1342.30 5.49 

C 2 516,398 258,199 6552.04 5.49 

AB 4 6,868 1,717 43.57 4.11 

AC 4 10,922 2,731 69.29 4.11 

BC 4 10,178 2,545 64.57 4.11 

ABC 8 6,713 839 21.30 3.26 

Error 27 1,064 39   

Total 53 692,372    

 

All calculated f values are greater than their respective tabled values, so all effects, including 
the interaction effects, are significant at level .01. 

 
 

58.  
Source df SS MS f F.05 

A(pressure) 1 6.94 6.940 11.57* 4.26 

B(time) 3 5.61 1.870 3.12* 3.01 

C(concen.) 2 12.33 6.165 10.28* 3.40 

AB 3 4.05 1.350 2.25 3.01 

AC 2 7.32 3.660 6.10* 3.40 

BC 6 15.80 2.633 4.39* 2.51 

ABC 6 4.37 .728 1.21 2.51 

Error 24 14.40 .600   

Total 47 70.82    

 

There appear to be no three-factor interactions.  However both AC and BC two-factor 
interactions appear to be present. 

 

59. Based on the p-values in the ANOVA table, statistically significant factors at the level .01 are 
adhesive type and cure time.  The conductor material does not have a statistically significant 
effect on bond strength.  There are no significant interactions. 
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60.  
Source df SS MS f F.05 

A (diet) 2 18,138 9.69.0 28.9* 32.3≈  

B (temp.) 2 5,182 2591.0 8.3* 32.3≈  

Interaction 4 1,737 434.3 1.4 69.2≈  

Error 36 11,291 313.6   

Total 44 36,348    

Interaction appears to be absent.  However, since both main effect f values exceed the 
corresponding F critical values, both diet and temperature appear to affect expected energy 
intake. 

 
 

61. ( )
N

X
X

N
XXSSA i

i j
i

2
....2

...
2

.......
1

−Σ=−= ∑∑  , with similar expressions for SSB, SSC, 

and SSD, each having  N – 1 df. 

( )
N

X
XXXSST

i j
klij

i j
klij

2
....2

)(
2

....)( −=−= ∑∑∑∑  with N2 – 1 df, leaving 

)1(412 −−− NN  df for error. 

 1 2 3 4 5 2xΣ  

:...ix  482 446 464 468 434 1,053,916 

:... jx  470 451 440 482 451 1,053,626 

:...kx  372 429 484 528 481 1,066,826 

:...lx  340 417 466 537 534 1,080,170 

 

Also, 378,2202
)( =ΣΣ klijx ,  2294.... =x , and CF = 210,497.44 

Source df SS MS f F.05 

A  4 285.76 71.44 .594 3.84 

B  4 227.76 56.94 .473 3.84 

C 4 2867.76 716.94 5.958* 3.84 

D 4 5536.56 1384.14 11.502* 3.84 

Error 8 962.72 120.34   

Total 24     

HoA and HoB cannot be rejected, while while HoC and HoD are rejected. 
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CHAPTER 12 
 

Section 12.1 
 
1.  

a. Stem and Leaf display of temp:  
 

17 0  
17 23 stem = tens 
17 445 leaf = ones 
17 67  
17   
18 0000011  
18 2222  
18 445  
18 6  
18 8  

  
180 appears to be a typical value for this data.  The distribution is reasonably symmetric 
in appearance and somewhat bell-shaped.  The variation in the data is fairly small since 
the range of values ( 188 – 170 = 18) is fairly small compared to the typical value of 180. 

 
0 889  
1 0000 stem = ones 
1 3 leaf = tenths 
1 4444  
1 66  
1 8889  
2 11  
2   
2 5  
2 6  
2   
3 00  

 
For the ratio data, a typical value is around 1.6 and the distribution appears to be 
positively skewed. The variation in the data is large since the range of the data (3.08 - .84 
= 2.24) is very large compared to the typical value of 1.6.  The two largest values could 
be outliers. 

 
b. The efficiency ratio is not uniquely determined by temperature since there are several 

instances in the data of equal temperatures associated with different efficiency ratios.  For 
example, the five observations with temperatures of 180 each have different efficiency 
ratios. 
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c. A scatter plot of the data appears below.  The points exhibit quite a bit of variation and do 
not appear to fall close to any straight line or simple curve. 

 
 

 
2. Scatter plots for the emissions vs age: 
  

 
With this data the relationship between the age of the lawn mower and its NOx emissions 
seems somewhat dubious.  One might have expected to see that as the age of the lawn mower 
increased the emissions would also increase.  We certainly do not see such a pattern.  Age 
does not seem to be a particularly useful predictor of NOx emission. 
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3. A scatter plot of the data appears below.  The points fall very close to a straight line with an 
intercept of approximately 0 and a slope of about 1.  This suggests that the two methods are 
producing substantially the same concentration measurements. 

50 100 150 200

20

120

220

x:

y:

 
 
 

4.  
a.  

Box plots of both variables: 

On both the BOD mass loading boxplot and the BOD mass removal boxplot there are 2 
outliers.  Both variables are positively skewed. 

 

0 10 20 30 40 50 60 70 80 90

y:

BOD mas s removal

0 50 100 150

x:

BOD mass loading
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b. Scatter plot of the data: 
 

 
 

There is a strong linear relationship between BOD mass loading and BOD mass removal.  
As the loading increases, so does the removal.  The two outliers seen on each of the 
boxplots are seen to be correlated here.  There is one observation that appears not to 
match the liner pattern.  This value is (37, 9).  One might have expected a larger value for 
BOD mass removal. 

 
 
5.  

a. The scatter plot with axes intersecting at (0,0) is shown below. 
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b. The scatter plot with axes intersecting at (55, 100) is shown below. 
 
 

c. A parabola appears to provide a good fit to both graphs. 
 
 
6. There appears to be a linear relationship between racket resonance frequency and sum of 

peak-to-peak acceleration.  As the resonance frequency increases the sum of peak-to-peak 
acceleration tends to decrease.  However, there is not a perfect relationship.  Variation does 
exist.  One should also notice that there are two tennis rackets that appear to differ from the 
other 21 rackets.  Both have very high resonance frequency values.  One might investigate if 
these rackets differ in other ways as well. 

 
 
7.  

a. ( ) 505025003.118002500 =+=⋅Yµ  

 
b. expected change = slope = 3.11 =β  
 
c. expected change = 130100 1 =β  
 
d. expected change = 130100 1 −=− β  
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8.  
a. ( ) 440020003.118002000 =+=⋅Yµ , and 350=σ , so ( )5000>YP  

( ) 0436.71.1
350

44005000
=>=






 −

>= ZPZP  

 
b. Now E(Y) = 5050, so ( ) ( ) 4443.14.5000 =>=> ZPYP  
 
c. 65044005050)()()( 1212 =−=−=− YEYEYYE , and 

( ) ( ) 000,245350350)()()( 22
1212 =+=+=− YVYVYYV , so the s.d. of 

97.49412 =− YY .  

Thus ( ) 2389.71.
97.494
650100

)0( 12 =>=





 −

>=>− ZPzPYYP  

 
d. The standard deviation of 97.49412 =− YY (from c), and 

( ) ( )121212 3.13.118003.11800)( xxxxYYE −=+−+=− .  Thus 

( )
95.

97.494
3.1

)0()( 12
1212 =






 −−

>=>−=>
xx

zPYYPYYP  implies that 

( )
97.494

3.1
645.1 12 xx −−

=− , so 33.62612 =− xx . 

 
 
9.  

a. =1β  expected change in flow rate (y) associated with a one inch increase in pressure 
drop (x) = .095. 

 

b. We expect flow rate to decrease by 475.5 1 =β . 
 

c. ( ) ,83.10095.12.10 =+−=⋅Yµ  and ( ) 305.115095.12.15 =+−=⋅Yµ . 

 

d. ( ) ( ) 4207.20.
025.

830.835.
835. =>=






 −

>=> ZPZPYP  

( ) ( ) 3446.40.
025.

830.840.
840. =>=






 −

>=> ZPZPYP  

 
e. Let Y1 and Y2 denote pressure drops for flow rates of 10 and 11, respectively.  Then  

,925.11 =⋅Yµ  so Y1 - Y2 has expected value .830 - .925 = -.095, and s.d. 

( ) ( ) 035355.025.025. 22 =+ .  Thus 

( ) 0036.69.2
035355.

095.
)0()( 2121 =>=






 +

>=>−=> ZPzPYYPYYP  
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10. Y has expected value 14,000 when x = 1000 and 24,000 when x = 2000, so the two 

probabilities become 05.
8500

=





 −

>
σ

zP  and 10.
500,17

=





 −

>
σ

zP .  Thus 

645.1
8500

−=
−

σ
 and 28.1

500,17
−=

−
σ

.  This gives two different values for  σ , a 

contradiction, so the answer to the question posed is no. 
 
 
11.  

a. =1β  expected change for a one degree increase = -.01, and 1.10 1 −=β  is the 
expected change for a 10 degree increase. 

 

b. ( ) 320001.00.5200 =−=⋅Yµ , and 5.2250 =⋅Yµ . 

 
c. The probability that the first observation is between 2.4 and 2.6 is 

( ) 





 −

≤≤
−

=≤≤
075.

5.26.2
075.

5.24.2
6.24.2 ZPYP  

( ) 8164.33.133.1 =≤≤−= ZP .  The probability that any particular one of the other 
four observations is between 2.4 and 2.6 is also .8164, so the probability  that all five are 

between 2.4 and 2.6 is ( ) 3627.8164. 5 = . 
 
d. Let Y1 and Y2 denote the times at the higher and lower temperatures, respectively.  Then 

Y1 - Y2  has  expected value ( ) ( ) 01.01.00.5101.00.5 −=−−+− xx .  The standard 

deviation of Y1 - Y2  is ( ) ( ) 10607.075.075. 22 =+ .  Thus 

( ) ( ) 4641.09.
10607.

01.
)0( 21 =>=






 −−

>=>− ZPzPYYP . 
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Section 12.2 
 
12.  

a. 
( )

929.002,20
14

517
095,39

2

=−=xxS ,  

( )( )
714.13047

14
346517

825,25 =−=xyS ; 652.
929.002,20
714.047,13ˆ

1 ===
xx

xy

S

S
β ; 

( )( )
626.

14
517652.346ˆ

ˆ 1
0 =

−
=

Σ−Σ
=

n
xy β

β , so the equation of the least squares 

regression line is xy 652.626. += . 

 
b. ( ) ( ) 456.2335652.626.ˆ 35 =+=y .  The residual is 

456.2456.2321ˆ −=−=− yy . 

 

c. 
( )

857.8902
14

346
454,17

2

=−=yyS , so  

( )( ) 747.395714.13047652.857.8902 =−=SSE .  

743.5
12

747.395
2

ˆ ==
−

=
n
SSE

σ . 

 

d. 857.8902== yySSST ; 956.
857.8902

747.395
112 =−=−=

SST
SSE

r . 

 
e. Without the two upper ext reme observations, the new summary values are 

5320,3729,181,8322,272,12 22 =Σ=Σ=Σ=Σ=Σ= xyyyxxn .  The new 

333.1217,917.998,667.2156 === xyyyxx SSS .  New 56445.ˆ
1 =β  and 

2891.2ˆ
0 =β , which yields the new equation xy 56445.2891.2 += .  Removing 

the two values changes the position of the line considerably, and the slope slightly.  The 

new 6879.
917.998
79.311

12 =−=r , which is much worse than that of the original set of 

observations. 
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13. For this data, n = 4, 200=Σ ix , 37.5=Σ iy , 000.122 =Σ
i

x , 3501.92 =Σ
i

y , 

333=Σ ii yx .  
( )

2000
4

200
000,12

2

=−=xxS , 

( )
140875.2

4
37.5

3501.9
2

=−=yyS , and 
( )( )

5.64
4

37.5200
333 =−=xyS .  

03225.
2000

5.64ˆ
1 ===

xx

xy

S

S
β  and ( ) 27000.

4
200

03225.
4
37.5ˆ

0 −=−=β .  

( )( ) 060750.5.6403225.14085.2ˆ
1 =−=−= xyyy SSSSE β .  

972.
14085.2

060750.
112 =−=−=

SST
SSE

r .  This is a very high value of 2r , which confirms 

the authors’ claim that there is a strong linear relationship between the two variables. 
 
 
14.  

a. n = 24, 4308=Σ ix , 09.40=Σ iy , 790,7732 =Σ
i

x , 8823.762 =Σ
i

y , 

65.243,7=Σ ii yx .  
( ) 0.504

24
4308790,773

2

=−=xxS , 

( )
9153.9

24
09.40

8823.76
2

=−=yyS , and 

( )( )
8246.45

24
09.404308

65.243,7 =−=xyS .  09092.
504
8246.45ˆ

1 ===
xx

xy

S
S

β  and 

( ) 6497.14
24

4308
09092.

24
09.40ˆ

0 −=−=β .  The equation of the estimated regression 

line is xy 09092.6497.14ˆ +−= . 
 
b. When x = 182, ( ) 8997.118209092.6497.14ˆ =+−=y . So when the tank 

temperature is 182, we would predict an efficiency ratio of 1.8997. 
 
c. The four observations for which temperature is 182 are:  (182, .90), (182, 1.81), (182, 

1.94), and (182, 2.68).  Their corresponding residuals are: 9977.08997.190. −=− ,  
0877.08997.181.1 −=− , 0423.08997.194.1 =− , 7823.08997.168.2 =− .  

These residuals do not all have the same sign because in the cases of the first two pairs of 
observations, the observed efficiency ratios were smaller than the predicted value of 
1.8997.  Whereas, in the cases of the last two pairs of observations, the observed 
efficiency ratios were larger than the predicted value. 

 

d. ( )( ) 7489.58246.4509092.9153.9ˆ
1 =−=−= xyyy SSSSE β .  

4202.
9153.9
7489.5

112 =−=−=
SST
SSE

r . (42.02% of the observed variation in 

efficiency ratio can be attributed to the approximate linear relationship between the 
efficiency ratio and the tank temperature.) 
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15.  
a. The following stem and leaf display shows that: a typical value for this data is a number 

in the low 40’s. there is some positive skew in the data. There are some potential outliers 
(79.5 and 80.0), and there is a reasonably large amount of variation in the data (e.g., the 
spread 80.0-29.8 = 50.2 is large compared with the typical values in the low 40’s). 

 
2 9  
3 33 stem = tens 
3 5566677889 leaf = ones 
4 1223  
4 56689  
5 1  
5   
6 2  
6 9  
7   
7 9  
8 0  

 
b. No, the strength values are not uniquely determined by the MoE values.  For example, 

note that the two pairs of observations having strength values of 42.8 have different MoE 
values. 

 
c. The least squares line is xy 10748.2925.3ˆ += .  For a beam whose modulus of 

elasticity is x = 40, the predicted strength would be 
( ) 59.74010748.2925.3ˆ =+=y .  The value x = 100 isfar beyond the range of the x 

values in the data, so it would be dangerous (i.e., potentially misleading) to extrapolated 
the linear relationship that far. 

 
d. From the output, SSE = 18.736, SST = 71.605, and the coefficient of determination is r2 = 

.738 (or 73.8%).  The r2 value is large, which suggests that the linear relationship is a 
useful approximation to the true relationship between these two variables. 
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16.  
a.  

100500
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Rainfall volume (x) vs Runoff volume (y)

 
Yes, the scatterplot shows a strong linear relationship between rainfall volume and runoff 
volume, thus it supports the use of the simple linear regression model. 

 

b. 200.53=x , 867.42=y , 
( )

4.586,20
15

798
63040

2

=−=xxS , 

( )
7.435,14

15
643

999,41
2

=−=yyS , and 

( )( )
4.024,17

15
643798

232,51 =−=xyS .  82697.
4.586,20
4.024,17ˆ

1 ===
xx

xy

S

S
β  and 

( ) 1278.12.5382697.867.42ˆ
0 −=−=β . 

 
c. ( ) 2207.405082697.1278.150 =+−=⋅yµ . 

 

d. ( )( ) 07.3574.324,1782697.7.435,14ˆ
1 =−=−= xyyy SSSSE β .  

24.5
13

07.357
2

ˆ ==
−

==
n
SSE

s σ . 

e. 9753.
7.435,14

07.357
112 =−=−=

SST
SSE

r .  So 97.53% of the observed variation in 

runoff volume can be attributed to the simple linear regression relationship between 
runoff and rainfall. 
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17. Note: n = 23 in this study. 
a. For a one (mg /cm2) increase in dissolved material, one would expect a .144 (g/l) increase 

in calcium content.  Secondly, 86% of the observed variation in calcium content can be 
attributed to the simple linear regression relationship between calcium content and 
dissolved material. 

 
b. ( ) 878.1050144.678.350 =+=⋅yµ  

 

c. 
SST
SSE

r −== 186.2 , so ( )( ) ( )( ) 85572.4414.398.32086.1 ==−= SSTSSE .  

Then 46.1
21
85572.44

2
==

−
=

n
SSE

s  

 
 
18.  

a. 
( ) ( )( )

( ) ( )
00736023.

7500.933,54
3250.404

142525.037,13915
68.101425645.98715ˆ

21 −=
−

=
−

−
=β  

( )( )
41122185.1

15
142500736023.68.10ˆ

0 =
−−

=β , xy 007360.4112.1 −= . 

 

b. 00736023.ˆ
1 −=β  

 

c. With x now denoting temperature in Cο , 





 ++= 32

5
9ˆˆ

10 xy ββ   

( ) xx 0132484.175695.1ˆ
5
9ˆ32ˆ

110 −=++= βββ , so the new 1β̂  is -.0132484 and 

the new 175695.1ˆ
0 =β . 

 

d. Using the equation of a, predicted ( ) 0608.200ˆˆ
10 −=+= ββy , but the deflection 

factor cannot be negative. 
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19. N = 14, 3300=Σ ix , 5010=Σ iy , 750,9132 =Σ
i

x , 100,207,22 =Σ
i

y , 

500,413,1=Σ ii yx  

a. 71143233.1
500,902,1
000,256,3ˆ

1 ==β , 55190543.45ˆ
0 −=β ,  so we use the equation 

xy 7114.15519.45 +−= . 
 
b. ( ) 51.3392257114.15519.45ˆ 225 =+−=⋅Yµ  

 

c. Estimated expected change 57.85ˆ50 1 −=−= β  
 
d. No, the value 500 is outside the range of x values for which observations were available  

(the danger of extrapolation). 
 
 
20.  

a. 3651.ˆ
0 =β , 9668.ˆ

1 =β  

 
b. .8485 
 
c. 1932.ˆ =σ  
 
d. SST = 1.4533, 71.7% of this variation can be explained by the model.  Note: 

717.
4533.1
0427.1

==
SST
SSR

 which matches R-squared on output. 

 
 
21.  

a. The summary statistics can easily be verified using Minitab or Excel, etc. 
 

b. 66034186.
16.744
4.491ˆ

1 ==β , 18247148.2ˆ
0 −=β  

 

c. predicted  ( ) 72.715ˆˆ
10 =+= ββy  

 

d. ( ) 72.715ˆˆˆ 1015 =+=⋅ ββµY  
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22.  

a. 00736023.
75.933.54

325.404ˆ
1 −=

−
=β , 41122185.1ˆ

0 =β , 

( )( ) ( )( ) 049245.654.98700736023.68.1041122185.18518.7 =−−−=SSE , 

003788.
13

049245.2 ==s , and 06155.ˆ == sσ  

 

b. 
( )

24764.
15
68.10

8518.7
2

=−=SST  so 801.199.1
24764.

049245.
12 =−=−=r  

 
 
23.  

a. Using the sy i '  given to one decimal place accuracy is the answer to Exercise 19, 

( ) ( ) 64.213,160.639670...6.125150 22 =−++−=SSE .  The computation 

formula gives 
( )( ) ( )( )500,413,171143233.1501055190543.45100,207,2 −−−=SSE  

45.205,16=  
 

b. 
( )

71.235,414
14

5010
100,207,2

2

=−=SST  so 961.
71.235,414

45.205,16
12 =−=r . 

 
 
24.  

a.  

0 50 100

200

700

1200

x

y

 
 According to the scatter plot of the data, a simple linear regression model does appear to 
be plausible. 

 
b. The regression equation is y = 138 + 9.31 x 
 

c. The desired value is the coefficient of determination, %0.992 =r . 
 
d. The new equation is y* = 190 + 7.55 x*.  This new equation appears to differ 

significantly. If we were to predict a value of y* for x* = 50, the value would be 567.9, 
where using the original data, the predicted value for x = 50 would be 603.5. 
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25. Substitution of 
n

xy ii Σ−Σ
= 1

0

ˆ
ˆ β

β  and 1β̂  for bo and b1  on the left hand side of the normal 

equations yields 
( )

ii
ii yx

n
xyn

Σ=Σ+
Σ−Σ

1
1 ˆ

ˆ
β

β
 from the first equation and 

( ) ( )( )
n

xxn

n
yx

x
n

xyx iiiiii i

i

22
12

1
1

ˆ
ˆ

ˆ Σ−Σ
+

ΣΣ
=Σ+

Σ−ΣΣ β
β

β
 

ii
iiiiii yx

n
yx

n
yxn

n
yx

Σ=
ΣΣ

−
Σ

+
ΣΣ

 from the second equation. 

 
 

26. We show that when x  is substituted for x in x10
ˆˆ ββ + , y results, so that ( )yx,  is on the 

line xy 10
ˆˆ ββ +=  : yxxyx

n
xy

x ii =+−=+
Σ−Σ

=+ 111
1

10
ˆˆˆˆˆ βββ

β
ββ . 

 
 

27. We wish to find b1 to minimize ( ) ( )1
2

1 bfxby ii =−Σ .  Equating ( )1bf ′  to 0 yields 

( )( ) 02 1 =−−Σ iii xxby  so 
2

1 i
xbyx ii Σ=Σ  and 

21
i

ii

x
yx

b
Σ

Σ
= .  The least squares 

estimator of  1β̂  is thus 
21

ˆ
i

ii

x
Yx

Σ
Σ

=β . 

 
 

28.  
a. Subtracting x  from each ix  shifts the plot in a rigid fashion x  units to the left without 

otherwise altering its character.  The last squares line for the new plot will thus have the 
same slope as the one for the old plot.  Since the new line is x units to the left of the old 
one, the new y intercept (height at x = 0) is the height of the old line at x = x , which is 

yx =+ 10
ˆˆ ββ  (since from exercise 26, ( )yx, is on the old line).  Thus the new y 

intercept is y . 
 

b. We wish b0 and b1 to minimize f(b0, b1) = ( )( )[ ]2
10 xxbby ii −+−Σ .  Equating 

0b
f

∂
∂

 

to 
1b

f
∂
∂

  to  0 yields ( ) ii yxxbnb Σ=−Σ+ 10 , ( ) ( )2
10 xxbxxb ii −Σ+−Σ  

( ) ( ) iii yxxxx −Σ=−Σ= 2
.  Since ( ) 0=−Σ xxi , yb =0 , and since 

( ) ( )( )yyxxyxx iiii −−Σ=−Σ  [ because ( ) ( )xxyyxx ii −Σ=−Σ ], 11 β̂=b .  

Thus  Y=*
0β̂  and 1

*
1

ˆˆ ββ = . 
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29. For data set #1, r2 = .43 and 03.4ˆ == sσ ; whereas these quantities are .99 and 4.03 for #2, 
and .99 and 1.90 for #3.  In general, one hopes for both large r2 (large % of variation 
explained) and small s (indicating that observations don’t deviate much from the estimated 
line).  Simple linear regression would thus seem to be most effective in the third situation. 

 
 

Section 12.3 
 
30.  

a. ( ) 000,000,72 =−Σ xxi , so ( ) ( )
0175.

000,000,7
350ˆ

2

1 ==βV  and the standard 

deviation of 1β̂  is 1323.0175. = . 

 

b. ( ) 





 −

≤≤
−

=≤≤
323.1

25.15.1
323.1

25.10.1
5.1ˆ0.1 1 ZPP β  

( ) 9412.89.189.1 =≤≤−= ZP . 
 

c. Although n = 11 here and n = 7 in a, ( ) 000,100,12 =−Σ xxi  now, which is smaller 

than in a.  Because this appears in the denominator of ( )1β̂V , the variance is smaller for 
the choice of x values  in a. 

 
 
31.   

a. 00736023.ˆ
1 −=β ,  41122185.1ˆ

0 =β , so 

( )( ) ( )( ) 04925.645.98700736023.68.1041122185.18518.7 =−−−=SSE , 

003788.2 =s , 06155.=s .  
( )

00000103.
25.3662

003788.
/

ˆ
22

2
2
ˆ
1

==
Σ−Σ

=
nxx

s

ii
β

σ ,  

  ==
11

ˆˆˆ
ββ

σ s estimated s.d. of 001017.00000103.ˆ
1 ==β . 

 
b. ( )( ) ( )00516.,00956.00220.00736.001017.160.200736. −−=±−=±−  
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32. Let 1β  denote the true average change in runoff for each 1 m3 increase in rainfall.  To test the 

hypotheses 0: 1 =βoH  vs. 0: 1 ≠βaH , the calculated t statistic is 

64.22
03652.
82697.ˆ

1̂

1 ===
β

β
s

t  which (from the printout) has an associated p-value of P = 

0.000.  Therefore, since the p-value is so small, Ho is rejected and we conclude that there is a 
useful linear relationship between runoff and rainfall.   

A confidence interval for 1β  is based on n – 2 = 15 – 2 = 13 degrees of freedom. 

160.213,025. =t , so the interval estimate is  

( )( ) ( )906,.748.03652.160.282697.ˆ
1

ˆ13,025.1 =±=⋅±
β

β st .  Therefore, we can be 

confident that the true average change in runoff, for each  1 m3 increase  in rainfall, is 
somewhere between .748 m3 and .906 m3. 

 
 
33.  

a. From the printout in Exercise 15, the error d.f. = n – 2 = 25, 060.225,025. =t .  The 

confidence interval is then 

( )( ) ( )134,.081.01280.060.210748.ˆ
1

ˆ25,025.1 =±=⋅±
β

β st .  Therefore, we 

estimate with a high degree of confidence that the true average change in strength 
associated with a 1 Gpa increase in modulus of elasticity is between .081 MPa and .134 
MPa. 

 

b. We wish to test 1.: 1 =βoH  vs. 1.: 1 >βaH .  The calculated t statistic is 

58.
01280.

1.10748.1.ˆ

1̂

1 =
−

=
−

=
β

β
s

t , which yields a p-value of .277.  A large p-value 

such as this would not lead to rejecting Ho, so there is not enough evidence to contradict 
the prior belief. 

 
 
34.  

a. 0: 1 =βoH ; 0: 1 ≠βaH  

 RR: 2,2/ −> ntt α  or 106.3>t  

 29.5=t :  Reject Ho.  The slope differs significantly from 0, and the model appears to 
be useful. 

 
b. At the level 01.0=α , reject ho if the p-value is less than 0.01.  In this case, the reported 

p-value was 0.000, therefore reject Ho.  The conclusion is the same as that of part a. 
 
c. 5.1: 1 =βoH ; 5.1: 1 <βaH  

 RR: 2, −−< ntt α  or 718.2−<t  

 92.2
1829.0

5.19668.0
−=

−
=t :  Reject Ho.  The data contradict the prior belief. 
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35.  

a. We want a 95% CI for β1:     
1

ˆ15,025.1
ˆ

β
β st ⋅± .  First, we need our point estimate, 1β̂ .  

Using the given summary statistics, 
( )

019.155
17

1.222
69.3056

2

=−=xxS ,   

( )( )
112.238

17
1931.222

6.2759 =−=xyS , and  536.1
019.115
112.238ˆ

1 ===
xx

xy

S

S
β .  

We need
( )( )

715.8
17

1.222536.1193ˆ
0 −=

−
=β  to calculate the SSE: 

( )( ) ( )( ) 2494.4186.2759536.1193715.82975 =−−−=SSE .  Then 

28.5
15
2494.418

==s  and 424.
019.155

28.5
1

ˆ ==
β

s .  With ,131.215,025. =t  our 

CI is ( )424.131.2536.1 ⋅±  = ( .632, 2.440).  With 95% confidence, we estimate that 
the change in reported nausea percentage for every one-unit change in motion sickness 
dose is between .632 and 2.440. 

 
b. We test the hypotheses 0: 1 =βoH  vs 0: 1 ≠βaH , and the test statistic is 

6226.3
424.
536.1

==t .  With df=15, the two-tailed p-value = 2P( t > 3.6226) = 2( .001) 

= .002.  With a p-value of .002, we would reject the null hypothesis at most reasonable 
significance levels.  This suggests that there is a useful linear relationship between 
motion sickness dose and reported nausea. 

 
c. No.  A regression model is only useful for estimating values of nausea % when using 

dosages between 6.0 and 17.6 – the range of values sampled. 
 

d. Removing the point (6.0, 2.50), the new summary stats are:  n = 16, , 1.216=Σ ix , 

5.191=Σ iy , 69.30202 =Σ
i

x , 75.29682 =Σ
i

y , 6.2744=Σ ii yx , and then 

561.1ˆ
1 =β , 118.9ˆ

0 −=β , SSE = 430.5264, 55.5=s , 551.
1

ˆ =
β

s , and the new CI 

is ( )551.145.2561.1 ⋅± , or ( .379, 2.743).  The interval is a little wider.  But 
removing the one observation did not change it that much.  The observation does not 
seem to be exerting undue influence. 
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36.  
a. A scatter plot, generated by Minitab, supports the decision to use linear regression 

analysis. 
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b. We are asked for the coefficient of determination, r2.  From the Minitab output, r2 = .931 

( which is close to the hand calculated value, the difference being accounted for by 
round-off error.)  

 
c. Increasing x from 100 to 1000 means an increase of 900.  If, as a result, the average y 

were to increase by .6, the slope would be   0006667.
900

6.
= .  We should test the 

hypotheses 0006667.: 1 =βoH  vs.  0006667.: 1 <βaH .  The test statistic is 

601.
00007579.

0006667.00062108.
−=

−
=t , which is not significant.  There is not 

sufficient evidence that with an increase from 100 to 1000, the true average increase in y 
is less than .6. 

 

d. We are asked for a confidence interval for  1β .  Using the values from the Minitab 

output, we have ( ) )00083147,.00041069(.00007579.776.200062108. =±  
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37.  

a. n = 10, 2615=Σ ix , 20.39=Σ iy , 675,8602 =Σ ix , 94.1612 =Σ iy , 

5.453,11=Σ ii yx , so 00680058.
525,768,1

027,12ˆ
1 ==β , 14164770.2ˆ

0 =β , from 

which SSE = .09696713, s = .11009492 σ̂110.11009492. === &s , 

000262.
852,176

110.
ˆ

1
ˆ ==
β

σ  

 

b. We wish to test 0060.: 1 =βoH  vs 0060.: 1 ≠βaH .   At level .10, Ho is rejected if 

either 860.18,05. =≥ tt  or 860.18,05. −=−≤ tt . Since 

1860.106.3
000262.

0060.0068.
≥=

−
=t , Ho is rejected. 

 
 
38.  

a. From Exercise 23, which also refers to Exercise 19, SSE = 16.205.45, so 

454.13502 =s , 75.36=s , and 0997.
636.368
75.36

1ˆ
==

β
s .  Thus 

14,0005.318.42.17
0997.

711.1
tt =>== , so p-value < .001.  Because the p-value < .01,  

0: 1 =βoH  is rejected at level .01 in favor of the conclusion that the model is useful 

( )01 ≠β . 
 
b. The C.I. for 1β  is ( )( ) ( )928.1,494.1217.711.10997.179.2711.1 =±=± .  Thus 

the C.I. for  110β  is ( )28.19,94.14 . 
 
 
39. SSE = 124,039.58– (72.958547)(1574.8) – (.04103377)(222657.88) = 7.9679, and SST = 

39.828 
 

Source df SS MS f 

Regr 1 31.860 31.860 18.0 

Error 18 7.968 1.77  

Total 19 39.828   

 
 Let’s use α = .001.  Then 0.1838.1518,1,001. <=F , so 0: 1 =βoH  is rejected and the 

model is judged useful. 33041347.177.1 ==s , 8295.921,18=xxS , so 

2426.4
8295.921,18/33041347.1

04103377.
==t , and ( ) ft === 0.182426.4 22 . 
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40. We use the fact that 1β̂  is unbiased for 1β .  ( ) ( )
n

xyE
E ii Σ−Σ

= 1
0

ˆ
ˆ β

β  

( ) ( ) ( )
x

n
YE

xE
n
yE ii

11
ˆ ββ −

Σ
=−

Σ
=

( )
01101

10 βββββ
ββ

=−+=−
+Σ

= xxx
n

x i  

 
 
41.  

a. Let ( )22
ii xxnc Σ−Σ= .  Then ( ) ( ) ( )( )[ ]iiiiii YxxYYxnE

c
E ΣΣΣ−Σ= ......

1ˆ
1β  

( ) ( ) ( ) ( )∑∑∑∑ +
Σ

−+=
Σ

−= i
i

iii
i

ii x
c
x

xx
c
n

YE
c
x

YEx
c
n

1010 ββββ  

( )[ ] 1
221 β

β
=Σ−Σ ii xxn

c
. 

 

b. With ( )2xxc i −Σ= , ( )( ) ( ) iiii Yxx
c

YYxx
c

−Σ=−−Σ=
11ˆ

1β  (since 

( ) ( ) 00 =⋅=−Σ=−Σ YxxYYxx ii ), so ( ) ( ) ( )ii YVarxx
c

V 2
21

1ˆ −Σ=β  

( )
( ) ( ) nxxxx

xx
c iii

i
/

1
22

2

2

2
22

2 Σ−Σ
=

−Σ
=⋅−Σ=

σσ
σ , as desired. 

 
 

42. 
( )
s

nxx
t ii /ˆ

22

1

Σ−Σ
= β .  The numerator of 1β̂  will be changed by the factor cd (since 

both ii yxΣ  and ( )( )ii yx ΣΣ  appear) while the denominator of 1β̂  will change by the factor 

c2 (since both 2
ixΣ  and ( )2

ixΣ  appear).  Thus 1β̂  will change by the factor c
d .  Because 

( )2ˆii yySSE −Σ= , SSE will change by the factor d2, so s will change by the factor d.  

Since •  in t changes by the factor c, t itself will change by  1=⋅
d
c

c
d

, or not at all. 

 
 

43. The numerator of d is |1 – 2| = 1, and the denominator is 831.
40.324

144
= , so 

20.1
831.
1

==d .  The approximate power curve is for n – 2 df = 13, and β  is read from 

Table A.17 as approximately .1. 
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Section 12.4 
 
44.  

a. The mean of the x data in Exercise 12.15 is 11.45=x .  Since x = 40 is closer to 45.11 

than is x = 60, the quantity ( )240 x−  must be smaller than ( )260 x− .  Therefore, 

since these quantities are the only ones that are different in the two ys ˆ  values, the ys ˆ  

value for x = 40 must necessarily be smaller than the ys ˆ  for x = 60.  Said briefly, the 

closer x is to x , the smaller the value of  ys ˆ . 

 
b. From the printout in Exercise 12.15, the error degrees of freedom is df = 25. 

060.225,025. =t , so the interval estimate when x = 40 is : ( )( )179.060.2592.7 ±   

( )961.7,223.7369.592.7 =± .  We estimate, with a high degree of confidence, that 
the true average strength for all beams whose MoE is 40 GPa is between 7.223 MPa and 
7.961 MPa. 

 
c. From the printout in Exercise 12.15, s = .8657, so the 95% prediction interval is 

( ) ( ) ( )222
ˆ

2
25,025. 179.8657.060.2592.7ˆ +±=+± yssty  

( )413.9,771.5821.1592.7 =±= .  Note that the prediction interval is almost 5 times 
as wide as the confidence interval. 

 
d. For two 95% intervals, the simultaneous confidence level is at least 100(1 – 2(.05)) = 

90% 
 
 
45.  

a. We wish to find a 90% CI for 125⋅yµ :  088.78ˆ125 =y , 734.118,05. =t , and 

( )
3349.

8295.921,18
895.140125

20
1 2

ˆ =
−

+= ss y .Putting it together, we get 

( ) ( )6687.78,5073.773349.734.1088.78 =±  
 
b. We want a 90% PI:  Only the standard error changes: 

( )
3719.1

8295.921,18
895.140125

20
1

1
2

ˆ =
−

++= ss y
, so the PI is 

( ) ( )4669.80,7091.753719.1734.1088.78 =±  
 
c. Because the x* of 115 is farther away from x  than the previous value, the term 

( )2
xx −∗  will be larger, making the standard error larger, and thus the width of the 

interval is wider. 
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d. We would be testing to see if the filtration rate were 125 kg-DS/m/h, would the average 
moisture content of the compressed pellets be less than 80%.  The test statistic is 

709.5
3349.

80088.78
−=

−
=t , and with 18 df the p-value is P(t<-5.709) ˜ 0.00.  We 

would reject Ho.  There is significant evidence to prove that the true average moisture 
content when filtration rate is 125 is less than 80%. 

 
 
46.  

a. A 95% CI for  500⋅Yµ :  ( ) ( )( ) 40.50000143.311.ˆ 500 =+−=y  and 

( )

( )
03775.

23.519,131
54.471500

13
1

131.
2

ˆ 500
=

−
+=ys  , so the interval is 

( ) ( )
( ) ( )48,.32.08.40.03775.210.240.ˆ

500ˆ11,025.500 =±=±=⋅± ySty  

 
b. The width at x = 400 will be wider than that of x = 500 because x = 400 is farther away 

from the mean ( 54.471=x ). 
 
c. A 95% CI for 1β :  

( ) ( )002223,.000637.0003602.201.200143.ˆ
1

ˆ11,025.1 =±=⋅±
β

β st  

 
d. We wish to test ( ) 25.: 4000 =yH  vs. ( ) 25.: 4000 ≠yH .  The test statistic is 

( )

( )400ˆ

400 25.ˆ

ys

y
t

−
= , and we reject Ho if 201.211,025. =≥ tt .  

( ) ( ) 2614.40000143.311.ˆ 400 =+−=y  and 

( )

( )
0445.

23.519,131
54.471400

13
1

131.
2

ˆ 400
=

−
+=ys , so the calculated 

2561.
0445.

25.2614.
=

−
=t , which is not 201.2≥ , so we do not  reject Ho.  This sample 

data does not contradict the prior belief. 
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47.  
a. ( ) ( ) 95.314082697.128.1ˆ 40 =+−=y , 160.213,025. =t ; a 95% PI for runoff is 

( ) ( ) ( )69.43,21.2074.1195.3144.124.5160.295.31 22 =±=+± .  No, the 
resulting interval is very wide, therefore the available information is not very precise. 

 

b. 040,63,798 2 =Σ=Σ xx  which gives 4.586,20=xxS , which in turn gives 

( )

( )
358.1

4.586,20
20.5350

15
1

24.5
2

ˆ 50
=

−
+=ys , so the PI for runoff when x = 50 is 

( ) ( ) ( )92.51,53.2869.1122.40358.124.5160.222.40 22 =±=+± .  The 

simultaneous prediction level for the two intervals is at least ( ) %90%21100 =− α . 
 
 
48.  

a. 
( )

60.
9
6.12

24.18
2

=−=xxS ,  
( )( )

216.2
9

68.276.12
968.40 =−=xyS ;  

( )
213.8

9
68.27

3448.93
2

=−=yyS 693.3
60.
216.2ˆ

1 ===
xx

xy

S

S
β ; 

( )( )
095.2

9
6.12693.368.27ˆ

ˆ 1
0 −=

−
=

Σ−Σ
=

n
xy β

β , so the point estimate is 

( ) ( ) 445.35.1693.3095.2ˆ 5.1 =+−=y . ( ) 0293.216.2693.3213.8 =−=SSE , 

which yields 0647.
7

0293.
2

==
−

=
n
SSE

s .  Thus 

( )

( )
0231.

60.
4.15.1

9
1

0647.
2

ˆ 5.1
=

−
+=ys .  The 95% CI for 5.1⋅yµ  is 

( ) ( )50.3,390.3055.445.30231.365.2445.3 =±=± . 
 
b. A 95% PI for y when x = 1.5 is similar: 

( ) ( ) ( )607.3,283.3162.445.30231.0647.365.2445.3 22 =±=+± .  The 

prediction interval for a future y value is wider than the confidence interval for an 
average value of y when x is 1.5. 

 
c. A new PI for y when x = 1.2 will be wider since x = 1.2 is farther away from the mean 

4.1=x . 
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49. 95% CI:  (462.1, 597.7); midpoint = 529.9; 306.28,025. =t ;   

 ( ) ( )( ) 7.597ˆ306.29.529
15ˆˆ

10
=+

+ββ
s  

 ( ) 402.29ˆ
15ˆˆ

10
=

+ββ
s  

99% CI:  ( )( ) ( )5.628,3.431402.29355.39.529 =±  
 
 

50. 87349841.18ˆ
1 =β , 77862227.8ˆ

0 −=β , SSE = 2486.209, s = 16.6206 

a. ( ) 94.33018ˆˆ
10 =+ ββ , 2909.20=x , 

( )
3255.

26.3834
2909.201811

11
1 2

=
−

+ , 

262.29,025. =t , so the CI is ( )( )( )3255.6206.16262.294.330 ±  

( )18.343,70.31824.1294.330 =±=  
 

b. 
( )

0516.1
26.3834
2909.201811

11
1

1
2

=
−

++ , so the P.I. is  

( )( )( ) ( )48.370,40.29154.3994.3300516.16206.16262.294.330 =±=± . 
 
c. To obtain simultaneous confidence of at least 97% for the three intervals, we compute 

each one using confidence level 99%, (with 250.39,005. =t ).  For x = 15, the interval is 

( )67.296,97.25135.2232.274 =± .  For x = 18, 

( )52.348,36.31358.1794.330 =± .  For x = 20, 

( )53.369,85.36784.069.368 =± . 
 
 
51.  

a. 0.40 is closer to x . 
 

b. ( ) ( )( )
40.0ˆˆ2,2/10 10

ˆ40.0ˆˆ
ββαββ

+− ⋅±+ st n  or ( )( )0311.0101.28104.0 ±  

( )876.0,745.0=  
 

c. ( ) ( )20.1ˆˆ
22

2,2/10 1020.1ˆˆ ββαββ +− +⋅±+ sst n  or 

( ) ( ) ( ) ( )523,.059.0352.01049.0101.22912.0 22 =+⋅±  
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52.  
a. We wish to test 0: 1 =βoH  vs 0: 1 ≠βaH . The test statistic 

62.10
9985.
6026.10

==t  leads to a p-value of < .006 ( 2P( t > 4.0 ) from the 7 df row of 

table A.8), and Ho is rejected since the p-value is smaller than any reasonable α .  The 
data suggests that this model does specify a useful relationship between chlorine flow and 
etch rate. 

 
b. A 95% confidence interval for 1β :  ( )( ) ( )96.12,24.89985.365.26026.10 =± .  We 

can be highly confident that when the flow rate is increased by 1 SCCM, the associated 
expected change in etch rate will be between 824 and 1296 A/min. 

 

c. A 95% CI for 0.3⋅Yµ :  
( )













 −
+±

50.58
667.20.39

9
1

546.2365.2256.38
2

 

( )( ) ( )412.40,100.36156.2256.3835805.546.2365.2256.38 =±=±= , or 
3610.0 to 4041.2 A/min. 

 

d. The 95% PI is 
( )













 −
++±

50.58
667.20.39

9
1

1546.2365.2256.38
2

 

( )( ) ( )655.44,859.31398.6256.3806.1546.2365.2256.38 =±=±= , or 
3185.9 to 4465.5 A/min. 

 
e. The intervals for x* = 2.5 will be narrower than those above because 2.5 is closer to the 

mean than is 3.0. 
 
f. No.  a value of 6.0 is not in the range of observed x values, therefore predicting at that 

point is meaningless. 
 
 
53. Choice a will be the smallest, with d being largest.  a is less than b and c (obviously), and b 

and c are both smaller than d.  Nothing can be said about the relationship between b and c. 
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54.  
a. There is a linear pattern in the scatter plot, although the pot also shows a reasonable 

amount of variation about any straight line fit to the data.  The simple linear regression 
model provides a sensible starting point for a formal analysis. 

 

b. n = 141, 200,631,2,5960,825,151,1185 22 =Σ=Σ=Σ=Σ iiii yyxx , and 

850,449=Σ ii yx , from which 

,93.036,36,446887.515ˆ,060132.1ˆ
01 ==−= SSEββ  

241.
21.523,51

80.54
,80.54,08.3003,616.

1
ˆ

22 =====
β

sssr    0: 1 =βoH  vs 

0: 1 ≠βaH , 

1̂

1̂

β

β
s

t =  .  Reject Ho  at level .05 if either  179.212,025. =≥ tt  or 

179.2−≤t .  We calculate 39.4
241.

060.1
−=

−
=t .  Since 179.239.4 −≤−  Ho is 

rejected.  The simple linear regression model does appear to specify a useful relationship. 
 
c. A confidence interval for  ( )7510 ββ +  is requested.  The interval is centered at 

( ) 9.43575ˆˆ
10 =+ ββ .  ( )

( )
( )

83.14
751

22

2

75ˆˆ
10

=
Σ−Σ

−
+=

+
ii xxn

xn
n

ss
ββ

 (using s = 

54.803).  Thus a 95% CI is ( )( ) ( )7.559,6.40383.14179.29.435 =± . 
 
 
55.  

a. 1232 == xx , yet 32 yy ≠  

 
b.  

 
Based on a scatterplot of the data, a simple linear regression model does seem a 
reasonable way to describe the relationship between the two variables. 
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c. 284692.3
699

2296ˆ
1 ==β , 669528.19ˆ

0 −β , xy 285.367.19 +−=  

 

d. ( )( ) ( )( ) 0188.827022,14284692.3572669528.19634,35 =−−−=SSE ,  

094.9,70188.822 == ss . ( )
( )

6308.2
8388

5.202012
12
1

094.9
2

20ˆˆ
10

=
−

+=
+ββ

s , 

( ) 03.4620ˆˆ
10 =+ ββ , 228.210,025. =t .  The PI is ( )

2
20ˆˆ

2

10
228.203.46

ββ +
+± ss  

( )12.67,94.2409.2103.46 =±= . 
 
 

56. ( ) ( ) ( )
( ) ii

ii

ii
i Yd

xxn

Yxxxx
Y

n
xxYxxYx Σ=

Σ−Σ

−−
+=−+=+−=+ ∑∑ 2211110

1ˆˆˆˆˆ βββββ

 where 
( )( )

( )22

1

ii

i
i

xxn

xxxx
n

d
Σ−Σ

−−
+= .  Thus ( ) ( ) 222

10
ˆˆ

iii dYVardxVar Σ==+ ∑ σββ , 

which, after some algebra, yields the desired expression. 
 

Section 12.5 
 
57. Most people acquire a license as soon as they become eligible.  If, for example, the minimum 

age for obtaining a license is 16, then the time since acquiring a license, y, is usually related to 
age by the equation 16−≈ xy , which is the equation of a straight line.  In other words, the 

majority of people in a sample will have y values that closely follow the line 16−= xy . 

 
 
58.  

a. Summary values: 615,44=Σx , 425,355,1702 =Σx , 860,3=Σy , 

450,284,12 =Σy , 500,755,14=Σxy , 12=n .  Using these values we calculate 

92.572,480,4=xxS , 67.816,42=yyS , and 67.391,404=xyS .  So 

9233.==
yyxx

xy

SS

S
r . 

 
b. The value of r does not depend on which of the two variables is labeled as the x variable.  

Thus, had we let x = RBOT time and y = TOST time, the value of r would have remained 
the same. 

 
c. The value of r does no depend on the unit of measure for either variable.  Thus, had we 

expressed RBOT time in hours instead of minutes, the value of r would have remained 
the same. 
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d.  

 
 
 
 

 
 

 
 

 Both TOST time and ROBT time appear to have come from normally distributed 
populations. 

 

e. 0: 1 =ρoH  vs 0: ≠ρaH . 
21

2

r

nr
t

−

−
= ; Reject Ho at level .05 if either 

228.210,025. =≥ tt  or 228.2−≤t .  r = .923, t = 7.58, so Ho should be rejected. The 

model is useful. 
 

Av erage: 321.667
StDev : 62.3893
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59.  

a. 
( )

720,40
18

1950
970,251

2

=−=xxS , 
( )

033711.3
18
92.47

6074.130
2

=−=yyS , 

and 
( )( )

586667.339
18

92.471950
92.5530 =−=xyS , so 

9662.
033711.3720,40

586667.339
==r .  There is a very strong positive correlation 

between the two variables. 
 
b. Because the association between the variables is positive, the specimen with the larger 

shear force will tend to have a larger percent dry fiber weight.  
 
c. Changing the units of measurement on either (or both) variables will have no effect on 

the calculated value of r, because any change in units will affect both the numerator and 
denominator of r by exactly the same multiplicative constant. 

 

d. ( ) 933.966. 22 ==r  
 

e. 0: =ρoH  vs 0: >ρaH . 
21

2

r

nr
t

−

−
=  ; Reject Ho at level .01 if 

583.216,01. =≥ tt .  583.294.14
966.1

16966.
2

≥=
−

=t , so Ho should be rejected .  

The data indicates a positive linear relationship between the two variables. 
 
 

60. 0: =ρoH  vs 0: ≠ρaH . 
21

2

r

nr
t

−

−
= ; Reject Ho at level .01 if either 

819.222,005. =≥ tt  or 819.2−≤t .  r = .5778, t = 3.32, so Ho should be rejected.  There 

appears to be a non-zero correlation in the population. 
 
61.  

a.  We are testing 0: =ρoH  vs 0: >ρaH . 

7482.
359.930,628,29839.36

704.7377
==r , and 9066.3

7482.1

127482.
2

=
−

=t .  We 

reject Ho since 782.19066.3 12,05. =≥= tt .  There is evidence that a positive 

correlation exists between maximum lactate level and muscular endurance. 
 
b. We are looking for r2, the coefficient of determination.  r2 = (.7482)2 = .5598.  It is the 

same no matter which variable is the predictor. 
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62.  
a. 0: 1 =ρoH  vs 0: ≠ρaH , Reject Ho if; Reject Ho at level .05 if either 

179.212,025. =≥ tt  or 179.2−≤t .
( )

( )
74.1

449.1

12449.

1

2
22

=
−

=
−

−
=

r

nr
t .  Fail to 

reject Ho,  the data does not suggest that the population correlation coefficient differs 
from 0. 

 

b. ( ) 20.449. 2 =   so 20 percent of the observed variation in gas porosity can be accounted 
for by variation in hydrogen content. 

 
 

63. n = 6, 6572.1,9.2,7643.724,2,71.111 22 =Σ=Σ=Σ=Σ iiii yyxx , and 

915.63=Σ ii yx . 

( )( ) ( )( )
( )( ) ( ) ( )( ) ( )

7729.
9.26572.1673.1117943.724,26

9.271.111915.636
22

=
−⋅−

−
=r . 0: 1 =ρoH  

vs 0: ≠ρaH ; Reject Ho at level .05 if 776.24,025. =≥ tt . 

( )
( )

436.2
7729.1

47729.
2

=
−

=t .  Fail to reject Ho.  The data does not indicate that the 

population correlation coefficient differs from 0.  This result may seem surprising due to the 
relatively large size of r (.77), however, it can be attributed to a small sample size (6). 

 
 

64. 
( )( )

5730.
34.46596.3756

6423.757
−=

−
=r  

a. 652.
573.1

427.
ln5. −=






=v , so (12.11) is  

( ) ( )3290.,976.
26
645.1

652. −−=±− , 

and the desired interval for ρ   is ( )318.,751. −− . 
 

b. ( ) 49.23549.652. −=+−=z , so Ho cannot be rejected at any reasonable level. 

 

c. 328.2 =r  
 

d. Again, 328.2 =r  
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65.  
a. Although the normal probability plot of the x’s appears somewhat curved, such a pattern 

is not terribly unusual when n is small; the test of normality presented in section 14.2 (p. 
625) does not reject the hypothesis of population normality.  The normal probability plot 
of the y’s  is much straighter. 

 
b. 0: 1 =ρoH  will be rejected in favor of 0: ≠ρaH  at level .01 if 

355.38,005. =≥ tt .  1.1959,0.138,142,78,864 22 =Σ=Σ=Σ=Σ iiii yyxx  and 

4.322,12=Σ ii yx , so 
( )( )

913.
3880.238796.186

3992
==r  and 

( )
355.333.6

4080.
8284.2913.

≥==t , so reject Ho.  There does appear to be a linear 

relationship. 
 
 
66.  

a. We used Minitab to calculate the ri’s:  r1 = 0.192, r2 = 0.382, and r3 = 0.183.  It appears 
that the lag 2 correlation is best, but all of them are weak, based on the definitions given 
in the text. 

 

b. 2.
100
2

= .  We reject Ho if 2.≥ir .  For all lags, ri does not fall in the rejection 

region, so we cannot reject Ho.  There is not evidence of theoretical autocorrelation at the 
first 3 lags. 

 
c. If we want an approximate .05 significance level for the simultaneous hypotheses, we 

would have to use smaller individual significance level.  If the individual confidence 
levels were .95, then the simultaneous confidence levels would be approximately 
(.95)(.95)(.95) = .857. 

 
 
67.  

a. Because p-value = .00032 <  α = .001, Ho should be rejected at this significance level. 
 
b. Not necessarily.  For this n, the test statistic t has approximately a standard normal 

distribution when 0: 1 =ρoH  is true, and a p-value of .00032 corresponds to 

60.3=z  (or –3.60).  Solving 2

1
498

60.3 r
r

−=  for r yields r = .159.  This r 

suggests only a weak linear relationship between x and y, one that would typically have 
little practical import. 

 
c. 96.120.2 9998,025. =≥= tt , so Ho is rejected in favor of Ha.  The value t = 2.20 is 

statistically significant  -- it cannot be attributed just to sampling variability in the case 

0=ρ .  But with this n, r = .022 implies 022.=ρ , which in turn shows an 

extremely weak linear relationship. 
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Supplementary Exercises 
 
68.  

a. 8=n ,  76.363,48,8.621,6799,207 22 =Σ=Σ=Σ=Σ iiii yyxx  and 

8.896,15=Σ ii yx ,  which gives 133258.
543,11

20.1538ˆ
1 −=

−
=β , 

173051.81ˆ
0 =β ,  and xy 1333.173.81 −=  as the equation of the estimated line. 

 
b. We wish to test 0: 10 =βH  vs 0: 10 ≠βH .  At level .01, Ho will be rejected (and 

the model judged useful) if either 707.36,005. =≥ tt  or 707.3−≤t .  SSE = 

8.732664, s = 1.206,  and 2.4
03175.

1333.
985.37/206.1

1333.
−=

−
=

−
=t , which is 

707.3−≤ , so we do reject Ho and find the model useful. 
 

c. The larger the value of ( )∑ − 2xx i , the smaller will be 
1

ˆˆ
β

σ  and the more accurate the 

estimate will  tend to be.  For the given sxi ' , ( ) 88.14422 =−∑ xxi , whereas the 

proposed x values 0... 41 === xx , 50... 85 === xx , ( ) 50002 =−∑ xxi .  

Thus the second set of x values is preferable to the first set.  With just 3 observations at x 

= 0 and 3 at x = 50, ( ) 37502 =−∑ xxi , which is again preferable to the first set of 

sxi ' . 

 

d. ( ) ,84.7725ˆˆ
10 =+ ββ  and ( )

( )
( )22

2

25ˆˆ
251

10
ii xxn

xn
n

ss
Σ−Σ

−
+=

+ββ
 

( )
426.

543.11
875.25258

8
1

206.1
2

=
−

+= , so the 95% CI is 

( )( ) ( )88.78,80.7604.184.77426.447.284.77 =±=± .  The interval is quite 
narrow, only 2%.  This is the case because the predictive value of 25% is very close to 
the mean of our predictor sample. 
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69.  

a. The test statistic value is 

1
ˆ

1 1ˆ

β

β
s

t
−

= , and Ho will be rejected if either 

201.211,025. =≥ tt  or 201.2−≤t .  With 

5731,241,5965,243 22 =Σ=Σ=Σ=Σ iiii yyxx  and 5805=Σ ii yx , 

913819.ˆ
1 =β , 457072.1ˆ

0 =β , 126.75=SSE , 613.2=s , and 0693.
1

ˆ =
β

s , 

24.1
0693.

19138.
−=

−
=t .  Because –1.24 is neither 201.2−≤  nor 201.2≥ , Ho cannot 

be rejected.  It is plausible that 11 =β . 
 

b. 
( )( )

970.
15.128136

902,16
==r  

 
 
70.  

a. sample size = 8 
 
b. ( )xy 403964.8976038.326ˆ −=  .  When x = 35.5, 64.28ˆ =y . 
 
c. Yes, the model utility test is statistically significant at the level .01. 
 

d. 9557.09134.02 === rr  
 
e. First check to see if the value x = 40 falls within the range of x values used to generate 

the least-squares regression equation.  If it does not, this equation should not be used.  
Furthermore, for this particular model an x value of 40 yields a g value of –9.18, which is 
an impossible value for y. 

 
 
71.  

a. 5073.2 =r  
 

b. 7122.5073.2 ==+= rr  (positive because 1β̂  is positive.) 
 
c. We test test 0: 10 =βH  vs 0: 10 ≠βH .  The test statistic t = 3.93 gives p-value = 

.0013, which is < .01, the given level of significance, therefore we reject Ho and conclude 
that the model is useful. 
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d. We use a 95% CI for 50⋅Yµ .  ( ) ( ) 165718.150007570.787218.ˆ 50 =+=y , 

131.215,025. =t , s = “Root MSE” = .020308, so 

( )

( )
( ) ( )

051422.
60.719575,4117

33.425017
17
1

20308. 2

2

ˆ 50
=

−
−

+=ys .  The interval is , then, 

( ) ( )275299.1,056137.1109581.165718.1051422.131.2165718.1 =±=± . 
 
e. ( ) ( ) .0143.130007570.787218.ˆ 30 =+=y   The residual is 

2143.0143.180.ˆ −=−=− yy . 

 
 
72.  

a.  

700600500400300200100  0

30

20

10

 0

CO:

N
oy

:

Regression Plot

 
The above analysis was created in Minitab.  A simple linear regression model seems to fit 
the data well.  The least squares regression equation is xy 0436.220.ˆ +−= .  The 

model utility test obtained from Minitab produces a t test statistic equal to 12.72.  The 
corresponding p-value is extremely small.  So we have sufficient evidence to claim that 

CO∆  is a good predictor of yNO∆ . 

 
b. ( ) 228.174000436.220.ˆ =+−=y .  A 95% prediction interval produced by Minitab 

is (11.953, 22.503).  Since this interval is so wide, it does not appear that yNO∆  is 

accurately predicted. 
 
c. While the large CO∆  value appears to be “near” the least squares regression line, the 

value has extremely high leverage.  The least squares line that is obtained when 
excluding the value is xy 0346.00.1ˆ += .  The r2 value with the value included is 96% 
and is reduced to 75% when the value is excluded.  The value of s with the value 
included is 2.024, and with the value excluded is 1.96.  So the large CO∆  value does 
appear to effect our analysis in a substantial way. 
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73.  

a. n = 9, 2932.982,76.93,5958,228 22 =Σ=Σ=Σ=Σ iiii yyxx  and 

15.2348=Σ ii yx ,  giving 148919.
1638

93.243ˆ
1 −=

−
=β , 190392.14ˆ

0 =β , and 

the equation ( )xy 1489.19.14ˆ −= . 
 
b. 1β  is the expected increase in load associated with a one-day age increase (so a negative 

value of 1β  corresponds to a decrease).  We wish to test 10.: 10 −=βH  vs. 

10.: 10 −<βH  (the alternative contradicts prior belief).  Ho will be rejected at level 

.05 if 
( )

895.1
10.ˆ

7.05.
ˆ

1

1

−=−≤
−−

= t
s

t
β

β
.  With SSE = 1.4862, s = .4608, and 

0342.
182

4608.
1

ˆ ==
β

s .  Thus 43.1
0342.

11489.
−=

+−
=t .  Because –1.43 is not 

895.1−≤ , do not reject Ho. 
 

c. ,7946,306 2 =Σ=Σ ii xx  so ( ) ( )
143

12
306

7946
2

2 =−=−∑ xxi  here, as 

contrasted with 182 for the given 9 sxi ' .  Even though the sample size for the proposed 

x values is larger, the original set of values is preferable. 
 

d. ( )( ) ( ) ( )( )( ) 42.3877.4608.365.2
1638

33.25289
9
1 2

7,025. ==
−

+st , and 

( ) ,02.1028ˆˆ
10 =+ ββ  so the 95% CI is ( ).44.10,60.942.02.10 =±  

 
 
74.  

a. 0805.
713.44

5979.3ˆ
1 ==β , 6939.1ˆ

0 =β , ( )xy 0805.69.1ˆ += . 

 

b. 2254.12
2943.
5979.3ˆ

1 ==β , 4046.20ˆ
0 −=β , ( )xy 2254.1240.20ˆ +−= . 

 
c. r = .992, so r2 = .984 for either regression. 
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75.  
a. The plot suggests a strong linear relationship between x and y. 
 

b. n = 9, 4028.7,28.7,41.4334,1797 22 =Σ=Σ=Σ=Σ iiii yyxx  and 

683.178=Σ ii yx ,  so 04464854.
6.6717

931.299ˆ
1 ==β , 08259353.ˆ

0 −=β , and the 

equation of the estimated line is ( )xy 044649.08259.ˆ −−= . 
 

c. ( ) ,026146.977935.76012814028.7 =−−−=SSE   

( )
5141.1,026146.

9
28.7

4028.7
2

==−=SST , and 983.12 =−=
SST
SSE

r , so 

93.8% of the observed variation is “explained.” 
 
d. ( )( ) 7702.1.19044649.08259.ˆ 4 =−−=y , and 

0902.7702.68.ˆ44 −=−=− yy . 
 

e. s = .06112, and 002237.
4.746

06112.
1

ˆ ==
β

s , so the value of t for testing 0: 10 =βH  

vs 0: 10 ≠βH  is 96.19
002237.
044649.

==t .  From Table A.5, 408.57,0005. =t , so 

001.)0005(.2 =<− valuep .  There is strong evidence for a useful relationship. 

 
f. A 95% CI for 1β  is ( )( ) 005291.044649.002237.365.2044649. ±=±  

( )0499,.0394.= . 
 

g. A 95% CI for ( )2010 ββ +  is ( )( )( )3333356.002237.365.2810. ±   

( )858,.762.048.810. =±=  
 
 

76. Substituting x* = 0 gives the CI 
( )22

2

2,2/0
1ˆ

ii
n

xxn
xn

n
st

Σ−Σ
+⋅± −αβ .  From Example 

12.8, 621.3ˆ
0 =β , SSE = .262453, n = 14, ,182,67,5714.63,890 2 =Σ==Σ ii xxx  so  

with s = .1479, 179.212,025. =t , the CI is ( )
448,148

52.578,56
12
1

1479.179.2621.3 +±  

( )( ) ( ).84.3,40.322.62.36815.1479.179.2621.3 =±=±=  
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77. xyyySSE Σ−Σ−Σ= 10
2 ˆˆ ββ .  Substituting 

n
xy Σ−Σ

= 1
0

ˆ
ˆ β

β , SSE becomes 

( ) ( )
xy

n
yx

n
y

yxy
n

xyy
ySSE Σ−

ΣΣ
+

Σ
−Σ=Σ−

Σ−ΣΣ
−Σ= 1

1
2

2
1

12 ˆ
ˆ

ˆ
ˆ

β
β

β
β

 

( )
xyyy SS

n
yx

xy
n
y

y 11

2
2 ˆˆ ββ −=



 ΣΣ

−Σ−






 Σ
−Σ= , as desired. 

 
 
78. The value of the sample correlation coefficient using the squared y values would not 

necessarily be approximately 1.  If the y values are greater than 1, then the squared y values 
would differ from each other by more than the y values differ from one another.  Hence, the 
relationship between x and y2 would be less like a straight line, and the resulting value of the 
correlation coefficient would decrease. 

 
 
79.  

a. With =xxs ( )∑ − 2xx i , =yys ( )∑ − 2yyi , note that 
xx

yy

x

y

s

s

s

s
=  ( since the 

factor n-1 appears in both the numerator and denominator, so cancels).  Thus 

( ) ( ) ( )xx
ss

s

s

s
yxx

s

s
yxxyxy

yyxx

xy

xx

yy

xx

xy −⋅+=−+=−+=+= 110
ˆˆˆ βββ  

( )xxr
s

s
y

x

y −⋅⋅+= , as desired. 

 
b. By .573 s.d.’s above, (above, since r < 0) or (since sy = 4.3143) an amount 2.4721 above. 
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80. With xys  given in the text, 
yyxx

xy

ss

s
r =  (where e.g. =xxs ( )∑ − 2xx i ), and 

xx

xy

s

s
=1β̂ .  Also, 

2−
=

n
SSE

s  and xyyyiiii ssyxyySSE 110
2 ˆˆˆ βββ −=Σ−Σ−Σ= .  

Thus the t statistic for 0ˆ: 1 =βoH  is 

( )
( )

( ) ( )2//

/

/

ˆ
22

1

−−

⋅
=

−
=

∑ nsss

sss

xxs
t

xxxyyy

xxxxxy

i

β
 

( )
( )

222 1

2

/1

2/2

r

nr

sss

nsss

sss

ns

yyxxxy

yyxxxy

xyyyxx

xy

−

−
=

−

−
=

−

−⋅
=  as desired. 

 
 

81. Using the notation of the exercise above, yysSST =  and xyyy ssSSE 1β̂−=  

xx

xy
yy s

s
s

2

−= , so 
2

2

2

11 r
ss

s

s
s

s
s

SST
SSE

yyxx

xy

yy

xx

xy
yy

==
−

−=− , as desired. 

 
 
82.  

a. A Scatter Plot suggests the linear model is appropriate. 
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b. Minitab Output: 
 

The regression equation is 
removal% = 97.5 + 0.0757 temp 
 
Predictor        Coef       StDev          T        P 
Constant      97.4986      0.0889    1096.17    0.000 
temp         0.075691    0.007046      10.74    0.000 
 
S = 0.1552      R-Sq = 79.4%     R-Sq(adj) = 78.7% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      2.7786      2.7786    115.40    0.000 
Residual Error    30      0.7224      0.0241 
Total             31      3.5010 
 
Minitab will output all the residual information if the option is chosen, from which you 

can find the point prediction value 2933.98ˆ 5.10 =y , the observed value y = 98.41, so 

the residual = .0294. 
 

c. Roughly .1 
 
d. R2 = 79.4 
 

e. A 95% CI for  β1, using 042.230,025. =t :  

( ) ( )090079,.061303.007046.042.2075691. =±  
 
f. The slope of the regression line is steeper.  The value of s is almost doubled, and the 

value of R2 drops to 61.6%. 
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83. Using Minitab, we create a scatterplot to see if a linear regression model is appropriate. 
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A linear model is reasonable; although it appears that the variance in y gets larger as x 
increases.  The Minitab output follows: 

The regression equation is 
blood glucose level = 3.70 + 0.0379 time 
 
Predictor        Coef       StDev          T        P 
Constant       3.6965      0.2159      17.12    0.000 
time         0.037895    0.006137       6.17    0.000 
 
S = 0.5525      R-Sq = 63.4%     R-Sq(adj) = 61.7% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      11.638      11.638     38.12    0.000 
Residual Error    22       6.716       0.305 
Total             23      18.353 

The coefficient of determination of 63.4% indicates that only a moderate percentage of the 
variation in y can be explained by the change in x.  A test of model utility indicates that time 
is a significant predictor of blood glucose level. (t = 6.17, p = 0.0).  A point estimate for blood 
glucose level when time = 30 minutes is 4.833%.  We would expect the average blood 
glucose level at 30 minutes to be between 4.599 and 5.067, with 95% confidence. 

 
 
84.  

a. Using the techniques from a previous chapter, we can do a t test for the difference of two 
means based on paired data.  Minitab’s paired t test for equality of means gives  t = 3.54, 
with a p value of .002, which suggests that the average bf% reading for the two methods 
is not the same. 
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b. Using linear regression to predict HW from BOD POD seems reasonable after looking at 
the scatterplot, below. 
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The least squares linear regression equation, as well as the test statistic and p value for a 
model utility test, can be found in the Minitab output below.  We see that we do have 
significance, and the coefficient of determination shows that about 75% of the variation 
in HW can be explained by the variation in BOD. 
 

The regression equation is 
HW = 4.79 + 0.743 BOD 
 
Predictor        Coef       StDev          T        P 
Constant        4.788       1.215       3.94    0.001 
BOD            0.7432      0.1003       7.41    0.000 
 
S = 2.146       R-Sq = 75.3%     R-Sq(adj) = 73.9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      252.98      252.98     54.94    0.000 
Residual Error    18       82.89        4.60 
Total             19      335.87 

 
 

85. For the second boiler, 19=n , 125=Σ ix , 0.472=Σ iy , 36252 =Σ ix , 

82.140,372 =Σ iy  , and 5.9749=Σ ii yx , giving =1γ̂  estimated slope 

0821224.
6125

503
−=

−
= , 377551.80ˆ0 =γ , 26827.32 =SSE , 833.10202 =SSx .  

For boiler #1, n = 8, 1333.ˆ
1 −=β , 733.81 =SSE , and 875.14421 =SSx .  Thus 

,2.1
10

286.3733.8ˆ 2 =
+

=σ  095.1ˆ =σ , and 
833.1020

1
875.1442

1095.1

0821.1333.

+

+−
=t  

14.1
0448.
0512.

−=
−

= .  228.210,025. =t  and –1.14 is neither 228.2≥  nor 228.2−≤ , so 

Ho is not rejected.  It is plausible that 11 γβ = . 
 
 



393 

CHAPTER 13 
 

Section 13.1 
 
1.  

a. 15=x  and ( ) 250
2

=−∑ xx j , so s.d. of ii YY ˆ−  is 
( )

=
−

−−
250

15
5
1

110
2

ix
 

6.32, 8.37, 8.94, 8.37, and 6.32 for i = 1, 2, 3, 4, 5. 
 

b. Now  20=x  and  ( ) 1250
2

=−∑ xx i , giving standard deviations 7.87, 8.49, 8.83, 

8.94, and 2.83 for i = 1, 2, 3, 4, 5. 
 
c. The deviation from the estimated line is likely to be much smaller for the observation 

made in  the experiment of b for x = 50 than for the experiment of a when x = 25.  That 
is, the observation (50, Y) is more likely to fall close to the least squares line than is (25, 
Y). 

 
 
2. The pattern gives no cause for questioning the appropriateness of the simple linear regression 

model, and no observation appears unusual. 
 
 
3.  

a. This plot indicates there are no outliers, the variance of ε is reasonably constant, and the ε 
are normally distributed.  A straight-line regression function is a reasonable choice for a 
model.   
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b. We need Sxx = ( ) ( ) 8295.886,18
20

9.281785.914,415
2

2 =−=−∑ xxi .  Then each 

*
ie  can be calculated as follows: 

( )
8295.886,18
895.140

20
1

14427.
2

*

−
++

=
i

i
i

x

e
e .  The table 

below shows the values: 
 

standardized 
residuals 

*/ iee    
standardized 

residuals 
*/ iee  

-0.31064 0.644053  0.6175 0.64218 
-0.30593 0.614697  0.09062 0.64802 
0.4791 0.578669  1.16776 0.565003 
1.2307 0.647714  -1.50205 0.646461 

-1.15021 0.648002  0.96313 0.648257 
0.34881 0.643706  0.019 0.643881 
-0.09872 0.633428  0.65644 0.584858 
-1.39034 0.640683  -2.1562 0.647182 
0.82185 0.640975  -0.79038 0.642113 
-0.15998 0.621857  1.73943 0.631795 

 

Notice that if  *
ie  ˜ e / s, then */ iee  ˜  s . All of the */ iee ’s range between .57 and .65, 

which are close to s. 
 

c. This plot looks very much the same as the one in part a. 
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4.  
a. The (x, residual) pairs for the plot are (0, -.335), (7, -.508), (17. -.341), (114, .592), (133, 

.679), (142, .700), (190, .142), (218, 1.051), (237, -1.262),  and (285, -.719).  The plot 
shows substantial evidence of curvature. 

 
b. The standardized residuals (in order corresponding to increasing x) are -.50, -.75, -.50, 

.79, .90, .93, .19, 1.46, -1.80, and -1.12.  A standardized residual plot shows the same 
pattern as the residual plot discussed in the previous exercise.  The z percentiles for the 
normal probability plot are –1.645, -1.04, -.68, -.39, -.13, .13, .39, .68, 1.04, 1.645.  The 
plot follows.  The points follow a linear pattern, so the standardized residuals appear to 
have a normal distribution.        
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5.  
a. 97.7% of the variation in ice thickness can be explained by the linear relationship 

between it and elapsed time.  Based on this value, it appears that a linear model is 
reasonable. 

 
b. The residual plot shows a curve in the data, so perhaps a non-linear relationship exists.  

One observation (5.5, -3.14) is extreme. 
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6.  

a. 0: 1 =βoH  vs. 0: 1 ≠βaH . The test statistic is 

1̂

1
ˆ

β

β
s

t = , and we will reject Ho if 

776.24,025. =≥ tt  or if 776.2−≤t .  565.
869.12
265.7

1
ˆ ===

xxS
s

s β
, and 

97.10
565.
19268.6

==t .  Since 776.297.10 ≥ , we reject Ho and conclude that the model 

is useful. 
 

b. ( ) ( ) 49.10510.719268.614.1008ˆ 0.7 =+=y , from which the residual is 

( ) 49.549.10511046ˆ 0.7 −=−=− yy .  Similarly, the other residuals are -.73, 4.11, 

7.91, 3.58, and –9.38.  The plot of the residuals vs x follows: 

201510
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Because a curved pattern appears, a linear regression function may be inappropriate. 

 
c. The standardized residuals are calculated as 

( )
074.1

5983.165
48.140.7

6
1

1265.7

49.5
*

21 −=
−

++

−
=e , and similarly the others are  -.123, 

.624, 1.208, .587, and –1.841.  The plot of e* vs x follows : 
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This plot gives the same information as the previous plot.  No values are exceptionally 
large, but the e* of –1.841 is close to 2 std deviations away from the expected value of 0. 
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7.  
a.  
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There is an obvious curved pattern in the scatter plot, which suggests that a simple 
linear model will not provide a good fit. 

 
b. The sy 'ˆ , e’s, and e*’s are given below: 

x y ŷ  e e* 

0 110 126.6 -16.6 -1.55 

2 123 113.3 9.7 .68 

4 119 100.0 19.0 1.25 

6 86 86.7 -.7 -.05 

8 62 73.4 -11.4 -1.06 
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8. First, we will look at a scatter plot of the data, which is quite linear, so it seems reasonable to 
use linear regression. 
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The linear regression output (Minitab) follows: 
 

The regression equation is 
y = - 51.4 + 1.66 x 
 
Predictor        Coef       StDev          T        P 
Constant      -51.355       9.795      -5.24    0.000 
x              1.6580      0.1869       8.87    0.000 
 
S = 6.119       R-Sq = 84.9%     R-Sq(adj) = 83.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      2946.5      2946.5     78.69    0.000 
Residual Error    14       524.2        37.4 
Total             15      3470.7 

 
A quick look at the t and p values shows that the model is useful, and r2 shows a strong 
relationship between the two variables. 
The observation (72, 72) has large influence, since its x value is a distance from the others.  
We could run the regression again, without this value, and get the line:   
oxygen uptake = - 44.8 + 1.52 heart rate response. 
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9. Both a scatter plot and residual plot ( based on the simple linear regression model) for the first 
data set suggest that a simple linear regression model is reasonable, with no pattern or 
influential data points which would indicate that the model should be modified.  However, 
scatter plots for the other three data sets reveal difficulties. 

 
 
 
 

For data set #2, a quadratic function would clearly provide a much better fit.  For data set #3, 
the relationship is perfectly linear except one outlier, which has obviously greatly influenced 
the fit even though its x value is not unusually large or small. The signs of the residuals here 
(corresponding to increasing x) are + + + + - - - - - + -, and a residual plot would reflect this 
pattern and suggest a careful look at the chosen model.  For data set #4 it is clear that the 
slope of the least squares line has been determined entirely by the outlier, so this point is 
extremely influential (and its x value does  lie far from the remaining ones). 
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10.  

a. ( ) ( )xxyyxye iiiii −−−=−−= 110
ˆˆˆ βββ , so 

( ) ( ) 00ˆ0ˆ
11 =⋅+=−Σ−−Σ=Σ ββ xxyye iii . 

 
b. Since 0=Σ ie  always, the residuals cannot be independent.  There is clearly a linear 

relationship between the residuals.  If one eI is large positive, then al least one other eI 
would have to be negative to preserve 0=Σ ie .  This suggests a negative correlation 

between residuals (for fixed values of any n – 2, the other two obey a negative linear 
relationship). 

 

c. ( ) ( )( ) ( )










 Σ
−Σ−



 ΣΣ

−Σ=−Σ−Σ−Σ=Σ
n
x

x
n

yx
yxxxxyxyxex i

i
ii

iiiiiiiii

2
2

11
ˆˆ ββ

, but the first term in brackets is the numerator of 1β̂ , while the second term is the 

denominator of 1β̂ , so the difference becomes (numerator of 1β̂ ) – (numerator of 1β̂ ) = 
0. 

 

d. The five sei '*  from Exercise 7 above are –1.55, .68, 1.25, -.05, and –1.06, which sum to 

-.73.  This sum differs too much from 0 to be explained by rounding.  In general it is not 

true that 0* =Σ ie . 
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11.  

a. ( )
( ) ( )

( ) ∑∑ =
−Σ

−Σ−
−−=−−−=−

j
jj

j jj

jj
j

i

jiiiii Yc
xx

Yxxxx
Y

n
YxxYYYY

21
1ˆˆ β , 

where  
( )

( )2

21
1

xxn

xx
n

c
j

i
j

−Σ

−
−−=  for j = i and  

( )( )
( )2

1
1

xx

xxxx

n
c

j

ji
j

−Σ

−−
−−=  for 

ij ≠ .  Thus ( ) ( )jjii YcVarYYVar Σ=− ˆ  (since the Yj’s are independent) = 
22
jcΣσ  

which, after some algebra, gives equation (13.2). 
 

b. ( ) ( )iiiiiii YYVarYVarYYYVarYVar ˆ)ˆ()ˆˆ()(2 −+=−+==σ , so 

( ) ( )
( ) 
















−Σ
−

+−=−=− 2

2
222 1

)ˆ(ˆ
xxn

xx
n

YVarYYVar
j

i
iii σσσ , which is exactly 

(13.2). 
 

c. As ix  moves further from x , ( )2xxi −  grows larger, so )ˆ( iYVar increases (since 

( )2xxi −  has a positive sign in )ˆ( iYVar ), but ( )ii YYVar ˆ−  decreases (since 

( )2xxi −  has a negative sign). 

 
 
12.  

a. 34=Σ ie , which is not = 0, so these cannot be the residuals. 

 
b. Each  iiex  is positive (since ix  and ie  have the same sign) so 0>Σ iiex , which 

contradicts the result of exercise 10c, so these cannot be the residuals for the given x 
values. 
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13. The distribution of any particular standardized residual is also a t distribution with n – 2 d.f., 

since *
ie  is obtained by taking standard normal variable 

( )
( )

YY

ii

i

YY

ˆ

ˆ

−

−
σ

 and substituting the 

estimate of σ in the denominator (exactly as in the predicted value case).  With *
iE  denoting 

the ith standardized residual as a random variable, when n = 25 *
iE  has a t distribution with 23 

d.f. and 50.223,01. =t , so P( *
iE  outside (-2.50, 2.50)) = 

( ) ( ) 02.01.01.50.250.2 ** =+=−≤+≥ ii EPEP . 

 
 
14. space 

a. 321 == nn  (3 observations at 110 and 3 at 230), 443 == nn , 0.202.1 =y , 

0.149.2 =y , 5.110.3 =y , 0.107.4 =y , 013,2882 =ΣΣ ijy , so 

( ) ( ) ( ) ( )[ ] 43610.10745.11040.14930.2023013,288 2222 =+++−=SSPE .  

With 4480=Σ ix , 1923=Σ iy , 500,733,12 =Σ ix , 013,2882 =Σ iy  (as above), 

and 730,544=Σ ii yx , SSE = 7241 so SSLF = 7241-4361=2880.  With c – 2 = 2 and n 

– c = 10, 10.410,2,05. =F .  1440
2

2880
==MSLF  and 1.436

10
4361

==SSPE , 

so the computed value of F is 30.3
1.436

1440
= .  Since 30.3  is not 10.4≥ , we do not 

reject Ho.  This formal test procedure does not suggest that a linear model is 
inappropriate. 

   
b. The scatter plot clearly reveals a curved pattern which suggests that a nonlinear model 

would be more reasonable and provide a better fit than a linear model. 
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Section 13.2 
 
15.   

a.  

The points have a definite curved pattern.  A linear model would not be appropriate. 

b. In this plot we have a strong linear pattern.  

432

3

2

1

0

ln(x)

ln
(y

)

Scatter Plot of ln(Y) vs ln(X)

 

 
c. The linear pattern in b above would indicate that a transformed regression using the 

natural log of both x and y would be appropriate.  The probabilistic model is then 

εα β ⋅= xy  .  (The power function with an error term!) 
 
d. A regression of ln(y) on ln(x) yields the equation )ln(04920.16384.4)ln( xy −= .  

Using Minitab we can get a P.I. for y when x = 20 by first transforming the x value:  
ln(20) = 2.996.  The computer generated 95% P.I. for ln(y) when ln(x) = 2.996 is 
(1.1188,1.8712).  We must now take the antilog to return to the original units of Y: 

( ) ( )50.6,06.3, 8712.11188.1 =ee . 
 

6050403020100

15

10

5

0

x

y

Scatter Plot of Y vs X



Chapter 13:  Nonlinear and Multiple Regression 

 404 

e. A computer generated residual analysis: 
 

Looking at the residual vs. fits (bottom right), one standardized residual, corresponding to 
the third observation, is a bit large.  There are only two positive standardized residuals, 
but two others are essentially 0.  The patterns in the residual plot and the normal 
probability plot (upper left) are marginally acceptable. 

 
 

16.  

a. 72.9=Σ ix , 10.313=′Σ iy , 0976.82 =Σ ix , 013,2882 =′Σ iy , 

11.255=′Σ ii yx , (all from computer printout, where ( )178ln Ly i =′ ), from which 

6667.6ˆ
1 =β  and 6917.20ˆ

0 =β  (again from computer output).  Thus 

6667.6ˆˆ
1 == ββ  and 163,927,968ˆ 0

ˆ
== βα e . 

 
b. We first predict y′  using the linear model and then exponentiate: 

( ) 6917.2575.6667.66917.20 =+=′y , so 
116917.25

178 10438051363.1ˆˆ ×=== eLy . 

 
c. We first compute a prediction interval for the transformed data and then exponentiate.  

With 228.210,025. =t , s = .5946, and 
( )

( )
082.1

12/
95.

12
1

1 22

2

=
Σ−Σ
−

++
xx
x

, the 

prediction interval for y′   is 

( )( )( ) ( )4585.28,5917.254334.10251.27082.15496.228.20251.27 =±=± .  

The P.I. for y is then ( )4585.285917.25 ,ee . 
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17.  
a.  

501.15=′Σ ix , 352.13=′Σ iy , 228.202 =′Σ ix , 572.162 =′Σ iy , 

109.18=′′Σ ii yx , from which 254.1ˆ
1 =β  and 468.ˆ

0 −=β  so 254.1ˆˆ
1 == ββ  

and 626.ˆ 468. == −eα . 
 

b. The plots give strong support to this choice of model; in addition, r2 = .960 for the 
transformed data. 

 

c. SSE = .11536 (computer printout), s = .1024, and the estimated sd of 1β̂  is .0775, so 

07.1
0775.

33.125.1
−=

−
=t .  Since –1.07 is not 796.111,05. −=−≤ t , Ho cannot be 

rejected in favor of Ha. 
 

d. The claim that 5.25 2 ⋅⋅ = YY µµ  is equivalent to ( )ββ αα 5.225 =⋅ , or that .1=β   

Thus we wish test 1: 1 =βoH  vs. 1: 1 ≠βaH .  With 30.4
0775.

33.11
−=

−
=t  and 

RR 106.311,005. −≤− t , Ho is rejected at level .01 since 106.330.4 −≤− . 

 
 

18. A scatter plot may point us in the direction of a power function, so we try βαxy = .  We 

transform )ln( xx =′ , so )ln( xy βα += .  This transformation yields a  linear regression 

equation xy ′−= 00128.0197.  or )ln(00128.0197. xy −= .  Minitab output follows: 
 

The regression equation is 
y = 0.0197 - 0.00128 x 
 
Predictor        Coef       StDev          T        P 
Constant     0.019709    0.002633       7.49    0.000 
x          -0.0012805   0.0003126      -4.10    0.001 
 
S = 0.002668    R-Sq = 49.7%     R-Sq(adj) = 46.7% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1  0.00011943  0.00011943     16.78    0.001 
Residual Error    17  0.00012103  0.00000712 
Total             18  0.00024046 

 
The model is useful, based on a t test, with a p value of .001.  But r2 = 49.7, so only 49.7% of 
the variation in y can be explained by its relationship with ln(x).   
 
To estimate y5000, we need 51718.8)5000ln( ==′x .  A point estimate for y when x 

=5000 is y = .009906.  A 95 % prediction interval for y5000 is ( ).017555,002257.  
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19.  
a. No, there is definite curvature in the plot. 
 

b. ( ) εββ +′+=′ xY 10  where 
temp

x
1

=′  and )ln( lifetimey =′ .  Plotting y′  vs. 

x′  gives a plot which has a pronounced linear appearance (and in fact r2 = .954 for the 
straight line fit). 

 

c. 082273.=′Σ ix , 64.123=′Σ iy , 00037813.2 =′Σ ix , 88.8792 =′Σ iy , 

57295.=′′Σ ii yx , from which 4485.3735ˆ
1 =β  and 2045.10ˆ

0 −=β  (values read 

from computer output).  With x = 220, 00445.=′x  so 

( ) 7748.600445.4485.37352045.10ˆ =+−=′y  and thus 50.875ˆ ˆ == ′yey . 
 
d. For the transformed data, SSE = 1.39857, and ,6321 === nnn  44695.8.1 =′y , 

83157.6.2 =′y , 32891.5.3 =′y , from which SSPE = 1.36594, SSLF = .02993, 

33.
15/36594.1
1/02993.

==f .  Comparing this to 68.815,1,01. =F , it is clear that Ho cannot  

be rejected. 
 
 
20. After examining a scatter plot and a residual plot for each of the five suggested models as well 

as for y vs. x, I felt that the power model εα β ⋅= xY   )ln(( yy =′ vs. 

))ln( xx =′ provided the bet fit.  The transformation seemed to remove most of the curvature 

from the scatter plot, the residual plot appeared quite random, 65.1* <′ie  for every i, there 

was no indication of any influential observations, and r2 = .785 for the transformed data. 
 
 
21.  

a. The suggested model is ( ) εββ +′+= xY 10  where 
x

x
410

=′ .  The summary 

quantities are 01.159=′Σ ix , 50.121=Σ iy , 8.40582 =′Σ ix , 2.18652 =Σ iy , 

6.2281=′Σ ii yx , from which 1485.ˆ
1 −=β  and 1391.18ˆ

0 =β , and the estimated 

regression function is 
x

y
1485

1391.18 −= . 

 

b. 17.15
500

1485
1391.18ˆ500 =−=⇒= yx . 
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22.  

a. x
y

βα +=
1

, so with 
y

y
1

=′ , xy βα +=′ .  The corresponding probabilistic model 

is  εβα ++= x
y
1

. 

 

b. xe
y

βα+=− 1
1

, so x
y

βα +=







−1

1
ln .  Thus with 








−=′ 1

1
ln

y
y , xy βα +=′ .  

The corresponding probabilistic model is εβα ′++=′ xY , or equivalently 

εβα ⋅+
=

+ xe
Y

1
1

 where εε ′= e . 

 

c. ( ) ( )( ) xyey x βαβα +=== + lnlnln .  Thus with ( )( ) xyyy βα +=′=′ ,lnln .  

The probabilistic model is εβα ′++=′ xY , or equivalently, ε
βα

⋅=
+ xeeY  where 

εε ′= e . 
 
d. This function cannot be linearized. 

 
 

23. [ ] ( ) 2222
)()( ταεαεα βββ ⋅=⋅=⋅= xxx eVareeVarYVar  where we have set 

( ) 2τε =Var .  If 0>β , this is an increasing function of x so we expect more spread in y 

for large x than for small x, while the situation is reversed if 0<β .  It is important to realize 
that a scatter plot of data generated from this model will not spread out uniformly about the 
exponential regression function throughout the range of x values; the spread will only be 
uniform on the transformed scale.  Similar results hold for the multiplicative power model. 

 
 
24. 0: 10 =βH  vs 0: 1 ≠βaH .  The value of the test statistic is z = .73, with a 

corresponding p-value of .463.  Since the p-value is greater than any sensible choice of alpha 
we do not reject Ho.  There is insufficient evidence to claim that age has a significant impact 
on the presence of kyphosis. 
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25. The point estimate of 1β  is 17772.ˆ
1 =β , so the estimate of the odds ratio is 

194.117772.ˆ
1 ≈= ee β .  That is , when the amount of experience increases by one year (i.e. a 

one unit increase in x), we estimate that the odds ratio increase by about 1.194.  The z value 

of 2.70 and its corresponding p-value of .007 imply that the null hypothesis 0: 10 =βH  

can be rejected at any of the usual significance levels (e.g., .10, .05, .025, .01).  Therefore, 
there is clear evidence that 1β  is not zero, which means that experience does appear to affect 
the likelihood of successfully performing the task.  This is consistent with the confidence 
interval ( 1.05, 1.36) for the odds ratio given in the printout, since this interval does not 
contain the value 1.  A graph of π̂ appears below. 

Section 13.3 
 
26.  

a. There is a slight curve to this scatter plot.  It could be consistent with a quadratic 
regression. 

 
b. We desire R2, which we find in the output:  R2 = 93.8% 
 

c. 0: 210 == ββH  vs :aH  at least one 0≠iβ .  The test s tatistic is 

51.22==
MSE
MSR

f , and the corresponding p-value is .016.  Since the p-value < .05, 

we reject Ho and conclude that the model is useful. 
 

d. We want a 99% confidence interval, but the output gives us a 95% confidence interval of 
(452.71, 529.48), which can be rewritten as 38.3810.491 ± ;  182.33,025. =t , so 

06.12
182.3

38.38
14ˆ ==⋅ys ; Now, 841.53,005. =t , so the 99% C.I. is 

( ) ( )55.561,65.42045.7010.49106.12841.510.491 =±=± . 
 
e. 0: 20 =βH  vs 0: 2 ≠βaH .  The test statistic is t = -3.81, with a corresponding p-

value of  .032, which is < .05, so we reject Ho.  the quadratic term appears to be useful in 
this model. 
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27.  

a. A scatter plot of the data indicated a quadratic regression model might be appropriate. 
  

b. ( ) ( ) ;88.5267679.16875.15482.84ˆ 2 =+−=y  residual = 

;12.88.5253ˆ 66 =−=− yy  

 

c. 
( )

88.586
2

2 =
Σ

−Σ=
n
y

ySST i
i , so 895.

88.586
77.61

12 =−=R . 

 
d. The first two residuals are the largest, but they are both within the interval (-2, 2).  

Otherwise, the standardized residual plot does not exhibit any troublesome features.  For 
the Normal Probability Plot: 

Residual Zth percentile 

-1.95 -1.53 

-.66 -.89 

-.25 -.49 

.04 -.16 

.20 .16 
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.90 .89 

1.91 1.53 
 
 

(continued)

87654321

75

70

65

60

55

50

x

y



Chapter 13:  Nonlinear and Multiple Regression 

 410 

The normal probability plot does not exhibit any troublesome features. 

 

e. 88.52ˆ 6 =⋅Yµ  (from b) and 571.25,025.3,025. ==− tt n , so the C.I. is 

( )( ) ( )22.57,54.4834.488.5269.1571.288.52 =±=± . 
 

f. SSE = 61.77 so 35.12
5
77.612 ==s  and ( ) 90.369.135.12 2 =+ .   The P.I. is  

( )( ) ( )91.62,85.4203.1088.5290.3571.288.52 =±=± . 

 
 
28.  

a. ( ) ( ) ( ) ( ) 41.397501780.7536684.30937.11375ˆ75ˆˆˆ 22
21075 =−+−=++=⋅ βββµY

 

b. ( ) ( ) 93.2460ˆ60ˆˆˆ 2
210 =++= βββy . 

 

c. ( )( )70.2100937.11343.8386ˆˆˆ 2
210

2 −−=Σ−Σ−Σ−Σ= iiiiii yxyxyySSE βββ  

( )( ) ( )( ) 82.217780,419,10178.002,173684.3 =−−− , 

61.72
3

82.217
3

2 ==
−

=
n
SSE

s , s = 8.52 

 

d. 779.
35.987
82.217

12 =−=R  

 

e. Ho will be rejected in favor of Ha if either 841.53,005. =≥ tt  or if 841.5−≤t .  The 

computed value of t is 88.7
00226.
01780.

−=
−

=t , and since 841.588.7 −≤− , we reject 

Ho. 
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29.  
a. From computer output: 

 

:ŷ  111.89 120.66 114.71 94.06 58.69 

:ŷy −  -1.89 2.34 4.29 -8.06 3.31 

 

Thus ( ) ( ) 37.10331.3...89.1 22 =++−=SSE , 69.51
2
37.1032 ==s , 19.7=s . 

 

b. 
( )

2630
2

2 =
Σ

−Σ=
n
y

ySST i
i , so 961.

2630
37.103

12 =−=R . 

 

c. 0: 20 =βH  will be rejected in favor of 0: 2 ≠βaH  if either 303.42,025. =≥ tt  or if 

303.4−≤t .  With 83.3
480.

84.1
−=

−
=t , Ho cannot be rejected; the data does not argue 

strongly for the inclusion of the quadratic term. 
 
d. To obtain joint confidence of at least 95%, we compute a 98% C.I. for each coefficient 

using 965.62,01. =t .  For 1β  the C.I. is ( )( )01.4965.606.8 ±  ( )99.35,87.19−=  ( an 

extremely wide interval), and for 2β  the C.I. is ( )( )480.965.684.1 ±−  

( )50.1,18.5−= . 
 

e. 920.22,05. =t  and 71.114ˆ16ˆ4ˆ
210 =++ βββ , so the C.I. is ( )( )01.5920.271.114 ±  

( )34.129,08.10063.1471.114 =±= . 
 

f. If we knew  ,ˆ,ˆ,ˆ
210 βββ  the value of x which maximizes 2

210
ˆˆˆ xx βββ ++  would be 

obtained by setting the derivative of this to 0 and solving: 

.
2

02
2

1
21 β

β
ββ −=⇒=+ xx   The estimate of this is .19.2ˆ2

ˆ

2

1 =−=
β

β
x  
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30.  
a. R2 = 0.853.  This means 85.3% of the variation in wheat yield is accounted for by the 

model. 
 
b. ( )( ) ( )06.43,82.22797.41201.244.135 −−=±−  
 

c. 1500: 5.20 =⋅yH µ ;  1500: 5.2 <⋅yaH µ ;  718.2: 11,01. −=−≤ ttRR  

When x = 2.5, 15.1402ˆ =y  

83.1
5.53

150015.402,1
−=

−
=t    

Fail to reject Ho.  The data does not indicate 5.2⋅yµ  is less than 1500. 

 

d. ( ) ( ) ( ) ( )0.1725,3.10815.535.136201.215.1402 22 =+±  

 
 
31.  

a. Using Minitab, the regression equation is y = 13.6 + 11.4x - 1.72x2. 
 
b. Again, using Minitab, the predicted and residual values are: 

:ŷ  23.327 23.327 29.587 31.814 31.814 31.814 20.317 

:ŷy −  -.327 1.173 1.587 .914 .186 1.786 -.317 
 

The residual plot is consistent with a quadratic model (no pattern which would suggest 
modification), but it is clear from the scatter plot that the point (6, 20) has had a great 
influence on the fit – it is the point which forced the fitted quadratic to have a maximum 
between 3 and 4 rather than, for example, continuing to curve slowly upward to a 
maximum someplace to the right of x = 6. 
 

c. From Minitab output, s2 = MSE = 2.040, and R2 = 94.7%.  The quadratic model thus 
explains 94.7% of the variation in the observed y’s , which suggests that the model fits 
the data quite well. 
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d. ( )iii YYVarYVar ˆ)ˆ(2 −+=σ  suggests that we can estimate ( )ii YYVar ˆ−  by 
2
ˆ

2
yss −  and then take the square root to obtain the estimated standard  deviation of each 

residual.  This gives ( ) =− 2955.040.2  1.059, (and similarly for all points) 10.59, 

1.236, 1.196, 1.196, 1.196, and .233 as the estimated std dev’s of the residuals.  The 

standardized residuals are then computed as 31.
059.1
327.

−=
−

, (and similarly) 1.10, -1.28, 

-.76, .16, 1.49, and –1.28, none of which are unusually large. (Note:  Minitab regression 
output can produce these values.) The resulting residual plot is virtually identical to the 

plot of b. 31.229.
426.1
327.ˆ

−≠−=
−

=
−
s

yy
, so standardizing using just s would not 

yield the correct standardized residuals. 
 

e. )ˆ()( ff YVarYVar +  is estimated by ( ) 638.2777.040.2 2 =+ , so 

624.1638.2ˆ ==+ ff yys .  With 81.31ˆ =y  and 132.24,05. =t , the desired P.I. is 

( )( ) ( )27.35,35.28624.1132.281.31 =± . 
 
 
32.  

a. ( ) ( ) ( )32 3968.23964.22933.13463. xxxxxx −−−+−− . 
 

b. From a, the coefficient of x3 is  -2.3968, so 3968.2ˆ
3 −=β .  There sill be a contribution 

to x2 both from ( )23456.43964.2 −x  and from ( )33456.43968.2 −− x .  

Expanding these and adding yields 33.6430 as the coefficient of x2, so 6430.33ˆ
2 =β .  

 
c. 1544.5.4 =−=′⇒= xxxx ; substituting into a yields 1949.ˆ =y .  

  

d. 97.
4590.2
3968.2

−=
−

=t , which is not significant ( 0: 30 =βH  cannot be rejected), so 

the inclusion of the cubic term is not justified. 
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33.  

a. 20=x  and sx = 10.8012 so 
8012.10

20−
=′ x

x .  For x = 20, 0=′x , and 

9671.ˆˆ 0 == ∗βy .  For x = 25, 4629.=′x , so 

( ) ( ) ( ) 9407.4629.0062.4629.0176.4629.0502.9671.ˆ 32 =+−−=y . 

 

b. 
32

8012.10
20

0062.
8012.10

20
0176.

8012.10
20

0502.9671.ˆ 





 −

+





 −

−





 −

−=
xxx

y  

96034944.007290688.000446058.00000492. 23 ++− xxx . 
 

c. 00.2
0031.
0062.

==t .   We reject Ho if either 182.33,025.4,025. ==≥ − ttt n  or if 

182.3−≤t .  Since 2.00 is neither 182.3≥  nor 182.3−≤ , we cannot reject Ho; the 
cubic term should be deleted. 

 

d. ( )ii yySSE ˆ−Σ=  and the sy i 'ˆ  are the same from the standardized as from the 

unstandardized model, so SSE, SST, and R2 will be identical for the two models. 
 

e. 355538.62 =Σ iy , 664.6=Σ iy , so SST = .011410.  For the quadratic model R2 = 

.987 and for the cubic mo del, R2 = .994; The two R2 values are very close, suggesting 
intuitively that the cubic term is relatively unimportant. 

 
 
34.  

a. 9231.49=x  and sx = 41.3652 so for x = 50, 001859.
3652.41

9231.49
=

−
=′ x

x  and 

( ) ( ) 873.001859.0448.001859.3255.8733.ˆ 2
50 =+−=⋅Yµ . 

 
b. SST = 1.456923 and SSE = .117521, so R2 = .919. 
 

c. 
2

3652.41
9231.49

0448.
3652.41

9231.49
3255.8733. 






 −

+





 −

−
xx  

200002618.01048314.200887.1 xx +− . 
 

d. 
2
2

2

ˆ
ˆ

xs

∗

=
β

β  so the estimated sd of 2β̂  is the estimated sd of ∗
2β̂  multiplied by 

xs
1

: 

( ) 00077118.
3652.41
10319.

2
ˆ =






=

β
s . 

 

e. 40.1
0319.
0448.

==t  which is not significant (compared to 9,025.t±  at level .05), so the         

quadratic term should not be retained. 
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35. ( ) εβββεγβα ′+++=+++==′ 2
210

2 lnln)ln( xxxxYY  where ( )εε ln=′ , 

( )αβ ln0 = , ββ =1 , and γβ =2 .  That is, we should fit a quadratic to ( )( )yx ln, .  The 

resulting estimated quadratic (from computer output) is 20022.1799.00397.2 xx −+ , so 

,1799.ˆ =β  0022.ˆ −=γ , and 6883.7ˆ 0397.2 == eα .  (The ln(y)’s are 3.6136, 4.2499, 
4.6977, 5.1773, and 5.4189, and the summary quantities can then be computed as before.) 

 
 

Section 13.4 
 
36.  

a. Holding age, time, and heart rate constant, maximum oxygen uptake will increase by .01 
L/min for each 1 kg increase in weight.  Similarly, holding weight, age, and heart rate 
constant, the maximum oxygen uptake decreases by .13 L/min with every 1 minute 
increase in the time necessary to walk 1 mile. 

 

b. ( ) ( ) ( ) ( ) 8.114001.1213.2005.7601.0.5ˆ 140,12,20,76 =−−−+=y  L/min. 

 
c. 8.1ˆ =y  from b, and 4.=σ , so, assuming y follows a normal distribution, 

( ) ( ) 9544.0.20.2
4.

8.16.2
4.

8.100.1
60.200.1 =<<−=






 −

<<
−

=<< ZPZPYP

 
 
 
37.  

a. The mean value of y when x1 = 50 and x2 = 3 is 
( ) ( ) 9.43900.50060.800.3,50 =++−=⋅yµ  hours. 

 
b. When the number of deliveries (x2) is held fixed, then average change in travel time 

associated with a one-mile (i.e. one unit) increase in distance traveled (x1) is .060 hours.  
Similarly, when distance traveled (x1) is held fixed, then the average change in travel 
time associated with on extra delivery (i.e., a one unit increase in x2) is .900 hours. 

 
c. Under the assumption that y follows a normal distribution, the mean and standard 

deviation of this distribution are 4.9 (because x1 = 50 and x2 = 3) and 5.=σ  ( since the 
standard deviation is assumed to be constant regardless of the values of x1 and x2).  

Therefore ( ) ( ) 9861.20.2
5.

9.46
6 =≤=






 −

≤=≤ zPzPyP .  That is, in the long 

run, about 98.6% of all days will result in a travel time of at most 6 hours. 
 
 



Chapter 13:  Nonlinear and Multiple Regression 

 416 

38.  
a. mean life ( ) ( ) ( )( ) 50.143110040009.11000950.4075.7125 =−++=  
 
b. First, the mean life when x1 = 30 is equal to 

( ) ( ) 222 175.50.35730009.0950.3075.7125 xxx −=−++ .  So when the load 
increases by 1, the mean life decreases by .175.  Second, the mean life when x1 =40 is 

equal to ( ) ( ) 222 265.43540009.0950.4075.7125 xxx −=−++ .  So when the 
load increases by 1, the mean life decreases by .265. 

 
 
39.  

a. For x1 = 2, x2 = 8 (remember the units of x2 are in 1000,s) and x3 = 1 (since the outlet has 
a drive-up window) the average sales are 

( ) ( ) ( ) 3.7713.1588.622.100.10ˆ =++−=y  (i.e., $77,300 ). 
 
b. For x1 = 3, x2 = 5, and x3 = 0 the average sales are 

( ) ( ) ( ) 4.4003.1558.632.100.10ˆ =++−=y  (i.e., $40,400 ). 
 
c. When the number of competing outlets (x1) and the number of people within a 1-mile 

radius (x2) remain fixed,  the sales will increase by $15,300 when an outlet has a drive-up 
window. 

 
 
40.  

a. ( ) ( ) ( ) ( ) 96.11000006.5002.5.40.11002.52.1ˆ 100,50,5,.10 =−+−+=⋅Yµ  

 
b. ( ) ( ) ( ) ( ) 40.1300006.5002.5.40.12002.52.1ˆ 30,50,5,.20 =−+−+=⋅Yµ  

 

c. ;0006.ˆ
4 −=β  06.ˆ100 4 −=β . 

 

d. There are no interaction predictors – e.g., 415 xxx =  -- in the model.  There would be 

dependence if interaction predictors involving x4 had been included. 
 

e. 490.
2.39
0.20

12 =−=R .  For testing 0: 43210 ==== ββββH  vs. Ha: at least 

one among 41 ,...,ββ  is not zero, the test statistic is ( )
( )1

1 2

2

−−
−

=
kn

R
k

R
F .  Ho will be 

rejected if 76.225,4,05. =≥ Ff .  0.6
25

510.

4
490.

==f .  Because  76.20.6 ≥ , Ho is 

rejected and the model is judged useful (this even though the value of R2 is not all that 
impressive). 
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41. 0...: 6210 ==== βββH  vs. Ha: at least one among 61 ,...,ββ  is not zero.  The test 

statistic is ( )
( )1

1 2

2

−−
−

=
kn

R
k

R
F .  Ho will be rejected if 42.230,6,05. =≥ Ff .  

( ) 41.24
30

83.1
6

83.
==

−
f .  Because  42.241.24 ≥ , Ho is rejected and the model is judged 

useful. 
 
 
42.  

a. To test 0: 210 == ββH  vs. :aH  at least one 0≠iβ , the test statistic is 

31.319==
MSE
MSR

f  (from output).  The associated p-value is 0, so at any reasonable 

level of significance, Ho should be rejected.  There does appear to be a useful linear 
relationship between temperature difference and at leas one of the two predictors. 

 
b. The degrees of freedom for SSE = n – (k + 1) = 9 – (2 – 1) = 6 (which you could simply 

read in the DF column of the printout), and 447.26,025. =t , so the desired confidence 

interval is ( )( ) 0573.1000.34321.447.2000.3 ±=± , or about ( )057.4,943.1 .  
Holding furnace temperature fixed, we estimate that the average change in temperature 
difference on the die surface will be somewhere between 1.943 and 4.057. 

 
c. When x1 = 1300 and x2 = 7, the estimated average temperature difference is 

( ) ( ) 44.947000.313002100.56.199000.32100.56.199ˆ 21 =++−=++−= xxy
.  The desired confidence interval is then ( )( ) 864.44.94353.447.244.94 ±=± , or 

( )30.95,58.93 . 
 
d. From the printout, s = 1.058, so the prediction interval is 

( ) ( ) ( ) ( )17.97,71.91729.244.94353.058.1447.244.94 22 =±=+± . 
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43.  
a. x1 = 2.6,  x2 = 250, and x1x2 = (2.6)(250) = 650, so 

( ) ( ) ( ) 313.486500888.02503015.06.297.4549.185ˆ =+−−=y  
 

b. No, it is not legitimate to interpret 1β  in this way.  It is not possible to increase by 1 unit 
the cobalt content, x1, while keeping the interaction predictor, x3, fixed.  When x1 
changes, so does x3, since x3 = x1x2. 

 
c. Yes, there appears to be a useful linear relationship between y and the predictors.   We 

determine this by observing that the p-value corresponding to the model utility test is < 
.0001 (F test statistic = 18.924). 

 

d. We wish to test 0: 30 =βH  vs. 0: 3 ≠βaH .  The test statistic is t=3.496, with a 

corresponding p-value of .0030.  Since the p-value is < alpha = .01, we reject Ho and 
conclude that the interaction predictor does provide useful information about y. 

 
e. A 95% C.I. for the mean value of surface area under the stated circumstances requires the 

following quantities: 
( ) ( ) ( )( ) 598.3150020888.05003015.0297.4549.185ˆ =+−−=y .  Next, 

120.216,025. =t , so the 95% confidence interval is 

( )( ) ( )5408.41,6552.219428.9598.3169.4120.2598.31 =±=±  
 
 
44.  

a. Holding starch damage constant, for every 1% increase in flour protein, the absorption 
rate will increase by 1.44%.  Similarly, holding flour protein percentage constant, the 
absorption rate will increase by .336% for every 1-unit increase in starch damage. 

 
b. R2 = .96447, so 96.447% of the observed variation in absorption can be explained by the 

model relationship. 
 
c. To answer the question, we test 0: 210 == ββH  vs :aH  at least one 0≠iβ .  The 

test statistic is 31092.339=f , and has a corresponding p-value of zero, so at any 

significance level we will reject Ho.  There is a useful relationship between absorption 
and at least one of the two predictor variables. 

 

d. We would be testing :aH 02 ≠β .  We could calculate the test statistic 
2

2

β

β
s

t = , or we 

could look at the 95% C.I. given in the output.  Since the interval (.29828, 37298) does 
not contain the value 0, we can reject Ho and conclude that ‘starch damage’ should not be 
removed from the model. 

 
e. The 95% C.I. is ( )( ) ( )974.42,532.41721.0253.42350.060.2253.42 =±=± . 

The 95% P.I. is 

( )( ) ( )619.44,887.39366.2253.42350.09412.1060.2253.42 22 =±=+± . 
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f. We test 0: 3 ≠βaH , with 428.2
01773.
04304.

−=
−

=t .  The p-value is approximately 

2(.012) = .024.  At significance level .01 we do not reject Ho.  The interaction term 
should not be retained. 

 
 
45.  

a. The appropriate hypotheses are 0: 43210 ==== ββββH  vs. :aH  at least one 

0≠iβ .  The test statistic is ( )
( )

( ) 20,4,001.
20

946.1
4

946.

1
1

10.76.872

2

Ff
kn

R
k

R
=≥===

−
−−

−
 (the 

smallest available significance level from Table A.9), so we can reject Ho at any 
significance level.  We conclude that at least one of the four predictor variables appears 
to provide useful information about tenacity. 

 

b. The adjusted R2 value is 
( ) ( )

( )21
1

1
1

1
1

1 R
kn

n
SST
SSE

kn
n

−
+−

−
−=








+−
−

−  

( ) 935.946.1
20
24

1 =−−= , which does not differ much from R2 = .946. 

 
c. The estimated average tenacity when x1 = 16.5,  x2 = 50, x3 = 3, and x4 = 5 is 

xxxxy 219.256.113.082.121.6ˆ −++−=  

( ) ( ) ( ) ( ) 091.105219.3256.50113.5.16082.121.6ˆ =−++−=y .  For a 99% C.I., 

845.220,005. =t , so the interval is ( ) ( )087.11,095.9350.845.2091.10 =± .  Therefore, 

when the four predictors are as specified in this problem, the true average tenacity is 
estimated to be between 9.095 and 11.087. 

 
 
46.  

a. Yes, there does appear to be a useful linear relationship between repair time and the two 
model predictors.  We determine this by conducting a model utility test: 

0: 210 == ββH  vs. :aH  at least one 0≠iβ .  We reject Ho if 26.49,2,05. =≥ Ff .  

The calculated statistic is 
( )

( ) 91.22
232.
315.5

9
9.20

2
63.10

1

=====
−− MSE

MSR
f

kn
SSE

k
SSR

.  Since 

26.491.22 ≥ , we reject Ho and conclude that at least one of the two predictor variables 
is useful. 

 
b. We will reject 0: 20 =βH  in favor of :aH  02 ≠β if 25.39,005. =≥ tt .  The test 

statistic is 01.4
312.
250.1 ==t  which is 25.3≥ , so we reject Ho and conclude that the “type of 

repair” variable does provide useful information about repair time, given that the 
“elapsed time since the last service” variable remains in the model. 
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c. A 95% confidence interval for 3β  is: ( )( ) ( )9557.1,5443.312.262.2250.1 =± .  We 

estimate, with a high degree of confidence, that when an electrical repair is required the 
repair time will be between .54 and 1.96 hours longer than when a mechanical repair is 
required, while the “elapsed time” predictor remains fixed. 

 
d. ( ) ( ) 6.41250.16400.950.ˆ =++=y , 23222.2 == MSEs , and 25.39,005. =t , so the  

99% P.I. is ( ) ( ) ( ) 69.16.4192.23222.25.36.4 2 ±=+±  ( )29.6,91.2=   The 

prediction interval is quite wide, suggesting a variable estimate for repair time under 
these conditions. 

 
 
47.  

a. For a 1% increase in the percentage plastics, we would expect a 28.9 kcal/kg increase in 
energy content.  Also, for a 1% increase in the moisture, we would expect a 37.4 kcal/kg 
decrease in energy content. 

 

b. The appropriate hypotheses are 0: 43210 ==== ββββH  vs. :aH  at least one 

0≠iβ .  The value of the F test statistic is 167.71, with a corresponding p-value that is 

extremely small.  So, we reject Ho and conclude that at least one of the four predictors is 
useful in predicting energy content, using a linear model. 

 

c. 0: 30 =βH  vs. :aH  03 ≠β .  The value of the t test statistic is t = 2.24, with a 

corresponding p-value of .034, which is less than the significance level of .05. So we can 
reject Ho and conclude that percentage garbage provides useful information about energy 
consumption, given that the other three predictors remain in the model. 

 
d. ( ) ( ) ( ) ( ) 5.150545354.3740297.425644.720925.289.2244ˆ =−+++=y , 

and 060.225,025. =t . (Note an error in the text: 47.12ˆ =ys , not 7.46).  So a 95% C.I 

for the true average energy content under these circumstances is 
( )( ) ( )1.1531,8.147969.255.150547.12060.25.1505 =±=± .  Because the 

interval is reasonably narrow, we would conclude that the mean energy content has been 
precisely estimated.  

 
e. A 95% prediction interval for the energy content of a waste sample having the specified 

characteristics is  ( ) ( ) ( )22 47.1248.31060.25.1505 +±  

( )2.1575,7.143575.695.1505 =±= . 
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48.  
a. 0...: 9210 ==== βββH  

:aH  at least one 0≠iβ  

RR: 16.105,9,01. =≥ Ff  

( )
( )

( )
( )

41.8
5

938.1
9

938.

1
1 2

2

===
−

−−
−

kn
R

k
R

f  

Fail to reject Ho .  The model does not appear to specify a useful relationship. 
 

b. 967.21ˆ =yµ , 571.25,025.)1(,2/ ==+− tt knα , so the C.I. is 

( )( ) ( )18.25,76.18248.1571.2967.21 =± . 
 

c. 6758.4
5
379.23

)1(
2 ==

+−
=

kn
SSE

s , and the C.I. is 

( ) ( ) ( )39.28,55.15248.16758.4571.2967.21 2 =+± . 
 

d. ,379.23=kSSE  ,82.203=lSSE  

0...: 9540 ==== βββH  

:aH  at least one of the above 0≠iβ  

RR: 95.45,6,05.)1(,, ==≥ +−− FFf knlkα  

( )
( )

( )
( )

43.6
5

379.23
39

379.2382.203

== −
−

f .   

Reject Ho. At least one of the second order predictors appears useful. 
 
 
49.  

a. ;8303.96ˆ 43,9.18 =⋅yµ  Residual = 91 – 96.8303 = -5.8303. 

 
b. 0: 210 == ββH ; :aH  at least one 0≠iβ  

RR: 02.89,2,05. =≥ Ff  

( )
( )

( ) 90.14
9

768.1
2

768.

1
1 2

2

===
−

−−
−

kn
R

k
R

f .  Reject Ho.  The model appears useful. 

 
c. ( )( ) ( )38.115,28.7820.8262.28303.96 =±  
 

d. ( ) ( )16.155,50.3820.845.24262.28303.96 22 =+±  
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e. We find the center of the given 95% interval, 93.875, and half of the width, 57.845.  This 
latter value is equal to  )(262.2)( ˆˆ9,025. yy sst = , so 5725.25ˆ =ys .  Then the 90% 

interval is ( )( ) ( )659.140,911.465725.25833.1785.93 =±  
 

f. With the p-value for 0: 1 ≠βaH  being 0.208 (from given output), we would fail to 

reject Ho.  This factor is not significant given x2 is in the model. 
 

g. With 768.2 =kR  (full model) and 721.2 =lR  (reduced model), we can use an 

alternative f statistic (compare formulas 13.19 and 13.20).  
)1(

)1( 2

22

+−
−

−
−

=
kn

R

lk
RR

k

lk

F .  With 

n=12, k=2 and l=1, we have 83.1
0257.
047.721.768.

9
)768.1(

==
−

=
−

F .  

85.1)36.1( 22 =−=t .  The discrepancy can be attributed to rounding error. 
 
 
50.  

a. Here k = 5, n – (k+1) = 6, so Ho will be rejected in favor of Ha at level .05 if either 

447.26,025. =≥ tt  or 447.2−≤t .  The computed value of t is 59.
94.

557.
==t , so 

Ho cannot be rejected and inclusion of  x1x2 as a carrier in the model is not justified. 
 
b. No, in the presence of the other four carriers, any particular carrier is relatively 

unimportant, but this is not equivalent to the statement that all carriers are unimportant. 
 

c. ( ) ,65.32241 2 =−= RSSTSSEk  so 
( )

( ) 34.1
6

65.3224
3

65.322418.5384

==
−

f , and since 1.34 is 

not  76.46,3,05. =≥ F , Ho cannot be rejected; the data does not argue for the inclusion 

of any second order terms. 
 
 
51.  

a. No, there is no pattern in the plots which would indicate that a transformation or the 
inclusion of other terms in the model would produce a substantially better fit.  

 
b. k = 5, n – (k+1) = 8, so 0...: 510 === ββH  will be rejected if 

;69.38,5,05. =≥ Ff  
( )

( ) 69.304.5
8

241.
5

759.

≥==f , so we reject Ho.  At least one of the 

coefficients is not equal to zero. 
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c. When x1 = 8.0 and x2 = 33.1 the residual is e = 2.71 and the standardized residual is e* = 
.44; since e* = e/(sd of the residual), sd of residual = e/e* = 6.16.  Thus the estimated 

variance of Ŷ  is ( ) ( ) 915.1016.699.6 22 =− , so the estimated sd is 3.304.  Since 

29.24ˆ =y  and 306.28,025. =t , the desired C.I. is 

( ) ( )91.31,67.16304.3306.229.24 =± . 
 
d. 07.48,3,05. =F , so 0: 5430 === βββH  will be rejected if 07.4≥f .  With 

,88.390,8 2 == sSSEk  and 
( )

( ) 44.3
8

88.390
3

88.39095.894

==
−

f , and since 3.44 is not 

07.4≥ , Ho cannot be rejected and the quadratic terms should all be deleted. (n.b.: this is 
not a modification which would be suggested by a residual plot. 

 
 
52.  

a. The complete 2nd order model obviously provides a better fit, so there is a need to 
account for interaction between the three predictors. 

 
b. A 95% CI for y when x1=x2=30 and x3=10 is 

( ) ( )7036,.6279.01785.120.266573. =±  
 
 
53. Some possible questions might be: 

Is this model useful in predicting deposition of poly-aromatic hydrocarbons? A test of model 
utility gives us an F = 84.39, with a p-value of 0.000.  Thus, the model is useful. 

Is x1 a significant predictor of y while holding x2 constant?  A test of 0: 10 =βH  vs the 

two-tailed alternative gives us a t = 6.98 with a p-value of 0.000., so this predictor is 
significant. 

A similar question, and solution for  testing x2 as a predictor yields a similar conclusion: With 
a p-value of 0.046, we would accept this predictor as significant if our significance level 
were anything larger than 0.046. 

 
 
54.  

a. For  14321 +==== xxxx ,  390.85050....258.650.67.84ˆ =++−+=y .  

The single y corresponding to these ix  values is 85.4, so 

010.390.854.85ˆ =−=− yy . 

 
b. Letting 41 ,...,xx ′′  denote the uncoded variables, ,3.1. 11 +=′ xx  ,3.1. 22 +=′ xx  

,5.233 +=′ xx  and 16015 44 +=′ xx ; Substitution of  ,310 11 −′= xx  

,310 22 −′= xx  ,5.233 −′= xx  and 
15

1604
4

+′
=

x
x  yields the uncoded function. 
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c. For the full model k = 14 and for the reduced model l – 4, while n – (k + 1) = 16.  Thus  
0...: 1450 === ββH  will be rejected if  49.216,10,05. =≥ Ff .  

( )SSTRSSE 21−=  so 9845.1=kSSE  and 8146.4=lSSE ,  giving  
( )

( ) 28.2
16

9845.1
10

9845.18146.4

==
−

f .  Since 2.28 is not 49.2≥ , Ho cannot be rejected, so all 

higher order terms should be deleted. 
 
d. 0.85: 0,0,0,00 =⋅YH µ  will be rejected in favor of 0.85: 0,0,0,0 <⋅YaH µ  if 

706.126,05. −=−≤ tt .  With 5548.85ˆˆ 0 == βµ , 19.7
0772.

855548.85
=

−
=t , 

which is certainly not 706.1−≤ , so Ho is not rejected and prior belief is not 
contradicted by the data. 

 
 

Section 13.5 
 
55.  

a. εβββεγβα ′+++=+++== 22110)ln()ln()ln()ln()ln( xxbaYQ  where 

γβββαβ ===== 21021 ,),ln(),ln(),ln( bxax  and )ln(εε =′ .  Thus we 

transform to ( ) ( )( ))ln(),ln(,ln,, 21 baQxxy =  (take the natural log of the values of 
each variable) and do a multiple linear regression.  A computer analysis gave  

5652.1ˆ
0 =β , 9450.ˆ

1 =β , and 1815.ˆ
2 =β .  For a = 10 and b = .01, x1 = ln(10) = 

2.3026 and x2 = ln(.01) = -4.6052, from which 9053.2ˆ =y  and 27.18ˆ 9053.2 == eQ . 
 
b. Again taking the natural log, )ln()ln()ln( εγβα +++== baQY , so to fit this 

model it is necessary to take the natural log of each Q value (and not transform a or b) 
before using multiple regression analysis. 

 

c. We simply exponentiate each endpoint: ( ) ( )78.5,24.1, 755.1217. =ee . 
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56.  
a. ( ) 141,5,20 =+−== knkn , so 0...: 510 === ββH  will be rejected in favor 

of :aH at least one among 0,..., 51 ≠ββ , if 69.414,5,01. =≥ Ff .  With 

( )

( ) 69.432.9
14

231.
5

769.

≥==f , so Ho is rejected.  Wood specific gravity appears to be 

linearly related to at lest one of the five carriers. 
 

b. For the full model, adjusted 
( )( )

687.
14

5769.192 =
−

=R , while for the reduced 

model, the adjusted 
( )( )

707.
15

4769.192 =
−

=R . 

 

c. From a, ( )( ) 004542.0196610.231. ==kSSE , and 

( )( ) 006803.0196610.346. ==lSSE , so 
( )

( ) 32.2
14

004542.
3

002261.

==f .  Since 

34.314,3,05. =F  and 2.32 is not 34.3≥ , we conclude that 0421 === βββ . 

 

d. 4665.
4447.5

540.523
3 −=

−
=′

x
x  and 2196.

6660.3
195.895

5 =
−

=′
x

x , so 

( )( ) ( )( ) 5386.2196.0097.4665.0236.5255.ˆ =+−−=y . 
 
e. 110.217,025. =t  (error df = n – (k+1) = 20 – (2+1) = 17 for the two carrier model), so 

the desired C.I. is  ( ) ( )0139.,0333.0046.110.20236. −−=±− . 
 

f. 





 −

+





 −

−=
6660.3

195.89
0097.

4447.5
540.52

0236.5255. 53 xx
y , so 3β̂  for the 

unstandardized model 004334.
447.5
0236.

−=
−

= .  The estimated sd of the 

unstandardized 3β̂  is 000845.
447.5

0046.
−== . 

 

g. 532.ˆ =y  and 02058.
55330

ˆˆˆ
2 =+ ′+′+ xx

ss
βββ

, so the P.I. is 

( )( ) ( )575,.489.043.532.02058.110.2532. =±=± . 
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57.  

k 
R2 

Adj. R2 ( ) nk
s

SSE
C k

k −++= 12
2

 

1 .676 .647 138.2 

2 .979 .975 2.7 

3 .9819 .976 3.2 

4 .9824  4 

 Where s2 = 5.9825 
 

a. Clearly the model with k = 2 is recommended on all counts. 
 
b. No.  Forward selection would let x4 enter first and would not delete it at the next stage. 

 
 
58. At step #1 (in which the model with all 4 predictors was fit), t = .83 was the t ratio smallest in 

absolute magnitude.  The corresponding predictor x3 was then dropped from the model, and a 
model with predictors x1, x2, and x4 was fit.  The t ratio for x4 , -1.53, was the smallest in 
absolute magnitude and 1.53 < 2.00, so the predictor x4 was deleted.  When the model with 
predictors x1 and x2 only was fit, both t ratios considerably exceeded 2 in absolute value, so 
no further deletion is necessary. 

 
 
59. The choice of a “best” model seems reasonably clear–cut.  The model with 4 variables 

including all but the summerwood fiber variable would seem bests.  R2 is as large as any of 
the models, including the 5 variable model. R2 adjusted is at its maximum and CP is at its 
minimum .  As a second choice, one might consider the model with k = 3 which excludes the 
summerwood fiber and springwood % variables. 

 
 
60. Backwards Stepping: 

 
Step 1:  A model with all 5 variables is fit; the smallest t-ratio is t = .12, associated with 

variable x2 (summerwood fiber %).  Since t = .12 < 2, the variable x2 was eliminated. 
Step 2:  A model with all variables except x2 was fit.   Variable x4 (springwood light 

absorption) has the smallest t -ratio (t = -1.76), whose magnitude is smaller than 2.  
Therefore, x4 is the next variable to be eliminated. 

Step 3:  A model with variables x3 and x5 is fit.  Both t-ratios have magnitudes that exceed 2, 
so both variables are kept and the backwards stepping procedure stops at this step.  The 
final model identified by the backwards stepping method is the one containing x3 and x5. 

 
(continued) 
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Forward Stepping: 
 
Step 1:  After fitting all 5 one-variable models, the model with x3 had the t-ratio with the 

largest magnitude (t = -4.82).  Because the absolute value of this t-ratio exceeds 2, x3 was 
the first variable to enter the model. 

Step 2:  All 4 two-variable models that include x3 were fit.  That is, the models {x3, x1},  {x3, 
x2}, {x3, x4}, {x3, x5} were all fit.  Of all 4 models, the t-ratio 2.12 (for variable x5) was 
largest in absolute value.  Because this t-ratio exceeds 2, x5 is the next variable to enter 
the mo del. 

Step 3:  (not printed):  All possible tree-variable models involving x3 and x5 and another 
predictor,  None of the t-ratios for the added variables have absolute values that exceed 2, 
so no more variables are added.  There is no need to print anything in this case, so the 
results of these tests are not shown. 

Note;  Both the forwards and backwards stepping methods arrived at the same final model, 
{x3, x5}, in this problem.  This often happens, but not always.  There are cases when the 
different stepwise methods will arrive at slightly different collections of predictor 
variables.  

 
 
61. If multicollinearity were present, at least one of the four R2 values would be very close to 1, 

which is not the case.  Therefore, we conclude that multicollinearity is not a problem in this 
data. 

 
 

62. Looking at the h ii column and using ( )
421.

19
812

==
+

n
k  as the criteria, three observations 

appear to have large influence.  With h ii values of .712933, .516298, and .513214, 
observations 14, 15, 16, correspond to response (y) values 22.8, 41.8, and 48.6. 

 
 
63. We would need to investigate further the impact these two observations have on the equation.  

Removing observation #7 is reasonable, but removing #67 should be considered as well, 
before regressing again. 

 
 
64.  

a. 
( )

;6.
10
612

==
+

n
k

 since h44 > .6, data point #4 would appear to have large influence.  

(Note:  Formulas involving matrix algebra appear in the first edition.) 
 

b. For data point #2, ( ) ( )920.4453.312 −=′x , so ( ) =− 2
ˆˆ ββ  

( )
















−
−

−

=















−=

















−

′
−
− −

127.
180.

333.

1156.
1644.

3032.

0974.1
920.4

453.3

1

302.1
766. 1XX  and similar 

calculations yield ( )















−=−

030.
040.

106.
ˆˆ

4ββ . 
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c. Comparing the changes in the si 'β̂  to the ss
i
'

β̂
, none of the changes is all that 

substantial (the largest is 1.2sd’s for the change in 1β̂  when point #2 is  deleted).  Thus 
although h44 is large, indicating a potential high influence of point #4 on the fit, the actual 
influence does not appear to be great. 

 
 

Supplementary Exercises 
 
65.  

a.  

cracked not cracked

200

700

1200

prism qualilty

pp
v

Boxplots of ppv by prism quality

(means are indicated by solid circles)

 
A two-sample t confidence interval, generated by Minitab: 
Two sample T for ppv 
 
prism qu     N      Mean     StDev   SE Mean 
cracked     12       827       295        85 
not cracke  18       483       234        55 
 
95% CI for mu (cracked   ) - mu (not cracke): ( 132,  557) 
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b. The simple linear regression results in a significant model,  r2 is .577, but we have an 
extreme observation, with std resid = -4.11.  Minitab output is below.  Also run, but not 
included here was a model with an indicator for cracked/ not cracked, and for a model 
with the indicator and an interaction term.  Neither improved the fit significantly. 

 
The regression equation is 
ratio = 1.00 -0.000018 ppv 
 
Predictor        Coef       StDev          T        P 
Constant      1.00161     0.00204     491.18    0.000 
ppv       -0.00001827  0.00000295      -6.19    0.000 
 
S = 0.004892    R-Sq = 57.7%     R-Sq(adj) = 56.2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1  0.00091571  0.00091571     38.26    0.000 
Residual Error    28  0.00067016  0.00002393 
Total             29  0.00158587 
 
Unusual Observations 
Obs        ppv      ratio         Fit   StDev Fit    Residual    St Resid 
 29       1144   0.962000    0.980704    0.001786   -0.018704       -4.11R  
 
R denotes an observation with a large standardized residual 
 
 

66.  
a. For every 1 cm-1 increase in inverse foil thickness (x), we estimate that we would expect 

steady-state permeation flux to increase by 2/26042. cmAµ .  Also, 98% of the 

observed variation in steady-state permeation flux can be explained by its relationship to 
inverse foil thickness. 

 
b. A point estimate of flux when inverse foil thickness is 23.5 can be found in the 

Observation 3 row of the Minitab output: 2/722.5ˆ cmAy µ= . 

 
c. To test model usefulness, we test the hypotheses 0: 10 =βH  vs. 0: 1 ≠βaH .  The 

test statistic is t = 17034, with associated p-value of .000, which is less than any 
significance level, so we reject Ho and conclude that the model is useful. 

 
d. With 447.26,025. =t , a 95% Prediction interval for Y(45) is 

( ) ( )585.12,057.10264.1321.11253.203.447.2321.11 2 =±=+± .  That is, 

we are confident that when inverse foil thickness is 45 cm-1, a predicted value of steady-

state flux will be between 10.057 and 12.585 2/ cmAµ . 
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e.  
 
 

 
 

The normal plot gives no indication to question the normality assumption, and the 
residual plots against both x and y (only vs x shown) show no detectable pattern, so we 
judge the model adequate.  

 
 
67.  

a. For a one-minute increase in the 1-mile walk time, we would expect the VO2max to 
decrease by .0996, while keeping the other predictor variables fixed. 

 
b. We would expect male to have an increase of .6566 in VO2max over females, while 

keeping the other predictor variables fixed. 
 
c. ( ) ( ) ( ) ( ) 67.31400880.110996.1700096.16566.5959.3ˆ =−−++=y .  The 

residual is ( ) 52.67.315.3ˆ −=−=y . 
 

d. ,706.
3922.102
1033.30

112 =−=−=
SST
SSE

R  or 70.6% of the observed variations in 

VO2max can be attributed to the model relationship. 
 

e. 0: 43210 ==== ββββH  will be rejected in favor of :aH at least one among 

0,..., 41 ≠ββ , if 25.815,4,05. =≥ Ff .  With 
( )

( ) 25.8005.9
15

706.1
4

706.

≥==
−

f , so Ho 

is rejected.  It appears that the model specifies a useful relationship between VO2max and 
at least one of the other predictors. 
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68.  
a.  

 

Yes, the scatter plot of the two transformed variables appears quite linear, and thus 
suggests a linear relationship between the two. 
 

b. Letting y denote the variable ‘time’, the regression model for the variables y′  and x′  is 

( ) εβα ′+′+=′= xyy10log .  Exponentiating (taking the antilogs of ) both sides 

gives  ( ) ( )( ) εγ γεβαεβα ⋅=== ′′++ 1
0

log 101010 xxy x ; i.e., the model is 

εγ γ ⋅= 1
0 xy  where αγ =0  and βγ =1 .  This model is often called a “power 

function” regression model. 
 
c. Using the transformed variables y′  and x′ , the necessary sums of squares are 

( )( )
1615.11

16
69.214.42

640.68 =−=′′yxS  and 

( )
98.13

16
4.42

34.126
2

=−=′′xxS .  Therefore 79839.
98.13

1615.11ˆ
1 ===

′′

′′

xx

yx

S

S
β  

and ( ) 76011.
16

4.42
79839.

16
69.21ˆ

0 −=





−=β .  The estimate of 1γ  is 

7984.ˆ1 =γ and 1737.1010 76011.
0 === −αγ .  The estimated power function model 

is then 7984.1737. xy = .  For x = 300, the predicted value of y is 

( ) 502.163001737.ˆ 7984.=y , or about 16.5 seconds. 
 
 

1 2 3 4

0

1
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3

Log(edge

Lo
g(
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e

Scatter Plot of Log(edges) vs Log(time)
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69.  
a. Based on a scatter plot (below), a simple linear regression model would not be 

appropriate.  Because of the slight, but obvious curvature, a quadratic model would 
probably be more appropriate. 

 

 
b. Using a quadratic model, a Minitab generated regression equation is 

20024753.7191.1423.35ˆ xxy −+= , and a point estimate of temperature when 

pressure is 200 is 23.280ˆ =y .  Minitab will also generate a 95% prediction interval of 
(256.25, 304.22).  That is, we are confident that when pressure is 200 psi, a single value 

of temperature will be between 256.25 and 304.22 Fο . 
 
 
70.  

a. For the model excluding the interaction term, 394.
55.8
18.5

12 =−=R , or 39.4% of the 

observed variation in lift/drag ratio can be explained by the model without the interaction 
accounted for. However, including the interaction term increases the amount of variation 

in lift/drag ratio that can be explained by the model to  641.
55.8
07.3

12 =−=R , or 

64.1%. 
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b. Without interaction, we are testing 0: 210 == ββH  vs. :aH  either 1β  or 02 ≠β .  

The test statistic is  ( )
( )1

1 2

2

−−
−

=
kn

R
k

R
f , The rejection region is 14.56,2,05. =≥ Ff , and 

the calculated statistic is ( ) 95.1
6

394.1
2

394.
==

−
f , which does not fall in the rejection 

region, so we fail to reject Ho.  This model is not useful.  With the interaction term, we 
are testing 0: 3210 === βββH  vs. :aH  at least one of the 0' ≠siβ .  With 

rejection region 41.55,3,05. =≥ Ff  and calculated statistic ( ) 98.2
5

641.1
3

641.
==

−
f , we 

still fail to reject the null hypothesis.  Even with the interaction term, there is not enough 
of a significant relationship between lift/drag ratio and the two predictor variables to 
make the model useful (a bit of a surprise!) 

 
 
71.  

a. Using Minitab to generate the first order regression model, we test the model utility (to 
see if any of the predictors are useful), and with 03.21=f and a p-value of .000, we 
determine that at least one of the predictors is useful in predicting palladium content.  
Looking at the individual predictors, the p-value associated with the pH predictor has 
value .169, which would indicate that this predictor is unimportant in the presence of the 
others. 

 

b. Testing 0...: 2010 === ββH  vs. :aH  at least one of the 0' ≠siβ .  With  

calculated statistic 29.6=f , and p-value .002, this model is also useful at any 
reasonable significance level. 

 

c. Testing 0...: 2060 === ββH  vs. :aH  at least one of the listed 0' ≠siβ , the test 

statistic is 
( )

( )

( )
( )

( )
07.1

12032
27.290

520
27.29010.716

1

===
−−

−
−

−−

−
−

kn
SSE

lk
SSESSE

k

kl

f .  Using significance level .05, 

the rejection region would be 72.211,15,05. =≥ Ff .  Since 1.07 < 2.72, we fail to reject 

Ho and conclude that all the quadratic and interaction terms should not be included in the 
model.  They do not add enough information to make this model significantly better than 
the simple first order model. 

 
d. Partial output from Minitab follows, which shows all predictors as significant at level .05: 

The regression equation is 
pdconc = - 305 + 0.405 niconc + 69.3 pH - 0.161 temp + 0.993 currdens 
           + 0.355 pallcont - 4.14 pHsq 
 
Predictor        Coef       StDev          T        P 
Constant      -304.85       93.98      -3.24    0.003 
niconc        0.40484     0.09432       4.29    0.000 
pH              69.27       21.96       3.15    0.004 
temp         -0.16134     0.07055      -2.29    0.031 
currdens       0.9929      0.3570       2.78    0.010 
pallcont      0.35460     0.03381      10.49    0.000 
pHsq           -4.138       1.293      -3.20    0.004 
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72.  

a. 9506.
18555.16

80017.
112 =−=−=

SST
SSE

R , or 95.06% of the observed variation in  

weld strength can be attributed to the given model. 
 
b. The complete second order model consists of nine predictors and nine corresponding 

coefficients.  The hypotheses are 0...: 910 === ββH  vs. :aH  at least one of the 

0' ≠siβ . The test statistic is  ( )
( )1

1 2

2

−−
−

=
kn

R
k

R
f , where k = 9, and n = 37.The rejection 

region is 25.227,9,05. =≥ Ff . The calculated statistic is ( ) 68.57
27

9506.1
9

9506.
==

−
f  

which is 25.2≥ , so we reject the null hypothesis.  The complete second order model is 
useful. 

 
c. To test 0: 70 =βH  vs 0: 7 ≠βaH  (the coefficient corresponding to the wc*wt 

predictor), 52.132.2 === ft .  With df = 27, the p-value ( ) 146.073.2 =≈  

(from Table A.8).  With such a large p-value, this predictor is not useful in the presence 
of all the others, so it can be eliminated. 

 

d. The point estimate is ( ) ( ) ( ) ( )2100102.6297.12222.10098.352.3ˆ −+++=y  

( ) ( )( ) 962.712100128.6037. 2 =+− .  With 052.227,025. =t , the 95% P.I. would be 

( ) ( )116.8,808.7154.962.70750.052.2962.7 =±=± .  Because of the 
narrowness of the interval, it appears that the value of strength can be accurately 
predicted. 

 
 
73.  

a. We wish to test 0: 210 == ββH  vs. :aH  either 1β  or 02 ≠β .  The test statistic 

is  ( )
( )1

1 2

2

−−
−

=
kn

R
k

R
f , where k = 2 for the quadratic model.  The rejection region is  

27.135,2,01.1,, ==≥ −− FFf knkα .  9986.
88.202

29.
12 =−=R , giving f = 1783.  No 

doubt about it, folks – the quadratic model is useful! 
 

b. The relevant hypotheses are 0: 20 =βH  vs. :aH  02 ≠β .  The test statistic value is 

2
ˆ

2
ˆ

β

β
s

t =  , and Ho will be rejected at level .001 if either 869.6≥t  or 869.6−≤t  (df 

= n – 3 = 5).  Since 869.61.48
00003391.
00163141.

−≤−=
−

=t , Ho is rejected.  The 

quadratic predictor should be retained. 
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c. No.  R2 is extremely high for the quadratic model, so the marginal benefit of including 
the cubic predictor would be essentially nil – and a scatter plot doesn’t show the type of 
curvature associated with a cubic model. 

 

d. 571.25,025. =t , and ( ) ( ) 36.21100ˆ100ˆˆ 2
210 =++ βββ , so the C.I. is 

( )( ) ( )05.22,67.2069.36.211141.571.236.21 =±=±  
 
e. First, we need to figure out s2 based on the information we have been given.  

058.5
29.2 ==== df

SSEMSEs .  Then, the 95% P.I. is  

( ) ( )427.22,293.20067.136.211141.058.571.236.21 =±=+±  

 
 
74. A scatter plot of ( )yy 10log=′  vs. x shows a substantial linear pattern, suggesting the 

model ( ) εα β ⋅⋅= xY 10 , i.e. ( ) ( ) εββεβα ′++=++=′ xxY 10loglog .  The 

necessary summary quantities are 

,397=Σ ix ,263,142 =Σ ix ,3.74−=′Σ iy ,081,472 =′Σ iy  and 1.2358−=′Σ ii yx , 

giving 
( ) ( )( )

( ) ( )
08857312.

397263,1412
3.743971.235812ˆ

21 =
−

−−−
=β  and 12196058.9ˆ

0 −=β .  

Thus 08857312.ˆ =β  and 12196058.910−=α .  The predicted value of y′  when x = 35 is 

( ) 0219.63508857312.12196058.9 −=+− , so 0219.610ˆ −=y . 
 
 
75.  

a. 0: 210 == ββH  will be rejected in favor of   :aH  either 1β  or 02 ≠β  if  

( )
( )1

1 2

2

−−
−

=
kn

R

k
R

f  55.97,2,01.1,, ==≥ −− FF knkα . 
( )

5.2642 =Σ−Σ=
n
y

ySST  , so 

898.
5.264

98.26
12 =−=R , and 

( ) 8.30
7

102.
2

898.

==f .  Because 30.8 55.9≥  Ho is rejected at 

significance level .01 and the quadratic model is judged useful. 
 
b. The hypotheses are 0: 20 =βH  vs. :aH  02 ≠β .  The test statistic value is 

69.7
3073.

3621.2ˆ

2
ˆ

2 −=
−

==
β

β
s

t  , and 408.57,0005. =t  , so Ho is rejected at level .001 and p-

value < .001. The quadratic predictor should not be eliminated. 
 

c. x = 1 here, and ( ) ( ) 96.451ˆ1ˆˆˆ 2
2101 =++=⋅ βββµY .  895.17,025. =t , giving the C.I. 

( )( ) ( )91.47,01.44031.1895.196.45 =± . 
 
 



Chapter 13:  Nonlinear and Multiple Regression 

 436 

76.  
a. 80.79 
 
b. Yes, p-value = .007 which is less than .01. 
 
c. No, p-value = .043 which is less than .05. 
 
d. ( )( ) ( )2224,.0609.03301.447.214167. =±  
 
e. 3067.6ˆ 66,9 =⋅yµ , using 05.=α , the interval is 

( ) ( ) ( ) ( )56.7,06.5162.4851.447.23067.6 22 =+±  

 
 
77.  

a. Estimate = ( ) ( ) ( )( ) ( )( ) 75.2315.35.101511805.3ˆ15ˆˆ 2
210 =++=++ βββ  

 

b. 903.
30.1210
4.117

12 =−=R  

 

c. 0: 210 == ββH  vs.   :aH  either 1β  or 02 ≠β  (or both) . 9.41
9

097.

2
903.

==f , which 

greatly exceeds 
9,2,01.F  so there appears to be a useful linear relationship. 

 

d. 044.13
312

40.1172 =
−

=s , ( ) 806.3.. 22 =+ devstests , 262.29,025. =t .  The P.I. is 

( )( ) ( )1.238,9.220806.3262.25.229 =±  
 
 

78. The second order model has predictors 323121
2
3

2
2

2
1321 ,,,,,,,, xxxxxxxxxxxx  with 

corresponding coefficients 987654321 ,,,,,,,, βββββββββ .  We wish to test 

0: 9876540 ====== ββββββH  vs. the alternative that at least one of these six 

si 'β is not zero.  The test statistic value is  
( )

( )
( )

( )
1.1

71.502
9.530

1020
1.5027

39
1.50275.821

===
−

−
−

f .  Since 

1.1 < 22.310,6,05. =F , Ho cannot be rejected.  It doesn’t appear as though any of the 

quadratic or interaction carriers should be included in the model. 
 
 
79. There are obviously several reasonable choices in each case.   

a. The model with 6 carriers is a defensible choice on all three grounds, as are those with 7 
and 8 carriers.   

 
b. The models with 7, 8, or 9 carriers here merit serious consideration.  These models merit 

consideration because ,,2
kk MSER  and CK meet the variable selection criteria given in 

Section 13.5. 
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80.  

a. 
( )

( )
( )

( )
4.2

4
10.

15
90.

==f .  Because 2.4 < 5.86, 0...: 1510 === ββH  cannot be rejected.  

There does not appear to be a useful linear relationship. 
 
b. The high R2 value resulted from saturating the model with predictors.  In general, one 

would be suspicious of a model yielding a high R2 value when K is large relative to n. 
 

c. 
( )

( )
( )

( )
86.5

4
1

15
2

2

≥
−R

R

 iff 975.21
1 2

2

≥
− R
R

 iff 9565.
975.22
975.212 =≥R  

 
 
81.  

a. The relevant hypotheses are 0...: 510 === ββH  vs. Ha:  at least one among 

51 ,...,ββ  is not 0. 29.2111,5,05. =F  and 
( )

( )
( )

( )
1.106

111
173.

5
827.

==f .  Because 

29.21.106 ≥ , Ho is rejected in favor of the conclusion that there is a useful linear 
relationship between Y and at least one of the predictors. 

 

b. 66.1111,05. =t , so the C.I. is ( )( ) ( )068,.014.027.041.016.66.1041. =±=± .  1β  

is the expected change in mortality rate associated with a one-unit increase in the particle 
reading when the other four predictors are held fixed; we cab be 90% confident that .014 

< 1β  < .068. 
 

c. 0: 40 =βH  will be rejected in favor of 0: 4 ≠βaH  if 

4
ˆ

4
ˆ

β

β
s

t =  is either 62.2≥  

or 62.2−≤ .  62.29.5
007.
014.

≥==t , so Ho is rejected and this predictor is judged 

important. 
 
d. ( ) ( ) ( ) ( ) ( ) 514.9995.687.68041.788001.60071.166041.607.19ˆ =+++++=y

 and the corresponding residual is 103 – 99.514 = 3.486. 
 
 
82.  

a. The set  865431 ,,,,, xxxxxx  includes both 8541 ,,, xxxx  and 6531 ,,, xxxx , so 

( ) 723.,max 2
6,5,3,1

2
8,5,4,1

2
8,6,5,4,3,1 =≥ RRR . 

 

b. 723.2
8,5,4,1

2
4,1 =≤ RR , but it is not necessarily 689.≤  since 41 ,xx  is not a subset of 

6531 ,,, xxxx . 
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CHAPTER 14 
 

Section 14.1 
 
1.  

a. We reject Ho if the calculated 2χ value is greater than or equal to the tabled value of 
2

1, −kαχ  from Table A.7.  Since 488.925.12 2
4,05. =≥ χ , we would reject Ho. 

 

b. Since 8.54 is not 344.112
3,01. =≥ χ , we would fail to reject Ho. 

 

c. Since 4.36 is not 605.42
2,10. =≥ χ , we would fail to reject Ho. 

 

d. Since 10.20 is not 085.152
5,01. =≥ χ , we would fail to reject Ho. 

 
 
2.  

a. In the d.f. = 2 row of Table A.7, our 2χ value of 7.5 falls between 378.72
2,025. =χ  and 

210.92
2,01. =χ , so the p-value is between .01 and .025, or .01 < p-value < .025. 

 

b. With d.f. = 6, our 2χ value of 13.00 falls between 592.122
6,05. =χ  and 

440.142
6,025. =χ , so .025 < p-value < .05. 

 

c. With d.f. = 9, our 2χ value of 18.00 falls between 919.162
9,05. =χ  and 

022.192
9,025. =χ , so .025 < p-value < .05. 

 

d. With k = 5, d.f. = k – 1 = 4, and our 2χ value of 21.3 exceeds 860.142
4,005. =χ , so  the 

p-value < .005. 
 

e. The d.f. = k – 1 = 4 – 1 = 3; 0.52 =χ  is less than 251.62
3,10. =χ , so p-value > .10. 
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3. Using the number 1 for business, 2 for engineering, 3 for social science, and 4 for agriculture, 
let =ip  the true proportion of all clients from discipline i.  If the Statistics department’s 

expectations are correct, then the relevant  null hypothesis is 

,10.,20.,30.,40.: 4321 ==== ppppH o  versus :aH  The Statistics department’s 

expectations are not correct.  With d.f = k – 1 = 4 – 1 = 3, we reject Ho if  

815.72
3,05.

2 =≥ χχ   .  Using the proportions in Ho, the expected number of clients are : 

 

Client’s Discipline Expected Number 

Business (120)(.40) = 48 

Engineering (120)(.30) = 36 

Social Science (120)(.20) = 24 

Agriculture (120)(.10) = 12 
 
 

Since all the expected counts are at least 5, the chi-squared test can be used.  The value of the 

test statistic is 
( ) ( )∑∑ −

=
−

=
= allcells

k

i i

ii

ected
ectedobserved

np
npn

exp
exp 2

1

2
2χ  

( ) ( ) ( ) ( )
57.1

12
129

24
2421

36
3638

48
4852 2222

=






 −
+

−
+

−
+

−
= , which is not  

815.7≥ , so we fail to reject Ho.  (Alternatively, p-value = )57.1( 2 ≥χP  which is > .10, 

and since the p-value is not < .05, we reject Ho).  Thus we have no evidence to suggest that 
the statistics department’s expectations are incorrect. 

 
 
4. The uniform hypothesis implies that 125.8

1
0 ==ip  for I = 1, …, 8, so 

125....: 802010 ==== pppH o  will be rejected in favor of  aH  if 

017.122
7,10.

2 =≥ χχ .  Each expected count is npi0 = 120(.125) = 15, so 

( ) ( )
80.4

15
1510

...
15

1512 22
2 =







 −
++

−
=χ .  Because 4.80 is not 017.12≥ , we fail to 

reject Ho. There is not enough evidence to disprove the claim. 
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5. We will reject Ho if the p-value < .10.  The observed values, expected values, and 

corresponding 2χ  terms are : 
 

Obs 4 15 23 25 38 21 32 14 10 8 

Exp 6.67 13.33 20 26.67 33.33 33.33 26.67 20 13.33 6.67 
2χ  1.069 .209 .450 .105 .654 .163 1.065 1.800 .832 .265 

 

612.6265....069.12 =++=χ .  With d.f. = 10 – 1 = 9, our 2χ value of 6.612 is less 

than 684.142
9,10. =χ , so the p-value > .10, which is not < .10, so we cannot reject Ho.  

There is no evidence that the data is not consistent with the previously determined 
proportions.  

 
 
6. A 9:3:4 ratio implies that 5625.16

9
10 ==p , 1875.16

3
20 ==p , and 2500.16

4
30 ==p .  

With n = 195 + 73 + 100 = 368, the expected counts are 207.000, 69.000, and 92.000, so 

( ) ( ) ( )
623.1

92
92100

69
6973

207
207195 222

2 =






 −
+

−
+

−
=χ . With d.f. = 3 – 1  = 2, our 

2χ value of 1.623 is less than 605.42
2,10. =χ , so the p-value > .10, which is not < .05, so 

we cannot reject Ho. The data does confirm the  9:3:4 theory. 
 
 

7. We test 25.: 4321 ==== ppppH o  vs. :aH at least one proportion 25.≠ , and d.f. 

= 3.  We will reject Ho if the p-value < .01.   
 
 

Cell 1 2 3 4 

Observed 328 334 372 327 

Expected 340.25 340.25 340.25 34.025 
2χ term .4410 .1148 2.9627 .5160 

 

0345.42 =χ , and with 3 d.f., p-value > .10, so we fail to reject Ho.  The data fails to 
indicate a seasonal relationship with incidence of violent crime. 
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8. ,,,,: 365
184

4365
120

3365
46

2365
15

1 ==== ppppH o  versus :aH at least one proportion is not a 

stated in Ho.  The degrees of freedom = 3, and the rejection region is 344.113,01.
2 =≥ χχ . 

 
Cell 1 2 3 4 

Observed 11 24 69 96 

Expected 8.22 25.21 65.75 100.82 
2χ term .9402 .0581 .1606 .2304 

 

( )
3893.1

exp
exp 2

2 =
−

= ∑ obs
χ , which is not 344.11≥ , so Ho is not rejected.  The 

data does not indicate a relationship between patients’ admission date and birthday. 
 
 
9.  

a. Denoting the 5 intervals by [0, c1), [c1, c2), …, [c4, ∞ ), we wish c1 for which 

( ) 1
1

102.
01

cc x edxecXP −− −==≤≤= ∫ , so c1 = -ln(.8) = .2231.  Then 

( ) ( ) 2104.2. 2121
cecXPcXcP −−=≤≤=⇒≤≤= , so c2 = -ln(.6) = .5108.  

Similarly, c3 = -ln(.4) = .0163 and c4 = -ln(.2) = 1.6094.  the resulting intervals are [0, 
.2231), [.2231, .5108), [.5108, .9163), [.9163, 1.6094), and [1.6094, ∞ ). 

 
b. Each expected cell count is 40(.2) = 8, and the observed cell counts are 6, 8, 10, 7, and 9, 

so 
( ) ( )

25.1
8
89

...
8

86 22
2 =







 −
++

−
=χ .  Because 1.25 is not 779.72

4,10. =≥ χ , 

even at level .10 Ho cannot be rejected; the data is quite consistent with the specified 
exponential distribution. 

 
 
10.  

a. 
( )

0
0

2

0

2
0

2
0

2

1 0

2
02 2

2
ii

i
ii

i

i

i i

iiii
k

i i

ii pnN
np
N

np
pnNnpN

np
npn

Σ+Σ−=
+−

=
−

= ∑∑∑
=

χ

 ∑∑ −=+−=
i i

i

i i

i n
np
N

nn
np
N

0

2

0

2

)1(2  as desired.  This formula involves only one 

subtraction, and that at the end of the calculation, so it is analogous to the shortcut 
formula for s2. 

 

b. nN
n
k

i
i −= ∑ 22χ .  For the pigeon data, k = 8, n = 120, and 18722 =Σ iN , so 

( )
8.41208.124120

120
187282 =−=−=χ  as before. 
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11.  
a. The six intervals must be symmetric about 0, so denote the 4th, 5th and 6th intervals by [0, 

a0, [a, b), [b, ∞ ).  a  must be such that ( ) ( )6
1

2
16667. +=Φ a , which  from Table A.3 

gives 43.≈a .   Similarly ( ) 8333.=Φ b  implies 97.≈b , so the six intervals are 
( ∞− , -.97), [-.97, -.43), [-.43, 0), [0, .43), [.43, .97), and [.97, ∞ ). 

 
b. The six intervals are symmetric about the mean of .5.  From a, the fourth interval should 

extend from the mean to .43 standard deviations above the mean, i.e., from .5 to .5 + 
.43(.002), which gives [.5, .50086).  Thus the third interval is [.5 - .00086, .5) = [.49914, 
.5).  Similarly, the upper endpoint of the fifth interval is .5 + .97(.002) = .50194, and  the 
lower endpoint of the second interval is .5 - .00194 = .49806.  The resulting intervals are 
( ∞− , .49806), [.49806, .49914), [.49914, .5), [.5, .50086), [.50086, .50194), and 
[.50194, ∞ ). 

 

c. Each expected count is ( ) 5.745 6
1 = , and the observed counts are 13, 6, 6, 8, 7, and 5, so 

53.52 =χ .  With 5 d.f., the p-value > .10, so we would fail to reject Ho at any of the 
usual levels of significance.  There is no evidence to suggest that the bolt diameters are 
not normally distributed. 

 
 

Section 14.2 
 
12.  

a. Let θ  denote the probability of a male (as opposed to female) birth under the binomial 
model.  The four cell probabilities (corresponding to x = 0, 1, 2, 3) are 

( ) ( )3
1 1 θθπ −= , ( ) ( )2

2 13 θθθπ −= , ( ) ( )θθθπ −= 13 2
3 , and ( ) 3

4 θθπ = .  

The likelihood is ( ) 43232132 322313 nnnnnnnn +++++ ⋅−⋅ θθ .  Forming the log likelihood, 

taking the derivative with respect to θ , equating to 0, and solving yields 

504.
480

4812866
3

32ˆ 432 =
++

=
++

=
n

nnn
θ .  The estimated expected counts are 

( ) 52.19504.1160 3 =− , ( )( ) 52.59496.504.480 2 = , 60.48, and 20.48, so 

( ) ( )
45.398.20.71.56.1

48.20
48.2016

...
52.19

52.1914 22
2 =+++=







 −
++

−
=χ .  

The number of degrees of freedom for the test is 4 – 1 – 1 = 2.  Ho of a binomial 

distribution will be rejected using significance level .05 if 992.52
2,05.

2 =≥ χχ .  

Because 3.45 < 5.992, Ho is not rejected, and the binomial model is judged to be quite 
plausible. 

 

b. Now 353.
150
53ˆ ==θ  and the estimated expected counts are 13.54, 22.17, 12.09, and 

2.20.  The last estimated expected count is much less than 5, so the chi-squared test based 
on 2 d.f. should not be used. 
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13. According to the stated model, the three cell probabilities are (1 – p)2, 2p(1 – p), and p2, so  

we wish the value of p which maximizes ( ) ( )[ ] 321 22 121 nnn pppp −− .  Proceeding as in 

example 14.6 gives 0843.
2776
234

2
2

ˆ 32 ==
+

=
n

nn
p .  The estimated expected cell counts 

are then ( ) 85.1163ˆ1 2 =− pn , ( )[ ] 29.214ˆ1ˆ2 2 =− ppn , 86.9ˆ 2 =pn .  This gives 

( ) ( ) ( )
3.280

86.9
86.958

29.214
29.214118

85.1163
85.11631212 222

2 =






 −
+

−
+

−
=χ .  According 

to (14.15), Ho will be rejected if 
2

2,
2

αχχ ≥ , and since 210.92
2,01. =χ , Ho is soundly 

rejected; the stated model is strongly contradicted by the data. 
 
 
14.  

a. We wish to maximize ( )nnx pp i −−Σ 1 , or equivalently ( ) ( )pnpnx i −+−Σ 1lnln .  

Equating 
dp
d

 to 0 yields 
( )

( )p
n

p
nxi

−
=

−Σ
1

, whence 
( )

i

i

x
nx

p
Σ

−Σ
= .  For the 

given data, 363)1)(12(...)31)(2()1)(1( =+++=Σ ix , so 

( )
642.

363
130363ˆ =

−
=p , and 358.ˆ =q . 

 
b. Each estimated expected cell count is p̂ times the previous count, giving 

54.46)358(.130ˆ ==qn , 88.29)642(.54.46ˆˆ ==pqn , 19.18, 12.31, 17.91, 5.08, 

3.26, … .  Grouping all values 7≥  into a single category gives 7 cells with estimated 
expected counts 46.54, 29.88, 19.18, 12.31, 7.91, 5.08 (sum = 120.9), and 130 – 120.9 = 
9.1.  The corresponding observed counts are 48, 31, 20, 9, 6, 5, and 11, giving 

87.12 =χ .  With k = 7 and m =  1 (p was estimated), from (14.15) we need 

236.92
5,10. =χ .  Since 1.87 is not 236.9≥ , we don’t reject Ho. 
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15. The part of the likelihood involving θ  is ( )[ ] ( )[ ] ( )[ ] ⋅−⋅−⋅− 321 2234 111
nnn

θθθθθ  

( )[ ] [ ] ( ) ( )36723323443243 111 4321543254 θθθθθθθ −=−=⋅− ++++++ nnnnnnnnnn
, so 

( ) ( )θθ −+= 1ln367ln233ln likelihood .  Differentiating and equating to 0 yields 

,3883.
600
233ˆ ==θ  and ( ) 6117.ˆ1 =−θ  [note that the exponent on θ  is simply the total # 

of successes (defectives here) in the n = 4(150) = 600 trials.]  Substituting this θ ′  into the 

formula for ip  yields estimated cell probabilities .1400, .3555, .3385, .1433, and .0227.  

Multiplication by 150 yields the estimated expected cell counts are 21.00, 53.33, 50.78, 21.50, 
and 3.41.  the last estimated expected cell count is less than 5, so we combine the last two 
categories into a single one ( 3≥  defectives), yielding estimated counts 21.00, 53.33, 50.78, 

24.91, observed counts 26, 51, 47, 26, and 62.12 =χ .  With d.f. = 4 – 1 – 1 = 2, since 

605.462.1 2
2,10. =< χ , the p-value > .10, and we do not reject Ho.  The data suggests that 

the stated binomial distribution is plausible. 
 
 

16. 
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

88.3
300

1163
300

2968...42224160ˆ ==
+++++

== xλ , so the 

estimated cell probabilities are computed from 
( )

!
88.3ˆ 88.3

x
ep

x
−= .  

 

x 0 1 2 3 4 5 6 7 8≥  

np(x) 6.2 24.0 46.6 60.3 58.5 45.4 29.4 16.3 13.3 

obs 6 24 42 59 62 44 41 14 8 

 

This gives 789.72 =χ .  To see whether the Poisson model provides a good fit, we need 

017.122
7,10.

2
119,10. ==−− χχ .  Since 017.12789.7 < , the Poisson model does provide a 

good fit. 
 
 

17. 167.3
120
380ˆ ==λ , so 

( )
!

167.3ˆ 167.3

x
ep

x
−= . 

 

x 0 1 2 3 4 5 6 7≥   

p̂  .0421 .1334 .2113 .2230 .1766 .1119 .0590 .0427  

pn ˆ  5.05 16.00 25.36 26.76 21.19 13.43 7.08 5.12  

obs 24 16 16 18 15 9 6 16  

 

The resulting value of 98.1032 =χ , and when compared to 474.182
7,01. =χ , it is obvious 

that the Poisson model fits very poorly. 
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18. ( ) 1335.11.1
066.

173.100.
)100.(ˆ1 =−Φ=






 −

<=<= ZPXPp , 

( ) 2297.35.11.1)150.100(.ˆ 2 =−≤≤−=≤≤= ZPXPp , 

( ) 2959.41.35.ˆ 3 =≤≤−= ZPp , ( ) 2199.17.141.ˆ 4 =≤≤= ZPp , and 

1210.ˆ 5 =p .  The estimated expected counts are then (multiply ip̂  by n = 83) 11.08, 19.07, 

24.56, 18.25, and 10.04, from which 67.12 =χ .  Comparing this with 

992.52
2,05.

2
215,05. ==−− χχ , the hypothesis of normality cannot be rejected. 

 
 
19. With A = 2n1 + n4 + n5, B = 2n2 + n4 + n6, and C = 2n3 + n5 + n6, the likelihood is proportional 

to ( ) ,1 2121
CBA θθθθ −−  where A + B + C = 2n.  Taking the natural log and equating both 

1θ∂
∂

 and 
2θ∂

∂
 to zero gives 

211 1 θθθ −−
=

CA
 and 

212 1 θθθ −−
=

CB
, whence 

A
B 1

2

θ
θ = .  Substituting this into the first equation gives 

CBA
A

++
=1θ , and then 

CBA
B

++
=2θ .  Thus 

n
nnn

2
2ˆ 541

1

++
=θ , 

n
nnn

2
2ˆ 642

2

++
=θ , and 

( )
n

nnn
2

2ˆˆ1 653
21

++
=−− θθ .  Substituting the observed n I’s yields 

( )
4275.

400
5320492

1̂ =
++

=θ , 2750.
400
110ˆ

2 ==θ , and ( ) 2975.ˆˆ1 21 =−− θθ , from 

which ( ) 183.4275.ˆ 2
1 ==p , 076.ˆ 2 =p , 089.ˆ 3 =p , ( )( ) 235.275.4275.2ˆ 4 ==p , 

254.ˆ 5 =p , 164.ˆ 6 =p . 

 
Category 1 2 3 4 5 6 

np 36.6 15.2 17.8 47.0 50.8 32.8 

observed 49 26 14 20 53 38 
 

This gives 1.292 =χ . With 344.112
3,01.

2
216,01. ==−− χχ , and 

085.152
5,01.

2
16,01. ==− χχ , according to (14.15) Ho must be rejected since 

085.151.29 ≥ . 
 

 
20. The pattern of points in the plot appear to deviate from a straight line, a conclusion that is also 

supported by the small p-value ( < .01000 ) of the Ryan-Joiner test.  Therefore, it is 
implausible that this data came from a normal population.  In particular, the observation 116.7 
is a clear outlier.  It would be dangerous to use the one-sample t interval as a basis for 
inference. 
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21. The Ryan-Joiner test p-value is larger than .10, so we conclude that the null hypothesis of 
normality cannot be rejected.  This data could reasonably have come from a normal 
population.  This means that it would be legitimate to use a one-sample t test to test 
hypotheses about the true average ratio. 

 
 
22.  

xi yi xi yi xi yi 

69.5 -1.967 75.5 -.301 79.6 .634 
71.9 -1.520 75.7 -.199 79.7 .761 
72.6 -1.259 75.8 -.099 79.9 .901 
73.1 -1.063 76.1 .000 80.1 1.063 
73.3 -.901 76.2 .099 82.2 1.259 
73.5 -.761 76.9 .199 83.7 1.520 
74.1 -.634 77.0 .301 93.7 1.967 
74.2 -.517 77.9 .407   
75.3 -.407 78.1 .517   

      

n.b.:  Minitab was used to calculate the y I’s. ( ) 6.1925=Σ ix , ( ) 871,1482 =Σ ix , 0=Σ iy , 

523.222 =Σ iy , ( ) 03.103=Σ ii yx , so 

( )
( ) ( ) ( )

923.
523.25256.1925871,14825

03.10325
2

=
−

=r .  Since c.01 = .9408, and .923 < .9408, 

even at the very smallest significance level of .01, the null hypothesis of population normality 
must be rejected (the largest observation appears to be the primary culprit). 

 
 
23. Minitab gives r = .967, though the hand calculated value may be slightly different because 

when there are ties among the x(i)’s, Minitab uses the same y I for each x(i) in a group of tied 
values.  C10 = .9707, and c.05 = 9639, so .05 < p-value < .10.  At the 5% significance level, one 
would have to consider population normality plausible. 

 
 

Section 14.3 
 
24. Ho:  TV watching and physical fitness are independent of each other 

Ha:  the two variables are not independent 
Df = (4 – 1)(2 – 1) = 3 

With 05.=α , RR: 815.72 ≥χ  

Computed 161.62 =χ  
Fail to reject Ho.  The data fail to indicate an association between daily TV viewing habits and 
physical fitness. 
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25. Let Pij = the proportion of white clover in area of type i which has a type j mark (i = 1, 2; j = 
1, 2, 3, 4, 5).  The hypothesis Ho: p1j  = p2j for j = 1, …, 5 will be rejected at level .01 if 

277.132
4,01.

2
)15)(12(,01.

2 ==≥ −− χχχ . 

 

ijÊ  1 2 3 4 5   

1 449.66 7.32 17.58 8.79 242.65 726 18.232 =χ  

2 471.34 7.68 18.42 9.21 254.35 761  

 921 15 36 18 497 1487  
 
Since 277.1318.23 ≥ , Ho is rejected. 

 
 
26. Let p i1 = the probability that a fruit given treatment i matures and p i2 = the probability that a 

fruit given treatment i aborts.  Then Ho: pi1 = pi2 for i = 1, 2, 3, 4, 5 will be rejected if 

277.132
4,01.

2 =≥ χχ . 

 
Observed  Estimated Expected  

Matured Aborted  Matured Aborted  ni 

141 206  110.7 236.3 347 

28 69  30.9 66.1 97 

25 73  31.3 66.7 98 

24 78  32.5 69.5 102 

20 82  32.5 69.5 102 

   238 508 746 
 

Thus 
( ) ( )

82.24
5.69

5.6982
...

7.110
7.110141 22

2 =
−

++
−

=χ , which is 277.13≥ , so Ho is 

rejected at level .01. 
 
 
27. With i = 1 identified with men and i = 2 identified with women, and j = 1, 2, 3 denoting the 3 

categories L>R, L=R, L<R, we wish to test Ho: p1j = p2j for j = 1, 2, 3 vs. Ha: p1j not equal to 
p2j for at least one j.  The estimated cell counts for men are 17.95, 8.82, and 13.23 and for  

women are 39.05, 19.18, 28.77, resulting in 98.442 =χ .  With (2 – 1)(3 – 1) = 2 degrees of 

freedom, since 597.1098.44 2
2,005. => χ , p-value < .005, which strongly suggests that Ho 

should be rejected. 
 
 



Chapter 14:  The Analysis of Categorical Data 

 449 

28. With p ij denoting the probability of a type j response when treatment i is applied, Ho: p1j = p2j 

= p3j =p4j for j = 1, 2, 3, 4 will be rejected at level .005 if 587.232
9,005.

2 =≥ χχ .  

 

ijÊ  1 2 3 4 

1 24.1 10.0 21.6 40.4 

2 25.8 10.7 23.1 43.3 

3 26.1 10.8 23.4 43.8 

4 30.1 12.5 27.0 50.5 

 

587.2366.272 ≥=χ , so reject Ho at level .005 
 
 
29. Ho: p1j = …= p6j for j = 1, 2, 3 is the hypothesis of interest, where p ij is the proportion of the jth 

sex combination resulting from the ith  genotype.  Ho will be rejected at level .10 if  

987.152
10,10.

2 =≥ χχ . 

 

ijÊ  1 2 3   2χ  1 2 3  

1 35.8 83.1 35.1 154   .02 .12 .44  

2 39.5 91.8 38.7 170   .06 .66 1.01  

3 35.1 81.5 34.4 151   .13 .37 .34  

4 9.8 22.7 9.6 42   .32 .49 .26  

5 5.1 11.9 5.0 22   .00 .06 .19  

6 26.7 62.1 26.2 115   .40 .14 1.47  

 152 353 149 654      6.46 
 

(carrying 2 decimal places in ijÊ  yields 49.62 =χ ).  Since 6.46 < 15.987, Ho cannot be 

rejected at level .10. 
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30. Ho: the design configurations are homogeneous with respect to type of failure  vs. Ha:  the 
design configurations are not homogeneous with respect to type of failure.   

 

ijÊ  1 2 3 4  

1 16.11 43.58 18.00 12.32 90 

2 7.16 19.37 8.00 5.47 40 

3 10.74 29.05 12.00 8.21 60 

 34 92 38 26 190 

( ) ( )
253.13

21.8
21.85

...
11.16

11.1620 22
2 =

−
++

−
=χ .  With 6 df, 

440.14253.13592.12 2
6,025.

2
6,05. =<<= χχ , so .025 < p-value < .05.  Since the p-value 

is < .05, we reject Ho. (If a smaller significance level were chosen, a different conclusion 
would be reached.) Configuration appears to have an effect on type of failure. 

 
 
31. With I denoting the Ith type of car (I = 1, 2, 3, 4) and j the jth category of commuting distance, 

Ho: pij  = pi. p.j (type of car and commuting distance are independent) will be rejected at level 

.05 if 592.122
6,05.

2 =≥ χχ . 

ijÊ  1 2 3   

1 10.19 26.21 15.60 52  

2 11.96 30.74 18.30 61  

3 19.40 49.90 29.70 99  

4 7.45 19.15 11.40 38  

 49 126 75 250  
 

592.1215.142 ≥=χ , so the independence hypothesis Ho is rejected at level .05 (but not 
at level .025!) 

 
 

32. 
( ) ( ) ( ) ( ) ( )

2.54
2.5447

0.177
0.177214

2.125
2.125119

5.151
5.151173

4.494
4.494479 22222

2 −
+

−
+

−
+

−
+

−
=χ  

( ) ( ) ( ) ( ) 277.1365.64
0.49

0.4985
3.59

3.5945
6.193

6.193172
8.44

8.4415 2
4,01.

2222

=≥=−+−+−+−= χ  

so the independence hypothesis is  rejected in favor of the conclusion that political views and 
level of marijuana usage are related. 
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33. 
( )

ijij
ij

ij

ij

ijijijij

ij

ijij EN
E

N

E

ENEN

E

EN ˆ2
ˆˆ

ˆˆ2
ˆ

ˆ 2222

2 ΣΣ+ΣΣ−
ΣΣ

=
+−

ΣΣ=
−

ΣΣ=χ , but 

nNE ijij =ΣΣ=ΣΣ ˆ , so n
E

N

ij

ij −ΣΣ=
ˆ

2
2χ .  This formula is computationally efficient 

because there is only one subtraction to be performed, which can be done as the last step in 
the calculation. 

 
 
34. This is a 333 ×× situation, so there are 27 cells.  Only the total sample size n is fixed in 

advance of the experiment, so there are 26 freely determined cell counts.  We must estimate 

p..1, p..2, p..3, p.1., p.2., p.3., p1.., p2.., and p3.., but 1...... =Σ=Σ=Σ kji ppp  so only 6 

independent parameters are estimated.  The rule for d.f. now gives 2χ  df = 26 – 6 = 20. 
 
 

35. With p ij  denoting the common value of p ij1 , pij2, pij3, pij4 (under Ho), 
n

N
p ij

ij =ˆ  and 

n

Nn
E ijk

ijk =ˆ .  With four different tables (one for each region), there are  8 + 8 + 8 + 8 = 32 

freely determined cell counts.  Under Ho, p11, …, p33 must be estimated but 1=ΣΣ ijp  so 

only 8 independent parameters are estimated, giving 2χ  df = 32 – 8 = 24. 
 
 
36.  

a.  
Observed   Estimated Expected 

13 19 28 60  12 18 30 
7 11 22 40  8 12 20 
20 30 50 100     

 

( ) ( )
6806.

20
2022

...
12

1213 22
2 =

−
++

−
=χ .  Because 605.46806. 2

2,10. =< χ , Ho is 

not rejected. 
 

b. Each observation count here is 10 times what it was in a, and the same is true of the 

estimated expected counts so now 605.4806.62 ≥=χ , and Ho is rejected.  With the 
much larger sample size, the departure from what is expected under Ho, the independence 
hypothesis, is statistically significant – it cannot be explained just by random variation. 

 
c. The observed counts are .13n, .19n, .28n, .07n, .11n, .22n, whereas the estimated 

expected ( )( ) =
n

nn 20.60.  .12n, .18n, .30n, .08n, .12n, .20n, yielding n006806.2 =χ .  

Ho will be rejected at level .10 iff 605.4006806. ≥n , i.e., iff 6.676≥n , so the 
minimum n = 677. 
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Supplementary Exercises 
 
37. There are 3 categories here – firstborn, middleborn, (2nd or 3rd born), and lastborn.  With p1, 

p2, and p3 denoting the category probabilit ies, we wish to test Ho: p1 = .25, p2 = .50 (p2 = P(2nd 
or 3rd born) = .25 + .25 = .50), p3 = .25.  Ho will be rejected at significance level .05 if 

992.52
2,05.

2 =≥ χχ .  The expected counts are (31)(.25) = 7.75, (31)(.50) = 15.5, and 7.75, 

so 
( ) ( ) ( )

65.3
75.7
75.78

5.15
5.1511

75.7
75.712 222

2 =
−

+
−

+
−

=χ .  Because 3.65 < 5.992, Ho is not 

rejected.  The hypothesis of equiprobable birth order appears quite plausible. 
 
 
38. Let p i1 = the proportion of fish receiving treatment i (i = 1, 2, 3) who are parasitized.  We wish 

to test Ho: p1j = p2j = p3j  for j = 1, 2.  With df = (2 – 1)(3 – 1) = 2, Ho will be rejected at level 

.01 if 210.92
2,01.

2 =≥ χχ . 

 
Observed   Estimated Expected 

30 3 33  22.99 10.01 
16 8 24  16.72 7.28 
16 16 32  22.29 9.71 
62 27 89    

 

This gives 1.132 =χ .  Because 210.91.13 ≥ , Ho should be rejected.  The proportion of 
fish that are parasitized does appear to depend on which treatment is used. 

 
 
39. Ho:  gender and years of experience are independent; Ha: gender and years of experience are 

not independent. Df = 4, and we reject Ho if 277.132
4,01.

2 =≥ χχ . 

 
 

 Years of Experience 

Gender 1 – 3 4 – 6 7 – 9 10 – 12 13 + 

Male Observed 202 369 482 361 811 

Expected 285.56 409.83 475.94 347.04 706.63 

( )
E
EO 2−  24.451 4.068 .077 .562 15.415 

Female Observed 230 251 238 164 258 

Expected 146.44 210.17 244.06 177.96 362.37 

( )
E
EO 2−  47.680 7.932 .151 1.095 30.061 

( ) 492.131
22 =Σ= −

E
EOχ .  Reject Ho.  The two variables do not appear to be independent.  

In particular, women have higher than expected counts in the beginning category (1 – 3 years) 
and lower than expected counts in the more experienced category (13+ years). 
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40.  

a. Ho:  The probability of a late-game leader winning is independent of the sport played; Ha:  

The two variables are not independent.  With 3 df, the computed 518.102 =χ , and the 
p-value < .015 is also < .05, so we would reject Ho.  There appears to be a relationship 
between the late-game leader winning and the sport played. 

 
b. Quite possibly:  Baseball had many fewer than expected late-game leader losses. 

 
 
41. The null hypothesis Ho: pij = pi. p.j states that level of parental use and level of student use are 

independent in the population of interest.  The test is based on  (3 – 1)(3 – 1) = 4 df. 
 

Estimated Expected 

119.3 57.6 58.1 235 

82.8 33.9 40.3 163 

23.9 11.5 11.6 47 

226 109 110 445 

 

The calculated value of 4.222 =χ .  Since 860.144.22 2
4,005. => χ , p-value < .005, so 

Ho should be rejected at any significance level greater than .005.  Parental and student use 
level do not appear to be independent. 

 
 

42. The estimated expected counts are displayed below, from which 70.1972 =χ .  A glance at 
the 6 df row of Table A.7 shows that this test statistic value is highly significant – the 
hypothesis of independence is clearly implausible. 

 
Estimated Expected 

 Home Acute Chronic  

15 – 54  90.2 372.5 72.3 535 

55 – 64 113.6 469.3 91.1 674 

65 – 74 142.7 589.0 114.3 846 

> 74 157.5 650.3 126.2 934 

 504 2081 404 2989 
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43. This is a test of homogeneity:  Ho:  p1j = p2j = p3j for j = 1, 2, 3, 4, 5.  The given SPSS output 

reports the calculated 64156.702 =χ and accompanying p-value (significance) of .0000.  
We reject Ho at any significance level.  The data strongly supports that there are differences in 
perception of odors among the three areas. 

 
 
44. The accompanying table contains both observed and estimated expected counts, the latter in 

parentheses. 
   Age    

Want 
127 

(131.1) 
118 

(123.3) 
77 

(71.7) 
61 

(55.1) 
41 

(42.8) 
424 

Don’t 
23 

(18.9) 
23 

(17.7) 
5 

(10.3) 
2 

(7.9) 
8 

(6.2) 61 

 150 141 82 63 49 485 
 

This gives 488.960.11 2
4,05.

2 =≥= χχ .  At level .05, the null hypothesis of 

independence is rejected, though it would not be rejected at the level .01 ( .01 < p-value < 
.025). 

 
 

45. ( ) ( ) ( )( ) ( )2
202

2
101

2
110

2
101 1 npnpnnnnnpnpn −=−−−=−=− .  Therefore 

( ) ( ) ( )








+

−
=

−
+

−
=

20102

2
101

20

2
202

10

2
1012

p
n

p
n

n
npn

np
npn

np
npn

χ  

( ) 2
2

101

2010

2

10
1

2010

ˆ
z

pp
pp

n
p

n
n

n
pp

=
−

=







⋅






 −= . 

 
 
46.  

a.  
obsv 22 10 5 11 
exp 13.189 10 7.406 17.405 

H0:  probabilities are as specified. 
Ha:  probabilities are not as specified. 

Test Statistic: 
( ) ( ) ( ) ( )

405.17
405.1711

406.7
406.75

10
1010

189.13
189.1322 2222

2 −
+

−
+

−
+

−
=χ  

025.9357.2782.00886.5 =+++= . Rejection Region:  99.52
2,05.

2 => χχ  

Since 9.025 > 5.99, we reject H0.  The model postulated in the exercise is not a good fit. 
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b.  
pi 0.45883 0.18813 0.11032 0.24272 

exp 22.024 9.03 5.295 11.651 

( ) ( ) ( ) ( )
651.11

651.1111
295.5
295.55

03.9
03.910

024.22
024.2222 2222

2 −+−+−+−=χ  

1570332.0363746.0164353.1041971.0000262. =+++=  
With the same rejection region as in a, we do not reject the null hypothesis.  This model 
does provide a good fit. 

 
 
47.  

a. Our hypotheses are H0:  no difference in proportion of concussions among the three 
groups. Vs Ha: there is a difference …  

Observed Concussion 
No 

Concussion Total 
Soccer 45 46 91 

Non Soccer 28 68 96 
Control 8 45 53 
Total 81 159 240 

    

Expected Concussion 
No 

Concussion Total 
Soccer 30.7125 60.2875 91 

Non Soccer 32.4 63.6 96 
Control 17.8875 37.1125 53 
Total 81 159 240 

 

( ) ( ) ( ) ( )
6.63

6.6368
4.32

4.3228
2875.60

2875.6046
7125.30

7125.3045 2222
2 −

+
−

+
−

+
−

=χ  

( ) ( )
1842.19

1125.37
1125.3745

8875.17
8875.178 22

=
−

+
−

+ .  The df for this test is (I – 1)(J – 

1) = 2, so we reject Ho if  99.52
2,05.

2 => χχ .  19.1842 > 5.99, so we reject H0.  There 

is a difference in the proportion of concussions based on whether a person plays soccer. 

 

b. We are testing the hypothesis H0: ρ = 0 vs Ha: ρ ? 0.  The test statistic is 

13.2
22.1

8922.

1

2
22

−=
−

−
=

−

−
=

r

nr
t .  At significance level α = .01, we would fail to 

reject and conclude that there is no evidence of  non-zero correlation in the population.  If 
we were willing to accept a higher significance level, our decision could change.  At best, 
there is evidence of only weak correlation. 
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c. We will test to see if the average score on a controlled word association test is the same 
for soccer and non-soccer athletes.  H0: µ1 = µ2 vs Ha: µ1 ?  µ2 .  We’ll use test statistic   

( )

n
s

m
s

xx
t

2
2

2
1

21

+

−
= . With 206.3

2
1 =

m
s

 and 854.1
2
2 =
n
s

, 

( )
95.

854.1206.3
63.3950.37

−=
+

−
=t .  The df = 

( )
56

55
854.1

25
206.3

854.1206.3
22

2

≈
+

+
. The p-value will 

be > .10, so we do not reject  H0 and conclude that  there is  no difference in the average 
score on the test for the two groups of athletes. 

d. Our hypotheses for ANOVA are H0: all means are equal vs Ha: not all means are equal.  

The test statistic is 
MSE
MSTr

f = .   

4659.3)35.19(.53)35.49(.96)35.30(.91 222 =−+−+−=SSTr

73295.1
2

4659.3
==MSTr  

2873.124)48(.52)87(.95)67(.90 222 =++=SSE  and 

5244.
237

2873.124
==MSE .  Now, 30.3

5244.
73295.1

==f .  Using df 2,200 from 

table A.9, the p value is between .01 and .05.  At significance level .05, we reject the null 
hypothesis.  There is sufficient evidence to conclude that there is a difference in the 
average number of prior non-soccer concussions between the three groups. 

 
48.  

a. Ho: p0 = p1 = … = p9 = .10 vs Ha: at least one p i ? .10, with df = 9. 
 
b. Ho: pij = .01  for I and j= 1,2,…,9  vs Ha: at least one p ij ? 0, with df = 99. 
 
c. For this test, the number of p’s in the Hypothesis  would be 105 = 100,000 (the number of 

possible combinations of 5 digits).  Using only the first 100,000 digits in the expansion, 
the number of non-overlapping groups of 5 is only 20,000.  We need a much larger 
sample size! 

 
d. Based on these p-values, we could conclude that the digits of p behave as though they 

were randomly generated. 
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CHAPTER 15 
 

Section 15.1 
 
1. We test 100:0 =µH  vs. 100: ≠µaH .  The test statistic is s+ = sum of the ranks 

associated with the positive values of )100( −ix , and we reject Ho at significance level .05 

if 64≥+s . (from Table A.13, n = 12, with 026.2/ =α , which is close to the desired 

value of . 025), or if 
( )

14647864
2
1312

=−=−≤+s . 

ix  )100( −ix  ranks 

105.6 5.6 7* 
90.9 -9.1 12 
91.2 -8.8 11 
96.9 -3.1 3 
96.5 -3.5 5 
91.3 -8.7 10 
100.1 0.1 1* 
105 5 6* 
99.6 -0.4 2 
107.7 7.7 9* 
103.3 3.3 4* 
92.4 -7.6 8 

 
S+ = 27, and since 27 is neither 64≥  nor 14≤ , we do not reject Ho.  There is not enough 
evidence to suggest that the mean is something other than 100. 
 
 

2. We test 25:0 =µH  vs. 25: >µaH .  With n = 5 and 03.≈α , reject Ho if 15≥+s .  

From the table below we arrive at s+ =1+5+2+3 = 11, which is not 15≥ , so do not reject Ho.  
It is still plausible that the mean = 25. 

 

ix  )25( −ix  ranks 

25.8 0.8 1* 

36.6 11.6 5* 

26.3 1.3 2* 

21.8 -3.2 4 

27.2 2.2 3* 
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3. We test 39.7:0 =µH  vs. 39.7: ≠µaH , so a two tailed test is appropriate.  With n = 

14 and 025.2/ =α , Table A.13 indicates that Ho should be rejected if either 

2184 ≤≥+ ors .  The )39.7( −ix ’s are -.37, -.04, -.05, -.22, -.11, .38, -.30, -.17, .06, -.44, 

.01, -.29, -.07, and -.25, from which the ranks of the three positive differences are 1, 4, and 13.  
Since 2118 ≤=+s , Ho is rejected at level .05. 

 
 
4. The appropriate test is 30:0 =µH  vs. 30: <µaH .  With n = 15, and 10.=α , reject 

Ho if  
( )

3783
2
1615

=−≤+s . 

 

ix  )30( −ix  ranks ix  )30( −ix  ranks 

30.6 0.6 3* 31.9 1.9 5* 
30.1 0.1 1* 53.2 23.2 15* 
15.6 -14.4 12 12.5 -17.5 13 
26.7 -3.3 7 23.2 -6.8 11 
27.1 -2.9 6 8.8 -21.2 14 
25.4 -4.6 8 24.9 -5.1 10 
35 5 9* 30.2 0.2 2* 

30.8 0.8 4*    
 

S+ = 39, which is not 37≤ , so Ho cannot be rejected.  There is not enough evidence to prove 
that diagnostic time is less than 30 minutes at the 10% significance level. 

 
 

5. The data is paired, and we wish to test 0:0 =DH µ  vs. 0: ≠DaH µ . With n = 12 and 

05.=α , Ho should be rejected if either 64≥+s or if 14≤+s . 
 

di -.3 2.8 3.9 .6 1.2 -1.1 2.9 1.8 .5 2.3 .9 2.5 

rank 1 10* 12* 3* 6* 5 11* 7* 2* 8* 4* 9* 
 

72=+s , and 6472 ≥ , so Ho is rejected at level .05.  In fact for 01.=α , the critical value 
is c = 71, so even at level .01 Ho would be rejected. 
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6. We wish to test 5:0 =DH µ  vs. 5: >DaH µ , where whiteblackD µµµ −= .  With n = 9 

and 05.≈α , Ho will be rejected if 37≥+s .  As given in the table below, 37=+s , which 

is 37≥ , so we can (barely) reject Ho at level approximately .05, and we conclude that the 
greater illumination does decrease task completion time by more than 5 seconds. 

 

id  5−id  rank id  5−id  rank 

7.62 2.62 3* 16.07 11.07 9* 
8 3 4* 8.4 3.4 5* 

9.09 4.09 8* 8.89 3.89 7* 
6.06 1.06 1* 2.88 -2.12 2 
1.39 -3.61 6    

      
 
 
7.  20.:0 =DH µ  vs. 20.: >DaH µ , where indooroutdoorD µµµ −= .  05.=α , and 

because n = 33, we can use the large sample test.  The test statistic is 
( )

( )( )
24

121

4
1

++

+
+ −

=
nnn

nns
Z , and 

we reject Ho if 96.1≥z .   
 

id  2.−id  rank id  2.−id  rank id  2.−id  rank 

0.22 0.02 2 0.15 -0.05 5.5 0.63 0.43 23 
0.01 -0.19 17 1.37 1.17 32 0.23 0.03 4 
0.38 0.18 16 0.48 0.28 21 0.96 0.76 31 
0.42 0.22 19 0.11 -0.09 8 0.2 0 1 
0.85 0.65 29 0.03 -0.17 15 -0.02 -0.22 18 
0.23 0.03 3 0.83 0.63 28 0.03 -0.17 14 
0.36 0.16 13 1.39 1.19 33 0.87 0.67 30 
0.7 0.5 26 0.68 0.48 25 0.3 0.1 9.5 
0.71 0.51 27 0.3 0.1 9.5 0.31 0.11 11 
0.13 -0.07 7 -0.11 -0.31 22 0.45 0.25 20 
0.15 -0.05 5.5 0.31 0.11 12 -0.26 -0.46 24 

 

434=+s , so 56.2
9665.55

5.143
25.3132

5.280424
==

−
=z .  Since 96.156.2 ≥ , we reject Ho 

at significance level .05. 
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8. We wish to test 75:0 =µH  vs. 75: >µaH .  Since n = 25 the large sample 

approximation is used, so Ho will be rejected at level .05 if 645.1≥z .  The ( ) sxi '75−  are 

–5.5, -3.1, -2.4, -1.9, -1.7, 1.5, -.9, -.8, .3, .5, .7, .8, 1.1, 1.2, 1.2, 1.9, 2.0, 2.9, 3.1, 4.6, 4.7, 5.1, 
7.2, 8.7, and 18.7.  The ranks of the positive differences are 1, 2, 3, 4.5, 7, 8.5, 8.5, 12.5, 14, 

16, 17.5, 19, 20, 21, 23, 24, and 25, so s+ = 226.5 and 
( )

5.162
4

1
=

+nn
.  Expression (15.2) 

for 2σ should be used (because of the ties): 24321 ==== ττττ , so 

( )( ) ( )( )( )
75.138050.25.1381

48
3214

24
5126252 =−=−=

+sσ  and 16.37=σ .  Thus 

72.1
16.37

5.1625.226
=

−
=z .  Since 645.172.1 ≥ , Ho is rejected. 

( ) 0427.72.11 =Φ−≈− valuep .  The data indicates that true average toughness of the 
steel does exceed 75. 

 
 
9.  

r1 1 1 1 1 1 1 2 2 2 2 2 2 
r2 2 2 3 3 4 4 1 1 3 3 4 4 
r3 3 4 2 4 2 3 3 4 1 4 1 3 
r4 4 3 4 2 3 2 4 3 4 1 3 1 
D 0 2 2 6 6 8 2 4 6 12 10 14 
             

r1 3 3 3 3 3 3 4 4 4 4 4 4 
r2 1 1 2 2 4 4 1 1 2 2 3 3 
r3 2 4 1 4 1 2 2 3 1 3 1 2 
r4 4 2 4 1 2 1 3 2 3 1 2 1 
D 6 10 8 14 16 18 12 14 14 18 18 20 

 
When Ho is true, each of the above 24 rank sequences is equally likely, which yields the 
distribution of D when Ho is true as described in the answer section (e.g., P(D = 2) = P( 1243 
or 1324 or 2134) = 3/24).  Then c = 0 yields 042.24

1 ==α  while c = 2 implies 

167.24
4 ==α . 

 
 

Section 15.2 
 
10. The ordered combined sample is 163(y), 179(y), 213(y), 225(y), 229(x), 245(x), 247(y), 

250(x), 286(x), and 299(x), so w = 5 + 6 + 8 + 9 + 10 = 38.  With m = n = 5, Table A.14 gives 
the upper tail critical value for a level .05 test as 36 (reject Ho if W 36≥ ).  Since 3638 ≥ , 
Ho is rejected in favor of Ha.   
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11. With X identified with pine (corresponding to the smaller sample size) and Y with oak, we 
wish to test 0: 210 =− µµH  vs. 0: 21 ≠− µµaH .  From Table A.14 with m = 6 and n 

= 8, Ho is rejected in favor of Ha at level .05 if either 61≥w  or if 296190 =−≤w (the 
actual α is 2(.021) = .042).  The X ranks are 3 (for .73), 4 (for .98), 5 (for 1.20), 7 (for 1.33), 
8 (for 1.40), and 10 (for 1.52), so w = 37.  Since 37 is neither 61≥  nor 29≤ , Ho cannot be 
rejected. 

 
 
12. The hypotheses of interest are 1: 210 =− µµH  vs. 1: 21 >− µµaH , where 1(X) refers 

to the original process and 2 (Y) to the new process.  Thus 1 must be subtracted from each xI 
before pooling and ranking.  At level .05, Ho should be rejected in favor of Ha if 84≥w . 

 

x – 1 3.5 4.1 4.4 4.7 5.3 5.6 7.5 7.6 

rank 1 4 5 6 8 10 15 16 

y 3.8 4.0 4.9 5.5 5.7 5.8 6.0 7.0 

rank 2 3 7 9 11 12 13 14 

 
Since w = 65, Ho is not rejected. 

 
 
13. Here m = n = 10 > 8, so we use the large-sample test statistic from p. 663. 

0: 210 =− µµH  will be rejected at level .01 in favor of  0: 21 ≠− µµaH  if either 

58.2≥z  or 58.2−≤z .   Identifying X with orange juice, the X ranks are 7, 8, 9, 10, 11, 

16, 17, 18, 19,  and 20, so w = 135.  With 
( )

105
2

1
=

++ nmm
 and 

( )
22.13175

12
1

==
++ nmmn

, 27.2
22.13
105135

=
−

=z .  Because 2.27 is neither 

58.2≥  nor 58.2−≤ , Ho is not rejected. ( )( ) .0232.27.212 =Φ−≈− valuep  
 
14.  

x 8.2 9.5 9.5 9.7 10.0 14.5 15.2 16.1 17.6 21.5 

rank 7 9 9 11 12.5 16 17 18 19 20 

y 4.2 5.2 5.8 6.4 7.0 7.3 9.5 10.0 11.5 11.5 

rank 1 2 3 4 5 6 9 12.5 14.5 14.5 

 
The denominator of z must now be computed according to (15.6).  With 31 =τ , 22 =τ , 

23 =τ , ( )( ) ( )( ) ( )( )[ ] 21.1743213214320219.1752 =++−=σ , so 

54.2
21.174
1055.138

=
−

=z .  Because 2.54 is neither 58.2≥  nor 58.2−≤ , Ho is not 

rejected. 
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15. Let 1µ  and 2µ denote true average cotanine levels in unexposed and exposed infants, 

respectively.  The hypotheses of interest are 25: 210 −=− µµH  vs. 

25: 21 −<− µµaH .   With m = 7, n = 8, Ho will be rejected at level .05 if 

( ) 41711877 =−++≤w .  Before ranking, -25 is subtracted from each xI (i.e. 25 is 
added to each), giving 33, 36, 37, 39, 45, 68, and 136.  The corresponding ranks in the 
combined set of 15 observations are 1, 3, 4, 5, 6, 8, and 12, from which w = 1 + 3 + … + 12 = 
39.  Because 4139 ≤ , Ho is rejected.  The true average level for exposed infants appears to 
exceed that for unexposed infants by more than 25 (note that Ho would not be rejected using 
level .01). 

 
 
16.  

a.  
X rank Y rank 

0.43 2 1.47 9 
1.17 8 0.8 7 
0.37 1 1.58 11 
0.47 3 1.53 10 
0.68 6 4.33 16 
0.58 5 4.23 15 
0.5 4 3.25 14 
2.75 12 3.22 13 

    
We verify that w = sum of the ranks of the x’s = 41. 

 
b. We are testing 0: 210 =− µµH  vs. 0: 21 <− µµaH .  The reported p-value 

(significance) is .0027, which is < .01 so we reject Ho.  There is evidence that the 
distribution of good visibility response time is to the left (or lower than) that response 
time with poor visibility. 

 
 

Section 15.3 
 
17. n = 8, so from Table A.15, a 95% C.I. (actually 94.5%) has the form 

( ) ( )( ) ( ) ( )( )3253213236 ,, xxxx =+− .  It is easily verified that the 5 smallest pairwise averages are 

00.5
2

0.50.5
=

+
, 40.8

2
8.110.5

=
+

, 60.8
2

2.120.5
=

+
, 00.11

2
0.170.5

=
+

, and 

15.11
2

3.170.5
=

+
 (the smallest average not involving 5.0 is ( ) 8.11

2
8.118.11

6 =
+

=x ), 

and the 5 largest averages are 30.6, 26.0, 24.7, 23.95, and 23.80, so the confidence interval is 
(11.15, 23.80). 
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18. With n = 14 and 
( )

105
2

1
=

+nn
, from Table A.15 we se that c = 93 and the 99% interval is 

( ) ( )( )9313 , xx .  Subtracting 7 from each xI and multiplying by 100 (to simplify the arithmetic) 

yields the ordered values –5, 2, 9, 10, 14, 17, 22, 28, 32, 34, 35, 40, 45, and 77.  The 13 
smallest sums are –10, -3, 4, 4, 5, 9, 11, 12, 12, 16, 17, 18, and 19 ( so 

( ) )095.7
2
19.14

13 ==x while the 13 largest sums are 154, 122, 117, 112, 111, 109, 99, 91, 

87, and 86 ( so ( ) )430.7
2
86.14

93 ==x .  The desired C.I. is thus (7.095, 7.430). 

 
 

19. The ordered d i’s are –13, -12, -11, -7, -6; with n = 5 and 
( )

15
2

1
=

+nn
, Table A.15 shows 

the 94% C.I. as (since c = 1) ( ) ( )( )151 ,dd .  The smallest average is clearly 13
2

1313
−=

−−
 

while the largest is 6
2

66
−=

−−
, so the C.I. is (-13,   -6). 

 
 
20. For n = 4 Table A.13 shows that a two tailed test can be carried out at level .124 or at level 

.250 (or, of course even higher levels), so we can obtain either an 87.6% C.I. or a 75% C.I.   

With 
( )

10
2

1
=

+nn
, the 87.6% interval is ( ) ( )( ) ( )177,.045., 101 =xx . 

 
 
21. m = n = 5 and from Table A.16, c = 21 and the 90% (actually 90.5%) interval is 

( ) ( )( )215 , ijij dd .  The five smallest ji yx −  differences are –18, -2, 3, 4, 16 while the five 

largest differences are 136, 123, 120, 107, 86 (construct a table like Table 15.5), so the 
desired interval is ( )86,16 . 

 
 
22. m = 6, n = 8, mn = 48, and from Table A.16 a 99% interval (actually 99.2%) requires c = 44 

and the interval is ( ) ( )( )445 , ijij dd .  The five largest ji yx − ’s are 1.52 - .48 = 1.04, 1.40 - .48 

= .92, 1.52 - .67 = .85, 1.33 - .48 = .85, and 1.40 - .67 = .73, while the five smallest are –1.04, 
-.99, -.83, -.82,  and -.79, so the confidence interval for 21 µµ −  (where 1µ  refers to pine 

and 2µ  refers to oak) is (-.79, .73). 
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Section 15.4 
 
23. Below we record in parentheses beside each observation the rank of that observation in the 

combined sample. 
 

1: 5.8(3) 6.1(5) 6.4(6) 6.5(7) 7.7(10) 31.1 =r  

2: 7.1(9) 8.8(12) 9.9(14) 10.5(16) 11.2(17) 68.2 =r  

3: 5.191) 5.7(2) 5.9(4) 6.6(8) 8.2(11) 26.3 =r  

4: 9.5(13) 1.0.3(15) 11.7(18) 12.1(19) 12.4(20) 85.4 =r  

 

Ho will be rejected at level .10 if 251.62
3,10. =≥ χk .  The computed value of k is 

( ) ( ) 06.14213
5

85266831
2120

12 2222

=−






 +++
=k .  Since 251.606.14 ≥ , reject 

Ho. 
 
 
24. After ordering the 9 observation within each sample, the ranks in the combined sample are 

1: 1 2 3 7 8 16 18 22 27 104.1 =r  

2: 4 5 6 11 12 21 31 34 36 160.2 =r  

3: 9 10 13 14 15 19 28 33 35 176.3 =r  

4: 17 20 23 24 25 26 29 30 32 226.4 =r  

 

At level .05, 43210 : µµµµ ===H  will be rejected if 815.72
3,05. =≥ χk .  The 

computed k is ( ) ( ) 587.7373
5

226176160104
3736

12 2222

=−






 +++
=k .  Since 

7.587 is not 815.7≥ , Ho cannot be rejected. 
 
 

25. 3210 : µµµ ==H  will be rejected at level .05 if 992.52
2,05. =≥ χk .  The ranks are 1, 

3, 4, 5, 6, 7, 8, 9, 12, 14 for the first sample; 11, 13, 15, 16, 17, 18 for the second; 2, 10, 19, 
20, 21, 22 for the third; so the rank totals are 69, 90, and 94. 

( ) ( ) 23.9233
5

94
6

90
10
69

2322
12 222

=−







++=k .  Since 992.523.9 ≥ , we reject Ho. 
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26.  

 1 2 3 4 5 6 7 8 9 10 ir  2
ir  

A 2 2 2 2 2 2 2 2 2 2 20 400 

B 1 1 1 1 1 1 1 1 1 1 10 100 

C 4 4 4 4 3 4 4 4 4 4 39 1521 

D 3 3 3 3 4 3 3 3 3 3 31 961 

            2982 

The computed value of Fr  is 
( )( )

( ) ( )( ) 92.2851032982
5104

12
=− , which is 

344.112
3,01. =≥ χ , so Ho is rejected. 

 
 
27.  

 1 2 3 4 5 6 7 8 9 10 ir  2
ir  

I 1 2 3 3 2 1 1 3 1 2 19 361 

H 2 1 1 2 1 2 2 1 2 3 17 289 

C 3 3 2 1 3 3 3 2 3 1 24 576 

            1226 

The computed value of Fr  is 
( )( )

( ) ( )( ) 60.241031226
4310

12
=− , which is not 

992.52
2,05. =≥ χ , so don’t reject Ho. 

 
 

Supplementary Exercises 
 
28. The Wilcoxon signed-rank test will be used to test 0:0 =DH µ  vs. 0:0 ≠DH µ , where 

=Dµ the difference between expected rate for a potato diet and a rice diet.  From Table A.11 

with n = 8, Ho will be rejected if either 32≥+s  or 
( )

432
2
98

=−≤+s .  The sd i '  are (in 

order of magnitude) .16, .18, .25, -.56, .60, .96, 1.01, and –1.24, so 
24765321 =+++++=+s .  Because 24 is not in the rejection region, Ho is not 

rejected. 
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29. Friedman’s test is appropriate here.  At level .05, Ho will be rejected if 815.72
3,05. =≥ χrf .  

It is easily verified that 28.1 =r , 29.2 =r , 16.3 =r , 17.4 =r , from which the defining 

formula gives 62.9=rf  and the computing formula gives 67.9=rf .  Because 

815.7≥rf , 43210 : αααα ===H = 0 is rejected, and we conclude that there are 

effects due to different years. 
 
 
30. The Kruskal-Wallis test is appropriate for testing 43210 : µµµµ ===H .  Ho will be 

rejected at significance level .01 if 344.112
3,01. =≥ χk  

Treatment ranks ir  

I 4 1 2 3 5 15 

II 8 7 10 6 9 40 

III 11 15 14 12 13 65 

IV 16 20 19 17 18 90 

       

.86.1763
5

810042251600225
420
12

=−



 +++

=k   Because 344.1186.17 ≥ , reject 

Ho.   
 
 
31. From Table A.16, m = n = 5 implies that c = 22 for a confidence level of 95%, so 

4122251 ==−=+− cmn .  Thus the confidence interval extends from the 4th 
smallest difference to the 4th largest difference.  The 4 smallest differences are –7.1, -6.5, -6.1, 
-5.9, and the 4 largest are –3.8, -3.7, -3.4, -3.2, so the C.I. is (-5.9, -3.8). 
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32.  
a. 0: 210 =− µµH  will be rejected in favor of 0: 21 ≠− µµaH  if either 56≥w  or 

( ) 28561766 =−++≤w . 

Gait D L L D D L L 

Obs .85 .86 1.09 1.24 1.27 1.31 1.39 

Gait D L L L D D  

obs 1.45 1.51 1.53 1.64 1.66 1.82  

 
4313128541 =+++++=w .  Because 43 is neither  56≥  nor 28≤ , we don’t 

reject Ho.  There appears to be no difference between 1µ  and 2µ . 
 

b.  
Differences  

 Lateral Gait 
  .86 1.09 1.31 1.39 1.51 1.53 1.64 

 .85 .01 .24 .46 .54 .66 .68 .79 
Diagonal 1.24 -.38 -.15 .07 .15 .27 .29 .40 

gait 1.27 -.41 -.18 .04 .12 .24 .26 .37 
 1.45 -.59 -.36 -.14 -.06 .06 .08 .19 
 1.66 -.80 -.57 -.35 -.27 -.15 -.13 -.02 
 1.82 -.96 -.73 -.51 -.43 -.31 -.29 -.18 

 
From Table A.16, c = 35 and 81 =+− cmn , giving (-.41, .29) as the C.I. 

 
 
33.   

a. With “success” as defined, then Y is a binomial with n = 20.  To determine the binomial 
proportion “p” we realize that since 25 is the hypothesized median, 50% of the 
distribution should be above 25, thus p = .50.  From the Binomial Tables (Table A.1) 
with n = 20 and p = .50, we see that 

( ) ( ) 021.979.114115 =−=≤−=≥= YPYPα . 
 
b. From the same binomial table as in a, we find that 

( ) ( ) 058.942.113114 =−=≤−=≥ YPYP (a close as we can get to .05),       so 

c = 14.  For this data, we would reject Ho at level .058 if 14≥Y . Y = (the number of 
observations in the sample that exceed 25) = 12, and since 12 is not 14≥ , we fail to 
reject Ho.  
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34.  
a. Using the same logic as in Exercise 33, ( ) 021.5 =≤YP , and ( ) 021.15 =≥YP , 

so the significance level is 042.=α . 
 
b. The null hypothesis will not be rejected if the median is between the 6th smallest 

observation in the data set and the 6th largest, exclusive. (If  the median is less than or 
equal to 14.4, then there are at least 15 observations above, and we reject Ho.  Similarly, 
if any value at least 41.5 is chosen, we have 5 or less observations above.)  Thus with a 
confidence level of 95.8% the median will fall between 14.4 and 41.5. 

 
 
35.  

Sample: y x y y x x x y y 

Observations: 3.7 4.0 4.1 4.3 4.4 4.8 4.9 5.1 5.6 

Rank: 1 3 5 7 9 8 6 4 2 

 
The value of W’ for this data is 269863 =+++=′w .  At level .05, the critical value 
for the upper-tailed test is (Table A.14, m = 4, n = 5) c = 27 ( 056.=α ).  Since 26 is not 

27≥ , Ho cannot be rejected at level .05. 
 
 
36. The only possible ranks now are 1, 2, 3, and 4.  Each rank triple is obtained from the 

corresponding X ordering by the “code” 1 = 1, 2 = 2, 3 = 3, 4 = 4, 5 = 3, 6 = 2, 7 = 1 (so e.g. 
the X ordering 256 corresponds to ranks 2, 3, 2). 

 
X 

ordering ranks w’ 
X 

ordering ranks w’ 
X 

ordering ranks w’ 

123 123 6 156 132 66 267 221 5 
124 124 7 157 131 5 345 343 10 
125 123 6 167 121 4 346 342 9 
126 122 5 234 234 9 347 341 8 
127 121 4 235 233 8 356 332 8 
134 134 8 236 232 7 357 331 7 
135 133 7 237 231 6 367 321 6 
136 132 6 245 243 9 456 432 9 
137 131 5 246 242 8 457 431 8 
145 143 8 247 241 7 467 421 7 
146 142 7 256 232 7 567 321 6 
147 141 6 257 231 6    

 
Since when Ho is true the probability of any particular ordering is 1/35, we easily obtain the 
null distribution and critical values given in the answer section. 
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CHAPTER 16 
 

Section 16.1 
 
1. All ten values of the quality statistic are between the two control limits, so no out-of-control 

signal is generated. 
 
 
2. All ten values are between the two control limits.  However, it is readily verified that all but 

one plotted point fall below the center line (at height .04975).  Thus even though no single 
point generates an out-of-control signal, taken together, the observed values do suggest that 
there may be a decrease in the average value of the quality statistic.  Such a “small” change is 
more easily detected by a CUSUM procedure (see section 16.5) than by an ordinary chart. 

 
 
3. P(10 successive points inside the limits) = P(1st inside) x P(2nd inside) x…x P(10th inside) = 

(.998)10 = .9802.   P(25 successive points inside the limits) = (.998)25 = .9512.  (.998)52 = 
.9011, but (.998)53 = .8993, so for 53 successive points the probability that at least one will 
fall outside the control limits when the process is in control is 1 - .8993 = .1007 > .10. 

 
 

Section 16.2 
 
4. For Z, a standard normal random variable, ( ) 995.=≤≤− cZcP  implies that 

( ) ( ) 9975.
2

005.
995. =+=≤=Φ cZPc .  Table A.3 then gives c = 2.81.  The 

appropriate control limits are therefore σµ 81.2± . 

 
 
5.  

a. P(point falls outside the limits when σµµ 5.0 += ) 









+=+<<−−= σµµ

σ
µ

σ
µ 5.

33
1 000 when

n
X

n
P  

( )nZnP 5.35.31 −<<−−−=    

( ) 0301.9699.1882.112.41 =−=<<−−= ZP . 
 

b. 






 −=+<<−− σµµσµσµ 000
331 when

n
X

n
P  

( )nZnP +<<+−−= 331  ( ) 2236.24.576.1 =<<−−= ZP  
 

c. ( ) ( ) 6808.47.147.7123231 =−<<−−=−<<−−− ZPnZnP  
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6. The limits are 
( )( )

80.00.13
5
6.3

00.13 ±=± , from which LCL = 12.20 and UCL = 13.80.  

Every one of the 22 x  values is well within these limits, so the process appears to be in 
control with respect to location. 

 
 
7. 95.12=x  and 526.=s , so with 940.5 =a , the control limits are 

70.13,20.1275.95.12
5940.

526.
395.12 =±=± .  Again, every point ( )x  is between 

these limits, so there is no evidence of an out-of-control process. 
 
 
8. 336.1=r  and 325.25 =b , yielding the control limits 

72.13,18.1277.95.12
5325.2

336.1
395.12 =±=± .  All points are between these limits, 

so the process again appears to be in control with respect to location. 
 
 

9. 54.96
24

07.2317
==x  , 264.1=s , and 952.6 =a , giving the control limits 

17.98,91.9463.154.96
6952.

264.1
354.96 =±=± .  The value of x  on the 22nd day lies 

above the UCL, so the process appears to be out of control at that time. 
 
 

10. Now 47.96
23

34.9807.2317
=

−
=x  and 250.1

23
60.134.30

=
−

=s , giving the limits 

08.98,86.9461.147.96
6952.

250.1
347.96 =±=± .  All 23 remaining x  values are 

between these limits, so no further out-of-control signals are generated. 
 
 
11.  

a. 







=+<<− 000

81.281.2
µµ

σ
µ

σ
µ when

n
X

n
P  

( ) 995.81.281.2 =<<−= ZP , so the probability that a point falls outside the limits 

is .005 and 200
005.
1

==ARL . 
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b. P = P(a point is outside the limits) 









+=+<<−−= σµµ

σ
µ

σ
µ 000

81.281.2
1 when

n
X

n
P

( )nZnP −<<−−−= 81.281.21    

( ) 209.791.181.81.41 =−=<<−−= ZP .  Thus 78.4
209.
1

==ARL  

 

c. 1 - .9974 = .0026 so 385
0026.

1
==ARL  for an in-control process, and when 

σµµ += 0 , the probability of an out-of-control point is )123(1 <<−−− ZP  

1587.)1(1 =<−= ZP , so 30.6
1587.

1
==ARL . 

 
 
12.  

0 10 20

12

13

14

Sample Number

S
am

pl
e 

M
ea

n

X=12.95

1.0SL=13.20

2.0SL=13.45

3.0SL=13.70

-1.0SL=12.70

-2.0SL=12.45

-3.0SL=12.20

 
The 3-sigma control limits are from problem 7.  The 2-sigma limits are 

45.13,45.1250.95.12 =± , and the 1-sigma limits are 20.13,70.1225.95.12 =± .  No 

points fall outside the 2-sigma limits, and only two points fall outside the 1-sigma limits.  
There are also no runs of eight on the same side of the center line – the longest run on the 
same side of the center line is four (the points at times 10, 11, 12, 13).  No out-of-control 
signals result from application of the supplemental rules. 

 
 

13. 95.12=x , IQR = .4273, 990.5 =k .  The control limits are 

53.13,37.1245.13,45.12
5990.

4273.
395.12 ==± . 
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Section 16.3 
 

14. 895.4=Σ is  and 2040.
24
895.4

==s .  With 940.5 =a , the lower control limit is zero 

and the upper limit is 
( ) ( )

4261.2221.2040.
940.

940.12040.3
2040.

2

=+=
−

+ .  Every 

s I is between these limits, so the process appears to be in control with respect to variability. 
 
 
15.   

a. 84.2
30

2.85
==r , 058.24 =b , and 880.4 =c .  Since n = 4, LCL = 0 and UCL 

( )( )
48.664.384.2

058.2
84.2880.3

84.2 =+=+= . 

 

b. 54.3=r , 844.28 =b , and 820.8 =c , and the control limits are 

( )( )
60.6,48.06.354.3

844.2
54.3820.3

54.3 =±=±= . 

 
 

16. 5172.=s , 940.5 =a , LCL = 0 (since n = 5) and UCL = 

( ) ( )
0804.15632.5172.

940.
940.15172.3

5172.
2

=+=
−

+ .  The largest s I is s9 = .963, 

so all points fall between the control limits.   
 
 
17. 2642.1=s , 952.6 =a , and the control limits are 

( ) ( )
484.2,045.2194.12642.1

952.
952.12642.13

2642.1
2

=±=
−

± .  The smallest s I is 

s20 = .75, and the largest is s12 = 1.65, so every value is between .045 and 2.434.  The process 
appears to be in control with respect to variability. 

 
 

18. 9944.392 =Σ is  and 6664.1
24
9944.392 ==s , so LCL =  

( )( )
070.

5
210.6664.1

= , 

and UCL = 
( )( )

837.6
5

515.206664.1
= .  The smallest s2 value is ( ) 5625.75. 22

20 ==s  

and the largest is ( ) 723.265.1 22
12 ==s , so all ssi '2  are between the control limits. 
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Section 16.4 
 

19. 
k
p

p iˆ
Σ=  where 78.5

100
578...

...ˆ 11 ==
++

=++=Σ
n

xx
n
x

n
x

p kk
i .  Thus 

231.
25
78.5

==p . 

a. The control limits are 
( )( )

357,.105.126.231.
100

769.231.
3231. =±=± . 

 

b. 130.
100
13

= , which is between the limits, but 390.
100
39

= , which exceeds the upper 

control limit and therefore generates an out-of-control signal. 
 
 

20. 567=Σ ix , from which 
( )( ) 0945.

30200
567

==
Σ

=
nk
x

p i .  The control limits are 

( )( )
1566,.0324.0621.0945.

200
9055.0945.

30945. =±=± .  The smallest ix  is 

77 =x , with 0350.
200
7ˆ 7 ==p .  This (barely) exceeds the LCL.  The largest ix  is 

375 =x , with 185.
200
37ˆ 5 ==p .  Thus 1566.ˆ 5 => UCLp , so an out-of-control 

signal is generated.  This is the only such signal, since the next largest ix  is 3025 =x , with 

UCLp <== 1500.
200
30ˆ 25 . 

 
 

21. LCL > 0 when 
( )

n
pp

p
−

>
1

3 , i.e. (after squaring both sides) ( )ppp −> 1350 2 , i.e. 

( )pp −> 1350 , i.e. 0566.
53
3

353 ==⇒> pp . 
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22. The suggested transformation is ( )n
XXhY 1sin)( −== , with approximate mean value 

( )p1sin −  and approximate variance 
n4

1
.  ( ) ( ) 2255.050.sinsin 11 1 == −−

n
x  (in 

radians), and the values of ( )n
x

i
iy 1sin −=  for i = 1, 2, 3, …, 30 are  

 
0.2255 0.2367 0.2774 0.3977
0.3047 0.3537 0.3381 0.2868
0.3537 0.3906 0.2475 0.2367
0.2958 0.2774 0.3218 0.3218
0.4446 0.2868 0.2958 0.2678
0.3133 0.3300 0.3047 0.3835
0.1882 0.3047 0.2475 
0.3614 0.2958 0.3537 

 
 
These give 2437.9=Σ iy  and 3081.=y .  The control limits are 

4142,.2020.1091.3081.33081.3 800
1

4
1 =±=±=± ny .  In contrast ot the result of 

exercise 20, there I snow one point below the LCL (.1882 < .2020) as well as one point above 
the UCL. 

 
 

23. 102=Σ ix , 08.4=x , and ( )1.10,0.206.608.43 −≈±=± xx .  Thus LCL = 0 and 

UCL = 10.1.  Because no ix  exceeds 10.1, the process is judged to be in control. 

 
 

24. 03 <− xx  is equivalent to 3<x , i.e. 9<x . 
 
 

25. With 
i

i
i g

x
u = , the sui '  are 3.75, 3.33, 3.75, 2.50, 5.00, 5.00, 12.50, 12.00, 6.67, 3.33, 1.67, 

3.75, 6.25, 4.00, 6.00, 12.00, 3.75, 5.00, 8.33, and 1.67 for I = 1, …, 20, giving 5125.5=u .  

For 6.=ig , 0933.95125.53 ±=±
ig

u
u , LCL = 0, UCL = 14.6. For 8.=ig , 

857.75125.53 ±=±
ig

u
u , LCL = 0, UCL = 13.4. For 0.1=ig , 

0436.75125.53 ±=±
ig

u
u , LCL = 0, UCL = 12.6.    Several sui '  are close to the 

corresponding UCL’s but none exceed them, so the process is judged to be in control. 
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26. ii xy 2=  and the sy i '  are 3/46, 5.29, 4.47, 4.00, 2.83, 5.66, 4.00, 3.46, 3.46, 4.90, 5.29, 

2.83, 3.46, 2.83, 4.00, 5.29, 3.46, 2.83, 4.00, 4.00, 2.00, 4.47, 4.00, and 4.90 for I = 1, …, 25, 
from which  35.98=Σ iy  and 934.3=y .  Thus 934.6,934.3934.33 =±=±y .  

Since every iy  is well within these limits it appears that the process is in control. 

 
 
Section 16.5 
 

27. 160 =µ , 05.0
2

=
∆

=k , 20.=h , ( )( )05.16,0max 1 −+= − iii xdd , 

( )( )95.15,0max 1 −+= − iii xee . 

i  05.16−ix  
id  95.15−ix  

ie  

1 -0.058 0 0.024 0 
2 0.001 0.001 0.101 0 
3 0.016 0.017 0.116 0 
4 -0.138 0 -0.038 0.038 
5 -0.020 0 0.080 0 
6 0.010 0.010 0.110 0 
7 -0.068 0 0.032 0 
8 -0.151 0 -0.054 0.054 
9 -0.012 0 0.088 0 
10 0.024 0.024 0.124 0 
11 -0.021 0.003 0.079 0 
12 -0.115 0 -0.015 0.015 
13 -0.018 0 0.082 0 
14 -0.090 0 0.010 0 
15 0.005 0.005 0.105 0 
     

For no time r is it the case that 20.>rd  or that 20.>re , so no out-of-control signals are 
generated. 
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28. 75.0 =µ , 001.0
2

=
∆

=k , 003.=h , ( )( )751.,0max 1 −+= − iii xdd , 

( )( )749.,0max 1 −+= − iii xee . 

 
i  751.−ix  

id  749.−ix  
ie  

1 -.0003 0 .0017 0 
2 -.0006 0 .0014 0 
3 -.0018 0 .0002 0 
4 -.0009 0 .0011 0 
5 -.0007 0 .0013 0 
6 .0000 0 .0020 0 
7 -.0020 0 .0000 0 
8 -.0013 0 .0007 0 
9 -.0022 0 -.0002 .0002 
10 -.0006 0 .0014 0 
11 .0006 .0006 .0026 0 
12 -.0038 0 -.0018 .0018 
13 -.0021 0 -.0001 .0019 
14 -.0027 0 -.0007 .0026 
15 -.0039 0 -.0019 .0045* 
16 -.0012 0 .0008 .0037 
17 -.0050 0 -.0030 .0067 
18 -.0028 0 -.0008 .0075 
19 -.0040 0 -.0020 .0095 
20 -.0017 0 .0003 .0092 
21 -.0048 0 -.0028 .0120 
22 -.0029 0 -.0009 .0129 

 
Clearly he =>= 003.0045.15 , suggesting that the process mean has shifted to a value 

smaller than the target of .75. 
 
 
29. Connecting 600 on the in-control ARL scale to 4 on the out-of-control scale and extending to 

the k’ scale gives k’ = .87.  Thus 
nn

k
/005.

002.
/

2/
=

∆
=′

σ
 from which 

snn ==⇒= 73.4175.2 .  Then connecting .87 on the k’ scale to 600 on the out-of-
control ARL scale and extending to h’ gives h’ = 2.8, so 

( ) ( ) 00626.8.2
5

005.
8.2 =








=








=

n
h

σ
. 

 
 



Chapter 16:  Quality Control Methods 

 477 

30. In control ARL = 250, out-of-control ARL = 4.8, from which 

2/
2/

/
2/

7.
n

nn
k ==

∆
==′

σ
σ

σ
.  So 296.14.1 ≈=⇒= nn .  Then h’ = 2.85, 

giving ( ) σ
σ

0153.285.2 =







=

n
h . 

 

Section 16.6 
 
31. For the binomial calculation, n = 50 and we wish 

( ) ( ) ( ) ( )482491500 1
2

50
1

1
50

1
0
50

2 ppppppXP −







+−








+−








=≤  

( ) ( ) ( )4824950 112251501 ppppp −+−+−=  when p = .01, .02, …, .10.  For the 

hypergeometric calculation 

( )
















 −









+

















 −









+

















 −









=≤

50
500

48
500

2

50
500

49
500

1

50
500

50
500

0
2

MMMMMM

XP , to be 

calculated for M = 5, 10, 15, …, 50.  The resulting probabilities appear in the answer section 
in the text. 

 
 

32. ( ) ( ) ( ) ( ) ( )4950491500 15011
1
50

1
0
50

1 pppppppXP −+−=−







+−








=≤   

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

( )1≤XP  .9106 .7358 .5553 .4005 .2794 .1900 .1265 .0827 .0532 .0338 

 
 

33. ( ) ( ) ( ) ( )9829911000 1
2

100
1

1
100

1
0

100
2 ppppppXP −








+−








+−








=≤  

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

( )2≤XP  .9206 .6767 .4198 .2321 .1183 .0566 .0258 .0113 .0048 .0019 

 
For values of p quite close to 0, the probability of lot acceptance using this plan is larger than 
that for the previous plan, whereas for larger p this plan is less likely to result in an “accept 
the lot” decision (the dividing point between “close to zero” and “larger p” is someplace 
between .01 and .02).  In this sense, the current plan is better. 
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34. 55.35.3
02.
07.

≈==
AQL

LTPD
, which appears in the 

2

1

p
p

 column in the c = 5 row.  Then 

13165.130
02.
613.2

1

1 ≈===
p

np
n .   

5( >XP  when ( ) ( )∑
=

− ≈=







−==

5

0

131 05.0487.98.02.
131

1)02.
x

xx

x
p    

5( ≤XP  when ( ) ( )∑
=

− ≈=







==

5

0

131 10.0974.93.07.
131

)07.
x

xx

x
p  

 
 
35. P(accepting the lot) = P(X1 = 0 or 1) + P(X1 = 2, X2 = 0, 1, 2, or 3) + P(X1 = 3, X2 = 0, 1, or 2) 

= P(X1 = 0 or 1) + P(X1 = 2)P(X2 = 0, 1, 2, or 3) + P(X1 = 3)P( X2 = 0, 1, or 2).   
 

p = .01: ( )( ) ( )( ) 9981.9862.0122.9984.0756.9106. =++=  

p = .05: ( )( ) ( )( ) 5968.5405.2199.7604.2611.2794. =++=  

p = .10: ( )( ) ( )( ) 0688.1117.1386.2503.0779.0338. =++=  
 

 
36. P(accepting the lot) = P(X1 = 0 or 1) + P(X1 = 2, X2 = 0 or 1) + P(X1 = 3, X2 = 0) [since c2 = r1 

– 1 = 3] = P(X1 = 0 or 1) + P(X1 = 2)P( X2 = 0 or 1) + P(X1 = 3)P(X2 = 0) 

( ) ( ) ( )∑∑
=

−

=

− −







⋅−








+−








=

1

0

100482
1

0

50 1
100

1
2
50

1
50

x

xx

x

xx pp
x

pppp
x

 

( ) ( )1000473 1
0

100
1

3
50

pppp −







⋅−








= . 

p = .02: ( )( ) ( )( ) 8188.1326.0607.4033.1858.7358. =++=  

p = .05: ( )( ) ( )( ) 2904.0059.2199.0371.2611.2794. =++=  

p = .10: ( )( ) ( )( ) 0038.0000.1386.0003.0779.0338. =++=  
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37.  

a. ( ) ( ) ( ) ]112251501[)( 4824950 ppppppApPAOQ −+−+−==  

 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

AOQ .010 .018 .024 .027 .027 .025 .022 .018 .014 .011 

 
b. p = .0447, AOQL = .0447P(A) = .0274 
 
c. ATI = 50P(A) + 2000(1 – P(A)) 
 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

ATI 77.3 202.1 418.6 679.9 945.1 1188.8 1393.6 1559.3 1686.1 1781.6 

 
 

38. ( ) ( ) ]1501[)( 4950 ppppApPAOQ −+−== .  Exercise 32 gives P(A), so multiplying 
each entry in the second row by the corresponding entry in the first row gives AOQ: 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

AOQ .0091 .0147 .0167 .0160 .0140 .0114 .0089 .0066 .0048 .0034 

 
ATI = 50P(A) + 2000(1 – P(A)) 

p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

ATI 224.3 565.2 917.2 1219.0 1455.2 1629.5 1753.3 1838.7 1896.3 1934.1 

 

( ) ( )[ ] 0]1501[)( 4950 =−+−== ppppApP
dp
d

AOQ
dp
d

 gives the quadratic 

equation 01482499 2 =−− pp , from which 0318.
4998

91.11048
=

+
=p , and 

0167.)(0318. ≈= APAOQL . 
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Supplementary Exercises 
 
39. n = 6, k = 26, 980,10=Σ ix , 31.422=x , 402=Σ is , 4615.15=s , 1074=Σ ir , 

3077.41=r  

S chart: 
( ) ( )

37.30,55.9141.144615.15
952.

952.14615.153
4615.15

2

≈±=
−

±  

R chart: 
( )( )

44.4131.41
536.2

31.41848.3
31.41 ±=± , so LCL = 0, UCL = 82.75 

X  chart based on s : 
( )

20.442,42.402
6952.

4615.153
31.422 =±   

X  chart based on r : 
( )

26.442,36.402
6536.2

3077.413
31.422 =±  

 
 

40. A c chart is appropriate here. 92=Σ ix  so  833.3
24
92 ==x , and  

874.5833.33 ±=± xx , giving LCL = 0 and UCL = 9.7.  Because x22 = 10 > UCL, the 
process appears to have been out of control at the time that the 22nd plate was obtained. 
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41.  
i  

ix  is  ir  

1 50.83 1.172 2.2 
2 50.10 .854 1.7 
3 50.30 1.136 2.1 
4 50.23 1.097 2.1 
5 50.33 .666 1.3 
6 51.20 .854 1.7 
7 50.17 .416 .8 
8 50.70 .964 1.8 
9 49.93 1.159 2.1 
10 49.97 .473 .9 
11 50.13 .698 .9 
12 49.33 .833 1.6 
13 50.23 .839 1.5 
14 50.33 .404 .8 
15 49.30 .265 .5 
16 49.90 .854 1.7 
17 50.40 .781 1.4 
18 49.37 .902 1.8 
19 49.87 .643 1.2 
20 50.00 .794 1.5 
21 50.80 2.931 5.6 
22 50.43 .971 1.9 
    

706.19=Σ is , 8957.=s , 85.1103=Σ ix , 175.50=x , 886.3 =a , from which an s 

chart has LCL = 0 and UCL = 
( ) ( )

3020.2
886.

886.18957.3
8957.

2

=
−

+ , and 

UCLs >= 931.221 .  Since an assignable cause is assumed to have been identified we 

eliminate the 21st group.  Then 775.16=Σ is , 7998.=s ,  145.50=x .  The resulting 

UCL for an s chart is 2.0529, and 0529.2<is  for every remaining i. The x  chart based on 

s  has limits 
( )

71.51,58.48
3886.

7988.3
145.50 =± .  All ix  values are between these limits. 
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42. 0608.=p , n = 100, so ( ) ( )9392.08.6308.613 +=−+= ppnpnUCL  

25.1317.708.6 =+=  and LCL = 0.  All points are between these limits, as was the case 
for the p-chart.  The p-chart and np-chart will always give identical results since  

( ) ( )
n

pp
pp

n
pp

p i

−
+<<

−
−

1
3ˆ

1
3    iff 

( ) ( )ppnpnxpnppnpn ii −+<=<−− 13ˆ13  

 
 

43. ( ) ( )( ) 7643164 =+=Σ in , 4.729,32=Σ ii xn , 65.430=x , 

( )
( ) 0279.590

2076
4.566116.380,27

1
1 2

2 =
−

−
=

−Σ
−Σ

=
i

ii

n
sn

s , so s = 24.2905.  For variation:  

when n = 3, 
( ) ( )

43.6214.3829.24
886.

886.12905.243
2905.24

2

=+=
−

+=UCL , 

when n = 4, 
( ) ( )

11.5582.3029.24
921.

921.12905.243
2905.24

2

=+=
−

+=UCL .  

For location:  when n = 3, 14.478,16.38349.4765.430 =± , and when n = 4, 

21.470,09.39156.3965.430 =± . 
 
 
44.  

a. Provided the ( ) µ=iXE  for each i, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) µαααααα tt
ttt XEXEXEWE −+−++−+= −
− 11...1 1

1
1  

( ) ( ) ( )[ ]tt ααααααµ −+−++−+= − 11...1 1
 

( ) ( )( ) ( )[ ]tt ααααµ −+−++−+= − 11...11 1
 

( ) ( ) ( ) 







−+−−−= ∑∑

∞

=

∞

=

t

ti

i

i

i αααααµ 111
0

 

( ) ( ) ( ) ( ) µα
α

αα
α

α
µ =








−+

−−
⋅−−

−−
= tt 1

11
1

1
11

 

 

b. ( ) ( ) ( ) ( ) ( ) ( ) ( )1
122

1
222 1...1 XVXVXVWV t

ttt
−

− −++−+= ααααα  

( ) ( ) ( )[ ] ( )1
1222 1...11 XVt ⋅−++−+= −ααα   

 [ ]
n

CC t
2

12 ...1
σ

α ⋅+++= −  (where ( )21 α−=C .)  

 
nC

C t 2
2

1
1 σ

α ⋅
−
−

= , which gives the desired expression. 
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c. From Example 16.8, 5.=σ  (or s  can be used instead).  Suppose that we use 6.=α  
(not specified in the problem).  Then   

 
4000 == µw  

( ) ( ) 12.40404.20.406.4.6. 011 =+=+= µxw
( ) ( ) 88.3912.404.72.396.4.6. 122 =+=+= wxw  

( ) ( ) 20.4088.394.42.406.4.6. 233 =+=+= wxw  

07.404 =w , 06.405 =w , 88.396 =w , 74.397 =w , 14.408 =w , 

25.409 =w , 00.4010 =w , 29.4011 =w , 36.4012 =w , 51.4013 =w , 

19.4014 =w , 21.4015 =w , 29.4016 =w  

 

( )[ ]
0225.

4
25.

6.2
6.116. 2

2
1 =⋅

−
−−

=σ , 1500.1 =σ , 

( )[ ]
0261.

4
25.

6.2
6.116. 4

2
2 =⋅

−
−−

=σ , 1616.2 =σ , 

1633.3 =σ , 1636.4 =σ , 1665 ...1637. σσσ ==  

 
Control limits are: 
 
For t = 1, ( ) 45.40,55.391500.340 =±  

For t = 2, ( ) 48.40,52.391616.340 =±  

For t = 3, ( ) 49.40,51.391633.340 =± .   
These last limits are also the limits for t = 4, …, 16. 
 
Because w13 = 40.51 > 40.49 = UCL, an out-of-control signal is generated. 

 


