
Oracle® Database 11g
Administrator Certifi ed
Associate
STUDY GUIDE

Biju Thomas

Covers Both the 1Z0-051 and 1Z0-052 Exams!

OCA

Includes Real-World Scenarios, Hands-On Exercises,
and Leading-Edge Exam Prep Software Featuring:

• Custom Test Engine

• Hundreds of Sample Questions

• Electronic Flashcards for PCs, Pocket PCs,
 and Palm Handhelds

• Entire Book in PDF

Exams 1Z0-051
and 1Z0-052

SERIOUS SKILLS.

OCA

O
racle

® D
atabase 11g

A
dm

inistrator C
ertifi ed A

ssociate

STUDY GUIDE

Thomas

FEATURED ON THE CD

ISBN: 978-0-470-39512-7

Study, practice, and review for OCA certifi cation in Oracle 11g,
Oracle’s new release of its top-selling database software. Inside
this in-depth guide, you’ll fi nd full coverage of essential topics
for two required OCA certifi cation exams: SQL Fundamentals I
(1Z0-051) and Administration I (1Z0-052). Explore topics such as
basic SQL SELECT statements, group functions, creating schema
objects, restricting and sorting data, and much more with this
essential two-in-one guide. Inside, you’ll fi nd:

Full coverage of all exam objectives in a systematic approach, so you
can be confi dent you’re getting the instruction you need for the exam

Practical hands-on exercises to reinforce critical skills

Real-world scenarios that put what you’ve learned in the context
of actual job roles

Challenging review questions in each chapter to prepare you for
exam day

Exam Essentials, a key feature in each chapter that identifi es critical
areas you must become profi cient in before taking the exam

A handy tear card that maps every offi cial exam objective to the
corresponding chapter in the book, so you can track your exam prep
objective by objective

Biju Thomas, OCA, OCP, is a senior database administrator with more than 15 years
of Oracle application development and database management experience. He has
coauthored fi ve Oracle certifi cation books published by Sybex and has written articles
for multiple Oracle technical publications.

Prepare for two OCA certifi cation
exams with this one book

$89.99 US
$107.99 CN

A B O U T T H E A U T H O R

Look inside for complete coverage
of all exam objectives.

www.sybex.com

SYBEX TEST ENGINE:
Test your knowledge with advanced
testing software. Includes all chapter
review questions and bonus exams.

ELECTRONIC FLASHCARDS:
Reinforce your understanding with
fl ashcards that can run on your PC,
Pocket PC, or Palm handheld.

Also on CD, you’ll fi nd the entire
book in searchable and printable PDF.
Study anywhere, any time, and
approach the exam with confi dence.

C A T E G O R Y
COMPUTERS/Certifi cation Guides

Exam 1Z0-051
Exam 1Z0-052

95127bindex.indd 1086 2/18/09 6:41:41 AM

Exam specifications and content are subject to change at any time without
prior notice and at Oracle’s sole discretion. Please visit Oracle’s website (http://
education.oracle.com) for the most current information on their exam content.

OCA: Oracle Database 11g Administrator Certified
Associate Study Guide
1Z0-051 Exam Objectives

Objective chapter

retrieving Data Using the SQL SeLect Statement

List the capabilities of SQL SELECT statements 1

Execute a basic SELECT statement 1

restricting and Sorting Data

Limit the rows that are retrieved by a query 1
Sort the rows that are retrieved by a query 1
Use ampersand substitution to restrict and sort output at runtime 1

Using Single-row Functions to customize Output

Describe various types of functions available in SQL 2
Use character, number, and date functions in SELECT statements 2

Using conversion Functions and conditional expressions

Describe various types of conversion functions that are available in SQL 2
Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion functions 2
Apply conditional expressions in a SELECT statement 2

reporting aggregated Data Using the Group Functions

Identify the available group functions 3
Describe the use of group functions 3
Group data by using the GROUP BY clause 3
Include or exclude grouped rows by using the HAVING clause 3

Displaying Data from Multiple tables

Write SELECT statements to access data from more than one table using
equijoins and nonequijoins

4

Join a table to itself by using a self-join 4
View data that generally does not meet a join condition by using outer joins 4
Generate a Cartesian product of all rows from two or more tables 4

Using Subqueries to Solve Queries

Define subqueries 4
Describe the types of problems that the subqueries can solve 4
List the types of subqueries 4
Write single-row and multiple-row subqueries 4

95127bperfcard.indd 1 2/17/09 5:08:51 PM

http://education.oracle.com

Objective chapter

Using the Set Operators

Describe set operators 4
Use a set operator to combine multiple queries into a single query 4
Control the order of rows returned 4

Manipulating Data

Describe each data manipulation language (DML) statement 5
Insert rows into a table 5
Update rows in a table 5
Delete rows from a table 5
Control transactions 5

Using DDL Statements to create and Manage tables

Categorize the main database objects 6
Review the table structure 6
List the data types that are available for columns 6
Create a simple table 6
Explain how constraints are created at the time of table creation 6
Describe how schema objects work 6

creating Other Schema Objects

Create simple and complex views 7
Retrieve data from views 7
Create, maintain, and use sequences 7
Create and maintain indexes 7
Create private and public synonyms 7

1Z0-052 Exam Objectives

Objective chapter

exploring the Oracle Database architecture

Explain the Memory Structures 8
Describe the Process Structures 8
Overview of Storage Structures 8

preparing the Database environment

Identify the tools for Administering an Oracle Database 8
Plan an Oracle Database installation 8
Install the Oracle software by using Oracle Universal Installer (OUI) 8

95127bperfcard.indd 2 2/17/09 5:08:51 PM

Exam specifications and content are subject to change at any time without
prior notice and at Oracle’s sole discretion. Please visit Oracle’s website (http://
education.oracle.com) for the most current information on their exam content.

Objective chapter

creating an Oracle Database

Create a database by using the Database Configuration Assistant (DBCA) 9

Managing the Oracle instance

Setting database initialization parameters 9
Describe the stages of database startup and shutdown 9
Using alert log and trace files 9
Using data dictionary and dynamic performance views 9

configuring the Oracle Network environment

Configure and Manage the Oracle Network 11
Using the Oracle Shared Server architecture 11

Managing Database Storage Structures

Overview of tablespace and datafiles 10
Create and manage tablespaces 10
Space management in tablespaces 10

administering User Security

Create and manage database user accounts 12
Grant and revoke privileges 12
Create and manage roles 12
Create and manage profiles 12

Managing Schema Objects

Create and Modify tables 10
Manage Constraints 10
Create indexes 10
Create and use temporary tables 10

Managing Data and concurrency

Manage data using DML 13
Identify and administer PL/SQL objects 13
Monitor and resolve locking conflicts 13

Managing Undo Data

Overview of Undo 13
Transactions and undo data 13
Managing undo 13

implementing Oracle Database Security

Database Security and Principle of Least Privilege 12
Work with Standard Database Auditing 12

95127bperfcard.indd 3 2/17/09 5:08:51 PM

Objective chapter

Database Maintenance

Use and manage optimizer statistics 14
Use and manage Automatic Workload Repository (AWR) 14
Use advisory framework 14
Manage Alerts and Thresholds 14

performance Management

Use Automatic Memory Management 14
Use Memory Advisors 14
Troubleshoot invalid and unusable objects 14

intelligent infrastructure enhancements

Use the Enterprise Manager Support Workbench 17
Managing Patches 17

backup and recovery concepts

Identify the types of failure that can occur in an Oracle database 16
Describe ways to tune instance recovery 16
Identify the importance of checkpoints, redo log files, and archived log files 15
Overview of flash recovery area 15
Configure ARCHIVELOG mode 15

performing Database backups

Create consistent database backups 15
Back up your database without shutting it down 15
Create incremental backups 15
Automate database backups 15
Manage backups, view backup reports and monitor the flash recovery area 15

performing Database recovery

Overview of Data Recovery Advisor 16
Use Data Recovery Advisor to Perform recovery (Control file, Redo log file,
and Data file)

16

Moving Data

Describe and use methods to move data (Directory objects, SQL*Loader,
External Tables)

17

Explain the general architecture of Oracle Data Pump 17
Use Data Pump Export and Import to move data between Oracle databases 17

95127bperfcard.indd 4 2/17/09 5:08:51 PM

OCA
Oracle® Database 11g

Administrator
Certified Associate

Study Guide

95127ffirs.indd 1 2/18/09 1:02:54 PM

95127ffirs.indd 2 2/18/09 1:02:55 PM

OCA
Oracle® Database 11g

Administrator
Certified Associate

Study Guide

Biju Thomas

95127ffirs.indd 3 2/18/09 1:02:55 PM

Acquisitions Editor: Jeff Kellum
Development Editor: Denise Santoro Lincoln
Technical Editors: Arup Nanda and Bob Bryla
Production Editor: Eric Charbonneau
Copy Editor: Kim Wimpsett
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde
Media Project Manager 1: Laura Moss-Hollister
Media Associate Producer: Josh Frank
Media Quality Assurance: Kit Malone
Book Designer: Judy Fung
Compositor: Craig Johnson, Happenstance Type-O-Rama
Proofreader: Candace English
Indexer: Ted Laux
Project Coordinator, Cover: Lynsey Stanford
Cover Designer: Ryan Sneed

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-39512-7

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permis-
sions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or
the publisher endorses the information the organization or Web site may provide or recommendations it may make. Fur-
ther, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Cataloging-in-Publication Data

Thomas, Biju.
 OCA : Oracle database 11g administrator certified associate study guide (1Z0-051 and 1Z0-052) / Biju Thomas. — 1st ed.
 p. cm.
 ISBN 978-0-470-39512-7 (paper/cd-rom)
 1. Electronic data processing personnel—Certification. 2. Database management—Examinations—Study guides. 3.
Oracle (Computer file) I. Title.
 QA76.3.T5136 2009
 005.75’75—dc22
 2008052085

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Oracle
is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

95127ffirs.indd 4 2/18/09 1:02:55 PM

Disclaimer: This eBook does not include ancillary media that was packaged with the
printed version of the book.

http://www.wiley.com/go/permissions

Dear Reader,

Thank you for choosing OCA: Oracle Database 11g Administrator Certified Associate
Study Guide (1ZO-051 and 1ZO-052). This book is part of a family of premium-quality
Sybex books, all of which are written by outstanding authors who combine practical
experience with a gift for teaching.

Sybex was founded in 1976. More than thirty years later, we’re still committed to produc-
ing consistently exceptional books. With each of our titles we’re working hard to set a
new standard for the industry. From the paper we print on, to the authors we work with,
our goal is to bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your com-
ments and get your feedback on how we’re doing. Feel free to let me know what you think
about this or any other Sybex book by sending me an email at nedde@wiley.com, or if you
think you’ve found a technical error in this book, please visit http://sybex.custhelp.com.
Customer feedback is critical to our efforts at Sybex.

 Best regards,

 Neil Edde
 Vice President and Publisher
 Sybex, an Imprint of Wiley

95127ffirs.indd 5 2/18/09 1:02:55 PM

http://sybex.custhelp.com

95127ffirs.indd 6 2/18/09 1:02:56 PM

To the loving memory of my father

To Joshua and Jeanette

95127ffirs.indd 7 2/18/09 1:02:56 PM

95127ffirs.indd 8 2/18/09 1:02:56 PM

Acknowledgments
Thanks first to Jeff Kellum and to Sybex for their faith in me to write this book. I would also
like to thank the following wonderful people at Sybex for their support, patience with my
slipping schedules, and good work: Denise Santoro Lincoln (developmental editor) for her
valuable comments, thoughtful edits, patience, and making sure the chapters have a smooth
flow; Eric Charbonneau (production editor) for making sure the various pieces of the book tie
together; Candace English for proofreading; and Pete Gaughan for managing the project.

I thank Kim Wimpsett (copy editor) for her edits and making sure the same standard is
followed across the book. I’m sure her edits made a difference to the look and feel of the chap-
ters. I also thank Sybex and authors of the Introduction to Oracle9i SQL and Oracle Data-
base 10g Administration I study guides for letting me reuse content from their books.

I am very fortunate and honored to have Arup Nanda as the technical editor. Thank you
very much for all your valuable suggestions and for pointing out the errors and inaccuracies in
the book. Your comments are invaluable. Thank you, Bob Bryla, for tech-reviewing the book
and making sure the chapters are technically accurate.

I could not have completed this book without the endless support and love of my wife,
Shiji. Thank you for engaging and taking care of the kids while I spent nights and weekends in
front of the computer.

Last but not least, I thank all my colleagues and management at OneNeck IT Services for
their friendship and support. My special thanks to Joe Hanna for all the encouragement.

95127ffirs.indd 9 2/18/09 1:02:56 PM

95127ffirs.indd 10 2/18/09 1:02:56 PM

About the Author
Biju Thomas is an Oracle 7.3, Oracle8, Oracle8i, Oracle9i, Oracle 10g, and Oracle 11g OCP
certified professional. He is also a certified Oracle Database SQL Expert. Biju has been devel-
oping and administering Oracle databases since 1993, starting with Oracle version 6. He is
a senior database consultant at OneNeck IT Services Corporation (www.oneneck.com) and
resides in Keller, Texas. He maintains a website for DBAs at www.bijoos.com/oracle.

95127ffirs.indd 11 2/18/09 1:02:56 PM

95127ffirs.indd 12 2/18/09 1:02:56 PM

Contents at a Glance

Introduction xxv

SQL Fundamentals I Assessment Test xxxv

Administration I Assessment Test li

Part I Oracle Database 11g: SQL Fundamentals I 1

Chapter 1 Introducing SQL 3

Chapter 2 Using Single-Row Functions 63

Chapter 3 Using Group Functions 147

Chapter 4 Using Joins and Subqueries 197

Chapter 5 Manipulating Data 251

Chapter 6 Creating Tables and Constraints 287

Chapter 7 Creating Schema Objects 341

Part II Oracle Database 11g: Administration I 389

Chapter 8 Introducing Oracle Database 11g Components
and Architecture 391

Chapter 9 Creating an Oracle 11g Database 449

Chapter 10 Allocating Database Storage and Creating Schema Objects 523

Chapter 11 Understanding Network Architecture 591

Chapter 12 Implementing Security and Auditing 661

Chapter 13 Managing Data and Undo 717

Chapter 14 Maintaining the Database and Managing Performance 765

Chapter 15 Implementing Database Backups 839

Chapter 16 Recovering the Database 889

Chapter 17 Moving Data and Using EM Tools 935

Appendix About the Companion CD 1003

Glossary 1007

Index 1029

95127ffirs.indd 13 2/18/09 1:02:56 PM

95127ffirs.indd 14 2/18/09 1:02:56 PM

Contents
Introduction xxv

SQL Fundamentals I Assessment Test xxxv

Administration I Assessment Test li

Part I Oracle Database 11g: SQL Fundamentals I 1

Chapter 1 Introducing SQL 3

SQL Fundamentals 4
SQL Tools: SQL*Plus 6
Oracle Datatypes 15
Operators and Literals 20

Writing Simple Queries 23
Using the SELECT Statement 24
Limiting Rows 28
Sorting Rows 38
Using Expressions 43

Accepting Values at Runtime 47
Using Substitution Variables 47
Saving a Variable for a Session 49
Using Positional Notation for Variables 50

Summary 51
Exam Essentials 52
Review Questions 53
Answers to Review Questions 61

Chapter 2 Using Single-Row Functions 63

Single-Row Function Fundamentals 64
Functions for NULL Handling 65

Using Single-Row Character Functions 68
Character Function Overview 68
Character Function Descriptions 70

Using Single-Row Numeric Functions 80
Numeric Function Overview 80
Numeric Function Descriptions 82

Using Single-Row Date Functions 90
Date-Format Conversion 91
Date-Function Overview 91
Date-Function Descriptions 92

Using Single-Row Conversion Functions 101
Conversion-Function Overview 102
Conversion-Function Descriptions 103

95127ftoc.indd 15 2/17/09 1:00:12 PM

xvi Contents

Using Other Single-Row Functions 123
Miscellaneous-Function Overview 123
Miscellaneous-Function Descriptions 124

Summary 136
Exam Essentials 137
Review Questions 138
Answers to Review Questions 144

Chapter 3 Using Group Functions 147

Group-Function Fundamentals 148
Utilizing Aggregate Functions 149

Grouping Data with GROUP BY 150
Group-Function Overview 154
Group-Function Descriptions: Part 1 156
Group-Function Descriptions: Part 2 163
Limiting Grouped Data with HAVING 176
Creating Superaggregates with CUBE and ROLLUP 177
Nesting Functions 184

Summary 187
Exam Essentials 187
Review Questions 188
Answers to Review Questions 195

Chapter 4 Using Joins and Subqueries 197

Writing Multiple-Table Queries 198
Inner Joins 199
Cartesian Joins 208
Outer Joins 210
Other Multiple-Table Queries 214

Using Set Operators 216
The UNION Operator 217
The UNION ALL Operator 218
The INTERSECT Operator 219
The MINUS Operator 219
Putting It All Together 219

Subqueries 221
Single-Row Subqueries 222
Multiple-Row Subqueries 223
Subquery Returns No Rows 226
Correlated Subqueries 227
Scalar Subqueries 228
Multiple-Column Subqueries 235
Subqueries in Other DML Statements 236

Summary 238
Exam Essentials 238

95127ftoc.indd 16 2/17/09 1:00:12 PM

Contents xvii

Review Questions 240
Answers to Review Questions 249

Chapter 5 Manipulating Data 251

Using DML Statements 252
Inserting Rows into a Table 253
Updating Rows in a Table 259
Deleting Rows from a Table 263
Merging Rows 265

Understanding Transaction Control 267
Savepoints and Partial Rollbacks 269
Data Visibility 271

Summary 274
Exam Essentials 274
Review Questions 276
Answers to Review Questions 285

Chapter 6 Creating Tables and Constraints 287

Database Objects Overview 288
Schema Objects 289

Built-in Datatypes 290
Character Datatypes 291
Numeric Datatypes 294
Date and Time Datatypes 295
Date Arithmetic 299
Binary Datatypes 301
Row ID Datatypes 302

Creating Tables 303
Naming Tables and Columns 303
Specifying Default Values for Columns 306
Adding Comments 308
Creating a Table from Another Table 308

Modifying Tables 310
Adding Columns 310
Modifying Columns 313
Renaming Columns 314
Dropping Columns 314
Dropping Tables 316
Renaming Tables 316
Making Tables Read-Only 317

Managing Constraints 319
Creating Constraints 319
Dropping Constraints 324
Enabling and Disabling Constraints 325
Deferring Constraint Checks 327

95127ftoc.indd 17 2/17/09 1:00:12 PM

xviii Contents

Summary 331
Exam Essentials 332
Review Questions 333
Answers to Review Questions 338

Chapter 7 Creating Schema Objects 341

Creating and Modifying Views 342
Using Defined Column Names 344
Creating Views with Errors 345
Creating Read-Only Views 346
Creating Constraints on Views 347
Modifying Views 347
Dropping a View 349
Using Views 350

Creating and Managing Sequences 360
Creating and Dropping Sequences 360
Using Sequences 361
Altering Sequences 365

Creating and Managing Synonyms 366
Creating and Dropping Synonyms 367
Resolving Object References 369

Creating and Managing Indexes 371
How Indexes Work 371
Using B-Tree Indexes 372
Using Bitmap Indexes 373
Dropping Indexes 373

Summary 378
Exam Essentials 379
Review Questions 380
Answers to Review Questions 386

Part II Oracle Database 11g: Administration I 389

Chapter 8 Introducing Oracle Database 11g
Components and Architecture 391

Oracle Database Fundamentals 392
Relational Databases 393
Oracle Database 11g Objects 394
Interacting with Oracle 11g 395

Oracle 11g Architecture 398
User Processes 400
The Oracle Instance 402
Oracle Storage Structures 415

95127ftoc.indd 18 2/17/09 1:00:12 PM

Contents xix

Installing Oracle 11g 424
Review the Documentation 424
Review the System Requirements 424
Plan Your Install 425
Using the Oracle Universal Installer 430

Summary 440
Exam Essentials 441
Review Questions 442
Answers to Review Questions 446

Chapter 9 Creating an Oracle 11g Database 449

Using DBCA to Create Oracle 11g Databases 450
Invoking the Database Configuration Assistant 451
Configuring an Oracle Database Using the DBCA 481
Deleting an Oracle Database Using the DBCA 482
Managing Database Templates Using the DBCA 483

Working with Oracle 11g Metadata 485
Data Dictionary Views 485
Dynamic Performance Views 487

Managing Initialization-Parameter Files 488
Locating the Default Parameter File 493
Modifying Initialization-Parameter Values 493

Starting Up and Shutting Down an Oracle Instance 498
Starting Up an Oracle 11g Database 498
Shutting Down an Oracle 11g Database 503

Monitoring the Database Alert Log 506
Summary 514
Exam Essentials 515
Review Questions 516
Answers to Review Questions 520

Chapter 10 Allocating Database Storage and Creating Schema
Objects 523

Tablespaces and Data Files Overview 524
Managing Tablespaces 526

Identifying Default Tablespaces 526
Creating and Maintaining Tablespaces 527
Obtaining Tablespace Information 541

Managing Data Files 546
Performing Operations on Data Files 546
Using the Oracle Managed Files Feature 550
Querying Data-File Information 555

95127ftoc.indd 19 2/17/09 1:00:12 PM

xx Contents

Working with Schema Objects 557
A Little Background on Creating Tables 557
Working with Constraints 568
Working with Indexes 572

Summary 582
Exam Essentials 583
Review Questions 584
Answers to Review Questions 588

Chapter 11 Understanding Network Architecture 591

Introducing Network Configurations 592
Single-Tier Architecture 593
Two-Tier Architecture 593
n-Tier Architecture 594

An Overview of Oracle Net Features 595
Connectivity 596
Manageability 597
Scalability 598
Security 598
Accessibility 601

Configuring Oracle Net on the Server 601
Understanding the Oracle Listener 602
Managing Oracle Listeners 605
Dynamically Registering Services 623
Oracle Net Logging and Tracing on the Server 624

Configuring Oracle Net for the Client 626
Client-Side Names Resolution Options 626
The Host Naming Method 627
The Oracle Easy Connect Method 628
The Local Naming Method 629
Troubleshooting Client-Side Connection Problems 635

An Overview of Oracle Shared Server 637
Dedicated Server vs. Shared Server 638
Advantages and Disadvantages of Shared Server 640

Oracle Shared Server Infrastructure 641
PGA and SGA Changes When Using Oracle Shared Server 641
The Role of the Listener in an Oracle Shared Server

Environment 642
Configuring the Oracle Shared Server 644
Managing a Shared Server 649

Summary 652
Exam Essentials 653
Review Questions 655
Answers to Review Questions 659

95127ftoc.indd 20 2/17/09 1:00:12 PM

Contents xxi

Chapter 12 Implementing Security and Auditing 661

Creating and Managing User Accounts 662
Configuring Authentication 663
Assigning Tablespaces and Quotas 664
Assigning a Profile and Account Settings 666
Removing a User from the Database 668
Managing Default User Accounts 669

Granting and Revoking Privileges 670
Granting Object Privileges 670
Granting System Privileges 674
Role Privileges 681
Applying the Principle of Least Privilege 686

Controlling Resource Usage by Users 688
Implementing Password Security Features 691

Auditing Database Activity 695
Managing Statement Auditing 696
Managing Privilege Auditing 701
Managing Object Auditing 702
Purging the Audit Trail 704
Managing Fine-Grained Auditing 705

Summary 708
Exam Essentials 709
Review Questions 710
Answers to Review Questions 715

Chapter 13 Managing Data and Undo 717

Manipulating Data through SQL 718
 Using the INSERT Statement 719
Using the UPDATE Statement 721
Using the MERGE Statement 722
Using the DELETE Statement 723

Identifying PL/SQL Objects 724
Working with Functions 725
Working with Procedures 726
Working with Packages 727
Working with Triggering Events and Managing Triggers 729
Using and Administering PL/SQL Programs 733

Monitoring Locks and Resolving Lock Conflicts 735
Understanding Locks and Transactions 735
Maximizing Data Concurrency 736
Detecting and Resolving Lock Conflicts 739

Leveraging Undo Management 743
Understanding Undo Segments 743
Using Undo Data 745
Monitoring, Configuring, and Administering Undo 747

95127ftoc.indd 21 2/17/09 1:00:12 PM

xxii Contents

Summary 755
Exam Essentials 756
Review Questions 757
Answers to Review Questions 762

Chapter 14 Maintaining the Database and
Managing Performance 765

Proactive Database Maintenance 766
Managing Optimizer Statistics 767
Gathering Performance Statistics 784
Automatic Database Diagnostic Monitoring 792
The Advisory Framework 800
Monitoring Server-Generated Alerts 802
Understanding Automatic Diagnostic Repository 805

Managing Performance 810
Sources of Tuning Information 811
Compiling Invalid and Unusable Objects 815
Tuning Memory 819
Important Performance Metrics 827

Summary 830
Exam Essentials 831
Review Questions 832
Answers to Review Questions 836

Chapter 15 Implementing Database Backups 839

Understanding and Configuring Recovery Components 840
Understanding Control Files 841
Understanding Checkpoints 846
Understanding Redo Log Files 846
Understanding Archived Redo Log (ARCHIVELOG) Files 854
Understanding the Flash Recovery Area 859

Performing Backups 862
Understanding Backup Terminology 862
Backing Up the Control File 864
Backing Up the Database 868
Using RMAN to Create Backups 869
Managing Backups 876

Summary 879
Exam Essentials 880
Review Questions 882
Answers to Review Questions 886

95127ftoc.indd 22 2/17/09 1:00:12 PM

Contents xxiii

Chapter 16 Recovering the Database 889

Understanding Types of Database Failure 890
Statement Failures 891
User-Process Failures 892
Network Failures 892
User-Error Failures 892
Instance Failures 893
Media Failures 894

Performing Recovery Operations 894
Understanding Instance Startup 895
Keeping an Instance from Failing 896
Recovering from Instance Failure 897
Tuning Instance Recovery 897
Recovering from User Errors 899
Recovering from Loss of a Control File 913
Using the Data Recovery Advisor 915
Recovering from the Loss of a Redo Log File 917
Recovering from the Loss of a Non–System-Critical

Data File 920
Recovering from the Loss of a System-Critical Data File 926

Summary 927
Exam Essentials 928
Review Questions 929
Answers to Review Questions 933

Chapter 17 Moving Data and Using EM Tools 935

Understanding Data Pump 936
Architecture of Data Pump 937
Using Data Pump Clients 940
Using the Data Pump Wizard 962

Loading Data with SQL*Loader 967
Specifying SQL*Loader Command-Line Parameters 968
Specifying Control File Options 970
Using EM to Load Data 973

Populating External Tables 974
Loading External Tables Using Data Pump 975
Loading External Tables Using Loader 977

Using EM Support Workbench 978
Identifying a Problem 979
Gathering Additional Diagnostic Information 981
Creating a Service Request 981
Packaging Diagnostic Data 983
Tracking and Closing the Incident 985

95127ftoc.indd 23 2/17/09 1:00:12 PM

xxiv Contents

Using EM to Manage Patches 986
Using the Patch Advisor 988
Viewing the Patch Cache 990
Finding the Patch Prerequisites 991
Staging a Patch 991
Applying a Patch 993

Summary 995
Exam Essentials 995
Review Questions 997
Answers to Review Questions 1001

Appendix About the Companion CD 1003

What You’ll Find on the CD 1004
Sybex Test Engine 1004
PDF of the Book 1004
Adobe Reader 1005
Electronic Flashcards 1005

System Requirements 1005
Using the CD 1005
Troubleshooting 1006

Customer Care 1006

Glossary 1007

Index 1029

95127ftoc.indd 24 2/17/09 1:00:12 PM

Introduction
There is high demand for professionals in the information technology (IT) industry, and
Oracle certifications are the hottest credential in the database world. You have made the
right decision to pursue certification, because being Oracle Database 11g certified will give
you a distinct advantage in this highly competitive market.

Many readers may already be familiar with Oracle and do not need an introduction to
Oracle databases. Oracle, founded in 1977, sold the first commercial relational database
and is now the world’s leading database company and second-largest independent software
company with annual revenues of more than $22 billion, and is headquartered in Redwood
City, California.

Oracle databases are the de facto standard for large Internet sites and mission-critical
enterprise applications. Oracle advertisers are boastful but honest when they proclaim,
“The Internet runs on Oracle.” Almost all the big Internet sites run on Oracle databases.
Oracle’s penetration of the database market runs deep and is not limited to Internet imple-
mentations. Enterprise resource planning (ERP) application suites, data warehouses, and
custom applications at many large and medium companies rely on Oracle. The demand for
DBA resources remains higher than others during weak economic times.

This book is intended to help you on your exciting path toward becoming an Oracle
Database 11g Administrator Certified Associate (OCA), which is the first step on the path
toward the Oracle Certified Professional (OCP) and Oracle Certified Master (OCM) cer-
tifications. This book covers the two exams required for the OCA certification. Using this
book and a practice database, you can start learning Oracle 11g and pass the Oracle Data-
base 11g: SQL Fundamentals I (1Z0-051) and Oracle Database 11g: Administration I (1Z0-
052) exams.

Why Become Oracle Certified?
The number-one reason to become OCA or OCP certified is to gain more visibility and
greater access to the industry’s most challenging opportunities. Oracle certification is the
best way to demonstrate your knowledge and skills in Oracle database systems.

Certification is proof of your knowledge and shows that you have the skills required to
support Oracle core products. The Oracle certification program can help a company iden-
tify proven performers who have demonstrated their skills and who can support the compa-
ny’s investment in Oracle technology. It demonstrates that you have a solid understanding
of your job role and the Oracle products used in that role.

The certification tests are scenario-based, which is the most effective way to assess your
hands-on expertise and critical problem-solving skills. OCPs are among the best paid in the
IT industry. Salary surveys consistently show the OCP certification to yield higher salaries
than the other certifications, including Microsoft, Novell, and Cisco.

So, whether you are beginning a career, changing careers, securing your current posi-
tion, or seeking to refine and promote your position, this book is for you!

95127flast.indd 25 2/18/09 6:16:13 AM

xxvi Introduction

Oracle Certifications
Oracle certifications follow a track that is oriented toward a job role. The certification
tracks are Database, Middleware, Applications, and Linux. Within each track, Oracle has
a tiered certification program of OCA and OCP. Only the Database track has OCM.

The Database track is clearly for the database administrator job role. The Middleware
track has certifications on many products, such as Oracle 10g Application Server, Oracle
Essbase, Oracle Forms, Oracle PL/SQL, Oracle WebLogic, and Service-Oriented Archi-
tecture (SOA) and is intended for application developers, system administrators, consultants,
and architects.

The Applications track is for ERP administrators and functional consultants. This track
covers the Oracle E-Business Suite, Siebel, Hyperion, and PeopleSoft applications. The
Linux track is for Linux administrators.

For the latest certification information on all of Oracle certification paths,
please visit the Oracle website at http://education.oracle.com/pls/web_
prod-plq-dad/db_pages.getpage?page_id=39&p_org_id=1001&lang=US.

The role of database administrator (DBA) has become a key to success in today’s highly
complex database systems. The best DBAs work behind the scenes but are in the spotlight
when critical issues arise. They plan, create, maintain, and ensure that the database is avail-
able for the business. They have tools to proactively monitor the database for performance
issues and to prevent unscheduled downtime. The DBA’s job requires a broad understanding
of the architecture of Oracle Database and an expertise in solving problems.

Sybex has Oracle certification study guides for the Database track. In the following sec-
tions, I’ll introduce you to the different tiers in the Oracle Database 11g certification track.

Oracle Database 11g Administrator Certified Associate
The Oracle Certified Associate (OCA) credential is the first step toward achieving the Oracle
Certified Professional (OCP) certification. OCA shows that you have the fundamental
knowledge and skills to support an Oracle 11g database. This certification requires you to
pass two exams that demonstrate your Oracle basics:

1Z0-051: Oracle Database 11NN g: SQL Fundamentals I

1Z0-052: Oracle Database 11NN g: Administration I

If you have already passed any one of the following tests, you need not take the 1Z0-051
test; you need to pass only 1Z0-052:

1Z0-001: Introduction to Oracle: SQL and PL/SQLNN

1Z0-007: Introduction to Oracle9NN i SQL

1Z0-047: Oracle Database SQL ExpertNN

95127flast.indd 26 2/18/09 6:16:16 AM

Introduction xxvii

You can take the 1Z0-051 exam at a testing location or from your home using the
Internet. The 1Z0-052 test is offered only at a Prometric facility.

To register for the test or find the location of a testing center, visit Prometric
at www.prometric.com/oracle, or call 1-800-891-3926. At the time of writing
this book, the exam fee was $95 USD for the online exam and $125 USD for
the in-facility exam.

Oracle Database 11g Administrator Certified Professional
The Oracle Certified Professional credential shows that you have the skill and technical
expertise to manage and implement enterprise databases. The OCP tier challenges you to
demonstrate your continuing experience and knowledge of Oracle technologies. The Oracle
Database 11g Administrator Certified Professional certification requires you to have the
OCA certification as well as to pass the following exam at a Prometric facility.

1Z0-053: Oracle Database 11NN g Administration II

In addition, the OCP candidate must take one instructor-led Oracle University hands-on
requirement class from the following list:

Oracle Database 11NN g: Advanced PL/SQL

Oracle Database 11NN g: Data Guard Administration

Oracle Database 11NN g: Performance Tuning

Oracle Database 11NN g: Administration Workshop I

Oracle Database 11NN g: Administration Workshop II

Oracle Database 11NN g: Introduction to SQL

Oracle Database 11NN g: New Features for Administrators

Oracle Database 11NN g: Program with PL/SQL

Oracle Database 11NN g: Develop PL/SQL Program Units

Oracle Database 11NN g: Implement Streams

Oracle Database 11NN g: SQL Tuning Workshop

Oracle Spatial 11NN g: Essentials

Oracle Database 11NN g: RAC Administration

Oracle Database 11NN g: SQL Fundamentals I

95127flast.indd 27 2/18/09 6:16:16 AM

xxviii Introduction

You should verify the list of approved hands-on course at the Oracle Uni-
versity website at http://education.oracle.com/pls/web_prod-plq-dad/
db_pages.getpage?page_id=244#5. This list may change without notice.

Oracle Database 11g Administrator Certified Master
The highest level of certification available in any track is the Oracle Certified Master.
The OCM certification credential shows that you have the highest level of expertise in an
Oracle product. To become an Oracle Certified Master, you must first achieve OCP status
and then complete two advanced instructor-led classes at an Oracle University facility. You
must also pass a hands-on examination at an Oracle University facility. At the time of writ-
ing this book, the Oracle Database 11g Certified Master exam has not been released yet.

More Information and Resources
You can find most current information about Oracle certifications at www.oracle.com/
global/us/education/certification. You may be asked to choose your country of resi-
dence before being directed to the site. Follow the links under Certifications to choose the
track and learn more.

Choose the Database track to view the different certification versions available. Choose
Oracle 11g Administrator Certified Associate, and then click the test to learn more about
the test contents, the objectives covered on the test, and the passing score. You can also reg-
ister for the test here.

Oracle also provides sample practice questions for the OCA and OCP exams. You
can find Oracle Database 11g SQL Fundamentals I exam practice questions at www.oracle
.com/global/us/education/certification/sample_questions/exam_1z0-051.html.
You can find the sample questions for the Oracle Database 11g Administration I
exam at www.oracle.com/global/us/education/certification/sample_questions/
exam_1z0-052.html.

The Oracle documentation is available online at http://tahiti.oracle.com. The Oracle
documentation contains a wealth of information, which can be used to supplement what
you learn from this book.

Oracle provides training series with step-by-step instructions to perform a variety of Oracle
Database 11g tasks. You can find the Oracle by example (OBE) tutorial at www.oracle.com/
technology/obe/11gr1_db/otn_all_db11gr1.html.

The Oracle Technology Network (www.oracle.com/technology/index.html) is also
a great resource for database administrators and developers. You can read articles, view
sample code, access documentation, participate in forums, and, most important, download
a trial version of Oracle Database 11g and other Oracle products.

95127flast.indd 28 2/18/09 6:16:16 AM

Introduction xxix

OCA/OCP Study Guides
The Oracle Database 11g administration certification consists of three tests: two for
OCA and one for OCP. Sybex offers study guides to help you achieve OCA and OCP
certification:

OCA: Oracle Database 11NN g Administrator Certified Associate Study Guide (ISBN
9780470395127) covers the exams Oracle Database 11g: SQL Fundamentals I (1Z0-
051) and Oracle Database 11g: Administration I (1Z0-052).

OCP: Oracle Database 11NN g Administrator Certified Professional Study Guide
(ISBN 9780470395134) covers the exam Oracle Database 11g: Administration II
(1Z0-053).

These two books are offered in a boxed set as OCP: Oracle Database 11g Administra-
tor Certified Professional Certification Kit (ISBN 9780470395141).

Oracle Exam Requirements
The Oracle Database 11g Database Administrator Certified Associate certification tests
your basic SQL skills for the SQL exam and your database architecture and administration
skills for the DBA exam. The SQL exam tests your knowledge of writing SQL and using the
functions available in Oracle 11g. The Administration I exam concentrates on the architec-
ture and the basic administration of Oracle 11g database. The following sections detail the
skills needed to pass the SQL Fundamentals I and Administration I exams.

OCA SQL (1Z0-051) Requirements
To pass the Oracle Database 11g SQL Fundamentals I exam, you must have the following
skills:

Write SQL NN SELECT statements that display data from one or more tables.

Join tables using ANSI syntax and Oracle traditional syntax.NN

Restrict, sort, and aggregate data using single-row, conversion, and group functions.NN

Write subqueries and queries using NN SET operators.

Manipulate data via insert, update, and delete.NN

Create and manage tables, indexes, views, synonyms, and sequences.NN

95127flast.indd 29 2/18/09 6:16:16 AM

xxx Introduction

OCA Admin I (1Z0-052) Requirements
To pass the Oracle Database 11g Administration I exam, you must have the following
skills:

Understand the Oracle server architecture (database and instance).NN

Be able to install the Oracle 11NN g software and create a database.

Use the Database Configuration Assistant and Enterprise Manager Database Control NN

tools.

Understand the physical and logical storage of the database and be able to manage NN

space allocation and growth.

Use the data dictionary views and set database parameters.NN

Manage and manipulate data, including its storage, loading, and reorganization.NN

Create and manage tables, constraints, and indexes.NN

Manage redo logs, archive logs, and automatic undo.NN

Configure Oracle Net on the server side and the client side.NN

Understand the backup and recovery architecture.NN

Secure the database and audit database usage.NN

Use advisors to tune and manage the database.NN

Be able to contact Oracle Support for problem resolution and patches.NN

Tips for Taking the OCA Exams
The following tips will help you prepare for and pass each exam:

Each OCP test consists of about 70 questions to be completed in 90 (120 for the SQL NN

exam) minutes. Answer the questions you are sure of first, before you run out of time.
Mark the difficult questions or the ones you are not sure of and return to them later.

Many questions on the exam have answer choices that at first glance look identi-NN

cal. Read the questions carefully. Do not jump to conclusions. Make sure you clearly
understand what each question asks.

Most questions are based on scenarios. Some of the scenarios contain nonessential NN

information and exhibits. You need to be able to identify what’s important and what’s
not.

Do not leave any questions unanswered. There is no negative scoring.NN

When answering questions you are not sure about, use a process of elimination to get NN

rid of the obviously incorrect answers first. Doing this greatly improves your odds if
you need to make an educated guess.

If you are not sure of your answer, mark it for review, and then look for other questions NN

that may help you eliminate any incorrect answers. At the end of the test, you can
review the questions you marked earlier.

95127flast.indd 30 2/18/09 6:16:16 AM

Introduction xxxi

You should be familiar with the exam objectives, which are included at the
beginning of each chapter. Please check the objectives listing on the Oracle
University website (http://education.oracle.com/pls/web_prod-plq-dad/
db_pages.getpage?page_id=244#5) for any changes or updates. The detail
page for each exam shows the passing score, the number of questions, the
minutes allocated, and any exam fees or other requirements.

What Is Covered in This Book
This book covers everything you need to pass the Oracle Database 11g Certified Associate
exams. Part I includes the first eight chapters that cover the objectives for the Oracle Data-
base 11g SQL Fundamentals I exam. Part II of the book includes the remaining 10 chapters
that cover the objectives for the Oracle Database 11g Administration I exam.

Part I: Oracle Database 11g SQL Fundamentals I

Chapter 1: Introducing SQL introduces you to writing simple queries using the SELECT
statement. It also introduces you to filtering and sorting data.

Chapter 2: Using Single-Row Functions discusses the single-row functions and conver-
sion functions available in Oracle 11g, with details on how and where to use them.

Chapter 3: Using Group Functions explains data aggregations, Oracle’s built-in group
function, and how to nest functions.

Chapter 4: Using Joins and Subqueries explains how data from multiple tables can be
related via joins, subqueries, and SET operators.

Chapter 5: Manipulating Data explores how to manipulate data—adding, removing,
and updating data. The chapter also covers how transaction control works.

Chapter 6: Creating Tables and Constraints explains how to create and manage tables
and constraints. It also discusses the various data types available in Oracle 11g to
store data.

Chapter 7: Creating Schema Objects introduces you to creating and managing views,
sequences, and synonyms.

Part II: Oracle Database 11g Administration I

Chapter 8: Introducing Oracle Database 11g Components and Architecture is the first
chapter to read if you’re studying for the Administration I exam. This chapter intro-
duces you to the Oracle 11g database architecture and how to install the Oracle 11g
software.

95127flast.indd 31 2/18/09 6:16:17 AM

xxxii Introduction

Chapter 9: Creating an Oracle 11g Database explains how you can create an Oracle
11g database. It discusses the initialization parameters, stages of database startup and
shutdown, where to find log and trace files, and how to use the data dictionary.

Chapter 10: Allocating Database Storage and Creating Schema Objects explores the
logical and physical storage of the database. You will learn space management and
the various types of tablespaces. This chapter also talks about creating and managing
tables and constraints, but does not repeat what was covered in Chapter 6.

Chapter 11: Understanding Network Architecture introduces you to the Oracle Net
configuration and setup. You will learn to set up network architecture on the server
and client.

Chapter 12: Implementing Security and Auditing shows how you can secure your
database using privileges, profiles, and roles. You will also learn how to audit database
usage.

Chapter 13: Managing Data and Undo shows you how you can add, update, and
remove data from tables as well as how transactions work. It also introduces you to
undo data and undo management. Be sure to read Chapter 5 before you read this
chapter.

Chapter 14: Maintaining the Database and Managing Performance explores the tools
available in Oracle 11g to manage the performance of the database. You will learn
about optimizer statistics, Automatic Workload Repository, various advisors, and
Automatic Memory Management.

Chapter 15: Implementing Database Backups introduces you to the backup architec-
ture concepts. It discusses the various backup modes and how to use RMAN.

Chapter 16: Recovering the Database explores the various recovery scenarios and how
best to get the data back. It introduces you to the Data Recovery Advisor, a new tool in
Oracle 11g that helps in finding the recovery-related errors in the database, gives you
advice, and helps you recover the database.

Chapter 17: Moving Data and Using EM Tools introduces you to two tools available
in Oracle 11g to move and load data: Data Pump and SQL*Loader. This chapter also
covers the intelligent infrastructure of Enterprise Manager that helps DBAs manage
patches and contact Oracle Support.

Each chapter ends with review questions that are specifically designed to help you retain
the knowledge presented. To really nail down your skills, read and answer each question
carefully.

95127flast.indd 32 2/18/09 6:16:17 AM

Introduction xxxiii

How to Use This Book
This book provides a solid foundation for the serious effort of preparing for the Oracle 11g
Certified Associate exams. To best benefit from the book, use the following study method:

1. Take the assessment test immediately following this introduction (the answers are at
the end of the test). Carefully read the explanations for any questions you get wrong,
and note in which chapters the material is covered. This information should help you
plan the study strategy.

2. Study each chapter carefully, making sure you fully understand the information and
the test objectives listed at the beginning of each chapter. Pay close attention to any
chapter related to questions you missed on the assessment test.

3. Complete all examples in the chapter, referring to the chapter so that you understand
the reason for each step you take. It is best to have an Oracle 11g database available to
try the examples and code provided in the book. Answer the review questions related
to that chapter.

4. Note the review questions that confuse or trick you, and study those sections of the
book again.

5. Two bonus exams for each exam are included on the accompanying CD. They will give
you a complete overview of what you can expect to see on the real test.

6. Answer all the flashcard questions on the CD.

Remember to use the products on the CD included with this book. The
electronic flashcards and Sybex test engine exam-preparation software
have been specifically designed to help you study and pass your exams.

To learn all the material covered in this book, you will need to apply yourself regularly
and with discipline. Try to set the same time period every day to study, and select a com-
fortable and quiet place to do so. If you work hard, you will be surprised at how quickly
you learn this material. All the best!

The companion CD is home to all the demo files, samples, and bonus
resources mentioned in the book. See the CD appendix for more details on
the contents and how to access them.

95127flast.indd 33 2/18/09 6:16:17 AM

xxxiv Introduction

How to Contact the Author
I welcome feedback from you about this book or about books you’d like to see from me
in the future. You can reach me by writing to biju.thomas.sybex@gmail.com. For more
information about database administration and Oracle 11g, please visit my website at www.
bijoos.com/oracle.

Sybex strives to keep you supplied with the latest tools and information you need for
your work. Please check the website at www.sybex.com, where we’ll post additional content,
errata, and updates that supplement this book if the need arises. Enter OCA Oracle 11g
in the Search box (or type the book’s ISBN—9780470395127), and click Go to get to the
book’s update page.

95127flast.indd 34 2/18/09 6:16:17 AM

SQL Fundamentals I Assessment Test
 1. Which operator will be evaluated first in the following SELECT statement?

SELECT (2+3*4/2–5) FROM dual;

A. +

B. *

C. /

D. –

2. Which two of the following statements are true?

A. A view can be created before creating the base table.

B. A view cannot be created before creating the base table.

C. A view will become invalid if the base table’s column referred to in the view is altered.

D. A view will become invalid if any column in the base table is altered.

3. Which function can return a non-NULL value if passed a NULL argument?

A. NULLIF

B. LENGTH

C. CONCAT

D. INSTR

E. TAN

4. The following statement will raise an exception on which line?

select dept_name, avg(all salary)

 ,count(*) “number of employees”

from emp , dept

where deptno = dept_no

 and count(*) > 5

group by dept_name

order by 2 desc;

A. select dept_name, avg(all salary), count(*) “number of employees”

B. where deptno = dept_no

C. and count(*) > 5

D. group by dept_name

E. order by 2 desc;

95127flast.indd 35 2/18/09 6:16:17 AM

xxxvi SQL Fundamentals I Assessment Test

5. Review the code segment. Which line has an error?

 1 INSERT INTO salaries VALUES (101, 23400, SYSDATE);

 2 UPDATE salaries

 3 SET salary = salary * 1.1

 4 AND effective_dt = SYSDATE

 5 WHERE empno = 333;

A. 2

B. 4

C. 5

D. There is no error.

6. Review the following SQL, and choose the most appropriate option.
SELECT job_id, COUNT(*)

FROM employees

GROUP BY department_id;

A. The statement will show the number of jobs in each department.

B. The statement will show the number of employees in each department.

C. The statement will generate an error.

D. The statement will work if the GROUP BY clause is removed.

7. Which datatype stores data outside Oracle Database?

A. UROWID

B. BFILE

C. BLOB

D. NCLOB

E. EXTERNAL

8. The DEPT table has the following data:

SQL> SELECT * FROM dept;

 DEPTNO DNAME LOC

---------- -------------- ----------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES CHICAGO

 40 OPERATIONS BOSTON

95127flast.indd 36 2/18/09 6:16:17 AM

SQL Fundamentals I Assessment Test xxxvii

Consider this INSERT statement, and choose the best answer:

INSERT INTO (SELECT * FROM dept WHERE deptno = 10)

VALUES (50, ‘MARKETING’, ‘FORT WORTH’);

A. The INSERT statement is invalid; a valid table name is missing.

B. 50 is not a valid DEPTNO value, since the subquery limits DEPTNO to 10.

C. The statement will work without error.

D. A subquery and a VALUES clause cannot appear together.

9. Which two of the following queries are valid syntax that would return all rows from the
EMPLOYEES and DEPARTMENTS tables, even if there are no corresponding/related rows in the
other table?

A. SELECT last_name, first_name, department_name
FROM employees e FULL JOIN departments d
ON e.department_id = d.department_id;

B. SELECT last_name, first_name, department_name
FROM employees e OUTER JOIN departments d
ON e.department_id = d.department_id;

C. SELECT e.last_name, e.first_name, d.department_name
FROM employees e
LEFT OUTER JOIN departments d
ON e.department_id = d.department_id
RIGHT OUTER JOIN employees f
ON f.department_id = d.department_id;

D. SELECT e.last_name, e.first_name, d.department_name
FROM employees e
CROSS JOIN departments d
ON e.department_id = d.department_id;

E. SELECT last_name, first_name, department_name
FROM employees
FULL OUTER JOIN departments USING (department_id);

95127flast.indd 37 2/18/09 6:16:17 AM

xxxviii SQL Fundamentals I Assessment Test

10. Which of the following statements could use an index on the columns PRODUCT_ID and
WAREHOUSE_ID of the OE.INVENTORIES table? (Choose all that apply.)

A. select count(distinct warehouse_id)
from oe.inventories;

B. select product_id, quantity_on_hand
from oe.inventories
where product_id = 100;

C. insert into oe.inventories values (5,100,32);

D. None of these statements could use the index.

11. The following statements are executed:

create sequence my_seq;

select my_seq.nextval from dual;

select my_seq.nextval from dual;

rollback;

select my_seq.nextval from dual;

What value will be returned when the last SQL SELECT statement is executed?

A. 0

B. 1

C. 2

D. 3

E. NULL

12. Which of the following statements are true? (Choose two.)

A. Primary key constraints allow NULL values in the columns.

B. Unique key constraints allow NULL values in the columns.

C. Primary key constraints do not allow NULL values in the columns.

D. A nonunique index cannot be used to enforce primary key constraints.

13. The current time in Dubai is 04-APR-2008 08:50:00, and the time in Dallas is 03-APR-
2008 23:50:00. A user from Dubai is connected to a session in the database located on a
server in Dallas. What will be the result of his query?

SELECT TO_CHAR(SYSDATE,’DD-MON-YYYY HH24:MI:SS’) FROM dual;

A. 04-APR-2008 08:50:00

B. 03-APR-2008 23:50:00

C. 03-APR-2008 2324:50:00

D. None of the above

95127flast.indd 38 2/18/09 6:16:17 AM

SQL Fundamentals I Assessment Test xxxix

14. The FIRED_EMPLOYEE table has the following structure:

EMPLOYEE_ID NUMBER (4)

FIRE_DATE DATE

How many rows will be counted from the last SQL statement in the code segment?

SELECT COUNT(*) FROM FIRED_EMPLOYEES;

COUNT(*)

 105

INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);

SAVEPOINT A;

INSERT INTO FIRED_EMPLOYEE VALUES (106, TRUNC(SYSDATE);

SAVEPOINT B;

INSERT INTO FIRED_EMPLOYEE VALUES (108, TRUNC(SYSDATE);

ROLLBACK TO A;

INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);

COMMIT;

SELECT COUNT(*) FROM FIRED_EMPLOYEES;

A. 109

B. 106

C. 105

D. 107

15. At a minimum, how many join conditions should be there to avoid a Cartesian join if there
are three tables in the FROM clause?

A. 1

B. 2

C. 3

D. There is no minimum.

16. Why does the following statement fail?

CREATE TABLE FRUITS-N-VEGETABLES

(NAME VARCHAR2 (40));

A. The table should have more than one column in its definition.

B. NAME is a reserved word, which cannot be used as a column name.

C. Oracle does not like the table name.

D. The column length cannot exceed 30 characters.

95127flast.indd 39 2/18/09 6:16:17 AM

xl SQL Fundamentals I Assessment Test

17. Which two statements are true about NULL values?

A. You cannot search for a NULL value in a column using the WHERE clause.

B. If a NULL value is returned in the subquery or if NULL is included in the list when using
a NOT IN operator, no rows will be returned.

C. Only = and != operators can be used to search for NULL values in a column.

D. In an ascending-order sort, NULL values appear at the bottom of the result set.

E. Concatenating a NULL value to a non-NULL string results in a NULL.

18. Table CUSTOMERS has a column named CUST_ZIP that could be NULL. Which of the follow-
ing functions include the NULL rows in its result?

A. COUNT (CUST_ZIP)

B. SUM (CUST_ZIP)

C. AVG (DISTINCT CUST_ZIP)

D. None of the above

19. Using the following EMP table, you need to increase everyone’s salary by 5 percent of their
combined salary and bonus. Which of the following statements will achieve the desired
results?

Column Name emp_id name salary bonus

Key Type pk pk

NULLs/Unique NN NN NN

FK Table

Datatype VARCHAR2 VARCHAR2 NUMBER NUMBER

Length 9 50 11,2 11,2

A. UPDATE emp SET salary = (salary + bonus)*1.05;

B. UPDATE emp SET salary = salary*1.05 + bonus*1.05;

C. UPDATE emp SET salary = salary + (salary + bonus)*0.05;

D. A, B, and C will achieve the desired results.

E. None of these statements will achieve the desired results.

20. Which option is not available in Oracle when modifying tables?

A. Adding new columns

B. Renaming existing columns

C. Dropping existing columns

D. None of the above

95127flast.indd 40 2/18/09 6:16:18 AM

SQL Fundamentals I Assessment Test xli

21. The following data is from the EMPLOYEES table:

DEPARTMENT_ID EMPNO FIRST_NAME

------------- ---------- -------------

 30 119 Karen

 50 124 Kevin

 50 135 Ki

 80 146 Karen

 178 Kimberely

 50 188 Kelly

 50 197 Kevin

Which EMPNO will be returned last when the following query is executed?

select department_id, employee_id empno, first_name

from employees

order by 1, 2

A. 188

B. 178

C. 146

D. 119

22. INTERVAL datatypes store a period of time. Which components are included in the
INTERVAL DAY TO SECOND datatype column? (Choose all that apply.)

A. Years

B. Quarters

C. Months

D. Days

E. Hours

F. Minutes

G. Seconds

H. Fractional seconds

23. The primary key of the STATE table is STATE_CD. The primary key of the CITY table is
STATE_CD/CITY_CD. The STATE_CD column of the CITY table is the foreign key to the
STATE table. There are no other constraints on these two tables. Consider the following
view definition:

CREATE OR REPLACE VIEW state_city AS

SELECT a.state_cd, a.state_name, b.city_cd, b.city_name

FROM state a, city b

WHERE a.state_cd = b.state_cd;

95127flast.indd 41 2/18/09 6:16:18 AM

xlii SQL Fundamentals I Assessment Test

Which of the following operations are permitted on the base tables of the view? (Choose all
that apply.)

A. Insert a record into the CITY table.

B. Insert a record into the STATE table.

C. Update the STATE_CD column of the CITY table.

D. Update the CITY_CD column of the CITY table.

E. Update the CITY_NAME column of the CITY table.

F. Update the STATE_NAME column of the STATE table.

24. The table CUSTOMERS has the following data:

ID NAME ZIP UPD_DATE

---- --------------- ---------- ---------

L921 LEEZA 75252 01-JAN-00

B023 WILLIAMS 15215

K783 KATHY 75252 15-FEB-00

B445 BENJAMIN 76021 15-FEB-00

D334 DENNIS 12443

You issue the following command to alter the table. Which line of code will cause an error?

 1 ALTER TABLE CUSTOMERS

 2 MODIFY

 3 (UPD_DATE DEFAULT SYSDATE NOT NULL,

 4 ZIP NOT NULL);

A. Line 2 will cause an error.

B. Line 3 will cause an error.

C. Line 4 will cause an error.

D. There will be no error.

25. In ANSI SQL, a self-join can be represented by using which of the following? (Choose the
best answer.)

A. NATURAL JOIN clause

B. CROSS JOIN clause

C. JOIN…USING clause

D. JOIN…ON clause

E. All of the above

95127flast.indd 42 2/18/09 6:16:18 AM

SQL Fundamentals I Assessment Test xliii

26. What will be result of trunc(2916.16, -1)?

A. 2916.2

B. 290

C. 2916.1

D. 2900

E. 2910

27. The table ADDRESSES is created using the following syntax. How many indexes will be cre-
ated automatically when this table is created?

CREATE TABLE ADDRESSES (

NAME VARCHAR2 (40) PRIMARY KEY,

STREET VARCHAR2 (40),

CITY VARCHAR2 (40),

STATE CHAR (2) REFERENCES STATE (ST_CODE),

ZIP NUMBER (5) NOT NULL,

PHONE VARCHAR2 (12) UNIQUE);

A. 0

B. 1

C. 2

D. 3

28. Which line of the following code has an error?
SELECT *

FROM emp

WHERE comm = NULL

ORDER BY ename;

A. SELECT *

B. FROM emp

C. WHERE comm = NULL

D. There is no error in this statement.

29. Which of the following statements will raise an exception?

A. alter sequence emp_seq nextval 23050;

B. alter sequence emp_seq nocycle;

C. alter sequence emp_seq increment by -5;

D. alter sequence emp_seq maxvalue 10000;

95127flast.indd 43 2/18/09 6:16:18 AM

xliv SQL Fundamentals I Assessment Test

30. What order does Oracle use in resolving a table or view referenced in a SQL statement?

A. Table/view within user’s schema, public synonym, private synonym

B. Table/view within user’s schema, private synonym, public synonym

C. Public synonym, table/view within user’s schema, private synonym

D. Private synonym, public synonym, table/view within user’s schema

31. Which two options are not true when you execute a COMMIT statement?

A. All locks created by DML statements are released in the session.

B. All savepoints created are erased in the session.

C. Queries started before COMMIT in other sessions will show the current changes after
COMMIT.

D. All undo information written from the DML statements is erased.

32. Which two operators are used to add more joining conditions in a multiple-table query?

A. NOT

B. OR

C. AND

D. Comma (,)

33. What is wrong with the following SQL?

SELECT department_id, MAX(COUNT(*))

FROM employees

GROUP BY department_id;

A. Aggregate functions cannot be nested.

B. The GROUP BY clause should not be included when using nested aggregate functions.

C. The department_id column in the SELECT clause should not be used when using
nested aggregate functions.

D. The COUNT function cannot be nested.

34. Which types of constraints can be created on a view?

A. Check, NOT NULL

B. Primary key, foreign key, unique key

C. Check, NOT NULL, primary key, foreign key, unique key

D. No constraints can be created on a view.

35. Which two declarations define the maximum length of a CHAR datatype column in bytes?

A. CHAR (20)

B. CHAR (20) BYTE

C. CHAR (20 BYTE)

D. BYTE (20 CHAR)

E. CHAR BYTE (20)

95127flast.indd 44 2/18/09 6:16:18 AM

SQL Fundamentals I Assessment Test xlv

36. A view is created using the following code. Which of the following operations are permitted
on the view?

CREATE VIEW USA_STATES

AS SELECT * FROM STATE

WHERE CNT_CODE = 1

WITH READ ONLY;

A. SELECT

B. SELECT, UPDATE

C. SELECT, DELETE

D. SELECT, INSERT

37. You query the database with the following:

SELECT PRODUCT_ID FROM PRODUCTS

WHERE PRODUCT_ID LIKE ‘%S_J_C’ ESCAPE ‘\’;

Choose the two PRODUCT_ID strings that will satisfy the query.

A. BTS_J_C

B. SJC

C. SKJKC

D. S_J_C

38. The EMPLOYEE table is defined as follows:

EMP_NAME VARCHAR2(40)

HIRE_DATE DATE

SALARY NUMBER (14,2)

Which query is most appropriate to use if you need to find the employees who were hired
before January 1, 1998 and have a salary greater than 5,000 or less than 1,000?

A. SELECT emp_name FROM employee
WHERE hire_date > TO_DATE(‘01011998’,’MMDDYYYY’)
AND SALARY < 1000 OR > 5000;

B. SELECT emp_name FROM employee
WHERE hire_date < TO_DATE(‘01011998’,’MMDDYYYY’)
AND SALARY < 1000 OR SALARY > 5000;

C. SELECT emp_name FROM employee
WHERE hire_date < TO_DATE(‘01011998’,’MMDDYYYY’)
AND (SALARY < 1000 OR SALARY > 5000);

D. SELECT emp_name FROM employee
WHERE hire_date < TO_DATE(‘01011998’,’MMDDYYYY’)
AND SALARY BETWEEN 1000 AND 5000;

95127flast.indd 45 2/18/09 6:16:18 AM

xlvi SQL Fundamentals I Assessment Test

39. What happens when you issue the following command? (Choose all that apply.)

TRUNCATE TABLE SCOTT.EMPLOYEE;

A. All the rows in the table EMPLOYEE owned by SCOTT are removed.

B. The storage space used by the table EMPLOYEE is released (except the initial extent).

C. If foreign key constraints are defined to this table using the ON DELETE CASCADE
clause, the rows from the child tables are also removed.

D. The indexes on the table are dropped.

E. You cannot truncate a table if triggers are defined on the table.

40. Which two statements will drop the primary key defined on table EMP? The primary key
name is PK_EMP.

A. ALTER TABLE EMP DROP PRIMARY KEY;

B. DROP CONSTRAINT PK_EMP;

C. ALTER TABLE EMP DROP CONSTRAINT PK_EMP;

D. ALTER CONSTRAINT PK_EMP DROP CASCADE;

E. DROP CONSTRAINT PK_EMP ON EMP;

95127flast.indd 46 2/18/09 6:16:18 AM

Answers to SQL Fundamentals I
Assessment Test
1. B. In the arithmetic operators, unary operators are evaluated first, then multiplication

and division, and finally addition and subtraction. The expression is evaluated from left to
right. For more information about order of evaluation, see Chapter 1.

2. A, C. The CREATE FORCE VIEW statement can be used to create a view before its base table
is created. In versions prior to Oracle 11g, any modification to the table will invalidate
the view. In Oracle 11g, the view will be invalidated only if the columns used in the view
are modified in the base table. Use the ALTER VIEW <view name> COMPILE statement to
recompile the view. See Chapter 7 to learn more about views.

3. C. CONCAT will return a non-NULL if only one parameter is NULL. Both CONCAT parameters
would need to be NULL for CONCAT to return NULL. The NULLIF function returns NULL if the
two parameters are equal. The LENGTH of a NULL is NULL. INSTR will return NULL if NULL is
passed in and the tangent of a NULL is NULL. For more information about NULL values, see
Chapter 2.

4. C. Group functions cannot appear in the WHERE clause. To learn more about group func-
tions, see Chapter 3.

5. B. When updating multiple columns in a single UPDATE statement, the column assignments
in the SET clause must be separated by commas, not AND operators. To read more about
DML statements (INSERT, UPDATE, and DELETE), refer to Chapter 5.

6. C. Since job_id is used in the SELECT clause, it must be used in the GROUP BY clause also.
To learn more about the rules of using the GROUP BY clause and aggregate functions, read
Chapter 3.

7. B. The BFILE datatype stores only the locator to an external file in the database; the actual
data is stored as an operating system file. BLOB, NCLOB, and CLOB are the other large
object data types in Oracle 11g. UROWID is Universal ROWID datatype and EXTERNAL
is a not a valid datatype. See Chapter 6 for information about datatypes.

8. C. The statement will work without error. Option B would be correct if you used the WITH
CHECK OPTION clause in the subquery. See Chapter 4 for more information about subqueries.

9. A, E. An outer join on both tables can be achieved using the FULL OUTER JOIN syntax.
You can specify the join condition using the ON clause to specify the columns explicitly or
using the USING clause to specify the columns with common column names. Options B and
D would result in errors. In option B, the join type is not specified; OUTER is an optional
keyword. In option D, CROSS JOIN is used to get a Cartesian result, and Oracle does not
expect a join condition. To learn more about joins, read Chapter 4.

95127flast.indd 47 2/18/09 6:16:18 AM

xlviii Answers to SQL Fundamentals I Assessment Test

10. A, B. The index contains all the information needed to satisfy the query in option A, and a
full-index scan would be faster than a full-table scan. A subset of index columns is specified
in the WHERE clause of option B; hence, Oracle 11g can use the index. For more information
on indexes, see Chapter 7.

11. D. The CREATE SEQUENCE statement will create an increasing sequence that will start with
1, will increment by 1, and will be unaffected by the rollback. A rollback will never stuff
vales back into a sequence. See Chapter 7 to learn more about sequences.

12. B, C. Primary and unique key constraints can be enforced using nonunique indexes.
Unique constraints allow NULL values in the columns, but primary keys do not. Read Chap-
ter 6 to learn more about constraints.

13. B. The SYSDATE function returns the date and time on the server where the database
instance is started. CURRENT_DATE returns the local date and time. For information on the
built-in date functions, read Chapter 2.

14. D. The first INSERT statement and last INSERT statement will be saved in the database. The
ROLLBACK TO A statement will undo the second and third inserts. To know more about
transaction control and ROLLBACK, read Chapter 5.

15. B. There should be at least n-1 join conditions when joining n tables to avoid a Cartesian
join. To learn more about joins, see Chapter 4.

16. C. The table and column names can include only three special characters: #, $, and _. No
other characters are allowed in the table name. You can have letters and numbers in the
table name. To learn more about table and column names, read Chapter 6.

17. B, D. You can use the IS NULL or IS NOT NULL operator to search for NULLs or non-NULLs
in a column. Since NULLs are sorted higher, they appear at the bottom of the result set in an
ascending-order sort. See Chapter 1 for more information about sorting NULL values.

18. D. COUNT (<column_name>) does not include the NULL values, whereas COUNT (*) includes
the NULL values. No other aggregate function takes NULL into consideration. To learn more
about aggregate functions, read Chapter 3.

19. E. These statements don’t account for possible NULL values in the BONUS column. For more
information about NULL values, see Chapter 2.

20. D. Using the ALTER TABLE statement, you can add new columns, rename existing columns,
and drop existing columns. To learn more about managing tables, read Chapter 6.

21. B. Since DEPARTMENT_ID is NULL for employee 178, NULL will be sorted after the non-NULL
values when doing an ascending-order sort. Since I did not specify the sort order or the
NULLS FIRST clause, the defaults are ASC and NULLS LAST. Read Chapter 1 for more infor-
mation on SELECT and sort orders.

22. D, E, F, G. The INTERVAL DAY TO SECOND datatype is used to store an interval
between two datetime components. See Chapter 6 for more information on the INTERVAL
and TIMESTAMP datatypes.

95127flast.indd 48 2/18/09 6:16:18 AM

Answers to SQL Fundamentals I Assessment Test xlix

23. D, E. In the join view, CITY is the key-preserved table. You can update the columns of
the CITY table, except STATE_CD, because STATE_CD is not part of the view definition (the
STATE_CD column in the view is from the STATE table). Since I did not include the STATE_CD
column from the CITY table, no INSERT operations are permitted (STATE_CD is part of the
primary key). If the view were defined as follows, all the columns of the CITY table would
have been updatable, and new records could be inserted into the CITY table.

CREATE OR REPLACE VIEW state_city AS
SELECT b.state_cd, a.state_name, b.city_cd, b.city_name
FROM states a, cities b
WHERE a.state_cd = b.state_cd;

See Chapter 7 for more information about views.

24. B. When altering an existing column to add a NOT NULL constraint, no rows in the table
should have NULL values. In the example, there are two rows with NULL values. Creating
and modifying tables are discussed in Chapter 6.

25. D. NATURAL JOIN and JOIN…USING clauses will not allow alias names to be used. Since a
self-join is getting data from the same table, you must include alias names and qualify col-
umn names. To learn more about ANSI join syntax, read Chapter 4.

26. E. The TRUNC function used with a negative second argument will truncate to the left of the
decimal. To learn more about TRUNC and other numeric functions, read Chapter 2.

27. C. Oracle creates unique indexes for each unique key and primary key defined in the table.
The table ADDRESSES has one unique key and a primary key. Indexes will not be created for
NOT NULL or foreign key constraints. Constraints are discussed in Chapter 6.

28. D. Although there is no error in this statement, the statement will not return the desired
result. When a NULL is compared, you cannot use the = or != operator; you must use the IS
NULL or IS NOT NULL operator. See Chapter 1 for more information about the comparison
operators.

29. A. You cannot explicitly change the next value of a sequence. You can set the MAXVALUE or
INCREMENT BY value to a negative number, and NOCYCLE tells Oracle to not reuse a sequence
number. See Chapter 7 for more information.

30. B. Private synonyms override public synonyms, and tables or views owned by the user
always resolve first. To learn more about synonyms, see Chapter 7.

31. C, D. When COMMIT is executed, all locks are released, all savepoints are erased, and que-
ries started before the COMMIT will constitute a read-consistent view using the undo infor-
mation. To learn more about COMMIT, read Chapter 5.

32. B, C. The operators OR and AND are used to add more joining conditions to the query. NOT is
a negation operator, and a comma is used to separate column names and table names. Read
more about joins and join conditions in Chapter 4.

95127flast.indd 49 2/18/09 6:16:18 AM

l Answers to SQL Fundamentals I Assessment Test

33. C. Since you are finding the aggregate of the aggregate, you should not use nonaggregate
columns in the SELECT clause. To read more about nesting of aggregate functions, see
Chapter 3.

34. B. You can create primary key, foreign key, and unique key constraints on a view. The con-
straints on views are not enforced by Oracle. To enforce a constraint, it must be defined on
a table. Views can be created with the WITH CHECK OPTION and READ ONLY attributes dur-
ing view creation. Read Chapter 7 to learn more.

35. A, C. The maximum lengths of CHAR and VARCHAR2 columns can be defined in charac-
ters or bytes. BYTE is the default. To learn more about CHAR and VARCHAR2 datatypes,
read Chapter 6.

36. A. When the view is created with the READ ONLY option, only reads are allowed from the
view. See Chapter 7 to learn more about creating views as read-only.

37. A, D. The substitution character % can be substituted for zero or many characters. The
substitution character _ does not have any effect in this query because an escape character
precedes it, so it is treated as a literal. Read Chapter 1 to learn more about substitution
characters.

38. C. You have two main conditions in the question: one on the hire date and the other on
the salary. So, you should use an AND operator. In the second part, you have two options:
the salary can be either more than 5,000 or less than 1,000, so the second part should be
enclosed in parentheses and should use an OR operator. Option B is similar to option C
except for the parentheses, but the difference changes the meaning completely. Option B
would select the employees who were hired before January 1, 1998 or have a salary greater
than 5,000 or less than 1,000. Read Chapter 1 to learn more about writing queries using
filtering conditions.

39. A, B. The TRUNCATE command is used to remove all the rows from a table or cluster. By
default, this command releases all the storage space used by the table and resets the table’s
high-water mark to zero. No indexes, constraints, or triggers on the table are dropped or
disabled. If there are valid foreign key constraints defined to this table, you must disable
all of them before truncating the table. Chapter 5 includes a comparison between using
TRUNCATE and the DELETE statement to remove rows.

40. A, C. Since there can be only one primary key per table, the syntax in option A works. Any
constraint (except NOT NULL) can be dropped using the syntax in option C. Learn more
about constraints in Chapter 6.

95127flast.indd 50 2/18/09 6:16:18 AM

Administration I Assessment Test
1. Which of the following is not considered part of Oracle Database?

A. Data files

B. Redo logs

C. Pfile and spfile

D. Control files

2. The following are the steps required for relocating a data file belonging to the USERS
tablespace. Order the steps in their proper sequence.

A. Copy the file /disk1/users01.dbf to /disk2/users01.dbf using an OS command.

B. ALTER DATABASE RENAME FILE ‘/disk1/users01.dbf’ TO ‘/disk2/users01.dbf’

C. ALTER TABLESPACE USERS OFFLINE

D. ALTER TABLESPACE USERS ONLINE

3. You manage one non-Oracle Database and several Oracle Databases. An application needs
to access the non-Oracle database as if it were part of the Oracle database. What tool
allows you to do this? (Choose the best answer.)

A. Oracle Advanced Security

B. Oracle Connection Manager

C. Heterogeneous Services

D. Oracle Net

E. None of the above

4. Choose two utilities that can be used to apply CPU patches on an Oracle 11g database.

A. Oracle Universal Installer

B. OPatch

C. EM Database Control

D. DBCA

5. The loss of a data file in which two tablespaces requires an instance shutdown to recover
the tablespace?

A. TEMP

B. SYSTEM

C. UNDO

D. SYSAUX

95127flast.indd 51 2/18/09 6:16:18 AM

lii Administration I Assessment Test

6. Which of the following statements is not always true? (Choose two.)

A. Every database should have at least two tablespaces.

B. Every database should have at least two data files.

C. Every database should have at least three multiplexed redo logs.

D. Every database should have at least three control files.

7. Which statement about the initialization-parameter files is true?

A. The pfile and spfile can be modified using the ALTER SYSTEM statement.

B. You cannot have both an spfile and a pfile under the $ORACLE_HOME/dbs directory.

C. The pfile is used only to read by the Oracle instance, whereas the spfile is used to read
and write to.

D. On Windows systems, pfile and spfiles are not used because parameters are modified
using the system registry.

8. Which initialization parameter determines the location of the alert log file?

A. DIAGNOSTIC_DEST

B. BACKGROUND_DUMP_DEST

C. ALERT_LOG_DEST

D. USER_DUMP_DEST

9. Which parameter is used to set up the directory for Oracle to create data files if the
DATAFILE clause does not specify a filename when creating or altering tablespaces?

A. DB_FILE_CREATE_DEST

B. DB_CREATE_FILE_DEST

C. DB_8K_CACHE_SIZE

D. USER_DUMP_DEST

E. DB_CREATE_ONLINE_LOG_DEST_1

10. Which component of the SGA has the dictionary cache?

A. Buffer cache

B. Library cache

C. Shared pool

D. Program global area

E. Large pool

F. Result cache

95127flast.indd 52 2/18/09 6:16:18 AM

Administration I Assessment Test liii

11. A constraint is created with the DEFERRABLE INITIALLY IMMEDIATE clause. What does
this mean?

A. Constraint checking is done only at commit time.

B. Constraint checking is done after each SQL, but you can change this behavior by speci-
fying SET CONSTRAINTS ALL DEFERRED.

C. Existing rows in the table are immediately checked for constraint violation.

D. The constraint is immediately checked in a DML operation, but subsequent constraint
verification is done at commit time.

12. You have just made changes to the listener.ora file for the listener called listener1
using Oracle Net Manager. Which of the following commands or combinations of commands
would you use to put the changes into effect with the least amount of client disruption?

A. lsnrctl stop listener1 followed by lsnrctl start listener1

B. lsrnctl restart listener1

C. lsnrctl reload listener1

D. lsnrctl reload

13. What is the prefix for dynamic performance views?

A. X$

B. V$

C. ALL_

D. DBA_

14. If you are updating one row in a table using the ROWID in the WHERE clause (assume that the
row is not already in the buffer cache), what will be the minimum amount of information
copied to the database buffer cache?

A. The entire table is copied to the database buffer cache.

B. The extent is copied to the database buffer cache.

C. The block is copied to the database buffer cache.

D. The row is copied to the database buffer cache.

15. When you are configuring Shared Server, which initialization parameter would you likely
need to modify?

A. DB_CACHE_SIZE

B. DB_BLOCK_BUFFERS

C. LARGE_POOL_SIZE

D. BUFFER_SIZE

E. None of the above

95127flast.indd 53 2/18/09 6:16:19 AM

liv Administration I Assessment Test

16. To grant the SELECT privilege on the table HR.CUSTOMERS to all users in the database, which
statement would you use?

A. GRANT SELECT ON HR.CUSTOMERS TO ALL USERS;

B. GRANT SELECT ON HR.CUSTOMERS TO ALL;

C. GRANT SELECT ON HR.CUSTOMERS TO ANONYMOUS;

D. GRANT SELECT ON HR.CUSTOMERS TO PUBLIC;

17. Which of the following commands is most likely to generate an error message? (Choose two.)

A. ALTER SYSTEM SET UNDO_MANAGEMENT=AUTO SCOPE=MEMORY;

B. ALTER SYSTEM SET UNDO_MANAGEMENT=AUTO SCOPE=SPFILE;

C. ALTER SYSTEM SET UNDO_MANAGEMENT=MANUAL SCOPE=MEMORY;

D. ALTER SYSTEM SET UNDO_MANAGEMENT=MANUAL SCOPE=SPFILE;

E. ALTER SYSTEM SET UNDO_TABLESPACE=RBS1 SCOPE=BOTH;

18. The Automatic Workload Repository (AWR) is primarily populated with performance sta-
tistics by which Oracle 11g background process?

A. MMNL

B. QMN1

C. MMON

D. MMAN

19. You performed a SHUTDOWN ABORT on the database. What happens when you issue the
STARTUP command?

A. Startup will fail because you have not completed the instance recovery.

B. Oracle automatically performs recovery; all committed changes are written to data
files.

C. During instance recovery you have the option to selectively commit uncommitted
transactions.

D. After the database starts, you have to manually clean out uncommitted transactions
from the transaction table.

20. Which storage parameter is used to make sure that each extent is a multiple of the value
specified on dictionary-managed tablespaces?

A. MINEXTENTS

B. INITIAL

C. MINIMUM EXTENT

D. MAXEXTENTS

95127flast.indd 54 2/18/09 6:16:19 AM

Administration I Assessment Test lv

21. Which of the following is the utility that you can use to test the network connections
across TCP/IP?

A. trcasst

B. lsnrctl

C. namesctl

D. ping

E. None of the above

22. What is the difference between a unique key constraint and a primary key constraint?

A. A unique key constraint requires a unique index to enforce the constraint, whereas a
primary key constraint can enforce uniqueness using a unique or nonunique index.

B. A primary key column can be NULL, but a unique key column cannot be NULL.

C. A primary key constraint can use an existing index, but a unique constraint always
creates an index.

D. A unique constraint column can be NULL, but the primary key column(s) cannot
be NULL.

23. Which of the following conditions prevents you from being able to insert into a view?

A. A TO_NUMBER function on one of the base table columns

B. A CONNECT BY clause in the view definition

C. A column of type RAW

D. All of the above

24. Which parameter is used to enable the Automatic Memory Management feature of the
Oracle 11g database?

A. MEMORY_MANAGEMENT

B. MEMORY_TARGET

C. SGA_TARGET

D. MEMORY_SIZE

25. Undo data in an undo tablespace is not used for which of the following purposes?

A. Providing users with read-consistent queries

B. Rolling forward after an instance failure

C. Flashback queries

D. Recovering from a failed transaction

E. Restoring original data when a ROLLBACK is issued

95127flast.indd 55 2/18/09 6:16:19 AM

lvi Administration I Assessment Test

26. Which initialization parameter determines the window of flashback database operation?

A. DB_RECOVERY_FILE_DEST_SIZE

B. DB_FLASHBACK_RETENTION_TARGET

C. FAST_START_MTTR_TARGET

D. No initialization parameter; the window is determined by the RMAN backups.

27. When you started the Oracle 11g database, you got an “ORA-01157: cannot identify data
file…” error. After invoking RMAN, which command would you use before performing
REPAIR FAILURE?

A. RECOVER FAILURE

B. ADVISE FAILURE

C. LIST FAILURE

D. CHANGE FAILURE

28. Who is the owner of a directory object?

A. SYSTEM

B. SYSMAN

C. SYS

D. The user who creates the directory

29. Which of the following types of statements can use a temporary tablespace?

A. An index creation

B. SQL statements with a GROUP BY clause

C. A hash join operation

D. All of the above

30. Which of the following is false about shared servers?

A. Shared servers can process requests from many users.

B. Shared servers receive their requests directly from dispatchers.

C. Shared servers place completed requests on a dispatcher response queue.

D. The SHARED_SERVERS parameter configures the number of shared servers to start at
instance startup.

31. What is accomplished when you issue the following statement?
ALTER USER JOHN DEFAULT ROLE ALL;

A. John is assigned all roles created in the database.

B. Existing roles remain the same, but future roles created will be enabled.

C. All of John’s roles are enabled except the roles with passwords.

D. All of John’s roles are enabled, including the roles with passwords.

95127flast.indd 56 2/18/09 6:16:19 AM

Administration I Assessment Test lvii

32. Which initialization parameter determines the location of the alert log file?

A. LOG_ARCHIVE_DEST

B USER_DUMP_DEST

C. BACKGROUND_DUMP_DEST

D. DIAGNOSTIC_DEST

33. The highest level at which a user can request a lock is the level.

A. schema

B. table

C. row

D. block

34. How can you prevent someone from using an all-numeric password?

A. Set the initialization parameter PASSWORD_COMPLEXITY to ALPHANUM.

B. Alter that user’s profile setting PASSWORD_COMPLEXITY to ALPHNANUM.

C. Alter the user’s profile to use a password-verify function that performs comparisons to
validate the password.

D. There is no mechanism that lets you prevent an all-numeric password.

35. Which of the following advisors is used to determine whether the database read-consistency
mechanisms are properly configured?

A. Undo Management Advisor

B. SQL Access Advisor

C. SQL Tuning Advisor

D. Memory Advisor

36. Where does Oracle Database record all changes made to the database that can be used for
recovery operations?

A. Control files

B. Redo log files

C. Alert log file

D. Parameter file

37. In the Disk Settings section of EM Database Control’s Configure Backup Settings page,
which of the following backup settings is not configurable?

A. Disk Backup Type

B. Control File Autobackup Format

C. Disk Backup Location

D. Parallelism

95127flast.indd 57 2/18/09 6:16:19 AM

lviii Administration I Assessment Test

38. You need to copy the GL schema from production to qa_test, changing the tablespace
for indexes from gl_index to fin_indx. What is the best way to satisfy these
requirements?

A. First, use Data Pump to copy the schema without indexes. Then, change the default
tablespace for user GL in qa_test to fin_indx. Next, use Data Pump to copy the
indexes. Finally, change the default tablespace for user GL back to gl_data.

B. Use the dbms_metadata package to extract table and index DDL. Then, use Notepad
(or sed) to edit this DDL, changing the tablespace for the indexes. Finally, run the
DDL in the qa_test database.

C. Use Data Pump import, specifying a remap_datafile parameter to change the data
file location for indexes.

D. Use Data Pump import, specifying a remap_tablespace parameter to change the
tablespace location for indexes.

39. Identify the statement that is not true about checkpoints.

A. Instance recovery is complete when the data from the last checkpoint up to the latest
SCN in the control file has been written to the data files.

B. A checkpoint keeps track of what has already been written to the data files.

C. The redo log group writes must occur before a Commit complete is returned to
the user.

D. The distance between the checkpoint position in the redo log file and the end of the redo
log group can never be more than 90 percent of the size of the largest redo log group.

E. How much the checkpoint lags behind the SCN is controlled by both the size of the
redo log groups and by setting the parameter FAST_START_MTTR_TARGET.

40. The STATUS column of the dynamic performance view V$LOG contains what value if the
redo log file group has just been added?

A. INVALID

B. STALE

C. UNUSED

D. NULL

41. When performing Data Pump import using impdp, which of the following options is not a
valid value to the TABLE_EXISTS_ACTION parameter?

A. SKIP

B. APPEND

C. TRUNCATE

D. RECREATE

95127flast.indd 58 2/18/09 6:16:19 AM

Administration I Assessment Test lix

42. What would you do to reduce the time required to start the instance after a database crash?

A. Multiplex the redo log files.

B. Increase the size of the redo log files.

C. Set the FAST_START_MTTR_TARGET parameter to 0.

D. All of the above.

E. None of the above.

95127flast.indd 59 2/18/09 6:16:19 AM

lx Answers to Administration I Assessment Test

Answers to Administration I
Assessment Test
1. C. Although pfiles and spfiles are physical files used to configure the Oracle instance, they

are not considered part of the database. To learn more about Oracle Database structure,
read Chapter 8.

2. C, A, B, D. To rename a data file, you need to make the tablespace offline so that Oracle
does not try to update the data file while you are renaming. Using OS commands, copy
the data file to the new location, and using the ALTER DATABASE RENAME FILE command
or the ALTER TABLESPACE RENAME FILE command, rename the file in the database’s con-
trol file. To rename the file in the database, the new file should exist. Bring the tablespace
online for normal database operation. See Chapter 10 for more information.

3. C. Heterogeneous Services is the correct answer because these services provide cross-
platform connectivity to non-Oracle databases. Oracle Advanced Security would not solve
this application problem because it addresses security and is not accessibility to non-Oracle
databases. Oracle Net would be part of the solution, but another Oracle Network com-
ponent is necessary. Connection Manager would also not be able to accommodate this
requirement on its own. Read Chapter 11 to learn more.

4. B, C. CPU patches and interim patches can be applied using the OPatch utility or using EM
Database Control. EM Database Control also includes patch search and download options.
See Chapter 17 for more information.

5. B, C. Only the SYSTEM and UNDO tablespaces require the instance to be shut down when
their data files need recovery. Read Chapter 16 to learn about database recovery.

6. C, D. Every database must have at least two redo log files, which may or may not be multi-
plexed. Every database must have one control file. It is a good idea to have more than one con-
trol file for redundancy. Since SYSTEM and SYSAUX are mandatory tablespaces in Oracle 11g,
there will be at least two data files. See Chapter 8 for more information.

7. C. A pfile is a read-only file, and no database changes are written to the pfile. There is no
harm in having both an spfile and a pfile in the $ORACLE_HOME/dbs directory; Oracle will
only read the spfile when starting the database. On Windows systems also, you will need
a parameter-initialization file; the registry is not used. Read more about parameter files in
Chapter 9.

8. A. Oracle 11g uses the Automatic Diagnostic Repository to maintain the alert log and other
diagnostic information. In pre–Oracle 11g databases, the BACKGROUND_DUMP_DEST parameter
determined the alert log location; in Oracle 11g, this parameter value is ignored. To learn more
about the alert log and its contents, read Chapter 9.

9. B. DB_CREATE_FILE_DEST specifies the directory to create data files and temp files. This
directory is also used for control files and redo log files if the DB_CREATE_ONLINE_LOG_
DEST_1 parameter is not set. Learn more in Chapter 10.

95127flast.indd 60 2/18/09 6:16:19 AM

Answers to Administration I Assessment Test lxi

10. C. The shared pool has three components: the library cache, the result cache, and the dic-
tionary cache. Read Chapter 8 to learn more about SGA and Oracle instances.

11. B. DEFERRABLE specifies that the constraint can be deferred using the SET CONSTRAINTS
command. INITIALLY IMMEDIATE specifies that the constraint’s default behavior is to vali-
date the constraint for each SQL. Constraints are discussed in Chapters 7 and 10.

12. C. Although you can use option A to stop and start the listener, doing so temporarily dis-
rupts clients attempting to connect to the database. Option D is fine if you are starting and
stopping the default listener called LISTENER, but you are using a nondefault listener here.
Option B is not valid because RESTART is not a valid command-line argument for lsnrctl.
Therefore, the best method is to use the lsnrctl reload listener1 command to load the
new set of values in for the listener without disrupting connection service to the databases
that the listener is servicing. For more information, read Chapter 11.

13. B. Dynamic performance views begin with V$. The actual views have a prefix of V_$,
and the synonyms have a prefix of V$. The V$ views are based on the X$ tables, known as
dynamic performance tables. To learn more about dynamic performance views and tables,
read Chapter 9.

14. C. The block is the smallest unit that can be copied to the buffer cache. Information in the
dictionary cache is copied as rows. To learn about buffer cache and dictionary cache, read
Chapter 8.

15. C. Shared Server requires a shift of memory away from individual session processes to the
SGA. More information has to be kept in the SGA (in the UGA) within the shared pool. A
large pool is configured and is responsible for most of the SGA space allocation. Option C
is the correct answer. The cache size and block buffers settings do not affect Shared Server.
Read Chapter 11 for more information.

16. D. PUBLIC is the group or class of database users where all existing and future database
users belong. See Chapter 12 for more information.

17. A, C. You cannot dynamically change the parameter UNDO_MANAGEMENT after the instance
has started. You can, however, change the UNDO_TABLESPACE parameter to switch to another
undo tablespace while the instance is up and running. Read Chapter 13 to learn more.

18. C. The Manageability Monitor (MMON) process gathers performance statistics from
the system global area (SGA) and stores them in the AWR. Manageability Monitor Light
(MMNL) also does some AWR-related statistics gathering, but not to the extent that
MMON does. QMN1 is the process that monitors Oracle advanced queuing features.
Memory Manager (MMAN) is the process that dynamically manages the sizes of each SGA
component when directed to make changes by the Automatic Database Diagnostic Monitor
(ADDM). For more information, see Chapter 14.

19. B. Oracle automatically performs instance recovery after a database crash or SHUTDOWN
ABORT. All uncommitted changes are rolled back, and committed changes are written to
data files during instance recovery. Read Chapter 9 for more information.

95127flast.indd 61 2/18/09 6:16:19 AM

lxii Answers to Administration I Assessment Test

20. C. The MINIMUM EXTENT parameter is used to make sure each extent is a multiple of the
value specified on dictionary-managed tablespaces. This parameter is useful to reduce frag-
mentation in the tablespace. Oracle discourages the use of dictionary-managed tablespaces.
You should use locally managed tablespaces. Read Chapter 10 for more information.

21. D. Protocols come with tools that allow you to test network connectivity. One such utility
for TCP/IP is ping. The user supplies either an IP address or a hostname to the ping util-
ity. It then searches the network for this address. If it finds one, it displays information on
data that is sent and received and how quickly it found this address. The other choices are
Oracle-supplied utilities. Read Chapter 11 for more information.

22. D. Columns that are part of the primary key cannot accept NULL values. Read Chapters 7
and 10 to learn more.

23. B. You cannot insert into a view that contains a CONNECT BY, ORDER BY, or GROUP BY
clause. Read Chapter 13 to learn more.

24. B. A nonzero value for the MEMORY_TARGET parameter enables Automatic Memory Man-
agement. SGA_TARGET enables Automatic Shared Memory Management. Automatic Memory
Management tunes both SGA and PGA components of the memory. To learn more, read
Chapter 14.

25. B. The online redo log files are used to roll forward after an instance failure; undo data is
used to roll back any uncommitted transactions. Read Chapter 13 to learn more.

26. B. The DB_FLASHBACK_RETENTION_TARGET parameter determines the window for the flash-
back database operation. The value is specified in minutes. So, a value of 1440 specifies
that the flashback database window is 1 day. To learn more, read Chapter 15.

27. B. REPAIR FAILURE works only after ADVISE FAILURE. Option A, RECOVER FAILURE, is
invalid. CHANGE FAILURE can be used to lower or raise the priority of a failure. To learn
more about automatically recovering from failures, read Chapter 16.

28. C. SYS is always the owner of directory object. You can grant read and write privileges on
the directory to users. See Chapter 17 to learn more.

29. D. Any operation that requires a large sort or other creation of temporary segments will
create, alter, and drop those temporary segments in the TEMPORARY tablespace. See Chap-
ter 12 for more information.

30. B. Shared servers can process requests from many users. The completed requests are placed
into the dispatchers’ response queues. The servers are configured with the SERVERS parame-
ter. However, shared servers do not receive requests directly from dispatchers. The requests
are taken from the request queue. Read Chapter 11 to learn more.

31. D. Default roles are enabled when a user connects to the database, even if the roles are
password-protected. See Chapter 12 for more information.

32. D. DIAGNOSTIC_DEST is new to Oracle 11g, and it determines the location of the alert log
file and trace files. Read Chapter 14 to learn more about alert log and trace file locations.

95127flast.indd 62 2/18/09 6:16:19 AM

Answers to Administration I Assessment Test lxiii

33. B. The highest level at which a user can request a lock is the table level; the only other lock
level available to a user is a row-level lock. Users cannot lock at the block or schema level.
Read Chapter 13 to learn more.

34. C. There are no standard password-complexity settings in either the initialization param-
eters or the profiles. A password-verify function can validate new passwords against any
rules that you can code in PL/SQL, including regular-expression comparisons. See Chapter
12 for more information.

35. A. You can use the Undo Management Advisor to monitor and manage the undo segments
to ensure maximum levels of read consistency and minimize occurrences of “ORA-01555:
Snapshot Too Old” error messages. For more information, see Chapter 14.

36. B. Redo log files record all the changes made to Oracle Database, whether the changes are
committed or not. To learn more about redo log files and database recovery, read Chapters
15 and 16.

37. B. Settings such as the control file autobackup filename format and the snapshot-control
file destination filename must be configured using the RMAN command-line interface. To
learn more, read Chapter 15.

38. D. Options A and B are a lot of work. The remap_datafile parameter applies only
to CREATE TABLESPACE and CREATE DIRECTORY statements, not indexes. The remap_
tablespace parameter tells Data Pump import to change the tablespace that objects are
stored in between the source and the target database. See Chapter 17 for more information.

39. D. The distance between the checkpoint position in the redo log file and the end of the
redo log group can never be more than 90 percent of the size of the smallest redo log group.
Read Chapter 16 to learn more about checkpoints and instance recovery.

40. C. If the redo log file group has never been used, the value of STATUS is UNUSED until the
log file member is used to record redo information. Read Chapter 16 for more information.

41. D. REPLACE is the valid value; it drops the existing table and creates the table using the
definition from the dump file. SKIP leaves the table untouched. APPEND inserts rows to the
existing table. TRUNCATE leaves the structure but removes all existing rows before inserting
rows. See Chapter 17 to learn more.

42. E. To tune the instance-recovery time, configure the FAST_START_MTTR_TARGET parameter
to a nonzero value. The default is 300 seconds. A lower value will reduce the instance-recovery
time but may cause frequent checkpoints. A value of 0 turns off MTTR tuning. To learn
more, read Chapter 15.

95127flast.indd 63 2/18/09 6:16:19 AM

95127flast.indd 64 2/18/09 6:16:19 AM

PArt

I
Oracle

Database 11g:
SQL

Fundamentals I

95127c01.indd 1 2/18/09 6:37:05 AM

95127c01.indd 2 2/18/09 6:37:05 AM

Chapter

1
Introducing SQL

OracLe DatabaSe 11g:
SQL FunDamentaLS I exam ObjectIveS
cOvereD In thIS chapter:

Retrieving Data Using the SQL SELECT StatementÛÛ

List the capabilities of SQL SELECT statementsÛN

Execute a basic SELECT statementÛN

Restricting and Sorting DataÛÛ

Limit the rows that are retrieved by a queryÛN

Sort the rows that are retrieved by a queryÛN

Use ampersand substitution to restrict and sort output at ÛN

runtime

95127c01.indd 3 2/18/09 6:37:06 AM

Oracle 11g is a very powerful and feature-rich relational data-
base management system (RDBMS). SQL has been adopted
by most RDBMSs for the retrieval and management of data,

schema creation, and access control. The American National Standards Institute (ANSI)
has been refining standards for the SQL language for more than 20 years. Oracle, like
many other companies, has taken the ANSI standard of SQL and extended it to include
much additional functionality.

SQL is the basic language used to manipulate and retrieve data from the Oracle Database
11g. SQL is a nonprocedural language, meaning it does not have programmatic constructs
such as loop structures. PL/SQL is Oracle’s procedural extension of SQL, and SQLJ allows
embedded SQL operations in Java code. The scope of the Oracle Database 11g SQL Funda-
mentals I test includes only SQL.

In this chapter, I will discuss Oracle SQL fundamentals such as the various types of
SQL statements, introduce SQL*Plus and a few SQL*Plus commands, and discuss SELECT
statements.

You will learn how to write basic SQL statements to retrieve data from tables. This will
include coverage of SQL SELECT statements, which are used to query data from the database-
storage structures, such as tables and views. You will also learn how to limit the information
retrieved and to display the results in a specific order.

Exam objectives are subject to change at any time without prior notice and
at Oracle’s sole discretion. Please visit Oracle’s Training and Certification
website at http://education.oracle.com/pls/web_prod-plq-dad/
db_pages.getpage?p_exam_id=1Z0_051 for the most current exam
objectives.

SQL Fundamentals
SQL is the standard language to query and modify data as well as manage databases. SQL is
the common language used by programmers, database administrators, and users to access and
manipulate data as well as to administer databases. To get started with SQL in this chapter,
I will show how to use the sample HR schema supplied with the Oracle Database 11g.

95127c01.indd 4 2/18/09 6:37:06 AM

SQL Fundamentals 5

When you install Oracle software, you can choose the Basic Installation
option and select the Create Starter Database check box. This database
will have the sample schemas used in this book. The password you specify
will be applicable to the SYS and SYSTEM accounts. The account SYS is the
Oracle dictionary owner, and SYSTEM is a database administrator (DBA)
account. Initially, the sample schemas are locked. You need to log in to the
database using SQL*Plus as the SYSTEM user and then unlock the account
using the ALTER USER statement. To unlock the HR schema, use ALTER USER
hr IDENTIFIED BY hrpassword ACCOUNT UNLOCK;. Now you can log in to
the database using the hr user with the password hrpassword. Remember,
the password is case sensitive.

For detailed information on installing Oracle 11g software and creating
Oracle Database 11g, please refer to the Oracle Technology Network
at www.oracle.com/technology/obe/11gr1_db/install/dbinst/
windbinst2.htm.

To install the sample schemas in an existing Oracle Database 11g, please
follow the instructions in the Oracle document “Oracle Database Sample
Schemas 11g Release 1” at http://download.oracle.com/docs/cd/
B28359_01/server.111/b28328/toc.htm.

Chapter 2 of the “Oracle Database Sample Schemas 11g Release 1” man-
ual on the Oracle Technology Network will provide instructions on how
to install the sample schemas using Database Configuration Assistant
(DBCA) as well as running scripts. The same chapter also gives you steps
to reinitialize the sample schema data.

SQL statements are like plain English but with specific syntax. SQL is a simple yet pow-
erful language used to create, access, and manipulate data and structures in the database.
SQL statements can be categorized as listed in Table 1.1.

ta b Le 1.1 SQL Statement Categories

SQL Category Description

Data Manipulation
Language (DML)

Used to access, create, modify, or delete data in the existing
structures of the database. DML statements include those to
query information (SELECT), add new rows (INSERT), modify
existing rows (UPDATE), delete existing rows (DELETE), perform a
conditional update or insert operation (MERGE), see an execution
plan of SQL (EXPLAIN PLAN), and lock a table to restrict access
(LOCK TABLE). Including the SELECT statement in the DML group
is debatable within the SQL community, since SELECT does not
modify data.

95127c01.indd 5 2/18/09 6:37:06 AM

6 Chapter 1 N Introducing SQL

SQL Category Description

Data Definition
Language (DDL)

Used to define, alter, or drop database objects and their privi-
leges. DDL statements include those to create, modify, drop, or
rename objects (CREATE, ALTER, DROP, RENAME), remove all rows
from a database object without dropping the structure (TRUNCATE),
manage access privileges (GRANT, REVOKE), audit database use
(AUDIT, NOAUDIT) and add a description about an object to the
dictionary (COMMENT).

Transaction Control Used to group a set of DML statements as a single transaction.
Using these statements, you can save the changes (COMMIT) or
discard the changes (ROLLBACK) made by DML statements. Also
included in the transaction-control statements are statements
to set a point or marker in the transaction for possible rollback
(SAVEPOINT) and to define the properties for the transaction
(SET TRANSACTION).

Session Control Used to control the properties of a user session. (A session is the
point from which you are connected to the database until you dis-
connect.) Session-control statements include those to control the
session properties (ALTER SESSION) and to enable/disable roles
(SET ROLE).

System Control Used to manage the properties of the database. There is only one
statement in this category (ALTER SYSTEM).

Table 1.1 provides an overview of all the statements that will be covered in this book.
Do not worry if you do not understand certain terms, such as role, session, privilege, and
so on. I will cover all the statements in the coming chapters with many examples. In this
chapter, I will begin with writing simple statements to query the database (SELECT state-
ments). But first I’ll go over some fundamentals.

SQL Tools: SQL*Plus
The Oracle Database 11g software comes with two primary tools to manage data and
administer databases using SQL. SQL*Plus is a character-based command-line utility. SQL
Developer is a graphical tool that has the capability to browse, edit, and manage database
objects as well as to execute the SQL statements. On Windows platforms, these tools are
located under the Application Development subfolder in the Oracle 11g program group.

On Linux and Unix platforms, you can find these tools in the bin directory under the
Oracle software installation ($ORACLE_HOME/bin).

ta b Le 1.1 SQL Statement Categories (continued)

95127c01.indd 6 2/18/09 6:37:06 AM

SQL Fundamentals 7

Since the test is on SQL and the tool used throughout the book for executing SQL is
SQL*Plus, I will discuss some fundamentals of SQL*Plus in this section.

SQL*Plus, widely used by DBAs and developers to interact with the database, is a pow-
erful tool from Oracle. Using SQL*Plus, you can execute all SQL statements and PL/SQL
programs, format results from queries, and administer the database.

SQL*Plus is packaged with the Oracle software and can be installed using the client soft-
ware installation routine on any machine. This tool is automatically installed when you install
the server software.

On Unix/Linux platforms, you can invoke SQL*Plus using the sqlplus executable found in
the $ORACLE_HOME/bin directory. On Windows and Unix/Linux platforms, when you start
SQL*Plus, you will be prompted for a username and password, as shown in Figure 1.1.

F I gu r e 1.1 SQL*Plus screen

Once you are in SQL*Plus, you can connect to another database or change your connec-
tion by using the CONNECT command, with this syntax:

CONNECT <username>/<password>@<connectstring>

The slash separates the username and password. The connect string following @ is the
database alias name. If you omit the password, you will be prompted to enter it. If you
omit the connect string, SQL*Plus tries to connect you to the local database defined in the
ORACLE_SID variable.

You can invoke and connect to SQL*Plus using the sqlplus command, with this syntax:

sqlplus <username>/<password>@<connectstring>

If you invoke the tool with just sqlplus, you will be prompted for a username and pass-
word. If you invoke SQL*Plus with a username, you will be prompted for a password.

Once you are connected to SQL*Plus, you get the SQL> prompt. This is the default prompt,
which can be changed using the SET SQLPROMPT command. Type the command you want to

95127c01.indd 7 2/18/09 6:37:06 AM

8 Chapter 1 N Introducing SQL

execute at this prompt. With SQL*Plus, you can enter, edit, and execute SQL statements;
perform database administration; and execute statements interactively by accepting user
input. You can also format query results and perform calculations.

sqlplus -help displays a help screen to show the various options avail-
able with starting SQL*Plus.

To exit from SQL*Plus, use the EXIT command. On platforms where a return code is
used, you can provide a return code while exiting. You can also use the QUIT command to
complete the session. EXIT and QUIT are synonymous.

Entering SQL Statements
A SQL statement can spread across multiple lines, and the commands are case insensitive.
The previously executed SQL statement will always be available in the SQL buffer. The
buffer can be edited or saved to a file. You can terminate a SQL statement in any of the fol-
lowing ways:

End with a semicolon (ÛN ;): The statement is completed and executed.

Enter a slash (ÛN /) on a new line by itself: The statement in the buffer is executed.

Enter a blank line: The statement is saved in the buffer.ÛN

You can use the RUN command instead of a slash to execute a statement in the buffer.
The SQL prompt returns when the statement has completed execution. You can enter your
next command at the prompt.

Only SQL statements and PL/SQL blocks are stored in the SQL buffer;
SQL*Plus commands are not stored in the buffer.

Entering SQL*Plus Commands
SQL*Plus has its own commands to perform-specific tasks on the database, as well as to
format the query results. Unlike SQL statements, which are terminated with a semicolon or
a blank line, SQL*Plus commands are entered on a single line. Pressing Enter executes the
SQL*Plus command.

If you want to continue a SQL*Plus command onto the next line, you must end the cur-
rent line with a hyphen (-), which indicates command continuation. This is in contrast to
SQL statements, which can be continued to the next line without a continuation opera-
tor. For example, the following SQL statement gives an error, because SQL*Plus treats the
hyphen operator (-) as a continuation character:

SQL> SELECT 800 -

> 400 FROM dual;

95127c01.indd 8 2/18/09 6:37:06 AM

SQL Fundamentals 9

SELECT 800 400 FROM dual

 *

ERROR at line 1:

ORA-00923: FROM keyword not found where expected

SQL>

You need to put the hyphen in the next line for the query to succeed:

SQL> SELECT 800

 2 - 400 FROM dual;

 800-400

 400

SQL>

Getting Information with the DESCRIBE Command
You can use the DESCRIBE command to get information about the database objects. Using
DESCRIBE on a table or view shows the columns, its datatypes, and whether each column
can be NULL. Using DESCRIBE on a stored program such as procedure or function shows
the parameters that need to be passed in/out, their datatype, and whether there is a default
value. You can abbreviate this command to the first four characters or more—DESC, DESCR,
and DESCRIB are all valid.

If you’re connected to the HR schema and need to see the tables and views in this schema,
use the following query:

SQL> SELECT * FROM tab;

TNAME TABTYPE CLUSTERID

------------------------------ ------- ----------

COUNTRIES TABLE

DEPARTMENTS TABLE

EMPLOYEES TABLE

EMP_DETAILS_VIEW VIEW

JOBS TABLE

JOB_HISTORY TABLE

LOCATIONS TABLE

REGIONS TABLE

8 rows selected.

SQL>

95127c01.indd 9 2/18/09 6:37:07 AM

10 Chapter 1 N Introducing SQL

Editing the SQL Buffer
The most recent SQL statement executed or entered is stored in the SQL buffer of SQL*Plus.
You can run the command in this buffer again by simply typing a slash or using the RUN
command.

SQL*Plus provides a set of commands to edit the buffer. Suppose you want to add another
column or add an ORDER BY condition to the statement in the buffer. You do not need to
type the entire SQL statement again. Instead, just edit the existing statement in the buffer.

One way to edit the SQL*Plus buffer is to use the EDIT command to write the buffer
to an operating-system file named afiedt.buf (this is the default filename, which can be
changed) and then use a system editor to make changes.

You can use your favorite text editor by defining it in SQL*Plus. For
example, to make Notepad your favorite editor, just issue the command
DEFINE _EDITOR = NOTEPAD. You need to provide the entire path if the
program is not available in the search path.

Another way to edit the buffer is to use the SQL*Plus editing commands. You can make
changes, delete lines, add text, and list the buffer contents using the commands described in
the following sections. Most editing commands operate on the current line. You can change
the current line simply by typing the line number. All commands can be abbreviated except
DEL (which is already abbreviated).

LIST

The LIST command lists the contents of the buffer. The asterisk indicates the current line.
The abbreviated command for LIST is L.

SQL> L

 1 SELECT empno, ename

 2* FROM emp

SQL> LIST LAST

 2* FROM emp

SQL>

The command LIST m n displays lines from m through n. If you substitute * for m or n, it
implies the current line. The command LIST LAST displays the last line.

APPEND

The APPEND text command adds text to the end of line. The abbreviated command is A.

SQL> A WHERE empno <> 7926

 2* FROM emp WHERE empno <> 7926

SQL>

95127c01.indd 10 2/18/09 6:37:07 AM

SQL Fundamentals 11

CHANGE

The CHANGE /old/new command changes an old entry to a new entry. The abbreviated com-
mand is C. If you omit new, old will be deleted.

SQL> C /<>/=

 2* FROM emp WHERE empno = 7926

SQL> C /7926

 2* FROM emp WHERE empno =

SQL>

INPUT

The INPUT text command adds a line of text. Its abbreviation is I. If text is omitted, you
can add as many lines you want.

SQL> I

 3 7777 AND

 4 empno = 4354

 5

SQL> I ORDER BY 1

SQL> L

 1 SELECT empno, ename

 2 FROM emp WHERE empno =

 3 7777 AND

 4 empno = 4354

 5* ORDER BY 1

SQL>

DEL

The DEL command used alone or with * deletes the current line. The DEL m n command
deletes lines from m through n. If you substitute * for m or n, it implies the current line. The
command DEL LAST deletes the last line.

SQL> 3

 3* 7777 AND

SQL> DEL

SQL> L

 1 SELECT empno, ename

 2 FROM emp WHERE empno =

 3 empno = 4354

 4* ORDER BY 1

SQL> DEL 3 *

95127c01.indd 11 2/18/09 6:37:07 AM

12 Chapter 1 N Introducing SQL

SQL> L

 1 SELECT empno, ename

 2* FROM emp WHERE empno =

SQL>

CLEAR BUFFER

The CLEAR BUFFER command (abbreviated CL BUFF) clears the buffer. This deletes all lines
from the buffer.

SQL> L

 1 SELECT empno, ename

 2* FROM emp WHERE empno =

SQL> CL BUFF

buffer cleared

SQL> L

No lines in SQL buffer.

SQL>

Using Script Files
SQL*Plus provides commands to save the SQL buffer to a file, as well as to run SQL state-
ments from a file. SQL statements saved in a file are called a script file.

You can work with script files as follows:

To save the SQL buffer to an operating-system file, use the command ÛN SAVE filename. If
you do not provide an extension, the saved file will have an extension of .sql.

By default, the ÛN SAVE command will not overwrite an existing file. If you want to over-
write an existing file, you need to use the keyword REPLACE.

To add the buffer to the end of an existing file, use the ÛN SAVE filename APPEND
command.

You can edit the saved file using the ÛN EDIT filename command.

You can bring the contents of a ÛN script file to the SQL buffer using the GET filename
command.

If you want to run a script file, use the command ÛN START filename. You can also run a
script file using @filename.

An ÛN @@filename used inside a script file looks for the filename in the directory where the
parent script file is saved and executes it.

Exercise 1.1 will familiarize you with the script file commands, as well as the other topics
I have covered so far.

95127c01.indd 12 2/18/09 6:37:07 AM

SQL Fundamentals 13

e x e r c I S e 1 .1

practicing SQL*plus File commands

In this exercise, you will learn how to edit the SQL*Plus buffer using various buffer edit
commands.

1. Enter the following SQL; the third line is a blank line so that the SQL is saved in the
buffer:

SQL> SELECT employee_id, first_name, last_name

 2 FROM employees

 3

SQL>

2. List the SQL buffer:

SQL> L

 1 SELECT employee_id, first_name, last_name

 2* FROM employees

SQL>

3. Save the buffer to a file named myfile; the default extension will be .sql:

SQL> SAVE myfile

Created file MYFILE.sql

SQL>

4. Choose to edit the file:

SQL> EDIT myfile

SQL>

5. Add WHERE EMPLOYEE_ID = 106 as the third line to the SQL statement.

6. List the buffer:

SQL> LIST

 1 SELECT employee_id, first_name, last_name

 2* FROM employees

SQL>

The buffer listed is still the old buffer. The edited changes are not reflected because
you edited the file MYFILE, which is not yet loaded to the buffer.

7. Bring the file contents to the buffer:

SQL> GET myfile

 1 SELECT employee_id, first_name, last_name

95127c01.indd 13 2/18/09 6:37:07 AM

14 Chapter 1 N Introducing SQL

 2 FROM employees

 3* WHERE employee_id = 106

SQL>

8. List the buffer to verify its contents:

SQL> LI

 1 SELECT employee_id, first_name, last_name

 2 FROM employees

 3* WHERE employee_id = 106

SQL>

9. Change the employee number from 106 to 110:

SQL> C/106/110

 3* WHERE employee_id = 110

SQL>

10. Save the buffer again to the same file:

SQL> SAVE myfile

SP2-0540: File “MYFILE.sql” already exists.

Use “SAVE filename[.ext] REPLACE”.

SQL>

An error is returned, because SAVE will not overwrite the file by default.

11. Save the file using the REPLACE keyword:

SQL> SAVE myfile REPLACE

Wrote file MYFILE.sql

SQL>

12. Execute the file:

SQL> START myfile

EMPLOYEE_ID FIRST_NAME LAST_NAME

----------- -------------------- ---------

 110 John Chen

SQL>

13. Change the employee number from 110 to 106, and append this SQL to the file; then
execute it using @:

SQL> C/110/106

 3* WHERE employee_id = 106

e x e r c I S e 1 .1 (c ont inue d)

95127c01.indd 14 2/18/09 6:37:07 AM

SQL Fundamentals 15

SQL> SAVE myfile APPEND

Appended file to MYFILE.sql

SQL> @MYFILE

EMPLOYEE_ID FIRST_NAME LAST_NAME

----------- -------------------- ---------

 110 John Chen

EMPLOYEE_ID FIRST_NAME LAST_NAME

----------- -------------------- ---------

 106 Valli Pataballa

SQL>

Saving Query Results to a File

You can use the SPOOL filename command to save the query results to a file. By default, the
SPOOL command creates an .lst file extension. SPOOL overwrites an existing file by default.
If you include the APPEND option as in SPOOL filename APPEND, the results are added to an
existing file. A new file will be created if the file does not exist already.

SPOOL OFF stops writing the output to the file. SPOOL OUT stops the writing of output and
sends the output file to the printer.

Adding Comments to a Script File

Having comments in the script file improves the readability and understandability of the
code. You can enter comments in SQL*Plus using the REMARKS (abbreviated REM) command.
Lines in the script file beginning with the keyword REM are comments and are not executed.
You can also enter a comment between /* and */. Comments can also be entered following
-- (double hyphen), all characters following -- in the line are treated as comment by Oracle.

While executing a script file with comments, the remarks entered using the REMARKS com-
mand are not displayed on the screen, but the comments within /* and */ are displayed on
the screen with the prefix DOC> when there is more than one line between /* and */. You
can turn this off by using SET DOCUMENT OFF.

This section provided an overview of SQL*Plus, the tool you will be using to enter and
execute SQL statements in Oracle Database 11g. In the next sections, I will discuss some of
the Oracle 11g SQL fundamentals before showing you how to write your first SQL query (a
SELECT statement).

Oracle Datatypes
The basic structure of data storage in the Oracle Database 11g is a table. A table can be
considered as a spreadsheet with columns and rows. Data is stored in the table as rows.
Each column in the table has storage characteristics such as the type of data contained in

e x e r c I S e 1 .1 (c ont inue d)

95127c01.indd 15 2/18/09 6:37:07 AM

16 Chapter 1 N Introducing SQL

the column. Oracle has several built-in datatypes to store different kinds of data. In this
section, I will go over the built-in datatypes available in Oracle 11g. Detailed discussion on
datatypes as well as creating and maintaining tables are discussed in Chapter 6, “Creating
Tables and Constraints.”

When you create a table to store data in the database, you need to specify a datatype
for all the columns you define in the table. Oracle has many datatypes to suit application
requirements. Oracle 11g also supports ANSI and DB2 datatypes. The Oracle built-in
datatypes can be broadly classified as shown in Table 1.2.

ta b Le 1. 2 Oracle Built-in Datatypes

Category Datatypes

Character CHAR, NCHAR, VARCHAR2, NVARCHAR2

Number NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE

Long and raw LONG, LONG RAW, RAW

Date and time DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH
LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO
SECOND

Large object CLOB, NCLOB, BCLOB, BFILE

Row ID ROWID, UROWID

In the following sections, I will discuss only a few of the built-in datatypes to get you
started with SQL. I discuss all the datatypes and their usage in detail in Chapter 6.

CHAR(<size>)
The CHAR datatype is a fixed-length alphanumeric string, which has a maximum length
in bytes (to specify length in characters, use the CHAR keyword inside parentheses along with
a size; see Chapter 6). Data stored in CHAR columns is space-padded to fill the maximum
length. Its size can range from a minimum of 1 byte to a maximum of 2,000 bytes. The
default size is 1.

When you create a column using the CHAR datatype, the database will ensure that all
data placed in this column has the defined length. If the data is shorter than the defined
length, it is space-padded on the right to the specified length. If the data is longer, an error
is raised.

95127c01.indd 16 2/18/09 6:37:08 AM

SQL Fundamentals 17

VARCHAR2(<size>)
The VARCHAR2 datatype is a variable-length alphanumeric string, which has a maximum
length in bytes (to specify the length in characters, use the CHAR keyword inside parentheses
along with a size; see Chapter 6). VARCHAR2 columns require only the amount of space
needed to store the data and can store up to 4,000 bytes. There is no default size for the
VARCHAR2 datatype. An empty VARCHAR2(2000) column takes up as much room in
the database as an empty VARCHAR2(1) column.

The default size of a CHAR datatype is 1. For a VARCHAR2 datatype, you
must always specify the size.

The VARCHAR2 and CHAR datatypes have different comparison rules for trailing spaces.
With the CHAR datatype, trailing spaces are ignored. With the VARCHAR2 datatype, trail-
ing spaces are not ignored, and they sort higher than no trailing spaces. Here’s an example:

CHAR datatype: ‘Yo’ = ‘Yo ‘

VARCHAR2 datatype: ‘Yo’ < ‘Yo ‘

NUMBER (<p>, <s>)
The NUMBER datatype stores numbers with a precision of <p> digits and a scale of <s>
digits. The precision and scale values are optional. Numeric datatypes are used to store nega-
tive and positive integers, fixed-point numbers, and floating-point numbers. The precision can
be between 1 and 38, and the scale has a range between –84 and 127. If the precision and
scale are omitted, Oracle assumes the maximum of the range for both values.

You can have precision and scale digits in the integer part. The scale rounds the value after
the decimal point to <s> digits. For example, if you define a column as NUMBER(5,2), the range
of values you can store in this column is from –999.99 to 999.99; that is, 5 – 2 = 3 for the integer
part, and the decimal part is rounded to two digits. Even if you do not include the decimal part
for the value inserted, the maximum number you can store in a NUMBER(5,2) definition is 999.

Oracle will round numbers inserted into numeric columns with a scale smaller than the
inserted number. For example, if a column were defined as NUMBER(4,2) and you speci-
fied a value of 12.125 to go into that column, the resulting number would be rounded to
12.13 before it was inserted into the column. If the value exceeds the precision, however, an
Oracle error is returned. You cannot insert 123.1 into a column defined as NUMBER(4,2).
Specifying the scale and precision does not force all inserted values to be a fixed length.

If the scale is negative, the number is rounded to the left of the decimal. Basically, a
negative scale forces <s> number of zeros just to the left of the decimal.

If you specify a scale that is greater than the precision value, the precision defines the
maximum number of digits to the right of the decimal point after the zeros. For example, if
a column is defined as NUMBER(3,5), the range of values you can store is from –0.00999
to 0.00999; that is, it requires two zeros (<s>-<p>) after the decimal point and rounds the
decimal part to three digits (<p>) after zeros. Table 1.3 shows several examples of how
numeric data is stored with various definitions.

95127c01.indd 17 2/18/09 6:37:08 AM

18 Chapter 1 N Introducing SQL

ta b Le 1. 3 Precision and Scale Examples

Value Datatype Stored Value Explanation

123.2564 NUMBER 123.2564 The range and precision are set to the
maximum, so the datatype can store any
value.

1234.9876 NUMBER(6,2) 1234.99 Since the scale is only 2, the decimal part
of the value is rounded to two digits.

12345.12345 NUMBER(6,2) Error The range of the integer part is only from
–9999 to 9999.

123456 NUMBER(6,2) Error The precision is larger than specified; the
range is only from –9999 to 9999.

1234.9876 NUMBER(6) 1235 The decimal part is rounded to the next
integer.

123456.1 NUMBER(6) 123456 The decimal part is rounded.

12345.345 NUMBER(5,-2) 12300 The negative scale rounds the number
<s> digits left to the decimal point.
–2 rounds to hundreds.

1234567 NUMBER(5,-2) 1234600 Rounded to the nearest hundred.

12345678 NUMBER(5,-2) Error Outside the range; can have only five dig-
its, excluding the two zeros representing
hundreds, for a total of seven digits:
(s – (–p) = s + p = 5 + 2 = 7).

123456789 NUMBER(5,-4) 123460000 Rounded to the nearest 10,000.

1234567890 NUMBER(5,-4) Error Outside the range; can have only five
digits, excluding the four trailing zeros.

12345.58 NUMBER(*, 1) 12345.6 The use of * in the precision specifies the
default limit (38).

0.1 NUMBER(4,5) Error Requires a zero after the decimal point
(5 – 4 = 1).

0.01234567 NUMBER(4,5) 0.01235 Rounded to four digits after the decimal
point and zero.

95127c01.indd 18 2/18/09 6:37:08 AM

SQL Fundamentals 19

Value Datatype Stored Value Explanation

0.09999 NUMBER(4,5) 0.09999 Stored as it is; only four digits after the
decimal point and zero.

0.099996 NUMBER(4,5) Error Rounding this value to four digits after
the decimal and zero results in 0.1, which
is outside the range.

DATE
The DATE datatype is used to store date and time information. This datatype can be con-
verted to other forms for viewing, but it has a number of special functions and properties
that make date manipulation and calculations simple. The time component of the DATE
datatype has a resolution of one second—no less. The DATE datatype occupies a storage
space of 7 bytes. The following information is contained within each DATE datatype:

CenturyÛN

YearÛN

MonthÛN

DayÛN

HourÛN

MinuteÛN

SecondÛN

Date values are inserted or updated in the database by converting either a numeric value
or a character value into a DATE datatype using the function TO_DATE. Oracle defaults the
format to display the date as DD-MON-YY. This format shows that the default date must begin
with a two-digit day, followed by a three-character abbreviation for the month, followed
by a two-digit year. If you specify the date without including a time component, the time is
defaulted to midnight, or 00:00:00 in military time. The SYSDATE function returns the cur-
rent system date and time from the database server to which you’re currently connected.

TIMESTAMP [<precision>]
The TIMESTAMP datatype stores date and time information with fractional precision for
seconds. The only difference between the DATE and TIMESTAMP datatypes is the ability
to store fractional seconds up to a precision of nine digits. The default precision is 6 and
can range from 0 to 9. Similar to the SYSDATE function, the SYSTIMESTAMP function returns
the current system date and time, with fractional precision for seconds.

ta b Le 1. 3 Precision and Scale Examples (continued)

95127c01.indd 19 2/18/09 6:37:08 AM

20 Chapter 1 N Introducing SQL

Operators and Literals
An operator is a manipulator that is applied to a data item in order to return a result. Spe-
cial characters represent different operations in Oracle (+ represents addition, for example).
Operators are commonly used in all programming environments, and you should already
be familiar with the following operators, which may be classified into two types:

Unary operator A unary operator has only one operand. Examples are +2 and –5. They
have the format <operator><operand>.

Binary operator A binary operator has two operands. Examples are 5+4 and 7*5. They
have the format <operand1><operator><operand2>. You can insert spaces between the
operand and operator to improve readability.

I’ll now discuss the various types of operators available in Oracle.

Arithmetic Operators
Arithmetic operators operate on numeric values. Table 1.4 shows the various arithmetic
operators in Oracle and how to use them.

ta b Le 1. 4 Arithmetic Operators

Operator Purpose Example

+ - Unary operators: Use to represent positive or negative data item.
For positive items, the + is optional.

-234.44

+ Addition: Use to add two data items or expressions. 2+4

- Subtraction: Use to find the difference between two data items or
expressions.

20.4-2

* Multiplication: Use to multiply two data items or expressions. 5*10

/ Division: Use to divide a data item or expression with another. 8.4/2

Do not use two hyphens (--) to represent double negation; use a space or
parentheses in between, as in -(-20). Two hyphens represent the begin-
ning of a comment in SQL.

Concatenation Operator
The concatenation operator is used to concatenate or join two character (text) strings. The
result of concatenation is another character string. Concatenating a zero-length string (‘’)

95127c01.indd 20 2/18/09 6:37:08 AM

SQL Fundamentals 21

or a NULL with another string results in a string, not a NULL (NULL in Oracle 11g represents
unknown or missing data). Two vertical bars (||) are used as the concatenation operator.

Here are two examples:

‘Oracle11g’ || ‘Database’ results in ‘Oracle11gDatabase’.

‘Oracle11g ‘ || ‘Database’ results in ‘Oracle11g Database’.

Operator Precedence
If multiple operators are used in the same expression, Oracle evaluates them in the order of
precedence set in the database engine. Operators with higher precedence are evaluated before
operators with lower precedence. Operators with the same precedence are evaluated from left
to right. Table 1.5 lists the precedence.

ta b Le 1.5 SQL Operator Precedence

Precedence Operator Purpose

1 - + Unary operators, negation

2 * / Multiplication, division

3 + - || Addition, subtraction, concatenation

Using parentheses changes the order of precedence. The innermost parenthesis is evaluated
first. In the expression 1+2*3, the result is 7, because 2*3 is evaluated first and the result is
added to 1. In the expression (1+2)*3, 1+2 is evaluated first, and the result is multiplied
by 3, giving 9.

Literals
Literals are values that represent a fixed value (constant). There are four types of literals:

Text (or character)ÛN

Numeric (integer and number)ÛN

DatetimeÛN

IntervalÛN

You can use literals within many of the SQL functions, expressions, and conditions.

Text Literals

A text literal must be enclosed in single quotation marks. Any character between the quo-
tation marks is considered part of the text value. Oracle treats all text literals as though
they were CHAR datatypes for comparison (blank padded). The maximum length of a text

95127c01.indd 21 2/18/09 6:37:09 AM

22 Chapter 1 N Introducing SQL

literal is 4,000 bytes. Single quotation marks can be included in the literal text value by
preceding it with another single quotation mark. Here are some examples of text literals:

‘The Quick Brown Fox’

‘That man’’s suit is black’

‘And I quote: “This will never do.” ‘

‘12-SEP-2001’

Alternatively, you can use Q or q quoting, which provides a range of delimiters. The
syntax for using the Q/q quoting with a quote-delimiter text literal is as follows:

[Q|q]’ <quote_delimiter> <text literal> <quote_delimiter>’

<quote_delimiter> is any character except a space, tab, or carriage return. The quote
delimiter can be a single quotation mark, but make sure inside the text literal a single quo-
tation mark is not immediately followed by another single quotation mark. If the opening
quote delimiter is [or { or < or (, then the closing quote must be the corresponding] or }
or > or). For all other quote delimiters, the opening quote delimiter must be the same as
the closing quote delimiter. Here are some examples of text literals using the alternative
quoting mechanism:

q’<The Quick Brown Fox>’

Q’#The Quick Brown Fox#’

q’{That man’s suit is black}’

Q’(And I quote: “This will never do.”)’

Q’”And I quote: “This will never do.” “‘

q’[12-SEP-2001]’

Numeric Literals

Integer literals can be any number of numerals, excluding a decimal separator and up to 38
digits long. Here are two examples:

24ÛN

–456ÛN

Number and floating-point literals can include scientific notation, as well as digits and
the decimal separator. E or e represents a number in scientific notation; the exponent can be
in the range of –130 to 125. If the literal is followed by an f or F, it is treated as a BINARY_
FLOAT datatype. If the literal is followed by a d or D, it is treated as a BINARY_DOUBLE datatype.
Here are some examples:

24.0ÛN

–345.65ÛN

23E-10ÛN

95127c01.indd 22 2/18/09 6:37:09 AM

Writing Simple Queries 23

1.5fÛN

–34.567DÛN

–4dÛN

–4.0E+0ÛN

Datetime Literals

You can specify a date value as a string literal using the datetime literals. The most common
methods to represent the datetime values are to use the conversion function TO_DATE or
TO_TIMESTAMP with the appropriate format mask. For completeness of literals, I will discuss
the datetime literals briefly.

The DATE literal uses the keyword DATE followed by the date value in single quotes, and
the value must be specified in YYYY-MM-DD format with no time component. The time com-
ponent will be defaulted to midnight (00:00:00). The following are examples of the DATE
literal:

DATE ‘2008-03-24’

DATE ‘1999-12-31’

Similar to the TIMESTAMP datatype, the TIMESTAMP literal can be used to specify
the year, month, date, hour, minute, second, and fractional second. You can also include time-
zone data along with the TIMESTAMP literal. The time zone information can be specified
using the UTC offset or using the time zone region name. The literal must be in the format
YYYY-MM-DD HH24:MI:SS TZ. Here are some examples of the TIMESTAMP literal:

TIMESTAMP ‘2008-03-24 03:25:34.123’

TIMESTAMP ‘2008-03-24 03:25:34.123 -7:00’

TIMESTAMP ‘2008-03-24 03:25:34.123 US/Central’

TIMESTAMP ‘2008-03-24 03:25:34.123 US/Central CDT’

Interval Literals

Interval literals specify a period of time in terms of years and months or in terms of days
and seconds. These literals correspond to the Oracle datatypes INTERVAL YEAR TO
MONTH and INTERVAL DAY TO SECOND. I’ll discuss these datatypes in more detail
in Chapter 6.

Writing Simple Queries
A query is a request for information from the database tables. Queries do not modify data;
they read data from database tables and views. Simple queries are those that retrieve data
from a single table or view. A table is used to store data and is stored in rows and columns.
The basis of a query is the SELECT statement. The SELECT statement can be used to get data

95127c01.indd 23 2/18/09 6:37:09 AM

24 Chapter 1 N Introducing SQL

from a single table or from multiple tables. Queries using multiple tables are discussed in
later chapters.

Using the SELECT Statement
The SELECT statement is the most commonly used statement in SQL. It allows you to retrieve
information already stored in the database. The statement begins with the keyword SELECT,
followed by the column names whose data you want to query. You can select information
either from all the columns (denoted by *) or from name-specific columns in the SELECT clause
to retrieve data. The FROM clause provides the name of the table, view, or materialized view
to use in the query. These objects are discussed in detail in later chapters. For simplicity, I
will use tables for the rest of this chapter.

Let’s use the JOBS table defined in the HR schema of the Oracle 11g sample database. You
can use SQL*Plus tool to connect to the database as discussed earlier in the chapter. The
JOBS table definition is provided in Table 1.6.

ta b Le 1.6 JOBS Table Definition

Column Name Datatype Length

JOB_ID VARCHAR2 10

JOB_TITLE VARCHAR2 35

MIN_SALARY NUMBER 6,0

MAX_SALARY NUMBER 6,0

The simple form of a SELECT statement to retrieve all the columns and rows from the
JOBS table is as follows (only part of output result set is shown here):
SQL> SELECT * FROM jobs;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY

---------- ------------------------------- ---------- ----------

AD_PRES President 20000 40000

AD_VP Administration Vice President 15000 30000

AD_ASST Administration Assistant 3000 6000

FI_MGR Finance Manager 8200 16000

FI_ACCOUNT Accountant 4200 9000

… … … … …

IT_PROG Programmer 4000 10000

95127c01.indd 24 2/18/09 6:37:09 AM

Writing Simple Queries 25

MK_MAN Marketing Manager 9000 15000

MK_REP Marketing Representative 4000 9000

HR_REP Human Resources Representative 4000 9000

PR_REP Public Relations Representative 4500 10500

19 rows selected.

The keywords, column names, and table names are case insensitive. Only
literals enclosed in single quotation marks are case sensitive in Oracle.

How do you list only the job title and minimum salary from this table? If you know the
column names and the table name, writing the query is simple. Here, the column names are
JOB_TITLE and MIN_SALARY, and the table name is JOBS. Execute the query by ending the
query with a semicolon. In SQL*Plus, you can execute the query by entering a slash on a
line by itself or by using the RUN command.

SQL> SELECT job_title, min_salary FROM jobs;

JOB_TITLE MIN_SALARY

----------------------------------- ----------

President 20000

Administration Vice President 15000

Administration Assistant 3000

Finance Manager 8200

Accountant 4200

Accounting Manager 8200

Public Accountant 4200

… … … … …

Programmer 4000

Marketing Manager 9000

Marketing Representative 4000

Human Resources Representative 4000

Public Relations Representative 4500

19 rows selected.

Notice that the numeric column (MIN_SALARY) is aligned to the right and the character
column (JOB_TITLE) is aligned to the left. Does it seem that the column heading MIN_SALARY
should be more meaningful? Well, you can provide a column alias to appear in the query
results.

95127c01.indd 25 2/18/09 6:37:09 AM

26 Chapter 1 N Introducing SQL

Column Alias Names
The column alias name is defined next to the column name with a space or by using the key-
word AS. If you want a space in the column alias name, you must enclose it in double quota-
tion marks. The case is preserved only when the alias name is enclosed in double quotation
marks; otherwise, the display will be uppercase. The following example demonstrates using
an alias name for the column heading in the previous query:

SELECT job_title AS Title, min_salary AS “Minimum Salary”

FROM jobs;

TITLE Minimum Salary

----------------------------------- --------------

President 20000

Administration Vice President 15000

Administration Assistant 3000

Finance Manager 8200

Accountant 4200

Accounting Manager 8200

… … … … …

Programmer 4000

Marketing Manager 9000

Marketing Representative 4000

Human Resources Representative 4000

Public Relations Representative 4500

19 rows selected.

In this listing, the column alias name Title appears in all capital letters because I did
not enclose it in double quotation marks.

The asterisk (*) is used to select all columns in the table. This is useful
when you do not know the column names or when you are too lazy to type
all the column names.

Ensuring Uniqueness
The DISTINCT keyword (or UNIQUE keyword) following SELECT ensures that the resulting
rows are unique. Uniqueness is verified against the complete row, not the first column. If
you need to find the unique departments in the EMPLOYEES table, issue this query:

SELECT DISTINCT department_id

FROM employees;

95127c01.indd 26 2/18/09 6:37:09 AM

Writing Simple Queries 27

DEPARTMENT_ID

 100

 30

 20

 70

 90

 110

 50

 40

 80

 10

 60

12 rows selected.

To demonstrate that uniqueness is enforced across the row, let’s do one more query using
the SELECT DISTINCT clause. Notice DEPARTMENT_ID repeating for each JOB_ID value in the
following example:

SELECT DISTINCT department_id, job_id

FROM employees;

DEPARTMENT_ID JOB_ID

------------- ----------

 110 AC_ACCOUNT

 90 AD_VP

 50 ST_CLERK

 80 SA_REP

 110 AC_MGR

… … …

 10 AD_ASST

 20 MK_REP

 40 HR_REP

 30 PU_MAN

20 rows selected.

95127c01.indd 27 2/18/09 6:37:09 AM

28 Chapter 1 N Introducing SQL

SELECT * FROM TAB; shows all the tables and views in your
schema. Don’t be alarmed if you see a table name similar to
BIN$PJV23QpwQfu0zPN9uaXw+w==$0. These are tables that belong
to the Recycle Bin (or dropped tables). The tasks of creating tables
and managing tables are discussed in Chapter 6.

The DUAL Table
The DUAL table is a dummy table available to all users in the database. It has one column
and one row. The DUAL table is used to select system variables or to evaluate an expression.
Here are few examples. The first query is to show the contents of the DUAL table.

SQL> SELECT * FROM dual;

DUMMY

X

SQL> SELECT SYSDATE, USER FROM dual;

SYSDATE USER

--------- ------------------------------

18-SEP-07 HR

SQL> SELECT ‘I’’m ‘ || user || ‘ Today is ‘ || SYSDATE

 2 FROM dual;

‘I’’M’||USER||’TODAYIS’||SYSDATE

I’m HR Today is 18-SEP-07

SYSDATE and USER are built-in functions that provide information about the
environment. These functions are discussed in Chapter 2, “Using Single-
Row Functions.”

Limiting Rows
You can use the WHERE clause in the SELECT statement to limit the number of rows pro-
cessed. Any logical conditions of the WHERE clause use the comparison operators. Rows

95127c01.indd 28 2/18/09 6:37:09 AM

Writing Simple Queries 29

are returned or operated upon where the data satisfies the logical condition(s) of the WHERE
clause. You can use column names or expressions in the WHERE clause, but not column alias
names. The WHERE clause follows the FROM clause in the SELECT statement.

How do you list the employees who work for department 90? The following example
shows how to limit the query to only the records belonging to department 90 by using a
WHERE clause:

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id = 90;

Name DEPARTMENT_ID

--- -------------

Steven King 90

Neena Kochhar 90

Lex De Haan 90

You need not include the column names in the SELECT clause to use them
in the WHERE clause.

You can use various operators in Oracle 11g in the WHERE clause to limit the number of rows.

Comparison Operators
Comparison operators compare two values or expressions and give a Boolean result
of TRUE, FALSE, or NULL. The comparison operators include those that test for equality,
inequality, less than, greater than, and value comparisons.

= (Equality)

The = operator tests for equality. The test evaluates to TRUE if the values or results of an
expression on both sides of the operator are equal.

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id = 90;

Name DEPARTMENT_ID

--- -------------

Steven King 90

Neena Kochhar 90

Lex De Haan 90

95127c01.indd 29 2/18/09 6:37:09 AM

30 Chapter 1 N Introducing SQL

!=, <>, or ^= (Inequality)

You can use any one of these three operators to test for inequality. The test evaluates to
TRUE if the values on both sides of the operator do not match.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct != .35;

Name COMMISSION_PCT

-- --------------

John Russell .4

Karen Partners .3

Alberto Errazuriz .3

Gerald Cambrault .3

… … … … … …

Jack Livingston .2

Kimberely Grant .15

Charles Johnson .1

32 rows selected.

< (Less Than)

The < operator evaluates to TRUE if the left side (expression or value) of the operator is less
than the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct < .15;

Name COMMISSION_PCT

-- --------------

Mattea Marvins .1

David Lee .1

Sundar Ande .1

Amit Banda .1

Sundita Kumar .1

Charles Johnson .1

6 rows selected.

95127c01.indd 30 2/18/09 6:37:09 AM

Writing Simple Queries 31

> (Greater Than)

The > operator evaluates to TRUE if the left side (expression or value) of the operator is
greater than the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct > .35;

Name COMMISSION_PCT

-- --------------

John Russell .4

<= (Less Than or Equal to)

The <= operator evaluates to TRUE if the left side (expression or value) of the operator is less
than or equal to the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct <= .15;

Name COMMISSION_PCT

-- --------------

Oliver Tuvault .15

Danielle Greene .15

Mattea Marvins .1

David Lee .1

Sundar Ande .1

Amit Banda .1

William Smith .15

Elizabeth Bates .15

Sundita Kumar .1

Kimberely Grant .15

Charles Johnson .1

11 rows selected.

>= (Greater Than or Equal to)

The >= operator evaluates to TRUE if the left side (expression or value) of the operator is
greater than or equal to the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct >= .35;

95127c01.indd 31 2/18/09 6:37:09 AM

32 Chapter 1 N Introducing SQL

Name COMMISSION_PCT

-- --------------

John Russell .4

Janette King .35

Patrick Sully .35

Allan McEwen .35

ANY or SOME

You can use the ANY or SOME operator to compare a value to each value in a list or subquery.
The ANY and SOME operators always must be preceded by one of the following comparison
operators: =, !=, <, >, <=, or >=.

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id <= ANY (10, 15, 20, 25);

Name DEPARTMENT_ID

--- -------------

Jennifer Whalen 10

Michael Hartstein 20

Pat Fay 20

ALL

You can use the ALL operator to compare a value to every value in a list or subquery. The
ALL operator must always be preceded by one of the following comparison operators: =, !=,
<, >, <=, or >=.

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id >= ALL (80, 90, 100);

Name DEPARTMENT_ID

--- -------------

Nancy Greenberg 100

Daniel Faviet 100

John Chen 100

Ismael Sciarra 100

Jose Manuel Urman 100

Luis Popp 100

Shelley Higgins 110

William Gietz 110

8 rows selected.

For all the comparison operators discussed, if one side of the operator is NULL, the result is NULL.

95127c01.indd 32 2/18/09 6:37:10 AM

Writing Simple Queries 33

Logical Operators
Logical operators are used to combine the results of two comparison conditions (compound
conditions) to produce a single result or to reverse the result of a single comparison. NOT,
AND, and OR are the logical operators. When a logical operator is applied to NULL, the result
is UNKNOWN. UNKNOWN acts similarly to FALSE; the only difference is that NOT FALSE is TRUE,
whereas NOT UNKNOWN is also UNKNOWN.

NOT

You can use the NOT operator to reverse the result. It evaluates to TRUE if the operand is
FALSE, and it evaluates to FALSE if the operand is TRUE. NOT returns NULL if the operand
is NULL.

WHERE !(department_id >= 30)

 *

ERROR at line 3:

SELECT first_name, department_id

FROM employees

WHERE not (department_id >= 30);

FIRST_NAME DEPARTMENT_ID

-------------------- -------------

Jennifer 10

Michael 20

Pat 20

AND

The AND operator evaluates to TRUE if both operands are TRUE. It evaluates to FALSE if either
operand is FALSE. Otherwise, it returns NULL.

SELECT first_name, salary

FROM employees

WHERE last_name = ‘Smith’

AND salary > 7500;

FIRST_NAME SALARY

-------------------- ----------

Lindsey 8000

95127c01.indd 33 2/18/09 6:37:10 AM

34 Chapter 1 N Introducing SQL

OR

The OR operator evaluates to TRUE if either operand is TRUE. It evaluates to FALSE if both
operands are FALSE. Otherwise, it returns NULL.

SELECT first_name, last_name

FROM employees

WHERE first_name = ‘Kelly’

OR last_name = ‘Smith’;

FIRST_NAME LAST_NAME

-------------------- -------------------------

Lindsey Smith

William Smith

Kelly Chung

Logical Operator Truth Tables

The following tables are the truth tables for the three logical operators.
Table 1.7 is a truth table for the AND operator.

ta b Le 1.7 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 1.8 is the truth table for the OR operator.

ta b Le 1. 8 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

95127c01.indd 34 2/18/09 6:37:10 AM

Writing Simple Queries 35

Table 1.9 is the truth table for the NOT operator.

ta b Le 1. 9 NOT Truth Table

NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

Other Operators
In the following sections, I will discuss all the operators that can be used in the WHERE
clause of the SQL statement that were not discussed earlier.

IN and NOT IN

You can use the IN and NOT IN operators to test a membership condition. IN is equivalent
to the =ANY operator, which evaluates to TRUE if the value exists in the list or the result set
from a subquery. The NOT IN operator is equivalent to the !=ALL operator, which evaluates
to TRUE if the value does not exist in the list or the result set from a subquery. The following
examples demonstrate how to use these two operators:

SELECT first_name, last_name, department_id

FROM employees

WHERE department_id IN (10, 20, 90);

FIRST_NAME LAST_NAME DEPARTMENT_ID

-------------------- ------------------------- ----------

Steven King 90

Neena Kochhar 90

Lex De Haan 90

Jennifer Whalen 10

Michael Hartstein 20

Pat Fay 20

6 rows selected.

SELECT first_name, last_name, department_id

FROM employees

WHERE department_id NOT IN

 (10, 30, 40, 50, 60, 80, 90, 110, 100);

95127c01.indd 35 2/18/09 6:37:10 AM

36 Chapter 1 N Introducing SQL

FIRST_NAME LAST_NAME DEPARTMENT_ID

-------------------- ---------------------- -------------

Michael Hartstein 20

Pat Fay 20

Hermann Baer 70

SQL>

When using the NOT IN operator, if any value in the list or the result
returned from the subquery is NULL, the NOT IN condition is evaluated to
FALSE. For example, last_name not in (‘Smith’, ‘Thomas’, NULL)
evaluates to last_name != ‘Smith’ AND last_name != ‘Thomas’ AND
last_name != NULL. Any comparison on a NULL value results in NULL. So,
the previous condition does not return any row even through there may
be some rows with LAST_NAME as Smith or Thomas.

BETWEEN

You can use the BETWEEN operator to test a range. BETWEEN A AND B evaluates to TRUE if the
value is greater than or equal to A and less than or equal to B. If NOT is used, the result is the
reverse. The following example lists all the employees whose salary is between $5,000 and
$6,000:

SELECT first_name, last_name, salary

FROM employees

WHERE salary BETWEEN 5000 AND 6000;

FIRST_NAME LAST_NAME SALARY

-------------------- ------------------------- ----------

Bruce Ernst 6000

Kevin Mourgos 5800

Pat Fay 6000

EXISTS

The EXISTS operator is always followed by a subquery in parentheses. EXISTS evaluates to
TRUE if the subquery returns at least one row. The following example lists the employees
who work for the administration department. Here is an example of using EXISTS. Don’t
worry if you do not understand the SQL for now; subqueries are discussed in detail in
Chapter 4, “Using Joins and Subqueries.”

SELECT last_name, first_name, department_id

FROM employees e

WHERE EXISTS (select 1 FROM departments d

95127c01.indd 36 2/18/09 6:37:10 AM

Writing Simple Queries 37

 WHERE d.department_id = e.department_id

 AND d.department_name = ‘Administration’);

LAST_NAME FIRST_NAME DEPARTMENT_ID

---------------------- -------------------- -------------

Whalen Jennifer 10

SQL>

IS NULL and IS NOT NULL

To find the NULL values or NOT NULL values, you need to use the IS NULL operator. The = or
!= operator will not work with NULL values. IS NULL evaluates to TRUE if the value is NULL.
IS NOT NULL evaluates to TRUE if the value is not NULL. To find the employees who do not
have a department assigned, use this query:

SELECT last_name, department_id

FROM employees

WHERE department_id IS NULL;

LAST_NAME DEPARTMENT_ID

------------------------- -------------

Grant

SQL>

SELECT last_name, department_id

FROM employees

WHERE department_id = NULL;

no rows selected

LIKE

Using the LIKE operator, you can perform pattern matching. The pattern-search character %
is used to match any character and any number of characters. The pattern-search character
_ is used to match any single character. If you are looking for the actual character % or _ in the
pattern search, you can include an escape character in the search string and notify Oracle
using the ESCAPE clause.

The following query searches for all employees whose first name begins with Su and last
name does not begin with S:

SELECT first_name, last_name

FROM employees

WHERE first_name LIKE ‘Su%’

AND last_name NOT LIKE ‘S%’;

95127c01.indd 37 2/18/09 6:37:10 AM

38 Chapter 1 N Introducing SQL

FIRST_NAME LAST_NAME

-------------------- -------------------------

Sundar Ande

Sundita Kumar

Susan Mavris

The following example looks for all JOB_ID values that begin with AC_. Since _ is a
pattern-matching character, you must qualify it with an escape character. Oracle does not
have a default escape character.

SELECT job_id, job_title

FROM jobs

WHERE job_id like ‘AC_%’ ESCAPE ‘\’;

JOB_ID JOB_TITLE

---------- -----------------------------------

AC_MGR Accounting Manager

AC_ACCOUNT Public Accountant

Table 1.10 shows more examples of pattern matching.

ta b Le 1.10 Pattern-Matching Examples

Pattern Matches Does Not Match

%SONI_1 SONIC1, ULTRASONI21 SONICS1, SONI315

_IME TIME, LIME IME, CRIME

\%SONI_1 ESCAPE ‘\’ %SONIC1, %SONI91 SONIC1, ULTRASONIC1

%ME_ _ _LE ESCAPE ‘\’ CRIME_FILE, TIME_POLE CRIMESPILE, CRIME_ALE

Sorting Rows
The SELECT statement may include the ORDER BY clause to sort the resulting rows in a specific
order based on the data in the columns. Without the ORDER BY clause, there is no guarantee
that the rows will be returned in any specific order. If an ORDER BY clause is specified, by
default the rows are returned by ascending order of the columns specified. If you need to
sort the rows in descending order, use the keyword DESC next to the column name. You
can specify the keyword ASC to explicitly state to sort in ascending order, although it is the

95127c01.indd 38 2/18/09 6:37:10 AM

Writing Simple Queries 39

default. The ORDER BY clause follows the FROM clause and the WHERE clause in the SELECT
statement.

To retrieve all employee names of department 90 from the EMPLOYEES table ordered by
last name, use this query:

SELECT first_name || ‘ ‘ || last_name “Employee Name”

FROM employees

WHERE department_id = 90

ORDER BY last_name;

Employee Name

--

Lex De Haan

Steven King

Neena Kochhar

SQL>

You can specify more than one column in the ORDER BY clause. In this case, the result
set will be ordered by the first column in the ORDER BY clause, then the second, and so on.
Columns or expressions not used in the SELECT clause can also be used in the ORDER BY
clause. The following example shows how to use DESC and multiple columns in the ORDER
BY clause:

SELECT first_name, hire_date, salary, manager_id mid

FROM employees

WHERE department_id IN (110,100)

ORDER BY mid ASC, salary DESC, hire_date;

FIRST_NAME HIRE_DATE SALARY MID

-------------------- --------- ---------- ----------

Shelley 07-JUN-94 12000 101

Nancy 17-AUG-94 12000 101

Daniel 16-AUG-94 9000 108

John 28-SEP-97 8200 108

Jose Manuel 07-MAR-98 7800 108

Ismael 30-SEP-97 7700 108

Luis 07-DEC-99 6900 108

William 07-JUN-94 8300 205

8 rows selected.

SQL>

95127c01.indd 39 2/18/09 6:37:10 AM

40 Chapter 1 N Introducing SQL

You can use column alias names in the ORDER BY clause.

If the DISTINCT keyword is used in the SELECT clause, you can use only those columns
listed in the SELECT clause in the ORDER BY clause. If you have used any operators on columns in
the SELECT clause, the ORDER BY clause also should use them. Here is an example:

SELECT DISTINCT ‘Region ‘ || region_id

FROM countries

ORDER BY region_id;

ORDER BY region_id

 *

ERROR at line 3:

ORA-01791: not a SELECTed expression

SELECT DISTINCT ‘Region ‘ || region_id

FROM countries

ORDER BY ‘Region ‘ || region_id;

‘REGION’||REGION_ID

Region 1

Region 2

Region 3

Region 4

Not only can you use the column name or column alias to sort the result set of a query,
but you can also sort the results by specifying the position of the column in the SELECT clause.
This is useful if you have a lengthy expression in the SELECT clause and you need the results
sorted on this value. The following example sorts the result set using positional values:

SELECT first_name, hire_date, salary, manager_id mid

FROM employees

WHERE department_id IN (110,100)

ORDER BY 4, 2, 3;

FIRST_NAME HIRE_DATE SALARY MID

-------------------- --------- ---------- ----------

Shelley 07-JUN-94 12000 101

95127c01.indd 40 2/18/09 6:37:10 AM

Writing Simple Queries 41

Nancy 17-AUG-94 12000 101

Daniel 16-AUG-94 9000 108

John 28-SEP-97 8200 108

Ismael 30-SEP-97 7700 108

Jose Manuel 07-MAR-98 7800 108

Luis 07-DEC-99 6900 108

William 07-JUN-94 8300 205

8 rows selected.

The ORDER BY clause cannot have more than 255 columns or expressions.

Sorting NULLs
By default, in an ascending-order sort, the NULL values appear at the bottom of the result set;
that is, NULLs are sorted higher. For descending-order sorts, NULL values appear at the top
of the result set—again, NULL values are sorted higher. You can change the default behavior
by using the NULLS FIRST or NULLS LAST keyword, along with the column names (or alias
names or positions). The following examples demonstrate how to use NULLS FIRST in an
ascending sort:

SELECT last_name, commission_pct

FROM employees

WHERE last_name LIKE ‘R%’

ORDER BY commission_pct ASC, last_name DESC;

LAST_NAME COMMISSION_PCT

------------------------- --------------

Russell .4

Rogers

Raphaely

Rajs

SELECT last_name, commission_pct

FROM employees

WHERE last_name LIKE ‘R%’

ORDER BY commission_pct ASC NULLS FIRST, last_name DESC;

95127c01.indd 41 2/18/09 6:37:10 AM

42 Chapter 1 N Introducing SQL

LAST_NAME COMMISSION_PCT

------------------------- --------------

Rogers

Raphaely

Rajs

Russell .4

SQL>

Why Do You Limit and Sort rows?

The power of an RDBMS and SQL lies in getting exactly what you want from the data-
base. The sample tables you considered under the HR schema are small, so even if you
get all the information from the table, you can still find the specific data you’re seeking.
But what if you have a huge transaction table with millions of rows?

You know how easy it is to look through a catalog in the library to find a particular book or
to search through an alphabetical listing to find your name. When querying a large table,
make sure you know what you want.

The WHERE clause lets you query for exactly what you’re looking for. The ORDER BY clause
lets you sort rows. The following steps can be used as an approach to query data from
single table:

1. Know the columns of the table. You can issue the DESCRIBE command to get the
column names and datatype. Understand which column has what information.

2. Pick the column names you are interested in including in the query. Use these columns
in the SELECT clause.

3. Identify the column or columns where you can limit the rows, or the columns that
can show you only the rows of interest. Use these columns in the WHERE clause of the
query, and supply the values as well as the appropriate operator.

4. If the query returns more than a few rows, you may be interested in having them
sorted in a particular order. Specify the column names and the sorting order in the
ORDER BY clause of the query.

Let’s consider a table named PURCHASE_ORDERS. First, use the DESCRIBE command to list
the columns:

SQL> DESCRIBE purchase_orders

Name Null? Type

--------------------- -------- --------------

ORDER# NOT NULL NUMBER (16)

ORDER_DT NOT NULL DATE

95127c01.indd 42 2/18/09 6:37:10 AM

Writing Simple Queries 43

CUSTOMER# NOT NULL VARCHAR2 (12)

BACK_ORDER CHAR (1)

ORD_STATUS CHAR (1)

TOTAL_AMT NOT NULL NUMBER (18,4)

SALES_TAX NUMBER (12,2)

The objective of the query is to find the completed orders that do not have any sales tax.
You want to see the order number and total amount of the order. The corresponding col-
umns that appear in the SELECT clause are ORDER# and TOTAL_AMT. Since you’re interested
in only the rows with no sales tax in the completed orders, the columns to appear in the
WHERE clause are SALES_TAX (checking for zero sales tax) and ORD_STATUS (checking for
the completeness of the order, which is status code C). Since the query returns multiple
rows, you want to order them by the order number. Notice that the SALES_TAX column can
be NULL, so you want to make sure you get all rows that have a sales tax amount of zero
or NULL.

SELECT order#, total_amt

FROM purchase_orders

WHERE ord_status = ‘C’

AND (sales_tax IS NULL

OR sales_tax = 0)

ORDER BY order#;

An alternative is to use the NVL function to deal with the NULL values. This function is dis-
cussed in Chapter 2.

Using Expressions
An expression is a combination of one or more values, operators, and SQL functions that
result in a value. The result of an expression generally assumes the datatype of its compo-
nents. The simple expression 5+6 evaluates to 11 and assumes a datatype of NUMBER.
Expressions can appear in the following clauses:

The ÛN SELECT clause of queries

The ÛN WHERE clause, ORDER BY clause, and HAVING clause

The ÛN VALUES clause of the INSERT statement

The ÛN SET clause of the UPDATE statement

I will review the syntax of using these statements in later chapters.
You can include parentheses to group and evaluate expressions and then apply the result

to the rest of the expression. When parentheses are used, the expression in the innermost

95127c01.indd 43 2/18/09 6:37:10 AM

44 Chapter 1 N Introducing SQL

parentheses is evaluated first. Here is an example of a compound expression: ((2*4)/
(3+1))*10. The result of 2*4 is divided by the result of 3+1. Then the result from the divi-
sion operation is multiplied by 10.

The CASE Expression
You can use the CASE expression to derive the IF…THEN…ELSE logic in SQL. Here is the syn-
tax of the simple CASE expression:

CASE <expression>

WHEN <compare value> THEN <return value> … … …

[ELSE <return value>]

END

The CASE expression begins with the keyword CASE and ends with the keyword END. The
ELSE clause is optional. The maximum number of arguments in a CASE expression is 255.
The following query displays a description for the REGION_ID column based on the value:

SELECT country_name, region_id,

 CASE region_id WHEN 1 THEN ‘Europe’

 WHEN 2 THEN ‘America’

 WHEN 3 THEN ‘Asia’

 ELSE ‘Other’ END Continent

FROM countries

WHERE country_name LIKE ‘I%’;

COUNTRY_NAME REGION_ID CONTINE

-------------------- ---------- -------

Israel 4 Other

India 3 Asia

Italy 1 Europe

SQL>

The other form of the CASE expression is the searched CASE, where the values are derived
based on a condition. Oracle evaluates the conditions top to bottom; when a condition
evaluates to true, the rest of the WHEN clauses are not evaluated. This version has the follow-
ing syntax:

CASE

WHEN <condition> THEN <return value> … … …

[ELSE <return value>]

END

95127c01.indd 44 2/18/09 6:37:11 AM

Writing Simple Queries 45

The following example categorizes the salary as Low, Medium, and High using a
searched CASE expression:
SELECT first_name, department_id, salary,

 CASE WHEN salary < 6000 THEN ‘Low’

 WHEN salary < 10000 THEN ‘Medium’

 WHEN salary >= 10000 THEN ‘High’ END Category

FROM employees

WHERE department_id <= 30

ORDER BY first_name;

FIRST_NAME DEPARTMENT_ID SALARY CATEGO

-------------------- ------------- ---------- ------

Alexander 30 3100 Low

Den 30 11000 High

Guy 30 2600 Low

Jennifer 10 4400 Low

Karen 30 2500 Low

Michael 20 13000 High

Pat 20 6000 Medium

Shelli 30 2900 Low

Sigal 30 2800 Low

9 rows selected.

Oracle uses the & (ampersand) character to substitute values at runtime. In the next sec-
tion, I will discuss how to create SQL statements that can be used to get a different set of
results based on values passed during execution time.

Finding the current Sessions and program name

As a DBA you may have to query the V$SESSION dictionary view to find the current ses-
sions in the database. This view has several columns that show various information about
the session; often the DBA is interested in finding out the username and which program
is connecting to the database. If the DBA wants to find out what SQL is executed in the
session, the SID and SERIAL# columns can be queried to enable tracing using the DBMS_
TRACE package.

I’ll review in this example how to query the V$SESSION view using the simple SQL state-
ments you learned in this chapter.

95127c01.indd 45 2/18/09 6:37:11 AM

46 Chapter 1 N Introducing SQL

The following query may return several rows depending on the activity and number of
users connected to the database:

SELECT username, sid, serial#, program

FROM v$session;

If you’re using SQL*Plus, you may have to adjust the column width to fit the output in
one line:

COLUMN program FORMAT a20

COLUMN username FORMAT a20

SELECT username, sid, serial#, program

FROM v$session;

USERNAME SID SERIAL# PROGRAM

-------------------- ---------- ---------- -----------------

 118 6246 ORACLE.EXE (W000)

BTHOMAS 121 963 sqlplus.exe

DBSNMP 124 23310 emagent.exe

DBSNMP 148 608 emagent.exe

 150 1 ORACLE.EXE (FBDA)

 152 7 ORACLE.EXE (SMCO)

 155 1 ORACLE.EXE (MMNL)

 156 1 ORACLE.EXE (DIA0)

 158 1 ORACLE.EXE (MMON)

 159 1 ORACLE.EXE (RECO)

 164 1 ORACLE.EXE (MMAN)

… … … (Output truncated)

As you can see, the background processes do not have usernames. To find out only the
user sessions in the database, you can filter out the rows that do no have valid user-
names:

SELECT username, sid, serial#, program

FROM v$session

WHERE username is NOT NULL;

If you’re looking for specific information, you may want to add more filter conditions such
as looking for a specific user or a specific program. The following SQL returns the rows in
order of their session login time, with the most recent session on the top:

SELECT username, sid, serial#, program

FROM v$session

95127c01.indd 46 2/18/09 6:37:11 AM

Accepting Values at Runtime 47

WHERE username is NOT NULL

ORDER BY logon_time;

USERNAME SID SERIAL# PROGRAM

-------------------- ---------- ---------- ---------------

DBSNMP 148 608 emagent.exe

DBSNMP 124 23310 emagent.exe

BTHOMAS 121 963 sqlplus.exe

SCOTT 132 23 TOAD.EXE

SJACOB 231 32 discoverer.exe

Accepting Values at Runtime
To create an interactive SQL statement, you can define variables in the SQL statement. This
allows the user to supply values at runtime, further enhancing the ability to reuse the SQL
scripts. An ampersand (&) followed by a variable name prompts for and accepts values at
runtime. For example, the following SELECT statement queries the DEPARTMENTS table based
on the department number supplied at runtime.

SELECT department_name

FROM departments

WHERE department_id = &dept;

Enter value for dept: 10

old 3: WHERE DEPARTMENT_ID = &dept

new 3: WHERE DEPARTMENT_ID = 10

DEPARTMENT_NAME

Administration

1 row selected.

Using Substitution Variables
Suppose that you have defined DEPT as a variable in your script, but you want to avoid the
prompt for the value at runtime. SQL*Plus prompts you for a value only when the variable
is undefined. You can define a substitution variable in SQL*Plus using the DEFINE command

95127c01.indd 47 2/18/09 6:37:11 AM

48 Chapter 1 N Introducing SQL

to provide a value. The variable will always have the CHAR datatype associated with it.
Here is an example of defining a substitution variable:

SQL> DEFINE DEPT = 20

SQL> DEFINE DEPT

DEFINE DEPT = “20” (CHAR)

SQL> LIST

 1 SELECT department_name

 2 FROM departments

 3* WHERE department_id = &DEPT

SQL> /

old 3: WHERE DEPARTMENT_ID = &DEPT

new 3: WHERE DEPARTMENT_ID = 20

DEPARTMENT_NAME

Marketing

1 row selected.

SQL>

Using the DEFINE command without any arguments shows all the defined
variables.

A . (dot) is used to append characters immediately after the substitution variable. The
dot separates the variable name and the literal that follows immediately. If you need a dot
to be part of the literal, provide two dots continuously. For example, the following query
appends _REP to the user input when seeking a value from the JOBS table:

SQL> SELECT job_id, job_title FROM jobs

 2* WHERE job_id = ‘&JOB._REP’

SQL> /

Enter value for job: MK

old 2: WHERE JOB_ID = ‘&JOB._REP’

new 2: WHERE JOB_ID = ‘MK_REP’

JOB_ID JOB_TITLE

---------- ------------------------

MK_REP Marketing Representative

1 row selected.

SQL>

95127c01.indd 48 2/18/09 6:37:11 AM

Accepting Values at Runtime 49

The old line with the variable and the new line with the substitution are displayed. You
can turn off this display by using the command SET VERIFY OFF.

Saving a Variable for a Session
Consider the following SQL, saved to a file named ex01.sql. When you execute this script
file, you will be prompted for the COL1 and COL2 values multiple times:

SQL> SELECT &COL1, &COL2

 2 FROM &TABLE

 3 WHERE &COL1 = ‘&VAL’

 4 ORDER BY &COL2

 5

SQL> SAVE ex01

Created file ex01.sql

SQL> @ex01

Enter value for col1: FIRST_NAME

Enter value for col2: LAST_NAME

old 1: SELECT &COL1, &COL2

new 1: SELECT FIRST_NAME, LAST_NAME

Enter value for table: EMPLOYEES

old 2: FROM &TABLE

new 2: FROM EMPLOYEES

Enter value for col1: FIRST_NAME

Enter value for val: John

old 3: WHERE &COL1 = ‘&VAL’

new 3: WHERE FIRST_NAME = ‘John’

Enter value for col2: LAST_NAME

old 4: ORDER BY &COL2

new 4: ORDER BY LAST_NAME

FIRST_NAME LAST_NAME

-------------------- ---------

John Chen

John Russell

John Seo

3 rows selected.

SQL>

The user can enter different or wrong values for each prompt. To avoid multiple prompts,
use && (double ampersand), where the variable is saved for the session.

95127c01.indd 49 2/18/09 6:37:11 AM

50 Chapter 1 N Introducing SQL

To clear a defined variable, you can use the UNDEFINE command. Let’s edit the ex01.sql
file to make it look like this:

SELECT &&COL1, &&COL2

FROM &TABLE

WHERE &COL1 = ‘&VAL’

ORDER BY &COL2

/

Enter value for col1: first_name

Enter value for col2: last_name

old 1: SELECT &&COL1, &&COL2

new 1: SELECT first_name, last_name

Enter value for table: employees

old 2: FROM &TABLE

new 2: FROM employees

Enter value for val: John

old 3: WHERE &COL1 = ‘&VAL’

new 3: WHERE first_name = ‘John’

old 4: ORDER BY &COL1

new 4: ORDER BY first_name

FIRST_NAME LAST_NAME

-------------------- -------------------------

John Chen

John Russell

John Seo

UNDEFINE COL1 COL2

Using Positional Notation for Variables
Instead of variable names, you can use positional notation, where each variable is identified
by &1, &2, and so on. The values are assigned to the variables by position. Do this by put-
ting an ampersand (&), followed by a numeral, in place of a variable name. Consider the
following query:

SQL> SELECT department_name, department_id

 2 FROM departments

 3 WHERE &1 = &2;

Enter value for 1: DEPARTMENT_ID

Enter value for 2: 10

old 3: WHERE &1 = &2

new 3: WHERE DEPARTMENT_ID = 10

95127c01.indd 50 2/18/09 6:37:11 AM

Summary 51

DEPARTMENT_NAME DEPARTMENT_ID

------------------------------ -------------

Administration 10

1 row selected.

SQL>

If you save the SQL as a script file, you can submit the substitution-variable values while
invoking the script (as command-line arguments). Each time you run this command file, START
replaces each &1 in the file with the first value (called an argument) after START filename,
then replaces each &2 with the second value, and so forth. Here is an example of saving
and running the previous query:

SQL> SAVE ex02

Created file ex02.sql

SQL> SET VERIFY OFF

SQL> @ex02 department_id 20

DEPARTMENT_NAME DEPARTMENT_ID

------------------------------ -------------

Marketing 20

1 row selected.

SQL>

Although I did not specify two ampersands for positional substitution variables, SQL*Plus
keeps the values of these variables for the session (since we passed the values as parameters
to a script file). Next time you run any script with positional substitution variables, Oracle
uses these values to execute the script.

Summary
This chapter started off with reviewing the fundamentals of SQL. You also saw an overview
of SQL*Plus in this chapter. SQL*Plus is Oracle’s native tool to interact with the database.
You got a quick introduction to the Oracle datatypes, operators, and literals. You learned
to write simple queries using the SELECT statement. You also learned to use the WHERE clause
and the ORDER BY clause in this chapter.

The CHAR and VARCHAR2 datatypes are used to store alphanumeric information.
The NUMBER datatype is used to store any numeric value. Date values can be stored using
the DATE or TIMESTAMP datatypes. Oracle has a wide range of operators: arithmetic,
concatenation, comparison, membership, logical, pattern matching, range, existence, and
NULL checking. The CASE expression is used to bring conditional logic to SQL.

95127c01.indd 51 2/18/09 6:37:11 AM

52 Chapter 1 N Introducing SQL

SQL*Plus supports all SQL statements and has its own formatting and enhancement
commands. Using this tool, you can produce interactive SQL statements and formatted
reports. SQL*Plus is the command-line interface to the database widely used by DBAs.
SQL*Plus has its own buffer where SQL statements are buffered. You can edit the buffer
using SQL*Plus editing commands. The DESCRIBE command is used to get information on
a table, view, function, or procedure. Multiple SQL and SQL*Plus commands can be stored
in a file and can be executed as a unit. Such files are called script files.

Data in the Oracle database is managed and accessed using SQL. A SELECT statement
is the basic form of querying or reading records from the database table. You can limit or
filter the rows using the WHERE clause. You can use the AND and OR logical operators to join
multiple filter conditions. The ORDER BY clause is used to sort the result set in a particular
order. You can use an ampersand (&) character to substitute a value at runtime.

Exam Essentials

Understand the operators. Know the various operators that can be used in queries. The
parentheses around an expression change the precedence of the operators.

Understand the WHERE clause. The WHERE clause specifies a condition to limit the number
or rows returned. You cannot use column alias names in this clause.

Understand the ORDER BY clause. The ORDER BY clause is used to sort the result set from a
query. You can specify ascending order or descending order for the sort. Ascending order
is the default. Also know that column alias names can be used in the ORDER BY clause. You
can also specify columns by their position.

Know how to specify string literals using the Q/q operator. You can use the Q or q opera-
tor to specify the quote delimiters in string literals. Understand the difference between
using the (, <, {, and [characters and other delimiters.

Know the order of clauses in the SELECT statement. The SELECT statement must have a
FROM clause. The WHERE clause, if it exists, should follow the FROM clause and precede the
ORDER BY clause.

Know the use of the DUAL table. The DUAL table is a dummy table in Oracle with one
column and one row. This table is commonly used to get the values of system variables such
as SYSDATE or USER.

Know the characters used for pattern matching. The % character is used to match zero or
more characters. The _ character is used to match one, and only one, character. The SQL
operator used with a pattern-matching character is LIKE.

Know the sort order of NULL values in queries with ORDER BY clause. By default, in an
ascending-order sort, the NULL values appear at the bottom of the result set; that is, NULLs
are sorted higher. For descending-order sorts, NULL values appear at the top of the result
set—again, NULL values are sorted higher.

95127c01.indd 52 2/18/09 6:37:11 AM

Review Questions 53

Review Questions
1. You issue the following query:

SELECT salary “Employee Salary”

FROM employees;

 How will the column heading appear in the result?

A. EMPLOYEE SALARY

B. EMPLOYEE_SALARY

C. Employee Salary

D. employee_salary

2. The EMP table is defined as follows:

Column Datatype Length

EMPNO NUMBER 4

ENAME VARCHAR2 30

SALARY NUMBER 14,2

COMM NUMBER 10,2

DEPTNO NUMBER 2

 You perform the following two queries:
1. SELECT empno enumber, ename
 FROM emp ORDER BY 1;

2. SELECT empno, ename
 FROM emp ORDER BY empno ASC;

 Which of the following is true?

A. Statements 1 and 2 will produce the same result in data.

B. Statement 1 will execute; statement 2 will return an error.

C. Statement 2 will execute; statement 1 will return an error.

D. Statements 1 and 2 will execute but produce different results.

95127c01.indd 53 2/18/09 6:37:11 AM

54 Chapter 1 N Introducing SQL

3. You issue the following SELECT statement on the EMP table shown in question 2.

SELECT (200+((salary*0.1)/2)) FROM emp;

What will happen to the result if all the parentheses are removed?

A. No difference, because the answer will always be NULL.

B. No difference, because the result will be the same.

C. The result will be higher.

D. The result will be lower.

4. In the following SELECT statement, which component is a literal? (Choose all that apply.)

SELECT ‘Employee Name: ‘ || ename
FROM emp where deptno = 10;

A. 10

B. ename

C. Employee Name:

D. ||

5. When you try to save 34567.2255 into a column defined as NUMBER(7,2), what value is
actually saved?

A. 34567.00

B. 34567.23

C. 34567.22

D. 3456.22

6. What is the default display length of the DATE datatype column?

A. 18

B. 9

C. 19

D. 6

7. What will happen if you query the EMP table shown in question 2 with the following?

SELECT empno, DISTINCT ename, salary FROM emp;

A. EMPNO, unique values of ENAME, and then SALARY are displayed.

B. EMPNO and unique values of the two columns, ENAME and SALARY, are displayed.

C. DISTINCT is not a valid keyword in SQL.

D. No values will be displayed because the statement will return an error.

8. Which clause in a query limits the rows selected?

A. ORDER BY

B. WHERE

C. SELECT

D. FROM

95127c01.indd 54 2/18/09 6:37:11 AM

Review Questions 55

9. The following listing shows the records of the EMP table:

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7369 SMITH 800 20

 7499 ALLEN 1600 300 30

 7521 WARD 1250 500 30

 7566 JONES 2975 20

 7654 MARTIN 1250 1400 30

 7698 BLAKE 2850 30

 7782 CLARK 2450 24500 10

 7788 SCOTT 3000 20

 7839 KING 5000 50000 10

 7844 TURNER 1500 0 30

 7876 ADAMS 1100 20

 7900 JAMES 950 30

 7902 FORD 3000 20

 7934 MILLER 1300 13000 10

When you issue the following query, which value will be displayed in the first row?

SELECT empno
FROM emp
WHERE deptno = 10
ORDER BY ename DESC;

A. MILLER

B. 7934

C. 7876

D. No rows will be returned because ename cannot be used in the ORDER BY clause.

10. Refer to the listing of records in the EMP table in question 9. How many rows will the fol-
lowing query return?

SELECT * FROM emp WHERE ename BETWEEN ‘A’ AND ‘C’

A. 4

B. 2

C. A character column cannot be used in the BETWEEN operator.

D. 3

95127c01.indd 55 2/18/09 6:37:11 AM

56 Chapter 1 N Introducing SQL

11. Refer to the EMP table in question 2. When you issue the following query, which line has
an error?

1. SELECT empno “Enumber”, ename “EmpName”
2. FROM emp
3. WHERE deptno = 10
4. AND “Enumber” = 7782
5. ORDER BY “Enumber”;

A. 1

B. 5

C. 4

D. No error; the statement will finish successfully.

12. You issue the following query:

SELECT empno, ename
FROM emp
WHERE empno = 7782 OR empno = 7876;

Which other operator can replace the OR condition in the WHERE clause?

A. IN

B. BETWEEN .. AND ..

C. LIKE

D. <=

E. >=

13. The following are clauses of the SELECT statement:

1. WHERE
2. FROM
3. ORDER BY

In which order should they appear in a query?

A. 1, 3, 2

B. 2, 1, 3

C. 2, 3, 1

D. The order of these clauses does not matter.

14. Which statement searches for PRODUCT_ID values that begin with DI_ from the ORDERS table?

A. SELECT * FROM ORDERS
WHERE PRODUCT_ID = ‘DI%’;

B. SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_’ ESCAPE ‘\’;

C. SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_%’ ESCAPE ‘\’;

95127c01.indd 56 2/18/09 6:37:12 AM

Review Questions 57

D. SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_’ ESCAPE ‘\’;

E. SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_%’ ESCAPE ‘\’;

15. COUNTRY_NAME and REGION_ID are valid column names in the COUNTRIES table. Which one
of the following statements will execute without an error?

A. SELECT country_name, region_id,
CASE region_id = 1 THEN ‘Europe’,
 region_id = 2 THEN ‘America’,
 region_id = 3 THEN ‘Asia’,
 ELSE ‘Other’ END Continent
FROM countries;

B. SELECT country_name, region_id,
CASE (region_id WHEN 1 THEN ‘Europe’,
 WHEN 2 THEN ‘America’,
 WHEN 3 THEN ‘Asia’,
 ELSE ‘Other’) Continent
FROM countries;

C. SELECT country_name, region_id,
CASE region_id WHEN 1 THEN ‘Europe’
 WHEN 2 THEN ‘America’
 WHEN 3 THEN ‘Asia’
 ELSE ‘Other’ END Continent
FROM countries;

D. SELECT country_name, region_id,
CASE region_id WHEN 1 THEN ‘Europe’
 WHEN 2 THEN ‘America’
 WHEN 3 THEN ‘Asia’
 ELSE ‘Other’ Continent
FROM countries;

16. Which special character is used to query all the columns from the table without listing each
column by name?

A. %

B. &

C. @

D. *

17. The EMPLOYEE table has the following data:
EMP_NAME HIRE_DATE SALARY
---------- --------- ----------
SMITH 17-DEC-90 800
ALLEN 20-FEB-91 1600
WARD 22-FEB-91 1250
JONES 02-APR-91 5975
WARDEN 28-SEP-91 1250
BLAKE 01-MAY-91 2850

95127c01.indd 57 2/18/09 6:37:12 AM

58 Chapter 1 N Introducing SQL

 What will be the value in the first row of the result set when the following query is executed?

SELECT hire_date FROM employee
ORDER BY salary, emp_name;

A. 02-APR-91

B. 17-DEC-90

C. 28-SEP-91

D. The query is invalid, because you cannot have a column in the ORDER BY clause that is
not part of the SELECT clause.

18. Which SQL statement will query the EMPLOYEES table for FIRST_NAME, LAST_NAME, and
SALARY of all employees in DEPARTMENT_ID 40 in the alphabetical order of last name?

A. SELECT first_name last_name salary
FROM employees
ORDER BY last_name
WHERE department_id = 40;

B. SELECT first_name, last_name, salary
FROM employees
ORDER BY last_name ASC
WHERE department_id = 40;

C. SELECT first_name last_name salary
FROM employees
WHERE department_id = 40
ORDER BY last_name ASC;

D. SELECT first_name, last_name, salary
FROM employees
WHERE department_id = 40
ORDER BY last_name;

E. SELECT first_name, last_name, salary
FROM TABLE employees
WHERE department_id IS 40
ORDER BY last_name ASC;

19. When doing pattern matching using the LIKE operator, which character is used as the
default escape character by Oracle?

A. |

B. /

C. \

D. There is no default escape character in Oracle.

95127c01.indd 58 2/18/09 6:37:12 AM

Review Questions 59

20. Column alias names cannot be used in which clause?

A. SELECT clause

B. WHERE clause

C. ORDER BY clause

D. None of the above

21. What is wrong with the following statements submitted in SQL*Plus?

DEFINE V_DEPTNO = 20

SELECT LAST_NAME, SALARY

FROM EMPLOYEES

WHERE DEPARTMENT_ID = V_DeptNo;

A. Nothing is wrong. The query lists the employee name and salary of the employees who
belong to department 20.

B. The DEFINE statement declaration is wrong.

C. The substitution variable is not preceded with the & character.

D. The substitution variable in the WHERE clause should be V_DEPTNO instead of V_DeptNo.

22. Which two statements regarding substitution variables are true?

A. &variable is defined by SQL*Plus, and its value will be available for the duration of the
session.

B. &&variable is defined by SQL*Plus, and its value will be available for the duration of
the session.

C. &n (where n is a any integer) variables are defined by SQL*Plus when values are passed
in as arguments to the script, and their values will be available for the duration of the
session.

D. &&variable is defined by SQL*Plus, and its value will be available only for every refer-
ence to that variable in the current SQL.

23. Look at the data in table PRODUCTS. Which SQL will list the items on the BL shelves? (Show
the result with the most available quantity at the top row.)

PRODUCT_ID PRODUCT_NAME SHELF AVAILABLE_QTY
---------- -------------------- ------ -------------
 1001 CREST BL36 354
 1002 COLGATE BL36 54
 1003 AQUAFRESH BL37 43
 2002 SUNNY-D LA21 53
 2003 CAPRISUN LA22 45

95127c01.indd 59 2/18/09 6:37:12 AM

60 Chapter 1 N Introducing SQL

A. SELECT * FROM products
WHERE shelf like ‘%BL’
ORDER BY available_qty SORT DESC;

B. SELECT * FROM products
WHERE shelf like ‘BL%’;

C. SELECT * FROM products
WHERE shelf = ‘BL%’
ORDER BY available_qty DESC;

D. SELECT * FROM products
WHERE shelf like ‘BL%’
ORDER BY available_qty DESC;

E. SELECT * FROM products
WHERE shelf like ‘BL%’
ORDER BY available_qty SORT;

24. The EMP table has the following data:

 EMPNO ENAME SAL COMM
---------- ---------- ---------- ----------
 7369 SMITH 800
 7499 ALLEN 1600 300
 7521 WARD 1250 500
 7566 JONES 2975
 7654 MARTIN 1250 1400
 7698 BLAKE 2850
 7782 CLARK 2450
 7788 SCOTT 3000
 7839 KING 5000
 7844 TURNER 1500 0
 7876 ADAMS 1100
 7900 JAMES 950
 7902 FORD 3000
 7934 MILLER 1300

Consider the following two SQL statements:

1. SELECT empno, ename, sal, comm
FROM emp WHERE comm IN (0, NULL);

2. SELECT empno, ename, sal, comm
FROM emp WHERE comm = 0 OR comm IS NULL;

A. 1 and 2 will produce the same result.

B. 1 will error; 2 will work fine.

C. 1 and 2 will produce different results.

D. 1 and 2 will work but will not return any rows.

95127c01.indd 60 2/18/09 6:37:12 AM

Answers to Review Questions 61

Answers to Review Questions
1. C. Column alias names enclosed in quotation marks will appear as typed. Spaces and

mixed case appear in the column alias name only when the alias is enclosed in double quo-
tation marks.

2. A. Statements 1 and 2 will produce the same result. You can use the column name, column
alias, or column position in the ORDER BY clause. The default sort order is ascending. For a
descending sort, you must explicitly specify that order with the DESC keyword.

3. B. In the arithmetic evaluation, multiplication and division have precedence over addition
and subtraction. Even if you do not include the parentheses, salary*0.1 will be evaluated
first. The result is then divided by 2, and its result is added to 200.

4. A, C. Character literals in the SQL statement are enclosed in single quotation marks. Liter-
als are concatenated using ||. Employee Name: is a character literal, and 10 is a numeric
literal.

5. B. Since the numeric column is defined with precision 7 and scale 2, you can have five dig-
its in the integer part and two digits after the decimal point. The digits after the decimal are
rounded.

6. B. The default display format of DATE column is DD-MON-YY, whose length is 9.

7. D. DISTINCT is used to display a unique result row, and it should follow immediately after
the keyword SELECT. Uniqueness is identified across the row, not a single column.

8. B. The WHERE clause is used to limit the rows returned from a query. The WHERE clause con-
dition is evaluated, and rows are returned only if the result is TRUE. The ORDER BY clause is
used to display the result in certain order.

9. B. There are three records belonging to DEPTNO 10: EMPNO 7934 (MILLER), 7839 (KING),
and 7782 (CLARK). When you sort their names by descending order, MILLER is the first row
to display. You can use alias names and columns that are not in the SELECT clause in the
ORDER BY clause.

10. D. Here, a character column is compared against a string using the BETWEEN operator,
which is equivalent to ename >= ‘A’ AND ename <= ‘C’. The name CLARK will not be
included in this query, because ‘CLARK’ is > ‘C’.

11. C. Column alias names cannot be used in the WHERE clause. They can be used in the ORDER
BY clause.

12. A. The IN operator can be used. You can write the WHERE clause as WHERE empno IN
(7782, 7876);.

13. B. The FROM clause appears after the SELECT statement, followed by WHERE and ORDER BY
clauses. The FROM clause specifies the table names, the WHERE clause limits the result set,
and the ORDER BY clause sorts the result.

95127c01.indd 61 2/18/09 6:37:12 AM

62 Chapter 1 N Introducing SQL

14. C. Since _ is a special pattern-matching character, you need to include the ESCAPE clause
in LIKE. The % character matches any number of characters including 0, and _ matches a
single character.

15. C. A CASE expression begins with the keyword CASE and ends with the keyword END.

16. D. An asterisk (*) is used to denote all columns in a table.

17. B. The default sorting order for a numeric column is ascending. The columns are sorted
first by salary and then by name, so the row with the lowest salary is displayed first. It is
perfectly valid to use a column in the ORDER BY clause that is not part of the SELECT clause.

18. D. In the SELECT clause, the column names should be separated by commas. An alias name
may be provided for each column with a space or using the keyword AS. The FROM clause
should appear after the SELECT clause. The WHERE clause appears after the FROM clause. The
ORDER BY clause comes after the WHERE clause.

19. D. There is no default escape character in Oracle for pattern matching. If your search
includes pattern-matching characters such as _ or %, define an escape character using the
ESCAPE keyword in the LIKE operator.

20. B. Column alias names cannot be used in the WHERE clause of the SQL statement. In the
ORDER BY clause, you can use the column name or alias name, or you can indicate the col-
umn by its position in the SELECT clause.

21. C. The query will return an error, because the substitution variable is used without an
ampersand (&) character. In this query, Oracle treats V_DEPTNO as another column name
from the table and returns an error. Substitution variables are not case sensitive.

22. B, C. When a variable is preceded by double ampersands, SQL*Plus defines that vari-
able. Similarly, when you pass values to a script using START script_name arguments,
SQL*Plus defines those variables. Once a variable is defined, its value will be available for
the duration of the session or until you use UNDEFINE variable.

23. D. % is the wild character to pattern-match for any number of characters. Option A is
almost correct, except for the SORT keyword in the ORDER BY clause, which will produce an
error since it is not a valid syntax. Option B will produce results but will sort them in the
order you want. Option C will not return any rows because LIKE is the operator for pattern
matching, not =. Option E has an error similar to Option A.

24. C. In the first SQL, the comm IN (0, NULL) will be treated as comm = 0 OR comm = NULL.
For all NULL comparisons, you should use IS NULL instead of = NULL. The first SQL will
return only one row where comm = 0, whereas the second SQL will return all the rows that
have comm = NULL as well as comm = 0.

95127c01.indd 62 2/18/09 6:37:12 AM

Chapter

2
Using Single-Row
Functions

ORacle DatabaSe 11g: SQl
FUnDamentalS I exam ObjectIveS
cOveReD In thIS chapteR:

Using Single-Row Functions to Customize OutputÛÛ

Describe various types of functions available in SQLÛN

Use character, number, and date functions in SELECT ÛN

statements

Using Conversion Functions and Conditional ExpressionsÛÛ

Describe various types of conversion functions that are ÛN

available in SQL

Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion ÛN

functions

Apply conditional expressions in a SELECT statementÛN

95127c02.indd 63 2/18/09 6:46:38 AM

Functions are programs that take zero or more arguments and
return a single value. Oracle has built a number of functions
into SQL, and these functions can be called from SQL state-

ments. The functions could be classified into many groups:

Single-row functionsÛN

Aggregate functions (also known as ÛN group functions)

Analytical functions and regular expression functionsÛN

National-language functionsÛN

Object-reference functions ÛN

Programmer-defined functionsÛN

The certification exam focuses on single-row and aggregate functions, so only those
types are covered in this book. Single-row functions are covered in this chapter, and aggre-
gate functions are covered in Chapter 3, “Using Group Functions.”

Single-row functions operate on expressions derived from columns or literals, and they
are executed once for each row retrieved. In this chapter, I will cover which single-row
functions are available, the rules for how to use them, and what to expect on the exam
regarding single-row functions.

Single-row functions also include conversion functions. Conversion functions are used to
convert the datatype of the input value to a different datatype. The Oracle database has con-
ditional expressions and functions. I discussed the conditional expression CASE in Chapter 1,
“Introducing SQL.” In this chapter, I will discuss the conditional function DECODE.

Single-Row Function Fundamentals
Many types of single-row functions are built into SQL. These include character, numeric,
date, conversion, and miscellaneous single-row functions, as well as programmer-written
stored functions.

All single-row functions can be incorporated into SQL (and PL/SQL). You can use these
single-row functions in the SELECT, WHERE, and ORDER BY clauses of SELECT statements.
For example, the following query includes the TO_CHAR, UPPER, and SOUNDEX single-row
functions:

SELECT first_name, TO_CHAR(hire_date,’Day, DD-Mon-YYYY’)

FROM employees

95127c02.indd 64 2/18/09 6:46:38 AM

Single-Row Function Fundamentals 65

WHERE UPPER(first_name) LIKE ‘AL%’

ORDER BY SOUNDEX(first_name);

Single-row functions also can appear in other types of statements, such as the SET clause
of an UPDATE statement, the VALUES clause of an INSERT statement, and the WHERE clause of a
DELETE statement. The certification exam tends to focus on using functions in SELECT state-
ments, so I will use examples of SELECT statements in this chapter.

The built-in functions presented in this chapter are grouped by topic (character func-
tions, date functions, and so on), and within each topic they appear in alphabetical order.
Before I get into the different types of functions, I’ll start with the functions that are used
to handle NULL values.

Functions can be nested so that the output from one function is used as
input to another. Nested functions can include single-row functions nested
within group functions or group functions nested within either single-row
functions or other group functions.

Functions for NULL Handling
One area in which beginners frequently have difficulty and where even veterans sometimes
stumble is the treatment of NULLs. You can expect at least one question on the exam to address
the use of NULLs, but it probably won’t look like a question on the use of NULLs.

NULL values represent unknown data or a lack of data. Any operation on a NULL results
in a NULL. This NULL-in/NULL-out model is followed for most functions, as well. Oracle 11g
has five NULL-handling functions; I’ll give special attention to the NVL, NVL2, and COALESCE
functions because these are commonly used.

NVL
The NVL function is used to replace a NULL value with a literal value. NVL takes two argu-
ments, NVL(x1, x2), where x1 and x2 are expressions. The NVL function returns x2 if x1 is
NULL. If x1 is not NULL, then x1 is returned. The arguments x1 and x2 can be of any datatype.
If x1 and x2 are not of the same datatype, Oracle tries to convert them to the same datatype
before performing the comparison.

For example, suppose you need to calculate the total compensation in the EMPLOYEES
table, which contains SALARY and COMMISSION_PCT columns:

SELECT first_name, salary, commission_pct,

 salary + (salary * commission_pct) compensation

FROM employees

WHERE first_name LIKE ‘T%’;

95127c02.indd 65 2/18/09 6:46:39 AM

66 Chapter 2 N Using Single-Row Functions

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION

-------------------- ---------- -------------- ------------

TJ 2100

Trenna 3500

Taylor 9600 .2 11520

Timothy 2900

You see that only Taylor had the total compensation calculated in the SQL; all others have
their total compensation as NULL. This is because any operation on NULL results in a NULL.

You can use the NVL function to substitute a zero in place of any NULL you encounter,
like this:

SELECT first_name, salary, commission_pct,

 salary + (salary * NVL(commission_pct,0)) compensation

FROM employees

WHERE first_name LIKE ‘T%’;

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION

-------------------- ---------- -------------- ------------

TJ 2100 2100

Trenna 3500 3500

Tayler 9600 .2 11520

Timothy 2900 2900

When you used the NVL function to substitute zero for NULL, you got the total compensa-
tion calculated correctly. For the employees who do not have a commission, the salary and
compensation are the same.

NVL2
The function NVL2 is a variation of NVL. NVL2 takes three arguments, NVL2(x1, x2, x3),
where x1, x2, and x3 are expressions. NVL2 returns x3 if x1 is NULL, and x2 if x1 is not NULL.

For the example presented in the previous section, you could also use the NVL2 function
and write the code a bit differently:

SELECT first_name, salary, commission_pct, NVL2(commission_pct,

 salary + salary * commission_pct, salary) compensation

FROM employees

WHERE first_name LIKE ‘T%’;

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION

-------------------- ---------- -------------- ------------

TJ 2100 2100

Trenna 3500 3500

Tayler 9600 .2 11520

Timothy 2900 2900

95127c02.indd 66 2/18/09 6:46:39 AM

Single-Row Function Fundamentals 67

Using the NVL2 function, if COMMISSION_PCT is not NULL, then salary + salary *
commission_pct is returned. If COMMISSION_PCT is NULL, then just SALARY is returned.

The NVL function allows you to perform some value substitution for NULLs. The NVL2
function, on the other hand, allows you to implement an IF…THEN…ELSE construct based on
the nullity of data. Both are useful tools to deal with NULL values.

Be prepared for a possible exam question that tests your knowledge of
when to use an NVL function in a calculation. Such a question probably won’t
mention NVL and may not look like it is testing your knowledge of NULLs. If
sample data is given as an exhibit, be sure to look for data columns with
NULL values and whether they are used in the SQL presented to you.

COALESCE
COALESCE is a generalization of the NVL function. COALESCE(exp_list) takes more than one
argument, where exp_list is a list of arguments separated by comma. This function returns
the first non-NULL value in exp_list. If all expressions in exp_list are NULL, then NULL is
returned. Each expression in exp_list should be the same datatype, or else Oracle tries to
convert them implicitly.

For example, COALESCE(x1, x2, x3) would be evaluated as the following:

If ÛN x1 is NULL, check x2, or else return x1. Stop.

If ÛN x2 is NULL, check x3, or else return x2. Stop.

If ÛN x3 is NULL, return NULL, or else return x3. Stop.

Consider the following example. The objective is to find the total salary based on
COMMISSION_PCT. If COMMISSION_PCT is not NULL, calculate SALARY using COMMISSION_PCT.
If COMMISSION_PCT is NULL, then give $100 as commission. If SALARY is not defined (NULL)
for an employee, give the minimum salary of $900.

SELECT last_name, salary, commission_pct AS comm,

 COALESCE(salary+salary*commission_pct,

 salary+100, 900) compensation

FROM employees

WHERE last_name like ‘T%’;

LAST_NAME SALARY COMM COMPENSATION

------------------------- ---------- ---------- ------------

Taylor 8600 .2 10320

Taylor 3200 3300

Tobias 900

Tucker 10000 .3 13000

Tuvault 7000 .15 8050

95127c02.indd 67 2/18/09 6:46:39 AM

68 Chapter 2 N Using Single-Row Functions

As you can see in the example, using the COALESCE function helps you avoid writing
several IF…THEN conditions. You could write the same SQL using the CASE statement you
learned about in Chapter 1 as follows:

SELECT last_name, salary, commission_pct AS comm,

 (CASE WHEN salary IS NULL THEN 900

 WHEN commission_pct IS NOT NULL

 THEN salary+salary*commission_pct

 WHEN commission_pct IS NULL THEN salary+100

 ELSE 0 END) AS compensation

 FROM employees

 WHERE last_name like ‘T%’;

LAST_NAME SALARY COMM COMPENSATION

------------------------- ---------- ---------- ------------

Taylor 8600 .2 10320

Taylor 3200 3300

Tobias 900

Tucker 10000 .3 13000

Tuvault 7000 .15 8050

Try using WHEN salary IS NULL as the third condition in the CASE statement (instead of
the first condition), and find out whether you see any difference in the result.

Using Single-Row Character Functions
Single-row character functions operate on character data. Most have one or more character
arguments, and most return character values. Character functions take the character input
value and return a character or numeric value. If the input to the function is a literal, be sure
to enclose it in single quotes. The exam focuses on many commonly used character functions
such as SUBSTR, INSTR, and LENGTH. When reading about these functions, pay particular
attention to the commonly used functions. Even experienced programmers get confused
with the REPLACE and TRANSLATE functions. In the following sections, I will review the
single-row character functions in detail.

Character Function Overview
Table 2.1 summarizes the single-row character functions. I will cover each of these func-
tions in the “Character Function Descriptions” section.

95127c02.indd 68 2/18/09 6:46:39 AM

Using Single-Row Character Functions 69

ta b le 2 .1 Character Function Summary

Function Description

ASCII Returns the ASCII decimal equivalent of a character

CHR Returns the character given the decimal equivalent

CONCAT Concatenates two strings; same as the operator ||

INITCAP Returns the string with the first letter of each word in uppercase

INSTR Finds the numeric starting position of a string within a string

INSTRB Same as INSTR but counts bytes instead of characters

LENGTH Returns the length of a string in characters

LENGTHB Returns the length of a string in bytes

LOWER Converts a string to all lowercase

LPAD Left-fills a string to a set length using a specified character

LTRIM Strips leading characters from a string

REPLACE Performs substring search and replace

RPAD Right-fills a string to a set length using a specified character

RTRIM Strips trailing characters from a string

SOUNDEX Returns a phonetic representation of a string

SUBSTR Returns a section of the specified string, specified by numeric char-
acter positions

SUBSTRB Returns a section of the specified string, specified by numeric byte
positions

TRANSLATE Performs character search and replace

TRIM Strips leading, trailing, or both leading and trailing characters from
a string

UPPER Converts a string to all uppercase

95127c02.indd 69 2/18/09 6:46:39 AM

70 Chapter 2 N Using Single-Row Functions

The functions ASCII, INSTR, LENGTH, and REGEXP_INSTR return number values, though
they take character datatype as the input.

Character Function Descriptions
Over the years, Oracle has added several functions to its library to make the lives of devel-
opers easy so that they do not have to write built-in functions. Oracle has a function for most
of the day-to-day programming needs. Before you write your own custom-developed piece
of code, it is always a good idea to scan the Oracle documentation on built-in functions.

The character functions in the following sections are arranged in alphabetical order,
with descriptions and examples of each one.

ASCII
ASCII(c1) takes a single argument, where c1 is a character string. This function returns
the ASCII decimal equivalent of the first character in c1. See also CHR() for the inverse
operation.

SELECT ASCII(‘A’) Big_A, ASCII(‘z’) Little_Z, ASCII(‘AMER’)

FROM dual;

 BIG_A LITTLE_Z ASCII(‘AMER’)

---------- ---------- -------------

 65 122 65

CHR
CHR(i [USING NCHAR_CS]) takes a single argument, where i is an integer. This function
returns the character equivalent of the decimal (binary) representation of the character. If
the optional USING NCHAR_CS is included, the character from the national character set is
returned. The default behavior is to return the character from the database character set.

SELECT CHR(65), CHR(122), CHR(223)

FROM dual;

CHAR65 CHAR122 CHAR233

------ ------- -------

A z ß

CONCAT
CONCAT(c1,c2) takes two arguments, where c1 and c2 are both character strings. This func-
tion returns c2 appended to c1. If c1 is NULL, then c2 is returned. If c2 is NULL, then c1 is

95127c02.indd 70 2/18/09 6:46:39 AM

Using Single-Row Character Functions 71

returned. If both c1 and c2 are NULL, then NULL is returned. CONCAT returns the same results
as using the concatenation operator: c1||c2. In the following example, notice the use of the
nested function—a function inside a function—as an argument:

SELECT CONCAT(CONCAT(first_name, ‘ ‘), last_name) employee_name,

 first_name || ‘ ‘ || last_name AS alternate_method

FROM employees

WHERE department_id = 30;

EMPLOYEE_NAME ALTERNATE_METHOD

------------------------- ------------------

Den Raphaely Den Raphaely

Alexander Khoo Alexander Khoo

Shelli Baida Shelli Baida

Sigal Tobias Sigal Tobias

Guy Himuro Guy Himuro

Karen Colmenares Karen Colmenares

INITCAP
INITCAP(c1) takes a single argument, where c1 is a character string. This function returns
c1 with the first character of each word in uppercase and all others in lowercase. Words are
delimited by white space or characters that are not alphanumeric.

SELECT data_value, INITCAP(data_value) initcap_example

FROM sample_data;

DATA_VALUE INITCAP_EXAMPLE

-------------------- --------------------

THE three muskETeers The Three Musketeers

ali and*41*thieves Ali And*41*Thieves

mississippi Mississippi

mister INDIA Mister India

INSTR
INSTR(c1,c2[,i[,j]]) takes four arguments, where c1 and c2 are character strings and i
and j are integers. This function returns the numeric character position in c1 where the j

occurrence of c2 is found. The search begins at the i character position in c1. INSTR returns
a 0 when the requested string is not found. If i is negative, the search is performed back-
ward, from right to left, but the position is still counted from left to right. Both i and j
default to 1, and j cannot be negative.

95127c02.indd 71 2/18/09 6:46:39 AM

72 Chapter 2 N Using Single-Row Functions

The following example finds the first occurrence of i in the string starting from the
fourth position of the string:

SELECT data_value, INSTR(data_value,’i’,4,1) instr_example

FROM sample_data;

DATA_VALUE INSTR_EXAMPLE Comment

-------------------- ------------- ---

THE three muskETeers 0 There is no “i” in the data value; so “0”

ali and*41*thieves 14 The first “i” is skipped, since we start

 at the 4th position. So the “i” in the 14th

 position is picked

mississippi 5 the first i in 2nd position is skipped

mister INDIA 0 INDIA has an “I” (upper case); so no

 match for “i”

Here is another example using a negative argument for the beginning character position.
The search for the is string will start at the fourth position from the end and move to the left.

SELECT data_value, INSTR(data_value,’is’,-4,1) instr_example

FROM sample_data;

DATA_VALUE INSTR_EXAMPLE

-------------------- -------------

THE three muskETeers 0

ali and*41*thieves 0

mississippi 5

mister INDIA 2

INSTRB
INSTRB(c1,c2[,i[,j]]) is the same as INSTR(), except it returns bytes instead of characters.
For single-byte character sets, INSTRB() is equivalent to INSTR().

LENGTH
LENGTH(c) takes a single argument, where c is a character string. This function returns the
numeric length in characters of c. If c is NULL, a NULL is returned.

SELECT data_value, LENGTH(data_value) length_example

FROM sample_data;

95127c02.indd 72 2/18/09 6:46:39 AM

Using Single-Row Character Functions 73

DATA_VALUE LENGTH_EXAMPLE

-------------------- --------------

THE three muskETeers 20

ali and*41*thieves 18

mississippi 11

mister INDIA 12

LENGTHB
LENGTHB(c) is the same as LENGTH(), except it returns bytes instead of characters. For sin-
gle-byte character sets, LENGTHB() is equivalent to LENGTH().

LOWER
LOWER(c) takes a single argument, where c is a character string. This function returns the
character string c with all characters in lowercase. See also UPPER for the inverse operation.

SELECT data_value, LOWER(data_value) lower_example

FROM sample_data;

DATA_VALUE LOWER_EXAMPLE

-------------------- --------------------

THE three muskETeers the three musketeers

ali and*41*thieves ali and*41*thieves

mississippi mississippi

mister INDIA mister india

LPAD
LPAD(c1, i [,c2]) takes three arguments, where c1 and c2 are character strings and i is
an integer. This function returns the character string c1 expanded in length to i characters,
using c2 to fill in space as needed on the left side of c1. If c1 is more than i characters, it is
truncated to i characters. c2 defaults to a single space. See also RPAD.

The following example adds * to the SALARY column toward the left side. Since it does
not specify a fill-in character when LPAD is applied to last_name, Oracle uses the default space
as the fill-in character.

SELECT LPAD(last_name,10) lpad_lname,

 LPAD(salary,8,’*’) lpad_salary

FROM employees

WHERE last_name like ‘J%’;

95127c02.indd 73 2/18/09 6:46:39 AM

74 Chapter 2 N Using Single-Row Functions

LPAD_LNAME LPAD_SAL

---------- --------

 Johnson ****6200

 Jones ****2800

LTRIM
LTRIM(c1 [,c2]) takes two arguments, where c1 and c2 are character strings. This function
returns c1 without any leading characters that appear in c2. If no c2 characters are leading
characters in c1, then c1 is returned unchanged. c2 defaults to a single space. See also RTRIM
and TRIM.

SELECT LTRIM(‘Mississippi’,’Mis’) test1

 ,LTRIM(‘Rpadded ‘) test2

 ,LTRIM(‘ Lpadded’) test3

 ,LTRIM(‘ Lpadded’, ‘Z’) test4

FROM dual;

TES TEST2 TEST3 TEST4

--- ----------------- ------- ------------

ppi Rpadded Lpadded Lpadded

In the previous example, all occurrences of the trimmed characters M, i, and s are
trimmed from the input string Mississippi, beginning on the left (with M) and continuing
until the first character that is not an M, i, or s is encountered. Note that the trailing i is
not trimmed; only the leading characters are removed. In TEST4, there is no occurrence of
Z, so the input string is returned unchanged.

REPLACE
REPLACE(c1, c2 [,c3]) takes three arguments, where c1, c2, and c3 are character strings.
This function returns c1 with all occurrences of c2 replaced with c3. c3 defaults to NULL. If
c3 is NULL, all occurrences of c2 are removed. If c2 is NULL, then c1 is returned unchanged.
If c1 is NULL, then NULL is returned.

SELECT REPLACE(‘uptown’,’up’,’down’) FROM dual;

REPLACE(

downtown

This function can come in handy when you need to do some dynamic substitutions. For
example, suppose you have a number of indexes that were created in the _DATA tablespace
instead of in the _INDX tablespace:

95127c02.indd 74 2/18/09 6:46:39 AM

Using Single-Row Character Functions 75

SELECT index_name, tablespace_name

FROM user_indexes

WHERE tablespace_name like ‘%DATA%’;

INDEX_NAME TABLESPACE_NAME

---------------- ----------------

PK_DEPT HR_DATA

PK_PO_MASTER PO_DATA

You can generate the Data Definition Language (DDL) to rebuild these misplaced
indexes in the correct location. In this scenario, you know your tablespace naming conven-
tion has an INDX tablespace for every DATA tablespace. You use the REPLACE function to
generate the new tablespace name, replacing DATA with INDX. So, the HR index is rebuilt in
the HR_INDX tablespace, and the PO index is rebuilt in the PO_INDX tablespace.

SELECT ‘ALTER INDEX ‘||index_name||

 ‘ rebuild tablespace ‘||

REPLACE(tablespace_name, ‘DATA’, ‘INDX’)|| ‘; ‘ DDL

FROM user_indexes

WHERE tablespace_name LIKE ‘%DATA%’;

DDL

ALTER INDEX PK_DEPT rebuild tablespace HR_INDX;

ALTER INDEX PK_PO_MASTER rebuild tablespace PO_INDX;

RPAD
RPAD(c1, i [, c2]) takes three arguments, where c1 and c2 are character strings and i is
an integer. This function returns the character string c1 expanded in length to i characters,
using c2 to fill in space as needed on the right side of c1. If c1 is more than i characters, it
is truncated to i characters. c2 defaults to a single space. See also LPAD.

SELECT RPAD(first_name,15,’.’) rpad_fname, lpad(job_id,12,’.’) lpad_jid

FROM employees

WHERE first_name like ‘B%’;

RPAD_FNAME LPAD_JID

--------------- ------------

Bruce..........IT_PROG

Britney........SH_CLERK

95127c02.indd 75 2/18/09 6:46:39 AM

76 Chapter 2 N Using Single-Row Functions

RTRIM
RTRIM(c1 [,c2]) takes two arguments, where c1 and c2 are character strings. This func-
tion returns c1 without any trailing characters that appear in c2. If no c2 characters are
trailing characters in c1, then c1 is returned unchanged. c2 defaults to a single space. See
also LTRIM and TRIM.

SELECT RTRIM(‘Mississippi’,’ip’) test1

 ,RTRIM(‘Rpadded ‘) test2

 ,RTRIM(‘Rpadded ‘, ‘Z’) test3

 ,RTRIM(‘ Lpadded’) test4

FROM dual;

TEST1 TEST2 TEST3 TEST4

------- ------- ----------- ----------------

Mississ Rpadded Rpadded Lpadded

SOUNDEX
SOUNDEX(c1) takes a single argument, where c1 is a character string. This function returns
the Soundex phonetic representation of c1. The SOUNDEX function is usually used to locate
names that sound alike. The example returns the records with first names that sound like
“Stevan.”

SELECT first_name, last_name

FROM employees

WHERE SOUNDEX(first_name) = SOUNDEX(‘Stevan’);

FIRST_NAME LAST_NAME

-------------------- -------------------------

Steven King

Steven Markle

Stephen Stiles

SUBSTR
SUBSTR(c1, x [, y]) takes three arguments, where c1 is a character string and both x and
y are integers. This function returns the portion of c1 that is y characters long, beginning
at position x. If x is negative, the position is counted backward (that is, right to left). This
function returns NULL if y is 0 or negative. y defaults to the remainder of string c1.

SELECT SUBSTR(‘The Three Musketeers’,1,3) Part1

 ,SUBSTR(‘The Three Musketeers’,5,5) Part2

95127c02.indd 76 2/18/09 6:46:40 AM

Using Single-Row Character Functions 77

 ,SUBSTR(‘The Three Musketeers’,11) Part3

 ,SUBSTR(‘The Three Musketeers’,-5) Part4

FROM dual;

PAR PART2 PART3 PART4

--- ----- ---------- -----

The Three Musketeers teers

parsing the Filename from the Whole path

Let’s look at a real example from the life of a DBA. Suppose you want to extract only the
filename from dba_data_files without the path name; you could use the following SQL.
Here the INSTR function is nested inside a SUBSTR function. Single-row functions can be
nested to any level. When functions are nested, the innermost function is evaluated first.
The INSTR function is used to find the character position where the last \ appears in the
filename string (looking for the first occurrence from the end). This position is passed
into the SUBSTR function as the start position.

SELECT file_name,

 SUBSTR(file_name, INSTR(file_name,’\’, -1,1)+1) name

FROM dba_data_files;

FILE_NAME NAME

-- -------------

C:\ORACLE\ORADATA\W11GR1\USERS01.DBF USERS01.DBF

C:\ORACLE\ORADATA\W11GR1\UNDOTBS01.DBF UNDOTBS01.DBF

C:\ORACLE\ORADATA\W11GR1\SYSAUX01.DBF SYSAUX01.DBF

C:\ORACLE\ORADATA\W11GR1\SYSTEM01.DBF SYSTEM01.DBF

C:\ORACLE\ORADATA\W11GR1\EXAMPLE01.DBF EXAMPLE01.DBF

To perform the same operation on Unix or Linux databases, replace \ in the INSTR func-
tion with / because / is used on Linux/Unix to separate directories.

Let’s review another example using the Linux or Unix platform. Suppose you want to find
out all the file systems (mount points) used by your database; you could use the follow-
ing SQL:

SELECT DISTINCT

 SUBSTR(file_name, 1, INSTR(file_name,’/’, 1,2)-1) fs_name

FROM dba_data_files;

95127c02.indd 77 2/18/09 6:46:40 AM

78 Chapter 2 N Using Single-Row Functions

FS_NAME

/u01

/u05

/ora_temp

/ora_undo

In this example, you started looking for the second occurrence of / using the INSTR func-
tion and used SUBSTR to extract only the characters from 1 through the location before
the second occurrence of / in the filename (hence the –1).

SUBSTRB
SUBSTRB(c1, i[, j]) takes three arguments, where c1 is a character string and both i and
j are integers. This function is the same as SUBSTR, except i and j are counted in bytes
instead of characters. For single-byte character sets, they are equivalent.

TRANSLATE
TRANSLATE(c1, c2 ,c3) takes three arguments, where c1, c2, and c3 are character strings.
This function returns c1 with all occurrences of characters in c2 replaced with the position-
ally corresponding characters in c3. A NULL is returned if any of c1, c2, or c3 is NULL. If c3 has
fewer characters than c2, the unmatched characters in c2 are removed from c1. If c2 has fewer
characters than c3, the unmatched characters in c3 are ignored. TRANSLATE is similar
to the REPLACE function. REPLACE substitutes a single string from another string, whereas
TRANSLATE makes several single-character one-to-one substitutions.

The following example substitutes * for a, # for e, and $ for i, and it removes o and u
from the last_name column:

SELECT last_name, TRANSLATE(last_name, ‘aeiou’, ‘*#$’) no_vowel

FROM employees

WHERE last_name like ‘S%’;

LAST_NAME NO_VOWEL

------------------------- --------------

Sarchand S*rch*nd

Sciarra Sc$*rr*

Seo S#

Smith Sm$th

Sullivan Sll$v*n

Sully Slly

95127c02.indd 78 2/18/09 6:46:40 AM

Using Single-Row Character Functions 79

Here is another example, where the case is reversed; uppercase letters are converted to
lowercase, and lowercase letters are converted to uppercase:

SELECT data_value, TRANSLATE(data_value,

‘abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,

‘ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’)

FROM sample_data;

DATA_VALUE TRANSLATE(DATA_VALUE

-------------------- --------------------

THE three muskETeers the THREE MUSKetEERS

ali and*41*thieves ALI AND*41*THIEVES

mississippi MISSISSIPPI

mister INDIA MISTER india

TRIM
TRIM([[c1] c2 FROM] c3) can take three arguments, where c2 and c3 are character strings.
If present, c1 can be one of the following literals: LEADING, TRAILING, or BOTH. This function
returns c3 with all c1 (leading, trailing, or both) occurrences of characters in c2 removed.
A NULL is returned if any of c1, c2, or c3 is NULL. c1 defaults to BOTH. c2 defaults to a space
character. c3 is the only mandatory argument. If c2or c3 is NULL, the function returns a NULL.
It’s equivalent to applying both LTRIM and RTRIM on the string c3.

SELECT TRIM(‘ fully padded ‘) test1

 ,TRIM(‘ left padded’) test2

 ,TRIM(‘right padded ‘) test3

FROM dual;

TEST1 TEST2 TEST3

------------ ----------- ------------

fully padded left padded right padded

UPPER
UPPER(c) takes a single argument, where c is a character string. This function returns
the character string c with all characters in uppercase. UPPER frequently appears in WHERE
clauses, when you’re not sure of the case of the data in the table. See also LOWER.

SELECT first_name, last_name

FROM employees

WHERE UPPER(first_name) = ‘JOHN’;

95127c02.indd 79 2/18/09 6:46:40 AM

80 Chapter 2 N Using Single-Row Functions

FIRST_NAME LAST_NAME

-------------------- --------------------

John Chen

SELECT data_value, UPPER(data_value) upper_data

FROM sample_data;

DATA_VALUE UPPER_DATA

-------------------- --------------------

THE three muskETeers THE THREE MUSKETEERS

ali and*41*thieves ALI AND*41*THIEVES

mississippi MISSISSIPPI

mister INDIA MISTER INDIA

Using Single-Row Numeric Functions
When you think of numeric functions, the tasks that come to mind are finding a total, find-
ing the average, counting the number of records, and so on. These numeric functions are
group functions that operate on one or more rows. I’ll discuss group functions in Chapter 3,
“Using Group Functions.”

In the following sections, I will review the numeric functions used on single rows. Sin-
gle-row numeric functions operate on numeric data and perform some kind of mathemati-
cal or arithmetic manipulation. When using a literal in a numeric function, do not enclose
it in single quotes. Literals in single quotes are treated as a character datatype.

Numeric Function Overview
Table 2.2 summarizes the single-row numeric functions in Oracle 11g. I will cover each of
these functions in the “Numeric Function Descriptions” section.

ta b le 2 . 2 Numeric Function Summary

Function Description

ABS Returns the absolute value

ACOS Returns the arc cosine

ASIN Returns the arc sine

ATAN Returns the arc tangent

95127c02.indd 80 2/18/09 6:46:40 AM

Using Single-Row Numeric Functions 81

Function Description

ATAN2 Returns the arc tangent; takes two inputs

BITAND Returns the result of a bitwise AND on two inputs

CEIL Returns the next higher integer

COS Returns the cosine

COSH Returns the hyperbolic cosine

EXP Returns the base of natural logarithms raised to a power

FLOOR Returns the next smaller integer

LN Returns the natural logarithm

LOG Returns the logarithm

MOD Returns the modulo (remainder) of a division operation

NANVL Returns an alternate number if the value is Not a Number (NaN) for
BINARY_FLOAT and BINARY_DOUBLE numbers

POWER Returns a number raised to an arbitrary power

REMAINDER Returns the remainder in a division operation

ROUND Rounds a number

SIGN Returns an indicator of sign: negative, positive, or zero

SIN Returns the sine

SINH Returns the hyperbolic sine

SQRT Returns the square root of a number

TAN Returns the tangent

TANH Returns the hyperbolic tangent

TRUNC Truncates a number

WIDTH_BUCKET Creates equal-width histograms

ta b le 2 . 2 Numeric Function Summary (continued)

95127c02.indd 81 2/18/09 6:46:40 AM

82 Chapter 2 N Using Single-Row Functions

Numeric Function Descriptions
Numeric functions have numeric arguments and return numeric values. The trigonometric
functions all operate on radians, not degrees.

The numeric functions are arranged in alphabetical order, with descriptions and exam-
ples of each one.

SIGN, ROUND, and TRUNC are most commonly used numeric functions—pay particular
attention to them. FLOOR, CEIL, MOD, and REMAINDER are also important functions that can
appear in the test. TRUNC and ROUND functions can take numeric input or a datetime input.
These two functions are discussed in the “Using Single-Row Date Functions” section to
illustrate their behavior with a datetime datatype input.

ABS
ABS(n) takes a single argument, where n is a numeric datatype (NUMBER, BINARY_
FLOAT or BINARY_DOUBLE). This function returns the absolute value of n.

SELECT ABS(-52) negative, ABS(52) positive

FROM dual;

 NEGATIVE POSITIVE

---------- ----------

 52 52

ACOS
ACOS(n) takes a single argument, where n is a numeric datatype between –1 and 1. This
function returns the arc cosine of n expressed in radians, accurate to 30 digits of precision.

SELECT ACOS(-1) PI, ACOS(0) ACOSZERO,

 ACOS(.045) ACOS045, ACOS(1) ZERO

FROM dual;

 PI ACOSZERO ACOS045 ZERO

---------- ---------- ---------- ----------

3.14159265 1.57079633 1.52578113 0

ASIN
ASIN(n) takes a single argument, where n is a numeric datatype between –1 and 1. This
function returns the arc sine of n expressed in radians, accurate to 30 digits of precision.

SELECT ASIN(1) high, ASIN(0) middle, ASIN(-1) low

FROM dual;

95127c02.indd 82 2/18/09 6:46:40 AM

Using Single-Row Numeric Functions 83

 HIGH MIDDLE LOW

---------- ---------- ----------

1.57079633 0 -1.5707963

ATAN
ATAN(n) takes a single argument, where n is a numeric datatype. This function returns the
arc tangent of n expressed in radians, accurate to 30 digits of precision.

SELECT ATAN(9E99) high, ATAN(0) middle, ATAN(-9E99) low

FROM dual;

 HIGH MIDDLE LOW

---------- ---------- ----------

1.57079633 0 -1.5707963

ATAN2
ATAN2(n1, n2) takes two arguments, where n1 and n2 are numbers. This function returns
the arc tangent of n1 and n2 expressed in radians, accurate to 30 digits of precision.
ATAN2(n1,n2) is equivalent to ATAN(n1/n2).

SELECT ATAN2(9E99,1) high, ATAN2(0,3.1415) middle, ATAN2(-9E99,1) low

FROM dual;

 HIGH MIDDLE LOW

---------- ---------- ----------

1.57079633 0 -1.5707963

BITAND
BITAND(n1, n2) takes two arguments, where n1 and n2 are positive integers or zero. This
function performs a bitwise AND operation on the two input values and returns the results,
also an integer. It is used to examine bit fields.

Here are two examples of BITAND. The first one performs a bitwise AND operation on 6
(binary 0110) and 3 (binary 0011). The result is 2 (binary 0010). Similarly, the bitwise AND
between 8 (binary 1000) and 2 (binary 0010) is 0 (0000).

SELECT BITAND(6,3) T1, BITAND(8,2) T2

FROM dual;

 T1 T2

---------- ----------

 2 0

95127c02.indd 83 2/18/09 6:46:40 AM

84 Chapter 2 N Using Single-Row Functions

CEIL
CEIL(n) takes a single argument, where n is a numeric datatype. This function returns the
smallest integer that is greater than or equal to n. CEIL rounds up to a whole number. See
also FLOOR.

SELECT CEIL(9.8), CEIL(-32.85), CEIL(0), CEIL(5)

FROM dual;

CEIL(9.8) CEIL(-32.85) CEIL(0) CEIL(5)

---------- ------------ ---------- ----------

 10 -32 0 5

COS
COS(n) takes a single argument, where n is a numeric datatype in radians. This function
returns the cosine of n, accurate to 36 digits of precision.

SELECT COS(-3.14159) FROM dual;

COS(-3.14159)

 -1

COSH
COSH(n) takes a single argument, where n is a numeric datatype. This function returns the
hyperbolic cosine of n, accurate to 36 digits of precision.

SELECT COSH(1.4) FROM dual;

 COSH(1.4)

2.15089847

EXP
EXP(n) takes a single argument, where n is a numeric datatype. This function returns e (the
base of natural logarithms) raised to the n power, accurate to 36 digits of precision.

SELECT EXP(1) “e” FROM dual;

 e

2.71828183

95127c02.indd 84 2/18/09 6:46:40 AM

Using Single-Row Numeric Functions 85

FLOOR
FLOOR(n) takes a single argument, where n is a numeric datatype. This function returns the
largest integer that is less than or equal to n. FLOOR rounds down to a whole number. See
also CEIL.

SELECT FLOOR(9.8), FLOOR(-32.85), FLOOR(137)

FROM dual;

FLOOR(9.8) FLOOR(-32.85) FLOOR(137)

---------- ------------- ----------

 9 -33 137

LN
LN(n) takes a single argument, where n is a numeric datatype greater than 0. This function
returns the natural logarithm of n, accurate to 36 digits of precision.

SELECT LN(2.7) FROM dual;

 LN(2.7)

.993251773

LOG
LOG(n1, n2) takes two arguments, where n1 and n2 are numeric datatypes. This function
returns the logarithm base n1 of n2, accurate to 36 digits of precision.

SELECT LOG(8,64), LOG(3,27), LOG(2,1024), LOG(2,8)

FROM dual;

 LOG(8,64) LOG(3,27) LOG(2,1024) LOG(2,8)

---------- ---------- ----------- ----------

 2 3 10 3

MOD
MOD(n1, n2) takes two arguments, where n1 and n2 are any numeric datatype. This func-
tion returns n1 modulo n2, or the remainder of n1 divided by n2. If n1 is negative, the result
is negative. The sign of n2 has no effect on the result. If n2 is zero, the result is n1. See also
REMAINDER.

SELECT MOD(14,5), MOD(8,2.5), MOD(-64,7), MOD(12,0)

FROM dual;

95127c02.indd 85 2/18/09 6:46:41 AM

86 Chapter 2 N Using Single-Row Functions

 MOD(14,5) MOD(8,2.5) MOD(-64,7) MOD(12,0)

---------- ---------- ---------- ---------

 4 .5 -1 12

NANVL
This function is used with BINARY_FLOAT and BINARY_DOUBLE datatype numbers to
return an alternate value if the input is NaN.

The following example defines the NULL display as ? to show NULL value. The TO_BINARY_
FLOAT function (discussed later in the chapter) is used to convert input to a BINARY_
FLOAT datatype number.

SET NULL ?

SELECT NANVL(TO_BINARY_FLOAT(‘NaN’), 0) T1,

 NANVL(TO_BINARY_FLOAT(‘NaN’), NULL) T2

FROM dual;

 T1 T2

---------- ----------

 0 ?

POWER
POWER(n1, n2) takes two arguments, where n1 and n2 are numeric datatypes. This function
returns n1 to the n2 power.

SELECT POWER(2,10), POWER(3,3), POWER(5,3), POWER(2,-3)

FROM dual;

POWER(2,10) POWER(3,3) POWER(5,3) POWER(2,-3)

----------- ---------- ---------- -----------

 1024 27 125 .125

REMAINDER
REMAINDER(n1, n2) takes two arguments, where n1 and n2 are any numeric datatype. This
function returns the remainder of n1 divided by n2. If n1 is negative, the result is negative.
The sign of n2 has no effect on the result. If n2 is zero and the datatype of n1 is NUMBER,
an error is returned; if the datatype of n1 is BINARY_FLOAT or BINARY_DOUBLE,
NaNis returned. See also MOD.

SELECT REMAINDER(13,5), REMAINDER(12,5), REMAINDER(12.5, 5)

FROM dual;

95127c02.indd 86 2/18/09 6:46:41 AM

Using Single-Row Numeric Functions 87

REMAINDER(13,5) REMAINDER(12,5) REMAINDER(12.5,5)

--------------- --------------- -----------------

 -2 2 2.5

The difference between MOD and REMAINDER is that MOD uses the FLOOR function, whereas
REMAINDER uses the ROUND function in the formula. If you apply MOD function to the previous
example, the results are the same except for the first column:

SELECT MOD(13,5), MOD(12,5), MOD(12.5, 5)

FROM dual;

 MOD(13,5) MOD(12,5) MOD(12.5,5)

---------- ---------- -----------

 3 2 2.5

Here is another example of using REMAINDER with a BINARY_FLOAT number, having n2
as zero:

SELECT REMAINDER(TO_BINARY_FLOAT(‘13.0’), 0) RBF

from dual;

 RBF

 Nan

ROUND
ROUND(n1 [,n2]) takes two arguments, where n1 is a numeric datatype and n2 is an integer.
This function returns n1 rounded to n2 digits of precision to the right of the decimal. If n2
is negative, n1 is rounded to the left of the decimal. If n2 is omitted, the default is zero. This
function is similar to TRUNC.

SELECT ROUND(123.489), ROUND(123.489, 2),

 ROUND(123.489, -2), ROUND(1275, -2)

FROM dual;

ROUND(123.489) ROUND(123.489,2) ROUND(123.489,-2) ROUND(1275,-2)

-------------- ---------------- ----------------- --------------

 123 123.49 100 1300

95127c02.indd 87 2/18/09 6:46:41 AM

88 Chapter 2 N Using Single-Row Functions

SIGN
SIGN(n) takes a single argument, where n is a numeric datatype. This function returns –1 if
n is negative, 1 if n is positive, and 0 if n is 0.

SELECT SIGN(-2.3), SIGN(0), SIGN(47)

FROM dual;

SIGN(-2.3) SIGN(0) SIGN(47)

---------- ---------- ----------

 -1 0 1

SIN
SIN(n) takes a single argument, where n is a number in radians. This function returns the
sine of n, accurate to 36 digits of precision.

SELECT SIN(1.57079) FROM dual;

SIN(1.57079)

 1

SINH
SINH(n) takes a single argument, where n is a number. This function returns the hyperbolic
sine of n, accurate to 36 digits of precision.

SELECT SINH(1) FROM dual;

 SINH(1)

1.17520119

SQRT
SQRT(n) takes a single argument, where n is a numeric datatype. This function returns the
square root of n.

SELECT SQRT(64), SQRT(49), SQRT(5)

FROM dual;

 SQRT(64) SQRT(49) SQRT(5)

---------- ---------- ----------

 8 7 2.23606798

95127c02.indd 88 2/18/09 6:46:41 AM

Using Single-Row Numeric Functions 89

TAN
TAN(n) takes a single argument, where n is a numeric datatype in radians. This function
returns the tangent of n, accurate to 36 digits of precision.

SELECT TAN(1.57079633/2) “45_degrees”

FROM dual;

45_Degrees

 1

TANH
TANH(n) takes a single argument, where n is a numeric datatype. This function returns the
hyperbolic tangent of n, accurate to 36 digits of precision.

SELECT TANH(ACOS(-1)) hyp_tan_of_pi

FROM dual;

HYP_TAN_OF_PI

 .996272076

TRUNC
TRUNC(n1 [,n2]) takes two arguments, where n1 is a numeric datatype and n2 is an integer.
This function returns n1 truncated to n2 digits of precision to the right of the decimal. If n2
is negative, n1 is truncated to the left of the decimal. See also ROUND.

SELECT TRUNC(123.489), TRUNC(123.489, 2),

 TRUNC(123.489, -2), TRUNC(1275, -2)

FROM dual;

TRUNC(123.489) TRUNC(123.489,2) TRUNC(123.489,-2) TRUNC(1275,-2)

-------------- ---------------- ----------------- --------------

 123 123.48 100 1200

WIDTH_BUCKET
You can use WIDTH_BUCKET(n1, min_val, max_val, buckets) to build histograms of equal
width. The first argument n1 can be an expression of a numeric or datetime datatype. The
second and third arguments, min_val and max_val, indicate the end points for the histo-
gram’s range. The fourth argument, buckets, indicates the number of buckets.

95127c02.indd 89 2/18/09 6:46:41 AM

90 Chapter 2 N Using Single-Row Functions

The following example divides the salary into a 10-bucket histogram within the range
2,500 to 11,000. If the salary falls below 2500, it will be in the underflow bucket (bucket 0),
and if the salary exceeds 11,000, it will be in the overflow bucket (buckets + 1).

SELECT first_name, salary,

 WIDTH_BUCKET(salary, 2500, 11000, 10) hist

FROM employees

WHERE first_name like ‘J%’;

FIRST_NAME SALARY HIST

-------------------- ---------- ----------

Jennifer 4400 3

John 8200 7

Jose Manuel 7800 7

Julia 3200 1

James 2400 0

James 2500 1

Jason 3300 1

John 2700 1

Joshua 2500 1

John 14000 11

Janette 10000 9

Jonathon 8600 8

Jack 8400 7

Jean 3100 1

Julia 3400 2

Jennifer 3600 2

Using Single-Row Date Functions
Single-row date functions operate on datetime datatypes. A datetime is a coined word to
identify datatypes used to define dates and times. The datetime datatypes in Oracle 11g are
DATE, TIMESTAMP, and INTERVAL. Most have one or more date arguments, and most
return a datetime value. Date data is stored internally as numbers. The whole-number por-
tion is the number of days since January 1, 4712 BC, and the decimal portion is the frac-
tion of a day (for example, 0.5=12 hours).

95127c02.indd 90 2/18/09 6:46:41 AM

Using Single-Row Date Functions 91

Date-Format Conversion
National-language support (NLS) parameters and arguments allow you to internationalize
your Oracle database system. NLS internationalizations include date representations, char-
acter sets, alphabets, and alphabetical ordering.

Oracle will implicitly or automatically convert its numeric date data to and from char-
acter data using the format model specified with NLS_DATE_FORMAT. The default format is
DD-MON-RR (see Table 2.7). You can change this date-format model for each session with the
ALTER SESSION SET NLS_DATE_FORMAT command. Here’s an example:

SQL> SELECT SYSDATE FROM dual;

SYSDATE

31-MAR-08

SQL> ALTER SESSION SET NLS_DATE_FORMAT=’DD-Mon-YYYY HH24:MI:SS’;

Session altered.

SQL> SELECT SYSDATE FROM dual;

SYSDATE

31-Mar-2008 10:19:11

This ALTER SESSION command will set the implicit conversion mechanism to display
date data in the format specified, such as 12-Dec-2002 15:45:32. This conversion works
both ways. If the character string ‘30-Nov-2002 20:30:00’ were inserted, updated, or
assigned to a date column or variable, the correct date would be entered.

If the format model were DD/MM/YY or MM/DD/YY, there could be some ambiguity in
the conversion of some dates, such as 12 April 2000 (04/12/00 or 12/04/00). To avoid
problems with implicit conversions, Oracle provides explicit date/character-conversion
functions: TO_DATE, TO_CHAR, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_DSINTERVAL, and
TO_YMINTERVAL. These explicit conversion functions are covered in the “Using Single-Row
Conversion Functions” section later in this chapter.

Date-Function Overview
Table 2.3 summarizes the single-row date functions. I will cover each of these functions in
the “Date-Function Descriptions” section.

95127c02.indd 91 2/18/09 6:46:41 AM

92 Chapter 2 N Using Single-Row Functions

ta b le 2 . 3 Date-Function Summary

Function Description

ADD_MONTHS Adds a number of months to a date

CURRENT_DATE Returns the current date and time in a DATE datatype

CURRENT_TIMESTAMP Returns the current date and time in a TIMESTAMP datatype

DBTIMEZONE Returns the database’s time zone

EXTRACT Returns a component of a date/time expression

FROM_TZ Returns a timestamp with time zone for a given timestamp

LAST_DAY Returns the last day of a month

LOCALTIMESTAMP Returns the current date and time in the session time zone

MONTHS_BETWEEN Returns the number of months between two dates

NEW_TIME Returns the date/time in a different time zone

NEXT_DAY Returns the next day of a week following a given date

ROUND Rounds a date/time

SESSIONTIMEZONE Returns the time zone for the current session

SYS_EXTRACT_UTC Returns the UTC (GMT) for a timestamp with a time zone

SYSDATE Returns the current date and time in the DATE datatype

SYSTIMESTAMP Returns the current timestamp in the TIMESTAMP datatype

TRUNC Truncates a date to a given granularity

TZ_OFFSET Returns the offset from UTC for a time zone name

Date-Function Descriptions
The date functions are arranged in alphabetical order except the first three, with descrip-
tions and examples of each one. SYSDATE, SYSTIMESTAMP, and LOCALTIMESTAMP are used in
many examples, and hence I’ll discuss them first.

95127c02.indd 92 2/18/09 6:46:41 AM

Using Single-Row Date Functions 93

SYSDATE
SYSDATE takes no arguments and returns the current date and time to the second for the
operating-system host where the database resides. The value is returned in a DATE data-
type. The format that the value returned is based on NLS_DATE_FORMAT, which can be
altered for the session using the ALTER SESSION SET NLS_DATE_FORMAT command. The for-
mat mask for dates and timestamps are discussed later in the chapter.

ALTER SESSION SET NLS_DATE_FORMAT=’DD-MON-YYYY HH:MI:SS AM’;

Session altered.

SELECT SYSDATE FROM dual;

SYSDATE

31-MAR-2008 12:00:13 PM

SYSDATE is one of the most commonly used Oracle functions. There’s a
good chance you’ll see it on the exam. Since the SYSDATE value is returned
based on the time of the host server where the database resides, the result
will be the same for a user sitting in New York or one in Hong Kong.

SYSTIMESTAMP
SYSTIMESTAMP takes no arguments and returns a TIMESTAMP WITH TIME ZONE for
the current database date and time (the time of the host server where the database resides).
The fractional second is returned with six digits of precision. The format of the value
returned is based on NLS_TIMESTAMP_TZ_FORMAT, which can be altered for the session using
the ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT command.

SQL> SELECT SYSDATE, SYSTIMESTAMP FROM dual;

SYSDATE

SYSTIMESTAMP

31-MAR-08

31-MAR-08 12.01.49.280000 PM -05:00

ALTER SESSION SET NLS_DATE_FORMAT=’DD-MON-YYYY HH24:MI:SS’;

Session altered.

95127c02.indd 93 2/18/09 6:46:41 AM

94 Chapter 2 N Using Single-Row Functions

ALTER SESSION SET

 NLS_TIMESTAMP_TZ_FORMAT=’YYYY-MON-DD HH:MI:SS.FF TZR’;

Session altered.

SELECT SYSDATE, SYSTIMESTAMP FROM dual;

SYSDATE

SYSTIMESTAMP

31-MAR-2008 12:09:51

2008-MAR-31 12:09:51.429000 -05:00

LOCALTIMESTAMP
LOCALTIMESTAMP([p]) returns the current date and time in the session’s time zone to p digits
of precision. p can be 0 to 9 and defaults to 6. This function returns the value in the datatype
TIMESTAMP. You can set the client time zone using the ALTER SESSION SET TIME_ZONE
command.

The following example illustrates LOCALTIMESTAMP and how to change the time zone for
the session. The database is in U.S./Central time zone, and the client is in U.S./Eastern time
zone. See also CURRENT_TIMESTAMP.

SELECT SYSTIMESTAMP, LOCALTIMESTAMP FROM dual;

SYSTIMESTAMP

LOCALTIMESTAMP

31-MAR-08 01.02.49.272000 PM -05:00

31-MAR-08 02.02.49.272000 PM

ALTER SESSION SET TIME_ZONE = ‘-8:00’;

ADD_MONTHS
ADD_MONTHS(d, i) takes two arguments, where d is a date and i is an integer. This function
returns the date d plus i months. If i is a decimal number, the database will implicitly con-
vert it to an integer by truncating the decimal portion (for example, 3.9 becomes 3). If <d>
is the last day of the month or the resulting month has fewer days, then the result is the last
day of the resulting month.

SELECT SYSDATE, ADD_MONTHS(SYSDATE, -1) PREV_MONTH,

 ADD_MONTHS(SYSDATE, 12) NEXT_YEAR

FROM dual;

95127c02.indd 94 2/18/09 6:46:41 AM

Using Single-Row Date Functions 95

SYSDATE PREV_MONT NEXT_YEAR

--------- --------- ---------

31-MAR-08 29-FEB-08 31-MAR-09

CURRENT_DATE
CURRENT_DATE takes no arguments and returns the current date in the Gregorian calendar
for the session’s (client) time zone. This function is similar to SYSDATE, whereas SYSDATE
returns the current date for the database’s (host’s) time zone. You can set the client time
zone using the ALTER SESSION SET TIME_ZONE command.

The following example illustrates CURRENT_DATE and how to change the time zone for
the session. The database is in U.S./Central time zone, and the client is in U.S./Mountain
time zone.

ALTER SESSION SET NLS_DATE_FORMAT=’DD-Mon-YYYY HH24:MI:SS’;

Session altered.

SELECT SYSDATE, CURRENT_DATE FROM dual;

SYSDATE CURRENT_DATE

-------------------- --------------------

31-Mar-2008 10:52:34 31-Mar-2008 09:52:35

ALTER SESSION SET TIME_ZONE = ‘US/Eastern’;

Session altered.

SELECT SYSDATE, CURRENT_DATE FROM dual;

SYSDATE CURRENT_DATE

-------------------- --------------------

31-Mar-2008 10:53:46 31-Mar-2008 11:53:47

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP([p]) returns the current date and time in the session’s time zone to p dig-
its of precision. p can be an integer 0 through 9 and defaults to 6. See also LOCALTIMESTAMP.
This function is similar to CURRENT_DATE. CURRENT_DATE returns result in the DATE data-
type, whereas CURRENT_TIMESTAMP returns the result in the TIMESTAMP WITH TIME
ZONE datatype.

95127c02.indd 95 2/18/09 6:46:41 AM

96 Chapter 2 N Using Single-Row Functions

SQL> SELECT CURRENT_DATE, CURRENT_TIMESTAMP FROM dual;

CURRENT_DATE

CURRENT_TIMESTAMP

31-Mar-2008 12:23:43

31-MAR-08 12.23.43.305000 PM US/EASTERN

DBTIMEZONE
DBTIMEZONE returns the database’s time zone, as set by the latest CREATE DATABASE or ALTER
DATABASE SET TIME_ZONE statement. Note that after changing the database time zone with
the ALTER DATABASE statement, the database must be bounced (restarted) for the change to
take effect. The time zone is a character string specifying the hours and minutes offset from
UTC (Coordinated Universal Time, also known as GMT, or Greenwich mean time) or a
time zone region name. The valid time zone region names can be found in the TZNAME col-
umn of the view V$TIMEZONE_NAMES. The default time zone for the database is UTC (00:00)
if you do not explicitly set the time zone during database creation.

SQL> SELECT DBTIMEZONE FROM dual;

DBTIME

+00:00

EXTRACT
EXTRACT(c FROM dt) extracts and returns the specified component c of date/time or interval
expression dt. The valid components are YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_
HOUR, TIMEZONE_MINUTE, TIMEZONE_REGION, and TIMEZONE_ABBR. The specified component
must exist in the expression. So, to extract a TIMEZONE_HOUR, the date/time expression must
be a TIMESTAMP WITH TIME ZONE datatype.

Though HOUR, MINUTE, and SECOND exist in the DATE datatype, you can extract only YEAR,
MONTH, and DAY from the DATE dataype expressions.

SELECT SYSDATE, EXTRACT(YEAR FROM SYSDATE) year_d

FROM dual;

SYSDATE YEAR_D

-------------------- ----------

31-MAR-2008 12:29:02 2008

You can extract YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND from the TIMESTAMP
datatype expression. You can extract all the components from the TIMESTAMP WITH
TIMEZONE datatype expression.

95127c02.indd 96 2/18/09 6:46:42 AM

Using Single-Row Date Functions 97

SELECT LOCALTIMESTAMP,

 EXTRACT(YEAR FROM LOCALTIMESTAMP) YEAR_TS,

 EXTRACT(DAY FROM LOCALTIMESTAMP) DAY_TS,

 EXTRACT(SECOND FROM LOCALTIMESTAMP) SECOND_TS

FROM dual;

LOCALTIMESTAMP YEAR_TS DAY_TS SECOND_TS

----------------------------- ------- ------- ---------

31-MAR-08 02.09.32.972000 PM 2008 31 32.972

FROM_TZ
FROM_TZ(ts, tz) returns a TIMESTAMP WITH TIME ZONE for the timestamp ts using
time zone value tz. The character string tz specifies the hours and minutes offset from UTC
or is a time zone region name. The valid time zone region names can be found in the TZNAME
column of the view V$TIMEZONE_NAMES.

SELECT LOCALTIMESTAMP, FROM_TZ(LOCALTIMESTAMP, ‘Japan’) Japan,

FROM_TZ(LOCALTIMESTAMP, ‘-5:00’) Central

FROM dual;

LOCALTIMESTAMP

JAPAN

CENTRAL

31-MAR-08 03.17.38.447000 PM

31-MAR-08 03.17.38.447000 PM JAPAN

31-MAR-08 03.17.38.447000 PM -05:00

LAST_DAY
LAST_DAY(d) takes a single argument, where d is a date. This function returns the last day
of the month for the date d. The return datatype is DATE.

SELECT SYSDATE,

 LAST_DAY(SYSDATE) END_OF_MONTH,

 LAST_DAY(SYSDATE)+1 NEXT_MONTH

FROM dual;

SYSDATE END_OF_MONTH NEXT_MONTH

----------- ------------ -----------

09-SEP-2007 30-SEP-2007 01-OCT-2007

95127c02.indd 97 2/18/09 6:46:42 AM

98 Chapter 2 N Using Single-Row Functions

MONTHS_BETWEEN
MONTHS_BETWEEN(d1, d2) takes two arguments, where d1 and d2 are both dates. This func-
tion returns the number of months that d2 is later than d1. A whole number is returned if d1
and d2 are the same day of the month or if both dates are the last day of a month.

SELECT MONTHS_BETWEEN(‘31-MAR-08’, ‘30-SEP-08’) E1,

 MONTHS_BETWEEN(‘11-MAR-08’, ‘30-SEP-08’) E2,

 MONTHS_BETWEEN(‘01-MAR-08’, ‘30-SEP-08’) E3,

 MONTHS_BETWEEN(‘31-MAR-08’, ‘30-SEP-07’) E4

FROM dual;

 E1 E2 E3 E4

---------- ---------- ---------- ----------

 -6 -6.6129032 -6.9354839 6

NEW_TIME
NEW_TIME(d>, tz1, tz2) takes three arguments, where d is a date and both tz1 and tz2 are
one of the time zone constants. This function returns the date in time zone tz2 for date d in
time zone tz1.

SELECT SYSDATE Dallas, NEW_TIME(SYSDATE, ‘CDT’, ‘HDT’) Hawaii

FROM dual;

DALLAS HAWAII

-------------------- --------------------

31-MAR-2008 14:34:03 31-MAR-2008 10:34:03

Table 2.4 lists the time zone constraints.

ta b le 2 . 4 Time Zone Constants

Code Time Zone

GMT Greenwich mean time

NST Newfoundland standard time

AST Atlantic standard time

ADT Atlantic daylight time

BST Bering standard time

95127c02.indd 98 2/18/09 6:46:42 AM

Using Single-Row Date Functions 99

Code Time Zone

BDT Bering daylight time

CST Central standard time

CDT Central daylight time

EST Eastern standard time

EDT Eastern daylight time

MST Mountain standard time

MDT Mountain daylight time

PST Pacific standard time

PDT Pacific daylight time

YST Yukon standard time

YDT Yukon daylight time

HST Hawaii-Alaska standard time

HDT Hawaii-Alaska daylight time

NEXT_DAY
NEXT_DAY(d, dow) takes two arguments, where d is a date and dow is a text string contain-
ing the full or abbreviated day of the week in the session’s language. This function returns
the next dow following d. The time portion of the return date is the same as the time por-
tion of d.

SELECT SYSDATE, NEXT_DAY(SYSDATE,’Thu’) NEXT_THU,

 NEXT_DAY(‘31-OCT-2008’, ‘Tue’) Election_Day

FROM dual;

SYSDATE NEXT_THU ELECTION_DAY

-------------------- -------------------- --------------------

31-MAR-2008 14:53:54 03-APR-2008 14:53:54 04-NOV-2008 00:00:00

ta b le 2 . 4 Time Zone Constants (continued)

95127c02.indd 99 2/18/09 6:46:42 AM

100 Chapter 2 N Using Single-Row Functions

ROUND
ROUND(<d> [,fmt]) takes two arguments, where d is a date and fmt is a character string
containing a date-format string. This function returns d rounded to the granularity speci-
fied in fmt. If fmt is omitted, d is rounded to the nearest day.

SELECT SYSDATE, ROUND(SYSDATE,’HH24’) ROUND_HOUR,

 ROUND(SYSDATE) ROUND_DATE, ROUND(SYSDATE,’MM’) NEW_MONTH,

 ROUND(SYSDATE,’YY’) NEW_YEAR

FROM dual;

SYSDATE ROUND_HOUR ROUND_DATE

NEW_MONTH NEW_YEAR

-------------------- -------------------- --------------------

31-MAR-2008 14:59:58 31-MAR-2008 15:00:00 01-APR-2008 00:00:00

01-APR-2008 00:00:00 01-JAN-2008 00:00:00

SESSIONTIMEZONE
SESSIONTIMEZONE takes no arguments and returns the database’s time zone offset as per
the last ALTER SESSION statement. SESSIONTIMEZONE will default to DBTIMEZONE if it is not
changed with an ALTER SESSION statement.

SELECT DBTIMEZONE, SESSIONTIMEZONE

FROM dual;

DBTIMEZONE SESSIONTIMEZONE

----------- ---------------

US/Central -05:00

SYS_EXTRACT_UTC
SYS_EXTRACT_UTC(ts) takes a single argument, where ts is a TIMESTAMP WITH TIME
ZONE. This function returns the UTC (GMT) time for the timestamp ts.

SELECT CURRENT_TIMESTAMP local,

 SYS_EXTRACT_UTC(CURRENT_TIMESTAMP) GMT

FROM dual;

LOCAL

GMT

31-MAR-08 04.06.53.731000 PM US/EASTERN

31-MAR-08 08.06.53.731000 PM

95127c02.indd 100 2/18/09 6:46:42 AM

Using Single-Row Conversion Functions 101

TRUNC
TRUNC(d [,fmt]) takes two arguments, where d is a date and fmt is a character string con-
taining a date-format string. This function returns d truncated to the granularity specified
in fmt. See also ROUND.

SELECT SYSDATE, TRUNC(SYSDATE,’HH24’) CURR_HOUR,

 TRUNC(SYSDATE) CURR_DATE, TRUNC(SYSDATE,’MM’) CURR_MONTH,

 TRUNC(SYSDATE,’YY’) CURR_YEAR

FROM dual;

SYSDATE CURR_HOUR CURR_DATE

CURR_MONTH CURR_YEAR

-------------------- -------------------- --------------------

31-MAR-2008 15:04:21 31-MAR-2008 15:00:00 31-MAR-2008 00:00:00

01-MAR-2008 00:00:00 01-JAN-2008 00:00:00

TZ_OFFSET
TZ_OFFSET(tz) takes a single argument, where tz is a time zone offset or time zone name.
This function returns the numeric time zone offset for a textual time zone name. The valid
time zone names can be obtained from the TZNAME column in the V$TIMEZONE_NAMES view.

SELECT TZ_OFFSET(SESSIONTIMEZONE) NEW_YORK,

 TZ_OFFSET(‘US/Pacific’) LOS_ANGELES,

 TZ_OFFSET(‘Europe/London’) LONDON,

 TZ_OFFSET(‘Asia/Singapore’) SINGAPORE

FROM dual;

NEW_YOR LOS_ANG LONDON SINGAPO

------- ------- ------- -------

-04:00 -07:00 +01:00 +08:00

Using Single-Row Conversion Functions
Single-row conversion functions operate on multiple datatypes. The TO_CHAR and TO_NUMBER
functions have a significant number of formatting codes that can be used to display date and
number data in a wide assortment of representations.

You can use the conversion functions to convert a numeric value to a character or a
character value to a numeric or datetime value. Character datatypes in Oracle 11g are
CHAR, VARCHAR2, NCHAR, NVARCHAR2, and CLOB. Numeric datatypes in Oracle

95127c02.indd 101 2/18/09 6:46:42 AM

102 Chapter 2 N Using Single-Row Functions

11g are NUMBER, BINARY_DOUBLE, and BINARY_FLOAT. Datetime datatypes in
Oracle 11g are DATE, TIMESTAMP, and INTERVAL.

Datatype conversion are required and used extensively in day-to-day SQL use. When a
user enters data, it may be in character format, which you may need to convert to a date or
number. Sometimes the data is in a specific format and you have to tell Oracle how to treat
the data using conversion functions and format codes. In the following sections, you will
learn the various conversions and how to use them.

The exam may include a question that tests your recollection of some of
the nuances of these formatting codes. General usage in a professional
setting would afford you the opportunity to look them up in a reference.
In the test setting, however, you must recall them on your own.

Conversion-Function Overview
Table 2.5 summarizes the single-row conversion functions. I will cover each of these func-
tions in the “Conversion-Function Descriptions” section.

ta b le 2 .5 Conversion-Function Summary

Function Description

ASCIISTR Converts characters to ASCII

BIN_TO_NUM Converts a string of bits to a number

CAST Converts datatypes

CHARTOROWID Casts a character to the ROWID datatype

COMPOSE Converts to Unicode

CONVERT Converts from one character set to another

DECOMPOSE Decomposes a Unicode string

HEXTORAW Casts a hexadecimal to a raw

NUMTODSINTERVAL Converts a number value to an interval day to second literal

NUMTOYMINTERVAL Converts a number value to an interval year to month literal

RAWTOHEX Casts a raw to a hexadecimal

95127c02.indd 102 2/18/09 6:46:42 AM

Using Single-Row Conversion Functions 103

Function Description

ROWIDTOCHAR Casts a ROWID to a character

SCN_TO_TIMESTAMP Converts an SCN to corresponding timestamp of the change

TIMESTAMP_TO_SCN Converts timestamp to an SCN

TO_BINARY_DOUBLE Converts input into a BINARY_DOUBLE number

TO_BINARY_FLOAT Converts input into a BINARY_FLOAT number

TO_CHAR Converts and formats a date into a string

TO_CLOB Converts character input or NCLOB input to CLOB

TO_DATE Converts a string to a date, specifying the format

TO_DSINTERVAL Converts a character string value to an interval day to second literal

TO_LOB Converts LONG or LONG RAW values to CLOB or BLOB datatype

TO_MULTIBYTE Converts a single-byte character to its corresponding multibyte
equivalent

TO_NUMBER Converts a string to a number, specifying the format

TO_SINGLE_BYTE Converts a multibyte character to its corresponding single-byte
equivalent

TO_TIMESTAMP Converts character string to a TIMESTAMP value

TO_TIMESTAMP_TZ Converts character string to a TIMESTAMP WITH TIME ZONE
value

TO_YMINTERVAL Converts a character string value to an interval year to month literal

UNISTR Converts UCS2 Unicode

Conversion-Function Descriptions
The conversion functions are arranged in alphabetical order, with descriptions and exam-
ples of each one. Oracle 11g includes functions to convert from one datatype to another
datatype. Most of the functions have only one argument. Many functions used to convert

ta b le 2 .5 Conversion-Function Summary (continued)

95127c02.indd 103 2/18/09 6:46:42 AM

104 Chapter 2 N Using Single-Row Functions

to/from numeric or datetime datatypes have three arguments; the second argument will tell
Oracle what format the input given in the first argument should be. The third argument
may be to specify an NLS string. You can use NLS parameters to tell Oracle what character
set or language should be used when performing the conversion. The format mask and NLS
parameters are always optional.

Pay particular attention to the TO_CHAR, TO_NUMBER, and TO_DATE functions. The format
codes associated with numbers and dates are always a favorite on OCP certification exams.

ASCIISTR
ASCIISTR(c1) takes a single argument, where c1 is a character string. This function returns
the ASCII equivalent of all the characters in c1. This function leaves ASCII characters
unchanged, but non-ASCII characters are returned in the format \xxxx where xxxx repre-
sents a UTF-16 code unit.

SELECT ASCIISTR(‘cañon’) E1, ASCIISTR(‘faß‘) E2

FROM dual;

E1 E2

--------- -------

ca\00F1on fa\00DF

BIN_TO_NUM
BIN_TO_NUM(b) takes a single argument, where b is a comma-delimited list of bits. This
function returns the numeric representation of all the bit-field set b. It essentially converts a
base 2 number into a base 10 number. Bit fields are the most efficient structure to store sim-
ple yes/no and true/false data. You can combine numerous bit fields into a single numeric
column. Using bit fields departs from a normalized relational model, since one column
represents more than one value, but this encoding can enhance performance and/or reduce
disk-space usage. See also BITAND.

To understand the number returned from the BIN_TO_NUM function, recall from base 2
(binary) counting that the rightmost digit counts the 1s, the next counts the 2s, the next
counts the 4s, then the 8s, and so on. Thus, 13 is represented in binary as 1101. There
are one 1, zero 2s, one 4, and one 8, which add up to 13 in base 10.

SELECT BIN_TO_NUM(1,1,0,1) bitfield1,

 BIN_TO_NUM(0,0,0,1) bitfield2,

 BIN_TO_NUM(1,1) bitfield3

FROM dual;

BITFIELD1 BITFIELD2 BITFIELD3

---------- ---------- ----------

 13 1 3

95127c02.indd 104 2/18/09 6:46:42 AM

Using Single-Row Conversion Functions 105

CAST
CAST(c AS t) takes two arguments, where c is an expression, subquery, or MULTISET clause
and t is a datatype. This function converts the expression c into the datatype t. The CAST
function is most frequently used to convert data into programmer-defined datatypes, but it
can also be used to convert data to built-in datatypes. No translation is performed; only the
datatype is converted. Table 2.6 shows the datatypes that can be converted using CAST.

ta b le 2 .6 CAST Datatype Conversions

Convert
From/To

BINARY_
FLOAT,
BINARY_
DOUBLE

CHAR,
VARCHAR2

NCHAR,
NVARCHAR2

DATE,
TIMESTAMP,
INTERVAL NUMBER RAW

ROWID,
UROWID

BINARY_
FLOAT
BINARY_
DOUBLE

Yes Yes Yes No Yes No No

CHAR,
VARCHAR2

Yes Yes No Yes Yes Yes Yes

NCHAR,
NVARCHAR2

Yes No Yes Yes Yes Yes Yes

DATE,
TIMESTAMP,
INTERVAL

No Yes No Yes No No No

NUMBER Yes Yes No No Yes No No

RAW No Yes No No No Yes No

ROWID,
UROWID

No Yes No No No No Yes

The following example shows datatype conversion using the CAST function.

SELECT CAST(SYSDATE AS TIMESTAMP WITH LOCAL TIME ZONE) DT_2_TS

FROM dual;

DT_2_TS

31-MAR-08 04.43.43.000000 PM

95127c02.indd 105 2/18/09 6:46:42 AM

106 Chapter 2 N Using Single-Row Functions

CHARTOROWID
CHARTOROWID(c) takes a single argument, where c is a character string. This function returns
c as a ROWID datatype. No translation is performed; only the datatype is converted.

SELECT rowid, first_name

FROM employees

WHERE first_name = ‘Sarath’;

ROWID FIRST_NAME

------------------ --------------------

AAARAgAAFAAAABYAA9 Sarath

SELECT first_name, last_name

FROM employees

WHERE rowid = CHARTOROWID(‘AAARAgAAFAAAABYAA9’);

FIRST_NAME LAST_NAME

-------------------- -------------------------

Sarath Sewall

Each row in the database is uniquely identified by a ROWID. ROWID shows
the physical location of the row stored in the database. The pseudocolumn
ROWID shows the address of the row.

COMPOSE
COMPOSE(c) takes a single argument, where c is a character string. This function returns c
as a Unicode string in its fully normalized form, in the same character set as c. The COM-
POSE and DECOMPOSE functions support Unicode 3.0. The Unicode 3.0 standard allows you
to combine, or compose, a valid character from a base character and a modifier.

CONVERT
CONVERT(c, dset [,sset]) takes three arguments, where c is a character string and dset
and sset are character-set names. This function returns the character string c converted
from the source character set sset to the destination character set dset. No translation is
performed. If the character does not exist in both character sets, the replacement character
for the character set is used. sset defaults to the database character set.

select convert (‘vis-à-vis’,’AL16UTF16’,’AL32UTF8’)

from dual;

95127c02.indd 106 2/18/09 6:46:43 AM

Using Single-Row Conversion Functions 107

CONVERT(‘VIS-?-VIS’,’AL16UTF

--

 v i s -?? - v i s

DECOMPOSE
DECOMPOSE(c) takes a single argument, where c is a character string. This function returns
c as a Unicode string after canonical decomposition in the same character set as c. The
COMPOSE and DECOMPOSE functions support Unicode 3.0.

HEXTORAW
HEXTORAW(x) takes a single argument, where x is a hexadecimal string. This function
returns the hexadecimal string x converted to a RAW datatype. No translation is per-
formed; only the datatype is changed.

NUMTODSINTERVAL
NUMTODSINTERVAL(x , c) takes two arguments, where x is a number and c is a character
string denoting the units for x. This function converts the number x into an INTERVAL
DAY TO SECOND datatype. Valid units are DAY, HOUR, MINUTE, and SECOND. c can be
uppercase, lowercase, or mixed case.

SELECT SYSDATE,

 SYSDATE+NUMTODSINTERVAL(2,’HOUR’) “2 hours later”,

 SYSDATE+NUMTODSINTERVAL(30,’MINUTE’) “30 minutes later”

FROM dual;

SYSDATE 2 hours later 30 minutes later

-------------------- -------------------- --------------------

31-MAR-2008 23:06:23 01-APR-2008 01:06:23 31-MAR-2008 23:36:23

NUMTOYMINTERVAL
NUMTOYMINTERVAL(x , c) takes two arguments, where x is a number and c is a character
string denoting the units for x. This function converts the number x into an INTERVAL
YEAR TO MONTH datatype. Valid units are YEAR and MONTH. c can be uppercase, lower-
case, or mixed case.

SELECT SYSDATE,

 SYSDATE+NUMTOYMINTERVAL(2,’YEAR’) “2 years later”,

 SYSDATE+NUMTOYMINTERVAL(5,’MONTH’) “5 months later”

95127c02.indd 107 2/18/09 6:46:43 AM

108 Chapter 2 N Using Single-Row Functions

FROM dual;

SYSDATE 2 years later 5 months later

-------------------- -------------------- --------------------

31-MAR-2008 23:13:07 31-MAR-2010 23:13:07 31-AUG-2008 23:13:07

RAWTOHEX
RAWTOHEX(x) takes a single argument, where x is a raw string. This function returns the
raw string x converted to hexadecimal. No translation is performed; only the datatype is
changed.

ROWIDTOCHAR
ROWIDTOCHAR(x) takes a single argument, where x is a character string in the datatype
ROWID. This function returns the ROWID string x converted to a VARCHAR2 datatype.
No translation is performed; only the datatype is changed. The resulting string is always
18 characters long.

SELECT ROWIDTOCHAR(ROWID) Char_RowID, first_name

FROM employees

WHERE first_name = ‘Sarath’;

CHAR_ROWID FIRST_NAME

------------------ --------------------

AAARAgAAFAAAABYAA9 Sarath

SCN_TO_TIMESTAMP
SCN_TO_TIMESTAMP (n) takes a single argument, where n is a numeric datatype representing
a system change number (SCN) in the database. This function returns the timestamp asso-
ciated with the SCN. The return datatype is TIMESTAMP.

SELECT SCN_TO_TIMESTAMP(8569432113130) UPD_TIME

from dual;

UPD_TIME

--

25-MAR-08 12.16.49.000000000 PM

An SCN is a number that gets incremented when a commit occurs in the database. The
SCN identifies the state of the database uniquely, is recorded in the redo log files, and will

95127c02.indd 108 2/18/09 6:46:43 AM

Using Single-Row Conversion Functions 109

be used in case instance recovery is needed. Please see Chapter 8, “Introducing Oracle 11g
Components and Architecture,” for more information.

Oracle provides the ORA_ROWSCN pseudocolumn to identify the SCN when the block con-
taining the row was last modified. Using the ORA_ROWSCN pseudocolumn, you can identify
the approximate time when the row was last modified. I say approximate because the SCN
is associated with a block, and all the rows in the block will have the same SCN associated
with them. This is useful in identifying the last modified time of a table, because a block can
belong to only one table. Please see Chapter 10, “Allocating Database Storage and Creating
Schema Objects,” for more information on blocks.

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) mod_time, last_name

FROM employees

WHERE first_name = ‘Lex’;

MOD_TIME LAST_NAME

----------------------------------- -----------

27-MAR-08 10.20.56.000000000 AM De Haan

TIMESTAMP_TO_SCN
TIMESTAMP_TO_SCN (<ts>) is used to identify the SCN associated with a particular time-
stamp. The function takes one argument, ts, which is of datatype TIMESTAMP. The
return datatype is NUMBER.

SELECT TIMESTAMP_TO_SCN(‘25-MAR-08 09.52.20’) DB_SCN

FROM dual;

 DB_SCN

 8569432102308

TO_BINARY_DOUBLE
TO_BINARY_DOUBLE(<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is
a character or numeric string, fmt is a format string specifying the format that c appears in,
and nlsparm specifies language- or location-formatting conventions. This function returns a
binary double-precision floating-point number of datatype BINARY_DOUBLE represented
by expr. The fmt and nlsparm arguments are valid only if expr is a character expression.
You can also use ’INF’, ’-INF’ and ‘NaN’ to represent positive infinity, negative infinity,
and NaN in expr.

The valid fmt numeric format conventions are listed in Table 2.9.

95127c02.indd 109 2/18/09 6:46:43 AM

110 Chapter 2 N Using Single-Row Functions

SELECT TO_BINARY_DOUBLE(‘1234.5678’,’999999.9999’) CHR_FMT_DOUBLE,

 TO_BINARY_DOUBLE(‘1234.5678’) CHR_DOUBLE,

 TO_BINARY_DOUBLE(1234.5678) NUM_DOUBLE,

 TO_BINARY_DOUBLE(‘INF’) INF_DOUBLE

FROM dual;

 CHR_FMT_DOUBLE CHR_DOUBLE NUM_DOUBLE INF_DOUBLE

--------------- --------------- --------------- ---------------

 1.2345678E+003 1.2345678E+003 1.2345678E+003 Inf

TO_BINARY_FLOAT
TO_BINARY_FLOAT(<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is
a character or numeric string, fmt is a format string specifying the format that c appears in,
and nlsparm specifies language- or location-formatting conventions. This function returns
a binary single-precision floating-point number of datatype BINARY_FLOAT represented by
expr. The fmt and nlsparm arguments are valid only if expr is a character expression. You
can also use ’INF’, ’-INF’ and ’NaN’ to represent positive infinity, negative infinity, and
NaN in expr.

SELECT TO_BINARY_FLOAT(‘1234.5678’,’999999.9999’) CHR_FMT_FLOAT,

 TO_BINARY_FLOAT(‘1234.5678’) CHR_FLOAT,

 TO_BINARY_FLOAT(1234.5678) NUM_FLOAT,

 TO_BINARY_FLOAT(‘INF’) INF_FLOAT

FROM dual;

 CHR_FMT_FLOAT CHR_FLOAT NUM_FLOAT INF_FLOAT

--------------- --------------- --------------- ---------------

1.23456775E+003 1.23456775E+003 1.23456775E+003 Inf

Converting from a character or NUMBER to BINARY_FLOAT and BINARY_
DOUBLE may not be exact since BINARY_FLOAT and BINARY_DOUBLE
use binary precision, whereas NUMBER uses decimal precision. Convert-
ing from BINARY_FLOAT to BINARY_DOUBLE is always exact; converting
BINARY_DOUBLE to BINARY_FLOAT may lose precision if BINARY_DOUBLE
uses more bits of precision.

95127c02.indd 110 2/18/09 6:46:43 AM

Using Single-Row Conversion Functions 111

TO_CHAR
TO_CHAR(<expr> [,<fmt >[,<nlsparm>]]) takes three arguments, where expr is a date or
a number or a character datatype, fmt is a format model specifying the format that expr
will appear in, and nlsparm specifies language- or location-formatting conventions. This
function returns expr converted into a character string (the VARCHAR2 datatype).

You can use the TO_CHAR function to convert a datetime or numeric datatype value to
character. When the input is not in the default format expected by the database, you have
to provide the format of the input data as the second argument. In this section I’ll show how
a datetime datatype value and a numeric datatype value can be converted to a character
datatype.

Date Conversion

If expr is a date or timestamp value, fmt is a date-format code, and nlsparm is an NLS_DATE_
LANGUAGE specification, if included. Note that the spelled-out numbers always appear in
English, while the day or month may appear in the NLS language.

SELECT TO_CHAR(SYSDATE,’Day Ddspth,Month YYYY’

 ,’NLS_DATE_LANGUAGE=German’) Today_Heute

FROM dual;

TODAY_HEUTE

--

Dienstag First,April 2008

SELECT TO_CHAR(SYSDATE

 ,’”On the “Ddspth” day of “Month, YYYY’) Today

FROM dual;

TODAY

--

On the First day of April , 2008

Table 2.7 lists the date-format codes.

95127c02.indd 111 2/18/09 6:46:43 AM

112 Chapter 2 N Using Single-Row Functions

ta b le 2 .7 Date-Format Codes

Date Code Format-Code Description

AD or BC Epoch indicator.

A.D. or B.C. Epoch indicator with periods.

AM or PM Meridian indicator.

A.M. or P.M. Meridian indicator with periods.

DY Day of week abbreviated.

DAY Day of week spelled out.

D Day of week (1–7).

DD Day of month (1–31).

DDD Day of year (1–366).

DL Long date format.

DS Short date format.

TS Time in short format.

FF Fractional seconds.

J Julian day (days since 4712 BC).

W Week of the month (1–5).

WW, IW Week of the year, ISO week of the year.

MM Two-digit month.

MON Month name abbreviated.

MONTH Month name spelled out.

Q Quarter.

95127c02.indd 112 2/18/09 6:46:43 AM

Using Single-Row Conversion Functions 113

Date Code Format-Code Description

RM Roman numeral month (I–XII).

YYYY, YYY, YY, Y Four-digit year; last 3, 2, 1 digits in the year.

YEAR Year spelled out.

SYYYY If BC, year is shown as negative.

RR Used for data input with only two digits for the year to store 20th-
century dates in the 21st century.

RRRR Used for data input. If a two-digit year is entered, this works like RR.
If a four-digit year is entered, it works like YYYY.

CC, SCC Century.

HH, HH12 Hour of the half-day (1–12).

HH24 Hour of the day (0–23).

MI Minutes of the hour (0–59).

SS Seconds of the minute (0–59).

SSSSS Seconds of the day (0–86399).

TZD Time zone daylight savings; must correspond to TZR.

TZH Time zone hour, together with TZM is time zone offset.

TZM Time zone minute, together with TZH is time zone offset.

TZR Time zone region.

, . / - ; : Punctuation.

‘text’ Quoted text.

FM Returns value with no leading or trailing blanks (fill mode).

FX Requires exact match for the format model.

ta b le 2 .7 Date-Format Codes (continued)

95127c02.indd 113 2/18/09 6:46:43 AM

114 Chapter 2 N Using Single-Row Functions

The RR code is used for data input with only two digits for the year. It is intended to deal
with two-digit years before and after 2000. It rounds the century based on the current year
and the two-digit year, entered as follows:

If the current year is greater than or equal to 50 and the two-digit year is less than 50, ÛN

the century is rounded up to the next century.

If the current year is greater than or equal to 50 and the two-digit year is greater than ÛN

or equal to 50, the century is unchanged.

If the current year is less than 50 and the two-digit year is less than 50, the century is ÛN

unchanged.

If the current year is less than 50 and the two-digit year is greater than or equal to 50, ÛN

the century is rounded down to the previous century.

So if the current year is 2009 (less than 50) and the two-digit year is entered as 62
(greater than or equal to 50), the year is interpreted as 1962.

For any of the numeric codes, the ordinal and/or spelled-out representation can be dis-
played with the modifier codes th (for ordinal) and sp (for spelled out). Here is an example:

SELECT SYSDATE,

 TO_CHAR(SYSDATE,’Mmspth’) Month,

 TO_CHAR(SYSDATE,’DDth’) Day,

 TO_CHAR(SYSDATE,’Yyyysp’) Year

FROM dual;

SYSDATE MONTH DAY YEAR

--------- -------- ---- -------------------

01-APR-08 Fourth 01ST Two Thousand Eight

For any of the spelled-out words or ordinals, case follows the pattern of the first two
characters in the code. If the first two characters are uppercase, the spelled-out words are
all uppercase. If the first two characters are lowercase, the spelled-out words are all low-
ercase. If the first two characters are uppercase and then lowercase, the spelled-out words
have the first letter in uppercase and the remaining characters in lowercase.

SELECT TO_CHAR(SYSDATE,’MONTH’) upperCase,

 TO_CHAR(SYSDATE,’Month’) mixedCase,

 TO_CHAR(SYSDATE,’month’) lowerCase

FROM dual;

UPPERCASE MIXEDCASE LOWERCASE

--------- --------- ---------

APRIL April april

Table 2.8 shows several examples of using the different date-format models with the TO_CHAR
function. Please pay close attention to the format model and result to understand the format-
model characteristics. The format model is applied to the date Tuesday 01-APR-2008.

95127c02.indd 114 2/18/09 6:46:43 AM

Using Single-Row Conversion Functions 115

ta b le 2 . 8 Date-Format Examples for Tuesday 01-APR-2008

Format Model Result

‘CCth “Century” BC’ 21ST Century AD

‘“On the “DDSpth” Day of “MONTH”, “YYYY’ On the FIRST Day of APRIL, 2008

‘“On the “DdSpth” Day of “FMMonth”, “YYYY’ On the First Day of April, 2008

‘DS TS’ 4/1/2008 01:41:32 PM

‘“Today is week” WW “and day” DDD’ Today is week 14 and day 092

‘Year’ Two Thousand Eight

‘W WW WW D DD DDD Y YY YYY YYYY’ 1 14 14 3 01 092 8 08 008 2008

Number Conversion

If expr is a number, fmt is a numeric format code. Table 2.9 lists these codes.

ta b le 2 . 9 Numeric Format Codes

Numeric
Code Format-Code Description

9 Numeric digits with a leading space if positive and a leading – (minus) if negative.

0 Leading and/or trailing zeros.

, Comma, for use as a group separator. It cannot appear after a period or decimal code.

G Local group separator; could be comma (,) or period (.).

. Period, for use as the decimal character. It cannot appear more than once or to
the left of a group separator.

D Local decimal character; could be comma (,) or period (.). Only one D is allowed
in the format model.

$ Dollar-sign currency symbol.

C ISO currency symbol (USD for $).

L Local currency symbol.

FM No leading or trailing blanks.

95127c02.indd 115 2/18/09 6:46:44 AM

116 Chapter 2 N Using Single-Row Functions

Numeric
Code Format-Code Description

EEEE Scientific notation.

MI Negative as a trailing minus. Can appear only in the last position of the format model.

PR Negative in angle brackets (< >). Can appear only in the last position of the format
model.

S Negative as a leading minus. Can appear only in the first or last position of the
format model.

RN Uppercase Roman numeral.

rn Lowercase Roman numeral.

X Hexadecimal

V Returns value multiplied by 10n, where n is the number of 9s after the V.

B Returns blanks for a fixed-point number if the integer part is zero.

nlsparm can include NLS_NUMERIC_CHARACTERS for specifying decimal and grouping sym-
bols (format symbols D and G, respectively), NLS_CURRENCY for specifying the currency sym-
bol (format symbol L), and NLS_ISO_CURRENCY for specifying the ISO international currency
symbol (format symbol C). The NLS_CURRENCY symbol and the NLS_ISO_CURRENCY mnemonic
are frequently different. For example, the NLS_CURRENCY symbol for U.S. dollars is $, but
this symbol is not uniquely American, so the ISO symbol for U.S. dollars is USD.

SELECT TO_CHAR(-1234.56,’L099G999D99MI’,

 ‘NLS_NUMERIC_CHARACTERS=’’,.’’

 NLS_CURRENCY=’’DM’’

 NLS_ISO_CURRENCY=’’GERMANY’’

 ‘) Balance

FROM dual;

BALANCE

 DM001.234,56-

Table 2.10 shows several examples of using the different numeric format models.
Please pay close attention to the format model and result to understand the format-model
characteristics.

ta b le 2 . 9 Numeric Format Codes (continued)

95127c02.indd 116 2/18/09 6:46:44 AM

Using Single-Row Conversion Functions 117

ta b le 2 .10 Numeric Format Examples

Numeric Format Source Value Result Value

‘C099G999D99’ -1234.56 -USD001,234.56

‘099.99’ 1234.56 #######

‘09G999V99’ 1234.56 01,23456

‘09G999D99’ 1234.56 01,234.56

‘09G999D99PR’ -1234.56 <01,234.56>

‘999.99EEEE’ -1234.56 -1.23E+03

‘$9999.999S’ -1234.56 $1234.560-

‘$9999.999S’ 1234.56 $1234.560+

‘RN’ 141 CXLI

‘L99G999D99MI’ 1234 $1,234.00

TO_CLOB
TO_CLOB (‘<x>’) converts input value to a CLOB datatype value. The argument x can be of
type CHAR, VARCHAR2, NCLOB, NCHAR, NVARCHAR2, or CLOB. CLOB datatypes
are discussed in Chapter 6, “Creating Tables and Constraints.”

TO_DATE
TO_DATE(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a character
string, fmt is a format string specifying the format that c appears in (refer to Table 2.7,
“Date-Format Codes”), and nlsparm specifies language- or location-formatting conventions.
This function returns c converted into the DATE datatype.

If you omit fmt, c should be in the default date format (as defined in NLS_DATE_FORMAT or
derived from NLS_TERRITORY). It is always a good practice to specify the format mask when
using the TO_DATE function.

alter session set nls_date_format = ‘DD-MON-RR HH24:MI:SS’;

Session altered.

SELECT TO_DATE(‘30-SEP-2007’, ‘DD/MON/YY’) DateExample

FROM dual;

95127c02.indd 117 2/18/09 6:46:44 AM

118 Chapter 2 N Using Single-Row Functions

DATEEXAMPLE

30-SEP-07 00:00:00

SELECT TO_DATE(‘SEP-2007 13’, ‘MON/YYYY HH24’) DateExample

FROM dual;

DATEEXAMPLE

01-SEP-07 13:00:00

When you use the TO_DATE function and specify a format mask, Oracle will try some
additional formats if the data in the input string does not match the original format. For
the MM format, Oracle will try the MON and MONTH formats. The MON or MONTH formats can be
used interchangeably. For the YY and RR formats, Oracle will try YYYY and RRRR.

Adding the FX format model to the TO_DATE function will require the input be given in
the exact format, including spaces and punctuation characters.

Table 2.11 shows examples of the TO_DATE function and their resulting dates.

ta b le 2 .11 Date-Conversion Examples

Function Resulting Date

TO_DATE(‘01-01-08’,’DD-MM-RR’) 01-JAN-2008

TO_DATE(‘01-01-1908’,’DD-MM-RR’) 01-JAN-1908

TO_DATE(‘01-MAR-1998’,’DD-MONTH-YY’) 01-MAR-1998

TO_DATE(‘01-01-98’,’DD-MM-YY’) 01-JAN-2098

TO_DATE(‘01-01-98’,’DD-MM-YYYY’) 01-JAN-0098

TO_DATE(‘01-01-98’,’DD-MM-RRRR’) 01-JAN-1998

TO_DATE(‘01-MARCH-98’,’DD-MM-RRRR’) 01-MAR-1998

TO_DATE(‘01-MAR-08’,’DD-MONTH-RRRR’) 01-MAR-2008

TO_DATE(‘01-MAR-1998’,’fxDD/MON/YYYY’) ORA-01861 error

TO_DATE(‘13 MAY 2003’,’fxDD MON YYYY’) ORA-01841 error

95127c02.indd 118 2/18/09 6:46:44 AM

Using Single-Row Conversion Functions 119

converting numbers to Words

Once I had to debug a PL/SQL function developed by a programmer to convert numeric
input to words. His program unit was very lengthy; basically, it defined the numbers from
1 through 20, tens, hundreds, thousands, and millions in words. He was using a compli-
cated logic to split each digit from the input and was assigning a word for each digit. I
told him there is a neat single-line SQL function that could replace his tens of lines of PL/
SQL code. When I showed him the SQL, he was amazed with the power of simple SQL
functions. I don’t remember exactly where I came across this piece of magic code in my
career to convert a number to words.

Using the J format along with the TO_CHAR and TO_DATE functions, you can display any
number between 1 and 5,373,484 in words. The limit is because Oracle supports dates
between January 1, 4712 BC, and December 31, 9999 AD.

The J format is used to display the date in Julian numbers.

SELECT SYSDATE, TO_CHAR(SYSDATE, ‘J’) Julian

FROM dual;

SYSDATE JULIAN

--------- -------

06-APR-08 2454563

The SP format will spell the date. By combining the J and JSP formats, you call spell a
number. Notice the use of & in the SQL. You run the SQL multiple times to input different
values. Negative numbers cannot be converted to Julian dates.

SQL> SET VERIFY OFF

SQL> SELECT TO_CHAR(TO_DATE(&NUM, ‘J’), ‘jsp’) num_to_spell

 2 FROM dual;

Enter value for num: 346

NUM_TO_SPELL

three hundred forty-six

SQL> /

Enter value for num: 5023456

NUM_TO_SPELL

five million twenty-three thousand four hundred fifty-six

95127c02.indd 119 2/18/09 6:46:44 AM

120 Chapter 2 N Using Single-Row Functions

SQL> /

Enter value for num: -456

SELECT TO_CHAR(TO_DATE(-456, ‘J’), ‘jsp’) num_to_spell

 *

ERROR at line 1:

ORA-01854: julian date must be between 1 and 5373484

TO_DSINTERVAL
TO_DSINTERVAL(<c> [,<nlsparm>]) takes two arguments, where c is a character string and
nlsparm specifies the decimal and group separator characters. This function returns c con-
verted into an INTERVAL DAY TO SECOND datatype.

SELECT SYSDATE,

 SYSDATE+TO_DSINTERVAL(‘007 12:00:00’) “+7 1/2 days”,

 SYSDATE+TO_DSINTERVAL(‘030 00:00:00’) “+30 days”

FROM dual;

SYSDATE +7 1/2 days +30 days

------------------ ------------------ ------------------

01-APR-08 14:45:34 09-APR-08 02:45:34 01-MAY-08 14:45:34

TO_LOB
TO_LOB (<long>) converts a LONG or LONG RAW datatype to a CLOB or BLOB data-
type. LONG values are converted to a CLOB datatype, and LONG RAW values are con-
verted to a BLOB datatype. To learn more about CLOB and BLOB datatypes, see Chapter 6.

TO_MULTI_BYTE
TO_MULTI_BYTE(<c>) takes a single argument, where c is a character string. This function
returns a character string containing c with all single-byte characters converted to their
multibyte counterparts. This function is useful only in databases using character sets with
both single-byte and multibyte characters. See also TO_SINGLE_BYTE.

TO_NUMBER
TO_NUMBER(<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is a char-
acter or numeric string, fmt is a format string specifying the format that expr appears in,
and nlsparm specifies language- or location-formatting conventions. This function returns
the numeric value represented by expr. Table 2.9 lists all the format models that can be
used with the TO_NUMBER function. The return datatype is NUMBER.

SELECT TO_NUMBER(‘234.89’), TO_NUMBER(1E-3) FROM dual;

95127c02.indd 120 2/18/09 6:46:44 AM

Using Single-Row Conversion Functions 121

TO_NUMBER(‘234.89’) TO_NUMBER(1E-3)

------------------- ----------------

 234.89 .001

TO_SINGLE_BYTE
TO_SINGLE_BYTE(<c>) takes a single argument, where c is a character string. This func-
tion returns a character string containing c with all multibyte characters converted to their
single-byte counterparts. This function is useful only in databases using character sets with
both single-byte and multibyte characters. See also TO_MULTI_BYTE.

TO_TIMESTAMP
TO_TIMESTAMP(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a character
string, fmt is a format string specifying the format that c appears in, and nlsparm speci-
fies language- or location-formatting conventions. If c is in default timestamp format (as
defined in NLS_TIMESTAMP_FORMAT or derived from NLS_TERRITORY), then fmt need not be
specified. The return value is of the TIMESTAMP datatype.

SELECT TO_TIMESTAMP(‘30-SEP-2007 08:51:23.456’,

 ‘DD-MON-YYYY HH24:MI:SS.FF’)

FROM dual;

TO_TIMESTAMP(‘30-SEP-200708:51:23.456’,’DD-MON-YYYYHH24:MI:SS.FF’)

--

30-SEP-07 08.51.23.456000000 AM

TO_TIMESTAMP_TZ
TO_TIMESTAMP(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a charac-
ter string, fmt is a format string specifying the format that c appears in, and nlsparm speci-
fies language- or location- formatting conventions. This function has the same behavior
as the TO_TIMESTAMP function, except you can specify a time zone. The return datatype is
TIMESTAMP WITH TIME ZONE.

SELECT TO_TIMESTAMP_TZ(‘30-SEP-2007 08:51:23.456’,

 ‘DD-MON-YYYY HH24:MI:SS.FF’) TS_TZ_Example

FROM dual;

TS_TZ_EXAMPLE

--

30-SEP-07 08.51.23.456000000 AM -05:00

95127c02.indd 121 2/18/09 6:46:44 AM

122 Chapter 2 N Using Single-Row Functions

TO_YMINTERVAL
TO_YMINTERVAL(<c>) takes a single argument, where c is a character string. This function
returns c converted into an INTERVAL YEAR TO MONTH datatype.

SELECT SYSDATE,

 SYSDATE+TO_YMINTERVAL(‘01-03’) “+15 months”,

 SYSDATE-TO_YMINTERVAL(‘00-03’) “-3 months”

FROM dual;

SYSDATE +15 month -3 months

--------- --------- ---------

01-APR-08 01-JUL-09 01-JAN-08

Table 2.12 shows examples to demonstrate the difference between using the ADD_MONTHS
function and the TO_YMINTERVAL function.

ta b le 2 .12 Compare ADD_MONTHS and TO_YMINTERVAL

Expression Result

TO_DATE(‘28-FEB-2007’)+ TO_YMINTERVAL(‘01-00’) 28-FEB-2008

ADD_MONTHS(‘28-FEB-2007’,12) 29-FEB-2008

TO_DATE(‘29-FEB-2008’)+ TO_YMINTERVAL(‘01-00’) Error: ORA-01839

ADD_MONTHS(‘29-FEB-2008’,12) 28-FEB-2009

TO_DATE(‘30-APR-2008’)+ TO_YMINTERVAL(‘00-04’) 30-AUG-2008

ADD_MONTHS(‘30-APR-2008’,04) 31-AUG-2008

TO_DATE(‘31-JAN-2008’)+ TO_YMINTERVAL(‘00-03’) Error: ORA-01839

UNISTR
UNISTR(<c>) takes a single argument, where c is a character string. This function returns c
in Unicode in the database Unicode character set. Include UCS2 characters by prepending a
backslash (\) to the character’s numeric code. Include the backslash character by specifying
two backslashes (\\).

SELECT UNISTR(‘\00A3’), UNISTR(‘\00F1’), UNISTR(‘ca\00F1on’)

FROM dual;

95127c02.indd 122 2/18/09 6:46:44 AM

Using Other Single-Row Functions 123

UN UN UNISTR(‘CA

-- -- ----------

 £ ñ c a ñ o n

Using Other Single-Row Functions
This is the catchall category to include all the single-row functions that don’t fit into the
other categories. Some are incredibly useful, such as DECODE. DECODE is a very special func-
tion and the most widely used function. Most likely, you’ll see a question on the certifica-
tion exam about the DECODE function.

The NULLIF function is included in this category and not with other NULL-related func-
tions. The NULLIF function returns a NULL value, whereas the NULL-related functions I dis-
cussed earlier take NULL as one of the inputs and give a value as a result.

Miscellaneous-Function Overview
Table 2.13 summarizes the single-row miscellaneous functions. I will cover each of these
functions in the “Miscellaneous-Function Descriptions” section.

ta b le 2 .13 Miscellaneous-Function Summary

Function Description

BFILENAME Returns the BFILE locator for the specified file and directory

DECODE Acts as an inline CASE statement (emulating IF…THEN…ELSE logic)

DUMP Returns a raw substring in the specified encoding (octal/hex/character/
decimal)

EMPTY_BLOB Returns an empty BLOB locator

EMPTY_CLOB Returns an empty CLOB locator

GREATEST Sorts the arguments and returns the largest

LEAST Sorts the arguments and returns the smallest

NULLIF Returns NULL if two expressions are equal

ORA_HASH Returns the hash value for an expression

95127c02.indd 123 2/18/09 6:46:44 AM

124 Chapter 2 N Using Single-Row Functions

Function Description

SYS_CONTEXT Returns various session attributes, such as IP address, terminal, and
current user

SYS_GUID Generates a globally unique identifier as a RAW value

UID Returns the numeric user ID for the current session

USER Returns the username for the current session

USERENV Returns information about the current session

VSIZE Returns the internal size in bytes for an expression

Miscellaneous-Function Descriptions
The miscellaneous functions are arranged in alphabetical order, with descriptions and
examples of each one.

BFILENAME
BFILENAME(dir, file) takes two arguments, where dir is a directory and file is a filename.
This function returns an empty BFILE locator. This function is used to initialize a BFILE
variable or BFILE column in a table. When this function is used, the BFILE is instantiated.
Neither dir nor file needs to exist at the time BFILENAME is called, but both must exist
when the locator is used. I’ll discuss the BFILE datatype in Chapter 6.

DECODE
DECODE is a conditional function. I discussed the CASE conditional expression in Chapter 1.

DECODE(x ,m1, r1 [,m2 ,r2]…[,d]) can use multiple arguments. x is an expression. m1
is a matching expression to compare with x. If m1 is equivalent to x, then r1 is returned;
otherwise, additional matching expressions (m2, m3, m4, and so on) are compared, if they
are included, and the corresponding result (r2, r3, r4, and so on) is returned. If no match is
found and the default expression d is included, then d is returned. This function acts like a
case statement in C, Pascal, or Ada. DECODE is a powerful tool that can make SQL very effi-
cient—or very dense and nonintuitive. Let’s look at some examples to help clarify its use.

The following example queries the COUNTRIES table and displays a region name based
on the region_id column value. If the region_id column value does not match the values
in the list, you want to display Other. To limit the rows in the output, you use the SUBSTR
function to identify the country codes that begin with I or end with R.

ta b le 2 .13 Miscellaneous-Function Summary (continued)

95127c02.indd 124 2/18/09 6:46:44 AM

Using Other Single-Row Functions 125

SELECT country_id, country_name, region_id,

 DECODE(region_id, 1, ‘Europe’,

 2, ‘Americas’,

 3, ‘Asia’,

 ‘Other’) Region

FROM countries

WHERE SUBSTR(country_id,1,1) = ‘I’

 OR SUBSTR(country_id,2,1) = ‘R’;

CO COUNTRY_NA REGION_ID REGION

-- ---------- ---------------- --------

AR Argentina 2 Americas

BR Brazil 2 Americas

FR France 1 Europe

IL Israel 4 Other

IN India 3 Asia

IT Italy 1 Europe

DECODE does not have to return a value; it can return NULL if the optional d argument is
not provided. In the previous example, if Other is omitted, the region name for Israel will
be NULL.

SELECT country_id, country_name, region_id,

 DECODE(region_id, 1, ‘Europe’,

 2, ‘Americas’,

 3, ‘Asia’) Region

FROM countries

WHERE SUBSTR(country_id,1,1) = ‘I’

 OR SUBSTR(country_id,2,1) = ‘R’;

In the DECODE function, Oracle treats two NULL values as equal. Hence,
you can represent the NVL function using DECODE, as in DECODE(<string>,
NULL, <new_value>, <string>).

DUMP
DUMP(x [,fmt [,n1 [,n2]]]) can take four arguments, where x is an expression. fmt is a
format specification for octal (8), decimal (10), hexadecimal (16), or single characters (17).
Decimal is the default. If you add 1000 to the format specification, the character set name
is also returned (for example, 1008 for octal). n1 is the starting byte offset within x, and n2
is the length in bytes to dump. This function returns a character string containing the data-
type of x in numeric notation (for example, 2=number, 12=date), the length in bytes of x,

95127c02.indd 125 2/18/09 6:46:44 AM

126 Chapter 2 N Using Single-Row Functions

and the internal representation of x. This function is mainly used for troubleshooting data
problems.

SELECT last_name, DUMP(last_name) DUMP_EX

FROM employees

WHERE last_name like ‘J%’;

LAST_NAME DUMP_EX

------------ --

Johnson Typ=1 Len=7: 74,111,104,110,115,111,110

Jones Typ=1 Len=5: 74,111,110,101,115

SELECT last_name, DUMP(last_name, 1017, 3, 3) DUMP_EX

FROM employees

WHERE last_name like ‘J%’;

LAST_NAME DUMP_EX

------------ --

Johnson Typ=1 Len=7 CharacterSet=WE8MSWIN1252: h,n,s

Jones Typ=1 Len=5 CharacterSet=WE8MSWIN1252: n,e,s

EMPTY_BLOB
EMPTY_BLOB() takes no arguments. This function returns an empty BLOB locator. This
function is used to initialize a BLOB variable or BLOB column in a table. When used, the
BLOB is instantiated but not populated.

EMPTY_CLOB
EMPTY_CLOB() takes no arguments. This function returns an empty CLOB locator. This
function is used to initialize a CLOB variable or CLOB column in a table. When used, the
CLOB is instantiated but not populated.

GREATEST
GREATEST(exp_list) takes one argument, where exp_list is a list of expressions. This func-
tion returns the expression that sorts highest in the datatype of the first expression. If the first
expression is any of the character datatypes, a VARCHAR2 is returned, and the comparison
rules for VARCHAR2 are used for character-literal strings. A NULL in the expression list
results in a NULL being returned.

The following example shows you that the list was treated as a character list and not a
date, even though you had all date values as input:

95127c02.indd 126 2/18/09 6:46:44 AM

Using Other Single-Row Functions 127

SELECT GREATEST(‘01-ARP-08’,’30-DEC-01’,’12-SEP-09’)

FROM dual;

GREATEST(

30-DEC-01

In the following example, since the first argument is numeric, Oracle tries to convert the
rest of the list to numeric and encounters an error:

SELECT GREATEST(345, ‘XYZ’, 2354) FROM dual;

ERROR at line 1:

ORA-01722: invalid number

In the next example, I changed the order to have the character string as the first entry in
the list; hence, Oracle considers the rest of the list to be characters and does not produce an
error:

SELECT GREATEST(‘XYZ’, 345, 2354) FROM dual;

GRE

XYZ

LEAST
LEAST(exp_list) takes one argument, where exp_list is a list of expressions. This function
returns the expression that sorts lowest in the datatype of the first expression. If the first
expression is any of the character datatypes, a VARCHAR2 is returned.
SELECT LEAST(SYSDATE,’15-MAR-2002’,’17-JUN-2002’) oldest

FROM dual;

OLDEST

15-MAR-02

The following SQL is used to calculate a bonus of 15 percent of salary to employees,
with a maximum bonus at 500 and a minimum bonus at 400:

SELECT last_name, salary,

 GREATEST(LEAST(salary*0.15, 500), 400) bonus

FROM employees

WHERE department_id IN (30, 10)

ORDER BY last_name;

95127c02.indd 127 2/18/09 6:46:44 AM

128 Chapter 2 N Using Single-Row Functions

LAST_NAME SALARY BONUS

------------ ---------------- ----------------

Baida 2900 435

Colmenares 2500 400

Himuro 2600 400

Khoo 3100 465

Raphaely 11000 500

Whalen 4400 500

The comparison rules used by GREATEST and LEAST on character literals order trailing
spaces higher than no spaces. This behavior follows the nonpadded comparison rules of the
VARCHAR2 datatype. Note the ordering of the leading and trailing spaces: trailing spaces
are greatest and leading spaces are least.

SELECT GREATEST(‘ Yes’,’Yes’,’Yes ‘)

 ,LEAST(‘ Yes’,’Yes’,’Yes ‘)

FROM dual;

GREA LEAST

---- -----

Yes Yes

To remember the comparison rules for trailing and leading space in charac-
ter literals, think “leading equals least.”

NULLIF
NULLIF(x1 , x2) takes two arguments, where x1 and x2 are expressions. This function returns
NULL if x1 equals x2; otherwise, it returns x1. If x1 is NULL, NULLIF returns NULL.

To facilitate visualizing a NULL, the following example has the NULL indicator set to ?. So,
a ? in the query results that follow represents a NULL:

SET NULL ?

SELECT ename, mgr, comm

 NULLIF(comm,0) test1,

 NULLIF(0,comm) test2,

 NULLIF(mgr,comm) test3

FROM scott.emp

WHERE empno IN (7844,7839,7654,7369);

95127c02.indd 128 2/18/09 6:46:45 AM

Using Other Single-Row Functions 129

ENAME MGR COMM TEST1 TEST2 TEST3

---------- ---- ---- ----- ----- -----

SMITH 7902 ? ? 0 7902

MARTIN 7698 1400 1400 0 7698

KING ? ? ? 0 ?

TURNER 7698 0 ? ? 7698

ORA_HASH
ORA_HASH (expr [,max_bucket [,seed]]) can take three arguments. The first argument,
expr, is an expression whose hash value will be calculated and assigned to a bucket. The
maximum bucket value is determined by the second argument, max_bucket; the default and
maximum is 4,294,967,295. The seed argument enables Oracle to generate many different
results for the same sets of data. The hash function is applied to expr and seed. The seed
can be between 0 and 4,294,967,295.

This function is useful for getting a random sample of rows from table. In the following
example, you can get few random rows from the EMPLOYEES table. Notice the difference in
result for each run and with different seed values. The rows in the table are divided into 20
buckets (0 through 19) based on the hash value, and you are selecting the rows from bucket 0.

SELECT department_id, last_name, salary

FROM employees

WHERE ORA_HASH(last_name || first_name, 19, 2) = 0;

 DEPARTMENT_ID LAST_NAME SALARY

---------------- ------------ ----------------

 80 Errazuriz 12000

 80 Tuvault 7000

 50 Feeney 3000

SELECT department_id, last_name, salary

FROM employees

WHERE ORA_HASH(last_name || first_name, 19, 5) = 0;

 DEPARTMENT_ID LAST_NAME SALARY

---------------- ------------ ----------------

 90 Kochhar 17000

 100 Sciarra 7700

 80 Vishney 10500

 Grant 7000

 50 Chung 3800

95127c02.indd 129 2/18/09 6:46:45 AM

130 Chapter 2 N Using Single-Row Functions

SELECT department_id, last_name, salary

FROM employees

WHERE ORA_HASH(last_name || first_name, 19) = 0;

 DEPARTMENT_ID LAST_NAME SALARY

---------------- ------------ ----------------

 70 Baer 10000

 30 Colmenares 2500

 50 Mallin 3300

 50 Taylor 3200

SYS_CONTEXT
SYS_CONTEXT(n , p [, length]) can take three arguments, where n is a namespace, p is
a parameter associated with namespace n, and length is the length of the return value in
bytes. length defaults to 256. The built-in namespace in Oracle is called USERENV, which
describes the current session. The return datatype is VARCHAR2.
SELECT SYS_CONTEXT(‘USERENV’,’IP_ADDRESS’)

FROM dual;

SYS_CONTEXT(‘USERENV’,’IP_ADDRESS’)

192.168.1.100

Table 2.14 lists the parameters available in the USERENV namespace for the SYS_CONTEXT
function.

ta b le 2 .14 Parameters in the USERENV Namespace

Parameter Description

ACTION Returns the position in the module (application).

AUDITED_CURSORID Returns the cursor ID of the SQL that triggered the auditing.

AUTHENTICATED_IDENTITY Returns the identity used in the authentication.

AUTHENTICATION_DATA Returns the data used to authenticate a logged-in user.

AUTHENTICATION_METHOD Returns the method used to authenticate a user. The return
value can be DATABASE for database-authenticated accounts,
OS for externally identified accounts, NETWORK for globally iden-
tified accounts, and so on.

95127c02.indd 130 2/18/09 6:46:45 AM

Using Other Single-Row Functions 131

Parameter Description

BG_JOB_ID Returns the job ID (that is, DBA_JOBS) if the session was created
by a background process. Returns NULL if the session is a fore-
ground session. See also FG_JOB_ID.

CLIENT_IDENTIFIER Returns the client session identifier in the global context. It can
be set with the DBMS_SESSION built-in package.

CLIENT_INFO Returns the 64 bytes of user session information stored by
DBMS_APPLICATION_INFO.

CURRENT_BIND Returns bind variables for fine-grained auditing.

CURRENT_SCHEMA Returns the current schema as set by ALTER SESSION SET
CURRENT_SCHEMA or, by default, the login schema/ID.

CURRENT_SCHEMAID Returns the numeric ID for CURRENT_SCHEMA.

CURRENT_SQL Returns the SQL that triggered fine-grained auditing (use only
within scope inside the event handler for fine-grained auditing).

CURRENT_SQL_LENGTH Returns the length of the current SQL that triggered fine-
grained auditing.

DB_DOMAIN Returns the contents of the DB_DOMAIN init.ora parameter.

DB_NAME Returns the contents of the DB_NAME init.ora parameter.

DB_UNIQUE_NAME Returns the contents of the DB_UNIQUE_NAME init.ora
parameter.

ENTRYID Returns the auditing entry identifier

ENTERPRISE_IDENTITY Returns OID DN for enterprise users, for local users NULL.

FG_JOB_ID Returns the job ID of the current session if a foreground pro-
cess created it. Returns NULL if the session is a background
session. See also BG_JOB_ID.

GLOBAL_CONTEXT_MEMORY Returns the number in the SGA by the globally accessible
context.

GLOBAL_UID Returns the global user ID from OID.

HOST Returns the hostname of the machine from where the client
connected. This is not the same terminal in V$SESSION.

ta b le 2 .14 Parameters in the USERENV Namespace (continued)

95127c02.indd 131 2/18/09 6:46:45 AM

132 Chapter 2 N Using Single-Row Functions

Parameter Description

IDENTIFICATION_TYPE Returns how the user is set to authenticate in the database:
LOCAL, EXTERNAL, or GLOBAL.

INSTANCE Returns the instance number for the instance to which the
session is connected. This is always 1 unless you are running
Oracle Real Application Clusters.

INSTANCE_NAME Returns the name of the instance.

IP_ADDRESS Returns the IP address of the machine from where the client
connected.

ISDBA Returns TRUE if the user connected AS SYSDBA.

LANG Returns the ISO abbreviation for the language name.

LANGUAGE Returns a character string containing the language and terri-
tory used by the session and the database character set in the
form language_territory.characterset.

MODULE Returns the application name set through
DBMS_APPLICATION_INFO.

NETWORK_PROTOCOL Returns the network protocol being used as specified in the
PROTOCOL= section of the connect string or tnsnames.ora
definition.

NLS_CALENDAR Returns the calendar for the current session.

NLS_CURRENCY Returns the currency for the current session.

NLS_DATE_FORMAT Returns the date format for the current session.

NLS_DATE_LANGUAGE Returns the language used for displaying dates.

NLS_SORT Returns the binary or linguistic sort basis.

NLS_TERRITORY Returns the territory for the current session.

OS_USER Returns the operating-system username for the current session.

POLICY_INVOKER Returns the invoker of row-level security-policy functions.

PROXY_ENTERPRISE_
IDENTITY

Returns OID DN when the proxy user is an enterprise user.

ta b le 2 .14 Parameters in the USERENV Namespace (continued)

95127c02.indd 132 2/18/09 6:46:45 AM

Using Other Single-Row Functions 133

Parameter Description

PROXY_GOLBAL_UID Returns the global user ID from OID for Enterprise User Secu-
rity proxy users.

PROXY_USER Returns the name of the database user who opened the current
session for the session user.

PROXY_USERID Returns the numeric ID for the database user who opened the
current session for the session user.

SERVER_HOST Returns the hostname of the machine where the instance is
running.

SERVICE_NAME Returns the name of the service where the session is connected.

SESSION_USER Returns the database username for the current session.

SESSION_USERID Returns the numeric database user ID for the current session.

SESSIONID Returns the auditing session identifier AUDSID. This parameter
is out of scope for distributed queries.

SID Returns the session number (same as the SID from
V$SESSION).

STATEMENT_ID Returns the auditing statement identifier.

TERMINAL Returns the terminal identifier for the current session. This is
the same as the terminal in V$SESSION.

Here are few more examples of SYS_CONTEXT in the USERENV namespace:

SELECT SYS_CONTEXT(‘USERENV’, ‘OS_USER’),

 SYS_CONTEXT(‘USERENV’, ‘CURRENT_SCHEMA’),

 SYS_CONTEXT(‘USERENV’, ‘HOST’),

 SYS_CONTEXT(‘USERENV’, ‘NLS_TERRITORY’)

FROM dual;

SYS_CONTEXT(‘USERENV’,’OS_USER’)

SYS_CONTEXT(‘USERENV’,’CURRENT_SCHEMA’)

SYS_CONTEXT(‘USERENV’,’HOST’)

SYS_CONTEXT(‘USERENV’,’NLS_TERRITORY’)

--

ta b le 2 .14 Parameters in the USERENV Namespace (continued)

95127c02.indd 133 2/18/09 6:46:45 AM

134 Chapter 2 N Using Single-Row Functions

oracle

HR

linux04.mycompany.corp

AMERICA

SYS_GUID
SYS_GUID() generates a globally unique identifier as a RAW value. This function is useful
for creating a unique identifier to identify a row. SYS_GUID() returns a 32-bit hexadecimal
representation of the 16-byte RAW value.

SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

CDA78A020D6E43A6AB743A5CE8CB8C55

SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

DC7C19A3AD264CE184C64194E65F83E5

UID
UID takes no parameters and returns the integer user ID for the current user connected to
the session. The user ID uniquely identifies each user in a database and can be selected from
the DBA_USERS view.

SQL> SHOW USER

USER is “BTHOMAS”

SELECT username, account_status

FROM dba_users

WHERE user_id = UID;

USERNAME ACCOUNT_STATUS

---------------- ---------------

BTHOMAS OPEN

95127c02.indd 134 2/18/09 6:46:45 AM

Using Other Single-Row Functions 135

USER
USER takes no parameters and returns a character string containing the username for the
current user.

SELECT default_tablespace, temporary_tablespace

FROM dba_users

WHERE username = USER;

DEFAULT_TABLESPACE TEMPORARY_TABLESPACE

------------------------------ ---------------------

USERS TEMP

USERENV
USERENV(opt) takes a single argument, where opt is one of the following options:

ISDBAÛN returns TRUE if the SYSDBA role is enabled in the current session.

SESSIONIDÛN returns the AUDSID auditing session identifier.

ENTRYIDÛN returns the auditing entry identifier if auditing is enabled for the instance (the
init.ora parameter AUDIT_TRAIL is set to TRUE).

INSTANCEÛN returns the instance identifier to which the session is connected. This option
is useful only if you are running the Oracle Parallel Server and have multiple instances.

LANGUAGEÛN returns the language, territory, and database character set. The delimiters are
an underscore (_) between language and territory and a period (.) between the terri-
tory and character set.

LANGÛN returns the ISO abbreviation of the session’s language.

TERMINALÛN returns a VARCHAR2 string containing information corresponding to the
operating system identifier for the current session’s terminal.

The option can appear in uppercase, lowercase, or mixed case. The USERENV function
has been deprecated since Oracle 9i. It is recommended to use the SYS_CONTEXT function
with the built-in USERENV namespace instead.

VSIZE
VSIZE(x) takes a single argument, where x is an expression. This function returns the size
in bytes of the internal representation of the x.

SELECT last_name, first_name,

 VSIZE(last_name) ln_size, VSIZE(first_name) fn_size

FROM employees

WHERE last_name like ‘K%’;

95127c02.indd 135 2/18/09 6:46:45 AM

136

LAST_NAME FIRST_NAME LN_SIZE FN_SIZE

------------ -------------------- ---------- ----------

Kaufling Payam 8 5

Khoo Alexander 4 9

King Janette 4 7

King Steven 4 6

Kochhar Neena 7 5

Kumar Sundita 5 7

Since the database character set is single-byte, the byte used for each character is 1;
hence, the size shown here is actually the number of characters in the input. For multibyte
characters, this would be different.

Summary
This chapter introduced single-row functions. It started by discussing the functions avail-
able in Oracle 11g to handle NULLs. Then it discussed the single-row functions available in
Oracle 11g by grouping them into character, numeric, date, and conversion functions.

You learned that single-row functions return a value for each row as it is retrieved from
the table. You can use single-row functions to interpret NULL values, format output, convert
datatypes, transform data, perform date arithmetic, give environment information, and
perform trigonometric calculations.

You can use single-row functions in the SELECT, WHERE, and ORDER BY clauses of SELECT
statements. I covered the rich assortment of functions available in each datatype category
and some functions that work on any datatype.

The NVL, NVL2, and COALESCE functions interpret NULL values.
The single-row character functions operate on character input. The INSTR function returns

the position of a substring within the string. The SUBSTR function returns a portion of
the string. INSTR and SUBSTR are great for extracting part of the input string. REPLACE
and TRANSLATE transform the input.

Single-row numeric functions operate on numeric input. FLOOR, CEIL, ROUND, and TRUNC
get the nearest number. FLOOR, CEIL, and ROUND return the nearest integer, whereas ROUND
returns a value rounded to certain digits of precision. REMAINDER and MOD are similar
functions.

Date functions operate on datetime values. SYSDATE and SYSTIMESTAMP values return the
current date and time. MONTHS_BETWEEN finds the number of months between two date val-
ues. ADD_MONTHS is a commonly used function and can add months to or subtract months
from a date. You can use ROUND and TRUNC on datetime values to find the nearest date,
month, or year.

Of the conversion functions, TO_CHAR and TO_DATE are the most commonly used. I also
reviewed the format codes that can be used with numeric and datetime values.

The DECODE function evaluates a condition, and you can easily build IF…THEN…ELSE logic
into SQL using the DECODE function.

95127c02.indd 136 2/18/09 6:46:45 AM

 137

Exam Essentials

Understand where single-row functions can be used. Single-row functions can be used in
the SELECT, WHERE, and ORDER BY clauses of SELECT statements.

Know the effects that NULL values can have on arithmetic and other functions. Any arith-
metic operation on a NULL results in a NULL. This is true of most functions as well. Use the
NVL, NVL2, and COALESCE functions to deal with NULLs.

Review the character-manipulation functions. Understand the arguments and the result
of using character-manipulation functions such as INSTR, SUBSTR, REPLACE, and TRANSLATE.

Understand the numeric functions. Know the effects of using TRUNC and ROUND with -n as
the second argument. Also practice using LENGTH and INSTR, which return a numeric result,
inside SUBSTR and other character functions.

Know how date arithmetic works. When adding or subtracting numeric values from a
DATE datatype, whole numbers represent days. Also, the date/time intervals INTERVAL
YEAR TO MONTH and INTERVAL DAY TO SECOND can be added or subtracted from date/time
datatypes. You need to know how to interpret and create expressions that add intervals to
or subtract intervals from dates.

Know the datatypes for the various date/time functions. Oracle has many date/time func-
tions to support the date/time datatypes. You need to know the return datatypes for these
functions. SYSDATE and CURRENT_DATE return a DATE datatype. CURRENT_TIMESTAMP and
SYSTIMESTAMP return a TIMESTAMP WITH TIME ZONE datatype. LOCALTIMESTAMP
returns a TIMESTAMP datatype.

Know the format models for converting dates to/from character strings. In practice, you
can simply look up format codes in a reference. For the certification exam, you must have
them memorized.

Understand the use of the DECODE function. DECODE acts like a case statement in C, Pascal,
or Ada. Learn how this function works and how to use it.

95127c02.indd 137 2/18/09 6:46:45 AM

138 Review Questions

Review Questions
1. You want to display each project’s start date as the day, week, number, and year. Which

statement will give output like the following?

Tuesday Week 23, 2008

A. SELECT proj_id, TO_CHAR(start_date, ‘DOW Week WOY YYYY’) FROM projects;

B. SELECT proj_id, TO_CHAR(start_date,’Day’||’ Week’||’ WOY, YYYY’) FROM
projects;

C. SELECT proj_id, TO_CHAR(start_date, ‘Day” Week” WW, YYYY’) FROM projects;

D. SELECT proj_id, TO_CHAR(start_date, ‘Day Week# , YYYY’) FROM projects;

E. You can’t calculate week numbers with Oracle.

2. What will the following statement return?

SELECT last_name, first_name, start_date

FROM employees

WHERE hire_date < TRUNC(SYSDATE) – 5;

A. Employees hired within the past five hours

B. Employees hired within the past five days

C. Employees hired more than five hours ago

D. Employees hired more than five days ago

3. Which assertion about the following statements is most true?

SELECT name, region_code||phone_number

FROM customers;

SELECT name, CONCAT(region_code,phone_number)

FROM customers;

A. If REGION_CODE is NULL, the first statement will not include that customer’s PHONE_
NUMBER.

B. If REGION_CODE is NULL, the second statement will not include that customer’s PHONE_
NUMBER.

C. Both statements will return the same data.

D. The second statement will raise an error if REGION_CODE is NULL for any customer.

4. Which single-row function could you use to return a specific portion of a character string?

A. INSTR

B. SUBSTR

C. LPAD

D. LEAST

95127c02.indd 138 2/18/09 6:46:45 AM

Review Questions 139

5. The data in the PRODUCT table is as described here. The bonus amount is calculated as the
lesser of 5 percent of the base price or 20 percent of the surcharge.

sku name division base_price surcharge

1001 PROD-1001 A 200 50

1002 PROD-1002 C 250

1003 PROD-1003 C 240 20

1004 PROD-1004 A 320

1005 PROD-1005 C 225 40

 Which of the following statements will achieve the desired results?

A. SELECT sku, name, LEAST(base_price * 1.05, surcharge * 1.2)
FROM products;

B. SELECT sku, name, LEAST(NVL(base_price,0) * 1.05, surcharge * 1.2)
FROM products;

C. SELECT sku, name, COALESCE(LEAST(base_price*1.05, surcharge * 1.2),
base_price * 1.05)
FROM products;

D. A, B, and C will all achieve the desired results.

E. None of these statements will achieve the desired results.

6. Which function(s) accept arguments of any datatype? (Choose all that apply.)

A. SUBSTR

B. NVL

C. ROUND

D. DECODE

E. SIGN

7. What will be returned by SIGN(ABS(NVL(-32,0)))?

A. 1

B. 32

C. –1

D. 0

E. NULL

95127c02.indd 139 2/18/09 6:46:45 AM

140 Review Questions

8. The SALARY table has the following data:

LAST_NAME FIRST_NAME SALARY

------------ -------------------- ----------

Mavris Susan 6500

Higgins Shelley 12000

Tobias Sigal

Colmenares Karen 2500

Weiss Matthew 8000

Mourgos Kevin 5800

Rogers Michael 2900

Stiles Stephen 3200

 Consider the following SQL, and choose the best option:

SELECT last_name, NVL2(salary, salary, 0) N1,

 NVL(salary,0) N2

FROM salary;

A. Column N1 and N2 will have different results.

B. Column N1 will show zero for all rows, and column N2 will show the correct salary
values, and zero for Tobias.

C. The SQL will error out because the number of arguments in the NVL2 function is
incorrect.

D. Columns N1 and N2 will show the same result.

9. Which two functions could you use to strip leading characters from a character string?
(Choose two.)

A. LTRIM

B. SUBSTR

C. RTRIM

D. INSTR

E. STRIP

10. What is the result of MOD(x1, 4), if x1 is 11?

A. –1

B. 3

C. 1

D. REMAINDER(11,4)

95127c02.indd 140 2/18/09 6:46:45 AM

Review Questions 141

11. Which two SQL statements will replace the last two characters of last_name with ‘XX‘ in
the employees table when executed? (Choose two.)

A. SELECT RTRIM(last_name, SUBSTR(last_name, LENGTH(last_name)-1)) || ‘XX’
new_col FROM employees;

B. SELECT REPLACE(last_name, SUBSTR(last_name, LENGTH(last_name)-1), ‘XX’)
new_col FROM employees;

C. SELECT REPLACE(SUBSTR(last_name, LENGTH(last_name)-1), ‘XX’) new_col
FROM employees;

D. SELECT CONCAT(SUBSTR(last_name, 1,LENGTH(last_name)-2), ‘XX’) new_col
FROM employees;

12. Which date components does the CURRENT_TIMESTAMP function display?

A. Session date, session time, and session time zone offset

B. Session date and session time

C. Session date and session time zone offset

D. Session time zone offset

13. Using the SALESPERSON_REVENUE table described here, which statements will properly dis-
play the TOTAL_REVENUE (CAR_SALES + WARRANTY_SALES) of each salesperson?

Column Name salesperson_id car_sales warranty_sales

Key Type pk

NULLs/Unique NN NN

FK Table

Datatype NUMBER NUMBER NUMBER

Length 10 11,2 11,2

A. SELECT salesperson_id, car_sales, warranty_sales, car_sales + warranty_
sales total_sales
FROM salesperson_revenue;

B. SELECT salesperson_id, car_sales, warranty_sales, car_sales +
NVL2(warranty_sales,0) total_sales
FROM salesperson_revenue;

C. SELECT salesperson_id, car_sales, warranty_sales, NVL2(warranty_sales,
car_sales + warranty_sales, car_sales) total_sales
FROM salesperson_revenue;

D. SELECT salesperson_id, car_sales, warranty_sales, car_sales +
COALESCE(car_sales, warranty_sales, car_sales + warranty_sales) total_
sales
FROM salesperson_revenue;

95127c02.indd 141 2/18/09 6:46:46 AM

142 Review Questions

14. What will be the result of executing the following SQL, if today’s date is February 28, 2009?

SELECT ADD_MONTHS(‘28-FEB-09’, -12) from dual;

A. 28-FEB-10

B. 28-FEB-08

C. 29-FEB-08

D. 28-JAN-08

15. Consider the following two SQL statements, and choose the best option:

1. SELECT TO_DATE(‘30-SEP-07’,’DD-MM-YYYY’) from dual;

2. SELECT TO_DATE(‘30-SEP-07’,’DD-MON-RRRR’) from dual;

A. Statement 1 will error; 2 will produce result.

B. The resulting date value from the two statements will be the same.

C. The resulting date value from the two statements will be different.

D. Both statements will generate an error.

16. What will the following SQL statement return?

SELECT COALESCE(NULL,’Oracle ‘,’Certified’) FROM dual;

A. NULL

B. Oracle

C. Certified

D. Oracle Certified

17. Which expression will always return the date one year later than the current date?

A. SYSDATE + 365

B. SYSDATE + TO_YMINTERVAL(‘01-00’)

C. CURRENT_DATE + 1

D. NEW_TIME(CURRENT_DATE,1,’YEAR’)

E. None of the above

18. Which function will return a TIMESTAMP WITH TIME ZONE datatype?

A. CURRENT_TIMESTAMP

B. LOCALTIMESTAMP

C. CURRENT_DATE

D. SYSDATE

95127c02.indd 142 2/18/09 6:46:46 AM

Review Questions 143

19. Which statement would change all occurrences of the string ‘IBM’ to the string ’SUN’ in
the DESCRIPTION column of the VENDOR table?

A. SELECT TRANSLATE(description, ‘IBM’, ‘SUN’) FROM vendor

B. SELECT CONVERT(description, ‘IBM’, ‘SUN’) FROM vendor

C. SELECT EXTRACT(description, ‘IBM’, ‘SUN’) FROM vendor

D. SELECT REPLACE(description, ‘IBM’, ‘SUN’) FROM vendor

20. Which function implements IF…THEN…ELSE logic?

A. INITCAP

B. REPLACE

C. DECODE

D. IFELSE

95127c02.indd 143 2/18/09 6:46:46 AM

144 Answers to Review Questions

Answers to Review Questions
1. C. Double quotation marks must surround literal strings like ”Week”.

2. D. The TRUNC function removes the time portion of a date by default, and whole numbers
added to or subtracted from dates represent days added or subtracted from that date.
TRUNC(SYSDATE) –5 means five days ago at midnight.

3. C. The two statements are equivalent.

4. B. SUBSTR returns part of the string. INSTR returns a number. LPAD adds to a character
string. LEAST does not change an input string.

5. C. Options A and B do not account for NULL surcharges correctly and will set the bonus
to NULL where the surcharge is NULL. In option B, the NVL function is applied to the base_
price column instead of the surcharge column. In option C, the LEAST function will
return a NULL if surcharge is NULL, in which case BASE_PRICE * 1.05 would be returned
from the COALESCE function.

6. B, D. ROUND does not accept character arguments. SUBSTR accepts only character argu-
ments. SIGN accepts only numeric arguments.

7. A. The functions are evaluated from the innermost to outermost, as follows:
SIGN(ABS(NVL(-32,0))) = SIGN(ABS(-32)) = SIGN(32) = 1

8. D. The NVL function returns zero if the salary value is NULL, or else it returns the original
value. The NVL2 function returns the second argument if the salary value is not NULL. If
NULL, the third argument is returned.

9. A, B. RTRIM removes trailing (not leading) characters. INSTR returns a number. STRIP is not
a valid Oracle function. SUBSTR with second argument greater than 1 removes leading char-
acters from a string.

10. B. MOD returns the number remainder after division. The REMAINDER function is similar to
MOD but will use the ROUND function in the algorithm; hence, the result of REMAINDER(11,4)
would be –1. MOD uses FLOOR in the algorithm.

11. A, D. The SUBSTR function in option A would return the last two characters of the last
name. These two characters are right-trimmed using the RTRIM function. The result would
be the first portion of the last name and is concatenated to ‘XX’. Option B also would do
the same as A, but would replace all the occurrences of the last two characters (Paululul
will be PaXXXXXX instead of PaululXX). Option C would return only the last two characters
of the last name. The SUBSTR function in option D would return the first character through
the last –2 characters. ‘XX‘ is concatenated to the result.

12. A. The CURRENT_TIMESTAMP function returns the session date, session time, and session
time zone offset. The return datatype is TIMESTAMP WITH TIME ZONE.

95127c02.indd 144 2/18/09 6:46:46 AM

Answers to Review Questions 145

13. C. Option A will result in NULL TOTAL_SALES for rows where there are NULL WARRANTY_
SALES. Option B is not the correct syntax for NVL2, because it requires three arguments.
With option C, if WARRANTY_SALES is NULL, then CAR_SALES is returned; otherwise, CAR_
SALES+WARRANTY_SALES is returned. The COALESCE function returns the first non-NULL
argument and could be used to obtain the desired results, but the first argument here is
CAR_SALES, which is not NULL, and therefore COALESCE will always return CAR_SALES.

14. C. The ADD_MONTHS function returns the date d plus i months. If <d> is the last day of the month
or the resulting month has fewer days, then the result is the last day of the resulting
month.

15. C. Statement 1 will result in 30-SEP-0007, and statement 2 will result in 30-SEP-2007.
The RR and RRRR formats derive the century based on the current date if the century is not
specified. The YY format will use the current century, and the YYYY format expects the cen-
tury in the input.

16. B. The COALESCE function returns the first non-NULL parameter, which is the character
string ‘Oracle ‘.

17. E. Option A will not work if there is a February 29 (leap year) in the next 365 days. Option
B will always add one year to the present date, except if the current date is February 29
(leap year). Option C will return the date one day later. NEW_TIME is used to return the
date/time in a different time zone. ADD_MONTHS (SYSDATE,12) can be used to achieve the
desired result.

18. A. LOCALTIMESTAMP does not return the time zone. CURRENT_DATE and SYSDATE return nei-
ther fractional seconds nor a time zone; they both return the DATE datatype.

19. D. CONVERT is used to change from one character set to another. EXTRACT works on date/
time datatypes. TRANSLATE changes all occurrences of each character with a positionally
corresponding character, so ‘I like IBM’ would become ‘S like SUN’.

20. C. The INITCAP function capitalizes the first letter in each word. The REPLACE function
performs search-and-replace string operations. There is no IFELSE function. The DECODE
function is the one that implements IF…THEN…ELSE logic.

95127c02.indd 145 2/18/09 6:46:46 AM

95127c02.indd 146 2/18/09 6:46:46 AM

Chapter

3
Using Group
Functions

Oracle Database 11g:
sQl FUnDamentals I exam ObjectIves
cOvereD In thIs chapter:

Reporting Aggregated Data Using the Group FunctionsÛÛ

Identify the available group functionsÛN

Describe the use of group functionsÛN

Group data by using the GROUP BY clauseÛN

Include or exclude the grouped rows by using the ÛN

HAVING clause

95127c03.indd 147 2/17/09 11:38:10 AM

As explained in the previous chapter, functions are programs
that take zero or more arguments and return a single value. The
exam focuses on two types of functions: single-row and aggre-

gate (group) functions. Single-row functions were covered in Chapter 2, “Using Single-Row
Functions.” Group functions are covered in this chapter.

Group functions differ from single-row functions in how they are evaluated. Single-row
functions are evaluated once for each row retrieved. Group functions are evaluated on
groups of one or more rows at a time.

In this chapter, you will explore which group functions are available in SQL, the rules
for how to use them, and what to expect on the exam about aggregating data and group
functions. You will also explore nesting function calls together. SQL allows you to nest
group functions within calls to single-row functions, as well as nest single-row functions
within calls to group functions.

Group-Function Fundamentals
Group functions are sometimes called aggregate functions and return a value based on a num-
ber of inputs. The exact number of inputs is not determined until the query is executed and
all rows are fetched. This differs from single-row functions, in which the number of inputs is
known at parse time—before the query is executed. Because of this difference, group functions
have slightly different requirements and behavior than single-row functions.

Group functions do not consider NULL values, except the COUNT(*) and GROUPING functions.
You may apply the NVL function to the argument of the group function to substitute a value
for NULL and hence be included in the processing of the group function. If the dataset contains
all NULL values or there are no rows in the dataset, the group function returns NULL (the only
exception to this rule is COUNT—it returns zero).

Most of the group functions can be applied either to ALL values or to only the DISTINCT
values for the specified expression. When ALL is specified, all non-NULL values are applied to
the group function. When DISTINCT is specified, only one of each non-NULL value is applied
to the function. If you do not specify ALL or DISTINCT, the default is ALL.

To better understand the difference of ALL vs. DISTINCT, let’s look at a few rows from the
EMPLOYEES table:

SELECT first_name, salary

FROM employees

WHERE first_name LIKE ‘D%’

ORDER BY salary;

95127c03.indd 148 2/17/09 11:38:10 AM

Utilizing Aggregate Functions 149

FIRST_NAME SALARY

-------------------- ----------

Donald 2600

Douglas 2600

Diana 4200

David 4800

David 6800

Daniel 9000

David 9500

Danielle 9500

Den 11000

The SALARY column contains nine values. Two employees have 2,600 and 9,500 each. When
you count unique entries in the SALARY column, there are seven, since two are duplicates. The
following SQL shows a few examples. The COUNT function is used to get a count, and the SUM
function is used to find the total. (I’ll discuss these functions later in the chapter.) When the
UNIQUE keyword is used, the 2,600 and 9,500 are included in the result only once.

SELECT COUNT(salary) cnt_nu, COUNT(DISTINCT salary) cnt_uq,

 SUM(salary) sum_nu, SUM(DISTINCT salary) sum_uq

FROM employees

WHERE first_name LIKE ‘D%’;

 CNT_NU CNT_UQ SUM_NU SUM_UQ

---------- ---------- ---------- ----------

 9 7 60000 47900

Unlike with single-row functions, you cannot use programmer-written
functions on grouped data.

Utilizing Aggregate Functions
As with single-row functions, Oracle offers a rich variety of aggregate functions. These
functions can appear in the SELECT, ORDER BY, or HAVING clauses of SELECT statements.
When used in the SELECT clause, they usually require a GROUP BY clause as well. If no GROUP
BY clause is specified, the default grouping is for the entire result set. Group functions can-
not appear in the WHERE clause of a SELECT statement. The GROUP BY and HAVING clauses of
SELECT statements are associated with grouping data. I’ll discuss the GROUP BY clause before
you learn about the various group functions.

95127c03.indd 149 2/17/09 11:38:10 AM

150 Chapter 3 N Using Group Functions

You almost certainly will encounter a certification-exam question that tests
whether you will incorrectly put a group function in the WHERE clause.

Grouping Data with GROUP BY
As the name implies, group functions work on data that is grouped. You tell the database
how to group or categorize the data with a GROUP BY clause. Whenever you use a group func-
tion in the SELECT clause of a SELECT statement, you must place all nongrouping/nonconstant
columns in the GROUP BY clause. If no GROUP BY clause is specified (only group functions and
constants appear in the SELECT clause), the default grouping becomes the entire result set.
When the query executes and the data is fetched, it is grouped based on the GROUP BY clause,
and the group function is applied.

The basic syntax of using a group function in the SELECT statement is as follows:

SELECT [column names], group_function (column_name), … … …

FROM table

[WHERE condition]

[GROUP BY column names]

[ORDER BY column names]

In the following example, you find the total number of employees from the EMPLOYEES table:
SELECT COUNT(*) FROM employees;

 COUNT(*)

 107

Since you did not have any other column in the SELECT clause, you didn’t need to specify
the GROUP BY clause. Suppose you want to find out the number of employees in each depart-
ment; you can include department_id in the SELECT clause:

SELECT department_id, COUNT(*) “#Employees”

FROM employees;

SELECT department_id, COUNT(*) “#Employees”

 *

ERROR at line 1:

ORA-00937: not a single-group group function

Since you used an aggregate function and nonaggregated column, Oracle gave an error
and is telling you to group the data. Here you have to use the GROUP BY clause. If you include

95127c03.indd 150 2/17/09 11:38:10 AM

Utilizing Aggregate Functions 151

a group function in the SELECT clause, you cannot select individual results unless you use the
GROUP BY clause. Make sure all the columns in the SELECT clause that are not part of a group
function are included in the GROUP BY clause. The following SQL lists the number of employ-
ees by their department:

SELECT department_id, COUNT(*) “#Employees”

FROM employees

GROUP BY department_id;

DEPARTMENT_ID #Employees

------------- ----------

 100 6

 30 6

 1

 20 2

 70 1

 90 3

 110 2

 50 45

 40 1

 80 34

 10 1

 60 5

Notice that the rows are returned in no specific order. If you want the rows to be
arranged in the order of the number of employees, you can either specify the aggregate
function in the ORDER BY clause or use the position of the column, like so:

SELECT department_id, COUNT(*) “#Employees”

FROM employees

GROUP BY department_id

ORDER BY count(*) DESC, department_id;

SELECT department_id, COUNT(*) “#Employees”

FROM employees

GROUP BY department_id

ORDER BY 2 DESC, department_id;

95127c03.indd 151 2/17/09 11:38:10 AM

152 Chapter 3 N Using Group Functions

DEPARTMENT_ID #Employees

------------- ----------

 50 45

 80 34

 30 6

 100 6

 60 5

 90 3

 20 2

 110 2

 10 1

 40 1

 70 1

 1

You cannot use a column alias name or column position in the GROUP BY clause (as you
can in the ORDER BY clause). The following SQL is using the column position in the GROUP
BY clause and hence is giving an error:

SELECT department_id, COUNT(*) “#Employees”

FROM employees

GROUP BY 1;

SELECT department_id, COUNT(*) “#Employees”

 *

ERROR at line 1:

ORA-00979: not a GROUP BY expression

The following is another invalid SQL statement. In this example, the GROUP BY clause is
using a column alias, which is not supported. Pay particular attention to GROUP BY questions on
the certification exam, because you might see one with a column alias or column position used.

SELECT department_id di, COUNT(*) emp_cnt

FROM employees

GROUP BY di;

GROUP BY di

 *

ERROR at line 3:

ORA-00904: “DI”: invalid identifier

The GROUP BY column does not have to be in the SELECT clause. In most cases, the result may
not make much sense, but you might need it. In the following example, you are calculating the
average salary of employees in each department; you do not want to share which department
the average salary belongs to, and all you are interested in is knowing the average salaries in the
company by department:

SELECT AVG(salary) average_salary

FROM employees

GROUP BY department_id;

95127c03.indd 152 2/17/09 11:38:10 AM

Utilizing Aggregate Functions 153

AVERAGE_SALARY

 8600

 4420

 7000

 9500

 10000

 19333.3333

 10150

 3475.55556

 6500

 8955.88235

 4400

 5760

If you have more than one column in the GROUP BY clause, Oracle creates groups within
groups. The order of columns in the GROUP BY clause determines the grouping. Multiple col-
umns in the GROUP BY clause are required when you have more than one nonaggregate column
in the SELECT clause. In the following example, the rows are grouped by the department_id,
and within each department they are grouped by the job_id. The SQL shows the number of
different jobs within each department:

SELECT department_id, job_id, COUNT(*)

FROM employees

GROUP BY department_id, job_id

ORDER BY 1, 2;

DEPARTMENT_ID JOB_ID COUNT(*)

------------- ---------- ----------

 10 AD_ASST 1

 20 MK_MAN 1

 20 MK_REP 1

 30 PU_CLERK 5

 30 PU_MAN 1

 40 HR_REP 1

 50 SH_CLERK 20

 50 ST_CLERK 20

 50 ST_MAN 5

 60 IT_PROG 5

 70 PR_REP 1

 80 SA_MAN 5

 80 SA_REP 29

95127c03.indd 153 2/17/09 11:38:11 AM

154 Chapter 3 N Using Group Functions

 90 AD_PRES 1

 90 AD_VP 2

 100 FI_ACCOUNT 5

 100 FI_MGR 1

 110 AC_ACCOUNT 1

 110 AC_MGR 1

 SA_REP 1

The GROUP BY clause groups data, but Oracle does not guarantee the order
of the result set by the grouping order. To order the data in any specific
order, you must use the ORDER BY clause.

Group-Function Overview
Tables 3.1 and 3.2 summarize the group functions discussed in this chapter. I will cover
each of these functions in the “Group-Function Descriptions” sections. Table 3.1 summa-
rizes the group functions that are most likely to appear on the OCP certification exam.

ta b le 3 .1 Group-Function Summary: Part 1

Function Description

AVG Returns the statistical mean

COUNT Returns the number of non-NULL rows

MAX Returns the largest value

MEDIAN Returns a middle value

MIN Returns the smallest value

STDDEV Returns the standard deviation

SUM Adds all values and returns the result

VARIANCE Returns the sample variance, or 1 for sample size 1

Table 3.2 summarizes the group functions available in Oracle Database 11g that are not
included in Table 3.1. Although they are less likely to appear on the certification exam, they
are still important to review.

95127c03.indd 154 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 155

ta b le 3 . 2 Group-Function Summary: Part 2

Function Description

CORR Returns the coefficient of correlation of number pairs

COVAR_POP Returns the population covariance of number pairs

COVAR_SAMP Returns the sample covariance of number pairs

CUME_DIST Returns the cumulative distribution of values within groupings

DENSE_RANK Returns the ranking of rows within an ordered group, without
skipping ranks on ties

FIRST Modifies other aggregate functions to return expressions based
on the ordering of the second-column expression

GROUP_ID Returns a group identifier used to uniquely identify duplicate
groups

GROUPING Returns 0 for nonsummary rows or 1 for summary rows

GROUPING_ID Helps determine group by levels when CUBE or ROLLUP is used.

KEEP Modifies other aggregate functions to return the first or last
value in a grouping

LAST Modifies other aggregate functions to return expressions based
on ordering of the second-column expression

PERCENTILE_CONT Returns the interpolated value that would fall in the specified
percentile position using a continuous model

PERCENTILE_DISC Returns the interpolated value that would fall in the specified
percentile position using a discrete model

PERCENT_RANK Returns the percentile ranking of the specified value

RANK Returns the ranking of rows within an ordered group, skipping
ranks when ties occur

STDDEV_POP Returns the population standard deviation

STDDEV_SAMP Returns the sample standard deviation

VAR_POP Returns the population variance

VAR_SAMP Returns the sample variance

95127c03.indd 155 2/17/09 11:38:11 AM

156 Chapter 3 N Using Group Functions

Group-Function Descriptions: Part 1
I divided the group functions into two sections. The group functions included in the follow-
ing sections are commonly used in everyday SQL and are most likely to appear on the OCP
certification exam. I discuss each of these functions and include descriptions and examples
of each.

For the certification exam, concentrate more on the group functions
covered in the Part 1 discussion than those in the Part 2 discussion.

AVG
This function has the syntax AVG([{DISTINCT | ALL}] n), where n is a numeric expression.
The AVG function returns the average of the expression n.

SELECT job_id, AVG(salary)

FROM employees

WHERE job_id like ‘AC%’

GROUP BY job_id;

JOB_ID AVG(SALARY)

---------- -----------

AC_ACCOUNT 8300

AC_MGR 12000

You can use an expression or formula in the group functions. In the following example,
the average compensation including commission is calculated for department 30 from the
SCOTT.EMP table. The expression will be evaluated first, and its result will be used to calcu-
late the mean. The data in department 30 is listed for understanding the example better.

SELECT deptno, sal, comm

FROM scott.emp

WHERE deptno = 30;

 DEPTNO SAL COMM

---------- ---------- ----------

 30 1600 300

 30 1250 500

 30 1250 1400

 30 2850

 30 1500 0

 30 950

95127c03.indd 156 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 157

SELECT deptno, AVG(sal + NVL(comm,0)) avg_comp

FROM scott.emp

WHERE deptno = 30

GROUP BY deptno;

 DEPTNO AVG_COMP

---------- ----------

 30 1933.33333

Remember that group functions ignore NULL values. If the NVL function is not used, the
employees with no commission are not included in the mean calculation. See the result dif-
ference in the following example without the NVL use:

SELECT deptno, AVG(sal + comm) avg_comp

FROM scott.emp

WHERE deptno = 30

GROUP BY deptno;

 DEPTNO AVG_COMP

---------- ----------

 30 1950

COUNT
This function has the syntax COUNT({* | [DISTINCT | ALL] <x>}), where x is an expres-
sion. The COUNT function returns the number of rows in the query. If an expression is given
and neither DISTINCT nor ALL is specified, the default is ALL. The asterisk (*) is a special
quantity—it counts all rows in the result set, regardless of NULLs.

In the example that follows, you can count the number of rows in the EMPLOYEES table (the
number of employees), the number of departments that have employees in them (DEPT_COUNT),
and the number of employees that have a department (NON_NULL_DEPT_COUNT). You can see
from the results that one employee is not assigned to a department, and the other 106 are
assigned to one of 11 departments.

SELECT COUNT(*) emp_count,

 COUNT(DISTINCT department_id) dept_count,

 COUNT(ALL department_id) non_null_dept_count

FROM hr.employees;

EMP_COUNT DEPT_COUNT NON_NULL_DEPT_COUNT

---------- ---------- -------------------

 107 11 106

95127c03.indd 157 2/17/09 11:38:11 AM

158 Chapter 3 N Using Group Functions

This next example looks at the number of employees drawing a commission, as well as
the distinct number of commissions drawn. You can see that 35 out of 107 employees draw
a commission and that 7 different commission levels are in use.

SELECT COUNT(*),

 COUNT(commission_pct) comm_count,

 COUNT(DISTINCT commission_pct) distinct_comm

FROM hr.employees;

 COUNT(*) COMM_COUNT DISTINCT_COMM

---------- ---------- -------------

 107 35 7

MAX
This function has the syntax MAX([{DISTINCT | ALL}] <x>), where x is an expression. This
function returns the highest value in the expression x. x can be a datetime, numeric, or charac-
ter value. The result of the MAX operation on the three groups of datatypes is as follows:

If the expression ÛN x is a datetime datatype, it returns a DATE. For dates, the maximum
is the latest date.

If the expression ÛN x is a numeric datatype, it returns a NUMBER. For numbers, the
maximum is the largest number.

If the expression is a character datatype, it returns a VARCHAR2. For character ÛN

strings, the maximum is the one that sorts highest based on the database character set.

Although the inclusion of either DISTINCT or ALL is syntactically acceptable, their use
does not affect the calculation of a MAX function; the largest distinct value is the same as the
largest of all values.

SELECT MAX(hire_date),

 MAX(salary),

 MAX(last_name)

FROM hr.employees;

MAX(HIRE_DA MAX(SALARY) MAX(LAST_NAME)

----------- ----------- --------------

21-APR-2000 24000 Zlotkey

MIN
This function has the syntax MIN([{DISTINCT | ALL}] <x>), where x is an expression. This
function returns the lowest value in the expression x. Similar to the MAX function, the x in MIN
can also be a numeric, datetime, or character datatype.

If the expression ÛN x is a datetime datatype, it returns a DATE. For dates, the minimum
is the earliest date.

95127c03.indd 158 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 159

If the expression ÛN x is a numeric datatype, it returns a NUMBER. For numbers, the
minimum is the smallest number.

If the expression is a character datatype, it returns a VARCHAR2. For character ÛN

strings, the minimum is the one that sorts lowest based on the database character set.

Although the inclusion of either DISTINCT or ALL is syntactically acceptable, their use
does not affect the calculation of a MIN function: the smallest distinct value is the same as
the smallest value.

SELECT job_id, MIN(hire_date) oldest, MIN(salary) low_sal,

 MAX(salary) high_sal

FROM hr.employees

WHERE job_id like ‘%CLERK’

GROUP BY job_id;

JOB_ID OLDEST LOW_SAL HIGH_SAL

---------- --------- ---------- ----------

PU_CLERK 18-MAY-95 2500 3100

SH_CLERK 27-JAN-96 2500 4200

ST_CLERK 14-JUL-95 2100 3600

SUM
This function has the syntax SUM([{DISTINCT | ALL}] <x>), where x is a numeric expres-
sion. This function returns the sum of the expression x.

SELECT SUBSTR(phone_number, 1,3) area_code,

 SUM(salary) total_sal, ROUND(AVG(salary)) avg_sal

FROM employees

GROUP BY SUBSTR(phone_number, 1,3);

ARE TOTAL_SAL AVG_SAL

--- ---------- ----------

515 185900 9295

590 28800 5760

603 6000 6000

011 311500 8900

650 156400 3476

MEDIAN
MEDIAN (<x>) is an inverse distribution function that returns a middle value after the values in
the expression are sorted. The argument x is an expression of numeric or datetime value.

SELECT job_id, MEDIAN(Salary) median, AVG(salary) average,

 MIN(salary) low_sal, MAX(salary) high_sal

95127c03.indd 159 2/17/09 11:38:11 AM

160 Chapter 3 N Using Group Functions

FROM hr.employees

WHERE job_id like ‘%CLERK’

GROUP BY job_id;

JOB_ID MEDIAN AVERAGE LOW_SAL HIGH_SAL

---------- ---------- ---------- ---------- ----------

PU_CLERK 2750 2775 2500 3100

SH_CLERK 3100 3215 2500 4200

ST_CLERK 2700 2785 2100 3600

STDDEV
This function has the syntax STDDEV([{DISTINCT | ALL}] <x>), where x is a numeric expres-
sion. The STDDEV function returns the numeric standard deviation of the expression x.

The standard deviation is calculated as the square root of the variance:

SELECT department_id,

 COUNT(salary) emp_cnt,

 MIN(salary) minimum,

 MAX(salary) maximum,

 AVG(salary) mean,

 STDDEV(salary) deviation

FROM employees

GROUP BY department_id

ORDER BY department_id;

DEPARTMENT_ID EMP_CNT MINIMUM MAXIMUM MEAN DEVIATION

------------- ---------- ---------- ---------- ---------- ----------

 10 1 4400 4400 4400 0

 20 2 6000 13000 9500 4949.74747

 30 5 2500 11000 4420 3686.0548

 40 1 6500 6500 6500 0

 50 45 2100 8200 3475.55556 1488.00592

 60 5 4200 9000 5760 1925.61678

 70 1 10000 10000 10000 0

 80 34 6100 14000 8955.88235 2033.6847

 90 3 17000 24000 19333.3333 4041.45188

 100 6 6900 12000 8600 1801.11077

 110 2 8300 12000 10150 2616.29509

 1 7000 7000 7000 0

95127c03.indd 160 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 161

VARIANCE
This function has the syntax VARIANCE([{DISTINCT | ALL}] <x>), where x is a numeric
expression. This function returns the variance of the expression x.

SELECT department_id,

 COUNT(*),

 VARIANCE(salary)

FROM hr.employees

GROUP BY department_id

ORDER BY department_id;

DEPARTMENT_ID COUNT(*) VARIANCE(SALARY)

------------- ---------- ----------------

 10 1 0

 20 2 24500000

 30 6 13587000

 40 1 0

 50 45 2214161.62

 60 5 3708000

 70 1 0

 80 34 4135873.44

 90 3 16333333.3

 100 6 3244000

 110 2 6845000

 1 0

exploring Dba Queries Using aggregate Functions

As a DBA, you often need to find out the space allocated for a schema and how much is
free. You are not interested in seeing the space used by all the tables or indexes used in
the schema, but it would be nice to have the summary broken down into tablespace-wise
schema storage space. Let’s write few SQL statements using the group functions that you
can use to calculate space usage in a database.

The DBA_SEGMENTS dictionary view shows the segments allocated in the database—each
table or index created in the database must have at least one segment created. The col-
umns you are interested in for the query are tablespace_name, owner (or the schema
name), and bytes (allocated space in bytes).

The first SQL just gives the total space used by all the objects in the database. This is a
simple SQL statement, on all the rows in the view:

SELECT SUM(bytes)/1048576 size_mb

FROM dba_segments;

95127c03.indd 161 2/17/09 11:38:11 AM

162 Chapter 3 N Using Group Functions

 SIZE_MB

 1564.8125

Now, let’s break down this space into the next level; see the space used in each
tablespace. Since you are not interested in any aggregate function over the entire data-
base but want to break it down by tablespaces, you must have the GROUP BY clause:

SELECT tablespace_name, SUM(bytes)/1048576 size_mb

FROM dba_segments

GROUP BY tablespace_name;

TABLESPACE_NAME SIZE_MB

------------------------------ ----------

SYSAUX 716.375

UNDOTBS1 48.25

USERS 21.25

SYSTEM 701.625

EXAMPLE 77.3125

To find out the space allocated to each schema owner within the tablespaces, all you have
to do is add the owner column to the query. Remember, since you are not performing any
aggregate function on owner, that column also should be part of the GROUP BY clause.
You will also include an ORDER BY clause so that the rows returned are in the order of
tablespace name.

SELECT tablespace_name, owner, SUM(bytes)/1048576 size_mb

FROM dba_segments

GROUP BY tablespace_name, owner

ORDER BY 1, 2;

TABLESPACE_NAME OWNER SIZE_MB

------------------------------ ------------------------------ ----------

EXAMPLE HR 1.5625

EXAMPLE IX 1.625

EXAMPLE OE 6.25

EXAMPLE PM 11.875

EXAMPLE SH 56

SYSAUX CTXSYS 5.4375

… … …

USERS HR .1875

USERS OE 2.625

95127c03.indd 162 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 163

USERS SCOTT .375

USERS SH 2
If you want to know the space allocated to the objects owned by each schema, you can
run the following query:

SELECT owner, SUM(bytes)/1048576 size_mb

FROM dba_segments

GROUP BY owner

ORDER BY 1;

OWNER SIZE_MB

------------------------------ ----------

BTHOMAS 16.0625

CTXSYS 5.4375

DBSNMP 1.5

EXFSYS 3.875

FLOWS_030000 100.6875

FLOWS_FILES .4375

HR 1.75

… … …

Group-Function Descriptions: Part 2
The group functions discussed in the following sections are included in this chapter for
completeness of the group-functions discussion. The likelihood of these appearing in the
OCP certification exam is minimal, but it helps to know these functions to write better
SQL queries.

Many group functions discussed in this group (and AVG, COUNT, MAX, MIN, STDDEV, SUM,
and VARIANCE) can be used as analytic functions. Analytic functions are commonly used
in data-warehouse environments. They compute an aggregate based on a group of rows,
called a window. Since the OCP certification exam does not include analytic functions, I
won’t discuss them in this chapter.

CORR
CORR(y, x) takes two arguments, where y and x are numeric expressions representing the
dependent and independent variables, respectively. This function returns the coefficient of
the correlation of a set of number pairs.

The coefficient of correlation is a measure of the strength of the relationship between the
two numbers. CORR can return a NULL. The coefficient of the correlation is calculated from

95127c03.indd 163 2/17/09 11:38:11 AM

164 Chapter 3 N Using Group Functions

those x, y pairs that are both not NULL using the formula COVAR_POP(y,x) / (STDDEV_POP(y)
* STDDEV_POP(x)).

SELECT CORR(list_price,min_price) correlation,

 COVAR_POP(list_price,min_price) covariance,

 STDDEV_POP(list_price) stddev_popy,

 STDDEV_POP(min_price) stddev_popx

FROM oe.product_information

WHERE list_price IS NOT NULL

AND min_price IS NOT NULL;

CORRELATION COVARIANCE STDDEV_POPY STDDEV_POPX

----------- ------------ ----------- -----------

 .99947495 206065.903 496.712198 415.077696

The previous output shows that there is a 99.947 percent change that the list price
depends on the minimum price. So when the minimum price moves by x percent, there is
a 99.947 percent chance that the list price will also move by x percent.

COVAR_POP
COVAR_POP(y, x) takes two arguments, where y and x are numeric expressions. This func-
tion returns the population covariance of a set of number pairs, which can be NULL.

The covariance is a measure of how two sets of data vary in the same way. The popula-
tion covariance is calculated from those y, x pairs that are both not NULL using the formula
(SUM(y*x) - SUM(y) * SUM(x) / COUNT(x)) / COUNT(x).

SELECT category_id,

 COVAR_POP(list_price,min_price) population,

 COVAR_SAMP(list_price,min_price) sample

FROM oe.product_information

GROUP BY category_id;

CATEGORY_ID POPULATION SAMPLE

----------- ---------- ----------

 22 45 67.5

 25 27670.25 31623.1429

 13 25142.125 26465.3947

 11 92804.9883 98991.9875

 29 3446.75 3574.40741

 14 17982.9924 18800.4012

 21 21.5306122 25.1190476

 31 1424679.17 1709615

 24 109428.285 114639.156

 32 4575.06 4815.85263

95127c03.indd 164 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 165

 17 5466.14286 5739.45

 33 945 1134

 12 26472.3333 29781.375

 15 7650.84375 8160.9

 16 431.38 479.311111

 19 417343.887 426038.551

 39 1035.14059 1086.89762

COVAR_SAMP
COVAR_SAMP(y, x) takes two arguments, where y and x are numeric expressions represent-
ing the dependent and independent variables, respectively. This function returns the sample
covariance of a set of number pairs, which can be NULL.

The covariance is a measure of how two sets of data vary in the same way. The sample
covariance is calculated from those x, y pairs that are both not NULL using the formula
(SUM(y*x) - SUM(y) * SUM(x) / COUNT(x)) / (COUNT(x)-1).

SELECT SUM(list_price*min_price) sum_xy,

 SUM(list_price) sum_y,

 SUM(min_price) sum_x,

 COVAR_SAMP(list_price,min_price) COVARIANCE

FROM oe.product_information;

 SUM_XY SUM_Y SUM_X COVARIANCE

---------- ---------- ---------- ----------

 73803559 71407 60280 206791.488

CUME_DIST
This function has the syntax

CUME_DIST(<val_list>) WITHIN GROUP (ORDER BY col_list

[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of expressions that evaluate to numeric constant
values and col_list is the comma-delimited list of column expressions. CUME_DIST returns
the cumulative distribution of a value in val_list within a distribution in col_list.

The cumulative distribution is a measure of ranking within the ordered group and will
be in the range 0 < CUME_DIST <= 1. See also PERCENT_RANK.

SELECT department_id,

 COUNT(*) emp_count,

 AVG(salary) mean,

 PERCENTILE_CONT(0.5) WITHIN GROUP

 (ORDER BY salary DESC) Median,

 CUME_DIST(10000) WITHIN GROUP

95127c03.indd 165 2/17/09 11:38:11 AM

166 Chapter 3 N Using Group Functions

 (ORDER BY salary DESC) Cume_Dist_10K

FROM hr.employees

GROUP BY department_id;

DEPARTMENT_ID EMP_COUNT MEAN MEDIAN CUME_DIST_10K

------------- ---------- ---------- ---------- -------------

 10 1 4400 4400 .5

 20 2 9500 9500 .666666667

 30 6 4420 2900 .428571429

 40 1 6500 6500 .5

 50 45 3475.55556 3100 .02173913

 60 5 5760 4800 .166666667

 70 1 10000 10000 1

 80 34 8955.88235 8900 .342857143

 90 3 19333.3333 17000 1

 100 6 8600 8000 .285714286

 110 2 10150 10150 .666666667

 1 7000 7000 .5

DENSE_RANK
This function has the syntax

DENSE_RANK(val_list) WITHIN GROUP (ORDER BY col_list

[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of numeric constant expressions (expressions that
evaluate to numeric constant values) and col_list is the comma-delimited list of column
expressions. DENSE_RANK returns the row’s rank within an ordered group. The ranks are con-
secutive integers starting with 1. The rank values are the number of unique values returned
by the query. When there are ties, ranks are not skipped. For example, if there are three items
tied for first, then second and third will not be skipped. See also RANK.

SELECT department_id,

 COUNT(*) emp_count,

 AVG(salary) mean,

 DENSE_RANK(10000) WITHIN GROUP

 (ORDER BY salary DESC) dense_rank_10K

FROM hr.employees

GROUP BY department_id;

95127c03.indd 166 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 167

DEPARTMENT_ID EMP_COUNT MEAN DENSE_RANK_10K

------------- ---------- ---------- --------------

 10 1 4400 1

 20 2 9500 2

 30 6 4420 3

 40 1 6500 1

 50 45 3475.55556 1

 60 5 5760 1

 70 1 10000 1

 80 34 8955.88235 7

 90 3 19333.3333 3

 100 6 8600 2

 110 2 10150 2

 1 7000 1

To understand this ranking, let’s look closer at department 80. You can see that 10,000
is the 7th-highest salary in department 80. Even though there are 11 employees that make
10,000 or more, the duplicates are not counted for ranking purposes.

SELECT salary, COUNT(*)

FROM hr.employees

WHERE department_id=80

GROUP BY salary

ORDER BY salary DESC;

 SALARY COUNT(*)

---------- ----------

 14000 1

 13500 1

 12000 1

 11500 1

 11000 2

 10500 2

 10000 3

 9600 1

… … … (output truncated)

FIRST
See KEEP.

95127c03.indd 167 2/17/09 11:38:11 AM

168 Chapter 3 N Using Group Functions

GROUP_ID
GROUP_ID() takes no arguments and requires a GROUP BY clause. GROUP_ID returns a
numeric identifier that can be used to uniquely identify duplicate groups. For i duplicate
groups, GROUP_ID will return values 0 through i-1.

GROUPING
GROUPING(x) takes a single argument, where x is an expression in the GROUP BY clause of the
query. The GROUPING function is applicable only for queries that have a GROUP BY clause and a
ROLLUP or CUBE clause. The ROLLUP and CUBE clauses create summary rows (sometimes called
superaggregates) containing NULL in the grouped expressions. The GROUPING function returns
a 1 for these summary rows and a 0 for the nonsummary rows, and it is used to distinguish
the summary rows from the nonsummary rows.

GROUPING is discussed in detail in the section “Creating Superaggregates with CUBE and
ROLLUP” later in this chapter.

GROUPING_ID
This function has the syntax GROUPING_ID (<col_list>) and is applicable only in SELECT
statements with a GROUP BY clause with CUBE or ROLLUP. If the query contains many expres-
sions in the GROUP BY clause, determining the GROUP BY level will require many GROUPING
functions. The GROUPING_ID eliminates such a need. See the section “Creating Superaggre-
gates with CUBE and ROLLUP” later in this chapter for a more detailed discussion
on GROUPING_ID.

KEEP
The KEEP function has the syntax

agg_function KEEP(DENSE_RANK {FIRST|LAST}

ORDER BY col_list [ASC|DESC] [NULLS {first|last}]))

where agg_function is an aggregate function (COUNT, SUM, AVG, MIN, MAX, VARIANCE, or
STDDEV) and col_list is a list of columns to be ordered for the grouping.

This function is sometimes referred to as either the FIRST or LAST function, and it is
actually a modifier for one of the other group functions, such as COUNT or MIN. The KEEP
function returns the first or last row of a sorted group. It is used to avoid the need for a
self-join, looking for the minimum or maximum.

SELECT department_id,
 MIN(hire_date) earliest,
 MAX(hire_date) latest,
 COUNT(salary) KEEP
 (DENSE_RANK FIRST ORDER BY hire_date) FIRST,
 COUNT(salary) KEEP
 (DENSE_RANK LAST ORDER BY hire_date) LAST
FROM hr.employees
GROUP BY department_id;

95127c03.indd 168 2/17/09 11:38:11 AM

Utilizing Aggregate Functions 169

DEPARTMENT_ID EARLIEST LATEST FIRST LAST
------------- ----------- ----------- ------- ------
 10 17-Sep-1987 17-Sep-1987 1 1
 20 17-Feb-1996 17-Aug-1997 1 1
 30 07-Dec-1994 10-Aug-1999 1 1
 40 07-Jun-1994 07-Jun-1994 1 1
 50 01-May-1995 08-Mar-2000 1 1
 60 03-Jan-1990 07-Feb-1999 1 1
 70 07-Jun-1994 07-Jun-1994 1 1
 80 30-Jan-1996 21-Apr-2000 1 2
 90 17-Jun-1987 13-Jan-1993 1 1
 100 16-Aug-1994 07-Dec-1999 1 1
 110 07-Jun-1994 07-Jun-1994 2 2
 24-May-1999 24-May-1999 1 1

You can see from the previous query that department 80’s earliest and latest anniversary
dates are 30-Jan-1996 and 21-Apr-2000. The FIRST and LAST columns show us that there
was one employee hired on the earliest anniversary date (30-Jun-1996) and two hired on the
latest anniversary date (21-Apr-2000). Likewise, you can see that department 110 has two
employees hired on the earliest anniversary date (07-Jun-1994) and two on the latest anniver-
sary date (07-Jun-1994). If you look at the following detailed data, this becomes clearer:

SELECT department_id,hire_date

FROM hr.employees

WHERE department_id IN (80,110)

ORDER BY 1,2;

DEPARTMENT_ID HIRE_DATE

------------- -----------

 80 30-Jan-1996

 80 04-Mar-1996

 80 24-Jan-2000

 80 29-Jan-2000

... … … (output truncated)

 80 23-Feb-2000

 80 24-Mar-2000

 80 21-Apr-2000

 80 21-Apr-2000

 110 07-Jun-1994

 110 07-Jun-1994

LAST
See KEEP.

95127c03.indd 169 2/17/09 11:38:11 AM

170 Chapter 3 N Using Group Functions

PERCENT_RANK
The PERCENT_RANK function has the syntax

PERCENT_RANK(<val_list>) WITHIN GROUP (ORDER BY col_list

[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of expressions that evaluate to numeric constant
values and col_list is the comma-delimited list of column expressions. PERCENT_RANK returns
the percent ranking of a value in val_list within a distribution in col_list. The percent rank
x will be in the range 0 <= x <= 1.

The main difference between PERCENT_RANK and CUME_DIST is that PERCENT_RANK will
always return a 0 for the first row in any set, while the CUME_DIST function cannot return
a 0. You can use the PERCENT_RANK and CUME_DIST functions to examine the rankings of
employees with salaries of more than 10,000 in the HR.EMPLOYEES table. Notice the differ-
ent results for departments 40 and 70.

SELECT DEPARTMENT_ID DID,

 COUNT(*) emp_count,

 AVG(salary) mean,

 PERCENTILE_CONT(0.5) WITHIN GROUP

 (ORDER BY salary DESC) median,

 PERCENT_RANK(10000) WITHIN GROUP

 (ORDER BY salary DESC)*100 pct_rank_10K,

 CUME_DIST(10000) WITHIN GROUP

 (ORDER BY salary DESC)*100 cume_dist_10K

FROM hr.employees

GROUP BY department_id;

DID EMP_COUNT MEAN MEDIAN PCT_RANK_10K CUME_DIST_10K

--- ---------- ------- ------ ------------ -------------

 10 1 4400 4400 0 50

 20 2 9500 9500 50 66.6666667

 30 6 4420 2900 33.3333333 42.8571429

 40 1 6500 6500 0 50

 50 45 3475.55 3100 0 2.17391304

 60 5 5760 4800 0 16.6666667

 70 1 10000 10000 0 100

 80 34 8955.88 8900 23.5294118 34.2857143

 90 3 19333.3 17000 100 100

100 6 8600 8000 16.6666667 28.5714286

110 2 10150 10150 50 66.6666667

 1 7000 7000 0 50

95127c03.indd 170 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 171

PERCENTILE_CONT
PERCENTILE_CONT has the syntax

PERCENTILE_CONT(<x>) WITHIN GROUP (ORDER BY col_list

[ASC|DESC])

where x is a percentile value in the range 0 < x < 1 and col_list is the sort specification.
PERCENTILE_CONT returns the interpolated value that would fall in percentile position x
within the sorted group col_list.

This function assumes a continuous distribution and is most useful for obtaining the
median value of an ordered group. The median value is defined to be the midpoint in a
group of ordered numbers—half of the values are greater than the median, and half of the
values are less than the median.

The median together with the mean or average are the two most common
measures of a central tendency used to analyze data. See the AVG function
for more information on calculating the mean.

For this example, you will use the SCOTT.EMP table, ordered by department number:

SELECT ename ,deptno ,sal

FROM scott.emp

ORDER BY deptno ,sal;

ENAME DEPTNO SAL

---------- ---------- ----------

MILLER 10 1300

CLARK 10 2450

KING 10 5000

SMITH 20 800

ADAMS 20 1100

JONES 20 2975

SCOTT 20 3000

FORD 20 3000

JAMES 30 950

WARD 30 1250

MARTIN 30 1250

TURNER 30 1500

ALLEN 30 1600

BLAKE 30 2850

You can see that for department 10, there are three SAL values: 1300, 2450, and 5000.
The median would be 2450, because there is one value greater than this number and one

95127c03.indd 171 2/17/09 11:38:12 AM

172 Chapter 3 N Using Group Functions

value less than this number. The median for department 30 is not so straightforward, since
there are six values and the middle value is actually between the two data points 1250 and
1500. To get the median for department 30, you need to interpolate the midpoint.

Two common techniques are used to interpolate this median value: one technique uses a
continuous model, and one uses a discrete model. In the continuous model, the midpoint is
assumed to be the value halfway between the 1250 and 1500, which is 1375. Using the dis-
crete model, the median must be an actual data point, and depending on whether the data
is ordered ascending or descending, the median would be 1250 or 1500.

SELECT deptno,

 PERCENTILE_CONT(0.5) WITHIN GROUP

 (ORDER BY sal DESC) “CONTINUOUS”,

 PERCENTILE_DISC(0.5) WITHIN GROUP

 (ORDER BY sal DESC) “DISCRETE DESC”,

 PERCENTILE_DISC(0.5) WITHIN GROUP

 (ORDER BY sal ASC) “DISCRETE ASC”,

 AVG(sal) mean

FROM scott.emp

GROUP BY deptno;

DEPTNO CONTINUOUS DISCRETE DESC DISCRETE ASC MEAN

------ ---------- ------------- ------------ ----------

 10 2450 2450 2450 2916.66667

 20 2975 2975 2975 2175

 30 1375 1500 1250 1566.66667

PERCENTILE_DISC
PERCENTILE_DISC has the syntax

PERCENTILE_DISC(<x>) WITHIN GROUP (ORDER BY col_list

[ASC|DESC])

where x is a percentile value in the range 0 < x < 1 and col_list is the sort specification.
PERCENTILE_DISC returns the smallest cumulative distribution value from the col_list set
that is greater than or equal to value x.

This function assumes a discrete distribution. Sometimes data cannot be averaged in
a meaningful way. Date data, for example, cannot be averaged, but you can calculate
the median date in a group of dates. For example, to calculate the median hire date for
employees in each department, you could run the following query:

SELECT department_id did,

 COUNT(*) emp_count,

 MIN(HIRE_DATE) first,

 MAX(HIRE_DATE) last,

95127c03.indd 172 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 173

 PERCENTILE_DISC(0.5) WITHIN GROUP

 (ORDER BY HIRE_DATE) median

FROM hr.employees

GROUP BY department_id;

 DID EMP_COUNT FIRST LAST MEDIAN

----- ---------- --------- --------- ---------

 10 1 17-SEP-87 17-SEP-87 17-SEP-87

 20 2 17-FEB-96 17-AUG-97 17-FEB-96

 30 6 07-DEC-94 10-AUG-99 24-JUL-97

 40 1 07-JUN-94 07-JUN-94 07-JUN-94

 50 45 01-MAY-95 08-MAR-00 15-MAR-98

 60 5 03-JAN-90 07-FEB-99 25-JUN-97

 70 1 07-JUN-94 07-JUN-94 07-JUN-94

 80 34 30-JAN-96 21-APR-00 23-MAR-98

 90 3 17-JUN-87 13-JAN-93 21-SEP-89

 100 6 16-AUG-94 07-DEC-99 28-SEP-97

 110 2 07-JUN-94 07-JUN-94 07-JUN-94

 1 24-MAY-99 24-MAY-99 24-MAY-99

RANK
RANK has the syntax

RANK(<val_list>) WITHIN GROUP (ORDER BY col_list

[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of numeric constant expressions (expressions that
evaluate to numeric constant values) and col_list is the comma-delimited list of column
expressions. RANK returns the row’s rank within an ordered group.

When there are ties, ranks of equal value are assigned equal rank, and the number of tied
rows is skipped before the next rank is assigned. For example, if there are three items tied for
first, the second and third items will be skipped, and the next will be the fourth.

SELECT department_id DID,

 COUNT(*) emp_count,

 AVG(salary) mean,

 DENSE_RANK(10000) WITHIN GROUP

 (ORDER BY salary DESC) dense_rank_10K

FROM hr.employees

GROUP BY department_id;

95127c03.indd 173 2/17/09 11:38:12 AM

174 Chapter 3 N Using Group Functions

 DID EMP_COUNT MEAN DENSE_RANK_10K

---------- ---------- ---------- --------------

 10 1 4400 1

 20 2 9500 2

 30 6 4420 3

 40 1 6500 1

 50 45 3475.55556 1

 60 5 5760 1

 70 1 10000 1

 80 34 8955.88235 7

 90 3 19333.3333 3

 100 6 8600 2

 110 2 10150 2

 1 7000 1

To understand this ranking, let’s look closer at department 80. You can see that 10,000
is the 7th-highest salary in department 80. But since there are 8 employees who make more
than 10,000, the rank of 10,000 is 9. The duplicates are counted for ranking purposes.

SELECT salary, COUNT(*)

FROM hr.employees

WHERE department_id=80

 AND salary > 9000

GROUP BY salary

ORDER BY salary DESC;

 SALARY COUNT(*)

---------- ----------

 14000 1

 13500 1

 12000 1

 11500 1

 11000 2

 10500 2

 10000 3

 9600 1

 9500 3

STDDEV_POP
STDDEV_POP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric population standard deviation of the expression x. The population
standard deviation is calculated as the square root of the population variance VAR_POP.

95127c03.indd 174 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 175

SELECT department_id DID,

 STDDEV(salary) STD,

 STDDEV_POP(salary) STDPOP,

 STDDEV_SAMP(salary) STDSAMP

FROM hr.employees

GROUP BY department_id;

 DID STD STDPOP STDSAMP

----- ---------- ---------- ----------

 100 1801.11077 1644.18166 1801.11077

 30 3686.0548 3296.90764 3686.0548

 0 0

 20 4949.74747 3500 4949.74747

 70 0 0

 90 4041.45188 3299.83165 4041.45188

 110 2616.29509 1850 2616.29509

 50 1488.00592 1471.37963 1488.00592

 40 0 0

 80 2033.6847 2003.55437 2033.6847

 10 0 0

 60 1925.61678 1722.32401 1925.61678

STDDEV_SAMP
STDDEV_SAMP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric sample standard deviation of the expression x.

The sample standard deviation is calculated as the square root of the sample variance
VAR_SAMP. STDDEV is similar to the STDDEV_SAMP function, except STDDEV will return 1 when
there is only one row of input, while STDDEV_SAMP will return NULL.

See the description of STDDEV_POP for an example.

VAR_POP
VAR_POP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric population variance of x. The population variance is calculated with
the formula (SUM(x*x) – SUM(x) * SUM(x) / COUNT(x)) / COUNT(x).

SELECT department_id,

 VARIANCE(salary),

 VAR_POP(salary),

 VAR_SAMP(salary)

FROM hr.employees

GROUP BY department_id;

95127c03.indd 175 2/17/09 11:38:12 AM

176 Chapter 3 N Using Group Functions

DEPARTMENT_ID VARIANCE(SALARY) VAR_POP(SALARY) VAR_SAMP(SALARY)

------------- ---------------- --------------- ----------------

 100 3244000 2703333.33 3244000

 30 13587000 10869600 13587000

 0 0

 20 24500000 12250000 24500000

 70 0 0

 90 16333333.3 10888888.9 16333333.3

 110 6845000 3422500 6845000

 50 2214161.62 2164958.02 2214161.62

 40 0 0

 80 4135873.44 4014230.1 4135873.44

 10 0 0

 60 3708000 2966400 3708000

VAR_SAMP
VAR_SAMP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric sample variance of x. The sample variance is calculated with the formula
(SUM(x*x) – SUM(x) * SUM(x) / COUNT(x)) / (COUNT(x)-1). When the number of expres-
sions (COUNT(x)) = 1, VARIANCE returns a 0, whereas VAR_SAMP returns NULL. When (COUNT(x))
= 0, they both return NULL. See the description of VAR_POP for an example.

Limiting Grouped Data with HAVING
A SELECT statement includes a HAVING clause to filter the grouped data. I discussed the
GROUP BY clause and various group functions earlier in this chapter. The group functions
cannot be used in the WHERE clause. For example, if you want to query the total salary by
department excluding department 50 and return only those rows with more than 10,000 in
total salary column, you would have trouble with the following query:

SELECT department_id, sum(salary) total_sal

FROM employees

WHERE department_id != 50

AND SUM(salary) > 10000

GROUP BY department_id;

The database doesn’t know what the sum is when extracting the rows from the table—
remember that the grouping is done after all rows have been fetched. You get an exception
when you try to use SUM in the WHERE clause. The correct way to get the requested informa-
tion is to instruct the database to group all the rows and then limit the output of those
grouped rows. You do this by using the HAVING clause. The HAVING clause is used to restrict
the groups of returned rows to those groups where the specified condition is satisfied.

95127c03.indd 176 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 177

SELECT department_id, sum(salary) total_sal

FROM employees

WHERE department_id != 50

GROUP BY department_id

HAVING SUM(salary) > 10000;

DEPARTMENT_ID TOTAL_SAL

------------- ----------

 100 51600

 30 22100

 20 19000

 90 58000

 110 20300

 80 304500

 60 28800

As you can see in the previous query, a SQL statement can have both a WHERE clause and
a HAVING clause. WHERE filters data before grouping; HAVING filters data after grouping.

If the SELECT statement includes a WHERE clause and a GROUP BY clause, the
GROUP BY (and HAVING) clause should come after the WHERE clause. HAVING
and GROUP BY clauses can appear in any order.

Creating Superaggregates with CUBE and ROLLUP
The CUBE and ROLLUP modifiers to the GROUP BY clause allow you to create aggregations
of aggregates, or superaggregates. These superaggregates or summary rows are included
with the result set in a way similar to using the COMPUTE statement on control breaks in
SQL*Plus; that is, they are included in the data and contain NULL values in the aggregated
columns:

ROLLUPÛN creates hierarchical aggregates.

CUBEÛN creates aggregates for all combinations of columns specified.

The key advantages of CUBE and ROLLUP are that they will allow more robust aggregations
than COMPUTE and they work with any SQL-enabled tool.

These superaggregations can be visualized with a simple example using the OE.CUSTOMERS
table. For this example, say you are interested in two columns —MARITAL_STATUS, which has
value single or married, and GENDER, which has the value M or F. Let’s write some SQL to
find the total number or rows by GENDER and MARITAL_STATUS:

SELECT gender, marital_status, count(*) num_rec

FROM oe.customers

GROUP BY gender, marital_status;

95127c03.indd 177 2/17/09 11:38:12 AM

178 Chapter 3 N Using Group Functions

G MARITAL_STATUS NUM_REC

- -------------------- ----------

M married 117

M single 92

F single 47

F married 63

But suppose you want subtotals for each gender—a count of all female customers regard-
less of marital status and a count of all male customers regardless of marital status. You
could remove the MARITAL_STATUS column from the previous query, which would give you
the desired result, but what if you want to display the subtotals along with the original
query? Oracle introduced the ROLLUP modifier to accomplish this task.

Using ROLLUP
ROLLUP is used in SELECT statements with GROUP BY clauses to calculate multiple levels of
subtotals. It also provides a grand total. The ROLLUP extension adds only minimal overhead
to the overall query performance. ROLLUP creates subtotals from the most detailed level to a
grand total based on the grouping list provided with the ROLLUP modifier. It creates subtotals
moving left to right using the columns provided in ROLLUP. The grand total is provided only if
the ROLLUP modifier includes all the columns in the GROUP BY clause.

Using the previous example, you could use the ROLLUP modifier to roll up the MARITAL_
STATUS column, leaving subtotals on the grouped column GENDER. Here we have not included
GENDER in the ROLLUP; hence, the grand total is not provided:

SELECT gender, marital_status, count(*) num_rec

FROM oe.customers

GROUP BY gender, ROLLUP(marital_status);

G MARITAL_STATUS NUM_REC

- -------------------- ----------

F single 47

F married 63

F 110 <- Subtotal

M single 92

M married 117

M 209 <- Subtotal

In the previous example, you do not have any NULL value in the MARITAL_STATUS column.
If you add another record with GENDER = ‘F’ and a NULL value for MARITAL_STATUS, the
result would be as follows:

SELECT gender, marital_status, count(*) num_rec

FROM oe.customers

GROUP BY gender, ROLLUP(marital_status);

95127c03.indd 178 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 179

G MARITAL_STATUS NUM_REC

- -------------------- ----------

F single 47

F married 63

F 1 <- Null Marital_Status

F 111 <- Subtotal

M single 92

M married 117

M 209 <- Subtotal

On the OCA certification exam, this can appear as a trick question to confuse you about
which line is the subtotal. You may use an NVL function to display meaningful data in the result.

Now, if you want to add an aggregation for all genders as well, you put the GENDER column
into the ROLLUP modifier, as follows:

SELECT gender, marital_status, count(*) num_rec

FROM oe.customers

GROUP BY ROLLUP(gender, marital_status);

G MARITAL_STATUS NUM_REC

- -------------------- ----------

F single 47

F married 63

F 110 <- Subtotal

M single 92

M married 117

M 209 <- Subtotal

 319 <- Grand total

The order of the columns in the ROLLUP modifier is significant, because this order deter-
mines where Oracle produces subtotals. ROLLUP creates hierarchical aggregations, so the
order of the expressions in the ROLLUP clause is significant. The ordering follows the same
conventions used in the GROUP BY clause—most general to most specific. When you reverse
the order in the example, you get different subtotals:

SELECT gender, marital_status, count(*) num_rec

FROM oe.customers

GROUP BY ROLLUP(marital_status, gender);

G MARITAL_STATUS NUM_REC

- -------------------- ----------

F single 47

M single 92

 single 139 <- Subtotal

F married 63

M married 117

95127c03.indd 179 2/17/09 11:38:12 AM

180 Chapter 3 N Using Group Functions

 married 180 <- Subtotal

 319 <- Grand total

Suppose you want all these subtotals, both by GENDER and by MARITAL_STATUS. This
requirement calls for the CUBE modifier, which will produce all possible aggregations, not
just those in the hierarchy of columns specified.

Using CUBE
The CUBE modifier in the GROUP BY clause creates subtotals for all possible combinations of
grouping columns. Let’s try the previous example using the CUBE modifier:

SELECT gender, marital_status, count(*) num_rec

FROM oe.customers

GROUP BY CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC

- -------------------- ----------

 319 <- Grand total

 single 139 <- Subtotal Marital_Status

 married 180 <- Subtotal Marital_Status

F 110 <- Subtotal Gender

F single 47

F married 63

M 209 <- Subtotal Gender

M single 92

M married 117

The number of aggregations created by the CUBE modifier is the number of distinct
combinations of data values in all the columns that appear in the CUBE clause. CUBE creates
aggregations for all combinations of columns, so unlike ROLLUP, the order of expressions
in a CUBE is not significant. As you can see, the result set is the same, but the order of rows
(grouping) is different:

SELECT gender, marital_status, count(*) num_rec

FROM oe.customers

GROUP BY CUBE(marital_status, gender);

G MARITAL_STATUS NUM_REC

- -------------------- ----------

 319

F 110

M 209

 single 139

95127c03.indd 180 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 181

F single 47

M single 92

 married 180

F married 63

M married 117

more Dba Queries

In the “Exploring DBA Queries Using Aggregate Functions” sidebar, you saw some que-
ries written to find out the space allocated by tablespace, the space allocated by schema,
and the space allocated by tablespace and schema. These were written using three dif-
ferent SQL statements. You can see the power of CUBE in the following SQL. The results
from all the three SQL statements you tried before are in this summary report, showing
the different levels of aggregation.

SELECT tablespace_name, owner, SUM(bytes)/1048576 size_mb

FROM dba_segments

GROUP BY CUBE (tablespace_name, owner);

TABLESPACE_NAME OWNER SIZE_MB

----------------- --------------- ----------

 1564.8125 <- Grand Total

 HR 1.75 <- Subtotal HR schema

 IX 1.625 <- Subtotal IX schema

 OE 8.875

… … …

 FLOWS 100.6875 <- Subtotal FLOWS schema

USERS 21.25 <- Subtotal USERS tablespace

USERS HR .1875 <- HR schema in USERS
tablespace

USERS OE 2.625 <- OE schema in USERS
tablespace

USERS SH 2

USERS SCOTT .375

USERS BTHOMAS 16.0625

SYSAUX 716.375 <- Subtotal SYSAUX tablespace

… … …

SYSAUX FLOWS 100.6875

SYSTEM 701.625 <- Subtotal SYSTEM tablespace

SYSTEM SYS 685.1875

95127c03.indd 181 2/17/09 11:38:12 AM

182 Chapter 3 N Using Group Functions

SYSTEM OUTLN .5625

SYSTEM SYSTEM 15.875

EXAMPLE 77.3125

EXAMPLE HR 1.5625

… … …
As you can see in the result, the space used by each schema in each tablespace is shown
as well as the total space used in each tablespace and the total space used by each schema.
The total space used in the database (including all tablespaces) is also shown in the very
first line.

Three functions come in handy with the ROLLUP and CUBE modifiers of the GROUP BY
clause—GROUPING, GROUP_ID, and GROUPING_ID.

In the examples you have seen using the ROLLUP and CUBE modifiers, there was no way
of telling which row is a subtotal and which row is a grand total. You can use the GROUPING
function to overcome this problem. Review the following SQL example:

SELECT gender, marital_status, count(*) num_rec,

 GROUPING (gender) g_grp, GROUPING (marital_status) ms_grp

FROM oe.customers

GROUP BY CUBE(marital_status, gender);

G MARITAL_STATUS NUM_REC G_GRP MS_GRP

- -------------------- ---------- ---------- ----------

 319 1 1

F 110 0 1

M 209 0 1

 single 139 1 0

F single 47 0 0

M single 92 0 0

 married 180 1 0

F married 63 0 0

M married 117 0 0

The G_GRP column has a 1 for NULL values generated by the CUBE or ROLLUP modifier for
GENDER column. Similarly, the MS_GRP column has a 1 when NULL values are generated in the
MARITAL_STATUS column. Using a DECODE function on the result of the GROUPING function,
you can produce a more meaningful result set, as in the following example:
SELECT DECODE(GROUPING (gender), 1, ‘Multi-Gender’,

 gender) gender,

 DECODE(GROUPING (marital_status), 1,

95127c03.indd 182 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 183

 ‘Multi-MaritalStatus’, marital_status) marital_status,

 count(*) num_rec

FROM oe.customers

GROUP BY CUBE(marital_status, gender);

GENDER MARITAL_STATUS NUM_REC

------------ -------------------- ----------

Multi-Gender Multi-MaritalStatus 319

F Multi-MaritalStatus 110

M Multi-MaritalStatus 209

Multi-Gender single 139

F single 47

M single 92

Multi-Gender married 180

F married 63

M married 117

You can use the GROUPING function in the HAVING clause to filter out rows. You
can display only the summary results using the GROUPING function in the
HAVING clause.

The GROUPING_ID function returns the exact level of the group. It is derived from the
GROUPING function by concatenating the GROUPING levels together as bits, and gives
the GROUPING_ID. Review the following example closely to understand this:

SELECT gender, marital_status, count(*) num_rec,

 GROUPING (gender) g_grp, GROUPING (marital_status) ms_grp,

 GROUPING_ID (gender, marital_status) groupingid

FROM oe.customers

GROUP BY CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC G_GRP MS_GRP GROUPINGID

- -------------------- ---------- ---------- ---------- ----------

 319 1 1 3

 single 139 1 0 2

 married 180 1 0 2

F 110 0 1 1

F single 47 0 0 0

F married 63 0 0 0

M 209 0 1 1

M single 92 0 0 0

M married 117 0 0 0

95127c03.indd 183 2/17/09 11:38:12 AM

184 Chapter 3 N Using Group Functions

In this example, you can clearly identify the level of grouping using the GROUPING_ID
function. The GROUP_ID function is used to distinguish the duplicate groups. In the follow-
ing example, the GROUP_ID() value is 1 for duplicate groups. When writing complex aggre-
gates, you can filter out the duplicate rows by using the HAVING GROUP_ID = 0 clause in the
SELECT statement.

SELECT gender, marital_status, count(*) num_rec,

 GROUPING_ID (gender, marital_status) groupingid,

 GROUP_ID() groupid

FROM oe.customers

GROUP BY gender, CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC GROUPINGID GROUPID

- -------------------- ---------- ---------- ----------

F single 47 0 0

F married 63 0 0

M single 92 0 0

M married 117 0 0

F single 47 0 1

F married 63 0 1

M single 92 0 1

M married 117 0 1

F 110 1 0

M 209 1 0

F 110 1 1

M 209 1 1

Nesting Functions
Functions can be nested so that the output from one function is used as input to another.
Operators have an inherent precedence of execution such as * before +, but function
precedence is based on position only. Functions are evaluated innermost to outermost
and left to right. This nesting technique is common with some functions, such as DECODE
(covered in Chapter 2), where it can be used to implement limited IF…THEN…ELSE logic
within a SQL statement.

For example, the V$SYSSTAT view contains one row for each of three interesting sort
statistics. If you want to report all three statistics on a single line, you can use DECODE com-
bined with SUM to filter out data in the SELECT clause. This filtering operation is usually
done in the WHERE or HAVING clause, but if you want all three statistics on one line, you can
issue this command:

SELECT SUM (DECODE

 (name,’sorts (memory)’,value,0)) in_memory,

95127c03.indd 184 2/17/09 11:38:12 AM

Utilizing Aggregate Functions 185

 SUM (DECODE

 (name,’sorts (disk)’, value,0)) on_disk,

 SUM (DECODE

 (name,’sorts (rows)’, value,0)) rows_sorted

FROM v$sysstat;

IN_MEMORY ON_DISK ROWS_SORTED

--------- ------- -----------

 728 12 326714

What happens in the previous statement is a single pass through the V$SYSSTAT table.
The presummary result set would have the same number of rows as V$SYSSTAT (232, for
instance). Of these 232 rows, all rows and columns have zeros, except for one row in each
column that has the data of interest. Table 3.3 shows the data that was used in this example.
The summation operation then adds all the zeros to your interesting data and gives you the
results you want.

ta b le 3 . 3 Presummarized Result Set

in_memory on_disk rows_sorted

0 0 0

0 12 0

0 0 0

0 0 326714

728 0 0

0 0 0

Nesting Single-Row Functions with Group Functions
Nested functions can include single-row functions nested within group functions, as you’ve
just seen, or group functions nested within either single-row functions or other group func-
tions. For example, suppose you need to report on the departments in the EMP table, show-
ing either the number of jobs or the number of managers, whichever is greater. You would
enter the following:

SELECT deptno, GREATEST(

 COUNT(DISTINCT job),

 COUNT(DISTINCT mgr)) cnt,

 COUNT(DISTINCT job) jobs,

95127c03.indd 185 2/17/09 11:38:12 AM

186 Chapter 3 N Using Group Functions

 COUNT(DISTINCT mgr) mgrs

FROM scott.emp

GROUP BY deptno;

 DEPTNO CNT JOBS MGRS

---------- ---------- ---------- ----------

 10 3 3 2

 20 4 3 4

 30 3 3 2

Nesting Group Functions
You can also nest group functions within group functions. Only one level of nesting is
allowed when nesting a group function within a group function. To report the maximum
number of jobs in a single department, you would query the following:

SELECT MAX(COUNT (DISTINCT job_id))

FROM employees

GROUP BY department_id;

MAX(COUNT(DISTINCTJOB_ID))

 3

Group functions can be nested only one level. If you try to nest more than one level of
nested group functions, you will encounter an error. Also, there is no reason to do so. Here
is an example to show the error, though the SQL does not mean much:

SELECT MIN (MAX (COUNT (DISTINCT job_id)))

FROM employees

GROUP BY department_id;

SELECT MIN (MAX (COUNT (DISTINCT job_id)))

 *

ERROR at line 1:

ORA-00935: group function is nested too deeply

95127c03.indd 186 2/17/09 11:38:12 AM

Exam Essentials 187

Summary
Though this chapter is small in terms of OCA certification exam content, this chapter is very
important for the test. It is important to understand the concept of grouping data, where
GROUP BY and HAVING clauses can be used, and the rules associated with using these clauses.
I started this chapter by discussing the group-function fundamentals and reviewed the group
functions by concentrating on the functions that are important for the test.

I also discussed how group functions can be used in the SELECT, HAVING, and ORDER BY
clauses of SELECT statements. Most group functions can be applied to all data values or
only to the distinct data values. Except for COUNT(*), group functions ignore NULLs. Pro-
grammer-written functions cannot be used as group functions. COUNT, SUM, and AVG are the
most commonly used group functions.

When using group functions or aggregate functions in a query, the columns that do not
have any aggregate function applied to them must appear in the GROUP BY clause of the query.
The HAVING clause is used to filter out data after the aggregates are calculated. Group func-
tions cannot be used in the WHERE clause.

You can create superaggregates using the CUBE and ROLLUP modifiers in the GROUP BY clause.

Exam Essentials

Understand the usage of DISTINCT in group functions. When DISTINCT is specified, only
one of each non-NULL value is applied to the function. To apply all non-NULL values, the
keyword ALL should be used.

Know where group functions can be used. Group functions can be used in GROUP BY,
ORDER BY, and HAVING clauses. They cannot be used in WHERE clauses.

Know how MIN and MAX sort date and character data. Older dates evaluate to lower values,
while newer dates evaluate to higher values. Character data, even if it contains numbers, is
sorted according to the NLS_SORT specification.

Know which expressions in a SELECT list must appear in a GROUP BY clause. If any group-
ing is performed, all nongroup function expressions and nonconstant expressions must
appear in the GROUP BY clause.

Know the order of precedence for evaluating nested functions. You may need to evalu-
ate an expression containing nested functions. Make sure you understand the left-to-right
order of precedence used to evaluate these expressions.

95127c03.indd 187 2/17/09 11:38:12 AM

188 Review Questions

Review Questions
1. How will the results of the following two statements differ?

Statement 1:

SELECT MAX(longitude), MAX(latitude)

FROM zip_state_city;

Statement 2:

SELECT MAX(longitude), MAX(latitude)

FROM zip_state_city

GROUP BY state;

A. Statement 1 will fail because it is missing a GROUP BY clause.

B. Statement 2 will return one row, and statement 1 may return more than one row.

C. Statement 2 will fail because it does not have the columns used in the GROUP BY clause
in the SELECT clause.

D. Statement 1 will display two columns, and statement 2 will display two values for each
state.

2. Using the SALES table described here, you need to report the following:

Gross, net, and earned revenue for the second and third quarters of 1999ÛN

Gross, net, and earned revenue for sales in the states of Illinois, California, and ÛN

Texas (codes IL, CA, and TX)

Column Name state_code sales_date gross net earned

Key Type PK PK

Nulls/Unique NN NN NN NN NN

FK Table

Datatype VARCHAR2 DATE NUMBER NUMBER NUMBER

Length 2 11,2 11,2 11,2

Will all the requirements be met with the following SQL statement?

SELECT state_code, SUM(ALL gross), SUM(net), SUM(earned)

FROM sales_detail

WHERE TRUNC(sales_date,’Q’) BETWEEN

 TO_DATE(’01-Apr-1999’,’DD-Mon-YYYY’)

 AND TO_DATE(’01-Sep-1999’,’DD-Mon-YYYY’)

 AND state_cd IN (’IL’,’CA’,’TX’)

GROUP BY state_code;

95127c03.indd 188 2/17/09 11:38:13 AM

Review Questions 189

A. The statement meets all three requirements.

B. The statement meets two of the three requirements.

C. The statement meets one of the three requirements.

D. The statement meets none of the three requirements.

E. The statement will raise an exception.

3. Which line in the following SQL has an error?
1 SELECT department_id, SUM(salary)

2 FROM employees

3 WHERE department_id <> 40

4 ORDER BY department_id;

A. 1

B. 3

C. 4

D. No errors in SQL

4. John is trying to find out the average salary of employees in each department. He noticed
that the SALARY column can have NULL values, and he does not want the NULLs included
when calculating the average. Identify the correct SQL that will produce the desired results.

A. SELECT department_id, AVG(salary)

 FROM employees

 GROUP BY department_id;

B. SELECT department_id, AVG(NVL(salary,0))

 FROM employees

 GROUP BY department_id;

C. SELECT department_id, NVL(AVG(salary), 0)

 FROM employees

 GROUP BY department_id;

D. SELECT department_id, AVG(salary)

 FROM employees

 GROUP BY department_id

 HAVING salary IS NOT NULL;

95127c03.indd 189 2/17/09 11:38:13 AM

190 Review Questions

5. Review the following two SQL statements, and choose the appropriate option.
1. SELECT department_id, COUNT(*)

FROM employees

HAVING COUNT(*) > 10

GROUP BY department_id;

2. SELECT department_id, COUNT(*)

FROM employees

WHERE COUNT(*) > 10

GROUP BY department_id;

A. Statement 1 and statement 2 will produce the same results.

B. Statement 1 will succeed, and statement 2 will fail.

C. Statement 2 will succeed, and statement 1 will fail.

D. Both statements fail.

6. Read the following SQL carefully, and choose the appropriate option. The JOB_ID column
shows the various jobs.
SELECT MAX(COUNT(*))

FROM employees

GROUP BY job_id, department_id;

A. Aggregate functions cannot be nested.

B. The columns in the GROUP BY clause must appear in the SELECT clause for the query
to work.

C. The GROUP BY clause is not required in this query.

D. The SQL will produce the highest number of jobs within a department.

7. Identify the SQL that produces the correct result.

A. SELECT department_id, SUM(salary)

 FROM employees

 WHERE department_id <> 50

 GROUP BY department_id

 HAVING COUNT(*) > 30;

B. SELECT department_id, SUM(salary) sum_sal

 FROM employees

 WHERE department_id <> 50

 GROUP BY department_id

 HAVING sum_sal > 3000;

95127c03.indd 190 2/17/09 11:38:13 AM

Review Questions 191

C. SELECT department_id, SUM(salary) sum_sal

 FROM employees

 WHERE department_id <> 50

 AND sum_sal > 3000

 GROUP BY department_id;

D. SELECT department_id, SUM(salary)

 FROM employees

 WHERE department_id <> 50

 AND SUM(salary) > 3000

 GROUP BY department_id;

8. Consider the following SQL, and choose the most appropriate option.
SELECT COUNT(DISTINCT SUBSTR(first_name, 1,1))

FROM employees;

A. A single-row function nested inside a group function is not allowed.

B. The GROUP BY clause is required to successfully run this query.

C. Removing the DISTINCT qualifier will fix the error in the query.

D. The query will execute successfully without any modification.

9. The sales order number (ORDER_NO) is the primary key in the table SALES_ORDERS. Which
query will return the total number of orders in the SALES_ORDERS table?

A. SELECT COUNT(ALL order_no) FROM sales_orders;

B. SELECT COUNT(DISTINCT order_no) FROM sales_orders;

C. SELECT COUNT(order_no) FROM sales_orders;

D. SELECT COUNT(NVL(order_no,0) FROM sales_orders;

E. All of the above

F. A and C

10. Sheila wants to find the highest salary within each department of the EMPLOYEES table.
Which query will help her get what she wants?

A. SELECT MAX(salary) FROM employees;

B. SELECT MAX(salary BY department_id) FROM employees;

C. SELECT department_id, MAX(salary) max_sal FROM employees;

D. SELECT department_id, MAX(salary) FROM employees GROUP BY department_
id;

E. SELECT department_id, MAX(salary) FROM employees USING department_id;

95127c03.indd 191 2/17/09 11:38:13 AM

192 Review Questions

11. Which assertion about the following queries is true?
SELECT COUNT(DISTINCT mgr), MAX(DISTINCT salary)

FROM emp;

SELECT COUNT(ALL mgr), MAX(ALL salary)

FROM emp;

A. They will always return the same numbers in columns 1 and 2.

B. They may return different numbers in column 1 but will always return the same num-
ber in column 2.

C. They may return different numbers in both columns 1 and 2.

D. They will always return the same number in column 1 but may return different num-
bers in column 2.

12. Which clauses in the SELECT statement can use single-row functions nested in aggregate
functions? (Choose all that apply.)

A. SELECT

B. ORDER BY

C. WHERE

D. GROUP BY

13. Consider the following two SQL statements. Choose the most appropriate option.

1. select substr(first_name, 1,1) fn, SUM(salary) FROM employees GROUP BY
first_name;

2. select substr(first_name, 1,1) fn, SUM(salary) FROM employees GROUP BY
substr(first_name, 1,1);

A. Statement 1 and 2 will produce the same result.

B. Statement 1 and 2 will produce different results.

C. Statement 1 will fail.

D. Statement 2 will fail, but statement 1 will succeed.

14. How will the results of the following two SQL statements differ?
Statement 1:

SELECT COUNT(*), SUM(salary)

FROM hr.employees;

Statement 2:

SELECT COUNT(salary), SUM(salary)

FROM hr.employees;

95127c03.indd 192 2/17/09 11:38:13 AM

Review Questions 193

A. Statement 1 will return one row, and statement 2 may return more than one row.

B. Both statements will fail because they are missing a GROUP BY clause.

C. Both statements will return the same results.

D. Statement 2 may return a smaller COUNT value than statement 1.

15. Why does the following SELECT statement fail?
SELECT colorname Colour, MAX(cost)

FROM itemdetail

WHERE UPPER(colorname) LIKE ‘%WHITE%’

GROUP BY colour

HAVING COUNT(*) > 20;

A. A GROUP BY clause cannot contain a column alias.

B. The condition COUNT(*) > 20 should be in the WHERE clause.

C. The GROUP BY clause must contain the group functions used in the SELECT list.

D. The HAVING clause can contain only the group functions used in the SELECT list.

16. What will the following SQL statement return?
select max(prod_pack_size)

from sh.products

where min(prod_weight_class) = 5;

A. An exception will be raised.

B. The largest PROD_PACK_SIZE for rows containing PROD_WEIGHT_CLASS of 5 or higher

C. The largest PROD_PACK_SIZE for rows containing PROD_WEIGHT_CLASS of 5

D. The largest PROD_PACK_SIZE in the SH.PRODUCTS table

17. Why will the following query raise an exception?
select dept_no, avg(distinct salary),

 count(job) job_count

from emp

where mgr like ‘J%’

 or abs(salary) > 10

having count(job) > 5

order by 2 desc;

A. The HAVING clause cannot contain a group function.

B. The GROUP BY clause is missing.

C. ABS() is not an Oracle function.

D. The query will not raise an exception.

95127c03.indd 193 2/17/09 11:38:13 AM

194 Review Questions

18. Which clause will generate an error when the following query is executed?
SELECT department_id, AVG(salary) avg_sal

FROM employees

GROUP BY department_id

HAVING TRUNC(department_id) > 50;

A. The GROUP BY clause, because it is missing the group function.

B. The HAVING clause, because single-row functions cannot be used.

C. The HAVING clause, because the AVG function used in the SELECT clause is not used in
the HAVING clause.

D. None of the above. The SQL statement will not return an error.

19. Which statements are true? (Choose all that apply.)

A. A group function can be used only if the GROUP BY clause is present.

B. Group functions along with nonaggregated columns can appear in the SELECT clause
as long as a GROUP BY clause and a HAVING clause are present.

C. The HAVING clause is optional when the GROUP BY clause is used.

D. The HAVING clause and the GROUP BY clause are mutually exclusive; you can use only
one clause in a SELECT statement.

20. Read the following two statements, and choose the best option.

1. HAVING clause should always appear after the GROUP BY clause.

2. GROUP BY clause should always appear after the WHERE clause.

A. Statement 1 and 2 are false.

B. Statement 1 is true, and statement 2 is false.

C. Statement 1 is false, and statement 2 is true.

D. Statements 1 and 2 are true.

95127c03.indd 194 2/17/09 11:38:13 AM

Answers to Review Questions 195

Answers to Review Questions
1. D. Though you do not have a state column in the SELECT clause, having it in the GROUP

BY clause will group the results by state, so you end up getting two values (two columns) for
each state.

2. A. All requirements are met. The gross-, net-, and earned-revenue requirements are satis-
fied with the SELECT clause. The second- and third-quarter sales requirement is satisfied
with the first predicate of the WHERE clause—the sales date will be truncated to the first day
of a quarter; thus, 01-Apr-1999 or 01-Jul-1999 for the required quarters (which are both
between 01-Apr-1999 and 01-Sep-1999). The state codes requirement is satisfied by the
second predicate in the WHERE clause. This question is intentionally misleading, but so are
some exam questions (and, unfortunately, some of the code in some shops).

3. C. Since the department_id column does not have any aggregate function applied to it,
it must appear in the GROUP BY clause. The ORDER BY clause in the SQL must be replaced
with a GROUP BY clause to make the query work.

4. A. Since group functions do not include NULL values in their calculation, you do not have to
do anything special to exclude the NULL values. Only COUNT(*) includes NULL values.

5. B. An aggregate function is not allowed in the WHERE clause. You can have the GROUP BY
and HAVING clauses in any order, but they must appear after the WHERE clause.

6. D. The SQL will work fine and produce the result. Since group functions are nested, a
GROUP BY clause is required.

7. A. It is perfectly alright to have one function in the SELECT clause and another function in
the HAVING clause of the query. Options B and C are trying to use the alias name, which is
not allowed. Option D has a group function in the WHERE clause, which is also not allowed.

8. D. The query will return how many distinct alphabets are used to begin names in the
EMPLOYEES table. You can nest a group function inside a single-row function, and vice versa.

9. E. All the queries will return the same result. Since ORDER_NO is the primary key, there cannot
be NULL values in the column. Hence, ALL and DISTINCT will give the same result.

10. D. Option A will display the highest salary of all the employees. Options B and E use
invalid syntax keywords. Option C does not have a GROUP BY clause.

11. B. The first column in the first query is counting the distinct MGR values in the table. The first
column in the second query is counting all MGR values in the table. If a manager appears twice,
the first query will count her one time, but the second will count her twice. Both the first query
and the second query are selecting the maximum salary value in the table.

12. A, B. A group function is not allowed in GROUP BY or WHERE clauses, whether you use it as
nested or not.

95127c03.indd 195 2/17/09 11:38:13 AM

196 Chapter 3 N Using Group Functions

13. B. Both statements are valid. The first statement will produce the number of rows equal to
the number of unique first_name values. The second statement will produce the number of
rows equal to the unique number of first characters in the first_name column.

14. D. COUNT(*) will count all rows in the table. COUNT(salary) will count only the number
of salary values that appear in the table. If there are any rows with a NULL salary, state-
ment 2 will not count them.

15. A. A GROUP BY clause must contain the column or expressions on which to perform the
grouping operation. It cannot use column aliasing.

16. A. You cannot place a group function in the WHERE clause. Instead, you should use a
HAVING clause.

17. B. There is at least one column in the SELECT list that is not a constant or group function,
so a GROUP BY clause is mandatory.

18. D. The HAVING clause filters data after the group function is applied. If an aggregate func-
tion is not used in the HAVING clause, the column used must be part of the SELECT clause.

19. C. The HAVING clause can be used in a SELECT statement only if the GROUP BY clause is
present. The optional HAVING clause filters data after the rows are summarized.

20. C. The GROUP BY and HAVING clauses can appear in any order in the SELECT clause. If a
WHERE clause is present, it must be before the GROUP BY clause.

95127c03.indd 196 2/17/09 11:38:13 AM

Chapter

4
Using Joins and
Subqueries

Oracle DatabaSe 11g:
SQl FUnDamentalS I exam ObJectIveS
cOvereD In thIS chapter

Displaying data from multiple tablesÛÛ

Write SELECT statements to access data from more than one ÛN

table using equijoins and nonequijoins

Join a table to itself by using a self-joinÛN

View data that generally does not meet a join condition by ÛN

using outer joins

Generate a Cartesian product of all rows from two or ÛN

more tables

Using subqueries to solve queriesÛÛ

Define subqueriesÛN

Describe the types of problems that the subqueries can solveÛN

List the types of subqueriesÛN

Write single-row and multiple-row subqueriesÛN

Using the Set operatorsÛÛ

Describe set operatorsÛN

Use a set operator to combine multiple queries into a ÛN

single query

Control the order of rows returnedÛN

95127c04.indd 197 2/18/09 9:43:34 AM

A database has many tables that store data. In Chapter 1,
“Introducing SQL,” you learned how to write simple queries
that select data from one table. Although this information is

essential to passing the certification exam, the ability to join two or more related tables and
access information is the core strength of relational databases. Using the SELECT statement,
you can write advanced queries that satisfy user requirements.

This chapter focuses on querying data from more than one table using table joins and
subqueries. When you use two or more tables or views in a single query, it is a join query.
You’ll need to understand how the various types of joins and subqueries work, as well as
the proper syntax, for the certification exam.

Set operators in Oracle let you combine results from two or more SELECT statements.
The results of each SELECT statement are considered a set, and Oracle provides UNION,
INTERSECT, and MINUS operators to get the desired results. You will learn how these opera-
tors work in this chapter.

Writing Multiple-Table Queries
In relational database management systems (RDBMSs), related data can be stored in mul-
tiple tables. You use the power of SQL to relate the information and query data. A SELECT
statement has a mandatory SELECT clause and FROM clause. The SELECT clause can have
a list of columns, expressions, functions, and so on. The FROM clause tells you in which
table(s) to look for the required information. In Chapter 1, you learned to query data using
simple SELECT statements from a single table. In this chapter, you will learn how to retrieve
data from more than one table.

To query data from more than one table, you need to identify common columns that
relate the two tables. Here’s how you do it:

1. In the SELECT clause, you list the columns you are interested in from all the related
tables.

2. In the FROM clause, you include all the table names separated by commas.

3. In the WHERE clause, you define the relationship between the tables listed in the FROM
clause using comparison operators.

You can also specify the relationship using a JOIN clause instead of the WHERE clause. The
JOIN clause introduced by Oracle in Oracle 9i was then added to conform to the ISO/ANSI

95127c04.indd 198 2/18/09 9:43:34 AM

Writing Multiple-Table Queries 199

SQL1999 standard. Throughout this section, you’ll see examples of queries using the Ora-
cle native syntax as well as the ISO/ANSI SQL1999 standard. A query from multiple tables
without a relationship or common column is known as a Cartesian join or cross join and is
discussed later in this chapter.

A join is a query that combines rows from two or more tables or views. Oracle performs
a join whenever multiple tables appear in the query’s FROM clause. The query’s SELECT clause
can have the columns or expressions from any or all of these tables.

If multiple tables have the same column names, the duplicate column names
should be qualified in the queries with their table name or table alias.

Inner Joins
Inner joins return only the rows that satisfy the join condition. The most common operator
used to relate two tables is the equality operator (=). If you relate two tables using an equal-
ity operator, it is an equality join, also known as an equijoin. This type of join combines
rows from two tables that have equivalent values for the specified columns.

Simple Inner Joins
A simple inner join has only the join condition specified, without any other filtering condi-
tions. For example, let’s consider a simple join between the DEPARTMENTS and LOCATIONS
tables of the HR schema. The common column in these tables is LOCATION_ID. You will
query these tables to get the location ID, city name, and department names in that city:

SELECT locations.location_id, city, department_name

FROM locations, departments

WHERE locations.location_id = departments.location_id;

Here, you are retrieving data from two tables—two columns from the LOCATIONS table
and one column from the DEPARTMENTS table. These two tables are joined in the WHERE clause
using an equality operator on the LOCATION_ID column. It is not necessary for the column
names in both tables to have the same name to have a join. Notice that the LOCATION_ID
column is qualified with its table name for every occurrence. This is to avoid ambiguity; it is
not necessary to qualify each column, but it increases the readability of the query. If the same
column name appears in more than one table used in the query, you must qualify the column
name with the table name or table alias.

To execute a join of three or more tables, Oracle takes these steps:

1. Oracle joins two of the tables based on the join conditions, comparing their columns.

2. Oracle joins the result to another table, based on join conditions.

3. Oracle continues this process until all tables are joined into the result.

95127c04.indd 199 2/18/09 9:43:36 AM

200 Chapter 4 N Using Joins and Subqueries

Complex Inner Joins
Apart from specifying the join condition in the WHERE clause, you may have another condition
to limit the rows retrieved. Such joins are known as complex joins. For example, to con-
tinue with the example in the previous section, if you are interested only in the departments
that are outside the United States, use this query:

SELECT locations.location_id, city, department_name

FROM locations, departments

WHERE locations.location_id = departments.location_id

AND country_id != ‘US’;

LOCATION_ID CITY DEPARTMENT_NAME

----------- -------------------- -----------------

 1800 Toronto Marketing

 2400 London Human Resources

 2700 Munich Public Relations

 2500 Oxford Sales

Using Table Aliases
Like columns, tables can have alias names. Table aliases increase the readability of the query.
You can also use them to shorten long table names with shorter alias names. Specify the
table alias name next to the table, separated with a space. You can rewrite the query in the
previous section using alias names, as follows:

SELECT l.location_id, city, department_name

FROM locations l, departments d

WHERE l.location_id = d.location_id

AND country_id != ‘US’;

When tables (or views or materialized views) are specified in the FROM clause, Oracle
looks for the object in the schema (or user) connected to the database. If the table belongs
to another schema, you must qualify it with the schema name. (You may avoid this by using
synonyms, which are discussed in Chapter 7, “Creating Schema Objects.”) You can use the
schema owner to qualify a table; you can also use the table owner and schema owner to
qualify a column. Here is an example:

SELECT locations.location_id, hr.locations.city

 ,department_name

FROM hr.locations, hr.departments

WHERE locations.location_id = departments.location_id;

Keep in mind that you can qualify a column name with its schema and table only when
the table name is qualified with the schema. In the previous SQL, you qualified the column

95127c04.indd 200 2/18/09 9:43:37 AM

Writing Multiple-Table Queries 201

CITY with the schema HR. This is possible only if you qualify the LOCATIONS table with the
schema. The following SQL will produce an error:

SELECT locations.location_id, hr.locations.city

 ,department_name

FROM locations, hr.departments

WHERE locations.location_id = departments.location_id;

SELECT locations.location_id, hr.locations.city

 *

ERROR at line 1:

ORA-00904: “HR”.”LOCATIONS”.”CITY”: invalid identifier

When you use table alias names, you must qualify the column names with the alias
name only; qualifying the columns with the table name will produce an error, as in this
example:

SELECT locations.location_id, city, department_name

FROM locations l, hr.departments d

WHERE locations.location_id = d.location_id;

WHERE locations.location_id = d.location_id

 *

ERROR at line 3:

ORA-00904: “LOCATIONS”.”LOCATION_ID”: invalid identifier

The correct syntax is to replace locations.location_id with l.location_id in the
SELECT and WHERE clauses.

If there are no common column names between the two tables used in the join (the FROM
clause), you don’t need to qualify the columns. However, if you qualify the columns, you
are telling the Oracle database engine where exactly to find the column; hence, you are
improving the performance of the query.

If there are column names common to multiple tables used in a join query, you must
qualify the column name with a table name or table alias. This is true for column names
appearing in SELECT, WHERE, ORDER BY, GROUP BY, and HAVING clauses. When using the
ANSI syntax, the rule is different. The ANSI syntax is discussed in the next section.

When joining columns using the traditional syntax or ANSI syntax, if the
column datatypes are different, Oracle tries to perform an implicit data-
type conversion. This may affect your query performance. It is better if the
columns used in the join condition have the same datatype or if you use
the explicit conversion functions you learned in Chapter 2, “Using Single-
Row Functions.”

95127c04.indd 201 2/18/09 9:43:37 AM

202 Chapter 4 N Using Joins and Subqueries

Using the ANSI Syntax
The difference between traditional Oracle join syntax and the ANSI/ISO SQL1999 syntax
is that in ANSI, the join type is specified explicitly in the FROM clause. Using the ANSI syn-
tax is clearer and is recommended over the traditional Oracle syntax. Simple joins can have
the following forms:

<table name> NATURAL [INNER] JOIN <table name>

<table name> [INNER] JOIN <table name> USING (<columns>)

<table name> [INNER] JOIN <table name> ON <condition>

The following sections discuss each of the syntax forms in detail. In all three syntaxes,
the keyword INNER is optional and is the default.

NATURAL JOIN

The NATURAL keyword indicates a natural join, where the join is based on all columns that have
same name in both tables. In this type of join, you should not qualify the column names with
the table name or table alias name. Let’s return to the example of querying the DEPARTMENTS
and LOCATIONS tables using LOCATION_ID as the join column. The new Oracle syntax is as
follows:

SELECT location_id, city, department_name

FROM locations NATURAL JOIN departments;

The common column in these two tables is LOCATION_ID, and that column is used to join
the tables. When specifying NATURAL JOIN, the columns with the same name in both tables
should also have same datatype. The following query will return the same results:

SELECT location_id, city, department_name

FROM departments NATURAL JOIN locations;

Notice that even though the LOCATION_ID column is in both tables, you did not qualify
this column in the SELECT clause. You cannot qualify the column names used for the join
when using the NATURAL JOIN clause. The following query will result in an error:

SELECT l.location_id, city, department_name

FROM departments NATURAL JOIN locations l;

SELECT l.location_id, city, department_name

 *

ERROR at line 1:

ORA-25155: column used in NATURAL join cannot have qualifier

The following query will not return an error because the qualifier is used on a column
that’s not part of the join condition:

SELECT location_id, city, d.department_name

FROM departments d NATURAL JOIN locations l;

95127c04.indd 202 2/18/09 9:43:37 AM

Writing Multiple-Table Queries 203

If you use SELECT *, common columns are listed only once in the result set. The following
example demonstrates this. The common column in the COUNTRIES table and the REGIONS
table is the REGION_ID.

SQL> DESCRIBE regions

 Name Null? Type

 ----------------------- -------- ------------

 REGION_ID NOT NULL NUMBER

 REGION_NAME VARCHAR2(25)

SQL> DESCRIBE countries

 Name Null? Type

 ----------------------- -------- ------------

 COUNTRY_ID NOT NULL CHAR(2)

 COUNTRY_NAME VARCHAR2(40)

 REGION_ID NUMBER

SELECT *

FROM regions NATURAL JOIN countries;

 REGION_ID REGION_NAME CO COUNTRY_NAME

---------- ---------------- -- ------------------

 1 Europe UK United Kingdom

 1 Europe NL Netherlands

 1 Europe IT Testing Update

 1 Europe FR France

… … …

Here is another example, which joins three tables:

SELECT region_id, region_name, country_id, country_name,

 location_id, city

FROM regions

NATURAL JOIN countries

NATURAL JOIN locations;

When specifying more than two tables using NATURAL JOIN syntax, it is a good idea to
use parentheses to increase readability. The previous SQL can be interpreted in two ways:

Join the ÛN REGIONS table and the COUNTRIES table, and join the result to the LOCATIONS
table.

Join the ÛN COUNTRIES table to the LOCATIONS table, and join the result to the REGIONS
table.

95127c04.indd 203 2/18/09 9:43:37 AM

204 Chapter 4 N Using Joins and Subqueries

If you do not use parentheses, Oracle uses left associativity by pairing the tables from
left to right (as in the first scenario). By using parentheses, you can make the query less
ambiguous, as shown here:

SELECT region_id, region_name, country_id, country_name,

 location_id, city

FROM locations

NATURAL JOIN (regions

NATURAL JOIN countries);

The same query written in traditional Oracle syntax is as follows:

SELECT regions.region_id, region_name, countries.country_id, country_name,

 location_id, city

FROM regions, countries, locations

WHERE regions.region_id = countries.region_id

AND countries.country_id = locations.country_id;

Though NATURAL JOIN syntax is easy to read and use, its usage should be
discouraged in good coding practice. Since NATURAL JOIN joins the tables
by all the identical column names, you could end up having a wrong join
condition if you’re not careful. It is always better to explicitly specify the
join condition using the syntaxes available.

JOIN…USING

If there are many columns that have the same names in the tables you are joining and they
do not have the same datatype, or you want to specify the columns that should be consid-
ered for an equijoin, you can use the JOIN…USING syntax. The USING clause specifies the col-
umn names that should be used to join the tables. Here is an example:

SELECT location_id, city, department_name

FROM locations JOIN departments USING (location_id);

The column names used in the USING clause should not be qualified with a table name or
table alias. The column names not appearing in the USING clause can be qualified. If there
are other common column names in the tables and if those column names are used in the
query, they must be qualified.

Let’s consider this syntax with joining more than two tables:

SELECT region_name, country_name, city

FROM regions

JOIN countries USING (region_id)

JOIN locations USING (country_id);

Here, the REGIONS table is joined with the COUNTRIES table using the REGION_ID column,
and its result is joined with the LOCATIONS table using the COUNTRY_ID column.

95127c04.indd 204 2/18/09 9:43:37 AM

Writing Multiple-Table Queries 205

The following query will result in an error because there is no common column between
the REGIONS and LOCATIONS tables:

SELECT region_name, country_name, city

FROM regions

JOIN locations USING (country_id)

JOIN countries USING (region_id);

JOIN locations USING (country_id)

 *

ERROR at line 3:

ORA-00904: “REGIONS”.”COUNTRY_ID”: invalid identifier

You can add a WHERE clause to limit the number of rows and an ORDER BY clause to sort
the rows retrieved along with any type of join operation:

SELECT region_name, country_name, city

FROM regions

JOIN countries USING (region_id)

JOIN locations USING (country_id)

WHERE country_id = ‘US’

ORDER BY 1;

Remember that you cannot use alias or table names to qualify the column
names on the columns used in the join operation anywhere in the query
when using the NATURAL JOIN or JOIN USING syntax. You may see ques-
tions in the certification exam testing this rule.

JOIN…ON

When you do not have common column names between tables to make a join or if you
want to specify arbitrary join conditions, you can use the JOIN…ON syntax. This syntax
specifically defines the join condition using the column names. You can qualify column
names with a table name or alias name. If the column name is common to multiple tables
involved in the query, those column names must be qualified.

Using the JOIN ON syntax over the traditional join method separates the table joins from
the other conditions. Since this syntax explicitly states the join condition, it is easier to read
and understand. Here is the three-table example you used in the previous section, written
using the JOIN…ON syntax. Notice the use of qualifier on the COUNTRY_ID column; this is
required because COUNTRY_ID appears in COUNTRIES and LOCATIONS tables.

SELECT region_name, country_name, city

FROM regions r

JOIN countries c ON r.region_id = c.region_id

JOIN locations l ON c.country_id = l.country_id

WHERE c.country_id = ‘US’;

95127c04.indd 205 2/18/09 9:43:37 AM

206 Chapter 4 N Using Joins and Subqueries

Multitable Joins
A multitable join is a join of more than two tables. In the ANSI syntax, joins are performed
from left to right. The first join condition can reference columns from only the first and
second tables; the second join condition can reference columns from the first, second, and
third tables; and so on. Consider the following example:

SELECT first_name, department_name, city

FROM employees e

JOIN departments d

ON (e.department_id = d.department_id)

JOIN locations l

ON (d.location_id = l.location_id);

The first join to be performed is EMPLOYEES and DEPARTMENTS. The first join condition
can reference columns in EMPLOYEES and DEPARTMENTS but cannot reference columns in
LOCATIONS. The second join condition can reference columns from all three tables.

how Do You Specify Join conditions When You have
more than One column to Join?

Company XYZ was keeping detailed information about customer geography in its
purchase-orders database. Consider the tables and data shown here. For simplicity, I’ve
reduced the number of columns in the tables to the interesting ones for this example. For
this demonstration, say you are interested in three tables: COUNTRY, STATE, and CITY.

SQL> SELECT * FROM country;

 CNT_CODE CNT_NAME CONTINENT

---------- ---------------------- ----------

 1 UNITED STATES N.AMERICA

 91 INDIA ASIA

 65 SINGAPORE ASIA

SQL> SELECT * FROM state;

 CNT_CODE ST ST_NAME

---------- -- ---------------

 1 TX TEXAS

 1 CA CALIFORNIA

 1 TN TENNESSE

 91 TN TAMIL NADU

 91 KL KERALA

95127c04.indd 206 2/18/09 9:43:37 AM

Writing Multiple-Table Queries 207

SQL> SELECT * FROM city;

 CNT_CODE ST CTY_CODE CTY_NAME

---------- -- ---------- --------------------

 1 TX 1001 DALLAS

 1 CA 8099 LOS ANGELES

 91 TN 2243 CHENNAI

SQL>

The CNT_CODE column relates the COUNTRY table and the STATE table. The ST_CODE and
CNT_CODE columns relate the STATE table and CITY table. The following examples show
how to join the STATE and CITY tables to get information on the country code, state name,
and city name.

Traditional Oracle Join

SQL> SELECT s.cnt_code, st_name, cty_name

 2 FROM state s, city c

 3 WHERE s.cnt_code = c.cnt_code

 4 AND s.st_code = c.st_code

 5 AND s.cnt_code = 1;

 CNT_CODE ST_NAME CTY_NAME

---------- -------------------- -------------

 1 CALIFORNIA LOS ANGELES

 1 TEXAS DALLAS

SQL>

ANSI Natural Join

SQL> SELECT cnt_code, st_name, cty_name

 2 FROM state NATURAL JOIN city

 3 WHERE cnt_code = 1;

 CNT_CODE ST_NAME CTY_NAME

---------- -------------------- --------------

 1 TEXAS DALLAS

 1 CALIFORNIA LOS ANGELES

SQL>

ANSI Using JOIN…USING

SQL> SELECT cnt_code, st_name, cty_name

 2 FROM state JOIN city USING (cnt_code, st_code)

 3 WHERE cnt_code = 1;

95127c04.indd 207 2/18/09 9:43:37 AM

208 Chapter 4 N Using Joins and Subqueries

 CNT_CODE ST_NAME CTY_NAME

---------- -------------------- ----------------

 1 TEXAS DALLAS

 1 CALIFORNIA LOS ANGELES

SQL>

ANSI Using JOIN…ON

SQL> SELECT s.cnt_code, s.st_name, c.cty_name

 2 FROM state s

 3 JOIN city c ON s.cnt_code = c.cnt_code

 4 AND s.st_code = c.st_code

 5* WHERE s.cnt_code = 1;

 CNT_CODE ST_NAME CTY_NAME

---------- -------------------- -----------------

 1 CALIFORNIA LOS ANGELES

 1 TEXAS DALLAS

SQL>

Cartesian Joins
A Cartesian join occurs when data is selected from two or more tables and there is no com-
mon relation specified in the WHERE clause. If you do not specify a join condition for the tables
listed in the FROM clause, Oracle joins each row from the first table to every row in the second
table. If the first table has 3 rows and the second table has 4 rows, the result will have 12 rows.
If you add another table with 2 rows without specifying a join condition, the result will have
24 rows.

For the most part, Cartesian joins happen when there are many tables in the FROM clause
and developers forget to include the join condition or they specify a wrong join condition.
You should therefore avoid them. To avoid a Cartesian join, there should be at least n–1
join conditions when joining n tables. Sometimes you intentionally use Cartesian joins to
generate large amounts of data, especially when testing applications.

Consider the following example:

SELECT region_name, country_name

FROM regions, countries

WHERE countries.country_id LIKE ‘I%‘;

REGION_NAME COUNTRY_NAME

------------------------- -------------

Europe Israel

Americas Israel

95127c04.indd 208 2/18/09 9:43:37 AM

Writing Multiple-Table Queries 209

Asia Israel

Middle East and Africa Israel

Europe India

Americas India

Asia India

Middle East and Africa India

Europe Italy

Americas Italy

Asia Italy

Middle East and Africa Italy

Although there is a WHERE clause, you did not specify a join condition between
the COUNTRIES and REGIONS tables. The query returns all the matching rows from the
COUNTRIES table based on the WHERE clause and retrieves one row from the REGIONS table
for every row from the COUNTRIES table. There are four rows in the REGIONS table and
three rows in the COUNTRIES table with a country name beginning with I.

If a Cartesian join is made between a table having m rows and another
table having n rows, the resulting query will have m×n rows.

Using the ANSI Syntax
A Cartesian join in ANSI syntax is known as a cross join. A cross join is represented in
ANSI/ISO SQL1999 syntax using the CROSS JOIN keywords. You can code the previous
example using the ANSI syntax as follows:

SELECT region_name, country_name

FROM countries

CROSS JOIN regions

WHERE countries.country_id LIKE ‘I%‘;

REGION_NAME COUNTRY_NAME

------------------------- -------------

Europe Israel

Americas Israel

Asia Israel

Middle East and Africa Israel

Europe India

Americas India

Asia India

Middle East and Africa India

Europe Italy

95127c04.indd 209 2/18/09 9:43:37 AM

210 Chapter 4 N Using Joins and Subqueries

Americas Italy

Asia Italy

Middle East and Africa Italy

Outer Joins
So far, you have seen only inner joins, which return just the matched rows. Sometimes,
however, you might want to see the data from one table, even if there is no corresponding
row in the joining table. Oracle provides the outer join mechanism for this. An outer join
returns results based on the inner join condition, as well as the unmatched rows from one
or both of the tables.

In traditional Oracle syntax, the plus symbol surrounded by parentheses, (+), denotes
an outer join in the query. Enter (+) beside the column name of the table in the WHERE
clause where there may not be a corresponding row. For example, to write a query that
performs an outer join of tables A and B and returns all rows from A, apply the outer
join operator (+) to all columns of B in the join condition. For all rows in A that have no
matching rows in B, the query returns NULL values for the columns in B.

Consider an example using the COUNTRIES and LOCATIONS tables. Say you want to list the
country name and location city, and you also want to see all the countries in the COUNTRIES
table. To perform this outer join, you place an outer join operator beside all columns refer-
encing LOCATIONS in the WHERE clause:

SELECT c.country_name, l.city

FROM countries c, locations l

WHERE c.country_id = l.country_id (+);

COUNTRY_NAME CITY

-- --------------------

Australia Sydney

Brazil Sao Paulo

Canada Toronto

Canada Whitehorse

Switzerland Geneva

Switzerland Bern

China Beijing

Germany Munich

India Bombay

Italy Rome

Italy Venice

Japan Tokyo

Japan Hiroshima

Mexico Mexico City

Netherlands Utrecht

95127c04.indd 210 2/18/09 9:43:38 AM

Writing Multiple-Table Queries 211

Singapore Singapore

United Kingdom London

United Kingdom Oxford

United Kingdom Stretford

United States of America Southlake

United States of America South San Francisco

United States of America South Brunswick

United States of America Seattle

Argentina

Israel

Nigeria

Egypt

Kuwait

France

Hong Kong

Belgium

Zimbabwe

Zambia

Denmark

The order of tables in the query’s FROM clause determines whether the join is a left outer
join or a right outer join. In the previous example, you are selecting all the rows from the
table appearing on the left (COUNTRIES); hence this query is using a left outer join.

If tables A and B are outer-joined (FROM A, B) and you need all rows from B, the outer
join operator is placed beside all columns of A. This is a right outer join, because you are
retrieving all rows from the table on the right side (table B). In outer-join syntax using the
(+) operator, the placement of the outer join operator, (+), is what determines the table
from where all the rows are retrieved, not the order of tables; the order of tables determines
whether it is a left or right outer join. When using the ANSI syntax, the left outer join and
right outer join syntaxes depend on the table order.

The outer join operator, (+), can appear only in the WHERE clause. If there are multiple
join conditions between the tables, the outer join operator should be used against all the
conditions. Consider the following query:

SELECT c.country_name, l.city

FROM countries c, locations l

WHERE c.country_id = l.country_id (+)

AND l.city LIKE ‘B%‘;

COUNTRY_NAME CITY

----------------------------------- --------

China Beijing

India Bombay

Switzerland Bern

95127c04.indd 211 2/18/09 9:43:38 AM

212 Chapter 4 N Using Joins and Subqueries

Even though you included the outer join operator, Oracle just ignored it, and did not
provide unmatched rows in the query result. This is because you did not place the outer join
operator beside all the columns from the LOCATIONS table. The following query will return
the desired result:

SELECT c.country_name, l.city

FROM countries c, locations l

WHERE c.country_id = l.country_id (+)

AND l.city (+) LIKE ‘B%‘;

An outer join (containing the (+) operator) cannot be combined with another condition
using the OR or IN logical operators. For example, the following query is not valid:

SELECT c.country_name, l.city

FROM countries c, locations l

WHERE c.country_id = l.country_id (+)

OR l.city (+) LIKE ‘B%‘;

OR l.city (+) LIKE ‘B%‘

 *

ERROR at line 4:

ORA-01719: outer join operator (+) not allowed in operand of OR or IN

The following query works because the outer join operator is used on the LOCATIONS
table and the IN condition is used on the column from the COUNTRIES table:

SELECT c.country_name, l.city

FROM countries c, locations l

WHERE c.country_id = l.country_id (+)

AND c.country_name IN (‘India’,’Israel’);

COUNTRY_NAME CITY

---------------------------------- --------

Israel

India Bombay

Using the ANSI Syntax
The ANSI syntax allows you to specify three types of outer joins:

Left outer joinÛN

Right outer joinÛN

Full outer joinÛN

95127c04.indd 212 2/18/09 9:43:38 AM

Writing Multiple-Table Queries 213

Left Outer Joins

A left outer join is a join between two tables that returns rows based on the matching condi-
tion, as well as unmatched rows from the table to the left of the JOIN clause. For example, the
following query returns the country name and city name from the COUNTRIES and LOCATIONS
tables, as well as the entire country names from the COUNTRIES table.

SELECT c.country_name, l.city

FROM countries c LEFT OUTER JOIN locations l

ON c.country_id = l.country_id;

The keyword OUTER between LEFT and JOIN is optional. LEFT JOIN will return the same
result, as in the following example:

SELECT country_name, city

FROM countries LEFT JOIN locations

USING (country_id);

The same query can be written using NATURAL JOIN, since COUNTRY_ID is the only col-
umn common to both tables.

SELECT country_name, city

FROM countries NATURAL LEFT JOIN locations;

In traditional Oracle outer join syntax, the query is written as follows:

SELECT c.country_name, l.city

FROM countries c, locations l

WHERE l.country_id (+) = c.country_id;

Right Outer Joins

A right outer join is a join between two tables that returns rows based on the matching
condition, as well as unmatched rows from the table to the right of the JOIN clause. Let’s
rewrite the previous example using RIGHT OUTER JOIN:

SELECT country_name, city

FROM locations NATURAL RIGHT OUTER JOIN countries;

or:
SELECT c.country_name, l.city

FROM locations l RIGHT JOIN countries c

ON c.country_id = l.country_id;

You cannot specify the traditional outer join operator, (+), in a query when
the ANSI JOIN syntax is used.

95127c04.indd 213 2/18/09 9:43:38 AM

214 Chapter 4 N Using Joins and Subqueries

Full Outer Joins

A full outer join is possible when using the ANSI syntax. It is not available using the (+)
operator. This is a join between two tables that returns rows based on the matching condi-
tion, as well as unmatched rows from the table on the right and left of the JOIN clause. Sup-
pose you want to list all the employees’ last names with their department names. You want
to include all the employees, even if they have not been assigned a department. You also
want to include all the departments, even if no employees are working for that department.
Here’s the query:

SELECT e.employee_id, e.last_name,

 d.department_id, d.department_name

FROM employees e FULL OUTER JOIN departments d

ON e.department_id = d.department_id;

Trying to perform a similar query with the outer join operator will produce an error:

SELECT e.employee_id, e.last_name, d.department_name

FROM employees e, departments d

WHERE e.department_id (+) = d.department_id (+);

WHERE e.department_id (+) = d.department_id (+)

 *

ERROR at line 3:

ORA-01468: a predicate may reference only one outer-joined table

You can achieve the full outer join using the UNION operator and the outer join operator,
as in the following query:

SELECT e.employee_id, e.last_name, d.department_name

FROM employees e, departments d

WHERE e.department_id (+) = d.department_id

UNION

SELECT e.employee_id, e.last_name, d.department_name

FROM employees e, departments d

WHERE e.department_id = d.department_id (+);

If you do not specify a join type before the JOIN keyword, Oracle assumes
the default value of INNER. To specify an outer join, you must use the LEFT,
RIGHT, or FULL keyword.

Other Multiple-Table Queries
In this section, you will consider other methods used to retrieve data from more than one
table. These methods include using self-joins and using nonequality joins. Using set operators
in queries can also retrieve rows from multiple tables. Set operators are discussed in the
next section.

95127c04.indd 214 2/18/09 9:43:38 AM

Writing Multiple-Table Queries 215

Self-Joins
A self-join joins a table to itself. The table name appears in the FROM clause twice, with dif-
ferent alias names. The two aliases are treated as two different tables, and they are joined as
you would join any other tables, using one or more related columns. The following example
lists the employees’ names and their manager names from the EMPLOYEES table:

SELECT e.last_name Employee, m.last_name Manager

FROM employees e, employees m

WHERE m.employee_id = e.manager_id;

When performing self-joins in the ANSI syntax, you must always use the JOIN…ON syn-
tax. You cannot use NATURAL JOIN and JOIN…USING. In the following example, the keyword
INNER is optional. The certification example also includes an additional WHERE clause to
filter the records.

SELECT e.last_name Employee, m.last_name Manager

FROM employees e INNER JOIN employees m

ON m.employee_id = e.manager_id

WHERE e.last_name like ‘R%‘;

EMPLOYEE MANAGER

------------------------- -------------------------

Russell King

Raphaely King

Rogers Kaufling

Rajs Mourgos

Nonequality Joins
If the query is relating two tables using an equality operator (=), it is an equality join, also
known as an inner join or an equijoin, as discussed earlier in this chapter. If any other
operator is used to join the tables in the query, it is a nonequality join. Let’s consider an
example of a nonequality join. The EMPLOYEES table has a column named SALARY; the
GRADES table has the range of salary values that correspond to each grade.

SELECT * FROM grades;

GRADE LOW_SALARY HIGH_SALARY

------ ---------- -----------

P5 0 3000

P4 3001 5000

P3 5001 7000

P2 7001 10000

P1 10001

95127c04.indd 215 2/18/09 9:43:38 AM

216 Chapter 4 N Using Joins and Subqueries

To find out which grade each employee belongs to, use the following query. You limit the
rows returned by using last_name LIKE ‘R%‘.

SELECT last_name, salary, grade

FROM employees, grades

WHERE last_name LIKE ‘R%‘

AND salary >= low_salary

AND salary <= NVL(high_salary, salary);

LAST_NAME SALARY GRADE

------------------------- ---------- ------

Raphaely 11000 P1

Rogers 2900 P5

Rajs 3500 P4

Russell 14000 P1

You can write the same query using the ANSI syntax as follows:

SELECT last_name, salary, grade

FROM employees JOIN grades

ON salary >= low_salary

AND salary <= NVL(high_salary, salary)

WHERE last_name LIKE ‘R%‘;

Using Set Operators
You can use set operators to select data from multiple tables. Set operators basically com-
bine the result of two queries into one. These queries are known as compound queries. All
set operators have equal precedence. When multiple set operators are present in the same
query, they are evaluated from left to right, unless another order is specified by using paren-
theses. The datatypes of the resulting columns, as well as the number of columns, should
match in both queries. Oracle has four set operators, which are listed in Table 4.1.

ta b le 4 .1 Oracle Set Operators

Operator Description

UNION Returns all unique rows selected by either query

UNION ALL Returns all rows, including duplicates selected by either query

95127c04.indd 216 2/18/09 9:43:38 AM

Using Set Operators 217

ta b le 4 .1 Oracle Set Operators (continued)

Operator Description

INTERSECT Returns rows selected from both queries

MINUS Returns unique rows selected by the first query but not the rows
selected from the second query

I’ll discuss all of these in a bit, but let’s first consider the EMPLOYEE table and the follow-
ing two queries to illustrate the use of set operators:

SELECT last_name, hire_date

FROM employees

WHERE department_id = 90;

LAST_NAME HIRE_DATE

------------------------- ---------

King 17-JUN-87

Kochhar 21-SEP-89

De Haan 13-JAN-93

SELECT last_name, hire_date

FROM employees

WHERE last_name LIKE ‘K%‘;

LAST_NAME HIRE_DATE

------------------------- ---------

King 17-JUN-87

Kochhar 21-SEP-89

Khoo 18-MAY-95

Kaufling 01-MAY-95

King 30-JAN-96

Kumar 21-APR-00

The UNION Operator
The UNION operator is used to return rows from either query, without any duplicate rows.

SELECT last_name, hire_date

FROM employees

WHERE department_id = 90

95127c04.indd 217 2/18/09 9:43:38 AM

218 Chapter 4 N Using Joins and Subqueries

UNION

SELECT last_name, hire_date

FROM employees

WHERE last_name LIKE ‘K%‘;

LAST_NAME HIRE_DATE

------------------------- ---------

De Haan 13-JAN-93

Kaufling 01-MAY-95

Khoo 18-MAY-95

King 17-JUN-87

King 30-JAN-96

Kochhar 21-SEP-89

Kumar 21-APR-00

Notice that even though there is a total of nine rows in both queries, the UNION query
returned only unique values. The employees with the last name King appear twice, but
their hire dates are different.

The UNION ALL Operator
The UNION ALL operator does not sort or filter the result set; it returns all rows from both
queries. Let’s consider this SQL:

SELECT last_name, hire_date

FROM employees

WHERE department_id = 90

UNION ALL

SELECT last_name, hire_date

FROM employees

WHERE last_name LIKE ‘K%‘;

LAST_NAME HIRE_DATE

------------------------- ---------

King 17-JUN-87

Kochhar 21-SEP-89

De Haan 13-JAN-93

King 17-JUN-87

Kochhar 21-SEP-89

Khoo 18-MAY-95

Kaufling 01-MAY-95

King 30-JAN-96

Kumar 21-APR-00

95127c04.indd 218 2/18/09 9:43:38 AM

Using Set Operators 219

The INTERSECT Operator
The INTERSECT operator is used to return the rows returned by both queries. Let’s find the
employees common to both queries:

SELECT last_name, hire_date

FROM employees

WHERE department_id = 90

INTERSECT

SELECT last_name, hire_date

FROM employees

WHERE last_name LIKE ‘K%‘;

LAST_NAME HIRE_DATE

------------------------- ---------

King 17-JUN-87

Kochhar 21-SEP-89

The MINUS Operator
Now, let’s find the employees from the first query but not in the second query. You can use
the MINUS operator here:

SELECT last_name, hire_date

FROM employees

WHERE department_id = 90

MINUS

SELECT last_name, hire_date

FROM employees

WHERE last_name LIKE ‘K%‘;

LAST_NAME HIRE_DATE

------------------------- ---------

De Haan 13-JAN-93

Putting It All Together
Each query appearing with the set operators is an independent query and will work by
itself. You can have join conditions and all the SQL options and functions in these inde-
pendent queries. There can be only one ORDER BY clause in the query at the very end; you

95127c04.indd 219 2/18/09 9:43:38 AM

220 Chapter 4 N Using Joins and Subqueries

cannot specify an ORDER BY clause for each query appearing with the set operators. For
example, the following query will produce an error:

SELECT last_name, hire_date

FROM employees

WHERE department_id = 90

ORDER BY last_name

UNION ALL

SELECT first_name, hire_date

FROM employees

WHERE first_name LIKE ‘K%‘

ORDER BY first_name;

UNION ALL

*

ERROR at line 5:

ORA-00933: SQL command not properly ended

You can use the column name or alias name used in the first query or positional notation
in the ORDER BY clause. Here are two examples (the result is the same for both queries):

SELECT last_name, hire_date “Join Date”

FROM employees

WHERE department_id = 90

UNION ALL

SELECT first_name, hire_date

FROM employees

WHERE first_name LIKE ‘K%‘

ORDER BY last_name, “Join Date”;

SELECT last_name, hire_date “Join Date”

FROM employees

WHERE department_id = 90

UNION ALL

SELECT first_name, hire_date

FROM employees

WHERE first_name LIKE ‘K%‘

ORDER BY 1, 2;

LAST_NAME Join Date

------------------------- ---------

De Haan 13-JAN-93

Karen 05-JAN-97

95127c04.indd 220 2/18/09 9:43:38 AM

Subqueries 221

Karen 10-AUG-99

Kelly 14-JUN-97

Kevin 23-MAY-98

Kevin 16-NOV-99

Ki 12-DEC-99

Kimberely 24-MAY-99

King 17-JUN-87

Kochhar 21-SEP-89

When using set operators, the number of columns in the SELECT clause
of the queries appearing on either side of the set operator should be the
same. The column datatypes should be compatible. If the datatypes are
different, Oracle tries to do an implicit conversion of data.

Subqueries
A subquery is a query within a query. A subquery answers the queries that have multiple
parts; the subquery answers one part of the question, and the parent query answers the
other part. When you nest many subqueries, the innermost query is evaluated first. Subque-
ries can be used with all Data Manipulation Language (DML) statements.

Using subqueries in the FROM clause of a top-level query is known as an inline view. You
can nest any number of such queries; Oracle does not have a limit. Using the inline view, you
can write queries to find top-n values. This is possible because Oracle allows an ORDER BY
clause in the inline view. See Chapter 7 for details.

There are three types of subqueries:

A subquery in the ÛN WHERE clause of a query is called a nested subquery. You can have
255 levels of nested subqueries.

When a column from the table used in the parent query is referenced in the subquery, ÛN

it is known as a correlated subquery. For each row processed in the parent query, the
correlated subquery is evaluated once.

A ÛN scalar subquery returns a single row and a single column value. Scalar subqueries
can be used anywhere a column name or expression can be used.

If the columns in the subquery have the same name as the columns in the containing
SQL statement, it is a good idea to qualify the column names with table names or table
aliases to avoid ambiguity. A subquery must be enclosed in parentheses and must be placed
on the right side of the comparison operator when used in the WHERE clause.

95127c04.indd 221 2/18/09 9:43:39 AM

222 Chapter 4 N Using Joins and Subqueries

Single-Row Subqueries
Single-row subqueries return only one row of result. A single-row subquery uses a single-
row operator; the common operator is the equality operator (=). Consider an example using
the tables from the HR schema. To find the name of the employee with the highest salary,
you first need to find the highest salary using a subquery. Then you can execute the parent
query with the result from the subquery.

SELECT last_name, first_name, salary

FROM employees

WHERE salary = (SELECT MAX(salary) FROM employees);

LAST_NAME FIRST_NAME SALARY

------------------------- -------------------- ----------

King Steven 24000

The parent query of a single-row subquery can return more than one row. For example,
to find the names and salaries of employees who work in the accounting department, you
need to find the department number for accounting in a subquery and then execute the
parent query:

SELECT last_name, first_name, salary

FROM employees

WHERE department_id = (SELECT department_id

 FROM departments

 WHERE department_name = ‘Accounting’);

LAST_NAME FIRST_NAME SALARY

------------------------- -------------------- ----------

Higgins Shelley 12000

Gietz William 8300

All single-row comparison operators can be used in the single-row subquery (=, >, >=, <,
<=, or <>). The following example uses two subqueries. So, there are three query blocks in
total. The two inner query blocks (subqueries) are executed first, and their result is passed
on to the outer query (parent query) to complete its processing.

SELECT last_name, first_name, department_id

FROM employees

WHERE department_id < (SELECT MAX(department_id)

 FROM departments

 WHERE location_id = 1500)

AND hire_date >= (SELECT MIN(hire_date)

 FROM employees

 WHERE department_id = 30);

95127c04.indd 222 2/18/09 9:43:39 AM

Subqueries 223

Similar to the WHERE clause, a subquery can be used in the HAVING clause. The following
query lists the latest hire dates by departments that have hired an employee after the first
employee was hired in department 80:

SELECT department_id, MAX(hire_date)

FROM employees

GROUP BY department_id

HAVING MAX(hire_date) > (SELECT MIN(hire_date)

 FROM employees

 WHERE department_id = 80);

DEPARTMENT_ID MAX(HIRE_

------------- ---------

 100 07-DEC-99

 30 10-AUG-99

 24-MAY-99

 20 17-AUG-97

 50 08-MAR-00

 80 21-APR-00

 60 07-FEB-99

Multiple-Row Subqueries
Multiple-row subqueries return more than one row of results from the subquery. It is safer
to provide the multiple-row operators in the subqueries if you are not sure of the results. In
the previous query, if there is more than one department ID with the name accounting, the
query will fail.

The following query returns three rows from the subquery. It lists all the employees who
work for the same department as John does.

SELECT last_name, first_name, department_id

FROM employees

WHERE department_id = (SELECT department_id

 FROM employees

 WHERE first_name = ‘John’);

WHERE department_id = (SELECT department_id

 *

ERROR at line 3:

ORA-01427: single-row subquery returns more than one row

95127c04.indd 223 2/18/09 9:43:39 AM

224 Chapter 4 N Using Joins and Subqueries

The query failed because you used a single-row operator with a multiple-row subquery.
Change the = to a multiple-row operator to make the query work:

SELECT last_name, first_name, department_id

FROM employees

WHERE department_id IN (SELECT department_id

 FROM employees

 WHERE first_name = ‘John’);

IN is the most commonly used multiple-row subquery operator. Other operators are
EXISTS, ANY, SOME, and ALL. You may use NOT with the IN and EXISTS operators.

ANY and SOME are synonymous operators. ANY, SOME, and ALL operators must always be
preceded by any of the single-row conditional operators (=, >, >=, <, <= or <>) and are used
to compare a value to each value returned by the subquery. Table 4.2 lists the meaning of
the ANY and ALL operators when used with different conditional operators.

ta b le 4 . 2 ANY and ALL Operator Meaning

Operation Meaning

<ANY Less than the maximum

<=ANY Less than or equal to the maximum

>ANY More than the minimum

=ANY Equivalent to the IN operator

<ALL Less than the minimum

>ALL More than the maximum

<>ALL Equivalent to the NOT IN operator

Let’s review the ANY and ALL operators using examples. The following query will be used
in the next subquery using the ANY operator. The subquery returns the 12000 and 8300 val-
ues. The minimum is 8,300. The second query returns salaries equal to or above 8,300 that
do not belong to department 80.

SELECT salary FROM employees WHERE department_id = 110;

95127c04.indd 224 2/18/09 9:43:39 AM

Subqueries 225

 SALARY

 12000

 8300

SELECT last_name, salary, department_id

FROM employees

WHERe salary >= ANY (SELECT salary FROM employees

 WHERE department_id = 110)

AND department_id != 80;

LAST_NAME SALARY DEPARTMENT_ID

------------------------- ---------- -------------

King 24000 90

De Haan 17000 90

Kochhar 17000 90

Hartstein 13000 20

Higgins 12000 110

Greenberg 12000 100

Raphaely 11000 30

Baer 10000 70

Faviet 9000 100

Hunold 9000 60

Gietz 8300 110

The following example lists only the salaries that are more than the maximum (12,000)
returned from the subquery:

SELECT last_name, salary, department_id

FROM employees

WHERe salary > ALL (SELECT salary FROM employees

 WHERE department_id = 110)

AND department_id != 80;

LAST_NAME SALARY DEPARTMENT_ID

------------------------- ---------- -------------

Hartstein 13000 20

De Haan 17000 90

Kochhar 17000 90

King 24000 90

You can use the DISTINCT keyword in the subquery when using ANY or ALL operators to
prevent rows from being selected multiple times.

95127c04.indd 225 2/18/09 9:43:39 AM

226 Chapter 4 N Using Joins and Subqueries

Subquery Returns No Rows
If the subquery returns no rows, a NULL value is returned to the parent query. Since NULL is
not equal to another NULL, the parent query may not return any row even if there are NULL
values in the column used in the WHERE clause of the subquery.

As shown in the following SQL, there is one record in the EMPLOYEES table where you
have a NULL DEPARTMENT_ID:

SQL> SELECT last_name, first_name, salary

 2 FROM employees

 3 WHERE department_id IS NULL;

LAST_NAME FIRST_NAME SALARY

------------------------- -------------------- ----------

Grant Kimberely 7000

Let’s use this column in the subquery and see what happens:
SQL> SELECT last_name, first_name, salary

 2 FROM employees

 3 WHERE department_id = (SELECT department_id

 4 FROM departments

 5 WHERE department_name = ‘JustDummy’);

no rows selected

SQL>

In the previous example, the outer query will return a value only if the DEPARTMENT_ID
column matches some value. Although the inner query returned NULL, the outer query
will not match for NULL, since NULL ≠ NULL. Let’s review another example. In the following
query, only Tobias has a NULL salary value:

SQL> SELECT last_name, salary

 2 FROM employees

 3 WHERE department_id = 30;

LAST_NAME SALARY

------------------------- ----------

Raphaely 11000

Khoo 3100

Baida 2900

Tobias

Himuro 2600

Colmenares 2500

95127c04.indd 226 2/18/09 9:43:39 AM

Subqueries 227

When you use this subquery, you expect to see some results, because you know the
EMPLOYEES table has more than the five different salary values:

SQL> SELECT first_name, last_name, salary

 2 FROM employees

 3 WHERE salary NOT IN (

 4 SELECT salary

 5 FROM employees

 6 WHERE department_id = 30);

no rows selected

SQL>

The SQL does not return any rows because one of the rows returned by the inner query
is NULL. So, be careful when using NOT IN conditions with subqueries that could have a NULL
value. This is not a problem when you use the IN operator. The IN operator is equivalent to
=ANY, and the NOT IN operator is equivalent to <> ALL. If you include one more condition in
the WHERE clause of the inner query, the SQL would work as expected:

SELECT first_name, last_name, salary

FROM employees

WHERE salary NOT IN (

 SELECT salary

 FROM employees

 WHERE department_id = 30

 AND salary is NOT NULL);

Correlated Subqueries
Oracle performs a correlated subquery when the subquery references a column from a
table referred to in the parent statement. A correlated subquery is evaluated once for each
row processed by the parent statement. The parent statement can be a SELECT, UPDATE, or
DELETE statement. In the following example, the highest-paid employee of each department
is selected. The subquery is executed for each row returned in the parent query. Notice that
the parent table column is used inside the subquery.

SELECT department_id, last_name, salary

FROM employees e1

WHERE salary = (SELECT MAX(salary)

 FROM employees e2

 WHERE e1.department_id = e2.department_id)

ORDER BY 1, 2, 3;

95127c04.indd 227 2/18/09 9:43:39 AM

228 Chapter 4 N Using Joins and Subqueries

DEPARTMENT_ID LAST_NAME SALARY

------------- ------------------------- ----------

 10 Whalen 4400

 20 Hartstein 13000

 30 Raphaely 11000

 40 Mavris 6500

 50 Fripp 8200

 60 Hunold 9000

 70 Baer 10000

 80 Russell 14000

 90 King 24000

 100 Greenberg 12000

 110 Higgins 12000

The following example shows a correlated subquery using the EXISTS operator. The
EXISTS operator checks for the existence of a row in the subquery based on the condition.
The column results of the SELECT clause in the subquery are ignored when using the EXISTS
operator. The query lists the names of employees who work with John (in the same depart-
ment). The subquery selects a dummy value of ‘x’, which is ignored.

SELECT last_name, first_name, department_id

FROM employees e1

WHERE EXISTS (SELECT ‘x’

 FROM employees e2

 WHERE first_name = ‘John’

 AND e1.department_id = e2.department_id);

The column names in the parent queries are available for reference in
subqueries. The column names from the tables in the subquery cannot be
used in the parent queries. The scope is only the current query level and its
subqueries.

Scalar Subqueries
A scalar subquery returns exactly one column value from one row. You can use scalar
subqueries in most places where you would use a column name or expression, such as
in a single-row function as an argument, in the VALUES clause of an INSERT statement, in
an ORDER BY clause, in a WHERE clause, and in a SELECT clause. You can also use scalar
subqueries in CASE expressions. Scalar subqueries cannot be used in GROUP BY or HAVING
clauses. The following sections review a few examples of using scalar subqueries.

95127c04.indd 228 2/18/09 9:43:39 AM

Subqueries 229

A Scalar Subquery in a CASE Expression
To list the city name, the country code, and whether the city is in India, you use a CASE
expression with a subquery to return the country code for India from the COUNTRIES table.
To limit the rows, let’s select only the cities that begin with B:

SELECT city, country_id, (CASE

 WHEN country_id IN (SELECT country_id

 FROM countries

 WHERE country_name = ‘India’)

 THEN ‘Indian’

 ELSE ‘Non-Indian’

 END) “INDIA?”

FROM locations

WHERE city LIKE ‘B%‘;

CITY CO INDIA?

------------------------------ -- ----------

Beijing CN Non-Indian

Bombay IN Indian

Bern CH Non-Indian

A Scalar Subquery in a SELECT Clause
To report the employee name, the department, and the highest salary in that department,
you use a subquery in the SELECT clause. This is also a correlated subquery.

SELECT last_name, department_id,

 (SELECT MAX(salary)

 FROM employees sq

 WHERE sq.department_id = e.department_id) HSAL

FROM employees e

WHERE last_name like ‘R%‘;

LAST_NAME DEPARTMENT_ID HSAL

------------------------- ------------- ----------

Raphaely 30 11000

Rogers 50 8200

Rajs 50 8200

Russell 80 14000

95127c04.indd 229 2/18/09 9:43:39 AM

230 Chapter 4 N Using Joins and Subqueries

A Scalar Subquery in SELECT and WHERE Clauses
The following query may be confusing, but pay close attention to the flexibility of using
subqueries to solve your queries. A scalar subquery is used in the SELECT clause as well
as in the WHERE clause. A multiple-row subquery is also used in the WHERE clause, after the
IN operator. The purpose of the query is to find the department names and their manager
names for all departments that are in the United States or Canada. Since the country infor-
mation is not available in the DEPARTMENTS table, you need to get this information from the
LOCATIONS table. Also, you do not know the country IDs of the United States and Canada,
so you use a subquery to get them. The query also limits the number of rows retrieved by
checking whether a manager is assigned to the department (d.manager_id IS NOT NULL).

SELECT department_name, manager_id, (SELECT last_name

 FROM employees e

 WHERE e.employee_id = d.manager_id) MGR_NAME

FROM departments d

WHERE ((SELECT country_id FROM locations l

 WHERE d.location_id = l.location_id)

 IN (SELECT country_id FROM countries c

 WHERE c.country_name = ‘United States of America’

 OR c.country_name = ‘Canada’))

AND d.manager_id IS NOT NULL;

DEPARTMENT_NAME MANAGER_ID MGR_NAME

-------------------- ---------- --------------

Administration 200 Whalen

Marketing 201 Hartstein

Purchasing 114 Raphaely

Shipping 121 Fripp

IT 103 Hunold

Executive 100 King

Finance 108 Greenberg

Accounting 205 Higgins

A Scalar Subquery in an ORDER BY Clause
You can also use scalar subqueries in the ORDER BY clause. The following example sorts the
city names by their country-name order. Notice that the country name is not included in
the SELECT clause.

SELECT country_id, city, state_province

FROM locations l

ORDER BY (SELECT country_name

 FROM countries c

 WHERE l.country_id = c.country_id);

95127c04.indd 230 2/18/09 9:43:39 AM

Subqueries 231

If the scalar subquery returns more than one row, the query will fail. If the scalar sub-
query returns no rows, the value is NULL.

Finding total Space and Free Space Using Dictionary views

The following dictionary views are best friends of a DBA. They show the most critical
aspect of the database from the user perspective—the space allocated and free. If the
DBA is not monitoring the growth and free space available in the database, it is likely that
they might get calls from the user community that they ran out of space in the tablespace.
Let’s build a query using four dictionary views (you may need the SELECT_CATALOG_ROLE
privilege to query these views).

DBA_TABLESPACESÛN : Shows the tablespace name, type, and so on.

DBA_DATA_FILESÛN : Shows the data files associated with a permanent or undo
tablespace and the size of the data file. The total size of all data files associated with a
tablespace gives the total size of the tablespace.

DBA_TEMP_FILESÛN : Shows the temporary files associated with a temporary tablespace
and their size.

DBA_FREE_SPACEÛN : Shows the unallocated space (free space) in each tablespace.

The query to get the tablespace names and type of tablespace would be as follows:

column tablespace_name format a18

SELECT tablespace_name, contents

FROM dba_tablespaces;

TABLESPACE_NAME CONTENTS

------------------ ---------

SYSTEM PERMANENT

SYSAUX PERMANENT

UNDOTBS1 UNDO

TEMP TEMPORARY

USERS PERMANENT

EXAMPLE PERMANENT

To find the total space allocated to each tablespace, you need to query DBA_DATA_FILES and
DBA_TEMP_FILES. Since you are using a group function (SUM) along with a nonaggregated
column (tablespace_name), the GROUP BY clause is a must. Notice the use of an arithmetic
operation on the aggregated result to display the bytes in megabytes.

SELECT tablespace_name, SUM(bytes)/1048576 MBytes

FROM dba_data_files

95127c04.indd 231 2/18/09 9:43:39 AM

232 Chapter 4 N Using Joins and Subqueries

GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES

------------------ ----------

UNDOTBS1 730

SYSAUX 800.1875

USERS 201.75

SYSTEM 710

EXAMPLE 100

SELECT tablespace_name, SUM(bytes)/1048576 MBytes

FROM dba_temp_files

GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES

------------------ ----------

TEMP 50.0625

You can find the total free space in each tablespace using the DBA_FREE_SPACE view.
Notice that the free space from temporary tablespace is not shown in this query.

SELECT tablespace_name, SUM(bytes)/1048576 MBytesFree

FROM dba_free_space

GROUP BY tablespace_name;

TABLESPACE_NAME MBYTESFREE

------------------ ----------

SYSAUX 85.25

UNDOTBS1 718.6875

USERS 180.4375

SYSTEM 8.3125

EXAMPLE 22.625

Let’s now try to display the total size of the tablespaces and their free space side-by-side
using a UNION ALL query. UNION ALL is used to avoid sorting. UNION will produce the
same result.

SELECT tablespace_name, SUM(bytes)/1048576 MBytes, 0 MBytesFree

FROM dba_data_files

GROUP BY tablespace_name

UNION ALL

SELECT tablespace_name, SUM(bytes)/1048576 MBytes, 0

FROM dba_temp_files

95127c04.indd 232 2/18/09 9:43:39 AM

Subqueries 233

GROUP BY tablespace_name

UNION ALL

SELECT tablespace_name, 0, SUM(bytes)/1048576

FROM dba_free_space

GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES MBYTESFREE

------------------ ---------- ----------

UNDOTBS1 730 0

SYSAUX 800.1875 0

USERS 201.75 0

SYSTEM 710 0

EXAMPLE 100 0

TEMP 50.0625 0

SYSAUX 0 85.25

UNDOTBS1 0 718.6875

USERS 0 180.4375

SYSTEM 0 8.3125

EXAMPLE 0 22.625

You got the result, but it’s not exactly as you expected. You want to see the free-space
information beside each tablespace. Let’s join the results of the total space with the free
space and see what happens. Here you are creating two subqueries (inline views total-
space and freespace) and joining them together using the tablespace_name column.

SELECT tablespace_name, MBytes, MBytesFree

FROM

 (SELECT tablespace_name, SUM(bytes)/1048576 MBytes

 FROM dba_data_files

 GROUP BY tablespace_name

 UNION ALL

 SELECT tablespace_name, SUM(bytes)/1048576 MBytes

 FROM dba_temp_files

 GROUP BY tablespace_name) totalspace

JOIN

 (SELECT tablespace_name, 0, SUM(bytes)/1048576 MBytesFree

 FROM dba_free_space

 GROUP BY tablespace_name) freespace

USING (tablespace_name);

95127c04.indd 233 2/18/09 9:43:39 AM

234 Chapter 4 N Using Joins and Subqueries

TABLESPACE_NAME MBYTES MBYTESFREE

------------------ ---------- ----------

SYSAUX 800.1875 85.25

UNDOTBS1 730 718.6875

USERS 201.75 180.4375

SYSTEM 710 8.3125

EXAMPLE 100 22.625

You are almost there; the only item missing is information about the temporary tablespace.
Since the temporary-tablespace free-space information is not included in the freespace
subquery and you used an INNER join condition, the result set did not include temporary
tablespaces. Now if you change the INNER JOIN to an OUTER JOIN, you get the desired
result:

SELECT tablespace_name, MBytes, MBytesFree

FROM

 (SELECT tablespace_name, SUM(bytes)/1048576 MBytes

 FROM dba_data_files

 GROUP BY tablespace_name

 UNION ALL

 SELECT tablespace_name, SUM(bytes)/1048576 MBytes

 FROM dba_temp_files

 GROUP BY tablespace_name) totalspace

LEFT OUTER JOIN

 (SELECT tablespace_name, 0, SUM(bytes)/1048576 MBytesFree

 FROM dba_free_space

 GROUP BY tablespace_name) freespace

USING (tablespace_name)

ORDER BY 1;

TABLESPACE_NAME MBYTES MBYTESFREE

------------------ ---------- ----------

EXAMPLE 100 22.625

SYSAUX 800.1875 85.0625

SYSTEM 710 8.3125

TEMP 50.0625

UNDOTBS1 730 718.6875

USERS 201.75 180.4375

95127c04.indd 234 2/18/09 9:43:39 AM

Subqueries 235

Another method to write the same query would be to use the query you built earlier and
aggregate its result using an outer query, as shown here:

SELECT tsname, sum(MBytes) MBytes, sum(MBytesFree) MBytesFree

FROM (

 SELECT tablespace_name tsname, SUM(bytes)/1048576 MBytes, 0 MBytesFree

 FROM dba_data_files

 GROUP BY tablespace_name

 UNION ALL

 SELECT tablespace_name, SUM(bytes)/1048576 MBytes, 0

 FROM dba_temp_files

 GROUP BY tablespace_name

 UNION ALL

 SELECT tablespace_name, 0, SUM(bytes)/1048576

 FROM dba_free_space

 GROUP BY tablespace_name)

GROUP BY tsname

ORDER BY 1;

TSNAME MBYTES MBYTESFREE

------------------------------ ---------- ----------

EXAMPLE 100 22.625

SYSAUX 800.1875 85.0625

SYSTEM 710 8.3125

TEMP 50.0625 0

UNDOTBS1 730 718.6875

USERS 201.75 180.4375

Multiple-Column Subqueries
A subquery is multiple-column when you have more than one column in the SELECT clause
of the subquery. Multiple-column subqueries are generally used to compare column condi-
tions or in an UPDATE statement. Let’s consider a simple example using the STATE and CITY
tables shown here:

SQL> SELECT * FROM state;

 CNT_CODE ST_CODE ST_NAME

---------- ------- ------------

 1 TX TEXAS

 1 CA CALIFORNIA

95127c04.indd 235 2/18/09 9:43:40 AM

236 Chapter 4 N Using Joins and Subqueries

 91 TN TAMIL NADU

 1 TN TENNESSE

 91 KL KERALA

SQL> SELECT * FROM city;

 CNT_CODE ST_CODE CTY_CODE CTY_NAME

---------- ------- -------- --------------

 1 TX 1001 DALLAS

 91 TN 2243 MADRAS

 1 CA 8099 LOS ANGELES

List the cities in Texas using a subquery on the STATE table:
SELECT cty_name

FROM city

WHERE (cnt_code, st_code) IN

 (SELECT cnt_code, st_code

 FROM state

 WHERE st_name = ‘TEXAS’);

CTY_NAME

DALLAS

Subqueries in Other DML Statements
You can use subqueries in DML statements such as INSERT, UPDATE, DELETE, and MERGE. DML
statements and their syntax are discussed in Chapter 5, “Manipulating Data.” The following
are some examples of subqueries in DML statements:

To update the salary of all employees to the maximum salary in the corresponding ÛN

department (correlated subquery), use this:

UPDATE employees e1

SET salary = (SELECT MAX(salary)

 FROM employees e2

 WHERE e1.department_id = e2.department_id);

To delete the records of employees whose salary is less than the average salary in the ÛN

department (using a correlated subquery), use this:

DELETE FROM employees e

WHERE salary < (SELECT AVG(salary) FROM employees

 WHERE department_id = e.department_id);

95127c04.indd 236 2/18/09 9:43:40 AM

Subqueries 237

To insert records to a table using a subquery, use this:ÛN

INSERT INTO employee_archive

SELECT * FROM employees;

To specify a subquery in the ÛN VALUES clause of the INSERT statement, use this:

INSERT INTO departments

 (department_id, department_name)

VALUES ((SELECT MAX(department_id)

 +10 FROM departments), ‘EDP’);

You can also have a subquery in the INSERT, UPDATE, and DELETE statements in place of
the table name. Here is an example:

DELETE FROM

(SELECT * FROM departments

 WHERE department_id < 20)

WHERE department_id = 10;

The subquery can have an optional WITH clause. WITH READ ONLY specifies that the subquery
cannot be updated. WITH CHECK OPTION specifies that if the subquery is used in place of a table
in an INSERT, UPDATE, or DELETE statement, Oracle will not allow any changes to the table that
would produce rows that are not included in the subquery. Let’s look at an example:

INSERT INTO (SELECT department_id, department_name

 FROM departments

 WHERE department_id < 20)

VALUES (35, ‘MARKETING’);

1 row created.

INSERT INTO (SELECT department_id, department_name

 FROM departments

 WHERE department_id < 20 WITH CHECK OPTION)

VALUES (45, ‘EDP’)

SQL> /

 FROM departments

 *

ERROR at line 2:

ORA-01402: view WITH CHECK OPTION where-clause violation

SQL>

95127c04.indd 237 2/18/09 9:43:40 AM

238 Chapter 4 N Using Joins and Subqueries

Summary
In this chapter, you learned to retrieve data from multiple tables. I started off discussing
table joins. You also learned how to use subqueries and set operators.

Joins are used to relate two or more tables (or views). In a relational database, it is com-
mon to have a requirement to join data. The tables are joined by using a common column
in the tables in the WHERE clause of the query. Oracle supports ISO/ANSI SQL1999 syntax
for joins. Using this syntax, the tables are joined using the JOIN keyword, and a condition
can be specified using the ON clause.

 If the join condition uses the equality operator (= or IN), it is known as an equality join.
If any other operator is used to join the tables, it is a nonequality join. If you do not specify
any join condition between the tables, the result will be a Cartesian product: each row from
the first table joined to every row in the second table. To avoid Cartesian joins, there should
be at least n-1 join conditions in the WHERE clause when there are n tables in the FROM clause.
A table can be joined to itself. If you want to select the results from a table, even if there
are no corresponding rows in the joined table, you can use the outer join operator: (+). In
the ANSI syntax, you can use the NATURAL JOIN, CROSS JOIN, LEFT JOIN, RIGHT JOIN, and
FULL JOIN keywords to specify the type of join.

A subquery is a query within a query. Writing subqueries is a powerful way to manipu-
late data. You can write single-row and multiple-row subqueries. Single-row subqueries
must return zero or one row; multiple-row subqueries return zero or more rows. IN and
EXISTS are the most commonly used subquery operators. Subqueries can appear in the
WHERE clause or in the FROM clause. They can also replace table names in SELECT, DELETE,
INSERT, and UPDATE statements. Subqueries that return one row and one column result are
known as scalar subqueries. Scalar subqueries can be used in most places where you would
use an expression.

Set operators are used to combine the results of more than one query into one. Each
query is separate and will work on its own. Four set operators are available in Oracle:
UNION, UNION ALL, MINUS, and INTERSECT.

Exam Essentials

Understand joins. Make sure you know the different types of joins. Understand the differ-
ence between natural, cross, simple, complex, and outer joins.

Know the different outer join clauses. You can specify outer joins using LEFT, RIGHT, or
FULL. Know the syntax of each type of join.

Be sure of the join syntax. Spend time practicing each type of join using the ANSI syntax.
Understand the restrictions of using each ANSI keyword in the JOIN and their implied
column-naming conventions.

95127c04.indd 238 2/18/09 9:43:40 AM

Exam Essentials 239

Know how to write subqueries. Understand the use and flexibility of subqueries. Practice
using scalar subqueries and correlated subqueries.

Understand the use of the ORDER BY clause in the subqueries. You can use the ORDER BY
clause in all subqueries, except the subqueries appearing in the WHERE clause of the query.
You can use the GROUP BY clause in the subqueries.

Know the set operators. Understand the set operators that can be used in compound
queries. Know the difference between the UNION and UNION ALL operators.

Understand where you can specify the ORDER BY clause when using set operators. When
using set operators to join two or more queries, the ORDER BY clause can appear only at the
very end of the query. You can specify the column names as they appear in the top query or
use positional notation.

95127c04.indd 239 2/18/09 9:43:40 AM

240 Review Questions

Review Questions
1. Which line of code has an error?

A. SELECT dname, ename

B. FROM emp e, dept d

C. WHERE emp.deptno = dept.deptno

D. ORDER BY 1, 2;

2. What will be the result of the following query?
SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id

FROM customers c, orders o

WHERE c.cust_id = o.cust_id (+);

A. List all the customer names in the CUSTOMERS table and the orders they made from the
ORDERS table, even if the customer has not placed an order.

B. List only the names of customers from the CUSTOMERS table who have placed an order
in the ORDERS table.

C. List all orders from the ORDERS table, even if there is no valid customer record in the
CUSTOMERS table.

D. For each record in the CUSTOMERS table, list the information from the ORDERS table.

3. The CUSTOMERS and ORDERS tables have the following data:

SQL> SELECT * FROM customers;

CUST_ CUST_NAME PHONE CITY

----- -------------------- --------------- -----------

A0101 Abraham Taylor Jr. Fort Worth

B0134 Betty Baylor 972-555-5555 Dallas

B0135 Brian King Chicago

SQL> SELECT * FROM orders;

ORD_DATE PROD_ID CUST_ID QUANTITY PRICE

--------- ---------- ------- ---------- ----------

20-FEB-00 1741 B0134 5 65.5

02-FEB-00 1001 B0134 25 2065.85

02-FEB-00 1001 B0135 3 247.9

When the following query is executed, what will be the value of PROD_ID and ORD_DATE for
the customer Abraham Taylor Jr.?

SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id

FROM customers c, orders o

WHERE c.cust_id = o.cust_id (+);

95127c04.indd 240 2/18/09 9:43:40 AM

Review Questions 241

A. NULL, 01-JAN-01

B. NULL, NULL

C. 1001, 02-FEB-00

D. The query will not return customer Abraham Taylor Jr.

4. When using ANSI join syntax, which clause is used to specify a join condition?

A. JOIN

B. USING

C. ON

D. WHERE

5. The EMPLOYEES table has EMPLOYEE_ID, DEPARTMENT_ID, and FULL_NAME columns. The
DEPARTMENTS table has DEPARTMENT_ID and DEPARTMENT_NAME columns. Which two of the
following queries return the department ID, name, and employee name, listing department
names even if there is no employee assigned to that department? (Choose two.)

A. SELECT d.department_id, d.department_name, e.full_name

FROM departments d

NATURAL LEFT OUTER JOIN employees e;

B. SELECT department_id, department_name, full_name

FROM departments

NATURAL LEFT JOIN employees;

C. SELECT d.department_id, d.department_name, e.full_name

FROM departments d

LEFT OUTER JOIN employees e

USING (d.department_id);

D. SELECT d.department_id, d.department_name, e.full_name

FROM departments d

LEFT OUTER JOIN employees e

ON (d.department_id = e.department_id);

6. Which two operators are not allowed when using an outer join operator in the query?
(Choose two.)

A. OR

B. AND

C. IN

D. =

7. Which SQL statements do not give an error? (Choose all that apply.)

A. SELECT last_name, e.hire_date, department_id

 FROM employees e

 JOIN (SELECT max(hire_date) max_hire_date

 FROM employees ORDER BY 1) me

 ON (e.hire_date = me.max_hire_date)

95127c04.indd 241 2/18/09 9:43:40 AM

242 Review Questions

B. SELECT last_name, e.hire_date, department_id

 FROM employees e

 WHERE hire_date =

 (SELECT max(hire_date) max_hire_date

 FROM employees ORDER BY 1)

C. SELECT last_name, e.hire_date, department_id

 FROM employees e

 WHERE (department_id, hire_date) IN

 (SELECT department_id, max(hire_date) hire_date

 FROM employees GROUP BY department_id)

D. SELECT last_name, e.hire_date, department_id

 FROM employees e JOIN

 (SELECT department_id, max(hire_date) hire_date

 FROM employees GROUP BY department_id) me

 USING (hire_date)

8. The columns of the EMPLOYEES, DEPARTMENTS, and JOBS tables are shown here:

Table Column Names Datatype

EMPLOYEES EMPLOYEE_ID NUMBER (6)

FIRST_NAME VARCHAR2 (25)

LAST_NAME VARCHAR2 (25)

SALARY NUMBER (8,2)

JOB_ID VARCHAR2 (10)

MANAGER_ID NUMBER (6)

DEPARTMENT_ID NUMBER (2)

DEPARTMENTS DEPARTMENT_ID NUMBER (2)

DEPARTMENT_NAME VARCHAR2 (30)

MANAGER_ID NUMBER (6)

LOCATION_ID NUMBER (4)

JOBS JOB_ID VARCHAR2 (10)

JOB_TITLE VARCAHR2 (30)

Which assertion about the following query is correct?

95127c04.indd 242 2/18/09 9:43:40 AM

Review Questions 243

 1 SELECT e.last_name, d.department_name, j.job_title

 2 FROM jobs j

 3 INNER JOIN employees e

 4 ON (e.department_id = d.department_id)

 5 JOIN departments d

 6 ON (j.job_id = e.job_id);

A. The query returns all the rows from the EMPLOYEE table, where there is a corresponding
record in the JOBS table and the DEPARTMENTS table.

B. The query fails with an invalid column name error.

C. The query fails because line 3 specifies INNER JOIN, which is not a valid syntax.

D. The query fails because line 5 does not specify the keyword INNER.

E. The query fails because the column names are qualified with the table alias.

9. The columns of the EMPLOYEES and DEPARTMENTS tables are shown in question 8. Consider
the following three queries using those tables.
1. SELECT last_name, department_name

FROM employees e, departments d

WHERE e.department_id = d.department_id;

2. SELECT last_name, department_name

FROM employees NATURAL JOIN departments;

3. SELECT last_name, department_name

FROM employees JOIN departments

USING (department_id);

Which of the following assertions best describes the results?

A. Queries 1, 2, and 3 produce the same results.

B. Queries 2 and 3 produce the same result; query 1 produces a different result.

C. Queries 1, 2, and 3 produce different results.

D. Queries 1 and 3 produce the same result; query 2 produces a different result.

10. The data in the STATE table is as shown here:
SQL> SELECT * FROM state;

 CNT_CODE ST_CODE ST_NAME

---------- ------- ------------

 1 TX TEXAS

 1 CA CALIFORNIA

 91 TN TAMIL NADU

 1 TN TENNESSE

 91 KL KERALA

95127c04.indd 243 2/18/09 9:43:40 AM

244 Review Questions

Consider the following query.

SELECT cnt_code

FROM state

WHERE st_name = (SELECT st_name FROM state

 WHERE st_code = ‘TN’);

Which of the following assertions best describes the results?

A. The query will return the CNT_CODE for the ST_CODE value ‘TN’.

B. The query will fail and will not return any rows.

C. The query will display 1 and 91 as CNT_CODE values.

D. The query will fail because an alias name is not used.

11. The data in the STATE table is shown in question 10. The data in the CITY table is as
shown here:
SQL> SELECT * FROM city;

 CNT_CODE ST_CODE CTY_CODE CTY_NAME

---------- ------- ---------- -------------

 1 TX 1001 DALLAS

 91 TN 2243 MADRAS

 1 CA 8099 LOS ANGELES

What is the result of the following query?
SELECT st_name “State Name”

FROM state

WHERE (cnt_code, st_code) =

 (SELECT cnt_code, st_code

 FROM city

 WHERE cty_name = ‘DALLAS’);

A. TEXAS

B. The query will fail because CNT_CODE and ST_CODE are not in the WHERE clause of the
subquery.

C. The query will fail because more than one column appears in the WHERE clause.

D. TX

12. Which line of the code has an error?
 1 SELECT department_id, count(*)

 2 FROM employees

 3 GROUP BY department_id

 4 HAVING COUNT(department_id) =

 5 (SELECT max(count(department_id))

 6 FROM employees

 7 GROUP BY department_id);

95127c04.indd 244 2/18/09 9:43:40 AM

Review Questions 245

A. Line 3

B. Line 4

C. Line 5

D. Line 7

E. No error

13. Which of the following is a correlated subquery?

A. select cty_name from city
 where st_code in (select st_code from state
 where st_name = ‘TENNESSEE’
 and city.cnt_code = state.cnt_code);

B. select cty_name
 from city
 where st_code in (select st_code from state
 where st_name = ‘TENNESSEE’);

C. select cty_name
 from city, state
 where city.st_code = state.st_code
 and city.cnt_code = state.cnt_code
 and st_name = ‘TENNESSEE’;

D. select cty_name
 from city, state
 where city.st_code = state.st_code (+)
 and city.cnt_code = state.cnt_code (+)
 and st_name = ‘TENNESSEE’;

14. The COUNTRY table has the following data:
SQL> SELECT * FROM country;

 CNT_CODE CNT_NAME CONTINENT

---------- ----------------- ----------

 1 UNITED STATES N.AMERICA

 91 INDIA ASIA

 65 SINGAPORE ASIA

What value is returned from the subquery when you execute the following?

SELECT CNT_NAME

FROM country

WHERE CNT_CODE =

(SELECT MAX(cnt_code) FROM country);

95127c04.indd 245 2/18/09 9:43:40 AM

246 Review Questions

A. INDIA

B. 65

C. 91

D. SINGAPORE

15. Which line in the following query contains an error?
1 SELECT deptno, ename, sal

2 FROM emp e1

3 WHERE sal = (SELECT MAX(sal) FROM emp

4 WHERE deptno = e1.deptno

5 ORDER BY deptno);

A. Line 2

B. Line 3

C. Line 4

D. Line 5

16. Consider the following query:

SELECT deptno, ename, salary salary, average,

 salary-average difference

FROM emp,

(SELECT deptno dno, AVG(salary) average FROM emp

 GROUP BY deptno)

WHERE deptno = dno

ORDER BY 1, 2;

Which of the following statements is correct?

A. The query will fail because no alias name is provided for the subquery.

B. The query will fail because a column selected in the subquery is referenced outside the
scope of the subquery.

C. The query will work without errors.

D. GROUP BY cannot be used inside a subquery.

17. The COUNTRY table has the following data:

SQL> SELECT * FROM country;

 CNT_CODE CNT_NAME CONTINENT

---------- -------------------- ----------

 1 UNITED STATES N.AMERICA

 91 INDIA ASIA

 65 SINGAPORE ASIA

95127c04.indd 246 2/18/09 9:43:40 AM

Review Questions 247

What will be result of the following query?

INSERT INTO (SELECT cnt_code FROM country

 WHERE continent = ‘ASIA’)

VALUES (971, ‘SAUDI ARABIA’, ‘ASIA’);

A. One row will be inserted into the COUNTRY table.

B. WITH CHECK OPTION is missing in the subquery.

C. The query will fail because the VALUES clause is invalid.

D. The WHERE clause cannot appear in the subqueries used in INSERT statements.

18. Review the SQL code, and choose the line number that has an error.
1 SELECT DISTINCT department_id

2 FROM employees

3 ORDER BY department_id

4 UNION ALL

5 SELECT department_id

6 FROM departments

7 ORDER BY department_id

A. 1

B. 3

C. 6

D. 7

E. No error

19. Consider the following queries:
1. SELECT last_name, salary,

 (SELECT (MAX(sq.salary) - e.salary)

 FROM employees sq

 WHERE sq.department_id = e.department_id) DSAL

FROM employees e

WHERE department_id = 20;

2. SELECT last_name, salary, msalary - salary dsal

FROM employees e,

 (SELECT department_id, MAX(salary) msalary

 FROM employees

 GROUP BY department_id) sq

WHERE e.department_id = sq.department_id

AND e.department_id = 20;

95127c04.indd 247 2/18/09 9:43:40 AM

248 Review Questions

3. SELECT last_name, salary, msalary - salary dsal

FROM employees e INNER JOIN

 (SELECT department_id, MAX(salary) msalary

 FROM employees

 GROUP BY department_id) sq

ON e.department_id = sq.department_id

WHERE e.department_id = 20;

4. SELECT last_name, salary, msalary - salary dsal

FROM employees INNER JOIN

 (SELECT department_id, MAX(salary) msalary

 FROM employees

 GROUP BY department_id) sq

USING (department_id)

WHERE department_id = 20;

Which of the following assertions best describes the results?

A. Queries 1 and 2 produce identical results, and queries 3 and 4 produce identical results,
but queries 1 and 3 produce different results.

B. Queries 1, 2, 3, and 4 produce identical results.

C. Queries 1, 2, and 3 produce identical results; query 4 will produce errors.

D. Queries 1 and 3 produce identical results; queries 2 and 4 will produce errors.

E. Queries 1, 2, 3, and 4 produce different results.

F. Queries 1 and 2 are valid SQL; queries 3 and 4 are not valid.

20. The columns of the EMPLOYEES and DEPARTMENTS tables are shown in question 8. Which
query will show you the top five highest-paid employees in the company?

A. SELECT last_name, salary
FROM employees
WHERE ROWNUM <= 5
ORDER BY salary DESC;

B. SELECT last_name, salary
FROM (SELECT *
FROM employees
WHERE ROWNUM <= 5
ORDER BY salary DESC)
WHERE ROWNUM <= 5;

C. SELECT * FROM
(SELECT last_name, salary
FROM employees
ORDER BY salary)
WHERE ROWNUM <= 5;

D. SELECT * FROM
(SELECT last_name, salary
FROM employees
ORDER BY salary DESC)
WHERE ROWNUM <= 5;

95127c04.indd 248 2/18/09 9:43:40 AM

Answers to Review Questions 249

Answers to Review Questions
1. C. When table aliases are defined, you should qualify the column names with the table

alias only. In this case, the table name cannot be used to qualify column names. The line in
option C should read WHERE e.deptno = d.deptno.

2. A. An outer join operator (+) indicates an outer join and is used to display the records, even
if there are no corresponding records in the table mentioned on the other side of the operator.
Here, the outer join operator is next to the ORDERS table, so even if there are no correspond-
ing orders from a customer, the result set will have the customer ID and name.

3. B. When an outer join returns values from a table that does not have corresponding
records, a NULL is returned.

4. C. The join condition is specified in the ON clause. The JOIN clause specifies the table to
be joined. The USING clause specifies the column names that should be used in the join. The
WHERE clause is used to specify additional search criteria to restrict the rows returned.

5. B, D. Option A does not work because you cannot qualify column names when using a
natural join. Option B works because the only common column between these two tables is
DEPARTMENT_ID. The keyword OUTER is optional. Option C does not work, again because
you cannot qualify column names when specifying the USING clause. Option D works
because it specifies the join condition explicitly in the ON clause.

6. A, C. OR and IN are not allowed in the WHERE clause on the columns where an outer join
operator is specified. You can use AND and = in the outer join.

7. A, C. Options A and B have an ORDER BY clause used in the subquery. An ORDER BY clause
can be used in the subquery appearing in the FROM clause, but not in the WHERE clause.
Options C and D use the GROUP BY clause in the subquery, and its use is allowed in FROM
as well as WHERE clauses. Option D will give an error because the DEPARTMENT_ID in the
SELECT clause is ambiguous and hence doesn’t need to be qualified as e.DEPARTMENT_ID.
Another issue with option D is that since you used the USING clause to join, the column
used in the USING clause cannot be qualified; e.hire_date in the SELECT clause should be
hire_date.

8. B. The query fails because the d.DEPARTMENT_ID column is referenced before the DEPART-
MENTS table is specified in the JOIN clause. A column can be referenced only after its table
is specified.

9. D. Since DEPARTMENT_ID and MANAGER_ID are common columns in the EMPLOYEES and
DEPARTMENTS tables, a natural join will relate these two tables using the two common
columns.

10. B. There are two records in the STATE table with the ST_CODE value as ‘TN’. Since you
are using a single-row operator for the subquery, it will fail. Option C would be correct if it
used the IN operator instead of = for the subquery.

95127c04.indd 249 2/18/09 9:43:40 AM

250 Answers to Review Questions

11. A. The query will succeed, because there is only one row in the CITY table with the CTY_
NAME value ‘DALLAS’.

12. E. There is no error in the statement. The query will return the department number where
the most employees are working and the number of employees in that department.

13. A. A subquery is correlated when a reference is made to a column from a table in the parent
statement.

14. C. The subquery returns 91 to the main query.

15. D. You cannot have an ORDER BY clause in the subquery used in a WHERE clause.

16. C. The query will work fine, producing the difference between the employee’s salary and
average salary in the department. You do not need to use the alias names, because the
column names returned from the subquery are different from the column names returned
by the parent query.

17. C. Because only one column is selected in the subquery to which you are doing the insert,
only one column value should be supplied in the VALUES clause. The VALUES clause can have
only CNT_CODE value (971).

18. B. When using set operators, the ORDER BY clause can appear only on the SQL at the very
end. You can use the column names (or aliases) appearing in the top query or use positional
columns.

19. B. All four queries produce the same result. The first query uses a scalar subquery in the
SELECT clause. The rest of queries use an inline view. All the queries display the last name,
salary, and difference of salary from the highest salary in the department for all employees
in department 20.

20. D. To find the top n rows, you can select the necessary columns in an inline view with an
ORDER BY DESC clause. An outer query limiting the rows to n will give the result. ROWNUM
returns the row number of the result row.

95127c04.indd 250 2/18/09 9:43:40 AM

Chapter

5
Manipulating Data

Oracle Database 11g:
sQl FunDaMentals I exaM ObjectIves
cOvereD In thIs chapter:

Manipulating DataÛÛ

Describe each data manipulation language (DML) statementÛN

Insert rows into a tableÛN

Update rows in a tableÛN

Delete rows from a tableÛN

Control transactionsÛN

95127c05.indd 251 2/17/09 12:19:58 PM

In this chapter, I will cover how to manipulate data. In an
Oracle Database, this means using SQL data manipulation
language (DML) statements. You will also learn how to coor-

dinate multiple changes using transactions. I will discuss how to insert new data into a
table, update existing data, and delete existing data from a table.

Because Oracle is a multiuser database and more than one user or session can change data
at the same time, I will also need to cover locks and how they are used to control this concur-
rency. I will also cover another effect of a multiuser database, which is that data can change
during the execution of statements. You can exercise some control over the consistency or vis-
ibility of these changes within a transaction, which is covered later in the chapter.

The certification exam will assess your knowledge of how to change data and control
these changes. This chapter will solidify your understanding of these concepts in prepara-
tion for the certification exam.

Using DML Statements
DML is a subset of SQL that is employed to change data in a database table. Since SQL is
English-like, meaning it’s not cryptic like C or Perl, the statements used to perform data
manipulation are easy to remember. The INSERT statement is used to add new rows to a
table. The UPDATE statement is used modify rows in a table, and the DELETE statement is
used to remove rows from a table.

Oracle also has the MERGE statement to perform an insert or update on the table from an
existing source of data (table or view). MERGE also can include an optional clause to delete
rows when certain conditions are met. At the time of publishing this book, however, MERGE
is not part of the Oracle Database 11g SQL Fundamentals I test. Table 5.1 summarizes the
DML statements that Oracle supports.

ta b le 5 .1 DML Statements Supported by Oracle

Statement Purpose

INSERT Adds rows to a table

UPDATE Changes the value stored in a table

DELETE Removes rows from a table

MERGE Updates or inserts rows from one table into another

95127c05.indd 252 2/17/09 12:19:59 PM

Using DML Statements 253

Inserting Rows into a Table
The INSERT statement is used to add rows to one or more tables. The syntax for a simple
INSERT statement is as follows:

INSERT INTO [schema.]table_name [(column_list)]

VALUES (data_values)

In the syntax, table_name is the name of the table where you want to add new rows.
table_name may be qualified with the schema name. column_list is the name of the columns
in the table, separated by commas, that you want to populate. data_values is the correspond-
ing values separated by commas. Using this syntax, you can add only one row at a time.

column_list is optional. If column_list is not included, Oracle includes all columns in
the order specified when creating the table. data_values in the VALUES clause must match the
number of columns and datatype in column_list (or the number of columns and datatype in
the table if column_list is omitted). For clarity, it is a good practice to include column_list
when using the INSERT statement.

If you omit columns in column_list, those columns will have NULL values if no default
value is defined for the column. If a default value is defined for the column, the column will
get the default value. You can insert the default value using the DEFAULT keyword. The SQL
statements in the following example show two methods to insert the default value into the
MYACCOUNTS table if a default value of C is defined on the DR_CR column:

DESCRIBE MYACCOUNTS

Name Null? Type

------------- -------- -------------------

ACC_NO NOT NULL NUMBER(5)

ACC_DT NOT NULL DATE

DR_CR CHAR

AMOUNT NUMBER(15,2)

INSERT INTO myaccounts (acc_no, acc_dt, amount)

VALUES (120003, TRUNC(SYSDATE), 400);

INSERT INTO myaccounts (acc_no, acc_dt, dr_cr, amount)

VALUES (120003, TRUNC(SYSDATE), DEFAULT, 400);

When specifying data_values, enclose character and datetime values in single quotes.
For date values, if the value is not in the default date format, you may have to use the TO_
DATE function. When you enclose a value in single quotes, Oracle considers it character data
and performs an implicit conversion if the column datatype is not a character; hence, do
not enclose numeric values in single quotes.

95127c05.indd 253 2/17/09 12:19:59 PM

254 Chapter 5 N Manipulating Data

You can find out the order of columns in a table by using the USER_TAB_
COLUMNS view. The COLUMN_ID column shows the order of columns in the
table. When you use the DESCRIBE command to list the table columns,
the columns are listed in that order.

I’ll use the ACCOUNTS table to demonstrate the INSERT statements. The column names, their
order, and their datatype can be displayed using the DESCRIBE statement, as shown here:

SQL> DESCRIBE accounts

 Name Null? Type

 ---------------------- -------- -------------

 CUST_NAME VARCHAR2(20)

 ACC_OPEN_DATE DATE

 BALANCE NUMBER(15,2)

To insert rows into the ACCOUNTS table, you can use the INSERT statement in its simplest
form, as shown here:

SQL> INSERT INTO accounts VALUES (‘John’, ‘13-MAY-68’, 2300.45);

1 row created.

The following are some more examples of using INSERT statements. When you use the
column list, they can appear in any order. If the DATE value is not in the default date format
specified by NLS_DATE_FORMAT parameter, you should use the TO_DATE function with the for-
mat mask. The examples also include some errors generated from INSERT to help you under-
stand the statement rules. Notice that you can explicitly insert a NULL value, or if you omit a
column in the column list, a NULL value is inserted into that column, provided the column is
nullable—in other words, NOT NULL constraint is not defined on the column.

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)

 2 VALUES (Shine, ‘April-23-2001’);

VALUES (Shine, ‘April-23-2001’)

 *

ERROR at line 2:

ORA-00984: column not allowed here

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)

 2 VALUES (‘Shine’, ‘April-23-2001’);

VALUES (‘Shine’, ‘April-23-2001’)

 *

ERROR at line 2:

ORA-01858: a non-numeric character was found where a numeric was expected

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)

 2 VALUES (‘Shine’, TO_DATE(‘April-23-2001’,’Month-DD-YYYY’));

1 row created.

95127c05.indd 254 2/17/09 12:19:59 PM

Using DML Statements 255

SQL> INSERT INTO accounts VALUES (‘Jishi’, ‘4-AUG-72’);

INSERT INTO accounts VALUES (‘Jishi’, ‘4-AUG-72’)

 *

ERROR at line 1:

ORA-00947: not enough values

You can also use functions like SYSDATE or USER in the INSERT statement. See these
examples:

SQL> SHOW USER

USER is “HR”

SQL> INSERT INTO accounts VALUES (USER, SYSDATE, 345);

1 row created.

SQL> SELECT * FROM accounts;

CUST_NAME ACC_OPEN_ BALANCE

-------------------- --------- ----------

John 13-MAY-68 2300.45

Shine 23-APR-01

Jishi 12-SEP-99

HR 23-APR-08 345

You can add rows with specific data values, as you have seen in the examples, or you can
create rows from existing data using a subquery.

Inserting Rows from a Subquery
You can insert data into a table from an existing table or view using a subquery. To perform
the subquery insert, replace the VALUES clause with the subquery. You cannot have both a
VALUES clause and a subquery. The columns in the column list should match the number of
columns selected in the subquery as well as their datatype. Here are a few examples:

SQL> INSERT INTO accounts

 2 SELECT first_name, hire_date, salary

 3 FROM hr.employees

 4 WHERE first_name like ‘R%‘;

3 rows created.

SQL> INSERT INTO accounts (cust_name, balance)

 2 SELECT first_name, hire_date, salary

 3 FROM hr.employees

 4 WHERE first_name like ‘T%‘;

95127c05.indd 255 2/17/09 12:19:59 PM

256 Chapter 5 N Manipulating Data

INSERT INTO accounts (cust_name, balance)

 *

ERROR at line 1:

ORA-00913: too many values

SQL> INSERT INTO accounts (cust_name, acc_open_date)

 2 SELECT UPPER(first_name), ADD_MONTHS(hire_date,2)

 3 FROM hr.employees

 4 WHERE first_name like ‘T%‘;

4 rows created.

SQL> SELECT * FROM accounts;

CUST_NAME ACC_OPEN_ BALANCE

-------------------- --------- ----------

John 13-MAY-68 2300.45

Shine 23-APR-01

Jishi 04-AUG-72

Renske 14-JUL-95 3600

Randall 15-MAR-98 2600

Randall 19-DEC-99 2500

TJ 10-JUN-99

TRENNA 17-DEC-95

TAYLER 24-MAR-98

TIMOTHY 11-SEP-98

10 rows selected.

You can use SELECT * FROM if the source and destination table have the same structure,
as shown in the following example:

INSERT INTO old_employees

SELECT * FROM employees;

107 rows created.

Inserting Rows into Multiple Tables
You can also use the INSERT statement to add rows to more than one table at a time. This
multiple-table insert is useful for efficiently loading data, because you can add the data
to multi ple target tables via a single pass through the source table, with a minimum of
database calls. The syntax for the multiple-table INSERT statement is as shown here:

INSERT [ALL | FIRST] {WHEN <condition> THEN INTO <insert_clause> … … …} [ELSE
<insert_clause>}

95127c05.indd 256 2/17/09 12:19:59 PM

Using DML Statements 257

The keyword ALL tells Oracle to evaluate each and every WHEN clause, whether or not any
evaluate to TRUE. In contrast, the FIRST keyword tells Oracle to stop evaluating WHEN clauses
after encountering the first one that evaluates to TRUE. The WHEN clause and the INTO clause can
be repeated.

Suppose that your company, Sales Inc., sells books, videos, and audio CDs. You have
a SALES_DETAIL table that contains information about all the sales and is used by the sell-
ing system. You need to load this information into three other tables that focus specifically
on the three product categories: Book, Audio, and Video. These category-specific tables
are used by the analysis systems. Here are the structure and contents of the source SALES_
DETAIL table:

Name Null? Type

----------------------------- -------- -------------

TXN_ID NOT NULL NUMBER

PRODUCT_ID NUMBER

PROD_CATEGORY VARCHAR2(2)

CUSTOMER_ID VARCHAR2(10)

SALE_DATE DATE

SALE_QTY NUMBER

SALE_PRICE NUMBER

SELECT * FROM sales_detail;

TXN_ID PRODUCT_ID PR CUST SALE_DATE SALE_QTY SALE_PRICE

------ ---------- -- ---- ---------- -------- ----------

 1 304329743 B 43 17-JUN-02 2 19.1

 2 304943209 B 22 17-JUN-02 1 8.95

 3 211524098 A 16 17-JUN-02 1 11.4

 4 413354981 V 41 17-JUN-02 1 12.95

 5 304957315 B 48 17-JUN-02 1 38.5

 6 304183648 B 32 17-JUN-02 2 17.9

 7 211681559 A 32 18-JUN-02 1 11.4

 8 211944553 A 21 18-JUN-02 1 11.4

 9 304155687 B 26 18-JUN-02 1 8.95

 10 304776352 B 18 18-JUN-02 3 48.45

 11 413753861 V 30 18-JUN-02 1 12.95

 12 413159654 V 29 18-JUN-02 1 19.99

 13 304357689 B 11 18-JUN-02 2 72.3

 14 211153246 A 14 18-JUN-02 2 26.4

 15 304852369 B 44 18-JUN-02 1 15.95

95127c05.indd 257 2/17/09 12:19:59 PM

258 Chapter 5 N Manipulating Data

The target table structures are described in the following output:

DESC book_sales

Name Null? Type

----------------------------- -------- ------------

PROD_ID NOT NULL NUMBER

CUST_ID NOT NULL VARCHAR2(10)

QTY_SOLD NOT NULL NUMBER

AMT_SOLD NOT NULL NUMBER

ISBN VARCHAR2(24)

DESC video_sales

Name Null? Type

----------------------------- -------- ------------

PROD_ID NOT NULL NUMBER

CUST_ID NOT NULL VARCHAR2(10)

QTY_SOLD NOT NULL NUMBER

AMT_SOLD NOT NULL NUMBER

RATING VARCHAR2(5)

YEAR_RELEASED NUMBER

DESC audio_sales

Name Null? Type

----------------------------- -------- ------------

PROD_ID NOT NULL NUMBER

CUST_ID NOT NULL VARCHAR2(10)

QTY_SOLD NOT NULL NUMBER

AMT_SOLD NOT NULL NUMBER

ARTIST VARCHAR2(64)

The multiple-table insert that follows selects from the SALES_DETAIL table and, based
on the value of PROD_CATEGORY, inserts a row into the BOOK_SALES, VIDEO_SALES, or AUDIO_
SALES table:

INSERT ALL

WHEN prod_category=’B’ THEN

 INTO book_sales(prod_id,cust_id,qty_sold,amt_sold)

 VALUES(product_id,customer_id,sale_qty,sale_price)

WHEN prod_category=’V’ THEN

 INTO video_sales(prod_id,cust_id,qty_sold,amt_sold)

 VALUES(product_id,customer_id,sale_qty,sale_price)

95127c05.indd 258 2/17/09 12:19:59 PM

Using DML Statements 259

WHEN prod_category=’A’ THEN

 INTO audio_sales(prod_id,cust_id,qty_sold,amt_sold)

 VALUES(product_id,customer_id,sale_qty,sale_price)

SELECT prod_category ,product_id ,customer_id ,sale_qty

 ,sale_price

FROM sales_detail;

This multiple-table insert will create eight rows in the BOOK_SALES table, four rows in the
AUDIO_SALES table, and three rows in the VIDEO_SALES table.

In most SQL statements, you can prefix column names with a table alias. In
fact, this aids readability even if it’s not strictly required for parsing. If you
try to use an alias for the table name and then prefix the column names
with either this alias or the schema-qualified table name in a multiple-table
insert, you may raise an exception.

Updating Rows in a Table
The UPDATE statement is used to modify existing rows in a table. The basic syntax for the
UPDATE statement is as follows:

UPDATE <table_name>

SET <column> = <value>

 [,<column> = <value> … … …]

[WHERE <condition>]

You can update more than one row at a time. If the WHERE clause is omitted, all the rows
in the table are updated.

If an employee named Jennifer got transferred to another department, you can change
the department_id column in the employees table for that employee. Since you know the
employee ID for Jennifer, you can use the employee ID to identify Jennifer’s row in the table.

SELECT first_name, last_name, department_id

FROM employees

WHERE employee_id = 200;

FIRST_NAME LAST_NAME DEPARTMENT_ID

-------------------- ------------------------- -------------

Jennifer Whalen 10

95127c05.indd 259 2/17/09 12:19:59 PM

260 Chapter 5 N Manipulating Data

UPDATE employees

SET department_id = 20

WHERE employee_id = 200;

1 row updated.

SELECT first_name, last_name, department_id

FROM employees

WHERE employee_id = 200;

FIRST_NAME LAST_NAME DEPARTMENT_ID

-------------------- ------------------------- -------------

Jennifer Whalen 20

You can update more than one column in the same row by including the columns and
values in the SET clause separated by commas. To remove a value from the column, you can
update the column as NULL. The following example demonstrates how to update more than
one column of the same row as well as update using NULL. Since no WHERE clause is included,
all rows in the table are updated.

UPDATE old_employees

SET manager_id = NULL,

 commission_pct = 0;

107 rows updated.

Updating Rows Using a Subquery
When updating a column in the table, the value can be derived using a subquery. In the fol-
lowing example, the job_id values of all employees in department 30 are changed to match
the job_id of employee 114:

SELECT first_name, last_name, job_id

FROM employees

WHERE department_id = 30;

FIRST_NAME LAST_NAME JOB_ID

-------------------- ------------------------- ----------

Den Raphaely PU_MAN

Alexander Khoo PU_CLERK

Shelli Baida PU_CLERK

Sigal Tobias PU_CLERK

95127c05.indd 260 2/17/09 12:19:59 PM

Using DML Statements 261

Guy Himuro PU_CLERK

Karen Colmenares PU_CLERK

6 rows selected.

UPDATE employees

SET job_id = (SELECT job_id

 FROM employees

 WHERE employee_id = 114)

WHERE department_id = 30;

6 rows updated.

SELECT first_name, last_name, job_id

FROM employees

WHERE department_id = 30;

FIRST_NAME LAST_NAME JOB_ID

-------------------- ------------------------- ----------

Den Raphaely PU_MAN

Alexander Khoo PU_MAN

Shelli Baida PU_MAN

Sigal Tobias PU_MAN

Guy Himuro PU_MAN

Karen Colmenares PU_MAN

6 rows selected.

You may have more than one column in the SET clause to update more than one col-
umn of the same row using a subquery. If you specify more than one column, they must be
enclosed in parentheses, and the subquery should have the same number of columns in the
SELECT clause.

UPDATE order_rollup

SET (qty, price) = (SELECT SUM(qty), SUM(price)

 FROM order_lines

 WHERE customer_id = ‘KOHL’)

WHERE customer_id = ‘KOHL’

 AND order_period = TO_DATE(‘01-Oct-2001’);

95127c05.indd 261 2/17/09 12:19:59 PM

262 Chapter 5 N Manipulating Data

using a correct Where clause in upDate

Once a developer came to me with a problem—he was trying to update one row in a table,
and it was taking forever. He was sure he was using the primary key of the table in the WHERE
clause and was expecting the result to come back in seconds.

The table he was updating had the following columns (some columns have been omitted):

ORDER_HEADER

ORDER# VARCHAR2 (20) - Primary Key

ORDER_DT DATE

CUSTOMER# VARCHAR2 (12)

TOTAL_AMOUNT NUMBER

The update was performed using the value derived from another table named ORDER_
TRANSACTIONS. It had the following structure:

ORDER_TRANSACTIONS

ORDER# VARCHAR2 (20) - Primary Key

ITEM# VARCHAR2 (20) - Primary Key

SHIP_DATE DATE

ITEM_AMOUNT NUMBER

The developer was trying to update the total_amount column in the ORDER_HEADER table
with the sum of all the order items from the ORDER_TRANSACTIONS table using a subquery.
This was the SQL he used:

UPDATE order_header oh

SET total_amount = (SELECT SUM(item_amount)

 FROM order_transactions ot

 WHERE oh.order# = ot.order#

 AND oh.order# = ‘W2H3004FU’);

Can you see what is wrong with this statement? By the way, the table has about 2 million rows.

Though the developer thought he was updating only one row in the ORDER_HEADER table
and querying only three rows from the ORDER_TRANSACTIONS table, Oracle was in fact
updating all the 2 million rows in the table. Why?

95127c05.indd 262 2/17/09 12:19:59 PM

Using DML Statements 263

Look carefully at the UPDATE statement; it is missing a WHERE clause for the UPDATE state-
ment. The WHERE clause is present as part of the correlated subquery. So, the result of this
update would have been the TOTAL_AMOUNT column updated to NULL for all rows except
for order W2H3004FU. When executing the correct SQL statement, the update completed in
less than one second.

UPDATE order_header oh

SET total_amount = (SELECT SUM(item_amount)

 FROM order_transactions ot

 WHERE oh.order# = ot.order#

 AND ot.order# = ‘W2H3004FU’)

WHERE oh.order# = ‘W2H3004FU’;

Since we are updating a specific order# in the table and we are using the order number
in the WHERE clause, it is safe to remove the join condition inside the subquery as in the
following code.

UPDATE order_header oh

SET total_amount = (SELECT SUM(item_amount)

 FROM order_transactions ot

 WHERE ot.order# = ‘W2H3004FU’)

WHERE oh.order# = ‘W2H3004FU’;

The moral of this story is to be careful when updating tables using subqueries. Always
make sure you have the correct WHERE clause for the UPDATE statement.

Deleting Rows from a Table
The DELETE statement is used to remove rows from a table. The syntax for a basic DELETE
statement is as follows:
DELETE [FROM] <table>

[WHERE <condition>]

The FROM keyword is optional, included to add readability to the statement. Similar to the
UPDATE statement, if the WHERE clause is omitted, all the rows in the table will be deleted.

Here are some examples of the DELETE statement. The two hyphens (--) are used as
comments.
--Remove old orders shipped to some states

DELETE FROM po_lines

WHERE ship_to_state IN (’TX’,’NY’,’IL’)

 AND order_date < TRUNC(SYSDATE) - 90

95127c05.indd 263 2/17/09 12:19:59 PM

264 Chapter 5 N Manipulating Data

--Remove customer Gomez

DELETE FROM customers

WHERE customer_id = ’GOMEZ’;

--Remove duplicate line_detail_ids

--Note keyword FROM is not needed

DELETE line_details

WHERE rowid NOT IN (SELECT MAX(rowid)

 FROM line_detail

 GROUP BY line_detail_id)

--Remove all rows from the table order_staging

DELETE FROM order_staging;

Removing all rows from a large table can take a long time and require significant roll-
back segment space. If you are deleting all rows from a table, consider using the TRUNCATE
statement, as described in the next section. TRUNCATE is not included in the Oracle Database
11g SQL Fundamentals I exam, but I’ve included it here for completeness.

Truncating a Table
Truncating a table can accomplish the same task as deleting if you’re deleting all rows from
the table, although it is sometimes a better choice. If you want to empty a table of all rows,
consider using the Data Definition Language (DDL) statement TRUNCATE. Like a DELETE state-
ment without a WHERE clause, TRUNCATE will remove all rows from a table. However, TRUNCATE
is not DML—it is DDL, and therefore, it has different characteristics from the DELETE state-
ment. DDL is the subset of SQL that is employed to define database objects. One of the key
differences between DML and DDL is that DDL statements will implicitly perform a commit,
not only affecting the change in object definition but also committing any pending DML. A
DDL statement cannot be rolled back; only DML statements can be rolled back.

For example, to remove all rows from the ORDER_STAGING table, truncate the table as
follows:

TRUNCATE TABLE order_staging;

TRUNCATE vs. DELETE

The TRUNCATE statement is similar to a DELETE statement without a WHERE clause, except
for the following:

TRUNCATEÛN is very fast on both large and small tables. DELETE will generate undo infor-
mation if a rollback is issued, but TRUNCATE will not generate undo information.

TRUNCATEÛN is DDL and, like all DDL, performs an implicit commit—you cannot roll
back a TRUNCATE. Any uncommitted DML changes within the session will also be
committed with the TRUNCATE operation.

95127c05.indd 264 2/17/09 12:19:59 PM

Using DML Statements 265

TRUNCATEÛN resets the high-water mark in the table and all indexes. Since full-table scans
and index fast-full scans read all data blocks up to the high-water mark, full-scan per-
formance after a DELETE will not improve; after a TRUNCATE, it will be very fast.

TRUNCATEÛN does not fire any DELETE triggers.

There is no object privilege that can be granted to allow a user to truncate another ÛN

user’s table. The DROP ANY TABLE system privilege is required to truncate a table in
another schema. See Chapter 12, “Implementing Security and Auditing,” for more
information about getting around this limitation.

When a table is truncated, the storage for the table and all indexes can be reset to the ÛN

initial size. A DELETE will never shrink the size of a table or its indexes.

You cannot truncate the parent table from an enabled referential integrity constraint. ÛN

You must first disable the foreign key constraints that reference the parent table, and
then you can truncate the parent table.

Merging Rows
Though the MERGE statement is not part of the test, to complete the DML discussion I will
give you an introduction to the MERGE statement.

MERGE is a very powerful statement available in Oracle 11g (it was introduced in
Oracle 9i) that can insert or update rows based on a condition. The statement also has
an option to delete rows when certain conditions are met. The MERGE statement has a
join specification that describes how to determine whether an update or insert should
be executed. MERGE is a convenient way to combine multiple operations in one statement
instead of writing a complex PL/SQL program.

The basic syntax of the MERGE statement is as follows:

MERGE INTO <table_or_view>

USING <table_or_view_or_subquery>

ON <join_condition>

WHEN MATCHED THEN UPDATE SET <update_clause> [<where clause>] [DELETE
where_clause]

WHEN NOT MATCHED THEN INSERT <insert_columns> VALUES <insert_columns>

The INTO clause specifies the target table where the update/insert/delete operation will be
performed. The USING clause specifies the data source. The ON clause has the join condition
between the source and target tables. The WHEN MATCHED THEN UPDATE clause specifies which
columns to update when the ON condition is matched. You can also include an optional WHERE
clause. The optional DELETE clause can delete the row if the WHERE condition specified in the
DELETE clause is met. The WHEN NOT MATCHED THEN INSERT clause is used to add rows to
the target table from the source table.

95127c05.indd 265 2/17/09 12:19:59 PM

266 Chapter 5 N Manipulating Data

Let’s look at a few examples. Consider two tables, ORDERS1 and ORDERS2. The rows in
the tables are listed using the following SQL statements:

SQL> SELECT * FROM orders1;

 ORDER_ID ORDER_MO CUSTOMER_ID ORDER_TOTAL

---------- -------- ----------- -----------

 2414 channel 102 10794.6

 2397 direct 102 42283.2

 2432 channel 102 10523

 2431 direct 102 5610.6

 2454 direct 103 6653.4

 2415 direct 103 310

 2433 channel 103 78

 2437 direct 103 13550

8 rows selected.

SQL> SELECT * FROM orders2;

 ORDER_ID CUSTOMER_ID ORDER_TOTAL

---------- ----------- -----------

 2414 102 35982

 2397 102 140944

 2432 102 35076.67

 2431 102 0

 2450 147 1636

 2425 147 1500.8

 2385 147 295892

 2451 148 10474.6

 2386 148 21116.9

9 rows selected.

SQL>

The task before you is to merge the rows in ORDERS2 to ORDERS1. If ORDER_ID and CUSTOMER_
ID match between the two tables, you need to update the ORDER_TOTAL value with the value
from the ORDERS2 table and update the ORDER_MODE value to modified. For the rows in ORDERS2
where ORDER_ID and CUSTOMER_ID do not match with existing rows in ORDERS1, you need to
insert the values from ORDERS2 to ORDERS1. For such rows, the ORDER_MODE value should be
merged. You also want to delete the row from ORDERS1 if the new order’s total value is zero.
The following SQL can accomplish all these tasks using the MERGE statement:

MERGE INTO orders1 o1

USING orders2 o2

95127c05.indd 266 2/17/09 12:19:59 PM

Understanding Transaction Control 267

ON (o1.order_id = o2.order_id

 AND o1.customer_id = o2.customer_id)

WHEN MATCHED THEN UPDATE SET o1.order_total = o2.order_total,

 o1.order_mode = ‘modified’

 DELETE WHERE o2.order_total = 0

WHEN NOT MATCHED THEN INSERT

 VALUES (o2.order_id, ‘merged’, o2.customer_id, o2.order_total);

9 rows merged.

select * from orders1;

 ORDER_ID ORDER_MO CUSTOMER_ID ORDER_TOTAL

---------- -------- ----------- -----------

 2414 modified 102 35982

 2397 modified 102 140944

 2432 modified 102 35076.67

 2454 direct 103 6653.4

 2415 direct 103 310

 2433 channel 103 78

 2437 direct 103 13550

 2450 merged 147 1636

 2385 merged 147 295892

 2386 merged 148 21116.9

 2451 merged 148 10474.6

 2425 merged 147 1500.8

12 rows selected.

As you can see from the result, Oracle updated four rows that matched the ON condition
and inserted five new rows that did not match the ON condition, which is why you get the
“9 rows merged” feedback. Since you had the DELETE clause to delete any rows that had
order total zero (of the four rows that matched the ON condition), one of them matched the
DELETE condition and hence was removed from the table.

Understanding Transaction Control
Transaction control involves coordinating multiple concurrent accesses to the same data.
When one session is changing data that another session is accessing, Oracle uses transactions
to control which users have visibility to changing data and when they can see the changed
data. Transactions represent an atomic unit of work. All changes to data in a transaction are
applied together or rolled back (undone) together. Transactions provide data consistency in
the event of a user-process failure or system failure.

95127c05.indd 267 2/17/09 12:19:59 PM

268 Chapter 5 N Manipulating Data

A transaction can include one or more DML statements. A transaction ends when you
save the transaction (COMMIT) or undo the changes (ROLLBACK). When DDL statements are
executed, Oracle implicitly ends the previous transaction by saving the changes. It also
begins a new transaction for the DDL and ends the transaction after the DDL is completed.
Hence, DDL statements cannot be undone.

A number of statements in SQL let the programmer control transactions. Using transaction-
control statements, the programmer can do the following:

Explicitly begin a transaction, choosing statement-level consistency or transaction-level ÛN

consistency

Set undo savepoints and undo changes back to a savepointÛN

End a transaction by making the changes permanent or undoing the changesÛN

Table 5.2 summarizes the transaction-control statements.

ta b le 5 . 2 Transaction-Control Statements

Statement Purpose

COMMIT Ends the current transaction, making data changes perma-
nent and visible to other sessions

ROLLBACK Undoes all data changes in the current transaction

ROLLBACK TO SAVEPOINT Undoes all data changes in the current transactions going
chronologically backward to the optionally named savepoint

SAVEPOINT Set an optional marker in within the transaction to be able
to go back to this position if needed

SET TRANSACTION Enables transaction or statement consistency

Throughout this section, I will use a banking example to clarify transactional concepts
and the control statements used to ensure data is changed as designed. In this example, say
you have a banking customer named Sara who has a checking account and a brokerage
account with her bank.

When Sara transfers $5,000 from her checking account to her brokerage account, the
balance in her checking account is reduced by $5,000, and the cash balance in her broker-
age account is increased by $5,000. You cannot allow only one account to change—either
both must change or neither must change.

Consider the following statements to complete the transaction. All the statements in the
group must be completed, or no changes should be recorded in the database. The INSERT
statements are used to log the transaction in the log table.

UPDATE checking

SET balance = balance - 5000

WHERE account = ‘SARA1001’;

95127c05.indd 268 2/17/09 12:20:00 PM

Understanding Transaction Control 269

INSERT INTO checking_log (action_date, action, amount)

VALUES (SYSDATE, ‘Withdrawal’, 5000);

UPDATE brokerage

SET balance = balance + 5000

WHERE account = ‘SARA1001’;

INSERT INTO brokerage_log (action_date, action, amount)

VALUES (SYSDATE, ‘Deposit’, 5000);

You issued the two UPDATE statements and the two INSERT statements in a single transac-
tion. If there is any failure in one of these four statements (say, perhaps, the CHECKING_LOG
table ran out of room in the tablespace), then none of the changes should go through.
When all the previous statements are successful, you can issue a COMMIT statement to save
the work to the database. The changes will be committed and made permanent only if all
four statements succeed. If only part of the SQL statements were successful, you can issue a
ROLLBACK statement to undo the changes.

A transaction will implicitly begin with a DML statement. The transaction will always
end with either an implicit or explicit COMMIT or ROLLBACK statement. A ROLLBACK TO SAVE-
POINT statement will not end a transaction. The following actions will end a transaction:

A ÛN COMMIT or ROLLBACK statement is issued.

A DDL statement, such as ÛN TRUNCATE or CREATE, is issued (an implicit COMMIT is
performed).

Exit out of a SQL*Plus (an implicit ÛN COMMIT is performed).

Abnormal termination of a SQL*Plus session, such as closing the window (the transac-ÛN

tion is rolled back).

Machine failure or database crash (the transaction is rolled back).ÛN

If a DML statement fails, the transaction is not rolled back. The changes
made from the successful DML statements before the failed statement
are still valid. To undo those changes, you have to explicitly execute a
ROLLBACK statement.

Savepoints and Partial Rollbacks
A ROLLBACK statement will undo all the changes made in the transaction. If you have to
undo part of the changes in a transaction, you can set up savepoints or markers in the
transaction and go back to a savepoint when needed. Savepoints are intermediate fallback
positions in SQL code. The ROLLBACK TO SAVEPOINT statement is used to undo changes
chronologically back to the last savepoint or to the named savepoint. Savepoints are not
labels for goto statements, and ROLLBACK TO SAVEPOINT is not a goto. The code after a
savepoint does not get reexecuted after a ROLLBACK TO SAVEPOINT—only the data changes
made since that savepoint are undone.

95127c05.indd 269 2/17/09 12:20:00 PM

270 Chapter 5 N Manipulating Data

Savepoints are not used extensively by programmers. However, you must
understand them because there will likely be a question related to save-
points on the certification exam.

Consider a transaction with various DML statements and savepoints, as in Figure 5.1.

F I gu r e 5 .1 Transaction control

COMMIT;

INSERT INTO EMPLOYEES...;

UPDATE SALARIES SET...;

SAVEPOINT A1;

UPDATE SALARIES...;

DELETE FROM...;

SAVEPOINT A2;

INSERT INTO JOBS...;

COMMIT;

ROLLBACK;

ROLLBACK TO SAVEPOINT A2;

ROLLBACK TO SAVEPOINT A1;

A new transaction begins after a COMMIT statement. Various DML statements are
executed in the transaction. You have also set savepoints in between. After all the
statements are successfully executed, the user has the option to issue the ROLLBACK TO
SAVEPOINT, ROLLBACK, or COMMIT statement. The arrows in the figure show the effect of
issuing the transaction-control statements.

If you create a second savepoint with the same name as an earlier save-
point, the earlier savepoint is deleted, and Oracle keeps only the later
savepoint.

95127c05.indd 270 2/17/09 12:20:00 PM

Understanding Transaction Control 271

Again, an example will help clarify. Sara tries to withdraw $100 from her checking
account. You want to log her request in the ATM activity log, but if she has insufficient
funds, you don’t want to change her balance and will deny her request (part of a PL/SQL
block is shown here; the IF statement is PL/SQL).

INSERT INTO ATM_LOG(who, when, what, where)

 VALUES(‘Kiesha’, SYSDATE, ’Withdrawal of $100’,’ATM54’);

SAVEPOINT ATM_logged;

UPDATE checking

 SET balance = balance – 100

 WHERE account = ‘SARA1001’;

SELECT balance INTO new_balance

 FROM checking

 WHERE account = ‘SARA1001’;

IF new_balance < 0

THEN

 ROLLBACK TO ATM_logged; -- undo update

 COMMIT; -- keep changes prior to savepoint (insert)

 RAISE insufficient_funds; -- Raise error/deny request

END IF;

COMMIT; -- keep insert and update

The keyword SAVEPOINT is optional, so the following two statements are equivalent:
ROLLBACK TO ATM_logged;

ROLLBACK TO SAVEPOINT ATM_logged;

Because savepoints are not frequently used, always include the keyword
SAVEPOINT in any ROLLBACK TO SAVEPOINT statement. That way, anyone
reading the code will be reminded of the keyword SAVEPOINT, making it
easier to recognize that a partial rollback has occurred.

Data Visibility
When DML operations are performed in a transaction, the changes are visible only to the
session performing the DML operations. The changes are visible to other users in the data-
base only when a COMMIT is issued (or a DDL statement causes an implicit commit).

All data changes made in a transaction are temporary until the transaction is commit-
ted. The Oracle Database has a read-consistency mechanism to ensure that each user sees
the data as it existed at the last commit.

95127c05.indd 271 2/17/09 12:20:00 PM

272 Chapter 5 N Manipulating Data

When DML operations are performed on existing rows (through UPDATE, DELETE, or
MERGE operations), the affected rows are locked by Oracle, and hence no other user can per-
form a DML operation on those rows. The rows updated or deleted by a transaction can be
queried by another session.

When changes are committed, they are made permanent to the database. All locks on
the affected rows are released, and all savepoints are removed. The previous state of the
data is lost (the undo segments may be overwritten). All users can view the changed data.

When changes are rolled back, data changes are undone and the previous state of data is
restored. All locks on the affected rows are released.

Oracle uses read consistency to make sure you do not see the changes made to data after
your query is started. Also, Oracle uses a locking mechanism to make sure that no two users
are modifying data in the same row at the same time. Data consistency and the locking
mechanism are discussed in the next sections.

Consistency and Transactions
Data consistency is one of the key concepts underlying the use of transaction-control state-
ments. Understanding Oracle’s consistency model will enable you to employ transaction
control appropriately and answer exam questions about transaction control correctly. Oracle
implements consistency to guarantee that the data seen by a statement or transaction does
not change until that statement or transaction completes. This support is germane only to
multiuser databases, where one database session can change (and commit) data that is being
read by another session.

Oracle always uses statement-level consistency, which ensures that the data visible to
a statement does not change during the life of that statement. Transactions can consist of
one or more statements. When used, transaction-level consistency will ensure that the data
visible to all statements in a transaction does not change for the life of the transaction. The
banking example will help clarify.

Matt starts running a total-balance report against the checking account table at 10 a.m.;
this report takes five minutes. During those five minutes, the data he is reporting on changes
when Sara transfers $5,000 from her checking account to her brokerage account. When
Matt’s session gets to Sara’s checking-account record, it will need to reconstruct what the
record looked like at 10 a.m. Matt’s session will examine the undo segment that Sara used
during her account-transfer transaction and re-create the image of what the checking-account
table looked like at 10 a.m.

Next, at 10:05 a.m., Matt runs a total balance report on the cash in the brokerage
account table. If he is using transaction-level consistency, his session will re-create what
the brokerage account table looked like at 10 a.m. (and exclude Sara’s transfer). If Matt’s
session is using the default statement-level consistency, his session will report on what the
brokerage account table looked like at 10:05 a.m. (and include Sara’s transfer).

Oracle never uses locks for reading operations, since reading operations will never block
writing operations. Instead, the undo segments (also known as rollback segments) are used
to re-create the image needed. Undo segments are released for reuse when the transaction
writing to them commits or if undo_management is set to auto and the undo_retention

95127c05.indd 272 2/17/09 12:20:00 PM

Understanding Transaction Control 273

period is exceeded, so sometimes a consistent image cannot be re-created. When this hap-
pens, Oracle raises a “snapshot too old” exception. Using this example, if Matt’s transac-
tion can’t locate Sara’s transaction in the rollback segments because it was overwritten,
Matt’s transaction will not be able to re-create the 10 a.m. image of the table and will fail.

Oracle implements consistency internally through the use of system change numbers
(SCNs). An SCN is a time-oriented, database-internal key. The SCN only increases, never
decreases, and represents a point in time for comparison purposes. So, in the previous
example, Oracle internally assigns Matt’s first statement the current SCN when it starts
reading the checking-account table. This starting SCN is compared to each data block’s
SCN. If the data-block SCN is higher (newer), then the rollback segments are examined to
find the older version of the data.

Undo segments, concurrency, and SCN are discussed in detail in Chapter 13, “Managing
Data and Undo.”

Locking Mechanism
Locks are implemented by Oracle Database to prevent destructive interaction between
concurrent transactions. Locks are acquired automatically by Oracle when a DML state-
ment is executed; no user intervention or action is needed. Oracle uses the lowest level of
restrictiveness when locking data for DML statements—only the rows affected by the DML
operation are locked.

Locks are held for the duration of the transaction. A commit or rollback will release all
the locks. There are two types of locks: explicit and implicit.

The locks acquired by Oracle automatically when DML operations are performed are
called implicit locks. There is no implicit lock for SELECT statements.

If the user locks data manually, it is called explicit locking. The LOCK TABLE statement
and SELECT…FOR UPDATE statements are used for explicitly locking the data.

The SELECT…FOR UPDATE statement is used to lock specific rows, preventing other sessions
from changing or deleting those locked rows. When the rows are locked, other sessions can
select these rows, but they cannot change or lock these rows. The syntax for this statement is
identical to a SELECT statement, except you append the keywords FOR UPDATE to the statement.
The locks acquired for a SELECT FOR UPDATE will not be released until the transaction ends
with a COMMIT or ROLLBACK, even if no data changes.

SELECT product_id, warehouse_id, quantity_on_hand

FROM oe.inventories

WHERE quantity_on_hand < 5

FOR UPDATE;

The LOCK statement is used to lock an entire table, preventing other sessions from per-
forming most or all DML on it. Locking can be in either shared or exclusive mode. Shared
mode prevents other sessions from acquiring an exclusive lock but allows other sessions
to acquire a shared lock. Exclusive mode prevents other sessions from acquiring either a
shared lock or an exclusive lock. The following is an example of using the LOCK statement:

LOCK TABLE inventories IN EXCLUSIVE MODE;

95127c05.indd 273 2/17/09 12:20:00 PM

274 Chapter 5 N Manipulating Data

Oracle employs both table and row locks. Table locks can be obtained in either share
or exclusive mode. Share locks prevent other exclusive locks but allow other share locks.
Exclusive locks prevent both other share locks and other exclusive locks. However, no
DML locks prevent read access. To change data, Oracle must acquire an exclusive row-level
lock on the rows that are changed. INSERT, UPDATE, DELETE, MERGE, and SELECT FOR UPDATE
statements implicitly acquire the necessary row locks. Even if the DML operation affects all
the rows in a table, Oracle Database never escalates the row-level lock to a table-level lock;
and furthermore, users or developers shouldn’t explicitly lock unless there is a very good
reason—Oracle handles it automatically 99.9% of the time.

Summary
I started this chapter discussing DML statements in Oracle. I reviewed the INSERT, UPDATE,
DELETE, and MERGE statements to add, modify, and delete data in tables. You also learned
how transactions and locking work in Oracle.

The INSERT statement is used to add new rows to the table. The VALUES clause in the
INSERT statement is used to add a single row at a time. Subqueries can be used to add rows
to a table from an existing row source.

The UPDATE statement is used to change existing data in a table. The DELETE statement is
used to remove rows from a table. Both the UPDATE and DELETE statements can have WHERE
clauses to limit the data changes to specific rows. The MERGE statement allows you to insert
or update rows based on a condition.

When an update or delete operation is performed on a table, the previous state of data
is written to undo segments to build a read-consistent image of data. Oracle shows only
committed data to users.

DML operations lock the affected rows of the table. The locks are held until the transac-
tion is either committed or rolled back. Until the changes are committed, data changes are
not visible to other users in the database.

Exam Essentials

Know the syntax for the INSERT statement. When a subquery is used to add rows to a
table, the VALUES clause should not be used.

Practice UPDATE statements The UPDATE statement can update multiple columns in the
same row using a subquery. Multiple subqueries can also be used to update columns in a
single row.

95127c05.indd 274 2/17/09 12:20:00 PM

Exam Essentials 275

Understand what will begin and end a transaction. A transaction will begin with an
INSERT, UPDATE, DELETE, MERGE, or SELECT FOR UPDATE statement. A COMMIT or ROLLBACK
will end a transaction. A DDL statement can also end a transaction.

Know how to set and roll back to savepoints. Savepoints are set with the SAVEPOINT state-
ment. Data changes made after a savepoint are undone when a ROLLBACK TO SAVEPOINT
statement is executed. ROLLBACK TO SAVEPOINT is a partial undo operation.

Understand the scope of data changes and consistency. Statement-level consistency is
automatic and will ensure that each SELECT will see an image of the database consistent
with the beginning of the statement’s execution. Transaction-level consistency will ensure
that all SELECT statements within a transaction will see an image of the database consistent
with the beginning of the transaction.

95127c05.indd 275 2/17/09 12:20:00 PM

276 Review Questions

Review Questions
1. Jim is trying to add records from the ORDER_DETAILS table to ORDER_DETAIL_HISTORY for

orders placed before the current year. Which insert statement would accomplish his task?

A. INSERT INTO ORDER_DETAIL_HISTORY

 VALUES (SELECT * FROM ORDER_DETAIL

 WHERE ORDER_DATE < TRUNC(SYSDATE,’YY’));

B. INSERT FROM ORDER_DETAIL

 INTO ORDER_DETAIL_HISTORY

 WHERE ORDER_DATE < TRUNC(SYSDATE,’YY’);

C. INSERT INTO ORDER_DETAIL_HISTORY

 FROM ORDER_DETAIL

 WHERE ORDER_DATE < TRUNC(SYSDATE,’YY’);

D. INSERT INTO ORDER_DETAIL_HISTORY

 SELECT * FROM ORDER_DETAIL

 WHERE ORDER_DATE < TRUNC(SYSDATE,’YY’);

2. Which of the following statements will not implicitly begin a transaction?

A. INSERT

B. UPDATE

C. DELETE

D. SELECT FOR UPDATE

E. None of the above; they all implicitly begin a transaction, if not started already.

3. Consider the following UPDATE statement. Which UPDATE statements from the options will
accomplish the same task? (Choose two.)

UPDATE ACCOUNTS

SET LAST_UPDATED = SYSDATE,

 UPDATE_USER = USER;

A. UPDATE ACCOUNTS

 SET (LAST_UPDATED, UPDATE_USER) =

 (SYSDATE, USER);

B. UPDATE ACCOUNTS

 SET LAST_UPDATED =

 (SELECT SYSDATE FROM DUAL),

 UPDATE_USER = (SELECT USER FROM DUAL);

95127c05.indd 276 2/17/09 12:20:00 PM

Review Questions 277

C. UPDATE ACCOUNTS

 SET (LAST_UPDATED, UPDATE_USER) =

 (SELECT SYSDATE, USER FROM DUAL);

D. UPDATE ACCOUNTS

 SET LAST_UPDATED = SYSDATE

 AND UPDATE_USER = USER;

4. Which of the following statements do not end a transaction? (Choose two.)

A. SELECT

B. COMMIT

C. TRUNCATE TABLE

D. UPDATE

5. Sara wants to update the SALARY column in the OLD_EMPLOYEES table with the value from
the EMPLOYEES table for employees in department 90. Which SQL will accomplish the task?

A. UPDATE old_employees a

 SET salary = (SELECT salary FROM employees b

 WHERE a.employee_id = b.employee_id)

 WHERE department_id = 90;

B. UPDATE old_employees

 SET salary = (SELECT salary FROM employees)

 WHERE department_id = 90;

C. UPDATE old_employees a

 FROM employees b

 SET a.salary = b.salary

 WHERE department_id = 90;

D. UPDATE old_employees a

 SET salary = (SELECT salary FROM employees b

 WHERE a.employee_id = b.employee_id

 AND department_id = 90);

95127c05.indd 277 2/17/09 12:20:00 PM

278 Review Questions

6. Review the following code snippet. Which line has an error?

 1 UPDATE EMPLOYEES

 2 WHERE EMPLOYEE_ID = 127

 3 SET SALARY = SALARY * 1.25,

 4 COMMISSION_PCT = 0

A 1

B. 2

C. 4

D. There is no error

7. Jim executes the following SQL statement. What will be the result?

DELETE salary, commission_pct

FROM employees

WHERE department_id = 30;

A. The salary and commission_pct columns for all records with department_id 30 are
deleted (changed to NULL).

B. All the rows belonging to department_id 30 are deleted from the table.

C. The salary and commission_pct columns are deleted from the employees table.

D. The statement will produce an error.

8. Consider the following three SQL statements. Choose the most appropriate option.

1. DELETE FROM CITY WHERE CNT_CODE = 1;

2. DELETE CITY WHERE CNT_CODE = 1;

3. DELETE (SELECT * FROM CITY WHERE CNT_CODE = 1);

A. Statements 1 and 2 will produce the same result, statement 3 will error out.

B. Statements 1 and 2 will produce the same result; statement 3 will produce a different
result.

C. Statements 1, 2, and 3 will produce the same result.

D. Statements 1, 2, and 3 will produce different results.

9. Consider the following code segment. How many rows will be in the CARS table after all
these statements are executed?

SELECT COUNT(*) FROM CARS;

COUNT(*)

 30

DELETE FROM CARS WHERE MAKE = ‘TOYOTA’;

2 rows deleted.

95127c05.indd 278 2/17/09 12:20:00 PM

Review Questions 279

SAVEPOINT A;

Savepoint creted.

INSERT INTO CARS VALUES (‘TOYOTA’,’CAMRY’,4,220);

1 row created.

SAVEPOINT A;

INSERT INTO CARS VALUES (‘TOYOTA’,’COROLLA’,4,180);

1 row created.

ROLLBACK TO SAVEPOINT A;

Rollback complete.

A. 30

B. 29

C. 28

D. 32

10. Jim noticed that the HIRE_DATE and START_DATE columns in the EMPLOYEES table had date
and time values, and hence when he is trying to find employees hired on a certain date, he is
not getting the desired result. Which SQL statement will update all the rows in the EMPLOY-
EES table with no time portion in the HIRE_DATE and START_DATE columns (00:00:00).

A. UPDATE EMPLOYEES SET HIRE_DATE = TRUNC(HIRE_DATE) AND START_DATE =
TRUNC(START_DATE);

B. UPDATE TABLE EMPLOYEES SET TRUNC(HIRE_DATE) AND TRUNC(START_DATE);

C. UPDATE EMPLOYEES SET HIRE_DATE = TRUNC(HIRE_DATE), START_DATE =
TRUNC(START_DATE);

D. UPDATE HIRE_DATE = TRUNC(HIRE_DATE), START_DATE = TRUNC(START_DATE) IN
EMPLOYEES;

11. Sara wants to update the SALARY column in the EMPLOYEE table from the SALARIES table,
based on the JOB_ID value for all employees in department 22. The SALARIES table and the
EMPLOYEE table have the following structure. Which is the correct UPDATE statement of the
following options?

DESC EMPLOYEE

EMPLOYEE_ID NUMBER (3),

EMP_NAME VARCHAR2 (40),

JOB_ID VARCHAR2 (4),

DEPT_ID NUMBER

SALARY NUMBER

95127c05.indd 279 2/17/09 12:20:00 PM

280 Review Questions

DESC SALARIES

JOB_ID VARCHAR2 (4),

SALARY NUMBER

A. UPDATE SALARIES A SET SALARY = (SELECT SALARY FROM EMPLOYEES B WHERE
A.JOB_ID = B.JOB_ID WHERE DEPT_ID = 22);

B. UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB AND DEPT_ID = 22);

C. UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB) AND DEPT_ID = 22;

D. UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB) WHERE DEPT_ID = 22);

12. The FIRED_EMPLOYEE table has the following structure:

EMPLOYEE_ID NUMBER (4)

FIRE_DATE DATE

How many rows will be counted from the last SQL statement in the code segment?

SELECT COUNT(*) FROM FIRED_EMPLOYEES;

COUNT(*)

 105

INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);

SAVEPOINT A;

INSERT INTO FIRED_EMPLOYEE VALUES (106, TRUNC(SYSDATE);

SAVEPOINT B;

INSERT INTO FIRED_EMPLOYEE VALUES (108, TRUNC(SYSDATE);

ROLLBACK TO A;

INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);

COMMIT;

SELECT COUNT(*) FROM FIRED_EMPLOYEES;

A. 109

B. 106

C. 105

D. 107

95127c05.indd 280 2/17/09 12:20:00 PM

Review Questions 281

13. The following table describes the DEPARTMENTS table:

Column Name dept_id dept_name mgr_id location_id

Key Type pk

Nulls/Unique NN

FK Table

Datatype NUMBER VARCHAR2 NUMBER NUMBER

Length 4 30 6 4

Default Value None None None 99

Which of the following INSERT statements will raise an exception?

A. INSERT INTO departments (dept_id, dept_name, location_id)
VALUES(280,’Security’,1700);

B. INSERT INTO departments
VALUES(280,’Security’,1700);

C. INSERT INTO departments
VALUES(280,’Corporate Giving’,266,1700);

D. None of these statements will raise an exception.

14. Refer to the DEPARTMENTS table structure in question 13. Two SQL statements are shown
here. Choose the best option that describes the SQL statements.

1. INSERT INTO departments (dept_id, dept_name, mgr_id)

VALUES(280,’Security’,1700);

2. INSERT INTO departments (dept_id, dept_name, mgr_id, location_id)

VALUES(280,’Security’,1700, NULL);

A. Statements 1 and 2 insert the same values to all columns in the table.

B. Statements 1 and 2 insert different values to at least one column in the table.

C. The location_id column must be included in the column list of statement 1.

D. A NULL value cannot be inserted explicitly in statement 2.

95127c05.indd 281 2/17/09 12:20:00 PM

282 Review Questions

15. The SALES table contains the following data:

SELECT channel_id, COUNT(*)

FROM sales

GROUP BY channel_id;

C COUNT(*)

- ----------

T 12000

I 24000

How many rows will be inserted into the NEW_CHANNEL_SALES table with the following
SQL statement?

INSERT FIRST

 WHEN channel_id =’C’ THEN

 INTO catalog_sales (prod_id,time_id,promo_id

 ,amount_sold)

 VALUES (prod_id,time_id,promo_id,amount_sold)

 WHEN channel_id =’I’ THEN

 INTO internet_sales (prod_id,time_id,promo_id

 ,amount_sold)

 VALUES (prod_id,time_id,promo_id,amount_sold)

 WHEN channel_id IN (‘I’,’T’) THEN

 INTO new_channel_sales (prod_id,time_id,promo_id

 ,amount_sold)

 VALUES (prod_id,time_id,promo_id,amount_sold)

SELECT channel_id,prod_id,time_id,promo_id,amount_sold

FROM sales;

A. 0

B. 12,000

C. 24,000

D. 36,000

16. How many rows will be counted in the last SQL statement that follows?

SELECT COUNT(*) FROM emp;

120 returned

INSERT INTO emp (emp_id)

 VALUES (140);

SAVEPOINT emp140;

95127c05.indd 282 2/17/09 12:20:00 PM

Review Questions 283

INSERT INTO emp (emp_id)

 VALUES (141);

INSERT INTO emp (emp_id)

 VALUES (142);

INSERT INTO emp (emp_id)

 VALUES (143);

TRUNCATE TABLE employees;

INSERT INTO emp (emp_id)

 VALUES (144);

ROLLBACK;

SELECT COUNT(*) FROM emp;

A. 121

B. 0

C. 124

D. 143

17. Which is the best option that describes the following SQL statement?

1. UPDATE countries

2. CNT_NAME = UPPER(CNT_NAME)

3. WHERE country_code BETWEEN 1 and 99;

A. The statement is missing the keyword SET, but the statement will work just fine
because SET is an optional keyword.

B. The BETWEEN operator cannot be used in the WHERE clause used in an UPDATE statement.

C. The function UPPER(CNT_NAME) should be changed to UPPER(‘CNT_NAME’).

D. The statement is missing keyword SET; hence, the statement will fail.

18. The table ORDERS has 35 rows. The following UPDATE statement updates all 35 rows. Which
is the best option?

UPDATE orders

SET ship_date = TRUNC(ship_date)

WHERE ship_date != TRUNC(ship_date)

A. When all rows in a table are updated, the LOCK TABLE orders IN EXCLUSIVE MODE
statement must be executed before the UPDATE statement.

B. No other session can query from the table until the transaction ends.

C. Since all rows are updated, there is no need for any locking, and hence Oracle does not
lock the records.

D. The statement locks all the rows until the transaction ends.

95127c05.indd 283 2/17/09 12:20:00 PM

284 Review Questions

19. Which of the following INSERT statements will raise an exception?

A. INSERT INTO EMP SELECT * FROM NEW_EMP;

B. INSERT FIRST WHEN DEPT_NO IN (12,14) THEN INSERT INTO EMP SELECT * FROM
NEW_EMP;

C. INSERT FIRST WHEN DEPT_NO IN (12,14) THEN INTO EMP SELECT * FROM NEW_EMP;

D. INSERT ALL WHEN DEPT_NO IN (12,14) THEN INTO EMP SELECT * FROM NEW_EMP;

20. What will the salary of employee Arsinoe be at the completion of the following SQL
statements?

UPDATE emp

 SET salary = 1000

 WHERE name = ‘Arsinoe’;

SAVEPOINT Point_A;

UPDATE emp

 SET salary = salary * 1.1

 WHERE name = ‘Arsinoe’;

SAVEPOINT Point_B;

UPDATE emp

 SET salary = salary * 1.1

 WHERE name = ‘Berenike’;

SAVEPOINT point_C;

ROLLBACK TO SAVEPOINT point_b;

COMMIT;

UPDATE emp

 SET salary = 1500

 WHERE name = ‘Arsinoe’;

SAVEPOINT point_d;

ROLLBACK TO point_d;

COMMIT;

A. 1000

B. 1100

C. 1111

D. 1500

95127c05.indd 284 2/17/09 12:20:01 PM

Answers to Review Questions 285

Answers to Review Questions
1. D. When inserting from another table using a subquery, the VALUES clause should not be

included. Options B and C are invalid syntaxes for the INSERT statement.

2. E. If a transaction is not currently open, any INSERT, UPDATE, MERGE, DELETE, SELECT FOR
UPDATE, or LOCK statement will implicitly begin a transaction.

3. B, C. Option A will error out because when using columns in set, a subquery must be used
as in option C. Option D is wrong because AND is used instead of a comma to separate col-
umns in the SET clause.

4. A, D. COMMIT, ROLLBACK, and any DDL statement end a transaction—DDL is automatically
committed. INSERT, UPDATE, and DELETE statements require a commit or rollback.

5. A. Option A uses a correlated subquery to match the correct employee. Option B selects
all the rows in the subquery and hence will generate an error. Option C is not valid syntax.
Option D will update all the rows in the table since the UPDATE statement does not have a
WHERE clause. The WHERE clause preset belongs to the subquery.

6. B. In an UPDATE statement, the WHERE clause should come after the SET clause.

7. D. When deleting a row from a table, do not use column names. To change column values
to NULL, use the UPDATE statement.

8. C. The FROM keyword in the DELETE statement is optional. Statement 3 is first building a
subquery with the necessary condition and deleting the rows from the subquery.

9. B. When two savepoints are created with the same name, Oracle erases the older savepoint.
In the code segment, the DELETE and the first INSERT are not rolled back.

10. C. When updating more than one column in a single UPDATE statement, separate the col-
umns by a comma; do not use the AND operator.

11. D. Option A is updating the wrong table. Option B has the right syntax but will update
all the rows in the EMPLOYEE table since there is no WHERE clause for the UPDATE statement.
Since the WHERE clause is in the subquery, all the rows that do not belong to department
22 will be updated with a NULL. Options C and D are similar, except for the AND keyword
instead of WHERE.

12. D. The first INSERT statement and the last INSERT statement will be saved in the database.
The ROLLBACK TO A statement will undo the second and third inserts.

13. B. Option B will raise an exception because there are not enough column values for the
implicit column list (all columns).

14. B. Since the location_id column is defined with a default value of 99, statement 1 will
insert 99 for location_id. In statement 2, a NULL is explicitly inserted into the location_id
column; Oracle will not replace the NULL with the default value defined.

95127c05.indd 285 2/17/09 12:20:01 PM

286 Answers to Review Questions

15. B. The FIRST clause tells Oracle to execute only the first WHEN clause that evaluates to TRUE
for each row. Since no rows have a channel_id of C, no rows would be inserted into the
catalog_sales table; 24,000 rows have channel_id of I, so control would pass to the sec-
ond WHEN clause 24,000 times, and the internet_sales table would get 24,000 rows. Since
the second WHEN clause evaluates to TRUE and the INSERT FIRST option is specified, these
rows would not make it to the third WHEN clause and would not be inserted into the new_
channel_sales table. Had the INSERT ALL option been used, these 24,000 rows would
also get inserted into the new_channel_sales table; 12,000 rows have a channel_id of T,
so control would pass all the way to the third WHEN clause for these rows, and 12,000 rows
would get inserted into new_channel_sales.

16. C. The TRUNCATE statement is DDL and performs an implicit commit. After the TRUNCATE
statement on the employees table, there are 124 rows in the emp table. The one row that
got inserted was removed when the ROLLBACK statement was executed.

17. D. You must have the SET keyword in an UPDATE statement. The BETWEEN operator and any
other valid operators are allowed in the WHERE clause.

18. D. When DML operations are performed, Oracle automatically locks the rows. You can
query (read) the rows, but no other DML operation is allowed on those rows. When you read
the rows, Oracle constitutes a read-consistent view using the undo segments.

19. B. The keywords INSERT INTO are required in single-table INSERT statements but are not
valid in multiple-table INSERT statements.

20. D. The final rollback (to point_d) will roll the changes back to just after setting the salary
to 1500.

95127c05.indd 286 2/17/09 12:20:01 PM

Chapter

6
Creating Tables and
Constraints

OraCle DaTabase 11g: sQl
FunDamenTals I exam ObjeCTIves
COvereD In ThIs ChapTer:

Using DDL Statements to Create and Manage Tables ÛÛ

Categorize the main database objects ÛN

Review the table structureÛN

List the data types that are available for columnsÛN

Create a simple tableÛN

Explain how constraints are created at the time of table ÛN

creation

Describe how schema objects workÛN

95127c06.indd 287 2/18/09 6:45:46 AM

An Oracle database has many different types of objects.
Related objects are logically grouped together in a schema,
which consists of various types of objects. The basic types of

objects in an Oracle Database are tables, indexes, constraints, sequences, and synonyms.
Though this chapter discusses tables and constraints, I will start the chapter with an over-
view of the main database objects in Oracle.

The table is the basic structure of data storage in Oracle. A table has columns as part of
the definition and stores rows of data. In a relational database, the data in various tables
may be related. A constraint can be considered as a rule or policy defined in the database to
enforce data integrity and business rules. In this chapter, I will discuss creating tables and
using constraints. Since the table is the most important type of object in an Oracle Data-
base, it is important to know how to create tables and constraints on tables.

Database Objects Overview
Data in the Oracle Database is stored in tables. A table is the main database object. Many
other database objects, whether or not they store data, are generally based on the tables.
Let’s review the main database objects in Oracle that are relevant for this certification exam:

Table A table is defined with columns and stores rows of data. A table should have at least
one column. In Oracle, a table normally refers to a relational table. You can also create object
tables. Object tables are created with user-defined datatypes. Temporary tables (called global
temporary tables in Oracle) are used to hold temporary data specific to a transaction or
session. A table can store a wide variety of data. Apart from storing text and numeric infor-
mation, you can store date, timestamp, binary, or raw data (such as images, documents, and
information about external files). A table can have virtual columns. As the name indicates,
these types of columns do not consume storage space on disk; the database derives values
in virtual columns from normal columns. Tables are discussed in the next sections of this
chapter.

View A view is a customized representation of data from one or more tables and/or views.
Views are used as a window to show information from tables in a certain way or to restrict
the information. Views are queries stored in the database that select data from one or more
tables. They also provide a way to restrict data from certain users, thus providing an addi-
tional level of security.

95127c06.indd 288 2/18/09 6:45:46 AM

Database Objects Overview 289

Sequence A sequence is a way to generate continuous numbers. Sequences are useful for
generating unique serial numbers or key values. The sequence definition is stored in the
data dictionary. Sequence numbers are generated independently of other database objects.

Synonym A synonym is an alias for any table, view, sequence, or other accessible database
object. Because a synonym is simply an alias, it requires no storage other than its definition
in the data dictionary. Synonyms are useful because they hide the identity of the underlying
object. The object can even be part of another database. A public synonym is accessible to
all users of the database, and a private synonym is accessible only to its owner.

Index An index is a structure associated with tables used to speed up the queries. An
index is an access path to reach the desired row faster. Oracle has B-tree and bitmap indexes.
Creating/dropping indexes does not affect the storage of data in the underlying tables. You
can create unique or nonunique indexes. Unique indexes are created automatically by Oracle
when you create a primary key or a unique key constraint in a table. A composite index has
more than one column in the index.

Views, sequences, synonyms, and indexes are discussed in Chapter 7,
“Creating Schema Objects.”

Oracle 11g has a wide array of database objects to suit various application requirements.
These objects are not discussed in this book because they are not part of the certifica-
tion exam at this time. Some of the other database objects that may be used in application
development are clusters, dimensions, directories, functions, Java sources/classes, libraries,
materialized views, and types. To learn more about the various Oracle 11g database schema
objects, please refer to the Oracle documentation called “Oracle Database Administrators
Guide 11g Release 1 (11.) Part Number B28310-04,” which is available online at www.oracle
.com/pls/db111/db111.homepage.

Schema Objects
A schema is a collection of related database objects grouped together. For example, a schema
can have tables, views, triggers, synonyms, and PL/SQL programs such as procedures. A
schema is owned by a database user and has the same name as the user. If the database user
does not own any database objects, then no schema is associated with the user. A schema is
a logical grouping of database objects.

A database user can have only one schema associated and is created when you create any
database object. They may include any or all the basic database objects discussed earlier.
Oracle 11g may also include the following types of structures in the schema. These objects
are listed here only to give you an overview of schemas; creating and managing these
objects are not part of the certification exam at this time. For the certification exam, prepare
to know the schema objects discussed in this chapter and in Chapter 7.

95127c06.indd 289 2/18/09 6:45:47 AM

290 Chapter 6 N Creating Tables and Constraints

Materialized view Materialized views are objects used to summarize and replicate data.
They are similar to views but occupy storage space. Materialized views are mainly used in
data-warehouse environments where data needs to be aggregated and stored so that queries
and reports run faster. Materialized views can also be used to replicate data from another
database.

Dimension A dimension is a logical structure to define the relationship between columns
in a table. Dimensions are defined in the data dictionary and do not occupy any storage space.
The columns in a dimension can be from a single table or from multiple tables. An example of
a dimension would be the relationship between country, state, and city in a table that stores
address information.

Cluster A cluster is a method of storing data from related tables at a common physical
location. You can share the storage of rows in related tables for performance reasons if the
access to the rows in the tables always involves join operations on the tables. For example,
if you have an orders table and a customers table in the schema, you can query the orders
table always joining the customers table, because that’s where you get the customer name
associated with the customer ID. A cluster may be created for the orders and customers
tables so that the rows associated with the same customer are stored in the same physical
storage area (block). Database storage and blocks are discussed in Chapter 8, “Introducing
Oracle 11g Components and Architecture.”

Database links A database link is a schema object that enables you to access an object from
a different database. SQL queries can reference tables and views belonging to the remote
database by appending @db_link_name to the table or view. For example, to access the
CUSTOMER_ORDERS table using a database link named LONDON_SALES, you would use
CUSTOMER_ORDERS@LONDON_SALES.

Triggers A trigger is a stored PL/SQL program that gets executed when a specified condi-
tion occurs. A trigger can be defined on a table to “fire” when an insert, update, or delete
operation occurs on the table. A trigger may also be defined on the database to “fire” when
certain database conditions occur, such as starting the database, or when a database error
occurs.

Java objects Oracle Database 11g includes Java objects such as Java classes, Java sources,
and Java resources. Java stored programs can be created using the different Java object types.

PL/SQL programs PL/SQL stored programs include procedures, functions, and packages.
A procedure is a PL/SQL programmatic construct. A function is similar to a procedure but
always returns a value. A package is a grouping of related PL/SQL objects.

Built-in Datatypes
When creating tables, you must specify a datatype for each column you define. Oracle
11g is rich with various datatypes to store different kinds of information. By choosing the

95127c06.indd 290 2/18/09 6:45:47 AM

Built-in Datatypes 291

appropriate datatype, you will be able to store and retrieve data without compromising its
integrity. A datatype associates a predefined set of properties with the column.

The datatypes in Oracle 11g can be classified into five major categories. Figure 6.1 shows
the categories and the datatype names.

F I gu r e 6 .1 Oracle built-in datatypes

Character

CHAR
VARCHAR2
CLOB
LONG
NCHAR
NVARCHAR2
NCLOB

Numeric

NUMBER
BINARY_FLOAT
BINARY_DOUBLE
FLOAT

Binary

RAW
LONG RAW
BLOB
BFILE

Date and Time

DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Row ID

ROWID
UROWID

Chapter 1, “Introducing SQL,” introduced four basic datatypes: CHAR, VARCHAR2,
NUMBER, and DATE. Here, I will review those datatypes and describe the other datatypes
that you can specify while creating a table.

Character Datatypes
Seven character datatypes can be used for defining columns in a table:

CHARÛN

NCHARÛN

VARCHAR2ÛN

NVARCHAR2ÛN

CLOBÛN

NCLOBÛN

LONGÛN

95127c06.indd 291 2/18/09 6:45:47 AM

292 Chapter 6 N Creating Tables and Constraints

Character datatypes store alphanumeric data in the database character set or in the
Unicode character set. You define the database character set when you create the database.

The character set determines which languages can be represented in the database. For
example, US7ASCII is a 7-bit ASCII character set that can represent the English language
and any other language that uses the English alphabet set. WE8ISO8859P1 is an 8-bit
character set that can support multiple European languages such as English, German, French,
Albanian, Spanish, Portuguese, Irish, and so on, because they all use a similar writing script.
Unicode, the Universal Character Set, allows you to store any language character using a
single character set. The Unicode character set supported by Oracle is either 16-bit encod-
ing (UTF-16) or 8-bit encoding (UTF-8). You can choose the Unicode datatypes to be used
in the database while creating the database. The default is the AL16UTF16 character set,
which is UTF-16 encoding.

CHAR
The syntax for the CHAR datatype is as follows:

CHAR [(<size> [BYTE | CHAR])]

The CHAR datatype is fixed-length, with the maximum size of the column specified in
parentheses. You can also include the optional keyword BYTE or CHAR inside the parentheses
along with the size to indicate whether the size is in bytes or in characters. BYTE is the default.

For single-byte-database character sets (such as US7ASCII), the size specified in bytes
and the size specified in characters are the same. If the column value is shorter than the size
defined, trailing spaces are added to the column value. Specifying the size is optional, and
the default size is 1 byte. The maximum allowed size in a CHAR datatype column is 2,000
bytes. Here are few examples of specifying a CHAR datatype column:

employee_id CHAR (5)

employee_name CHAR (100 CHAR)

employee_sex CHAR

NCHAR
The syntax for the NCHAR datatype is as follows:

NCHAR [(<size>)]

The NCHAR datatype is similar to CHAR, but it is used to store Unicode character-set
data. The NCHAR datatype is fixed-length, with a maximum size of 2,000 bytes and a
default size of a character.

The size in the NCHAR datatype definition is always specified in characters. Trailing
spaces are added if the value inserted into the column is shorter than the column’s maxi-
mum length. Here is an example of specifying an NCHAR datatype column:

emp_name NCHAR (100)

95127c06.indd 292 2/18/09 6:45:47 AM

Built-in Datatypes 293

Several built-in Oracle 11g functions have options to represent NCHAR data. An
NCHAR string may be represented by prefixing the string with N, as in this example:

SELECT emp_name FROM employee_records

WHERE emp_name = N’John Smith’;

VARCHAR2 or VARCHAR
The syntax for the VARCHAR2 datatype is as follows:

VARCHAR2 (<size> [BYTE | CHAR])

VARCHAR2 and VARCHAR are synonymous datatypes. VARCHAR2 specifies vari-
able-length character data. A maximum size for the column should be defined; Oracle 11g
will not assume any default value. Unlike CHAR columns, VARCHAR2 columns are not
blank-padded with trailing spaces if the column value is shorter than its maximum specified
length. You can specify the size in bytes or characters; by default, the size is in bytes. The
range of values allowed for size is from 1 to 4,000 bytes. For storing variable-length data,
Oracle recommends using VARCHAR2 rather than VARCHAR, because the behavior of
the VARCHAR datatype may change in a future release.

NVARCHAR2
The syntax for the NVARCHAR2 datatype is as follows:

NVARCHAR2 (<size>)

The NVARCHAR2 datatype is used to store Unicode variable-length data. The size is
specified in characters, and the maximum size allowed is 4,000 bytes.

If you try to insert a value into a character datatype column that is larger
than its maximum specified size, Oracle will return an error. Oracle will not
chop or truncate the inserted value to store it in the database column.

CLOB
The syntax for the CLOB datatype is as follows:

CLOB

CLOB is one of the Large Object datatypes provided to store variable-length character
data. The maximum amount of data you can store in a CLOB column is based on the block
size of the database. CLOB can store up to (4GB–1)*(database block size). You do not spec-
ify the size with this datatype definition.

NCLOB
The syntax for the NCLOB datatype is as follows:

NCLOB

95127c06.indd 293 2/18/09 6:45:47 AM

294 Chapter 6 N Creating Tables and Constraints

NCLOB is one of the Large Object datatypes and stores variable-length Unicode charac-
ter data. The maximum amount of data you can store in a NCLOB column is (4GB–1)*
(database block size). You do not specify the size with this datatype definition.

LONG
The syntax for the LONG datatype is as follows:

LONG

Using the LONG datatype is discouraged in Oracle Database 11g. It is provided only for
backward compatibility. You should use the CLOB datatype instead of LONG. LONG col-
umns can store up to 2GB of character data. There can be only one LONG column in the
table definition. A LONG datatype column can be used in the SELECT clause of a query, the
SET clause of the UPDATE statement, and the VALUES clause of the INSERT statement. You can
also create a NOT NULL constraint on a LONG column.

LONG datatype columns cannot appear in the following:

The ÛN WHERE, GROUP BY, or ORDER BY clauses

A ÛN SELECT clause if the DISTINCT operator is used

A ÛN SELECT list of subqueries used in INSERT statements

A ÛN SELECT list of subqueries used with the UNION, INTERSECT, or MINUS operator

A ÛN SELECT list of queries with the GROUP BY clause

Numeric Datatypes
Four built-in numeric datatypes can be used for defining numeric columns in a table:

NUMBERÛN

BINARY_FLOATÛN

BINARY_DOUBLEÛN

FLOATÛN

Numeric datatypes are used to store integer and floating-point numbers. The NUMBER
datatype can store all types of numeric data, but BINARY_FLOAT and BINARY_DOUBLE
give better performance with floating-point numbers. FLOAT is a subtype of NUMBER.

NUMBER
The syntax for the NUMBER datatype is as follows:

NUMBER [(<precision> [, <scale>])]

You can represent all non-Oracle numeric datatypes such as float, integer, decimal,
double, and so on, using the NUMBER datatype. The NUMBER datatype can store both
fixed-point and floating-point numbers. Oracle 11g introduced two new datatypes to sup-
port floating-point numbers—specifically, BINARY_FLOAT and BINARY_DOUBLE.

95127c06.indd 294 2/18/09 6:45:48 AM

Built-in Datatypes 295

BINARY_FLOAT
The syntax for the BINARY_FLOAT datatype is as follows:

BINARY_FLOAT

The BINARY_FLOAT datatype represents a 32-bit floating-point number. There is
no precision defined in the definition of this datatype because it uses binary precision.
BINARY_FLOAT uses 5 bytes for storage.

A floating-point number can have a decimal point anywhere or can have no decimal point.
Oracle stores NUMBER datatype values using decimal precision, whereas floating-point
numbers (BINARY_FLOAT and BINARY_DOUBLE) are stored using binary precision.
Oracle has three special values that can be used with floating-point numbers:

INF: Positive infinity

-INF: Negative infinity

NaN: Not a Number (NaN is not the same as NULL)

BINARY_DOUBLE
The syntax for the BINARY_DOUBLE datatype is as follows:

BINARY_DOUBLE

The BINARY_DOUBLE datatype represents a 64-bit floating-point number. BINARY_
DOUBLE uses 9 bytes for storage. All the characteristics of BINARY_FLOAT are appli-
cable to BINARY_DOUBLE.

FLOAT
The syntax for the FLOAT datatype is as follows:

FLOAT [(precision)]

The FLOAT datatype is a subtype of NUMBER and is internally represented as NUMBER.
There is no scale for FLOAT numbers; only precision can be optionally included. The precision
can range from 1 to default binary digits. In the NUMBER datatype the precision and scale
are represented in decimal digits, whereas in FLOAT the precision is represented in binary
digits. In Oracle 11g it is recommended you use BINARY_FLOAT or BINARY_DOUBLE
instead of the FLOAT datatype.

Date and Time Datatypes
In pre–Oracle9i databases, the only datetime datatype available was DATE, which stores
the date and time. Oracle9i Database introduced the TIMESTAMP and INTERVAL data-
types to enhance the storage and manipulation of date and time data. Six datetime datatypes
in Oracle 11g can be used for defining columns in a table:

DATEÛN

TIMESTAMPÛN

TIMESTAMP WITH TIME ZONEÛN

95127c06.indd 295 2/18/09 6:45:48 AM

296 Chapter 6 N Creating Tables and Constraints

TIMESTAMP WITH LOCAL TIME ZONEÛN

INTERVAL YEAR TO MONTHÛN

INTERVAL DAY TO SECONDÛN

The interval datatypes are used to represent a measure of time. They store the number
of months or number of days/hours between two time points. All interval components are
integers except the seconds, which may have fractional seconds represented.

DATE
The syntax for the DATE datatype is as follows:

DATE

The DATE datatype stores date and time information. You can store the dates from
January 1, 4712 BC to December 31, 9999 AD. If you specify a date value without the
time component, the default time is 12 a.m. (midnight, 00:00:00 hours). If you specify
a date value without the date component, the default value is the first day of the current
month. The DATE datatype stores century, year, month, date, hour, minute, and seconds
internally. You can display the dates in various formats using the NLS_DATE_FORMAT param-
eter or by specifying a format mask with the TO_CHAR function. The various date-format
masks are discussed in Chapter 2, “Using Single-Row Functions.”

TIMESTAMP
The syntax for TIMESTAMP datatype is as follows:

TIMESTAMP [(<precision>)]

The TIMESTAMP datatype stores date and time information with fractional seconds
precision. The only difference between the DATE and TIMESTAMP datatypes is the abil-
ity to store fractional seconds up to a precision of nine digits. The default precision is 6 and
can range from 0 to 9.

TIMESTAMP WITH TIME ZONE

The syntax for the TIMESTAMP WITH TIME ZONE datatype is as follows:

TIMESTAMP [(<precision>)] WITH TIME ZONE

The TIMESTAMP WITH TIME ZONE datatype is similar to the TIMESTAMP data-
type, but it stores the time-zone displacement. Displacement is the difference between the
local time and the Coordinated Universal Time (UTC, also known as Greenwich mean
time). The displacement is represented in hours and minutes. Two TIMESTAMP WITH
TIME ZONE values are considered identical if they represent the same time in UTC. For
example, 5 p.m. CST is equal to 6 p.m. EST or 3 p.m. PST.

TIMESTAMP WITH LOCAL TIME ZONE
The syntax for the TIMESTAMP WITH LOCAL TIME ZONE datatype is as follows:

TIMESTAMP [(<precision>)] WITH LOCAL TIME ZONE

95127c06.indd 296 2/18/09 6:45:48 AM

Built-in Datatypes 297

The TIMESTAMP WITH LOCAL TIME ZONE datatype is similar to the TIME-
STAMP datatype, but like the TIMESTAMP WITH TIME ZONE datatype, it also
includes the time-zone displacement. TIMESTAMP WITH LOCAL TIME ZONE does not
store the displacement information in the database but stores the time as a normalized form
of the database time zone. The data is always stored in the database time zone, but when
the user retrieves data, it is shown in the user’s local-session time zone.

The following example demonstrates how the DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE datatypes store
data. The NLS_xx_FORMAT parameter is explicitly set to display the values in the nondefault
format. The data is inserted at Central Daylight Time (CDT), which is seven hours behind
UTC. (The output shown in the example was reformatted for better readability.)

CREATE TABLE date_time_demo (

r_no NUMBER (2),

c_date DATE DEFAULT SYSDATE,

c_timezone TIMESTAMP DEFAULT SYSTIMESTAMP,

c_timezone2 TIMESTAMP (2) DEFAULT SYSTIMESTAMP,

c_ts_wtz TIMESTAMP (0) WITH TIME ZONE

 DEFAULT SYSTIMESTAMP,

c_ts_wltz TIMESTAMP (9) WITH LOCAL TIME ZONE

 DEFAULT SYSTIMESTAMP);

Table created.

INSERT INTO date_time_demo (r_no) VALUES (1);

1 row created.

ALTER SESSION SET NLS_DATE_FORMAT = ‘YYYY-MM-DD HH24:MI:SS’;

Session altered.

ALTER SESSION SET NLS_TIMESTAMP_FORMAT = ‘YYYY-MM-DD HH24:MI:SS.FF’;

Session altered.

ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT = ‘YYYY-MM-DD HH24:MI:SS.FFTZH:TZM’;

Session altered.

SELECT * FROM date_time_demo;

R_NO C_DATE C_TIMEZONE

--------------------- ---------------------------

1 2008-10-24 13:09:14 2008-10-24 13:09:14. 000001

95127c06.indd 297 2/18/09 6:45:48 AM

298 Chapter 6 N Creating Tables and Constraints

C_TIMEZONE2 C_TS_WTZ

---------------------- --------------------------

2008-10-24 13:09:14.00 2008-10-24 13:09:14.-07:00

C_TS_WLTZ

2008-10-24 13:09:14.000001000

INTERVAL YEAR TO MONTH
The syntax for the INTERVAL YEAR TO MONTH datatype is as follows:

INTERVAL YEAR [(precision)] TO MONTH

The INTERVAL YEAR TO MONTH datatype is used to represent a period of time as
years and months. precision specifies the precision needed for the year field, and its default
is 2. Valid precision values are from 0 to 9. This datatype can be used to store the difference
between two datetime values, where the only significant portions are the year and month.

INTERVAL DAY TO SECOND
The syntax for the INTERVAL DAY TO SECOND datatype is as follows:

INTERVAL DAY [(precision)] TO SECOND

The INTERVAL DAY TO SECOND datatype is used to represent a period of time as
days, hours, minutes, and seconds. precision specifies the precision needed for the day
field, and its default is 6. Valid precision values are from 0 to 9. Larger precision values
allow a greater difference between the dates; for example, a precision of 2 allows values
from 0 through 99, and a precision of 4 allows values from 0 through 9999. This datatype
can be used to store the difference between two datetime values, including seconds.

The following example demonstrates the INTERVAL datatypes. It creates a table with
the INTERVAL datatypes, inserts data to it, and selects data from the table.

CREATE TABLE interval_demo (

ts1 TIMESTAMP (2),

iy2m INTERVAL YEAR (3) TO MONTH,

id2s INTERVAL DAY (4) TO SECOND);

Table created.

INSERT INTO interval_demo VALUES (

TO_TIMESTAMP(‘080101-102030.45’, ‘YYMMDD-HH24MISS.FF’),

TO_YMINTERVAL(‘3-7’),

TO_DSINTERVAL(‘4 02:20:30.30’));

1 row created.

95127c06.indd 298 2/18/09 6:45:48 AM

Built-in Datatypes 299

SELECT * FROM interval_demo;

TS1 IY2M ID2S

------------------------- -------- ---------------------

2008-01-01 10:20:30.45 +003-07 +0004 02:20:30.300000

Date Arithmetic
Datetime datatypes can be used in expressions with the + or - operator. You can use the +,
-, *, and / operators with the INTERVAL datatypes. Dates are stored in the database as
Julian numbers with a fraction component for the time. A Julian date refers to the number
of days since January 1, 4712 BC. Because of the time component of the date, comparing
dates can result in fractional differences, even though the date is the same. Oracle provides
a number of functions, such as TRUNC, that help you remove the time component when you
want to compare only the date portions.

Adding 1 to the date simply moves the date ahead one day. You can add time to the date
by adding a fraction of a day. One day equals 24 hours, or 24 × 60 minutes, or 24 × 60 × 60
seconds. Table 6.1 shows the numbers used to add or subtract time for a datetime datatype.

Ta b le 6 .1 Date Arithmetic

Time to Add or Subtract Fraction Date Difference

1 day 1 1

1 hour 1/24 1/24

1 minute 1/(24×60) 1/1440

1 second 1/(24×60×60) 1/86400

Subtracting two dates gives you the difference between the dates in days. This usually
results in a fractional component that represents the time difference. If the time compo-
nents are the same, there will be no fractional results.

A datetime value operation using a numeric value results in a datetime value. The fol-
lowing example adds 2 days and 12 hours to a date value:

ALTER SESSION SET NLS_DATE_FORMAT = ‘YYYY-MM-DD HH24:MI:SS’;

SELECT TO_DATE(‘2008-10-24 13:09:14’) + 2.5 EXAMP

FROM dual;

EXAMP

2008-10-27 01:09:14

95127c06.indd 299 2/18/09 6:45:48 AM

300 Chapter 6 N Creating Tables and Constraints

This example subtracts six hours from a timestamp value:

SELECT TO_TIMESTAMP(‘2008-10-24 13:09:14.05’) - 0.25 EXAMP

FROM dual;

EXAMP

2008-10-24 07:09:14

A datetime value subtracted from another datetime value results in a numeric value (the
difference in days). You cannot add two datetime values. Here is an example that results in
the difference between dates as a fraction of a day:

SELECT SYSDATE,

 SYSDATE - TO_DATE(‘2007-10-24 13:09:14’)

FROM dual;

SYSDATE SYSDATE-TO_DATE(‘2007-10-2413:09:14’)

------------------- -------------------------------------

2008-05-11 23:34:06 200.433935

This example converts the fraction of days to hours, minutes, and seconds using the
NUMTODSINTERVAL function:

SELECT SYSDATE,

 NUMTODSINTERVAL(SYSDATE - TO_DATE(‘2008-10-24 13:09:14’), ‘DAY’)

FROM DUAL;

SYSDATE NUMTODSINTERVAL(SYSDATE

-------------------- -----------------------------

2008-10-24 15:53:04 +000000000 02:43:49.999999999

A datetime value operation using an interval value results in a datetime value. The fol-
lowing example adds one year and three months to today’s date:

SELECT TRUNC(SYSDATE),

 TRUNC(SYSDATE)+TO_YMINTERVAL(‘1-3’)

FROM dual;

TRUNC(SYSDATE) TRUNC(SYSDATE)+TO_Y

------------------- -------------------

2008-10-24 00:00:00 2009-01-24 00:00:00

An interval datatype operation on another interval or numeric value results in an inter-
val value. You can use + and – between two interval datatypes and use * and / between
interval and numeric values. The following example converts a string (which represents

95127c06.indd 300 2/18/09 6:45:48 AM

Built-in Datatypes 301

1 day, 3 hours, and 30 minutes) to an INTERVAL DAY TO SECOND datatype and multi-
plies that value by 2, which results in 2 days and 7 hours:

SELECT TO_DSINTERVAL(‘1 03:30:00.0’) * 2 FROM dual;

TO_DSINTERVAL(‘103:30:00.0’)*2

+000000002 07:00:00.000000000

The following example shows arithmetic between two INTERVAL DAY TO SECOND
datatype values. The interval value of 3 hours and 30 minutes is subtracted from 1 day, 3
hours, and 30 minutes, resulting in 1 day.

SELECT TO_DSINTERVAL(‘1 03:30:00.0’)

 - TO_DSINTERVAL(‘0 03:30:00.0’)

FROM dual;

TO_DSINTERVAL(‘103:30:00.0’)-TO_DSINTERVAL(‘003:30:00.0’)

+000000001 00:00:00.000000000

Binary Datatypes
Binary datatypes store information without converting it to the database’s character set.
This type of storage is required to store images, audio/video, executable files, and similar
data. Four datatypes are available to store binary data:

RAWÛN

LONG RAWÛN

BLOBÛN

BFILEÛN

RAW
The syntax for the RAW datatype is as follows:

RAW (<size>)

RAW is used to store binary information up to 2,000 bytes. You must specify the maxi-
mum size of the column in bytes. RAW is a variable-length datatype.

LONG RAW
The syntax for the LONG RAW datatype is as follows:

LONG RAW

95127c06.indd 301 2/18/09 6:45:48 AM

302 Chapter 6 N Creating Tables and Constraints

It’s the same as RAW but with up to 2GB of storage and you can’t specify a maximum
size. LONG RAW is supported in Oracle 11g for backward compatibility. Use BLOB
instead. You can have only one LONG RAW or LONG column in a table.

BLOB
The syntax for the BLOB datatype is as follows:

BLOB

BLOB can store binary data up to 4GB. There is no size specification for this datatype.

BFILE
The syntax for the BFILE datatype is as follows:

BFILE

BFILE is used to store information on external files. The external file size can be up
to 4GB. Oracle stores only the file pointer in the database. The actual file is stored on
the operating system. Of the four Large Object datatypes (CLOB, BLOB, NCLOB, and
BFILE), only BFILE stores actual data outside the Oracle Database.

Row ID Datatypes
Physical storage of each row in a table can be represented using a unique value called the
ROWID. Every table has a pseudocolumn called the ROWID. To store such values, Oracle
provides two datatypes:

ROWIDÛN

UROWIDÛN

ROWID
The syntax for the ROWID datatype is as follows:

ROWID

ROWID can store the physical address of a row. Physical ROWIDs store the addresses of
rows in ordinary tables (excluding index-organized tables), clustered tables, table partitions
and subpartitions, indexes, and index partitions and subpartitions. Logical ROWIDs store
the addresses of rows in index-organized tables. Physical ROWIDs provide the fastest pos-
sible access to a row of a given table.

UROWID
The syntax for the UROWID datatype is as follows:

UROWID

UROWID can store the logical ROWIDs of index-organized tables or non-Oracle Data-
base tables. Oracle creates logical ROWIDs based on an index-organized table’s primary
key. The logical ROWIDs do not change as long as the primary key does not change.

95127c06.indd 302 2/18/09 6:45:48 AM

Creating Tables 303

Creating Tables
Now that you have learned about the various datatypes that you can use to store table data,
you are ready to create a table. You can think of a table as a spreadsheet with columns and
rows. It is a structure that holds data in a relational database. The table is created with a
name to identify it and columns defined with valid column names and column attributes,
such as the datatype and size. CREATE TABLE is a comprehensive statement with many
options. The certification exam covers creating and managing a simple relational table only.
Here is the simplest format to use to create a table:

CREATE TABLE products

(prod_id NUMBER (4),

 prod_name VARCHAR2 (20),

 stock_qty NUMBER (15,3)

);

Table created.

You specify the table name following the keywords CREATE TABLE. The previous example cre-
ates a table named PRODUCTS under the user (schema) connected to the database. The table name
can be qualified with the username; you must qualify the table when creating a table in another
user’s schema. Table and column names are discussed in more detail in the next section.

The column definitions are enclosed in parentheses. The table created by the previous
code has three columns, each identified by a name and datatype. Commas separate the col-
umn definitions. This table has two columns with the NUMBER datatype and one column
with the VARCHAR2 datatype. A datatype must be specified for each column.

When creating tables, you can specify the following:

Default values for columnsÛN

Constraints for the columns and/or table (discussed later in this chapter in the “Man-ÛN

aging Constraints” section)

The type of table: relational (heap), temporary, index-organized, external, or object ÛN

(Index-organized and object tables are not covered on the certification exam.)

Table storage, including any index storage and storage specification for the Large ÛN

Object columns (LOBs) in the table

The tablespace where the table/index should be storedÛN

Any partitioning and subpartitioning informationÛN

Naming Tables and Columns
Table names are used to identify each table. You should make table names as descriptive as
possible. Table and column names are identifiers and can be up to 30 characters long. An

95127c06.indd 303 2/18/09 6:45:48 AM

304 Chapter 6 N Creating Tables and Constraints

identifier name should begin with a letter and can contain numeric digits. The only special
characters allowed in an identifier name are the dollar sign ($), the underscore (_), and the
number sign (#). The underscore can be used for meaningful separation of the words in an
identifier name. These names are case insensitive. If, however, you enclose the identifier
name in double quotation marks (“), it will be case sensitive in the Oracle dictionary.

Creating table names enclosed in quotation marks with mixed case can
cause serious problems when you query the database if you do not know
the exact case of the table name.

You can use the DESCRIBE or DESC (SQL*Plus) command to list all the columns in the
table, along with their datatype, size, nullity, and order. The syntax is DESCRIBE <table
name>. The case sensitivity of names and describing tables are illustrated in the following
examples:

CREATE TABLE MyTable (

 Column_1 NUMBER,

 Column_2 CHAR);

Table created.

DESC mytable

 Name Null? Type

 ------------------- -------- --------

 COLUMN_1 NUMBER

 COLUMN_2 CHAR(1)

SELECT table_name FROM user_tables

WHERE table_name = ‘MyTable’;

no rows selected

CREATE TABLE “MyTable” (

 “Column1” number,

 “Column2” char);

Table created.

DESC “MyTable”

 Name Null? Type

 ------------------- -------- --------

 Column1 NUMBER

 Column2 CHAR(1)

95127c06.indd 304 2/18/09 6:45:49 AM

Creating Tables 305

SELECT table_name FROM user_tables

WHERE upper(table_name) = ‘MYTABLE’;

TABLE_NAME

MYTABLE

MyTable

It is a good practice to give the other objects directly related to a table a
name that reflects the table name. For example, consider the EMPLOYEE
table. The primary key of the table may be named PK_EMPLOYEE, indexes
might be named EMPLOYEE_NDX1 and EMPLOYEE_NDX2, a check constraint
could be named CK_EMPLOYEE_STATUS, a trigger could be named TRG_
EMPLOYEE_HIRE, and so on.

Creating a Temporary Table

When you create a table without any specific keywords to indicate the type of the table,
the table created is a relational table that is permanent. If you include the keywords
GLOBAL TEMPORARY, Oracle creates a temporary relational table known as the global tem-
porary table (GTT) whose definition is available to all sessions in the database, but the
data is available only to the session that inserted data to it. The GTT is truly a temporary
table. On other flavors of RDBMS, a permanent table created to hold temporary data is
called a temporary table. You can do the same with Oracle, but Oracle provides true tem-
porary tables with GTT.

 The data inserted by a session is visible only to the session. Normally when you commit
the data changes or new rows added to a table, the data is visible to all other sessions.
When using GTTs, the data is truly temporary—it is not written permanently anywhere.
The ON COMMIT clause can be included to specify whether the data in the temporary table
is session-specific (ON COMMIT PRESERVE ROWS) or transaction-specific (ON COMMIT DELETE
ROWS). ON COMMIT DELETE ROWS is the default. If the definition is for session-specific
data, the inserted data will be available throughout the session. If the GTT is defined as
transaction-specific, then when a COMMIT or ROLLBACK is performed, the data in the table
is cleared. Here is an example of creating a temporary table whose inserted data will be
available throughout the session:

CREATE GLOBAL TEMPORARY TABLE emp_bonus_temp (

emp_id NUMBER (10),

bonus NUMBER (15,2))

ON COMMIT PRESERVE ROWS;

95127c06.indd 305 2/18/09 6:45:49 AM

306 Chapter 6 N Creating Tables and Constraints

Specifying Default Values for Columns
When creating or altering a table, you can specify default values for columns. The default
value specified will be used when you do not specify any value for the column while inserting
data. The default value specified in the definition should satisfy the datatype and length of
the column. If a default value is not explicitly set, the default for the column is implicitly set
to NULL. Default values cannot refer to another column, and they cannot have the pseudo-
columns LEVEL, NEXTVAL, CURRVAL, ROWNUM, or PRIOR. The default values can include SYSDATE,
USER, USERENV, and UID.

In the following example, the table ORDERS is created with a column STATUS that has a
default value of PENDING:

CREATE TABLE orders (

order_number NUMBER (8),

status VARCHAR2 (10) DEFAULT ‘PENDING’);

Table created.

INSERT INTO orders (order_number) VALUES (4004);

1 row created.

SELECT * FROM orders;

ORDER_NUMBER STATUS

------------ ----------

 4004 PENDING

Here is an example of creating a table that includes default values for two columns:

CREATE TABLE emp_punch (

emp_id NUMBER (6) NOT NULL,

time_in DATE,

time_out DATE,

updated_by VARCHAR2 (30) DEFAULT USER,

update_time TIMESTAMP WITH LOCAL TIME ZONE

 DEFAULT SYSTIMESTAMP

);

Table created.

DESCRIBE emp_punch

95127c06.indd 306 2/18/09 6:45:49 AM

Creating Tables 307

 Name Null? Type

 -------------------------- -------- ------------------

 EMP_ID NOT NULL NUMBER(6)

 TIME_IN DATE

 TIME_OUT DATE

 UPDATED_BY VARCHAR2(30)

 UPDATE_TIME TIMESTAMP(6) WITH

 LOCAL TIME ZONE

INSERT INTO emp_punch (emp_id, time_in)

VALUES (1090, TO_DATE(‘062801-2121’,’MMDDYY-HH24MI’));

1 row created.

SELECT * FROM emp_punch;

EMP_ID TIME_IN TIME_OUT UPDATED_BY UPDATE_TIME

------ --------- --------- ---------- ------------------

1090 28-JUN-01 JOHN 02.55.58.000000 PM

This example uses a NOT NULL constraint in the table definition. A NOT
NULL constraint prevents NULL values from being entered into the column.
Constraints are discussed in detail in the “Managing Constraints” section
later in this chapter.

If you explicitly insert a NULL value for a column with DEFAULT defined, the value in the
DEFAULT clause will not be used. You can explicitly specify DEFAULT in the INSERT statement
to use the DEFAULT value, as in the following example:

INSERT INTO emp_punch

VALUES (104, TO_DATE(‘062801-2121’,’MMDDYY-HH24MI’),

 DEFAULT, DEFAULT, NULL);

1 row created.

SELECT * FROM emp_punch;

95127c06.indd 307 2/18/09 6:45:49 AM

308 Chapter 6 N Creating Tables and Constraints

EMP_ID TIME_IN TIME UPDATED UPDATE_TIME

 _OUT _BY

------ --------- ---- ------- ----------------------------

1090 28-JUN-01 JOHN 29-JUN-01 02.55.58.000000 PM

 104 28-JUN-01 JOHN

SQL>

Adding Comments
It is a good practice to document the purpose and any information on the type of data stored
in the table in the database itself so that developers and administrators working on the
database know the importance of the table/data. Oracle provides the COMMENT statement to
add documentation to a table or a column.

Comments on tables are added using the COMMENT ON TABLE statement, and comments
on table columns are added using the COMMENT ON COLUMN statement. The following exam-
ple provides comments for the sample table:

COMMENT ON TABLE mytable IS

 ‘Oracle 11g Study Guide Example Table’;

Comment created.

COMMENT ON COLUMN mytable.column_1 is

 ‘First column in MYTABLE’;

Comment created.

You can query the table and column information from the Oracle dictionary
using the following views: USER_TABLES, ALL_TABLES, USER_TAB_COLUMNS,
and ALL_TAB_COLUMNS.

Creating a Table from Another Table
You can create a table using a query based on one or more existing tables or views. The
column datatype and width will be determined by the query result. A table created in this
fashion can select all the columns from another table (you can use *) or a subset of columns
or expressions and functions applied on columns (these are called derived columns). The
syntax for creating a table using an existing table is as follows:

CREATE TABLE <table characteristics> AS SELECT <query>

95127c06.indd 308 2/18/09 6:45:49 AM

Creating Tables 309

This syntax is generally known as CTAS (the abbreviated form of CREATE TABLE AS
SELECT). The table characteristics include the new table name and its storage properties.

For example, suppose you need to duplicate the structure and data of the EMP table in the
EMPLOYEES table. You can use CTAS, like this:

CREATE TABLE employees

AS SELECT * FROM emp;

Table created.

You can have complex query statements in the CREATE TABLE statement. The table is cre-
ated with no rows if the query returned no rows. If you just want to copy the structure of
the table, make sure the query returns no rows:

CREATE TABLE Y AS SELECT * FROM X WHERE 1 = 2;

You can provide column alias names to have different column names in the newly created
table. The following example shows a table structure, displays the data, and then creates a
new table with the data and displays it:

DESCRIBE city

 Name Null? Type

 ------------------- -------- -------------

 CNT_CODE NOT NULL NUMBER(4)

 ST_CODE NOT NULL VARCHAR2(2)

 CTY_CODE NOT NULL NUMBER(4)

 CTY_NAME VARCHAR2(20)

 POPULATION NUMBER

SELECT COUNT(*) FROM city;

 COUNT(*)

 3

CREATE TABLE new_city AS

SELECT cty_code CITY_CODE, cty_name CITY_NAME

FROM city;

Table created.

SELECT COUNT(*) FROM new_city;

95127c06.indd 309 2/18/09 6:45:49 AM

310 Chapter 6 N Creating Tables and Constraints

 COUNT(*)

 3

DESC new_city

 Name Null? Type

 ------------------- -------- -------------

 CITY_CODE NOT NULL NUMBER(4)

 CITY_NAME VARCHAR2(20)

The CREATE TABLE … AS SELECT … statement will not work if the query
refers to columns of the LONG datatype.

When you create a table using the subquery, only the NOT NULL constraints
associated with the columns are copied to the new table. Other constraints and
column default definitions are not copied. This almost certainly will be an
OCA certification exam question.

Modifying Tables
After you’ve created a table, you might want to modify it for several reasons. You can modify
a table to change its column definition or default values, add a new column, rename a col-
umn, or drop an existing column. You can also drop and rename tables.

You might also modify a table if you need to change or add constraint definitions. You
can make a table read-only so that no modifications are possible on the data in the table.
The ALTER TABLE statement is used to change table definitions. Similar to the CREATE TABLE
statement, the ALTER TABLE statement has several options. In the following sections, I will
concentrate on the options that are pertinent to the OCA certification exam.

Adding Columns
Sometimes it is necessary to add a column to an existing table because there may be
enhancements made to the application or because the developer just did not plan it com-
pletely well. To add a column to an existing table, you don’t need to drop and re-create the
table. Using the ALTER TABLE statement, you can easily add a column to the table. All col-
umns added to the table using the ALTER TABLE ADD statement are added to the end of the
table definition. Here is the syntax to add a new column to an existing table:

ALTER TABLE [<schema>.]<table_name> ADD <column_definitions>;

95127c06.indd 310 2/18/09 6:45:49 AM

Modifying Tables 311

When a new column is added, it is always at the bottom of the table. For the existing
rows, the new column value will be NULL.

Let’s add a new column, ORDER_DATE, to the ORDERS table. Notice that the column
is added to the end of the table definition. You cannot insert a new column in between
other columns in a table. If you have such a requirement, the table has to be dropped and
re-created.

DESCRIBE orders

 Name Null? Type

 ------------------- -------- -------------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(10)

SELECT * FROM orders;

ORDER_NUMBER STATUS

------------ ----------

 4004 PENDING

 5005 COMPLETED

ALTER TABLE orders ADD order_date DATE;

Table altered.

DESC orders

 Name Null? Type

 ------------------- -------- ---------------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(10)

 ORDER_DATE DATE

SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_DAT

------------ ---------- ---------

 4004 PENDING

 5005 COMPLETED

If you are adding more than one column, the column definitions should be enclosed in
parentheses and separated by commas. If you specify a DEFAULT value for a newly added

95127c06.indd 311 2/18/09 6:45:49 AM

312 Chapter 6 N Creating Tables and Constraints

column, all the rows in the table will have the default value automatically assigned. The fol-
lowing example adds two more columns to the ORDERS table:

ALTER TABLE orders ADD

 (quantity NUMBER (13,3),

 update_dt DATE DEFAULT SYSDATE);

Table altered.

SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_DAT QUANTITY UPDATE_DT

------------ ---------- --------- ---------- ---------

 4004 PENDING 23-MAR-02

 5005 COMPLETED 23-MAR-02

When adding a new column, you cannot specify the NOT NULL constraint if the table
already has rows. To add a NOT NULL column, you need to follow three steps:

1. Modify the table to add the column.

2. Update the column with values for all the existing rows.

3. Add a NOT NULL constraint.

You may add a NOT NULL constraint with a DEFAULT clause, even if the table has rows.
Here is an example:

ALTER TABLE orders

 ADD updated_by VARCHAR2 (30) NOT NULL;

ERROR at line 1:

ORA-01758: table must be empty to add mandatory

(NOT NULL) column

ALTER TABLE orders ADD updated_by VARCHAR2 (30)

 DEFAULT ‘JOHN’ NOT NULL;

Table altered.

In Oracle 11g, when you add a column with the NOT NULL constraint and the DEFAULT
value, Oracle 11g does not update all the existing rows in the table with the default value.
Oracle 11g simply updates the dictionary and gets you the value from the dictionary when
you query the newly added column.

95127c06.indd 312 2/18/09 6:45:49 AM

Modifying Tables 313

Modifying Columns
On many occasions, you may be required to change the table definition. The common defi-
nition changes are to add or remove a NOT NULL constraint to/from a column, changing the
datatype of a column or changing the length of the column. The syntax to modify an existing
column in a table is as follows:

ALTER TABLE [<schema>.]<table_name>

MODIFY <column_name> <new_attributes>;

If you omit any of the parts of the column definition (datatype, default value, or column
constraint), the omitted parts remain unchanged. If you are modifying more than one column
at a time, enclose the column definitions in parentheses. For example, to modify the ORDERS
table, increasing the STATUS column to 15 and reducing the QUANTITY column to 10,3, do this:

ALTER TABLE orders MODIFY (quantity NUMBER (10,3),

 status VARCHAR2 (15));

You can add or drop constraints in the column and modify the DEFAULT values for the
column. The DEFAULT value included using the MODIFY clause affects only the new rows
inserted to the table; the existing rows with NULL column values are not affected. To remove
the DEFAULT value for a column, redefine the DEFAULT clause with a NULL value. For exam-
ple, the following statement removes the default SYSDATE value from the UPDATE_DT column
of the ORDERS table:

ALTER TABLE orders

MODIFY update_dt DEFAULT NULL;

These are the rules for modifying column definitions:

You can increase the length of the character column and precision of the numeric col-ÛN

umn. If your table has many rows, increasing the length of a CHAR column will require
a lot of resources, because the column data for all the rows needs to blank-padded with
the additional length.

You can decrease the length of a ÛN VARCHAR2 column and reduce the precision or increase
the scale of a numeric column if all the data in the column fits the new length.

You can decrease the length of a nonempty ÛN CHAR column if the parameter BLANK_
TRIMMING is set to TRUE.

The column values must be ÛN NULL to change the column’s datatype. If you do not reduce
the length, you can change the datatype from CHAR to VARCHAR2, or vice versa, even if
the column is not empty.

95127c06.indd 313 2/18/09 6:45:50 AM

314 Chapter 6 N Creating Tables and Constraints

Renaming Columns
Renaming column is not a common task, but sometimes you may have to change the name
of a column because there was a typo in the script or the developers decided to store differ-
ent data in the column. Renaming a column does not affect its data or datatype. The syn-
tax to rename an existing column in a table is as follows:

ALTER TABLE [<schema>.]<table_name>

RENAME COLUMN <column_name> TO <new_name>;

When renaming a column, the column name must not be the same as an existing column
in the table. The following example renames the DATA_VALUE column of the SAMPLE_DATA
table to SAMPLE_VALUE:

DESCRIBE sample_data

 Name Null? Type

 --- -------- ---------------

 DATA_VALUE VARCHAR2(20)

 DATA_TYPE VARCHAR2(10)

ALTER TABLE sample_data

RENAME COLUMN data_value to sample_value;

Table altered.

DESCRIBE sample_data

 Name Null? Type

 --- -------- ---------------

 SAMPLE_VALUE VARCHAR2(20)

 DATA_TYPE VARCHAR2(10)

Dropping Columns
Similar to renaming columns, dropping columns is not a common activity for the DBA, but
you should know how to drop a column in case you need to do it. You can drop a column
that is not used, or you can mark the column as not used and drop it later. Here is the syn-
tax for dropping a column:

ALTER TABLE [<schema>.]<table_name>

DROP {COLUMN <column_name> | (<column_names>)}

[CASCADE CONSTRAINTS]

95127c06.indd 314 2/18/09 6:45:50 AM

Modifying Tables 315

DROP COLUMN drops the column name specified from the table. You can provide more
than one column name separated by commas inside parentheses. The indexes and con-
straints on the column are also dropped. You must specify CASCADE CONSTRAINTS if the
dropped column is part of a multicolumn constraint; the constraint will be dropped.

The syntax for marking a column as unused is as follows:

ALTER TABLE [<schema>.]<table_name>

SET UNUSED {COLUMN <column_name> | (<column_names>)}

[CASCADE CONSTRAINTS]

You usually mark a column as unused instead of dropping it immediately, especially at
peak hours, if the table is very large, because it takes a lot of resources. In such cases, you
would mark the column as unused and drop it later. Once the column is marked as unused,
you will not see it as part of the table definition. Let’s mark the UPDATE_DT column in the
ORDERS table as unused:

ALTER TABLE orders SET UNUSED COLUMN update_dt;

Table altered.

DESCRIBE orders

 Name Null? Type

 ------------------- -------- -------------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(15)

 ORDER_DATE DATE

 QUANTITY NUMBER(10,3)

Here is the syntax for dropping a column already marked as unused:

ALTER TABLE [<schema>.]<table_name>

DROP {UNUSED COLUMNS | COLUMNS CONTINUE}

Use the COLUMNS CONTINUE clause to continue a DROP operation that was previously
interrupted. The DROP UNUSED COLUMNS clause will drop all the columns that are marked as
unused. You cannot selectively drop column names after marking them as unused. The fol-
lowing example clears data from the UPDATE_DT column in the ORDERS table:

ALTER TABLE orders DROP UNUSED COLUMNS;

95127c06.indd 315 2/18/09 6:45:50 AM

316 Chapter 6 N Creating Tables and Constraints

The data dictionary views DBA_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS,
and USER_UNUSED_COL_TABS provide the names of tables in which you have
columns marked as unused.

Dropping Tables
When application designs change, some tables become orphaned or unused. You can use
the DROP TABLE statement to drop an existing table. The syntax of the DROP TABLE state-
ment is as follows:

DROP TABLE [schema.]table_name [CASCADE CONSTRAINTS]

When you drop a table, you remove the data and definition of the table. The indexes,
constraints, triggers, and privileges on the table are also dropped. Once you drop a table,
you cannot undo the action.

Oracle does not drop the views, materialized views, or other stored programs that refer-
ence the table, but it marks them as invalid. You must specify the CASCADE CONSTRAINTS
clause if there are referential integrity constraints referring to the primary key or unique
key of this table. Here’s how to drop the table TEST owned by the user SCOTT:

DROP TABLE scott.test;

A method for emptying a table of all rows is to use the TRUNCATE statement. This is dif-
ferent from dropping and re-creating a table, because TRUNCATE does not invalidate depen-
dent objects or drop indexes, triggers, or referential integrity constraints. See Chapter 5 for
more information about using TRUNCATE.

Renaming Tables
Tables and other database schema objects can be renamed in Oracle. The RENAME statement
is used to rename a table and other database objects, such as views, private synonyms, or
sequences. The syntax for the RENAME statement is as follows:

RENAME old_name TO new_name;

Here, old_name and new_name are the names of a table, view, private synonym, or sequence.
When you rename a table, Oracle automatically transfers integrity constraints, indexes,

and grants on the old table to the new table. Oracle invalidates all objects that depend on
the renamed table, such as views, synonyms, stored procedures, and functions.

The following example renames the ORDERS table to PURCHASE_ORDERS:

RENAME orders TO purchase_orders;

Table renamed.

95127c06.indd 316 2/18/09 6:45:50 AM

Modifying Tables 317

DESCRIBE purchase_orders

 Name Null? Type

 ------------------ -------- ---------------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(15)

 ORDER_DATE DATE

 QUANTITY NUMBER(10,3)

You can use the RENAME statement to rename only the objects you own.
You cannot rename an object owned by another user.

You can also use the RENAME TO clause of the ALTER TABLE statement to rename a table.
Using this technique, you can qualify the table name with the schema. You must use the
ALTER TABLE statement to rename a table owned by another user (and you need the ALTER
privilege on the table or the ALTER ANY TABLE system privilege). Here is an example:

ALTER TABLE scott.purchase_orders

RENAME TO orders;

Table altered.

Making Tables Read-Only
Often the DBA gets requests from users to make a table read-only. Many configuration
tables can be made read-only after the initial application setup is completed so that acciden-
tal changes can be avoided. To place a table in read-only mode, use the READ ONLY clause of
the ALTER TABLE statement.

The following statement makes the PRODUCTS table read-only:

ALTER TABLE products READ ONLY;

Table altered.

Once the table is marked as read-only, any operation on the table that changes its data is
not allowed. Many DDL operations on the table are allowed. The following operations on
the read-only table are not allowed:

INSERTÛN , UPDATE, DELETE, or MERGE statements

The ÛN TRUNCATE operation

Adding, modifying, renaming, or dropping a columnÛN

Flashing back a tableÛN

SELECT FOR UPDATEÛN

95127c06.indd 317 2/18/09 6:45:50 AM

318 Chapter 6 N Creating Tables and Constraints

The following operations are allowed on the read-only table:

SELECTÛN

Creating or modifying indexesÛN

Creating or modifying constraintsÛN

Changing the storage characteristics of the tableÛN

Renaming the tableÛN

Dropping the tableÛN

The following examples demonstrate some operations that are not allowed on a read-
only table:

TRUNCATE TABLE products;

TRUNCATE TABLE products

 *

ERROR at line 1:

ORA-12081: update operation not allowed on table “HR”.”PRODUCTS”

DELETE FROM products;

DELETE FROM products

 *

ERROR at line 1:

ORA-12081: update operation not allowed on table “HR”.”PRODUCTS”

INSERT INTO products VALUES (200, ‘TESTING’, ‘X1’,0);

INSERT INTO products VALUES (200, ‘TESTING’, ‘X1’,0)

 *

ERROR at line 1:

ORA-12081: update operation not allowed on table “HR”.”PRODUCTS”

To change a read-only table to read-write, use the READ WRITE clause of the ALTER TABLE
statement. The following example makes the PRODUCTS table writable:
ALTER TABLE products READ WRITE;

Table altered.

95127c06.indd 318 2/18/09 6:45:50 AM

Managing Constraints 319

Managing Constraints
Constraints are created in the database to enforce a business rule in the database and to
specify relationships between various tables. You can also enforce business rules using
database triggers and application code. Integrity constraints prevent bad data from being
entered into the database. Oracle supports five types of integrity constraints, as shown in
Table 6.2.

Ta b le 6 . 2 Integrity Constraints

Constraint Description

NOT NULL Prevents NULL values from being entered into the column. These types of
constraints are defined on a single column. By default, Oracle allows NULL
values in any column.

CHECK Checks whether the condition specified in the constraint is satisfied.

UNIQUE Ensures that there are no duplicate values for the column(s) specified.
Every value or set of values is unique within the table.

PRIMARY KEY Uniquely identifies each row of the table and prevents NULL values. A table
can have only one primary key constraint.

FOREIGN KEY Establishes a parent-child relationship between tables by using common
columns. The foreign key defined on a table refers to the primary key or
unique key of another table.

Creating Constraints
Constraints are created using the CREATE TABLE or ALTER TABLE statements. You can specify
the constraint definition at the column level if the constraint is defined on a single column.
Multiple-column constraints must be defined at the table level; the columns should be specified
in parentheses and separated by commas.

If you do not provide a name for the constraints, Oracle assigns a system-generated unique
name that begins with SYS_. A name is provided for the constraint by specifying the keyword
CONSTRAINT followed by the constraint name.

95127c06.indd 319 2/18/09 6:45:50 AM

320 Chapter 6 N Creating Tables and Constraints

You should not rely on system-generated names for constraints. If you
want to compare table characteristics, such as between production and
test databases, the inconsistent system-generated names will make this
comparison difficult.

In the following sections, I will define the rules for each constraint type and provide
examples of creating constraints.

NOT NULL Constraint
A NOT NULL constraint is defined at the column level; it cannot be defined at the table level.
The syntax for a NOT NULL constraint is as follows:

[CONSTRAINT <constraint name>] [NOT] NULL

The following example creates a table with two columns that have NOT NULL constraints:

CREATE TABLE orders (

 order_num NUMBER (4) CONSTRAINT nn_order_num NOT NULL,

 order_date DATE NOT NULL,

 product_id NUMBER (6))

The example provides a name for the constraint on the ORDER_NUM column. Since no
name is specified for the constraint on the ORDER_DATE column, it will get a system-gener-
ated name.

Use ALTER TABLE MODIFY to add or remove a NOT NULL constraint on the columns of
an existing table. The following examples remove a constraint and add a constraint to an
existing table:

ALTER TABLE orders MODIFY order_date NULL;

ALTER TABLE orders MODIFY product_id NOT NULL;

Check Constraints
You can define a check constraint at the column level or table level. For both the column
and table levels, the syntax is as follows:

[CONSTRAINT <constraint name>] CHECK (<condition>)

The condition specified in the CHECK clause should evaluate to a Boolean result and can
refer to values in other columns of the same row; the condition cannot use queries. Envi-
ronment functions (such as SYSDATE, USER, USERENV, and UID) and pseudocolumns (such as
ROWNUM, CURRVAL, NEXTVAL, and LEVEL) cannot be used to evaluate the check condition. One
column can have more than one check constraint defined.

95127c06.indd 320 2/18/09 6:45:50 AM

Managing Constraints 321

The following are examples of check constraints defined at the table level:

CREATE TABLE bonus (

 emp_id VARCHAR2 (40) NOT NULL,

 salary NUMBER (9,2),

 bonus NUMBER (9,2),

CONSTRAINT ck_bonus check (bonus > 0));

ALTER TABLE bonus

ADD CONSTRAINT ck_bonus2 CHECK (bonus < salary);

The check constraint can be defined at the column level if the constraint refers to only
that column.

You cannot use the ALTER TABLE MODIFY clause to add or modify check constraints (only
NOT NULL constraints can be modified this way). Column-level constraints can be defined
when using the CREATE TABLE statement or when using the ALTER TABLE statement with the
ADD clause. Here is an example:

ALTER TABLE orders ADD cust_id number (5)

CONSTRAINT ck_cust_id CHECK (cust_id > 0);

You can use the check constraint to implement a NOT NULL constraint also. This is espe-
cially useful if you need to disallow NULL values in multiple columns together. For example,
the following constraint definition for the BONUS table allows a NULL value for the BONUS and
SALARY columns if both column values are NULL, or else both columns should have a valid
non-NULL value.

ALTER TABLE bonus ADD CONSTRAINT ck_sal_bonus

CHECK ((bonus IS NULL AND salary IS NULL) OR

 (bonus IS NOT NULL AND salary IS NOT NULL));

Unique Constraints
A unique constraint protects one or more columns in a table, ensuring that no two rows
contain duplicate data in the protected columns. Unique constraints can be defined at the
column level for single-column unique keys. Here is the column-level syntax:

[CONSTRAINT <constraint name>] UNIQUE

For a multiple-column unique key (a composite key; the maximum number of columns
specified can be 32), the constraint should be defined at the table level. Here is the table-
level syntax:

[CONSTRAINT <constraint name>]

UNIQUE (<column>, <column>, …)

95127c06.indd 321 2/18/09 6:45:50 AM

322 Chapter 6 N Creating Tables and Constraints

Oracle creates a unique index on the unique key columns to enforce uniqueness. If a
unique index or nonunique index already exists on the table with the same column-order
prefix, Oracle uses the existing index. To use the existing nonunique index for enforcing
uniqueness, there must not be any duplicate values in the unique key columns.

Unique constraints allow NULL values in the constraint columns. The following example
defines a unique constraint with two columns:

ALTER TABLE employee

ADD CONSTRAINT uq_emp_id UNIQUE (dept, emp_id);

The next example adds a new column to the EMP table and creates a unique key at the
column level:

ALTER TABLE employee ADD

ssn VARCHAR2 (11) CONSTRAINT uq_ssn unique;

Primary Key Constraints
All characteristics of the unique key are applicable to the primary key constraint, except
that NULL values are not allowed in the primary key columns. A table can have only one pri-
mary key. The column-level syntax is as follows:

[CONSTRAINT <constraint name>] PRIMARY KEY

Here is the table-level syntax:

[CONSTRAINT <constraint name>]

PRIMARY KEY (<column>, <column>, …)

Oracle creates a unique index and NOT NULL constraints for each column in the key. The
following example defines a primary key when creating the table:

CREATE TABLE employee (

 dept_no VARCHAR2 (2),

 emp_id NUMBER (4),

 name VARCHAR2 (20) NOT NULL,

 ssn VARCHAR2 (11),

 salary NUMBER (9,2) CHECK (salary > 0),

CONSTRAINT pk_employee primary key (dept_no, emp_id),

CONSTRAINT uq_ssn unique (ssn))

To add a primary key to an existing table, use the ALTER TABLE statement. Here is an
example:

ALTER TABLE employee

ADD CONSTRAINT pk_employee PRIMARY KEY (dept_no, emp_id);

95127c06.indd 322 2/18/09 6:45:50 AM

Managing Constraints 323

Indexes created to enforce unique keys and primary keys can be managed in the same
way as any other index. However, these indexes cannot be dropped explicitly using the
DROP INDEX statement.

Foreign Key Constraints
A foreign key constraint protects one or more columns in a table by ensuring that for each
non-NULL value there is data available elsewhere in the database with a primary or unique
key. The foreign key is the column or columns in the table (child table) where the constraint
is created. The referenced key is the primary key or unique key column or columns in the
table (parent table) that is referenced by the constraint. The column datatypes in the parent
table and the child table should match.

You can define a foreign key constraint at the column level or table level. Here is the syn-
tax for the column-level constraint:

[CONSTRAINT <constraint name>]

REFERENCES [<schema>.]<table> [(<column>, <column>, …]

[ON DELETE {CASCADE | SET NULL}]

Multiple-column foreign keys should be defined at the table level. Here is the table-level
syntax:

[CONSTRAINT <constraint name>]

FOREIGN KEY (<column>, <column>, …)

REFERENCES [<schema>.]<table> [(<column>, <column>, …]

[ON DELETE {CASCADE | SET NULL}]

The foreign key column(s) and referenced key column(s) can be in the same table (self-
referential integrity constraint). NULL values are allowed in the foreign key columns.

The following is an example of creating a foreign key constraint on the COUNTRY_CODE and
STATE_CODE columns of the CITY table, which refers to the COUNTRY_CODE and STATE_CODE
columns of the STATE table (the composite primary key of the STATE table).

ALTER TABLE city ADD CONSTRAINT fk_state

FOREIGN KEY (country_code, state_code)

REFERENCES state (country_code, state_code);

You can omit the column listing of the referenced table if referring to the primary key of
the table. For example, if the COUNTRY_CODE and STATE_CODE columns are the primary key
of the STATE table, the previous statement could be written like this:

ALTER TABLE city ADD CONSTRAINT fk_state

FOREIGN KEY (country_code, state_code)

REFERENCES state;

95127c06.indd 323 2/18/09 6:45:51 AM

324 Chapter 6 N Creating Tables and Constraints

The ON DELETE clause specifies the action to be taken when a row in the parent table is
deleted and child rows exist for the deleted parent primary key. You can delete the child
rows (CASCADE) or set the foreign key column values to NULL (SET NULL). If you omit this
clause, Oracle will not allow you to delete from the parent table if child records exist.
You must delete the child rows first and then delete the parent row. The following are two
examples of specifying the delete action in a foreign key:

ALTER TABLE city ADD CONSTRAINT fk_state

 FOREIGN KEY (country_code, state_code)

 REFERENCES state (country_code, state_code)

 ON DELETE CASCADE;

ALTER TABLE city ADD CONSTRAINT fk_state

 FOREIGN KEY (country_code, state_code)

 REFERENCES state (country_code, state_code)

 ON DELETE SET NULL;

You can query the constraint information from the Oracle dictionary using
the following views: USER_CONSTRAINTS, ALL_CONSTRAINTS, USER_CONS_
COLUMNS, and ALL_CONS_COLUMNS.

Disabled Constraints
When a constraint is created, it is enabled automatically. You can create a disabled con-
straint by specifying the DISABLE keyword after the constraint definition. Here is an
example:

ALTER TABLE city ADD CONSTRAINT fk_state

 FOREIGN KEY (country_code, state_code)

 REFERENCES state (country_code, state_code) DISABLE;

ALTER TABLE bonus

ADD CONSTRAINT ck_bonus CHECK (bonus > 0) DISABLE;

Dropping Constraints
Dropping a constraint defined on a table may be necessary if you find out that business data
does not always meet strict data validations using constraints. In such instances it may be

95127c06.indd 324 2/18/09 6:45:51 AM

Managing Constraints 325

necessary to drop a constraint. Constraints are dropped using the ALTER TABLE statement.
Any constraint can be dropped by specifying the constraint name, as in this example:

ALTER TABLE bonus DROP CONSTRAINT ck_bonus2;

To drop the NOT NULL constraint, use the ALTER TABLE MODIFY statement, like this:

ALTER TABLE employee MODIFY employee_name NULL;

To drop unique key constraints with referenced foreign keys, specify the CASCADE clause
to drop the foreign key constraints and the unique constraint. Specify the unique key
columns(s). Here is an example:

ALTER TABLE employee DROP UNIQUE (emp_id) CASCADE;

To drop primary key constraints with referenced foreign key constraints, use the
CASCADE clause to drop all foreign key constraints and then the primary key. Here is an
example:

ALTER TABLE bonus DROP PRIMARY KEY CASCADE;

Enabling and Disabling Constraints
When you create a constraint, the constraint is automatically enabled (unless you specify
the DISABLE clause). You can disable a constraint by using the DISABLE clause of the ALTER
TABLE statement. When you disable unique or primary key constraints, Oracle drops the
associated unique index. When you reenable these constraints, Oracle builds the index.

You can disable any constraint by specifying the clause DISABLE CONSTRAINT followed
by the constraint name. Specifying UNIQUE and the column name(s) can disable unique keys,
and specifying PRIMARY KEY can disable the table’s primary key. You cannot disable a pri-
mary key or unique key if foreign keys that are enabled reference it. To disable all the ref-
erenced foreign keys and the primary or unique key, specify CASCADE. The following three
examples demonstrate disabling constraints:

ALTER TABLE bonus DISABLE CONSTRAINT ck_bonus;

ALTER TABLE employee DISABLE CONSTRAINT uq_employee;

ALTER TABLE state DISABLE PRIMARY KEY CASCADE;

Using the ENABLE clause of the ALTER TABLE statement enables a constraint. When you
enable a disabled unique or primary key, Oracle creates an index if an index with the

95127c06.indd 325 2/18/09 6:45:51 AM

326 Chapter 6 N Creating Tables and Constraints

unique or primary key columns does not already exist. You can specify storage for the unique
or primary key while enabling these constraints, as in this example:

ALTER TABLE state ENABLE PRIMARY KEY USING INDEX

TABLESPACE user_INDEX STORAGE (INITIAL 2M NEXT 2M);

Validated Constraints
You have seen how to enable and disable a constraint. ENABLE and DISABLE affect only
future data that will be added or modified in the table. In contrast, the VALIDATE and
NOVALIDATE keywords in the ALTER TABLE statement act on the existing data. Therefore, a
constraint can have four states, as shown in Table 6.3.

Ta b le 6 . 3 Constraints

Constraint Description

ENABLE VALIDATE This is the default for the ENABLE clause. The existing data
in the table is validated to verify that it conforms to the con-
straint.

ENABLE NOVALIDATE This does not validate the existing data but enables the con-
straint for future constraint checking.

DISABLE VALIDATE The constraint is disabled (any index used to enforce the
constraint is also dropped), but the constraint is kept valid.
No DML operation is allowed on the table because future
changes cannot be verified.

DISABLE NOVALIDATE This is the default for the DISABLE clause. The constraint is
disabled, and no checks are done on future or existing data.

Suppose you have a large data-warehouse table, where bulk data loads are performed
every night. The primary key of this table is enforced using a nonunique index because
Oracle does not drop the nonunique index when disabling the constraint. When you do
batch loads, you can disable the primary key constraint as follows:

ALTER TABLE wh01 MODIFY CONSTRAINT pk_wh01

DISABLE NOVALIDATE;

After the batch load completes, you can enable the primary key like this:

ALTER TABLE wh01 MODIFY CONSTRAINT pk_wh01

ENABLE NOVALIDATE;

95127c06.indd 326 2/18/09 6:45:51 AM

Managing Constraints 327

Oracle does not allow any INSERT, UPDATE, or DELETE operations on a table
with a DISABLE VALIDATE constraint. This is a quick way to make a table
read-only in releases prior to Oracle 11g. In Oracle 11g, you can use the
READ ONLY clause of the ALTER TABLE statement to make a table read-only.

Deferring Constraint Checks
By default, Oracle checks whether the data conforms to the constraint when the statement
is executed. Oracle allows you to change this behavior if the constraint is created using the
DEFERRABLE clause (NOT DEFERRABLE is the default). It specifies that the transaction can set
the constraint-checking behavior.

INITIALLY IMMEDIATE specifies that the constraint should be checked for conformance
at the end of each SQL statement (this is the default). INITIALLY DEFERRED specifies that the
constraint should be checked for conformance at the end of the transaction.

The DEFERRABLE status of a constraint cannot be changed using ALTER TABLE MODIFY
CONSTRAINT; you must drop and re-create the constraint. You can change the INITIALLY
{DEFERRED|IMMEDIATE} clause using ALTER TABLE.

If the constraint is DEFERRABLE, you can set the behavior by using the SET CONSTRAINTS
command or by using the ALTER SESSION SET CONSTRAINT command. You can enable or
disable deferred constraint checking by listing all the constraints or by specifying the ALL
keyword. The SET CONSTRAINTS command is used to set the constraint-checking behavior
for the current transaction, and the ALTER SESSION command is used to set the constraint-
checking behavior for the current session.

As an example, let’s create a primary key constraint on the CUSTOMER table and a foreign
key constraint on the ORDERS table as DEFERRABLE. Although the constraints are created as
DEFERRABLE, they are not deferred because of the INITIALLY IMMEDIATE clause.

ALTER TABLE customer ADD CONSTRAINT pk_cust_id

PRIMARY KEY (cust_id) DEFERRABLE

INITIALLY IMMEDIATE;

ALTER TABLE orders ADD CONSTRAINT fk_cust_id

FOREIGN KEY (cust_id)

REFERENCES customer (cust_id)

ON DELETE CASCADE DEFERRABLE;

If you try to add a row to the ORDERS table with a CUST_ID value that is not available in
the CUSTOMER table, Oracle returns an error immediately, even though you plan to add the
CUSTOMER row soon. Since the constraints are verified for conformance as each SQL state-
ment is executed, you must insert the row in the CUSTOMER table first and then add it to the

95127c06.indd 327 2/18/09 6:45:51 AM

328 Chapter 6 N Creating Tables and Constraints

ORDERS table. Since the constraints are defined as DEFERRABLE, you can change this behavior
by using this command:

SET CONSTRAINTS ALL DEFERRED;

Now you can insert rows to these tables in any order. Oracle checks the constraint con-
formance only at commit time.

If you want deferred constraint checking as the default, create or modify the constraint
by using INITIALLY DEFERRED, as in this example:

ALTER TABLE customer MODIFY CONSTRAINT pk_cust_id

INITIALLY DEFERRED;

Creating Tables and Constraints for an application

Here’s a scenario you may find yourself in one day. You have been provided the following
information to create tables and constraints for an application developed in your company
to maintain geographic information:

The ÛN COUNTRY table stores the country name and country code. The country code
uniquely identifies each country. The country name must be present.

The ÛN STATE table stores the state code, name, and its capital. The country code in this
table refers to a valid entry in the COUNTRY table. The state name must be present.
The state code and country code together uniquely identify each state.

The ÛN CITY table stores the city code, name, and population. The city code uniquely
identifies each city. The state and country where the city belongs are also stored in
the table, which refers to the STATE table. The city name must be present.

Each table should have a column identifying the created-on timestamp, with the system ÛN

date as the default.

The user should not be able to delete from the ÛN COUNTRY table if there are records in
the STATE table for that country.

The records in the ÛN CITY table should be automatically removed when their corre-
sponding state is removed from the STATE table.

All foreign and primary key constraints should be provided with meaningful names.ÛN

Let’s start by creating the COUNTRY table:

SQL> CREATE TABLE country (

 2 code NUMBER (4) PRIMARY KEY,

 3 name VARCHAR2 (40));

Table created.

SQL>

95127c06.indd 328 2/18/09 6:45:51 AM

Managing Constraints 329

Oops—CODE and NAME are not very descriptive column names, and you also have other
columns in tables to store codes and names. Let’s rename the columns to COUNTRY_CODE
and COUNTRY_NAME:

SQL> ALTER TABLE country RENAME COLUMN

 2 code TO country_code;

Table altered.

SQL> ALTER TABLE country RENAME COLUMN

 2 name TO country_name;

Table altered.

SQL>

You also forgot to provide a name for the primary key constraint. Since the table was
created with a system-generated name, you have to find the name first to rename the
constraint:

SQL> SELECT constraint_name, constraint_type

 2 FROM user_constraints

 3 WHERE table_name = ‘COUNTRY’;

CONSTRAINT_NAME C

------------------------------ -

SYS_C0010893 P

SQL> ALTER TABLE country RENAME CONSTRAINT SYS_C0010893 TO pk_country;

Table altered.

SQL>

Oops again—the table should include a column to store the created-on date, and the
country name cannot be NULL.

Before you continue, realize that if you have a good logical and physical design before
you start creating tables, you will not have any of these problems. This is not the typical
or recommended approach to creating tables for the application. The objective here is to
demonstrate the various options available.

SQL> ALTER TABLE country MODIFY country_name NOT NULL

 2 ADD created DATE DEFAULT SYSDATE;

Table altered.

SQL>

95127c06.indd 329 2/18/09 6:45:51 AM

330 Chapter 6 N Creating Tables and Constraints

Review the table created:

SQL> DESCRIBE country

 Name Null? Type

 ------------------ -------- ------------

 COUNTRY_CODE NOT NULL NUMBER(4)

 COUNTRY_NAME NOT NULL VARCHAR2(40)

 CREATED DATE

SQL>

Let’s create the STATE table. Notice that multiple column constraints can be defined only
at the table level.

SQL> CREATE TABLE state (

 2 state_code VARCHAR2 (3),

 3 state_name VARCHAR2 (40) NOT NULL,

 4 country_code NUMBER (4) REFERENCES country,

 5 capital_city VARCHAR2 (40),

 6 created DATE DEFAULT SYSDATE,

 7 CONSTRAINT pk_state PRIMARY KEY

 8 (country_code, state_code));

Table created.

SQL>

Since you did not provide a name for the COUNTRY_CODE foreign key, Oracle assigns a
name. To rename this constraint to provide a meaningful name, you can use the ALTER
TABLE statement as you did before. To demonstrate dropping a constraint and re-creating
it using ALTER TABLE, let’s drop this constraint and then add it. So, find the constraint
name from the USER_CONSTRAINTS view to drop and re-create it:

SQL> SELECT constraint_name, constraint_type

 2 FROM user_constraints

 3 WHERE table_name = ‘STATE’;

CONSTRAINT_NAME C

------------------------------ -

SYS_C002811 C

PK_STATE P

SYS_C002813 R

SQL> ALTER TABLE state DROP CONSTRAINT SYS_C002813;

Table altered.

SQL> ALTER TABLE state ADD CONSTRAINT fk_state

 2 FOREIGN KEY (country_code) REFERENCES country;

Table altered.

SQL>

95127c06.indd 330 2/18/09 6:45:51 AM

Summary 331

Now you’ll create the CITY table. Notice the foreign key constraint is created with the ON
DELETE CASCADE clause:

SQL> CREATE TABLE city (

 2 city_code VARCHAR2 (6),

 3 city_name VARCHAR2 (40) NOT NULL,

 4 country_code NUMBER (4) NOT NULL,

 5 state_code VARCHAR2 (3) NOT NULL,

 6 population NUMBER (15),

 7 created DATE DEFAULT SYSDATE,

 8 constraint pk_city PRIMARY KEY (city_code),

 9 constraint fk_cigy FOREIGN KEY

 10 (country_code, state_code)

 11 REFERENCES state ON DELETE CASCADE);

Table created.

SQL>

Summary
Tables are the basic structure of data storage. A table comprises columns and rows, as
in a spreadsheet. Each column has a characteristic that restricts and verifies the data it
stores. You can use several datatypes to define columns. CHAR, NCHAR, VARCHAR2,
CLOB, and NCLOB are the character datatypes. BLOB, BFILE, and RAW are the binary
datatypes. DATE, TIMESTAMP, and INTERVAL are the date datatypes. TIMESTAMP
datatypes can store the time-zone information also. NUMBER, BINARY_FLOAT, and
BINARY_DOUBLE are the numeric datatypes.

You use the CREATE TABLE statement to create a new table. A table should have at least
one column, and a datatype should be assigned to the column. The table name and column
name should begin with a letter and can contain letters, numbers, or special characters.
You can create a new table from an existing table using the CREATE TABLE…AS SELECT…
(CTAS) statement. You can add, modify, or drop columns from an existing table using the
ALTER TABLE statement.

Constraints are created in the database to enforce a business rule and to specify relation-
ships between various tables. NOT NULL constraints can be defined only with a column defi-
nition and are used to prevent NULL values (an absence of data). Check constraints are used
to verify whether the data conforms to certain conditions. Primary key constraints uniquely
identify a row in the table. There can be only one primary key for a table, and the columns
in the primary key cannot have NULL values. A unique key is similar to a primary key, but
you can have more than one unique key in a table, as well as NULL values in the unique key
columns.

You can enable and disable constraints using the ALTER TABLE statement. The constraint
can be in four different states. ENABLE VALIDATE is the default state.

95127c06.indd 331 2/18/09 6:45:51 AM

332 Chapter 6 N Creating Tables and Constraints

Exam Essentials

Understand datatypes. Know each datatype’s limitations and accepted values. Concen-
trate on the new TIMESTAMP and INTERVAL datatypes.

Know how date arithmetic works. Know the resulting datatype of date arithmetic, espe-
cially between INTERVAL and DATE datatypes.

Know how to modify column characteristics. Understand how to change datatypes, add
and modify constraints, and make other modifications.

Understand the rules associated with changing datatype definitions of columns with rows
in a table. When the table is not empty, you can change a datatype only from CHAR to
VARCHAR2, and vice versa. Reducing the length is allowed only if the existing data fits in
the new length specified.

Understand the DEFAULT clause on the column definition. The DEFAULT clause provides a
value for the column if the INSERT statement omits a value for the column. When modify-
ing a column to have default values, the existing rows with NULL values in the table are not
updated with the default value.

Know the actions permitted on read-only tables Understand the various actions that are
permitted on a read-only table. Any operation that changes the data in the table is not
allowed on a read-only table. Most DDL statements are allowed, including DROP TABLE.

Understand constraints. Know the difference between a primary key and a unique key
constraint, and understand how to use a nonunique index for primary/unique keys.

Know how a constraint can be defined. You can use the CREATE TABLE or ALTER TABLE
statement to define a constraint on the table.

95127c06.indd 332 2/18/09 6:45:52 AM

Review Questions 333

Review Questions
1. The STATE table has the following constraints (the constraint status is shown in parentheses):

Primary key pk_state (enabled)

Foreign key COUNTRY table: fk_state (enabled)

Check constraint ck_cnt_code (disabled)

Check constraint ck_st_code (enabled)

NOT NULL constraint nn_st_name (enabled)

 You execute the following SQL:

CREATE TABLE STATE_NEW AS SELECT * FROM STATE;

 How many constraints will there be in the new table?

A. 0

B. 1

C. 3

D. 5

E. 2

2. Which line of code has an error?
 1 CREATE TABLE FRUITS_VEGETABLES

 2 (FRUIT_TYPE VARCHAR2,

 3 FRUIT_NAME CHAR (20),

 4 QUANTITY NUMBER);

A. 1

B. 2

C. 3

D. 4

3. Which statement successfully adds a new column, ORDER_DATE, to the table ORDERS?

A. ALTER TABLE ORDERS ADD COLUMN ORDER_DATE DATE;

B. ALTER TABLE ORDERS ADD ORDER_DATE (DATE);

C. ALTER TABLE ORDERS ADD ORDER_DATE DATE;

D. ALTER TABLE ORDERS NEW COLUMN ORDER_DATE TYPE DATE;

95127c06.indd 333 2/18/09 6:45:52 AM

334 Chapter 6 N Creating Tables and Constraints

4. What are the special characters allowed in a table name? (Choose all that apply.)

A. &

B. #

C. @

D. $

5. Consider the following statement:
CREATE TABLE MY_TABLE (

1ST_COLUMN NUMBER,

2ND_COLUMN VARCHAR2 (20));

 Which of the following best describes this statement?

A. Tables cannot be created without a defining a primary key. The table definition here is
missing the primary key.

B. The reserved word COLUMN cannot be part of the column name.

C. The column names are invalid.

D. There is no maximum length specified for the first column definition. You must always
specify a length for character and numeric columns.

E. There is no error in the statement.

6. Which dictionary view would you query to list only the tables you own?

A. ALL_TABLES

B. DBA_TABLES

C. USER_TABLES

D. USR_TABLES

7. The STATE table has six rows. You issue the following command:
ALTER TABLE STATE ADD UPDATE_DT DATE DEFAULT SYSDATE;

 Which of the following is correct?

A. A new column, UPDATE_DT, is added to the STATE table, and its contents for the exist-
ing rows are NULL.

B. Since the table is not empty, you cannot add a new column.

C. The DEFAULT value cannot be provided if the table has rows.

D. A new column, UPDATE_DT, is added to STATE and is populated with the current system
date and time.

95127c06.indd 334 2/18/09 6:45:52 AM

Review Questions 335

8. The HIRING table has the following data:

EMPNO HIREDATE

--------- ----------

1021 12-DEC-00

3400 24-JAN-01

2398 30-JUN-01

 What will be result of the following query?
SELECT hiredate+1 FROM hiring WHERE empno = 3400;

A. 4-FEB-01

B. 25-JAN-01

C. N-02

D. None of the above

9. What is the default length of a CHAR datatype column if no length is specified in the table
definition?

A. 256

B. 1,000

C. 64

D. 1

E. You must always specify a length for CHAR columns.

10. Which statement will remove the column UPDATE_DT from the table STATE?

A. ALTER TABLE STATE DROP COLUMN UPDATE_DT;

B. ALTER TABLE STATE REMOVE COLUMN UPDATE_DT;

C. DROP COLUMN UPDATE_DT FROM STATE;

D. ALTER TABLE STATE SET UNUSED COLUMN UPDATE_DT;

E. You cannot drop a column from the table.

11. Which actions are allowed on a table that is marked as read-only? (Choose all that apply.)

A. Truncating a table

B. Inserting new data

C. Dropping a constraint

D. Dropping an index

E. Dropping a table

95127c06.indd 335 2/18/09 6:45:52 AM

336 Chapter 6 N Creating Tables and Constraints

12. Which of the following statements will create a primary key for the CITY table with the col-
umns STATE_CD and CITY_CD?

A. CREATE PRIMARY KEY ON CITY (STATE_CD, CITY_CD);

B. CREATE CONSTRAINT PK_CITY PRIMARY KEY ON CITY (STATE_CD, CITY_CD);

C. ALTER TABLE CITY ADD CONSTRAINT PK_CITY PRIMARY KEY (STATE_CD, CITY_CD);

D. ALTER TABLE CITY ADD PRIMARY KEY (STATE_CD, CITY_CD);

E. ALTER TABLE CITY ADD PRIMARY KEY CONSTRAINT PK_CITY ON (STATE_CD, CITY_CD);

13. Which of the following check constraints will raise an error? (Choose all that apply.)

A. CONSTRAINT ck_gender CHECK (gender IN (‘M’, ‘F’))

B. CONSTRAINT ck_old_order CHECK (order_date > (SYSDATE - 30))

C. CONSTRAINT ck_vendor CHECK (vendor_id IN (SELECT vendor_id FROM vendors))

D. CONSTRAINT ck_profit CHECK (gross_amt > net_amt)

14. Consider the datatypes DATE, TIMESTAMP (TS), TIMESTAMP WITH LOCAL TIME
ZONE (TSLTZ), INTERVAL YEAR TO MONTH (IY2M), and INTERVAL DAY TO
SECOND (ID2S). Which operations are not allowed by Oracle Database 11g? (Choose all
that apply.)

A. DATE+DATE

B. TSLTZ–DATE

C. TSLTZ+IY2M

D. TS*5

E. ID2S/2

F. IY2M+IY2M

G. ID2S+IY2M

H. DATE–IY2M

15. A constraint is created with the DEFERRABLE INITIALLY IMMEDIATE clause. What does this
mean?

A. Constraint checking is done only at commit time.

B. Constraint checking is done after each SQL statement is executed, but you can change
this behavior by specifying SET CONSTRAINTS ALL DEFERRED.

C. Existing rows in the table are immediately checked for constraint violation.

D. The constraint is immediately checked in a DML operation, but subsequent constraint
verification is done at commit time.

16. What is the default precision for fractional seconds in a TIMESTAMP datatype column?

A. 0

B. 2

C. 6

D. 9

95127c06.indd 336 2/18/09 6:45:52 AM

Review Questions 337

17. Which datatype shows the time-zone information along with the date value?

A. TIMESTAMP

B. TIMESTAMP WITH LOCAL TIME ZONE

C. TIMESTAMP WITH TIME ZONE

D. DATE

E. Both options B and C

18. You have a large job that will load many thousands of rows into your ORDERS table. To
speed up the loading process, you want to temporarily stop enforcing the foreign key con-
straint FK_ORDERS. Which of the following statements will satisfy your requirement?

A. ALTER CONSTRAINT FK_ORDERS DISABLE;

B. ALTER TABLE ORDERS DISABLE FOREIGN KEY FK_ORDERS;

C. ALTER TABLE ORDERS DISABLE CONSTRAINT FK_ORDERS;

D. ALTER TABLE ORDERS DISABLE ALL CONSTRAINTS;

19. You are connected to the database as user JOHN. You need to rename a table named
NORDERS to NEW_ORDERS, owned by SMITH. Consider the following two statements:

1. RENAME SMITH.NORDERS TO NEW_ORDERS;

2. ALTER TABLE SMITH.NORDERS RENAME TO NEW_ORDERS;

 Which of the following is correct?

A. Statement 1 will work; statement 2 will not.

B. Statements 1 and 2 will work.

C. Statement 1 will not work; statement 2 will work.

D. Statements 1 and 2 will not work.

20. Tom executed the following SQL statement.

create table xx (n number, x long, y clob);

Choose the best option.

A. A table named xx will be created.

B. Single-character column names are not allowed in table definitions.

C. When using the LONG datatype, other LOB datatypes cannot be used in table
definitions.

D. One of the datatypes used in the column definition needs the size specified.

95127c06.indd 337 2/18/09 6:45:52 AM

338 Chapter 6 N Creating Tables and Constraints

Answers to Review Questions
1. B. When you create a table using CTAS (CREATE TABLE AS SELECT), only the NOT NULL

constraints are copied.

2. B. A VARCHAR2 datatype should always specify the maximum length of the column.

3. C. The correct statement is C. When adding only one column, the column definition doesn’t
need to be enclosed in parentheses.

4. B, D. Only three special characters ($, _, and #) are allowed in table names along with let-
ters and numbers.

5. C. All identifiers (column names, table names, and so on) must begin with an alphabetic
character. An identifier can contain alphabetic characters, numbers, and the special charac-
ters $, #, and _.

6. C. The USER_TABLES view provides information on the tables owned by the user who
has logged on that session. DBA_TABLES will have all the tables in the database, and ALL_
TABLES will have the tables owned by you as well as the tables to which you have access.
USR_TABLES is not a valid dictionary view.

7. D. When a default value is specified in the new column added, the column values for the
existing rows are populated with the default value. If you include the NOT NULL constraint
with the DEFAULT value, only the dictionary is updated.

8. B. In date arithmetic, adding 1 is equivalent to adding 24 hours. To add 6 hours to a date
value with time, add 0.25.

9. D. If you do not specify a length for a CHAR datatype column, the default length of 1 is
assumed.

10. A. You can use the DROP COLUMN clause with the ALTER TABLE statement to drop a column.
There is no separate DROP COLUMN statement or a REMOVE clause in the ALTER TABLE state-
ment. The SET UNUSED clause is used to mark the column as unused. This column can be
dropped later using the DROP UNUSED COLUMNS clause.

11. C, D, E. All actions that do not modify the data in the table are permitted on a read-only
table. The actions of creating/dropping a constraint, creating/dropping an index, and drop-
ping a table are allowed. Though truncating is a DDL action, it is not permitted since the
data in the table is affected.

12. C, D. The ALTER TABLE statement is used to create and remove constraints. CREATE PRI-
MARY KEY and CREATE CONSTRAINT are invalid statements. A constraint is always added to
an existing table using the ALTER TABLE statement.

13. B, C. Check constraints cannot reference the SYSDATE function or other tables.

95127c06.indd 338 2/18/09 6:45:52 AM

Answers to Review Questions 339

14. A, D, G. You cannot add two DATE datatypes, but you can subtract to find the difference
in days. Multiplication and division operators are permitted only on INTERVAL datatypes.
When adding or subtracting INTERVAL datatypes, both INTERVAL datatypes should be
of the same category.

15. B. DEFERRABLE specifies that the constraint can be deferred using the SET CONSTRAINTS
command. INITIALLY IMMEDIATE specifies that the constraint’s default behavior is to vali-
date the constraint for each SQL statement executed.

16. C. The default precision is 6 digits. The precision can range from 0 to 9.

17. C. Only TIMESTAMP WITH TIME ZONE stores the time-zone information as a dis-
placement from UTC. TIMESTAMP WITH LOCAL TIME ZONE adjusts the time to the
database’s time zone before storing it.

18. C. You can disable a constraint by specifying its constraint name. You may enable the
constraint after the load and avoid the constraint checking while enabling using the ALTER
TABLE ORDERS MODIFY CONSTRAINT FK_ORDERS ENABLE NOVALIDATE; command.

19. C. RENAME can be used to rename objects owned by the user. ALTER TABLE should be used
to rename tables owned by another user. To do so, you must have the ALTER privilege on the
table or the ALTER ANY TABLE privilege.

20. A. The table will be created without error. A table cannot have more than one LONG column,
but LONG and multiple LOB columns can exist together. If a LONG or LONG RAW
column is defined, another LONG or LONG RAW column cannot be used.

95127c06.indd 339 2/18/09 6:45:52 AM

95127c06.indd 340 2/18/09 6:45:52 AM

Chapter

7
Creating Schema
Objects

OraCle DatabaSe 11g: SQl
FunDamentalS I exam ObjeCtIveS
COvereD In thIS Chapter:

Creating Other Schema ObjectsÛÛ

Create simple and complex viewsÛN

Retrieve data from viewsÛN

Create, maintain, and use sequences ÛN

Create and maintain indexes ÛN

Create private and public synonymsÛN

95127c07.indd 341 2/17/09 12:33:19 PM

An Oracle database can contain far more objects than simply
tables. Chapter 6, “Creating Tables and Constraints,” gave
you an overview of all the major objects that can be in an

Oracle schema. In this chapter, you will learn in detail some of the schema objects, concen-
trating of course on the OCP certification exam objectives. You will be learning about cre-
ating and managing four types of schema objects in this chapter: views, sequences, indexes,
and synonyms. These four types of objects with tables are the most commonly used schema
objects in an Oracle Database.

A view is a logical representation of data from one or more tables or views. You can think
of a view as a query stored in the database. You can consider it a logical table, with rows and
columns. Oracle 11g allows you to create constraints on the views and restrict the operations
on views. In this chapter, I will discuss the uses of views, how they are created and managed,
and how to retrieve data from views.

You can use a sequence to generate artificial keys or serial numbers. Synonyms provide
aliases for objects. Indexes provide an access path to the table data. Several types of indexes
can be deployed to enhance the performance of queries. Views, sequences, synonyms, and
indexes are basic database objects that you’ll need to understand for the certification exam,
as well as for your database administration work.

Creating and Modifying Views
A view is a customized representation of data from one or more tables and/or views. The
tables that the view is referencing are known as base tables. A view can be considered as a
stored query or a virtual table. Only the query is stored in the Oracle data dictionary; the
actual data is not copied anywhere. This means that creating views does not take any stor-
age space other than the space in the dictionary.

Use the CREATE VIEW statement to create a view. The query that defines the view can
refer to one or more tables, to materialized views, or to other views. Let’s begin by creating
a simple view. This example will use the EMPLOYEES table of the HR schema as the base table:

SQL> DESCRIBE employees

 Name Null? Type

 -------------------------- -------- -------------

 EMPLOYEE_ID NOT NULL NUMBER(6)

 FIRST_NAME VARCHAR2(20)

95127c07.indd 342 2/17/09 12:33:19 PM

Creating and Modifying Views 343

 LAST_NAME NOT NULL VARCHAR2(25)

 EMAIL NOT NULL VARCHAR2(25)

 PHONE_NUMBER VARCHAR2(20)

 HIRE_DATE NOT NULL DATE

 JOB_ID NOT NULL VARCHAR2(10)

 SALARY NUMBER(8,2)

 COMMISSION_PCT NUMBER(2,2)

 MANAGER_ID NUMBER(6)

 DEPARTMENT_ID NUMBER(4)

The following code creates a view named ADMIN_EMPLOYEES, with the employee informa-
tion for employees who belong to the administration department (department 10). Notice
that the LAST_NAME and FIRST_NAME columns are combined to display just a NAME column.
You can rename columns by using alias names in the view definition. The datatype of the
view’s columns is derived by Oracle.

CREATE VIEW admin_employees AS

SELECT first_name || last_name NAME,

 email, job_id POSITION

FROM employees

WHERE department_id = 10;

View created.

SQL> DESCRIBE admin_employees

 Name Null? Type

 -------------------------- -------- -------------

 NAME VARCHAR2(45)

 EMAIL NOT NULL VARCHAR2(25)

 POSITION NOT NULL VARCHAR2(10)

SQL>

If you qualify the view name with a schema name, the view will be created in that
schema. You must have the CREATE ANY VIEW privilege to create a view in someone else’s
schema.

The views that actually copy data from base tables and take up storage are
called materialized views. Materialized views are commonly used in data-
warehouse environments. In earlier versions of Oracle, materialized views
were called snapshots, and they are sometimes still called snapshots.

95127c07.indd 343 2/17/09 12:33:19 PM

344 Chapter 7 N Creating Schema Objects

When numeric operations are performed using numeric datatypes in the view definition,
the resulting column will be a floating datatype, which is NUMBER without any precision
or scale. The following example uses SALARY (defined NUMBER (8,2)) and COMMISSION_PCT
(defined NUMBER (2,2)) in an arithmetic operation. The resulting column value is the
NUMBER datatype.

CREATE VIEW emp_sal_comm AS

SELECT employee_id, salary,

 salary * NVL(commission_pct,0) commission

FROM employees;

View created.

SQL> DESCRIBE emp_sal_comm

 Name Null? Type

 ---------------------- -------- ----------

 EMPLOYEE_ID NOT NULL NUMBER(6)

 SALARY NUMBER(8,2)

 COMMISSION NUMBER

SQL>

The maximum number of columns that can be defined in a view is 1,000,
just as for a table.

Using Defined Column Names
You can also specify the column names immediately following the view name to have dif-
ferent column names in the view. Let’s create another view using defined column names.
This view joins the DEPARTMENTS table to the EMPLOYEES table, uses a function on the HIRE_
DATE column, and also derives a new column named COMMISSION_AMT. Notice the ORDER BY
clause in the view definition. The derived column COMMISSION_AMT is the NUMBER data-
type, so there is no maximum length.

CREATE VIEW emp_hire

(employee_id, employee_name, department_name,

 hire_date, commission_amt)

AS SELECT employee_id, first_name || ‘ ‘ || last_name,

 department_name, TO_CHAR(hire_date,’DD-MM-YYYY’),

 salary * NVL(commission_pct, .5)

95127c07.indd 344 2/17/09 12:33:19 PM

Creating and Modifying Views 345

FROM employees JOIN departments USING (department_id)

ORDER BY first_name || ‘ ‘ || last_name;

View created.

SQL> DESC emp_hire

 Name Null? Type

 -------------------------- -------- ------------

 EMPLOYEE_ID NOT NULL NUMBER(6)

 EMPLOYEE_NAME VARCHAR2(46)

 DEPARTMENT_NAME NOT NULL VARCHAR2(30)

 HIRE_DATE VARCHAR2(10)

 COMMISSION_AMT NUMBER

SQL>

If you use an asterisk (*) to select all columns from a table in the query to
create a view and you later modify the table to add columns, you should
re-create the view to reflect the new columns. When * is used, Oracle
expands it to the column list and stores the definition in the database.

Creating Views with Errors
If the CREATE VIEW statement generates an error, the view will not be created. You can cre-
ate views with errors using the FORCE option (NO FORCE is the default). Normally, if the base
tables do not exist, the view will not be created. If, however, you need to create the view
with errors, you can do so. The view will be INVALID. Later, you can fix the error, such
as creating the underlying table, and then the view can be recompiled. Oracle recompiles
invalid views automatically when the view is accessed.

As an example, suppose you try to create a new view named TEST_VIEW on a nonexistent
base table named TEST_TABLE:

CREATE VIEW test_view AS

SELECT c1, c2 FROM test_table;

SELECT c1, c2 FROM test_table

 *

ERROR at line 2:

ORA-00942: table or view does not exist

95127c07.indd 345 2/17/09 12:33:19 PM

346 Chapter 7 N Creating Schema Objects

Since you did not use the FORCE option, the view was not created. When you use the FORCE
option, Oracle creates the view. However, trying to access the view gives an error, because
the table TEST_TABLE does not exist yet:

CREATE FORCE VIEW test_view AS

SELECT c1, c2 FROM test_table;

Warning: View created with compilation errors.

SELECT * FROM test_view;

SELECT * FROM test_view

 *

ERROR at line 1:

ORA-04063: view “HR.TEST_VIEW” has errors

Now, let’s create the TEST_TABLE and access the view:

CREATE TABLE test_table (

 c1 NUMBER (10),

 c2 VARCHAR2 (20));

Table created.

SQL> SELECT * FROM test_view;

no rows selected

SQL>

This time, it works!

The subquery that defines the view cannot contain the FOR UPDATE clause,
and the columns should not reference the CURRVAL or NEXTVAL pseudo-
column. These pseudocolumns are discussed later in the chapter in the
“Creating and Managing Sequences” section.

Creating Read-Only Views
You can create a view as read-only using the WITH READ ONLY option. Such views can be
used only in queries; no DML operations can be performed on such views. Let’s create a
read-only view:

95127c07.indd 346 2/17/09 12:33:19 PM

Creating and Modifying Views 347

CREATE VIEW all_locations

AS SELECT country_id, country_name, location_id, city

FROM locations NATURAL JOIN countries

WITH READ ONLY;

View created.

Creating Constraints on Views
Oracle 11g allows you to create constraints on views. Constraints on views are not
enforced—they are declarative constraints. To enforce constraints, you must define them on
the base tables. When creating constraints on views, you must always include the DISABLE
NOVALIDATE clause. You can define primary key, unique key, and foreign key constraints on
views. The syntax for creating constraints on views is the same as for creating constraints
on a table (see Chapter 6).

The following example creates a view with constraints. Line 2 defines a column-level
foreign key constraint, line 5 defines a column-level unique constraint, and line 7 defines a
view-level foreign key constraint. The column-level constraint is called an inline constraint,
and the view-level constraint is called an out-of-line constraint.

SQL> CREATE VIEW emp_details

 2 (employee_no CONSTRAINT fk_employee_no

 3 REFERENCES employees DISABLE NOVALIDATE,

 4 manager_no,

 5 phone_number CONSTRAINT uq_email unique

 6 DISABLE NOVALIDATE,

 7 CONSTRAINT fk_manager_no FOREIGN KEY (manager_no)

 8 REFERENCES employees DISABLE NOVALIDATE)

 9 AS SELECT employee_id, manager_id, phone_number

 10 FROM employees

 11 WHERE department_id = 40

SQL> /

View created.

SQL>

Modifying Views
To change the definition of the view, use the CREATE VIEW statement with the OR REPLACE
option. The ALTER VIEW statement can be used to compile an invalid view or to add and
drop constraints. Sometimes views become invalid when their underlying objects change.

95127c07.indd 347 2/17/09 12:33:19 PM

348 Chapter 7 N Creating Schema Objects

Changing a View’s Definition
When using the OR REPLACE option, if the view exists it will be replaced with the new defi-
nition; otherwise, a new view will be created. When you use the CREATE OR REPLACE option
instead of dropping and re-creating the view, the privileges granted on the view are pre-
served. The dependent stored programs and views become invalid if the column list in the
old view definition differs from the new view definition and the dependent object is using
the changed/dropped column.

In the ADMIN_EMPLOYEES view defined earlier, you didn’t include a space between the first
name and last name of the employee. Let’s fix that now using the OR REPLACE option:

CREATE OR REPLACE VIEW admin_employees AS

 SELECT first_name ||’ ‘|| last_name NAME,

 email, job_id

 FROM employees

 WHERE department_id = 10;

View created.

Recompiling a View
Views become invalid when the base tables are altered. Oracle automatically recompiles the
view when it is accessed, but you can explicitly recompile the view using the ALTER VIEW
statement. When the view is recompiled, the objects dependent on the view become invalid.

Let’s change the length of a column in the TEST_TABLE table created earlier. The TEST_
VIEW view is dependent on this table. You can see the status of the database objects in the
USER_OBJECTS view. The following example queries the status of the view, modifies the table,
queries the status of the view, compiles the view, and again queries the status of the view:

SQL> SELECT last_ddl_time, status FROM user_objects

 2 WHERE object_name = ‘TEST_VIEW’;

LAST_DDL_TIME STATUS

----------------------- -------

25-OCT-2001 11:17:24 AM VALID

SQL> ALTER TABLE test_table MODIFY c2 VARCHAR2 (8);

Table altered.

SQL> SELECT last_ddl_time, status FROM user_objects

 2 WHERE object_name = ‘TEST_VIEW’;

95127c07.indd 348 2/17/09 12:33:19 PM

Creating and Modifying Views 349

LAST_DDL_TIME STATUS

----------------------- -------

25-OCT-2001 11:17:24 AM INVALID

SQL> ALTER VIEW test_view compile;

View altered.

SQL> SELECT last_ddl_time, status FROM user_objects

 2 WHERE object_name = ‘TEST_VIEW’;

LAST_DDL_TIME STATUS

----------------------- -------

25-OCT-2001 05:47:46 PM VALID

SQL>

The syntax for adding or dropping constraints on a view is similar to that for modifying
the constraints on a table, but you use the ALTER VIEW statement instead of the ALTER TABLE
statement. The following example adds a primary key constraint on the TEST_VIEW view:

ALTER VIEW hr.test_view

ADD CONSTRAINT pk_test_view

PRIMARY KEY (C1) DISABLE NOVALIDATE;

View altered.

The next example drops the constraint you just added:

ALTER VIEW test_view DROP CONSTRAINT pk_test_view;

View altered.

Dropping a View
To drop a view, use the DROP VIEW statement. The view definition is dropped from the dic-
tionary, and the privileges and grants on the view are also dropped. Other views and stored
programs that refer to the dropped view become invalid.

SQL> DROP VIEW test_view;

View dropped.

SQL>

95127c07.indd 349 2/17/09 12:33:19 PM

350 Chapter 7 N Creating Schema Objects

Once a view is dropped, there is no rollback, and the view is not available in the Recycle
Bin. So, be sure before dropping the view.

Using Views
You can use a view in most places where a table is used, such as in queries and in DML
operations. If certain conditions are met, most single-table views and many join views
can be used to insert, update, and delete data from the base table. All operations on views
affect the data in the base tables; therefore, they should satisfy any integrity constraints
defined on the base tables.

The following are some common uses of views:

To represent a subset of data For security reasons, you may not want certain users to see
all the rows of your table. You may create a view on the columns that the users need to
access with a WHERE clause to limit the rows and then grant privileges on the view.

To represent a superset of data You can use views to represent information from multiple
normalized tables in one unnormalized view.

To hide complex joins Since views are stored queries, you can have complex queries
defined as views, where the end user doesn’t need to worry about the relationship between
tables or know SQL.

To provide more meaningful names for columns If your tables are defined with short and
cryptic column names, you may create a view and provide more meaningful column names
that the users will understand better.

To minimize application and data-source changes You may develop an application refer-
ring to views, and if the data source changes or the data is derived in a different manner,
only the view needs to be changed.

Using Views in Queries
You can use views in queries and subqueries. You can use all SQL functions and all the clauses
of the SELECT statement when querying against a view, as you would when querying against
a table.

When you issue a query against a view, most of the time Oracle merges the query with the
query that defines the view and then executes the resulting query as if the query were issued
directly against the base tables. This helps you use the indexes, if there are any defined on
the table.

Let’s query the results of the EMPLOYEE_DETAILS view created earlier:

SQL> SELECT * FROM emp_details;

EMPLOYEE_NO MANAGER_NO PHONE_NUMBER

----------- ---------- --------------

 203 101 515.123.7777

95127c07.indd 350 2/17/09 12:33:19 PM

Creating and Modifying Views 351

Let’s consider another example using a WHERE clause and a GROUP BY clause. This exam-
ple finds the total commission paid for each department from the EMP_HIRE view for all
commissions greater than $100:

SELECT department_name, SUM(commission_amt) comm_amt

FROM emp_hire

WHERE commission_amt > 100

GROUP BY department_name;

DEPARTMENT_NAME COMM_AMT

------------------------------ ----------

Accounting 10150

Administration 2200

Executive 29000

Finance 25800

Human Resources 3250

IT 14400

Marketing 9500

Public Relations 5000

Purchasing 12450

Sales 72640

Shipping 78200

Inserting, Updating, and Deleting Data through Views
You can update, insert, and delete rows through a view, but with some restrictions. You can
perform DML statements on a view only if the view definition does not have the following:

A ÛN DISTINCT clause

A ÛN GROUP BY clause

A ÛN START WITH clause

A ÛN CONNECT BY clause

A ÛN ROWNUM clause

Set operators (ÛN UNION, UNION ALL, INTERSECT, or MINUS)

A subquery in the ÛN SELECT clause

All DML operations on the view are performed on the base tables.
Let’s create a simple view based on the DEPARTMENTS table. The following view includes

all the columns that are part of any constraint in the DEPARTMENTS table, so you can insert a
row through the view without violating any constraints:

CREATE OR REPLACE VIEW dept_above_250

AS SELECT department_id DID, department_name

95127c07.indd 351 2/17/09 12:33:19 PM

352 Chapter 7 N Creating Schema Objects

FROM departments

WHERE department_id > 250;

View created.

SELECT * FROM dept_above_250;

 DID DEPARTMENT_NAME

---------- -----------------

 260 Recruiting

 270 Payroll

Let’s insert a new department through the view and verify that the department is added
to the DEPARTMENTS table. (The SET NULL * SQL*Plus command displays an asterisk when-
ever the column value is NULL.)

SET NULL *

INSERT INTO dept_above_250

VALUES (199, ‘Temporary Dept’);

1 row created.

SELECT * FROM departments

WHERE department_id = 199;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

------------- -------------------- ---------- -----------

 199 Temporary Dept * *

Although the view is defined with a WHERE clause to verify DEPARTMENT_ID is greater than
250, Oracle did not enforce this condition when you inserted a new row. If you want the
DML statements through the view to conform to the view definition, use the WITH CHECK
OPTION clause. The WITH CHECK OPTION clause creates a check constraint on the view to
enforce the condition (such constraints will have the constraint type “V” when you query
the USER_CONSTRAINTS view).

Let’s re-create the DEPT_ABOVE_250 view to include the WITH CHECK OPTION clause. The
CONSTRAINT keyword can be followed by a constraint name. If you do not provide a con-
straint name, Oracle creates a constraint whose name begins with SYS_C, followed by a
unique string.

CREATE OR REPLACE VIEW dept_above_250

AS SELECT department_id DID, department_name

95127c07.indd 352 2/17/09 12:33:19 PM

Creating and Modifying Views 353

FROM departments

WHERE department_id > 250

WITH CHECK OPTION;

View created.

INSERT INTO dept_above_250

VALUES (199, ‘Temporary Dept’);

INSERT INTO dept_above_250

 *

ERROR at line 1:

ORA-01402: view WITH CHECK OPTION where-clause violation

SELECT constraint_name, table_name

FROM user_constraints

WHERE constraint_type = ‘V’;

CONSTRAINT_NAME TABLE_NAME

------------------------------ ----------------

SYS_C002779 DEPT_ABOVE_250

Let’s provide a name for the constraint and query the USER_CONSTRAINTS view again:

CREATE OR REPLACE VIEW dept_above_250

AS SELECT department_id DID, department_name

FROM departments

WHERE department_id > 250

WITH CHECK OPTION CONSTRAINT check_dept_250;

View created.

SELECT constraint_name, table_name

FROM user_constraints

WHERE constraint_type = ‘V’;

CONSTRAINT_NAME TABLE_NAME

------------------------------ ---------------

CHECK_DEPT_250 DEPT_ABOVE_250

SQL>

95127c07.indd 353 2/17/09 12:33:19 PM

354 Chapter 7 N Creating Schema Objects

\

Controlling access using a view

Say you have an HR application that has a requirement: an employee can see only their
own record; all other records must be invisible. You can use a view to control access to
personal records.

The EMPLOYEE_INFO table in the HRMS schema holds the personal information of employ-
ees. The business requirement is for the employees to be able to view or update their
own address information. EMPLOYEE_ID is the primary key of this table.

The SQL variable USER gives the username used to connect to the database. Use this
variable to restrict the rows available to the user. The EMPLOYEE_INFO table has a column
named LOGIN_ID. The view is defined as follows:

CREATE OR REPLACE VIEW employee_address AS

SELECT employee_id, first_name, last_name, middle_initial,

 street, city, zip, home_phone, email

FROM employee_info

WHERE login_id = USER

WITH CHECK OPTION;

For updating the address, the user is given UPDATE privileges on the view, not on the base
table. You add the WITH CHECK OPTION clause so that the user cannot add new records to
the base table.

Using Join Views
A join view is a view with more than one base table in the top-level FROM clause. An updat-
able join view (or modifiable join view) is a view that can be used to update the base tables
through the view. Any INSERT, UPDATE, or DELETE operation on the join view can modify
data from only one base table in any single SQL operation.

A table in the join view is key-preserved if the primary and unique keys of the table
are unique on the view’s result set. For example, let’s create a view using the base tables
COUNTRIES and REGIONS:

CREATE OR REPLACE VIEW country_region AS

SELECT a.country_id, a.country_name, a.region_id,

 b.region_name

FROM countries a, regions b

WHERE a.region_id = b.region_id;

95127c07.indd 354 2/17/09 12:33:20 PM

Creating and Modifying Views 355

View created.

SQL> DESC country_region

 Name Null? Type

 --------------------------- -------- ------------

 COUNTRY_ID NOT NULL CHAR(2)

 COUNTRY_NAME VARCHAR2(40)

 REGION_ID NUMBER

 REGION_NAME VARCHAR2(25)

SQL>

In the COUNTRY_REGION view, the COUNTRIES table is key-preserved because it is the pri-
mary key in the COUNTRIES table and its uniqueness is kept in the view also. The REGIONS
table is not key-preserved because its primary key REGION_ID is duplicated several times for
each country.

You can update only a key-preserved table through a view. If the view is defined with the
WITH CHECK OPTION clause, you cannot update the columns that join the base tables. For
example, if you define the COUNTRY_REGION view with the WITH CHECK OPTION clause, even
though the COUNTRY table is key-preserved, you will not be able to update the REGION_ID
column.

INSERT statements cannot refer to any columns of the non–key-preserved table. If the
view is created with the WITH CHECK OPTION clause, no INSERT operation is permitted on
the view.

Let’s try a few examples. Updating the REGION_NAME column in the COUNTRY_REGION view
produces an error:

UPDATE country_region

SET region_name = ‘Testing Update’

WHERE region_id = 1;

SET region_name = ‘Testing Update’

 *

ERROR at line 2:

ORA-01779: cannot modify a column which maps to a non key-preserved table

Updating the REGION_ID column does not cause an error because the column belongs to
a key-preserved table:

UPDATE country_region

SET region_id = 1

WHERE country_id = ‘EG’;

1 row updated.

95127c07.indd 355 2/17/09 12:33:20 PM

356 Chapter 7 N Creating Schema Objects

Let’s redefine the COUNTRY_REGION view with the WITH CHECK OPTION clause and try the
same UPDATE statement again:

CREATE OR REPLACE VIEW country_region AS

SELECT a.country_id, a.country_name, a.region_id,

 b.region_name

FROM countries a, regions b

WHERE a.region_id = b.region_id

WITH CHECK OPTION;

View created.

UPDATE country_region

SET region_id = 1

WHERE country_id = ‘EG’;

SET region_id = 1

 *

ERROR at line 2:

ORA-01733: virtual column not allowed here

Viewing Allowable DML Operations
Oracle provides data dictionary views with information about what DML operations are
allowed on each column of the view: the USER_UPDATABLE_COLUMNS view has information on
columns of the views owned by the user, the ALL_UPDATABLE_COLUMNS view has information
on the columns of views to which the user has access, and the DBA_UPDATABLE_COLUMNS
view has information on columns of all the views in the database.

Let’s query the USER_UPDATABLE_COLUMNS view to see what information is available on
the COUNTRY_REGION view:

SELECT column_name, updatable, insertable, deletable

FROM user_updatable_columns

WHERE owner = ‘HR’

AND table_name = ‘COUNTRY_REGION’;

COLUMN_NAME UPD INS DEL

------------------------------ --- --- ---

COUNTRY_ID YES YES YES

COUNTRY_NAME YES YES YES

REGION_ID YES YES YES

REGION_NAME NO NO NO

You can query information on the views from the data dictionary using USER_VIEWS (or
DBA_VIEWS or ALL_VIEWS). This view contains the view definition SQL. The column names of
the view can be queried from USER_TAB_COLUMNS.

95127c07.indd 356 2/17/09 12:33:20 PM

Creating and Modifying Views 357

Using Inline Views
A subquery can appear in the FROM clause of the SELECT statement. This is similar to defin-
ing and using a view, which is why it’s called an inline view. The subquery in the FROM clause
is enclosed in parentheses and may be given an alias name. The columns selected in the
subquery can be referenced in the parent query, just as you would select from any normal
table or view.

Inline views can be considered temporary views; you don’t need to create these views to
use them in queries. You access the columns of the inline-view result set in the same way you
access the columns of a view in DML statements.

Let’s consider an example using the EMPLOYEES table of the sample HR schema. You can
use the following query to report the employee names, their salaries, and the average salary
in their department. I’ll limit the result set to the employees whose names begin with B:

SELECT first_name, salary, avg_salary

FROM employees, (SELECT department_id,

 AVG(salary) avg_salary FROM employees e2

 GROUP BY department_id) dept

WHERE employees.department_id = dept.department_id

AND first_name like ‘B%’;

FIRST_NAME SALARY AVG_SALARY

-------------------- ---------- ----------

Britney 3900 3475.55556

Bruce 6000 5760

The same query written using the ANSI syntax is as follows:

SELECT first_name, salary, avg_salary

FROM employees

NATURAL JOIN (SELECT department_id,

 AVG(salary) avg_salary FROM employees e2

 GROUP BY department_id) dept

WHERE first_name like ‘B%’;

FIRST_NAME SALARY AVG_SALARY

-------------------- ---------- ----------

Britney 3900 3475.55556

Bruce 6000 5760

You cannot have an ORDER BY clause in the subquery appearing in a WHERE
clause. A FROM clause subquery (inline view) can have an ORDER BY clause.

95127c07.indd 357 2/17/09 12:33:20 PM

358 Chapter 7 N Creating Schema Objects

As another example, suppose you want to find the newest employee in each department.
You need to get the MAX(HIRE_DATE) value for all employees in each department and get the
name of employee, as follows:

SELECT department_name, first_name, last_name,

 hire_date

FROM employees JOIN departments

 USING (department_id)

JOIN (SELECT department_id, max(hire_date) hire_date

 FROM employees

 GROUP BY department_id)

USING (department_id, hire_date);

DEPARTMENT_NAME FIRST_NAME LAST_NAME HIRE_DATE

----------------- ---------- ---------- ---------

Administration Jennifer Whalen 17-SEP-87

Marketing Pat Fay 17-AUG-97

Purchasing Karen Colmenares 10-AUG-99

Human Resources Susan Mavris 07-JUN-94

Shipping Steven Markle 08-MAR-00

IT Diana Lorentz 07-FEB-99

Public Relations Hermann Baer 07-JUN-94

Sales Sundita Kumar 21-APR-00

Sales Amit Banda 21-APR-00

Executive Lex De Haan 13-JAN-93

Finance Luis Popp 07-DEC-99

Accounting William Gietz 07-JUN-94

Accounting Shelley Higgins 07-JUN-94

The same query written using standard Oracle join syntax looks like this:

SELECT d.department_name, e.first_name, e.last_name,

 mhd.hire_date

FROM employees e, departments d,

 (SELECT department_id, max(hire_date) hire_date

 FROM employees

 GROUP BY department_id) mhd

WHERE e.department_id = d.department_id

AND e.department_id = mhd.department_id

AND e.hire_date = mhd.hire_date;

95127c07.indd 358 2/17/09 12:33:20 PM

Creating and Modifying Views 359

DEPARTMENT_NAME FIRST_NAME LAST_NAME HIRE_DATE

----------------- ---------- ---------- ---------

Executive Lex De Haan 13-JAN-93

IT Diana Lorentz 07-FEB-99

Finance Luis Popp 07-DEC-99

Purchasing Karen Colmenares 10-AUG-99

Shipping Steven Markle 08-MAR-00

Sales Amit Banda 21-APR-00

Sales Sundita Kumar 21-APR-00

Administration Jennifer Whalen 17-SEP-87

Marketing Pat Fay 17-AUG-97

Human Resources Susan Mavris 07-JUN-94

Public Relations Hermann Baer 07-JUN-94

Accounting Shelley Higgins 07-JUN-94

Accounting William Gietz 07-JUN-94

Performing Top-n Analysis
Using an inline view, you can write queries to find top-n values. This is possible because
Oracle allows an ORDER BY clause in the inline view. So, you sort the rows in the inline
view and retrieve the top rows using the ROWNUM variable. The ROWNUM variable gives the row
number; the row number is assigned only when the query is fetched. For example, here is a
query intended to find the top five highest-paid employees:

SELECT last_name, salary

FROM employees

WHERE rownum <= 5

ORDER BY salary DESC ;

LAST_NAME SALARY

------------------------- ----------

King 24000

Kochhar 17000

De Haan 17000

Hunold 9000

Ernst 6000

Since the ROWNUM is assigned only when each row is returned, the result set is not right.
What you got is just five rows from the table sorted by salary. The following query will
return the top five highest-paid employees:

95127c07.indd 359 2/17/09 12:33:20 PM

360 Chapter 7 N Creating Schema Objects

SELECT * FROM

 (SELECT last_name, salary

 FROM employees

 ORDER BY salary DESC)

WHERE ROWNUM <= 5;

LAST_NAME SALARY

------------------------- ----------

King 24000

Kochhar 17000

De Haan 17000

Russell 14000

Partners 13500

The Oracle 11g Optimizer recognizes the top-n analysis queries and hence does not sort
all the rows in the subquery.

Creating and Managing Sequences
An Oracle sequence is a named sequential-number generator. Sequence numbers are serial
numbers incremented with a specific interval. Sequences are often used for artificial keys
or to order rows that otherwise have no order. Like constraints (discussed in Chapter 6),
sequences exist only in the data dictionary. They do not take up any storage space. Sequences
can be configured to increase or decrease without bounds or to repeat (cycle) upon reaching a
boundary value.

Creating and Dropping Sequences
Sequences are created with the CREATE SEQUENCE statement. The following statement cre-
ates a sequence in the HR schema:

CREATE SEQUENCE hr.employee_identity START WITH 2001;

You can use the following keywords in the CREATE SEQUENCE statement when creating a
sequence:

START WITH Defines the first number that the sequence will generate. The default is MAXVALUE
for descending sequences, which is –1, and MINVALUE for ascending sequences, which is 1.

INCREMENT BY Defines the increase or decrease amount for subsequently generated num-
bers. To specify a decreasing sequence, use a negative INCREMENT BY value. The default is 1.

95127c07.indd 360 2/17/09 12:33:20 PM

Creating and Managing Sequences 361

MINVALUE Defines the lowest number the sequence will generate. This is the bounding
value in a decreasing sequence. The default MINVALUE is NOMINVALUE, which evaluates to 1
for an increasing sequence and to –1026 for a decreasing sequence.

MAXVALUE Defines the largest number that the sequence will generate. This is the bounding
value in the default, increasing sequence. The default MAXVALUE is the NOMAXVALUE, which
evaluates to 1027 for an increasing sequence and to –1 for a decreasing sequence.

CYCLE Configures the sequence to repeat numbers after reaching the bounding value.

NOCYCLE Configures the sequence to not repeat numbers after reaching the bounding
value. This is the default. When you try to generate MAXVALUE+1, an exception will be
raised.

CACHE Defines the size of the block of sequence numbers held in memory. The default is 20.

NOCACHE Forces the data dictionary to be updated for each sequence number generated,
guaranteeing no gaps in the generated numbers but decreasing the performance of the
sequence.

When you create the sequence, the START WITH value must be equal to or greater than
MINVALUE. Sequence numbers can be configured so that a set of numbers is fetched from the
data dictionary and cached or held in memory for use. Caching the sequence improves its
performance because the data dictionary table does not need to be updated for each gener-
ated number, only for each set of numbers. Sequences are removed with the DROP SEQUENCE
statement:

DROP SEQUENCE sequence_name;

When the database instance terminates abnormally or the DBA performs
SHUTDOWN ABORT on the database instance, the sequence numbers cached
are lost. Hence, you could have gaps in the sequence.

Using Sequences
To access the next number in the sequence, you simply select from it, using the pseudocol-
umn NEXTVAL. To get the last sequence number your session has generated, you select from
it using the pseudocolumn CURRVAL. If your session has not yet generated a new sequence
number, CURRVAL will be undefined.

The syntax for accessing the next sequence number is as follows:

sequence_name.nextval

Here is the syntax for accessing the last-used sequence number:

sequence_name.currval

95127c07.indd 361 2/17/09 12:33:20 PM

362 Chapter 7 N Creating Schema Objects

Sequence Initialization
The sequence is initialized in the session when you select the NEXTVAL from the sequence.
One problem that you may encounter using sequences involves selecting CURRVAL from the
sequence before initializing it within your session by selecting NEXTVAL from it. Here is an
example:

CREATE SEQUENCE emp_seq NOMAXVALUE NOCYCLE;

Sequence created.

SELECT emp_seq.currval FROM dual;

ERROR at line 1:

ORA-08002: sequence POLICY_SEQ.CURRVAL is not yet defined

in this session

Make sure your code initializes a sequence within your session by selecting its NEXTVAL
before you try to reference CURRVAL:

SELECT emp_seq.nextval FROM dual;

 NEXTVAL

 1

SELECT emp_seq.currval FROM dual;

 CURRVAL

 1

Sequences can be used in the SET clause of the UPDATE statement to assign a value to a
column in an existing row. They can be used in the VALUES clause of the INSERT statement
also. In Oracle 11g, you can also assign the value of a sequence to a variable. Here is an
example using a small PL/SQL block:

SQL> VARIABLE v1 NUMBER

SQL> begin

 2 :v1 := emp_seq.nextval;

 3 end;

SQL> /

PL/SQL procedure successfully completed.

95127c07.indd 362 2/17/09 12:33:20 PM

Creating and Managing Sequences 363

SQL> print v1

 V1

 3

SQL>

Missing Sequence Values
Another potential problem in the use of sequences involves “losing” sequence values when a
rollback occurs. A sequence’s NEXTVAL increments outside any user transactions, so a rollback
will not put the selected sequence values back into the sequence. These rolled-back values
simply disappear and may create a gap in the use of the sequence numbers. This is not a
bad thing—you don’t want one session’s use of a sequence to block others until it commits.
However, you do need to understand how gaps happen. To demonstrate this, suppose you
have a table with the old Acme employee identifiers and you need to assign new employee
IDs to them using your new EMP_SEQ sequence:

SELECT * FROM old_acme_employees;

 EMP_ID ACME_ID HOLDER_NAME

------- ---------------- -----------

 C23 Joshua

 C24 Elizabeth

 D31 David

 D34 Sara

 A872 Jamie

 A891 Jeff

 A884 Jennie

UPDATE old_acme_employees SET emp_id = emp_seq.nextval;

7 rows updated.

SELECT * FROM old_acme_employees;

 EMP_ID ACME_ID HOLDER_NAME

---------- ---------------- -----------

 5 C23 Joshua

 6 C24 Elizabeth

95127c07.indd 363 2/17/09 12:33:20 PM

364 Chapter 7 N Creating Schema Objects

 7 D31 David

 8 D34 Sara

 9 A872 Jamie

 10 A891 Jeff

 11 A884 Jennie

Now suppose you encounter an error, such as a rollback segment unable to extend,
before you commit these changes, and this error causes the process to roll back. You
can simulate the error and rollback by simply executing a rollback before the update is
committed:

ROLLBACK;

After you fix the problem and run the update again, you find that there are “missing”
sequence values (values 5, 6, 7, and so on):

UPDATE old_acme_employees SET emp_id = emp_seq.nextval;

7 rows updated.

SELECT * FROM old_acme_employees;

 EMP_ID ACME_ID HOLDER_NAME

---------- ---------------- ------------

 12 C23 Joshua

 13 C24 Elizabeth

 14 D31 David

 15 D34 Sara

 16 A872 Jamie

 17 A891 Jeff

 18 A884 Jennie

COMMIT;

Maximum and Minimum Values
Another potential pitfall occurs when you reach MAXVALUE on an ascending sequence (or
MINVALUE on a descending sequence). If the sequence is set to NOCYCLE, Oracle will raise an
exception if you try to select NEXTVAL after the sequence reaches MAXVALUE:

CREATE SEQUENCE emp_seq MAXVALUE 10 NOCYCLE;

Sequence created.

95127c07.indd 364 2/17/09 12:33:20 PM

Creating and Managing Sequences 365

SELECT emp_seq.nextval

FROM hr.employees;

ERROR:

ORA-08004: sequence EMP_SEQ.NEXTVAL exceeds MAXVALUE

and cannot be instantiated

Altering Sequences
A common problem with sequences is how to go about altering them to change the NEXTVAL.
You cannot simply alter the sequence and set the NEXTVAL. If you use a sequence to generate
keys in your table and reload the development table from production, your sequence may be
out of sync with the table. You may get primary-key violations when you run the application
in development and it tries to insert key values that already exist.

You cannot directly alter the sequence and change its NEXTVAL. Instead, you can take one
of the following approaches:

Drop and re-create it (invalidating all dependent objects and losing the grants).ÛN

Select ÛN NEXTVAL from it enough times to bring the sequence up to a desired value.

Alter the sequence by changing the ÛN INCREMENT BY value to a large number, select
NEXTVAL from the sequence to make it increment by the large number, and then alter
the INCREMENT BY value back down to the original small value.

The following session log shows an example of the third technique. Start with the
sequence SALE_SEQ that has a LAST_NUMBER value of 441:

SELECT sequence_name, cache_size, last_number

FROM user_sequences;

SEQUENCE_NAME CACHE_SIZE LAST_NUMBER

-------------- ---------- -----------

SALE_SEQ 20 441

The SALES table needs this sequence to be larger than 111555888. So, you alter the
sequence’s INCREMENT BY value, increment it with a SELECT of its NEXTVAL, and then alter
the INCREMENT BY value back to 1. Now the program won’t try to generate duplicate keys
and will work fine in development:

SELECT sequence_name, cache_size, last_number

FROM user_sequences;

SEQUENCE_NAME CACHE_SIZE LAST_NUMBER

-------------- ---------- -----------

SALE_SEQ 20 441

95127c07.indd 365 2/17/09 12:33:20 PM

366 Chapter 7 N Creating Schema Objects

ALTER SEQUENCE sale_seq INCREMENT BY 111555888;

Sequence altered.

SELECT sale_seq.nextval FROM dual;

 NEXTVAL

 111556309

ALTER SEQUENCE sale_seq INCREMENT BY 1;

Sequence altered.

SELECT sequence_name, cache_size, last_number

FROM user_sequences;

SEQUENCE_NAME CACHE_SIZE LAST_NUMBER

-------------- ---------- -----------

SALE_SEQ 20 111556310

The sequence can be dropped using the DROP SEQUENCE statement. Once dropped, the
sequence definition is permanently deleted from the data dictionary. The following example
shows dropping sale_seq from the database:

DROP SEQUENCE hr.sale_seq;

Creating and Managing Synonyms
A synonym is an alias for another database object. A public synonym is available to all
users, while a private synonym is available only to the owner or to the accounts to whom
that owner grants privileges. Both of these are discussed more fully later in this section.

A synonym can point to a table, view, sequence, procedure, function, or package in
the local database or, via a database link, to an object in another database. Synonyms are
frequently used to simplify SQL by giving a universal name to a local or remote object.
Synonyms also can be used to give different or multiple names to individual objects.
Unlike views or stored SQL, synonyms don’t become invalid if the objects they point to are
dropped. Likewise, you can create a synonym that points to an object that does not exist or
for which the owner does not have privileges.

For example, the user SCOTT owns a table named EMP. All users log in to the database
under their own username and so must reference the table with the owner as SCOTT.EMP.

95127c07.indd 366 2/17/09 12:33:20 PM

Creating and Managing Synonyms 367

But when you create a public synonym EMP for SCOTT.EMP, then anyone who has privileges
on the table can simply reference it in their SQL (or PL/SQL) as EMP, without needing to
specify the owner. When the statement is parsed, Oracle will resolve the name EMP via the
synonym to SCOTT.EMP.

Creating and Dropping Synonyms
You can create private synonyms with the CREATE SYNONYM statement. Public synonyms
are created using the CREATE PUBLIC SYNONYM statement. Public synonyms are owned by
the PUBLIC user. PUBLIC is not a regular database user but is an internal user-like structure,
similar to a group. Every user in the database is a member of PUBLIC.

The syntax for creating a private synonym is as follows:

CREATE SYNONYM [schema.]synonym_name

FOR [schema.]object[@db_link];

The syntax for creating a public synonym is as follows:

CREATE PUBLIC SYNONYM synonym_name

FOR [schema.]object[@db_link];

To create a public synonym called EMPLOYEES for the table HR.EMPLOYEES, execute the
following statement:

CREATE PUBLIC SYNONYM employees FOR hr.employees;

Alternatively, to create a private synonym called EMPLOYEES for the table HR.EMPLOYEES,
you simply remove the keyword PUBLIC, as in the following statement. The synonym will
be created in the user’s schema. It is called private because the synonym is available only to
that user. Let’s run the following SQL as the SCOTT user:

CREATE SYNONYM employees FOR hr.employees;

To remove a synonym, use the DROP SYNONYM statement. For a public synonym, you need
to make sure you include the keyword PUBLIC, as in this example:

DROP PUBLIC SYNONYM employees;

To drop a private synonym, issue the DROP SYNONYM statement without the PUBLIC
keyword:

DROP SYNONYM employees;

DROP SYNONYM scott.employees;

Public Synonyms
Public synonyms are used to identify objects such as tables, views, materialized views,
sequences, Java classes, procedures, functions, and packages. The data dictionary views are

95127c07.indd 367 2/17/09 12:33:20 PM

368 Chapter 7 N Creating Schema Objects

good examples of public synonyms. These synonyms are created when you run catalog
.sql at database-creation time. When you write SQL code that references the dictionary
view ALL_TABLES, you do not need to select from SYS.ALL_TABLES; you can simply select
from ALL_TABLES. Your code can use the fully qualified SYS.ALL_TABLES or the unqualified
ALL_TABLES and resolve to the same view, owned by user SYS. When you reference SYS
.ALL_TABLES, you explicitly denote the object owned by user SYS. When you reference ALL_
TABLES, you actually denote the public synonym ALL_TABLES, which then resolves to SYS
.ALL_TABLES. Sound confusing? Let’s look at some examples to help clarify this concept.

Suppose the DBA creates a public synonym EMPLOYEES for the HR table EMPLOYEES:

CREATE PUBLIC SYNONYM employees FOR hr.employees;

Now the user SCOTT, who does not own an EMPLOYEES table but has SELECT privileges on
the HR.EMPLOYEES table, can reference that table without including the schema owner (HR):

SELECT COUNT(*) FROM employees;

 COUNT(*)

 107

As another example, suppose you want to create a public synonym NJ_EMPLOYEES for the
HR.EMPLOYEES table in the New_Jersey database (using the database link New_Jersey). To
create this synonym, execute the following statement:

CREATE PUBLIC SYNONYM nj_employees for hr.employees@new_jersey;

When the object referenced by the synonym is dropped, the synonym
will remain in the data dictionary. Its status will be changed from VALID to
INVALID. When a synonym is dropped, all objects that reference the syn-
onym will become INVALID.

Private Synonyms
Private synonyms can be created for objects that you own or objects that are owned by
other users. You can even create a private synonym for an object in another database
by incorporating a database link.

Private synonyms can be useful when a table is renamed and both the old and new
names are needed. The synonym can be either the old or new name, with both the old and
new names referencing the same object.

Private synonyms are also useful in a development environment. A developer can own
a modified local copy of a table, create a private synonym that points to this local table,
and test code and table changes without affecting everyone else. For example, a developer
named Derek runs the following statements to set up a private version of the HR.EMPLOYEES

95127c07.indd 368 2/17/09 12:33:20 PM

Creating and Managing Synonyms 369

table so he can test some new functionality without affecting anyone else using the
HR.EMPLOYEES table:

CREATE TABLE my_employees AS SELECT * FROM hr.employees;

ALTER TABLE my_employees ADD pager_nbr VARCHAR2(10);

CREATE SYNONYM employees FOR my_employees;

Now Derek can test changes to his program that will use the new PAGER_NBR column. The
code in the program will reference the table as EMPLOYEES, but Derek’s private synonym will
redirect Derek’s access to the MY_EMPLOYEES table. When the code is tested and then promoted,
the code won’t need to change, but the reference to EMPLOYEES will resolve via the public
synonym to the HR.EMPLOYEES table.

Use of a private synonym is not restricted to the owner of that synonym. If another user
has privileges on the underlying object, she can reference the private synonym as if it were
an object itself. For example, the user HR grants SELECT privileges on the EMPLOYEES table to
both ALICE and CHACKO:

GRANT SELECT ON employees TO alice, chacko;

Then user CHACKO creates a private synonym to alias this HR-owned object:

CREATE SYNONYM emp_tbl FOR hr.employees;

User ALICE can now reference CHACKO’s private synonym:

SELECT COUNT(*) FROM chacko.empl_tbl;

 COUNT(*)

 107

This redirection can be a useful technique to change the objects that SQL code refer-
ences, without changing the code itself. At the same time, this kind of redirection can add
layers of obfuscation to code. Exercise care in the use of private synonyms.

Resolving Object References
Assume you have a table and a public synonym with the same name. When you select

from this object name, is Oracle going to use the table referenced in the public synonym, or
is it going to get the data from the table owned by the user? The key to avoiding confusion
is to know the order that Oracle follows when trying to resolve object references. When
your code references an unqualified table, view, procedure, function, or package, Oracle
will look in three places for the referenced object, in this order:

1. An object owned by the current user

2. A private synonym owned by the current user

3. A public synonym

95127c07.indd 369 2/17/09 12:33:20 PM

370 Chapter 7 N Creating Schema Objects

Creating Database links

An Oracle Database link is an object that gives you visibility into another database. Unlike
other objects, a database link cannot be used by itself. Instead, it acts as a modifier for a
table or view reference in a remote database. The syntax for creating a database link is as
follows:

CREATE [SHARED] [PUBLIC] DATABASE LINK link_name

[CONNECT TO username IDENTIFIED BY password] USING ‘tns_name’;

Synonyms can be used to mask the location of the table or view. The source data can reside
in a totally different database. Data from another database is accessed using a database link.

Like a synonym, the keyword PUBLIC makes the database link available to all users in the
database. When the CONNECT TO clause is used, it specifies the username and password
that will be used to establish a session in the remote database. This password is stored
in the data dictionary in an unencrypted form, which is visible only in the data diction-
ary view USER_DB_LINKS or directly in the SYS.LINK$ table. By default, only user SYS has
SELECT privileges on SYS.LINK$. The tns_name parameter specifies the service name for
the remote database. The keyword SHARED tells Oracle that all users of a public database
link should share a single network connection to the remote database.

To create a public database link called NEW_JERSEY that connects as the HOME_OFFICE user
with the password SECRET in the NJ database, execute the following:

CREATE PUBLIC DATABASE LINK new_jersey

 CONNECT TO home_office IDENTIFIED BY secret USING ‘NJ’;

If you don’t want everyone to share the same username in the remote database, create
the database link without the CONNECT TO clause, like this:

CREATE PUBLIC DATABASE LINK new_jersey USING ‘NJ’;

This will tell Oracle that each user should connect to the NJ database via their own user-
name and password. Each user that references the database link must then have an
account in both the local and remote databases.

Unlike a private synonym, a private database link really is private and is not available to
other users. So if user SYSTEM created a private database link to the NJ database that spe-
cifically connected to user SYSTEM in the NJ database, the DBA would not need to worry
about non-DBA user BERNICE accessing the NJ database with DBA privileges. She could
not use SYSTEM’s private database link.

95127c07.indd 370 2/17/09 12:33:20 PM

Creating and Managing Indexes 371

Creating and Managing Indexes
Indexes are data structures that can offer improved performance in obtaining specific rows
over the default full-table scan. Indexes do not always improve performance, however.
You may create many indexes on a table, as long as the combination of columns differs.
You may also use the same column in many indexes as long as the combination of columns
differs. In the following sections, I will review the indexing technologies covered on the
certification exam: B-tree and bitmap. I’ll also cover when and how indexes can improve
performance.

You can create and drop indexes without affecting the base data in the table—indexes
and table data are independent. Oracle maintains the indexes automatically when new rows
are added to the table or existing rows are updated or deleted.

You can create indexes using a single column from the table (simple index), or you can
use multiple columns from the table to create a concatenated or composite index.

How Indexes Work
Indexes are used to access data more quickly than reading the whole table, and they reduce
disk I/O considerably when the queries use the available indexes. Oracle retrieves rows
from a table in only one of two ways:

By ÛN ROWID

By full-table scanÛN

Both B-tree and bitmap indexes map column data to ROWIDs for the columns of inter-
est, but they do so in different ways. When one or more indexes are accessed, Oracle will
use the known column values to find the corresponding ROWIDs. The rows can then be
retrieved by ROWID.

Indexes may improve the performance of SELECT, UPDATE, and DELETE operations. You
can use an index if a subset of the indexed columns appear in the SELECT or WHERE clause.
Additionally, if all the columns needed to satisfy a query appear in an index, Oracle can
access only the index and not the table. As an example, consider the HR.EMPLOYEES table,
which has an index on the columns (LAST_NAME and FIRST_NAME). If you run the following
query to get a count of the employees named Taylor, Oracle needs to access only the index,
not the table, because all the necessary columns are in the index:

SELECT COUNT(*)

FROM hr.employees

WHERE last_name = ‘Taylor’;

Although indexes can improve the performance of data retrieval, they degrade perfor-
mance for data changes (DML). This is because the indexes must be updated in addition to
the table.

95127c07.indd 371 2/17/09 12:33:21 PM

372 Chapter 7 N Creating Schema Objects

Using B-Tree Indexes
B-tree indexes are the most common index type, as well as the default. The B-tree indexes
include index column values and the ROWID of the row. The ROWID uniquely identifies a
row in the table.

B-tree indexes provide the best performance on high-cardinality columns, which are col-
umns that have many distinct values. For example, in the HR.EMPLOYEES table, the columns
LAST_NAME and PHONE_NUMBER are high-cardinality columns. JOB_ID is a low-cardinality
column.

B-tree indexes offer an efficient method to retrieve a small number of interesting rows.
However, if more than about 10 percent of the table must be examined, a full-table scan
may be the preferred method, depending on the data. You can create the following types of
B-tree indexes:

Nonunique This is the default B-tree index; the column values are not unique.

Unique Create this type of B-tree index by specifying the UNIQUE keyword in the CREATE INDEX
statement. In unique indexes, each column value entry is unique. Oracle guarantees that the
combination of all index column values in the composite index is unique. Oracle returns an
error if you try to insert two rows with the same index column values.

Oracle does not include the rows with all NULL values in the indexed col-
umns when storing a B-tree index. Bitmap indexes store NULL values.

The CREATE INDEX statement creates a nonunique B-tree index on the columns specified.
You must specify a name for the index, and the table name on which the index should be
built. For example, to create an index on the ORDER_DATE column of the ORDERS table, specify
the following SQL:

CREATE INDEX orders_ind1

ON orders (order_date);

To create a unique index, you must specify the keyword UNIQUE immediately after the
CREATE. Here’s an example:

CREATE UNIQUE INDEX orders_ind2

ON oe.orders (order_num);

You can create an index with multiple columns. Such an index is called a composite index.
Specify the column names separated by comma. The following SQL creates a nonunique
composite index on the OE.ORDERS table:

CREATE INDEX oe.order_ind4 ON oe.orders

 (customer_id, sales_rep_id);

95127c07.indd 372 2/17/09 12:33:21 PM

Creating and Managing Indexes 373

Using Bitmap Indexes
Bitmap indexes are primarily used for decision-support systems or static data, because they
do not support row-level locking. Bitmap indexes can be simple (one column) or concatenated
(multiple columns), but in practice, bitmap indexes are almost always simple.

Bitmap indexes are best used for low- to medium-cardinality columns where multiple
bitmap indexes can be combined with AND and OR conditions. Each key value has a bitmap,
which contains a TRUE, FALSE, or NULL value for every row in the table. The bitmap index is
constructed by storing the bitmaps in the leaf nodes of a B-tree structure. The B-tree struc-
ture makes it easy to find the bitmaps of interest quickly. Additionally, the bitmaps are
stored in a compressed format, so they take up significantly less disk space than regular
B-tree indexes.

To create a bitmap index, you must specify the keyword BITMAP immediately after
CREATE. Bitmap indexes cannot be unique. The following SQL creates a bitmap index named
ORDERS_IND3 on the ORDERS table using the STATUS column:

CREATE BITMAP INDEX orders_ind3

ON oe.orders (status);

Dropping Indexes
You can drop an index using the DROP INDEX statement. Use this statement to drop unique,
nonunique, or bitmap indexes. Oracle frees up all the space used by the index when the
index is dropped. When a table is dropped, the indexes built on the table are automatically
dropped. The following SQL drops the ORDERS_IND3 index:

DROP INDEX oe.orders_ind3;

You cannot drop indexes used to enforce uniqueness or the primary key of the table.
Such indexes can be dropped only after disabling the primary or unique key.

how to Find Out Whether the Index Is being used by the Optimizer

Oracle provides multiple ways to see how a query is being executed—the execution plan
decided by the Oracle Optimizer. For this demonstration, you will use the tracing features
of SQL*Plus.

The SET statement in SQL*Plus has an option to turn on tracing. The SET AUTOTRACE state-
ment is used to turn on or off tracing. SET AUTOTRACE ON will show the query results, the
execution plan, and the statistics associated with the execution. Since you are interested
only in the execution plan here to verify index usage, you are interested in the result of
the query. Hence, you can use SET AUTOTRACE TRACEONLY.

95127c07.indd 373 2/17/09 12:33:21 PM

374 Chapter 7 N Creating Schema Objects

First, let’s examine the columns and indexes on the OE.INVENTORIES table. You can query
the DBA_INDEXES dictionary view to see the indexes on the table. The UNIQUENESS column
tells whether the index is unique. The INDEX_TYPE column indicates the type of index—
NORMAL is a B-tree index. For bitmap indexes, you will see BITMAP in this column.

SQL> DESCRIBE oe.inventories

 Name Null? Type

 -------------------------- -------- -------------

 PRODUCT_ID NOT NULL NUMBER(6)

 WAREHOUSE_ID NOT NULL NUMBER(3)

 QUANTITY_ON_HAND NOT NULL NUMBER(8)

SQL> SELECT index_name, uniqueness, index_type

 2 FROM dba_indexes

 3 WHERE table_owner = ‘OE’

 4 AND table_name = ‘INVENTORIES’

SQL> /

INDEX_NAME UNIQUENES INDEX_TYPE

-------------------- --------- ------------------

INVENTORY_IX NONUNIQUE NORMAL

INV_PRODUCT_IX NONUNIQUE NORMAL

SQL>

You have two indexes on the table. You can query the DBA_IND_COLUMNS dictionary view
to get the index name and index columns:

SQL> SELECT index_name, column_name, column_position

 2 FROM dba_ind_columns

 3 WHERE table_name = ‘INVENTORIES’

 4 AND table_owner = ‘OE’

 5 ORDER BY index_name, column_position

SQL> /

INDEX_NAME COLUMN_NAME COLUMN_POSITION

-------------------- -------------------- ---------------

INVENTORY_IX WAREHOUSE_ID 1

INVENTORY_IX PRODUCT_ID 2

INV_PRODUCT_IX PRODUCT_ID 1

SQL>

95127c07.indd 374 2/17/09 12:33:21 PM

Creating and Managing Indexes 375

INVENTORY_IX is a composite index with two columns: WAREHOUSE_ID and PRODUCT_ID.
WAREHOUSE_ID is the leading column in this index (position 1). INV_PRODUCT_IX is an index
on the PRODUCT_ID column. The third column in the table, QUANTITY_ON_HAND, does not
have any index.

There is one more piece of information you need to know before running the queries. Let’s
find out whether there is a primary key constraint defined on this table and which index is
used to enforce the primary key. From the DESCRIBE you did earlier, you know that all the
columns have a NOT NULL constraint defined. You can query the DBA_CONSTRAINTS diction-
ary view, as in the following SQL:

SQL> SELECT constraint_name, index_name

 2 FROM dba_constraints

 3 WHERE table_name = ‘INVENTORIES’

 4 AND owner = ‘OE’

 5 AND constraint_type = ‘P’;

CONSTRAINT_NAME INDEX_NAME

--------------------- ----------------

INVENTORY_PK INVENTORY_IX

SQL>

Let’s run a few SQL statements against the OE.INVENTORIES table and learn when indexes
are used:

SQL> SET AUTOTRACE TRACEONLY

SQL> SELECT COUNT(*) FROM oe.inventories;

Execution Plan

--

Plan hash value: 2210865566

--

| Id | Operation | Name | Rows |

--

| 0 | SELECT STATEMENT | | 1 |

| 1 | SORT AGGREGATE | | 1 |

| 2 | INDEX FAST FULL SCAN| INVENTORY_IX | 1112 |

--

Oracle used the INVENTORY_IX index to get the result. You can see here that Oracle did not
read the table to get the result; only the index is read. Let’s look at another SQL statement:

SQL> SELECT * FROM oe.inventories

 2 WHERE product_id = 12345;

95127c07.indd 375 2/17/09 12:33:21 PM

376 Chapter 7 N Creating Schema Objects

Execution Plan

--

Plan hash value: 751505330

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS BY INDEX ROWID| INVENTORIES |

|* 2 | INDEX RANGE SCAN | INV_PRODUCT_IX |

--
Since PRODUCT_ID is in the WHERE clause, Oracle used the index on the PRODUCT_ID col-
umn. If you change the columns in the SELECT clause and include only the columns that
are in the INVENTORY_IX index, Oracle will not read the table, as in the following example:

SQL> SELECT warehouse_id FROM oe.inventories

 2 WHERE product_id = 12345;

Execution Plan

--

Plan hash value: 253941387

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

|* 1 | INDEX FAST FULL SCAN| INVENTORY_IX |

--
What if you did not have the single column index on the PRODUCT_ID column? Oracle
11g provides option to hide the index from the Optimizer using the INVISIBLE clause of
the ALTER INDEX statement (this was not discussed in the main section of the chapter
because it is not one of the test objectives). Let’s try the same SQL and watch how the
Optimizer behaves:

SQL> alter index oe.inv_product_ix invisible;

Index altered.

SQL> SELECT * FROM oe.inventories

 2 WHERE product_id = 12345;

95127c07.indd 376 2/17/09 12:33:21 PM

Creating and Managing Indexes 377

Execution Plan

Plan hash value: 3778774871

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

|* 1 | TABLE ACCESS FULL| INVENTORIES |

SQL> SELECT warehouse_id FROM oe.inventories

 2 WHERE product_id = 12345;

Execution Plan

Plan hash value: 253941387

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

|* 1 | INDEX FAST FULL SCAN| INVENTORY_IX |

Though PRODUCT_ID is part of the INVENTORY_IX index, Oracle did not use the index in the
first SQL. It is doing a full-table scan. Optimizer compared the cost of accessing the index
and table vs. accessing the table alone and decided to go with full-table scan, whereas
when you included only the columns part of the index in the SELECT clause, Oracle uses
the index.

This chapter completes the Oracle Database 11g: SQL Fundamentals I OCP certification
exam materials. Chapters 8 through 17 will cover the Oracle Database 11g: Administration I
test objectives. Good luck with your SQL certification exam. You are halfway through
obtaining the prestigious Oracle 11g OCA certification.

95127c07.indd 377 2/17/09 12:33:21 PM

378 Chapter 7 N Creating Schema Objects

Summary
In this chapter, you learned about four types of Oracle Database objects: views, sequences,
synonyms, and indexes.

A view is a tailored representation of data from one or more tables or views. The view is
a stored query. Views can be used to present a different perspective of data, to limit the data
access, or to hide a complex query. Views can be used as you would use tables in queries.
You can update, delete, and insert into the base tables through the view (with restrictions),
but the operation can affect only one table at a time if there is more than one table in the
view definition.

To change the definition of the view, you must re-create the view using the CREATE OR
REPLACE statement. To recompile a view or add or drop constraints, use the ALTER VIEW
statement. An inline view is a query that can be used instead of a table or view in the FROM
clause of a query. By using the ORDER BY clause in views (and inline views), you can perform
top-n analysis.

Sequences are number generators, and you can use them with the NEXTVAL and CURRVAL
keywords. Sequences can be used in queries, or you can directly assign a sequence value to
a variable. The sequence is created using a CREATE SEQUENCE statement. The next value of
the sequence cannot be altered, but its increment value can be altered.

Oracle synonyms are a mechanism to alias other objects, either locally or in another
database accessed through database links. Synonyms can be globally available (public) or
restricted to limited users (private). Synonyms are widely used in Oracle Databases to ease
data access so that the user does not have to know which schema or which database the
data is coming from.

Indexes are used to get to the table row quickly. The two main types of Oracle indexes
are B-tree and bitmap indexes. B-tree indexes are suitable for high-cardinality columns,
whereas bitmap indexes are suitable for low-cardinality columns with mostly static data.
B-tree indexes are the default and are widely used. Bitmap indexes are used in data ware-
house environments.

This chapter completes the lessons for the OCA certification exam Oracle 11g: SQL
Fundamentals I. I hope you have learned a lot from these chapters and have tried the review
questions in each chapter. Do not forget to try the practice tests on the CD before taking
the test. Good luck!

You will start learning the materials relevant to Oracle 11g: Administration I certification
exam in the next chapter.

95127c07.indd 378 2/17/09 12:33:21 PM

Exam Essentials 379

Exam Essentials

Understand how join views work. Know the restrictions on the columns that can be
updated in a join view.

Understand how constraints are used with views. Understand the type of constraints that
can be defined on a table.

Understand how inline views are used. Inline views are subqueries used in the FROM
clause. These subqueries can have an ORDER BY clause.

Know how to change the definition of a view. The CREATE OR REPLACE VIEW statement is
used to change the definition of the view. The ALTER VIEW statement is used to recompile a
view or to manage constraints on a view.

Know the precise syntax for obtaining sequence values. You should understand how
to use sequence_name.NEXTVAL and sequence_name.CURRVAL to obtain the next and most
recently generated number from a sequence.

Understand when indexes degrade performance. Know that indexes degrade the perfor-
mance of DML operations (INSERT, UPDATE, and DELETE).

Know when a bitmap index is more appropriate than a B-tree index. Bitmap indexes
work best on low- to medium-cardinality columns where row-level locking is not needed. In
contrast, B-tree indexes work best on high- to medium-cardinality columns and do support
row-level locking.

Know how Oracle will resolve table references. Oracle will first search for a table or view
that matches the referenced name. If no table or view is found, private synonyms are then
examined. Finally, public synonyms are examined. If no matching name is found, Oracle
will raise an exception.

95127c07.indd 379 2/17/09 12:33:21 PM

380 Chapter 7 N Creating Schema Objects

Review Questions
1. How do you remove the view USA_STATES from the schema?

A. ALTER VIEW USA_STATES REMOVE;

B. DROP VIEW USA_STATES;

C. DROP VIEW USA_STATES CASCADE;

D. DROP USA_STATES;

2. In a join view, on how many base tables can you perform a DML operation (UPDATE/
INSERT/DELETE) in a single step?

A. One

B. The number of base tables in the view definition

C. The number of base tables minus one

D. None

3. The following code is used to define a view. The EMP table does not have a primary key or
any other constraints.
CREATE VIEW MYVIEW AS

SELECT DISTINCT ENAME, SALARY

FROM EMP

WHERE DEPT_ID = 10;

 Which operation is allowed on the view?

A. SELECT, INSERT, UPDATE, DELETE

B. SELECT, UPDATE

C. SELECT, INSERT, DELETE

D. SELECT

E. SELECT, UPDATE, DELETE

4. Which statements are used to modify a view definition? (Choose all that apply.)

A. ALTER VIEW

B. CREATE OR REPLACE VIEW

C. REPLACE VIEW

D. CREATE FORCE VIEW

E. CREATE OR REPLACE FORCE VIEW

95127c07.indd 380 2/17/09 12:33:21 PM

Review Questions 381

5. You create a view based on the EMPLOYEES table using the following SQL.
CREATE VIEW MYVIEW AS SELECT * FROM EMPLOYEES;

 You modify the table to add a column named EMP_SSN. What do you need to do to have this
new column appear in the view?

A. Nothing. Since the view definition is selecting all columns, the new column will appear
in the view automatically.

B. Recompile the view using ALTER VIEW MYVIEW RECOMPILE.

C. Re-create the view using CREATE OR REPLACE VIEW.

D. Add the column to the view using ALTER VIEW MYVIEW ADD EMP_SSN.

6. Which is a valid status of a constraint created on a view?

A. DISABLE VALIDATE

B. DISABLE NOVALIDATE

C. ENABLE NOVALIDATE

D. All of the above

7. The SALARY column of the EMPLOYEE table is defined as NUMBER(8,2), and the COMMIS-
SION_PCT column is defined as NUMBER(2,2). A view is created with the following code:
CREATE VIEW EMP_COMM AS

SELECT LAST_NAME,

SALARY * NVL(COMMISSION_PCT,0) Commission

FROM EMPLOYEES;

 What is the datatype of the COMMISSION column in the view?

A. NUMBER (8,2)

B. NUMBER (10,2)

C. NUMBER

D. FLOAT

8. Which clause in the SELECT statement is not supported in a view definition subquery?

A. GROUP BY

B. HAVING

C. CUBE

D. FOR UPDATE OF

E. ORDER BY

95127c07.indd 381 2/17/09 12:33:21 PM

382 Chapter 7 N Creating Schema Objects

9. The EMPLOYEE table has the following columns:
EMP_ID NUMBER (4)

EMP_NAME VARCHAR2 (30)

SALARY NUMBER (6,2)

DEPT_ID VARCHAR2 (2)

 Which query will show the top five highest-paid employees?

A. SELECT * FROM

(SELECT EMP_NAME, SALARY

 FROM EMPLOYEE

 ORDER BY SALARY ASC)

WHERE ROWNUM <= 5;

B. SELECT EMP_NAME, SALARY FROM

(SELECT *

 FROM EMPLOYEE

 ORDER BY SALARY DESC)

WHERE ROWNUM < 5;

C. SELECT * FROM

(SELECT EMP_NAME, SALARY

 FROM EMPLOYEE

 ORDER BY SALARY DESC)

WHERE ROWNUM <= 5;

D. SELECT EMP_NAME, SALARY

(SELECT *

 FROM EMPLOYEE

 ORDER BY SALARY DESC)

WHERE ROWNUM = 5;

95127c07.indd 382 2/17/09 12:33:21 PM

Review Questions 383

10. The EMPLOYEE table has the following columns:
EMP_ID NUMBER (4) PRIMARY KEY

EMP_NAME VARCHAR2 (30)

SALARY NUMBER (6,2)

DEPT_ID VARCHAR2 (2)

 A view is defined using the following SQL:
CREATE VIEW EMP_IN_DEPT10 AS

SELECT * FROM EMPLOYEE

WHERE DEPT_ID = ‘HR’;

 Which INSERT statement will succeed through the view?

A. INSERT INTO EMP_IN_DEPT10 VALUES (1000, ‘JOHN’,1500,’HR’);

B. INSERT INTO EMP_IN_DEPT10 VALUES (1001, NULL,1700,’AM’);

C. INSERT INTO EMP_IN_DEPT10 VALUES (1002, ‘BILL’,2500,’AC’);

D. All of the above

11. To be able to modify a join view, the view definition should not contain which of the fol-
lowing in the top-level query? (Choose all that apply.)

A. A DISTINCT operator

B. An ORDER BY clause

C. Aggregate functions such as SUM, AVG, and COUNT

D. A WHERE clause

E. A GROUP BY clause

F. A ROWNUM pseudocolumn

12. Which statement will create a sequence that starts with 0 and gets smaller one whole num-
ber at a time?

A. create sequence desc_seq start with 0 increment by -1 maxvalue 1;

B. create sequence desc_seq increment by -1;

C. create sequence desc_seq start with 0 increment by -1;

D. Sequences can only increase.

13. Which statement is most correct in describing what happens to a synonym when the under-
lying object is dropped?

A. The synonym’s status is changed to INVALID.

B. You can’t drop the underlying object if a synonym exists unless the CASCADE clause is
used in the DROP statement.

C. The synonym is automatically dropped with the underlying object.

D. Nothing happens to the synonym.

95127c07.indd 383 2/17/09 12:33:21 PM

384 Chapter 7 N Creating Schema Objects

14. There is a public synonym named PLAN_TABLE for SYSTEM.PLAN_TABLE. Which of the fol-
lowing statements will remove this public synonym from the database?

A. drop table system.plan_table;

B. drop synonym plan_table;

C. drop table system.plan_table cascade;

D. drop public synonym plan_table;

15. A developer reports that she is receiving the following error:
SELECT key_seq.currval FROM dual;

ERROR at line 1:

ORA-08002: sequence KEY_SEQ.CURRVAL is not yet defined

 Which of the following statements does the developer need to run to fix this condition?

A. create sequence key_seq;

B. create synonym key_seq;

C. select key_seq.nextval from dual;

D. grant create sequence to public;

16. Bitmapped indexes are best suited to which type of environment?

A. High-cardinality columns

B. Online transaction processing (OLTP) applications

C. Full-table scan access

D. Low- to medium-cardinality columns

17. Which clauses in a SELECT statement can an index be used for? (Choose all that apply.)

A. SELECT

B. FROM

C. WHERE

D. HAVING

95127c07.indd 384 2/17/09 12:33:21 PM

Review Questions 385

18. You need to generate artificial keys for each row inserted into the PRODUCTS table. You
want the first row to use a sequence value of 1000, and you want to make sure that no
sequence value is skipped. Which of the following statements will meet these requirements?

A. CREATE SEQUENCE product_key2

START WITH 1000

INCREMENT BY 1

NOCACHE;

B. CREATE SEQUENCE product_key2

START WITH 1000

NOCACHE;

C. CREATE SEQUENCE product_key2

START WITH 1000

NEXTVAL 1

NOCACHE;

D. Options A and B meet the requirements.

E. None of the above statements meet all the requirements.

19. Which statement will display the last number generated from the EMP_SEQ sequence?

A. select emp_seq.curr_val from dual;

B. select emp_seq.currval from dual;

C. select emp_seq.lastval from dual;

D. select last_number from all_sequences where sequence_name =’EMP_SEQ’;

E. You cannot get the last sequence number generated.

20. Which statement will create a sequence that will rotate through 100 values in a round-robin
manner?

A. create sequence roundrobin cycle maxvalue 100;

B. create sequence roundrobin cycle to 100;

C. create sequence max_value 100 roundrobin cycle;

D. create rotating sequence roundrobin min 1 max 100;

95127c07.indd 385 2/17/09 12:33:21 PM

386 Chapter 7 N Creating Schema Objects

Answers to Review Questions
1. B. A view is dropped using the DROP VIEW view_name; command.

2. A. You can perform an INSERT, UPDATE, or DELETE operation on the columns involving
only one base table at a time. There are also some restrictions on the DML operations you
perform on a join view.

3. D. Since the view definition includes a DISTINCT clause, only queries are allowed on the
view.

4. B, E. The OR REPLACE option in the CREATE VIEW statement is used to modify the defini-
tion of the view. The FORCE option can be used to create the view with errors. The ALTER
VIEW statement is used to compile a view or to add or modify constraints on the view.

5. C. When you modify the base table, the view becomes invalid. Oracle will recompile the
view the first time it is accessed. Recompiling the view will make it valid, but the new col-
umn will not be available in the view. This is because when you create the view using *,
Oracle expands the column names and stores the column names in the dictionary.

6. B. Since the constraints on the view are not enforced by Oracle, the only valid status of a
constraint can be DISABLE NOVALIDATE. You must specify this status when creating con-
straints on a view.

7. C. When numeric operations are performed using numeric datatypes in the view definition,
the resulting column will be a floating datatype, which is NUMBER without any precision
or scale.

8. D. The FOR UPDATE OF clause is not supported in the view definition. The FOR UPDATE
clause locks the rows, so it is not allowed.

9. C. You can find the top five salaries using an inline view with the ORDER BY clause. The
Oracle 11g Optimizer understands the top-n rows query. Option B would have been correct
if you had ROWNUM <= 5 in the WHERE clause.

10. D. The view is based on a single table, and the only constraint on the table is the primary
key. Although the view is defined with a WHERE clause, you have not enforced that check
while using DML statements through the WITH CHECK OPTION clause.

11. A, C, E, F. To be able to update a base table using the view, the view definition should not
have a DISTINCT clause, a GROUP BY clause, a START WITH clause, a CONNECT BY clause,
ROWNUM, set operators (UNION, UNION ALL, INTERSECT, or MINUS), or a subquery in the
SELECT clause.

12. A. For a descending sequence, the default START WITH value is –1, and the default MAXVALUE
value is –1. To start the sequence with 0, you must explicitly override both of these defaults.

13. A. When the underlying object is dropped, the synonym will become INVALID. You can see
the status of the synonym by querying the USER_OBJECTS dictionary view.

95127c07.indd 386 2/17/09 12:33:21 PM

Answers to Review Questions 387

14. D. To remove a public synonym, use the DROP PUBLIC SYNONYM statement. The DROP
TABLE statement will remove a table from the database but will not drop any synonyms on
the table. The synonym will become invalid.

15. C. A sequence is not yet initialized if NEXTVAL has not yet been selected from it within the
current session. It has nothing to do with creating a sequence, creating a synonym, or grant-
ing privileges.

16. D. Bitmapped indexes are not suited for high-cardinality columns (those with highly selec-
tive data). OLTP applications tend to need row-level locking, which is not available with
bitmap indexes. Full-table scans do not use indexes. Bitmap indexes are best suited to multiple
combinations of low- to medium-cardinality columns.

17. A, C. The obvious answer is C, but an index also can be used for the SELECT clause. If an
index contains all the columns needed to satisfy the query, the table does not need to be
accessed.

18. D. Both options A and B produce identical results, because the INCREMENT BY 1 clause is
the default if it is not specified. Option C is invalid because NEXTVAL is not a valid keyword
within a CREATE SEQUENCE statement.

19. B. Option D is close, but it shows the greatest number in the cache, not the latest generated.
The correct answer is from the sequence itself, using the pseudocolumn CURRVAL.

20. A. The keyword CYCLE will cause the sequence to wrap and reuse numbers. The keyword
MAXVALUE will set the largest value the sequence will cycle to. The name roundrobin is
there to confuse to you.

95127c07.indd 387 2/17/09 12:33:22 PM

95127c07.indd 388 2/17/09 12:33:22 PM

Part

II
Oracle

Database 11g:
Administration I

95127c08.indd 389 2/17/09 12:45:14 PM

95127c08.indd 390 2/17/09 12:45:15 PM

Chapter

8
Introducing Oracle
Database 11g
Components and
Architecture

OrACle DAtAbAse 11g:
ADmInIstrAtIOn I exAm ObjeCtIves
COvereD In thIs ChApter:

Exploring the Oracle Database ArchitectureÛÛ

Explain the Memory StructuresÛN

Describe the Process StructuresÛN

Overview of Storage StructuresÛN

Preparing the Database EnvironmentÛÛ

Identify the tools for Administering an Oracle DatabaseÛN

Plan an Oracle Database installationÛN

Install the Oracle software by using Oracle Universal ÛN

Installer (OUI)

95127c08.indd 391 2/17/09 12:45:15 PM

With this chapter, you’ll start learning Oracle Database 11g
(Oracle 11g) database administration. This chapter and the
remaining chapters of the book will discuss the objectives for

the Oracle 11g Administration I OCA certification exam.
With the release of Oracle 11g, Oracle Corporation has delivered a powerful and feature-

rich database that can meet the performance, availability, recoverability, application-testing,
and security requirements of any mission-critical application. As the Oracle DBA, you are
responsible for managing and maintaining the Oracle Database 11g throughout its life
cycle, from initial installation, creation, and configuration to final deployment. Perform-
ing these tasks requires a solid understanding of Oracle’s product offerings so that you
can apply the proper tools and features to the application. You must also use relational
database concepts to design, implement, and maintain the tables that store the application
data. At the heart of these activities is the need for a thorough understanding of the Oracle
architecture and the tools and techniques used to monitor and manage the components of
this architecture.

I will begin the chapter by reviewing the Oracle Database basics. You will learn what con-
stitutes the Oracle Database 11g—an overview of the memory structures, the processes that
manage the database, and how data is stored in the database. I will also discuss the tools used
to administer the Oracle Database 11g and how to install the Oracle 11g software.

Exam objectives are subject to change at any time without prior notice
and at Oracle’s sole discretion. Please visit Oracle’s Training and Certifica-
tion website at http://education.oracle.com/pls/web_prod-plq-dad/
db_pages.getpage?page_id=41&p_exam_id=1Z0_052 for the most current
exam-objectives listing.

Oracle Database Fundamentals
Databases store data. The data itself is composed of related logical units of information.
The database management system (DBMS) facilitates the storage, modification, and
retrieval of this data. Some early database technologies used flat files or hierarchical file
structures to store application data. Others used networks of connections between sets
of data to store and locate information. The early DBMS architecture mixed the physical
manipulation of data with its logical manipulation. When the location of data changed, the

95127c08.indd 392 2/17/09 12:45:15 PM

Oracle Database Fundamentals 393

application referencing the data had to be updated. Relational databases brought a revolu-
tionary change to this architecture. Relational DBMS introduced data independence, which
separated the physical model of the data from its logical model. Oracle is a relational DBMS.

All releases of Oracle’s database products have used a relational DBMS model to store
data in the database. This relational model is based on the groundbreaking work of Dr.
Edgar Codd, which was first published in 1970 in his paper “A Relational Model of Data
for Large Shared Data Banks.” IBM Corporation, which was then an early adopter of Dr.
Codd’s model, helped develop the computer language that is used to access all relational
databases today—Structured Query Language (SQL). The great thing about SQL is that
you can use it to easily interact with relational databases without having to write complex
computer programs and without needing to know where or how the data is physically
stored on disk. You saw several SQL statements in the previous chapters.

Relational Databases
The concept of a relational database management system (RDBMS) is that the data con-
sists of a set of relational objects. The basic storage of data in a database is a table. The
relations are implemented in tables, where data is stored in rows and columns. Figure 8.1
shows such a relationship.

F I gu r e 8 .1 Relational tables

EMP (Employee Table)

EMPNO

7369

7499

7521

7566

7654

7698

7844

ENAME

SMITH

ALLEN

WARD

JONES

MARTIN

BLAKE

URNER

JOB

CLERK

SALESMAN

SALESMAN

MANAGER

SALESMAN

MANAGER

SALESMAN

MGR

7902

7698

7698

7839

7698

7839

7698

HIREDATE

17-DEC -8

20-FEB-8

22-FEB-8

02-APR-8

28-SEP-8

07-MAY-8

08-SEP-8

0800

11600

11250

12975

11250

12850

11500

COMM DEPTNO

20

30

30

20

30

30

30

300

500

1400

Primary Key
Column

Primary Key
Column

Foreign Key
Column

DEPT (Department Table)

DNAME

ACCOUNTING

RESEARCH

SALES

OPERATIONS

DEPTNO

10

20

30

40

LOC

NEW YORK

DALLAS

CHICAGO

BOSTON

SAL

95127c08.indd 393 2/17/09 12:45:16 PM

394 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

The DEPT table in the lower part of the figure stores information about departments
in the company. Each department is identified by the department ID. Along with the ID,
the name and location of the department are also stored in the table. The EMP table stores
information about the employees in the company. Each employee is identified by a unique
employee ID. This table includes employee information such as hire date, salary, manager,
and so on. The DEPTNO column in both tables then provides a relationship between the
tables. A department may have many employees, but an employee can work for only one
department.

Since the user accessing this data doesn’t need to know how or where the row is stored
in the database, there must be a way to uniquely identify the rows in the tables. In our
example, the department is uniquely identified by department number, and an employee is
identified by an employee ID. The column (or set of columns) that uniquely identifies a row
is known as the primary key. According to relational theory, each table in a relational data-
base must have a primary key.

When relating tables together, the primary key of one table is placed in another table.
For example, the primary key of the DEPT table is a column in the EMP table. In RDBMS
terminology, this is known as a foreign key. A foreign key states that the data value in the
column exists in another table and should continue to exist in the other table to keep the
relationship between tables. The table where the column is a primary key is known as the
parent table, and the table where the foreign key column exists is known as the child table.
Oracle enforces the parent-child relationship between tables using constraints.

Oracle Database 11g Objects
Every RDBMS supports a variety of database objects. Oracle 11g supports the entire set of
database objects required for a relational database, such as tables, views, constraints, and
so on. It also supports a wide range of objects specific to the Oracle Database 11g, such as
packages, sequences, materialized views, and so on. Table 8.1 lists the objects available in
Oracle 11g. I also discussed many of these in Chapter 6, “Creating Tables and Constraints,”
and Chapter 7, “Creating Schema Objects.”

tA b le 8 .1 Oracle Database 11g Objects

Object Type Description

Table A table is the basic form of data storage. A table has columns and
stores rows of data.

View A view is a stored query. No data-storage space is occupied for view data.

Index An index is an optional structure that is useful for locating data faster.

Materialized view Materialized views are used to summarize and store data. They are
similar to views but take up storage space to store data.

95127c08.indd 394 2/17/09 12:45:16 PM

Oracle Database Fundamentals 395

Object Type Description

Index-organized
table

An index-organized table use a primary key and stores the table data
in the index segment.

Cluster A cluster is a group of tables that share the same storage blocks.

Constraint A constraint is a stored rule to enforce data integrity.

Sequence A sequence provides a mechanism for the continuous generation of
numbers.

Synonym A synonym is an alias for a database schema object.

Triggers A trigger is a PL/SQL program unit that gets executed when an event
occurs.

Stored function Stored functions are PL/SQL programs that can be used to create
user-defined functions to return a value.

Stored procedure Stored procedures are PL/SQL programs to define a business
process.

Package A package is a collection of procedures, functions, and other program
constructs.

Java Stored Java procedures can be created in Oracle to define business
processes.

Database link Database links are used to communicate between databases to
share data.

You use SQL to create database objects and to interact with application data. In the next
section, I will discuss the tools available to access and administer Oracle 11g database.

Interacting with Oracle 11g
SQL is the language used to interact with the Oracle 11g database. Many tools are available
for the DBA to administer an Oracle 11g database. The common tools are as follows:

SQL*Plus, which is a command-line interface utilityÛN

SQL Developer, a GUI toolÛN

Oracle Enterprise Manager Database Control, a GUI toolÛN

tA b le 8 .1 Oracle Database 11g Objects (continued)

95127c08.indd 395 2/17/09 12:45:16 PM

396 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Using SQL*Plus and SQL Developer, you interact directly with the Oracle 11g database
using SQL statements and a superset of commands such as STARTUP, SHUTDOWN, and so on.
Using Enterprise Manager, you interact indirectly with the Oracle 11g database.

SQL*Plus
SQL*Plus is the primary tool for an Oracle DBA to administer the database using SQL
commands. Before you can run SQL statements, you must connect to the Oracle 11g data-
base. You can start SQL*Plus from a Windows command prompt using the SQLPLUS.EXE
executable or using the $ORACLE_HOME/bin/sqlplus executable on the Unix/Linux plat-
form. Figure 8.2 shows connecting to SQL*Plus from a Linux workstation.

F I gu r e 8 . 2 SQL*Plus login in Linux

To get an overview of SQL*Plus and how to connect to the database using SQL*Plus,
please refer to Chapter 1, “Introducing SQL.”

SQL Developer
SQL Developer is a free GUI database-development tool. With SQL Developer, you can
create and view the database objects, make changes to the objects, run SQL statements,
run PL/SQL programs, create and edit PL/SQL programs, and perform PL/SQL debugging.

95127c08.indd 396 2/17/09 12:45:16 PM

Oracle Database Fundamentals 397

SQL Developer also includes a migration utility to migrate Microsoft Access and Microsoft
SQL Server databases to Oracle 11g. Figure 8.3 shows the object browser screen of SQL
Developer.

F I gu r e 8 . 3 SQL Developer screen

You can download and learn more about SQL Developer on the OTN
website (http://www.oracle.com/technology/products/database/sql_
developer/index.html).

Enterprise Manager Database Control
Oracle Enterprise Manager Database Control is a web-based database management tool
that is bundled with the Oracle 11g database. This is a graphical tool specifically designed
to administer the Oracle database. The Enterprise Manager Database Control is used to man-
age a single database, whereas the Enterprise Manager Grid Control can manage multiple
databases and other services and applications, such as OAS, and even non-Oracle applica-
tions at the same time. Figure 8.4 shows the Enterprise Manager Database Control home
screen, where an overview of the database is shown.

95127c08.indd 397 2/17/09 12:45:16 PM

398 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

F I gu r e 8 . 4 Enterprise Manager home screen

For all the database-administration examples in this chapter, you may use either SQL*Plus
to perform the SQL command line or use the GUI tool Enterprise Manager (EM) Database
Control. Before learning to administer the Oracle 11g database, let’s start with the basics.
In the next section, you’ll learn about Oracle 11g architecture.

Oracle 11g Architecture
Each database-administration and -development tool described previously allows a user
to interact with the database. Using these tools requires that user accounts be created in
the database and that connectivity to the database be in place across the network. Users
must also have adequate storage capacity for the data they insert, and they need recovery
mechanisms for restoring the transactions they are performing in the event of a hardware

95127c08.indd 398 2/17/09 12:45:16 PM

Oracle 11g Architecture 399

failure. As the DBA, you take care of each of these tasks, as well as others, which include
the following:

Selecting the server hardware on which the database software will runÛN

Installing and configuring the Oracle 11ÛN g software on the server hardware

Creating the Oracle 11ÛN g database

Creating and managing the tables and other objects used to manage the application dataÛN

Creating and managing database usersÛN

Establishing reliable backup and recovery processes for the databaseÛN

Monitoring and tuning database performanceÛN

The remainder of this book is dedicated to helping you understand how to perform these
and other important Oracle database-administration tasks. But first, to succeed as an Oracle
DBA, you need to completely understand Oracle’s underlying architecture and its mechanisms.
Understanding the relationship between Oracle’s memory structures, background processes,
and I/O activities is critical before learning how to manage these areas.

The Oracle server architecture can be described in three categories:

User-related processesÛN

Logical memory structures that are collectively called an ÛN Oracle instance

Physical file structures that are collectively called a ÛN database

You will also see how the physical structures map to the logical structures of the data-
base you are familiar with, such as tables and indexes.

Database is a confusing term that is often used to represent different things on different
platforms; the only commonality is that it is something related to storing data. In Oracle,
however, the term database represents the physical files that store data. An instance is com-
posed of the memory structures and background processes. Each database should have at
least one instance associated with it. It is possible for multiple instances to access a single
database; such a configuration is known as Real Application Clusters (RAC). In this book,
however, you’ll concentrate only on single-instance databases because RAC is not part of
the certification exam.

Figure 8.5 shows all the parts of an Oracle instance and database.
Although the architecture in Figure 8.5 may at first seem complex, each of these archi-

tecture components is described in more detail in the following sections, beginning with
the user-related processes, and is actually fairly simple. This figure is an important piece of
fundamental information when learning about the Oracle 11g architecture.

The key database components are memory structures, process structures,
and storage structures. Process and memory structures together are called
an instance ; the storage structure is called a database. Taken together, the
instance and the database are called an Oracle server.

95127c08.indd 399 2/17/09 12:45:17 PM

400 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

F I gu r e 8 .5 The Oracle 11g architecture

Server
Process 1

PGA

Datafile 1 Datafile 2 Datafile 3 Datafile 4 Datafile 5

Tablespace
1

SGA

Server
Process 2

Background
Processes

PGA

Instance

Physical
Database
Structure

DBWn CKPT LGWR

Database

Data
Files

Control
Files

Redo Log
Files

Database

Archive Log
Files

Password
Files

Parameter
Files

Logical
Database
Structure

SYSTEM
Tablespace

SYSAUX
Tablespace

Tablespace
2

User Processes
At the user level, two types of processes allow a user to interact with the instance and, ulti-
mately, with the database: the user process and the server process.

Whenever a user runs an application, such as a human-resources or order-taking applica-
tion, Oracle starts a user process to support the user’s connection to the instance. Depending
on the technical architecture of the application, the user process exists either on the user’s
own computer or on the middle-tier application server. The user process then initiates a con-
nection to the instance. Oracle calls the process of initiating and maintaining communication
between the user process and the instance a connection. Once the connection is made, the
user establishes a session in the instance.

After establishing a session, each user starts a server process on the host server itself.
It is this server process that is responsible for performing the tasks that actually allow the
user to interact with the database.

95127c08.indd 400 2/17/09 12:45:17 PM

Oracle 11g Architecture 401

Examples of these interactions include sending SQL statements to the database, retrieving
needed data from the database’s physical files, and returning that data to the user.

Server processes generally have a one-to-one relationship with user
processes—in other words, each user process connects to one and only
one server process. However, in some Oracle configurations, multiple
user processes can share a single server process. We will discuss Oracle
connection configurations in Chapter 11, “Understanding Network
Architecture.”

In addition to the user and server processes that are associated with each user connec-
tion, an additional memory structure called the program global area (PGA) is also created
for each user. The PGA stores user-specific session information such as bind variables and
session variables. Every server process on the server has a PGA memory area. Figure 8.6
shows the relationship between a user process, server processes, and the PGA.

F I gu r e 8 .6 The relationship between user and server processes and the PGA

User Process

The user process communicates
with the server process on the host
server using the PGA to store
session-specific information.

The user starts the Oracle-based
application on their computer,
creating a user process.

Host Server

PGA

Oracle Instance

Session

Server
Process

PGA memory is not shared. Each server process has a PGA associated with it and is
exclusive. As a DBA, you set the total memory that can be allocated to all the PGA memory
allocated to all server and background processes.

The server process communicates with the Oracle instance on behalf of the user. The
Oracle instance is examined in the next section.

95127c08.indd 401 2/17/09 12:45:18 PM

402 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

The Oracle Instance
An Oracle database instance consists of Oracle’s main memory structure, called the system
global area (SGA), and several Oracle background processes. It is with the SGA that the
server process communicates when the user accesses the data in the database. Figure 8.7
shows the components of the SGA.

F I gu r e 8 .7 SGA components

Background Processes

SGA

Redo Buffer

Large Pool

Java Pool

Streams Pool

Keep Recycle Default

ASMB RBAL Others

MMON MMNL MMAN RECO

DBWn CKPT PMON SMON LGWR ARCn

DB Buffer Cache Shared Pool

Data
Dictionary

Cache

Result
Cache

Control Structures

Shared
SQL
Area

Shared
PL/SQL

Area

Library Cache

The components of the instance are described in the following sections.

Oracle Memory Structures
The SGA is a shared memory area. All the users of the database share the information
maintained in this area. Oracle allocates memory for the SGA when the instance is started
and deallocates it when the instance is shut down. The SGA consists of three required com-
ponents and four optional components. Table 8.2 describes the required components.

95127c08.indd 402 2/17/09 12:45:18 PM

Oracle 11g Architecture 403

tA b le 8 . 2 Required SGA Components

SGA Component Description

Shared pool Caches the most recently used SQL statements that have been
issued by database users

Database buffer cache Caches the data that has been most recently accessed by data-
base users

Redo log buffer Stores transaction information for recovery purposes

Table 8.3 describes the optional components.

tA b le 8 . 3 Optional SGA Components

SGA Component Description

Java pool Caches the most recently used Java objects and application code
when Oracle’s JVM option is used.

Large pool Caches data for large operations such as Recovery Manager (RMAN)
backup and restore activities and Shared Server components.

Streams pool Caches the data associated with queued message requests when
Oracle’s Advanced Queuing option is used.

Result cache This new area is introduced in the Oracle 11g database and stores
results of SQL queries and PL/SQL functions for better performance.

Oracle 11g can manage the components of the SGA dynamically, without exceeding the
value specified by the DBA for the parameter SGA_MAX_SIZE, but only for ASSM. Memory in
the SGA is allocated in units of contiguous memory called granules. The size of a granule
depends on the parameter MEMORY_MAX_TARGET. If MEMORY_MAX_TARGET is larger than 1024MB,
the granule size is either 16MB or 4MB. MEMORY_MAX_TARGET is discussed in detail in Chap-
ter 14, “Maintaining the Database and Managing Performance.” A minimum of three granules
must be allocated to SGA—one each for the required components in Table 8.2.

The sizes of these SGA components can be managed in two ways: manually or auto-
matically. If you choose to manage these components manually, you must specify the size
of each SGA component and then increase or decrease the size of each component accord-
ing to the needs of the application. If these components are managed automatically, the
instance itself will monitor the utilization of each SGA component and adjust their sizes
accordingly, relative to a predefined maximum allowable aggregate SGA size.

95127c08.indd 403 2/17/09 12:45:18 PM

404 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Oracle 11g provides several dynamic performance views to see the components and sizes
of SGA; you can use V$SGA and V$SGAINFO, as shown here:

SQL> SELECT * FROM v$sga;

NAME VALUE

-------------------- ----------

Fixed Size 1303916

Variable Size 570428052

Database Buffers 377487360

Redo Buffers 4935680

SQL>

Alternatively, you may use the SHOW SGA command from SQL*Plus, as shown here:

SQL> SHOW SGA

Total System Global Area 954155008 bytes

Fixed Size 1303916 bytes

Variable Size 570428052 bytes

Database Buffers 377487360 bytes

Redo Buffers 4935680 bytes

SQL>

 The output from this query shows that the total size of the SGA is 954,155,008 bytes.
This total size is composed of the variable space that is composed of the shared pool, the
large pool, the Java pool (570428052 bytes), the database buffer cache (377487360 bytes),
the redo log buffer (4935680 bytes), and some additional space (1,303,916 bytes) that stores
information used by the instance’s background processes. The V$SGAINFO view displays
additional details about the allocation of space within the SGA, as shown in the following
query:

SQL> SELECT * FROM v$sgainfo;

NAME BYTES RESIZEABLE

-------------------------------- ---------- ----------

Fixed SGA Size 1303916 No

Redo Buffers 4935680 No

Buffer Cache Size 352321536 Yes

Shared Pool Size 339738624 Yes

Large Pool Size 4194304 Yes

Java Pool Size 12582912 Yes

Streams Pool Size 0 Yes

Shared IO Pool Size 0 Yes

95127c08.indd 404 2/17/09 12:45:18 PM

Oracle 11g Architecture 405

Granule Size 4194304 No

Maximum SGA Size 954155008 No

Startup overhead in Shared Pool 46137344 No

Free SGA Memory Available 239075328

12 rows selected.

SQL>

The results of this query show in detail how much space is occupied by each component
in the shared pool. The components with the RESIZEABLE column with a value of Yes can
be managed dynamically by Oracle 11g.

You can also use EM Database Control to view the sizes of each of the SGA components,
as shown in Figure 8.8. From the home screen, go to the Server tab and click Memory Advi-
sors to see this.

F I gu r e 8 . 8 EM Database Control showing SGA components

You’ll learn more about the components in the SGA in the next sections.

Database Buffer Cache

The database buffer cache is the area in SGA that caches the database data, holding blocks
from the data files that have been read recently. The database buffer cache is shared among
all the users connected to the database. There are three types of buffers:

Dirty buffersÛN are the buffer blocks that need to be written to the data files. The data in
these buffers has changed and has not yet been written to the disk.

Free buffersÛN do not contain any data or are free to be overwritten. When Oracle reads
data from the disk, free buffers hold this data.

Pinned buffersÛN are the buffers that are currently being accessed or explicitly retained
for future use.

Oracle uses a least recently used algorithm (LRU algorithm) to manage the contents of
the shared pool and database buffer cache. When a user’s server process needs to put a SQL

95127c08.indd 405 2/17/09 12:45:18 PM

406 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

statement into the shared pool or copy a database block into the buffer cache, Oracle uses the
space in memory that is occupied by the least recently accessed SQL statement or buffer to
hold the requested SQL or block copy. Using this technique, Oracle keeps frequently accessed
SQL statements and database buffers in memory longer, improving the overall performance
of the server by minimizing parsing and physical disk I/O.

The background process DBWn writes the database blocks from the data-
base buffer cache to the data files. Dirty buffers contain data that changed
and must be written to disk.

To manage the buffer cache better, Oracle 11g provides three buffer caches. The DEFAULT
cache is the default and is required. The KEEP cache and the RECYCLE cache can be optionally
configured. By default all the data read from the disk is written to the DEFAULT pool. If you
want certain data not to be aged from memory, you can configure the KEEP pool and use
the ALTER TABLE statement to specify which tables should use the KEEP pool. Similarly, if
you do not want to age out good data from the default cache for temporary data, you may
specify such tables to have the RECYCLE pool instead of the default. The blocks in the KEEP
pool also follow the LRU algorithm to age out blocks when new blocks need space in the
KEEP pool. By sizing the KEEP pool appropriately, you can hold frequently used blocks lon-
ger in the KEEP pool. The RECYCLE cache removes the buffers from memory as soon as they
are not needed.

The DB_CACHE_SIZE parameter specifies the size of the database buffer
cache default pool. To configure the keep and recycle pools, use the DB_
KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE parameters.

Redo Log Buffer

The redo log buffer is a circular buffer in the SGA that holds information about the
changes made to the database data. The changes are known as redo entries or change vec-
tors and are used to redo the changes in case of a failure. DML and DDL statements are
used to make changes to the database data. The parameter LOG_BUFFER determines the size
of the redo log buffer cache.

The background process LGWR writes the redo log information to the
online redo log files.

Shared Pool

The shared pool portion of the SGA holds information such as SQL, PL/SQL procedures
and packages, the data dictionary, locks, character-set information, security attributes, and
so on. The shared pool consists of the library cache and the data dictionary cache.

95127c08.indd 406 2/17/09 12:45:18 PM

Oracle 11g Architecture 407

The library cache contains the shared SQL areas, private SQL areas, PL/SQL programs,
and control structures such as locks and library cache handles.

The shared SQL area is used for maintaining recently executed SQL statements and their
execution plans. Oracle divides each SQL statement that it executes into a shared SQL area
and a private SQL area. When two users are executing the same SQL, the information in
the shared SQL area is used for both. The shared SQL area contains the parse tree and exe-
cution plan, whereas the private SQL area contains values for the bind variables (persistent
area) and runtime buffers (runtime area). Oracle creates the runtime area as the first step
of an execute request. For INSERT, UPDATE, and DELETE statements, Oracle frees the runtime
area after the statement has been executed. For queries, Oracle frees the runtime area only
after all rows have been fetched or the query has been canceled.

Oracle processes PL/SQL program units the same way it processes SQL statements.
When a PL/SQL program unit is executed, the code is moved to the shared PL/SQL area,
and the individual SQL commands within the program unit are moved to the shared
SQL area. Again, the shared program units are maintained in memory with an LRU
algorithm.

The third area in the library cache is used to store control information and is maintained
internally by Oracle. Various locks, latches, and other control structures reside here, and
any server process that requires this information can access it.

The data dictionary cache holds the most recently used database dictionary information.
The data dictionary cache is also known as the row cache because it holds data as rows
instead of buffers (which hold entire blocks of data).

The result cache is new in Oracle 11g and is used to hold the SQL and PL/SQL function
results. Executions of similar SQL statements can use the cached results to answer query
requests. Because retrieving results from the SQL query result cache is faster than rerun-
ning a query, frequently run queries experience a significant performance improvement
when their results are cached.

The parameter SHARED_POOL_SIZE determines the size of the shared pool.

Large Pool

The large pool is an optional area in the SGA that the DBA can configure to provide large
memory allocations for specific database operations such as an RMAN backup or restore.
The large pool allows Oracle to request large memory allocations from a separate pool to
prevent contention from other applications for the same memory. The large pool does not
have an LRU list. The parameter LARGE_POOL_SIZE determines the size of the large pool.

Java Pool

The Java pool is another optional area in the SGA that the DBA can configure to provide
memory for Java operations, just as the shared pool is provided for processing SQL and PL/
SQL statements. The parameter JAVA_POOL_SIZE determines the size of the Java pool.

95127c08.indd 407 2/17/09 12:45:18 PM

408 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Streams Pool

The streams pool is exclusively used by Oracle streams. The parameter STREAMS_POOL_SIZE
determines the size of the streams pool.

If any SGA component size is set smaller than the granule size, the size of
the component is rounded to the nearest granule size.

Oracle 11g can manage all the components of the SGA and PGA automati-
cally; there is no need for the DBA to configure each pool individually. You
will learn more about automatic memory management in Chapter 14.

Oracle Processes Structures
Many types of Oracle background processes exist. Each performs a specific job in help-
ing to manage an instance. Five Oracle background processes are required by the Oracle
instance, and several background processes are optional. The required background pro-
cesses are found in all Oracle instances. Optional background processes may or may not be
used, depending on the features that are being used in the database. Table 8.4 describes the
required background processes.

tA b le 8 . 4 Required Oracle Background Processes

Process Name OS Process Description

Database Writer DBWn Writes modified database blocks from the SGA’s database
buffer cache to the data files on disk

Checkpoint CKPT Updates the data file headers following a checkpoint event

Log Writer LGWR Writes transaction recovery information from the SGA’s
redo log buffer to the online redo log files on disk

Process Monitor PMON Cleans up failed user database connections

System Monitor SMON Performs instance recovery following an instance crash,
coalesces free space in the database, and manages space
used for sorting

Table 8.5 describes some of the optional background processes.

95127c08.indd 408 2/17/09 12:45:19 PM

Oracle 11g Architecture 409

tA b le 8 .5 Optional Oracle Background Processes

Process Name
OS
Process Description

Archiver ARCn Copies the transaction recovery information from the redo log
files to the archive location. Nearly all production databases
use this optional process. You can have up to 30 archival pro-
cesses (ARC0-ARC9, ARCa-ARCt).

Recoverer RECO Recovers failed transactions that are distributed across mul-
tiple databases when using Oracle’s distributed database
feature.

ASM Disk ASMB Present on databases using Automatic Storage Management
disks.

ASM Balance RBAL Coordinates rebalance activity of disks in an ASM disk group.

Job Queue
Monitor

CJQn Assigns jobs to the job queue processes when using Oracle’s
job scheduling feature.

Job Queue Jnnn Executes database jobs that have been scheduled using Ora-
cle’s job-scheduling feature.

Queue Monitor QMNn Monitors the messages in the message queue when Oracle’s
Advanced Queuing feature is used.

Diagnosability DIAG Performs diagnostic dumps.

Diagnosablilty DIA0 Diagnostic process responsible for hang detection and dead-
lock resolution.

Event Monitor EMNC Process responsible for event-management coordination and
notification.

Flashback Data
Archive

FBDA Archives historical records from table when the flashback data
archive feature is used.

Parallel Query
Slave

Qnnn Carries out portions of a larger overall query when Oracle’s
Parallel Query feature is used.

Dispatcher Dnnn Assigns user’s database requests to a queue where they are
then serviced by shared server processes when Oracle’s
Shared Server feature is used. See Chapter 11 for details on
using shared servers.

Shared Server Snnn Server processes that are shared among several users when
Oracle’s Shared Server feature is used. See Chapter 11 for
details on using shared servers.

95127c08.indd 409 2/17/09 12:45:19 PM

410 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Process Name
OS
Process Description

Memory
Manager

MMAN Manages the size of each individual SGA component when
Oracle’s Automatic Shared Memory Management feature is
used. See Chapter 14 for more information on using this feature.

Memory
Monitor

MMON Gathers and analyzes statistics used by the Automatic Work-
load Repository feature. See Chapter 14 for more information
on using this feature.

Memory
Monitor
Light

MMNL Gathers and analyzes statistics used by the Automatic Work-
load Repository feature. See Chapter 14 for more information
on using this feature.

Recovery
Writer

RVWR Writes recovery information to disk when Oracle’s Flashback
Database feature is used. See Chapter 15, “Implementing Data-
base Backups,” for details on how to use the Flashback Database
feature.

Change
Tracking
Writer

CTWR Keeps track of which database blocks have changed when Ora-
cle’s incremental Recovery Manager feature is used. See Chapter
15 for details on using Recovery Manager to perform backups.

On Unix systems, you can view these background processes from the operating system
using the ps command, as shown here:

$ ps -ef | grep 11GR11

oracle 2517 1 0 20:22 ? 00:00:00 ora_j000_11GR11

oracle 3436 1 0 Jun06 ? 00:00:01 ora_pmon_11GR11

oracle 3438 1 0 Jun06 ? 00:00:00 ora_vktm_11GR11

oracle 3442 1 0 Jun06 ? 00:00:00 ora_diag_11GR11

oracle 3444 1 0 Jun06 ? 00:00:00 ora_dbrm_11GR11

oracle 3446 1 0 Jun06 ? 00:00:01 ora_psp0_11GR11

oracle 3450 1 0 Jun06 ? 00:00:24 ora_dia0_11GR11

oracle 3452 1 0 Jun06 ? 00:00:00 ora_mman_11GR11

oracle 3454 1 0 Jun06 ? 00:00:03 ora_dbw0_11GR11

oracle 3456 1 0 Jun06 ? 00:00:10 ora_lgwr_11GR11

oracle 3458 1 0 Jun06 ? 00:00:02 ora_ckpt_11GR11

oracle 3460 1 0 Jun06 ? 00:00:05 ora_smon_11GR11

oracle 3462 1 0 Jun06 ? 00:00:00 ora_reco_11GR11

oracle 3464 1 0 Jun06 ? 00:00:05 ora_mmon_11GR11

oracle 3466 1 0 Jun06 ? 00:00:01 ora_mmnl_11GR11

oracle 3468 1 0 Jun06 ? 00:00:00 ora_d000_11GR11

tA b le 8 .5 Optional Oracle Background Processes (continued)

95127c08.indd 410 2/17/09 12:45:19 PM

Oracle 11g Architecture 411

oracle 3470 1 0 Jun06 ? 00:00:00 ora_s000_11GR11

oracle 3482 1 0 Jun06 ? 00:00:01 ora_arc0_11GR11

oracle 3484 1 0 Jun06 ? 00:00:01 ora_arc1_11GR11

oracle 3486 1 0 Jun06 ? 00:00:00 ora_arc2_11GR11

oracle 3488 1 0 Jun06 ? 00:00:00 ora_arc3_11GR11

oracle 3490 1 0 Jun06 ? 00:00:00 ora_smco_11GR11

oracle 3492 1 0 Jun06 ? 00:00:00 ora_fbda_11GR11

oracle 3494 1 0 Jun06 ? 00:00:00 ora_qmnc_11GR11

oracle 3510 1 0 Jun06 ? 00:00:00 ora_q000_11GR11

oracle 3512 1 0 Jun06 ? 00:00:00 ora_q001_11GR11

oracle 3744 1 0 Jun06 ? 00:00:02 ora_cjq0_11GR11

oracle 9616 1 0 14:01 ? 00:00:00 ora_w000_11GR11

$

This output shows that several background processes are running on the Linux server
for the 11GR11 database.

The dynamic view V$BGPROCESS shows the background processes available. The follow-
ing query lists multiple child processes only once to save space. To see all the processes,
remove the WHERE clause and execute.

SQL> SELECT name, description

 2 FROM v$bgprocess

 3 WHERE SUBSTR(name, 4, 1) NOT BETWEEN ‘1’ AND ‘9’

 4 AND SUBSTR(name, 4, 1) NOT BETWEEN ‘a’ AND ‘z’

 5 ORDER BY name;

NAME DESCRIPTION

----- --

ACMS Atomic Controlfile to Memory Server

ARB0 ASM Rebalance 0

ARBA ASM Rebalance 10

ARC0 Archival Process 0

ASMB ASM Background

CJQ0 Job Queue Coordinator

CKPT checkpoint

CTWR Change Tracking Writer

DBRM Resource Manager process

DBW0 db writer process 0

DIA0 diagnosibility process 0

DIAG diagnosibility process

DMON DG Broker Monitor Process

DSKM slave DiSKMon process

EMNC EMON Coordinator

95127c08.indd 411 2/17/09 12:45:19 PM

412 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

FBDA Flashback Data Archiver Process

FMON File Mapping Monitor Process

FSFP Data Guard Broker FSFO Pinger

GMON diskgroup monitor

GTX0 Global Txn process 0

INSV Data Guard Broker INstance SlaVe Process

KATE Konductor of ASM Temporary Errands

LCK0 Lock Process 0

LGWR Redo etc.

LMD0 global enqueue service daemon 0

LMON global enqueue service monitor

LMS0 global cache service process 0

LNS0 Network Server 0

LSP0 Logical Standby

MARK mark AU for resync koordinator

MMAN Memory Manager

MMNL Manageability Monitor Process 2

MMON Manageability Monitor Process

MRP0 Managed Standby Recovery

NSV0 Data Guard Broker NetSlave Process 0

OFSC OFS CSS

PING interconnect latency measurement

PMON process cleanup

PSP0 process spawner 0

QMNC AQ Coordinator

RBAL ASM Rebalance master

RCBG Result Cache: Background

RECO distributed recovery

RMS0 rac management server

RSM0 Data Guard Broker Resource Guard Process 0

RSMN Remote Slave Monitor

RVWR Recovery Writer

SMCO Space Manager Process

SMON System Monitor Process

VBG0 Volume BG 0

VDBG Volume Driver BG

VKTM Virtual Keeper of TiMe process

52 rows selected.

SQL>

95127c08.indd 412 2/17/09 12:45:19 PM

Oracle 11g Architecture 413

Knowing the purpose of the required background processes is a must for the OCA certi-
fication exam. Let’s discuss them in the next subsections.

Database Writer (DBWn)

The purpose of the database writer process (DBWn) is to write the contents of the dirty
buffers to the data files. By default, Oracle starts one database writer process when the
instance starts. For multiuser and busy systems, you can have up to 20 database writer
processes (DBW0-9, DBWa-j) to improve performance. The parameter DB_WRITER_PROCESSES
determines the additional number of database writer processes to be started. Having more
DBWn processes than the number of CPUs is normally not beneficial.

The DBWn process writes the modified buffer blocks to disk, so more free buffers are
available in the buffer cache. Writes are always performed in bulk to reduce disk conten-
tion; the number of blocks written in each I/O is operating system-dependent.

When Does Database Writer Write?

The DBWn background process writes to the data files whenever one of the following
events occurs:

A user’s server process has searched too long for a free buffer when reading a buffer ÛN

into the buffer cache.

The number of modified and committed, but unwritten, buffers in the database buf-ÛN

fer cache is too large.

At a database checkpoint event. See Chapter 15 for information on checkpoints.ÛN

The instance is shut down using any method other than a shutdown abort.ÛN

A tablespace is placed into backup mode.ÛN

A tablespace is taken offline to make it unavailable or is changed to ÛN READ ONLY.

A segment is dropped. ÛN

Checkpoint (CKPT)

A checkpoint is when the DBWn process writes all the dirty buffers to the data files. When
a checkpoint occurs, Oracle must update the headers of all data files as well as the control
file to record the checkpoint. This update is done by the checkpoint process (CKPT); the
DBWn process writes the actual data blocks to the data files.

Checkpoints help reduce the time required for instance recovery. If checkpoints occur too
frequently, disk contention becomes a problem with the data file updates. If checkpoints occur
too infrequently, the time required to recover a failed database instance can be significantly
longer. Checkpoints occur automatically when an online redo log file is full (a log switch
happens).

95127c08.indd 413 2/17/09 12:45:19 PM

414 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Log Writer (LGWR)

The log writer process (LGWR) writes the blocks in the redo log buffer of the SGA to the
online redo log files. When the LGWR writes log buffers to disk, Oracle server processes
can write new entries in the redo log buffer. LGWR writes the entries to the disk fast
enough to ensure that room is available for the server process to write redo entries.

If the redo log files are multiplexed, LGWR writes simultaneously to all the members of
the redo log group. Even if one of the log files in the group is damaged, LGWR writes the
redo information to the available files. LGWR writes to the redo log files sequentially so
that transactions can be applied in order in the event of a failure.

When Does log Writer Write?

The LGWR background process writes to the current redo log group under any of the
following conditions:

Every three secondsÛN

When a user commits a transactionÛN

When the redo log buffer is a third fullÛN

When the redo log buffer contains 1MB worth of redo informationÛN

Whenever a database checkpoint occurs ÛN

As soon as a transaction commits, the information is written to redo log files. By writing
the committed transaction immediately to the redo log files, the change to the database is
never lost. Even if the database crashes, committed changes can be recovered from the online
redo log files and applied to the data files.

Process Monitor (PMON)

The process monitor process (PMON) cleans up failed user processes and frees up all the
resources used by the failed process. It resets the status of the active transaction table and
removes the process ID from the list of active processes. It reclaims all the resources held by
the user and releases all locks on tables and rows held by the user. PMON wakes up peri-
odically to check whether it is needed. Other processes can call PMON if they detect a need
for a PMON process.

PMON also checks on some optional background processes and restarts them if any
have stopped.

System Monitor (SMON)

The system monitor process (SMON) performs instance or crash recovery at database startup
by using the online redo log files. SMON is also responsible for cleaning up temporary seg-
ments in the tablespaces that are no longer used and for coalescing the contiguous free space
in the dictionary-managed tablespaces. If any dead transactions were skipped during instance
recovery because of file-read or offline errors, SMON recovers them when the tablespace or

95127c08.indd 414 2/17/09 12:45:19 PM

Oracle 11g Architecture 415

data file is brought back online. SMON wakes up regularly to check whether it is needed.
Other processes can call SMON if they detect a need for an SMON process.

In Windows environments, a Windows service called
OracleServiceInstanceName is also associated with each instance.
This service must be started in order to start up the instance in
Windows environments.

Oracle Storage Structures
An instance is a memory structure, but the Oracle database consists of a set of physical files
that reside on the host server’s disk drives. The physical storage structures include three
types of files. These files are called control files, data files, and redo log files. The additional
physical files that are associated with the Oracle Database but are not technically part of the
database are as follows: the password file, the parameter file, and any archived redo log files.
The Oracle Net configuration files are also required for connectivity to the Oracle database.
Table 8.6 summarizes the role that each of these files plays in the database architecture.

tA b le 8 .6 Oracle Physical Files

File Type Information Contained in Files

Control Locations of other physical files, database name, database block size,
database character set, and recovery information. These files are
required to open the database.

Data All application data and internal metadata.

Redo log Record of all changes made to the database; used for instance recovery.

Parameter (pfile
or spfile)

Configuration parameters for the SGA, optional Oracle features, and
background processes.

Archived
redo log

Copy of the contents of online redo logs, used for database recovery.

Password Optional file used to store names of users who have been granted the
SYSDBA and SYSOPER privileges. See Chapter 12, “Implementing Security
and Auditing,” for details on SYSDBA and SYSOPER privileges.

Oracle Net Entries that configure the database listener and client-to-database con-
nectivity. See Chapter 11 for details.

The three files that make up a database—the control file, the data file, and the redo log
file—are described in the following sections.

95127c08.indd 415 2/17/09 12:45:19 PM

416 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Control Files
Control files are critical components of the database because they store important informa-
tion that is not available anywhere else. This information includes the following:

The name of the databaseÛN

Database-creation timestampÛN

The names, locations, and sizes of the data files and redo log filesÛN

Tablespace informationÛN

Redo log information used to recover the database in the case of a disk failure or ÛN

user error

Archived log informationÛN

RMAN backup informationÛN

Checkpoint informationÛN

The control files are created when the database is created in the locations specified in the
control_files parameter in the parameter file. Because a loss of the control files negatively
impacts the ability to recover the database, most production databases multiplex their con-
trol files to multiple locations. Oracle uses the CKPT background process to automatically
update each of these files as needed, keeping the contents of all copies of the control synchro-
nized. You can use the dynamic performance view V$CONTROLFILE to display the names and
locations of all the database’s control files. A sample query on V$CONTROLFILE is shown here:

SQL> SELECT name FROM v$controlfile;

NAME

/u02/oradata/PROD/control01.ctl

/u03/oradata/PROD/control02.ctl

/u05/oradata/PROD/control03.ctl

SQL>

This query shows that the database has three control files, called control01.ctl,
control02.ctl, and control03.ctl, which are stored in the directories /u02/oradata/PROD/,
/u03/oradata/PROD/, and /u05/oradata/PROD/, respectively. The control files can be stored
in any directory; /u02, /u03, and /u05 used in the example shows that they are physically
stored on different disks. You can also monitor control files using EM Database Control
(on the Server tab, choose Control Files under Storage, as shown in Figure 8.9).

Control files are usually the smallest files in the database, generally
between 1MB and 5MB in size. However, they can be larger depending on
the PFILE/SPFILE setting for CONTROLFILE_RECORD_KEEP_TIME when the
Recovery Manager feature is used.

95127c08.indd 416 2/17/09 12:45:20 PM

Oracle 11g Architecture 417

F I gu r e 8 . 9 EM Database Control showing control files

In the database, the control files keep track of the names, locations, and sizes of the
database data files. Data files, and their relationship to another database structure called a
tablespace, are examined in the next section.

Data Files
Data files are the physical files that actually store the data that has been inserted into each
table in the database. The size of the data files is directly related to the amount of table data
that they store. Data files are the physical structure behind another database storage area
called a tablespace. A tablespace is a logical storage area within the database. Tablespaces
group logically related segments. For example, all the tables for the Accounts Receivable
application might be stored together in a tablespace called AR_TAB, and the indexes on these
tables might be stored in a tablespace called AR_IDX.

By default, every Oracle 11g database must have at least three tablespaces. Table 8.7
describes these tablespaces.

tA b le 8 .7 Required Tablespaces in Oracle 11g

Tablespace
Name Description

SYSTEM Stores the data dictionary tables and PL/SQL code.

SYSAUX Stores segments used for database options such as the Automatic Workload
Repository, Online Analytical Processing (OLAP), and Spatial.

TEMP Used for performing large sort operations. TEMP is required when the SYSTEM
tablespace is created as a locally managed tablespace; otherwise, it is optional.
See Chapter 10, “Allocating Database Storage and Creating Schema Objects,”
for details.

95127c08.indd 417 2/17/09 12:45:20 PM

418 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

In addition to these three required tablespaces, most databases have tablespaces for
storing other database segments such as undo and application data. Many production
databases often have many more tablespaces for storing application segments. Either you
or the application vendor determines the total number and names of these tablespaces.
Tablespaces are discussed in detail in Chapter 10.

For each tablespace in the database, there must be at least one data file. Some tablespaces
may be composed of several data files for management or performance reasons. The data
dictionary view DBA_DATA_FILES shows the data files associated with each tablespace in the
database. The following SQL statement shows a sample query on the DBA_DATA_FILES data
dictionary view:

SQL> SELECT tablespace_name, file_name

 2 FROM dba_data_files

 3 ORDER BY tablespace_name;

TABLESPACE_N FILE_NAME

------------ ---

APPL_DATA /u01/app/oracle/oradata/11GR11/appl_data01.dbf

APPL_DATA /u01/app/oracle/oradata/11GR11/appl_data02.dbf

EXAMPLE /u01/app/oracle/oradata/11GR11/example01.dbf

SYSAUX /u01/app/oracle/oradata/11GR11/sysaux01.dbf

SYSTEM /u01/app/oracle/oradata/11GR11/system01.dbf

UNDOTBS1 /u01/app/oracle/oradata/11GR11/undotbs01.dbf

USERS /u01/app/oracle/oradata/11GR11/users01.dbf

7 rows selected.

SQL>

The output shows that the APPL_DATA tablespace is comprised of two data files; all other
tablespaces have one data file. You can also monitor data files using EM, as shown in
Figure 8.10.

Data files are usually the largest files in the database, ranging from mega-
bytes to gigabytes or terabytes in size.

When a user performs a SQL operation on a table, the user’s server process copies the
affected data from the data files into the database buffer cache in the SGA. If the user has
performed a committed transaction that modifies that data, the database writer process
(DBWn) ultimately writes the modified data back to the data files.

95127c08.indd 418 2/17/09 12:45:20 PM

Oracle 11g Architecture 419

F I gu r e 8 .10 EM Database Control showing data files

Redo Log Files
Whenever a user performs a transaction in the database, the information needed to reproduce
this transaction in the event of a database failure and the user does not get a confirmation of
the COMMIT until the transaction is successfully written to the redo log files.

Because of the important role that redo logs play in Oracle’s recovery mechanism, they
are usually multiplexed. This means that each redo log contains one or more copies of itself
in case one of the copies becomes corrupt or is lost because of a hardware failure. Collec-
tively, these sets of redo logs are referred to as redo log groups. Each multiplexed file within
the group is called a redo log group member. Oracle automatically writes to all members of
the redo log group to keep the files in sync. Each redo log group must be composed of one
or more members. Each database must have a minimum of two redo log groups because
redo logs are used in a circular fashion.

You can use the V$LOGFILE dynamic performance view to view the names of the redo log
groups and the names and locations of their members, as shown here:

SQL> SELECT group#, member

 2 FROM v$logfile

 3 ORDER BY group#;

95127c08.indd 419 2/17/09 12:45:20 PM

420 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

 GROUP# MEMBER

---------- ---

 1 /u01/app/oracle/oradata/11GR11/redo01.log

 1 /u02/app/oracle/oradata/11GR11/redo01.log

 2 /u02/app/oracle/oradata/11GR11/redo02.log

 2 /u01/app/oracle/oradata/11GR11/redo02.log

 3 /u02/app/oracle/oradata/11GR11/redo03.log

 3 /u01/app/oracle/oradata/11GR11/redo03.log

6 rows selected.

SQL>

This output shows that the database has a total of three redo log groups and that each
group has two members. Each of the members is located in a separate directory on the
server’s disk drives so that the loss of a single disk drive will not cause the loss of the recov-
ery information stored in the redo logs. You can also monitor redo logs using EM Database
Control, as shown in Figure 8.11.

F I gu r e 8 .11 EM Database Control showing redo logs

When a user performs a DML activity on the database, the recovery information for this
transaction is written to the redo log buffer by the user’s server process. LGWR eventually
writes this recovery information to the active redo log group until that log group is filled.
Once the current log fills with transaction information, LGWR switches to the next redo
log until that log group fills with transaction information, and so on, until all available
redo logs are used. When the last redo log is used, LGWR wraps around and starts using
the first redo log again. As shown in the following query, you can use the V$LOG dynamic

95127c08.indd 420 2/17/09 12:45:20 PM

Oracle 11g Architecture 421

performance view to display which redo log group is currently active and being written to
by LGWR:

SQL> SELECT group#, members, status

 2 FROM v$log

 3 ORDER BY group#;

 GROUP# MEMBERS STATUS

---------- ---------- ----------------

 1 2 CURRENT

 2 2 INACTIVE

 3 2 INACTIVE

This output shows that redo log group number 1 is currently active and being written to
by LGWR. Once redo log group 3 is full, LGWR switches to redo log group 4.

When LGWR wraps around from the last redo log group back to the first redo log
group, any recovery information previously stored in the first redo log group is overwritten
and therefore no longer available for recovery purposes. However, if the database is operat-
ing in archive log mode, the contents of these previously used logs are copied to a second-
ary location before the log is reused by LGWR. If this archiving feature is enabled, it is the
job of the ARCn background process described in the previous section to copy the con-
tents of the redo log to the archive location. These copies of old redo log entries are called
archive logs. Figure 8.12 shows this process graphically.

F I gu r e 8 .12 How ARCn copies redo log entries to disk

SGA

Redo Log
 Buffer LGWR

ARCn

Archived
Redo Log

Archived
Redo Log

Archived
Redo Log

Archived
Redo Log Redo Log

Group 1
Member A

Redo Log
Group 2

Member A

Redo Log
Group 3

Member A

Redo Log
Group 1

Member B

Redo Log
Group 2

Member B

Redo Log
Group 3

Member B

95127c08.indd 421 2/17/09 12:45:20 PM

422 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

In Figure 8.12, the first redo log group has been filled, and LGWR has moved on to redo
log group 2. As soon as LGWR switches from redo log group 1 to redo log group 2, the
ARCn process starts copying the contents of redo log group 1 to the archive log file loca-
tion. Once the first redo log group is safely archived, LGWR is free to wrap around and
reuse the first redo log group once redo log group 3 is filled.

Nearly all production databases run in archive-log mode because they
need to be able to redo all transactions since the last backup in the event of
a hardware failure or user error that damages the database.

A database can have multiple archive processes and multiple archive destinations. I will
discuss more about archiving and how the archived redo logs are used for database recov-
ery in Chapter 15.

If LGWR needs to write to the redo log group that ARCn is trying to copy
but cannot because the destination is full, the database hangs until space
is cleared on the drive.

The Logical Structure
In the previous section, you saw how the Oracle database is configured physically. The
obvious question is where and how your table is stored in a database. Let’s now try to relate
the physical storage to the logical structures you know, such as tables and indexes.

Oracle logically divides the database into smaller units to manage, store, and retrieve
data efficiently. The following paragraphs give you an overview of the logical structures:

Tablespaces The database is logically divided into smaller units at the highest level, called
tablespaces. A tablespace has a direct relation to the physical structure—a data file can
belong to one and only one tablespace. A tablespace could have more than one data file
associated with it.

A tablespace commonly groups related logical structures together. For example, you might
group data specific to an application in a tablespace. This will ease the management of the
application from the DBA’s point of view. This logical division helps administer a portion
of the database without affecting the rest of it. Each Oracle 11g database must have at least
three tablespaces: SYSTEM, SYSAUX, and TEMP.

Tablespaces are discussed in detail in Chapter 10.

Blocks A block is the smallest unit of storage in Oracle. A block is usually a multiple of
the operating-system block size. A data block corresponds to a specific number of bytes

95127c08.indd 422 2/17/09 12:45:21 PM

Oracle 11g Architecture 423

of storage space. The block size is based on the parameter DB_BLOCK_SIZE and determined
when the database is created.

Extents An extent is the next level of logical grouping. It is a grouping of contiguous
blocks, allocated in one chunk.

Segments A segment is a set of extents allocated for logical structures such as tables,
indexes, clusters, table partitions, materialized views, and so on. Whenever you create
a logical structure that stores data, Oracle allocates a segment, which contains at least
one extent, which in turn has at least one block. A segment can be associated to only one
tablespace.

Figure 8.13 shows the relationship between data files, tablespaces, segments, extents,
and blocks.

F I gu r e 8 .13 Logical database structure

Database

Tablespace
1

Tablespace
2

SYSTEM
Tablespace

Segment 1 Segment 2

Segment 3

SYSAUX
Tablespace

Tablespace Segment

Extent 1

Extent 2

Block

A schema is a logical structure that groups the database objects. A schema is not directly
related to a tablespace or to any other logical storage structure. The objects that belong to
a schema can reside in different tablespaces, and a tablespace can have objects that belong
to multiple schemas. Schema objects include structures such as tables, indexes, synonyms,
procedures, triggers, database links, so on.

The next section talks about how to install and configure the Oracle 11g software on
your server so that you can then create a database. Creating a database is described in
detail in Chapter 2, “Using Single-Row Functions.”

95127c08.indd 423 2/17/09 12:45:21 PM

424 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Installing Oracle 11g
One of your duties as an Oracle DBA is to install and configure the Oracle 11g software on
the server so that a database can be created to store application data. This section discusses
each of the steps that you must perform in order to successfully install Oracle 11g.

The examples in this section are for a Linux server, but most of the con-
cepts apply equally to Windows platforms. Any significant differences
between Linux and Windows are noted.

Review the Documentation
Before beginning an installation of Oracle 11g, you need to review several documents so
that you completely understand the installation requirements. These documents include the
following:

The installation guide for your operating systemÛN

The general release notes for the version of Oracle you are installingÛN

The operating system–specific release notes for the version of Oracle you are installingÛN

Any “quick start” installation guidesÛN

Before you begin, review each of these documents so that you are thoroughly familiar
with the install process and any known associated issues.

All these documents are available on Oracle’s Technology Network website
located at http://otn.oracle.com/index.html.

Review the System Requirements
The next task is to review your server-hardware specifications to see whether they meet
or exceed the specifications in the install documentation. Minimally, this means you must
confirm that your server meets the installation requirements in these four areas:

The operating system is of the proper release level.ÛN

The server has adequate memory to perform the install and run an instance.ÛN

The server has adequate CPU resources to perform the install and run an instance.ÛN

The server has adequate disk storage space to perform the install and run a database.ÛN

95127c08.indd 424 2/17/09 12:45:21 PM

Installing Oracle 11g 425

Table 8.8 shows the recommended minimum hardware requirements for an Oracle 11g
installation.

tA b le 8 . 8 Recommended Minimum Hardware Requirements for Oracle 11g

Hardware Component Recommended Requirement

Memory 1GB.

Swap space 1.5GB or equal to the amount of RAM.

Temp space 200MB of free space in the /tmp directory on Unix systems.

Free disk space 1.5GB to 3.5GB of disk space is required for the base Oracle 11g
installation.

The Oracle Universal Installer, which is described in the subsequent section “Using the
Oracle Universal Installer,” will perform a quick system check prior to starting an installa-
tion to see whether your system meets the specific requirements for your operating system.
If your system does not meet the minimum requirements, the installer returns an error and
aborts.

On Unix systems, you must examine one critical system requirement before installation:
Unix kernel parameters. Unix kernel parameters are used to configure the Unix operating-
system settings for operating system–level operations that impact Oracle-related activities
such as the following:

The maximum size allowed for a sharable memory segment on the server, which can ÛN

impact the SGA size

The maximum number of files that can be open on the server at one time, which ÛN

impacts the total number of users and files in the database

The number of processes that can run concurrently on the server, which impacts the ÛN

number of users and the ability to use some optional features

The systems administrator usually makes Unix kernel changes, which may require a
server reboot in order to take effect. The install guide and/or release notes provide details
on the appropriate kernel setting for your operating system. In addition to kernel settings,
the system administrator may have to configure the server’s disk storage system and backup
hardware before installing the Oracle software.

Plan Your Install
Once you review the documentation and system requirements, you are ready to begin planning
your installation. This is the last step before actually running the Oracle Universal Installer.

95127c08.indd 425 2/17/09 12:45:21 PM

426 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

One way to simplify installation planning is to adopt the Optimal Flexible Architecture
(OFA) model that Oracle recommends as a best-practice methodology for managing Oracle
installations in Unix environments (and to a lesser extent, Windows environments). Cary
Millsap designed the OFA model to produce database installations that are easier to man-
age, upgrade, and back up, while at the same time minimizing problems associated with
database growth. The OFA model addresses four areas:

Naming conventions for Unix file systems and mount pointsÛN

Naming conventions for directory pathsÛN

Naming conventions for database filesÛN

Standardized locations for Oracle-related filesÛN

In addition to using the OFA model, planning your install also means answering the
following questions:

Which operating-system user will own the installed Oracle software?ÛN

On which disk drive and directory will the Oracle software be installed?ÛN

What directory structure will be used to store the Oracle software, its related configu-ÛN

ration files, and the database itself?

How should the database files be laid out so that the maximum performance benefits ÛN

will be realized?

How should the database files be laid out so that the maximum recoverability benefits ÛN

will be realized?

Creating the Oracle User Account
On Unix systems, every file is owned by an operating-system user account. Therefore,
before you can install the Oracle software, you must create a Unix user account that will
own the Oracle binaries. The username for this account can be anything, but common
Oracle usernames include oracle, ora11g, and ora111. Each Unix user is also in one or
more operating-system groups. Create a new operating-system group for the Oracle Unix
user. This group is usually called dba, and you will be prompted for it later during the
installation.

On Windows systems, you can choose an account that has administrative privileges on
the server.

Naming Volumes and Mount Points
Unless Oracle’s Automatic Storage Management feature or raw devices are used, almost all
files on a Unix server are stored on logical storage areas called volumes that are attached,
or mounted, to directories, or mount points, by the Unix system administrator. The OFA

95127c08.indd 426 2/17/09 12:45:21 PM

Installing Oracle 11g 427

model suggests that these mount points be given a name that consists of a combination of
a character and numeric values. Common OFA mount points for Unix systems include the
following:

/u01ÛN

/mnt01ÛN

/du01ÛN

/d01ÛN

Notice that the naming convention for these mount points is generic. The mount point’s
name has no relationship to what type of file it will ultimately hold. The OFA model recom-
mends this generic naming convention because it provides the greatest flexibility for future
management of the server’s file systems.

The concept of mount points does not apply directly to Windows environ-
ments. Windows environments assign a standard Windows drive letter (for
example, C:, D:) to each volume.

Creating OFA Directory Paths
The OFA model prescribes that the directory structures under the mount points use a con-
sistent and meaningful naming convention. In addition to this naming convention, the OFA
model also assigns standard operating-system environment variable names to some of these
directory paths as “nicknames” to aid in navigation and to ensure the portability of the
directory structures in the event that they need to be moved to new file systems.

Table 8.9 shows the two operating-system environment variables used in the OFA
model, along with the directories with which the variables are associated, for Unix systems.

tA b le 8 . 9 Comparison of Unix Directory Paths and Variables

Environment Variable Directory Path Description

$ORACLE_BASE /u01/app/oracle Top-level directory for Oracle soft-
ware on the host server

$ORACLE_HOME /u01/app/oracle/product/
11.1.0/db_1

Directory into which the Oracle 11g
software will be installed

Table 8.10 shows the variables and directories used in the OFA model for Windows
systems.

95127c08.indd 427 2/17/09 12:45:22 PM

428 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

tA b le 8 .10 Comparison of Windows Directory Paths and Variables

Environment Variable Directory Path Description

%ORACLE_BASE% D:\ORACLE Top-level directory for Oracle soft-
ware on the host server

%ORACLE_HOME% D:\ORACLE\ORA111\DB_1 Directory into which the Oracle 11g
software will be installed

These environment variables are used extensively when installing, patching, upgrading,
and managing Oracle systems. Table 8.11 shows several examples of how these variables
define the locations of other Oracle directories.

tA b le 8 .11 Common Uses of ORACLE_BASE and ORACLE_HOME

Directory Description

$ORACLE_HOME/dbs Default location for pfiles and spfiles on Unix systems

%ORACLE_HOME%\database Default location for pfiles and spfiles on Windows
systems

$ORACLE_BASE/admin/PROD/pfile Location of the pfile for a database called PROD on
Unix systems

%ORACLE_BASE%\admin\PROD\pfile Location of the pfile for a database called PROD on
Windows systems

$ORACLE_HOME/network/admin Default location for Oracle Net configuration files on
Unix systems

%ORACLE_HOME%\network\admin Default location for Oracle Net configuration files on
Windows systems

$ORACLE_HOME/rdbms/admin Location of many Oracle database-configuration
scripts on Unix systems

%ORACLE_HOME%\rdbms\admin Location of many database-configuration scripts on
Windows systems

For Unix systems, Table 8.11 says $ORACLE_HOME/dbs is the default location for the pfile
and spfile but then says that pfiles should be stored in $ORACLE_BASE/admin/<instance>/
pfile. Windows systems are similar. This implies that the same file needs to be in two

95127c08.indd 428 2/17/09 12:45:22 PM

Installing Oracle 11g 429

locations at the same time. You can accomplish this using two tricks. Which you use depends
on your operating system.

The following examples use 11GR11 as the database (and instance) name. On Unix sys-
tems, you can create the pfile in the $ORACLE_BASE/admin/11GR11/pfile directory and
then create a symbolic link in $ORACLE_HOME/dbs that points to the file in $ORACLE_BASE/
admin/11GR11/pfile using this syntax:

ln -s $ORACLE_BASE/admin/11GR11/pfile/init11GR11.ora

 $ORACLE_HOME/dbs/initPROD.ora

On Windows systems, you can create the pfile in the %ORACLE_BASE%\admin\11GR11\
pfile directory and then put another pfile in %ORACLE_HOME%\dbs that contains a single
entry that points to the other pfile in %ORACLE_BASE%\admin\11GR11\pfile like this:

ifile=D:\oracle\admin\11GR11\pfile\init11GR11.ora

Using these techniques allows you to put the initialization parameter files in their default
locations under $ORACLE_HOME but also in their desired location under $ORACLE_BASE.

Why should the “real” copy of the pfiles be stored under $ORACLE_BASE
instead of $ORACLE_HOME? Well, it is a good idea to keep only version-specific
files under $ORACLE_HOME. That way, when you eventually uninstall the
software from an old $ORACLE_HOME, you won’t lose your carefully tailored
initialization files.

In addition to $ORACLE_BASE and $ORACLE_HOME, a few other non-OFA-related operating-
system environment variables on Unix and Windows systems are important to be aware of.
These are described in Table 8.12.

tA b le 8 .12 Common Non-OFA Environment Variables

Operating-
System Variable Description

$ORACLE_SID Defines which instance a Unix user session should be connecting to on
the server.

%ORACLE_SID% Defines which instance a Windows user session should connect to on
the server.

$TNS_ADMIN Specifies where the Oracle Net configuration files are stored on Unix
systems—if they are to be stored outside their default location of
$ORACLE_HOME/network/admin.

%TNS_ADMIN% Specifies where the Oracle Net configuration files are stored on Windows
systems—if they are to be stored outside their default location of
%ORACLE_HOME%\network\admin.

95127c08.indd 429 2/17/09 12:45:22 PM

430 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Operating-
System Variable Description

$TWO_TASK Establishes a default Oracle Net connection string that will be used if
none is specified by the user.

%LOCAL% Establishes a default Oracle Net connection string that will be used if
none is specified by the user.

$LD_LIBRARY_
PATH

Specifies the locations of the Oracle shared object libraries. This vari-
able usually points to $ORACLE_HOME/lib or $ORACLE_HOME/lib32 on
Unix systems.

$PATH Tells the operating system in which directories to look for executable
files on Unix systems.

%PATH% Tells the operating system in which directories to look for executable
files on Windows systems.

There is no need to set any of these variables for an Oracle 11g install, except for
ORACLE_BASE. These variables are important when you’re ready to create a database.

For complete preinstallation checks and detailed commands to create Oracle
software owner and groups on the Linux platform, please read the Oracle
documentation’s Oracle Database Installation Guide 11g Release 1 for Linux,
specifically, Chapter 2, “Oracle Database Pre-installation Requirements.” As
mentioned earlier, all Oracle documentation is available at http://tahiti
.oracle.com.

Using the Oracle Universal Installer
You use the Oracle Universal Installer (OUI) to install and configure the Oracle 11g soft-
ware. The OUI is a Java-based application that provides the same installation look and feel
no matter which operating system the install is being run on. The OUI process consists of
seven primary operations:

Mounting the CD and starting the OUIÛN

Performing preinstallation checks ÛN

Responding to server-specific prompts for file locations, names, and so onÛN

Selecting the products you want to installÛN

tA b le 8 .12 Common Non-OFA Environment Variables (continued)

95127c08.indd 430 2/17/09 12:45:22 PM

Installing Oracle 11g 431

Copying the files from the install media to ÛN $ORACLE_HOME

Compiling the Oracle binariesÛN

Performing post-install operations using configuration assistantsÛN

Mounting the CD and Starting the OUI
To begin the install process, insert the Oracle 11g CD in the server. On some Unix systems,
you may have to use the appropriate operating-system command to mount the CD in your
server before it is accessible.

After mounting the CD, you may want to copy its contents to a staging
directory so that you can install from there instead of from the CD. If you
download software from the OTN, you don’t need to mount the CD. You
can start the install from the disk.

OUI installations on Unix systems must also set the X Windows DISPLAY environment
variable; otherwise, the OUI will not appear.

Performing Preinstallation Checks
Start the OUI using the runInstaller.sh command, as shown in Figure 8.14.

F I gu r e 8 .14 Invoking Oracle 11g install

Notice that the output shows that the OUI checked the server’s operating-system ver-
sion, available RAM, temporary and swap space, and so on.

If needed, you can turn off the system verification that occurs prior to the
installation by using the -ignoreSysPrereqs option of the runInstaller
command.

95127c08.indd 431 2/17/09 12:45:22 PM

432 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Once the preinstallation tests are completed and passed, the OUI displays the initial OUI
screen shown in Figure 8.15.

Choose the Oracle Database 11g option, and click the Next button on the OUI screen to
proceed with the installation.

F I gu r e 8 .15 The initial OUI installation screen

Responding to OUI Prompts
The next OUI screen, Select Installation Method, provides the option to perform a basic or
advanced installation. In the basic installation, no more questions are asked, and the OUI
takes all the default values to install the software. If you select the Create Starter Database
check box and provide a name for the database, OUI will create a database along with the
software install.

For this example, choose Advanced installation on this screen, as shown in Figure 8.16.
The next OUI screen, Specify Inventory Directory and Credentials, prompts you for two

pieces of information:

The location for the inventory files that the OUI uses to keep track of which Oracle ÛN

products are installed on the server

The name of the operating-system group of which the user doing the install is a memberÛN

You can see both items in Figure 8.17.

95127c08.indd 432 2/17/09 12:45:22 PM

Installing Oracle 11g 433

F I gu r e 8 .16 Select Installation Method screen

F I gu r e 8 .17 Specify Inventory Directory and Credentials screen

95127c08.indd 433 2/17/09 12:45:23 PM

434 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

The value suggested for the oraInventory location, /u01/app/oraInventory, was
selected based on the $ORACLE_BASE environment variable. The value suggested for the
operating-system group, oinstall, is the Oracle default value. Because both settings are
correct for our example environment, click the Next button to continue the installation.

Selecting Products to Install
The next screen, Select Installation Type, prompts you to select the type of installation to
perform. In this example, I selected the Enterprise Edition option, as shown in Figure 8.18.
Choose Enterprise Edition or Standard Edition based on the license you purchased. You
may also choose Custom, if you want to pick and choose the products.

F I gu r e 8 .18 Select Installation Type screen

The next screen, Install Location, sets the software installation locations, as shown in
Figure 8.19.

On the screen shown in Figure 8.19, the default values are populated based on the
ORACLE_BASE variable. Click the Next button to open the next screen, which is shown in
Figure 8.20.

The OUI goes through a second round of installation checks that confirm that the serv-
er’s operating-system version and configuration are appropriate for the Enterprise Edition
installation of Oracle 11g. If all the verification checks complete successfully, click the Next
button to open the Select Configuration Option screen, as shown in Figure 8.21.

If these operating-system checks do not succeed, you must correct the
areas that are failing the checks before continuing.

95127c08.indd 434 2/17/09 12:45:23 PM

Installing Oracle 11g 435

F I gu r e 8 .19 Install Location screen

F I gu r e 8 . 20 Prerequisite checks

95127c08.indd 435 2/17/09 12:45:23 PM

436 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

F I gu r e 8 . 21 Select Configuration Option screen

The next screen, Privileged Operating System Groups, asks whether you want to cre-
ate a database following the installation process. Because creating a database is covered in
Chapter 2, you’ll skip this step for now. Choose the Install Software Only option, and then
click Next to specify the privileged OS groups, as shown in Figure 8.22.

F I gu r e 8 . 22 Privileged Operating System Groups screen

You can choose the defaults or specify specific OS groups for each function. Click Next
to open the Summary screen, as shown in Figure 8.23.

95127c08.indd 436 2/17/09 12:45:23 PM

Installing Oracle 11g 437

F I gu r e 8 . 23 The Summary screen

This screen summarizes all the options you selected and all the components that will be
installed. If you need to make changes, click the Back button to modify your previous selec-
tions. If you are satisfied with your selections, click the Next button to start copying the
Oracle binaries to the $ORACLE_HOME directory.

Copying and Compiling Files
The OUI displays status information while the installation and setup is in progress. Once
the file-copy portion of the installation is complete, the OUI begins linking the binaries to
create the executable files needed to make the Oracle 11g software run on the server. On
Unix systems, after the linking process, you are prompted to execute configuration scripts
as the superuser root from the Unix command line, as shown in Figure 8.24.

F I gu r e 8 . 24 Running the script as root

95127c08.indd 437 2/17/09 12:45:23 PM

438 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

The orainstRoot.sh script creates the inventory location and necessary inventory direc-
tory. The following example shows this orainstRoot.sh script being executed from another
session:

$ su -

Password:

cd /u01/app/oraInventory

./orainstRoot.sh

Creating the Oracle inventory pointer file (/etc/oraInst.loc)

Changing permissions of /u01/app/oraInventory to 770.

Changing groupname of /u01/app/oraInventory to oinstall.

The execution of the script is complete

$

Running the script creates some directory structures that are used to support the Oracle
installation and sets the proper file permissions on those directories as well as other files.
Once the orainstRoot.sh script executes, click the Continue button to choose the installa-
tion type.

On Unix and Linux platforms, the orainstRoot.sh script creates a file
named /etc/oraInst.loc, which has information about the Oracle Inven-
tory location and the software installation owner name. The content of the
/etc/oraInst.loc is as follows:

$ cat /etc/oraInst.loc
inventory_loc=/u01/app/oraInventory
inst_group=oinstall
$

The root.sh script should be executed as root. Executing the root.sh script copies some
files to a location outside $ORACLE_HOME and sets the permissions on several files inside and
outside $ORACLE_HOME. Once the root.sh script executes successfully, click OK to continue
the installation.

One important file created by the root.sh script is the /etc/oratab file (the /var/opt/
oracle/oratab file on Solaris). When databases are created on this server, this file will have
information about the database and which oracle home directory is used by the database.

If you have multiple installations to perform, you can speed up the process
and minimize errors by building an OUI response file. This text file contains
all the necessary responses to the OUI prompts so that an unattended,
silent install is possible.

95127c08.indd 438 2/17/09 12:45:24 PM

Installing Oracle 11g 439

Performing Postinstall Tasks
Once the root.sh script has completed, the OUI will perform some brief postinstalla-
tion configuration activities before displaying the End of Installation screen, as shown in
Figure 8.25.

F I gu r e 8 . 25 End of Installation screen

Click the Exit button and then the OK button on the pop-up screen to exit the OUI and
return to the Unix prompt.

The OUI on Windows systems also offers a Basic Installation mode in
which only a few installation questions are asked before the file copying
begins. If you select the Advanced Installation mode, the prompts will
closely follow those shown for Unix in this section.

Once the OUI is complete, you should have a completely installed and configured
$ORACLE_HOME. You’ll use this software to create your first database in Chapter 9, “Creating
and Oracle 11g Database.”

95127c08.indd 439 2/17/09 12:45:24 PM

440 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Summary
This chapter introduced you to the Oracle 11g database architecture and installing the
Oracle 11g software. First I covered the Oracle database fundamentals and the Oracle data-
base components, and then I showed how to create the database by installing the Oracle
11g software.

Most popular databases today are relational databases. Relational databases consist of
data composed of a set of relational objects. Data is stored in tables as rows and columns.
Oracle is a relational database. SQL is the language used to manage and administer Oracle
databases. Several tools are available to administer an Oracle 11g database. The most com-
mon ones used by DBAs are SQL*Plus and Oracle Enterprise Manager. SQL Developer is a
GUI tool that can be used to interact with the Oracle 11g database.

The Oracle 11g database architecture consists of three major components: memory,
processes, and storage. A user process initiates a connection with the Oracle database
and starts a server process. The server process is responsible for performing the tasks on
the database. The memory structures and background processes together are an Oracle
instance. The server process communicates with the memory structure known as the sys-
tem global area. The SGA consists of a shared pool, database buffer cache, and redo log
buffer. The shared pool also includes components such as a Java pool, large pool, result
cache, and streams pool.

There are many types of background processes, each performing a specific job to main-
tain and manage the database instance. All databases have five background processes: data-
base writer, checkpoint writer, log writer, process monitor, and system monitor. Depending
on the configuration of the database, there may be other background processes such as
archiver, ASM balancing, and so on.

The physical data structure consists of several files stored on disk. The most important
file is the control file, which keeps track of several important pieces of information such
as database name, names of data files and redo log files, backup information, so on. The
CKPT process is responsible for keeping the control file updated. Redo log files contain
information from the redo log buffer. The LGWR process is responsible for writing the
redo log buffer contents to the redo log files. Oracle metadata and application data are
stored in data files. The DBWn process is responsible for writing dirty blocks from the
database buffer cache to the data files.

Looking at the logical structure of the database, a tablespace is the highest level of
logical unit. A tablespace consists of several segments. A segment consists of one or more
extents. An extent is a contiguous allocation of blocks. A block is the smallest unit of stor-
age in an Oracle database.

Installing the Oracle 11g software is a relatively easy task once the preinstall checks
and hardware requirements are met. Installing Oracle 11g is a joint task between the sys-
tem administrator and DBA, because certain scripts need to be run as root on Linux/Unix
platforms.

95127c08.indd 440 2/17/09 12:45:24 PM

Exam Essentials 441

Exam Essentials

Describe the Oracle tools and what they are used for. Know which tools are available for
connecting to and interacting with an Oracle database. Understand how these tools differ
from one another.

Understand the Oracle architecture components. Be able to describe the logical and phys-
ical components of the Oracle architecture and the components that make up each. Know
the relationship between segments, extents, database blocks, and operating-system blocks.

Know the background processes Understand the Oracle 11g background processes and
how they are used. The important ones to know are DBWn, SMON, CKPT, PMON,
LGWR, ARCn, RBAL, and ASMB.

Identify the three types of database files that constitute the database. Understand the pur-
pose and key differences between the control files, data files, and redo log files.

Explain and categorize the SGA memory structures. Identify the SGA areas along with
the subcomponents contained within each of these areas.

Explain Oracle 11g system requirements. Know what the requirements are for available
server disk space and memory prior to performing an Oracle 11g installation.

Describe the Optimal Flexible Architecture. Be able to explain the concepts associated
with the OFA model and how to implement an OFA-compliant installation and database
directory structure.

Describe the steps for installation and configuration. Know how to set up the Oracle
installation environment so that the OUI can be used to install and configure the Oracle
11g software.

95127c08.indd 441 2/17/09 12:45:24 PM

442 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Review Questions
1. What are the benefits of using the OFA standard for installing Oracle 11g? (Choose all that

apply.)

A. Helps eliminate fragmentation of free space in the SYSTEM tablespace

B. Helps improve the database performance

C. Facilitates routine administrative tasks such as software backups

D. Helps avoid data-block corruption

2. You are trying to install Oracle 11g and the OUI prerequisite check failed. What should
you do?

A. Ignore the error, and proceed with installation.

B. Cancel the installation, and try to install on a different server.

C. Correct the underlying issue, and retry the installation.

D. Cancel the installation, correct the underlying issue, and restart the installation.

3. When installing Oracle 11g on the Linux platform, which file is created by executing the
orainstRoot.sh script as root?

A. /etc/oratab

B. /etc/oraInst.loc

C. $ORACLE_HOME/root.sh

D. None—the orainstRoot.sh script starts background processes required to start the OUI.

4. Which component is not part of the Oracle instance?

A. System global area

B. Process monitor

C. Control file

D. Shared pool

E. None

5. Which background process guarantees that committed data is saved even when the changes
have not been recorded in data files?

A. DBWn

B. PMON

C. LGWR

D. CKPT

E. ARCn

95127c08.indd 442 2/17/09 12:45:24 PM

Review Questions 443

6. You’ve just been hired as a DBA for a large company. During the interview process, you
were shown the job description for the position. Which of the following tasks might have
been included in this job description?

A. Install and configure Oracle 11g software.

B. Implement database installations according to OFA guidelines.

C. Use OFA-compliant naming conventions for database files and directories.

D. Any of the above may have been included on the DBA job description.

7. Which of the following best describes a RAC configuration?

A. One database, multiple instances

B. One instance, multiple databases

C. Multiple databases on multiple servers

D. Multiple shared server processes catering one database

8. Which component of the SGA contains the parsed SQL code?

A. Database buffer cache

B. Dictionary cache

C. Library cache

D. Parse cache

9. Which are the tasks accomplished by the SMON process? (Choose all that apply.)

A. Performs recovery at instance startup

B. Performs cleanup after a user session is terminated

C. Starts any server process that stopped running

D. Coalesces contiguous free space in dictionary-managed tablespaces

10. Choose the best statement from the options related to segments.

A. A contiguous set of blocks constitutes a segment.

B. A nonpartitioned table can have only one segment.

C. A segment can belong to more than one tablespace.

D. All of the above are true.

11. The Oracle Universal Installer prompts for which variable if not set?

A. ORACLE_HOME

B. ORACLE_SID

C. ORACLE_BASE

D. ORACLE_INSTALL_BASE

95127c08.indd 443 2/17/09 12:45:24 PM

444 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

12. Which SGA component will you increase or configure so that RMAN backups are not
using area from the shared pool?

A. Java pool

B. Streams pool

C. Recovery pool

D. Large pool

13. When a user session is terminated, which processes are responsible for cleaning up and
releasing locks? (Choose all that apply.)

A. DBWn

B. LGWR

C. MMON

D. PMON

E. SMON

14. The LRU algorithm is used to manage what part of the Oracle architecture?

A. Users who log on to the database infrequently and may be candidates for being
dropped

B. The data file that stores the least amount of information and will need the least fre-
quent backup

C. The tables that users rarely access so that they can be moved to a less active tablespace

D. The shared pool and database buffer cache portions of the SGA

15. Two structures make up an Oracle server: an instance and a database. Which of the follow-
ing best describes the difference between an Oracle instance and a database?

A. An instance consists of memory structures and processes, whereas a database is com-
posed of physical files.

B. An instance is used only during database creation; after that, the database is all that is
needed.

C. An instance is started whenever the demands on the database are high, but the data-
base is used all the time.

D. An instance is configured using a pfile, whereas a database is configured using an
spfile.

16. Which of the following is the proper order of Oracle’s storage hierarchy, from smallest to
largest?

A. Operating-system block, database block, segment, extent

B. Operating-system block, database block, extent, segment

C. Segment, extent, database block, operating-system block

D. Segment, database block, extent, operating-system block

95127c08.indd 444 2/17/09 12:45:24 PM

Review Questions 445

17. You’ve been asked to install Oracle 11g on a new Unix server. You’re likely to ask the Unix
system administrator to do all but which of the following for you in order to get the new
server ready for Oracle?

A. Modify the server’s kernel parameters.

B. Create a new Unix user to own the Oracle software.

C. Create the mount points and directory structure using the OFA model.

D. Determine which directory will be used for $ORACLE_HOME.

18. Oracle’s OFA model specifies a naming convention for all but which of the following?

A. Database name

B. Mount points

C. Directory paths

D. Database filenames

19. The Oracle Universal Installer is started by executing which program?

A. emctl

B. runInstaller

C. ouistart

D. isqlplusctl

20. On Unix systems, the script root.sh must be executed during the installation process.
What is the purpose of this script?

A. It creates the root user in the database.

B. It creates the root directory for the server.

C. It grants root superuser privileges to the Oracle Unix account.

D. It copies files and sets permissions on files outside $ORACLE_HOME.

95127c08.indd 445 2/17/09 12:45:24 PM

446 Chapter 8 N Introducing Oracle Database 11g Components and Architecture

Answers to Review Questions
1. A, C. The OFA standard helps in administering the Oracle software installation and

all related Oracle files, such as alert logs and data files. OFA recommends that separate
tablespaces be created to store application data; the SYSTEM tablespace should be used only for
the data dictionary. By separating the software from database files, backups are made easy.

2. C. On the prerequisite check screen, you have the option to retry a failed test. So, you can
fix the underlying issue and let OUI perform the test again to continue the installation.

3. B. If an Oracle installation is performed the first time on a server, the orainstRoot.sh
script needs to be executed to create the /etc/oraInst.loc file. The oraInst.loc file
specifies the Oracle inventory location.

4. C. Control file, data file, and redo log files are part of the Oracle database. The Oracle
instance constitutes the memory structures and background processes.

5. C. The log writer (LGWR) process writes the redo log buffer information to the online
redo log files. A commit operation is completed only after the redo buffer is written to
online redo log files.

6. D. The tasks that a DBA performs encompass all these areas plus managing database stor-
age, security, and availability.

7. A. With Real Application Clusters, multiple instances (known as nodes) can mount one
database. One instance can be associated with only one database.

8. C. The shared SQL area is stored in the library cache in a shared pool and is shared
between users. If a query is executed again before it is aged out of the library cache, Oracle
will use the parsed code and execution plan from the library cache. The database buffer
cache has the data blocks cached. The dictionary cache caches data dictionary information.
There is no SGA component called the parse cache.

9. A, D. SMON is responsible for performing instance recovery using the online redo log files
and for coalescing contiguous free space in tablespaces. The PMON is responsible for ses-
sion cleanup and for freeing up all resources after a user session is terminated.

10. B. A table or index has a segment. A segment consists of one or more extents. A segment
can belong to only one tablespace, but it can span across multiple data files.

11. C. To better conform to the OFA standard, the Oracle 11g OUI prompts for the ORACLE_
BASE value if the ORACLE_BASE environment variable is not already set. The ORACLE_HOME
value is derived from ORACLE_BASE, but you have the option to change the derived value.

12. D. The large pool is configured to have RMAN not use the shared pool; hence, the shared
pool is totally dedicated to application space.

13. D. PMON is responsible for cleaning up failed user processes. It reclaims all the resources
held by the user and releases all locks on tables and rows held by the user. No other process
is involved in the session cleanup.

95127c08.indd 446 2/17/09 12:45:24 PM

Answers to Review Questions 447

14. D. The LRU mechanism ensures that each user’s server process can find free space in the
shared pool and database buffer cache whenever they need it, but it also keeps frequently
used objects cached in those memory areas.

15. A. The instance consists of the SGA and all the Oracle background processes. The database
is composed of the control files, data files, and redo logs.

16. B. Multiple operating-system blocks make up database blocks, contiguous chunks of which
make up extents. A segment consists of one or more extents.

17. D. Although the Unix system administrator is responsible for creating volume groups and
mount points, the DBA generally decides where the Oracle binaries will be installed—the
location derived from $ORACLE_BASE or designated by the $ORACLE_HOME environment
variable.

18. A. The OFA model does not include any reference to naming conventions for the database
or things inside the database, such as users, tables, or tablespaces.

19. B. The runInstaller executable performs a preinstall check of the operating system and
hardware resources before starting the OUI graphical tool.

20. D. The root.sh script copies configuration files to directories outside $ORACLE_HOME and
sets the permissions on those files accordingly.

95127c08.indd 447 2/17/09 12:45:24 PM

95127c08.indd 448 2/17/09 12:45:24 PM

Chapter

9
Creating an
Oracle 11g Database

OraCle Database 11g:
aDministratiOn i exam ObjeCtives
COvereD in this Chapter:

Creating an Oracle DatabaseÛÛ

Create a database by using the Database Configuration ÛN

Assistant (DBCA)

Managing the Oracle InstanceÛÛ

Setting database initialization parametersÛN

Describe the stages of database startup and shutdownÛN

Using alert log and trace filesÛN

Using data dictionary and dynamic performance viewsÛN

95127c09.indd 449 2/18/09 6:43:47 AM

As a DBA, you are responsible for creating and managing
Oracle databases and services within your organization. Ora-
cle provides a comprehensive and cohesive set of tools to help

DBAs perform these tasks. It is important for you to understand these tools and how to use
them properly.

Oracle has been using Java-based tools to manage the Oracle Database because Java
gives the same look and feel for the tools across all platforms. In this chapter, I will cover
how to use the Oracle Database Configuration Assistant tool, which creates and removes
Oracle Databases, and how you can use templates to create databases.

After creating the database using DBCA, the database will be up and running. I will then
cover how to shut down and restart the database for some configuration changes, apply
patches, perform server maintenance, and so on. I’ll describe the various database startup
and shutdown options and explain the circumstances under which you use these options.

You will also learn more about the Oracle data dictionary, including how the dictionary
is created, where it is created, and so on. Finally, I will cover initialization parameter files
and discuss how you can use them to manage, locate, and view the database alert log.

Using DBCA to Create
Oracle 11g Databases
The Oracle Database Configuration Assistant (DBCA) is a Java-based tool used to create
Oracle Databases. If you’ve been a DBA for a few years, you probably remember the days
of writing and maintaining scripts to create databases. Although it is still possible to manu-
ally create a database, the DBCA provides a flexible and robust environment in which you
not only can create databases but also can generate templates containing the definitions of
the databases created. This provides you with the ease of using a GUI-based interface with
the flexibility of Oracle-generated XML-based templates that you can use to maintain a
library of database definitions.

You can also use the DBCA to add options to a running database or to remove a data-
base. In recent years, I have seen many diehard command-line DBAs switching to the
DBCA tool to create databases, mainly because of its flexibility and ease of use.

95127c09.indd 450 2/18/09 6:43:47 AM

Using DBCA to Create Oracle 11g Databases 451

You can also use the DBCA to create a database while the Oracle software is installed,
or you can invoke the DBCA later to manually create a database. In the following sections,
I will show you the steps necessary to create an Oracle Database using the DBCA tool.

Invoking the Database Configuration Assistant
You can invoke the DBCA from a command line in the Unix environment or as an appli-
cation in a Windows 2000 environment. If you are using the Windows XP environment,
choose Start All Programs Oracle Oracle Home Configuration and Migration Tools
Database Configuration Assistant.

If you are in a Unix environment or would prefer to work from the command line in
Windows, type dbca from the $ORACLE_HOME/bin location.

After you open the DBCA, you should see the Welcome screen, as shown in Figure 9.1.
The Welcome screen will be different on a node that belongs to a RAC cluster, where you
will have the option to create a single-instance database or a RAC database. Since RAC is
not part of the certification exam, you will be using a node that is not part of the RAC.

F i gu r e 9 .1 DBCA Welcome screen

Click Next to open the Operations screen, as shown in Figure 9.2. You can create a
database, configure database options, delete a database, manage templates, and configure
automatic storage management.

95127c09.indd 451 2/18/09 6:43:47 AM

452 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 . 2 DBCA Operations screen

Table 9.1 lists and describes the DBCA database-management options.

ta b le 9 .1 DBCA Database Management Options

Option Description

Create a Database Allows for the step-by-step creation of a database. The database
can be created based on an existing template or customized for the
specific needs of the organization.

Configure Database
Options

Performs the necessary changes to move from a dedicated server
to a shared server. You can also add database options that have not
been previously configured for use with your database.

Delete a Database Completely removes a database and all associated files.

Manage Templates Manages database templates. The database templates are defini-
tions of your database configuration saved in an XML file format on
your local hard disk. You can choose from several predefined tem-
plates, or you can create customized templates.

95127c09.indd 452 2/18/09 6:43:48 AM

Using DBCA to Create Oracle 11g Databases 453

Option Description

Configure Automatic
Storage Manage-
ment (ASM)

Using ASM, Oracle manages the file placement and naming auto-
matically. You provide a set of disks to the Oracle 11g database to
use, and the provisioning and optimization are automatically han-
dled by ASM. ASM is not covered in this book. When you’re ready
to take the OCP certification exam, refer to OCP: Oracle Database
11g Administrator Certified Professional Study Guide (Sybex, 2009).

Choose Create a Database, and click Next to open the Database Templates screen. In the
coming sections, I will discuss database templates and the various screens in the DBCA to
create a database.

Database Templates
The DBCA comes with two preconfigured database templates. These XML-based documents
contain the information necessary to create the Oracle Database. You can choose one of
these predefined templates, or you can build a custom database definition. The predefined
database templates are Data Warehouse and General Purpose or Transaction Processing
(see Figure 9.3). These templates were designed to create databases that are optimized for a
particular type of workload. When you choose Custom Database, you will have more flex-
ibility to create tablespaces and decide which components to install. The screens that are
different when choosing the Custom Database option are identified later in the section.

F i gu r e 9 . 3 DBCA Database Templates screen

ta b le 9 .1 DBCA Database Management Options (continued)

95127c09.indd 453 2/18/09 6:43:48 AM

454 Chapter 9 N Creating an Oracle 11g Database

To display the configuration definitions for these preconfigured databases, click Show
Details. Figure 9.4 shows the details of the General Purpose or Transaction Processing
template. You have the option of saving the details as an HTML file using the button at the
bottom-right corner. Before creating the database, you will get the summary information,
and you will have the option to save the database create scripts as well as a similar HTML
file with all the options and parameter values.

F i gu r e 9 . 4 DBCA Templates Details screen

Table 9.2 displays information about what is contained in the template definition shown
in Figure 9.4. When you scroll down, you’ll see multiple sections on the page. Each section
of the page gives further information about the template. For example, under the Common
Options section, you will see a list of each of the database options that gets installed for the
template definition you have chosen.

95127c09.indd 454 2/18/09 6:43:48 AM

Using DBCA to Create Oracle 11g Databases 455

ta b le 9 . 2 Template Definition Details

Section Description

Common Options Displays which databases options will be installed

Initialization Parameters Displays the common initialization parameters and their settings

Character Sets Displays character sets to be used

Control Files Displays filenames and locations for control files

Tablespaces Displays names and types of tablespace

Datafiles Displays filenames and size for each tablespace

Redo Log Groups Displays group number and size

Choosing the Custom Database template option on the DBCA Database Templates
screen gives you the fullest flexibility. For other templates, the database data files are pre-
built with certain Oracle options. Also, the database block size cannot be changed from
8KB. A No value in the Includes Datafiles column in the Database Templates screen shows
which templates are fully customizable.

After you have chosen the appropriate template to use, click Next. You will then be pre-
sented with the Database Identification screen.

Database Identification
The Database Identification screen (see Figure 9.5) allows you to enter the global database
name and Oracle system identification name (commonly referred to as the Oracle SID).

The global database name is the fully qualified name of the database in the enterprise.
It is composed of a database name and a database domain and takes the format database_
name.database_domain; for example, sales.company.com.

In this example, the first part of the global database name, OCA11G, is the name of your
database. Since I have not specified the domain name, there is no default domain name
assigned. Normally, the database domain is the same as the network domain within the
enterprise. A global database name must be unique within a given network domain. The
database name can be up to eight characters and can include letters, numbers, and the spe-
cial characters $, _, and #.

95127c09.indd 455 2/18/09 6:43:48 AM

456 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 .5 DBCA Database Identification screen

The Oracle SID is the name of the instance associated with the database. Usually this name
is the same as the database name. For RAC databases where you have multiple instances
associated with the database, the instance name is usually different from the database
name. The Oracle SID can be a maximum of 12 characters and must be unique on the
server. For example, you cannot have two Oracle SIDs called PROD on a single server.

Management Options
After you choose the database name, you can configure Enterprise Manager to monitor and
manage your database using the DBCA Management Options screen (see Figure 9.6).

You can choose from two options: you can centrally manage all your databases from a
single management console if the Management Agent is installed on the database server, or
you can manage each database individually.

If the Oracle Management Agent is installed, the DBCA detects its presence and lists
the name of the agent service. You can select this name if you want this existing agent to
manage this database. Your new database then becomes one of the managed targets for the
existing agent.

If you don’t have an agent installed or are not doing centralized database management,
you can still use Enterprise Manager to monitor and maintain the database. Choose the
Use Database Control for Database Management radio button if you want to install Enter-
prise Manager and configure it locally.

95127c09.indd 456 2/18/09 6:43:48 AM

Using DBCA to Create Oracle 11g Databases 457

F i gu r e 9 .6 DBCA Management Options screen

On the Management Options screen, you can also configure email notifications from
Enterprise Manager. Email notifications are generated when certain database thresholds
are reached, such as the maximum number of database sessions or low free space on a
tablespace. After installing Enterprise Manager, you can configure notification of these
database thresholds. To get these email notifications, you’ll need the name of your SMTP
mail server and the email address to which you want the email notifications sent.

Finally, using the Management Options screen, you can configure backups of your data-
base. If you select Enable Daily Backup, Enterprise Manager backs up your database based
on the start time you enter. The database is backed up to a designated area on your system
that is specified later in the configuration process. You have to supply an operating-system
username and password that Enterprise Manager will log in as to perform the backup. This
user should have the proper write authorization to the area of the disk where you want the
backup stored.

Database Credentials
You use the Database Credentials screen (see Figure 9.7) to configure passwords for the
various administrative accounts that are set up automatically when the database is con-
figured. You can select the same password for all the critical accounts, or you can elect to
have a different password for each of the preconfigured accounts. How you elect to set your
passwords may depend on the policies of your particular organization. Typically, the same
critical passwords are set for these accounts, and the accounts that you won’t need to access
are selectively locked.

95127c09.indd 457 2/18/09 6:43:48 AM

458 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 .7 DBCA Database Credentials screen

Four accounts are preconfigured when you set up your database:

SYS    The SYS user owns all the internal Oracle tables that constitute the data dictionary.
Normally, you should not perform any actions as the SYS user and should ensure that this
account password is properly protected. Also, don’t manually modify the underlying objects
owned by the SYS user.

SYSTEM    SYSTEM is an administrative user that contains additional administrative tables and
views. Many DBAs use this account to administer the database, but ideally this account
also should be locked and secured.

DBSNMP   DBSNMP is a login used by the Enterprise Manager facility to monitor and gather
performance statistics about the database.

SYSMAN    SYSMAN is the equivalent of the SYS user for the Enterprise Manager facility. This
Enterprise Manager administrator can create and modify other Enterprise Manager admin-
istrator accounts, as well as administer the database instance.

Once you have completed the Database Credentials page, click Next. You will now be
presented with the Storage Options screen.

95127c09.indd 458 2/18/09 6:43:49 AM

Using DBCA to Create Oracle 11g Databases 459

Storage Options
The Storage Options screen (see Figure 9.8) is used to define how you want to configure the
disk storage areas used by the database. You have three choices:

File SystemÛN

Automatic Storage Management (ASM)ÛN

Raw DevicesÛN

F i gu r e 9 . 8 DBCA Storage Options screen

Let’s take a look at these options in more detail.

File System Storage

File system storage is the most common type of storage configuration for many Oracle
Databases. This type of storage definition relies on the underlying operating system to
maintain and manage the actual files you as the DBA define. When you choose this option,
the DBCA suggests a set of data filenames and directory locations for those files. You can
modify this information at the database-storage step later in the database-creation process.

The DBCA uses the Optimal Flexible Architecture (OFA) directory design for laying out
the suggested file locations. The OFA is an Oracle-recommended method for designing a
flexible directory structure and naming convention for your Oracle Database files.

95127c09.indd 459 2/18/09 6:43:49 AM

460 Chapter 9 N Creating an Oracle 11g Database

ASM Storage

Automatic Storage Management (ASM) is a newer type of storage mechanism available
since Oracle 10g. ASM is designed to relieve the burden of disk and storage management
and relies on Oracle to maintain your database storage. Instead of managing many indi-
vidual database files, ASM allows you to define disk groups for file management.

Using disk groups, you can define one or more groups of disks as a logical unit that Ora-
cle views as a single unit of storage. This concept is similar in nature to the way that some
operating systems, including various flavors of Unix, define volume groups.

Oracle manages the storage definitions of the database within a second instance used
exclusively by ASM to keep track of the diskgroup allocations. When you create a database
and select the ASM option in the Storage Options screen, a series of screens guides you
through the process of defining the secondary ASM database instance. Every server using
ASM storage should have an ASM instance running.

For more information on ASM storage, see the Oracle documentation
“Oracle Database Storage Administrator’s Guide 11g Release 1 (11.1) Part
Number B31107-04.” You can find this and other Oracle 11g documentation
at www.oracle.com/pls/db111.

Raw Devices

You can also select Raw Devices as your storage definition. Raw devices are disks that are
not managed by the underlying operating system. Instead of the underlying operating sys-
tem controlling disk reading and writing activities, Oracle performs the actions directly on
the underlying hardware without handing the responsibilities off to the operating system.

Typically, the systems administrator predefines the raw disk partitions that will consti-
tute the specific raw devices. Then you as the DBA map the raw devices to specific data files
and redo log files. It is better to use ASM storage instead of raw devices, because you have
better load-balancing options and monitoring features available with ASM.

Since the OCA certification exam is based on databases created using file-system stor-
age, I will not be discussing ASM and raw devices in this book. Choose File System on the
DBCA Storage Options screen, and click Next to specify the file locations.

Database File Locations
After you define the type of storage you want to use for your database, you need to define
where you want to put the files that will constitute the database. Depending on the type
of storage option you choose, you may have more or fewer location options available. Fig-
ure 9.9 shows the DBCA screen accepting the file locations.

95127c09.indd 460 2/18/09 6:43:49 AM

Using DBCA to Create Oracle 11g Databases 461

F i gu r e 9 . 9 DBCA Database File Locations screen

You are presented with three options on the Database File Locations screen:

Use Database File Locations from TemplateÛN

Use Common Location for All Database FilesÛN

Use Oracle-Managed FilesÛN

The following are descriptions of each of these options.

Use Database File Locations from Template

If you chose one of the predefined database templates to use for this database, Oracle uses
the previously defined locations from the template as the basis for the database file loca-
tions. You still have the opportunity later in the database-definition process to review and
modify the filenames and locations even if you choose this option.

Use Common Location for all Database Files

If you choose this option, you can specify a new directory for all your database files.
Again, even if you choose this option, you can change the filenames and locations later in
the database-definition process.

95127c09.indd 461 2/18/09 6:43:49 AM

462 Chapter 9 N Creating an Oracle 11g Database

Use Oracle-Managed Files

If you choose Use Oracle-Managed Files, you let the Oracle Database manage the operating-
system files comprising the database. As a DBA, you just specify the location of the database
files. The tasks of creating and deleting files as required by the database are automatically
managed—the DBA doesn’t need to specify a data file’s location when creating a new
tablespace or specify the size or filename. Since you will not be presented with an option to
change the storage characteristics of the data files later when the Use Oracle-Managed Files
option is chosen, you can have multiplexed redo log files and control files by clicking the
Multiplex Redo Logs and Control Files button. In the pop-up window, specify the location
of the redo log and control files.

Once you have chosen the appropriate storage option for your database, click Next to
get to the Recovery Configuration screen.

Recovery Configuration
You use the Recovery Configuration screen, as shown in Figure 9.10, to set up your
database backup and recovery strategy. Oracle provides robust mechanisms for full
point-of-failure recovery. As a DBA, it is critical to understand the backup and recovery
requirements of your application so that you can choose the appropriate backup strategy.

F i gu r e 9 .10 DBCA Recovery Configuration screen

95127c09.indd 462 2/18/09 6:43:50 AM

Using DBCA to Create Oracle 11g Databases 463

You can configure several options on this screen, including specifying the flash recovery
area and size. You can also enable archive-log mode for the database and specify archive-
log parameters. Let’s take a look at each of these options.

Flash Recovery

Oracle flash recovery is an option available since Oracle 10g. It is the foundation of the
new automated disk-based recovery feature. Flash recovery is designed to simplify your life
in terms of Oracle backups by providing a centralized location to maintain and manage all
the files related to database backups.

The flash recovery area is an area of the disk dedicated to the storage and management
of files needed for recovering an Oracle Database. This area is completely separate from the
other components of the Oracle Database, such as the data files, redo logs, and control files.

Oracle uses the flash recovery area to store and manage the archive logs. Enterprise
Manager can store its backups in the flash recovery area and use it when restoring files
during media recovery. The Oracle Recovery Manager (RMAN) uses the flash recovery
area and ensures that the database is recoverable based on the files being stored in the flash
recovery area. All files necessary to recover the database following a media failure are part
of the flash recovery area.

You will explore the flash recovery area in more detail in Chapter 15,
“Implementing Database Backups.”

You can specify the directory location and the size of the disk area you want to dedi-
cate to the flash recovery area. The default location of the directory provided by DBCA is
ORACLE_BASE\flash_recovery_area. You can click File Location Variables on the Recovery
Configuration screen to display a summary of the Oracle file location parameters, includ-
ing the current setting of the ORACLE_BASE parameter. The size of the flash recovery area
defaults to 2048MB and can be set larger or smaller by changing the Flash Recovery Size
setting.

Enable Archive Logging

On the Recovery Configuration screen, you also have the ability to enable the Oracle
archive-logging feature. Archive logging is the mechanism Oracle uses to enable you to per-
form a point-of-failure recovery of a database. To enable archive logging, select the Enable
Archiving check box. Once you do so, the button Edit Archive Mode Parameters will be
enabled. If you click this button, you are presented with a screen that enables you to set the
various parameters that are used to configure archive logging (see Figure 9.11).

We will explore archive logging in more detail in Chapter 15.

95127c09.indd 463 2/18/09 6:43:50 AM

464 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 .11 DBCA Edit Archive Mode Parameters dialog box

After completing the Recovery Configuration screen, click Next. You will then be pre-
sented with the Database Content screen.

Database Content
If you chose a predefined template (OLTP or Data Warehouse), you will be presented with
the Database Content screen shown in Figure 9.12. You will then have the option to add
sample schemas to the database, which is explored in the next section, “Sample Schemas
and Custom Scripts.”

F i gu r e 9 .12 DBCA Database Content Screen for predefined database template

If you chose to create a custom database on the Database Templates screen, you will be
presented with the Database Content screen shown in Figure 9.13.

95127c09.indd 464 2/18/09 6:43:50 AM

Using DBCA to Create Oracle 11g Databases 465

F i gu r e 9 .13 The DBCA Database Content screen for custom database template

You use the options on this screen to specify which Oracle Database components you
want to install. Table 9.3 describes the components that can be included and configured
automatically by the DBCA.

ta b le 9 . 3 Oracle Optional Components

Component Description

Oracle Text Provides support for multimedia content such as audio
and video.

Oracle OLAP Provides facilities for creating and deploying online ana-
lytical processing applications.

Oracle Spatial Provides the components and infrastructure for Oracle to
manage and maintain geographic and spatial information
such as map coordinates.

Oracle Ultra Search Provides capabilities to perform extended text and
searches within the Oracle Database.

Oracle Label Security Manages and controls access to sensitive information
within the database. This option will be enabled if the Label
Security option is installed in the Oracle software home.

Sample Schemas Installs some example data that can be used for learning
purposes.

95127c09.indd 465 2/18/09 6:43:50 AM

466 Chapter 9 N Creating an Oracle 11g Database

Component Description

Enterprise Manager Repository Specifies the location of the schema used to manage the
content of the OEM repository. If you chose to do local
management of your database, this schema is required.

Oracle Warehouse Builder Enables the ETL process and integrates various applica-
tion data.

Oracle Database Vault Addresses a security solution for regulatory compliance and
security controls. This option will be enabled if the database
vault option is installed in the Oracle software home.

Click the Standard Database Components button to display any additional standard fea-
tures that Oracle will automatically configure for you and recommend as part of a standard
database installation (see Figure 9.14). These features are the Oracle JVM, Oracle XML
DB, Oracle Multimedia, and Oracle Application Express.

F i gu r e 9 .14 DBCA standard database components

What is a schema?

When you are working with Oracle, you will often hear the words schema and user used
interchangeably. Is there a difference between the two? Yes and no. A user is a defined
database entity that has a set of abilities to perform activities based on their granted
rights. A schema, which is associated with a user entity, is more appropriately defined as
a collection of database objects. Some examples of database objects are tables, indexes,
and views.

ta b le 9 . 3 Oracle Optional Components (continued)

95127c09.indd 466 2/18/09 6:43:50 AM

Using DBCA to Create Oracle 11g Databases 467

A schema can be related to a real person, such as a user of your Sales database who may
have a user ID and password that they use to access the database. This user may or may
not own any schema objects.

Because a schema is a collection of objects, DBAs often define a schema to represent
a collection of objects associated with an application. For example, a DBA might create
a schema called SALES and create objects owned by that schema. Then, they can grant
access to other database users who need the ability to access the SALES schema.

In this way, the schema becomes a logical collection of objects associated with an
application and is not tied to any specific user. This ability makes it easy to logically
group common objects that are related to specific applications or tasks using a common
schema name.

The main difference is that users are the entities that perform work, and schemas are the
collections of objects that users perform work on.

Sample Schemas and Custom Scripts
The DBCA also lets you install examples of actual working databases. Oracle provides a set
of example schemas and applications that use these schemas. You can install these sample
schemas now or later by running a series of SQL scripts.

These sample schemas include the following:

Human Resources (ÛN HR)

Order Entry (ÛN OE)

Product Media (ÛN PM)

Sales History (ÛN SH)

Queued Shipping (ÛN QS)

These schemas are designed to provide you with working examples of how to use and
implement a variety of features within Oracle. For example, the Product Media schema
shows how to use the Oracle Intermedia option, which is used to manage binary large
objects (BLOBs) such as images and sound clips.

If you choose to create the sample schemas, Oracle creates a tablespace called EXAMPLE
and stores all the necessary tables within that tablespace. Be aware that this adds about
130MB to your database definition. The examples shown in Chapters 1 through 7 mostly
used the tables that belonged to the sample schema HR.

You can also run custom scripts as part of the database-creation process. Click the Cus-
tom Scripts tab on the Database Content screen to enter the names and locations of the custom
scripts that you want to run at database creation (see Figure 9.15).

95127c09.indd 467 2/18/09 6:43:50 AM

468 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 .15 DBCA Database Content screen’s Custom Scripts tab

For example, you might want the DBCA to automatically create the schema and define
the tables that you will use for this database. You can create a script that performs all the
necessary work and have the DBCA run the script as part of the database-creation process.
The custom scripts are run using the command-line utility SQL*Plus, so you will have to
define a user ID and password within the body of the script. For example, your script might
contain the following line:

connectsome_userid/some_password

This line directs Oracle to connect to the current Oracle Database, which is determined
by your ORACLE_SID environment variable using the supplied user ID and password.

After completing the Database Content screen, click Next. You will then be presented
with the Initialization Parameters screen.

Initialization Parameters
You use the Initialization Parameters screen to define the various initialization-parameter set-
tings used to configure size and set up the characteristics of the Oracle instance. The follow-
ing four tabs are categorized according to the parameters used to manage the Oracle instance:

MemoryÛN

SizingÛN

Character SetsÛN

Connection ModeÛN

Let’s take a look at each of these tabs and what settings you can manage on each one.

95127c09.indd 468 2/18/09 6:43:51 AM

Using DBCA to Create Oracle 11g Databases 469

The Memory Tab

You use the options on the Memory tab to control the size of the database parameters that
configure the overall memory footprint of the Oracle instance (see Figure 9.16). There are
two general approaches to managing the memory database parameters: Oracle can set and
manage most of the parameters for you, or you can customize each of the initialization
parameters for your specific database.

If you choose the Typical setting, Oracle allocates memory to the various components
within the Oracle system global area (SGA) and process global area (PGA). This memory
allocation is automatic and is a percentage of the overall physical memory available on the
server. The default is 30 percent of the total memory available, but you can change this set-
ting by specifying the memory size or by sliding the bar to appropriate size. If you choose
this setting, click the Show Memory Distribution button to see how Oracle will allocate the
memory between the SGA and the PGA (see Figure 9.17).

F i gu r e 9 .16 Memory tab on the Initialization Parameters screen

F i gu r e 9 .17 Memory distribution for SGA and PGA for the Typical setting

95127c09.indd 469 2/18/09 6:43:51 AM

470 Chapter 9 N Creating an Oracle 11g Database

If you choose the Use Automatic Memory Management option under Typical, Oracle
will manage the total memory automatically, including the SGA and PGA. The memory
distribution will show differently, as in Figure 9.18, if this option is selected.

F i gu r e 9 .18 Memory distribution for Automatic Memory Management

If you choose the Custom option, you will again have two options: Automatic Shared Mem-
ory Management and Manual Shared Memory Management. With automatic shared memory
management, you specify only the SGA size and the PGA size. Each component inside the SGA
is configured automatically by Oracle. With manual shared memory management, you have
full control over how much each of the specific areas of the SGA will take. The main areas that
you will configure are the shared pool, buffer cache, Java pool, large pool, and PGA size.
Each of the settings maps to a specific Oracle parameter. Figure 9.19 shows the options.

F i gu r e 9 .19 DBCA showing manual shared memory management options

95127c09.indd 470 2/18/09 6:43:51 AM

Using DBCA to Create Oracle 11g Databases 471

Memory management and the parameters associated with memory are
discussed in detail in Chapter 14, “Maintaining the Database and Managing
Performance.”

The Sizing Tab

You use the options on the Sizing tab (see Figure 9.20) to configure the block size of your
database and the number of processes that can connect to this database. The Block Size
setting corresponds to the smallest unit of storage within the Oracle Database. All storage
of database objects (tables, indexes, and so on) is governed by the block size. The block size
defaults to 8KB, but you can modify it in the custom template only. Once the database is
created, you cannot modify the database block size.

F i gu r e 9 . 20 Sizing tab on the Initialization Parameters screen

The maximum and minimum size of an Oracle block depends on the operating system.
Generally, 8KB is sufficient for most transaction-oriented applications, and larger block sizes,
such as 16KB and higher, are used in data warehouse–type applications. The block size can
be 2KB, 4KB, 8KB, 16KB, or 32KB.

The Processes setting specifies the maximum number of simultaneous operating-system
processes that can be connected to this Oracle Database. If you are not sure of the number
of processes needed, you can start with the default value of 150. This parameter does have

95127c09.indd 471 2/18/09 6:43:51 AM

472 Chapter 9 N Creating an Oracle 11g Database

a bearing on the overall size of your Oracle instance. The larger you make this number, the
more room Oracle must reserve in the SGA to track the processes.

The Character Sets Tab

You use the options on the Character Sets tab to configure the character sets you will use
within your database (see Figure 9.21). You will determine the database character set, the
national character set, the default language, and the default date format.

Specifying a database character set defines the type of encoding scheme that Oracle uses
to determine how characters are displayed and stored within your Oracle environment. The
character set you choose determines the languages that can be represented in your environ-
ment. It also controls other nuances, such as how your database interacts with your oper-
ating system and how much storage is required for your data. The default character set is
based on the language setting of the operating system.

F i gu r e 9 . 21 Character Sets tab on the Initialization Parameters screen

Specifying a national character set defines how your database represents Unicode char-
acters in a database that does not use a Unicode-enabled character set.

You use the Default Language setting to manage certain aspects of how your database
represents information pertaining to different locales. For example, this setting determines
how your database displays time and monetary values.

95127c09.indd 472 2/18/09 6:43:52 AM

Using DBCA to Create Oracle 11g Databases 473

You use the Default Date setting to specify how Oracle displays dates by default. For
example, the AMERICA setting shows dates in the DD-MON-YYYY format by default.

The Connection Mode Tab

You use the options on the Connection Mode tab to specify the type of connections to
use for this database (see Figure 9.22). You can choose Dedicated Server Mode or Shared
Server Mode. The default connection mode is Dedicated Server Mode.

F i gu r e 9 . 22 The Connection Mode tab on the Initialization Parameters screen

The dedicated server and shared server modes are covered in more detail
in Chapter 11, “Understanding Network Architecture.”

In the dedicated server mode, each user process will have a dedicated server process.
In the shared process mode, many user processes share a server process.

If you want to review the initialization parameters and make any changes, click the
All Initialization Parameters button. The screen shown in Figure 9.23 details the basic
parameters. From this screen, you can view/edit the advanced parameters using the Show
Advanced Parameters button. You have the option to edit a value on this screen.

After completing the Initialization Parameters screen, click Next. You will then be pre-
sented with the Security Settings screen.

95127c09.indd 473 2/18/09 6:43:52 AM

474 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 . 23 DBCA Initialization Parameters screen

Security and Maintenance Settings
Oracle 11g has new and improved security settings such as case-sensitive passwords, more
rigorous profile options, and so on. If you’re not ready to use the Oracle 11g security
options, choose the Revert to Pre-11g Default Security Settings option. Figure 9.24 shows
the DBCA Security Settings screen.

When you click Next on the Security Settings screen, you will be presented with an
option to configure automatic maintenance tasks, as shown in Figure 9.25.

On the next screen, you will be presented with options to review storage specifications
for tablespaces, data files, control files, and redo log files.

95127c09.indd 474 2/18/09 6:43:52 AM

Using DBCA to Create Oracle 11g Databases 475

F i gu r e 9 . 24 DBCA Security Settings screen

F i gu r e 9 . 25 DBCA Automatic Maintenance Tasks screen

Database Storage
The Database Storage screen provides you with the opportunity to review and change the
locations of the actual objects that compose the Oracle Database; namely, the data files,
control files, and redo logs (see Figure 9.26).

95127c09.indd 475 2/18/09 6:43:52 AM

476 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 . 26 The DBCA Database Storage initial screen

This screen displays a tree structure in the left pane. You can click the various elements
within the tree to expand and display the details of each component. As with many of the
other screens in the DBCA, you can click the File Location Variables button to display
the settings for the various Oracle file location parameters, such as the ORACLE_BASE and
ORACLE_HOME settings (see Figure 9.27).

F i gu r e 9 . 27 DBCA File Location Variables dialog box

Selecting an element displays details about the element in the pane on the right. For example,
clicking Controlfile displays a summary of the controlfile names and locations in the right pane.
You can make manual changes to the names and locations of the control files in the right
pane. Figure 9.28 shows the storage options available to configure a tablespace.

95127c09.indd 476 2/18/09 6:43:52 AM

Using DBCA to Create Oracle 11g Databases 477

F i gu r e 9 . 28 DBCA Database Storage tablespace storage screen

If you are creating a custom database definition that does not use a template, you
can add new objects to a particular group. For example, clicking the Tablespaces folder
and then clicking Create lets you add new tablespaces to your database definition. If you
selected a database template that included data file definitions, you cannot add or remove
data files, tablespaces, or rollback segments, but you can modify the location of the data
files, control files, and redo log groups.

Chapter 10, “Allocating Database Storage and Creating Schema Objects,”
covers configuring and managing tablespaces and data files in detail.

After completing the Database Storage screen, click Next to create your database.

Creation Options
The Creation Options screen (see Figure 9.29) provides you with three options, and you can
choose all three if needed.

Create Database Use this option to have the DBCA immediately create your database.

Save as a Database Template You actually have two choices with this option. You can
elect to save your database definition to a template and create the database at a later time,
or you can have the DBCA create the template and immediately create your database.

Generate Database Creation Scripts This option will generate scripts for you to create the
database at a later time without using the DBCA.

95127c09.indd 477 2/18/09 6:43:53 AM

478 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 . 29 The DBCA Creation Options screen

If you elect to create your database immediately, the DBCA uses the information you have
provided in the previous screens to create all the necessary components of your database, pop-
ulate the database with sample schemas if they were chosen, start your database, and allow
you to configure the network components of your database, such as the Oracle Net listener.

I will discuss the listener component in more detail in Chapter 11.

If you elect to save your database to a template definition, this definition is added to the
list of database definitions that you can select on subsequent executions of the DBCA.

You can also let the DBCA create a set of scripts that you can run manually to create the
database. You can choose a location to store your scripts, and then you can run the scripts
manually to generate your database. If you choose a manual creation process, you will also
have to manually configure several items, including the Oracle Internet Directory Service
if you elect to use centralized naming and your listener. Also, depending on your operating
system, you will have to configure or modify the oratab file (under /etc or /var/opt/oracle
depending on the platform) on Unix or create a service in the Windows environment.

When preparing for the test, create the database using a predefined template
as well as a custom template. Save the database-creation scripts, and go
through the scripts to understand what statements are executed behind the
scenes by the DBCA to create the database. When using a custom template, a
new database will be created using the CREATEDATABASE statement, whereas
when using a predefined template, Oracle does not create a new database
from scratch; instead, it clones an existing database from the template.

95127c09.indd 478 2/18/09 6:43:53 AM

Using DBCA to Create Oracle 11g Databases 479

If you elect to have the DBCA create the database immediately, click Finish. You will see
the Confirmation screen that summarizes the configuration options that you chose for this
database (see Figure 9.30).

F i gu r e 9 . 3 0 The DBCA Confirmation screen

You can scroll down the window to examine the following:

Options to install into the databaseÛN

The initialization-parameter settingsÛN

Character-set settingsÛN

Names and locations for data filesÛN

Names and locations for redo logsÛN

Names and locations for control filesÛN

You can save this summary screen as an HTML file for later reference.
Once you start the database-creation process, Oracle creates the database as you have

specified. It starts the instance, creates all the necessary database components, and config-
ures all the database options you specified. Depending on how large a database you create
and how many options you are installing, the process can take anywhere from several min-
utes to an hour or more.

After the database creation is complete, DBCA shows a summary screen, as shown in
Figure 9.31. Note the information on this screen, especially the URL to invoke Enterprise
Manager Database Control and the server parameter file location.

95127c09.indd 479 2/18/09 6:43:54 AM

480 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 . 31 DBCA result summary screen

On this screen, you have the option to do password management. By default, all the
accounts except SYS, SYSTEM, SYSMAN, and DBSNMP are locked. You can change the password
and unlock selective accounts. Figure 9.32 shows the Password Management dialog box.

F i gu r e 9 . 32 DBCA Password Management dialog box

95127c09.indd 480 2/18/09 6:43:54 AM

Using DBCA to Create Oracle 11g Databases 481

When the creation process is complete, connect to the database with one of the tools
such as SQL*Plus or Enterprise Manager to ensure that all the database options and
components were installed properly. Logging into Enterprise Manager will give you an
overview of the new database. By using the URL specified in Figure 9.31, you can invoke
the Database Control home page. Log in using the SYSMAN account with the password you
supplied in Figure 9.7. Figure 9.33 shows the home screen of Enterprise Manager Database
Control.

F i gu r e 9 . 3 3 Enterprise Manager Database Control home page

Configuring an Oracle Database Using the DBCA
The DBCA lets you change various aspects of an existing database. To change the database
configuration, select Configure Database Options on the DBCA Operations screen (shown
earlier in this chapter in Figure 9.2). If the database is not started, the DBCA starts it for
you automatically. You must connect to the database as a user who has DBA authority.

95127c09.indd 481 2/18/09 6:43:54 AM

482 Chapter 9 N Creating an Oracle 11g Database

Once you have selected and started the database, you can add options that may not
have been previously included in the database. Using DBCA you can perform the following
changes to database configuration:

Add database components (refer to Figure 9.13).ÛN

Change database security settings from pre-11ÛN g default security setting to 11g
enhanced security settings, or vice versa (refer Figure 9.24).

Change the default connection mode for the database. You can change from dedicated ÛN

server mode to shared server mode, or vice versa (refer Figure 9.22).

Deleting an Oracle Database Using the DBCA
You can also delete a database using the DBCA. On the Operations screen (Figure 9.2),
choose Delete a Database, and click Next to open the Database screen. The DBCA lists all
the databases available for deletion. Choose the database you want to delete.

If you click Finish, the DBCA removes all files on the disk associated with the database
you have chosen. If you are using Windows, the DBCA also removes the service associated
with the database.

Exercise 9.1 shows you how to delete a database manually using SQL*Plus.

e x e r C i s e 9 .1

Delete or remove an Oracle Database manually

Some DBAs prefer to use a command-line interface to perform their tasks. You can delete
a database using the command-line tool SQL*Plus.

To do so, first connect to SQL*Plus as an administrator who has the ability to start up the
database; that is, an administrator with either the SYSOPER or SYSDBA privilege.

Here’s an example:

/u01/app/oracle>sqlplus sys/**** as sysdba

Once you are connected, you need to put the database in MOUNT mode. Issue the following
command if the database is not running:

Startup mount;

Next, issue the following command:

Drop database;

This command deletes all the files associated with the database. If you are using raw disk
devices, the special files created for these devices are not deleted. Also, you may have to
remove any archived logs from the database archive area using the appropriate operating-
system command.

95127c09.indd 482 2/18/09 6:43:54 AM

Using DBCA to Create Oracle 11g Databases 483

Managing Database Templates Using the DBCA
As I explained earlier in this chapter, the DBCA can store and use XML-based templates to
create your Oracle Database. As the DBA, you can manage these database-definition tem-
plates. Saving a definition of your database in a template format makes it easier to perform
various tasks. For example, you can copy a preexisting template to modify new database
definitions. The template definition is normally stored in the $ORACLE_HOME/assistants/
dbca/templates directory on Unix and in the %ORACLE_HOME%\assistants\dbca\templates
directory on Windows systems.

The DBCA can use two types of templates: seed and nonseed. Seed templates are tem-
plate definitions that contain database-definition information and the actual data files and
redo log files. The advantage of a seed template is that the DBCA makes a copy of the data
files and redo logs included in the definition file. These prebuilt data files include all schema
information, which makes for a faster database-creation process. The seed templates carry
a .dbc extension. The associated predefined data files are stored as files having a .dfb exten-
sion. When you use a seed template, you can change the database name, the data-file locations,
the number of control files and redo log groups, and the initialization parameters.

Nonseed templates contain custom-defined database definitions. Unlike seed templates,
they do not come with preconfigured data files and redo logs. Nonseed templates carry a
.dbt extension.

Now I’ll cover the various options you have to manage templates.

Creating Template Definitions Using the DBCA
You can use the DBCA interface to create new database templates. When you connect to
the DBCA, select Manage Templates on the Operations screen (see Figure 9.2, shown ear-
lier in this chapter), and click Next to open the Template Management screen, as shown in
Figure 9.34.

F i gu r e 9 . 3 4 The DBCA Template Management screen

95127c09.indd 483 2/18/09 6:43:54 AM

484 Chapter 9 N Creating an Oracle 11g Database

You have three choices for creating templates. Table 9.4 summarizes your options.

ta b le 9 . 4 Template-Creation Options

Selection Description

From an Existing Template Creates a new template definition from a preexisting tem-
plate. This allows you to modify a variety of template settings,
including parameters and data file storage characteristics.

From an Existing Database
(Structure Only)

Creates a new template based on the structural characteris-
tics of an existing database. The data files are created from
scratch and will not include data from the original database.
Choose this option when you want a database that is struc-
turally like another database but does not contain any data.
The database you are copying from can reside anywhere in
your network.

From an Existing Database
(Structure As Well As Data)

Creates a new template based on the structural character-
istics of an existing database. The data files and all corre-
sponding user data are included in the new database. Choose
this option when you want an exact copy of an existing data-
base. The database you are copying must reside on the same
physical server as the new database you are creating.

Depending on the option selected, you are presented with a set of forms to save your
template definition. If you elect to create a template from an existing database, you will have
to connect to the database so that the DBCA can obtain information about the database.
You must connect to the database as a user who has DBA credentials to perform this task.

If you are copying a definition from an existing template, you can configure the template
by following a series of screens that are similar to those used to create a database. These
screens allow you to configure the various aspects of the template, including initialization
parameters and data file and redo log locations.

Deleting Template Definitions Using the DBCA
You can also delete an existing template definition. On the Operations screen (see Figure 9.2,
shown earlier in this chapter), click Manage Templates. You will be presented with the
Template Management screen (see Figure 9.34). Select the option Delete a Database Tem-
plate. You can then choose the template to delete. When you remove the template, the
DBCA removes the XML file from the system.

95127c09.indd 484 2/18/09 6:43:54 AM

Working with Oracle 11g Metadata 485

Working with Oracle 11g Metadata
In addition to tables such as DEPARTMENTS and EMPLOYEES that store important business
data, Oracle Databases also contain system tables that store data about the database.
Examples of the type of information in these system tables include the names of all the
tables in the database, the column names and datatypes of those tables, the number of rows
those tables contain, and security information about which users are allowed to access
those tables. This “data about the database” is referred to as metadata. As a DBA, you will
frequently use this metadata when performing your administration tasks.

An Oracle 11g database contains two types of metadata views:

Data dictionary viewsÛN

Dynamic performance viewsÛN

The SYS user owns the data dictionary and dynamic performance views in the Oracle
11g database, and they are stored in the SYSTEM tablespace. During normal database opera-
tion, Oracle uses the data dictionary frequently and updates the dictionary with the current
status of the database components. The dictionary is also immediately updated when a
DDL statement is executed.

Data dictionary views and dynamic performance views are described in the next section.

Data Dictionary Views
Data dictionary views provide information about the database and its objects. Depending
on which features are installed and configured, an Oracle 11g database can contain more
than 1,600 data dictionary views. Data dictionary views have names that begin with DBA_,
ALL_, and USER_. Oracle creates public synonyms on many data dictionary views so users
can access the views conveniently.

The difference between the DBA_, ALL_, and USER_ views can be illustrated using the
DBA_TABLES data dictionary view as an example. The DBA_TABLES view shows information
on all the tables in the database. The corresponding ALL_TABLES view, despite its name,
shows only the tables that a particular database user owns or can access. For example,
if you were logged into the database as a user named SCOTT, the ALL_TABLES view would
show all the tables owned by the user SCOTT and the tables to which SCOTT has been granted
access by other users. The USER_TABLES view shows only those objects owned by a user. If
the user SCOTT were to examine the USER_TABLES view, only those tables he owns would
be displayed. Figure 9.35 shows a graphical representation of the relationship between the
DBA_, ALL_, and USER_ views.

Because the DBA_ views provide the broadest metadata information, they are generally
the data dictionary views used by DBAs. Table 9.5 provides examples of DBA_ data diction-
ary views.

95127c09.indd 485 2/18/09 6:43:55 AM

486 Chapter 9 N Creating an Oracle 11g Database

F i gu r e 9 . 3 5 A comparison of data dictionary views

USER_TABLES
All tables owned by a

particular database user.

DBA_TABLES
All tables in the entire database.
Reserved for user accounts that

have DBA privileges.

ALL_TABLES
All tables owned by a

particular database user plus
all tables to which the user
has been granted access.

ta b le 9 .5 Examples of Data Dictionary Views

Dictionary View Description

DBA_TABLES Shows the names and physical storage information about all the
tables in the database

DBA_USERS Shows information about all the users in the database

DBA_VIEWS Shows information about all the views in the database

DBA_TAB_COLUMNS Shows all the names and datatypes of the table columns in the
database

DATABASE_PROPERTIES Displays database properties such as NLS parameters, default
temporary and permanent tablespace names, database time
zone, so on

GLOBAL_NAME Shows the global database name

95127c09.indd 486 2/18/09 6:43:55 AM

Working with Oracle 11g Metadata 487

You can find a complete list of the Oracle 11g data dictionary views in
Part II of the “Oracle Database Reference 11g Release 1 (11.1) Part Number
B28320-01” document available at http://tahiti.oracle.com.

Dynamic Performance Views
Throughout database operation, Oracle updates a set of virtual tables to record the cur-
rent database activity and status. These tables are called dynamic performance tables.
Views are created on top of the dynamic performance tables for better grouping of infor-
mation and to have names in a user-friendly format. The dynamic performance views are
sometimes called fixed views, because they cannot be altered or removed by the database
administrator.

The dynamic performance tables begin with X$. The dynamic performance view names
begin with V_$. Public synonyms are created on these views, and they begin with V$.
For example, the dynamic performance view with data file information is v_$datafile,
whereas the public synonym is v$datafile.

Depending on which features are installed and configured, an Oracle 11g database can
contain approximately 480 dynamic performance views. Most of these views have names
that begin with V$. Table 9.6 describes a few of these dynamic performance views.

ta b le 9 .6 Examples of Dynamic Performance Views

Dynamic
Performance View Description

V$DATABASE Contains information about the database, such as the database name
and when the database was created

V$VERSION Shows which software version the database is using

V$OPTION Displays which optional components are installed in the database

V$SQL Displays information about the SQL statements that database users
have been issuing

You can find a complete list of the Oracle 11g data dictionary views in Part
III of the “Oracle Database Reference 11g Release 1 (11.1) Part Number
B28320-01” document available at http://tahiti.oracle.com.

95127c09.indd 487 2/18/09 6:43:55 AM

488 Chapter 9 N Creating an Oracle 11g Database

Although the contents of the DBA_ and V$ metadata views are similar, there are some
important differences between the two types. Table 9.7 compares these two types.

ta b le 9 .7 Data Dictionary vs. Dynamic Performance Views

Data Dictionary Views Dynamic Performance Views

The DBA_ views usually have plural names
(for example, DBA_DATA_FILES).

The names of the V$ views are generally sin-
gular (for example, V$DATAFILE).

The DBA_ views are available only when the
database is open and running.

Some V$ views are available even when the
database is not fully open and running.

The data contained in the DBA_ views is
static and is not cleared when the database
is shut down.

The V$ views contain dynamic statistical
data that is lost each time the database is
shut down.

The data dictionary view DICTIONARY shows information about the data
dictionary and dynamic performance views in the database. DICT is a syn-
onym for the DICTIONARY view. The COMMENTS column shows the purpose
or contents of the view. The V$FIXED_TABLE view lists the dynamic perfor-
mance tables and views in the database.

The Oracle data dictionary and dynamic performance views are created while creating
the database. The scripts to create the metadata are stored in the $ORACLE_HOME/rdbms/
admin directory. Several scripts are in this directory, and the script that creates the base dic-
tionary objects is called catalog.sql. The catproc.sql script creates the PL/SQL packages
and functionality to support PL/SQL in the database.

You are not allowed to log in as SYS and modify the data dictionary views
or update information directly using SQL. The only SYS-owned table you
are allowed to delete records from is AUD$. This table is used to keep data-
base audit information.

Managing Initialization-Parameter Files
Oracle uses initialization-parameter files to store information about initialization parame-
ters used when an Oracle instance starts. Oracle reads the parameter file to obtain informa-
tion about how the Oracle instance should be sized and configured upon startup.

95127c09.indd 488 2/18/09 6:43:55 AM

Managing Initialization-Parameter Files 489

The parameter file can be a plain text file, commonly referred to as a pfile, or it can be
a binary parameter file, commonly referred to as an spfile. You can use either type of file
to configure instance and database options; however, there are some important differences
between the two types of configuration files, as shown in Table 9.8.

ta b le 9 . 8 Pfiles vs. Spfiles

Pfile Spfile

Text file that can be edited using a text editor. Binary file that cannot be edited directly.

When changes are made to the pfile, the
instance must be shut down and restarted
before it takes effect.

Parameter changes made to the database
using ALTERSYSTEM are updated in the spfile.

Is called initinstance_name.ora. Is called spfileinstance_name.ora.

Oracle instance reads only from pfile. Oracle instance reads and writes to the spfile.

Can be created from an spfile using the
createpfilefromspfile command.

Can be created from a pfile using the
createspfilefrompfile command.

You can specify more than 285 documented configuration parameters in the pfile or
spfile. Oracle 11g divides these parameters into two categories: basic and advanced. Oracle
recommends you set only the basic initialization parameters manually. Oracle also recom-
mends you do not modify the remaining parameters unless directed to do so by Oracle
Support or to meet the specific needs of your application. Table 9.9 describes the basic ini-
tialization parameters . A “Yes” in the Static column indicates that the parameter is static
and cannot be modified dynamically without a database restart.

ta b le 9 . 9 Oracle 11g Basic Initialization Parameters

Parameter Name Static Description

CLUSTER_DATABASE Yes Tells the instance whether it is part of a clustered
environment.

COMPATIBLE Yes Specifies the release level and feature set you want to be
active in the instance.

CONTROL_FILES Yes Designates the physical location of the database control
files.

DB_BLOCK_SIZE Yes Specifies the default database block size. The database
block size specified at database creation cannot be
changed.

95127c09.indd 489 2/18/09 6:43:55 AM

490 Chapter 9 N Creating an Oracle 11g Database

Parameter Name Static Description

DB_CREATE_FILE_DEST No Specifies the directory location where database data files
will be created if the Oracle-Managed Files feature is used.

DB_CREATE_ONLINE_LOG_
DEST_n

No Specifies the location(s) where the database redo log files
will be created if the Oracle-Managed Files feature is used.

DB_DOMAIN Yes Specifies the logical location of the database on the net-
work.

DB_NAME Yes Specifies the name of the database that is mounted by
the instance.

DB_RECOVERY_FILE_DEST No Specifies the location where recovery files will be writ-
ten if the flash recovery feature is used.

DB_RECOVERY_FILE_
DEST_SIZE

No Specifies the amount of disk space available for storing
flash recovery files.

DB_UNIQUE_NAME Yes Specifies a globally unique name for the database within
the enterprise.

INSTANCE_NUMBER Yes Identifies the instance in a Real Application Clusters
(RAC) environment.

LDAP_DIRECTORY_
SYSAUTH

Yes Enables or disables Oracle Internet directory–based
authentication for SYSDBA and SYSOPER connections to
the database.

LOG_ARCHIVE_DEST_n No Specifies as many as nine locations where archived redo
log files are to be written.

LOG_ARCHIVE_DEST_
STATE_n

No Indicates how the specified locations should be used for
log archiving.

NLS_LANGUAGE Yes Specifies the default language of the database.

NLS_TERRITORY Yes Specifies the default region or territory of the database.

OPEN_CURSORS No Sets the maximum number of cursors that an individual
session can have open at one time.

PGA_AGGREGATE_TARGET No Establishes the overall amount of memory that all PGA
processes are allowed to consume.

PROCESSES Yes Specifies the maximum number of operating-system
processes that can connect to the instance.

REMOTE_LISTENER No Specifies a network name that points to the address or
list of addresses of remote Oracle Net listeners.

ta b le 9 . 9 Oracle 11g Basic Initialization Parameters (continued)

95127c09.indd 490 2/18/09 6:43:56 AM

Managing Initialization-Parameter Files 491

Parameter Name Static Description

REMOTE_LOGIN_
PASSWORDFILE

Yes Determines whether the instance uses a password file
and what type.

ROLLBACK_SEGMENTS Yes Specifies the rollback-segment names, only if Automatic
Undo Management is not being used.

SESSIONS Yes Determines the maximum number of sessions that can
connect to the database.

SGA_TARGET No Establishes the maximum size of the SGA, within which
space is automatically allocated to each SGA component
when Automatic Memory Management is used.

SHARED_SERVERS No Specifies the number of shared server processes to start
when the instance is started. See Chapter 11 for details.

STAR_TRANSFORMATION_
ENABLED

No Determines whether the optimizer will consider star trans-
formations when queries are executed. See Chapter 14 for
details on the optimizer.

UNDO_MANAGEMENT Yes Establishes whether system undo is automatically or
manually managed. See Chapter 8, “Introducing Oracle
11g Components and Architecture,” for details on undo
segments.

UNDO_TABLESPACE No Specifies which tablespace stores undo segments if the
Automatic Undo Management option is used. See Chap-
ter 13, “Managing Data and Undo,” for details on undo
management.

Any parameters not specified in the pfile or spfile take on their default values. The fol-
lowing is an example of the contents of a typical Oracle 11g pfile that contains both basic
and advanced parameters:

audit_file_dest=’/u01/app/oracle/admin/OCA11G/adump’

audit_trail=’db’

compatible=’11.1.0.0.0’

control_files=(‘/u01/app/oracle/oradata/OCA11G/control01.ctl’

,’/u01/app/oracle/oradata/OCA11G/control02.ctl’

,’/u01/app/oracle/oradata/OCA11G/control03.ctl’)

db_block_size=8192

db_domain=’’

db_name=’OCA11G’

db_recovery_file_dest=’/u01/app/oracle/flash_recovery_area’

ta b le 9 . 9 Oracle 11g Basic Initialization Parameters (continued)

95127c09.indd 491 2/18/09 6:43:56 AM

492 Chapter 9 N Creating an Oracle 11g Database

db_recovery_file_dest_size=2147483648

diagnostic_dest=’/u01/app/oracle’

dispatchers=’(PROTOCOL=TCP)(SERVICE=OCA11GXDB)’

memory_target=1G

open_cursors=300

processes=150

remote_login_passwordfile=’EXCLUSIVE’

undo_tablespace=’UNDOTBS1’

In this sample pfile, the sizes of the shared pool, database buffer cache, large pool, and
Java pool are not individually specified. Instead, Oracle 11g’s Automatic Memory Manage-
ment features allow you to simply set one configuration parameter—MEMORY_TARGET—to
establish the total amount of memory allocated to the SGA and PGA. I will discuss this
parameter in Chapter 14.

On production databases, if your Oracle license is based on the number of named users,
you can enforce the license compliance by setting the LICENSE_MAX_USERS parameter. The
default for this parameter is 0, which means you can create any number of users in the
database and the license compliance is not enforced.

handle with Care: undocumented Configuration parameters

You’ve just read a performance-tuning tip posted to the Oracle newsgroup at comp
.databases.oracle.server. The person posting the tip suggests setting the undocu-
mented pfile parameter _dyn_sel_est_num_blocks to a value of 200 in order to boost
your database’s performance. Should you implement this suggestion?

More than 1,000 undocumented configuration parameters are available in Oracle 11g.
Undocumented configuration parameters are distinguished from their documented counter-
parts by the underscore that precedes their name, as with the parameter described in the
newsgroup posting.

I do not recommend utilizing undocumented pfile or spfile parameters on any of your
systems because knowing the appropriate reasons to use these parameters, and the
appropriate values to set these parameters to, is almost pure speculation because of their
undocumented nature. Although some undocumented parameters are relatively harmless
(such as _trace_files_public), using others incorrectly can cause unforeseen database
problems. What does the _dyn_sel_est_num_blocks parameter do, and what value should
you set it to? Only the engineers of the Oracle 11g kernel code know for sure.

One exception to this suggestion is when you are directed to use an undocumented config-
uration parameter by Oracle Support. Oracle Support occasionally uses these parameters
to enhance the generation of debug information or to work around a bug in the kernel code.

95127c09.indd 492 2/18/09 6:43:56 AM

Managing Initialization-Parameter Files 493

Locating the Default Parameter File
The default location that Oracle searches to find the pfile and spfile parameter files is
$ORACLE_HOME/dbs on Unix systems and %ORACLE_HOME%\database on Windows systems.

Oracle uses a search hierarchy when a startup command is issued without specifying
either a pfile or an spfile. Oracle looks for files with the following names in the default
directory to start the instance:

spfile$ORACLE_SID.oraÛN

spfile.oraÛN

init$ORACLE_SID.oraÛN

Oracle first looks for a parameter file called spfile$ORACLE_SID.ora. If it doesn’t find
that, it searches for spfile.ora. Finally, it searches for a traditional text pfile with the
default name of init$ORACLE_SID.ora.

If the parameter files do not exist in the default location or you want to use a different
parameter file to start your database, you can specify a parameter file to use when you issue
a startup command to start the Oracle Database.

You will see examples of how database startup is performed later in
this chapter in the section “Starting Up and Shutting Down an Oracle
Instance.”

Modifying Initialization-Parameter Values
In some instances, you may need to change the initialization parameters. For example, you
might need to increase the number of sessions allowed to connect to the database because
you are adding users. Whatever the case, you need to know how to make these changes.
There are a few options to change the initialization-parameter value, based on the type of
parameter file used. Here they are:

If ÛN PFILE is used, edit the pfile using an OS editor, and make appropriate changes.

If ÛN SPFILE is used, connect to the instance, and make changes using the ALTERSYSTEM
SETparameter_name=value statement.

Use EM Database Control to make changes.ÛN

Using EM Database Control
To use the EM Database Control tool to modify existing database parameters, navigate to
the Server menu. In the Database Configuration section, you can modify your initialization
parameters. The SPFile tab shows the parameters as set in the spfile. You can also use the
filters to find the exact parameter that needs to be modified. The Category drop-down is a
very useful feature. Figure 9.36 shows the EM screen to change initialization parameters.

95127c09.indd 493 2/18/09 6:43:56 AM

494 Chapter 9 N Creating an Oracle 11g Database

The Initialization Parameters screen has two tabs:

Current tab This tab displays all the currently active settings for initialization parameters
for the database instance. If a parameter is marked Dynamic, you can modify it, and this
modification immediately affects the parameter that affects the currently running instance
without stopping the database. The changes you make on the Current tab are not perma-
nent, so the next time the database is stopped and restarted, the settings revert to their
original values.

SPFile tab If you are using a server parameter file, you will see the SPFile tab. This tab
also lets you change existing database parameters. The difference between changing param-
eters on this tab and changing parameters on the Current tab is that changes to the spfile
are persistent across database startups and shutdowns because the changes are saved to the
spfile definition. You can also apply your changes to the spfile only or to the spfile and the
currently running instance.

F i gu r e 9 . 36 The EM Database Control Initialization Parameters screen

95127c09.indd 494 2/18/09 6:43:56 AM

Managing Initialization-Parameter Files 495

Using SQL*Plus
Though EM Database Control is a handy tool to modify the initialization parameters,
sometimes it is convenient to use SQL*Plus and make changes to the parameters. You
should know about two dynamic performance views: V$PARAMETER and V$SPPARAMETER.

V$PARAMETER

The V$PARAMETER view shows information about the initialization parameters that are cur-
rently in effect. This view has several useful columns. Table 9.10 lists some of the columns
in V$PARAMETER and how they can be used in queries.

ta b le 9 .10 V$PARAMETER Columns

Column Name Description

NAME This specifies the name of the initialization parameter.

VALUE This specifies the current value of the parameter.

DISPLAY_VALUE This specifies the current value in a more user-friendly format.

DESCRIPTION This gives a short description about the parameter.

ISBASIC TRUE indicates that the parameter is categorized as a basic parameter.

ISDEFAULT FALSE indicates that the parameter was specified in the pfile or spfile
during instance startup.

ISMODIFIED FALSE indicates that the parameter has not been modified since the
instance started.

ISSES_MODIFIABLE TRUE indicates that the parameter can be modified using an ALTER
SESSION statement.

ISSYS_MODIFIABLE FALSE indicates that the parameter cannot be modified using an
ALTERSYSTEM statement. Such parameters can be changed only
using the SCOPE=SPFILE clause.

V$SPPARAMETER

The V$SPPARAMETER view shows the contents of the spfile used to start the instance. A TRUE
value for the ISSPECIFIED column shows whether the parameter was specified in the spfile.
If a pfile was used to start the instance, all the rows will have FALSE for the ISSPECIFIED
column. Sometimes, querying the V$SPPARAMETER can produce readable output for param-
eters that take multiple values.

95127c09.indd 495 2/18/09 6:43:56 AM

496 Chapter 9 N Creating an Oracle 11g Database

V$PARAMETER vs. V$SPPARAMETER

The following SQL example shows the difference in the result from the V$PARAMETER and
V$SPPARAMETER views:

SQL>SELECTname,value

2FROMv$parameter

3WHEREnameLIKE‘control%’

4ANDisdefault=‘FALSE’;

NAMEVALUE

--

control_files/u01/app/oracle/oradata/OCA11G/control01.ctl,/u

01/app/oracle/oradata/OCA11G/control02.ctl,/u01/

app/oracle/oradata/OCA11G/control03.ctl

SQL>SELECTname,value

2FROMv$spparameter

3WHEREnameLIKE‘control%’

4ANDisspecified=‘TRUE’;

NAMEVALUE

--

control_files/u01/app/oracle/oradata/OCA11G/control01.ctl

control_files/u01/app/oracle/oradata/OCA11G/control02.ctl

control_files/u01/app/oracle/oradata/OCA11G/control03.ctl

SQL>

You can use the ALTERSESSION statement to change the value of a parameter in the cur-
rent session. For example, if you want to change the default date-display format for the ses-
sion only, use the following statement:

SQL>ALTERSESSIONSETNLS_DATE_FORMAT=‘DD-MON-YYYYHH24:MI:SS’;

Sessionaltered.

SQL>

You can use the ALTERSYSTEM statement to change the value of a parameter system-wide
or in the spfile, or both. You use the SCOPE clause to define where you want to change the
parameter value: MEMORY, SPFILE, and BOTH are the valid values for the SCOPE clause.

95127c09.indd 496 2/18/09 6:43:57 AM

Managing Initialization-Parameter Files 497

A value of DEFERRED or IMMEDIATE in the ISSYS_MODIFIABLE column shows that the
parameter can be dynamically changed using ALTERSYSTEM. The DEFERRED value indicates
that the change you make does not take effect until a new session is started; the existing
sessions will use the current value. IMMEDIATE indicates that as soon as you change the value
of the parameter, it is available to all sessions in the instance. A session is a job or task that
Oracle manages. When you log in to the database using SQL*Plus or any other tool, you
start a session.

If you want to change a parameter value for the current instance but do not want the
change to persist across database shutdowns, you can specify SCOPE=MEMORY, as in the fol-
lowing example:

SQL>ALTERSYSTEMSETUNDO_RETENTION=3600SCOPE=MEMORY;

Systemaltered.

SQL>

Some parameters values can be set only at instance startup; they are not modifiable
when the instance is running. Such parameter changes can be made with the SCOPE=SPFILE
clause. Oracle will make the change only to the spfile, which takes effect after you restart
the database:

SQL>ALTERSYSTEMSETUNDO_MANAGEMENT=MANUAL;

ALTERSYSTEMSETUNDO_MANAGEMENT=MANUAL

*

ERRORatline1:

ORA-02095:specifiedinitializationparametercannotbemodified

SQL>ALTERSYSTEMSETUNDO_MANAGEMENT=MANUALSCOPE=SPFILE;

Systemaltered.

SQL>

Most of the times when you make a parameter change, you want it to take effect imme-
diately in memory as well as persist the change across database shutdowns. You can use the
SCOPE=BOTH clause, which is the default, for this purpose. So if you omit the SCOPE clause,
Oracle will make changes to the memory and to the spfile. If a pfile is used to start the
instance, the change will be in memory only for the current running instance.

SQL>ALTERSYSTEMSETSGA_TARGET=500MSCOPE=BOTH;

Systemaltered.

SQL>

95127c09.indd 497 2/18/09 6:43:57 AM

498 Chapter 9 N Creating an Oracle 11g Database

You can use the SQL*Plus command SHOWPARAMETER to view the current value of an
initialization parameter. You can specify the full parameter name or part of the name. For
example, to view all parameters related to undo, you can do this:

SQL>SHOWPARAMETERundo

NAMETYPEVALUE

--

undo_managementstringAUTO

undo_retentioninteger3600

undo_tablespacestringUNDOTBS1

SQL>

In the next section, I will discuss the options to start up and shut down a database.

Starting Up and Shutting Down an
Oracle Instance
As a DBA, you are responsible for the startup and shutdown of the Oracle instance. Oracle
gives authorized administrators the ability to perform this task using a variety of interfaces.
It is important to understand the options that are available to you to start up and shut
down the Oracle instance and when the various options can or should be used. The stages
of instance startup and the startup options appear frequently on OCA certification exams.

To start up or shut down an Oracle instance, you need to be connected to the data-
base with the appropriate privileges. Two special connection account authorizations are
available for startup and shutdown: SYSDBA and SYSOPER. The SYSDBA authorization is an
all-empowering authorization that allows you to perform any database task. The SYSOPER
authorization is a less powerful authorization that allows startup and shutdown abilities
but restricts other administrative tasks, such as access to nonadministrative schema objects.
These authorizations are managed either through a passwords file or via operating-system
control.

When a database is initially installed, only the SYS schema can connect to the database
with the SYSDBA authorization. You can grant this authorization and the SYSOPER authoriza-
tion to give others the ability to perform these tasks without connecting as the SYS user.

Now I will discuss how to perform a database startup.

Starting Up an Oracle 11g Database
As described in Chapter 8, the Oracle instance is composed of a set of logical memory struc-
tures and background processes that users interact with to communicate with the Oracle
Database. When Oracle is started, these memory structures and background processes are
initialized and started so that users can communicate with the Oracle Database.

95127c09.indd 498 2/18/09 6:43:57 AM

Starting Up and Shutting Down an Oracle Instance 499

Whenever an Oracle Database is started, it goes through a series of steps to ensure
database consistency. When it starts up, a database passes through three modes: NOMOUNT,
MOUNT, and OPEN. I will review each of these startup modes and other special startup options
such as FORCE and RESTRICT and discuss when you need to use these options. I’ll then dis-
cuss how to use the available interfaces to start up an Oracle instance.

STARTUP NOMOUNT    This starts the instance without mounting the database. When a data-
base is started in this mode, the parameter file is read, and the background processes and
memory structures are initiated, but they are not attached or communicating with the disk
structures of the database. When the instance is in this state, the database is not available
for use.

If a database is started in NOMOUNT mode, only the background processes and instance are
started. The instance is not associated with any database. This state is used to create a
database or to create a database control file.

At times, a database may not be able to go to the next mode (called MOUNT mode) and remains
in NOMOUNT mode. For example, this can occur if Oracle has a problem accessing the control
file structures, which contain important information to continue with the startup process. If
these structures are damaged or not available, the database startup process cannot continue
until the problem is resolved.

If STARTUPNOMOUNT fails, the most likely cause is that the parameter file
cannot be read or is not in the default location. Other causes include OS
resource limits that prevent memory or process allocation.

STARTUP MOUNT    This performs all the work of the STARTUPNOMOUNT option but also attaches
and interacts with the database structures. At this point, Oracle obtains information from
the control files that it uses to locate and attach to the main database structures. The con-
trol file contains the name of the database, all the data file names, and the redo log files
associated with the database.

Certain administrative tasks can be performed while the database is in this mode, including
renaming data files, enabling or disabling archive logging, renaming and adding redo log
files, and recovering the database.

STARTUP OPEN    This is the default startup mode if no mode is specified on the STARTUP com-
mand line. STARTUPOPEN performs all the steps of the STARTUPNOMOUNT and STARTUPMOUNT
options. This option makes the database available to all users.

When opening the database, you can use a couple of options. STARTUPOPENREADONLY opens
the database in read-only mode. STARTUPOPENRECOVER opens the database and performs a
database recovery.

Although you typically use the STARTUPNOMOUNT, STARTUPMOUNT, and STARTUPOPEN options,
a few other startup options are available that you can use in certain situations: STARTUPFORCE
and STARTUPRESTRICT. These are discussed next.

95127c09.indd 499 2/18/09 6:43:57 AM

500 Chapter 9 N Creating an Oracle 11g Database

STARTUP FORCE    You can use the STARTUPFORCE startup option if you are experiencing
difficulty starting the database in a normal fashion. For example, if a database server lost
power and the database stopped abruptly, it can leave the database in a state in which a
STARTUPFORCE startup is necessary. This type of startup should not normally be required
but can be used if a normal startup does not work. What is also different about STARTUP
FORCE is that it can be issued no matter what mode the database is in. STARTUPFORCE does
a shutdown abort and then restarts the database.

STARTUP RESTRICT    The STARTUPRESTRICT option starts up the database and places it in
OPEN mode but gives access only to users who have the RESTRICTEDSESSION privilege. You
might want to open a database using the RESTRICTED option when you want to perform
maintenance on the database while it is open but ensure that users cannot connect and per-
form work on the database. You might also want to open the database using the RESTRICTED
option to perform database exports or imports and guarantee that no users are accessing
the system during these activities. After you are done with your work, you can disable the
restricted session, ALTERSYSTEMDISABLERESTRICTEDSESSION, so everyone can connect to
the database.

Starting Up Oracle Using EM Database Control
Now that you understand the various startup options, let’s look at how to use the EM
Database Control to start up the Oracle instance.

When you invoke the Enterprise Manager console, you are notified that the database
instance is down (see Figure 9.37).

F i gu r e 9 . 37 The EM Database Control database status screen

95127c09.indd 500 2/18/09 6:43:57 AM

Starting Up and Shutting Down an Oracle Instance 501

Perform the following steps to start the Oracle instance:

1. Click the Startup button located on the Database Control screen to open the Startup/
Shutdown: Specify Host and Target Database Credentials screen (see Figure 9.38).

2. On the Startup/Shutdown: Specify Host and Target Database Credentials screen, you
need to supply an operating-system username and password and an Oracle user ID and
password that has either the SYSDBA or SYSOPER account authentication. After you enter
the appropriate user ID and password information, click OK to open the Startup/Shut-
down: Confirmation screen.

3. On the Startup/Shutdown: Confirmation screen, you can click Yes to continue, No to
cancel, or Advanced Options to select advanced startup options.

If you click Advanced Options, you can select the type of startup you want. You can
choose your startup mode (NOMOUNT, MOUNT, or OPEN), you can choose the parameter file to
use, and you can choose to force database startup or to start the database in RESTRICTED
mode. Click OK to return to the previous screen. By default, Oracle starts with the OPEN
option and uses the default initialization file.

F i gu r e 9 . 3 8 Startup/Shutdown: Specify Host and Target Database Credentials screen

You can also click Show SQL to see the actual startup command that will
be executed.

95127c09.indd 501 2/18/09 6:43:57 AM

502 Chapter 9 N Creating an Oracle 11g Database

After you choose the type of startup, click Yes. The startup process may take some time
to complete, depending on the system speed and whether Oracle has to perform any recovery
operations during the startup process. You will be presented with a screen indicating that
the database is being started. If Oracle does not encounter any problems with the startup
process, you will be notified that the database is now open and available.

Starting Oracle Using SQL*Plus
You can also use the command-line facility SQL*Plus to start the Oracle Database. You will
need to connect to SQL*Plus as a user with SYSOPER or SYSDBA privileges. Here is the syntax
of the startup options available:

STARTUP[NOMOUNT|MOUNT|OPEN][PFILE/SPFILE=][RESTRICT]

Table 9.11 shows some examples of startup commands that you can use from within
SQL*Plus.

ta b le 9 .11 SQL*Plus DB Startup-Command Examples

Command Description

STARTUPNOMOUNTpfile=
/u01/oracle/init.ora

Starts Oracle in NOMOUNT mode using a nondefault
parameter file

STARTUPMOUNT Starts Oracle in MOUNT mode using a default spfile or pfile

STARTUPOPEN Starts Oracle in OPEN mode using a default spfile or pfile

STARTUPRESTRICT Starts Oracle in OPEN mode and allows only users with
restricted session privileges to connect to the database

STARTUPFORCE Forces database startup using the default pfile or spfile

STARTUPOPENPFILE=
/u01/sp01.ora

Starts Oracle in OPEN mode using a nondefault parameter file

Here is an example of how you can use the STARTUPFORCE command with a nondefault
parameter file to start an Oracle Database using SQL*Plus:

$sqlplus/assysdba

SQL*Plus:Release11.1.0.6.0-ProductiononTueJun1715:00:422008

Copyright(c)1982,2007,Oracle.Allrightsreserved.

Connectedtoanidleinstance.

SQL>startupforcepfile=/home/oracle/pfile1.ora

ORACLEinstancestarted.

TotalSystemGlobalArea707244032bytes

95127c09.indd 502 2/18/09 6:43:57 AM

Starting Up and Shutting Down an Oracle Instance 503

FixedSize1302260bytes

VariableSize306184460bytes

DatabaseBuffers394264576bytes

RedoBuffers5492736bytes

Databasemounted.

Databaseopened.

SQL>

If you are running Oracle on Windows, you can also start the database
when you start the associated Oracle service. Starting the Oracle service
automatically starts the Oracle Database.

Changing Database Startup States Using SQL
When the database is in the NOMOUNT or MOUNT state, you can go to the next state by using
the ALTERDATABASE statement instead of shutting down the database and starting with the
appropriate state option. The following SQL statements show how to perform database-
availability state changes.

To mount a database to an instance, use ÛN ALTERDATABASEMOUNT;.

To open a database from nomount or mount state, use ÛN ALTERDATABSEOPEN;.

To open a database in read-only mode, use ÛN ALTERDATABASEOPENREADONLY;.

To enable restricted mode, use ÛN ALTERSYSTEMENABLERESTRICTEDSESSION;.

To disable restricted mode, use ÛN ALTERSYSTEMDISABLERESTRICTEDSESSION;.

If the database is already open, you cannot return to the MOUNT or
NOMOUNT state. You have to shut down the database and start with the
appropriate state.

Shutting Down an Oracle 11g Database
In some instances, you will need to shut down a database, such as to perform regularly
scheduled cold backups of the database, to perform database upgrades, or to change a non-
dynamic initialization parameter. Just as with starting the database, several options as well
as a variety of interfaces are available for database shutdown:

SHUTDOWN NORMAL A normal shutdown is the default type of shutdown that Oracle per-
forms if no shutdown options are provided. You need to be aware of the following when
doing a normal shutdown:

No new Oracle connections are allowed from the time the ÛN SHUTDOWNNORMAL com-
mand is issued.

The database will wait until all users are disconnected to proceed with the shut-ÛN

down process.

95127c09.indd 503 2/18/09 6:43:57 AM

504 Chapter 9 N Creating an Oracle 11g Database

Because Oracle waits until all users are disconnected before shutting down, you can find
yourself waiting indefinitely for a client who may be connected but is no longer doing any
work or may have left for the day. This can require extra work, identifying which connec-
tions are still active and either notifying the users to disconnect or forcing the client discon-
nections by killing their session. This type of shutdown is also known as a clean shutdown
because when you start Oracle again, no recovery is necessary.

SHUTDOWN TRANSACTIONAL    A transactional shutdown of the database is a bit more aggres-
sive than a normal shutdown. The characteristics of the transactional shutdown are as
follows:

No new Oracle connections are allowed from the time the ÛN SHUTDOWNTRANSACTIONAL
command is issued.

No new transactions are allowed to start from the time the ÛN SHUTDOWNTRANSACTIONAL
command is issued.

Once all active transactions on the database have completed, all client connections ÛN

are disconnected.

A transactional shutdown does allow client processes to complete prior to the disconnection.
This can prevent a client from losing work and can be valuable especially if the database has
long-running transactions that need to be completed prior to shutdown. This type of shut-
down is also a clean shutdown and does not require any recovery on a subsequent startup.

SHUTDOWN IMMEDIATE    The immediate shutdown method is the next most aggressive
option. An immediate shutdown is characterized as follows:

No new Oracle connections are allowed from the time the ÛN SHUTDOWNIMMEDIATE
command is issued.

Any uncommitted transactions are rolled back. Thus, a user in the middle of a ÛN

transaction will lose all the uncommitted work.

Oracle does not wait for clients to disconnect. Any unfinished transactions are ÛN

rolled back, and their database connections are terminated.

This type of shutdown works well if you want to perform unattended or scripted shut-
downs of the database and you need to ensure that the database will shut down without
getting hung up during the process by clients who are connected. Even though Oracle is
forcing transactions to roll back and disconnecting users, an immediate shutdown is still a
clean shutdown. No recovery activity takes place when Oracle is subsequently restarted.

SHUTDOWN ABORT    A shutdown abort is the most aggressive type of shutdown and has the
following characteristics:

No new Oracle connections are allowed from the time the ÛN SHUTDOWNABORT com-
mand is issued.

Any SQL statements currently in progress are terminated, regardless of their state.ÛN

Uncommitted work is not rolled back.ÛN

Oracle disconnects all client connections immediately upon the issuance of the ÛN

SHUTDOWNABORT command.

95127c09.indd 504 2/18/09 6:43:57 AM

Starting Up and Shutting Down an Oracle Instance 505

Do not use SHUTDOWNABORT regularly. Use it only if the other options for database shutdown
fail or if you are experiencing some type of database problem that is preventing Oracle from
performing a clean shutdown. This type of shutdown is not a clean shutdown and requires
instance recovery when the database is subsequently started. Instance recovery is performed
automatically when you do the startup—no manual intervention required. During instance
recovery the uncommitted changes are rolled back from the database, and committed
changes are written to the data files. Oracle uses the redo log files and undo segments to
construct the instance recovery information.

Shutting Down Oracle Using EM Database Control
You can use the EM Database Control to shut down the Oracle Database. To do so, invoke
the EM Database Control from your web browser:

1. Click the Shutdown button in the Database Control home screen, next to the green up
arrow.

2. After you click Shutdown, you are presented with the Startup/Shutdown: Specify Host
and Target Database Credentials screen (similar to the screen you had when doing
startup in Figure 9.37). You must supply an OS user ID and password to log into the
target database machine. If you are not using operating-system authentication, you
must also enter an Oracle user ID and password that has SYSDBA authority.

3. After you authenticate, the Startup/Shutdown: Confirmation screen appears. The
default shutdown selected when you are using the EM Database Control is SHUTDOWN
IMMEDIATE. Oracle also displays the current status of the database on this form.

To perform a nondefault type of shutdown, click the Advanced Options button. On the
Startup/Shutdown: Advanced Shutdown Options screen (see Figure 9.39), you can select the
type of shutdown.

F i gu r e 9 . 3 9 The Startup/Shutdown: Advanced Shutdown Options screen

95127c09.indd 505 2/18/09 6:43:58 AM

506 Chapter 9 N Creating an Oracle 11g Database

After you select the type of shutdown, click OK, and then click Yes on the Startup/Shut-
down: Confirmation screen to open a screen informing you that the database shutdown is
in progress. Once the process has completed, click the Refresh button, and you will see that
the database is now shut down. On this EM Database Control status screen, you can start
the database.

Shutting Down Oracle Using SQL*Plus
You can also use the command-line facility SQL*Plus to shut down the Oracle Database.
You will need to connect to SQL*Plus as a user with the SYSOPER or SYSDBA privilege. Here
is the syntax of the shutdown options available to you:

SHUTDOWN[NORMAL|TRANSACTIONAL|IMMEDIATE|ABORT]

Here is an example of how to use the SHUTDOWNIMMEDIATE command to shut down an
Oracle Database using SQL*Plus:

$sqlplus/assysdba

SQL*Plus:Release11.1.0.6.0-ProductiononTueJun1715:00:042008

Copyright(c)1982,2007,Oracle.Allrightsreserved.

Connectedto:

OracleDatabase11gEnterpriseEditionRelease11.1.0.6.0-Production

WiththePartitioning,OLAP,DataMiningandRealApplicationTestingoptions

SQL>shutdownimmediate;

Databaseclosed.

Databasedismounted.

ORACLEinstanceshutdown.

SQL>

If you are running in a Windows environment and shut down the database
using either the Database Control or SQL*Plus tool, the Oracle service will
continue to run. Even though the Oracle Windows service is running, the
database is not available until a subsequent startup command is issued.

Monitoring the Database Alert Log
The database alert log, sometimes referred to as the alert file, contains information about
certain activities and errors that occur within your database. The alert log contains a
chronological summary of these events. The alert log contains a wealth of information
that you can use to diagnose system problems and review the history of activities that have

95127c09.indd 506 2/18/09 6:43:58 AM

Monitoring the Database Alert Log 507

occurred on the system. Some of the events and actions recorded in the alert log include the
following:

Startup and shutdown information, including a record of every time a database is ÛN

started or shut down

Certain types of administrative actions, such as the ÛN ALTERSYSTEM and ALTERDATABASE
commands

Certain types of database errors, such as internal Oracle errors (ORA-600 errors) or ÛN

space errors (ORA-1542, for example)

Messages that are errors about shared servers and dispatchersÛN

Errors during materialized view refreshesÛN

The values of initialization parameters that have values different from their default val-ÛN

ues at instance startup

Here is an excerpt from an Oracle 11g alert log:

TueJun1711:50:482008

ALTERSYSTEMSETmemory_target=’1G’SCOPE=SPFILE;

TueJun1712:43:372008

ALTERSYSTEMSETundo_retention=3600SCOPE=MEMORY;

TueJun1712:47:072008

ALTERSYSTEMSETsga_target=’500M’SCOPE=BOTH;

TueJun1715:00:462008

………

TueJun1716:32:202008

StartingORACLEinstance(normal)

LICENSE_MAX_SESSION=0

LICENSE_SESSIONS_WARNING=0

Pickedlatch-freeSCNscheme2

UsingLOG_ARCHIVE_DEST_1parameterdefaultvalueas

/u01/app/oracle/product/11.1.0/db_1/dbs/arch

UsingLOG_ARCHIVE_DEST_10parameterdefaultvalueasUSE_DB_RECOVERY_FILE_DEST

Autotuneofundoretentionisturnedon.

IMODE=BR

ILAT=18

LICENSE_MAX_USERS=0

SYSauditingisdisabled

StartingupORACLERDBMSVersion:11.1.0.6.0.

Usingparametersettingsinserver-sidespfile

/u01/app/oracle/product/11.1.0/db_1/dbs/spfileOCA11G.ora

95127c09.indd 507 2/18/09 6:43:58 AM

508 Chapter 9 N Creating an Oracle 11g Database

Systemparameterswithnon-defaultvalues:

processes=150

sga_target=676M

control_files=“/u01/app/oracle/oradata/OCA11G/control01.ctl”

control_files=“/u01/app/oracle/oradata/OCA11G/control02.ctl”

control_files=“/u01/app/oracle/oradata/OCA11G/control03.ctl”

db_block_size=8192

compatible=“11.1.0.0.0”

db_recovery_file_dest=“/u01/app/oracle/flash_recovery_area”

db_recovery_file_dest_size=2G

undo_tablespace=“UNDOTBS1”

remote_login_passwordfile=“EXCLUSIVE”

db_domain=“”

dispatchers=“(PROTOCOL=TCP)(SERVICE=OCA11GXDB)”

audit_file_dest=“/u01/app/oracle/admin/OCA11G/adump”

audit_trail=“DB”

db_name=“OCA11G”

open_cursors=300

pga_aggregate_target=224M

diagnostic_dest=“/u01/app/oracle”

TueJun1716:32:202008

PMONstartedwithpid=2,OSid=1353

TueJun1716:32:202008

VKTMstartedwithpid=3,OSid=1355atelevatedpriority

VKTMrunningat(20)msprecision

TueJun1716:32:202008

………

RECOstartedwithpid=13,OSid=1379

TueJun1716:32:202008

MMONstartedwithpid=14,OSid=1381

startingup1dispatcher(s)fornetworkaddress

‘(ADDRESS=(PARTIAL=YES)(PROTOCOL=TCP))’...

TueJun1716:32:202008

MMNLstartedwithpid=15,OSid=1383

startingup1sharedserver(s)...

ORACLE_BASEfromenvironment=/u01/app/oracle

TueJun1716:32:202008

ALTERDATABASEMOUNT

Settingrecoverytargetincarnationto2

Successfulmountofredothread1,withmountid3172855255

95127c09.indd 508 2/18/09 6:43:58 AM

Monitoring the Database Alert Log 509

DatabasemountedinExclusiveMode

Lostwriteprotectiondisabled

Completed:ALTERDATABASEMOUNT

TueJun1716:32:272008

ALTERDATABASEOPEN

Beginningcrashrecoveryof1threads

parallelrecoverystartedwith2processes

Startedredoscan

Completedredoscan

636redoblocksread,107datablocksneedrecovery

Startedredoapplicationat

Thread1:logseq46,block18524

RecoveryofOnlineRedoLog:Thread1Group1Seq46Readingmem0

Mem#0:/u01/app/oracle/oradata/OCA11G/redo01.log

Completedredoapplication

Completedcrashrecoveryat

Thread1:logseq46,block19160,scn1756449

107datablocksread,107datablockswritten,636redoblocksread

Thread1advancedtologsequence47

Thread1openedatlogsequence47

Currentlog#2seq#47mem#0:/u01/app/oracle/oradata/OCA11G/redo02.log

Successfulopenofredothread1

MTTRadvisoryisdisabledbecauseFAST_START_MTTR_TARGETisnotset

SMON:enablingcacherecovery

SuccessfullyonlinedUndoTablespace2.

Verifyingfileheadercompatibilityfor11gtablespaceencryption..

Verifying11gfileheadercompatibilityfortablespaceencryptioncompleted

SMON:enablingtxrecovery

DatabaseCharactersetisWE8MSWIN1252

OpeningwithinternalResourceManagerplan

StartingbackgroundprocessSMCO

TueJun1716:32:282008

SMCOstartedwithpid=21,OSid=1401

StartingbackgroundprocessFBDA

replication_dependency_trackingturnedoff(noasyncmultimasterreplication
found)

TueJun1716:32:292008

FBDAstartedwithpid=23,OSid=1408

StartingbackgroundprocessQMNC

TueJun1716:32:292008

95127c09.indd 509 2/18/09 6:43:58 AM

510 Chapter 9 N Creating an Oracle 11g Database

QMNCstartedwithpid=22,OSid=1416

db_recovery_file_dest_sizeof2048MBis0.00%used.Thisisa

user-specifiedlimitontheamountofspacethatwillbeusedbythis

databaseforrecovery-relatedfiles,anddoesnotreflecttheamountof

spaceavailableintheunderlyingfilesystemorASMdiskgroup.

Completed:ALTERDATABASEOPEN

This excerpt shows a successful startup of a database. Notice the section that lists the
nondefault initialization parameters. Also notice that Oracle performed an automatic
recovery of the database. This indicates that the database was not shut down cleanly prior
to this startup. You can also see that Oracle is starting dispatcher processes, which indi-
cates I am running Oracle Shared Server.

The parameter that governs the location of the alert log is DIAGNOSTIC_DEST. This
parameter is set to a path that designates where Oracle should place the log. The default
value for DIAGNOSTIC_DEST is the ORACLE_BASE environment value, if set when starting
the database. If ORACLE_BASE is not set, DIAGNOSTIC_DEST will default to the directory of
ORACLE_HOME/log.

Oracle 11g supports two types of alert log files. The XML version of the file is located in
the DIANOSTIC_DEST/rdbms/dbname/instancename/alert directory. The text file is in the
DIANOSTIC_DEST/rdbms/dbname/instancename/trace directory. The alert log file is always
named alert_<instancename>.log. For example, the alert log file name for the OCA11G data-
base would be alert_oca11g.log.

The dictionary view V$DIAG_INFO shows the exact location of the alert log file for the
instance. Here is an example from the OCA11G database running on a Linux server:

SQL>SELECTname,valueFROMv$diag_info;

NAMEVALUE

DiagEnabledTRUE

ADRBase/u01/app/oracle

ADRHome/u01/app/oracle/diag/rdbms/oca11g/OCA11G

DiagTrace/u01/app/oracle/diag/rdbms/oca11g/OCA11G/trace

DiagAlert/u01/app/oracle/diag/rdbms/oca11g/OCA11G/alert

DiagIncident/u01/app/oracle/diag/rdbms/oca11g/OCA11G/incident

DiagCdump/u01/app/oracle/diag/rdbms/oca11g/OCA11G/cdump

HealthMonitor/u01/app/oracle/diag/rdbms/oca11g/OCA11G/hm

DefaultTraceFile/u01/app/oracle/diag/rdbms/oca11g/OCA11G/trace/OCA

11G_ora_9018.trc

ActiveProblemCount0

ActiveIncidentCount0

The ADRBase value is the directory specified (or derived by the instance using ORACLE_
BASE or ORACLE_HOME) for DIGNOSTIC_DEST. The Diag Trace location is where the text version
of the alert log file located.

95127c09.indd 510 2/18/09 6:43:58 AM

Monitoring the Database Alert Log 511

The alert log is continuously appended to, so it is a good idea to periodically purge it.
Many DBAs do so daily or weekly, saving a copy of the current alert log to a backup and
clearing the current alert log. It is a good idea to save the log contents. You can use it to
review when any initialization parameters have changed and to review database errors or
problems recorded in the log.

You can view the alert log content using the EM Database Control. From the Server
screen, click on the alert log contents link at the bottom under Related Links. Figure 9.40
shows the contents of alert log from EM.

The alert log file of an Oracle database 11g is part of the advanced fault
diagnosability infrastructure known as the Automatic Diagnostic Repository
(ADR). To learn more about ADR, read Chapter 8 of the “Oracle Database
Administrator’s Guide 11g Release 1 (11.1) Part Number B28310-03” docu-
ment. All Oracle documentation can be accessed online at http://tahiti
.oracle.com.

F i gu r e 9 . 4 0 EM View Alert Log Contents screen

In Exercise 9.2, you’ll learn to create an Oracle Database 11g without using DBCA.

95127c09.indd 511 2/18/09 6:43:58 AM

512 Chapter 9 N Creating an Oracle 11g Database

e x e r C i s e 9 . 2

Creating an Oracle 11g database

You have learned to use the DBCA to create a database, learned to start and stop a data-
base, and learned about alert log files and Oracle dictionary. Though the DBCA does all the
background work and creates a database for you, it’s good to know the stages in database
creation and any relevant scripts needed if you decide to create the database manually.
Here are the steps to create an Oracle 11g database on the Linux platform:

1. Set up the relevant environment variables before creating the database. The three
important variables are ORACLE_SID, ORACLE_BASE, and ORACLE_HOME. The ORACLE_
SID variable is the instance identifier, which can be up to 12 characters. On Unix plat-
forms, the instance identifier is case sensitive. The ORACLE_BASE parameter decides
where the trace file and dump file directories will be located. ORACLE_HOME is the loca-
tion where the Oracle 11g software is installed.

exportORACLE_SID=OCA11G2

exportORACLE_BASE=/u01/app/oracle

exportORACLE_HOME=/u01/app/oracle/product/11.1.0

2. Create a password file using the ORAPWD utility. This allows administrative logins to
the Oracle 11g database from tools such as EM Database Control.

cd$ORACLE_HOME/dbs

orapwdfile=orapwOCA11G2

3. Create an initialization-parameter file. You can create a text-based pfile, and using
SQL*Plus you can create the spfile from the pfile.

cd$ORACLE_HOME/dbs

sqlplus/assysdba

SQL>createspfilefrompfile;

4. Start the instance in NOMOUNT mode:

SQL>startupnomount;

5. Create the database using the CREATEDATABASE statement. This statement creates
the database with SYSTEM, SYSAUX, TEMP, and UNDOTBS1 tablespaces. It creates control
files specified in the location of CONTROL_FILES parameter and redo log files. It also
sets a password for SYS and SYSTEM users.

CREATEDATABASE“OCA11G2”

DATAFILE‘/u01/app/oracle/oradata/OCA11G2/system01.dbf’

SIZE300MREUSEAUTOEXTENDONNEXT10240KMAXSIZEUNLIMITED

EXTENTMANAGEMENTLOCAL

95127c09.indd 512 2/18/09 6:43:58 AM

Monitoring the Database Alert Log 513

SYSAUXDATAFILE‘/u01/app/oracle/oradata/OCA11G2/sysaux01.dbf’

SIZE120MREUSEAUTOEXTENDONNEXT10240KMAXSIZEUNLIMITED

SMALLFILEDEFAULTTEMPORARYTABLESPACETEMPTEMPFILE‘/u01/app/oracle/
oradata/OCA11G2/temp01.dbf’

SIZE20MREUSEAUTOEXTENDONNEXT640KMAXSIZEUNLIMITED

SMALLFILEUNDOTABLESPACE“UNDOTBS1”DATAFILE‘/u01/app/oracle/oradata/
OCA11G2/undotbs01.dbf’

SIZE200MREUSEAUTOEXTENDONNEXT5120KMAXSIZEUNLIMITED

CHARACTERSETWE8MSWIN1252

LOGFILEGROUP1(‘/u01/app/oracle/oradata/OCA11G2/redo01.log’)SIZE
51200K,

GROUP2(‘/u01/app/oracle/oradata/OCA11G2/redo02.log’)SIZE51200K

USERSYSIDENTIFIEDBYmypwdUSERSYSTEMIDENTIFIEDBYmypwd;

6. Create additional tablespaces if any are needed:

CREATETABLESPACE“USERS”

DATAFILE‘/u01/app/oracle/oradata/OCA11G2/users01.dbf’SIZE5M;

7. Build data dictionary views and public synonyms (? in SQL*Plus refers to the ORACLE_
HOME directory):

SQL>@?/rdbms/admin/catalog.sql

8. Build the PL/SQL packages:

SQL>@?/rdbms/admin/catproc.sql

9. If you want to install additional options such as JVM or Oracle Ultra Search, run the
relevant scripts:

SQL>@?/javavm/install/initjvm.sql;

10. Create an EM repository in the database:

SQL>@?/sysman/admin/emdrep/sql/emreposcre$ORACLE_HOMESYSMANmypwd
TEMPON

11. Configure EM Database Control:

$ORACLE_HOME/bin/emca-configdbcontroldb

e x e r C i s e 9 . 2 (c ont inue d)

95127c09.indd 513 2/18/09 6:43:58 AM

514 Chapter 9 N Creating an Oracle 11g Database

Summary
In this chapter, you started off by learning how to create an Oracle 11g database using the
Database Configuration Assistant. Then I discussed the Oracle metadata dictionary and
parameter files. You also learned about database startup and shutdown as well as the alert
log file.

You can use the DBCA to create databases. You can choose from preexisting database
definitions stored as XML templates or create a database definition from a custom template.
All aspects of the database, including database name, file location, sizing, and initialization-
parameter settings, are defined within the DBCA. You can create a database after completing
the database definition, or you can save the definition as a template or series of scripts to be
run at a later time. You can also use the DBCA to remove databases or add options to exist-
ing databases.

You can manage and create new template definitions using the DBCA interface. This
is advantageous because it serves as a way to centrally manage all your database defini-
tions. You can also create new databases from existing databases with the DBCA by using
templates.

Oracle uses initialization-parameter files to store information about initialization param-
eters used when an Oracle instance starts. Oracle reads the parameter file to obtain infor-
mation about how the Oracle instance should be sized and configured upon startup. The
parameter file can be either a plain-text file, commonly referred to as a pfile, or a binary
file that is referred to as an spfile. You can use the EM Database Control facility to change
existing database parameters.

The data dictionary contains information about the database and database objects. The
data dictionary is created when the database is created using the script catalog.sql. The
data dictionary views have static data, whereas the dynamic performance views have data
that does not persist across database shutdowns.

The database needs to be started in order for work to be done against it. You can start
up the database in one of several modes: MOUNT, NOMOUNT, and OPEN. You can also start up
the database with the RESTRICT option to restrict general access to the database. You can
also start up a database using the FORCE option if other startup methods fail.

You can shut down the database using one of several options: NORMAL, TRANSACTIONAL,
IMMEDIATE, and ABORT. The NORMAL, TRANSACTIONAL, and IMMEDIATE options are considered
clean shutdowns because no recovery is necessary upon a subsequent startup. You can start
up and shut down the database using a variety of interfaces, including the EM Database
Control utility and SQL*Plus.

The alert log contains information about certain activities and errors that occur within
your database. The alert log contains a chronological summary of these events and a wealth
of information that you can use to diagnose system problems and review histories of activi-
ties that occurred on the system. The DIGNOSTIC_DEST parameter determines the location of
the alert log.

95127c09.indd 514 2/18/09 6:43:58 AM

Exam Essentials 515

Exam Essentials

Be able to create a database using the DBCA. Describe the steps involved in creating a
database using the Oracle Database Configuration Assistant (DBCA). Understand how the
DBCA uses templates to store information about databases and how templates are used by
the DBCA to create databases. Be familiar with the various options available to you when
creating an Oracle Database using the DBCA.

Know how to manage DBCA templates. Understand how to use the DBCA to manage
templates and the various options available when creating new database templates. Under-
stand what each option is and when it should be used.

Describe the database startup modes. Understand the various modes of database startup.
Understand what each database startup option is and when you might use the option.

Recognize how to start up an Oracle Database. Understand how to use the database tools
to start up an Oracle Database.

Describe the database-shutdown modes. Understand the various modes of database
shutdown. Understand what each database-shutdown option is and when you might use
the option.

Be able to shut down an Oracle Database. Understand how to use the database tools to
shut down an Oracle Database.

Know how to manage the Oracle parameter file. Be able to identify the Oracle parameter
file and the different types of parameter files. Also understand how you can change the
parameter files.

View and understand the contents of the Oracle alert log. Be able to identify the Oracle
alert log and the kinds of information Oracle writes to the alert log. Be able to identify the
database initialization parameter that provides the location of the alert log.

Be familiar with the metadata dictionary. Understand the difference between the static
data dictionary and dynamic performance views.

95127c09.indd 515 2/18/09 6:43:58 AM

516 Chapter 9 N Creating an Oracle 11g Database

Review Questions
1. You noticed that the current value of the UNDO_RETENTION parameter is 900 and is too low

for some of your transactions. You issue the following statement:
ALTERSYSTEMSETUNDO_RETENTION=4800;

Which option is true?

A. UNDO_RETENTION is a static parameter and hence cannot be changed using ALTERSYSTEM.

B. The change will be available to the instance only after a database cycle.

C. The value is changed in memory, and when the database restarts the next time, the new
value will be preserved when using the spfile.

D. The value is changed only in memory, and the server parameter file needs to be
updated for the change to persist across database shutdowns.

2. You need to find the directory where the Oracle alert log is being written. Which initializa-
tion parameter contains this information?

A. ALERT_LOG_DEST

B. BACKGROUND_DUMP_DEST

C. DIAGNOSTIC_DEST

D. INIT_LOG_DUMP_DEST

3. Which data dictionary view is used to view the current values of parameters?

A. V$DATABASE

B. V$SPPARAMETER

C. V$PARAMETER

D. V$SYSPARAMETER

4. Which startup options must be used to start the instance when you’re creating a new data-
base?

A. STARTUPFORCE

B. STARTUPMOUNT

C. STARTUPRESTRICT

D. STARTUPNOMOUNT

95127c09.indd 516 2/18/09 6:43:59 AM

Review Questions 517

5. The DIAGNOSTIC_DEST parameter is not set up in the initialization-parameter file. The value
of the ORACLE_HOME environment variable is /u01/app/oracle/product/11.1.0, and the
value of ORACLE_BASE is /u01/app/oracle. The database name is xyz, so what is the loca-
tion of the text-alert log file for the xyz database?

A. /u01/app/oracle/product/11.1.0/log/rdbms/xyz/xyz/trace

B. /u01/app/oracle/diag/rdbms/xyz/xyz/trace

C. /u01/app/oracle/diag/rdbms/xyz/xyz/alert

D. /u01/app/oracle/product/11.1.0/diag/rdbms/xyz/xyz/trace

E. /u01/app/oracle/log/rdbms/xyz/xyz/trace

6. You want to create a database using the DBCA with DB_BLOCK_SIZE as 32KB. Which state-
ment is true?

A. A block size of 32KB is not allowed in Oracle 11g.

B. You must choose the Data Warehouse template in the DBCA.

C. You must choose the Custom template in the DBCA.

D. You must set the environment variable DB_BLOCK_SIZE to 32768.

7. All the following are database-management options within the Database Configuration
Assistant except which one?

A. Change Database Initialization Parameters

B. Create a Database

C. Manage Templates

D. Delete a Database

8. Which of the following is another term for the fully qualified name of a database?

A. ORACLE SID

B. Global database name

C. Global identifier

D. Oracle global name

E. ORACLE ID

9. Which of the following Oracle accounts is not automatically configured by the DBCA?

A. SYS

B. SYSTEM

C. SYSMAN

D. DBSNMP

E. All these accounts are configured automatically by DBCA.

95127c09.indd 517 2/18/09 6:43:59 AM

518 Chapter 9 N Creating an Oracle 11g Database

10. Your database name is OCA11G. The options show the files that are available in the
$ORACLE_HOME/dbs directory. Which file is used to start up the database instance when
you issue the STARTUP command?

A. initOCA11G.ora

B. OCA11Gspfile.ora

C. spfile.ora

D. init.ora

11. Which initialization parameter cannot be changed after creating the database?

A. DB_BLOCK_SIZE

B. DB_NAME

C. CONTROL_FILES

D. None. All parameters can be changed as and when required.

12. Which script creates the database dictionary?

A. dictionary.sql

B. catdict.sql

C. catproc.sql

D. catalog.sql

13. If your database name is PROD and your instance name is PROD1, what would be the name
of the text-alert log file?

A. alertPROD.log

B. alert_PROD1.log

C. PROD1alert.log

D. PROD_alert.log

14. Your database is not responding and is in a hung state. You want to shut down and start the
database to release all resources. Which statements would you use?

A. STARTUPAFTERSHUTDOWN

B. STARTUPFORCE

C. SHUTDOWNFORCE

D. SHUTDOWNABORTandSTARTUP

15. Which of the following startup options does not perform a database recovery?

A. STARTUP

B. STARTUPFORCERESTRICT

C. STARTUPNOMOUNT

D. STARTUPOPEN

E. STARTUPRESTRICT

95127c09.indd 518 2/18/09 6:43:59 AM

Review Questions 519

16. Which of the following shutdown statements does not perform a clean shutdown?

A. SHUTDOWNABORT

B. SHUTDOWNTRANSACTIONAL

C. SHUTDOWN

D. SHUTDOWNIMMEDIATE

E. All of these are considered clean shutdowns.

17. You would like to export the system and limit access to only the DBA staff during the
export process. Which of the following startup options should you use?

A. STARTUPNOMOUNTRESTRICT

B. STARTUPRESTRICT

C. STARTUPMOUNTRESTRICT

D. STARTUPMOUNTFORCERESTRICT

18. You want to start up the database using a binary initialization file. What is another name
for this file?

A. Configfile

B. Pfile

C. Spfile

D. init_pfile.ora

19. Under normal circumstances, which of the following actions or events is not found in the
Oracle alert log?

A. Database startup and shutdown information

B. Nondefault initialization parameters

C. ORA-00600 errors

D. New columns added to a user table

20. Which of the following is true about EM Database Control? (Choose all that apply.)

A. You can start up and shut down a database using Database Control.

B. You can read the contents of the alert log file.

C. You can modify static initialization parameters.

D. The CREATEDATABASE statement creates the Database Control repository in the database.

95127c09.indd 519 2/18/09 6:43:59 AM

520 Chapter 9 N Creating an Oracle 11g Database

Answers to Review Questions
1. C. When using ALTERSYSTEM to change parameter values, the change is made to the server

parameter file (spfile) too, because the default for the SCOPE clause is BOTH. Option D would
have been correct, if the pfile was used to start up the database.

2. C. DIAGNOSTIC_DEST is the initialization parameter that determines where the Automatic
Diagnostic Repository home is. The alert log file would be in the <diagnostic_dest>/
diag/rdbms/<dbname>/<instancename>/alert directory. A text version of the alert log is
in the <diagnostic_dest>/diag/rdbms/<dbname>/<instancename>/trace directory.

3. C. V$PARAMETER shows information about the parameters and their current value in the
database. V$SPPARAMTER shows the information as read from the spfile.

4. D. When creating a new database or creating a control file, the database should be in the
NOMOUNT state.

5. B. The alert log file in Oracle 11g is saved in the $ORACLE_BASE/diag/rdbms/<dbname>/
<instancename>/trace directory. The XML version of the alert-log file is in the
$ORACLE_BASE/diag/rdbms/<dbname>/<instancename>/alert directory.

6. C. The Custom template lets you choose the database block size in the DBCA. If the tem-
plate includes data files, the block size of the template cannot be changed. The predefined
templates that come with data files have the block size at 8KB.

7. A. The Database Configuration Assistant lets you create databases, manage templates, add
database options, and delete databases. Although you can change initialization parameters
when you are defining a database, this is not one of the management options available.

8. B. The global database name is another term for the fully qualified name of a database.
The global database name is composed of the database name and database domain.

9. E. The DBCA configures the SYS, SYSTEM, SYSMAN, and DBSNMP accounts by default. You
can unlock the accounts and set the initial password.

10. C. When starting the instance, Oracle looks for spfileOCA11G.ora file. If it could not find
that file, it looks for spfile.ora. If that file is not found, Oracle looks for the initOCA11G
.ora file.

11. A. The block size of the database cannot be changed after database creation. The database
name can be changed after re-creating the control file with a new name, and the CONTROL_
FILES parameter can be changed after copying the control files to the new location.

12. D. The catalog.sql script creates the data dictionary views, dynamic performance views,
and synonyms.

13. B. The text-alert log file has the name alert_<instancename>.log. For most non-RAC
databases, the instance name and database name would be the same.

95127c09.indd 520 2/18/09 6:43:59 AM

Answers to Review Questions 521

14. B, D. STARTUPFORCE will perform a SHUTDOWNABORT and STARTUP of the database.
SHUTDOWNABORT will terminate all sessions and processes and shut down the instance.

15. C. The recovery of a database occurs when the database moves from the MOUNT mode to the
OPEN mode. All these options attempt to start up and open the database except for option
C, which only puts the database in NOMOUNT mode.

16. A. Any time you perform a SHUTDOWNABORT, Oracle does not perform a clean shutdown.
All other types of shutdowns are considered clean shutdowns because Oracle will not have
to perform recovery on a subsequent database startup.

17. B. The STARTUPRESTRICT choice opens the database and allows only users with
RESTRICTED database access to connect and use it.

18. C. A pfile is another term for a server-side binary file that Oracle reads when a database
startup is performed. This binary file contains all the nondefault initialization parameters
used at startup.

19. D. The Oracle alert log contains a chronological history of administrative events and
actions and certain types of database errors that occur within the database. Adding a col-
umn to a user table is not an administrative action and is not recorded in the alert log.

20. A, B, C. The Database Control repository is not created when the CREATEDATABASE state-
ment is executed. DBCA creates the Database Control repository and configures Database
Control for you.

95127c09.indd 521 2/18/09 6:43:59 AM

95127c09.indd 522 2/18/09 6:43:59 AM

Chapter

10
Allocating Database
Storage and Creating
Schema Objects

OrACle DAtAbASe 11g:
ADminiStrAtiOn i exAm ObjeCtiveS
COvereD in thiS ChApter:

Managing Database Storage StructuresÛÛ

Overview of tablespace and datafilesÛN

Create and manage tablespacesÛN

Space management in tablespacesÛN

Managing Schema ObjectsÛÛ

Create and Modify tablesÛN

Manage ConstraintsÛN

Create indexesÛN

Create and use temporary tablesÛN

95127c10.indd 523 2/17/09 2:00:33 PM

In this chapter, you will learn more about the physical and logi-
cal storage structures. To start, you’ll explore how a tablespace
is the highest level of logical structure in an Oracle Database

11g, whereas a data file is a physical structure that is associated with a tablespace. I will
also discuss how tables and indexes are logical structures that reside in a tablespace.

Additionally, you will learn about creating and managing tablespaces and how space
is allocated and managed within tablespaces. I discussed creating tables and indexes in
Chapter 6, “Creating Tables and Constraints,” and Chapter 7, “Creating Schema Objects.”
Finally, you will learn how to create these structures specifying storage attributes.

Tablespaces and Data Files Overview
The database’s data is stored logically in tablespaces and physically in data files that cor-
respond to the tablespaces. The logical storage management is independent of the physical
storage of the data files. A tablespace can have more than one data file associated with
it, whereas one data file belongs to only one tablespace. A database has more than one
tablespace. Figure 10.1 shows the relationship between the database, tablespaces, data files,
and objects within the tablespace. Any object (such as a nonpartitioned table or index) cre-
ated in the database is stored on a single tablespace, but the object’s physical storage can
be on multiple data files belonging to that tablespace. A segment is created when a table or
index is created and is stored on a single tablespace.

I discussed the logical structures block, extent, and segment in Chapter 8, “Introducing
Oracle Database 11g Components and Architecture.” Here is a brief refresher of what you
learned in Chapter 8. Starting with the highest level of Oracle disk-space management are
tablespaces. Drilling down, you find segments that can reside in only one tablespace. Each
segment is constructed from one or more extents. Each of these extents can reside in only
one data file. Thus, for a segment to straddle multiple data files, it must be constructed
from multiple extents that are located in separate data files. An extent is composed of a
contiguous set of data blocks, which is at the lowest level of space management. A data
block is a fixed number of bytes of disk space.

The size of the tablespace is the total size of all the data files belonging to that tablespace.
The size of the database is the total size of all tablespaces in the database, which is the total size
of all data files in the database. Changing the size of the data files belonging to a tablespace
can change the size of that tablespace. You can add more space to a tablespace by adding more
data files to the tablespace. You can then add more space to the database either by adding
more tablespaces, by adding more data files to the existing tablespaces, or by increasing the
size of the existing data files.

95127c10.indd 524 2/17/09 2:00:33 PM

Tablespaces and Data Files Overview 525

F i gu r e 10 .1 Tablespaces and data files

Database

Tablespace 1 Tablespace 2 Tablespace 3

Datafile 1 Datafile 2 Datafile 3 Datafile 4

Extents of Same SegmentExtents of Same SegmentSegments Segments

When you create a database, Oracle creates the SYSTEM tablespace. All the data diction-
ary objects are stored in this tablespace. You can add more space to the SYSTEM tablespace
after you create the database by adding more data files or by increasing the size of the data
files. The PL/SQL program units (such as procedures, functions, packages, or triggers)
created in the database are also stored in the SYSTEM tablespace.

The SYSTEM tablespace is a special tablespace that is required to be online
all the time for the database to function properly. SYSAUX is an auxiliary
tablespace always created when an Oracle 11g database is created. The
SYSAUX and SYSTEM tablespaces cannot be renamed or dropped.

Oracle recommends not creating any objects other than the Oracle data dictionary in the
SYSTEM tablespace. By having multiple tablespaces, you can do the following:

Separate the Oracle dictionary from other database objects. Doing so reduces conten-ÛN

tion between dictionary objects and database objects for the same data file.

Control I/O by allocating separate physical storage disks for different tablespaces.ÛN

Manage space quotas for users on tablespaces.ÛN

Have separate tablespaces for temporary segments (ÛN TEMP) and undo management (roll-
back segments). You can also create a tablespace for a specific activity; for example, you
can place high-update tables in a separate tablespace. When creating the database,
you can specify tablespace names for temporary tablespaces and undo tablespaces.

95127c10.indd 525 2/17/09 2:00:34 PM

526 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Group application-related or module-related data together so that when maintenance ÛN

is required for the application’s tablespace, only that tablespace need be taken offline,
and the rest of the database is available for users.

Back up the database one tablespace at a time.ÛN

Make part of the database read-only.ÛN

When you create a tablespace, Oracle creates the data files with the size specified. The
space reserved for the data file is formatted but does not contain any user data. Whenever
spaces for objects are needed, extents are allocated from this free space.

The tablespace name cannot exceed 30 characters. The name should
begin with an alphabetic character and can contain alphabetic characters,
numeric characters, and the special characters #, _, and $.

Managing Tablespaces
Tablespaces logically group schema objects for administration convenience. Tablespaces can
store zero or more segments. Segments are schema objects that require storage outside the
data dictionary. Tables and indexes are examples of segments. Constraints and sequences
are examples of schema objects that do not store data outside the data dictionary and are
therefore not segments.

You can place the tables and indexes associated with an application into a set of
tablespaces in order to manage that data more easily. You can take a tablespace offline and
recover it (potentially to a different point in time), separate from the rest of the database.
You can also move it to another database and configure it as read-only so that you do not
have to make additional backups of static data.

In the following sections, you will learn how to create and manage tablespaces in your
database.

Identifying Default Tablespaces
The SYSTEM tablespace is used for the data dictionary and should not be used to store
schema objects other than those that the installation places there. The SYSAUX tablespace
stores schema objects associated with Oracle-provided features, such as the spatial data
option, Extended Markup Language Database (XMLDB), or Oracle Multimedia (formerly
known as Intermedia).

The SYSTEM and SYSAUX tablespaces are always created when the database is created.
One or more temporary tablespaces are usually created in a database as well as an undo
tablespace and several application tablespaces. Because SYSTEM and SYSAUX are the only
tablespaces always created with the database, SYSTEM is the default tablespace for temporary

95127c10.indd 526 2/17/09 2:00:34 PM

Managing Tablespaces 527

and user data if another tablespace is not defined. You should not, however, continue to use
them as the default tablespace for your users or applications. In the following sections, you
will learn how to create additional tablespaces and enable their use as better defaults.

Creating and Maintaining Tablespaces
You create tablespaces using either the CREATE DATABASE or CREATE TABLESPACE statement.
You must make several choices when creating a tablespace:

Whether to make the tablespace bigfile or smallfile ÛN

Whether to manage extents locally or with the dictionaryÛN

Whether to manage segment space automatically or manuallyÛN

Additionally, there are specialized tablespaces for temporary segments and undo
segments.

A tablespace is created with the CREATE TABLESPACE statement. The following statement
creates a tablespace named HR_DATA. The data file associated with the tablespace is physi-
cally stored on the disk at /u02/oradata/11GR11/hr_data01.dbf and has a size of 20MB.

SQL> CREATE TABLESPACE HR_DATA

 2 DATAFILE ‘/u02/oradata/11GR11/hr_data01.dbf’

 3 SIZE 20M;

Tablespace created.

SQL>

In the following sections, I will discuss the various options available when creating a
tablespace.

Creating Bigfile and Smallfile Tablespaces
Bigfile tablespaces are built on a single data file (or temp file), which can be as many as

232 data blocks in size. So, a bigfile tablespace that uses 8KB data blocks can be as much as
32TB in size (the maximum size is 128TB for a 32KB block size).

Bigfile tablespaces are intended for very large databases. When a very large database has
thousands of read-write data files, operations that must update the data file headers, such
as checkpoints, can take a relatively long time. If you reduce the number of data files, these
operations can complete faster.

To create a bigfile tablespace, use the keyword BIGFILE in the CREATE statement, like this:

CREATE BIGFILE TABLESPACE PO_ARCHIVE

DATAFILE ‘/u02/oradata/11GR11/po_archive.dbf’ size 25G;

Smallfile tablespace is the new name for the old Oracle tablespace data file option. With
a smallfile tablespace, you can have multiple data files for a tablespace. Each data file can
be as many as 222 data blocks in size. So, data files in a smallfile tablespace that uses 8KB
data blocks are limited to 32GB. The smallfile tablespace can have as many as 1,022 data

95127c10.indd 527 2/17/09 2:00:34 PM

528 Chapter 10 N Allocating Database Storage and Creating Schema Objects

files, limiting the 8KB data block tablespace to slightly less than 32TB—about the same as
a bigfile tablespace.

To create a smallfile tablespace, either omit the keyword BIGFILE or explicitly use the
keyword SMALLFILE, like this:

CREATE SMALLFILE TABLESPACE PO_DETAILS

DATAFILE ‘/u02/oradata/11GR11/po_details.dbf’ size 2G;

By default, Oracle Database 11g creates SMALLFILE tablespaces so that
you do not have to specify SMALLFILE in the CREATE TABLESPACE statement.
The DATABASE_PROPERTIES dictionary view shows what is the default
tablespace type for your Oracle 11g database (look for the property name
DEFAULT_TBS_TYPE). You can use the ALTER DATABASE statement to change
the default behavior.

Working with Oracle Managed File Tablespaces
The Oracle Managed Files (OMF) feature can ease the administration of files used by an
Oracle 11g database. Using the OMF feature, you specify operations in terms of tablespaces
and not operating-system files. You don’t explicitly name data files or temp files; the data-
base does this for you.

To enable the OMF feature, set the initialization parameter DB_CREATE_FILE_DEST to the
directory where you want the database to create and manage your data and temp files, like this:

ALTER SYSTEM SET

 db_create_file_dest = ‘/u02/oradata/’ SCOPE=BOTH;

When creating a tablespace using the OMF feature, you simply omit the filename:

CREATE TABLESPACE hr_data;

Oracle creates a tablespace using a unique filename, such as o1_mf_hr_data_46n3ck5t_
.dbf under the /u02/oradata/11GR11/datafile directory. Notice that Oracle 11g adds the
subdirectories DBNAME/datafile in the DB_CREATE_FILE_DEST directory. This data file will
have autoextend enabled and be 100MB unless you specify a different size. By default, the
tablespace is a smallfile tablespace, but you can specify a bigfile tablespace by including the
keyword BIGFILE.

The OMF feature is discussed later in the chapter.

Choosing Extent Management
When Oracle allocates space to an object in a tablespace, it is allocated in chunks of contig-
uous database blocks known as extents. Each object is allocated a segment, which has one
or more extents. Oracle maintains the extent information such as extents free, extent size,
extents allocated, and so on, either in the data dictionary or in the tablespace itself.

95127c10.indd 528 2/17/09 2:00:34 PM

Managing Tablespaces 529

If you store the extent management information in the dictionary for a tablespace, that
tablespace is called a dictionary-managed tablespace. Whenever an extent is allocated or
freed, the information is updated in the corresponding dictionary tables. Such updates also
generate undo information.

With dictionary extent management, the database tracks free and used extents in the
data dictionary, changing the FET$ and UET$ tables with recursive SQL. With local extent
management, the free/used extent information is maintained in a bitmap pattern in the
header of the data file. So, Oracle has to check in the local bitmap instead of making trips
to the UET$ or FET$ table. Local extent management is the default if not specified and is
generally the preferred technique.

A simple example of a dictionary-managed tablespace creation command is as follows:

CREATE TABLESPACE APPL_DATA

DATAFILE ‘/disk3/oradata/DB01/appl_data01.dbf’ SIZE 100M

EXTENT MANAGEMENT DICTIONARY;

This statement creates a tablespace named APPL_DATA; the data file specified is created
with a size of 100MB. You can specify more than one file under the DATAFILE clause sepa-
rated by commas; you may need to create more files if there are any operating-system limits
on the file size. For example, if you need to have 6GB allocated for the tablespace and the
operating system allows only 2GB as the maximum file size, you need three data files for
the tablespace. The statement will be as follows:

CREATE TABLESPACE APPL_DATA

DATAFILE ‘/disk3/oradata/DB01/appl_data01.dbf’ SIZE 2000M,

 ‘/disk3/oradata/DB01/appl_data02.dbf’ SIZE 2000M,

 ‘/disk4/oradata/DB01/appl_data03.dbf’ SIZE 2000M

EXTENT MANAGEMENT DICTIONARY;

The options available when creating and reusing a data file are discussed in the section
“Managing Data Files” later in this chapter.

If you store the management information in the tablespace by using bitmaps in each data
file, such a tablespace is known as a locally managed tablespace. Each bit in the bitmap
corresponds to a block or a group of blocks. When an extent is allocated or freed for reuse,
Oracle changes the bitmap values to show the new status of the blocks. These changes do
not generate rollback information because they do not update tables in the data dictionary.

With locally managed tablespaces, you have two options for how extents are allocated:
UNIFORM and AUTOALLOCATE. The UNIFORM option tells the database to allocate and deallocate
extents in the tablespace with the same unvarying size that you can specify or let extents
default to 1MB. UNIFORM is the default for temporary tablespaces and cannot be specified
for undo tablespaces. To create consistent 10MB extents, use the clause EXTENT MANAGEMENT
LOCAL UNIFORM SIZE 10M in the CREATE TABLESPACE statement. Here is an example:

CREATE TABLESPACE hr_index

DATAFILE ‘/u02/oradata/11GR11/hr_index01.dbf’ SIZE 2G

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 10M;

95127c10.indd 529 2/17/09 2:00:34 PM

530 Chapter 10 N Allocating Database Storage and Creating Schema Objects

The minimum extent size for a locally managed tablespace with
AUTOALLOCATE is 64KB.

AUTOALLOCATE, on the other hand, tells the database to vary the size of extents for each
segment. For example, on Windows and Linux with 8KB data blocks, each segment starts
out with 64KB extents for the first 16 extents, and then the extents increase in size to 1MB
for the next 63 extents. The size then increases to 8MB for the next 120 extents, then
64MB, and so on, as the segment grows. This algorithm allows small segments to remain
small and large segments to grow without gaining too many extents. AUTOALLOCATE is best
used for a general-purpose mixture of small and large tables. Here is an example of creat-
ing a tablespace using AUTOALLOCATE:

CREATE TABLESPACE hr_index

DATAFILE ‘/u02/oradata/11GR11/hr_index01.dbf’ SIZE 2G

EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

Bigfile tablespaces are created as locally managed; you cannot specify the EXTENT
MANAGEMENT DICTIONARY clause for bigfile tablespaces. You can convert a smallfile tablespace
from dictionary extent management to local extent management and back with the Oracle-
supplied PL/SQL package DBMS_SPACE_ADMIN.

When the SYSTEM tablespace is created as a locally managed tablespace,
you cannot create dictionary-managed tablespaces in the database. The
Oracle 11g DBCA tool by default creates the SYSTEM tablespace as locally
managed.

Choosing Segment Space Management
For tablespaces that have local extent management, you can use either manual or automatic
segment space management. Manual segment space management exists for backward com-
patibility and uses free-block lists to identify the data blocks available for inserts together
with the parameters PCTFREE and PCTUSED, which control when a block is made available
for inserts.

After each INSERT or UPDATE, the database compares the remaining free space in that
data block with the segment’s PCTFREE setting. If the data block has less than PCTFREE free
space (meaning it is almost full), it is taken off the free-block list and is no longer available
for inserts. The remaining free space is reserved for update operations that may increase
the size of rows in that data block. After each UPDATE or DELETE, the database compares the
used space in that data block with that segment’s PCTUSED setting. If the data block has less
than PCTUSED used space, the data block is deemed empty enough for inserts and is placed
on the free block list.

To specify manual segment space management, use the SEGMENT SPACE MANAGEMENT
MANUAL clause of the CREATE TABLESPACE statement, or simply omit the SEGMENT SPACE

95127c10.indd 530 2/17/09 2:00:34 PM

Managing Tablespaces 531

MANAGEMENT AUTO clause. Oracle strongly recommends AUTOMATIC segment space manage-
ment for permanent locally managed tablespaces, and the default behavior of Oracle 11g is
AUTO. Here is a statement that creates a tablespace with manual segment space management:

CREATE TABLESPACE hr_index

DATAFILE ‘/u02/oradata/11GR11/hr_index01.dbf’ SIZE 2G

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

SEGMENT SPACE MANAGEMENT MANUAL;

When automatic segment space management is specified, bitmaps are used instead of free
lists to identify which data blocks are available for inserts. The parameters PCTFREE and
PCTUSED are ignored for segments in tablespaces with automatic segment space management.
Automatic segment space management is available only on tablespaces configured for local
extent management; it is not available for temporary or system tablespaces. Automatic seg-
ment space management performs better and reduces your maintenance tasks, making it the
preferred technique.

To specify automatic segment space management, use the SEGMENT SPACE MANAGEMENT
AUTO clause of the CREATE TABLESPACE statement like this or do not include the SEGMENT
SPACE MANAGEMENT clause (it is the default):

CREATE TABLESPACE hr_index

DATAFILE ‘/u02/oradata/11GR11/hr_index01.dbf’ SIZE 2G

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

SEGMENT SPACE MANAGEMENT AUTO;

When automatic segment space management is used, Oracle ignores the storage param-
eters PCTUSED, FREELISTS, and FREELIST GROUPS when creating objects.

Although the name segment space management sounds similar to extent
management, it is quite different and can be more accurately regarded as
block space management.

Choosing Other Tablespace Options
Several options are available to use when creating a tablespace. You learned to create
BIGFILE or SMALLFILE tablespaces and use the EXTENT MANAGEMENT and SEGMENT SPACE
MANAGEMENT options in the previous sections. In this section, you will learn the other
options available while creating a tablespace:

Specifying nondefault block sizeÛN

Specifying default storage characteristicsÛN

Specifying logging and flashback clausesÛN

Creating offline tablespacesÛN

95127c10.indd 531 2/17/09 2:00:34 PM

532 Chapter 10 N Allocating Database Storage and Creating Schema Objects

The following example shows the optional clauses you can use while creating a dictionary-
managed tablespace:

CREATE TABLESPACE APPL_DATA

 DATAFILE ‘/disk3/oradata/DB01/appl_data01.dbf’

 SIZE 100M

 DEFAULT STORAGE (

 INITIAL 256K

 NEXT 256K

 MINEXTENTS 2

 PCTINCREASE 0

 MAXEXTENTS 4096)

 BLOCKSIZE 16K

 MINIMUM EXTENT 256K

 LOGGING

 ONLINE

 FORCE LOGGING

 FLASHBACK ON

 EXTENT MANAGEMENT DICTIONARY

 SEGMENT SPACE MANAGEMENT MANUAL;

The following example shows the optional clauses you can use while creating a locally
managed tablespace:

CREATE TABLESPACE APPL_DATA

 DATAFILE ‘/disk3/oradata/DB01/appl_data01.dbf’

 SIZE 100M

 DEFAULT STORAGE COMPRESS

 BLOCKSIZE 16K

 LOGGING

 ONLINE

 FORCE LOGGING

 FLASHBACK ON

 EXTENT MANAGEMENT LOCAL

 SEGMENT SPACE MANAGEMENT AUTO;

Though Oracle manages the tablespace characteristics very efficiently with its default
values, you can specify several clauses to a finer level of control. The clauses in the CREATE
TABLESPACE command can specify the following:

DEFAULT STORAGE clause The DEFAULT STORAGE clause specifies the default storage parameters
for new objects that are created in the tablespace. If an explicit storage clause is specified when
creating an object, the tablespace defaults are not used for the specified storage parameters.
The storage parameters are specified within parentheses; no parameter is mandatory, but if

95127c10.indd 532 2/17/09 2:00:34 PM

Managing Tablespaces 533

you specify the DEFAULT STORAGE clause, you must specify at least one parameter inside the
parentheses. The storage parameters are valid only for dictionary-managed tablespaces; for
locally managed tablespaces, you can specify only the COMPRESS option. I will discuss the
storage parameters later in the chapter in the section “Creating a Table.”

BLOCKSIZE clause Oracle allows a tablespace to have a different block size than the default
standard database block size. The database block size is specified when you create the data-
base using the initialization parameter DB_BLOCK_SIZE. This is the block size used for the
SYSTEM tablespace and is known as the standard block size. The valid sizes of the nonstan-
dard block size are 2KB, 4KB, 8KB, 16KB, and 32KB. If you do not specify a block size for
the tablespace, the database block size is assumed. Multiple block sizes in the database are
beneficial for large databases with OLTP and Decision Support System (DSS) data stored
together and for storing large tables. The restrictions on specifying nonstandard block sizes
along with the tablespace creation are discussed in the section “Using Nonstandard Block
Sizes.”

MINIMUM EXTENT clause The MINIMUM EXTENT clause specifies that the extent sizes should
be a multiple of the size specified. You can use this clause to control fragmentation in the
tablespace by allocating extents of at least the size specified; this clause is always a mul-
tiple of the size specified. In the CREATE TABLESPACE example, all the extents allocated in
the tablespace would be a multiple of 256KB. The INITIAL and NEXT extent sizes specified
should be a multiple of MINIMUM EXTENT. This clause is valid only for dictionary-managed
tablespaces.

LOGGING/NOLOGGING clause The LOGGING/NOLOGGING clause specifies that the DDL opera-
tions and direct-load INSERT should be recorded in the redo log files. This is the default,
and the clause can be omitted. When you specify NOLOGGING, data is modified with minimal
logging, and hence the commands complete faster. Since the changes are not recorded in the
redo log files, you need to apply the commands again in the case of a media recovery. You
can specify LOGGING or NOLOGGING in the individual object creation statement, and it over-
rides the tablespace default.

FORCE LOGGING clause You must specify this clause to log all changes irrespective of the
LOGGING mode for individual objects in the tablespace. You can specify the NOLOGGING
clause and FORCE LOGGING clause together when creating a tablespace. If you do so, the
objects will be created in NOLOGGING mode and will be overridden by the FORCE LOGGING
mode. When you take the tablespace out of the FORCE LOGGING mode, the NOLOGGING attri-
bute for objects goes into effect.

ONLINE/OFFLINE clause This clause specifies that the tablespace should be made online or
available as soon as it is created. This is the default, and hence the clause can be omitted. If
you do not want the tablespace to be available, you can specify OFFLINE.

FLASHBACK ON/OFF clause FLASHBACK ON puts the tablespace in the flashback mode and is
the default. The OFF option turns flashback off, and hence Oracle will not save any flash-
back data. I will discuss flashback operations in Chapter 15, “Implementing Database
Backups.”

95127c10.indd 533 2/17/09 2:00:35 PM

534 Chapter 10 N Allocating Database Storage and Creating Schema Objects

The clauses related to encrypting the tablespace are not discussed here
because they are beyond the scope for this book.

Using Nonstandard Block Sizes
The block size used while creating the database is specified in the initialization parameter
using the DB_BLOCK_SIZE parameter. This is known as the standard block size for the data-
base. You must choose a block size that suits most of your tables as the standard block
size. In most databases, this is the only block size you will ever need. Oracle gives you the
option of having multiple block sizes, which is especially useful when you’re transporting
tablespaces from another database with a different block size.

The DB_CACHE_SIZE parameter defines the buffer cache size that is associated with
the standard block size. To create tablespaces with nonstandard block size, you must set
the appropriate initialization parameter to define a buffer cache size for the block size. The
initialization parameter is DB_nK_CACHE_SIZE, where n is the nonstandard block size. n
can have values 2, 4, 8, 16, or 32 but cannot have the size of the standard block size. For
example, if your standard block size is 8KB, you cannot set the parameter DB_8K_CACHE_SIZE.
If you need to create a tablespace that uses a different block size, say 16KB, you must set
the DB_16K_CACHE_SIZE parameter. By default, the value for DB_nK_CACHE_SIZE parameters
is 0MB.

The temporary tablespaces created should have the standard block size.

The DB_nK_CACHE_SIZE parameter is dynamic; you can alter its value using
the ALTER SYSTEM statement.

Creating Temporary Tablespaces
Oracle can manage space for sort operations more efficiently by using temporary tablespaces.
By exclusively designating a tablespace for temporary segments, Oracle eliminates the allo-
cation and deallocation of temporary segments in a permanent tablespace. A temporary
tablespace can be used only for sort segments. A temporary tablespace is used for temporary
segments, which are created, managed, and dropped by the database as needed. These tem-
porary segments are most commonly generated during sorting operations such as ORDER BY,
GROUP BY, and CREATE INDEX. They are also generated during other operations such as hash
joins or inserts into temporary tables.

You create a temporary tablespace at database creation time with the DEFAULT TEMPORARY
TABLESPACE clause of the CREATE DATABASE statement or after the database is created with
the CREATE TEMPORARY TABLESPACE statement, like this:

CREATE TEMPORARY TABLESPACE temp

TEMPFILE ‘/u01/oradata/11GR1/temp01.dbf’ SIZE 1G;

95127c10.indd 534 2/17/09 2:00:35 PM

Managing Tablespaces 535

Notice that the keyword TEMPFILE is used instead of DATAFILE. Temp files are available
only with temporary tablespaces, they never need to be backed up, and they do not log data
changes in the redo logs. The EXTENT MANAGEMENT LOCAL clause is optional and can be
omitted; you can provide it to improve readability. If you do not specify the extent size by
using the UNIFORM SIZE clause, the default size used will be 1MB.

Although it is always good practice to create a separate temporary
tablespace, it is required when the SYSTEM tablespace is locally managed.

Temporary tablespaces are created using temp files instead of data files. Temp files are
allocated slightly differently than data files. Although data files are completely allocated
and initialized at creation time, temp files are not always guaranteed to allocate the disk
space specified. This means that on some Unix systems a temp file will not actually allocate
disk space until a sorting operation requires it. Although this delayed allocation approach
allows rapid file creation, it can cause problems down the road if you have not reserved the
space that may be needed at runtime.

Each user is assigned a temporary tablespace when the user is created. By default, the
default tablespace (where the user creates objects) and the temporary tablespace (where the
user’s sort operations are performed) are both the SYSTEM tablespace. No user should have
SYSTEM as their default or temporary tablespace. This will unnecessarily increase fragmen-
tation in the SYSTEM tablespace.

When creating a database, you can also create a temporary tablespace using the DEFAULT
TEMPORARY TABLESPACE clause of the CREATE DATABASE statement. If the default temporary
tablespace is defined in the database, all new users will have that tablespace assigned as the
temporary tablespace by default if you do not specify another tablespace for the users’ tem-
porary tablespace. You can also designate a data tablespace for application tables during
database creation using the DEFAULT TABLESPACE clause.

If there are multiple temporary tablespaces in a database and if you want to utilize the
space in multiple temporary tablespaces to a user’s sort operation, you can use the tempo-
rary tablespace groups. When creating the temporary tablespace, use the TABLESPACE GROUP
clause as in the following example:

CREATE TEMPORARY TABLESPACE TEMP01

TEMPFILE ‘/u01/oradata/11GR1/temp01a.dbf’ size 200M

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 5M

TABLESPACE GROUP ALL_TEMPS;

In this example, the tablespace is made part of the ALL_TEMPS temporary tablespace
group. Tablespace groups are applicable only to temporary tablespaces. If the group does
not exist, Oracle creates the group and adds the tablespace to the group.

When creating a temporary tablespace, you can use only the EXTENT
MANAGEMENT and TABLESPACE GROUP clauses along with TEMPFILE clause.
All other options are invalid for temporary tablespaces.

95127c10.indd 535 2/17/09 2:00:35 PM

536 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Creating Undo Tablespaces
An undo tablespace stores undo segments, which are used by the database for several pur-
poses, including the following:

Rolling back a transaction explicitly with a ÛN ROLLBACK statement

Rolling back a transaction implicitly (for example, through the recovery of a failed ÛN

transaction)

Reconstructing a read-consistent image of dataÛN

Recovering from logical corruptionsÛN

To create an undo tablespace at database creation time, set the initialization parameter
UNDO_MANAGEMENT=AUTO (default), and include an UNDO TABLESPACE clause in your CREATE
DATABASE statement, like this:

CREATE DATABASE “TEST1”

DATAFILE ‘/u01/app/oracle/oradata/TEST1/system01.dbf’

 SIZE 300M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED

 EXTENT MANAGEMENT LOCAL

SYSAUX DATAFILE ‘/u01/app/oracle/oradata/TEST1/sysaux01.dbf’

 SIZE 120M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED

SMALLFILE DEFAULT TEMPORARY TABLESPACE TEMP

 TEMPFILE ‘/u01/app/oracle/oradata/TEST1/temp01.dbf’

 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED

SMALLFILE UNDO TABLESPACE “UNDOTBS1”

 DATAFILE ‘/u01/app/oracle/oradata/TEST1/undotbs01.dbf’

 SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED

DEFAULT TABLESPACE “USERS”

 DATAFILE ‘/u01/app/oracle/oradata/TEST1/users01.dbf’

 SIZE 5M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED

 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO

CHARACTER SET WE8MSWIN1252

NATIONAL CHARACTER SET AL16UTF16

LOGFILE

 GROUP 1 (‘/u01/app/oracle/oradata/TEST1/redo01.log’) SIZE 51200K,

 GROUP 2 (‘/u01/app/oracle/oradata/TEST1/redo02.log’) SIZE 51200K,

 GROUP 3 (‘/u01/app/oracle/oradata/TEST1/redo03.log’) SIZE 51200K

SET DEFAULT SMALLFILE TABLESPACE

USER SYS IDENTIFIED BY mysupersekret

USER SYSTEM IDENTIFIED BY supersekret;

You can create an undo tablespace after database creation with the CREATE UNDO
TABLESPACE statement, like this:

CREATE UNDO TABLESPACE undo

DATAFILE ‘/ORADATA/PROD/UNDO01.DBF’ SIZE 2G;

95127c10.indd 536 2/17/09 2:00:35 PM

Managing Tablespaces 537

When creating undo tablespace, you can specify the undo retention clause. The
RETENTION GUARANTEE option specifies that Oracle should preserve unexpired undo
data until the period of time specified by the UNDO_RETENTION initialization parameter.
This setting is useful for flashback query operations. RETENTION NOGUARANTEE is the
default.

The only tablespace clauses available to specify are EXTENT MANAGEMENT LOCAL and
DATAFILE when creating undo tablespaces. Undo management and retention are discussed
in Chapter 13, “Managing Data and Undo.”

Although it is always good practice to create a separate undo tablespace, it
is required when the SYSTEM tablespace is locally managed.

Removing Tablespaces
Tablespaces that are not needed in the database can be dropped. Once a tablespace is dropped,
there is no rollback. Though you can drop a tablespace with objects in it, it may be safer to
drop the objects first and then drop the tablespace. To remove a tablespace from the database,
use the DROP TABLESPACE statement:

DROP TABLESPACE USER_DATA;

If the tablespace is not empty, you should specify the optional clause INCLUDING
CONTENTS to recursively remove any segments (tables, indexes, and so on) in the tablespace,
like this:

DROP TABLESPACE dba_sandbox INCLUDING CONTENTS;

If there are referential integrity constraints from the objects on other tablespaces refer-
ring to the objects in the tablespace that is being dropped, you must specify the CASCADE
CONSTRAINTS clause:

DROP TABLESPACE USER_DATA INCLUDING CONTENTS CASCADE CONSTRAINTS;

When you drop a tablespace, the control file is updated with the tablespace and data file
information.

Dropping a tablespace does not automatically remove the data files from the file system.
Use the additional clause INCLUDING CONTENTS AND DATAFILES to remove the underlying
data files as well as the stored objects, like this:

DROP TABLESPACE hr_data INCLUDING CONTENTS AND DATAFILES;

If the Oracle Managed Files feature is used for the tablespace, such files will be removed
automatically when you drop the tablespace. For files that are not Oracle managed, if you
need to free up the disk space, you can either use OS commands to remove the data files
belonging to the dropped tablespace or use the AND DATAFILES clause.

You cannot drop the SYSTEM tablespace.

95127c10.indd 537 2/17/09 2:00:35 PM

538 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Modifying Tablespaces
Use an ALTER TABLESPACE statement to modify the attributes of a tablespace. These are
some of the actions you can perform on tablespaces:

Change the default storage clauses and the ÛN MINIMUM_EXTENT of a dictionary-managed
tablespace.

Change the extent allocation and ÛN LOGGING/NOLOGGING modes.

Change the availability of the tablespace.ÛN

Make the tablespace read-only or read-write.ÛN

Coalesce the contiguous free space.ÛN

Add more space by adding new data files or temporary files.ÛN

Resize the data files or temporary files.ÛN

Rename a tablespace or rename files belonging to the tablespace.ÛN

Shrink temporary files or shrink space in the tablespace.ÛN

Change flashback on or off and change retention guarantee.ÛN

Begin and end a backup.ÛN

 The following sections detail common modifications you can perform on the
tablespaces.

Changing Storage Defaults

Changing the default storage or MINIMUM_EXTENT or LOGGING/NOLOGGING does not affect the
existing objects in the tablespace. The DEFAULT STORAGE and LOGGING/NOLOGGING clauses
are applied to the newly created segments if such a clause is not explicitly specified when
creating new objects. For example, to change the storage parameters, use the following
statement:

ALTER TABLESPACE APPL_DATA

DEFAULT STORAGE (INITIAL 2M NEXT 2M);

Only the INITIAL and NEXT values of the storage STORAGE are changed; the other storage
parameters such as PCTINCREASE or MINEXTENTS remain unaltered.

Adding a Data File to a Tablespace

Smallfile tablespaces can have multiple data files and can thus be spread over multiple file sys-
tems without engaging a logical volume manager. To add a data file to a smallfile tablespace,
use an ADD clause with the ALTER TABLESPACE statement. For example, the following statement
adds a 2GB data file on the /u02 file system to the receivables tablespace:

ALTER TABLESPACE receivables ADD DATAFILE

 ‘/u02/oradata/ORA10/receivables01.dbf’

 SIZE 2G;

95127c10.indd 538 2/17/09 2:00:35 PM

Managing Tablespaces 539

Taking a Tablespace Offline or Online

You can control the availability of certain tablespaces by altering the tablespace to be
offline or online. When you make a tablespace offline, the segments in that tablespace are
not accessible. The data stored in other tablespaces is available for use. When making a
tablespace unavailable, you can use these four options:

NORMAL This is the default. Oracle writes all the dirty buffer blocks in the SGA to the data
files of the tablespace and closes the data files. All data files belonging to the tablespace
must be online. You need not do a media recovery when bringing the tablespace online. For
example:

ALTER TABLESPACE USER_DATA ONLINE;

TEMPORARY Oracle performs a checkpoint on all online data files. It does not ensure that
the data files are available. You may need to perform a media recovery on the offline data
files when the tablespace is brought online. For example:

ALTER TABLESPACE USER_DATA OFFLINE TEMPORARY;

IMMEDIATE Oracle does not perform a checkpoint and does not make sure that all data
files are available. You must perform a media recovery when the tablespace is brought back
online. For example:

ALTER TABLESPACE USER_DATA OFFLINE IMMEDIATE;

FOR RECOVER This makes the tablespace offline for point-in-time recovery. You can copy
the data files belonging to the tablespace from a backup and apply the archive log files. For
example:

ALTER TABLESPACE USER_DATA OFFLINE FOR RECOVER;

You cannot make the SYSTEM tablespace offline because the data dictionary must always be
available for the functioning of the database. If a tablespace is offline when you shut down
the database, it remains offline when you start up the database. You can make a tablespace
offline by using the following statement:

ALTER TABLESPACE USER_DATA OFFLINE

When a tablespace is taken offline, SQL statements cannot reference any objects contained
in that tablespace. If there are unsaved changes when you take the tablespace offline, Oracle
saves rollback data corresponding to those changes in a deferred rollback segment in the
SYSTEM tablespace. When the tablespace is brought back online, Oracle applies the rollback
data to the tablespace, if needed.

Making a Tablespace Read-Only

If a tablespace contains static data, it can be marked read-only. Tablespaces that contain
historic or reference data are typical candidates for read-only. When a tablespace is read-
only, it does not have to be backed up with the nightly or weekly database backups. One
backup after being marked read-only is all that is needed for future recoveries. Tables in a

95127c10.indd 539 2/17/09 2:00:35 PM

540 Chapter 10 N Allocating Database Storage and Creating Schema Objects

read-only tablespace can only be selected from; their rows cannot be inserted, updated, or
deleted.

You cannot make the SYSTEM tablespace read-only. When you make a tablespace read-
only, all the data files must be online, and the tablespace can have no active transactions.
You can drop objects such as tables or indexes from a read-only tablespace, but you cannot
create new objects in a read-only tablespace.

Use a READ ONLY clause with an ALTER TABLESPACE statement to mark a tablespace read-
only. For example, to mark the SALES2007 tablespace read-only, execute the following:

ALTER TABLESPACE sales2007 READ ONLY;

If you need to make changes to a table in a read-only tablespace, make it read writable
again with the keywords READ WRITE, like this:

ALTER TABLESPACE sales2007 READ WRITE;

Oracle normally checks the availability of all data files belonging to the database when
starting up the database. If you are storing your read-only tablespace on offline storage
media or on a CD-ROM, you might want to skip the data file availability checking when
starting up the database by setting the parameter READ_ONLY_OPEN_DELAYED to TRUE. Oracle
checks the availability of data files belonging to read-only tablespaces only at the time of
access to an object in the tablespace. A missing or bad read-only file will not be detected at
database startup time.

Putting a Tablespace in Backup Mode

If you perform non-RMAN online backups, sometimes called user-managed backups, you
need to put a tablespace in backup mode before you begin to copy the data files using an
operating-system program. While the tablespace is in backup mode, the database continues
to write data to the data files (checkpoints occur), but the occurrences of these checkpoints
are not recorded in the header blocks of the data files. This omission tells the database that
recovery may be needed if the database instance gets terminated abruptly.

While a tablespace is in backup mode, some additional information is written to the
redo logs to assist with recovery, if needed.

See Chapter 15 for more information on backups, and see Chapter 16,
“Recovering the Database,” for more information about recovery.

Some companies perform backups by splitting a third mirror, mounting these mirrored
file systems onto another server, and then copying them to tape. To safely split the mirror,
alter all your tablespaces into backup mode, make the split, and then alter all the tablespaces
out of backup mode. Put them into backup mode like this:

ALTER TABLESPACE system BEGIN BACKUP;

Use the keywords END BACKUP to take a tablespace out of backup mode, like this:

ALTER TABLESPACE system END BACKUP;

95127c10.indd 540 2/17/09 2:00:35 PM

Managing Tablespaces 541

If you forget to take a tablespace out of backup mode, the next time you bounce your
database, it will see that the checkpoint number in the control file is later than the one in
the data file headers and report that media recovery is required.

Obtaining Tablespace Information
DBAs often need to find the space used and available in a tablespace as well as query the
tablespace characteristics. The data dictionary is the place to go for obtaining tablespace
information. You can use the command-line utility SQL*Plus to query the information from
data dictionary tables, or you can use Enterprise Manager Grid Control. We will review
both in this section.

Obtaining Tablespace Information Using SQL*Plus
Many data dictionary views can provide information about tablespaces in a database, such
as the following:

DBA_TABLESPACESÛN

DBA_DATA_FILESÛN

DBA_TEMP_FILESÛN

V$TABLESPACEÛN

The DBA_TABLESPACES view has one row for each tablespace in the database and provides
the following information:

The tablespace block sizeÛN

The tablespace status: online, offline, or read-onlyÛN

The contents of the tablespace: undo, temporary, or permanentÛN

Whether it uses dictionary-managed or locally managed extentsÛN

Whether the segment space management is automatic or manualÛN

Whether it is a bigfile or smallfile tablespaceÛN

To get a listing of all the tablespaces in the database, their status, contents, extent man-
agement policy, and segment management policy, run the following query:

SELECT tablespace_name, status,contents

 ,extent_management extents

 ,segment_space_management free_space

FROM dba_tablespaces

TABLESPACE_NAME STATUS CONTENTS EXTENTS FREE_SPACE

------------------ --------- --------- --------- ----------

SYSTEM ONLINE PERMANENT LOCAL MANUAL

UNDOTBS1 ONLINE UNDO LOCAL MANUAL

95127c10.indd 541 2/17/09 2:00:36 PM

542 Chapter 10 N Allocating Database Storage and Creating Schema Objects

SYSAUX ONLINE PERMANENT LOCAL AUTO

TEMP ONLINE TEMPORARY LOCAL MANUAL

USERS ONLINE PERMANENT LOCAL AUTO

EXAMPLE ONLINE PERMANENT LOCAL AUTO

DATA ONLINE PERMANENT LOCAL AUTO

INDX ONLINE PERMANENT LOCAL AUTO

The V$TABLESPACE view also has one row per tablespace, but it includes some informa-
tion other than DBA_TABLESPACES, such as whether the tablespace participates in database
flashback operations:

SELECT name, bigfile, flashback_on

FROM v$tablespace;

NAME BIGFILE FLASHBACK_ON

---------- -------- ------------

SYSTEM NO YES

UNDOTBS1 NO YES

SYSAUX NO YES

USERS NO YES

TEMP NO YES

EXAMPLE NO YES

DATA NO YES

INDX NO YES

See Chapter 15 for more information on flashback operations.

The DBA_DATA_FILES and DBA_TEMP_FILES views contain information on data files and
temp files, respectively. This information includes the tablespace name, filename, file size,
and autoextend settings.

SELECT tablespace_name, file_name, bytes/1024 kbytes

FROM dba_data_files

UNION ALL

SELECT tablespace_name, file_name, bytes/1024 kbytes

FROM dba_temp_files;

TABLESPACE FILE_NAME KBYTES

---------- -- -------

USERS C:\ORACLE\ORADATA\ORA11\USERS01.DBF 102400

SYSAUX C:\ORACLE\ORADATA\ORA11\SYSAUX01.DBF 256000

95127c10.indd 542 2/17/09 2:00:36 PM

Managing Tablespaces 543

UNDOTBS1 C:\ORACLE\ORADATA\ORA11\UNDOTBS01.DBF 51200

SYSTEM C:\ORACLE\ORADATA\ORA11\SYSTEM01.DBF 460800

EXAMPLE C:\ORACLE\ORADATA\ORA11\EXAMPLE01.DBF 153600

INDX C:\ORACLE\ORADATA\ORA11\INDX01.DBF 102400

TEMP C:\ORACLE\ORADATA\ORA11\TEMP01.DBF 51200

In addition to in the data dictionary, you can obtain tablespace information from several
sources. Some of these sources are the DDL and the Enterprise Manager.

generating DDl for a tablespace

Another way to quickly identify the attributes of a tablespace is to ask the database to
generate DDL to re-create the tablespace. The CREATE TABLESPACE statement that results
contains the attributes for the tablespace. Use the PL/SQL package DBMS_METADATA to
generate DDL for your database objects. For example, to generate the DDL for the USERS
tablespace, execute this:

SELECT DBMS_METADATA.GET_DDL(‘TABLESPACE’,’USERS’)

FROM dual;

The output from this statement is a CREATE TABLESPACE statement that contains all the
attributes for the USERS tablespace:

CREATE TABLESPACE “USERS” DATAFILE

‘/u01/app/oracle/oradata/11GR11/users01.dbf’ SIZE 5242880

AUTOEXTEND ON NEXT 1310720 MAXSIZE 32767M

LOGGING ONLINE PERMANENT BLOCKSIZE 8192

EXTENT MANAGEMENT LOCAL AUTOALLOCATE SEGMENT SPACE MANAGEMENT AUTO;

Obtaining Tablespace Information Using the EM Database Control
Instead of querying the data dictionary views with a command-line tool such as SQL*Plus,
you can use the interactive GUI tool EM Database Control to monitor and manage data-
base structures, including tablespaces. The EM Database Control is an alternative to a
command-line interface.

To use the Database Control, follow these steps:

1. Point your browser to the Enterprise Manager URL for your database (similar to
https://hostname:5500/em/console).

2. Log in to EM, and navigate to the Server tab of the main screen, which is shown in
Figure 10.2.

3. Click the Tablespaces link under the heading Storage to display a list of tablespaces like
that shown in Figure 10.3.

95127c10.indd 543 2/17/09 2:00:36 PM

544 Chapter 10 N Allocating Database Storage and Creating Schema Objects

F i gu r e 10 . 2 The Enterprise Manager Server tab

F i gu r e 10 . 3 The Enterprise Manager Tablespaces screen

4. Click the radio button next to the tablespace you want to work with, and then click the
Edit button. You can navigate to the tablespace General, Storage, and Thresholds edit
screens, as shown in Figure 10.4.

95127c10.indd 544 2/17/09 2:00:36 PM

Managing Tablespaces 545

F i gu r e 10 . 4 The Enterprise Manager tablespace editor

You use the screens and options in the EM Database Control to manipulate and change
your tablespaces with many of the same options that the command-line interface supports.
For example, to increase the size of the data file in the HR_DATA tablespace, click the Edit
button next to the data file. The EM Database Control displays the tablespace edit screen,
as shown in Figure 10.5.

F i gu r e 10 .5 Editing the data file size

95127c10.indd 545 2/17/09 2:00:36 PM

546 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Edit the File Size field, increasing it to 100MB. The change will be applied when you
click Continue.

Managing Data Files
Data files (or temporary files) are made when you create a tablespace or when you alter
a tablespace to add files. If you are not using the OMF feature, you will need to manage
data files yourself. The database will create or reuse one or more data files in the sizes and
locations that you specify whenever you create a tablespace. A data file belongs to only
one tablespace and only one database at a time. Temp files are a special variety of data file
that are used in temporary tablespaces. When the database creates or reuses a data file, the
operating-system file is allocated and initialized—filled with a regular pattern of mostly
binary zeros. This initialization will not occur with temp files.

Performing Operations on Data Files
Operations that you may need to perform on data files include the following:

Resizing themÛN

Taking them offline or onlineÛN

Moving (renaming) themÛN

Sizing Files
You can specify that the data file (or temporary file) will grow automatically whenever space
is needed in the tablespace. This is accomplished by specifying the AUTOEXTEND clause for the
file. This functionality enables you to have fewer data files per tablespace and can simplify
the administration of data files. The AUTOEXTEND clause can be ON or OFF; you can also spec-
ify file size increments. You can set a maximum limit for the file size; by default, the file size
limit is UNLIMITED. You can specify the AUTOEXTEND clause for files when you run the CREATE
DATABASE, CREATE TABLESPACE, ALTER TABLESPACE, and ALTER DATAFILE commands. For
example:

CREATE TABLESPACE APPL_DATA

DATAFILE ‘/disk2/oradata/DB01/appl_data01.dbf‘

SIZE 500M

AUTOEXTEND ON NEXT 100M MAXSIZE 2000M;

The AUTOEXTEND ON clause specifies that the automatic file-resize feature should be enabled
for the specified file; NEXT specifies the size by which the file should be incremented, and
MAXSIZE specifies the maximum size for the file. When Oracle tries to allocate an extent
in the tablespace, it looks for a free extent. If a large enough free extent cannot be located

95127c10.indd 546 2/17/09 2:00:36 PM

Managing Data Files 547

(even after coalescing), Oracle increases the data file size by 100MB and tries to allocate the
new extent.

The following statement disables the automatic file-extension feature:

ALTER DATABASE

DATAFILE ‘/disk2/oradata/DB01/appl_data01.dbf‘

AUTOEXTEND OFF;

If the file already exists in the database, and you want to enable the autoextension fea-
ture, use the ALTER DATABASE command. For example, you can use the following statement:

ALTER DATABASE

DATAFILE ‘/disk2/oradata/DB01/appl_data01.dbf‘

AUTOEXTEND ON NEXT 100M MAXSIZE 2000M;

You can increase or decrease the size of a data file or temporary file (thus increasing or
decreasing the size of the tablespace) by using the RESIZE clause of the ALTER DATABASE
DATAFILE command. For example, to redefine the size of a file, use the following statement:

ALTER DATABASE

DATAFILE ‘/disk2/oradata/DB01/appl_data01.dbf‘

RESIZE 1500M;

When decreasing the file size, Oracle returns an error if it finds data beyond the new file
size. You cannot reduce the file size below the high-water mark in the file. Reducing the file size
helps reclaim unused space.

Making Files Online and Offline
Sometimes you may have to make data files unavailable to the database if there is a file cor-
ruption. You can use the ONLINE and OFFLINE clauses of the ALTER DATABASE statement to
take a data file online or offline. You can specify the filename or specify the unique identi-
fier number that represents the data file. This identifier can be found in the FILE# column of
V$DATAFILE or the FILE_ID column of the DBA_DATA_FILES view.

To take a data file offline, use the OFFLINE clause. If the database is in NOARCHIVELOG mode,
then you must specify the FOR DROP clause along with the OFFLINE clause. The data file will
be taken offline and marked with status OFFLINE. You can remove the data file using OS
commands, if you want to get rid of the data file. If the database is in ARCHIVELOG mode,
you don’t need to specify the FOR DROP clause when taking a data file offline. When you’re
ready to bring the data file online, Oracle performs media recovery on the data file to make
it consistent with the database. Also, the FOR DROP clause is ignored if the database is in
ARCHIVELOG mode. Here is an example of taking a data file offline:

ALTER DATABASE DATAFILE ‘/u01/oradata/11gr1/tools02.dbf’ OFFLINE;

The following statement brings the data file online:

ALTER DATABASE DATAFILE ‘/u01/oradata/11gr1/tools02.dbf’ ONLINE;

95127c10.indd 547 2/17/09 2:00:36 PM

548 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Renaming Files
You can rename data files using the RENAME FILE clause of the ALTER DATABASE com-
mand. You can also rename data files by using the RENAME DATAFILE clause of the ALTER
TABLESPACE command. The RENAME functionality is used to logically move tablespaces
from one location to another. To rename or relocate data files belonging to a non-SYSTEM
tablespace, you should follow certain steps. Consider the following example.

Your tablespace USER_DATA has three data files named, such as the following:

/disk1/oradata/DB01/user_data01.dbfÛN

/disk1/oradata/DB01/userdata2.dbfÛN

/disk1/oradata/DB01/user_data03.dbfÛN

Renaming a Data File

If you need to rename one of these, say the second file, follow these steps:

1. Take the tablespace offline:

ALTER TABLESPACE USER_DATA OFFLINE;

2. Copy or move the file to the new location, or rename the file by using operating-system
commands.

3. Rename the file in the database by using one of the following two commands:

ALTER DATABASE RENAME FILE

‘/disk1/oradata/DB01/userdata2.dbf‘ TO

‘/disk1/oradata/DB01/user_data02.dbf‘;

or

ALTER TABLESPACE USER_DATA RENAME DATAFILE

‘/disk1/oradata/DB01/userdata2.dbf‘ TO

‘/disk1/oradata/DB01/user_data02.dbf‘;

4. Bring the tablespace online:

ALTER TABLESPACE USER_DATA ONLINE;

Relocating a Tablespace

You may also determine that you need to relocate the tablespace from disk 1 to disk 2. If
so, you should follow the same steps. You can also rename all the files in the tablespace by
using a single command. The steps are as follows:

1. Take the tablespace offline:

ALTER TABLESPACE USER_DATA OFFLINE;

2. Copy the file to the new location by using OS commands on the disk.

95127c10.indd 548 2/17/09 2:00:36 PM

Managing Data Files 549

3. Rename the files in the database by using one of the following two commands. The
number of data files specified before the keyword TO should be equal to the number of
files specified after the keyword.

ALTER DATABASE RENAME FILE

‘/disk1/oradata/DB01/user_data01.dbf‘,

‘/disk1/oradata/DB01/userdata2.dbf‘,

‘/disk1/oradata/DB01/user_data03.dbf‘

 TO

‘/disk2/oradata/DB01/user_data01.dbf‘,

‘/disk2/oradata/DB01/user_data02.dbf‘,

‘/disk2/oradata/DB01/user_data03.dbf‘;

or

ALTER TABLESPACE USER_DATA RENAME DATAFILE

‘/disk1/oradata/DB01/user_data01.dbf‘,

‘/disk1/oradata/DB01/userdata2.dbf‘,

‘/disk1/oradata/DB01/user_data03.dbf‘

 TO

‘/disk2/oradata/DB01/user_data01.dbf‘,

‘/disk2/oradata/DB01/user_data02.dbf‘,

‘/disk2/oradata/DB01/user_data03.dbf‘;

4. Bring the tablespace online:

ALTER TABLESPACE USER_DATA ONLINE;

Renaming or Relocating Files Belonging to Multiple Tablespaces

If you need to rename or relocate files belonging to multiple tablespaces or if the file belongs
to the SYSTEM tablespace, you must follow these steps:

1. Shut down the database. A complete backup is recommended before making any struc-
tural changes.

2. Copy or rename the files on the disk by using OS commands.

3. Start up and mount the database (STARTUP MOUNT).

4. Rename the files in the database by using the ALTER DATABASE RENAME FILE command.

5. Open the database by using ALTER DATABASE OPEN.

Moving Read-Only Tablespaces

If you need to move read-only tablespaces to a CD-ROM or any write-once read-many
device, follow these steps:

1. Make the tablespace read-only.

2. Copy the data files belonging to the tablespace to the read-only device.

3. Rename the files in the database by using the ALTER DATABASE RENAME FILE command.

95127c10.indd 549 2/17/09 2:00:36 PM

550 Chapter 10 N Allocating Database Storage and Creating Schema Objects

moving a Data File from the h Drive to the g Drive

Your operating-system administrator informed you that he is seeing lot of contention
on the H drive and is seeking options to move some of the reads off the H drive and
to G drive. As a DBA, you can move one of the hot files belonging to the receivables
tablespace to the G drive.

You need to take a tablespace offline to perform some maintenance operations, such as
recovering the tablespace or moving the data files to a new location. Use the OFFLINE
clause with an ALTER TABLESPACE statement to take a tablespace offline. Follow these
steps to rename or move a data file:

1. Take the receivables tablespace offline:

ALTER TABLESPACE receivables OFFLINE;

2. Use an operating-system program to physically move the file, such as Copy in Micro-
soft Windows or cp in Unix.

3. Tell the database about the new location:

ALTER TABLESPACE receivables RENAME DATAFILE

 ‘H:\ORACLE\ORADATA\ORA10\RECEIVABLES02.DBF’

 TO ‘G:\ORACLE\ORADATA\ORA10\RECEIVABLES02.DBF’ ;

4. Bring the tablespace back online:

ALTER TABLESPACE receivables ONLINE;

Using the Oracle Managed Files Feature
The Oracle Managed Files feature is appropriate for smaller nonproduction databases or
databases on disks using Logical Volume Manager (LVM). LVM is software available with
most disk systems to combine partitions of multiple physical disks to one logical volume.
LVM can use mirroring, striping, RAID 5, and so on. Using the OMF feature has the fol-
lowing benefits:

Error prevention Since Oracle removes the files associated with the tablespace, the DBA
cannot make a mistake by removing a file belonging to an active tablespace.

A standard naming convention The files created using the OMF method have unique and
standard filenames.

Space retrieval When tablespaces are removed, Oracle removes the files associated with
the tablespace, thus freeing up space immediately on the disk. The DBA may forget to
remove the file from disk.

95127c10.indd 550 2/17/09 2:00:37 PM

Managing Data Files 551

Easy script writing Application vendors need not worry about the syntax of specifying
directory names in the scripts when porting the application to multiple platforms. The same
script can be used to create tablespaces on different OS platforms.

The OMF feature can be used to create files and to remove them when the correspond-
ing object (redo log group or tablespace) is dropped from the database. For managing
OMF-created files, such as renaming or resizing, you need to use the traditional methods.

Enabling the Oracle Managed Files Feature
To enable the creation of Oracle-managed data files, you need to set the parameter DB_
CREATE_FILE_DEST. You can specify this parameter in the initialization-parameter file or
set/change it using the ALTER SYSTEM or ALTER SESSION statement. The DB_CREATE_FILE_
DEST parameter defines the directory where Oracle can create data files. Oracle must have
read-write permission on this directory. The directory must exist on the server where the
database is located. Oracle will not create the directory; it will create create only the data file.

You can use the OMF feature to create data files when using the CREATE DATABASE,
CREATE TABLESPACE, and ALTER TABLESPACE statements. In the CREATE DATABASE statement,
you don’t need to specify the filenames for the SYSTEM, UNDO, or TEMPORARY tablespaces. In the
CREATE TABLESPACE statement, you can omit the DATAFILE clause. In the ALTER TABLESPACE
ADD DATAFILE statement, you can omit the filename.

The data files created using the OMF feature will have a standard format. For data files,
the format is ora_%t_%u.dbf, and for temp files, the format is ora_%t_%u.tmp, where %t is the
tablespace name and %u is a unique eight-character string derived by Oracle. If the tablespace
name is longer than eight characters, only the first eight characters are used. The filenames
generated by Oracle are reported in the alert log file.

You can also use the OMF feature for the control files and redo log files of the database.
Since these two types of files can be multiplexed, Oracle provides another parameter to
specify the location of files, DB_CREATE_ONLINE_LOG_DEST_n, where n can be 1, 2, 3, 4, or 5.
These initialization parameters also can be altered using ALTER SYSTEM or ALTER SESSION. If
you set the parameters DB_CREATE_ONLINE_LOG_DEST_1 and DB_CREATE_ONLINE_LOG_DEST_2
in the parameter file when creating a database, Oracle creates two control files (one in each
directory) and creates two online redo log groups with two members each (one member
each in both directories).

The redo log file names created will have the format ora_%g_%u.log, where %g is the log
group number and %u is an eight-character string. The control file will have a format of
ora_%u.ctl, where %u is an eight-character string.

In the following sections, you will see examples of using the OMF feature while creating
a database as well as creating additional tablespaces in a database.

Creating Databases Using the OMF Feature
Let’s consider an example of creating a database. The following parameters are set in the
initialization-parameter file:

UNDO_MANAGEMENT = AUTO

DB_CREATE_ONLINE_LOG_DEST_1 = ‘/ora1/oradata/MYDB’

95127c10.indd 551 2/17/09 2:00:37 PM

552 Chapter 10 N Allocating Database Storage and Creating Schema Objects

DB_CREATE_ONLINE_LOG_DEST_2 = ‘/ora2/oradata/MYDB’

DB_CREATE_FILE_DEST = ‘/ora1/oradata/MYDB’

You do not have the CONTROL_FILES parameter set. Create the database using the follow-
ing statement:

CREATE DATABASE MYDB

DEFAULT TEMPORARY TABLESPACE TEMP;

The following files will be created: the SYSTEM tablespace data file in /ora1/oradata/MYDB,
the TEMP tablespace temp file in /ora1/oradata/MYDB, one control file in /ora1/oradata/
MYDB and another control file in /ora2/oradata/MYDB, one member of the first redo log
group in /ora1/oradata/MYDB and a second member in /ora2/oradata/MYDB, and one
member of second redo log group in /ora1/oradata/MYDB and a second member in /ora2/
oradata/MYDB. Since you specified the UNDO_MANAGEMENT clause and did not specify a name
for the undo tablespace, Oracle creates the SYS_UNDOTBS tablespace as an undo tablespace
and creates its data file in /ora1/oradata/MYDB. If you omit the DEFAULT TEMPORARY
TABLESPACE clause, Oracle will not create a temporary tablespace.

When using the OMF feature to create control files, you must get the names
of control files from the alert log and add them to the initialization-parameter
file using the CONTROL_FILES parameter for the instance to start again.

The data files and temp files created by the OMF feature will have a default size of 100MB,
be autoextensible, and have no maximum file size. Each redo log member will be 100MB in
size by default.

Creating Tablespaces Using the OMF Feature
Let’s consider another example that creates two tablespaces. The data file for the APP_DATA
tablespace will be stored in the directory /ora5/oradata/MYDB. The data file for the APP_
INDEX tablespace will be stored in the directory /ora6/oradata/MYDB.

ALTER SESSION SET DB_CREATE_FILE_DEST = ‘/ora5/oradata/MYDB’;

CREATE TABLESPACE APP_DATA

EXTENT MANAGEMENT DICTIONARY;

ALTER SESSION SET DB_CREATE_FILE_DEST = ‘/ora6/oradata/MYDB’;

CREATE TABLESPACE APP_INDEX;

If you do not specify the DB_CREATE_ONLINE_LOG_DEST_n parameter when
creating a database or when adding a redo log group, the OMF feature cre-
ates one control file and two groups with one member each for redo log files
in the DB_CREATE_FILE_DEST directory. If the DB_CREATE_FILE_DEST param-
eter is also not set and you did not provide filenames for data files and redo
logs, Oracle creates the files in a default directory (mostly $ORACLE_HOME/
dbs), but they will not be Oracle managed. This is the default behavior of the
database.

95127c10.indd 552 2/17/09 2:00:37 PM

Managing Data Files 553

Overriding the Default File Size
If you want to have different sizes for the files created by the OMF feature, you can do so
by specifying the DATAFILE clause without a filename. You can also turn off the autoexten-
sible feature of the data file. The following statement creates a tablespace of size 10MB and
turns off the autoextensible feature:

CREATE TABLESPACE PAY_DATA DATAFILE SIZE 10M

AUTOEXTEND OFF;

Here is another example that creates multiple data files for the tablespace. The second
and third data files are autoextensible.

CREATE TABLESPACE PAY_INDEX

DATAFILE SIZE 20M AUTOEXTEND OFF,

SIZE 30M AUTOEXTEND ON MAXSIZE 1000M,

SIZE 1M;

The following example adds files to an existing tablespace:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = ‘/ora5/oradata/MYDB’;

ALTER TABLESPACE USERS ADD DATAFILE;

ALTER SYSTEM SET DB_CREATE_FILE_DEST = ‘/ora8/oradata/MYDB’;

ALTER TABLESPACE APP_DATA

ADD DATAFILE SIZE 200M AUTOEXTEND OFF;

Once created, Oracle Managed Files are treated like other database files. You can rename
and resize them and must back them up. Archive log files cannot be managed by OMF.

how Do You Create a Database and its Associated tablespaces with OmF?

You have been asked by your manager to create a test database for a new application
your company just bought. The database is for testing the functionality of the application.
The vendor told you it needs four tablespaces, namely, SJC_DATA, SJC_INDEX, WKW_DATA,
and WKW_INDEX. The index tablespaces must be uniform extent sizes of 512KB and should
have minimum sizes of 500MB. The vendor needs the SJC_DATA tablespace to be diction-
ary managed with the minimum and extent size multiple to be 128KB and the tablespace
size to be 1GB. The SJC_DATA tablespace should be 250MB.

Since this is a test database for testing the functionality of the application, you decide to
use the Oracle Managed Files feature, which makes your life easier by creating and clean-
ing the files belonging to the database.

Let’s create the database. Your system administrator has given you four disks—namely,
/ora1, /ora2, /ora3, and /ora4—each with 900MB of space.

Make sure you include the following in the parameter file:

UNDO_MANAGEMENT = AUTO

DB_CREATE_FILE_DEST = /ora1

95127c10.indd 553 2/17/09 2:00:37 PM

554 Chapter 10 N Allocating Database Storage and Creating Schema Objects

DB_CREATE_ONLINE_LOG_DEST_1 = /ora1

DB_CREATE_ONLINE_LOG_DEST_2 = /ora2

Create the database using the following statement:

CREATE DATABASE SJCTEST

LOGFILE SIZE 20M

DEFAULT TEMPORARY TABLESPACE TEMP

TEMPFILE SIZE 200M

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 2M

UNDO TABLESPACE UNDO_TBS SIZE 200M;

The previous statement creates a database named SJCTEST. The SYSTEM tablespace, undo
tablespace, and temporary tablespace are created in /ora1. The SYSTEM tablespace has
the default size of 100MB, and the undo tablespace and temporary tablespace will have
the size of 200MB. Since you do not want each log file member to be 100MB, you specify
a smaller size for online redo log members.

Two control files are created, and redo log files with two members are created. Each
member is stored in /ora1 and /ora2.

After running the necessary scripts to create the catalog and packages, you create the
tablespaces for the application:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = “/ora2”;

CREATE TABLESPACE SJC_DATA

EXTENT MANAGEMENT DICTIONARY

MINIMUM EXTENT 128K

DATAFILE SIZE 800M;

ALTER SYSTEM SET DB_CREATE_FILE_DEST = “/ora3”;

ALTER TABLESPACE SJC_DATA ADD DATAFILE SIZE 200M;

CREATE TABLESAPCE WKW_INDEX

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 512K

DATAFILE SIZE 500M;

ALTER SYSTEM SET DB_CREATE_FILE_DEST = “/ora4”;

CREATE TABLESPACE WKW_DATA;

CREATE TABLESPACE SJC_INDEX

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 512K

DATAFILE SIZE 500M;

Since you have only 900MB in each file system, to allocate 1GB to the SJC_DATA
tablespace, you needed two data files. This is accomplished in two steps.

95127c10.indd 554 2/17/09 2:00:37 PM

Managing Data Files 555

Querying Data File Information
Similar to gathering tablespace information, you can use SQL*Plus as well as the EM Grid
Control to get information about data files and temporary files. In the following sections,
you will query a few dictionary views that hold data file and temporary-file information.
You can obtain the same information using the EM Grid Control by drilling down the
tablespaces shown in Figure 10.5. You can query data file and temporary-file information
by using the following views.

V$DATAFILE
This view shows data file information from the control file:

SELECT FILE#, RFILE#, STATUS, BYTES, BLOCK_SIZE

FROM V$DATAFILE;

 FILE# RFILE# STATUS BYTES BLOCK_SIZE

---------- ---------- ------- ---------- ----------

 1 1 SYSTEM 734003200 8192

 2 2 ONLINE 883818496 8192

 3 3 ONLINE 225443840 8192

 4 4 ONLINE 5242880 8192

 5 5 ONLINE 104857600 8192

 6 6 ONLINE 209715200 8192

 7 7 ONLINE 209715200 8192

 8 8 ONLINE 104857600 8192

V$TEMPFILE
Similar to V$DATAFILE, this view shows information about the temporary files:

SELECT FILE#, RFILE#, STATUS, BYTES, BLOCK_SIZE

FROM V$TEMPFILE;

 FILE# RFILE# STATUS BYTES BLOCK_SIZE

---------- ---------- ------- ---------- ----------

 1 1 ONLINE 49283072 8192

DBA_DATA_FILES
This view shows information about the filenames, associated tablespace names, size, status,
and so on:

SELECT TABLESPACE_NAME, FILE_NAME, BYTES,

 AUTOEXTENSIBLE

FROM DBA_DATA_FILES;

95127c10.indd 555 2/17/09 2:00:37 PM

556 Chapter 10 N Allocating Database Storage and Creating Schema Objects

TABLESPACE FILE_NAME BYTES AUT

---------- -- ---------- ---

USERS /u01/app/oracle/oradata/11GR11/users01.d 5242880 YES

 bf

UNDOTBS1 /u01/app/oracle/oradata/11GR11/undotbs01 225443840 YES

 .dbf

SYSAUX /u01/app/oracle/oradata/11GR11/sysaux01. 883818496 YES

 dbf

SYSTEM /u01/app/oracle/oradata/11GR11/system01. 734003200 YES

 dbf

EXAMPLE /u01/app/oracle/oradata/11GR11/example01 104857600 YES

 .dbf

APPL_DATA /u01/app/oracle/oradata/11GR11/appl_data 209715200 NO

 01.dbf

APPL_DATA /u01/app/oracle/oradata/11GR11/appl_data 209715200 NO

 02.dbf

HR_DATA /u02/oradata/11GR11/11GR11/datafile/o1_m 104857600 YES

 f_hr_data_46n3ck5t_.dbf

DBA_TEMP_FILES
This view shows information similar to that of DBA_DATA_FILES for the temporary files in
the database:

SELECT TABLESPACE_NAME, FILE_NAME, BYTES,

 AUTOEXTENSIBLE

FROM DBA_TEMP_FILES;

TABLESPACE FILE_NAME BYTES AUT

---------- --- ---------- ---

TEMP /u01/app/oracle/oradata/11GR11/temp01.dbf 49283072 NO

The maximum number of data files per tablespace is OS dependent, but on most operat-
ing systems, it is 1,022. The maximum number of data files per database is 65,533. The
MAXDATAFILES clause in the CREATE DATABASE and CREATE CONTROLFILE statements also
limits the number of data files per database. The maximum data file size is OS dependent.
There is no limit on the number of tablespaces per database. Because only 65,533 data files
are allowed per database, you cannot have more than 65,533 tablespaces, because each
tablespace needs at least one data file.

A useful technique for managing disk space used by data files is to enable AUTOEXTEND
for application tablespaces, which tells the database to automatically enlarge a data file
when the tablespace runs out of free space. The AUTOEXTEND attribute applies to individual
data files and not to the tablespace.

95127c10.indd 556 2/17/09 2:00:37 PM

Working with Schema Objects 557

To resize a data file manually, use the ALTER DATABASE DATAFILE statement, like this:

ALTER DATABASE DATAFILE

 ‘/u01/app/oracle/oradata/11GR11/example01.dbf‘ RESIZE 2000M;

To configure a data file to automatically enlarge as needed by adding 100MB at a time
up to a maximum of 8000MB, execute the following:

ALTER DATABASE DATAFILE

 ‘C:\ORACLE\ORADATA\ORA10\DATA01.DBF’

AUTOEXTEND ON NEXT 100M MAXSIZE 8000M;

If you plan to use the AUTOEXTEND option for the data files, use MAXSIZE to
limit the file size to the disk space available. Also, it is not advised to enable
AUTOEXTEND for temporary and undo tablespaces because user error can
fill up the available disk space.

Working with Schema Objects
A schema is collection of database objects owned by a specific database user. In an Oracle
11g database, the schema has the same name as the database user, so the two terms are syn-
onymous. Schema objects include the segments (tables, indexes, and so on) you have seen
in tablespaces as well as nonsegment database objects owned by a user. These nonsegment
objects include constraints, views, synonyms, procedures, and packages. Database objects
that are not owned by one user and thus are not schema objects include roles, tablespaces,
and directories. The schema objects you need to learn for the certification exam are tables,
indexes, and constraints.

In Chapter 6, you learned to create tables, what datatypes can be used, and how to
modify the table structure. In the following sections, you will learn to create tables with
the storage clause. You also learned in Chapter 6 the various types of constraints and
how constraints are used. In Chapter 7, you learned to create indexes and learned that they
are similar to tables in that you can specify storage parameters when creating them. In this
chapter, you will take this a step further, creating indexes that specify storage clauses. To fully
prepare for the OCA certification exam, you must understand Chapters 6 and 7 before mov-
ing on in this one.

A Little Background on Creating Tables
Tables are the primary data storage containers in an Oracle Database. You can think of a
table as a spreadsheet having column headings and many rows of information. A schema or
a user in the database owns the table. The table columns have a defined datatype—the data

95127c10.indd 557 2/17/09 2:00:38 PM

558 Chapter 10 N Allocating Database Storage and Creating Schema Objects

stored in the columns should satisfy the characteristics of the column. You can also define
rules for storing data in the columns using integrity constraints.

Data in a table is organized into rows and columns. Each column is named and has a
specific datatype and size, such as CHAR(16), VARCHAR2(50), TIMESTAMP(6), or NUMBER. A
row is a single occurrence of this set of columns. You can think of columns as fields, and
you can think of rows as records.

When you create a table, you must give it a name as well as specify the column names
and datatypes. You can optionally specify many additional attributes, such as column
default values, extent sizes, which tablespace to use, and so on. Table and column names
have the following requirements:

They must be from 1 to 30 bytes in length.ÛN

They must begin with a letter.ÛN

They can include letters, numbers, the underscore symbol (ÛN _), the number symbol (#),
and the dollar symbol ($). (However, Oracle discourages the use of number and dollar
symbols in names.)

They cannot be a reserved word such as ÛN NUMBER or INDEX.

Table names in Oracle are not case sensitive. This is good so you do not
have to keep track of case. If you enclose the table name in double quota-
tion marks, the case of the table name is preserved. You must enclose the
table name in double quotation marks if the table name contains charac-
ters that are not uppercase.

If the name is enclosed in double quotation marks (“ ”), the only requirement is that the
name be from 1 to 30 bytes long and not contain an embedded double quotation mark.
Each column name must be unique within a table. The table name must be unique within
the schema; you cannot have same name for a table and a view in a schema. The following
are the types of tables available in Oracle 11g:

Heap table Simply known as a table, this is the most common method of storing data.
These tables are permanent and can be partitioned for easy storage management. Partition-
ing allows the table to be broken into multiple smaller pieces for easy management and
better performance. The CREATE TABLE … ORGANIZATION HEAP statement is used to create a
relational table. Since ORGANIZATION HEAP is the default, it can be omitted.

Temporary table Temporary tables store private data or data that is specific to a session.
This data cannot be shared with other users in the database. They’re used for temporary
data manipulation or for storing intermediary results. The CREATE GLOBAL TEMPORARY
TABLE statement is used to create a temporary table.

Index-organized table (IOT) Index-organized tables store the data in a structured pri-
mary key sorted manner. Each IOT must have a primary key defined. These tables are
similar to a relational table with a primary key, but they do not use separate storage for

95127c10.indd 558 2/17/09 2:00:38 PM

Working with Schema Objects 559

the table and primary key like the relational tables do. The CREATE TABLE … ORGANIZATION
INDEX statement is used to create an index-organized table.

External table As the name indicates, data is stored outside the Oracle Database in flat
files. External tables are read-only. No indexes are allowed on external tables. Column
names defined in the Oracle Database are mapped to the columns in the external file.
The default driver used to read an external table is SQL*Loader. The CREATE TABLE …
ORGANIZATION EXTERNAL statement is used to create an external table.

Object table Object tables are special kind of tables that support the object-oriented fea-
tures of the Oracle 11g database. In an object table, each row represents an object.

In the following sections, you will see how to create and manage tables.

Creating a Table
To create a table, use the CREATE TABLE statement. At a minimum, you need to list the col-
umn names and datatypes for the table. You can create a table under the username used
to connect to the database, or with proper privileges you can create a table under another
username. A database user can be referred to as a schema, or as an owner when the user
owns objects in the database. The simplest form of creating a table is as follows:

CREATE TABLE ORDERS (

ORDER_NUM NUMBER,

ORDER_DATE DATE,

PRODUCT_CD VARCHAR2 (10),

QUANTITY NUMBER (10,3),

STATUS CHAR);

ORDERS is the table name; the columns in the table are specified in parentheses separated
by commas. The table is created under the username used to connect to the database; to
create the table under another schema, you need to qualify the table with the schema name.
For example, if you want to create the ORDERS table as being owned by SCOTT, create the
table by using CREATE TABLE SCOTT.ORDERS (), you must have the CREATE ANY TABLE
privilege to do so.

A column name and a datatype identify each column. For certain datatypes, you can
specify a maximum width. You can specify any Oracle built-in datatype or user-defined
datatype for the column definition. When specifying user-defined datatypes, the user-
defined type must exist before creating the table. You can add several attributes to your
table definition such as the tablespace in which you want your table stored.

If you create a table without specifying the storage parameters and tablespace, the table
will be created in the default tablespace of the user, and the storage parameters used will be
those of the default specified for the tablespace. It is always better to estimate the size of the
table and specify appropriate storage parameters when creating the table. If the table is too
large, you might need to consider partitioning or creating the table in a separate tablespace.
This helps you manage the table.

95127c10.indd 559 2/17/09 2:00:38 PM

560 Chapter 10 N Allocating Database Storage and Creating Schema Objects

What is partitioning?

When tables are very large, you can manage them better by using partitioning. Partition-
ing is breaking a large table into manageable pieces based on the values in a column (or
multiple columns) known as the partition key. If you have a very large table spread across
many data files and one disk fails, you have to recover the entire table. However, if the
table is partitioned, you need to recover only that partition. SQL statements can access
the required partition(s) rather than reading the entire table. Partitioning improves per-
formance and makes managing tables easier. Partitioning is not part of the certification
exam. To learn more about partitioning, read “Oracle 11g Administrators Guide” in the
Oracle documentation (http://tahiti.oracle.com).

Oracle allocates a segment to the table when the table is created. This segment will have
the number of extents specified by the storage parameter MINEXTENTS. Oracle allocates new
extents to the table as required. Though you can have an unlimited number of extents for
a segment, a little planning can improve the performance of the table. Having numerous
extents affects the operations on the table, such as when the table is truncated or full table
scans are performed. A larger number of extents may cause additional I/Os in the data file
and therefore may affect performance.

To create the ORDERS table using explicit storage parameters in the USER_DATA tablespace,
use the following:

CREATE TABLE JAKE.ORDERS (

ORDER_NUM NUMBER,

ORDER_DATE DATE,

PRODUCT_CD VARCHAR2 (10),

QUANTITY NUMBER (10,3),

STATUS CHAR)

TABLESPACE USER_DATA

PCTFREE 5

PCTUSED 75

INITRANS 1

STORAGE (INITIAL 512K NEXT 512K PCTINCREASE 0

 MINEXTENTS 1 MAXEXTENTS 100

 FREELISTS 1 FREELIST GROUPS 1

 BUFFER_POOL KEEP);

The table will be owned by JAKE and will be created in the USER_DATA tablespace (JAKE
should have appropriate space quota privileges in the tablespace). None of the storage
parameters is mandatory to create a table; Oracle assigns default values if you omit them.
Let’s discuss the clauses used in the table creation.

95127c10.indd 560 2/17/09 2:00:38 PM

Working with Schema Objects 561

TABLESPACE specifies the location where the table should be created. If you omit the
STORAGE clause or any parameters in the STORAGE clause, the default will be taken from the
tablespace’s default storage (if applicable). If you omit the TABLESPACE clause, the table will
be created in the default tablespace of the user.

PCTFREE and PCTUSED are block storage parameters. PCTFREE specifies the amount of free
space that should be reserved in each block of the table for future updates. In this example,
you specify a low PCTFREE for the ORDERS table, because there are not many updates to the
table that increase the row length. PCTUSED specifies when the block should be considered
for inserting new rows once the PCTFREE threshold is reached. Here you specified 75, so
when the used space falls to less than 75 (because of updates or deletes), new rows will be
added to the block.

INITRANS specifies the number of concurrent transactions that can update each block of
the table. Oracle reserves space in the block header for the INITRANS number of concurrent
transactions. For each additional concurrent transaction, Oracle allocates space from the
free space—which has an overhead of dynamically allocating transaction entry space. If the
block is full and no space is available, the transaction waits until a transaction entry space
is available.

The STORAGE clause specifies the extent sizes, free lists, and buffer pool values. The
INITIAL, NEXT, MINEXTENTS, MAXEXTENTS, and PCTINCREASE parameters control the size
of the extents allocated to the table. If the table is created on a locally managed uniform
extent tablespace, these storage parameters are ignored.

FREELIST GROUPS specifies the number of free list groups that should be created for the
table. The default and minimum value is 1. Each free list group uses one data block (that’s
why the minimum value for INITIAL is two database blocks) known as the segment header,
which has information about the extents, free blocks, and high-water mark of the table.

FREELISTS specifies the number of lists for each free list group. The default and minimum
value is 1. The free list manages the list of blocks that are available to add new rows. A
block is removed from the free list if the free space in the block is less than PCTFREE. The
block remains out of the free list as long as the used space is greater than PCTUSED. Create
more free lists if the volume of inserts to the table is great. An appropriate number would
be the number of concurrent transactions performing inserts to the table. Oracle recom-
mends having FREELISTS and INITRANS be the same value. The FREELIST GROUPS parameter
is mostly used for RAC configuration, where you can specify a group for each instance.

The BUFFER_POOL parameter of the STORAGE clause specifies the area of the database buf-
fer cache to keep the blocks of the table when read from the data file while querying or for
update/delete. There are three buffer pools: KEEP, RECYCLE, and DEFAULT. The default value
is DEFAULT. Specify KEEP if the table is small and is frequently accessed. The blocks in the
KEEP pool are always available in the SGA, so I/O will be faster. The blocks assigned to
the RECYCLE buffer pool are removed from memory as soon as they are not needed. Specify
RECYCLE for large tables or tables that are seldom accessed. If you do not specify KEEP or
RECYCLE, the blocks are assigned to the DEFAULT pool, where they will be aged out using an
LRU algorithm.

95127c10.indd 561 2/17/09 2:00:38 PM

562 Chapter 10 N Allocating Database Storage and Creating Schema Objects

If the tablespace is created with the SEGMENT SPACE MANAGEMENT AUTO
clause, the parameters PCTUSED, FREELISTS, and FREELIST GROUPS are
ignored.

When a table is created, you can specify several optional clauses to improve efficiency
of the table based on the purpose for which the table is created. You can specify storage
parameters for the table, for its indexes, and for its LOB structures. In the following sec-
tions, you will learn how to specify storage for LOB structures and the various clauses
available to specify table storage.

Storing LOB Structures

A table can contain columns of type CLOB, BLOB, or NCLOB. These internal LOB col-
umns can have different storage settings than those of the table and can be stored in a
different tablespace for easy management and performance improvement. The following
example specifies storage for a LOB column when creating the table:

CREATE TABLE LICENSE_INFO

(DRIVER_ID VARCHAR2 (20),

 DRIVER_NAME VARCHAR2 (30),

 DOB DATE,

 PHOTO BLOB)

TABLESPACE APP_DATA STORAGE (INITIAL 4M NEXT 4M PCTINCREASE 0)

LOB (PHOTO) STORE AS PHOTO_LOB

 (TABLESPACE APP_LARGE_DATA

 DISABLE STORAGE IN ROW

 STORAGE (INITIAL 128M NEXT 128M PCTINCREASE 0)

 CHUNK 4000

 PCTVERSION 20

 NOCACHE LOGGING);

The table LICENSE_INFO is created with a BLOB datatype column. The table is stored
in the APP_DATA tablespace, and the BLOB column PHOTO is stored in the APP_LARGE_DATA
tablespace. I’ll now discuss the various clauses specified for the LOB storage.

The LOB segment is given the name PHOTO_LOB. If a name is not given, Oracle generates
a name. You can specify multiple LOB columns in parentheses following the LOB keyword,
if they all have the same storage characteristics. In such cases, you cannot specify a name
for the LOB segment. For example, if the table has three LOB columns and all the LOB col-
umns have the same characteristics, you may specify the following:

LOB (PHOTO, VIDEO, AUDIO) STORE AS

(TABLESPACE APP_LARGE_DATA

 CACHE READS NOLOGGING);

95127c10.indd 562 2/17/09 2:00:38 PM

Working with Schema Objects 563

TABLESPACE specifies the tablespace where the LOB segment(s) should be stored. The
tablespace can be locally or dictionary managed. If the LOB column is larger than 4,000 bytes,
data is stored in the LOB segment. Storing data in the LOB segment is known as out-of-line
storage. If the LOB column data is less than 4,000 bytes, it is stored inline, along with the
other column data of the table. If the TABLESPACE clause is omitted, the LOB segment is
created in the table’s tablespace.

DISABLE/ENABLE STORAGE IN ROW specifies whether LOB data should be stored inline or
out of line. ENABLE is the default and stores LOB data along with the other columns if the
LOB data is smaller than 4,000 bytes. DISABLE stores the LOB data in the LOB segment
irrespective of its size. Whether the LOB data is stored inline or out of line, the LOB loca-
tor is always stored along with the row.

STORAGE specifies the extent sizes and growth parameters. These parameters are the
same as you would use with a table.

CHUNK specifies the total bytes of data that will be read or written during LOB manipula-
tion. CHUNK must be a multiple of the database block size. If you specify a value other than
a multiple of the block size, Oracle uses the next higher value that is a multiple of the block
size. For example, if you specify 4000 for CHUNK and the database block size is 2048, Oracle
will take the value of 4096. The default value for CHUNK is the database block size, and the
maximum value is 32KB. The INITIAL and NEXT values specified in the STORAGE clause must
be higher than the value for CHUNK.

PCTVERSION specifies the percentage of all used LOB data space that can be occupied by
old versions of LOB data pages. Since LOB data changes are not written to the rollback
segments, PCTVERSION specifies the percentage of old information that should be kept in the
LOB segment for consistent reads. The default is 10 and can range from 0 through 100.

CACHE/NOCACHE/CACHE READS specifies whether to cache the LOB reads. If the LOB is read
and updated frequently, use the CACHE clause. NOCACHE is the default, and it is useful for a LOB
that is read infrequently and never updated. CACHE READS caches only the read operation. This
is useful for a LOB that is read frequently but never updated.

LOGGING / NOLOGGING specifies whether redo information should be generated for LOB
data. NOLOGGING does not write redo and is useful for faster data loads. You cannot specify
CACHE and NOLOGGING together.

Using Other Create Clauses

The other clauses you can specify while creating a table (which may appear on the certifica-
tion exam) are listed here. These clauses help you manage various types of operations on
the table.

LOGGING/NOLOGGING LOGGING is the default for the table and tablespace, but if the
tablespace is defined as NOLOGGING, then the table uses NOLOGGING. LOGGING specifies that
table creation and direct-load inserts should be logged to the redo log files. Creating
the table by using a subquery and the NOLOGGING clause can improve the table creation
time dramatically for large tables. If the table creation, initial data population (using a

95127c10.indd 563 2/17/09 2:00:38 PM

564 Chapter 10 N Allocating Database Storage and Creating Schema Objects

subquery), and direct-load inserts are not logged to the redo log files when using the
NOLOGGING clause, you must back up the table (or better yet, the entire tablespace) after
such operations are performed. Media recovery will not create or load tables created with
the NOLOGGING attribute. You can also specify a separate LOGGING or NOLOGGING attribute
for indexes and LOB storage of the table, independent of the table’s attribute. The following
example creates a table with the NOLOGGING clause:

CREATE TABLE MY_ORDERS ()

TABLESPACE USER_DATA STORAGE ()

NOLOGGING;

PARALLEL/NOPARALLEL NOPARALLEL is the default. PARALLEL causes the table creation (if
created using a subquery) and the DML statements on the table to execute in parallel. Nor-
mally, a single-server process performs operations on tables in a transaction (serial opera-
tion). When the PARALLEL attribute is set, Oracle uses multiple processes to complete the
operation for a full-table scan. You can specify a degree for the parallelism; if not specified,
Oracle calculates the optimum degree of parallelism. The parameter PARALLEL_THREADS_
PER_CPU determines the number for parallel degree per CPU; usually the default is 2. If you
do not specify the degree, Oracle calculates the degree based on this parameter and the
number of CPUs available. The following example creates a table by using a subquery. The
table creation will not be logged in the redo log file, and multiple processes will query the
JAKE.ORDERS table and create the MY_ORDERS table.

CREATE TABLE MY_ORDERS ()

TABLESPACE USER_DATA STORAGE ()

NOLOGGING PARALLEL

AS SELECT * FROM JAKE.ORDERS;

CACHE/NOCACHE NOCACHE is the default. For small lookup tables that are frequently accessed,
you can specify the CACHE clause to have the blocks retrieved using a full table scan placed
at the MRU end of the LRU list in the buffer cache; the blocks are not aged out of the buf-
fer cache immediately. The default behavior (NOCACHE) is to place the blocks from a full-
table scan at the tail end of the LRU list, where they are moved out of the list as soon as a
different process or query needs these blocks for storing another table’s blocks in the cache.

Creating a Table Using a Subquery
You can create a table using existing tables or views by specifying a subquery instead of
defining the columns. The subquery can refer to more than one table or view. The table will
be created with the rows returned from the subquery. You can specify new column names
for the table, but Oracle derives the datatype and maximum width based on the query
result—you cannot specify the datatype with this method. You can specify the storage
parameters for the tables created by using the subquery.

For example, let’s create a new table from the ORDERS table for the orders that are
accepted. Notice that the new column names are specified.

95127c10.indd 564 2/17/09 2:00:38 PM

Working with Schema Objects 565

CREATE TABLE ACCEPTED_ORDERS

 (ORD_NUMBER, ORD_DATE, PRODUCT_CD, QTY)

 TABLESPACE USERS

 PCTFREE 0

 STORAGE (INITIAL 128K NEXT 128K PCTINCREASE 0)

AS

 SELECT ORDER_NUM, ORDER_DATE, PRODUCT_CD, QUANTITY

 FROM ORDERS

 WHERE STATUS = ‘A’;

The CREATE TABLE…AS SELECT… will not work if the query refers to columns of the
LONG datatype. When you create a table using the subquery, only the NOT NULL con-
straints associated with the columns are copied to the new table. Other constraints and
column default definitions are not copied.

Creating a Temporary Table
Temporary tables hold information that is available only to the session that created the
data. The definition of the temporary table is available to all sessions. A temporary table is
created using the CREATE GLOBAL TEMPORARY TABLE statement. The data in the table can be
session specific or transaction specific. The ON COMMIT clause specifies this. The following
statement creates a temporary table that is transaction specific:

CREATE GLOBAL TEMPORARY TABLE INVALID_ORDERS

(ORDER# NUMBER (8),

 ORDER_DT DATE,

 VALUE NUMBER (12,2))

ON COMMIT DELETE ROWS

TABLESPACE TEMP_TABLES;

Oracle deletes rows or truncates the table after each commit. To define the table as ses-
sion specific, use the ON COMMIT PRESERVE ROWS clause.

Storage for temporary tablespace is allocated in the temporary tablespace of the user if
the TABLESPACE clause is omitted. Segments are created only when the first insert statement
is performed on the table. The temporary segments allocated to temporary tables are deal-
located at the end of the transaction for transaction-specific tables and at the end of session
for session-specific tables.

You can create indexes on temporary tables. DML statements on temporary tables do
not generate redo information, but undo information is generated. Programs can manipu-
late data in temporary tables or join them to permanent tables in the same manner as any
other table.

Refer to Chapter 6 to learn about setting default values, modifying tables,
renaming tables, and dropping tables.

95127c10.indd 565 2/17/09 2:00:38 PM

566 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Reorganizing Tables
You can use the MOVE clause of the ALTER TABLE command on a nonpartitioned table to
reorganize or to move from one tablespace to another. The table is reorganized to reduce
the number of extents by specifying larger extent sizes or to prevent row migration. When
you move a table, Oracle creates a new segment for the table, copies the data, and drops the
old segment. The new segment can be in the same tablespace or in a different tablespace.
Since the old segment is dropped only after creating the new segment, you need to make sure
you have sufficient space in the tablespace if you’re not changing to a different tablespace.
The MOVE clause can specify a new tablespace, new storage parameters for the table, new
free-space management parameters, and new transaction-entry parameters. You can use the
NOLOGGING clause to speed up the reorganization by not writing the changes to the redo
log file.

The following example moves the ORDERS table to another tablespace named NEW_DATA.
New storage parameters are specified, and the operation is not logged in the redo log files
(NOLOGGING).

ALTER TABLE ORDERS MOVE

TABLESPACE NEW_DATA

STORAGE (INITIAL 50M NEXT 5M PCTINCREASE 0)

PCTFREE 0 PCTUSED 50

INITRANS 2 NOLOGGING;

Queries are allowed on the table while the move operation is in progress, but no insert,
update, or delete operations are allowed. The granted permissions on the table are retained.

The DROP TABLE statement can include the PURGE clause, which will not
place the table in the Recycle Bin.

Truncating a Table
The TRUNCATE statement is similar to the DROP statement, but it does not remove the struc-
ture of the table, so none of the indexes, constraints, triggers, and privileges on the table
are dropped. By default, the space allocated to the table and indexes is freed. If you do not
want to free up the space, include the REUSE STORAGE clause. You cannot roll back a trun-
cate operation. Also, you cannot selectively delete rows using the TRUNCATE statement. The
syntax of TRUNCATE statement is as follows:

TRUNCATE {TABLE|CLUSTER} [<schema>.]<name>

[{DROP|REUSE} STORAGE]

You cannot truncate the parent table of an enabled referential integrity constraint. You
must first disable the constraint and then truncate the table, even if the child table has no
rows. The following example demonstrates this:

SQL> CREATE TABLE t1 (

 2 t1f1 NUMBER CONSTRAINT pk_t1 PRIMARY KEY);

95127c10.indd 566 2/17/09 2:00:38 PM

Working with Schema Objects 567

Table created.

SQL> CREATE TABLE t2 (t2f1 NUMBER CONSTRAINT fk_t2

 REFERENCES t1 (t1f1));

Table created.

SQL> TRUNCATE TABLE t1;

truncate table t1

 *

ERROR at line 1:

ORA-02266: unique/primary keys in table referenced by enabled foreign keys

SQL> ALTER TABLE t2 DISABLE CONSTRAINT fk_t2;

Table altered.

SQL> TRUNCATE TABLE t1;

Table truncated.

SQL>

Use the TRUNCATE statement to delete all rows from a large table; it does
not write the undo entries and is much faster than the DELETE statement
when deleting large number of rows.

Using Namespaces
When you refer an object in the SQL statement, Oracle locates the object in the appropriate
namespace. A table can have the same name as an index or a constraint. The namespace is
simply the domain of allowable names for the set of schema objects that it serves. The fol-
lowing are the namespaces available in Oracle 11g:

Tables, views, private synonymsÛN

ConstraintsÛN

IndexesÛN

ClustersÛN

Database triggersÛN

Private database linksÛN

DimensionsÛN

RolesÛN

Public synonymsÛN

95127c10.indd 567 2/17/09 2:00:38 PM

568 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Public database linksÛN

TablespacesÛN

ProfilesÛN

For example, if you have a view named BOOKS, you cannot name a table BOOKS (tables
and views share a namespace), although you can create an index named BOOKS (indexes
and tables have separate namespaces) and a constraint named BOOKS (constraints and tables
have separate namespaces).

Working with Constraints
Constraints enforce business rules in the database. In other words, they limit the accept-
able data values for a table. Constraints are optional schema objects that depend on tables.
Although you can have a table without any constraints, you cannot create a constraint
without a table.

Oracle lets you create several types of constraints on your tables to enforce your business
rules, including the following:

NOT NULLÛN

CHECKÛN

UNIQUEÛN

PRIMARY KEYÛN

FOREIGN KEYÛN

You can create constraints together with the table in the CREATE TABLE statement. After
you create a table, you add or remove a constraint from a table with an ALTER TABLE state-
ment. You specify the constraint information with either the inline syntax as a column
attribute or the out-of-line syntax as part of the table definition. Constraints do not require
a name; if you do not name the constraint, Oracle generates one for you. However, the gen-
erated names are simply numbers prefixed with SYS_C and may not be very meaningful.

In the following sections, I will discuss the rules for each constraint type and show
examples of creating constraints.

NOT NULL
NOT NULL constraints have the following characteristics:

The constraint is defined at the column level.ÛN

Use ÛN CREATE TABLE to define constraints when creating the table. The following example
shows a named constraint on the ORDER_NUM column; for ORDER_DATE, Oracle generates
a name:

CREATE TABLE ORDERS (

 ORDER_NUM NUMBER (4) CONSTRAINT NN_ORDER_NUM NOT NULL,

95127c10.indd 568 2/17/09 2:00:39 PM

Working with Schema Objects 569

 ORDER_DATE DATE NOT NULL,

 PRODUCT_ID)

Use ÛN ALTER TABLE MODIFY to add or remove a NOT NULL constraint on the columns of an
existing table. The following code shows examples of removing a constraint and add-
ing a constraint:

ALTER TABLE ORDERS MODIFY ORDER_DATE NULL;

ALTER TABLE ORDERS MODIFY PRODUCT_ID NOT NULL;

CHECK
CHECK constraints have the following characteristics:

The constraint can be defined at the column level or the table level.ÛN

The condition specified in the ÛN CHECK clause should evaluate to a Boolean result and can
refer to values in other columns of the same row; the condition cannot use queries.

Environmental functions such as ÛN SYSDATE, USER, USERENV, UID, and pseudocolumns
such as ROWNUM, CURRVAL, NEXTVAL, and LEVEL cannot be used to evaluate the check
condition.

One column can have more than one ÛN CHECK constraint defined. The column can have a
NULL value.

The constraint can be created using ÛN CREATE TABLE or ALTER TABLE:

CREATE TABLE BONUS (

 EMP_ID VARCHAR2 (40) NOT NULL,

 SALARY NUMBER (9,2),

 BONUS NUMBER (9,2),

CONSTRAINT CK_BONUS CHECK (BONUS > 0));

ALTER TABLE BONUS

ADD CONSTRAINT CK_BONUS2 CHECK (BONUS < SALARY);

UNIQUE
UNIQUE constraints have the following characteristics:

The constraint can be defined at the column level for single-column unique keys. For ÛN

a multiple-column unique key (for a composite key, the maximum number of columns
specified can be 32), the constraint should be defined at the table level.

Oracle creates a unique index on the unique key columns to enforce uniqueness. If a ÛN

unique index or nonunique index already exists on the table with the same columns in
the index, Oracle uses the existing index. To use the existing nonunique index, there
must not be any duplicate keys in the table.

Unique constraints allow ÛN NULL values in the constraint columns.

95127c10.indd 569 2/17/09 2:00:39 PM

570 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Storage can be specified for the implicit index created when creating the key. If no stor-ÛN

age is specified, the index is created on the default tablespace with the default storage
parameters of the tablespace. You can specify the LOGGING and NOSORT clauses, as you
would when creating an index. The index created can be a local or global partitioned
index. The index will have the same name as the unique constraint. The following are
two examples. The first one defines a unique constraint with two columns and speci-
fies the storage parameters for the index. The second example adds a new column to
the EMP table and creates a unique key at the column level.

ALTER TABLE BONUS

ADD CONSTRAINT UQ_EMP_ID UNIQUE (DEPT, EMP_ID)

USING INDEX TABLESPACE INDX

STORAGE (INITIAL 32K NEXT 32K PCTINCREASE 0);

ALTER TABLE EMP ADD

SSN VARCHAR2 (11) CONSTRAINT UQ_SSN UNIQUE;

PRIMARY KEY
PRIMARY KEY constraints have the following characteristics:

All characteristics of the ÛN UNIQUE key are applicable except that NULL values are not
allowed in the primary key columns.

A table can have only one primary key.ÛN

Oracle creates a unique index and ÛN NOT NULL constraints for each column in the key.
Oracle can use an existing index if all the columns of the primary key are in the index.
The following example defines a primary key when creating the table. Storage param-
eters are specified for both the table and the primary key index.

CREATE TABLE EMPLOYEE (

 DEPT_NO VARCHAR2 (2),

 EMP_ID NUMBER (4),

 NAME VARCHAR2 (20) NOT NULL,

 SSN VARCHAR2 (11),

 SALARY NUMBER (9,2) CHECK (SALARY > 0),

CONSTRAINT PK_EMPLOYEE PRIMARY KEY (DEPT_NO, EMP_ID)

 USING INDEX TABLESPACE INDX

 STORAGE (INITIAL 64K NEXT 64K)

 NOLOGGING,

CONSTRAINT UQ_SSN UNIQUE (SSN)

 USING INDEX TABLESPACE INDX)

TABLESPACE USERS

STORAGE (INITIAL 128K NEXT 64K);

Indexes created to enforce unique keys and primary keys can be managed as any other ÛN

index. However, these indexes cannot be dropped explicitly.

95127c10.indd 570 2/17/09 2:00:39 PM

Working with Schema Objects 571

FOREIGN KEY
The foreign key is the column or columns in the table (child table) where the constraint is
created; the referenced key is the primary key or unique key column or columns in the table
(parent table) that is referenced by the constraint. The following rules are applicable to for-
eign key constraints:

A foreign key constraint can be defined at the column level or the table level. Multiple-ÛN

column foreign keys should be defined at the table level.

The foreign key column(s) and referenced key column(s) can be in the same table (self-ÛN

referential integrity constraint).

NULLÛN values are allowed in the foreign key columns. The following is an example of
creating a foreign key constraint on the COUNTRY_CODE and STATE_CODE columns of the
CITY table, which refers to the COUNTRY_CODE and STATE_CODE columns of the STATE
table (the composite primary key of the STATE table).

ALTER TABLE CITY ADD CONSTRAINT FK_STATE

 FOREIGN KEY (COUNTRY_CODE, STATE_CODE)

 REFERENCES STATE (COUNTRY_CODE, STATE_CODE);

The ÛN ON DELETE clause specifies the action to be taken when a row in the parent table
is deleted and child rows exist with the deleted parent primary key. You can delete
the child rows (CASCADE) or set the foreign key column values to NULL (SET NULL). If
you omit this clause, Oracle will not allow you to delete from the parent table if child
records exist. You must delete the child rows first and then the parent row. The follow-
ing are two examples of specifying the delete action in a foreign key:

ALTER TABLE CITY ADD CONSTRAINT FK_STATE

 FOREIGN KEY (COUNTRY_CODE, STATE_CODE)

 REFERENCES STATE (COUNTRY_CODE, STATE_CODE)

 ON DELETE CASCADE;

ALTER TABLE CITY ADD CONSTRAINT FK_STATE

 FOREIGN KEY (COUNTRY_CODE, STATE_CODE)

 REFERENCES STATE (COUNTRY_CODE, STATE_CODE)

 ON DELETE SET NULL;

Refer to Chapter 6 to learn more about constraints.

Deferred Constraint Checking
By default, Oracle checks whether the data conforms to the constraint when the statement
is executed. Oracle allows you to change this behavior if the constraint is created using
the DEFERRABLE clause (NOT DEFERRABLE is the default). It specifies that the transaction can
set the constraint-checking behavior. INITIALLY IMMEDIATE specifies that the constraint
should be checked for conformance at the end of each SQL statement (this is the default).
INITIALLY DEFERRED specifies that the constraint should be checked for conformance at

95127c10.indd 571 2/17/09 2:00:39 PM

572 Chapter 10 N Allocating Database Storage and Creating Schema Objects

the end of the transaction. The DEFERRABLE status of a constraint cannot be changed using
ALTER TABLE MODIFY CONSTRAINT; you must drop and re-create the constraint, and you can
change the INITIALLY [DEFERRED/IMMEDIATE] clause using ALTER TABLE.

If the constraint is DEFERRABLE, you can set the behavior by using the SET CONSTRAINTS
command or by using the ALTER SESSION SET CONSTRAINT command. You can enable or
disable deferred constraint checking by listing all the constraints or by specifying the ALL
keyword. The SET CONSTRAINTS command is used to set the constraint-checking behavior
for the current transaction, and the ALTER SESSION command is used to set the constraint-
checking behavior for the current session.

For example, if you hire a new employee and create a new department for that person
to manage, you need to add a row to both the EMPLOYEES table (which references the new
department) and the DEPARTMENTS table (which references the new employee). Although this
temporary violation will not go against the intent of the business rule, you will need to cre-
ate the constraints with some additional options, like this:

ALTER TABLE employees

 ADD CONSTRAINT emp_dept_fk FOREIGN KEY (dept_nbr)

 REFERENCES departments(dept_nbr) ON DELETE CASCADE

 DEFERRABLE;

ALTER TABLE departments ADD CONSTRAINT

 dept_mgr_fk FOREIGN KEY (manager_id) REFERENCES

 employees(employee_id) ON DELETE SET NULL

 DEFERRABLE INITIALLY DEFERRED;

By default, the database checks that a FOREIGN KEY constraint is satisfied at the end of
each statement. You define this behavior with the keywords INITIALLY IMMEDIATE. Also,
by default, the database will not allow programs to defer constraint checking to the end of
the transaction. You define this behavior with the keywords NOT DEFERRABLE.

When you create a constraint, you can tell the database to allow either immediate
or deferred constraint checking by specifying the keyword DEFERRABLE. If you normally
want a DEFERRABLE constraint to be deferred, create it with the INITIALLY DEFERRED option.
Only DEFERRABLE constraints can be set to INITIALLY DEFERRED. Once you create a constraint,
you cannot change its deferability (for example, from NOT DEFERRABLE to DEFERABLE); instead,
you must drop and re-create the constraint with the new specification.

Working with Indexes
Indexes are optional data structures built on tables. Indexes can improve data retrieval per-
formance by providing a direct access method instead of the default full-table scan retrieval
method. You can build B-tree or bitmap indexes on one or more columns in a table. An index
key is defined as one data value stored in the index. A B-tree index sorts the keys into a binary
tree and stores these keys together with the table’s ROWIDs. In a bitmap index, a bitmap is
created for each key. There is a bit in each bitmap for every ROWID in the table, forming the

95127c10.indd 572 2/17/09 2:00:39 PM

Working with Schema Objects 573

equivalent of a two-dimensional matrix. The bits are set if the corresponding row in the
bitmap exists.

B-tree indexes are the default index type and are appropriate for medium- to high-
cardinality columns (high cardinality means those having many distinct values). B-tree
indexes support row-level locking and so are appropriate for multiuser, transactional appli-
cations. The indexes supporting PRIMARY KEY and UNIQUE constraints are B-tree indexes.
The following are the types of B-tree indexes you can create:

Nonunique index This is the default; the index column values are not unique.

Unique index This is created by specifying the UNIQUE keyword: each column value entry
of the index is unique. For composite indexes, Oracle guarantees that the combination of
all index column values in the composite index is unique. Oracle returns an error if you try
to insert two rows with the same index column values.

Reverse key index The reverse key index is created by specifying the REVERSE keyword.
The bytes of each column indexed are reversed, while keeping the column order. For
example, if column ORDER_NUM has value 54321, Oracle reverses the bytes to 12345 and
then adds it to the index. This type of indexing can be used for unique indexes when inserts
to the table are always in the ascending order of the indexed columns. This helps distribute
the adjacent valued columns to different leaf blocks of the index and as a result improves
performance by retrieving fewer index blocks. Leaf blocks are the blocks at the lowest level
of the B-tree.

Function-based index The function-based index can be created on columns with expres-
sions. For example, creating an index on the SUBSTR(EMPID, 1,2) can speed up the queries
using SUBSTR(EMPID, 1, 2) in the WHERE clause.

Bitmap indexes, on the other hand, are best for multiple combinations of low- to
medium-cardinality columns (you cannot create a unique bitmap index), and they do not
support row-level locking. Bitmap indexes are best in environments in which changes to
data are limited and controlled, such as many data warehousing applications. Because bit-
map indexes cannot efficiently make changes to the indexed data, they are often dropped
prior to data loading and then re-created after a data load.

Oracle does not include the rows with NULL values in the index columns
when storing the index.

Refer to Chapter 7 to learn more about creating and modifying indexes.

Specifying Storage
If you do not specify the TABLESPACE clause in the CREATE INDEX statement, Oracle creates
the index in the default tablespace of the user. If the STORAGE clause is not specified, Oracle
inherits the default storage parameters defined for the tablespace. All the storage parameters
discussed in the “Creating a Table” section are applicable to indexes and have the same

95127c10.indd 573 2/17/09 2:00:39 PM

574 Chapter 10 N Allocating Database Storage and Creating Schema Objects

meaning except for PCTUSED. The PCTUSED parameter cannot be specified for indexes. Keep
the INITRANS parameter for the index more than the INITRANS specified for the corresponding
table, because the index blocks can hold a larger number of rows than a table.

Here is an example of creating an index and specifying the storage:

CREATE UNIQUE INDEX IND2_ORDERS

ON ORDERS (ORDER_NUM)

TABLESPACE USER_INDEX

PCTFREE 25

INITRANS 2

MAXTRANS 255

STORAGE (INITIAL 128K NEXT 128K PCTINCREASE 0

 MINEXTENTS 1 MAXEXTENTS 100

 FREELISTS 1 FREELIST GROUPS 1

 BUFFER_POOL KEEP);

When creating indexes for a table with rows, Oracle writes the data blocks with index
values up to PCTFREE. The free space reserved by specifying PCTFREE is used when inserting
into the table a new row (or updating a row that changes the corresponding index key col-
umn value) that needs to be placed between two index key values of the leaf node. If no free
space is available in the block, Oracle uses a new block. If many new rows are inserted into
the table, keep the PCTFREE parameter of the index high.

Using Other Create Clauses
You can specify NOLOGGING to make the index creation faster and therefore not write infor-
mation to the redo log files. The default is LOGGING.

It is possible to collect statistics about the index while creating the index by specifying
the COMPUTE STATISTICS clause. This avoids another ANALYZE on the index later.

The ONLINE clause specifies that the table will be available for DML operations when the
index is built.

If data is loaded to the table in the order of an index, you can specify the NOSORT clause.
Oracle does not sort the rows, but if the data is not sorted, Oracle returns an error. Specify-
ing this clause saves time and temporary space.

For multicolumn indexes, eliminating the repeating key columns can save storage space.
Specify the COMPRESS clause when creating the index. NOCOMPRESS is the default. This clause
can be used only with nonpartitioned indexes. Index performance may be affected when
using this clause.

Specify PARALLEL to create the index using multiple server processes. NOPARALLEL is the
default.

The following is an example of creating an index by specifying some of the miscella-
neous clauses:

SQL> CREATE INDEX IND5_ORDERS ON ORDERS

 2 (ORDER_NUM, ORDER_DATE)

 3 TABLESPACE INDX

95127c10.indd 574 2/17/09 2:00:39 PM

Working with Schema Objects 575

 4 NOLOGGING

 5 NOSORT

 6 COMPRESS

 7 SORT

 8 COMPUTE STATISTICS;

Index created.

SQL>

Reverse Key Indexes
Specifying the REVERSE keyword creates a reverse key index. Reverse key indexes improve
performance of certain OLTP applications using the parallel server. The following example
creates a reverse key index on the ORDER_NUM and ORDER_DATE columns of the ORDERS table:

CREATE UNIQUE INDEX IND2_ORDERS

ON ORDERS (ORDER_DATE, ORDER_NUM)

TABLESPACE USER_INDEX

REVERSE;

Function-Based Indexes
Function-based indexes are created as regular B-tree or bitmap indexes. Specify the expres-
sion or function when creating the index. Oracle precalculates the value of the expression
and creates the index. For example, this creates a function based on

SUBSTR(PRODUCT_ID,1,2):
CREATE INDEX IND4_ORDERS

ON ORDERS (SUBSTR(PRODUCT_ID,1,2))

TABLESPACE USER_INDEX;

To use the function-based index, you must set the instance initialization parameter QUERY_
REWRITE_ENABLED to TRUE and QUERY_REWRITE_INTEGRITY to TRUSTED. Also, the COMPATIBLE
parameter should be set to 8.1.0 or higher. A query can use this index if its WHERE clause
specifies a condition by using SUBSTR(PRODUCT_ID,1,2), as in the following example:

SELECT * FROM ORDERS

WHERE SUBSTR(PRODUCT_ID,1,2) = ‘BT’;

Index-Organized Tables
You can store index and table data together in a structure known as an index-organized
table. IOTs are suitable for tables in which the data access is mostly through its primary
key, such as lookup tables, where you have a code and a description. An IOT is a B-tree
index, and instead of storing the ROWID of the table where the row belongs, the entire row

95127c10.indd 575 2/17/09 2:00:39 PM

576 Chapter 10 N Allocating Database Storage and Creating Schema Objects

is stored as part of the index. You can build additional indexes on the columns of an IOT.
The data in an IOT is accessed the same way you would access the data in a table.

Since the row is stored along with the B-tree index, there is no physical ROWID for each
row. The primary key identifies the rows in an IOT. Oracle “guesses” the location of the row
and assigns a logical ROWID for each row, which permits the creation of secondary indexes.
You can partition an IOT, but the partition columns should be a subset of the primary key
columns.

To build additional indexes on the IOT, Oracle uses a logical ROWID, which is derived from
the primary key values of the IOT. The logical ROWID can include a guessed physical location of
the row in the data files. This guessed location is not valid when a row is moved from one
block to another. If the logical ROWID does not include the guessed location of the ROWID,
Oracle has to perform two index scans when using the secondary index. The logical ROWIDs
can be stored in columns with the datatype UROWID.

An index-organized table is created using the CREATE TABLE command with the
ORGANIZATION INDEX keyword. You must specify the primary key for the table when cre-
ating the table.

SQL> CREATE TABLE IOT_EXAMPLE (

 2 PK_COL1 NUMBER (4),

 3 PK_COL2 VARCHAR2 (10),

 4 NON_PK_COL1 VARCHAR2 (40),

 5 NON_PK_COL2 DATE,

 6 CONSTRAINT PK_IOT PRIMARY KEY

 7 (PK_COL1, PK_COL2))

 8 ORGANIZATION INDEX

 9 TABLESPACE INDX

 10 STORAGE (INITIAL 32K NEXT 32K PCTINCREASE 0);

Table created.

SQL>

Creating tables, indexes, and Constraints for a Customer-maintenance
Application

Let’s consider an example of creating tables that are needed to manage a customer data-
base. The objective of this example is to give you the various options available when
defining tables, indexes, and constraints. The DBA is given the physical structure of the
tables and the relationship between tables by the development team:

The DBA reviews the columns of the ÛN CUSTOMER_MASTER table and the type of data stored.
CUST_ID is the unique identifier of the table, the primary key. This table contains the cus-
tomer name, email address, date of birth, primary contact address type, and status flag.

95127c10.indd 576 2/17/09 2:00:39 PM

Working with Schema Objects 577

ÛN The CUSTOMER_ADDRESS table keeps the addresses of the customer. The customer can
have up to four different addresses: business1, business2, home1, and home2.

The ÛN CUSTOMER_REFERENCES table keeps information about the new customers intro-
duced by a customer. This table simply keeps the customer ID of the referring and
new customers.

Each table has a record creation date, created username, update date, and update ÛN

username.

The DBA decided to keep the tables and indexes in separate tablespaces and is using the
uniform-extent feature of the tablespace. This helps manage the space on the tablespace
more effectively. Data is kept in the CUST_DATA tablespace, and indexes are maintained in
the CUST_INDX tablespace. Let’s create the tablespaces:

CREATE TABLESPACE CUST_DATA DATAFILE

‘C:\ORACLE\ORADATA\CUST_DATA01.DBF’ SIZE 512K

AUTOEXTEND ON NEXT 128K MAXSIZE 2000K

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE CUST_INDX DATAFILE

‘C:\ORACLE\ORADATA\CUST_INDX.DBF’ SIZE 256K

AUTOEXTEND ON NEXT 128K MAXSIZE 2000K

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K

SEGMENT SPACE MANAGEMENT AUTO;

Now create the CUSTOMER_MASTER table. The table needs to have the primary key CUST_ID
and the unique key EMAIL. A nonunique index is created on the EMAIL column and is used
for the UNIQUE key enforcement. The DBA also wants to create an index on the DOB column
because the firm sends out birthday greetings to all its customers every week. The check
constraint on the ADD_TYPE makes sure no other values get inserted into the column.

CREATE TABLE CUSTOMER_MASTER (

CUST_ID VARCHAR2 (10),

CUST_NAME VARCHAR2 (30),

EMAIL VARCHAR2 (30),

DOB DATE,

ADD_TYPE CHAR (2) CONSTRAINT CK_ADD_TYPE

 CHECK (ADD_TYPE IN (‘B1’,’B2’,’H1’,’H2’)),

CRE_USER VARCHAR2 (5) DEFAULT USER,

CRE_TIME TIMESTAMP (3) DEFAULT SYSTIMESTAMP,

MOD_USER VARCHAR2 (5),

MOD_TIME TIMESTAMP (3),

CONSTRAINT PK_CUSTOMER_MASTER PRIMARY KEY (CUST_ID)

 USING INDEX TABLESPACE CUST_INDX)

95127c10.indd 577 2/17/09 2:00:39 PM

578 Chapter 10 N Allocating Database Storage and Creating Schema Objects

TABLESPACE CUST_DATA;

CREATE INDEX CUST_EMAIL ON CUSTOMER_MASTER (EMAIL)

TABLESPACE CUST_INDX;

ALTER TABLE CUSTOMER_MASTER ADD CONSTRAINT UQ_CUST_EMAIL

UNIQUE (EMAIL) USING INDEX CUST_EMAIL;

Create the CUSTOMER_ADDRESSES table. Let’s create the table first and then add the primary
key and foreign key. The foreign key is created with an option to defer its checking until
commit time.

CREATE TABLE CUSTOMER_ADDRESSES (

CUST_ID VARCHAR2 (10),

ADD_TYPE CHAR (2),

ADD_LINE1 VARCHAR2 (40) NOT NULL,

ADD_LINE2 VARCHAR2 (40),

CITY VARCHAR2 (40) NOT NULL,

STATE VARCHAR2 (2) NOT NULL,

ZIP NUMBER (5) NOT NULL)

TABLESPACE CUST_DATA;

ALTER TABLE CUSTOMER_ADDRESSES ADD CONSTRAINT

PK_CUST_ADDRESSES PRIMARY KEY (CUST_ID, ADD_TYPE)

USING INDEX TABLESPACE CUST_INDX;

ALTER TABLE CUSTOMER_ADDRESSES ADD CONSTRAINT

FK_CUST_ADDRESSES FOREIGN KEY (CUST_ID)

REFERENCES CUSTOMER_MASTER;

ALTER TABLE CUSTOMER_ADDRESSES ADD CONSTRAINT

CK_ADD_TYPE2 CHECK (ADD_TYPE IN (‘B1’,’B2’,’H1’,’H2’));

The DBA forgot to enable the constraint DEFERRABLE clause and to delete records from the
CUSTOMER_ADDRESSES table when the row was deleted from the CUSTOMER_MASTER table.

ALTER TABLE CUSTOMER_ADDRESSES

DROP CONSTRAINT FK_CUST_ADDRESSES;

ALTER TABLE CUSTOMER_ADDRESSES ADD CONSTRAINT

FK_CUST_ADDRESSES FOREIGN KEY (CUST_ID)

REFERENCES CUSTOMER_MASTER

ON DELETE CASCADE DEFERRABLE INITIALLY IMMEDIATE;

Create the CUSTOMER_REFERENCES table. Since this table row never grows with updates,
the DBA sets the PCTFREE parameter of the table to 0.

CREATE TABLE CUSTOMER_REFERENCES (

CUST_ID VARCHAR2 (10) REFERENCES CUSTOMER_MASTER,

CUST_REF_ID VARCHAR2 (10) REFERENCES CUSTOMER_MASTER,

95127c10.indd 578 2/17/09 2:00:39 PM

Working with Schema Objects 579

CRE_USER VARCHAR2 (5),

CRE_TIME TIMESTAMP (3) DEFAULT SYSTIMESTAMP,

MOD_USER VARCHAR2 (5) DEFAULT USER,

MOD_TIME TIMESTAMP (3),

CONSTRAINT PK_CUST_REFS PRIMARY KEY (CUST_ID, CUST_REF_ID))

TABLESPACE CUST_DATA

PCTFREE 0;

By reviewing the creating, the DBA found that the CUSTOMER_ADDRESSES table does not
have the created and modified user information and the CUSTOMER_REFERENCES table has
a DEFAULT value assigned to the wrong column. Let’s fix these problems:

ALTER TABLE CUSTOMER_ADDRESSES ADD (

CRE_USER VARCHAR2 (5) DEFAULT USER,

CRE_TIME TIMESTAMP (3) DEFAULT SYSTIMESTAMP,

MOD_USER VARCHAR2 (5),

MOD_TIME TIMESTAMP (3));

ALTER TABLE CUSTOMER_REFERENCES MODIFY

MOD_USER DEFAULT NULL;

ALTER TABLE CUSTOMER_REFERENCES MODIFY

CRE_USER DEFAULT USER;

Also, the primary key for the CUSTOMER_REFERENCES table did not specify a tablespace for
the primary key index, so it got created in the default tablespace of the table.

SQL> SELECT TABLESPACE_NAME FROM DBA_INDEXES WHERE

 2 INDEX_NAME = ‘PK_CUST_REFS’;

TABLESPACE_NAME

CUST_DATA

SQL> ALTER INDEX PK_CUST_REFS REBUILD TABLESPACE CUST_INDX;

Index altered.

SQL> SELECT TABLESPACE_NAME FROM DBA_INDEXES WHERE

 2 INDEX_NAME = ‘PK_CUST_REFS’;

TABLESPACE_NAME

CUST_INDX

SQL>

Query the dictionary views to see the table information:

SQL> SELECT TABLE_NAME, TABLESPACE_NAME

 2 FROM USER_TABLES

 3 WHERE TABLE_NAME LIKE ‘CUST%’;

95127c10.indd 579 2/17/09 2:00:39 PM

580 Chapter 10 N Allocating Database Storage and Creating Schema Objects

TABLE_NAME TABLESPACE_NAME

------------------------------ ------------------------

CUSTOMER_ADDRESSES CUST_DATA

CUSTOMER_MASTER CUST_DATA

CUSTOMER_REFERENCES CUST_DATA

SQL> SELECT SEGMENT_NAME, SEGMENT_TYPE, TABLESPACE_NAME, BYTES

 2 FROM DBA_SEGMENTS

 3 WHERE OWNER = ‘CM’

 4 AND SEGMENT_NAME LIKE ‘%CUST%’;

SEGMENT_NAME SEGMENT_TYPE TABLESPACE BYTES

-------------------- ------------------ ---------- ----------

CUSTOMER_MASTER TABLE CUST_DATA 65536

CUSTOMER_ADDRESSES TABLE CUST_DATA 65536

CUSTOMER_REFERENCES TABLE CUST_DATA 65536

PK_CUSTOMER_MASTER INDEX CUST_INDX 32768

CUST_EMAIL INDEX CUST_INDX 32768

PK_CUST_ADDRESSES INDEX CUST_INDX 32768

PK_CUST_REFS INDEX CUST_INDX 65536

7 rows selected.

SQL>

SQL> SELECT INDEX_NAME, COLUMN_NAME, COLUMN_POSITION

 2 FROM USER_IND_COLUMNS

 3 WHERE INDEX_NAME LIKE ‘%CUST%’

 4 ORDER BY 1,3;

INDEX_NAME COLUMN_NAME COLUMN_POSITION

-------------------- -------------------- ---------------

CUST_EMAIL EMAIL 1

PK_CUSTOMER_MASTER CUST_ID 1

PK_CUST_ADDRESSES CUST_ID 1

PK_CUST_ADDRESSES ADD_TYPE 2

PK_CUST_REFS CUST_ID 1

PK_CUST_REFS CUST_REF_ID 2

6 rows selected.

SQL>

Query the dictionary views to see the constraint information. Notice that the two foreign
key constraints on the CUSTOMER_REFERENCES table and the NOT NULL constraints in the
CUSTOMER_ADDRESSES table have system-generated names.

SQL> SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME,

 2 R_CONSTRAINT_NAME

95127c10.indd 580 2/17/09 2:00:39 PM

Working with Schema Objects 581

 3 FROM USER_CONSTRAINTS

 4 WHERE TABLE_NAME LIKE ‘CUST%’;

CONSTRAINT_NAME C TABLE_NAME R_CONSTRAINT_NAME

-------------------- - -------------------- --------------------

SYS_C002792 C CUSTOMER_ADDRESSES

SYS_C002793 C CUSTOMER_ADDRESSES

SYS_C002794 C CUSTOMER_ADDRESSES

SYS_C002795 C CUSTOMER_ADDRESSES

PK_CUST_ADDRESSES P CUSTOMER_ADDRESSES

FK_CUST_ADDRESSES R CUSTOMER_ADDRESSES PK_CUSTOMER_MASTER

CK_ADD_TYPE2 C CUSTOMER_ADDRESSES

CK_ADD_TYPE C CUSTOMER_MASTER

PK_CUSTOMER_MASTER P CUSTOMER_MASTER

UQ_CUST_EMAIL U CUSTOMER_MASTER

PK_CUST_REFS P CUSTOMER_REFERENCES

SYS_C002804 R CUSTOMER_REFERENCES PK_CUSTOMER_MASTER

SYS_C002805 R CUSTOMER_REFERENCES PK_CUSTOMER_MASTER

13 rows selected.

SQL>

SQL> SELECT CONSTRAINT_NAME, GENERATED, INDEX_NAME

 2 FROM USER_CONSTRAINTS

 3 WHERE TABLE_NAME LIKE ‘CUST%’;

CONSTRAINT_NAME GENERATED INDEX_NAME

-------------------- -------------- --------------------

SYS_C002792 GENERATED NAME

SYS_C002793 GENERATED NAME

SYS_C002794 GENERATED NAME

SYS_C002795 GENERATED NAME

PK_CUST_ADDRESSES USER NAME PK_CUST_ADDRESSES

FK_CUST_ADDRESSES USER NAME

CK_ADD_TYPE2 USER NAME

CK_ADD_TYPE USER NAME

PK_CUSTOMER_MASTER USER NAME PK_CUSTOMER_MASTER

UQ_CUST_EMAIL USER NAME CUST_EMAIL

PK_CUST_REFS USER NAME PK_CUST_REFS

SYS_C002804 GENERATED NAME

SYS_C002805 GENERATED NAME

13 rows selected.

SQL>

95127c10.indd 581 2/17/09 2:00:39 PM

582 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Summary
This chapter discussed the most important aspect of the Oracle Database: storing data.
You learned to create both tablespaces and data files as well as to create schema objects that
store the data. You found out how to create and manage tablespaces as well as how Oracle
stores some schema objects as segments that are comprised of extents and data blocks. In
addition, you learned how to create and modify tables, indexes, and constraints. I also cov-
ered deferred constraint checking and how to configure foreign key constraints to support
either deferrable or not deferrable implementations.

A data file belongs to one tablespace, and a tablespace can have one or more data files.
The size of the tablespace is the total size of all the data files belonging to that tablespace.
The size of the database is the total size of all tablespaces in the database, which is the same
as the total size of all data files in the database. Tablespaces are logical storage units used to
group data depending on their type or category. Understand the relationship between data
files and tablespaces because that is important information to know for the certification.

Tablespaces can handle the extent management through the Oracle dictionary or locally
in the data files that belong to the tablespace. Locally managed tablespaces can have uni-
form extent sizes; this reduces fragmentation and wasted space. You can also make Oracle
do the entire extent sizing for locally managed tablespaces.

A temporary tablespace is used only for sorting; no permanent objects can be created in a
temporary tablespace. Only one sort segment will be created for each instance in the tempo-
rary tablespace. Multiple transactions can use the same sort segment, but one transaction can
use only one extent. Although temporary files are part of the database, they do not appear in
the control file, and the block changes do not generate any redo information because all the
segments created on locally managed temporary tablespaces are temporary segments.

You learned about tables, indexes, and constraints in this chapter. Also study Chapters
6 and 7 before taking the certification exam. Tables are created using the CREATE TABLE
command. By default, the table will be created in the current schema. To create the table
in another schema, you should qualify the table with the schema name. Storage parameters
can be specified when creating the table. Tables can be moved or reorganized using the
MOVE clause.

Indexes can be created as B-tree or bitmap. Bitmap indexes save storage space for low-
cardinality columns. You can create reverse key or function-based indexes. An index-
organized table stores the index and row data in the B-tree structure. Tablespace and storage
should be specified when creating indexes. Indexes can be created ONLINE; that is, the table
will be available for insert/update/delete operations while the indexing is in progress. The
REBUILD clause of the ALTER INDEX command can be used to move the index to a different
tablespace or to reorganize the index.

Constraints are created on the tables to enforce business rules. There are five types of
constraints: NOT NULL, CHECK, UNIQUE, PRIMARY KEY, and FOREIGN KEY.

The constraints can be created to check the conformance at each SQL statement or when
committing the changes—checking for conformance at each statement is the default. You
can enable and disable constraints. Constraints can be enabled with the NOVALIDATE clause
to save time after large data loads.

95127c10.indd 582 2/17/09 2:00:40 PM

Exam Essentials 583

Exam Essentials

Know the relationship of data files to tablespaces. Tablespaces are built on one or more
data files—bigfile tablespaces on a single data file and smallfile tablespaces on one or more
data files.

Understand the statements needed to create, modify, and drop tablespaces. Use a CREATE
TABLESPACE, ALTER TABLESPACE, and DROP TABLESPACE statement to create, modify, and
drop a tablespace, respectively.

Know how to take tablespaces offline and what consequences the OFFLINE IMMEDIATE
option poses. Use an ALTER TABLESPACE statement to take a tablespace offline or bring it
online. If you use the OFFLINE IMMEDIATE option, you must perform media recovery when
you bring it back online.

Understand the default tablespaces for the database. When the database is created, if you
do not specify the DEFAULT TABLESPACE and DEFAULT TEMPORARY TABLESPACE clauses, the
SYSTEM tablespace will be the default for user objects and temporary segments.

Know how to use the EM Database Control to view tablespace information. The EM
Database Control can be used to view tablespace information as well as perform various
administrative tasks. A working knowledge of this tool is required.

Know the difference between segment space management and extent management. Extent
management deals with segment-level space allocations, and segment space management
deals with data block-level space allocations.

Know which initialization parameter controls OMF placement. The DB_CREATE_FILE_
DEST parameter tells the database where to place Oracle Managed Files.

Know the different types of constraints and which have dependencies with others. There
are the CHECK, NOT NULL, UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints. A PRIMARY
KEY constraint implicitly includes NOT NULL and UNIQUE constraints. A FOREIGN KEY con-
straint must refer to a PRIMARY KEY or UNIQUE constraint.

Know the types of indexes and when they are appropriate. B-tree indexes are medium-
to high-cardinality columns in applications in which data can change frequently. Bitmap
indexes are best for low- to medium-cardinality columns in applications that control data
changes, usually in batches.

95127c10.indd 583 2/17/09 2:00:40 PM

584 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Review Questions
1. Which of the following statements about tablespaces is true?

A. A tablespace is the physical implementation of logical structure called a namespace.

B. A tablespace can hold the objects of only one schema.

C. A bigfile tablespace can have only one data file.

D. The SYSAUX tablespace is an optional tablespace created only if you install certain data-
base options.

2. Automatic segment space management on the tablespace causes which of the following
table attributes in that tablespace to be ignored?

A. The whole storage clause

B. NEXT and PCTINCREASE

C. BUFFERPOOL and FREEPOOL

D. PCTFREE and PCTUSED

3. Which is not a type of segment that is stored in a tablespace?

A. Undo

B. Redo

C. Permanent

D. Temporary

4. Can a table name ever include the special metacharacter dollar sign ($)?

A. No

B. Yes

C. Only if the table name is enclosed in double quotes

D. Only if the table name is enclosed in single quotes

5. Which operation can you not do to a table that is created with the following SQL statement?

CREATE TABLE properties

(“Location” NUMBER primary key

,value NUMBER(15)

,lot varchar2(12)

,constraint positive_value check

 (value > 0)

);

95127c10.indd 584 2/17/09 2:00:40 PM

Review Questions 585

A. Rename the primary key to properties.

B. Insert a null into the value column.

C. Add a column named owner.

D. Rename the index-supporting primary key to properties.

E. None of the above.

6. Which constraint-checking model is the default?

A. Initially immediate and deferrable

B. Initially immediate and not deferrable

C. Initially deferred and not immediately

D. Initially deferrable and not immediate

7. Which allocation unit is the smallest?

A. Data file

B. Extent

C. Data block

D. Segment

8. Which of the following is not a valid Oracle 11g datatype?

A. TIMESTAMP WITH LOCAL TIMEZONE

B. BINARY

C. BLOB

D. UROWID

9. How do you specify that a temporary table will be emptied at the end of a user’s session?

A. Create the temporary table with the ON COMMIT PRESERVE ROWS option.

B. Create the temporary table with the ON DISCONNECT PRESERVE ROWS option.

C. Create the temporary table with the ON DISCONNECT PURGE ROWS option.

D. Create the temporary table with the ON COMMIT DELETE ROWS option.

10. You performed the following statement in the database. What actions can you perform on
the table CUST_INFO in the CUST_DATA tablespace. (Choose all that apply.)

ALTER TABLESPACE CUST_DATA READ ONLY;

A. ALTER TABLE CUST_INFO DROP COLUMN xx;

B. TRUNCATE TABLE CUST_INFO;

C. INSERT INTO CUST_INFO VALUES (…);

D. DROP TABLE CUST_INFO;

E. RENAME CUST_INFO TO CUSTOMER_INFO;

95127c10.indd 585 2/17/09 2:00:40 PM

586 Chapter 10 N Allocating Database Storage and Creating Schema Objects

11. Which statements should be executed to make the USERS tablespace read-only, if the
tablespace is offline? (Choose all that apply.)

A. ALTER TABLESPACE USERS READ ONLY

B. ALTER DATABASE MAKE TABLESPACE USERS READ ONLY

C. ALTER TABLESPACE USERS ONLINE

D. ALTER TABLESPACE USERS TEMPORARY

12. How would you add more space to a tablespace? (Choose all that apply.)

A. ALTER TABLESPACE <TABLESPACE NAME> ADD DATAFILE SIZE <N>

B. ALTER DATABASE DATAFILE <FILENAME> RESIZE <N>

C. ALTER DATAFILE <FILENAME> RESIZE <N>

D. ALTER TABLESPACE <TABLESPACE NAME> DATAFILE <FILENAME> RESIZE <N>

13. The database is using automatic memory management. The standard block size for the
database is 8KB. You need to create a tablespace with a block size of 16KB. Which initial-
ization parameter should be set?

A. DB_8K_CACHE_SIZE

B. DB_16K_CACHE_SIZE

C. DB_CACHE_SIZE

D. None of the above

14. Which data dictionary view can be queried to obtain information about the files that
belong to locally managed temporary tablespaces?

A. DBA_DATA_FILES

B. DBA_TABLESPACES

C. DBA_TEMP_FILES

D. DBA_LOCAL_FILES

15. How would you drop a tablespace if the tablespace were not empty?

A. Rename all the objects in the tablespace, and then drop the tablespace.

B. Remove the data files belonging to the tablespace from the disk.

C. Use ALTER DATABASE DROP <TABLESPACE NAME> CASCADE.

D. Use DROP TABLESPACE <TABLESPACE NAME> INCLUDING CONTENTS.

16. Which command is used to enable the autoextensible feature for a file if the file is already
part of a tablespace?

A. ALTER DATABASE.

B. ALTER TABLESPACE.

C. ALTER DATA FILE.

D. You cannot change the autoextensible feature once the data file created.

95127c10.indd 586 2/17/09 2:00:40 PM

Review Questions 587

17. Which statement is true regarding the SYSTEM tablespace?

A. It can be made read-only.

B. It can be offline.

C. Data files can be renamed.

D. Data files cannot be resized.

18. The following statement is issued against the primary key constraint (PK_BONUS) of the
BONUS table. Which statements are true? (Choose all that apply.)

ALTER TABLE BONUS MODIFY CONSTRAINT PK_BONUS DISABLE VALIDATE;

A. No new rows can be added to the BONUS table.

B. Existing rows of the BONUS table are validated before disabling the constraint.

C. Rows can be modified, but the primary key columns cannot change.

D. The unique index created when defining the constraint is dropped.

19. Which clause in the ALTER TABLE command is used to reorganize a table?

A. REORGANIZE

B. REBUILD

C. RELOCATE

D. MOVE

20. Which keyword should be used in the CREATE INDEX command to create a function-based
index?

A. CREATE FUNCTION INDEX

B. CREATE INDEX ORGANIZATION INDEX

C. CREATE INDEX FUNCTION BASED

D. None of the above

95127c10.indd 587 2/17/09 2:00:40 PM

588 Chapter 10 N Allocating Database Storage and Creating Schema Objects

Answers to Review Questions
1. C. Bigfile tablespaces can have only a single data file. The traditional or smallfile

tablespace can have many data files.

2. D. Segment space management refers to free-space management, with automatic segment
space management using bitmaps instead of FREELISTS, PCTFREE, and PCTUSED.

3. B. Redo information is not stored in a segment; it is stored in the redo logs. Undo segments
are stored in the undo tablespace, temporary segments are in the temporary tablespace, and
permanent segments go into all the other tablespaces.

4. B. Objects in an Oracle 11g database can always include letters, numbers, and the charac-
ters $, _, and # (dollar sign, underscore, and number sign). Names can include any other
character only if they are enclosed in double quotes. The character dollar sign is not a spe-
cial metacharacter in an Oracle 11g database.

5. E. You can rename both a constraint and an index to the same name as a table—they are
in separate namespaces. Columns can be added, and owner is a valid column name. If the
check constraint condition evaluates to FALSE, the data value will not be allowed; if the
condition evaluates to either TRUE or NULL, the value is allowed.

6. B. Constraints can be created as deferrable and initially deferred, but deferred constraint
checking is not the default.

7. C. An extent is composed of two or more data blocks; a segment is composed of one or
more extents, and a data file houses all these.

8. B. Although BINARY_FLOAT and BINARY_DOUBLE are valid datatypes, BINARY is not.

9. A. The options for temporary tables are either ON COMMIT DELETE ROWS, which causes the
table to flush at the end of each transaction, or ON COMMIT PRESERVE ROWS, which causes
the table to flush at the end of each session.

10. B, D, E. When a tablespace is read-only, DML operations and operations that affect data
in the table are not allowed. Truncate and drop operations are allowed, and you can also
rename the table using the RENAME statement or the ALTER TABLE statement.

11. C, A. To make a tablespace read-only, all the data files belonging to the tablespace must be
online and available. So, bring the tablespace online and then make it read-only.

12. A, B. You can add more space to a tablespace either by adding a data file or by increasing
the size of an existing data file. Option A does not have a file name specified; it uses the
OMF feature to generate filename.

13. B. DB_CACHE_SIZE doesn’t need to be set for the standard block size since automatic mem-
ory management is used. If you set DB_CACHE_SIZE, its value will be used as the minimum.
DB_16K_CACHE_SIZE should be set for the nonstandard block size. You must not set the
DB_8K_CACHE_SIZE parameter because the standard block size is 8KB.

95127c10.indd 588 2/17/09 2:00:40 PM

Answers to Review Questions 589

14. C. Locally managed temporary tablespaces are created using the CREATE TEMPORARY
TABLESPACE command. The data files (temporary files) belonging to these tablespaces are in
the DBA_TEMP_FILES view. The EXTENT_MANAGEMENT column of the DBA_TABLESPACES view
shows the type of the tablespace. The data files belonging to locally managed permanent
tablespaces and dictionary-managed (permanent and temporary) tablespaces can be queried
from DBA_DATA_FILES. Locally managed temporary tablespaces reduce contention on the
data dictionary tables.

15. D. The INCLUDING CONTENTS clause is used to drop a tablespace that is not empty. Oracle
does not remove the data files that belong to the tablespace if the files are not Oracle man-
aged; you need to do it manually using an OS command. Oracle updates only the control
file. To remove the files, you can include the INCLUDING CONTENTS AND DATAFILES clause.

16. A. You can use the ALTER TABLESPACE command to rename a file that belongs to the
tablespace, but all other file-management operations are done through the ALTER DATABASE
command. To enable autoextension, use ALTER DATABASE DATAFILE <FILENAME>
 AUTOEXTEND ON NEXT <INTEGER> MAXSIZE <INTEGER>.

17. C. The data files belonging to the SYSTEM tablespace can be renamed when the database is
in the MOUNT state by using the ALTER DATABASE RENAME FILE statement.

18. A, D. DISABLE VALIDATE disables the constraint and drops the index but keeps the con-
straint valid. No DML operations are allowed on the table.

19. D. The MOVE clause is used to reorganize a table. You can specify new tablespace and storage
parameters. Queries are allowed on the table, but no DML operations are allowed during
the move.

20. D. No keyword needs to be specified to create a function-based index other than to specify
the function itself. To permit the Oracle optimizer to use a function-based index, you must
set the parameter QUERY_REWRITE_ENABLED to TRUE and QUERY_REWRITE_INTEGRITY to
TRUSTED.

95127c10.indd 589 2/17/09 2:00:40 PM

95127c10.indd 590 2/17/09 2:00:40 PM

Chapter

11
Understanding
Network Architecture

OrAcle DAtAbAse 11g:
ADmiNistrAtiON i exAm Objectives
cOvereD iN this chApter:

Configuring the Oracle Network EnvironmentÛÛ

Configure and Manage the Oracle Network ÛN

Using the Oracle Shared Server architectureÛN

95127c11.indd 591 2/17/09 2:17:12 PM

Networks have evolved from simple terminal-based systems to
complex multi-tiered systems. Today’s networks can comprise
many computers on multiple operating systems using a wide

variety of protocols and communicating across wide geographic areas. Although networks
have become increasingly complex, they also have become easier to use and manage. For
instance, we all take advantage of the Internet without knowing or caring about the com-
ponents that make this communication possible, because the complexity of this huge net-
work is completely hidden from us.

The experienced Oracle database administrator has seen this maturation process in the
Oracle network architecture as well. From the first version of SQL*Net to the latest releases
of Oracle Net, Oracle has evolved its network strategy and infrastructure to meet the
demands of the rapidly changing landscape of network communications.

This chapter highlights the areas you need to consider when implementing an Oracle
network strategy and when managing an Oracle 11g network. I’ll also discuss the most
common network configurations. The chapter introduces the features of Oracle Net—the
connectivity-management software that is the backbone of the Oracle network architecture.
I’ll explain how to configure the main client- and server-side components of Oracle Net,
and I’ll discuss the tools you have at your disposal to perform these tasks.

As the number of users connecting to Oracle Databases in the enterprise grows, the
system requirements of the servers increase—particularly the memory and process require-
ments. When a system starts to encounter these capacity issues, you need to know which
alternatives are available within the Oracle environment that can address the problem. One
configuration alternative that may help to overcome this capacity problem is Oracle Shared
Server.

This chapter also discusses Oracle Shared Server and its benefits. You will learn about
the client connection process and how Oracle Shared Server processes user requests. You
will also learn how to configure Oracle Shared Server.

Introducing Network Configurations
You can select from three basic types of network configurations when designing an Oracle
infrastructure:

Single-tierÛN

Two-tierÛN

nÛN -tier

95127c11.indd 592 2/17/09 2:17:12 PM

Introducing Network Configurations 593

Single-tier is the simplest type. It has been around for years and is characterized by the
use of terminals for serial connections to the Oracle server. The two-tier configuration is
also referred to as the client/server architecture, and more recently the n-tier architecture
has been introduced. Let’s take a look at each of these configuration alternatives.

Single-Tier Architecture
Single-tier architecture was the standard for many years before the birth of the personal
computer. Applications using single-tier architecture are sometimes referred to as green-
screen applications because most of the terminals that used them, such as the IBM 3270,
had green screens. Single-tier architecture is commonly associated with mainframe-type
applications.

This architecture is still in use today for many mission-critical applications, such as
order processing and fulfillment and inventory control, because it is the simplest architec-
ture to configure and administer. Because the terminals are directly connected to the host
computer, the complexities of network protocols and multiple operating systems don’t exist.

When single-tier architecture is used—for example, in mainframes—users interact with
the database using terminals, which are nongraphical, character-based devices. In this
type of architecture, client terminals are directly connected to larger server systems such
as mainframes. All the intelligence exists on the mainframe, and all the processing takes
place there. Simple serial connections also exist on the mainframe. Although no complex
network architecture is necessary, a single-tier architecture is somewhat limiting in terms of
scalability and flexibility (see Figure 11.1).

F i gU r e 11.1 Single-tier architecture

MainframeDumb Terminal

Direct Connection

Two-Tier Architecture
Two-tier architecture gained popularity with the introduction of the personal computer
and is commonly referred to as client/server computing. In a two-tier environment, clients
connect to servers over a network using a network protocol, which is the agreed-upon method
for the client to communicate with the server. Transmission Control Protocol/Internet
Protocol (TCP/IP) is a popular network protocol and has become the de facto standard of
network computing. Whether you choose TCP/IP or some other network protocol, both the
client and the server must be able to understand it. Figure 11.2 shows an example of two-
tier architecture.

95127c11.indd 593 2/17/09 2:17:12 PM

594 Chapter 11 N Understanding Network Architecture

F i gU r e 11. 2 Two-tier architecture

ServerIntelligent Client PC

Network connection
utilizing a protocol

such as TCP/IP

This architecture has definite benefits over single-tier architecture. First, client/server
computing introduces the graphical user interface (GUI). This interface is easier to under-
stand and learn, and it offers more flexibility than the traditional character-based interfaces
of the single-tier architecture. Also, two-tier architecture allows the client computer to
share the application process load. To a certain degree, this reduces the processing require-
ments of the server.

The two-tier architecture does have some faults, even though at one time, this configu-
ration was thought to be the panacea of all networking architectures. Unfortunately, the
main problem—that being scalability—persists. Notice that the term client/server contains
a slash (/). The slash represents the invisible component of the two-tier architecture and the
one that is often overlooked: the network! The limitation of client/server computing is one
of scalability.

When prototyping projects, many developers fail to consider the network component
and soon find out that what worked well in a small environment does not scale effectively
to larger, more complex systems. The two-tier architecture model was subject to a great
deal of redundancy because application software was required on every desktop. As a
result, many companies end up with bloated computers and large servers that still do not
perform adequately. What is needed is a more scalable model for network communications.
That is what n-tier architecture provides.

n-Tier Architecture
n-tier architecture is the next logical step after two-tier architecture. Instead of dividing
application processing work between a client and a server, you divide the work among
three or more machines. The n-tier architecture introduces middleware components, such
as application servers or web servers, situated between the client and the database server,
which can be used for a variety of tasks, including the following:

Moving data between machines that work with different network protocolsÛN

Serving as firewalls that can control client access to the serversÛN

Offloading processing of the business logic from the clients and servers to the middle tierÛN

Executing transactions and monitoring activity between clients and servers to balance ÛN

the load among multiple servers

Acting as a gateway to bridge existing systems to new systemsÛN

95127c11.indd 594 2/17/09 2:17:13 PM

An Overview of Oracle Net Features 595

The Internet is an example of the ultimate n-tier architecture, with the user’s browser
providing a consistent presentation interface. This common interface means less training of
staff and also increases the potential reuse of client-side application components.

n-tier architecture is rapidly becoming the architecture of choice for enterprise networks.
This model is scalable and divides the tasks of presentation, business logic and routing, and
database processing among many machines, which means that this model accommodates
large applications. Many factors are driving n-tier computing, such as the Internet and
Oracle grid computing, which uses a large number of back-end processors to scale database
services and connectivity.

By reducing the processing load on the database servers, those servers can do more work
with the same number of resources. Also, the transaction servers can balance the flow of
network transactions intelligently, and application servers can reduce the processing and
memory requirements of the client (see Figure 11.3).

F i gU r e 11. 3 Connection requests in n-tier architecture

Application
Server

Database
Server

Client

Internet

HTTP
Request

App
Server

Oracle
Net

RDBMS

Oracle
Net

TCP/IP

An Overview of Oracle Net Features
Oracle Net is the glue that bonds the Oracle network together. It is responsible for handling
client-to-server and server-to-server communications, and it can be configured on the cli-
ent, the middle-tier application, web servers, and the Oracle server.

Oracle Net manages the flow of information in the Oracle network infrastructure. First it
establishes the initial connection to the Oracle server, and then it acts as the messenger, passing
requests from the client back to the server or passing them between two Oracle servers. Oracle
Net handles all negotiations between the client and server during the client connection.

In addition to functioning as an information manager, Oracle Net supports the use of
middleware products such as Oracle Application Server and Oracle Connection Manager.
These products allow n-tier architectures to be used in the enterprise, which increases the
flexibility and performance of application designs.

To provide a further understanding of the features of Oracle Net, the following sections
discuss in detail the five categories of networking solutions that Oracle Net addresses:

ConnectivityÛN

ManageabilityÛN

ScalabilityÛN

95127c11.indd 595 2/17/09 2:17:13 PM

596 Chapter 11 N Understanding Network Architecture

SecurityÛN

AccessibilityÛN

Connectivity
A client can interact with an Oracle Database in many ways. A client can be running a PC-
based application or a dumb terminal application, or perhaps the client is connecting to the
database via the Internet. Let’s take a look at how Oracle supports connectivity to the data-
base through these and other interfaces:

Multiprotocol support Oracle Net supports a wide range of industry-standard protocols
such as TCP/IP and named pipes. This support is handled transparently and allows Oracle
Net to connect to a wide range of computers and a wide range of operating environments.

Multiple operating systems Oracle Net can run on many operating systems, from Windows
XP to all variants of Unix to large mainframe-based operating systems. This range allows users
to bridge existing systems to other Unix or PC-based systems, which increases the data access
flexibility of the organization without making wholesale changes to the existing systems.

Java and JDBC Applications written in Java can take advantage of the Java Database
Connectivity (JDBC) drivers provided with Oracle to connect to an Oracle server. The two
basic types of JDBC drivers are JDBC Oracle Call Interface (OCI) and JDBC thin.

The JDBC OCI driver is a client-side installed driver that is used if the Java application is
resident on a client computer. This driver is also called a type II driver because the driver
software is installed on the computer that is using the application. It uses OCI to interact
with the Oracle Net infrastructure. Figure 11.4 shows how a client and server communicate
when using a JDBC OCI connection.

F i gU r e 11. 4 Oracle JDBC OCI connection

Application

Database
Server

Client

JDBC OCI
Driver

Oracle
Net

RDBMS

Oracle
Net

TCP/IP
Network

In this example, the Java application installed on the client uses the JDBC OCI driver and
Oracle Database server. When an application makes a database request, it uses the JDBC
OCI driver to translate the JDBC calls and send them to Oracle Net. Oracle Net is used on
both the client and the server to broker all communications between the two end points.

The JDBC thin driver is written entirely in Java and, as such, is platform independent.
It does not have to be installed on a client computer (which is why it’s called a thin driver).
The driver interfaces directly with a layer of the Oracle Net infrastructure called the two-
task common layer.

95127c11.indd 596 2/17/09 2:17:13 PM

An Overview of Oracle Net Features 597

Manageability
Oracle Net provides a variety of features that allow you to manage the components of an
Oracle network. Let’s review the key manageability features of Oracle Net.

Web Applications
Oracle Net supports a variety of connectivity solutions from a web browser interface. Con-
nections can be made through a middle-tier web or application server or directly from a
web browser to an Oracle service.

When a middle-tier solution is used, the web browser uses HTTP to contact a database
service and request information. Typically, an application or web server receives this request
and hands it off to Oracle Net, which manages the connection between the web server and
the database server. Once the database server receives the connection request, the request is
processed and passed back to the web server. The web server then sends the response to the
client’s web browser. This type of request fulfillment requires that the middle-tier application
server be loaded with the Oracle Net software, but the client does not require any additional
software.

Oracle also supports web connectivity directly from a web client. For example, a Java
applet running within a web browser can use a JDBC driver to connect directly to an Ora-
cle server without the need for an application or web server.

Location Transparency
Oracle Net provides the infrastructure to manage the database location. This is important
especially in large organizations that support many databases and clients. Each database
in the organization is represented as one or more services. Database services are defined by
one or more service names. The actual definition of the service names is managed within
Oracle Net. The definition holds information about the type and location of the service on
the network. This layer of abstraction provides location transparency to the client and cen-
tralizes the management of connection information within Oracle Net, which simplifies the
job of managing the network.

Directory Naming
Directory naming allows service names to be resolved through a centralized naming reposi-
tory. The central repository takes the form of a Lightweight Directory Access Protocol
(LDAP)–compliant server. LDAP is a protocol and language that defines a standard method
for storing, identifying, and retrieving services. It provides a simplified way to manage
directories of information, whether this information is about users in an organization or
Oracle services connected to a network. The LDAP server allows for a standard form of
managing and resolving names in an Oracle environment. The quality of these services
excels because LDAP provides a single, industry-standard interface to a directory service
such as Oracle Internet Directory (OID). By using OID, you ensure the security and reliabil-
ity of the directory information because information is stored in the Oracle Database.

95127c11.indd 597 2/17/09 2:17:13 PM

598 Chapter 11 N Understanding Network Architecture

Scalability
Many enterprise systems are growing rapidly, supporting larger and larger databases and
user communities. Your network capabilities need to be able to support this growth. Oracle
Net provides features that allow you to expand your network reach and maximize your
system resources to meet these demands.

Oracle Shared Server
Oracle Shared Server is an optional configuration of the Oracle server that allows support
for a large number of concurrent connections without increasing physical resource require-
ments. This is accomplished by sharing resources among groups of users.

Oracle Shared Server is discussed in detail later in the chapter in the
section “An Overview of Oracle Shared Server.”

Connection Manager
Oracle Connection Manager is a middleware solution that provides three additional scal-
ability features:

Multiplexing Connection Manager can group many client connections and send them as a
single multiplexed network connection to the Oracle server. This reduces the total number
of network connections that the server has to manage.

Network access You can configure Connection Manager with rules that restrict access by
IP address. You can set up this rules-based configuration to accept or reject client connec-
tion requests. Also, connections can be restricted by point of origin, destination server, or
Oracle server.

Cross-protocol connectivity This feature allows clients and servers that use different net-
work protocols to communicate. Connection Manager acts as a translator, providing two-
way protocol conversion.

Oracle Connection Manager is controlled by a set of background processes that manage
the communications between clients and servers. Figure 11.5 provides an overview of the
Connection Manager architecture.

Security
The threat of data tampering and database security is an issue of major concern in many
organizations as network systems continue to grow in number and complexity and as users
gain increasing access to systems. Sensitive business transactions are being conducted with
greater frequency and, in many cases, are not protected from unauthorized tampering or
message interception. Oracle Net is capable of providing organizations with a secure net-
work environment to conduct business transactions. I’ll now discuss the tools available in
Oracle 11g to protect sensitive information.

95127c11.indd 598 2/17/09 2:17:13 PM

An Overview of Oracle Net Features 599

F i gU r e 11.5 Connection Manager architecture

Client Machines

Many Simultaneous
Connections

One Shared Server connection
carrying all of the client requests

CMGW
Process

CMADMIN
Process

Oracle
Server

Oracle Connection
Manager

Oracle server
running Shared Server

Advanced Security
Oracle Advanced Security, formerly known as the Advanced Security Option and the
Advanced Networking Option, not only provides the tools necessary to ensure secure trans-
missions of sensitive information, but it also provides mechanisms to confidently identify
and authenticate users in the Oracle enterprise.

When configured on the client and the Oracle server, Oracle Advanced Security supports
secured data transmissions by encrypting and optionally checksumming the transmission
of information that is sent in a transaction. Oracle supports encryption and checksumming
by taking advantage of industry-standard algorithms, such as RSA RC4, Standard DES and
Triple DES, and MD5 checksumming. These security features ensure that data transmitted
from the client has not been altered during transmission to the Oracle server.

Oracle Advanced Security also gives you the ability to authenticate users connecting to the
Oracle servers. In fact, a number of authentication features ensure that users really are who
they claim to be. These are offered in the form of token cards, which use a physical card and
a user-identifying PIN to gain access to the system; retina scans also supported now, which
uses fingerprint technology to authenticate user connection requests; public key; and certifi-
cate-based authentication.

Firewall Support
Firewalls are an important security mechanism in corporate networks. Firewalls are gener-
ally a combination of hardware and software that is used to control network traffic and

95127c11.indd 599 2/17/09 2:17:14 PM

600 Chapter 11 N Understanding Network Architecture

prevent intruders from compromising corporate network security. Firewalls fall into two
broad categories:

IP-filtering firewalls IP-filtering firewalls monitor the network packet traffic on IP net-
works and filter out packets that either originated or did not originate from specific groups
of machines. The information contained in the IP packet header is interrogated to obtain
this information. Vendors of this type of firewall include Network Associates and Axent
Communications.

Proxy-based firewalls Proxy-based firewalls prevent information from outside the firewall
from flowing directly into the corporate network. The firewall acts as a gatekeeper, inspect-
ing packets and sending only the appropriate information to the corporate network. This
prevents any direct communication between clients outside the firewall and applications
inside the firewall. Check Point Software Technologies and Cisco are examples of vendors
that market proxy-based firewalls.

Oracle works closely with the vendors of both types of firewalls to ensure support of
database traffic through these types of mechanism. Oracle supplies the Oracle Net Applica-
tion Proxy Kit to the firewall vendors. This product can be incorporated into the firewall
architecture to allow database packets to pass through the firewall and still maintain a high
degree of security.

Know thy Firewall

It is important to understand your network infrastructure, the network routes you are
using to obtain database connections, and the type of firewall products you are using. In
more than one situation, I’ve seen firewalls cause connectivity issues between a client
and an Oracle server.

For instance, a small patch was applied to a firewall when a friend of mine was working
as a DBA for one of his former employers. In this case, employees started experiencing
intermittent disconnects from the Oracle Database. After many days of investigation and
network tracing, the team pinned down the exact problem. The database team then con-
tacted the firewall vendor, who sent a new patch that corrected the problem.

In another instance, the development staff started experiencing a similar connection
problem. It turned out that the networking routes for the development staff had been
modified to connect through a new firewall, with connections timing out after 20 minutes.
This timeout was too short for this department. Increasing the timeout parameter solved
the problem.

These are examples of the types of network changes you need to be aware of to avoid
unnecessary downtime and to avoid wasting staff time and resources.

95127c11.indd 600 2/17/09 2:17:14 PM

Configuring Oracle Net on the Server 601

Accessibility
In many organizations, workers need to be able to communicate across a variety of systems
and databases. They spend a lot of time bringing together data from different systems. The
accessibility features of Oracle Net have capabilities that allow you to communicate with
nondatabase data sources. This ability opens up new opportunities to provide customers
with accurate and timely information. I’ll now discuss the options available in Oracle 11g
to access data that resides in a non-Oracle database and to execute programs that are not
SQL or PL/SQL.

Heterogeneous Services
The Heterogeneous Services component provides the ability to communicate with non-
Oracle databases and services. These services allow organizations to leverage and interact
with their existing data stores without having to necessarily move the data to an Oracle server.

The suite of Heterogeneous Services comprises the Oracle Transparent Gateway and
Generic Connectivity. These products allow Oracle to communicate with non-Oracle data
sources in a seamless configuration. Heterogeneous Services also integrates existing systems
with the Oracle environment, which allows you to leverage your investment in those sys-
tems. These services also allow for two-way communication and replication from Oracle
data sources to non-Oracle data sources.

External Procedures
In some development efforts, interfacing with procedures that reside outside the database
may be necessary. These procedures are typically written in a third-generation language,
such as C. Oracle Net provides the ability to invoke such external procedures from Oracle
PL/SQL callouts. When a call is made, a process is started that acts as an interface between
Oracle and the external procedure. This callout process defaults to the name extproc. The
listener is then responsible for supplying information, such as a library or procedure name
and any parameters, to the called procedure. These programs are then loaded and executed
under the control of the extproc process.

Configuring Oracle Net on the Server
Now that you understand the basic features Oracle Net provides, you need to understand
how to configure the major components of Oracle Net. You must configure Oracle Net
on the server in order for client connections to be established. The following sections will
focus on how to configure the network elements of the Oracle server. It will also describe
the types of connection methods that Oracle Net supports. We will then discuss how to
manage Oracle Net on the server and troubleshoot connections from the server if clients
experience connection problems.

95127c11.indd 601 2/17/09 2:17:14 PM

602 Chapter 11 N Understanding Network Architecture

Understanding the Oracle Listener
The Oracle listener is the main server-side Oracle networking component that allows con-
nections to be established between client computers and an Oracle Database. You can think
of the listener as a big ear that listens for connection requests to Oracle services.

The type of Oracle service being requested is part of the connection descriptor informa-
tion supplied by the process requesting a connection, and the service name resolves to an
Oracle Database. The listener can listen for any number of databases configured on the
server, and it is able to listen for requests being transported on a variety of protocols. A cli-
ent connection can be initiated from the same machine that the listener resides on, or it may
come from some remote location.

The listener is controlled by a centralized file called listener.ora. Though only one
listener.ora file is configured per machine, there may be numerous listeners on a server,
and this file contains all the configuration information for every listener configured on the
server. If multiple listeners are configured on a single server, they are usually set up for
failover purposes or to balance connection requests and minimize the burden of connec-
tions on a single listener.

The content and structure of the listener.ora file is discussed later in this
chapter in the section “Managing Oracle Listeners.”

Every listener is a named process that runs on either a middle-tier server or the database
server. The default name of the Oracle listener is LISTENER, and it is typically created when
you install Oracle. If you configure multiple listeners, each has a unique name.

Now that you have a basic understanding of the Oracle listener, let’s explore the main
function of the listener, which is responding to client connection requests.

How Do Listeners Respond to Connection Requests?
A listener can respond to a client request for a connection in several ways. The response
depends on several factors, such as how the server-side network components are configured
and what type of connection the client is requesting. The listener then responds to the con-
nection request in one of two ways.

The listener can spawn a new process and pass control of the client session to the pro-
cess. In a dedicated server environment, every client connection is serviced by its own
server-side process. Server-side processes are not shared among clients. Two types of
dedicated connection methods are possible: direct and redirect. Each method results in a
separate process that handles client processing, but the mechanics of the actual connection-
initiation process are different. For remote clients to use dedicated connections, the listener
process must be running on the same physical server as the database or databases for which
it is listening.

The listener can also pass control of a connection request to a dispatcher. This type of
connection takes place in an Oracle Shared Server environment. There are also two types of
connection methods when using Oracle Shared Server: direct and redirect.

Let’s take a look at each of these connection-method types.

95127c11.indd 602 2/17/09 2:17:14 PM

Configuring Oracle Net on the Server 603

Dedicated Connections: Direct Handoff Method

Direct handoff connections are possible when the client and database exist on the same
server. For example, a direct handoff method is used when the client connection request
originates from the same machine on which the listener and database are running.

Another name for direct handoff connections is bequeath connections.

The following steps, which show the connection process for the bequeath connections,
are illustrated in Figure 11.6:

1. The client contacts the Oracle listener after resolving the service name.

2. The listener starts a dedicated process, and the client connection inherits the dedicated
server process network connect end point from the listener.

3. The client now has an established connection to the dedicated server process.

F i gU r e 11.6 Dedicated connections: direct handoff method

Dedicated
Server Process

File Server

Listener
on Server

Client

sqlplus scott/tiger@prod

1

2
3

Dedicated Connections: Redirect Method

Redirect connections occur in a dedicated server environment when the client exists on a
machine that is separate from the listener and database server. The listener must inform the
client of the address of the spawned process in order for the process to contact the newly
created dedicated server process.

The following steps, which show the connection process for redirect connections in a
dedicated server environment, are illustrated in Figure 11.7:

1. The client contacts the Oracle listener after resolving the service name.

2. The listener starts a dedicated process.

95127c11.indd 603 2/17/09 2:17:14 PM

604 Chapter 11 N Understanding Network Architecture

3. The listener sends an acknowledgment back to the client with the address of the dedi-
cated server connect end point on the database server to which the client will connect.

4. The client establishes a connection to the dedicated server connect end point.

F i gU r e 11.7 Dedicated connections: redirect method

Dedicated
Server Process

File Server

Listener
on Server

Client

sqlplus scott/tiger@prod

1
3

2
4

Oracle Shared Server: Direct Handoff Method

When you are using Oracle Shared Server, the client connection can also be established using
a direct handoff method. This would be the case, for example, when the client request origi-
nates from the same machine on which the listener and database are running. Figure 11.8
outlines the connection steps when using Oracle Shared Server and the direct handoff method:

1. The client contacts the Oracle listener after resolving the service name.

2. The Oracle listener passes the connection request to the dispatcher with least load.

3. The client now has an established connection to the dispatcher process.

4. PMON (process monitor) sends information to the listener about the number of con-
nections being serviced by the dispatchers.

F i gU r e 11. 8 Oracle Shared Server: direct handoff method

Dispatcher
Process

File Server

Listener
on Server

Client

sqlplus scott/tiger@prod

1

4
2

3

PMON

95127c11.indd 604 2/17/09 2:17:15 PM

Configuring Oracle Net on the Server 605

Oracle Shared Server: Redirect Method

The listener can also redirect the user to a server process or a dispatcher process when
using Oracle Shared Server. This type of connection can occur when the operating system
does not directly support direct handoff connections or the listener is not on the same phys-
ical machine as the Oracle server.

The following steps are illustrated in Figure 11.9:

1. The client contacts the Oracle server after resolving the service name.

2. The listener sends information to the client, redirecting the client to the dispatcher port.
The original network connection between the listener and the client is disconnected.

3. The client then sends a connect signal to the server or dispatcher process to establish a
network connection.

4. The dispatcher or server process sends an acknowledgment to the client.

5. PMON sends information to the listener about the number of connections being ser-
viced by the dispatchers. The listener uses this information to maintain consistent loads
between the dispatchers.

F i gU r e 11. 9 Oracle Shared Server: redirect connection method

Dispatcher
Process

File Server

Listener
on Server

Client

sqlplus scott/tiger@prod

1
2

5
4

3

PMON

Managing Oracle Listeners
You can configure the server-side listener files in a number of ways. As part of the initial
Oracle installation process, the installer prompts you to create a default listener. If you
choose this method, the installer uses the set of screens that are part of the Oracle Net
Configuration Assistant to do the initial listener configuration. Figure 11.10 shows an
example of the opening screen for this assistant.

If you want to set up more than just basic configurations of Oracle network files, you
will have to use Oracle Net Manager, the web-based tool Oracle Enterprise Manager (EM),
or the command-line facility lsnrctl. In the next few sections, you will learn how to use
these tools to configure the server-side network files.

95127c11.indd 605 2/17/09 2:17:15 PM

606 Chapter 11 N Understanding Network Architecture

F i gU r e 11.10 Oracle Net Configuration Assistant opening screen

Managing Listeners with Oracle Net Manager
Oracle Net Manager is a tool you can use to create and manage most client- and server-side
configuration files. Oracle Net Manager has evolved from the Oracle 7 tool, Network Man-
ager, to the latest Oracle 11g version. Throughout this evolution, Oracle has continued to
enhance the functionality and usability of the tool.

If you are using a Windows environment, you can start Oracle Net Manager by choos-
ing Start Programs Your Oracle 11g Programs choice Configuration and Migration
Tools Net Manager. In a Unix environment, you can start it by running netmgr from
your $ORACLE_HOME/bin directory.

Figure 11.11 shows an example of the Oracle Net Manager opening screen.

F i gU r e 11.11 The opening screen for Oracle Net Manager

95127c11.indd 606 2/17/09 2:17:16 PM

Configuring Oracle Net on the Server 607

Configuring Listener Services Using Oracle Net Manager

Oracle Net Manager provides an easy-to-use graphical interface for configuring most of the
network files you will be using. By using Oracle Net Manager, you can ensure that the files
are created in a consistent format, which will reduce the potential for connection problems.

When you first start Oracle Net Manager, the opening screen displays a tree structure
with a top level called Oracle Net Configuration. If you click the plus (+) sign next to this
icon, you will see the Local folder. The choices under the Local folder relate to different
network configuration files. Here are the network file choices and what each configures:

Icon File Configured

Profile sqlnet.ora

Service Naming tnsnames.ora

Listeners listener.ora

Creating the Listener

Earlier I said that, by default, Oracle creates a listener called LISTENER when it is initially
installed. The default settings that Oracle uses for the listener.ora file are as follows:

Section of the File Setting

Listener name LISTENER

Port 1521

Protocols TCP/IP and IPC

Hostname Default Host Name

SID name Default Instance

You can use Oracle Net Manager to create a nondefault listener or change the definition
of existing listeners. Oracle Net Manager has a wizard interface for creating most of the
basic network elements, such as the listener.ora and tnsnames.ora files.

Follow these steps to create the listener:

1. Click the plus (+) sign next to the Local icon.

2. Click the Listeners folder.

3. Click the plus sign icon, or choose Edit Create to open the Choose Listener Name
dialog box.

4. Oracle Net Manager defaults to LISTENER or to LISTENER1 if the default listener is
already created. Click OK if this is correct, or enter a new name and then click OK to
open the Listening Locations screen, as shown in Figure 11.12.

95127c11.indd 607 2/17/09 2:17:16 PM

608 Chapter 11 N Understanding Network Architecture

F i gU r e 11.12 The Listening Locations screen

5. To configure the listening locations, click the Listening Locations drop-down list, and
make your selection. Then click the Add Address button at the bottom of the screen to
open a new window.

The prompts on this screen depend on your protocol. By default, TCP/IP information
is displayed. If you are using TCP/IP, the Host and Port fields are filled in for you. The
host is the name of the machine in which the listener is running, and the port is the lis-
tening location for TCP/IP connections. The default value for the port is 1521.

6. To save your information, choose File Save Network Configuration, and then look
in the directory where the file was saved.

You can also add listeners by following these steps. Listeners must have unique names
and listen on separate ports, so assign the listener a new name and a new port (1522, for
example). You also must assign service names to the listener. You’ll see how to add service
information in the next section.

Oracle Net Manager actually creates three files in this process: listener.ora, tnsnames.ora,
and sqlnet.ora. The tnsnames.ora file does not contain any information. The sqlnet.ora
file may contain a few entries at this point, but you can ignore them for the time being. The
listener.ora file contains information, as shown in the following code:

listener.ora Network Configuration File:

/u01/app/oracle/product/11.1.0/db_1/network/admin/listener.ora

Generated by Oracle configuration tools.

LISTENER =

 (DESCRIPTION_LIST =

95127c11.indd 608 2/17/09 2:17:16 PM

Configuring Oracle Net on the Server 609

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost.localdomain)(PORT = 1521))

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))

)

)

To figure out where the files are stored, just look at the top banner of the
Oracle Net Manager screen.

Adding Service-Name Information to the Listener

After you create the listener with the name, protocol, and listening location information,
you can define the network services to which the listener is responsible for connecting. This
is called static service registration, because Oracle is not automatically registering the ser-
vice with the listener. In releases of Oracle prior to Oracle8i, static service registration was
the only method to associate services with a listener.

A listener can listen to an unlimited number of network service names. Follow these
steps to add the service-name information:

1. To select the listener to configure, click the Listeners icon, and highlight the name of
the listener that you want to configure.

2. From the drop-down list at the top right of the screen, select Database Services.

3. Click the Add Database button at the bottom of the screen. This opens the window
that allows you to add the database (see Figure 11.13).

F i gU r e 11.13 The Database Services screen

95127c11.indd 609 2/17/09 2:17:16 PM

610 Chapter 11 N Understanding Network Architecture

4. Enter values in the Global Database Name, Oracle Home Directory, and SID fields.
The entries for SID and Global Database Name are the same if you are using a flat
naming convention.

5. Choose File Save to save your configuration.

Here is an example of the completed listener.ora file:

listener.ora Network Configuration File:

/u01/app/oracle/product/11.1.0/db_1/network/admin/listener.ora

Generated by Oracle configuration tools.

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (GLOBAL_DBNAME = OCPTEST)

 (ORACLE_HOME = /u01/app/oracle/product/11.1.0/db_1)

 (SID_NAME = 11GR11)

)

)

LISTENER =

 (DESCRIPTION_LIST =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost.localdomain)(PORT = 1521))

)

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))

)

)

Table 11.1 describes each of the listener.ora parameters for the Listening Location
section of the listener.ora file.

tA b le 11.1 Parameters for the Listening Location Section of listener.ora

Parameter Description

LISTENER Indicates the starting point of a listener definition. This is actually the
name of the listener being defined. The default name is LISTENER.

DESCRIPTION Describes each of the listening locations.

95127c11.indd 610 2/17/09 2:17:16 PM

Configuring Oracle Net on the Server 611

Parameter Description

ADDRESS Contains address information about the locations where the listener
is listening.

PROTOCOL Designates the protocol for this listening location.

HOST Holds the name of the machine on which the listener resides.

PORT Contains the address on which the listener is listening.

SID_LIST_LISTENER Defines the list of Oracle services for which the listener (named
LISTENER) is configured.

SID_DESC Describes each Oracle SID.

GLOBAL_DBNAME Identifies the global database name. This entry should match the
SERVICE_NAMES entry in the init.ora file for the Oracle service.

ORACLE_HOME Shows the location of the Oracle executables on the server.

SID_NAME Contains the name of the Oracle SID for the Oracle instance.

Understanding service registration

Oracle 11g allows two types of service registration. Static service registration occurs
when entries are added to the listener.ora file manually by using one of the Oracle
tools. It is static because you are adding this information manually. Static service reg-
istration is necessary if you will be connecting to pre-Oracle8i instances using Oracle
Enterprise Manager or if you will be connecting to external services.

Another way to manage listeners that does not require manual updating of service infor-
mation in the listener.ora file is called dynamic service registration. Dynamic service
registration allows an Oracle instance to automatically register itself with an Oracle lis-
tener. The benefit of this feature is that it does not require you to perform any updates
of server-side network files when new Oracle instances are created. Dynamic service
registration will be covered in more detail later in this chapter in the section “Dynamically
Registering Services.”

tAble 11.1 Parameters for the Listening Location Section of listener.ora (continued)

95127c11.indd 611 2/17/09 2:17:16 PM

612 Chapter 11 N Understanding Network Architecture

Optional listener.ora Parameters
You can set optional parameters that add functionality to the listener. To do so, select
a parameter from the General Parameters drop-down list at the top right of the screen.
Table 11.2 describes these parameters and where you can find them in Oracle Net Manager.

tA b le 11. 2 Optional listener.ora Parameter Definitions

Net Manager
Prompt listener.ora Parameter Description

Startup Wait Time STARTUP_WAIT_TIME Defines how long a listener will wait
before it responds to a STATUS com-
mand in the lsnrctl command-line
utility.

Save Configuration
On Shutdown

CONNECT_TIMEOUT Defines how long a listener will wait
for a valid response from a client once
a session is initiated. The default is 10
seconds.

Unavailable from
Net Manager

SAVE_CONFIG_ON_STOP Specifies whether modifications made
during an lsnrctl session should be
saved when exiting.

Log File LOG_FILE. Will not be in
the listener.ora file if the
default setting is used. By
default, listener logging is
enabled with the log created
in the default location

Specifies where a listener will write log
information. This is ON by default and
defaults to $ORACLE_HOME/network/
log/listener.log.

Trace Level TRACE_LEVEL. Not present
if tracing is disabled. The
default is OFF

Sets the level of detail if listener con-
nections are being traced. Valid values
include Off, User, Support, and Admin.

Trace File TRACE_FILE Specifies the location of listener trace
information. Defaults to $ORACLE_
HOME/network/trace/listener.trc.

Require A Pass-
word For Listener
Operations

PASSWORDS Specifies password required to per-
form administrative tasks in the
lsnrctl command-line utility.

95127c11.indd 612 2/17/09 2:17:16 PM

Configuring Oracle Net on the Server 613

As you will see, you cannot add some parameters directly from the Oracle Net Manager
and must do so manually. These optional parameters also have the listener name appended
to them so that you can identify the listener definition to which they belong. For example,
if the parameter STARTUP_WAIT_TIME is set for the default listener, the parameter created is
STARTUP_WAIT_TIME_LISTENER.

Managing Listeners with Oracle Enterprise Manager
Oracle Enterprise Manager (EM) is a web-based tool that allows you to manage many
aspects of an Oracle 11g server. Being able to perform administrative functions via a
web interface lets you administer the database from any location where a web browser is
available.

You can also manage Oracle Net using EM. On the Database Control home page, notice
under the General section a list of listeners that are available to manage. Click a listener to
display a screen (see Figure 11.14) that gives you details about that listener, including when
the listener was started, the Oracle Net address and port information for the listener, and
the listening location information.

F i gU r e 11.14 The Oracle Enterprise Manager listener console

95127c11.indd 613 2/17/09 2:17:17 PM

614 Chapter 11 N Understanding Network Architecture

You can also add and edit listeners using the Database Control interface. Let’s take a
look at how to do so using the Oracle Enterprise Manager Database Control console.

Adding a Listener Using Enterprise Manager Database Control

You can use Enterprise Manager Database Control to add a listener by following these
steps:

1. To add a new listener using the Database Control, select the Net Services Administra-
tion option listed under the Related Links section to open the Net Services Administra-
tion screen, as shown in Figure 11.15.

F i gU r e 11.15 The Oracle Enterprise Manager Net Services Administration screen

2. From the Administer drop-down list, select the listener, and click Go to open a login
screen. Connect to the server with a valid operating-system user ID and password to
open the listener control screen. In this example, a listener is already configured and
named LISTENER. To create an additional listener, click the Create button to open the
Create Listener screen, as shown in Figure 11.16.

3. Choose a name for the listener. Oracle will choose a new name for you and place that
in the Listener Name field. In Figure 11.16, LISTENER0 is the new listener to be created.

You can fully configure the new listener using this interface. At a minimum, the listener
needs listening address information. Click the Add button to open the Add Address screen.
You can choose a protocol, such as TCP/IP, for which the listener will be listening. You also
need to designate a listening port and host where the listener will be listening for connec-
tions. The other parameters, the send and receive buffer size, are optional advanced param-
eters. Click OK to save your information.

95127c11.indd 614 2/17/09 2:17:17 PM

Configuring Oracle Net on the Server 615

F i gU r e 11.16 The Oracle Enterprise Manager Create Listener screen

Editing Existing Listeners Using EM Database Control

From the Oracle Enterprise Manager Listener console, you can also make changes to an
existing listener. Choose Edit to modify the listener.ora parameters, and save this infor-
mation to the existing listener.ora file. To perform these functions, you must be logged
in to the machine on which the listener file is located. From the login screen, enter the
appropriate user ID and password for the machine and choose Login.

Once you are connected to the machine, you can administer all aspects of the listener.
Figure 11.17 shows the main Oracle Enterprise Manager Listeners administration screen.

F i gU r e 11.17 The Oracle Enterprise Manager Listeners administration screen

95127c11.indd 615 2/17/09 2:17:18 PM

616 Chapter 11 N Understanding Network Architecture

Use the Actions drop-down list to start or stop the listener as well as perform other
actions such as tracing. Click the Edit button to configure the listener (see Figure 11.18).
You use the tabs across the top of the listener administration screen to configure various
aspects of the listener. You can manage logging and tracing, add listener services, and enter
service-name information to statically register new services with the listener. You can also
manage the listening location and port information. If you choose to edit the port or lis-
tening location of the listener, click the Edit button to open the Edit Address screen. You
can change the hostname and port. Once you make a change, the listener is stopped and
restarted with the new configuration information.

F i gU r e 11.18 The Oracle Enterprise Manager Edit Listener screen

Managing Listeners with lsnrctl
You can also use a command-line interface, lsnrctl, to administer the listener. This tool
gives you full configuration and administration capabilities. If you have been using Oracle,
this tool should be familiar. This command-line interface has been around since the early
releases of the Oracle product. Other Oracle network components, such as Connection Man-
ager, also have command-line tools that are used to administer their associated processes.

In Windows, the listener runs as a service. Services are programs that run
in the background in Windows. You can start the listener from the Win-
dows Services panel. Choose Start Settings Control Panel Services.
Then select the name of the listener service from the list of services. If the
name of your listener is Listener, for example, look for an entry such as
OracleOra11gListener. Select the listener name, and click Start.

95127c11.indd 616 2/17/09 2:17:18 PM

Configuring Oracle Net on the Server 617

To invoke the command-line utility, type lsnrctl at the command line. The following
code shows a resulting login screen:

$ pwd

/u01/app/oracle/product/11.1.0/db_1/bin

$./lsnrctl

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 17-AUG-2008 20:50:36

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Welcome to LSNRCTL, type “help” for information.

LSNRCTL>

You can perform a variety of functions from within the lsnrctl utility. Let’s take a look
at the most common functions you’ll perform on the listener using this utility.

Starting the Listener

The listener has commands to perform various functions. You can type help at the LSNRCTL>
prompt to display a list of these commands. To start the default listener named LISTENER,
type start at the prompt. To start a different listener, type start and then that listener name.
For example, typing start listener1 starts the LISTENER1 listener.

The following code shows the results of starting the default listener:

$ lsnrctl start

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 17-AUG-2008 20:51:49

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Starting /u01/app/oracle/product/11.1.0/db_1/bin/tnslsnr: please wait...

TNSLSNR for Linux: Version 11.1.0.6.0 - Production

System parameter file is /u01/app/oracle/product/11.1.0/db_1/network/admin/
listener.ora

Log messages written to /u01/app/oracle/diag/tnslsnr/localhost/listener/alert/
log.xml

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=localhost.localdomain)
(PORT=1521)))

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost.localdomain)
(PORT=1521)))

95127c11.indd 617 2/17/09 2:17:18 PM

618 Chapter 11 N Understanding Network Architecture

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version 11.1.0.6.0 - Production

Start Date 17-AUG-2008 20:51:49

Uptime 0 days 0 hr. 0 min. 0 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File /u01/app/oracle/product/11.1.0/db_1/network/admin/
listener.ora

Listener Log File /u01/app/oracle/diag/tnslsnr/localhost/listener/
alert/log.xml

Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=localhost.localdomain)(PORT=1521)))

 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

Services Summary...

Service “OCPTEST” has 1 instance(s).

 Instance “11GR11”, status UNKNOWN, has 1 handler(s) for this service...

The command completed successfully

$

This listing shows a summary of information, including the services that the listener is
listening for, the log locations, and whether tracing is enabled for the listener.

Reloading the Listener

If the listener is running and modifications are made to the listener.ora file manually,
with Oracle Net Manager or with Enterprise Manager, you must reload the listener to
refresh the listener with the most current information. The reload command rereads the
listener.ora file for the new definitions. As you can see, it is not necessary to stop and
start the listener to reload it. Although stopping and restarting the listener can also accom-
plish a reload, using the reload command is better because the listener is not actually
stopped, which makes this process more efficient. The following code shows an example of
the reload command:

$ lsnrctl reload

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 17-AUG-2008 20:53:45

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost.localdomain)
(PORT=1521)))

The command completed successfully

$

95127c11.indd 618 2/17/09 2:17:18 PM

Configuring Oracle Net on the Server 619

Reloading the listener has no effect on clients connected to the Oracle
server.

In the previous code example, Oracle has reread the listener.ora file and applied any
changes you made to the file against the currently running listener process. You can see the
address, protocol, and port designation of the default listener. Notice that this listener is
listening on the default port of 1521.

Showing the Status of the Listener

You can display the status of the listener by using the status command. The status com-
mand shows whether the listener is active, the locations of the logs and trace files, how long
the listener has been running, and the services for the listener. This is a quick way to verify
that the listener is up and running with no problems.

The following code shows the result of the lsnrctl status command:

$ lsnrctl status

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 17-AUG-2008 20:54:58

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost.localdomain)
(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version 11.1.0.6.0 - Production

Start Date 17-AUG-2008 20:51:49

Uptime 0 days 0 hr. 3 min. 8 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File /u01/app/oracle/product/11.1.0/db_1/network/admin/
listener.ora

Listener Log File /u01/app/oracle/diag/tnslsnr/localhost/listener/
alert/log.xml

Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=localhost.localdomain)(PORT=1521)))

 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

Services Summary...

Service “11GR11” has 1 instance(s).

 Instance “11GR11”, status READY, has 1 handler(s) for this service...

Service “11GR11XDB” has 1 instance(s).

 Instance “11GR11”, status READY, has 1 handler(s) for this service...

95127c11.indd 619 2/17/09 2:17:18 PM

620 Chapter 11 N Understanding Network Architecture

Service “11GR11_XPT” has 1 instance(s).

 Instance “11GR11”, status READY, has 1 handler(s) for this service...

Service “O10GR21” has 1 instance(s).

 Instance “O10GR21”, status READY, has 1 handler(s) for this service...

Service “O10GR21XDB” has 1 instance(s).

 Instance “O10GR21”, status READY, has 1 handler(s) for this service...

Service “O10GR21_XPT” has 1 instance(s).

 Instance “O10GR21”, status READY, has 1 handler(s) for this service...

Service “OCPTEST” has 1 instance(s).

 Instance “11GR11”, status UNKNOWN, has 1 handler(s) for this service...

The command completed successfully

$

This code example depicts a listener that has recently been started. You also see what the
log file and parameter file locations are for the listener. This is a good facility to use to get a
quick listing of vital information for the listener.

Use lsnrctl status to see how long the listener was up. Look for Uptime.

Listing the Services for the Listener

The lsnrctl services command displays information about the services, such as whether
the services have any dedicated, prespawned server processes or dispatched processes asso-
ciated with them, and how many connections have been accepted and rejected per service.
Use this method to check whether a listener is listening for a particular service.

The following code shows an example of running the services command:

$ lsnrctl services

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 17-AUG-2008 20:56:05

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost.localdomain)
(PORT=1521)))

Services Summary...

Service “11GR11” has 1 instance(s).

 Instance “11GR11”, status READY, has 1 handler(s) for this service...

 Handler(s):

 “DEDICATED” established:0 refused:0 state:ready

 LOCAL SERVER

Service “11GR11XDB” has 1 instance(s).

 Instance “11GR11”, status READY, has 1 handler(s) for this service...

95127c11.indd 620 2/17/09 2:17:18 PM

Configuring Oracle Net on the Server 621

 Handler(s):

 “D000” established:0 refused:0 current:0 max:1022 state:ready

 DISPATCHER <machine: localhost.localdomain, pid: 3375>

 (ADDRESS=(PROTOCOL=tcp)(HOST=localhost.localdomain)(PORT=30767))

Service “OCPTEST” has 1 instance(s).

 Instance “11GR11”, status UNKNOWN, has 1 handler(s) for this service...

 Handler(s):

 “DEDICATED” established:0 refused:0

 LOCAL SERVER

The command completed successfully

$

In this example, you can see that the listener is listening for connections to the service
OCPTEST. The line “DEDICATED” established:0 refused:0 shows you how many connec-
tions to this service have been accepted or rejected by the listener. One reason why a lis-
tener may reject servicing a request is if the database is not available.

Other Commands in lsnrctl

You can run other commands in lsnrctl. Table 11.3 summarizes these other com-
mands. Type the command at the LSNRCTL> prompt to execute it.

tA b le 11. 3 A Summary of the lsnrctl Commands

Command Definition

change_password Allows a user to change the password needed to stop the listener.

Exit Exits the lsnrctl utility.

Quit Performs the same function as exit.

save_config Copies the listener.ora file called listener.bak when changes are
made to the listener.ora file from lsnrctl.

Services Lists a summary of services and details information about the number
of connections established and the number of connections refused for
each protocol service handler.

start listener Starts the named listener.

status listener Shows the status of the named listener.

stop listener Stops the named listener.

Trace Turns on tracing for the listener.

Version Displays the version of the Oracle Net software and protocol adapters.

95127c11.indd 621 2/17/09 2:17:18 PM

622 Chapter 11 N Understanding Network Architecture

Using the set Commands in lsnrctl

The lsnrctl utility also has commands called set commands. To issue these commands,
type set commandname at the LSNRCTL> prompt. You use the set commands to modify the
listener.ora file. For example, you can use this command to set up logging and tracing.
You can set most of these parameters using the Oracle Net Manager.

To display the current setting of a parameter, use the show command, which displays the
current settings of the parameters set using the set command. Table 11.4 summarizes the
lsnrctl set commands. Type set or show to display a listing of all the commands.

tA b le 11. 4 A Summary of the lsnrctl set Commands

Command Description

current_listener Sets the listener to modify or shows the name of the current listener.

displaymode Sets display for the lsnrctl utility to RAW, COMPACT, NORMAL, or
VERBOSE.

log_status Shows whether logging is on or off for the listener.

log_file Shows the name of listener log file.

log_directory Shows the log directory location.

rawmode Shows more detail on STATUS and SERVICES when set to ON. Values
are ON or OFF.

startup_waittime Sets the length of time that a listener will wait to respond to a
status command in the lsnrctl command-line utility.

spawn Starts external services that the listener is listening for and that
are running on the server.

save_config_on_stop Saves changes to the listener.ora file when exiting lsnrctl.

trc_level Sets the trace level to OFF, USER, ADMIN, or SUPPORT.

trc_file Sets the name of the listener trace file.

trc_directory Sets the name of the listener trace directory.

Stopping the Listener

To stop the listener, you must issue the lsnrctl stop command. This command stops the
default listener. To stop a nondefault listener, include the name of the listener. For example,

95127c11.indd 622 2/17/09 2:17:18 PM

Configuring Oracle Net on the Server 623

to stop LISTENER1, type lsnrctl stop listener1. If you are in the lsnrctl> facility, you will
stop the current listener defined by the current_listener setting. To see what the current
listener is set to, use the show command. The default value is LISTENER.

Stopping the listener does not affect clients connected to the database. It only means that
no new connections can use this listener until the listener is restarted.

The following code shows what the stop command looks like:

$ lsnrctl stop

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 17-AUG-2008 20:59:32

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost.localdomain)
(PORT=1521)))

The command completed successfully

$

Dynamically Registering Services
Oracle 11g databases can automatically register their presence with an existing listener. The
instance registers with the listener defined on the local machine. Dynamic service registra-
tion allows you to take advantage of other features, such as load balancing and automatic
failover. The PMON process is responsible for registering this information with the listener.

When dynamic service registration is used, you will not see the service listed in the
listener.ora file. To see the service listed, run the lsnrctl services command. Be aware
that if the listener is started after the Oracle instance, there may be a time lag before the
instance actually registers information with the listener.

For an instance to automatically register with a listener, the listener must be configured
as a default listener, or you must specify the init.ora parameter LOCAL_LISTENER. The
LOCAL_LISTENER parameter defines the location of the listener with which you want the
Oracle server to register. This is a default listener definition:

Listener Name = LISTENER

Port = 1521

Protocol = TCP/IP

You must configure two other init.ora parameters to allow an instance to register
information with the listener. Two parameters are used to allow automatic registration:
INSTANCE_NAME and SERVICE_NAMES.

The INSTANCE_NAME parameter is set to the name of the Oracle instance you want to reg-
ister with the listener. The SERVICE_NAMES parameter is a combination of the instance name
and the domain name. The domain name is set to the value of the DB_DOMAIN initialization

95127c11.indd 623 2/17/09 2:17:18 PM

624 Chapter 11 N Understanding Network Architecture

parameter. For example, if your DB_DOMAIN is set to BJS.COM and your Oracle instance is
DBA, set the parameters as follows:

Instance_name = DBA

Service_names = DBA.BJS.COM

If you are not using domain names, set the INSTANCE_NAME and SERVICE_NAMES param-
eters to the same values.

Oracle Net Logging and Tracing on the Server
If a network problem persists, you can use logging and tracing to help resolve it. Oracle
generates information into log files and trace files that can assist you in tracking down net-
work connection problems. You can use logging to find out general information about the
success or failure of certain components of the Oracle network. You can use tracing to get
in-depth information about specific network connections.

By default, Oracle produces logs for clients and the Oracle listener.

LoggingÛN records significant events, such as starting and stopping the listener, along
with certain kinds of network errors. Errors are generated in the log in the form of an
error stack. The listener log records information such as the version number, connec-
tion attempts, and the protocols for which it is listening. You can enable logging at the
client, middle-tier, and server locations.

TracingÛN , which you can also enable at the client, middle-tier, or server location, records
all events that occur on a network, even when an error does not occur. The trace file
provides a great deal of information that logs do not, such as the number of network
round-trips made during a network connection or the number of packets sent and
received during a network connection. Tracing enables you to collect a thorough listing
of the actual sequence of the statements as a network connection is being processed.
This gives you a much more detailed picture of what is occurring with connections that
the listener is processing.

Use tracing sparingly

Use tracing only as a last resort if you are having connectivity problems between the cli-
ent and server. Complete all the server-side checks described earlier before you resort to
tracing. The tracing process generates a significant amount of overhead, and depending
on the trace level set, it can create some rather large files. This activity will impede sys-
tem I/O performance because of all the information that is written to the logs, and if left
unchecked, it could fill your disk or file system.

95127c11.indd 624 2/17/09 2:17:18 PM

Configuring Oracle Net on the Server 625

I was once involved with a large project that was using JDBC to connect to the Oracle
server. We were having difficulty with connections being periodically dropped between
the JDBC client and the Oracle server. We enabled tracing to try to find the problem. We
did eventually correct the problem (it was with how our DNS names server was config-
ured), but the tracing was left on inadvertently. When the system eventually went into
production, the trace files grew so large that they filled the disk where tracing was being
collected. To prevent this from happening, periodically ensure that the trace parameters
are not turned on, and if they are, turn them off.

Use Oracle Net Manager to enable most logging and tracing parameters. Many of the
logging and tracing parameters are found in the sqlnet.ora file. Let’s take a look at how to
enable logging and tracing for the various components in an Oracle network.

Server Logging
By default, the listener is configured to enable the generation of a log file. The log file records
information about listener startup and shutdown, successful and unsuccessful connection
attempts, and certain types of network errors. Here’s what everything means by default:

The listener log location is ÛN <DIAGNOSTIC_DEST>/diag/tnslsnr/<hostname>/listener/
trace on Unix.

The default name of the file is ÛN listener.log.

The XML version of the listener log is under ÛN <DIAGNOSTIC_DEST>/diag/tnslsnr/
<hostname>/listener/alert, and the filename is log.xml.

If the ÛN DIAGNOSTIC_DEST parameter is not defined, Oracle defaults it to $ORACLE_BASE.

Information in the listener.log file contains information about connection attempts,
the name of the program executing the request, and the name of the client attempting to
connect. The last field contains a zero if a request was successfully completed.

Server Tracing
As mentioned earlier, tracing gathers information about the flow of traffic across a network
connection. Data is transmitted back and forth in the form of packets. A packet contains
sender information, receiver information, and data. Even a single network request can gen-
erate a large number of packets.

In the trace file, each line starts with the name of the procedure executed in one of the
Oracle Net layers and is followed by a set of hexadecimal numbers. The hexadecimal num-
bers are the actual data transmitted. If you are not encrypting the data, sometimes you will
see the actual data after the hexadecimal numbers.

If you are doing server-to-server communications and have a sqlnet
.ora file on the server, you can enter information in the Server Informa-
tion section located on the Tracing tab of the Profile screen in Oracle Net
Manager tracing. This provides tracing information for server-to-server
communications.

95127c11.indd 625 2/17/09 2:17:19 PM

626 Chapter 11 N Understanding Network Architecture

Enabling Server Tracing
You can enable server tracing from the same Oracle Net Manager screens shown earlier.
Simply click the Tracing Enabled radio button. The default trace file location is $DIAGNOSTIC_
DEST/diag/tnslsnr/hostname/listener/trace in Unix. You can set the trace level to OFF,
USER, ADMIN, or SUPPORT. The USER level detects specific user errors. The ADMIN level contains
all the user-level information along with installation-specific errors. SUPPORT is the highest
level and can produce information that might be beneficial to Oracle Support personnel.
This level also can produce large trace files.

The following example shows a section of the listener.ora file with the logging and
tracing parameters enabled:

TRACE_LEVEL_LISTENER = ADMIN

TRACE_FILE_LISTENER = LISTENER.trc

LOGGING_LISTENER = ON

LOG_FILE_LISTENER = LISTENER.log

Configuring Oracle Net for the Client
Once the Oracle server is properly configured, you can focus on configuring the clients to
allow for connectivity to the Oracle server. It is important to understand how to configure
Oracle clients because without proper knowledge of how to do this, you are limited in your
connection choices to the server. As a DBA, you must understand the network needs of the
organization, the type of connectivity that is required, and client/server connections vs.
n-tier connectivity, for example, in order to make the appropriate choices about client-side
configuration. This section should help clarify the client-side connectivity options available
to you and show you how to troubleshoot client connection problems.

Client-Side Names Resolution Options
When a client needs to connect to an Oracle server, the client must supply three pieces of
information: their user ID, password, and net service name. The net service name provides
the necessary information, in the form of a connect descriptor, to locate an Oracle service
in a network.

This connect descriptor describes the path to the Oracle server and its service name,
which is an alias for an Oracle Database. The location where this information is kept
depends on the names resolution method you choose. The five methods of net service name
resolution are Oracle Internet Directory, external naming, host naming, Oracle Easy Con-
nect, and local naming. Normally, you choose just one of these methods, but you can use
any combination.

Oracle Internet Directory is advantageous when you are dealing with complex networks
that have many Oracle servers. When you choose this method, you can configure and man-
age net service names and connect descriptor information in a central location.

95127c11.indd 626 2/17/09 2:17:19 PM

Configuring Oracle Net for the Client 627

External naming uses a non-Oracle facility to manage and resolve Oracle service names.
For example, if an organization uses an external names resolution method such as Network
Information Service (NIS), the database service information could be stored in this external
location and used by clients to resolve service names.

You need to be only casually familiar with the Oracle Internet Directory and
the external naming resolution options. For a more detailed description of
how to configure and use external naming, please consult “Oracle Data-
base Net Services Administrator’s Guide 11g Release 1 (11.1) Part Number
B28316-04.” You can find the Oracle documentation at http://tahiti
.oracle.com.

In the following sections, we will take a closer look at the host naming, Oracle Easy
Connect, and local naming methods.

The Host Naming Method
In small networks with few Oracle servers to manage, you can take advantage of the host
naming method. Host naming is advantageous when you want to reduce the amount of con-
figuration work necessary. Host naming saves you from configuring the clients, although it
does have limitations. The following are the four prerequisites to using host naming:

You must use TCP/IP as your network protocol.ÛN

You must not use any advanced networking features, such as Oracle Connection ÛN

Manager.

You must have an external naming service, such as DNS, or a ÛN HOSTS file available to
the client.

The listener must be set up with the ÛN GLOBAL_DBNAME parameter equal to the name of the
machine.

Now let’s discuss how to configure this naming method.

Configuring the Host Naming Method
By default, Oracle attempts to use the host naming method from the client only after it
attempts connections using local naming. To override this default search path for resolving
names, set the NAMES.DIRECTORY_PATH parameter in the sqlnet.ora file on the client so that
it searches for host naming only. The following is an example of the sqlnet.ora file:

SQLNET.ORA Network Configuration File:

Generated by Oracle configuration tools.

NAMES.DEFAULT_DOMAIN = bjs.com

NAMES.DIRECTORY_PATH= (HOSTNAME)

95127c11.indd 627 2/17/09 2:17:19 PM

628 Chapter 11 N Understanding Network Architecture

The host naming and the Oracle Easy Connect methods do not require any
client-side configuration files. We’ll discuss these connection methods
later in this section.

You can check TCP/IP connectivity from the client using the TCP/IP utility ping. The
ping utility attempts to contact the server by sending a small request packet. The server
responds in kind with an acknowledgment.

The server must be configured with a listener running TCP/IP, and the listener must be
listening on the default port of 1521. If the instance has not been dynamically registered
with the listener, you must configure the listener with the GLOBAL_DBNAME parameter.

The Oracle Easy Connect Method
The Oracle Easy Connect method is a connection resolution technique introduced in Oracle
10g. This method is similar to the host naming method described in the previous section
but adds parameters that allow for a port and service-name specification. By default, the
Oracle Easy Connect names resolution method is configured when Oracle Net is installed.

Like the host naming method, the Oracle Easy Connect method eliminates the need
for any connection information to be configured on the client. This makes for less setup
and administrative work. It enhances the host naming method by allowing for a port and
service specification. Remember from the previous section that the host naming method
requires a listener to be listening on the default port of 1521. Allowing a port specification
addresses one of the limitations of the host naming method. Using the Oracle Easy Connect
method requires that certain conditions be met:

Oracle Net Services 10ÛN g or 11g must be installed on the client.

Oracle Net TCP/IP services must be enabled and supported on both the client and the ÛN

server.

No advanced connection descriptor features are allowed such as connection pooling or ÛN

external procedure calls.

Table 11.5 describes the connect descriptor components when you are using the Oracle
Easy Connect method.

tA b le 11.5 Easy Connect Components

Syntax Component Description

// Optional: Used when you are connecting via a URL.

Host Required: The host or IP address to connect to.

Port Optional: The port to connect to. The default is 1521.

95127c11.indd 628 2/17/09 2:17:19 PM

Configuring Oracle Net for the Client 629

Syntax Component Description

Service name The service name for the database. The default is the hostname of
the computer on which the database resides. If the database name is
different from the hostname, enter the service name.

Here is an example of how to connect to a database using the Easy Connect method:

CONNECT scott/tiger@myhostname:1521/11GR11

The example shows how a user connects to the database service 11GR11 that is running
on the myhostname server and has an Oracle listener listening for TCP/IP connections on
port 1521. As stated previously, this method is configured automatically when you install
Oracle Net. If you want the Oracle Easy Connect method to be the first method chosen by
a client when a connection request is made, you can modify the NAMES.DIRECTORY_PATH
parameter in the sqlnet.ora file. The following discussion shows how to do this.

You can use the Oracle Net Manager tool to configure the Easy Connect method as the
default names resolution method. Start the Oracle Net Manager tool, and then follow these
steps:

1. Choose Local Profile Pane in the Navigator pane.

2. Select Naming from the panel on the right.

3. Select the Methods tab.

4. Select EZCONNECT in the Selected Methods list. You can click the promote arrows
to move EZCONNECT to the top of the Selected Methods list.

5. Choose File Save Network Configuration to save your changes.

When you check your sqlnet.ora file, you should see the following entry:

NAMES.DIRECTORY_PATH=(EZCONNECT,TNSNAMES)

The Local Naming Method
The local naming method is probably the most widely used and well-known method for
resolving net service names. Most users know this method as the tnsnames.ora method
because it uses the tnsnames.ora file.

To use the local naming method, you must configure the tnsnames.ora file, which
can be in any location, as long as the client can get to it. The default location for the
tnsnames.ora file and the sqlnet.ora file is %ORACLE_HOME%\network\admin in Windows
and $ORACLE_HOME/network/admin in Unix systems. If you want to change the location of
this file, set the environmental variable TNS_ADMIN. In Unix-based systems, you can export
TNS_ADMIN to the user’s shell environment or in the user’s profile. In Windows, this setting
is in the registry. The Windows registry key that stores the TNS_ADMIN depends on your

tA b le 11.5 Easy Connect Components (continued)

95127c11.indd 629 2/17/09 2:17:19 PM

630 Chapter 11 N Understanding Network Architecture

particular setup. Generally, it is somewhere under Hkey_local_machine/software/oracle,
but it may be at a lower level depending on your configuration.

Most installations probably keep the files in these default locations on the client and
server. Some users create shared disks and place the tnsnames.ora and sqlnet.ora files
in this shared location to take a centralized approach to managing these files. If server-to-
server communication is necessary, these files need to be on the server. The default location
on the server is the same as the default location on the client.

Now that you have an understanding of the local naming method, I will discuss how to
configure this method using Oracle Net Manager.

Configuring the Local Naming Method Using Oracle Net Manager
To configure the local naming method, you use Oracle Net Manager. To start this configu-
ration, open Net Manager, and select Service Naming on the Local tab. Click the plus sign
on the left side of the screen, or choose Edit Create.

The Oracle Net Manager starts the net service name wizard, which guides you through
the process of creating the net service names definition. The following steps detail how to
configure the local naming method:

1. When you configure a client to use the local naming method, you must first choose a
net service name. This is the name that users enter when they are referring to the loca-
tion to which they want to connect. The name you supply here should not include the
domain portion if you are using the hierarchical naming mode. Figure 11.19 shows an
example of choosing the net service name. Click the Next button to continue.

F i gU r e 11.19 Choosing a net service name

2. The next step is to enter the type of protocol that the client should use when they connect
to the server for this net service name. By default, TCP/IP is chosen (see Figure 11.20).
The list of protocols depends on your platform. Click the Next button to continue.

95127c11.indd 630 2/17/09 2:17:19 PM

Configuring Oracle Net for the Client 631

F i gU r e 11. 20 Choosing a network protocol

3. The next step is to choose the hostname and port. This step depends on the protocol
you chose in the previous step. If you chose TCP/IP, you are prompted for the host-
name and the port number. The hostname is the name of the machine on which the
listener process is running. The port number is the listening location for the listener.
The default port is 1521 (see Figure 11.21).

F i gU r e 11. 21 Choosing a hostname and a port

4. The next step is to define the service name. For Oracle 11g, the service name does not
have to be the same as the ORACLE_SID because a database can have multiple service
names. In Oracle 11g, the service name is normally the same as the global database
name. This is the service name that is supplied to the listener, so the listener has to be
listening for this service. You can also choose whether this service is for Oracle8i or

95127c11.indd 631 2/17/09 2:17:19 PM

632 Chapter 11 N Understanding Network Architecture

later databases or Oracle8i and previous databases. You can also select the connection
type from one of these choices:

Database DefaultÛN

Shared ServerÛN

Dedicated ServerÛN

Figure 11.22 shows an example of the Oracle Net Manager service name screen.

5. The last step is to test the net service name and verify that all the connection informa-
tion entered is correct. Click the Test button to test the network connection.

Click Finish button to create the tnsnames.ora entry. You can edit the entry, as shown
in Figure 11.23.

F i gU r e 11. 22 Choosing the service name

F i gU r e 11. 23 The Oracle Net Manager tnsnames.ora wizard

95127c11.indd 632 2/17/09 2:17:20 PM

Configuring Oracle Net for the Client 633

After you complete all this, save your changes by choosing File Save Network Con-
figuration. This creates and saves the tnsnames.ora file.

Contents and Structure of the tnsnames.ora File
You created the tnsnames.ora file using the Oracle Net Manager, so open the tnsnames.ora
file to view its contents. The tnsnames.ora file is located at the location the TNS_ADMIN
variable is set to, which defaults to the $ORACLE_HOME/network/admin directory. Here is an
example of the tnsnames.ora file:

OCP11G =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(HOST = bt-dell1)(PORT = 1521))

)

 (CONNECT_DATA =

 (SERVICE_NAME = OCPTEST)

)

)

Table 11.6 summarizes the parameters in the tnsnames.ora file.

tA b le 11.6 The tnsnames.ora Parameters

Parameter Description

DESCRIPTION Starts the connect descriptor section of the file.

ADDRESS_LIST Starts a list of all connect descriptor address information.

ADDRESS Specifies the connect descriptor for the net service name.

PROTOCOL Specifies the protocol used, such as TCP/IP.

HOST Specifies the name of the machine on which the listener is running. An IP
address can also be specified in TCP/IP.

PORT Specifies the listening location of the listener specific to TCP/IP.

CONNECT_DATA Starts the services section for this net service name.

SERVICE_NAME Replaces the SID parameter from older releases of Oracle. Defines which
service to connect to, which can be the same as the ORACLE_SID or the
global database name. Databases can now be referred to by more than a
single service name.

95127c11.indd 633 2/17/09 2:17:20 PM

634 Chapter 11 N Understanding Network Architecture

Configuring Local Naming Using Enterprise Manager
You can also use Oracle Enterprise Manager to configure local naming. You do so from the
Net Services Administration screen as described in the “Adding a Listener Using Enterprise
Manager Database Control” section earlier in this chapter. You will see the screen shown
in Figure 11.15. Choose Local Naming from the Administer drop-down list, and click Go
to open the Local Naming screen, as shown in Figure 11.24.

F i gU r e 11. 24 Using Enterprise Manager to configure local naming

1. Click the Create button to open the Create Net Service Name page. Here you can enter
the unique service name that you want users to use to connect to this Oracle service.
This can also be the Oracle SID.

2. Select the type of connection to use for this service: a dedicated server, shared server,
or the database default.

3. Specify the address information. This includes the protocol, port, and host used by the
service being connected to.

4. Click the Add button under Addresses to open the Add Address screen to fill in the
appropriate information.

On the Create New Service Name page, there is a section to configure failover and load
balancing options. Five choices are listed under the Connect Time Failover and Load Bal-
ancing section. Table 11.7 summarizes these prompts. If you have multiple listeners listening
for this service or are using Oracle Connection Manager, you can select from this list. The
default is to use the first address only; this is the case where a single listener is being used.

Source routing is used with Oracle Connection Manager. Oracle passes
control from the first address listed to the next address, and so on, until
the ultimate destination is reached. Every address listed is used in the case
of source routing.

95127c11.indd 634 2/17/09 2:17:20 PM

Configuring Oracle Net for the Client 635

tA b le 11.7 Advanced-Features Summary

Option Advanced Feature

Try each address, in order, until one succeeds. Failover

Try each address, randomly, until one succeeds. Failover Load Balancing

Try one address, selected at random. Load Balancing

Use each address in order until you reach the destination. Source Routing

Use only the first address. None

Troubleshooting Client-Side Connection Problems
Connection problems can also occur from the Oracle client. Several areas affect the ability
of a client to connect successfully to the server. The client must be able to contact both the
computer on which the Oracle server is located and the listener listening for connections to
the Oracle server. The client must also be able to resolve the net service name. Let’s look at
the checks to perform on the client to verify connectivity to the Oracle server and to detect
and troubleshoot client-side connection problems. Use the following list to help you system-
atically check various aspects of the client connection process:

Verify that the client can contact the server.ÛN

Determine the network route that the client is taking to the server.ÛN

Verify local naming configuration files.ÛN

Check for multiple-client network configuration files. ÛN

Check network file locations.ÛN

Check the ÛN NAMES.DIRECTORY_PATH parameter.

Check the ÛN NAMES.DEFAULT_DOMAIN parameter.

Check the client protocol adapters installed.ÛN

Check for any common client-side error codes.ÛN

Oracle provides the tnsping utility to verify that the local naming entry
defined in the tnsnames.ora file can talk to the service name defined in the
listener.ora file. You can find tnsping in the $ORACLE_HOME/bin direc-
tory. It also provides the time it took to reach the listener in milliseconds.

95127c11.indd 635 2/17/09 2:17:20 PM

636 Chapter 11 N Understanding Network Architecture

Checking Network File Locations
One of the most common problems encountered is clients moving network files and not
setting the TNS_ADMIN environmental variable to the new file location. Oracle expects the
tnsnames.ora and sqlnet.ora files to be in the default location. If it cannot locate the files
and you have not set TNS_ADMIN, you receive an ORA-12154 error message. You also receive
this error if the supplied net service name is invalid or the NAMES.DEFAULT_DOMAIN value is
mismatched in tnsnames.ora and sqlnet.ora files. The following code shows an example
of this error message:
$ sqlplus system@ocp11r1

SQL*Plus: Release 11.1.0.6.0 - Production on Sun Aug 17 23:47:17 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Enter password:

ERROR:

ORA-12154: TNS: could not resolve the connect identifier specified

If you decide to move network files, be sure to set the TNS_ADMIN environ-
mental variable to the location of the files. Oracle first searches the default
location for the files and then searches the TNS_ADMIN location for the files.

Checking NAMES.DIRECTORY_PATH
Make sure the client has the proper names resolution setting. The NAMES.DIRECTORY_PATH
parameter in the sqlnet.ora file controls the order in which the client resolves net service
names. If the parameter is not set, the default is local naming, OID, and then host naming.

If this parameter is set incorrectly, the client may never check the appropriate names
resolution type. For example, if you are using local naming and the parameter is set to
HOSTNAMES, the tnsnames.ora file will never be used to resolve the net service name. You will
receive an ORA-12154 “Could Not Resolve the Connect Identifier Specified” error message.

Checking NAMES.DEFAULT_DOMAIN
NAMES.DEFAULT_DOMAIN is another common error. It was more common in older releases of
Oracle because the parameter defaulted to the value WORLD. Check the client sqlnet.ora file
to see whether the parameter is set. If the parameter has a value and you are using unquali-
fied net service names, the parameter value is appended to the end of the net service name.
An unqualified service name is a service name that does not contain domain information.

For example, if you entered sqlplus matt/casey@PROD and the NAMES.DEFAULT_DOMAIN is
set to WORLD, Oracle appends .WORLD to the net service name; as a result, Oracle passes the

95127c11.indd 636 2/17/09 2:17:20 PM

An Overview of Oracle Shared Server 637

command as sqlplus matt/casey@PROD.WORLD. You will receive an ORA-12154 “Could
Not Resolve the Connect Identifier Specified” error message if the service name should not
include the .WORLD domain extension. You use this parameter only if you are using a hierar-
chical naming convention.

Checking for Client-Side Error Codes
You should next check for client-side error codes. Here is a summary of some of the com-
mon client-side Oracle error messages you might encounter. They are discussed in detail in
the following sections.

ORA-12154 “TNS: could not resolve connect identifier specified”

ORA-12198 “TNS: could not find path to destination”

ORA-12203 “TNS: Unable to connect to destination”

ORA-12533 “TNS: illegal address parameters”

ORA-12541 “TNS: No listener”

ORA-12154 This indicates that the client cannot find the service listed in the tnsnames.
ora file. Some of the causes of this were previously described, such as the file is not in the
proper directory or the TNS_ADMIN variable is not specified or specified incorrectly.

ORA-12198 and ORA-12203 This indicates that the client found an entry for the service
in the tnsnames.ora file but the service specified was not found. Check to make sure the
service specified in the tnsnames.ora file actually points to a valid database service.

ORA-12533 This indicates that you have configured the ADDRESS section of the tnsnames.
ora file incorrectly. Check to make sure the syntax is correct, or re-create the definition
using the Oracle Net Manager tool.

ORA-12541 This indicates that the client contacted a server that does not have a listener
running on the specified port. Make sure the listener is started on the server and that the
listening port specifications on the client and the server match.

An Overview of Oracle Shared Server
Oracle Shared Server is an optional configuration of Oracle Server that allows the server
to support a larger number of concurrent connections without increasing physical resource
requirements. It does so by sharing resources among groups of users.

Shared Server is suitable for high-think applications. High-think applications are com-
posed of small transactions with natural pauses in the transaction patterns, which makes
them good candidates for Oracle Shared Server connections. Many web-based applications
fit this model. These types of applications are typically form-based and involve submissions
of small amounts of information to the database with small result sets returned to the client.

95127c11.indd 637 2/17/09 2:17:20 PM

638 Chapter 11 N Understanding Network Architecture

Oracle manages dedicated server and shared server connections differently. As a DBA,
you need to be able to identify these differences. This knowledge will help you better under-
stand the advantages and disadvantages of Oracle Shared Server and when it might be
advantageous to use Oracle Shared Server in your environment.

Dedicated Server vs. Shared Server
If you have ever gone to an upscale restaurant, you may have had your own personal wait-
person. That waitperson is there to greet you and escort you to your seat. They take your
order for food and drinks and even help prepare your order. No matter how many other
patrons enter the restaurant, your waitperson is responsible for serving only your requests.
Therefore, your service is consistent—if the person is a good waitperson.

A dedicated server environment works in much the same way. Every client connection
is associated with a dedicated server process, sometimes called a shadow process, on the
machine where the Oracle server exists. No matter how many other connections are made to
the server, the same dedicated server is always responsible for processing only your requests.
You use the services of that server process until you disconnect from the Oracle server.

Most restaurants operate more like shared servers. When you walk in, you are assigned
a waitperson, but they may be responsible for serving many other tables. This is good for
the restaurant because they can serve more customers without increasing the staff. It may
be fine for you as well, if the restaurant is not too busy and the waitperson is not respon-
sible for too many tables. Also, if most of the orders are small, the staff can keep up with
the requests, and the service will be as good as if you had your own waitperson.

In a diner, things work slightly different; the waitperson takes your order and places it
on a turnstile. If the diner has multiple cooks, the order is picked up from the turnstile and
prepared by one of the available cooks. When the cook completes the preparation of the
dinner, it is placed in a location where the waitperson can pick it up and bring it to your
table.

This is how an Oracle Shared Server environment works. In an Oracle Shared Server
environment, dispatcher processes are responsible for servicing client requests. These
processes are capable of handling requests from many clients. This is different from the
dedicated server environment, where a single client process is handled by a single server
process. Like the waitperson in the diner, a dispatcher can be responsible for taking the
orders of many clients.

When using Oracle Shared Server, idle connections can be reused and
allow several users to connect to the database, thus improving scalability.

When you request something from the server, it is the dispatcher’s responsibility to take
your request and place it in a location called a request queue. The request queue functions

95127c11.indd 638 2/17/09 2:17:20 PM

An Overview of Oracle Shared Server 639

like the turnstile in the diner analogy. All dispatcher processes place their client requests in
one request queue, which is a structure contained in the system global area (SGA).

Shared Server processes, like cooks in a diner, are responsible for fulfilling the client
requests. The Oracle Shared Server process executes the request and places the result into
an area of the SGA called a response queue. Every dispatcher has its own response queue.
The dispatcher picks up the completed request from the response queue and returns the
results to the client. Figure 11.25 illustrates the following processing steps for a Shared
Server request:

1. The client passes a request to the dispatcher serving it.

2. The dispatcher places the request on a request queue in the SGA.

3. One of the Shared Server processes executes the request.

4. The Shared Server places the completed request on the dispatchers’ response queue of
the SGA.

5. The dispatcher picks up the completed request from the response queue.

6. The completed request is passed back to the client.

F i gU r e 11. 25 Request processing in Shared Server

SQL>SELECT ename
FROM emp;

ENAME

SMITH
JONES

2 rows selected.

Dispatcher
Process

Client Computer Server Computer

Request Queue Response Queue

Shared Server
Process Oracle

SGA

3 4

1

2 5
6

95127c11.indd 639 2/17/09 2:17:21 PM

640 Chapter 11 N Understanding Network Architecture

Requests placed in the request queue are processed on a first-in, first-out
basis (FIFO). Currently, there is no way to prioritize requests within the
queue.

Advantages and Disadvantages of Shared Server
Oracle Shared Server is used when server resources, such as memory and active processes,
become constrained. People tend to throw more hardware at problems such as these; this
will likely remedy the problem, but it may be an unnecessary expense.

If your system is experiencing these problems, Oracle Shared Server allows you to sup-
port the same number or a greater number of connections without requiring additional
hardware. As a result, Oracle Shared Server tends to decrease the overall memory and pro-
cess requirements on the server. Because clients are sharing processes, the total number of
processes is reduced. This translates into resource savings on the server.

Shared Server also allows for connection pooling. Connection pooling enables the data-
base server to disconnect an idle Oracle Shared Server connection to service an incoming
request. The idle connection is still active and is reenabled once the client makes the next
request. The connection pooling feature of Oracle Shared Server allows it to handle a larger
number of requests without having to start additional dispatcher processes. You configure
connection pooling by adding attributes to one of the Oracle Shared Server parameters.

See the section “Configuring Connection Pooling with the Dispatch-
ers Parameter” later in this chapter to see how connection pooling is
configured.

Shared Server is also required to take advantage of certain network options, such as
connection multiplexing and client access control, which are features of Oracle Connection
Manager. Oracle Connection Manager is a facility provided by Oracle that controls access
to database services and multiplex connections in an Oracle environment. The access con-
trol component of Oracle Connection Manager allows you to configure rules that allow or
disallow fulfillment of a connection request. The multiplexing component acts as a concen-
trator feature. It funnels multiple client sessions through a shared network connection from
the Oracle Connection Manager server to the database server.

You can find out more about Oracle Connection Manager in “Oracle Data-
base Net Services Administrators Guide 11g Release 1 (11.1) Part Number
B28316-04.”

Oracle Shared Server also has some disadvantages. Applications that generate a signifi-
cant amount of network traffic or result in large result sets are not good candidates for
Shared Server connections. Think of the earlier diner analogy. Your service is fine until

95127c11.indd 640 2/17/09 2:17:21 PM

Oracle Shared Server Infrastructure 641

two parties of twelve people show up. All of a sudden, the waitperson is overwhelmed with
work from these two other tables, and your service begins to suffer. The same thing would
happen in a Shared Server environment. If requests for large quantities of information start
going to the dispatchers, the dispatchers can become overwhelmed, and you can see perfor-
mance suffer for the other clients connected to the dispatcher. This, in turn, increases your
response times. Dedicated processes better serve these types of applications.

Some functions are not allowed when you are using an Oracle Shared Server connection.
You cannot start up, shut down, or perform certain kinds of recovery of an Oracle server
when you are connected via a shared server.

Also, you should not perform certain administrative tasks using Oracle Shared Server
connections, including bulk loads of data, index and table rebuilds, and table analysis.
These types of tasks deal with manipulating large data sets and should use dedicated
connections.

Oracle Shared Server is a scalability enhancement option, not a performance enhance-
ment option. If you are looking for a performance increase, Shared Server is not what you
should be configuring. Use Shared Server only if you are experiencing the system constraint
problems discussed earlier in this chapter. You will always have equal or better perfor-
mance in a dedicated server environment.

Oracle Shared Server Infrastructure
As described in the previous section, you manage client connections quite differently when
using Oracle Shared Server as opposed to using a dedicated server. To accommodate the
change, several modifications take place inside the internal memory structures of the Ora-
cle server. The way in which the database and listener interact is also affected when using
Oracle Shared Server. It is important to understand these changes when configuring and
managing Oracle Shared Server.

Certain changes are necessary to the memory structures within Oracle to provide the
Shared Server capability. Let’s see what changes within the Oracle infrastructure are neces-
sary to provide this support.

PGA and SGA Changes When Using
Oracle Shared Server
When Oracle Shared Server is configured, Oracle adds two new types of structures to the
SGA: request queues and response queues. These structures do not exist in a dedicated
server environment. There is one request queue for all dispatchers, but each dispatcher has
its own response queue. Therefore, if you have four dispatchers, you will have one request
queue and four response queues. The request queue is located in the SGA where the dis-
patcher places client requests. A Shared Server process executes each request and places the
completed request in the dispatcher’s response queue.

95127c11.indd 641 2/17/09 2:17:21 PM

642 Chapter 11 N Understanding Network Architecture

In a dedicated server environment, each server has a memory segment called a program
global area (PGA). The PGA is an area of memory where information about each client ses-
sion is maintained. This information includes bind variables, cursor information, and the
client’s sort area. In an Oracle Shared Server environment, this information is moved from
the PGA to an area of the SGA called the user global area (UGA). You can configure a spe-
cial area of the SGA called the large pool to accommodate the bulk of the UGA.

Figure 11.26 shows how the SGA and PGA structures differ between a dedicated server
and an Oracle Shared Server environment.

Each connection being serviced by a dispatcher is bound to a shared memory segment
and forms a virtual circuit. The dispatcher uses the shared memory segment to manage
communications between the client and the Oracle Database. The Oracle Shared Server
processes use the virtual circuits to send and receive information to the appropriate dis-
patcher process.

To limit the amount of UGA memory a session can allocate, set the
 PRIVATE_SGA resource limit in the user’s profile.

The Role of the Listener in an Oracle
Shared Server Environment
The listener plays an important role in the Oracle Shared Server environment. The listener
supplies the client with the address of the dispatcher to connect to when a user requests
connections to an Oracle Shared Server. The listener maintains a list of dispatchers avail-
able from the Oracle Shared Server. The Oracle background process PMON notifies the
listener as to which dispatcher is responsible for servicing each virtual circuit. The listener
is then aware of the number of connections that the dispatcher is managing. This informa-
tion allows the listener to take advantage of dispatcher load balancing.

Load balancing allows the listener to make intelligent decisions about which dispatcher
to redirect client connections to so that no one dispatcher becomes overburdened. When
the listener receives a connection request, it looks at the current connection load for each
dispatcher and redirects the client connection request to the least-loaded dispatcher. The
listener determines the least-loaded dispatcher for all nodes if Real Application Clusters
(RAC) are being used, followed by the least-loaded instance for the node, and finally by the
least-loaded dispatcher for the instance. By doing so, the listener ensures that connections
are evenly distributed across dispatchers.

The listener can either redirect the client connection to an available dispatcher or
directly hand off the request to the dispatcher. The latter is performed whenever possible
and is done typically when the listener and database service exist on the same node. When
the listener and database service exist on different nodes, the redirection method is used.

95127c11.indd 642 2/17/09 2:17:21 PM

Oracle Shared Server Infrastructure 643

F i gU r e 11. 26 SGA/PGA comparison of dedicated server and shared server

Database
Buffer Cache

Shared Server SGA

Dedicated Server PGA

Shared Pool

Dictionary
Cache

Library
Cache

Large PoolRedo-Log
Buffer

Database
Buffer Cache

Shared Pool

Dictionary
Cache

Library
Cache

Redo-Log
Buffer

Dedicated Server SGA

User Global Area

Request Queue Dispatcher Response Queue Dispatcher Response Queue

User Global Area

User Global Area

User Global Area

Cursor State

User Session Data

Stack Space

Shared Server PGA

Stack Space

When a client connection terminates, the listener is updated to reflect the change in the
number of connections that the dispatcher is handling.

Figure 11.27 illustrates the following steps in the Oracle Shared Server connection pro-
cess after the database has been started and the dispatcher processes have been started:

1. The client contacts the Oracle Database server after resolving the service name.

2. The listener validates the Oracle service name supplied by the client and hands off or
redirects the client connection to the least-busy dispatcher.

95127c11.indd 643 2/17/09 2:17:21 PM

644 Chapter 11 N Understanding Network Architecture

3. The listener sends information to the client so the client can redirect the connection to
the appropriate dispatcher process.

4. The dispatcher process manages the client server request.

5. PMON registers connection information with the listener.

F i gU r e 11. 27 The Shared Server connection process

sqlplus scott/tiger@iprd

Client Computer

Oracle Server

Server
or Dispatcher

Process

Listener
on Server

PMON

4

5

2

3

1

Configuring the Oracle Shared Server
You can configure Oracle Shared Server in a number of ways. You can configure it at the
time the database is created, you can use Enterprise Manager to configure it after the data-
base has been created, or you can manually configure it by editing initialization param-
eters. I’ll discuss the parameters necessary to configure Oracle Shared Server. I’ll also give
examples of how to configure Shared Server at database creation or after the database is
created using EM.

Defining the Shared Server Parameters
You configure Oracle Shared Server by adding parameters to the Oracle initialization file.
These parameters identify the number and type of dispatchers, the number of shared serv-
ers, and the name of the database you want to associate with Shared Server.

One advantage of Oracle 11g is that all the parameters necessary to manage Oracle
Shared Server can be changed dynamically. This fulfills one of your primary goals of ensur-
ing the highest degree of database availability possible. Let’s take a look at the parameters
used to manage Oracle Shared Server.

95127c11.indd 644 2/17/09 2:17:21 PM

Oracle Shared Server Infrastructure 645

Using the DISPATCHERS Parameter

The DISPATCHERS parameter defines the number of dispatchers that should start when the
instance is started. This parameter specifies the number of dispatchers and the type of pro-
tocol to which the dispatchers can respond. If you configured your database using the Data-
base Configuration Assistant, this parameter may already be configured.

You can add dispatchers dynamically using the ALTER SYSTEM command.
The DISPATCHERS parameter has a number of optional attributes. Table 11.8 describes sev-

eral of them. You need to specify only ADDRESS, DESCRIPTION, or PROTOCOL for a DISPATCHERS
definition. All the attributes for this parameter can be abbreviated.

tA b le 11. 8 Summary of DISPATCHER Attributes

Attribute Abbreviations Description

ADDRESS ADD or ADDR Specifies the network protocol address of the end point on
which the dispatchers listen.

CONNECTIONS CON or CONN The maximum number of network connections per dis-
patcher. The default value varies by operating system.

DESCRIPTION DES or DESC The network description of the end point where the dis-
patcher is listening, including the protocol being listened for.

DISPATCHERS DIS or DISP The number of dispatchers to start when the instance is
started. The default is 1.

LISTENER LIS or LIST The address of the listener to which PMON sends connec-
tion information. This attribute needs to be set only when
the listener is nonlocal, it uses a port other than 1521, the
default port and the LOCAL_LISTENER parameter have not
been specified, or the listener is resident on a different
network node.

PROTOCOL PRO or PROT The network protocol for the dispatcher to listen for. This
is the only required attribute.

SESSIONS SES or SESS The maximum number of network sessions allowable for
this dispatcher. This will vary by operating system but pre-
dominantly defaults to 16KB.

SERVICE SER or SERV The Oracle net service name that the dispatcher registers
with the listener. If it is not supplied, the dispatcher regis-
ters with the services listed in the SERVICE_NAMES initializa-
tion parameter.

POOL POO Provides connection pooling capabilities to provide the
ability to handle a larger number of connections.

95127c11.indd 645 2/17/09 2:17:21 PM

646 Chapter 11 N Understanding Network Architecture

The two main attributes are DISPATCHERS and PROTOCOL. For example, if you want to
configure three TCP/IP dispatchers and two IPC dispatchers, you set the parameter as
follows:

DISPATCHERS = “(PRO=TCP)(DIS=3)(PRO=IPC)(DIS=2)”

You must consider several factors (discussed in the following section) when determining
the appropriate setting for the DISPATCHERS parameter.

DetermiNiNg the NUmber OF DispAtchers tO stArt

The number of dispatchers you start depends on your particular configuration. Your oper-
ating system may place a limit on the number of connections that one dispatcher can han-
dle. Consult your operating-system documentation to obtain this information.

When determining the number of dispatchers to start, consider the type of work that
the database sessions will be performing and the number of concurrent connections that
your database will be supporting. The more data-intensive the operations and the larger the
number of concurrent connections, the fewer sessions each dispatcher should handle. Gen-
erally speaking, a starting point is to allow 50 concurrent sessions for each dispatcher.

You can use the following formula to determine the number of dispatchers to configure
initially:

Number of Dispatchers = CEIL (maximum number of concurrent sessions /

 connections per dispatcher)

For example, if you have 500 concurrent TCP/IP connections and you want each dispatcher
to manage 50 concurrent connections, you need 10 dispatchers. You set your DISPATCHERS
parameter as follows:

DISPATCHERS = “(PRO=TCP)(DIS=10)”

You can determine the number of concurrent connections by querying the V$SESSION
view. This view shows you the number of clients currently connected to the Oracle server.
Here is an example of the query:

SQL> select sid,serial#,username,server,program from v$session

 2 where username is not null;

 SID SERIAL# USERNAME SERVER PROGRAM

--------- --------- ---------- --------- ---------------

 7 13 SCOTT DEDICATED SQLPLUS.EXE

 8 12 SCOTT DEDICATED SQLPLUS.EXE

 9 4 SYSTEM DEDICATED SQLPLUS.EXE

In this example, three users are connected to the server. You can ignore any sessions that
do not have a username because these would be the Oracle background processes such as
PMON and SMON. If you take a sampling of this view over a typical work period, you get
an idea of the average number of concurrent connections for your system. You can then use
this number as a guide when you establish the starting number of dispatchers.

95127c11.indd 646 2/17/09 2:17:22 PM

Oracle Shared Server Infrastructure 647

mANAgiNg the NUmber OF DispAtchers

You can start additional dispatchers or remove dispatchers dynamically using the ALTER
SYSTEM command. You can start any number of dispatchers up to the MAX_DISPATCHERS set-
ting, which is discussed next. Here is an example of adding three TCP/IP dispatchers to a
system configured with two TCP/IP dispatchers:

ALTER SYSTEM SET DISPATCHERS=”(PRO=TCP)(DIS=5)”;

Notice that you set the number to the total number of dispatchers you want, not to the
number of dispatchers you want to add.

You use additional attributes to the DISPATCHERS parameter to configure connection
pooling.

cONFigUriNg cONNectiON pOOliNg with the DispAtchers pArAmeter

Connection pooling gives Oracle Shared Server the ability to handle a larger volume of con-
nections by automatically disconnecting idle connections and using the idle connections to
service incoming client requests. If the idle connections become active again, the connection
to the dispatchers is automatically reestablished. This provides added scalability to Oracle
Shared Server. If you manage applications that have a large number of possible client con-
nections but also have a large number of idle connections, you might want to consider
configuring this Oracle Shared Server option. Web applications are good candidates for
connection pooling because they are typically composed of a large client base with small
numbers of concurrent connections.

You enable connection pooling by adding attributes to the DISPATCHERS parameter. The
POOL attribute specifies that a dispatcher is allowed to perform connection pooling. Set this
attribute to the value ON to enable connection pooling for a dispatcher. You also need to
specify the TICK attribute, which sets the number of 10-minute increments of inactivity for
a connection to be considered idle.

Here is an example that turns on connection pooling:

DISPATCHERS=”(PROTOCOL=tcp)(DISPATCHERS=1)(POOL=on)(TICK=1)

 (CONNECTIONS=500)(SESSIONS=1000)”

In this example, you want to turn on connection pooling. An idle connection is con-
sidered any connection with 10 minutes of inactivity. You want the TCP/IP dispatcher to
handle a maximum of 500 concurrent connections and a maximum of 1,000 sessions per
dispatcher.

Using the MAX_DISPATCHERS Parameter

You set the MAX_DISPATCHERS parameter to the maximum number of dispatchers you antici-
pate needing for Oracle Shared Server. In Oracle 11g, this parameter can be set dynamically
using the ALTER SYSTEM command. The maximum number of processes that a dispatcher
can run concurrently is operating system–dependent. Use the following formula to set this
parameter:

MAX_DISPATCHERS = (maximum number of concurrent sessions/connections

 per dispatcher)

95127c11.indd 647 2/17/09 2:17:22 PM

648 Chapter 11 N Understanding Network Architecture

Here is an example of the parameter and adjusting the parameter using the ALTER
SYSTEM command:

ALTER SYSTEM SET MAX_DISPATCHERS=10;

In the ALTER SYSTEM example, the MAX_DISPATCHERS parameter is being set to 10.
This will be the maximum number of dispatchers that Oracle Shared Server can start
simultaneously.

Using the SHARED_SERVERS Parameter

The SHARED_SERVERS parameter specifies the minimum number of shared servers to start
and retain when the Oracle instance is started. A setting of 0 or no setting means that
shared servers will not be used. If dispatchers have been configured, the default value of
SHARED_SERVERS is 1. This parameter can be changed dynamically, so even if shared servers
are not configured when the instance starts, they can be configured without bringing the
Oracle instance down and restarting it.

The number of servers necessary depends on the type of activities your users are perform-
ing. Oracle monitors the response queue loads, starts additional shared servers as needed,
and removes these shared servers when the servers are no longer needed. Generally, for the
types of high-think applications that will be using shared server connections, 25 concurrent
connections per shared server should be adequate. If the users are going to require larger
result sets or are doing more intensive processing, you’ll want to reduce this ratio.

Here is an example of setting the SHARED_SERVERS parameter:

SHARED_SERVERS = 3

You can start additional Oracle shared servers or reduce the number of Oracle shared
servers dynamically using the ALTER SYSTEM command. You can start any number of Oracle
shared servers up to the MAX_SERVERS setting. Here is an example of adding three additional
Oracle shared servers to a system initially configured with two shared servers:

ALTER SYSTEM SET SHARED_SERVERS = 5;

Notice that you set the number to the total number of Oracle shared servers you want,
not to the number of Oracle shared servers you want to add.

Using the SHARED_SERVER_SESSIONS Parameter

The SHARED_SERVER_SESSIONS parameter specifies the total number of Oracle Shared Server
sessions that are allowed for the Oracle instance. If the number of Oracle Shared Server cli-
ent connections reaches this limit, any clients that attempt to connect via an Oracle Shared
Server connection will receive the following error message:

ERROR:

ORA-00018 maximum number of sessions exceeded

Once the number of Oracle Shared Server connections falls below this number, addi-
tional Shared Server connections can be established. Using this parameter limits the total
number of Shared Server sessions. Dedicated server connections are still allowed if this
limit is reached. This parameter can be set in the Oracle initialization file and can be

95127c11.indd 648 2/17/09 2:17:22 PM

Oracle Shared Server Infrastructure 649

modified dynamically using the ALTER SYSTEM command. Here is an example of how you
specify the initialization parameter:

SHARED_SERVER_SESSIONS = 2

Here is an example of how to dynamically modify the parameter using the ALTER SYSTEM
command:

ALTER SYSTEM SET SHARED_SERVER_SESSIONS = 5;

Using the MAX_SHARED_SERVERS Parameter

The MAX_SHARED_SERVERS parameter sets the maximum number of Oracle shared servers
that can be running concurrently. This number can be modified dynamically using the
ALTER SYSTEM command. Generally, you should set this parameter to accommodate your
heaviest work times. If no value is specified for MAX_SHARED_SERVERS, the number of Oracle
shared servers that can be started is unlimited, which is also the default setting.

The V$SHARED_SERVER_MONITOR view can assist in determining the maximum number of
Oracle shared servers that have been started since the Oracle instance was started.

Here is an example of the parameter and the ALTER SYSTEM command that will change
the value MAX_SHARED_SERVER to 20:

ALTER SYSTEM SET MAX_SHARED_SERVERS = 20;

Using the CIRCUITS Parameter

The CIRCUITS parameter manages the total number of virtual circuits allowed for all
incoming and outgoing network sessions. There is no default value for this parameter, and
it does influence the total size of the SGA at system startup. Generally, you do not manually
configure this parameter unless there is a need to specifically limit the number of virtual
circuits.

Here is an example of the parameter:

CIRCUITS = 200

You can also use the ALTER SYSTEM command to change the parameter as follows:

ALTER SYSTEM SET CIRCUITS = 300;

Now that you understand the parameters that are needed to use the Oracle Shared
Server, you need to know how to configure these parameters.

Managing a Shared Server
If the Oracle Shared Server parameters were configured dynamically using the ALTER
SYSTEM command or at database creation, it isn’t necessary to stop and start the server.
After you configure the Oracle Shared Server parameters, you need to understand how to
view information about Oracle Shared Server. Oracle provides a set of dynamic performance
views that you can use to gather information about the Oracle Shared Server configuration
and the performance of Oracle Shared Server. You can also gather information about Oracle
Shared Server connections by using the lsnrctl utility.

95127c11.indd 649 2/17/09 2:17:22 PM

650 Chapter 11 N Understanding Network Architecture

In the following sections, I will explain how to display information about Oracle Shared
Server connections using the listener utility and discuss the various dynamic performance
views used to manage Shared Server.

Displaying Information about Shared Server Connections Using
the Listener Utility
You can use the lsnrctl command-line listener utility to display information about the
dispatcher processes. Remember from the previous section that the Oracle background pro-
cess PMON registers dispatcher information with the listener. The listener keeps track of
the current connection load for all the dispatchers.

Use the lsnrctl services query to view information about dispatchers. The following
example shows a listener listening for two TCP/IP dispatchers:

$ lsnrctl services

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 18-AUG-2008 00:01:47

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost.localdomain)
(PORT=1521)))

Services Summary...

Service “11GR11” has 1 instance(s).

 Instance “11GR11”, status READY, has 2 handler(s) for this service...

 Handler(s):

 “DEDICATED” established:21 refused:0 state:ready

 LOCAL SERVER

 “D000” established:0 refused:0 current:0 max:1000 state:ready

 DISPATCHER <machine: localhost.localdomain, pid: 3375>

 (ADDRESS=(PROTOCOL=tcp)(HOST=localhost.localdomain)(PORT=30767))

Service “11GR11XDB” has 1 instance(s).

 Instance “11GR11”, status READY, has 0 handler(s) for this service...

Notice that the listing displays how many connections each dispatcher is managing, the
listening location of the dispatcher, and the process ID of the dispatcher. The display also
shows how many total client connections were established and how many were refused by
each dispatcher since the time it was started. This summary information can be helpful
when looking at how well the connections are balanced across all the dispatchers. It also
can be helpful to see how many connections were refused. A connection can be refused if
a user supplies an invalid user ID or password or reaches the MAX_SHARED_SERVER limit.

Requesting a Dedicated Connection in a Shared Server Environment
You can configure Oracle Shared Server connections and dedicated server connections
to connect to a single Oracle server. This is advantageous if you have a mix of database

95127c11.indd 650 2/17/09 2:17:22 PM

Oracle Shared Server Infrastructure 651

activity. Some types of activities are well suited to Oracle Shared Server connections, and
other types of activities are better suited to dedicated connections.

By default, if Oracle Shared Server is configured, a client is connected to a dispatcher
unless the client explicitly requests a dedicated connection. As part of the connection
descriptor, the client has to send information requesting a dedicated connection. Clients
can request dedicated connections if the names resolution method is local naming. You
cannot use this option with host naming. If local naming is being used, you can make the
necessary changes to the tnsnames.ora file to allow dedicated connections. You can make
these changes manually, or you can use Oracle Net Manager.

Configuring Dedicated Connections Manually

If you are using local naming, you can add a parameter to the service-name entry in the
tnsnames.ora file. The parameter (SERVER=DEDICATED) is added to the DBA net service
name. Here is an example of the entry in the tnsnames.ora file:

ORCL =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = XYZ01)(PORT = 1521))

 (CONNECT_DATA =

 (SERVICE_NAME = orcl)

 (SERVER = DEDICATED) # Request a dedicated connection for DBA

)

)

Configuring Dedicated Connections Using Oracle Net Manager

You can use Oracle Net Manager to modify the connection type for a service. In Windows,
Oracle Net Manager is a tool; in Unix, you open Oracle Net Manager by executing netmgr.

After you start Oracle Net Manager, follow these steps:

1. Under Service Naming in the left pane, select the service name you want to modify.

2. Click the Connection Type drop-down list in the Service Identification section, and
choose Dedicated Server.

choosing the Appropriate connection method makes a Difference

As a DBA, you’ve configured Oracle Shared Server and are monitoring the dispatchers
and shared server performance daily. The Shared Server environment has been running
smoothly for months, but your monitoring starts to indicate that the wait times have
increased significantly over the past week. You are also starting to receive complaints
from the user community regarding system response time.

95127c11.indd 651 2/17/09 2:17:22 PM

652 Chapter 11 N Understanding Network Architecture

You start to investigate whether there have been any significant changes to the hardware,
the network, or the database application. You confer with the systems administration and
network group and find that no changes have taken place. Then your discussion with the
applications group reveals that a new ad hoc reporting utility has been installed and a
small number of administrators are starting to use the tool. These users are connecting
via Oracle Shared Server and are requesting large data sets via the ad hoc reporting tool.

You suggest to the applications team that the administrators connect to the database
using dedicated connections to alleviate the load on the shared servers. After modify-
ing the appropriate network files, you again monitor the shared server wait times and
discover that the waits have fallen back in line with what you were seeing prior to the
deployment of the ad hoc reporting tool.

Summary
This chapter provided the foundation of knowledge you will need when you are designing,
configuring, and managing the Oracle network infrastructure. Oracle Net manages the
flow of information from client computers to Oracle servers and forms the foundation of all
networked computing in the Oracle environment. Oracle Net provides services that can be
divided into five main categories: connectivity, directory services, scalability, security, and
accessibility.

Oracle Net provides support to n-tier architecture, where middleware components such
as application servers are situated between the client and database server.

The listener is the main server-side component in the Oracle Net environment. Listener
configuration information is stored in the listener.ora file, and you manage the listener
using the lsnrctl command-line utility. You configure the listener by using the Oracle Net
Manager. The Oracle Net Manager provides a graphical interface for creating most of the
Oracle Net files you will use for Oracle, including the listener.ora file. If multiple listen-
ers are configured, each one has a separate entry in the listener.ora file.

Depending on your network environment, the client configuration setups can vary from
no work to configuring a number of files on the client. Local naming is the most popular of
the names resolution methods, and it uses the tnsnames.ora file, which is typically located
on each client, to resolve net service names. The client looks up the net service name in the
tnsnames.ora file and uses the resulting connect descriptor information to connect to the
Oracle server.

Shared Server is a configuration of the Oracle server that allows you to support a greater
number of connections without the need for additional resources. In this configuration,
user connections share processes called dispatchers. Dispatchers replace the dedicated
server processes in a dedicated server environment. The Oracle Server is also configured

95127c11.indd 652 2/17/09 2:17:22 PM

Exam Essentials 653

with shared server processes that can process the requests of many clients. You add a num-
ber of parameters to the init.ora file to configure Shared Server. You can add dispatchers
and shared servers dynamically after the Oracle server is started. You can add more shared
servers and dispatchers up to the maximum value specified.

Exam Essentials

Understand what Oracle Net is and the functionality it provides. Be able to list the five
categories of functionality that Oracle Net provides and explain the functionality that falls
into each category. Also understand what functionality the Oracle Shared Server and Ora-
cle Connection Manager options provide. In addition, be able to define Oracle Advanced
Security and know when to use it.

Be able to define the main responsibilities of the Oracle listener. To fully understand the
function of the Oracle listener, you should understand how the listener responds to client
connection requests. In addition, know the difference between bequeath connections and
redirect connections, and know under what circumstances the listener will use each. Also,
be able to outline the steps involved in using each of these connection types.

Be able to define the listener.ora file and the ways in which the file is created. To
understand the purpose of this file, know its default contents and how to change it using
the various Oracle tools. In addition, be able to define the sections of the file and know the
definitions of the optional parameters it contains. Also understand the structure of the
listener.ora file when one or more listeners are configured.

Understand how to use the lsnrctl command-line utility. To start up and shut down
the listener, know how to use the lsnrctl command-line utility. Be able to explain the
command-line options for the lsnrctl utility, such as services, status, and reload. When
using this utility, also know the options available to you, and be able to define the various
set commands.

Understand the concepts of static and dynamic service registration. Be able to define
the difference between static service registration and dynamic service registration and
know the advantages of using dynamic service registration over static service registration.
Also, be aware of the situations in which you have to use static service registration. Lastly,
be familiar with the initialization parameters that you will need to set in order to enable
dynamic service registration.

Define the Oracle client-side names resolution options. Be able to define the Oracle client-
side names resolution options. Know in which situations to use local naming, Oracle Easy
Connect, host naming, and OID.

Define the local naming method. In addition to knowing the meaning of the local naming
method and what it does, understand how to use the Oracle Net Manager to configure this
names resolution method. Understand the primary file used in the local naming method,
the tnsnames.ora file.

95127c11.indd 653 2/17/09 2:17:22 PM

654 Chapter 11 N Understanding Network Architecture

Define the contents and structure of the tnsnames.ora file. Be able to describe the
tnsnames.ora file and the various sections of the file and to explain how the file is used.
Understand the contents of the tnsnames.ora file so that you can identify syntax problems
with the structure of entries in the file. Be familiar with the common locations of this file
and how to set the TNS_ADMIN parameter to override the default location of this and the
other client-side network files.

Define and correct client-side errors. Understand the types of client-side connection errors
that can occur. Be able to define these errors and understand the situations in which a client
might encounter them.

Define Oracle Shared Server. Be able to list the advantages of Shared Server vs. a dedi-
cated server and when it is appropriate to consider both options.

Understand the architecture of Oracle Shared Server. Be able to summarize the steps that
a client takes to initiate a connection with a shared server and the processes behind those
steps. Understand what happens during client request processing, and outline the steps.

Understand the changes that are made in the SGA and the PGA. Make sure you under-
stand that in a Shared Server environment, many PGA structures are moved in the large
pool inside the SGA. This means the SGA will become larger and that the large pool will
need to be configured in the init.ora file.

Know how to configure Oracle Shared Server. Be able to define each of the parameters
involved in the configuration of Oracle Shared Server. Know what parameters can be
dynamically modified and what parameters require the Oracle instance to be restarted to
take effect.

Know how to configure clients running in Shared Server mode. Be able to configure
clients that need a dedicated connection to Oracle if it is running in Shared Server mode.

95127c11.indd 654 2/17/09 2:17:22 PM

Review Questions 655

Review Questions
1. All of the following are examples of networking architectures except which one?

A. Client/server.

B. n-tier.

C. Single-tier.

D. Two-tier.

E. All the above are examples of network architectures.

2. Which of the following files must be present on the Oracle server to start a nondefault
Oracle listener?

A. listener.ora

B. lsnrctl.ora

C. sqlnet.ora

D. tnsnames.ora

3. Which of the following is the correct way to start a listener called LISTENER?

A. lsnrctl startup listener

B. lsnrctl start

C. listener start

D. listener start listener

4. When dynamic service registration is used, you will not see the service listed in which of the
following files where it would normally be located?

A. sqlnet.ora

B. tnsnames.ora

C. listener.ora

D. None of the above

5. What are the ways in which a client can resolve a net service name? (Choose all that apply.)

A. Local naming

B. Host naming

C. Easy Connect

D. Oracle Global Naming

E. All the above

6. Connection Manager provides which of the following?

A. Multiplexing

B. Cross-protocol connectivity

C. Network access control

D. All the above

95127c11.indd 655 2/17/09 2:17:22 PM

656 Chapter 11 N Understanding Network Architecture

7. Which is a requirement for using host naming?

A. You must use tnsnames.ora on the client.

B. You must be using TCP/IP.

C. You must have an OID present.

D. You must have a sqlnet.ora file present on the client.

E. None of the above.

8. Which of the following statements about tnsnames.ora is false?

A. It is used to resolve an Oracle service name.

B. It can exist on the client.

C. It is used for local naming.

D. It does not support TCP/IP.

9. A client receives the following error message:
“ORA-12154 TNS:could not resolve the connect identifier specified”

Which of the following could be possible causes of the error? (Choose all that apply.)

A. The listener is not running on the Oracle server.

B. The user entered an invalid net service name.

C. The user supplied the correct net service name, but the net service name is misspelled
in the tnsnames.ora on the client file.

D. The listener is not configured to listen for this service.

10. What portion of the tnsnames.ora file specifies the name or IP address of the server where
the listener process is listening?

A. CONNECT_DATA

B. PORT

C. SERVICE_NAME

D. HOST

11. A client wants to connect to the database dbprod.com located on the dbprod.com server to
a nondefault port using Oracle Easy Connect. Which of the following connect strings is the
best choice for the client use?

A. CONNECT scott/tiger@dbprod.com:1522

B. CONNECT scott/tiger@1521:dbprod.com/dbprod.com

C. CONNECT scott/tiger@dbprod.com/1522:dbprod.com

D. CONNECT scott/tiger@dbprod.com:1521/dbprod.com

E. CONNECT scott/tiger@dbprod.com:1522/dbprod.com

95127c11.indd 656 2/17/09 2:17:23 PM

Review Questions 657

12. All the following are reasons to configure the server using Shared Server except which one?

A. Overall memory utilization is reduced.

B. The system is predominantly used for decision support with large result sets returned.

C. The system is predominantly used for small transactions with many users.

D. The number of idle connections on the server is reduced.

13. Which of the following is true about Shared Server?

A. Dedicated connections cannot be made when Shared Server is configured.

B. It is recommended that index rebuilds be performed when connected via Shared Server.

C. The database can be started when connected via Shared Server.

D. The database cannot be stopped when connected via Shared Server.

14. The administrator wants to allow a user to connect via a dedicated connection into a data-
base configured in Shared Server mode. Which of the following lines accomplishes this?

A. (SERVER=DEDICATED)

B. (CONNECT=DEDICATED)

C. (INSTANCE=DEDICATED)

D. (MULTITHREADED=FALSE)

E. None of the above

15. In which of the following files would you find the Shared Server configuration parameters?

A. listener.ora

B. mts.ora

C. init.ora

D. tnsnames.ora

E. sqlnet.ora

16. What is the first step that the dispatcher performs after it receives a request from the user?

A. Pass the request to a shared server.

B. Place the request in a request queue in the PGA.

C. Place the request in a request queue in the SGA.

D. Process the request.

17. When configured in Shared Server mode, which of the following is contained in the PGA?

A. Cursor state

B. Sort information

C. User session data

D. Stack space

E. None of the above

95127c11.indd 657 2/17/09 2:17:23 PM

658 Chapter 11 N Understanding Network Architecture

18. Which of the following is false about request queues?

A. They reside in the SGA.

B. They are shared by all the dispatchers.

C. Each dispatcher has its own request queue.

D. The shared server processes remove requests from the request queue.

19. What is the process that notifies the listener after a database connection is established?

A. SMON

B. DBWR

C. PMON

D. LGWR

20. Which command can you execute to get details about the number of sessions connected via
Shared Server?

A. lsnrctl sessions

B. lsnrctl conn

C. lsnrctl status

D. lsnrctl services

E. None of the above

95127c11.indd 658 2/17/09 2:17:23 PM

Answers to Review Questions 659

Answers to Review Questions
1. E. All these are examples of network connectivity configurations. Networking can be as

simple as a dumb terminal connected directly to a server via a serial connection. It can also
be as complex as an n-tier architecture that involves clients, middleware, the Internet, and
database servers.

2. A. The listener is the process that manages incoming connection requests. The listener
.ora file is used to configure the listener and must be configured to start a nondefault listener.
The sqlnet.ora file is an optional client- and server-side file. The tnsnames.ora file is
used for doing local naming resolution. There is no such file as lsnrctl.ora. You do not
need the listener.ora file to start a default listener on port 1521.

3. B. Because the default listener name is LISTENER, simply enter lsnrctl start. The name
LISTENER is assumed to be the listener to start in this case.

4. C. When services are dynamically registered with the listener, their information is not pres-
ent in the listener.ora file.

5. A, B, C. Oracle uses service names in networks in much the same way it uses synonyms in
the database. Service names provide location transparency and hide the complexity of con-
nect string information. You can configure Oracle Net to connect in several ways, including
host naming, local naming, OID, and Oracle Easy Connect. Oracle Global Naming is not a
valid Oracle option.

6. D. Connection Manager is a middleware solution that provides for the multiplexing of con-
nections, cross-protocol connectivity, and network access control. All the answers describe
Connection Manager.

7. B. Host naming is typically used in small installations that have few Oracle Databases.
This is an attractive option when you want to minimize client-side configuration. TCP/IP is
a requirement when you use host naming.

8. D. A tnsnames.ora file is configured when you want to use local naming, and it typically
exists on the client workstation. It is also used to resolve a service name. The tnsnames.ora
file used in local naming does indeed support TCP/IP.

9. B, C. Supplying a net service name that is not contained in the tnsnames.ora file can cause
this error. Problems with the tnsnames.ora file can cause this error too. Listener problems
will not cause this error.

10. D. The HOST portion specifies the name of the server to contact. CONNECT_DATA specifies
the database service to connect to. The PORT portion specifies the location where the listener
is listening on the HOST. Option C, SERVICE_NAME, is the name of the actual database service.

11. A. The correct syntax to use with the Oracle Easy Connect method when you are connect-
ing to a non-URL location is connect username/password@host:port/service_name. If
the service name and the host are identical, you do not have to include the service name.
If the port is any port other than the default port of 1521, it must be specified. Because you

95127c11.indd 659 2/17/09 2:17:23 PM

660 Chapter 11 N Understanding Network Architecture

want to connect to a nondefault port where the database name and the hostname are the
same, the best answer is A.

12. B. Shared Server is a scalability option of Oracle. It provides a way to increase the number
of supported user processes while reducing the overall memory usage. This configuration is
well suited to high-volume, small-transaction–oriented systems with many users connected.
Because users share processes, the number of overall idle processes is also reduced. It is not
well suited for large data retrieval type applications such as decision support.

13. D. Users can still request dedicated connections in a Shared Server configuration. Bequeath
and dedicated connections are one and the same. The database cannot be stopped or
started by the DBA when connected over a Shared Server connection.

14. A. A user must explicitly request a dedicated connection when a server is configured in
Shared Server mode. Otherwise, the user gets a Shared Server connection. The correct
parameter is (SERVER=DEDICATED).

15. C. The Shared Server configuration parameters exist in the init.ora or the SPFILE file on
the Oracle Server machine.

16. C. Once a dispatcher receives a request from the user process, it places the request on the
request queue. Remember that in a Shared Server environment, a request can be handled by
a shared server process. This is made possible by placing the request and user information
in the SGA.

17. D. A small PGA is maintained even though most of the user-specific information is moved
to the SGA (specifically called the UGA in the shared pool or the large pool). The only
information left in the reduced PGA is stack space.

18. C. Request queues reside in the SGA, and there is one request queue per instance. This is
where shared server processes pick up requests that are made by users. Dispatchers have
their own response queues, but they share a single request queue.

19. C. The PMON process notifies the listener after a client connection is established. This
is so that the listener can keep track of the number of connections being serviced by each
dispatcher.

20. D. Dispatchers register with listeners so that when a listener redirects a connection to a
dispatcher, the listener knows how many active connections the dispatcher is serving. The
lsnrctl services command summarizes the number of connections established, con-
nections currently active, and other valuable information regarding Shared Server. The
lsnrctl status command summarizes only dispatchers and does not display any details
about connections.

95127c11.indd 660 2/17/09 2:17:23 PM

Chapter

12
Implementing
Security and Auditing

OrAcle DAtAbASe 11g:
ADmInIStrAtIOn I exAm ObjectIveS
cOvereD In thIS chApter:

Administering User SecurityÛÛ

Create and manage database user accounts ÛN

Grant and revoke privilegesÛN

Create and manage rolesÛN

Create and manage profilesÛN

Implementing Oracle Database SecurityÛÛ

Database security and principle of least privilegeÛN

Work with standard database auditingÛN

95127c12.indd 661 2/17/09 2:43:43 PM

One of the key functions of a DBA is to protect your data
and database by controlling database access; DBAs must also
keep track of key database activities. They must maintain the

security, integrity, performance, and availability of their databases. In this chapter, you will
learn about managing database security, including how to manage user accounts; implement
password expiration and complexity rules; and configure security policies using object, sys-
tem, and role privileges. To further enhance your ability to monitor and manage database
access, you will also learn how to use auditing mechanisms to fine-tune your security policy,
identify attempts to access areas of your database that a user is not authorized to visit, and
identify intrusion attempts.

Creating and Managing User Accounts
One of the most basic administrative requirements for a DBA is to identify and manage the
users. The first step to doing this is to make sure that each user who connects to the Oracle
Database 11g has an account. An account shared between many users is difficult to trouble-
shoot and audit and is therefore a poor security practice that should be avoided.

You create a new database account with the CREATE USER statement. When you create
a new account, at a minimum the user should have a unique username and authentication
method. You can optionally assign additional attributes to the user account with the CREATE
USER statement. To change or assign new attributes to an existing user account, use the
ALTER USER statement.

The terms user account, account, user, and schema are all interchange-
able and refer to a database user account. A schema is a user who owns
objects. All schemas are users, but not all users are schemas.

The following is an example of the CREATE USER statement with all the optional clauses
available:

SQL> CREATE USER james

 2 IDENTIFIED BY mia0101

 3 DEFAULT TABLESPACE users

 4 TEMPORARY TABLESPACE temp

 5 QUOTA UNLIMITED ON users

 6 PROFILE default

95127c12.indd 662 2/17/09 2:43:43 PM

Creating and Managing User Accounts 663

 7 PASSWORD EXPIRE

 8 ACCOUNT UNLOCK

SQL> /

User created.

SQL>

In the following sections, you’ll learn about the clauses presented in the CREATE USER
statement.

Configuring Authentication
When a user connects to an Oracle Database instance, the user account must be authenti-
cated. Authentication involves validating the identity of the user and confirming that the
user has the authority to use the database. Oracle offers three authentication methods for
your user accounts: password authentication (the most common), external authentication,
and global authentication.

I’ll cover each of these authentication methods in the following sections.

Password-Authenticated Users
When a user with password authentication attempts to connect to the database, the data-
base verifies that the username is a valid database account and that the password supplied
matches that user’s password as stored in the database.

Password-authenticated user accounts are the most common and are sometimes referred
to as database-authenticated accounts. With a password-authenticated account, the data-
base stores the encrypted password in the data dictionary. For example, to create a password-
authenticated user named rajesh with a password of welcome, you execute the following:

CREATE USER rajesh IDENTIFIED BY welcome;

The keywords IDENTIFIED BY password (in this case, password is welcome) tell the data-
base that this user account is a password-authenticated account.

The user password in the Oracle 11g database is case sensitive. In earlier
releases of Oracle, user passwords were case insensitive.

Externally Authenticated Users
When an externally identified user attempts to connect to the database, the database verifies
that the username is a valid database account and trusts that the operating system has per-
formed authentication.

Externally authenticated user accounts do not store or validate a password in the data-
base. These accounts are sometimes referred to as OPS$ accounts, because when Oracle

95127c12.indd 663 2/17/09 2:43:43 PM

664 Chapter 12 N Implementing Security and Auditing

introduced them in Oracle 6, the account had to be prefixed with the keyword OPS$.
With all releases of the database since then, including Oracle 11g, you can configure this
OS_AUTHENT_PREFIX in the initialization file or spfile. For example, to create an externally
authenticated user named oracle using the default OS_AUTHENT_PREFIX, you execute the
following:

CREATE USER ops$oracle IDENTIFIED EXTERNALLY;

The keywords IDENTIFIED EXTERNALLY tell the database that this user account is an
externally authenticated account. If you log in to the server as user oracle, you can log in
to the database without providing a username or password, as shown here:

$ sqlplus /

SQL*Plus: Release 11.1.0.6.0 - Production on Mon Sep 1 17:07:46 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL>

Externally authenticated accounts are frequently used for administrative scripts so that a
password does not have to be embedded in a human-readable script.

Globally Authenticated Users
When a globally identified user attempts to connect to the database, the database verifies
that the username is valid and passes the connection information to the advanced security
option for authentication. The advanced security option supports several mechanisms for
authentication, including biometrics, X.509 certificates, Kerberos, and RADIUS.

Globally authenticated user accounts do not store or validate a password in the database
as a password-authenticated account does. These accounts rely on authentication provided
by a service supported through the advanced security option.

The syntax for creating a globally authenticated account depends on the service called,
but all use the keywords IDENTIFIED GLOBALLY, which tells the database to engage the
advanced security option for authentication. Here is an example:

CREATE USER spy_master IDENTIFIED GLOBALLY AS ‘CN=spy_master, OU=tier2,

 O=security, C=US’;

Assigning Tablespaces and Quotas
Every user is assigned a default tablespace. When a user creates tables or indexes, they are
created on the tablespace specified by the TABLESPACE clause. If the TABLESPACE clause is
not provided, the segments will be created on the user’s default tablespace. If you execute a
CREATE TABLE statement and do not explicitly specify a tablespace, the database uses your
default tablespace.

95127c12.indd 664 2/17/09 2:43:43 PM

Creating and Managing User Accounts 665

If you do not explicitly assign a default tablespace to a user at the time you create the
user, the database assigns the database’s default tablespace to the new user account. To
assign a default tablespace to either a new user via a CREATE USER statement or an existing
user, use the keywords DEFAULT TABLESPACE tablespace_name, like this:

CREATE USER rajesh IDENTIFIED BY welcome

DEFAULT TABLESPACE users;

Or use an ALTER USER statement:

ALTER USER rajesh

DEFAULT TABLESPACE users;

By default, the database default tablespace is SYSTEM. To change the database default
tablespace (the value that users inherit if no default tablespace is provided), use the ALTER
DATABASE statement, like this:

ALTER DATABASE DEFAULT TABLESPACE users;

Assigning a Temporary Tablespace
Every user is assigned a temporary tablespace in which the database stores temporary seg-
ments. Temporary segments are created during large sorting operations, such as ORDER BY,
GROUP BY, SELECT DISTINCT, MERGE JOIN, or CREATE INDEX.

Temporary segments are also used when a temporary table is used. The database creates
and drops temporary segments transparently to the user. Because of the transitory nature of
temporary segments, you must use a dedicated tablespace of type TEMPORARY for your user’s
temporary tablespace setting.

If you do not explicitly assign a temporary tablespace at user creation time, the database
assigns the database default temporary tablespace to the new user account. Use the keywords
TEMPORARY TABLESPACE tablespace_name to assign a temporary tablespace either to a new
user via the CREATE USER statement:

CREATE USER rajesh IDENTIFIED BY welcome

DEFAULT TABLESPACE users

TEMPORARY TABLESPACE temp;

or to an existing user via an ALTER USER statement:

ALTER USER rajesh

TEMPORARY TABLESPACE temp;

If the SYSTEM tablespace is locally managed at the time of database creation, you’re required
to provide a non-SYSTEM temporary-type tablespace as the database default temporary
tablespace. To change the database default temporary tablespace, use the ALTER DATABASE
statement, like this:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temp;

You can query the data dictionary view DATABASE_PROPERTIES to view
the current default tablespace and temporary tablespace assignment for the
database.

95127c12.indd 665 2/17/09 2:43:44 PM

666 Chapter 12 N Implementing Security and Auditing

Assigning Space Quotas
By default, Oracle 11g does not allocate any space quota in any tablespace when the user
is created. To create segments (tables, indexes, and so on) in any tablespace, the user must
have space quota granted on the tablespace. Tablespace quotas limit the amount of disk
space that a user can consume. The default quota is none, which is why you need to assign
a quota before you can create objects in a tablespace. You can assign a space usage quota at
the same time you create a user, with the CREATE USER statement:

CREATE USER chip IDENTIFIED BY “Seek!r3t”

QUOTA 100M ON USERS;

Or you can assign it after the user has been created with the ALTER USER statement:

ALTER USER bart

QUOTA UNLIMTED ON USERS;

The special keyword UNLIMITED tells the database that the user should not have a preset
limit on the amount of space that their objects can consume.

The user can create objects in any tablespace if the user has the UNLIMITED TABLESPACE
system privilege. You will learn system privileges later in the chapter in the section “Grant-
ing System Privileges.”

Assigning a Profile and Account Settings
In addition to default and temporary tablespaces, every user is assigned a profile. A profile
serves two purposes:

It can limit the resource usage of some resources. ÛN

It can enforce password-management rules.ÛN

The default profile is appropriately named default. To explicitly assign a profile to a
user, include the keywords PROFILE profile_name in the CREATE USER or ALTER USER state-
ment. For example, to assign the profile named resource_profile to the new user jiang as
well as to the existing user hamish, execute the following SQL:

CREATE USER jiang IDENTIFIED BY “kneehow.ma”

DEFAULT TABLESPACE users

TEMPORARY TABLESPACE temp

PROFILE resource_profile;

ALTER USER hamish

PROFILE resource_profile;

If you want users to change the password the first time they log in to the database, you
can set the PASSWORD EXPIRE option. Each user will be forced to change the password at the
first login. Here is an example of creating the user with an expired password:

SQL> CREATE USER shelly IDENTIFIED BY welcome

 2 PASSWORD EXPIRE;

95127c12.indd 666 2/17/09 2:43:44 PM

Creating and Managing User Accounts 667

User created.

SQL> GRANT CONNECT TO shelly;

SQL> connect shelly/welcome

ERROR:

ORA-28001: the password has expired

Changing password for shelly

New password:

Retype new password:

SQL> SHOW user

SQL> USER is “SHELLY”

By default, the user account is unlocked at creation. To lock the user account, use the
ACCOUNT LOCK option.

To create and manage user accounts using EM Database Control, click the Server tab,
and choose Users under the Security heading, as shown in Figure 12.1.

F I gu r e 12 .1 Database Control’s server-administration screen

95127c12.indd 667 2/17/09 2:43:44 PM

668 Chapter 12 N Implementing Security and Auditing

Click the Users link to get a listing of all users in the database. Clicking the Create button
on this screen opens the screen to create the user, as shown in Figure 12.2.

F I gu r e 12 . 2 Grid Control’s Create User screen

Removing a User from the Database
You use the DROP USER statement to remove a user from the database. You can optionally
include the keyword CASCADE to tell the database to recursively drop all objects owned by
that user.

To drop both user rajesh and all the objects he owns, execute the following:

DROP USER rajesh CASCADE;

Dropping a user implicitly drops any object privileges (but not role or system privi-
leges) in which the user was the grantor. The data dictionary records both grantee
and grantor for object privileges, but only the grantee is recorded for role and system
privileges.

95127c12.indd 668 2/17/09 2:43:44 PM

Creating and Managing User Accounts 669

Managing Default User Accounts
The SYS and SYSTEM user accounts are always created with an Oracle 11g database. Addi-
tionally, the SYSMAN and DBSNMP accounts are created together with a database via the Data-
base Configuration Assistant (DBCA).

Other special accounts can be created to support installed products, such as Recovery
Manager (RMAN) or XMLDB. When created via the DBCA, these special accounts are
locked and expired, leaving only SYS, SYSTEM, SYSMAN, and DBSNMP open. The SYS and SYSTEM
accounts are the data dictionary owner and an administrative account, respectively. SYSMAN
and DBSNMP are used by Enterprise Manager.

If your database is created via any means other than the DBCA, ensure that the accounts
are locked and expired and that the default passwords are changed. You expire and lock an
account using the ALTER USER statement like this:

ALTER USER mdsys PASSWORD EXPIRE ACCOUNT LOCK;

Depending on the functionality installed in your Oracle 11g database, you may need to
lock and expire several default user accounts. Your database-created user accounts may
include the following:

ANONYMOUSÛN

APEX_PUBLIC_USERÛN

BIÛN

CTXSYSÛN

DBSNMPÛN

DIPÛN

EXFSYSÛN

FLOWS_030000ÛN

FLOWS_FILESÛN

HRÛN

IXÛN

MDDATAÛN

MDSYSÛN

MGMT_VIEWÛN

OEÛN

OLAPSYSÛN

ORACLE_OCMÛN

ORDPLUGINSÛN

ORDSYSÛN

OUTLNÛN

OWBSYSÛN

PMÛN

SCOTTÛN

SHÛN

SI_INFORMTN_SCHEMAÛN

SPATIAL_CSW_ADMIN_USRÛN

SPATIAL_WFS_ADMIN_USRÛN

SYSÛN

SYSMANÛN

SYSTEMÛN

TSMSYSÛN

WKPROXYÛN

WKSYSÛN

WK_TESTÛN

WMSYSÛN

XDBÛN

XS$NULLÛN

95127c12.indd 669 2/17/09 2:43:44 PM

670 Chapter 12 N Implementing Security and Auditing

Granting and Revoking Privileges
Privileges allow a user to access database objects or execute stored programs that are
owned by another user. Privileges also enable a user to perform system-level operations,
such as connecting to the database, creating a table, or altering the database.

Privileges are assigned to a user, to the special user PUBLIC, or to a role with the GRANT
statement and can be rescinded with the REVOKE statement.

The Oracle 11g database has three types of privileges:

Object privileges These include permissions on schema objects such as tables, views,
sequences, procedures, and packages. To use a schema object owned by another user, you
need privileges on that object.

System privileges These include permissions on database-level operations, such as con-
necting to the database, creating users, altering the database, consuming unlimited
amounts of tablespace, and querying all tables in the database.

Role privileges These include permissions granted to a user by way of a role. A role is a
named group of privileges. Object and system privileges can be granted to a role.

I’ll cover each of these privileges and how to grant them in the following sections.

Granting Object Privileges
Object privileges bestow upon the grantee the permission to use a schema object owned
by another user in a particular way. As you’ll see, there are several types of object privi-
leges, some of which apply only to certain schema objects. For example, the INDEX privilege
applies only to tables, and the SELECT privilege applies to tables, views, and sequences.

The following object privileges can be granted individually, can be granted grouped in
a list, or can be granted with the keyword ALL to implicitly grant all available object privi-
leges for a particular schema object.

Be careful when using ALL. It may implicitly grant powerful privileges.

Table Object Privileges
Oracle 11g provides several object privileges for tables. These privileges give the table
owner considerable flexibility in controlling how schema objects are used and by whom.

Commonly Granted Privileges

The following privileges are commonly granted, and you should know them well:

SELECT    This is the most commonly used privilege for tables. With this privilege, the table
owner permits the grantee to query the specified table with a SELECT statement.

95127c12.indd 670 2/17/09 2:43:44 PM

Granting and Revoking Privileges 671

INSERT    This permits the grantee to create new rows in the specified table with an INSERT
statement.

UPDATE    This permits the grantee to modify existing rows in the specified table with an
UPDATE statement.

DELETE    This permits the grantee to remove rows from the specified table with a DELETE
statement.

Powerful Administrative Privileges on Tables

The following are powerful administrative privileges on tables; grant them cautiously:

ALTER    This permits the grantee to execute an ALTER TABLE statement on the specified
table. This privilege can be used to add, modify, or rename columns in the table, to move
the table to another tablespace, or even to rename the specified table.

DEBUG    This permits the grantee to access, via a debugger, the PL/SQL code in any triggers
on the specified table.

INDEX    This permits the grantee to create new indexes on the table. These new indexes will
be owned by a different user than the table, which is an unusual practice. In most cases, the
indexes on a table are owned by the same user who owns the table.

REFERENCES    This permits the grantee to create foreign key constraints that reference the
specified table.

View Object Privileges
Oracle 11g offers a smaller set of object privileges for views than it does for tables:

SELECT    This is the most commonly used privilege for views. With this privilege, the view
owner permits the grantee to query the view.

INSERT    This permits the grantee to execute an INSERT statement on the specified view to
create new rows.

UPDATE    This permits the grantee to modify existing rows in the specified view with an
UPDATE statement.

DELETE    This permits the grantee to execute a DELETE statement on the specified view to
remove rows.

DEBUG    This permits the grantee to access, via a debugger, the PL/SQL code in the body of
any trigger on this view.

REFERENCES    This permits the grantee to create foreign key constraints on the specified view.

Sequence Object Privileges
Oracle 11g provides only two object privileges for sequences:

SELECT    This permits the grantee to access the current and next values (CURRVAL and NEXTVAL)
of the specified sequence.

95127c12.indd 671 2/17/09 2:43:44 PM

672 Chapter 12 N Implementing Security and Auditing

ALTER    This permits the grantee to change the attributes of the specified sequence with an
ALTER statement.

Stored Functions, Procedures, Packages, and
Java Object Privileges
Oracle 11g provides only two object privileges for stored PL/SQL programs:

DEBUG    This permits the grantee to access, via a debugger, all the public and private variables
and types declared in the specified program. If the specified object is a package, both the
specification and the body are accessible to the grantee. The grantee can also use a debugger
to place breakpoints in the specified program.

EXECUTE    This permits the grantee to execute the specified program. If the specified object
is a package, any program, variable, type, cursor, or record declared in the package specifi-
cation is accessible to the grantee.

How to Grant Privileges
You use the GRANT statement to confer object privileges on either a user or a role. The optional
keywords WITH GRANT OPTION additionally allow the grantee to confer these privileges on
other users and roles. For example, to give SELECT, INSERT, UPDATE, and DELETE privileges
on the table CUSTOMERS to the role SALES_MANAGER, execute the following statement while
connected as the owner of table CUSTOMERS:

GRANT SELECT,INSERT,UPDATE,DELETE ON customers TO sales_manager;

If you grant privileges to the special user PUBLIC, you make them available to all current
and future database users. For example, to give all database users the SELECT privilege on
table CUSTOMERS, execute the following while connected as the owner of the table:

GRANT SELECT ON customers TO public;

When you extend a privilege to another user or role, you can also extend the ability for
that grantee to turn around and grant the privilege to others. To extend this extra option,
include the keywords WITH GRANT OPTION in the GRANT statement. For example, to give the
SELECT privilege on table SALES.CUSTOMERS to the user SALES_ADMIN together with the per-
mission for SALES_ADMIN to grant the SELECT privilege to others, execute the following:

GRANT SELECT ON sales.customers TO sales_admin WITH GRANT OPTION;

You can include the WITH GRANT OPTION keywords only when the grantee is a user or the
special account PUBLIC. You cannot use WITH GRANT OPTION when the grantee is a role.

If you grant an object privilege using the WITH GRANT OPTION keywords and later revoke
that privilege, the revoke cascades, and the privileges created by the grantee are also revoked.
For example, Mary grants SELECT privileges on her table clients to Zachary with the WITH
GRANT OPTION keywords. Zachary then creates a view based on the table mary.clients and
grants the SELECT privilege on it to Rex. If Mary revokes the SELECT privilege from Zachary,
the revoke cascades and removes the privilege from Rex. See Figure 12.3 for an illustration
of this example.

95127c12.indd 672 2/17/09 2:43:44 PM

Granting and Revoking Privileges 673

F I gu r e 12 . 3 The revoking of object privilege cascades.

ZacharyMary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

ZacharyMary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

Zachary is dropped.

Mary Rex

Rex loses privileges.

With object privileges, the database records both the grantor and the grantee. Therefore,
a grantee can obtain a privilege from more than one grantor. When this multiple grant of the
same privilege occurs, revoking one of these grants does not remove the privilege. To remove
the privilege, all grants must be revoked, as shown in Figure 12.4.

F I gu r e 12 . 4 The revoking of an object privilege with multiple grant paths

Zachary

Charlie

Zachary

Charlie

Mary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

GRANT SELECT ON
mary.clients

Zachary is dropped.

Rex retains privileges.

Mary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

GRANT SELECT ON
mary.clients

Charlie

Mary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

95127c12.indd 673 2/17/09 2:43:45 PM

674 Chapter 12 N Implementing Security and Auditing

Continuing with our example, Mary has granted SELECT on her table clients to Zach-
ary using WITH GRANT OPTION. Zachary has then granted SELECT on mary.clients to Rex.
Mary has also granted SELECT on her table clients to Charlie, who has in turn granted to
Rex. Rex now has the SELECT privilege from more than one grantee. If Zachary leaves and
his account is dropped, the privilege from Charlie remains and Rex can still select from
mary.clients.

The data dictionary view DBA_TAB_PRIVS lists all the object privileges
granted in the database. It shows the grantor and the grantee along with
the privilege.

Granting System Privileges
In general, system privileges permit the grantee to execute Data Definition Language (DDL)
statements—such as CREATE, ALTER, and DROP—or Data Manipulation Language (DML)
statements system-wide. Oracle 11g has more than 200 system privileges, all of which are
listed in the data dictionary view SYSTEM_PRIVILEGE_MAP.

You will not be required to know all these privileges for the certification
exam (thank goodness!), because many are for features that fall outside
the scope of the exam. Pay attention to the database-related and table-
related system privileges.

You should be familiar with the following groups.

Database
Oracle 11g gives you four database-oriented system privileges:

ALTER DATABASE This permits the grantee to execute the ALTER DATABASE statement.

ALTER SYSTEM    This permits the grantee to execute the ALTER SYSTEM statement.

AUDIT SYSTEM   This permits the grantee to execute AUDIT and NOAUDIT statements to
perform statement auditing.

AUDIT ANY    This permits the grantee to execute AUDIT and NOAUDIT statements to perform
object auditing on objects in any schema.

Debugging

Oracle 11g gives you two debugging-oriented system privileges.

DEBUG CONNECT SESSION    This permits the grantee to connect the current session to a
debugger.

95127c12.indd 674 2/17/09 2:43:45 PM

Granting and Revoking Privileges 675

DEBUG ANY PROCEDURE    This permits the grantee to debug all PL/SQL and Java code in the
database. This system privilege is equivalent to granting the object privilege DEBUG for every
applicable object in the database.

Indexes

Oracle 11g gives you three system privileges related to indexes:

CREATE ANY INDEX    This permits the grantee to create an index in any schema.

ALTER ANY INDEX    This permits the grantee to alter indexes in any schema.

DROP ANY INDEX    This permits the grantee to drop indexes from any schema.

Job Scheduler

Oracle 11g gives you several system privileges related to the job scheduler:

CREATE JOB    This permits the grantee to create jobs, programs, or schedules in their own
schema.

CREATE ANY JOB    This permits the grantee to create jobs, programs, or schedules in any
schema. 

The CREATE ANY JOB privilege gives the grantee the ability to execute pro-
grams using any other user’s credentials. Grant it cautiously.

EXECUTE ANY PROGRAM    This permits the grantee to use any program in a job in their own
schema.

EXECUTE ANY CLASS    This permits the grantee to specify any job class for jobs in their own
schema.

MANAGE SCHEDULER    This permits the grantee to create, alter, or delete any job class, win-
dow, or window group.

Procedures

Oracle 11g gives you several system privileges related to stored procedures:

CREATE PROCEDURE    This permits the grantee to create procedures in their own schema.

CREATE ANY PROCEDURE    This permits the grantee to create procedures in any schema.

ALTER ANY PROCEDURE    This permits the grantee to recompile any procedure in the
database.

DROP ANY PROCEDURE    This permits the grantee to remove procedures from any schema.

EXECUTE ANY PROCEDURE This permits the grantee to run any procedure in any schema.

95127c12.indd 675 2/17/09 2:43:45 PM

676 Chapter 12 N Implementing Security and Auditing

Profiles
Oracle 11g gives you three system privileges related to user profiles:

CREATE PROFILE    This permits the grantee to create profiles. Causing a profile to be used
requires an ALTER USER statement (which requires the ALTER USER privilege).

ALTER PROFILE    This permits the grantee to modify existing profiles.

DROP PROFILE    This permits the grantee to drop profiles from the database.

Roles
Oracle 11g gives you several system privileges related to roles. Because roles deal with secu-
rity, some of these privileges are very powerful.

CREATE ROLE    This permits the grantee to create new roles.

ALTER ANY ROLE    This permits the grantee to change the password for any role in the
database.

DROP ANY ROLE    This permits the grantee to remove any role from the database.

GRANT ANY ROLE    This permits the grantee to grant any role to any user or revoke any role
from any user or role.

The GRANT ANY ROLE privilege permits grantees to assign or rescind
powerful administrative roles, such as SCHEDULER_ADMIN and IMP_FULL_
DATABASE, to or from any user, including themselves or other DBAs.
Grant it cautiously.

Sequences
Oracle 11g gives you several system privileges to manage sequences:

CREATE SEQUENCE    This permits the grantee to create new sequences in their own schema.

CREATE ANY SEQUENCE    This permits the grantee to create new sequences in any schema.

ALTER ANY SEQUENCE    This permits the grantee to change the characteristics of any
sequence in the database.

DROP ANY SEQUENCE    This permits the grantee to remove any sequence from any schema in
the database.

SELECT ANY SEQUENCE    This permits the grantee to select from any sequence.

95127c12.indd 676 2/17/09 2:43:45 PM

Granting and Revoking Privileges 677

Sessions
Oracle 11g gives you four session-oriented system privileges:

CREATE SESSION    This permits the grantee to connect to the database. This privilege is
required for user accounts but may be undesirable for application owner accounts.

ALTER SESSION    This permits the grantee to execute ALTER SESSION statements.

ALTER RESOURCE COST    This permits the grantee to change the way that Oracle calculates
resource cost for resource restrictions in a profile.

For more information on managing resource consumption, see the section
“Controlling Resource Usage by Users” later in this chapter.

RESTRICTED SESSION    This permits the grantee to connect when the database has been
opened in RESTRICTED SESSION mode, typically for administrative purposes. User accounts
should not normally be granted this privilege.

Synonyms
Oracle 11g gives you several system privileges related to synonyms:

CREATE SYNONYM    This permits the grantee to create new synonyms in their own schema.

CREATE ANY SYNONYM    This permits the grantee to create new synonyms in any schema.

CREATE PUBLIC SYNONYM    This permits the grantee to create new public synonyms, which
are accessible to all users in the database.

DROP ANY SYNONYM    This permits the grantee to remove any synonyms in any schema.

DROP PUBLIC SYNONYM    This permits the grantee to remove any public synonym from the
database.

Tables
Oracle 11g gives you several system privileges for managing tables:

CREATE TABLE    This permits the grantee to create new tables in their own schema.

CREATE ANY TABLE    This permits the grantee to create new tables in any schema.

ALTER ANY TABLE    This permits the grantee to alter existing tables in any schema.

DROP ANY TABLE    This permits the grantee to drop tables from any schema.

COMMENT ANY TABLE    This permits the grantee to assign table or column comments to any
table or view in any schema.

SELECT ANY TABLE    This permits the grantee to query any table or view in any schema.

95127c12.indd 677 2/17/09 2:43:45 PM

678 Chapter 12 N Implementing Security and Auditing

INSERT ANY TABLE    This permits the grantee to insert new rows into any table in any
schema.

UPDATE ANY TABLE    This permits the grantee to modify rows in any table in any schema.

DELETE ANY TABLE    This permits the grantee to delete rows from tables in any schema.

LOCK ANY TABLE    This permits the grantee to execute a LOCK TABLE statement to explicitly
lock a table in any schema.

FLASHBACK ANY TABLE    This permits the grantee to execute a SQL flashback query, using
the AS OF syntax, on any table or view in any schema.

See Chapter 15, “Implementing Database Backups,” for more information
on using flashback queries.

Tablespaces
Oracle 11g gives you four system privileges to control tablespace management:

CREATE TABLESPACE    This permits the grantee to create new tablespaces.

ALTER TABLESPACE    This permits the grantee to alter existing tablespaces with the ALTER
TABLESPACE statement.

DROP TABLESPACE    This permits the grantee to delete tablespaces from the database.

MANAGE TABLESPACE    This permits the grantee to alter a tablespace ONLINE, OFFLINE, BEGIN
BACKUP, or END BACKUP.

UNLIMITED TABLESPACE    This permits the grantee to consume unlimited disk quota in
any tablespace. This system privilege is equivalent to granting unlimited quota in each
tablespace to the specified grantee.

Triggers
Oracle 11g gives you several system privileges to control trigger management:

CREATE TRIGGER    This permits the grantee to create new triggers on tables in their own
schema.

CREATE ANY TRIGGER    This permits the grantee to create new triggers on tables in any
schema.

ALTER ANY TRIGGER    This permits the grantee to enable, disable, or compile existing trig-
gers on tables in any schema.

DROP ANY TRIGGER    This permits the grantee to remove triggers from tables in any schema.

ADMINISTER DATABASE TRIGGER    This permits the grantee to create new ON DATABASE trig-
gers. The grantee must also have the CREATE TRIGGER or CREATE ANY TRIGGER privilege
before they can create an ON DATABASE trigger.

95127c12.indd 678 2/17/09 2:43:45 PM

Granting and Revoking Privileges 679

Users
Oracle 11g gives you several system privileges to control who can manage user accounts:

CREATE USER    This permits the grantee to create new database users.

ALTER USER    This permits the grantee to change the authentication method or password
and assign quotas, temporary tablespaces, default tablespaces, or profiles for any user in the
database. All users can change their own password without this privilege.

The ALTER USER privilege allows the grantee to change the authentication
method or password for any user (and also change it back). This makes it
possible for the grantee to masquerade as another user. Grant this privi-
lege cautiously.

DROP USER    This permits the grantee to remove users together with any objects they own
from a database.

Views
Oracle 11g gives you several system privileges to manage views. Note that some of these
privileges include the word TABLE and not VIEW. These privileges apply to either tables or
views.

CREATE VIEW    This permits the grantee to create new views in their own schema. 

CREATE ANY VIEW    This permits the grantee to create new views in any schema.

DROP ANY VIEW    This permits the grantee to remove views from any schema.

COMMENT ANY TABLE    This permits the grantee to assign table or column comments to any
table or view in any schema.

FLASHBACK ANY TABLE    This permits the grantee to execute a SQL flashback query, using
the AS OF syntax, on any table or view in any schema.

Others
Oracle 11g gives you several system privileges for managing your database that don’t fit
into the other categories. These privileges include powerful administrative capabilities and
should not be granted lightly.

ANALYZE ANY    This permits the grantee to execute an ANALYZE statement on tables, indexes,
or clusters in any schema.

GRANT ANY OBJECT PRIVILEGE    This permits the grantee to assign object privileges on any
object in any schema.

GRANT ANY PRIVILEGE    This permits the grantee to assign any system privilege to other
users or roles.

95127c12.indd 679 2/17/09 2:43:45 PM

680 Chapter 12 N Implementing Security and Auditing

GRANT ANY ROLE    This permits the grantee to assign any role to other users or roles. This
privilege also gives the grantee permission to revoke any role.

SELECT ANY DICTIONARY    This permits the grantee to select from the SYS-owned data
dictionary tables, such as TAB$ or SYSAUTH$.

SYSDBA    The most powerful system privilege, this permits the grantee to create, alter, start
up, or shut down databases; enable ARCHIVELOG and NOARCHIVELOG mode; recover a data-
base; and create an spfile; in addition to having all the system privileges the database has to
offer, including RESTRICTED SESSION.

SYSOPER    Only slightly less powerful than SYSDBA, this privilege permits the grantee to
start up, shut down, alter, mount, back up, and recover a database. The grantee can create
or alter an spfile and enter restricted session mode.

SYSASM    Similar to the SYSDBA privilege, this gives the grantee privilege to manage an ASM
instance. This privilege is new to Oracle 11g.

How to Grant System Privileges
As with object privileges, you use the GRANT statement to confer system privileges on either
a user or a role. Unlike object privileges, the optional keywords WITH ADMIN OPTION are
required to additionally allow the grantee to confer these privileges on other users and
roles. For example, to give the CREATE USER, ALTER USER, and DROP USER privileges to the
role APPL_DBA, you execute the following statement:

GRANT create user, alter user, drop user TO appl_dba;

System and role privileges require the wording WITH ADMIN OPTION; object
privileges require the wording WITH GRANT OPTION. Because the function is
so similar but the syntax is different, be sure you know when to use ADMIN
and when to use GRANT—a question involving this subtle difference may
appear on the exam.

As with object privileges, you can grant system privileges to the special user PUBLIC.
Granting privileges to PUBLIC allows anyone with a database account and the CONNECT
privilege to exercise this privilege. In general, because system privileges are more powerful
than object privileges, take care when granting a system privilege to PUBLIC. For example,
to give all current and future database users the FLASHBACK ANY TABLE privilege, execute
the following:

GRANT flashback any table TO public;

To give the INDEX ANY TABLE privilege to the role APPL_DBA together with the permis-
sion to allow anyone with the role APPL_DBA to grant this privilege to others, execute the
following:

GRANT index any table TO appl_dba WITH ADMIN OPTION;

95127c12.indd 680 2/17/09 2:43:45 PM

Granting and Revoking Privileges 681

If you grant a system privilege WITH ADMIN OPTION and later revoke that privilege, the
privileges created by the grantee will not be revoked. Unlike object privileges, the revo-
cation of system privileges does not cascade. Think of it this way: WITH GRANT OPTION
includes the keyword GRANT and so implies that a revoke cascades, but WITH ADMIN OPTION
does not mention GRANT, so a revoke has no effect. Here’s an example. Mary grants the
SELECT ANY TABLE privilege to new DBA Zachary with ADMIN OPTION. Zachary then grants
this privilege to Rex. Later, Zachary gets promoted and leaves the department, so Mary
revokes the SELECT ANY TABLE privilege from Zachary. Rex’s privilege remains unaffected.
You can see this in Figure 12.5.

F I gu r e 12 .5 The revoking of system privileges

Zachary

Mary grants to Zachary.
GRANT SELECT ANY TABLE

WITH ADMIN OPTION

Rex

Zachary grants to Rex.

GRANT SELECT ANY TABLE

Rex

Zachary is dropped and
Rex retains privileges.

GRANT SELECT ANY TABLE

The database records only the privilege granted, not who granted it.

This behavior differs from object privileges, because the database does not record both
grantor and grantee for system privileges—only the grantee is recorded.

The data dictionary view DBA_SYS_PRIVS lists all the system privileges
granted in the database.

Role Privileges
Role privileges confer on the grantee a group of system, object, and other role privileges.
Users who have been granted a role inherit the privileges that have been granted to that
role. Roles can be password protected, so users may have a role granted to them yet not be
able to use that role in all database sessions. I’ll cover roles and role privileges—including
how to grant them—in the following section, “Creating and Managing Roles.”

95127c12.indd 681 2/17/09 2:43:45 PM

682 Chapter 12 N Implementing Security and Auditing

Creating and Managing Roles
A role is a tool for administering privileges. Privileges can be granted to a role, and then
that role can be granted to other roles and users. Users can thus inherit privileges via roles.
Roles serve no other purpose than to administer privileges.

To create a role, use the CREATE ROLE statement. You can optionally include an
IDENTIFIED BY clause that requires users to authenticate themselves before enabling the role.
Roles requiring authentication are typically used inside an application, where a user’s activi-
ties are controlled by the application. To create the role APPL_DBA, execute the following:

CREATE ROLE appl_dba;

To enable a role, execute a SET ROLE statement, like this:

SET ROLE appl_dba IDENTIFIED BY seekwrit;

The data dictionary view DBA_ROLE_PRIVS lists all the role privileges
granted in the database.

Granting Role Privileges
As with object and system privileges, you use the GRANT statement to confer role privileges on
either a user or another role. Also, like system privileges, the optional keywords WITH ADMIN
OPTION allow the grantee to confer these privileges on other users and roles. For example, to
give the OEM_MONITOR role to user charlie, execute the following:

GRANT oem_monitor TO charlie;

As with the other privileges, you can grant role privileges to the special user PUBLIC.
Granting privileges to PUBLIC allows anyone with a database account to exercise this privi-
lege. For example, to give all current and future database users use of the plustrace role,
execute the following:

GRANT plustrace TO public;

To give the INDEX ANY TABLE privilege to the role APPL_DBA together with the permission to
allow anyone with the role APPL_DBA to grant this privilege to others, execute the following:

GRANT index any table TO appl_dba WITH ADMIN OPTION;

When it comes to granting a role WITH ADMIN OPTION, roles behave like system privi-
leges, and subsequent revocations do not cascade.

If the role granted to a user is not the default role, the user must enable the role in the
session to be able to use the role. In the following sections, you will learn to work with
roles in a session.

Enabling Roles

Roles can be enabled—or disabled, for that matter—selectively in each database session.
If you have two concurrent sessions, the roles in effect for each session can be different.

95127c12.indd 682 2/17/09 2:43:45 PM

Granting and Revoking Privileges 683

Use the SET ROLE role_list statement to enable one or more roles. role_list is a comma-
delimited list of roles to enable. This list can include the keyword ALL, which enables all the
roles granted to the user. You can optionally append a list of roles to exclude from the ALL
list by specifying ALL EXCEPT exclusion_list.

If a role has a password associated with it, the keywords IDENTIFIED BY password must
immediately follow the role name in the role_list.

For example, to enable the password-protected role HR_ADMIN, together with the unpro-
tected role EMPLOYEE, execute the following:

SET ROLE hr_admin IDENTIFIED BY “my!seekrit”, employee;

To enable all roles except HR_ADMIN, run this:

SET ROLE ALL EXCEPT hr_admin;

You can enable as many roles as have been granted to you, up to the MAX_ENABLED_ROLES
initialization parameter.

Identifying Enabled Roles

The roles that are enabled in your session are listed in the data dictionary view SESSION_
ROLES. To identify these enabled roles for your session, run the following:

SELECT role FROM session_roles;

These roles include the roles that have been granted to you, the roles that have been
granted to the special user PUBLIC, and the roles that you have inherited by way of other
roles. To identify the roles granted to either user or the special user PUBLIC, run the following:

SELECT granted_role FROM user_role_privs

WHERE username IN (USER, ‘PUBLIC’);

The role DBA includes the role SCHEDULER_ADMIN, which in turn has system privileges
(such as CREATE ANY JOB). A user who has been granted the DBA role inherits the SCHED-
ULER_ADMIN role indirectly. To identify the roles that are both enabled in your session and
granted directly to you or PUBLIC but not those roles that you inherited, run this:

SELECT role FROM session_roles

INTERSECT

SELECT granted_role FROM user_role_privs

WHERE username IN (USER, ‘PUBLIC’);

In your sessions, you can disable only these directly granted and public roles.

Disabling Roles

Roles can be disabled in a database session either en masse or by exception. Use the SET ROLE
NONE statement to disable all roles. Use the SET ROLE ALL EXCEPT role_list statement to
enable all roles except those in the comma-delimited role_list.

There is no way to selectively disable a single role. Also, you cannot disable roles that
you inherit by way of another role without disabling the parent role. For example, if you
have been granted the DBA, RESOURCE, and CONNECT roles, you inherit several roles through

95127c12.indd 683 2/17/09 2:43:45 PM

684 Chapter 12 N Implementing Security and Auditing

the DBA role when it is enabled. If you want to disable the SCHEDULER_ADMIN role you inher-
ited through the DBA role, you cannot do that. The options you have are that you can disable
the DBA role or you can create a new role similar to the DBA role without the SCHEDULER_
ADMIN role and use that role.

Setting Default Roles

Roles that are enabled by default when you log on are called default roles. You do not need
to specify a password for default roles and do not have to execute a SET ROLE statement
to enable a default role. Change the default roles for a user account with an ALTER USER
DEFAULT ROLE role_list statement. The role_list can include the keywords ALL, NONE, and
EXCEPT, in the same manner as with a SET ROLE statement.

Including a password-protected role in the role_list defeats the purpose of password
protecting the role because it is automatically enabled without the password. When you cre-
ate a role, you are implicitly granted that role with the admin option, and it is configured as
a default role for your account.

For example, to create the role EMPLOYEE, grant it to user scott, and configure all of
scott’s roles except PLUSTRACE as default roles, run the following:

CREATE ROLE employee;

GRANT employee TO scott;

ALTER USER scott DEFAULT ROLE ALL EXCEPT plustrace;

Because the creator of a role automatically has that role assigned as a default role, admin-
istrative users (such as SYS or SYSTEM) who create many roles may need to alter their default
role list. If you attempt to log on with more default roles than allowed by the MAX_ENABLED_
ROLES initialization parameter, you will raise an exception, and your logon will fail.

A password-protected role

Lucinda works in HR and needs to be able to modify an employee’s salary after they
have a review and their raise is approved. The HR application ensures that the raise is
approved and falls within corporate guidelines. Although Lucinda needs to be able to
change employee salaries, she should be allowed to do so only from within the HR appli-
cation, because it ensures that business rules are followed.

You wisely choose to use a password-protected role to satisfy these requirements. Update
privilege on the salary table is granted to the password-protected role salary_admin.
Lucinda is then granted the salary_admin role, but she is not told the password for it. The
HR application has the password encoded within it, so when Lucinda runs the HR appli-
cation, unknown to her, a SET ROLE salary_admin IDENTIFY BY password statement is
executed, enabling the role and allowing her to change the salary.

If Lucinda tries to execute an UPDATE statement on the salary table from SQL*Plus, she
will get an insufficient privileges error.

95127c12.indd 684 2/17/09 2:43:46 PM

Granting and Revoking Privileges 685

Default Database Roles
When you create a new Oracle 11g database, Oracle creates several roles in the database
based on the options you chose at the database creation. The following are few of the
important roles that are created automatically during database creation:

CONNECT    This role has only one privilege, CREATE SESSION.

RESOURCE    This role has the privileges required to create common objects in the user’s
schema.

DBA    This is the most powerful role in the database. Only database administrators
should be given this role. This role has all the system privileges and several administrative
privileges.

SELECT_CATALOG_ROLE    This role gives the user access to query the data dictionary views.

EXECUTE_CATALOG_ROLE    This role gives the user privileges to execute the packages and
procedures in the data dictionary.

DELETE_CATALOG_ROLE    This role gives the user the ability to delete records from the system
audit table (SYS.AUD$).

To list all the roles defined in the database, query the data dictionary view DBA_ROLES.
To view the system privileges granted to a role, query the DBA_SYS_PRIVS dictionary view.
For example, the following query lists the system privileges granted to the RESOURCE role:

SQL> SELECT grantee, privilege, admin_option

 2 FROM dba_sys_privs

 3 WHERE grantee = ‘RESOURCE’

SQL> /

GRANTEE PRIVILEGE ADM

-------------------- -------------------- ---

RESOURCE CREATE TRIGGER NO

RESOURCE CREATE SEQUENCE NO

RESOURCE CREATE TYPE NO

RESOURCE CREATE PROCEDURE NO

RESOURCE CREATE CLUSTER NO

RESOURCE CREATE OPERATOR NO

RESOURCE CREATE INDEXTYPE NO

RESOURCE CREATE TABLE NO

8 rows selected.

SQL>

95127c12.indd 685 2/17/09 2:43:46 PM

686 Chapter 12 N Implementing Security and Auditing

Applying the Principle of Least Privilege
The principle of least privilege states that each user should be given only the minimal privi-
leges needed to perform their job. This principle is a central tenet to the initially closed
philosophy whereby all access is initially closed or unavailable and access is opened on a
need-to-know basis. Highly secure environments typically operate under an initially closed
philosophy. The contrasting philosophy is an initially open philosophy, whereby all access
is by default open to all users and only sensitive areas are closed. Academic or learning
environments typically operate under an initially open philosophy.

Many IT organizations want the most secure policies for production systems, which
calls for the initially closed approach to security. To support the need for administrators
and programmers to quickly learn new technology, these shops frequently create “sand-
box” systems that follow the initially open philosophy. These sandbox systems afford their
limited users the learning benefit of the initially open approach, while not storing or giving
gateway access to any sensitive information elsewhere in the enterprise.

To implement the principle of least privilege on your production or development systems,
you should take several actions, or best practices, while setting up or locking down the
database. Let’s take a look at these:

Protect the data dictionary Ensure that users with the SELECT ANY TABLE privilege cannot
access the tables that underlie the data dictionary by setting O7_DICTIONARY_ACCESSIBILITY =
FALSE. This is the default setting.

Revoke unnecessary privileges from PUBLIC By default, several packages and roles are
granted to the special user PUBLIC. Review these privileges, and revoke the EXECUTE privi-
lege from PUBLIC if these packages are not necessary. Some of these packages include the
following:

UTL_TCP    This permits the grantee to establish a network connection to any waiting
TCP/IP network service. Once a connection is established, arbitrary information can
be sent and received directly from the database to and from the other TCP services on
your network. If your organization is concerned about information exchange over TCP/
IP, revoke the EXECUTE privilege on this package from PUBLIC. Grant privileges on this
package only to those users who need it.

UTL_SMTP    This permits the grantee to send arbitrary email. If your organization is con-
cerned about information exchange via email, revoke the EXECUTE privilege on this pack-
age from PUBLIC. Grant privileges on this package only to those users who need it.

UTL_HTTP    This permits the grantee to send and receive arbitrary data via the HTTP
protocol. If your organization is concerned about information exchange via HTTP, revoke
the EXECUTE privilege on this package from PUBLIC. Grant privileges on this package only
to those users who need it.

UTL_FILE    This permits the grantee to read and write text data to and from arbitrary
operating-system files that are in the designated directories. UTL_FILE does not manage
concurrency, so multiple user sessions can step on each other, overwriting changes via
UTL_FILE. Consider revoking the EXECUTE privilege on this package from PUBLIC.

95127c12.indd 686 2/17/09 2:43:46 PM

Granting and Revoking Privileges 687

DBMS_OBFUSCATION_TOOLKIT and DBMS_CRYPTO    These permit the grantee to employ
encryption technologies. In a managed environment using encryption, the keys are
stored and managed. If encryption keys are lost, the encrypted data is undecipherable.
Consider revoking the EXECUTE privilege on these packages from PUBLIC.

You can revoke the EXECUTE privileges like this:

REVOKE EXECUTE ON utl_tcp FROM PUBLIC;

REVOKE EXECUTE ON utl_smtp FROM PUBLIC;

REVOKE EXECUTE ON utl_http FROM PUBLIC;

REVOKE EXECUTE ON utl_file FROM PUBLIC;

REVOKE EXECUTE ON dbms_obfuscation_toolkit

 FROM PUBLIC;

REVOKE EXECUTE ON dbms_crypto FROM PUBLIC;

You can query the data dictionary to see what other packages may need to be locked down
by revoking the EXECUTE privilege from PUBLIC. Here is a query to list the packages, owned
by user SYS, that have the EXECUTE privilege granted to PUBLIC:

SELECT table_name

FROM dba_tab_privs p

 ,dba_objects o

WHERE p.owner=o.owner

AND p.table_name = o.object_name

AND p.owner = ‘SYS’

AND p.privilege = ‘EXECUTE’

AND p.grantee = ‘PUBLIC’

AND o.object_type=’PACKAGE’;

Limit the users who have administrative privileges Grant administrative privileges to user
accounts cautiously. Some powerful administrative privileges and roles to exercise caution
with include the following:

SYSDBA    This gives the grantee the highest level of privileges with the Oracle Database
software. A clever user with the SYSDBA role can circumvent most database security mea-
sures. There is usually no good reason to grant this role to any account except SYS, and
the SYS password should be both cautiously guarded and changed regularly. Also, guard
operating-system accounts carefully. If you are logged on to the database server using a
privileged operating-system account, you might be able to connect to the database with
SYSDBA authority and no password by entering connect / as sysdba in SQL*Plus.

DBA    This permits the grantee to assign privileges and manipulate data throughout the
database. A clever user with the DBA role can circumvent most database security mea-
sures. Grant this role only to those users who need it.

The ANY system privileges SELECT ANY TABLE, GRANT ANY ROLE, DELETE ANY TABLE,
and so on, permit the grantee to assign privileges and manipulate data throughout the

95127c12.indd 687 2/17/09 2:43:46 PM

688 Chapter 12 N Implementing Security and Auditing

database. A malicious user with the one of these roles can wreak havoc in your database.
Grant these privileges only to those users who need them.

Do not enable REMOTE_OS_AUTHENT The default setting for the initialization parameter
REMOTE_OS_AUTHENT is FALSE. There is rarely a reason to enable this feature. When set to TRUE,
this parameter tells the database to trust any client to authenticate externally authenticated
accounts. For example, if you have an externally identified account named ORACLE that has
DBA privileges for use in administrative scripts running on the database server (a common
practice), setting this parameter to TRUE will allow someone with a notebook or desktop PC
with a locally created ORACLE account to connect to your database with DBA credentials and
no password.

Controlling Resource Usage by Users
An Oracle 11g database lets you limit some resources that your user accounts consume.
Disk-space limits are governed by tablespace quotas (discussed in “Assigning Tablespace
and Quotas” earlier in the chapter); CPU and memory limits are implemented with profiles.

CPU and session-oriented resource limits are managed through profiles. Profiles let you
set limits for several resources, including CPU time, memory, and the number of logical
reads performed during a user session or database call. A database call is either a parse,
an execute, or a fetch. Usually, the database implicitly performs these calls for you. You
can explicitly make these database calls from Java, PL/SQL, or Oracle Call Interface (OCI)
programs.

A logical read is a measure of the amount of work that the database performs while
executing SQL statements. Statements that generate more logical reads require the database
to perform more work than statements generating fewer logical reads. Technically, a logi-
cal read is counted for each row accessed via ROWID (index access) and for each data block
accessed via a multiblock read (full-table scan or index fast full scan).

To enable resource limit restrictions with profiles, first enable them in the database by
setting the initialization parameter resource_limit to TRUE, like this:

ALTER SYSTEM SET resource_limit = TRUE SCOPE = BOTH;

To assign resource limits to a profile, use the CREATE PROFILE or ALTER PROFILE state-
ment with one or more of the kernel resource parameters. The following is an example of
the CREATE PROFILE statement, with all the resources that can be controlled. A resource
value of DEFAULT indicates that the value is derived from the DEFAULT profile. Initially, the
DEFAULT profile has all the system resources set to UNLIMITED.

CREATE PROFILE “TEST1” LIMIT

CPU_PER_SESSION DEFAULT

CPU_PER_CALL DEFAULT

CONNECT_TIME DEFAULT

IDLE_TIME 10

95127c12.indd 688 2/17/09 2:43:46 PM

Controlling Resource Usage by Users 689

SESSIONS_PER_USER DEFAULT

LOGICAL_READS_PER_SESSION DEFAULT

LOGICAL_READS_PER_CALL 250000

PRIVATE_SGA 25000

COMPOSITE_LIMIT DEFAULT;

Each resource is explained here:

CONNECT_TIME    This limits any session established by a user having this profile set to the
specified number of minutes. Connection time is sometimes called wall clock time to dif-
ferentiate it from CPU time. When a session exceeds the specified number of minutes, the
database rolls back any uncommitted changes and terminates the session. The next call to
the database raises an exception. You can use the special value UNLIMITED to tell the data-
base that there is no limit to a session’s duration. Set this parameter in a CREATE PROFILE
or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT CONNECT_TIME 10;

ALTER PROFILE data_analyst LIMIT CONNECT_TIME UNLIMITED;

CPU_PER_CALL    This limits the amount of CPU time that can be consumed by any single
database call in any session established by a user with this profile. The specified value is in
hundredths of a second and applies to a parse, an execute, or a fetch call. These calls are
implicitly performed by the database for any SQL statement executed in SQL*Plus and can
be explicitly called from OCI, Java, and PL/SQL programs. When this limit is breached, the
statement fails and is automatically rolled back, and an exception is raised. The user can
then commit or roll back any uncommitted changes in the transaction. Set this parameter
in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT CPU_PER_CALL 3000;

ALTER PROFILE data_analyst LIMIT CPU_PER_CALL UNLIMITED;

CPU_PER_SESSION    This limits the amount of CPU time that can be consumed in any ses-
sion established by a user with this profile. The specified value is in hundredths of a second
and applies to a parse, an execute, or a fetch. When this limit is breached, the current state-
ment fails, the transaction is automatically rolled back, and an exception is raised. The user
can then commit or roll back any uncommitted changes in the transaction before logging
off. Set this parameter in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT CPU_PER_CALL 30000;

ALTER PROFILE data_analyst LIMIT CPU_PER_CALL UNLIMITED;

IDLE_TIME    This limits the duration of time between database calls to the specified number
of minutes. If a user having this profile exceeds this setting, the next statement fails, and
the user is allowed to either commit or roll back any uncommitted changes before logging
off. Long-running statements are not affected by this setting. Set IDLE_TIME in a CREATE
PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT IDLE_TIME 10;

ALTER PROFILE daemon LIMIT IDLE_TIME UNLIMITED;

95127c12.indd 689 2/17/09 2:43:46 PM

690 Chapter 12 N Implementing Security and Auditing

LOGICAL_READS_PER_CALL    This caps the amount of work that any individual database call
performs to the specified number of logical reads. The database call is either a parse, an
execute, or a fetch. If the limit is exceeded, the database rolls back the statement, returns an
error to the calling program, and allows the user to either commit or roll back any uncom-
mitted changes. Logical reads are computed as the sum of consistent gets plus current mode
gets. Set this parameter in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT LOGICAL_READS_PER_CALL 2500;

ALTER PROFILE data_analyst LIMIT LOGICAL_READS_PER_CALL 1000000;

LOGICAL_READS_PER_SESSION    This limits the amount of database work that a user’s ses-
sion can consume to the specified number of logical reads. When the limit is exceeded, the
current statement fails and an exception is raised, and the user must either commit or roll
back the transaction and end the session. Logical reads are computed as the sum of consis-
tent gets plus current mode gets. Set this parameter in a CREATE PROFILE or ALTER PROFILE
statement like this:

CREATE PROFILE agent LIMIT LOGICAL_READS_PER_SESSION 250000;

ALTER PROFILE data_analyst

 LIMIT LOGICAL_READS_PER_SESSION 35000000;

PRIVATE_SGA    This limits the amount of system global area (SGA) memory in bytes that
a user connecting with shared servers (via a multithreaded server [MTS]) can allocate to
the persistent area in the program global area (PGA). This area contains bind information
among other items. Set this parameter in a CREATE PROFILE or ALTER PROFILE statement
like this:

CREATE PROFILE agent LIMIT PRIVATE_SGA 2500;

ALTER PROFILE data_analyst LIMIT PRIVATE_SGA UNLIMITED;

SESSIONS_PER_USER    This restricts a user with this profile to the specified number of
database sessions. This setting can be useful to discourage DBAs from all connecting to a
shared administrative account to do their work when corporate policy indicates that they
should be connecting to their individual accounts. Set this parameter in a CREATE PROFILE
or ALTER PROFILE statement like this:

CREATE PROFILE admin_profile LIMIT SESSIONS_PER_USER 2;

ALTER PROFILE data_analyst LIMIT SESSIONS_PER_USER 6;

COMPOSITE_LIMIT    This limits the number of service units that can be consumed dur-
ing a user session. Service units are calculated as the weighted sum of CPU_PER_SESSION,
LOGICAL_READS_PER_SESSION, CONNECT_TIME, and PRIVATE_SGA values. The weightings
are established with the ALTER RESOURCE COST statement and can be viewed from the
RESOURCE_COST data dictionary view. This COMPOSITE_LIMIT allows you to cap the resource
consumption of user groups in more complex ways than a single resource limit. Set this
parameter in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE admi_profile LIMIT COMPOSITE_LIMIT UNLIMITED;

ALTER PROFILE data_analyst LIMIT COMPOSITE_LIMIT 100000;

95127c12.indd 690 2/17/09 2:43:46 PM

Controlling Resource Usage by Users 691

To enforce the resource limits established with profiles, you must enable them by setting
the initialization parameter RESOURCE_LIMIT to TRUE. The default setting is FALSE. Set this
parameter with the ALTER SYSTEM statement, like this:

ALTER SYSTEM SET resource_limit = TRUE SCOPE=BOTH;

You can also use profiles to manage passwords, which is discussed in the next section.

Implementing Password Security Features
For users who are configured for database authentication, password-security rules are
enforced with profiles and password complexity rules with verification functions. Profiles
have a set of standard rules that define how long a password can remain valid, the elapsed
time, the number of password changes before a password can be reused, the number of failed
login attempts that will lock the account, and how long the account will remain locked.

If you want a parameter to inherit the setting from the DEFAULT profile, set the param-
eter’s value to the keyword DEFAULT. Explicitly assign password rules to a profile using the
CREATE PROFILE or ALTER PROFILE statement. The following is an example of the CREATE
PROFILE statement, with all the password features that can be controlled:

CREATE PROFILE “TEST2” LIMIT

PASSWORD_LIFE_TIME 60

PASSWORD_GRACE_TIME 7

PASSWORD_REUSE_MAX 2

PASSWORD_REUSE_TIME 4

PASSWORD_LOCK_TIME DEFAULT

FAILED_LOGIN_ATTEMPTS 5

PASSWORD_VERIFY_FUNCTION DEFAULT;

Each option is discussed in detail here with examples:

FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME    The FAILED_LOGIN_ATTEMPTS param-
eter specifies how many times in a row the user can fail password authentication. If this
limit is breached, the account is locked for PASSWORD_LOCK_TIME days. If the PASSWORD_
LOCK_TIME parameter is set to UNLIMITED and a user exceeds FAILED_LOGIN_ATTEMPTS, the
account must be manually unlocked. You can set these parameters in a CREATE PROFILE or
ALTER PROFILE statement like this:

-- lock account for 10 minutes if 3 consecutive logins fail

CREATE PROFILE agent LIMIT

 FAILED_LOGIN_ATTEMPTS 3

 PASSWORD_LOCK_TIME 10/1440;

-- remove failed login restrictions

ALTER PROFILE student LIMIT FAILED_LOGIN_ATTEMPTS UNLIMITED;

95127c12.indd 691 2/17/09 2:43:46 PM

692 Chapter 12 N Implementing Security and Auditing

-- manually unlock an account

ALTER USER scott ACCOUNT UNLOCK;

The default value for FAILED_LOGIN_ATTEMPTS in Oracle 11g is 10 and for PASSWORD_LOCK_
TIME is 1 day.

PASSWORD_LIFE_TIME and PASSWORD_GRACE_TIME    The PASSWORD_LIFE_TIME parameter
specifies the maximum number of days that a password can remain in force, and PASSWORD_
GRACE_TIME is the number of days after the first successful login following password expira-
tion during which the user will be reminded to change their password but allowed to log
in. After the PASSWORD_GRACE_TIME limit is reached, the user must change their password. If
you set PASSWORD_LIFE_TIME to a value and set PASSWORD_GRACE_TIME to UNLIMITED, users
will be reminded to change their password every time they log in but never forced to actu-
ally do so. You can set these two parameters in a CREATE PROFILE or ALTER PROFILE state-
ment like this:

-- limit the password lifetime to 90 days

-- during the last 14 days the user will be reminded

-- to change the password

CREATE PROFILE agent LIMIT

 PASSWORD_LIFE_TIME 90 - 14

 PASSWORD_GRACE_TIME 14;

-- set no limit to password lifetime

ALTER PROFILE student LIMIT

 PASSWORD_LIFE_TIME UNLIMITED

 PASSWORD_GRACE_TIME DEFAULT;

The default value for PASSWORD_LIFE_TIME in Oracle 11g is 180 days and for PASSWORD_
GRACE_TIME is 7 days.

PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX    The PASSWORD_REUSE_TIME parameter
specifies the minimum number of days that must transpire before a password can be reused.
PASSWORD_REUSE_MAX specifies the minimum number of password changes that must occur
before a password can be reused. If you specify a value for one of these two parameters and
UNLIMITED for the other, passwords can never be reused. If you set both PASSWORD_REUSE_
TIME and PASSWORD_REUSE_MAX to UNLIMITED (the default), these parameters are essentially
disabled. You can set these password parameters in a CREATE PROFILE or ALTER PROFILE
statement like this:

-- require at least 4 password changes and 1 year

-- before a password may be reused.

CREATE PROFILE agent LIMIT

 PASSWORD_REUSE_TIME 365

 PASSWORD_REUSE_MAX 4;

95127c12.indd 692 2/17/09 2:43:46 PM

Controlling Resource Usage by Users 693

-- remove password reuse constraints

ALTER PROFILE student LIMIT

 PASSWORD_REUSE_TIME UNLIMITED

 PASSWORD_REUSE_MAX UNLIMITED;

Setting password lock time to two hours

Several password attributes are durations expressed in days. These durations are nor-
mally set with integer values, such as 1, 15, 30, 90, or 365 days.

The default password lock time for Oracle 11g is 1 day, and the unit used to express the
lock time is in days. A few of the clients I worked for needed the password lock to go away
after two hours if the user tried to enter incorrect password too many times. How do you
set the value in hours or minutes when the unit is in days?

All these password profile attributes take fractional values as well; hence, you can represent
hours and minutes. Since there are 1,440 minutes in a day, you can represent 5 minutes as
5/1440 days and represent 5 seconds as 5/86400 days. The following code sets the pass-
word lock time to two hours:

ALTER PROFILE student LIMIT PASSWORD_LOCK_TIME 2/24;

You can represent the value using decimal numbers; for example, the following code sets
the password lock time to six hours:

ALTER PROFILE student LIMIT PASSWORD_LOCK_TIME .25;

Using a fractional number of days is a great way to try combinations of values and
observe the results of setting these password rules.

PASSWORD_VERIFY_FUNCTION    The PASSWORD_VERIFY_FUNCTION parameter lets you codify
additional rules that will be verified when a password is changed. These rules usually verify
password complexity such as minimal password length or check that a password does not
appear in a dictionary. The PL/SQL function used in the PASSWORD_VERIFY_FUNCTION param-
eter must be created under the user SYS and must have three parameters of type VARCHAR2.
These parameters must contain the username in the first parameter, the new password in the
second, and the old password in the third. You can set this parameter in a CREATE PROFILE
or ALTER PROFILE statement like this:

-- use a custom password function

CREATE PROFILE agent LIMIT PASSWORD_VERIFY_FUNCTION my_function;

95127c12.indd 693 2/17/09 2:43:46 PM

694 Chapter 12 N Implementing Security and Auditing

-- disable use of a custom function

ALTER PROFILE student LIMIT PASSWORD_VERIFY_FUNCTION DEFAULT;

Implementing a corporate password-Security policy

Many companies have security policies requiring that several password complexity rules
be followed. For your Oracle 11g database, these rules can be incorporated into a pass-
word verify function. This real-world scenario highlights an example of three password
complexity requirements and how they are satisfied through a password verify function
named MY_PASSWORD_VERIFY.

The first rule specifies that the password must be at least six characters in length. The
second rule disallows passwords containing some form of either the username or the
word password. The third rule requires the password to contain at least one alphabetic
character, at least one digit, and at least one punctuation character. If the new password
fails any of these tests, the function raises an exception, and the password change fails.

After creating this function as user SYS, assign it to a profile, like this:

ALTER PROFILE student LIMIT password_verify_function my_password_verify;

Any user having the student profile will need to abide by the password rules enforced by
the my_password_verify function:

CREATE OR REPLACE FUNCTION my_password_verify

 (username VARCHAR2

 ,password VARCHAR2

 ,old_password VARCHAR2

) RETURN BOOLEAN

IS

BEGIN

 -- Check for the minimum length of the password

 IF LENGTH(password) < 6 THEN

 raise_application_error(-20001

 ,’Password must be at least 6 characters long’);

 END IF;

 -- Check that the password does not contain any

 -- upper/lowercase version of either the user name

 -- or the keyword PASSWORD

95127c12.indd 694 2/17/09 2:43:46 PM

Auditing Database Activity 695

 IF (regexp_like(password,username,’i’)

 OR regexp_like(password,’password’,’i’)) THEN

 raise_application_error(-20002

 ,’Password cannot contain username or PASSWORD’);

 END IF;

 -- Check that the password contains at least one letter,

 -- one digit and one punctuation character

 IF NOT(regexp_like(password,’[[:digit:]]’)

 AND regexp_like(password,’[[:alpha:]]’)

 AND regexp_like(password,’[[:punct:]]’)

) THEN

 raise_application_error(-20003

 ,’Password must contain at least one digit ‘||

 ‘and one letter and one punctuation character’);

 END IF;

 -- password is okey dokey

 RETURN(TRUE);

END;

/
Oracle 11g provides the PL/SQL code to create a password complexity verify function.
The script is called utlpwdmg.sql and is in the $ORACLE_HOME/rdbms/admin directory. The
name of the function created using this script is called verify_function_11g.

Auditing Database Activity
Auditing involves monitoring and recording specific database activity. An Oracle 11g data-
base supports four levels of auditing:

StatementÛN

PrivilegeÛN

ObjectÛN

Fine-grained accessÛN

95127c12.indd 695 2/17/09 2:43:46 PM

696 Chapter 12 N Implementing Security and Auditing

These afford you two locations for recording these activities. Audit records can be stored
in either of these locations.

DatabaseÛN

Operating-system filesÛN

 You tell the Oracle Database where to record audit trail records by setting the initializa-
tion parameter audit_trail. The default is DB, as in AUDIT_TRAIL=DB, which tells the data-
base to record audit records in the database. AUDIT_TRAIL=DB,EXTENDED tells the database
to record audit records in the database together with bind variables (SQLBIND) and the SQL
statement triggering the audit entry (SQLTEXT). AUDIT_TRAIL=OS tells the database to record
audit records in operating-system files. You cannot change this parameter in memory, only
in your pfile or spfile. For example, the following statement will change the location of
audit records in the spfile:

ALTER SYSTEM SET audit_trail=DB SCOPE=SPFILE;

The audit_trail parameter can also have values XML and XML,EXTENDED. With these two
options, audit records are written to OS files in XML format. The value of NONE disables
auditing.

After changing the audit_trail parameter, you will need to bounce (shut down and
start up) your database instance for the change to take effect.

When recorded in the database, most audit entries are recorded in the SYS.AUD$ table.
On Unix systems, operating-system audit records are written into files in the directory
specified by the initialization parameter audit_file_dest (which is set to $ORACLE_BASE/
admin/$ORACLE_SID/adump if the database is created using DBCA). On Windows systems,
these audit records are written to the Event Viewer log file.

The four levels of auditing are described in the following sections.

Certain database activities are always recorded in the OS audit files.
Database connections using administrator privileges such as SYSDBA and
SYSOPER are recorded. Database startup and shutdown are also recorded
in the OS audit files.

Managing Statement Auditing
Statement auditing involves monitoring and recording the execution of specific types of
SQL statements. In the following sections, you will learn how to enable and disable state-
ment auditing as well as identify what statement auditing options are enabled.

Enabling Statement Auditing
You enable auditing of specific SQL statements with an AUDIT statement. For example, to
audit the SQL statements CREATE TABLE, DROP TABLE, and TRUNCATE TABLE, use the TABLE
audit option like this:

AUDIT table;

95127c12.indd 696 2/17/09 2:43:46 PM

Auditing Database Activity 697

To record audit entries for specific users only, include a BY USER clause in the AUDIT state-
ment. For example, to audit CREATE, DROP, and TRUNCATE TABLE statements for user juanita
only, execute the following:

AUDIT table BY juanita;

Frequently, you want to record only attempts that fail—perhaps to look for users who
are probing the system to see what they can get away with. To further limit auditing to only
these unsuccessful executions, use a WHENEVER clause like this:

AUDIT table BY juanita WHENEVER NOT SUCCESSFUL;

You can alternately specify WHENEVER SUCCESSFUL to record only successful statements.
If you do not include a WHENEVER clause, both successful and unsuccessful statements trigger
audit records.

You can further configure non-DDL statements to record one audit entry for the trigger-
ing session or one entry for each auditable action during the session. Specify BY ACCESS or
BY SESSION in the AUDIT statement, like this:

AUDIT INSERT TABLE BY juanita BY ACCESS;

There are many auditing options other than TABLE or INSERT TABLE. Table 12.1 shows
all the statement-auditing options.

tA b le 12 .1 Statement-Auditing Options

Statement-Auditing Option Triggering SQL Statements

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLE
COMMENT ON COLUMN

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

DELETE TABLE DELETE

EXECUTE PROCEDURE Execution of any procedure or function or access to any cur-
sor or variable in a package

GRANT PROCEDURE GRANT on a function, package, or procedure

GRANT SEQUENCE GRANT on a sequence

GRANT TABLE GRANT on a table or view

95127c12.indd 697 2/17/09 2:43:46 PM

698 Chapter 12 N Implementing Security and Auditing

Statement-Auditing Option Triggering SQL Statements

INDEX CREATEINDEX

INSERT TABLE INSERT into table or view

LOCK TABLE LOCK

NOT EXISTS All SQL statements

PROCEDURE CREATE FUNCTION
DROP FUNCTION
CREATE PACKAGE
CREATE PACKAGE BODY
DROP PACKAGE
CREATE PROCEDURE
DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

SELECT SEQUENCE SELECT on a sequence

SELECT TABLE SELECT from table or view

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION LOGON

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT
NOAUDIT

SYSTEM GRANT GRANT
REVOKE

tA b le 12 .1 Statement Audit Options (continued)

95127c12.indd 698 2/17/09 2:43:47 PM

Auditing Database Activity 699

Statement-Auditing Option Triggering SQL Statements

TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE

TABLESPACE CREATE TABLESPACE
ALTER TABLESPACE
DROP TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER (to enable or disable)
ALTER TABLE (to enable all or disable all)

UPDATE TABLE UPDATE on a table or view

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

Identifying Enabled Statement-Auditing Options
You can identify the statement-auditing options that have been enabled in your database by
querying the DBA_STMT_AUDIT_OPTS data dictionary view. For example, the following example
shows that SESSION auditing is enabled for all users, NOT EXISTS auditing is enabled for all
users, and TABLE auditing WHENEVER NOT SUCCESSFUL is enabled for user juanita:

SELECT audit_option, failure, success, user_name

FROM dba_stmt_audit_opts

ORDER BY audit_option, user_name;

AUDIT_OPTION FAILURE SUCCESS USER_NAME

-------------------- ---------- ---------- -------------

CREATE SESSION BY ACCESS BY ACCESS

NOT EXISTS BY ACCESS BY ACCESS

TABLE BY ACCESS NOT SET JUANITA

tA b le 12 .1 Statement Audit Options (continued)

95127c12.indd 699 2/17/09 2:43:47 PM

700 Chapter 12 N Implementing Security and Auditing

Oracle Database 11g comes with the following auditing enabled by default:

ALTER ANY PROCEDUREÛN

ALTER ANY TABLEÛN

ALTER DATABASEÛN

ALTER PROFILEÛN

ALTER SYSTEMÛN

ALTER USERÛN

CREATE ANY JOBÛN

CREATE ANY LIBRARYÛN

CREATE ANY PROCEDUREÛN

CREATE ANY TABLEÛN

CREATE EXTERNAL JOBÛN

CREATE PUBLIC DATABASE LINKÛN

CREATE SESSIONÛN

CREATE USERÛN

DROP ANY PROCEDUREÛN

DROP ANY TABLEÛN

DROP PROFILEÛN

DROP USERÛN

EXEMPT ACCESS POLICYÛN

GRANT ANY OBJECT PRIVILEGEÛN

GRANT ANY PRIVILEGEÛN

GRANT ANY ROLEÛN

ROLEÛN

SYSTEM AUDITÛN

You can enable administrator auditing by setting the initialization param-
eter AUDIT_SYS_OPERATIONS=TRUE. All the activities performed connected
as SYS or SYSDBA/SYSOPER privileges are recorded in the OS audit trail.

Disabling Statement Auditing
To disable auditing of a specific SQL statement, use a NOAUDIT statement, which allows the
same BY and WHENEVER options as the AUDIT statement. If you enable auditing for a specific
user, specify that user in the NOAUDIT statement as well. However, it is not necessary to
include the WHENEVER NOT SUCCESSFUL clause in the NOAUDIT statement.

For example, to disable the three audit options in the previous section, execute the fol-
lowing three statements:

NOAUDIT session;

NOAUDIT not exists;

NOAUDIT table BY juanita;

Examining the Audit Trail
Statement, privilege, and object audit records are written to the SYS.AUD$ table and made
available via the data dictionary views DBA_AUDIT_TRAIL and USER_AUDIT_TRAIL. These
data dictionary views cannot contain values for every record because this view is used for

95127c12.indd 700 2/17/09 2:43:47 PM

Auditing Database Activity 701

three different types of audit records. For example, you can view the user, time, and type of
statement audited for user juanita by executing the following:

SELECT username, timestamp, action_name

FROM dba_audit_trail

WHERE username = ‘JUANITA’;

ORA USER TIMESTAMP ACTION_NAME

---------------- --------------------- -------------

JUANITA 15-Jun-2004 18:43:52 LOGON

JUANITA 15-Jun-2004 18:44:19 LOGOFF

JUANITA 15-Jun-2004 18:46:01 LOGON

JUANITA 15-Jun-2004 18:46:40 CREATE TABLE

If you enable AUDIT SESSION, the database creates one audit record when
a user logs on and updates that record when the user logs off successfully.
These session audit records contain some valuable information that can
help you narrow the focus of your tuning efforts. Among the information
recorded in the audit records are the username, logon time, logoff time,
and the number of physical reads and logical reads performed during the
session. By looking for sessions with high counts of logical or physical
reads, you can identify high-resource-consuming jobs and narrow the
focus of your tuning efforts.

Managing Privilege Auditing
Privilege auditing involves monitoring and recording the execution of SQL statements that
require a specific system privilege, such as SELECT ANY TABLE or GRANT ANY PRIVILEGE. You
can audit any system privilege. In the following sections, you will learn how to enable and
disable privilege auditing as well as identify which privilege-auditing options are enabled in
your database.

Enabling Privilege Auditing
You enable privilege auditing with an AUDIT statement, specifying the system privilege that
you want to monitor. For example, to audit statements that require the system privilege
CREATE ANY TABLE, execute the following:

AUDIT create any table;

95127c12.indd 701 2/17/09 2:43:47 PM

702 Chapter 12 N Implementing Security and Auditing

To record audit entries for specific users only, include a BY USER clause in the AUDIT
statement. For example, to audit SQL statements made by user juanita that require the
CREATE ANY TABLE privilege, execute the following:

AUDIT create any table BY juanita;

Just as you do with statement auditing, you can further configure non-DDL privileges to
record one audit entry for the triggering session or one for each auditable action during the
session by specifying BY ACCESS or BY SESSION in the AUDIT statement, like this:

AUDIT DELETE ANY TABLE BY juanita BY ACCESS;

Identifying Enabled Privilege-Auditing Options
You can report on the privilege auditing that has been enabled in your database by query-
ing the DBA_PRIV_AUDIT_OPTS data dictionary view. For example, the following report
shows that ALTER PROFILE auditing is enabled for all users and that ALTER USER and DELETE
ANY TABLE auditing is enabled for user juanita:

SELECT privilege, user_name

FROM dba_priv_audit_opts

ORDER BY privilege, user_name;

PRIVILEGE USER_NAME

-------------------- ----------------

ALTER PROFILE

DELETE ANY TABLE JUANITA

ALTER USER JUANITA

Disabling Privilege Auditing
To disable auditing of a system privilege, use a NOAUDIT statement. The NOAUDIT statement
allows the same BY options as the AUDIT statement. If you enable auditing for a specific user,
you need to specify that user in the NOAUDIT statement. For example, to disable the three
audit options in the previous section, execute the following three statements:

NOAUDIT alter profile;

NOAUDIT delete any table BY juanita;

NOAUDIT alter user BY juanita;

Managing Object Auditing
Object auditing involves monitoring and recording the execution of SQL statements that
require a specific object privilege, such as SELECT, INSERT, UPDATE, DELETE, or EXECUTE.

95127c12.indd 702 2/17/09 2:43:47 PM

Auditing Database Activity 703

Unlike either statement or system privilege auditing, schema object auditing cannot be
restricted to specific users—it is enabled for all users or no users. In the following sections,
you will learn how to enable and disable object-auditing options as well as identify which
object-auditing options are enabled.

Enabling Object Auditing
You enable object auditing with an AUDIT statement, specifying both the object and
object privilege that you want to monitor. For example, to audit SELECT statements on the
HR.EMPLOYEE_SALARY table, execute the following:

AUDIT select ON hr.employee_salary;

You can further configure these audit records to record one audit entry for the triggering
session or one for each auditable action during the session by specifying BY ACCESS or BY
SESSION in the AUDIT statement. This access/session configuration can be defined differently
for successful or unsuccessful executions. For example, to make one audit entry per audit-
able action for successful SELECT statements on the HR.EMPLOYEE_SALARY table, execute the
following:

-- one audit entry for each trigging statement

AUDIT select ON hr.employee_salary

 BY ACCESS WHENEVER SUCCESSFUL;

-- one audit entry for the session experiencing one or more

-- triggering statements

AUDIT select ON hr.employee_salary

 BY SESSION WHENEVER NOT SUCCESSFUL;

Identifying Enabled Object-Auditing Options
The object-auditing options that are enabled in the database are recorded in the DBA_OBJ_
AUDIT_OPTS data dictionary view. Unlike the statement and privilege _AUDIT_OPTS views,
the DBA_OBJ_AUDIT_OPTS data dictionary view always has one row for each auditable object
in the database. There are columns for each object privilege that auditing can be enabled
on, and in each of these columns, a code is reported that shows the auditing options. For
example, the following report on the HR.EMPLOYEES table shows that no auditing is enabled
for the INSERT object privilege and that the SELECT object privilege has auditing enabled
with one audit entry for each access when the access is successful and one audit entry for
each session when the access is not successful:

SELECT owner, object_name, object_type, ins, sel

FROM dba_obj_audit_opts

WHERE owner=’HR’

AND object_name=’EMPLOYEE_SALARY’;

95127c12.indd 703 2/17/09 2:43:47 PM

704 Chapter 12 N Implementing Security and Auditing

OWNER OBJECT_NAME OBJECT_TY INS SEL

------------ ------------------------- --------- --- ---

HR EMPLOYEE_SALARY TABLE -/- A/S

The coding for the object privilege columns contains one of three possible values: a
hyphen (-) to indicate no auditing is enabled, an A to indicate BY ACCESS, or an S to indicate
BY SESSION. The first code (preceding the slash) denotes the action for successful state-
ments, and the second code (after the slash) denotes the action for unsuccessful statements.

Disabling Object Auditing
To disable object auditing, use a NOAUDIT statement, which allows the same WHENEVER
options as the AUDIT statement. For example, to disable the auditing of unsuccessful SELECT
statements against the HR.EMPLOYEES table, execute the following:

NOAUDIT select ON hr.employee_salary WHENEVER NOT SUCCESSFUL;

Purging the Audit Trail
Database audit records for statement, privilege, and object auditing are stored in the table
SYS.AUD$. Depending on how extensive your auditing and retention policies are, you will
need to periodically delete old audit records from this table. The database does not provide
an interface to assist in deleting rows from the audit table, so you will need to do so your-
self. To purge audit records older than 90 days, execute the following as user SYS:

DELETE FROM sys.aud$ WHERE timestamp# < SYSDATE -90;

You might want to copy the audit records into a different table for historical retention or
export them to an operating-system file before removing them. It is a good practice to audit
changes to the AUD$ table so that you can identify when changes were made.

Only the user SYS, a user with the DELETE ANY TABLE privilege, or a user to whom SYS
granted the DELETE privilege on SYS.AUD$ can delete the audit trail records from the SYS.
AUD$ table.

Oracle 11g audits all DML statements against the SYS.AUD$ table. The INSERT,
UPDATE, MERGE, and DELETE statements against the SYS.AUD$ table are not
deleted from the SYS.AUD$ table. You have to truncate the SYS.AUD$ table
to remove such records.

You can also use EM Grid Control to enable and disable auditing. On the Server tab (as
shown earlier in Figure 12.1), click the Audit Settings link under Security. As shown in Fig-
ure 12.6, the Audit Settings screen shows the audit location, enabled audits, and audit trail
information.

95127c12.indd 704 2/17/09 2:43:47 PM

Auditing Database Activity 705

F I gu r e 12 .6 EM Grid Control Audit Settings screen

Managing Fine-Grained Auditing
Fine-grained auditing (FGA) lets you monitor and record data access based on the content
of the data. With FGA, you define an audit policy on a table and optionally a column.
When the specified condition evaluates to TRUE, an audit record is created, and an optional
event-handler program is called. You use the PL/SQL package DBMS_FGA to configure and
manage FGA.

In the following sections, you will learn how to create, drop, enable, and disable fine-
grained auditing policies.

Creating an FGA Policy
To create a new FGA policy, use the packaged procedure DBMS_FGA.ADD_POLICY. This pro-
cedure has the following parameters:

object_schema  This is the owner of the object to be audited. The default is NULL, which
tells the database to use the current user.

object_name    This is the name of the object to be monitored.

95127c12.indd 705 2/17/09 2:43:47 PM

706 Chapter 12 N Implementing Security and Auditing

policy_name    This is a unique name for the new policy

audit_condition    This is a SQL expression that evaluates to a Boolean. When this con-
dition evaluates to either TRUE or NULL (the default), an audit record can be created. This
condition cannot directly use the SYSDATE, UID, USER, or USERENV functions, it cannot use sub-
queries or sequences, and it cannot reference the pseudocolumns LEVEL, PRIOR, and ROWNUM.

audit_column    This is a comma-delimited list of columns that the database will look to access.
If a column in audit_column is referenced in the SQL statement and the audit_condition
is not FALSE, an audit record is created. Columns appearing in audit_column do not have
to also appear in the audit_condition expression. The default value is NULL, which tells the
database that any column being referenced should trigger the audit record.

handler_schema    This is the owner of the event handler procedure. The default is NULL,
which tells the database to use the current schema.

handler_module    This is the name of the event handler procedure. The default NULL tells the
database to not use an event handler. If the event handler is a packaged procedure, the handler_
module must reference both the package name and the program, using dot notation, like this:

UTL_MAIL.SEND_ATTACH_RAW

enable    This is a Boolean that tells the database whether this policy should be in effect.
The default is TRUE.

statement_types    This tells the database which types of statements to monitor. Valid values
are a comma-delimited list of SELECT, INSERT, UPDATE, and DELETE. The default is SELECT.

audit_trail    This parameter tells the database whether to record the SQL statement
and bind variables for the triggering SQL in the audit trail. The default value DBMS_FGA.
DB_EXTENDED indicates that the SQL statement and bind variables should be recorded in the
audit trail. Set this parameter to DBMS_FGA.DB to save space by not recording the SQL state-
ment or bind variables in the audit trail.

audit_column_ops    This parameter has only two valid values: DBMS_FGA.ALL_COLUMNS and
DBMS_FGA.ANY_COLUMNS. When set to DBMS_FGA.ALL_COLUMNS, this parameter tells the data-
base that all columns appearing in the audit_column parameter must be referenced in order
to trigger an audit record. The default is DBMS_FGA.ANY_COLUMNS, which tells the database
that if any column appearing in the audit_column also appears in the SQL statement, an
audit record should be created.

To create a new disabled audit policy named COMPENSATION_AUD that looks for SELECT
statements that access the HR.EMPLOYEES table and references either SALARY or COMMISSION_
PCT, execute the following:

DBMS_FGA.ADD_POLICY(object_schema=>’HR’

 ,object_name=>’EMPLOYEES’

 ,policy_name=>’COMPENSATION_AUD’

 ,audit_column=>’SALARY, COMMISSION_PCT’

 ,enable=>FALSE

 ,statement_types=>’SELECT’);

95127c12.indd 706 2/17/09 2:43:47 PM

Auditing Database Activity 707

Enabling an FGA Policy
Use the procedure DBMS_FGA.ENABLE_POLICY to enable an FGA policy. This procedure will
not raise an exception if the policy is already enabled. For example, you can enable the
COMPENSATION_AUD policy added in the previous section like this:

DBMS_FGA.ENABLE_POLICY(object_schema=>’HR’

 ,object_name=>’EMPLOYEES’

 ,policy_name=>’COMPENSATION_AUD’);

If you use direct path inserts, be careful with FGA. If an FGA policy is
enabled on a table participating in a direct path insert, the auditing over-
rides the hint, disabling the direct path access and causing conventional
inserts. As with all hints, the database does not directly tell you that your
hint is being ignored.

Disabling an FGA Policy
To turn off an FGA, use the DBMS_FGA.DISABLE_POLICY procedure. Here is an example:

DBMS_FGA.DISABLE_POLICY(object_schema=>’HR’

 ,object_name=>’EMPLOYEES’

 ,policy_name=>’COMPENSATION_AUD’);

Dropping an FGA Policy
To remove an FGA policy, use the DBMS_FGA.DROP_POLICY procedure. For example, to drop
the COMPENSATION_AUD policy used in this section, run this:

DBMS_FGA.DROP_POLICY(object_schema=>’HR’

 ,object_name=>’EMPLOYEES’

 ,policy_name=>’COMPENSATION_AUD’);

Identifying FGA Policies in the Database
Query the DBA_AUDIT_POLICIES data dictionary view to report on the FGA policies
defined in your database. For example, the following report shows that the policy named
COMPENSATION_AUD on the column SALARY in the table HR.EMPLOYEES is defined but not
enabled:

SELECT policy_name ,object_schema||’.’||

 object_name object_name

 ,policy_column

 ,enabled ,audit_trail

FROM dba_audit_policies;

95127c12.indd 707 2/17/09 2:43:47 PM

708 Chapter 12 N Implementing Security and Auditing

POLICY_NAME OBJECT_NAME POLICY ENABLED AUDIT_TRAIL

---------------- ------------ ------ ------- -----------

COMPENSATION_AUD HR.EMPLOYEES SALARY NO DB_EXTENDED

Audit records from this policy, when enabled, capture the standard auditing information
as well as the text of the SQL statement that triggered the auditing (DB_EXTENDED).

Reporting on the FGA Audit Trail Entries
The DBA_FGA_AUDIT_TRAIL data dictionary view is used in reporting on the FGA audit
entries that have been recorded in the database. The following example shows audit trail
entries for the COMPENSATION_AUD policy, listing the database username and the timestamp
of the audit record and computer from which the database connection was made:

SELECT db_user, timestamp, userhost

FROM dba_fga_audit_traiL

WHERE policy_name=’COMPENSATION_AUD’

DB_USER TIMESTAMP USERHOST

------------ -------------------- --------------------

CHIPD 10-Jun-2004 09:48:14 XYZcorp\CHIPNOTEBOOK

JUANITA 19-Jun-2004 14:50:47 XYZcorp\HR_PC2

Summary
Oracle 11g gives you a well-stocked toolkit for managing users and securing the database.
You create and manage user accounts with the CREATE, ALTER, and DROP USER statements.
User passwords in Oracle 11g are case sensitive. You can assign tablespace resources to be
used for sorting that are different than those for tables or indexes. You can limit the disk,
CPU, and memory resources that your users consume by employing tablespace quotas and
kernel resource limits in user profiles.

To protect data from unwanted access or manipulation, you can employ object and sys-
tem privileges. You can create and use roles to make managing these database privileges
easier. You can enable object, statement, privilege, and fine-grained auditing to help you
monitor and record sensitive database activity. By default, DBCA enables several key audit-
ing features when you create an Oracle 11g database.

The Oracle 11g database has several powerful features (user accounts and packages) that
will need to be locked down in your production systems, and in this chapter you learned
which user accounts need to be locked, as well as which standard packages should be
locked down to better protect your company’s data.

95127c12.indd 708 2/17/09 2:43:47 PM

Exam Essentials 709

Exam Essentials

Be familiar with the authentication methods. Database accounts can be authenticated
by the database (identified by password), by the operating system (identified externally), or by
an enterprise security service (identified globally).

Know how to assign default and temporary tablespace to users. Assign default and
temporary tablespaces with either a CREATE USER statement or an ALTER USER statement.
Understand which tablespace would be assigned if you omitted the DEFAULT TABLESPACE
clause when creating a user.

Be able to identify and grant object, system, and role privileges. Know the difference
between these types of privileges and when to use each type.

Know the differences between the WITH ADMIN OPTION and WITH GRANT OPTION keywords.
The ADMIN option applies to role or system privileges, but the GRANT option applies to object
privileges.

Know how to enable roles. Know when a role needs to be enabled and how to enable it.

Be able to secure your database. Make sure you know how to lock down your database.
Know which packages should be secured and how to secure them.

Know how to implement password security. An Oracle 11g database gives you several
standard password-security settings. Know what is available in a profile and what needs to
be implemented in a password-verifying function.

Know how to enable, disable, and identify enabled auditing options. Be able to describe
the types of auditing, how to enable them, and how to report on the audit trail.

95127c12.indd 709 2/17/09 2:43:47 PM

710 Chapter 12 N Implementing Security and Auditing

Review Questions
1. Which of the following statements creates an Oracle account but lets the operating system

authenticate logons?

A. create user ops$admin identified by os;

B. create user ops$admin identified externally;

C. create user ops$admin nopassword;

D. create user ops$admin authenticated by os;

2. If you want to capture the SQL statement and bind variables when performing statement
auditing, which value should the AUDIT_TRAIL parameter have?

A. NONE

B. DB

C. DB,EXTENDED

D. OS

E. OS,EXTENDED

3. Which of the following statements gives user desmond the ability to alter table
gl.accounts?

A. grant alter on gl.accounts to desmond;

B. grant alter to desmond on gl.accounts;

C. grant alter table to desmond;

D. allow desmond to alter table gl.accounts;

4. Which of the following statements gives user desmond the ability to alter table gl.accounts
as well as give this ability to other accounts?

A. grant alter any table with grant option to desmond;

B. grant alter on gl.accounts to desmond with admin option;

C. grant alter any table to desmond with grant option;

D. grant alter any table to desmond with admin option;

5. Examine the CREATE USER statement, and choose which of the following options best
applies.

CREATE USER JOHN IDENTIFIED BY JOHNNY

DEFAULT TABLESPACE INDEX01

PASSWORD EXPIRE

QUOTA UNLIMITED ON DATA01

QUOTA UNLIMITED ON INDEX01;

GRANT CONNECT TO JOHN;

95127c12.indd 710 2/17/09 2:43:47 PM

Review Questions 711

A. JOHN will not be able to log in to the database using SQL*Plus until the DBA changes
his password.

B. JOHN is authenticated by the database.

C. When creating tables, if JOHN did not specify the TABLESPACE clause, the table will be
created on the DATA01 tablespace.

D. Specifying unlimited space quota on INDEX01 is a redundant step since INDEX01 is
JOHN’s default tablespace.

6. User system granted SELECT on sh.products to user ian using WITH GRANT OPTION. Ian
then granted SELECT on sh.products to user stuart. Ian has left the company, and his
account has been dropped. What happens to Stuart’s privileges on sh.products?

A. Stuart loses his SELECT privilege on sh.products.

B. Stuart retains his SELECT privilege on sh.products.

C. Stuart loses his SELECT privilege if Ian was dropped with the CASCADE REVOKE option.

D. Stuart retains his SELECT privilege if Ian was dropped with the NOCASCADE REVOKE
option.

7. User system granted SELECT ANY TABLE to user ian using WITH ADMIN OPTION. Ian then
granted SELECT ANY TABLE to user stuart. Ian has left the company, and his account has
been dropped. What happens to Stuart’s privileges?

A. Stuart loses his privileges.

B. Stuart retains his privileges.

C. Stuart loses his privileges if Ian was dropped with the CASCADE REVOKE option.

D. Stuart retains his privileges if Ian was dropped with the NOCASCADE REVOKE option.

8. Which of the following system privileges can allow the grantee to masquerade as another
user and therefore should be granted judiciously?

A. CREATE ANY JOB

B. ALTER USER

C. CREATE ANY PROCEDURE

D. All of the above

9. Which of the following statements enables the role user_admin in the current session?

A. alter session enable role user_admin;

B. alter session set role user_admin;

C. alter role user_admin enable;

D. set role user_admin;

95127c12.indd 711 2/17/09 2:43:48 PM

712 Chapter 12 N Implementing Security and Auditing

10. Which of the following SQL statements allows user augustin to use the privileges associ-
ated with the password-protected role info_czar that has been granted to him?

A. set role all;

B. alter user augustin default role all;

C. alter session enable role info_czar;

D. alter session enable info_czar identified by brozo

11. By default, how much space can any account use for a new table?

A. None

B. Up to the current free space in the tablespace

C. Unlimited space, including autoextends

D. Up to the default quota established at tablespace creation time

12. Which of the following SQL statements results in a disconnection after a session is idle for
30 minutes?

A. alter session set idle_timeout=30;

B. alter session set idle_timeout=1800;

C. alter profile default limit idle_time 30;

D. alter profile default set idle_timeout 30;

13. Which of the following prevents a user from reusing a password when they change their
password?

A. Setting the initialization parameter NO_PASSWORD_REUSE to TRUE

B. Altering that user’s profile to UNLIMITED for PASSWORD_REUSE_TIME and 1 for
PASSWORD_REUSE_MAX

C. Altering that user’s profile to UNLIMITED for both PASSWORD_REUSE_TIME and
PASSWORD_REUSE_MAX

D. Using a password verify function to record the new password and comparing the
new passwords to those recorded previously

14. Examine the code, and choose the best option that describes the reason for error.

CREATE USER JOHN IDENTIFIED BY JOHN1;

CREATE ROLE HR_QUERY;

GRANT CONNECT, OEQUERY, SELECT ANY TABLE TO HR_QUERY;

ALTER USER JOHN DEFAULT ROLE ALL EXCEPT HR_QUERY;

GRANT HR_QUERY TO JOHN;

CONNECT JOHN/JOHN1

SELECT COUNT(*) FROM HR.EMPLOYEES;

Error: ORA-01031: insufficient privileges

95127c12.indd 712 2/17/09 2:43:48 PM

Review Questions 713

A. John needs the SELECT_CATALOG_ROLE privilege.

B. HR_QUERY is not a default role for John.

C. The SELECT privilege on the HR.EMPLOYEES table is not granted to JOHN or HR_QUERY.

D. John should enable the role using the SET ROLE statement and a password.

15. You created a database user using the following statement. Which option will connect the
user successfully to the database?
CREATE USER JOHN IDENTIFIED BY John1;

GRANT CONNECT TO JOHN;

A. CONNECT JOHN/JOHN1

B. CONNECT JOHN/john1

C. CONNECT john/John1

D. All of the above

16. What is the default value for the AUDIT_TRAIL parameter?

A. NONE

B. DB

C. DB,EXTENDED

D. XML

17. Which of the following SQL statements limits attempts to guess passwords by locking an
account after three failed logon attempts?

A. alter profile default limit failed_login_attempts 3;

B. alter system set max_logon_failures = 3 scope=both;

C. alter user set failed_login_attempts = 3;

D. alter system set failed_login_attempts = 3 scope=both;

18. Where can the database write audit_trail records?

A. In a database table

B. In a file outside the database

C. Both in the database and in an operating-system file

D. Either in the database or in an operating-system file

95127c12.indd 713 2/17/09 2:43:48 PM

714 Chapter 12 N Implementing Security and Auditing

19. User JAMES has a table named JOBS created on the tablespace USERS. When you issue the
following statement, what effect will it have on the JOBS table?
ALTER USER JAMES QUOTA 0 ON USERS;

A. No more rows can be added to the JOBS table.

B. No new blocks can be allocated to the JOBS table.

C. No new extents can be allocated to the JOBS table.

D. The table JOBS cannot be accessed.

E. The table is truncated.

20. How do you manage fine-grained auditing?

A. With the AUDIT and NOAUDIT statements

B. With the DBMS_FGA package

C. With the GRANT and REVOKE statements

D. With the CREATE, ALTER, and DROP statements

95127c12.indd 714 2/17/09 2:43:48 PM

Answers to Review Questions 715

Answers to Review Questions
1. B. Authentication by the operating system is called external authentication, and the

Oracle account name must match the operating-system account name prefixed with the
OS_AUTHENT_PREFIX string.

2. C. The AUDIT_TRAIL parameter with the value DB,EXTENDED enables capturing SQL state-
ments and bind variables in auditing. OS,EXTENDED is not a valid value for AUDIT_TRAIL.

3. A. Altering a table in another user’s schema requires either the object privilege ALTER on
that object or the system privilege ALTER ANY TABLE. Option A has the correct syntax for
granting the object privilege on ALTER gl.accounts to user desmond. Although option C
would allow user desmond to alter his own tables, he would need the ALTER ANY TABLE
privilege to alter another user’s table.

4. D. Either the ALTER ANY TABLE system privilege or the ALTER object privilege is required.
Conferring the ability to further grant the privilege requires the keywords WITH ADMIN
OPTION for system or role privileges or the keywords WITH GRANT OPTION for object privi-
leges. Only option D has both the correct syntax and the correct keywords.

5. B. JOHN will be able to log in to the database using SQL*Plus, and Oracle will prompt for
new password when John logs in the first time. Since John’s default tablespace is INDEX01,
the tables and indexes created will be on the INDEX01 tablespace if the TABLESPACE clause
is omitted. Though INDEX01 is the default tablespace, to create objects on INDEX01 or any
other tablespace, a specific space quota needs to be defined, or the user should have the
UNLIMITED TABLESPACE system privilege.

6. A. When object privileges are granted through an intermediary, they are implicitly dropped
when the intermediary is dropped. CASCADE REVOKE and NOCASCADE REVOKE are not part
of the GRANT statement syntax.

7. B. When system privileges are granted through an intermediary, they are not affected when
the intermediary is dropped. CASCADE REVOKE and NOCASCADE REVOKE are not part of the
GRANT statement syntax.

8. D. The CREATE ANY JOB and CREATE ANY PROCEDURE system privileges allow the grantee
to create and run programs with the privileges of another user. The ALTER USER privilege
allows the grantee to change a user’s password, connect as that user, and then change the
password back. These are all powerful system privileges and should be restricted to as few
administrative users as practical.

9. D. The SET ROLE statement enables or disables roles in the current session.

10. B. To enable a password-protected role, you need to either execute a SET ROLE statement
specifying the password or alter the user to make the role a default role. Default roles do
not require a set role statement or a password to become enabled.

11. A. By default, user accounts have no quota in any tablespace. Before a user can cre-
ate a table or an index, you need to either give the user a quota in one or more specific

95127c12.indd 715 2/17/09 2:43:48 PM

716 Chapter 12 N Implementing Security and Auditing

tablespaces or grant the UNLIMITED TABLESPACE system privilege to give an unlimited
quota (including autoextends) in all tablespaces.

12. C. Profiles limit the amount of idle time, CPU time, logical reads, or other resource-
oriented session limits. Option C uses the correct syntax to limit idle time for a session to
30 minutes.

13. B. Although option D could also work, it involves storing the passwords in a table in
the database, which could be a security concern. It also takes a lot more effort to config-
ure and maintain. The better technique is to use the standard database profile features
PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX. Setting one of these profile parameters
to UNLIMITED and the other to a specific value prevents passwords from being reused. If
both of these profile parameters are set to UNLIMITED, these parameters are essentially dis-
abled. There is no initialization parameter called NO_PASSWORD_REUSE.

14. B. Since HR_QUERY has the SELECT ANY TABLE privilege, no other privilege is required to
query user tables in the database. To avoid the error, HR_QUERY must be defined as a default
role for John, or John should use the SET ROLE statement. A password is not needed for
SET ROLE because the role is not password protected.

15. C. In Oracle 11g user passwords are case sensitive. The username is not case sensitive if you
did not enclose it in double quotes.

16. B. In Oracle 11g, the default value for AUDIT_TRAIL parameter is DB. By default, Oracle 11g
enables several key database-auditing features.

17. A. You limit the number of failed logon attempts with a profile.

18. D. The destination of audit_trail records is controlled by the initialization parameter
audit_trail. Setting this parameter to DB or DB,EXTENDED causes the audit trail to be
written to a database table. Setting the parameter to OS or XML causes the audit trail to be
written to an operating-system file.

19. C. When a space quota is exceeded or quota is removed from a user on a tablespace, the
tables remain in the tablespace, but no new extents can be allocated. New rows can be
inserted into the table as long as the table does not require Oracle to allocate a new extent
in the table.

20. B. Fine-grained auditing is managed using the DBMS_FGA package. The AUDIT and NOAUDIT
statements are used to manage statement, privilege, and object auditing. The GRANT and
REVOKE statements are used to manage system, object, and role privileges. The CREATE, ALTER,
and DROP statements are used to manage several types of database objects and settings.

95127c12.indd 716 2/17/09 2:43:48 PM

Chapter

13
Managing Data
and Undo

Oracle Database 11g:
aDMinistratiOn i exaM Objectives
cOvereD in this chapter:

Managing Data and ConcurrencyÛÛ

Manage data using DML ÛN

Identify and administer PL/SQL objectsÛN

Monitor and resolve locking conflictsÛN

Managing Undo DataÛÛ

Overview of UndoÛN

Transactions and undo dataÛN

Managing undoÛN

95127c13.indd 717 2/17/09 2:49:22 PM

Oracle supports manipulating data via several interfaces, but
the most common are SQL and PL/SQL. Understanding how
to use and manage PL/SQL programs is an important skill

for any DBA. Some database functionality is delivered only as PL/SQL programs, such as
fine-grained auditing, and other functionality is available in both a command-line version
and as a PL/SQL program, such as Data Pump export and Data Pump import. As you gain
experience, you will increasingly rely on using PL/SQL to manage your databases. So, you
need to have a solid grasp of SQL and PL/SQL fundamentals to be a successful Oracle DBA.

In Chapter 5, “Manipulating Data,” you learned to add, change, and remove informa-
tion from an Oracle Database using SQL DML statements. In this chapter, you will review
DML statements and learn how to administer PL/SQL stored objects. You will also under-
stand what “undo” is in Oracle and how Oracle uses undo information to build consistent
results.

Manipulating Data through SQL
The Structured Query Language (SQL) includes Data Definition Language (DDL) state-
ments, Data Control Language (DCL) statements, and Data Manipulation Language
(DML) statements. You learned to add, modify, and delete information from the Oracle
Database using DML statements in Chapter 5. You also learned how to create, alter, and
delete objects using DDL statements in Chapters 6, 7, and 10. In Chapter 12, “Implement-
ing Security and Auditing,” you learned how to use the DCL statements GRANT and REVOKE
to give and take privileges on database objects. To provide complete coverage of the main
OCP objective “Managing Data and Concurrency,” in this chapter I will explain the DML
statements INSERT, UPDATE, and DELETE for adding, modifying, and removing data from
your tables.

After using DML statements to add rows to a table, update rows in a table, or delete
rows from a table, you must make these changes permanent by executing a COMMIT command.
Alternatively, you can undo the DML changes with a ROLLBACK command. Until you commit
the changes, other database sessions will not be able to see your changes.

Read Chapter 5 to understand DML statements completely. This chapter
reviews only the INSERT, UPDATE, and DELETE statements.

95127c13.indd 718 2/17/09 2:49:22 PM

Manipulating Data through SQL 719

Using the INSERT Statement
You use the INSERT statement to add rows in one or more tables. You can create these rows
with specific data values or copy them from existing tables using a subquery.

Inserting into a Single Table
When using SQL, the only way to add rows in an Oracle 11g table is with an INSERT state-
ment, and the most common variety of INSERT statement is the single table insert. The syntax
for a simple INSERT statement is as follows:

INSERT INTO [schema.]table_name [(column_list)]

VALUES (data_values)

In the syntax, table_name is the name of the table where you want to add new rows, and
it can be qualified with the schema name. column_list is the name of columns in the table,
each separated by a comma, that you want to populate. The data_values are the correspond-
ing values for each column in the column_list, each separated by a comma. Using this syntax
you add one row at a time to the table.

column_list is optional, with the default being a list of all columns in the table in COLUMN_
ID order. See the data dictionary views USER_TAB_COLUMNS, ALL_TAB_COLUMNS, or DBA_TAB_
COLUMNS for the COLUMN_ID. Although inserting into a table is more common, you can also
insert into a view, as long as the view does not contain one of the following:

A ÛN DISTINCT operator

A set operator (ÛN UNION, MINUS, and so on)

An aggregate function (ÛN SUM, COUNT, AVG, and so on)

A ÛN GROUP BY, ORDER BY, or CONNECT BY clause

A subquery in the ÛN SELECT list

Here are some examples of using the INSERT statement to insert rows into a single table.
The following inserts one row, channel 3, in the channels table:

INSERT INTO channels (channel_id ,channel_desc

 ,channel_class ,channel_class_id

 ,channel_total ,channel_total_id)

VALUES (3 ,’Direct Sales’ ,’Direct’

 ,12 ,’Channel total’ ,1);

The following inserts one row, channel 5, in the channels table:
INSERT INTO channels VALUES

 (5 ,’Catalog’ ,’Indirect’ ,13 ,’Channel total’ ,1);

95127c13.indd 719 2/17/09 2:49:22 PM

720 Chapter 13 N Managing Data and Undo

You can also add rows to a table based on the result from a subquery. The following
example copies zero or more rows from the territories table in the home_office database
to the regions table. home_office is the name of the database link.

INSERT INTO regions (region_id ,region_name)

 SELECT region_seq.NEXTVAL , terr_name

 FROM territories@home_office

WHERE class = ‘R’;

The number and datatypes of values in the VALUES list must match the number and data-
types in the column list. The database will perform implicit datatype conversion if necessary
to convert the values into the datatype of the target.

To understand database links, read the sidebar “Creating Database Links”
in Chapter 7, “Creating Schema Objects.”

Inserting into Multiple Tables
Most INSERT statements are the single-table variety, but Oracle also supports a multiple-
table INSERT statement. You’ll most frequently use multitable inserts in data warehouse
Extract, Transform, and Load (ETL) routines.

With a multitable insert, you can make a single pass through the source data and load
the data into more than one table. By reducing the number of passes through the source
data, you can reduce the overall work and thus achieve faster throughput.

The syntax for the multiple-table INSERT statement is as follows:

INSERT [ALL | FIRST] {WHEN <condition>

THEN INTO <insert_clause> … … …}

[ELSE <insert_clause>]

If a WHEN condition evaluates to TRUE, the corresponding INTO clause is executed. If no
WHEN condition evaluates to TRUE, the ELSE clause is executed. The keyword ALL tells the
database to check each WHEN condition. On the other hand, the keyword FIRST tells the
database to stop checking WHEN conditions after finding the first TRUE condition.

In the following example, an insurance company has policies for both property and
casualty in the policy table, but in its data mart, the company might break out these policy
types into separate fact tables. During the monthly load, new policies are added to both
the property_premium_fact and casualty_premium_fact tables. You can use a multitable
INSERT to add these rows more efficiently than two separate INSERT statements. A multi-
table INSERT looks like this:

INSERT FIRST

WHEN policy_type = ‘P’ THEN

 INTO property_premium_fact(policy_id ,

 policy_nbr ,premium_amt)

95127c13.indd 720 2/17/09 2:49:22 PM

Manipulating Data through SQL 721

 VALUES (property_premium_seq.nextval ,

 policy_number ,gross_premium)

WHEN p.policy_type = ‘C’ THEN

 INTO property_premium_fact(policy_id ,

 policy_nbr ,premium_amt)

 VALUES (property_premium_seq.nextval ,

 policy_number ,gross_premium)

SELECT policy_nbr ,gross_premium ,policy_type

FROM policies

WHERE policy_date >=

 TRUNC(SYSDATE,’MM’) - TO_YMINTERVAL(‘00-01’);

By using this multitable INSERT statement instead of two separate statements, the code
makes a single pass through the policy table instead of two and thus saves a significant
amount of I/O and processing time.

Using the UPDATE Statement
You use an UPDATE statement to change existing rows in a table. The basic syntax for the
UPDATE statement is as follows:

UPDATE <table_name>

SET <column_list> = <values>

 [,<column_list> = <values> … … …]

[WHERE <condition>]

The column list can be either a single column or a comma-delimited list of columns. A
single list of columns lets you assign single values—either literals or from a subquery. The
following updates customer XYZ’s phone and fax numbers and sets their quantity based on
their orders:

UPDATE order_rollup r

SET phone = ‘3125551212’

 ,fax = ‘7735551212’

 ,qty = (SELECT SUM(d.qty)

 FROM order_details d

 WHERE d.customer_id = r.customer_id)

WHERE r.customer_id = ‘XYZ’;

When you use a comma-delimited list of columns, you must enclose them in parentheses.
The comma-delimited list lets you assign multiple values from a subquery. The following
updates both the quantity and the price for customer XYZ for the order they placed on Octo-
ber 1, 2008:

UPDATE order_rollup

SET (qty, price) = (SELECT SUM(qty), SUM(price)

95127c13.indd 721 2/17/09 2:49:22 PM

722 Chapter 13 N Managing Data and Undo

 FROM order_details

 WHERE customer_id = ‘XYZ’)

WHERE customer_id = ‘XYZ’

 AND order_period = TO_DATE(‘01-Oct-2008’);

Assigning multiple values from a single subquery can save you from having to perform
multiple subqueries, thus improving the efficiency of your SQL.

Using the MERGE Statement
The MERGE statement is used to both update and insert rows in a table. The MERGE statement
has a join specification that describes how to determine whether an update or insert should
be executed. The syntax of a simple MERGE statement is as follows:

MERGE INTO <table>

USING <subquery or table>

ON <condition>

[WHEN MATCHED THEN UPDATE SET <column> = <expression> [WHERE <condition>]]

[WHEN NOT MATCHED THEN INSERT <column_list> VALUES <values_list> [WHERE
<condition>]]

[WHERE <condition>]

The WHEN MATCHED predicate specifies how to update the existing rows. The WHEN NOT
MATCHED predicate specifies how to create rows that do not exist.

The following example has a new pricing sheet for products in category 33. This
new pricing data has been loaded into the NEW_PRICES table. You need to update the
PRODUCT_INFORMATION table with these new prices. The NEW_PRICES table contains updates
to existing rows in the PRODUCT_INFORMATION table as well as new products. The new
products need to be inserted, and the existing products need to be updated.

SELECT product_id,category_id,list_price,min_price

FROM oe.product_information

WHERE category_id=33;

PRODUCT_ID CATEGORY_ID LIST_PRICE MIN_PRICE

---------- ----------- ---------- ----------

 2986 33 125 111

 3163 33 35 29

 3165 33 40 34

 3167 33 55 47

 3216 33 30 26

 3220 33 45 36

SELECT *

FROM new_prices;

95127c13.indd 722 2/17/09 2:49:22 PM

Manipulating Data through SQL 723

PRODUCT_ID LIST_PRICE MIN_PRICE

---------- ---------- ----------

 2986 135 121

 3163 40 32

 3164 40 35

 3165 40 37

 3166 50 45

 3167 55 50

 3216 30 26

 3220 45 36

You can use the MERGE statement to perform an update/insert of the new pricing data
into the PRODUCT_INFORMATION table, as follows:

MERGE INTO oe.product_information pi

USING (SELECT product_id, list_price, min_price

 FROM new_prices) NP

ON (pi.product_id = np.product_id)

WHEN MATCHED THEN UPDATE SET pi.list_price =np.list_price

 ,pi.min_price = np.min_price

WHEN NOT MATCHED THEN INSERT (pi.product_id,pi.category_id

 ,pi.list_price,pi.min_price)

 VALUES (np.product_id, 33,np.list_price, np.min_price);

PRODUCT_ID CATEGORY_ID LIST_PRICE MIN_PRICE

---------- ----------- ---------- ----------

 2986 33 135 121 (updated)

 3163 33 40 32 (updated)

 3164 33 40 35 (inserted)

 3165 33 40 37 (updated)

 3166 33 50 45 (inserted)

 3167 33 55 50 (updated)

 3216 33 30 26 (updated)

 3220 33 45 36 (updated)

Using the DELETE Statement
You use the DELETE statement to remove rows from a table. The syntax for a basic DELETE
statement is as follows:

DELETE [FROM] <table>

[WHERE <condition>]

95127c13.indd 723 2/17/09 2:49:22 PM

724 Chapter 13 N Managing Data and Undo

Here are some examples of a DELETE statement. The following removes orders from certain
states:

DELETE FROM orders

WHERE state IN (‘TX’,’NY’,’IL’)

 AND order_date < TRUNC(SYSDATE) - 90

The following removes customer GOMEZ:

DELETE FROM customers

WHERE customer_name = ‘GOMEZ’;

The following removes duplicate line_detail_id values. Note that the keyword FROM is
not needed.

DELETE line_details

WHERE rowid NOT IN (SELECT MAX(rowid)

 FROM line_detail

 GROUP BY line_detail_id)

The following example removes all rows from table order_staging:

DELETE FROM order_staging;

The WHERE clause is optional, and when it is not present, all rows from the table are
removed. If you need to remove all rows from a table, consider using the TRUNCATE state-
ment. TRUNCATE is a DDL statement and, unlike the DELETE statement, does not support a
ROLLBACK. Using TRUNCATE, unlike using DELETE, does not generate undo and executes much
faster for a large table.

When you perform the TRUNCATE operation, Oracle performs an implicit
commit since it is a DDL and also requires an exclusive lock on the table.
To read more about the difference between DELETE and TRUNCATE, see the
section “Truncating a Table” in Chapter 5.

Identifying PL/SQL Objects
PL/SQL is Oracle’s procedural language extension to SQL. This Oracle proprietary language
was derived from Ada and has evolved to include a robust feature set, including sequential
and conditional controls, looping constructs, exception handling, records, and collections,
as well as object-oriented features such as methods, overloading, upcasting, and type
inheritance.

Full knowledge of the PL/SQL language is well beyond the scope of the OCA/OCP exams,
and more developers than DBAs create PL/SQL programs. But a significant number of data-
base features are delivered as PL/SQL programs, and knowing how to identify and work

95127c13.indd 724 2/17/09 2:49:22 PM

Identifying PL/SQL Objects 725

with these programs is crucial to your effectiveness. In this section, you will learn what
kinds of PL/SQL programs are available, when each is appropriate, and what configuration
options are applicable to working with PL/SQL programs.

The exam covers five types of named PL/SQL programs, which are usually stored in the
database: functions, procedures, packages, package bodies, and triggers. Each of these pro-
gram types is covered in the following sections. The name and source code for each stored
PL/SQL program is available from the data dictionary views DBA_SOURCE and DBA_TRIGGERS,
although some packages are supplied wrapped, which means that the source code is a
binary form. You can wrap your programs as well with the wrap utility.

Wrap is an Oracle-provided utility used to hide the PL/SQL source code,
which helps protect your intellectual property. See Appendix A in the
Oracle documentation “Oracle Database PL/SQL Language Reference 11g
Release 1 (11.1) Part Number B28370-02” for details on using Wrap. You can
access the Oracle documentation at http://tahiti.oracle.com. You can
also use the subprograms available in the DBMS_DDL package to wrap code.

Working with Functions
Functions are PL/SQL programs that execute zero or more statements and return a value
through a RETURN statement. Functions can also receive or return zero or more values
through their parameters. Oracle provides several built-in functions such as the commonly
used SYSDATE, COUNT, and SUBSTR functions. Several SQL functions and hundreds of PL/
SQL functions come with Oracle Database 11g. We discussed several of the SQL functions in
Chapter 2, “Using Single-Row Functions,” and Chapter 3, “Using Group Functions.” Because
functions have a return value, a datatype is associated with them. Functions can be invoked
anywhere an expression of the same datatype is allowed. Here are some examples:

As a default value:ÛN

DECLARE

 today DATE DEFAULT SYSDATE;

In an assignment:ÛN

today := SYSDATE;

In a Boolean expression:ÛN

IF TO_CHAR(SYSDATE,’Day’) = ‘Monday’

In a SQL expression:ÛN

SELECT COUNT(*)

FROM employees

WHERE hire_date > SYSDATE-30;

In the parameter list of another procedure or function:ÛN

SELECT TRUNC(SYSDATE)

Create a function with the CREATE FUNCTION statement, like this:

95127c13.indd 725 2/17/09 2:49:22 PM

726 Chapter 13 N Managing Data and Undo

CREATE OR REPLACE FUNCTION is_weekend(

 check_date IN DATE DEFAULT SYSDATE)

 RETURN VARCHAR2 AS

BEGIN

 CASE TO_CHAR(check_date,’DY’)

 WHEN ‘SAT’ THEN

 RETURN ‘YES’;

 WHEN ‘SUN’ THEN

 RETURN ‘YES’;

 ELSE

 RETURN ‘NO’;

 END CASE;

END;

Functions, like all named PL/SQL, have the OR REPLACE keywords available in the
CREATE statement. When present, OR REPLACE tells the database to not raise an exception if
the object already exists. This behavior differs from a DROP and CREATE, in that privileges
are not lost during a REPLACE operation and any objects that reference this object will not
become invalid.

Working with Procedures
Procedures are PL/SQL programs that execute one or more statements. Procedures can
receive and return values only through their parameter lists. You create a procedure with
the CREATE PROCEDURE statement, like this:

CREATE OR REPLACE PROCEDURE archive_orders

 (cust_id IN NUMBER

 ,retention IN NUMBER) IS

BEGIN

 INSERT INTO orders_archive

 SELECT * FROM orders

 WHERE customer = cust_id

 AND order_date < SYSDATE - retention;

 DELETE orders

 WHERE customer = cust_id

 AND order_date < SYSDATE - retention;

 INSERT INTO maint_log

95127c13.indd 726 2/17/09 2:49:22 PM

Identifying PL/SQL Objects 727

 (action, action_date, who) VALUES

 (‘archive orders ‘||retention||’ for ‘||cust_id

 ,SYSDATE ,USER);

END;

The keyword IS, in the third line, is synonymous with the keyword AS, shown in the
third line of the last example function in the previous section. Both are syntactically valid
for all named SQL.

You invoke a procedure as a stand-alone statement within a PL/SQL program or by
using the CALL or EXEC command. Here is an example:

EXEC DBMS_OUTPUT.PUT_LINE(‘Hello world!’);

Hello world!

PL/SQL procedure successfully completed.

CALL DBMS_OUTPUT.PUT_LINE(‘Hello world!’);

Hello world!

Call completed.

A function or procedure by default is executed with the privileges of its
owner, not of its invoker. If you create the procedure or function with a
clause AUTHID CURRENT_USER, then the procedure or function will be exe-
cuted with the privileges of the invoker. To be able to execute a procedure
or function owned by another user, you must have been given the EXECUTE
privilege or should have the EXECUTE ANY system privilege.

Working with Packages
A package is a container for functions, procedures, and data structures such as records,
cursors, variables, and constants. A package has a publicly visible portion, called the
specification (or spec for short) and a private portion called the package body. The package
spec describes the programs and data structures that can be accessed from other programs.
The package body contains the implementation of the procedures and functions. The pack-
age spec is identified in the data dictionary as the type PACKAGE, and the package body is
identified as the type PACKAGE BODY.

To create a package spec, use the CREATE PACKAGE statement. In the following example,
the package spec table_util contains one function and one procedure:

CREATE OR REPLACE PACKAGE table_util IS

 FUNCTION version RETURN VARCHAR2;

 PROCEDURE truncate (table_name IN VARCHAR2);

95127c13.indd 727 2/17/09 2:49:22 PM

728 Chapter 13 N Managing Data and Undo

END table_util;

Privileges on a package are granted at the package-spec level. The EXECUTE privilege on
a package allows the grantee to execute any program or use any data structure declared in
the package specification. You cannot grant the EXECUTE privilege on only some of the pro-
grams declared in the spec.

Creating a Package Body
A package body depends on a package spec having the same name. The package body
can be created only after the spec. The package body implements the programs that were
declared in the package spec and can optionally contain private programs and data acces-
sible only from within the package body.

To create a package body, use the CREATE PACKAGE BODY statement:

CREATE OR REPLACE PACKAGE BODY table_util IS

Here is an example of a private variable that can be referenced only in the package body:

version_string VARCHAR2(8) := ‘1.0.0’;

Here is the code for the version function:

FUNCTION version RETURN VARCHAR2 IS

 BEGIN

 RETURN version_string;

 END;

Here is the code for the truncate procedure:

PROCEDURE truncate (table_name IN VARCHAR2) IS

 BEGIN

 IF UPPER(table_name) = ‘ORDER_STAGE’

 OR UPPER(table_name) = ‘SALES_ROLLUP’

 THEN

 EXECUTE IMMEDIATE ‘truncate table ‘ ||

 UPPER(table_name);

 ELSE

 RAISE_APPLICATION_ERROR(-20010

 ,’Invalid table for truncate: ‘|| table_name);

 END IF;

 END;

END table_util;

The package name following the END statement is optional but encouraged because it
improves readability.

95127c13.indd 728 2/17/09 2:49:22 PM

Identifying PL/SQL Objects 729

Working with Triggering Events and Managing Triggers
Triggers are PL/SQL programs that are invoked in response to an event in the database.
Three sets of events can be hooked, allowing you to integrate your business logic with the
database in an event-driven manner. Triggers can be created on DML events, DDL events,
and database events. These three trigger event classes provide developers and you, the DBA,
with a robust toolkit with which to design, build, and troubleshoot systems.

I will cover each of these events in more detail in the following sections. I will also dis-
cuss how to enable and disable triggers.

DML Trigger Events
DML triggers are invoked, or fired, when the specified DML events occur. If the keywords
FOR EACH ROW are included in the trigger definition, the trigger fires once for each row that
is changed. If these keywords are missing, the trigger fires once for each statement that
causes the specified change. If the DML event list includes the UPDATE event, the trigger can
be further restricted to fire only when updates of specific columns occur.

The following example creates a trigger that fires before any insert and before an update
to the HIRE_DATE column of the EMPLOYEE table:

CREATE OR REPLACE TRIGGER employee_trg

 BEFORE INSERT OR UPDATE OF hire_date

 ON employees FOR EACH ROW

BEGIN

 log_update(USER,SYSTIMESTAMP);

 IF INSERTING THEN -- if fired due to insert

 :NEW.create_user := USER;

 :NEW.create_ts := SYSTIMESTAMP;

 ELSIF UPDATING THEN -- if fired due to update

 IF :OLD.hire_date <> :NEW.hire_date THEN

 RAISE_APPLICATION_ERROR(-20013,

 ‘update of hire_date not allowed’);

 END IF;

 END IF;

END;

This trigger will fire once for each row affected, because the keywords FOR EACH ROW are
included. When the triggering event is an INSERT, two columns are forced to the specific
values returned by USER and SYSTIMESTAMP. DML triggers cannot be created on SYS-owned
objects. Table 13.1 shows the DML trigger events.

95127c13.indd 729 2/17/09 2:49:22 PM

730 Chapter 13 N Managing Data and Undo

ta b le 13 .1 DML Trigger Events

Event When It Fires

INSERT When a row is added to a table or a view.

UPDATE When an UPDATE statement changes a row in a table or view. Update triggers can
also specify an OF clause to limit the scope of changes that fire this type of trigger.

DELETE When a row is removed from a table or a view.

Multiple triggers on a table fire in the following order:

1. Before statement triggers

2. Before row triggers

3. After row triggers

4. After statement triggers

Until Oracle 11g, if you had two or more triggers defined for the same
statement for the same timing point, the order of trigger execution was
unpredictable. In Oracle 11g, the FOLLOWS clause removes that restriction.

DDL Trigger Events
DDL triggers fire either for DDL changes to a specific schema or to all schemas in the data-
base. The keywords ON DATABASE specify that the trigger will fire for the specified event on
any schema in the database.

The following is an example of a trigger that fires for a DDL event in only one schema:

CREATE OR REPLACE TRIGGER NoGrantToPublic

BEFORE GRANT ON engineering.SCHEMA

DECLARE

 grantee_list dbms_standard.ora_name_list_t;

 counter BINARY_INTEGER;

BEGIN

 -- get the list of grantees

 counter := GRANTEE(grantee_list);

 FOR loop_counter IN

 grantee_list.FIRST..grantee_list.LAST

 LOOP

 -- if PUBLIC is on the grantee list, stop the action

 IF REGEXP_LIKE(grantee_list(loop_counter)

 ,’public’,’i’) THEN

 RAISE_APPLICATION_ERROR(-20113

95127c13.indd 730 2/17/09 2:49:22 PM

Identifying PL/SQL Objects 731

 ,’No grant to PUBLIC allowed for ‘

 ||DICTIONARY_OBJ_OWNER||’.’

 ||DICTIONARY_OBJ_NAME);

 END IF;

 END LOOP;

END;

In the preceding example, the DDL event is a GRANT statement issued by user engineering.
The code examines the grantee list, and if it finds the special user/role PUBLIC, an exception
is raised, causing the grant to fail. Table 13.2 shows the DDL trigger events.

ta b le 13 . 2 DDL Trigger Events

Event When It Fires

[BEFORE/AFTER] ALTER When an ALTER statement changes a database object

[BEFORE/AFTER] ANALYZE When the database gathers or deletes statistics or validates
the structure of an object

[BEFORE/AFTER] ASSOCIATE
STATISTICS

When the database associates a statistic with a database
object with an ASSOCIATE STATISTICS statement

[BEFORE/AFTER] AUDIT When the database records an audit action (except FGA)

[BEFORE/AFTER] COMMENT When a comment on a table or column is modified

[BEFORE/AFTER] CREATE When the database object is created

[BEFORE/AFTER] DDL In conjunction with any of the following: ALTER, ANALYZE,
ASSOCIATE STATISTICS, AUDIT, COMMENT, CREATE,
DISASSOCIATE STATISTICS, DROP GRANT, NOAUDIT, RENAME,
REVOKE, or TRUNCATE

[BEFORE/AFTER]
DISASSOCIATE STATISTICS

When a database disassociates a statistic type from a database
object with a DISASSOCIATE STATISTICS statement

[BEFORE/AFTER] DROP When a DROP statement removes an object from the database

[BEFORE/AFTER] GRANT When a GRANT statement assigns a privilege

[BEFORE/AFTER] NOAUDIT When a NOAUDIT statement changes database auditing

[BEFORE/AFTER] RENAME When a RENAME statement changes an object name

[BEFORE/AFTER] REVOKE When a REVOKE statement rescinds a privilege

[BEFORE/AFTER] TRUNCATE When a TRUNCATE statement purges a table

95127c13.indd 731 2/17/09 2:49:22 PM

732 Chapter 13 N Managing Data and Undo

Database Trigger Events
Database event triggers fire when the specified database-level event occurs. Most of these
triggers are available only before or after the database event, but not both.

The following example creates an after-server error trigger that sends an email notifica-
tion when an ORA-01555 error occurs:

CREATE OR REPLACE TRIGGER Email_on_1555_Err

AFTER SERVERERROR ON DATABASE

DECLARE

 mail_conn UTL_SMTP.connection;

 smtp_relay VARCHAR2(32) := ‘mailserver’;

 recipient_address VARCHAR2(64) := ‘DBA@hotmail.com’;

 sender_address VARCHAR2(64) := ‘oracle@sybex.com’;

 mail_port NUMBER := 25;

 msg VARCHAR2(200);

BEGIN

 IF USER = ‘SYSTEM’ THEN

 -- Ignore this error

 NULL;

 ELSIF IS_SERVERERROR (1555) THEN

 -- compose the message

 msg := ‘Subject: ORA-1555 error’;

 msg := msg||’Snapshot too old err at ‘||systimestamp;

 -- send email notice

 mail_conn := UTL_SMTP.open_connection(smtp_relay

 ,mail_port);

 UTL_SMTP.HELO(mail_conn, smtp_relay);

 UTL_SMTP.MAIL(mail_conn, sender_address);

 UTL_SMTP.RCPT(mail_conn, recipient_address);

 UTL_SMTP.DATA(mail_conn, msg);

 UTL_SMTP.QUIT(mail_conn);

 END IF;

END;

Be careful when using database triggers. Fully test them in development before deploying
them to production. Table 13.3 shows the database trigger events.

ta b le 13 . 3 Database Trigger Events

Event When It Fires

AFTER LOGON When a database session is established—only the AFTER trigger is
allowed

BEFORE LOGOFF When a database session ends normally—only the BEFORE trigger is
allowed

95127c13.indd 732 2/17/09 2:49:23 PM

Identifying PL/SQL Objects 733

Event When It Fires

AFTER STARTUP When the database is opened—only the AFTER trigger is allowed

BEFORE SHUTDOWN When the database is closed—only the BEFORE trigger is allowed

AFTER SERVERERROR When a database exception is raised—only the AFTER trigger is
allowed

AFTER SUSPEND When a server error causes a transaction to be suspended—only the
AFTER trigger is allowed

Enabling and Disabling Triggers
The database automatically enables a trigger when you create it. After creating a trigger,
you can disable (temporarily prevent it from firing) or reenable it. You can disable and
enable triggers by name with an ALTER TRIGGER statement. Here are two examples:

ALTER TRIGGER after_ora60 DISABLE;

ALTER TRIGGER load_packages ENABLE;

Alternatively, you can enable and disable multiple DML triggers with an ALTER TABLE
statement, like this:

ALTER TABLE employees DISABLE ALL TRIGGERS;

ALTER TABLE employees ENABLE ALL TRIGGERS;

You can also create a trigger with the ENABLE or DISABLE clause. ENABLE is the default.
You can query the STATUS column of the DBA_TRIGGERS view to find out whether a trig-

ger is enabled or disabled.

Using and Administering PL/SQL Programs
Oracle 11g comes bundled with hundreds of built-in packages that give you significant
capabilities for administering your database. Many features in the database are imple-
mented through one or more of these built-in packages. To use the job scheduler, collect
and manage optimizer statistics, implement fine-grained auditing, send email from the
database, and use Data Pump or Log Miner, you must engage built-in packages. As you
gain experience, you will use these built-in packages more extensively.

These are some of the commonly used built-in catalog packages:

DBMS_STATSÛN

DBMS_METADATAÛN

DBMS_MONITORÛN

ta b le 13 . 3 Database Trigger Events (continued)

95127c13.indd 733 2/17/09 2:49:23 PM

734 Chapter 13 N Managing Data and Undo

UTL_FILEÛN

UTL_MAILÛN

To view the names and parameter lists for stored programs (except triggers), use the
SQL*Plus DESCRIBE command like this:

describe dbms_monitor

-- some output is deleted for brevity

PROCEDURE SESSION_TRACE_DISABLE

 Argument Name Type In/Out Default?

 --------------- ------------------- ------ --------

 SESSION_ID BINARY_INTEGER IN DEFAULT

 SERIAL_NUM BINARY_INTEGER IN DEFAULT

PROCEDURE SESSION_TRACE_ENABLE

 Argument Name Type In/Out Default?

 --------------- ------------------- ------ --------

 SESSION_ID BINARY_INTEGER IN DEFAULT

 SERIAL_NUM BINARY_INTEGER IN DEFAULT

 WAITS BOOLEAN IN DEFAULT

 BINDS BOOLEAN IN DEFAULT

 PLAN_STAT VARCHAR2 IN DEFAULT

You can see in this output from DESCRIBE that the packaged procedure DBMS_MONITOR con-
tains several procedures, including SESSION_TRACE_DISABLE and SESSION_TRACE_ENABLE.
Furthermore, you can see the names, datatypes, and in/out mode for each parameter
(SESSION_ID, SERIAL_NUM, and so on).

An extensive list of Oracle built-in PL/SQL packages is available in the
manual “Oracle Database PL/SQL Packages and Types Reference 11g
Release 1 (11.1) Part Number B28419-03.” Fortunately, you don’t have to
know all these programs for the certification exam!

A PL/SQL program may be invalidated when a dependent object is changed through the
ALTER command. The database automatically recompiles the package body the next time it
is called, but you can choose to compile invalid PL/SQL programs yourself and thus elimi-
nate the costly recompile during regular system processing. To explicitly compile a named
SQL program, use the ALTER…COMPILE statement, like this:

ALTER PROCEDURE archive_orders COMPILE;

ALTER FUNCTION is_weekend COMPILE;

ALTER PACKAGE table_util COMPILE;

95127c13.indd 734 2/17/09 2:49:23 PM

Monitoring Locks and Resolving Lock Conflicts 735

ALTER PACKAGE table_util COMPILE BODY;

ALTER TRIGGER fire_me COMPILE;

Other objects, such as views or types, are similarly compiled.
Oracle 11g implements a finer-grained dependency control; hence, if the package speci-

fication is not changed, the PL/SQL objects that reference the functions and procedures of
the package are not invalidated when only the package body is changed.

Monitoring Locks and Resolving
Lock Conflicts
In any database with many users, you will eventually have to deal with locking conflicts
when two or more users try to change the same row in the database. In the following sec-
tions, I’ll present an overview of how locking works in the Oracle Database, how users are
queued for a particular resource once it is locked, and how Oracle classifies lock types in
the database. Then, I’ll show you a number of ways to detect and resolve locking issues; I’ll
also cover a special type of lock situation: the deadlock.

Understanding Locks and Transactions
Locks prevent multiple users from changing the same data at the same time. Before one or
more rows in a table can be changed, the user executing the DML statement must obtain a
lock on the row or rows; a lock gives the user exclusive control over the data until the user
has committed or rolled back the transaction that is changing the data.

In Oracle 11g, a transaction can lock one row, multiple rows, or an entire table.
Although you can manually lock rows, Oracle can automatically lock the rows needed at
the lowest possible level to ensure data integrity and minimize conflicts with other transac-
tions that may need to access other rows in the table.

In Table 13.4, both updates to the EMPLOYEES table return to the command prompt
immediately after the UPDATE because the locks are on different rows in the EMPLOYEES table
and neither session is waiting for the other lock to be released.

ta b le 13 . 4 Concurrent Transactions on Different Rows of the Same Table

Session 1 Time Session 2

update employees set salary =
salary * 1.2 where employee_id =
102;

11:29 update employees set manager = 100
where employee_id = 109;

commit; 11:30 commit;

95127c13.indd 735 2/17/09 2:49:23 PM

736 Chapter 13 N Managing Data and Undo

packaged applications and locking

The HR department recently purchased a benefits-management package that interfaced
well with our existing employee-management tables; however, once HR started using the
application, other users who accessed the employee tables started complaining of severe
slowdowns in updates to the employee information.

Reviewing the CPU and I/O usage of the instance did not reveal any problems, and it wasn’t
until we looked at the locking information that we noticed a table lock on the employees table
whenever the benefits-management features were being used! The benefits-management
application was written to work on a number of database platforms, and the least capable
of those platforms did not support row locking. As a result, no one could make changes
to the employees table whenever an employee’s benefits were being changed, and every-
one had to wait for the benefits changes to complete. Fortunately, the parameter file for
the benefits-management package had an option to specify Oracle as the target platform;
after setting the specific database version in the package’s parameter file, the package
was smart enough to use row locking instead of table locking whenever the employee
table needed to be updated.

Queries never require a lock. Even if another transaction has locked several rows or an
entire table, a query always succeeds, using the prelock image of the data stored in the undo
tablespace.

If multiple users require a lock on a row or rows in a table, the first user to request the
lock obtains it, and the remaining users are enqueued using a first-in, first-out (FIFO)
method. At a SQL> command prompt, a DML statement (INSERT, UPDATE, DELETE, or MERGE)
that is waiting for a lock on a resource appears to hang, unless the NOWAIT keyword is used
in a LOCK statement.

The WAIT and NOWAIT keywords are explained in the next section, “Maxi-
mizing Data Concurrency.”

At the end of a transaction, when either a COMMIT or a ROLLBACK is issued (either explic-
itly by the user or implicitly when the session terminates normally or abnormally), all locks
are released.

Maximizing Data Concurrency
Rows of a table are locked either explicitly by the user at the beginning of a transaction or
implicitly by Oracle, usually at the row level, depending on the operation. If a table must

95127c13.indd 736 2/17/09 2:49:23 PM

Monitoring Locks and Resolving Lock Conflicts 737

be locked for performance reasons (which is rare), you can use the LOCK TABLE command,
specifying the level at which the table should be locked.

In the following example, you lock the EMPLOYEES and DEPARTMENTS tables at the highest
possible level, EXCLUSIVE:

SQL> lock table hr.employees, hr.departments

 in exclusive mode;

Table(s) Locked.

Until the transaction with the LOCK statement either commits or rolls back, only queries
are allowed on the EMPLOYEES or DEPARTMENTS table.

In the sections that follow, I will review the lock modes, as well as show you how to avoid the
lock enqueue process and terminate the command if the requested resource is already locked.

Lock Modes
Lock modes provide a way for you to specify how much and what kinds of access other
users have on tables that you are using in DML commands. In Table 13.5, you can see the
types of locks that can be obtained at the table level.

ta b le 13 .5 Table Lock Modes

Table Lock Mode Description

ROW SHARE Permits concurrent access to the locked table but prohibits other
users from locking the entire table for exclusive access.

ROW EXCLUSIVE Same as ROW SHARE but also prohibits locking in SHARE mode. This
type of lock is obtained automatically with standard DML com-
mands such as UPDATE, INSERT, or DELETE.

SHARE Permits concurrent queries but prohibits updates to the table; this
mode is required to create an index on a table and is automatically
obtained when using the CREATE INDEX statement.

SHARE ROW EXCLUSIVE Used to query a whole table and to allow other users to query the
table but to prevent other users from locking the table in SHARE
mode or updating rows.

EXCLUSIVE The most restrictive locking mode; permits queries on the locked
table but prohibits DML by any other users. This mode is required
to drop the table and is automatically obtained when using the DROP
TABLE statement.

Manual lock requests wait in the same queue as implicit locks and are satisfied in a FIFO
manner as each request releases the lock with an implicit or explicit COMMIT or ROLLBACK.

95127c13.indd 737 2/17/09 2:49:23 PM

738 Chapter 13 N Managing Data and Undo

You can explicitly obtain locks on individual rows by using the SELECT … FOR UPDATE
statement, as you can see in the following example:

SQL> select * from hr.employees

 where manager_id = 100

 for update;

Not only does this query show the rows that satisfy the query conditions, but it also
locks the selected rows and prevents other transactions from locking or updating these
rows until a COMMIT or ROLLBACK occurs.

NOWAIT Mode
Using NOWAIT in a LOCK TABLE statement returns control to the user immediately if any locks
already exist on the requested resource, as you can see in the following example:

SQL> lock table hr.employees

 in share row exclusive mode

 nowait;

lock table hr.employees

 *

ERROR at line 1:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

SQL>

This is especially useful in a PL/SQL application if an alternate execution path can
be followed if the requested resource is not yet available. NOWAIT can also be used in the
SELECT … FOR UPDATE statement.

WAIT Mode
You can tell Oracle 11g to wait a specified number of seconds to acquire a DML lock. If
you do not specify a NOWAIT or WAIT clause, then the database waits indefinitely if the table
is locked by another user. In the following example, Oracle will wait for 60 seconds to
acquire the lock. If the lock is not acquired within 60 seconds, an error is returned.

SQL> lock table hr.employees

 in share row exclusive mode

 wait 60;

DDL Lock Waits
When DML statements have rows locked in a table or if the table is manually locked by a
user, DDL statements on the table fail with the ORA-00054 error. To have the DDL state-
ments wait for a specified number of seconds before throwing the ORA-00054 error, you

95127c13.indd 738 2/17/09 2:49:23 PM

Monitoring Locks and Resolving Lock Conflicts 739

can set the initialization parameter DDL_LOCK_TIMEOUT. The default value is 0, which means
the error is issued immediately. You can specify a value up to 1,000,000 seconds.

SQL> alter table hr.employees modify salary number (15,2);

alter table hr.employees modify salary number (15,2)

 *

ERROR at line 1:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

SQL> show parameter ddl_lock

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

ddl_lock_timeout integer 0

SQL>

Detecting and Resolving Lock Conflicts
Although locks are a common and sometimes unavoidable occurrence in many databases,
they are usually resolved by waiting in the queue. In some cases, you may need to resolve
the lock problem manually (such as if a user makes an update at 4:59 p.m. and does not
perform a COMMIT before leaving for the day).

In the next few sections, I will describe in more detail some of the reasons that lock
conflicts occur and how to detect lock conflicts, and I’ll discuss a more specific and serious
type of lock conflict: a deadlock.

Understanding Lock Conflicts
In addition to the proverbial user who makes a change at 4:59 p.m. and forgets to perform
a COMMIT before leaving for the day, other more typical lock conflicts are caused by long-
running transactions that perform hundreds, thousands, or even hundreds of thousands of
DML commands in the overnight batch run but are not finished updating the tables when
the normal business day starts. The uncommitted transactions from the overnight batch
jobs may lock tables that need to be updated by clerical staff during the business day, caus-
ing a lock conflict.

Another typical cause of lock conflicts is using unnecessarily high locking levels. In the
“Packaged Applications and Locking” sidebar earlier in this chapter, we described a third-
party application that routinely locked resources at the table level instead of at the row level
to be compatible with every SQL-based database on the market. Developers may unneces-
sarily code updates to tables with higher locking levels than required by Oracle 11g.

Detecting Lock Conflicts
Detecting locks in Oracle 11g using EM Database Control makes your job easy; you don’t
need to query against V$SESSION, V$TRANSACTION, V$LOCK, and V$LOCKED_OBJECT to see who

95127c13.indd 739 2/17/09 2:49:23 PM

740 Chapter 13 N Managing Data and Undo

is locking what resource. You can click the Instance Locks link on the Performance tab
of EM Grid Control. In Figure 13.1, you can see the tables locked by the user SCOTT after
executing the following statement:

SQL> lock table hr.employees, hr.departments

 in exclusive mode;

Table(s) Locked.

F i gU r e 13 .1 The Instance Locks screen in EM Database Control

95127c13.indd 740 2/17/09 2:49:23 PM

Monitoring Locks and Resolving Lock Conflicts 741

SCOTT has an EXCLUSIVE lock on both the EMPLOYEES and DEPARTMENTS tables. You can
drill down on the locked object by clicking one of the links in the Object Name column;
similarly, you can review other information about SCOTT’s session by clicking one of the
links in the Session ID column.

If the HR user performs the following SQL, HR’s session will wait until the SCOTT user
releases the locks:

SQL> UPDATE employees SET salary = 0 WHERE salary IS NULL;

On the EM Grid Control screen, choose Blocking Locks from the drop-down view, and
you can see that user SCOTT is blocking the HR user, as shown in Figure 13.2.

F i gU r e 13 . 2 The blocking locks shown in EM Database Control

The data dictionary view DBA_LOCK is very handy for the DBA to look for
locks and whether any session is blocking other users. A session with
value of Blocking in the BLOCKING_OTHERS column may have to be manu-
ally terminated using the ALTER SYSTEM KILL SESSION statement. DBA_
WAITERS is another view that shows only the sessions that are waiting on a
lock. This view shows the holding session and the waiting session.

95127c13.indd 741 2/17/09 2:49:23 PM

742 Chapter 13 N Managing Data and Undo

Understanding and Resolving Deadlocks
Resolving a lock conflict, the user can either COMMIT or ROLLBACK the current transaction.
If you cannot contact the user and it is an emergency, you can select the session holding
the lock and click the Kill Session button on the Instance Locks screen of the EM Database
Control (refer to Figure 13.1, earlier in this chapter). The next time the user whose session
has been killed tries to execute a command, the error message “ORA-00028: Your session
has been killed” is returned. Again, this is an option of last resort: you’ll lose all the state-
ments executed in the session since the last COMMIT.

A more serious type of lock conflict is a deadlock. A deadlock is a special type of lock
conflict in which two or more users are waiting for a resource locked by the other users. As
a result, neither transaction can complete without some kind of intervention: the session
that first detects a deadlock rolls back the statement waiting on the resource with the error
message “ORA-00060: Deadlock detected while waiting for resource.” Oracle automati-
cally resolves deadlocks without user/DBA intervention.

In Table 13.6, two sessions are attempting to update a row locked by the other session.

ta b le 13 .6 Deadlock Scenario

Session 1 Time Session 2

update employees set salary =
salary * 1.2 where employee_id =
102;

11:29 update employees set manager = 100
where employee_id = 109;

update employees set salary =
salary * 1.2 where employee_id =
109;

11:44

11:50 update employees set manager = 100
where employee_id = 102;

Prior to 11:44, session 1 and session 2 updated two different rows in the database and
did not commit the transaction. At 11:44, session 1 issued an UPDATE statement against
the same row locked by session 2. This causes session 1 to hang, waiting for the lock to
be released by session 2. The lock held by session 2 will be released only when session 2
performs a commit or rollback. At 11:50, when session 2 is trying to update a row already
locked by session 1, you have a deadlock situation: session 1 waiting on session 2 and ses-
sion 2 waiting on session 1. When this situation forms, Oracle throws out the ORA-00060
error and fails the statement. Remember, the transaction is not rolled back, because only
the statement is in error. In our example, session 2 will get the ORA-00060 error when the
update at 11:50 is issued, but session 1 will wait until session 2 commits or rolls back.

95127c13.indd 742 2/17/09 2:49:24 PM

Leveraging Undo Management 743

Leveraging Undo Management
Whenever a process or a user session changes data in the database, Oracle saves the old
value as it existed before it was modified as undo data. This provides a number of benefits
to the database user:

It lets the user change their minds and roll back, or undo, the change to the database. ÛN

It supports read-consistent queries. Once a query starts, any changes to the query’s ÛN

underlying tables are not reflected in the query’s results.

It supports flashback query, an Oracle feature introduced in Oracle9ÛN i. Flashback query
allows a user to see how a table looked at some point in the past. As long as the undo
data still exists for the requested point of time, flashback queries are possible.

In the following sections, I present all aspects of undo management. First, I will show
how transactions are related to undo management and how undo records are stored in an
undo tablespace along with some of the features supported by undo records. Next, I will
show you how to set up the initialization parameters to specify a target for how much
undo is retained in the undo tablespace; in addition, I will show you the commands needed
to guarantee that undo space is available for SELECT statements at the expense of DML
commands.

Monitoring an undo tablespace is not unlike monitoring any other tablespace: you want
to make sure you have enough undo space in the tablespace to satisfy all types of user trans-
actions but not so much that you’re wasting space that can be used for objects in other
tablespaces. Therefore, I will present some methods to accurately calculate the optimal
amount of undo space you will need. Finally, I will review the notification methods you can
use to proactively alert you to problems with the undo tablespace.

Understanding Undo Segments
Undo segments, also known as rollback segments, are similar to other segments in the
database, such as table or index segments, in that an undo segment consists of extents,
which in turn consist of data blocks. Also, an undo segment contains data similar to that
stored in a table. However, that is where the similarity ends. Undo segments must be stored
in a special type of tablespace called an undo tablespace. Although a database can have
more than one undo tablespace, only one undo tablespace can be active at any one time.
Undo segments contain undo information about one or many tables involved in a transac-
tion. Also, undo segments automatically grow and shrink as needed, acting as a circular
buffer—transactions that fill up the extents in an undo segment can wrap around to the
beginning of the segment if the first extent is not being used by an active transaction.

At the beginning of a transaction—in other words, when the first DML command is
issued after a previous COMMIT or a user first connects to the database—the transaction is
assigned to an undo segment in the undo tablespace. Any changes to any table in the trans-
action are recorded in the assigned undo segment. The names of the current active undo

95127c13.indd 743 2/17/09 2:49:24 PM

744 Chapter 13 N Managing Data and Undo

segments can be retrieved from the dynamic performance view V$ROLLNAME, as you can see
in the following query:

SQL> select * from v$rollname;

 USN NAME

---------- ----------------------

 0 SYSTEM

 1 _SYSSMU1_1192467665$

 2 _SYSSMU2_1192467665$

 3 _SYSSMU3_1192467665$

 4 _SYSSMU4_1192467665$

 5 _SYSSMU5_1192467665$

 6 _SYSSMU6_1192467665$

 7 _SYSSMU7_1192467665$

 8 _SYSSMU8_1192467665$

 9 _SYSSMU9_1192467665$

 10 _SYSSMU10_1192467665$

11 rows selected.

The data dictionary view DBA_ROLLBACK_SEGS shows both active (online)
and inactive (offline) undo segments in both the SYSTEM and undo
tablespaces.

The undo segment with an undo segment number (USN) of 0 is an undo segment reserved
for exclusive use by system users such as SYS or SYSTEM or if no other undo segments are
online and the data being changed resides in the SYSTEM tablespace. In this example, nine
other undo segments are available in the undo tablespace for user transactions.

The dynamic performance view V$TRANSACTION shows the relationship between a trans-
action and the undo segments. In the following query, you begin a transaction and then
join V$TRANSACTION to V$ROLLNAME to find out the name of the undo segment assigned to
the transaction:

SQL> set transaction name ‘Update clerk salaries’;

Transaction set.

SQL> update hr.employees set salary = salary * 1.25

 where job_id like ‘%CLERK’;

44 rows updated.

95127c13.indd 744 2/17/09 2:49:24 PM

Leveraging Undo Management 745

SQL> select xid, status, start_time, xidusn seg_num,

 r.name seg_name

 from v$transaction t join v$rollname r

 on t.xidusn = r.usn

 where t.name = ‘Update clerk salaries’;

XID STATUS START_TIME SEG_NUM SEG_NAME

---------------- ------- ----------------- ------- --------------------

05001100DD020000 ACTIVE 09/25/08 03:03:34 5 _SYSSMU5_1192467665$

1 row selected.

The column XID is the internally assigned, unique transaction number assigned to this
transaction, and it is assigned the undo segment _SYSSMU5_1192467665$. The column XIDUSN
(aliased as SEG_NUM in the query) is the undo segment number for _SYSSMU5_1192467665$.
A transaction can reside in only one undo segment; it cannot be moved to another undo
segment. However, many different transactions can use the same undo segment.

If an extent in the assigned undo segment fills up and more space is required, the next
available extent is used; if all extents in the segment are needed for current transactions, a
new extent is allocated for the undo segment.

All undo segments are owned by SYS, regardless of who is making changes in a transac-
tion. Each segment must have a minimum of two extents; the maximum number of extents
in an undo segment is high: for an undo tablespace with a block size of 8KB, the default
maximum number of extents per undo segment is 32,765.

During a media failure with an undo tablespace, the tablespace can be recovered using
archived and online redo log files just as with any other tablespace; however, the instance
must be in a MOUNT state to recover an undo tablespace.

Tablespace recovery is discussed in Chapter 16, “Recovering the Database.”

Using Undo Data
Undo data is the old value of data when a process or user changes data in a table or an
index. Undo data serves four purposes in an Oracle Database:

User rollback of a transactionÛN

Read consistency of DML operations and queriesÛN

Database recovery operationsÛN

Flashback functionalityÛN

95127c13.indd 745 2/17/09 2:49:24 PM

746 Chapter 13 N Managing Data and Undo

User Transaction Rollback
In Chapter 8, “Introducing Oracle Database 11g Components and Architecture,” you learned
about transactions and how they are managed within the database architecture. At the user
level, you might have one or hundreds of DML commands (such as DELETE, INSERT, UPDATE,
or MERGE) within a particular transaction that need to be undone by a user or a process that
is making changes to one or more tables. Undoing the changes within a transaction is called
rolling back part or all of the transaction. The undo information needed to roll back the
changes is called, appropriately, the rollback information and is stored in a special type of
tablespace called an undo tablespace.

When an entire transaction is rolled back, Oracle undoes all the changes since the begin-
ning of the transactions, using the saved undo information in the undo tablespace, releases
any locks on rows involved in the transaction, and ends the transaction.

If a failure occurs on the client or a network, abnormally terminating the user’s connec-
tion to the database, undo information is used in much the same way as if the user explicitly
rolled back the transaction, and Oracle undoes all the changes since the beginning of the
transaction, using information saved in the undo tablespace.

Read Consistency
Undo also provides read consistency for users who are querying rows involved in a DML
transaction by another user or session. When one user starts to make changes to a table
after another user has already begun a query against the table, the user issuing the query
will not see the changes to the table until after the query has completed and the user issues
a new query against the table. Undo segments in an undo tablespace are used to reconstruct
the data blocks belonging to the table to provide the previous values of the rows for any
user issuing SELECT statements against the table before the DML statements’ transaction
commits.

For example, the user KELSIEJ begins a transaction at 3 p.m. that contains several long-
running DML statements against the EMPLOYEES table; the statements aren’t expected to finish
until 3:15 p.m. As each DML command is issued, the previous values of each row are saved
in the transaction’s undo segment. At 3:05 p.m., the user SARAHCR issues a SELECT against
the EMPLOYEES table; none of the changes made so far by KELSIEJ are visible to SARAHCR. The
undo tablespace provides the previous values of the EMPLOYEES table to SARAHCR and any
other users querying the EMPLOYEES table between 3 p.m. and 3:15 p.m. Even if SARAHCR’s
query is still running at 3:20 p.m., the query still appears as it did at 3 p.m. before KELSIEJ
started making changes.

INSERT statements use little space in an undo segment; only the pointer
to the new row is stored in the undo tablespace. To undo an INSERT state-
ment, the pointer locates the new row and deletes it from the table if the
transaction is rolled back.

95127c13.indd 746 2/17/09 2:49:24 PM

Leveraging Undo Management 747

In a few situations, either SARAHCR’s query or KELSIEJ’s DML statements might fail,
because the undo tablespace is not sized correctly or because the undo retention period is
too short.

You can also apply read consistency to an entire transaction instead of just a single
SELECT statement by using the SET TRANSACTION statement as follows:

SQL> set transaction read only;

Transaction set.

Until the transaction is either rolled back or committed, all queries in the transaction see
only those changes to other tables that were committed before the transaction began. Only
the following statements are permitted in a read-only transaction:

SELECTÛN statements without the FOR UPDATE clause

LOCKÛN TABLE

SETÛN ROLE

ALTERÛN SESSION

ALTERÛN SYSTEM

In other words, a read-only transaction cannot contain any statement that changes data
in a table, regardless of where the table resides. For example, although an ALTER USER com-
mand does not change data in the USERS or any other non-SYSTEM tablespace, it does change
the data dictionary tables and therefore cannot be used in a read-only transaction.

Monitoring, Configuring, and Administering Undo
Compared with configuring rollback operations in releases previous to Oracle9i, managing
undo in later versions of Oracle requires little intervention. However, two particular situ-
ations will trigger intervention: either not enough undo space to handle all active transac-
tions or not enough undo space to satisfy long-running queries that need undo information
for read consistency. Running out of undo space for transactions generates messages such
as “ORA-01650: Unable to extend rollback segment”; long-running queries whose undo
entries have been reused by current transactions typically receive the “ORA-01555: Snap-
shot too old” message.

In the following sections, I will show you how to configure the undo tablespace using
two initialization parameters: UNDO_MANAGEMENT and UNDO_TABLESPACE. I will also present
the methods available for monitoring the health of the undo tablespace, as well as using
EM Database Control’s Undo Advisor to size or resize the undo tablespace. Using the
dynamic performance view V$UNDOSTAT, you can calculate an optimal size for the undo
tablespace if the Undo Advisor is not available. Finally, I will show you how to guarantee
that long-running queries will have undo entries available, even if it means that a DML
transaction fails, by using the RETENTION GUARANTEE option.

95127c13.indd 747 2/17/09 2:49:24 PM

748 Chapter 13 N Managing Data and Undo

Configuring the Undo Tablespace
Manual undo management is not recommended, although it is still available in Oracle
11g. Instead, use manual undo management only for compatibility with Oracle8i or ear-
lier. Automatic undo management is the default for the Oracle 11g database. To configure
automatic undo management, use the initialization parameters UNDO_MANAGEMENT, UNDO_
TABLESPACE, and UNDO_RETENTION.

UNDO_MANAGEMENT

The parameter UNDO_MANAGEMENT specifies the way in which undo data is managed in
the database: either manually using rollback segments or automatically using a single
tablespace to hold undo information.

The allowed values for UNDO_MANAGEMENT are MANUAL and AUTO. To change the undo-
management mode, you must restart the instance. This parameter is not dynamic, as you
can see in the following example:

SQL> alter system

 set undo_management = manual;

set undo_management = manual

 *

ERROR at line 2:

ORA-02095: specified initialization parameter cannot be modified

If you are using an spfile, you can change the value of this parameter in the spfile only
and then restart the instance for the parameter to take effect, as follows:

SQL> alter system

 set undo_management = manual scope=spfile;

System altered.

UNDO_TABLESPACE

The parameter UNDO_TABLESPACE specifies the name of the undo tablespace to use for read
consistency and transaction rollback.

You can create an undo tablespace when the database is created; you can resize it later
or create a new one later. In any case, only one undo tablespace can be active at any given
time, unless the value of UNDO_TABLESPACE is changed while the old undo tablespace still
contains active transactions. In this case, the old undo tablespace remains active until the
last transaction using the old undo tablespace either commits or rolls back; all new transac-
tions use the new undo tablespace.

If UNDO_TABLESPACE is not defined but at least one undo tablespace exists in the data-
base, the first undo tablespace discovered by the Oracle instance at startup is assigned to

95127c13.indd 748 2/17/09 2:49:24 PM

Leveraging Undo Management 749

UNDO_TABLESPACE. You can find out the name of the current undo tablespace with the SHOW
PARAMETER command, as in the following example:

SQL> show parameter undo_tablespace

NAME TYPE VALUE

----------------------- ----------- --------------------

undo_tablespace string UNDOTBS1

For most platforms, if an undo tablespace is not explicitly created in the CREATE DATABASE
command, Oracle automatically creates one with the name SYS_UNDOTBS.

Here is an example of how you can switch the undo tablespace from UNDOTBS1 to UNDO_BATCH:

SQL> show parameter undo_tablespace

NAME TYPE VALUE

-------------------------- ----------- -------------------

undo_tablespace string UNDOTBS1

SQL> alter system set undo_tablespace=undo_batch;

System altered.

SQL> show parameter undo_tablespace

NAME TYPE VALUE

-------------------------- ----------- -------------------

undo_tablespace string UNDO_BATCH

UNDO_RETENTION

The parameter UNDO_RETENTION specifies, in seconds, how long undo information that has
already been committed should be retained until it can be overwritten. This is not a guaran-
teed limit: if the number of seconds specified by UNDO_RETENTION has not been reached and if
a transaction needs undo space, already committed undo information can be overwritten.

SQL> show parameter undo

NAME TYPE VALUE

------------------------------------ ----------- ----------

undo_management string AUTO

undo_retention integer 900

undo_tablespace string UNDOTBS1

To guarantee undo retention, you can use the RETENTION GUARANTEE key-
words for the undo tablespace, as you will see later in this chapter in the
section “Guaranteeing Undo Retention.”

95127c13.indd 749 2/17/09 2:49:24 PM

750 Chapter 13 N Managing Data and Undo

Setting UNDO_RETENTION to zero turns on automatic undo retention tuning. Oracle con-
tinually adjusts this parameter to retain just enough undo information to satisfy the longest-
running query to date. If the undo tablespace is not big enough for the longest-running query,
automatic undo retention retains as much as possible without extending the undo tablespace.
In any case, automatic undo retention attempts to maintain at least 900 seconds, or 15 min-
utes, of undo information.

Regardless of how long undo information is retained, it falls into one of three categories:

Uncommitted undo information This is undo information that is still supporting an
active transaction and is required in the event of a ROLLBACK or a transaction failure. This
undo information is never overwritten.

Committed undo information Also known as unexpired undo, this is undo information
that is no longer needed to support an active transaction but is still needed to satisfy the
undo retention interval, as defined by UNDO_RETENTION. This undo can be overwritten, how-
ever, if an active transaction needs undo space.

Expired undo information This is undo information that is no longer needed to support
an active transaction and is overwritten when space is required by an active transaction.

Here is an example of how you can change undo retention from its current value to 12 hours:

SQL> show parameter undo_retention

NAME TYPE VALUE

------------------ ----------- -----------------------

undo_retention integer 600

SQL> alter system set undo_retention = 43200;

System altered.

SQL> show parameter undo_retention

NAME TYPE VALUE

------------------ ----------- -----------------------

undo_retention integer 43200

Unless you use the SCOPE parameter in the ALTER SYSTEM command, the change to
UNDO_RETENTION takes effect immediately and stays in effect the next time the instance is
restarted.

Monitoring the Undo Tablespace
Undo tablespaces are monitored just like any other tablespace: if a specific set of space thresh-
olds is not defined, the database default values are used; otherwise, a specific set of thresholds

95127c13.indd 750 2/17/09 2:49:24 PM

Leveraging Undo Management 751

can be assigned. When an undo tablespace’s data files do not have the AUTOEXTEND attribute
set, transactions can fail because too many transactions are vying for too little undo space.

Although you can allow the data files in your undo tablespace to autoextend initially,
turn off autoextend on its data files once you believe that the undo tablespace has been
sized correctly. This prevents a single user from accidentally using up large amounts of disk
space in the undo tablespace by neglecting to commit transactions as frequently as possible.

Figure 13.3 shows the Automatic Undo Management screen in EM Database Control
(click the Server tab and choose Automatic Undo Management under Database Configura-
tion). The current size of the undo tablespace is 270MB, and during the last seven days, the
size of this undo tablespace has been sufficient to support the maximum undo generation.

F i gU r e 13 . 3 The Automatic Undo Management screen in EM Database Control

95127c13.indd 751 2/17/09 2:49:24 PM

752 Chapter 13 N Managing Data and Undo

EM Database Control uses the data dictionary view V$UNDOSTAT to calculate the undo
usage rate and provide recommendations. V$UNDOSTAT collects 10-minute snapshots of the
undo space consumption and, in conjunction with UNDO_RETENTION and the database block
size, can provide an optimal undo tablespace size.

Running out of space in an undo tablespace can also trigger an “ORA-01555: Snapshot
too old” error. Long-running queries that need a read-consistent view of one or more tables
can be at odds with ongoing transactions that need undo space. Unless the undo tablespace
is defined with the RETENTION GUARANTEE parameter (described later in this chapter in the
section “Guaranteeing Undo Retention”), ongoing DML can use undo space that is needed
for long-running queries. As a result, a “Snapshot too old” error is returned to the user
executing the query, and an alert is generated. This alert is also known as a long query
warning alert.

The long query warning alert can be triggered independently of the space
available in the undo tablespace if the UNDO_RETENTION initialization
parameter is set too low.

Regardless of how often the “Snapshot too old” error occurs, the alert is generated at
most once during a 24-hour period. Increasing the size of the undo tablespace or changing
the value of UNDO_RETENTION does not reset the 24-hour timer. For example, an alert is gen-
erated at 10 a.m., and you add undo space at 11 a.m. The undo tablespace is still too small,
and users are still receiving “Snapshot too old” errors at 2 p.m. You will not receive a long
query warning alert until 10 a.m. the next day, but chances are you will get a phone call
before then!

Sizing the Undo Tablespace Using the Undo Advisor
The EM Database Control Undo Advisor helps you determine how large an undo
tablespace should be, given adjustments to the undo retention setting.

In Figure 13.3, the Undo Advisor screen shows analysis of the undo tablespace based
on the longest-running query in the analysis period. If you don’t expect your undo usage
to increase or you don’t expect to need to retain undo information longer than the current
longest one, you can drop the size of the undo tablespace to 242MB from the current size
of 270MB.

On the other hand, if you expect to need undo information for more than the cur-
rent longest-running query, you can see the impact of this increase by entering a new
value for undo retention and clicking the Run Analysis button. You can click the Edit
Undo Tablespace button to increase or decrease the size of the tablespace, as shown in
Figure 13.4.

95127c13.indd 752 2/17/09 2:49:24 PM

Leveraging Undo Management 753

F i gU r e 13 . 4 Edit Tablespace screen in EM Database Control

Guaranteeing Undo Retention
By default, undo information from committed transactions (unexpired undo) is overwritten
before a transaction fails because of a lack of expired undo. If your database requirements
are such that you want long-running queries to succeed at the expense of DML in a trans-
action, such as in a data warehouse environment where a query can run for hours or even
days, you can set the RETENTION GUARANTEE parameter for the undo tablespace.

This parameter is not available as an initialization parameter. You can set retention
guarantee using the Edit Tablespace EM Database Control screen shown in Figure 13.4

95127c13.indd 753 2/17/09 2:49:24 PM

754 Chapter 13 N Managing Data and Undo

by choosing Yes for Undo Retention Guarantee. You can also use ALTER TABLESPACE at the
command line to set it, as in the following example:

SQL> alter tablespace undotbs1 retention guarantee;

Tablespace altered.

Turning off the parameter is just as easy, as you can see in the next example:

SQL> alter tablespace undotbs1 retention noguarantee;

Tablespace altered.

Different undo tablespaces can have different settings for RETENTION. As expected, you
cannot set RETENTION for a tablespace that is not an undo tablespace. The following exam-
ple is attempting to change the RETENTION setting for the USERS tablespace and receives an
error message:

SQL> select tablespace_name, contents,

 2 retention from dba_tablespaces;

TABLESPACE_NAME CONTENTS RETENTION

------------------------------ --------- -----------

SYSTEM PERMANENT NOT APPLY

UNDOTBS1 UNDO NOGUARANTEE

SYSAUX PERMANENT NOT APPLY

TEMP TEMPORARY NOT APPLY

USERS PERMANENT NOT APPLY

EXAMPLE PERMANENT NOT APPLY

OE_TRANS PERMANENT NOT APPLY

SQL> alter tablespace users retention guarantee;

alter tablespace users retention guarantee

*

ERROR at line 1:

ORA-30044: ‘Retention’ can only be specified for undo tablespace

95127c13.indd 754 2/17/09 2:49:24 PM

Summary 755

Summary
In this chapter, you learned how to use the SQL DML statements to manipulate data as
well as how to identify, execute, and compile PL/SQL programs, including triggers. You
also learned how locks work in Oracle 11g database and how undo is managed.

 To create, change, and remove data from an Oracle Database, use the INSERT, UPDATE,
MERGE, and DELETE statements.

Although Oracle usually manages locks at the minimum level to ensure that two ses-
sions do not try to simultaneously update the same row in a table, you can explicitly lock
a table at a number of levels. In addition, you can lock a subset of rows in a table to pre-
vent updates or locks from other transactions with the FOR UPDATE clause in the SELECT
statement.

You learned some reasons that lock conflicts occur and how to resolve them; a special
kind of lock conflict, a deadlock, occurs when two users are waiting on a resource locked
by the other user. Deadlocks, unlike other types of lock conflicts, are resolved quickly and
automatically by Oracle long before any manual lock resolution is attempted.

I presented the undo tablespace and its importance for the two types of database users:
those who want to query a table and receive consistent results and those who want to make
changes to a table and have the option to roll back the data to its state when the transaction
started.

You can configure an undo tablespace with a handful of initialization parameters. UNDO_
MANAGEMENT defines the mode in which undo is managed and can be either MANUAL or AUTO.
UNDO_TABLESPACE identifies the current undo tablespace, which can be switched while the
database is open to users; however, only one undo tablespace can be active at a time.

You can use EM Database Control to both proactively monitor and resize the undo
tablespace. For databases whose long-running queries have priority over successful DML
transactions, you can specify that an undo tablespace retain expired undo information at
the expense of failed transactions.

95127c13.indd 755 2/17/09 2:49:25 PM

756 Chapter 13 N Managing Data and Undo

Exam Essentials

Know the syntax for how to insert data with either a list of values or a subquery. A list of
values requires the keyword VALUES, while a subquery does not.

Know that PL/SQL functions have a RETURN clause. Functions have a datatype and a
RETURN clause. The other PL/SQL programs do not.

Know how to enable and disable triggers. Use the ALTER TRIGGER statement to enable or
disable any individual trigger and the ALTER TABLE ENABLE ALL TRIGGERS or ALTER TABLE
DISABLE ALL TRIGGERS statement to enable or disable triggers en masse. You can also spec-
ify the ENABLE or DISABLE clause at the time of trigger creation.

Know the purpose of the Undo Advisor. Optimize the UNDO_RETENTION parameter as well
as the size of the undo tablespace by using Undo Advisor. Use the graph on the Undo Advi-
sor screen to perform what-if analyses given the undo retention requirements.

Be able to monitor locking and resolve lock conflicts. Identify the reasons for database
lock conflicts, and explain how to resolve them. Show an example of a more serious type of
lock conflict, a deadlock.

Understand the options to wait for acquiring a lock. The LOCK TABLE statement includes
the WAIT clause to specify how long to wait to acquire a lock. You can set the initializa-
tion parameter DDL_LOCK_TIMEOUT to specify the number of seconds to wait when trying to
acquire a DDL lock.

List the features supported by undo data in an undo tablespace. Enumerate the four
primary uses for undo data: rollback, read consistency, database recovery, and flashback
operations. Show how the rollback requirements for users who perform long transactions
can interfere with read consistency required for query users. Be able to identify and use the
method to preserve expired undo at the expense of transactions.

Summarize the steps for monitoring, configuring, and administering the undo tablespace.
Set the initialization parameters required to use an undo tablespace. Be able to review the
status of the undo tablespace using EM Database Control, and use the Undo Advisor to
resize the undo tablespace when conditions warrant it. Alter the initialization parameter
UNDO_RETENTION to configure how long undo information needs to be retained for long-
running queries.

List the types of lock modes available when locking a table. Identify the locks available,
from least restrictive to most restrictive. Be able to request a lock with either a LOCK or
SELECT statement and return immediately if the lock is not available.

95127c13.indd 756 2/17/09 2:49:25 PM

Review Questions 757

Review Questions
1. Changes made with an UPDATE statement are permanent in the database after what occurs?

A. DBWR flushes the changes to disk.

B. You issue a SAVEPOINT statement.

C. You issue a COMMIT statement.

D. A checkpoint occurs.

2. Why would you execute a CREATE OR REPLACE PROCEDURE statement instead of a DROP
PROCEDURE statement and a CREATE PROCEDURE statement?

A. It is less typing.

B. There is no difference between the two.

C. CREATE OR REPLACE PROCEDURE does not invalidate dependent objects.

D. DROP PROCEDURE and CREATE PROCEDURE require regranting of privileges.

3. Which of the following is not a trigger event?

A. UPDATE

B. SELECT

C. NOAUDIT

D. SERVERERROR

4. You need to let an application role execute the SLEEP procedure in the DBMS_LOCK package
but do not want to let an application role have access to the other more powerful capabili-
ties of the DBMS_LOCK package. How can you satisfy these requirements best?

A. Grant EXECUTE on dbms_lock to the user system. Then create a procedure in the system
schema that calls DBMS_LOCK.SLEEP. Finally, grant EXECUTE on this procedure to the
application role.

B. Grant EXECUTE on DBMS_LOCK to the application role.

C. Grant EXECUTE on DMBS_LOCK.SLEEP to the application role.

D. Write your own procedure to mimic the functionality of the DBMS_LOCK.SLEEP
procedure.

5. Which of the following INSERT statements raises an exception?

A. INSERT INTO ORDERS SELECT * FROM STANDING_ORDERS

B. INSERT FIRST WHEN ORDER_TYPE IN (2,5,12) THEN INSERT INTO ORDERS SELECT
* FROM STANDING_ORDERS

C. INSERT FIRST WHEN ORDER_TYPE IN (2,5,12) THEN INTO ORDERS SELECT * FROM
STANDING_ORDERS

D. INSERT INTO ALL WHEN ORDER_TYPE IN (2,5,12) THEN INTO ORDERS SELECT *
FROM STANDING_ORDERS

95127c13.indd 757 2/17/09 2:49:25 PM

758 Chapter 13 N Managing Data and Undo

6. What will be the salary of employee number 189 at the completion of the following SQL
statements?
update emp set salary = 1000 where employee_num = 189;

savepoint save_1;

update emp set salary = salary * 1.1 where employee_num = 189;

savepoint save_2;

update emp set salary = salary * 1.1 where employee_num = 189;

savepoint save_3;

rollback to savepoint save_2;

commit;

update emp set salary = 1500 where employee_num = 189;

savepoint save_4;

rollback to save_4;

commit;

A. 1,000

B. 1,100

C. 1,111

D. 1,500

7. Which of the following commands returns an error if the transaction starts with SET
TRANSACTION READ ONLY?

A. ALTER SYSTEM

B. SET ROLE

C. ALTER USER

D. None of the above

8. Guaranteed undo retention can be specified for which of the following objects?

A. A tablespace

B. A table

C. The database

D. A transaction

E. The instance

9. Which of the following lock modes permits concurrent queries on a table but prohibits
updates to the locked table?

A. ROW SHARE

B. ROW EXCLUSIVE

C. EXCLUSIVE

D. SHARE ROW EXCLUSIVE

E. SHARE

95127c13.indd 758 2/17/09 2:49:25 PM

Review Questions 759

10. Select the statement that is not true regarding undo tablespaces.

A. Undo tablespaces will not be created if they are not specified in the CREATE DATABASE
command.

B. Two undo tablespaces can be active if a new undo tablespace was specified and the old
one contains pending transactions.

C. You can switch from one undo tablespace to another while the database is online.

D. UNDO_MANAGEMENT cannot be changed dynamically while the instance is running.

11. To resolve a lock conflict, which of the following methods can you use? (Choose all that
apply.)

A. Oracle automatically resolves the lock after a short but predefined time period by kill-
ing the session that is holding the lock.

B. The DBA can kill the session holding the lock.

C. The user can either roll back or commit the transaction that is holding the lock.

D. Oracle automatically resolves the lock after a short but predefined period by killing the
session that is requesting the lock.

12. If all extents in an undo segment fill up, which of the following occurs next? (Choose all
that apply.)

A. A new extent is allocated in the undo segment if all existing extents still contain active
transaction data.

B. Other transactions using the segment are moved to another existing segment with
enough free space.

C. A new undo segment is created, and the transaction that filled up the undo segment is
moved in its entirety to another undo segment.

D. The first extent in the segment is reused if the undo data in the first extent is not
needed.

E. The transaction that filled up the undo segment spills over to another undo segment.

13. Which of the following commands returns control to the user immediately if a table is
already locked by another user?

A. LOCK TABLE HR.EMPLOYEES IN EXCLUSIVE MODE WAIT DEFERRED;

B. LOCK TABLE HR.EMPLOYEES IN SHARE MODE NOWAIT;

C. LOCK TABLE HR.EMPLOYEES IN SHARE MODE WAIT DISABLED;

D. LOCK TABLE HR.EMPLOYEES IN EXCLUSIVE MODE NOWAIT DEFERRED;

95127c13.indd 759 2/17/09 2:49:25 PM

760 Chapter 13 N Managing Data and Undo

14. Two transactions occur at the wall clock times in the following table. What happens at
10:05?

Session 1 Time Session 2

update customer set
region = ‘H’ where state=’WI’
and county=’GRANT’;

9:51

9:59 update customer set mgr=201
where state=’IA’ and
county=’JOHNSON’;

update customer set region=’H’
where state=’IA’ and
county=’JOHNSON’;

10:01

10:05 update customer set mgr=201
where state=’WI’ and
county=’GRANT’;

A. Session 2 will wait for session 1 to commit or roll back.

B. Session 1 will wait for session 2 to commit or roll back.

C. A deadlock will occur, and both sessions will hang unless one of the users cancels their
statement or the DBA kills one of the sessions.

D. A deadlock will occur, and Oracle will cancel one of the statements.

E. Neither session is updating the same column, so no waiting or deadlock will occur.

15. Undo information falls into all the following categories except for which one?

A. Uncommitted undo information

B. Undo information required in case an instance crash requires a rollforward operation
when the instance is restarted

C. Committed undo information required to satisfy the undo retention interval

D. Expired undo information that is no longer needed to support a running transaction

16. Undo segments are owned by which user?

A. SYSTEM

B. The user who initiated the transaction

C. SYS

D. The user who owns the object changed by the transaction

95127c13.indd 760 2/17/09 2:49:25 PM

Review Questions 761

17. The EM Database Control Undo Advisor uses to recommend the new size of
the undo tablespace.

A. the value of the parameter UNDO_RETENTION

B. the number of “Snapshot too old” errors

C. the current size of the undo tablespace

D. the desired amount of time to retain undo data

E. the most recent undo generation rate

18. A developer wants to write a PL/SQL program that inserts new data into the cust_trans
table, for which cust_id is the primary key. The data is to read from the new_cust_info
table, which is populated daily. If cust_id already exists in the cust_trans table, he wants
to update the row with new information. Which option would you recommend?

A. Include the EXCEPTION clause in the PL/SQL program.

B. Use the UPSERT SQL statement instead of PL/SQL.

C. Use the MERGE SQL statement instead of PL/SQL.

D. Delete the rows from the cust_trans table that exist in the new_cust_info table, and
then perform an insert from the new_cust_info table.

19. Choose the option that is true regarding locks in the Oracle 11g database.

A. When session 1 has a table locked using the LOCK TABLE…EXCLUSIVE MODE statement,
all DML statements and queries wait until session1 does a COMMIT or ROLLBACK.

B. When SELECT…FOR UPDATE is performed, the table is locked.

C. The DDL_LOCK_TIMEOUT parameter can be set to TRUE to not return the ORA-00054
error.

D. The LOCK TABLE statement can include the WAIT clause to specify the number of sec-
onds to wait for acquiring the lock.

20. Which can be used to execute a user-defined PL/SQL function named IS_CREDIT_OK?
(Choose all that apply.)

A. X := IS_CREDIT_OK

B. SELECT IS_CREDIT_OK INTO X FROM DUAL

C. EXECUTE IS_CREDIT_OK

D. RUN IS_CREDIT_OK

95127c13.indd 761 2/17/09 2:49:25 PM

762 Chapter 13 N Managing Data and Undo

Answers to Review Questions
1. C. A commit makes pending DML changes permanent. When a checkpoint occurs, DBWR

flushes dirty buffers to disk, which is independent of transaction boundaries.

2. D. Using CREATE OR REPLACE PROCEDURE is less typing, but, more important, when you
drop an object, all privileges granted on that object are dropped as well. When you perform
a CREATE OR REPLACE PROCEDURE, you do not lose privileges granted on that object. When
you drop and create a procedure, it invalidates all dependent objects, whereas if you re-
create, the dependent objects are invalidated only if the procedure specification is changed.

3. B. You can create a trigger for just about any database event that involves a change to data,
but you cannot create a SELECT trigger in Oracle 11g.

4. A. You cannot grant privileges on only one packaged procedure. You can grant EXECUTE
only on the whole package. To be more restrictive in granting privileges, you need to create
an intermediate procedure that calls the single procedure you want and grant EXECUTE on
that intermediate procedure to the grantee. Granting a privilege to a role does not allow the
role grantee to use that privilege in a PL/SQL program.

5. D. Single-table inserts must begin with the keywords INSERT INTO and cannot contain
the keywords THEN INTO. Multitable INSERT statements cannot begin with the keywords
INSERT INTO and may contain the keywords THEN INTO. Option D contains an invalid
combination of keywords and will thus raise an exception.

6. D. The last ROLLBACK statement rolls back all DML statements since SAVEPOINT SAVE_4.
The last UPDATE was executed before the SAVEPOINT to SAVE_4; therefore, the change made
by the last UPDATE is unchanged, and the salary remains 1,500.

7. D. When you use SET TRANSACTION READ ONLY, no data changes can be made in the
transaction. You can do DDL changes though. DDL statements does an implicit COMMIT
and ends the transaction. ALTER USER is a DDL statement.

8. A. Guaranteed undo retention can be set at the tablespace level by using the RETENTION
GUARANTEE clause with either the CREATE TABLESPACE or ALTER TABLESPACE command.
Only undo tablespaces can have this attribute.

9. E. SHARE mode permits concurrent queries but prohibits updates to the locked table. SHARE
mode is required to create an index on the table.

10. A. If an undo tablespace is not explicitly created in the CREATE DATABASE command, Oracle
automatically creates one with the name SYS_UNDOTBS.

11. B, C. Locks are resolved at the user level by either committing or rolling back the transac-
tion holding the lock. Also, the DBA can kill the session holding the lock as a last resort.

12. A, D. If a transaction fills up an undo segment, either a new extent is allocated for the
undo segment or other extents in the segment are reused if the undo data in those extents is
no longer needed by other transactions using the same undo segment. Transactions cannot
cross segment boundaries in an undo tablespace, and they cannot move to another segment.

95127c13.indd 762 2/17/09 2:49:25 PM

Answers to Review Questions 763

13. B. Regardless of the type of lock requested, NOWAIT is required if you want the command
with the lock request to terminate immediately if a lock is already held on the table.

14. D. At 10:01, session 1 waits for session 2. At 10:05, a deadlock will occur; Oracle detects
the deadlock and cancels one of the statements.

15. B. Undo information is required for instance recovery but only to roll back uncommitted
transactions after the online redo logs roll forward.

16. C. Undo segments are always owned by SYS.

17. D. The Undo Advisor uses the desired time period for undo data retention and analyzes the
impact of the desired undo retention setting.

18. C. Though options A and D can be used to achieve the same result, they are not the most
efficient. There is no UPSERT statement in Oracle 11g. The MERGE statement is used to condi-
tionally update or insert rows into a table.

19. D. In Oracle, locks never block readers. Option A is true, if it did not include the word
queries in it. Only DML statements wait when the table is locked in exclusive mode.
SELECT…FOR UPDATE locks only the rows returned by the SELECT clause; it does not lock
the table. The DDL_LOCK_TIMEOUT parameter is used to specify the number of seconds to
wait when DDL statements on locked objects are executed. The LOCK TABLE statement can
include the WAIT clause to specify the number of seconds to wait to acquire the lock.

20. A, B. A function always returns a value; hence, the function can be used in the SELECT
statements and assignments. Functions can also be used in PL/SQL constructs such as IF
statements. EXECUTE is used to run a procedure. RUN is used to execute a SQL or PL/SQL
script file.

95127c13.indd 763 2/17/09 2:49:25 PM

95127c13.indd 764 2/17/09 2:49:25 PM

Chapter

14
Maintaining
the Database
and Managing
Performance

Oracle Database 11g:
aDMinistratiOn i exaM Objectives
cOvereD in this chaPter:

Database MaintenanceÛÛ

Use and manage Optimizer StatisticsÛN

Use and manage Automatic Workload Repository (AWR)ÛN

Use Advisory FrameworkÛN

Manage Alerts and ThresholdsÛN

Performance ManagementÛÛ

Use Automatic Memory ManagementÛN

Use Memory AdvisorsÛN

Troubleshoot invalid and unusable objectsÛN

95127c14.indd 765 2/17/09 2:54:16 PM

Successful database administrators are always on the lookout
for potential database problems that could adversely impact
the availability or performance of the systems they manage.

Fortunately, Oracle 11g comes with an array for proactive performance monitoring and an
alert mechanism to help you do this.

The Oracle Database 11g periodically collects statistics on the database objects and uses
the statistics to find the best execution plan for a SQL statement. The Automatic Workload
Repository collects, analyzes, and maintains the performance statistics of the database.
Oracle 11g also offers several advisors that help DBAs fine-tune the database components.
One new tool is Automatic Memory Management, which greatly simplifies memory manage-
ment. In this chapter, you will learn about all the database-management and performance-
management tools available to DBAs for better database administration.

Proactive Database Maintenance
You can monitor your systems for management and performance problems in essentially
two ways:

Reactive monitoringÛN involves monitoring a database environment after a performance
or management issue has arisen. For example, you start gathering performance statis-
tics using third-party tools, EM, or homegrown scripts after users call to tell you that
the system is slow. Obviously, this type of monitoring leaves a lot to be desired because
a problem has already arisen and the users of the system are already impacted. You can
use the techniques discussed in this chapter for reactive monitoring, but they are most
effective when used to perform proactive monitoring.

Proactive monitoringÛN allows you to identify and respond to common database-performance
and -management issues before they occur. Most of the features in Enterprise Manager
Database Control are geared toward proactive monitoring.

The database-maintenance framework in Oracle 11g consists of these proactive tool sets:

Automated tasks, such as collecting optimizer statisticsÛN

Automatic Workload RepositoryÛN

Advisory FrameworkÛN

Server alerts and thresholdsÛN

Automatic Diagnostic Repository, where the alert log and trace information are kept, is
used for reactive database maintenance.

95127c14.indd 766 2/17/09 2:54:16 PM

Proactive Database Maintenance 767

The monitoring tools available in EM Database Control collect their information from
a variety of sources including data dictionary views, dynamic performance views, and the
operating system. Oracle 11g also makes extensive use of the cost-based optimizer statistics
for its proactive monitoring. But discussing all the database-maintenance options available
in Oracle 11g is not in the scope of this book; it is a large topic that warrants its own book.
In the following section, you will instead learn the database-maintenance options available
in Oracle 11g that are relevant to the OCP certification exam.

Managing Optimizer Statistics
Optimizer statistics are a collection of important statistical data that describe the contents
of the database. The query optimizer uses the optimizer statistics to find the best way to get
to the row of data the query wants to find. The database collects statistics on objects that
have segments allocated as well as overall system statistics. The optimizer uses the statistics
to decide how to do the following:

Access data and determine which indexes to useÛN

Join tablesÛN

Evaluate expressions and conditionsÛN

The cost-based optimizer (CBO) uses these statistics to formulate efficient execution
plans for each SQL statement that is issued by application users. For example, the CBO
may have to decide whether to use an available index when processing a query. The CBO
can only make an effective guess at the proper execution plan when it knows the number of
rows in the table, the size and type of indexes on that table, and how many rows the CBO
expects to be returned by a query. Because of this, the statistics gathered and stored in the
data dictionary views are sometimes called optimizer statistics.

The following are some of the statistics collected:

Table and index statisticsÛN

Total number of rows in table and average row lengthÛN

Total number of blocks usedÛN

Levels and number of leaf blocks for indexesÛN

Column statisticsÛN

Number of distinct values in a columnÛN

Number of ÛN NULL values

Low value and high value for a columnÛN

Data distribution and data skewÛN

System statisticsÛN

Disk I/O performanceÛN

CPU performanceÛN

You can use the DBMS_STATS package to collect optimizer statistics in the database.
DBMS_STATS has several subprograms (procedures and functions) to collect and manage

95127c14.indd 767 2/17/09 2:54:16 PM

768 Chapter 14 N Maintaining the Database and Managing Performance

statistics. In the following sections, you will learn how to collect optimizer statistics and
what management options are available to maintain the statistics.

Optimizer statistics are a snapshot of statistical information at a specific
point in time. They are persistent across instance restarts because they are
stored in the data dictionary tables.

Collecting Statistics
In an Oracle 11g database, you’ll rarely need to manually collect statistics. The default col-
lection frequency and options are good for most of the database environments. You may
have to collect statistics manually when you bulk load data into a table or when you delete
several rows from the table. Sometimes you may have to create histograms for the optimizer
to be able to make better execution plans based on the query.

When you create the Oracle 11g database using DBCA, gathering optimizer statistics
is automatically set up and enabled using the Automated Maintenance Tasks (AutoTask)
infrastructure. AutoTask schedules maintenance tasks to run automatically, using the Oracle
Scheduler, during maintenance windows. Automatic optimizer statistics are collected using
the procedure DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC. This procedure collects sta-
tistics on objects that have no statistics collected or have stale statistics. Oracle Database
considers statistics stale when more than 10 percent of data in the table has changed since
statistics were gathered on the table. This procedure also prioritizes the objects that need
the statistics collected and processes them first.

You can enable and disable the automatic optimizer statistics gathering by using the
DBMS_AUTO_TASK package. To disable the automatic statistics gathering, use the DISABLE
subprogram as shown here:

BEGIN

 DBMS_AUTO_TASK_ADMIN.DISABLE (

 client_name=>’auto optimizer stats collection’,

 operation=>NULL, window_name=>NULL);

END;

If you disable the automatic statistics gathering, make sure you collect statistics manu-
ally so that the optimizer produces intelligent execution plans. To enable automatic statis-
tics gathering, use the ENABLE subprogram as follows:

BEGIN

 DBMS_AUTO_TASK_ADMIN.ENABLE (

 client_name=>’auto optimizer stats collection’,

 operation=>NULL, window_name=>NULL);

END;

To view the status of AutoTask jobs, you can run the following query:

SQL> SELECT client_name, status FROM dba_autotask_client;

95127c14.indd 768 2/17/09 2:54:17 PM

Proactive Database Maintenance 769

CLIENT_NAME STATUS

-- --------

auto optimizer stats collection ENABLED

auto space advisor ENABLED

sql tuning advisor ENABLED

You can collect the statistics manually using the DBMS_STATS procedure from SQL*Plus
or using EM Database Control.

Manually Collecting Stats Using SQL*Plus

Collecting manual statistics is useful for tables and indexes whose storage characteristics
change frequently or that need to be analyzed outside the normal analysis window. Manual
statistics may also need to be collected if the data in the table is highly volatile, such as
when you truncate and load the table often. For such tables, you can collect the statistics
when the table is fully loaded and lock the statistics so that subsequent statistics-gathering
jobs do not override the statistics. The following example shows collecting statistics on a
table and locking the statistics:

BEGIN

 DBMS_STATS.GATHER_TABLE_STATS(‘HR’,’EMPLOYEES’, cascade=>TRUE);

 DBMS_STATS.LOCK_TABLE_STATS(‘HR’,’EMPLOYEES’);

END;

Procedures are available to collect optimizer statistics at the database, schema, table, or
index level. Table 14.1 shows the optimizer’s statistics-gathering procedures.

ta b le 14 .1 DBMS_STATS Statistics-Gathering Procedures

Procedure Name Purpose

GATHER_TABLE_STATS Collects table, column, and index stats

GATHER_INDEX_STATS Collects index stats

GATHER_SCHEMA_STATS Collects stats on all objects in the schema

GATHER_DATABASE_STATS Collects stats on all objects in all schemas of the database

GATHER_DICTIONARY_STATS Collects statistics on SYS-owned dictionary objects

The following example collects statistics on all objects owned by the HR schema, sam-
pling 10 percent of rows for the statistics gathering:

SQL> EXEC DBMS_STATS.GATHER_SCHEMA_STATS(‘HR’,estimate_percent=>10);

PL/SQL procedure successfully completed.

SQL>

95127c14.indd 769 2/17/09 2:54:17 PM

770 Chapter 14 N Maintaining the Database and Managing Performance

For complete details of the many options available in the DBMS_STATS pack-
age, see Chapter 127 of the “Oracle Database PL/SQL Packages and Types
Reference 11g Release 1 (11.1) Part Number B28419-03” documentation,
available at http://tahiti.oracle.com.

Manually Collecting Stats Using EM Grid Control

You can use the EM Gather Statistics Wizard to manually collect statistics for individual
segments, schemas, or the database as a whole. To start the wizard, click the Server tab
on the EM Database Control screen, and click the Manage Optimizer Statistics link under
Query Optimizer (Figure 14.1).

F i gu r e 14 .1 Server tab in EM Grid Control

You can choose from several options in addition to gathering optimizer statistics, as
shown on the Manage Optimizer Statistics screen (Figure 14.2). Whenever you collect sta-
tistics, existing statistics are saved to history tables and preserved for 31 days. You can click
the Restore Optimizer Statistics link to restore old statistics. You can also lock, unlock, and
delete statistics.

95127c14.indd 770 2/17/09 2:54:17 PM

Proactive Database Maintenance 771

F i gu r e 14 . 2 Manage Optimizer Statistics screen in EM Grid Control

Click the Gather Optimizer Statistics link on the Manage Optimizer Statistics screen.
You can collect statistics at the database, schema, object, or system level. Choose the
options needed to collect statistics, as shown in Figure 14.3.

F i gu r e 14 . 3 Gather Optimizer Statistics screen in EM Database Control

95127c14.indd 771 2/17/09 2:54:17 PM

772 Chapter 14 N Maintaining the Database and Managing Performance

You will be taken through scope, objects, options, schedule, and review screens. Pro-
vide the options needed for the statistics collection. If you have chosen to customize the
options shown in Figure 14.3, you will get a screen similar to Figure 14.4 for choosing
options.

F i gu r e 14 . 4 Customize Options for the Gather Optimizer Statistics screen in EM
Database Control

You can also view the SQL behind the options you have chosen by clicking the Show
SQL button. Figure 14.5 shows the code behind a statistics-gathering job for two HR-owned
tables.

To read more about collecting and managing optimizer statistics, read
Chapter 13 from the “Oracle Database Performance Tuning Guide 11g
Release 1 (11.1) Part Number B28274-01” Oracle documentation.

In the next section, you will learn how to set preferences for statistics gathering.

95127c14.indd 772 2/17/09 2:54:17 PM

Proactive Database Maintenance 773

F i gu r e 14 .5 Show SQL for the Gather Optimizer Statistics screen in EM Grid Control

Defining Statistics Preferences
The default staleness percentage for statistics gathering is 10; if you want to change this
and other default options, you can set the preferences for statistics gathering using EM Grid
Control or using DBMS_STATS directly. In this section, you will learn how to set preferences
using EM Database Control, and using the Show SQL option, you can see the DBMS_STATS
code behind it.

On the EM Database Control Manage Optimizer statistics screen (shown earlier in
Figure 14.2), you can click the Global Statistics Gathering and Object Level Statistics
Gathering Preferences links.

95127c14.indd 773 2/17/09 2:54:17 PM

774 Chapter 14 N Maintaining the Database and Managing Performance

Figure 14.6 shows the Global Statistics Gathering Options screen. Using this screen, you
set the preferences at a global level, which is applicable to all the objects in all the schemas,
unless specific schema or object level preferences are set.

F i gu r e 14 .6 Global Statistics Gathering Options screen in EM Grid Control

Here you can change the retention period for how long optimizer statistics history is
kept in the database (DBMS_STATS.ALTER_STATS_HISTORY_RETENTION), as well as other
default options (DBMS_STATS.SET_GLOBAL_PREFS). Table 14.2 shows the EM Grid Control
option and its corresponding preference name when using DBMS_SQL.

If you want to minimize the time required to collect table statistics for partitioned
tables, you can set the global preference INCREMENTAL to TRUE, where only statistics on a
(new) partition are gathered and the table statistics are adjusted accordingly:

EXEC DBMS_STATS.SET_GLOBAL_PREFS (‘INCREMENTAL’, ‘TRUE’);

95127c14.indd 774 2/17/09 2:54:17 PM

Proactive Database Maintenance 775

ta b le 14 . 2 DBMS_STATS.SET_GLOBAL_PREFS Preferences

Preference Parameter EM Database Control Option Purpose

ESTIMATE_PERCENT Estimate Percent Sets the percentage of rows in the
table to consider when estimating
statistics

DEGREE Degree of Parallelism Specifies how many parallel pro-
cesses are used to gather stats

GRANULARITY Granularity Determines granularity of statistics
to collect for partitioned tables

NO_INVALIDATE Cursor Invalidation Determines whether dependent cur-
sors should be made invalid

CASCADE Cascade Determines whether index statistics
should be gathered when table sta-
tistics are gathered

AUTOSTATS_TARGET Target Object Class Determines which objects are
considered for automatic statistics
collection

STALE_PERCENT Stale Percent Sets the percentage of rows that
need to change before statistics are
gathered again

INCREMENTAL Incremental Gives global stats on the partitioned
table maintained without doing a
full scan

PUBLISH Publish Determines whether newly gathered
stats are published immediately

METHOD_OPT Histograms Sets options for collecting
histograms

Similar to global stats preferences, you can also set preferences on a table or schema.
Click the Object Level Statistics Gathering Preferences link on the Manage Optimizer Statis-
tics screen (Figure 14.2). Figure 14.7 shows the Object Level Statistics Gathering Preferences
screen.

95127c14.indd 775 2/17/09 2:54:17 PM

776 Chapter 14 N Maintaining the Database and Managing Performance

F i gu r e 14 .7 Object Level Statistics Gathering Preferences screen in EM Grid Control

To view the tables where preferences are set, enter the filters, if any (schema and/or table
name), and click Go. You have the following options on this screen:

Select existing tables, and click Edit Preferences to edit (this runs ÛN DBMS_STATS.SET_
TABLE_PREFS).

Select existing tables, and click Inherit Global to remove preferences (this runs ÛN DBMS_
STATS.DELETE_TABLE_PREFS).

Click Add Table Preferences to set table preferences on a new table (this runs ÛN DBMS_
STATS.SET_TABLE_PREFS).

Click Edit Schema Preferences to add/edit schema preferences (this runs ÛN DBMS_STATS
.SET_SCHEMA_PREFS).

The data dictionary view DBA_TAB_STAT_PREFS (or ALL_ or USER_) gives the tables with a
preference set. Remember, when you use the SET_SCHEMA_PREFS procedure, DBMS_STATS adds
an entry to this view for each table under the schema. When you use the SET_DATABASE_PREFS
procedure, DBMS_STATS adds an entry to this view for each table in the database except sys-
tem tables. To include system tables, set the third parameter to TRUE.

Let’s explore two important features of Oracle 11g statistics gathering using the table
preferences.

95127c14.indd 776 2/17/09 2:54:18 PM

Proactive Database Maintenance 777

changing the Default staleness threshold

Since Oracle10g, tables have had the default MONITORING enabled. The statistics-collection
job looks for staleness of 10 percent or more for it to reanalyze the table. In Oracle 11g,
you can specify the threshold value for each table if you want to override the 10 percent
default using SET_TABLE_PREFS. Here’s an example:

SQL> exec dbms_stats.set_table_prefs(‘SH’,’CUSTOMERS’,’STALE_PERCENT’,’20’);

PL/SQL procedure successfully completed.

SQL> DESCRIBE dba_tab_stat_prefs

 Name Null? Type

 -------------------------- -------- ----------------------------

 OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 PREFERENCE_NAME VARCHAR2(30)

 PREFERENCE_VALUE VARCHAR2(1000)

SQL> SELECT table_name, preference_name, preference_value

 FROM dba_tab_stat_prefs;

TABLE_NAME PREFERENCE_NAME PREFERENCE_VALUE

-------------- ---------------------- -------------------

CUSTOMERS STALE_PERCENT 20

You can also use the function GET_PREFS to verify the preference value. The function
returns the custom defined preference value. And if no such value is defined, it returns
the default.

SQL> SELECT dbms_stats.get_prefs(‘STALE_PERCENT’,’SH’,’CUSTOMERS’)

 FROM dual;

DBMS_STATS.GET_PREFS(‘STALE_PERCENT’,’SH’,’CUSTOMERS’)

20

SQL> SELECT dbms_stats.get_prefs(‘STALE_PERCENT’,’HR’,’EMPLOYEES’)

 FROM dual;

DBMS_STATS.GET_PREFS(‘STALE_PERCENT’,’HR’,’EMPLOYEES’)

--

10

95127c14.indd 777 2/17/09 2:54:18 PM

778 Chapter 14 N Maintaining the Database and Managing Performance

Pending Statistics

In Oracle 11g, the statistics gathering is divided into two steps—collect statistics and publish.
By default, the behavior is like pre–Oracle 11g databases; the statistics will be available
(published) to all users as soon as the stats are gathered. If you want to test the implications
of the new statistics before making it available to all users in the database, you can do
so. This is helpful to test the new statistics to make sure they do not affect the database
negatively.

To test with the new statistics before making them available to all users, perform these
steps:

1. Set the table preference parameter PUBLISH to FALSE. If you’re messing with many tables,
you can use the SET_SCHEMA_PREFS, SET_DATABASE_PREFS, or SET_GLOBAL_PREFS proce-
dure. For demonstrating the example, the statistics on table HR.EMPLOYEES are deleted:

SQL> select table_name, num_rows, last_analyzed from dba_tables

 2 where owner = ’HR’ and table_name = ’EMPLOYEES’;

TABLE_NAME NUM_ROWS LAST_ANAL

---------- ---------- ---------

EMPLOYEES

SQL> select dbms_stats.get_prefs(‘PUBLISH’,’HR’,’EMPLOYEES’)

 from dual;

DBMS_STATS.GET_PREFS(‘PUBLISH’,’HR’,’EMPLOYEES’)

TRUE

SQL> exec dbms_stats.set_table_prefs(‘HR’,’EMPLOYEES’,’PUBLISH’,’FALSE’);

PL/SQL procedure successfully completed.

2. Gather table statistics as you normally would using the DBMS_STATS package. Since the
PUBLISH preference is set to FALSE, you do not see the statistics:

SQL> exec dbms_stats.gather_table_stats(‘HR’,’EMPLOYEES’);

PL/SQL procedure successfully completed.

SQL> select num_rows, last_analyzed from dba_tables

 2 where owner = ‘HR’ and table_name = ‘EMPLOYEES’;

 NUM_ROWS LAST_ANAL

---------- ---------

3. You can verify the pending statistics by querying DBA_TAB_PENDING_STATS:

SQL> select table_name, num_rows, blocks, sample_size

 2 from dba_tab_pending_stats;

95127c14.indd 778 2/17/09 2:54:18 PM

Proactive Database Maintenance 779

TABLE_NAME NUM_ROWS BLOCKS SAMPLE_SIZE

----------------- ---------- ---------- -----------

EMPLOYEES 107 5 107

4. Test your SQL by making the pending statistics visible:

SQL> alter session set optimizer_use_pending_statistics = true;

5. When you’re ready to publish the statistics, perform the following:

SQL> exec dbms_stats.publish_pending_stats(‘HR’,’EMPLOYEES’);

PL/SQL procedure successfully completed.

SQL> select num_rows, last_analyzed from dba_tables

 2 where owner = ‘HR’ and table_name = ‘EMPLOYEES’;

 NUM_ROWS LAST_ANAL

---------- ---------

 107 15-FEB-08

SQL> select table_name, num_rows, blocks, sample_size

 2 from dba_tab_pending_stats;

no rows selected

The PUBLISH_PENDING_STATS procedure accepts the schema name and table name as the
first two parameters. If you specify NULL for the schema name, the default user’s schema
will be used. If you specify NULL for the table name, all pending stats on all tables in the
schema are published.

Extended Statistics

In Oracle 11g, you can tell the optimizer the relationship between columns by using the
extended statistics feature (multicolumn statistics). The extended statistics feature also
includes statistics on columns where a function is applied (function-based statistics). By col-
lecting extended statistics on columns, the optimizer will be able to estimate the selectivity
better.

To collect multicolumn statistics (extended histograms), use the GATHER_TABLE_STATS
procedure with the METHOD_OPT option like you would collect normal histogram statistics.

To create multicolumn statistics and function-based statistics, follow these two steps:

1. Create an extended statistics group using the DBMS_STATS.CREATE_EXTENDED_STATS
function. The function returns the name of the extended stat group created. This
function has three arguments: the owner, the table name, and the extension. The
“extension” could be a combination of columns, up to 32 or expression on column
(for function-based statistics, discussed later).

2. Collect histogram statistics on the table using the GATHER_TABLE_STATS procedure. FOR
ALL COLUMNS SIZE SKEWONLY is a good option because Oracle collects histograms only
on columns with large data distribution.

95127c14.indd 779 2/17/09 2:54:18 PM

780 Chapter 14 N Maintaining the Database and Managing Performance

collecting extended table statistics: an example

I’ll now demonstrate the extended statistics feature of Oracle 11g with an example. The
CUSTOMERS table is populated and has about 91,000 rows. Statistics are collected on the
table with the FOR ALL ROWS SIZE AUTO option:

SQL> select column_name, num_distinct, histogram

 2 from dba_tab_col_statistics

 3 where owner = ‘BTHOMAS’ and table_name = ‘CUSTOMERS’;

COLUMN_NAME NUM_DISTINCT HISTOGRAM

------------------------------ ------------ ---------------

CUST_COUNTRY 3 FREQUENCY

CUST_STATE 6 FREQUENCY

CUST_NAME 47692 NONE

SQL>

SQL> select * from customers where cust_country = ‘India’ and cust_state =
‘TN’;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1447 | 41963 | 137 (1)| 00:00:02 |

|* 1 | TABLE ACCESS FULL| CUSTOMERS | 1447 | 41963 | 137 (1)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter(“CUST_STATE”=’TN’ AND “CUST_COUNTRY”=’India’)

SQL> SELECT dbms_stats.create_extended_stats(‘BTHOMAS’,’CUSTOMERS’,

 ‘(CUST_COUNTRY, CUST_STATE)’) EXTSTAT

 FROM dual;

95127c14.indd 780 2/17/09 2:54:18 PM

Proactive Database Maintenance 781

EXTSTAT

SYS_STUZVS6GX30A0GN_5YRYSD2LPM

SQL>

SQL> exec dbms_stats.gather_table_stats(null, ‘customers’,

 method_opt=>’for all columns size skewonly’);

PL/SQL procedure successfully completed.

SQL> select column_name, num_distinct, histogram

 2 from user_tab_col_statistics

 3* where table_name = ‘CUSTOMERS’

SQL> /

COLUMN_NAME NUM_DISTINCT HISTOGRAM

------------------------------ ------------ ---------------

CUST_NAME 47692 HEIGHT BALANCED

CUST_STATE 6 FREQUENCY

CUST_COUNTRY 3 FREQUENCY

SYS_STUZVS6GX30A0GN_5YRYSD2LPM 8 FREQUENCY

SQL> select * from customers where cust_country = ‘India’ and cust_state =
‘TN’;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 86 | 2580 | 137 (1)| 00:00:02 |

|* 1 | TABLE ACCESS FULL| CUSTOMERS | 86 | 2580 | 137 (1)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter(“CUST_STATE”=’TN’ AND “CUST_COUNTRY”=’India’)

As you can see in the example, before extended statistics were collected, the estimated
number of rows was 1447, whereas after the extended statistics collection, the number of
rows optimizer estimated to return is 86.

95127c14.indd 781 2/17/09 2:54:18 PM

782 Chapter 14 N Maintaining the Database and Managing Performance

To drop the extend statistics, use the DROP_EXTENDED_STATISTICS procedure:

SQL> exec dbms_stats.drop_extended_stats(null,’CUSTOMERS’,

 ‘(CUST_COUNTRY, CUST_STATE)’);

PL/SQL procedure successfully completed.

SQL>

To define the extension and collect statistics in one step, you can do the following:

SQL> exec dbms_stats.gather_table_stats(null, ‘customers’,

 method_opt=>’for all columns size skewonly

 for columns (cust_country, cust_state)’);

PL/SQL procedure successfully completed.

SQL> select extension_name, extension from user_stat_extensions

 2 where table_name = ‘CUSTOMERS’;

EXTENSION_NAME EXTENSION

------------------------------------ -----------------------------

SYS_STUZVS6GX30A0GN_5YRYSD2LPM (“CUST_COUNTRY”,”CUST_STATE”)

In the next section, you’ll learn to enable and disable the automatic statistics collection
as well as perform other AutoTask jobs.

Configuring Automated Maintenance Tasks Using EM
The following are three default automated maintenance tasks:

Gathering optimizer statisticsÛN

Running the Segment AdvisorÛN

Running the SQL Tuning AdvisorÛN

You can also enable and disable the AutoTask jobs using EM Grid Control. On the
Server tab, choose Automated Maintenance Tasks under Oracle Scheduler. Figure 14.8
shows the Automated Maintenance Tasks screen.

By clicking the Configure button, you can enable or disable the default AutoTask jobs, as
well as adjust the days on which these tasks are run, as shown in Figure 14.9.

To learn more about Automated Maintenance Tasks and Oracle Scheduler,
read the “Oracle Database Administrator’s Guide 11g Release 1 (11.1) Part
Number B28310-04” Oracle documentation.

95127c14.indd 782 2/17/09 2:54:18 PM

Proactive Database Maintenance 783

F i gu r e 14 . 8 Automated Maintenance Tasks screen

F i gu r e 14 . 9 Configure Automated Maintenance Tasks screen

95127c14.indd 783 2/17/09 2:54:18 PM

784 Chapter 14 N Maintaining the Database and Managing Performance

Gathering Performance Statistics
Oracle Database generates several performance statistics that are used for self-tuning purposes
and are available for administrators to better tune the database. Most of the performance
statistics information is available through V$ dictionary views (also known as dynamic
performance views). The information in the V$ views are not persistent; that is, informa-
tion is lost when the database is shut down. Automatic Workload Repository (AWR) saves
the performance information in system tables and is made available for analysis through
EM Database Control and other third-party tools. AWR information is persistent across
database shutdowns.

The AWR data is captured at a system or database level, and session-level information is
captured using another mechanism called the Active Session History (ASH). You will learn
about AWR and ASH in the following sections.

Using Automatic Workload Repository
Two background processes are responsible for collecting the performance statistics:
Memory Monitor (MMON) and Memory Monitor Light (MMNL). These processes work
together to collect performance statistics directly from the system global area (SGA). The
MMON process does most of the work by waking up every 60 minutes and gathering
statistical information from the data dictionary views, dynamic performance views, and
optimizer and then storing this information in the database. The tables that store these sta-
tistics are the Automatic Workload Repository. These tables are owned by the user SYSMAN
and are stored in the SYSAUX tablespace.

To activate the AWR feature, you must set the pfile/spfile’s parameter STATISTICS_LEVEL
to the appropriate value. The values assigned to this parameter determine the depth of the
statistics that the MMON process gathers. Table 14.3 shows the values that can be assigned
to the STATISTICS_LEVEL parameter.

ta b le 14 . 3 Specifying Statistics Collection Levels

Collection Level Description

BASIC Disables the AWR and most other diagnostic monitoring and advisory
activities. Few database statistics are gathered at each collection inter-
val when operating the instance in this mode.

TYPICAL Activates the standard level of collection activity. This is the default
value for AWR and is appropriate for most environments.

ALL Captures all the statistics gathered by the TYPICAL collection level, plus
the execution plans and timing information from the operating system.

95127c14.indd 784 2/17/09 2:54:18 PM

Proactive Database Maintenance 785

Once gathered, the statistics are stored in the AWR for a default duration of eight days.
However, you can modify both the frequency of the snapshots and the duration for which
they are saved in the AWR. One way to modify these intervals is by using the Oracle-supplied
package DBMS_WORKLOAD_REPOSITORY. The following SQL command shows the DBMS_WORKLOAD_
REPOSITORY package being used to change the AWR collection interval to 1 hour and the
retention period to 30 days:

SQL> execute dbms_workload_repository.modify_snapshot_settings

 (interval=>60,retention=>43200);

PL/SQL procedure successfully completed.

The 30-day retention value shown here is expressed in minutes: 60 minutes
per hour × 24 hours per day × 30 days = 43,200 minutes.

You can also change the AWR collection interval, retention period, and collection depth
using EM Database Control. Choose the Server tab, and click Automatic Workload Reposi-
tory under Statistics Management (see Figure 14.10).

F i gu r e 14 .10 AWR statistics collection and retention using EM

Click the Edit button to change the settings, as shown in Figure 14.11.

95127c14.indd 785 2/17/09 2:54:18 PM

786 Chapter 14 N Maintaining the Database and Managing Performance

F i gu r e 14 .11 Changing AWR statistics collection and retention using EM

In Figure 14.11, the retention period for statistics gathered by the MMON process is set
to 15 days, and statistics are collected every 30 minutes. You can also modify the depth at
which statistics are collected by the AWR by clicking the Collection Level link. Clicking
this link opens the Initialization Parameters screen where you can specify any of the three
predefined collection levels shown in Table 14.3. Figure 14.12 shows the AWR collection
level being changed from TYPICAL to ALL.

F i gu r e 14 .12 Changing the AWR statistics collection level

95127c14.indd 786 2/17/09 2:54:19 PM

Proactive Database Maintenance 787

Take care when specifying the AWR statistics collection interval. Gath-
ering snapshots too frequently requires additional space in the SYSAUX
tablespace and adds database overhead each time the statistics are col-
lected. AWR does not use any space in the SGA.

Using EM Database Control, you can view the AWR report. Click the Run AWR Report but-
ton on the Automatic Workload Repository screen shown earlier in Figure 14.10. You can get
the same report using SQL*Plus by running the script $ORACLE_HOME/rdbms/admin/awrrpt.sql.

You can manage the AWR snapshots with SQL*Plus by utilizing the DBMS_WORKLOAD_
REPOSITORY package, as described in the next section.

Managing AWR Snapshots Manually

You can create AWR snapshots by using the CREATE_SNAPSHOT procedure, as shown here:

SQL> EXECUTE DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();

PL/SQL procedure successfully completed.

SQL>

You can use the DROP_SNAPSHOT_RANGE procedure to delete a range of snapshots, and you
can query valid snapshot IDs from the DBA_HIST_SNAPSHOT view. The following example
shows how to query the DBA_HIST_SNAPSHOT view:

SQL> SELECT snap_id, begin_interval_time, end_interval_time

 2 FROM dba_hist_snapshot

 3 ORDER BY snap_id;

 SNAP_ID BEGIN_INTERVAL_TIME END_INTERVAL_TIME

---------- ------------------------------ ------------------------------

 1 24-SEP-08 02.06.11.000 AM 24-SEP-08 03.00.14.156 AM

 2 25-SEP-08 12.06.26.000 AM 25-SEP-08 12.17.55.437 AM

 3 25-SEP-08 12.17.55.437 AM 25-SEP-08 01.00.51.296 AM

 4 25-SEP-08 01.00.51.296 AM 25-SEP-08 02.00.22.109 AM

… … …

 27 27-SEP-08 07.03.17.375 PM 29-SEP-08 04.03.47.687 AM

 28 29-SEP-08 04.03.47.687 AM 29-SEP-08 05.00.39.437 AM

 29 29-SEP-08 05.00.39.437 AM 29-SEP-08 05.42.13.718 AM

To delete snapshots in the range 5–15, you can execute the following code. Note that the
ASH (discussed in the next section) data is also purged between the time periods specified
by the snapshot range.

SQL> BEGIN

 2 DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE (5, 15);

 3 END;

 4 /

PL/SQL procedure successfully completed.

SQL>

95127c14.indd 787 2/17/09 2:54:19 PM

788 Chapter 14 N Maintaining the Database and Managing Performance

Once AWR snapshots are taken and stored in the database, the Automatic Database
Diagnostic feature uses the AWR data, as described in the “Automatic Database Diagnostic
Monitoring” section.

Active Session History
ASH is sampled data at specified intervals from the current state of all active sessions. The
data is collected in memory and can be accessed by V$ views. The ASH information is also
written to a persistent store by the AWR snapshots.

The V$ACTIVE_SESSION_HISTORY provides the information collected by the ASH sampler.
The sessions are sampled every second and are stored in a circular buffer in SGA. Each
session is stored as a row. The current and historical information is available in the data
dictionary view DBA_HIST_ACTIVE_SESS_HISTORY. ASH information also includes the execu-
tion plan for each SQL captured.

Oracle provides a script to generate an ASH report, $ORACLE_HOME/rdbms/admin/
ashrpt.sql. You will be prompted for the report type (HTML or text), the begin time in
minutes prior to SYSDATE, the duration in minutes for the report, and a name for the report.
You can also use EM Database Control to generate the ASH report.

On the EM Database Control home screen, click the Performance tab, and click the Run
ASH Report button, as shown in Figure 14.13.

F i gu r e 14 .13 Performance screen in EM Database Control

95127c14.indd 788 2/17/09 2:54:19 PM

Proactive Database Maintenance 789

The screen shown in Figure 14.14 captures parameters for the ASH report. Specify the
start time and end time for the report, and click the Generate Report button.

F i gu r e 14 .14 ASH report parameters

Any session that is connected to the database and does not wait for a wait
event that belongs to the idle wait class is considered as an active session.

AWR Baselines
It is a good practice to baseline your database when everything is working as expected.
When things go south, you can use this baseline to compare system statistics and perfor-
mance metrics. AWR baselines contain performance data from a specific time period that
is preserved for comparison when problems occur. This baseline data is excluded from the
AWR purging process.

You can create two types of baselines: a single baseline and a repeating baseline. A single
baseline is captured at a single fixed-time interval, such as October 5 between 10 a.m. and
1 p.m. A repeating baseline repeats during a time interval for a specific period, such as
every Friday between 10 a.m. and 1 p.m. You can create and delete AWR baselines using
EM Database Control or SQL*Plus.

Managing AWR Baselines Using SQL*Plus

To create a single baseline, use the CREATE_BASELINE procedure as shown in the following
code. You can include the optional expiration parameter to automatically delete the snap-
shot after the specified number of days.

95127c14.indd 789 2/17/09 2:54:19 PM

790 Chapter 14 N Maintaining the Database and Managing Performance

SQL> BEGIN

 2 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(

 3 start_snap_id => 27,

 4 end_snap_id => 29,

 5 baseline_name => ‘OCP Example’,

 6 expiration => 21);

 7 END;

SQL> /

PL/SQL procedure successfully completed.

SQL>

To drop a baseline, use the DROP_BASELINE procedure as shown in the following code.
The cascade parameter specifies that only the baseline should be dropped, not the snap-
shots associated with the baseline.

SQL> BEGIN

 2 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE(

 3 baseline_name => ‘OCP Example’,

 4 cascade => FALSE);

 5 END;

SQL> /

PL/SQL procedure successfully completed.

SQL>

You can create a baseline for the future date and time. These are called baseline templates.
The following code creates a baseline template:

SQL> BEGIN

 2 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE(

 3 start_time => TO_DATE(‘01-JAN-09 05.00.00’,’DD-MON-YY HH.MI.SS’),

 4 end_time => TO_DATE(‘01-JAN-09 08.00.00’,’DD-MON-YY HH.MI.SS’),

 5 baseline_name => ‘baseline_090101’,

 6 template_name => ‘template_090101’,

 7 expiration => 21);

 8 END;

SQL> /

PL/SQL procedure successfully completed.

SQL>

AWR baselines and baseline templates are never dropped automatically
(or purged) from the database unless explicitly dropped by the DBA or the
expiration period ends.

Managing AWR Baselines Using EM Database Control

Using EM Database Control to create, rename, and drop AWR baselines is easier than
using SQL*Plus and error-free. From the database home page, click the Server tab (shown

95127c14.indd 790 2/17/09 2:54:19 PM

Proactive Database Maintenance 791

earlier in Figure 14.1). Click the AWR Baselines link under Statistics Management. The
current baselines are displayed, as shown in Figure 14.15.

F i gu r e 14 .15 AWR Baselines screen

Click the Create button to create a new baseline. You will be presented with the option
to create a single baseline or a repeating baseline. If you choose a single baseline, you will
be presented with the screen shown in Figure 14.16. Enter the name of the baseline. You
can specify the snapshots to include in the baseline by using the snapshot IDs or using a
time range.

F i gu r e 14 .16 AWR Create Single Baseline screen

95127c14.indd 791 2/17/09 2:54:20 PM

792 Chapter 14 N Maintaining the Database and Managing Performance

If you choose to create a repeating baseline, you’ll see the screen shown in Figure 14.17.
Enter a baseline name, and specify the frequency.

F i gu r e 14 .17 AWR Create Repeating Baseline screen

You can drop a baseline by choosing the baseline and clicking the Delete button on the
AWR Baselines screen (Figure 14.15).

Automatic Database Diagnostic Monitoring
Following each AWR statistics-collection process, the Automated Database Diagnostic
Monitoring (ADDM) feature automatically analyzes the gathered statistics and compares
them to the statistics gathered by the previous two AWR snapshots. By comparing the cur-
rent statistics to these two previous snapshots, the ADDM can easily identify potential
database problems such as these:

CPU and I/O bottlenecksÛN

Resource-intensive SQL or PL/SQL or Java executionÛN

Lock contentionÛN

Utilization of Oracle’s memory structures within the SGAÛN

RAC-specific issuesÛN

Issues with Oracle Net configurationÛN

Data-concurrency issuesÛN

95127c14.indd 792 2/17/09 2:54:20 PM

Proactive Database Maintenance 793

Based on these findings, the ADDM may recommend possible remedies. The goal of
these recommendations is to minimize DB Time. DB Time is composed of two types of
time measures for nonidle database users: CPU time and wait time. This information is
stored as the cumulative time that all database users have spent either using CPU resources
or waiting for access to resources such as CPU, I/O, or Oracle’s memory structures. High
or increasing values for DB Time indicate that users are requesting increasingly more server
resources and may also be experiencing waits for those resources, which can lead to less
than optimal performance. In this way, minimizing DB Time is a much better way to mea-
sure overall database performance than Oracle’s old ratio-based tuning methodologies.

DB Time is calculated by combining all the times from all nonidle user ses-
sions into one number. Therefore, it is possible for the DB Time value to be
larger than the total time that the instance has been running.

Once ADDM completes its comparison of the newly collected statistics to the previously
collected statistics, the results are stored in the AWR. You can use these statistics to establish
baselines against which future performance will be compared, and you can use deviations
from these baseline measures to identify areas that need attention. In this manner, ADDM
allows you to not only better detect and alert yourself to potential management and per-
formance problems in the database but also allows you to automatically take corrective
actions to rectify those problems quickly and with little or no manual intervention.

The following sections introduce the interfaces, features, and functionality of ADDM
and explain how you can use this utility to monitor and manage database storage, security,
and performance. We’ll begin by examining the EM Database Control tools you can use to
view the results of ADDM analysis.

Using EM Database Control to View ADDM Analysis
EM Database Control graphically displays the results of the ADDM analysis on several
screens, including the following:

The Performance Findings link under the Diagnostic Summary section of the EM ÛN

Database Control main screen

The Performance tab of the EM Database Control main screenÛN

The ADDM screen located by clicking the Advisor Central link at the bottom of the ÛN

EM Database Control main screen

You’ll see sample output from each of the EM Database Control screens in the following
sections.

The EM Database Control Performance Findings Link

The EM Database Control home screen contains a section called Diagnostic Summary. One
of the links under this section is ADDM Findings. Figure 14.18 shows this section.

95127c14.indd 793 2/17/09 2:54:20 PM

794 Chapter 14 N Maintaining the Database and Managing Performance

F i gu r e 14 .18 The Diagnostic Summary section of the EM Database Control home
screen

The output in Figure 14.18 shows that ADDM discovered four performance-related
findings. Clicking the link for these four performance findings displays the ADDM sum-
mary screen, at the bottom of which is the Performance Analysis section, as shown in
Figure 14.19.

The Findings section on this screen shows the ADDM analysis and the recommendation
to resolve the issue.

F i gu r e 14 .19 ADDM summary screen

95127c14.indd 794 2/17/09 2:54:20 PM

Proactive Database Maintenance 795

The EM Database Control Performance Tab

You can also click the Performance tab on the EM Database Control main screen to view
performance data collected by AWR and analyzed by ADDM. You can click the Run ADDM
Now button to take an AWR snapshot and perform ADDM analysis. Figure 14.20 shows
the Performance tab of EM Database Control.

F i gu r e 14 . 20 EM Database Control Performance tab

Using Active Sessions of the Performance tab, you can drill down into detailed informa-
tion that has been identified as having an impact on performance. Click the Scheduler link,
which will take you to the screen shown in Figure 14.21.

95127c14.indd 795 2/17/09 2:54:20 PM

796 Chapter 14 N Maintaining the Database and Managing Performance

F i gu r e 14 . 21 Detailed performance information

The Advisor Central Screen

The Advisor Central screen also contains ADDM findings. The link for the Advisor Central
screen is at the bottom of the EM Database Control home screen. Click this link to display
the Advisor Central screen, shown in Figure 14.22.

Click the ADDM link in the Advisors section of this screen to display a graph that
shows all the recent AWR snapshots taken by the MMON process.

As stated earlier, the ADDM automatically compares the most recent AWR snapshot
with the last two AWR snapshots when formulating its recommendations. However, you can
use this Create ADDM Task screen to manually select any two AWR snapshot times and
formulate ADDM recommendations for activity that occurred between those two points in
time. To start this process, click the Period Start Time radio button, and then select a start
date and time by clicking the point in the graph’s timeline that corresponds to the beginning
period that you want to use. Repeat this process to specify the end-process timestamp.

You can also manually perform an ADDM analysis without EM Database
Control by using the addmrpt.sql script located in the $ORACLE_HOME/
rdbms/admin directory.

95127c14.indd 796 2/17/09 2:54:20 PM

Proactive Database Maintenance 797

F i gu r e 14 . 22 The Advisor Central screen

You can use the DBMS_ADDM package to manually analyze AWR snapshots. Table 14.4 shows
some of the subprograms in DBMS_ADDM that can be used to manually manage ADDM analysis.

ta b le 14 . 4 Partial List of DBMS_ADDM Subprograms

Procedure Name Description

ANALYZE_DB Creates an ADDM analysis by specifying the begin and
end AWR snapshot IDs

DELETE Deletes an ADDM task

INSERT_FINDING_DIRECTIVE Excludes certain findings from ADDM reporting

INSERT_SEGMENT_DIRECTIVE Excludes a certain schema, object, or segment from ADDM
reporting (do not run Segment Advisor on these segments)

INSERT_SQL_DIRECTIVE Excludes certain SQL from ADDM reporting

95127c14.indd 797 2/17/09 2:54:20 PM

798 Chapter 14 N Maintaining the Database and Managing Performance

The DBA_ADVISOR_FINDINGS, DBA_ADVISOR_RECOMMENDATIONS, and DBA_
ADVISOR_ACTIONS dictionary views have a column named FILTERED. If the
value for this column is Y, the row in the view is filtered by a directive and
is not reported.

Although using EM Database Control to create and view ADDM results is by far the
simplest way to review ADDM recommendations, you can also query the ADDM data
dictionary views directly. I’ll discuss some of these data dictionary views in the following
section.

Using Data Dictionary Views to View ADDM Analysis
You can use more than 20 data dictionary views to examine the results of ADDM’s activi-
ties. Table 14.5 describes five commonly used ADDM views that store the recommendation
information you saw in the EM Database Control pages.

ta b le 14 .5 ADDM Data Dictionary Views

View Name Description

DBA_ADDM_TASKS Displays executed advisor tasks

DBA_ADDM_FINDINGS Describes the findings identified by the ADDM analysis

DBA_ADVISOR_OBJECTS Describes the objects that are referenced in the ADDM
findings and recommendations

DBA_ADVISOR_RECOMMENDATIONS Describes the recommendations made based on ADDM
findings

DBA_ADVISOR_RATIONALE Describes the rationale behind each ADDM finding

DBA_ADDM_TASKS, DBA_ADDM_INSTANCES, and DBA_ADDM_FINDINGS are exten-
sions of the corresponding DBA_ADVISOR_ views but are specific for ADDM
tasks and findings.

The following SQL statement shows a sample query on the DBA_ADVISOR_FINDINGS data
dictionary view that identifies the type of performance problem that is causing the most
impact on the database:

SQL> SELECT task_id, type, message

 2 FROm dba_advisor_findings

 3 WHERE impact= (select MAX(impcat) FROM dba_advisor_findings);

95127c14.indd 798 2/17/09 2:54:20 PM

Proactive Database Maintenance 799

TASK_ID TYPE MESSAGE

------- --------- --

 164 PROBLEM SQL statements consuming significant database time

 were found.

The output from this query shows that SQL statements being executed in the database
are contributing to the poor database performance. By itself, the DBA_ADVISOR_FINDINGS
table does not identify which SQL statements are consuming the database time. Instead,
these are shown in the DBA_ADVISOR_OBJECTS data dictionary view and are identified by the
TASK_ID value shown in the query on DBA_ADVISOR_FINDINGS. A query on that view, using
the TASK_ID of 164 returned by the ADDM session that had the potential for the greatest
database impact, returns the SQL statements shown here:

SQL> SELECT attr4

 2 FROM dba_advisor_objects

 3 WHERE task_id = 164;

ATTR4

UPDATE customers SET credit_limit=credit_limit*1.15 WHERE cust_id = :B1

DELETE FROM sales WHERE time_id BETWEEN ’01-JAN-00’ and ’01-JAN-01’;

UPDATE sales_history SET quantity_sold = quantity_sold+10 WHERE

 CHANNEL_ID := B1

SELECT COUNT(*) FROM Sales_history;

SELECT DISTINCT channel_id FROM sales_history;

This query shows all the SQL statements that were captured by the AWR during the
snapshot period and that were used in the ADDM analysis for that same period.

The DBA_ADVISOR_ACTIONS data dictionary view shows the ADDM recommendations for
each finding. The following query shows the recommendations for correcting the performance
issues associated with TASK_ID 164, which was identified earlier as being the costliest database
activity:

SQL> SELECT TRIM(attr1) ATTR1, TRIM(attr2) ATTR2, TRIM(attr3) ATTR3

 2 FROM dba_advisor_actions

 3 WHERE task_id = 164;

ATTR1 ATTR2 ATTR3

---------- ------ ----------

log_buffer 262144 15728640

db_cache_size 25165824 50331648

undo_retention 900 363

95127c14.indd 799 2/17/09 2:54:21 PM

800 Chapter 14 N Maintaining the Database and Managing Performance

This output indicates that ADDM recommends that the values for LOG_BUFFER, DB_
CACHE_SIZE, and UNDO_RETENTION all be changed from their current values to 15,728,640
bytes; 50,331,648 bytes; and 363 seconds, respectively.

If you want to see the rationale behind each of the actions shown in DBA_ADVISOR_ACTIONS,
query the DBA_ADVISOR_RATIONALE data dictionary view. The DBA_ADVISOR_RATIONALE view
stores the ADDM recommendations that ADDM has formulated based on the AWR data like
those stored in DBA_ADVISOR_FINDINGS and DBA_ADVISOR_OBJECTS. The following example
shows a sample query on the DBA_ADVISOR_RATIONALE view using the TASK_ID of 164 identi-
fied earlier:

SQL> SELECT message

 2 FROM dba_advisor_rationale

 3 WHERE task_id = 164;

MESSAGE

Buffer cache writes due to small log files were consuming significant

 database time.

The buffer cache was undersized causing significant read I/O.

The value of “undo retention” was 900 seconds and the longest running

 query lasted only 330 seconds. This extra retention caused

 unnecessary I/O.

As you can see from the complexity of these examples, examining the
ADDM results via EM Database Control is much easier than accessing the
data dictionary views via SQL. From a practical standpoint, you would run
SQL queries against these ADDM views only if EM Database Control were
unavailable.

To gain further insight into the recommendations and information gathered by the
ADDM, Oracle 11g also provides several advisor utilities in EM Database Control. I will
discuss these advisors in the next section.

The Advisory Framework
Oracle 11g comes with several advisors to help proactively manage the database. The top
portion of Figure 14.22 shows the advisors available in Oracle 11g and how to invoke them.

95127c14.indd 800 2/17/09 2:54:21 PM

Proactive Database Maintenance 801

Advisors provide recommendations that are key for a DBA to manage the database effec-
tively. The advisors can be classified into various categories. The following are the advisors:

Memory ÛN

SGA AdvisorÛN

PGA AdvisorÛN

Shared Pool AdvisorÛN

Buffer Cache AdvisorÛN

SQL ÛN

SQL Tuning AdvisorÛN

SQL Access AdvisorÛN

Automatic Undo ManagementÛN

Undo AdvisorÛN

RecoveryÛN

MTTR AdvisorÛN

Data Recovery AdvisorÛN

SpaceÛN

Segment AdvisorÛN

The purpose of each advisor is explained next. Since the OCA certification exam expects
you to only be familiar with the general purpose of the advisors, I won’t go into detail of each
advisor in this book. You can click each advisor’s link on the Advisor Central screen and
familiarize yourself with the contents.

Memory advisors Memory advisors provide the optimal size for various memory param-
eters. If AMM is enabled, the advisor provides the target amount of memory to allocate to
the instance. If AMM is disabled but ASMM is enabled, the advisor provides recommenda-
tions on the optimal sizes for SGA and PGA. If no automatic memory features are enabled,
you can get the sizes for individual SGA components such as shared pool and buffer cache.
AMM and ASMM are discussed later in the chapter.

SQL Tuning Advisor This provides SQL tuning advice. You may use the top activity or
current session’s graphs to drill down to the SQL statement to tune. You can tune one state-
ment or multiple statements. The advice includes restructuring SQL statements, creating
additional indexes, using materialized views, partitioning tables, refreshing the optimizer
statistics, and so on.

SQL Access Advisor The SQL Access Advisor provides recommendations on schema mod-
ifications. It recommends indexes and materialized views to optimize SQL queries.

95127c14.indd 801 2/17/09 2:54:21 PM

802 Chapter 14 N Maintaining the Database and Managing Performance

Undo Advisor The Undo Advisor recommends the optimal size for the undo tablespace
based on the undo retention and flashback requirements.

MTTR Advisor The MTTR Advisor provides the optimal value for the FAST_START_
MTTR_TARGET initialization parameter. This parameter determines the amount of time
required by the instance to start in the event of an instance crash. Instance failure can
occur when the host server crashes, when any critical SGA background process fails, or if
the instance is shut down using the ABORT option. Instance recovery occurs automatically
on the first startup following the instance failure. During instance recovery, Oracle uses the
online redo logs to roll back any uncommitted transactions that were “in flight” when the
instance crashed to ensure that all committed transactions are written to disk. As a DBA,
you often try to minimize the time it takes to perform this instance recovery so that you
can bring up the database quickly.

Data Recovery Advisor The Data Recovery Advisor helps diagnose and repair data fail-
ures and corruptions. It analyzes the failure based on the symptoms and determines the
repair strategies.

Segment Advisor The Segment Advisor identifies whether a segment is a good candidate
for a shrink operation based on the level of fragmentation within the segment. The advisor
also keeps historical growth of the segment, which can be used for capacity planning. Seg-
ments that can be shrunk are those that the Segment Advisor has found to need less space
than they are currently allocated. By shrinking or compressing these segments, space is
returned to the database for use by other objects, and the total number of I/Os needed to
access these objects is reduced, potentially improving the performance of SQL statements
that access these objects.

In the next section, you’ll learn about another tool in the Oracle 11g database that helps
you proactively monitor the database with timely alerts.

Monitoring Server-Generated Alerts
In addition to monitoring and making recommendations on SQL, memory, mean time to
recover, segments, and undo activity, an Oracle 11g database can also proactively monitor
itself for other types of problems related to configuration, security, and space management.
To do so, you use the server-generated alerts feature.

A server-generated alert is an alert from the Oracle 11g database that says it suspects a
problem with the database. These alerts are also an integral part of the ADDM architec-
ture. They notify you when a management or performance issue occurs and begin taking
corrective actions—if you configured such actions. By default, the alert notifications are
sent to a predefined persistent queue named ALERT_QUE owned by SYS. EM Grid Control
reads this queue.

There are two types of server-generated alerts: threshold based and event based. Threshold
alerts are triggered when a specified threshold is met, such as when a tablespace has reached
certain capacity. Threshold alerts can be fired at a warning level (for example, 85 percent
tablespace capacity) or at a critical level (for example, 97 percent tablespace capacity). Event
alerts are triggered when a specified event occurs, such as a database error.

95127c14.indd 802 2/17/09 2:54:21 PM

Proactive Database Maintenance 803

Viewing and Configuring Alerts Using EM Database Control
The EM Database Control home page displays the alerts when they are triggered.
Figure 14.23 shows the Alerts section of the Database Control home page.

F i gu r e 14 . 23 Alerts section of the Database Control home page

You can see the alert history by clicking the Alert link. You can configure the alerts by
clicking the Metric and Policy Settings link under Related Links. Figure 14.24 shows the
top portion of the Metric and Policy Settings screen.

F i gu r e 14 . 24 Metric and Policy Settings screen

95127c14.indd 803 2/17/09 2:54:21 PM

804 Chapter 14 N Maintaining the Database and Managing Performance

As you can see in Figure 14.24, each alert can have two levels of severity: Warning and
Critical. These two alert levels allow you to achieve greater granularity. For example, you
might want two thresholds set up with regard to the archive destination. One might be a
warning threshold that triggers an alert when the archive destination is 80 percent full—
causing a message to be displayed on the EM Database Control main screen. In addition, you
might want to set up a critical threshold so that you receive an email whenever the archive
destination device is 90 percent full. In this manner, you can escalate a potential problem
from an EM Database Control console message to an email alert as the problem gets worse.

You can also use warning and critical alerts to distinguish between lower-
severity problems, such as statistics indicating temporary poor perfor-
mance, and higher-severity problems, such as ORA-0600 error messages
in the database alert log. You can achieve this by defining warning thresh-
olds only for lower-severity alerts and defining warning and critical alerts
for higher-severity problems.

Viewing and Configuring Alerts Using SQL
You can use SQL*Plus to configure the alert thresholds and to view the alerts. The DBMS_
SERVER_ALERT package has the subprograms to define and query the thresholds. The SET_
THRESHOLD procedure is used to define the threshold, and the GET_THRESHOLD procedure is
used to retrieve threshold information.

You can also query the thresholds from the DBA_THRESHOLDS dictionary view. The fol-
lowing is an example:

SQL> SELECT metrics_name, warning_value, critical_value

 2 FROM dba_thresholds

 3 WHERE metrics_name like ‘Tablespace%’

SQL> /

METRICS_NAME WARNING_VA CRITICAL_V

----------------------------------- ---------- ----------

Tablespace Bytes Space Usage 0 0

Tablespace Space Usage 85 97

SQL>

Threshold alerts are written to DBA_OUTSTANDING_ALERTS. Nonthreshold alerts are writ-
ten only to DBA_ALERT_HISTORY. Entries from DBA_OUTSTANDING_ALERTS are cleared when the
alert condition is cleared. The following is a query from the DBA_OUTSTANDING_ALERTS view:

SQL> SELECT reason FROM dba_outstanding_alerts;

REASON

--

db_recovery_file_dest_size of 4395630592 bytes is 97.27%

used and has 119794176 remaining bytes available.

95127c14.indd 804 2/17/09 2:54:21 PM

Proactive Database Maintenance 805

Metrics “Database Time Spent Waiting (%)” is at 36.84571

for event class “Concurrency”

The V$METRIC view shows system-level metric values. Metric history is saved in the
V$METRIC_HISTORY view.

So far, you have seen several tools that help DBAs proactively monitor the database. I
cannot possible identify all the potential issues and how to proactively avoid them. Errors
and database corruptions do happen. The Oracle 11g database has a reporting mechanism
to analyze the problem reactively and take measures to avoid it in the future. You’ll learn
about the Automatic Diagnostic Repository in the next section.

Understanding Automatic Diagnostic Repository
The Automatic Diagnostic Repository (ADR) is a file-based repository for database diagnos-
tic data such as alert log files, trace files, core dump files, health monitor reports, and so on.
In prior releases of Oracle, the trace and dump files were traditionally saved in directories
specified by the _DUMP_DIRECTORY parameters. Starting with Oracle 11g, these files and much
more are saved under the ADR framework.

ADR replaces the BACKGROUND_DUMP_DEST, CORE_DUMP_DEST, and USER_DUMP_DEST loca-
tions. A new parameter, DIAGNOSTIC_DEST, specifies the base directory for the ADR. The
default for DIAGNOSTIC_DEST is $ORACLE_BASE if available; otherwise, it’s $ORACLE_HOME/log.
ADR is a vast topic and is not covered here in its entirety.

Within ADR base, there can be multiple ADR homes. Each ADR home is the base direc-
tory for all the files belonging to an instance. The ADR home directory for an instance is
$DIAGNOSTIC_DEST/diag/rdbms/<dbname>/<instance name>.

The subdirectories under the DIAGNOSTIC_DEST are as follows:

DIAGNOSTIC_DEST/diag DIAGNOSTIC_DEST/diag

 rdbms tnslsnr

 <db_name> <machine_name>

 <instance_name> <listener_name>

 alert alert

 cdump cdump

 hm incident

 incident incpkg

 incpkg lck

 ir metadata

 lck stage

 metadata sweep

 stage trace

 sweep

 trace

95127c14.indd 805 2/17/09 2:54:21 PM

806 Chapter 14 N Maintaining the Database and Managing Performance

In Oracle 11g, an alert log file is written in XML format as well as in text format. The
XML-format file is under the alert directory, whereas the text-format file is under the
trace directory. Table 14.6 shows where to look for log and trace files in Oracle 11g.

ta b le 14 .6 Alert File and Trace File Locations

Type of File Pre–Oracle 11g Location Oracle 11g Location

Alert log (text) BACKGROUND_DUMP_DEST <ADR_HOME>/trace

Alert log (XML) None <ADR_HOME>/alert

Server trace files BACKGROUND_DUMP_DEST <ADR_HOME>/trace

User trace files USER_DUMP_DEST <ADR_HOME>/trace

Core dump files CORE_DUMP_DEST <ADR_HOME>/cdump

Incident dumps USER_DUMP_DEST,
BACKGROUND_DUMP_DEST

<ADR_HOME>/incident/incdir_n

The values for _DUMP_DEST parameters are ignored by Oracle 11g. The new view V$DIAG_
INFO gives file locations:

SQL> SELECT name, value FROM v$diag_info;

NAME VALUE

------------------------- ---

Diag Enabled TRUE

ADR Base c:\oracle

ADR Home c:\oracle\diag\rdbms\w11gr1\w11gr1

Diag Trace c:\oracle\diag\rdbms\w11gr1\w11gr1\trace

Diag Alert c:\oracle\diag\rdbms\w11gr1\w11gr1\alert

Diag Incident c:\oracle\diag\rdbms\w11gr1\w11gr1\incident

Diag Cdump c:\oracle\diag\rdbms\w11gr1\w11gr1\cdump

Health Monitor c:\oracle\diag\rdbms\w11gr1\w11gr1\hm

Default Trace File c:\…\w11gr1\trace\w11gr1_ora_6036.trc

Active Problem Count 0

Active Incident Count 0

The standard directory structure and diagnostic framework enables DBAs to package
and send trace-file and log information to Oracle Support for timely resolution to issues.
The ADR command interface (ADRCI) is a command-line tool available to view the ADR
information and to package incident and problem information into a zip file.

95127c14.indd 806 2/17/09 2:54:21 PM

Proactive Database Maintenance 807

Using ADRCI to View the Alert Log File
You invoke the ADRCI command-line tool with the executable adrci, and you use the show
alert command to view the alert log file. You can use options such as -tail to view the end
of the file or -P to filter the output. You can also use the SPOOL command similar to SQL*Plus
to write the output to a file.

The help command in adrci displays all the available commands in ADRCI. Invoke
ADRCI using the adrci.exe executable on Windows or using the adrci executable on
Unix/Linux platforms.

$ adrci

ADRCI: Release 11.1.0.6.0 - Beta on Wed Oct 15 06:53:26 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

ADR base = “/u01/app/oracle”

adrci> help

 HELP [topic]

 Available Topics:

 CREATE REPORT

 ECHO

 EXIT

 HELP

 HOST

 IPS

 PURGE

 RUN

 SET BASE

 SET BROWSER

 SET CONTROL

 SET ECHO

 SET EDITOR

 SET HOMES | HOME | HOMEPATH

 SET TERMOUT

 SHOW ALERT

 SHOW BASE

 SHOW CONTROL

 SHOW HM_RUN

 SHOW HOMES | HOME | HOMEPATH

 SHOW INCDIR

95127c14.indd 807 2/17/09 2:54:21 PM

808 Chapter 14 N Maintaining the Database and Managing Performance

 SHOW INCIDENT

 SHOW PROBLEM

 SHOW REPORT

 SHOW TRACEFILE

 SPOOL

 There are other commands intended to be used directly by Oracle, type

 “HELP EXTENDED” to see the list

adrci>

To find out the purpose and get detailed syntax information on a specific command, do
help <command>:

adrci> help show alert

 Usage: SHOW ALERT [-p <predicate_string>] [-term]

 [[-tail [num] [-f]] | [-file <alert_file_name>]]

 Purpose: Show alert messages.

 Options:

 [-p <predicate_string>]: The predicate string must be double quoted.

 The fields in the predicate are the fields:

 ORIGINATING_TIMESTAMP timestamp

 NORMALIZED_TIMESTAMP timestamp

 ORGANIZATION_ID text(65)

 COMPONENT_ID text(65)

 HOST_ID text(65)

 HOST_ADDRESS text(17)

 MESSAGE_TYPE number

 MESSAGE_LEVEL number

 MESSAGE_ID text(65)

 MESSAGE_GROUP text(65)

 CLIENT_ID text(65)

 MODULE_ID text(65)

 PROCESS_ID text(33)

 THREAD_ID text(65)

 USER_ID text(65)

 INSTANCE_ID text(65)

 DETAILED_LOCATION text(161)

 UPSTREAM_COMP_ID text(101)

 DOWNSTREAM_COMP_ID text(101)

95127c14.indd 808 2/17/09 2:54:21 PM

Proactive Database Maintenance 809

 EXECUTION_CONTEXT_ID text(101)

 EXECUTION_CONTEXT_SEQUENCE number

 ERROR_INSTANCE_ID number

 ERROR_INSTANCE_SEQUENCE number

 MESSAGE_TEXT text(2049)

 MESSAGE_ARGUMENTS text(129)

 SUPPLEMENTAL_ATTRIBUTES text(129)

 SUPPLEMENTAL_DETAILS text(129)

 PROBLEM_KEY text(65)

 [-tail [num] [-f]]: Output last part of the alert messages and

 output latest messages as the alert log grows. If num is not specified,

 the last 10 messages are displayed. If “-f” is specified, new data

 will append at the end as new alert messages are generated.

 [-term]: Direct results to terminal. If this option is not specified,

 the results will be open in an editor.

 By default, it will open in emacs, but “set editor” can be used

 to set other editors.

 [-file <alert_file_name>]: Allow users to specify an alert file which

 may not be in ADR. <alert_file_name> must be specified with full path.

 Note that this option cannot be used with the -tail option

 Examples:

 show alert

 show alert -p “message_text like ‘%incident%’”

 show alert -tail 20

adrci>

Using EM to View the Alert Log File
You can also use EM Database Control to view the alert log contents. On the Database
Control home page, click the Alert Log Contents link under Related Links. You can view
the last 50, 100, or up to 2,000 lines of the alert log. See Figure 14.25.

95127c14.indd 809 2/17/09 2:54:21 PM

810 Chapter 14 N Maintaining the Database and Managing Performance

F i gu r e 14 . 25 View Alert Log Contents screen in Database Control

In the next section, you will learn the tools available to monitor the performance of the
database.

Managing Performance
Although AWR, ADDM, advisors, and ADR all help you proactively monitor and manage
your databases, you can use additional performance-specific features of EM Database Control
to further enhance the performance of your database. When thinking about tuning, you
should consider the following areas:

Memory-allocation issuesÛN

I/O contention (disk/SAN configuration)ÛN

CPU contentionÛN

Network issuesÛN

SQL problems (bad SQL, optimizer plans)ÛN

95127c14.indd 810 2/17/09 2:54:21 PM

Managing Performance 811

Several dictionary and dynamic performance views are available in Oracle 11g that help
you tune and gather system information. When it comes to tuning, managing the instance
memory is very important. How much memory should you allocate for all the various SGA
components? In the following sections, you will learn how Oracle 11g can help you take the
guesswork out of database administration and tune the database.

Sources of Tuning Information
EM Database Control provides a wealth of information for improving database monitoring
and management, but you also need to be aware of several other sources of information about
database performance, including the following:

The alert log ÛN

Background and user trace filesÛN

Dynamic performance viewsÛN

Data dictionary viewsÛN

The Alert Log
The Oracle alert log records informational and error messages for a variety of activities
that have occurred against the database during its operation. These activities are recorded
in chronological order from the oldest to most recent. You can find the alert log in the ADR
directory that you learned about earlier.

The alert log frequently indicates whether gross tuning problems exist in the database.
Tables that are unable to acquire additional storage, sorts that are failing, and problems
with rollback segments are all examples of tuning problems that can show up as messages
in the alert log. Most of these messages are accompanied by an Oracle error message.

Background and User Trace Files
Oracle trace files are text files that contain session information for the process that created
them. Trace files can be generated by the Oracle background processes, through the use of
trace events, or by user server processes. These trace files can contain useful information
for performance tuning and system troubleshooting. Trace files are also located in the ADR
directories.

You can generate user trace files for a particular session by using the DBMS_MONITOR
package. Many subprograms are available in this package to enable and disable trace; the
most common ones are SESSION_TRACE_ENABLE to start the tracing and SESSION_TRACE_
DISABLE to stop the tracing.

To use the SESSION_TRACE_ENABLE procedure, you must know the SID and SERIAL# on
the session, which you can get by querying the V$SESSION view. The third argument to
the procedure is waits, which is TRUE by default. The fourth argument is binds, which is
FALSE by default. By enabling the waits, the wait information is written to the trace file. By

95127c14.indd 811 2/17/09 2:54:21 PM

812 Chapter 14 N Maintaining the Database and Managing Performance

enabling the binds, the bind variable values are also written to the trace file. Once you have
the SID and SERIAL#, you can enable trace for the session by doing the following:

SQL> BEGIN

 DBMS_MONITOR.SESSION_TRACE_ENABLE(session_id=>324,

 serial_num=>54385,

 waits=>TRUE,

 binds=>TRUE);

 END;

To stop tracing, you have to pass in the SID and SERIAL# as parameters:

SQL> BEGIN

 DBMS_MONITOR.SESSION_TRACE_DISABLE(session_id=>324,

 serial_num=>54385);

 END;

You can also use EM Database Control to enable and disable trace. To see the sessions
in the instance, you can choose any of the following links under the Additional Monitoring
Links on the Performance tab in Database Control (see Figure 14.26):

Top ConsumersÛN

Blocking SessionsÛN

Instance LocksÛN

Search SessionsÛN

F i gu r e 14 . 26 Additional Monitoring Links section on the Performance tab

When you click Top Consumers, you will get an overview of the consumers. Click Top
Sessions to view the sessions in the instance, as shown in Figure 14.27.

You can use the Enable SQL Trace and Disable SQL Trace buttons on this screen to
enable and disable tracing.

The 10046 trace event, which can be activated at the instance or session
level, is particularly useful for finding performance bottlenecks. See Note
171647.1 at http://metalink.oracle.com for a discussion of using the
10046 trace event as a tuning technique.

95127c14.indd 812 2/17/09 2:54:22 PM

Managing Performance 813

F i gu r e 14 . 27 Top Sessions screen on EM

Dynamic Performance Views
As described in Chapter 8, “Introducing Oracle Database 11g Components and Archi-
tecture,” Oracle Database 11g contains several dynamic performance views. Table 14.7
contains a partial listing of some of the V$ views that are frequently used in performance
tuning and troubleshooting.

ta b le 14 .7 A Partial Listing of Dynamic Performance Views

Name Description

V$SGAINFO Shows information about the size of the SGA’s components

V$PGASTAT Shows information about PGA memory usage

95127c14.indd 813 2/17/09 2:54:22 PM

814 Chapter 14 N Maintaining the Database and Managing Performance

Name Description

V$EVENT_NAME Shows database events that may require waits when requested by
the system or by an individual session

V$SYSTEM_EVENT Shows events for which waits have occurred for all sessions access-
ing the system

V$SESSION_EVENT Shows events for which waits have occurred, individually identified
by session

V$SESSION_WAIT Shows events for which waits are currently occurring, individually
identified by session

V$STATNAME Matches the name to the statistics listed only by number in
V$SESSTAT and V$SYSSAT

V$SYSSTAT Shows overall system statistics for all sessions, both currently and
previously connected

V$SESSTAT Shows statistics on a per-session basis for currently connected sessions

V$SESSION Shows current connection information on a per-session basis

V$WAITSTAT Shows statistics related to block contention

V$LOCK Lists the locks currently in the database

V$PARAMETER Shows the initialization-parameter values that are currently in effect

V$SPPARAMETER Shows the contents of the server parameter file (spfile); look for value
TRUE in column ISSPECIFIED to see if the parameter was explicitly
specified in the spfile, as opposed to default values.

V$FILESTAT Shows number of reads/writes and timing statistics for data files

V$DATAFILE Shows data file properties

V$TEMPFILE Shows temporary file properties

V$TEMPSEG_USAGE Displays temporary segment usage by session

In general, queries that incorporate V$SYSSTAT show statistics for the entire instance
since the time it was started. By joining this view to the other relevant views, you get the
overall picture of performance in the database. Alternatively, queries that incorporate
V$SESSTAT show statistics for a particular session. These queries are better suited for exam-
ining the performance of an individual operation or process. EM Database Control makes
extensive use of these views when creating performance-related graphs.

ta b le 14 .7 A Partial Listing of Dynamic Performance Views (continued)

95127c14.indd 814 2/17/09 2:54:22 PM

Managing Performance 815

Data Dictionary Views
Depending on the features and options installed, an Oracle 11g database has hundreds of
data dictionary views. Table 14.8 contains a partial listing of some of the DBA views that
are used when you tune performance on a database.

ta b le 14 . 8 A Partial Listing of Data Dictionary Views for Tuning and Troubleshooting

Name Description

DBA_TABLES Table storage, row, and block information

DBA_INDEXES Index storage, row, and block information

INDEX_STATS Index depth and dispersion information

DBA_DATA_FILES Data file location, naming, and size information

DBA_SEGMENTS General information about any space-consuming segment in the database

DBA_HISTOGRAMS Table and index histogram definition information

DBA_OBJECTS General information about all objects in the database, including
tables, indexes, triggers, sequences, and partitions

DBA_WAITERS Shows sessions that are waiting for another session to release a lock

DBA_TABLESPACES Shows tablespaces in the database and their properties

DBA_FREE_SPACE Shows the free space available in all tablespaces in the database

The DBA_OBJECTS data dictionary view contains a STATUS column that indicates, through
the use of a VALID or INVALID value, whether a database object is valid and ready to be
used or is invalid and in need of some attention before it can be used. Invalid and unusable
objects are discussed in the next section.

Compiling Invalid and Unusable Objects
Invalid PL/SQL objects and unusable indexes have an impact on database performance. Com-
mon examples of invalid objects are PL/SQL code that contains errors or references to other
invalid objects and indexes that are unusable because of maintenance operations or failed
direct-path load processes. Some invalid objects, such as PL/SQL stored procedures and func-
tions, dynamically recompile the next time they are accessed, and they then take on a status
of VALID again. This approach has a cost associated, because users experience a slight delay
while the object is being recompiled. But you must manually correct other invalid objects,
such as unusable indexes. Therefore, proactive database-management techniques dictate that
you identify and remedy invalid objects before they cause problems for database users.

95127c14.indd 815 2/17/09 2:54:22 PM

816 Chapter 14 N Maintaining the Database and Managing Performance

Identifying Unusable Objects Using the Data Dictionary
One way to identify invalid PL/SQL objects is to query the DBA_OBJECTS data dictionary
view and then correct them using the commands shown here. The following query identifies
the invalid objects in the database:

SQL> SELECT owner, object_name, object_type

 2 FROM dba_objects

 3 WHERE status = ‘INVALID’;

OWNER OBJECT_NAME OBJECT_TYPE

--------------- ------------------------------ ------------

SH P_UPDATE_SALES_HISTORY PROCEDURE

WHSE LOAD_DATASTAGE PACKAGE BODY

OE SAMPLE_VIEW VIEW

As you can see in the query, few objects are invalid in the database. To compile these
invalid objects, you can use the ALTER object_name command. For example, to compile the
view and procedure, do the following:

SQL> ALTER VIEW oe.sample_view COMPILE;

View altered.

SQL> ALTER PROCEDURE sh.p_update_sales_history COMPILE;

Procedure altered.

You can use the same syntax to compile a view, procedure, function, package specifica-
tion, or trigger. To compile a package body, the syntax is slightly different:

SQL> ALTER PACKAGE whse.load_datastage COMPILE BODY;

Package body altered.

Indexes may be left in the unusable state, where direct-load operations on the table fail
for some reason. Unusable indexes are ignored by the optimizer. You can identify such
indexes by querying the DBA_INDEXES view. If the index is partitioned, you must query
DBA_INDEX_PARTITIONS:

SQL> SELECT owner, index_name, index_type

 2 FROM dba_indexes

 3 WHERE status = ‘UNUSABLE’;

OWNER INDEX_NAME INDEX_TYPE

--------------- ------------------------------ ----------

HR JOB_ID_PK NORMAL

To fix the issue, you can rebuild the index:

SQL> ALTER INDEX hr.job_id_pk REBUILD;

95127c14.indd 816 2/17/09 2:54:22 PM

Managing Performance 817

When rebuilding an index using the REBUILD command, the amount of space used by the
index is temporarily larger than the actual space needed to store the index. Make sure that
adequate space exists in the tablespace before starting the rebuild process. This is because
when you rebuild the index, Oracle builds a new index at a new location and drops the unus-
able index after the new index is built. You may specify the TABLESPACE clause and ONLINE
clause for the index rebuild. By specifying the TABLESPACE clause, you can rebuild the index to
a new tablespace. The ONLINE clause makes sure that users can perform DML operations on
the table while the index is rebuilt. If ONLINE is not specified, users wait for the index rebuild
to complete.

By default, Oracle 11g checks for invalid object metrics every 24 hours.

Identifying Unusable Objects Using EM
EM Database Control also offers a mechanism for fixing invalid database objects. Fig-
ure 14.28 shows the Schema tab in EM Database Control. You can see various types of
objects under the Database Objects group and the Programs group.

F i gu r e 14 . 28 Schema tab in EM Database Control

95127c14.indd 817 2/17/09 2:54:22 PM

818 Chapter 14 N Maintaining the Database and Managing Performance

You can get a list of PL/SQL objects and their status by clicking any of the PL/SQL
object types under Programs. To list the views and their status, click the Views link under
Database Objects. Figure 14.29 shows that the object list is filtered by the HR schema, and
you can see that the view is invalid. To compile the view, choose Compile in the Actions
drop-down, and click Go.

F i gu r e 14 . 29 Compile Invalid View using EM Database Control

Using the same screen, you can choose a different object type by using the Object Type
drop-down, rather than going back and forth on the EM screen.

To rebuild an index, choose the Reorganize action after picking the index you want to
rebuild. EM guides you through a six-step interview process to set new attributes for the
index when rebuilt. EM provides an impact report in step 4, which is particularly useful in
analyzing the space requirements, as shown in Figure 14.30.

EM Database Control will generate a job to rebuild the index and submit it at a time
specified by you in step 5. The summary screen will show the SQL statements used to
rebuild the index as well as the procedures submitted to schedule the rebuild task.

95127c14.indd 818 2/17/09 2:54:22 PM

Managing Performance 819

F i gu r e 14 . 3 0 Impact Report for rebuilding the index

Tuning Memory
In Chapter 8 you learned about the architecture of Oracle 11g. An Oracle instance consists
of memory structures and background processes. The memory structure comprises SGA
and PGA, and it is important to size the SGA and PGA appropriately for better database
performance.

Fortunately, Oracle 11g provides a variety of automatic options to tune memory so that
DBAs don’t need to worry about tuning the individual memory components such as the
Java pool and the shared pool. In the following sections, you will revisit the memory com-
ponents and learn the options available to tune and manage.

Memory Components
The two primary memory components are SGA and PGA. SGA consists of the following
components. The parameters that control these pools are also provided for your reference.

Shared pool: ÛN SHARED_POOL_SIZE

Database buffer cache: ÛN DB_CACHE_SIZE

95127c14.indd 819 2/17/09 2:54:22 PM

820 Chapter 14 N Maintaining the Database and Managing Performance

Large pool: ÛN LARGE_POOL_SIZE

Java pool: ÛN JAVA_POOL_SIZE

Streams pool: ÛN STREAMS_POOL_SIZE

Log buffer: ÛN LOG_BUFFER_SIZE

Result Cache: ÛN RESULT_CACHE_SIZE

Database keep buffer cache: ÛN DB_KEEP_CACHE_SIZE

Database recycle buffer cache: ÛN DB_RECYCLE_CACHE_SIZE

Buffer cache for nonstandard block size: ÛN DB_nK_CACHE_SIZE

The parameters that can be configured to manage the PGA are as follows:

SORT_AREA_SIZEÛN

HASH_AREA_SIZEÛN

BITMAP_MERGE_AREA_SIZEÛN

CREATE_BITMAP_AREA_SIZEÛN

As you can see from the previous components and parameters, it can get complicated to
correctly size these pools and memory parameters. Oracle 11g takes the pain away from
DBAs by providing these automatic memory-tuning options:

Automatic SGA tuning using ÛN SGA_TARGET

Automatic PGA tuning using ÛN PGA_AGGREGATE_TARGET

Automatic Memory tuning (PGA and SGA) using ÛN MEMORY_TARGET

The following advisors views are available in Oracle 11g to tune the individual compo-
nents of memory:

V$DB_CACHE_ADVICEÛN to size the database buffer cache

V$SHARED_POOL_ADVICEÛN to size the shared pool

V$JAVA_POOL_ADVICEÛN to size the Java pool

V$STREAMS_POOL_ADVICEÛN to size the streams pool

Automatic Shared Memory Management
Automatic Shared Memory Management (ASMM) was introduced in Oracle 10g and can
automatically tune five important SGA components as well as the area required (fixed size)
for internal allocations:

SHARED_POOL_SIZEÛN

DB_CACHE_SIZEÛN

LARGE_POOL_SIZEÛN

JAVA_POOL_SIZEÛN

STREAMS_POOL_SIZEÛN

95127c14.indd 820 2/17/09 2:54:22 PM

Managing Performance 821

To enable ASMM, you set the SGA_TARGET parameter, where you specify the total size
for the SGA. You still have to manually size the other SGA components, which in most
cases do not need much tuning. These components are as follows:

LOG_BUFFERÛN

DB_KEEP_CACHE_SIZEÛN

DB_RECYCLE_CACHE_SIZEÛN

DB_nK_CACHE_SIZEÛN

SGA_TARGET is a dynamic parameter; you can increase it to the maximum size specified
by the static parameter SGA_MAX_SIZE.

You can change a dynamic initialization parameter by using the ALTER
SYSTEM statement, whereas you should change static parameters in the
spfile or init.ora first. The instance needs to be restarted for the new
value to take effect.

You can still specify sizes for the five pools when using ASMM. Oracle will use the values
specified as the minimum size for the components. To get full automatic tuning, the five SGA
components must be set to zero or not specified in the initialization file.

The parameter STATISTICS_LEVEL must be set to TYPICAL or ALL for the
Automatic Shared Memory Management feature to function.

You can tune the appropriate size of SGA_TARGET using the advisor view V$SGA_TARGET_
ADVICE. The V$SGAINFO view shows the sizes of various SGA components.

SQL> SELECT * FROM v$sgainfo;

NAME BYTES RES

-------------------------------- ---------- ---

Fixed SGA Size 1303916 No

Redo Buffers 4935680 No

Buffer Cache Size 318767104 Yes

Shared Pool Size 352321536 Yes

Large Pool Size 25165824 Yes

Java Pool Size 12582912 Yes

Streams Pool Size 0 Yes

Shared IO Pool Size 0 Yes

Granule Size 4194304 No

Maximum SGA Size 954155008 No

Startup overhead in Shared Pool 46137344 No

Free SGA Memory Available 239075328

95127c14.indd 821 2/17/09 2:54:22 PM

822 Chapter 14 N Maintaining the Database and Managing Performance

SQL> SELECT * FROM v$sga_target_advice;

 SGA_SIZE SGA_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR ESTD_PHYSICAL_READS

---------- --------------- ------------ ------------------- -------------------

 684 1 301 1 27924

 342 .5 323 1.0731 31035

 513 .75 301 1 27924

 855 1.25 278 .9236 24657

 1026 1.5 278 .9236 24657

 1197 1.75 278 .9236 24657

 1368 2 278 .9236 24657

Automatic SQL Execution Memory Management
You can use Automatic SQL Execution Memory Management to tune the PGA using the
PGA_AGGREGATE_TARGET and WORKAREA_SIZE_POLICY parameters. Both parameters can be
dynamically modified.

PGA_AGGREGATE_TARGET specifies the target amount of memory available to the instance
(PGA memory) for all server processes. Setting a nonzero value for PGA_AGGREGATE_TARGET
automatically sets the WORKAREA_SIZE_POLICY parameter to AUTO, which means the _AREA_
SIZE parameters are automatically sized.

If you set PGA_AGGREGATE_TARGET=0 and set WORKAREA_SIZE_POLICY to
AUTO, Oracle 11g will throw an ORA-04032 error at startup.

You can tune PGA performance by using the advisor view V$PGA_TARGET_ADVICE. The
advice is generated by simulating past workload.

Automatic Memory Management
Automatic Memory Management (AMM) is new to Oracle 11g and further eases the mem-
ory management. AMM automatically tunes the SGA and PGA components. All you have
to do is to specify the total memory available to the instance by using the MEMORY_TARGET
parameter.

When AMM is used, Oracle automates the sizing of SGA and PGA, and it causes the
indirect transfer of memory from SGA to PGA, and vice versa, as required by the work-
load. The default for SGA is 60 percent and the default for PGA is 40 percent allocation
when the instance is started.

MEMORY_TARGET is a dynamic parameter; you can increase it up to the maximum specified
by the static parameter MEMORY_MAX_TARGET. By default, AMM is not enabled in Oracle 11g—
the default value for MEMORY_TARGET is zero.

95127c14.indd 822 2/17/09 2:54:23 PM

Managing Performance 823

You still can set SGA_TARGET, PGA_AGGREGATE_TARGET, and the various SGA pool parameters
in the initialization file. Oracle 11g will use these values as the minimum when configuring the
various pools. Table 14.9 shows some rules when you have configured the AMM and ASMM
memory parameters.

ta b le 14 . 9 Memory-Tuning Parameters Dependency

MEMORY_TARGET (MT) SGA_TARGET (ST) Result

MT=0

AMM is disabled

AMM is disabled

ASMM is disabled

ST=0

Must specify values for indi-
vidual pools.

MT=0 AMM is disabled

ASMM is enabled

ST>0

Individual pools will be automat-
ically tuned. SGA and PGA mem-
ory will be treated separately.

MT>0 AMM is enabled

ASMM is disabled

ST=0

Full automatic tuning of SGA
and PGA.

MT>0 AMM is enabled

ASMM is enabled

ST>0

Automatic tuning of SGA and
PGA, but SGA will keep the mini-
mum value specified by ST.

You can adjust the MEMORY_TARGET parameter size after reviewing the advisor view
V$MEMORY_TARGET_ADVICE:

SQL> SELECT * FROM v$memory_target_advice;

MEMORY_SIZE MEMORY_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION

----------- ------------------ ------------ ------------------- ----------

 912 1 303 1 0

 456 .5 304 1 0

 684 .75 304 1 0

 1140 1.25 304 1 0

 1368 1.5 304 1 0

 1596 1.75 304 1 0

 1824 2 304 1 0

95127c14.indd 823 2/17/09 2:54:23 PM

824 Chapter 14 N Maintaining the Database and Managing Performance

If you want to know the size of all the AMM memory components, you can query the
V$MEMORY_DYNAMIC_COMPONENTS view:
SQL> SELECT component, current_size, min_size, max_size

 2 FROM v$memory_dynamic_components;

COMPONENT CURRENT_SIZE MIN_SIZE MAX_SIZE

------------------------------ ------------ ---------- ----------

shared pool 352321536 352321536 352321536

large pool 25165824 8388608 25165824

java pool 12582912 12582912 12582912

streams pool 0 0 0

SGA Target 717225984 717225984 717225984

DEFAULT buffer cache 318767104 318767104 335544320

KEEP buffer cache 0 0 0

RECYCLE buffer cache 0 0 0

DEFAULT 2K buffer cache 0 0 0

DEFAULT 4K buffer cache 0 0 0

DEFAULT 8K buffer cache 0 0 0

DEFAULT 16K buffer cache 0 0 0

DEFAULT 32K buffer cache 0 0 0

Shared IO Pool 0 0 0

PGA Target 239075328 239075328 239075328

ASM Buffer Cache 0 0 0

The V$MEMORY_RESIZE_OPS view has a circular history of the last 800 SGA resize requests,
both manual and automatic.

Managing Memory Using EM Database Control
You can use EM Database Control to enable and disable various memory-tuning options
as well as monitor the memory components and their performance. You can use the infor-
mation on this screen to decide whether your Oracle 11g database needs more memory
allocated for better performance. On the Server tab, click the Memory Advisors link on the
Database Configuration section. This takes you to the Memory Advisors screen, as shown
in Figure 14.31.

This screen shows the current status of memory usage as well as gives you the option to
enable or disable Automatic Memory Management. Click the Advice button, and you can
view the memory size advice.

95127c14.indd 824 2/17/09 2:54:23 PM

Managing Performance 825

F i gu r e 14 . 31 Memory Advisors screen in EM

If you disable AMM using the Disable button, EM automatically enables ASMM, as
shown in Figure 14.32.

95127c14.indd 825 2/17/09 2:54:23 PM

826 Chapter 14 N Maintaining the Database and Managing Performance

F i gu r e 14 . 32 ASMM screen in EM

If you disable ASMM, EM will prompt you to provide the sizes for individual compo-
nents, as shown in Figure 14.33.

F i gu r e 14 . 3 3 Memory Components screen in EM

95127c14.indd 826 2/17/09 2:54:23 PM

Managing Performance 827

You can also get to the Memory Advisor screen from Advisor Central. EM also shows
several important performance metrics, discussed in the next section.

Important Performance Metrics
Throughput is another example of a statistical performance metric. Throughput is the
amount of processing that a computer or system can perform in a given amount of time, for
example, the number of customer deposits that can be posted to the appropriate accounts
in four hours under regular workloads. Throughput is an important measure when con-
sidering the scalability of the system. Scalability refers to the degree to which additional
users can be added to the system without system performance declining significantly. New
features such as Oracle Database 10g’s Grid Computing capabilities make Oracle one of the
most scalable database platforms on the market.

Performance considerations for transactional systems usually revolve
around throughput maximization.

Another important metric related to performance is response time. Response time is the
amount of time it takes for a single user’s request to return the desired result when using an
application, for example, the time it takes for the system to return a listing of all the cus-
tomers who purchased products that require service contracts.

Performance-tuning considerations for decision-support systems usually
revolve around response time minimization.

You can use EM Database Control to both monitor and react to sudden changes in per-
formance metrics such as throughput and response time.

Using EM Database Control to View Performance Metrics
EM Database Control provides a graphical view of throughput, response time, I/O, and
other important performance metrics. The Performance tab in EM Database Control gives
a good overview of database performance, as shown earlier in this chapter in Figure 14.13.
On this screen you can see session performance and host performance, as well as through-
put, I/O, and concurrency. The Additional Monitoring Links section on this screen takes
you to various performance-tuning screens, shown earlier in Figure 14.26.

95127c14.indd 827 2/17/09 2:54:23 PM

828 Chapter 14 N Maintaining the Database and Managing Performance

Click Top Activity to view the top sessions in the instance. You can drill down to a par-
ticular wait category. This screen is useful to figure out whether there was a performance
problem and if you want to know what happened in the last few minutes, as shown in
Figure 14.34.

F i gu r e 14 . 3 4 Top Activity screen on EM

The Top Consumers link is another very useful tool. When you click this link, an Over-
view tab is displayed, as shown in Figure 14.35.

95127c14.indd 828 2/17/09 2:54:23 PM

Managing Performance 829

F i gu r e 14 . 3 5 Top Consumers overview on EM

This tab shows the following sections:

Top ServicesÛN

Top ModulesÛN

Top ActionsÛN

Top ClientsÛN

Top SessionsÛN

The Top Sessions area shows the CPU usage and I/O operations for each session, as
shown previously in Figure 14.27.

95127c14.indd 829 2/17/09 2:54:23 PM

830 Chapter 14 N Maintaining the Database and Managing Performance

Summary
Oracle 11g provides many tools for proactively identifying and fixing potential performance
and management problems in the database. In this chapter, you learned about tools such as
AWR, ADDR, ADR, AMM, and ASMM.

At the core of the monitoring system is the Automatic Workload Repository, which uses
the MMON background process to gather statistics from the SGA and store them in a col-
lection of tables owned by the user SYSMAN.

Following each AWR statistics collection interval, the Automatic Database Diagnostic
Monitoring feature examines the newly gathered statistics and compares them with the two
previous AWR statistics to establish baselines in an attempt to identify poorly performing
components of the database. The ADDM then summarizes these findings on the EM Data-
base Control main screen and Performance tab. Using these screens, you can identify and
examine the SQL statements that are contributing the most to DB Time. You can further
explore the opportunities for improving the performance or manageability of your database
using the EM Database Control advisors, which include the SQL Tuning Advisor, SQL
Access Advisor, Memory Advisor, Mean Time To Recover Advisor, Segment Advisor, and
Undo Management Advisor.

In addition to alerts, you can find indicators of database performance in the database
alert log, user and background trace files, data dictionary views, and dynamic performance
views. Some data dictionary views do not contain accurate information about the segments
in the database until after statistics are collected on those objects. Therefore, you can auto-
matically collect segment statistics through the use of EM Database Control jobs.

Invalid and unusable database objects also have a negative impact on performance and
manageability. You can monitor and repair invalid and unusable objects using the data dic-
tionary and the EM Database Control Administration screen.

Memory tuning is simplified in Oracle 11g using Automatic Memory Management.
AMM is configured using the MEMORY_TARGET parameter. If other memory parameters are
specified, they will be considered as the minimum for those components.

EM Database Control summarizes several important performance metrics on the EM
Database Control main screen. These metrics include performance statistics for the host
server, user sessions, and instance throughput.

95127c14.indd 830 2/17/09 2:54:23 PM

Exam Essentials 831

Exam Essentials

Understand the Automatic Workload Repository. Describe the components of the AWR
and how they are used to collect and store database performance statistics.

Describe the role of Automatic Database Diagnostic Monitor. Know how ADDM uses the
AWR statistics to formulate tuning recommendations using historical and baseline metrics.

Explain how each advisor is used to improve performance. Describe how you can use
each of the EM Database Control advisors shown on the Advisor Central screen to improve
database performance and manageability.

Describe how alerts are used to monitor performance. Show how you can configure the
EM Database Control alert system to alert you via the console or via email whenever a
monitored event occurs in the database.

Remember the location of alert log file. Starting in Oracle 11g, the alert log file location is
determined by the DIAGNOSTIC_DEST parameter. Learn the location of the text alert log file
and XML alert log file.

Identify and fix invalid or unusable objects. Understand the techniques you can use to
identify invalid procedures, functions, triggers, and views and how to validate them. Know
how to find unusable indexes and how to fix them.

Understand Automatic Memory Management. Know the parameters that control the
memory management and how the pools are allocated.

Understand sources of tuning information. Know in which dynamic performance views,
data dictionary views, and log files tuning information can be found outside the EM Data-
base Control monitoring system.

95127c14.indd 831 2/17/09 2:54:23 PM

832 Chapter 14 N Maintaining the Database and Managing Performance

Review Questions
1. Which of the following components of the Oracle architecture stores the statistics gathered

by the MMON process?

A. ADDM

B. AWR

C. ASMM

D. ADR

2. Which of the following options for the pfile/spfile’s STATISTICS_LEVEL parameter turns off
AWR statistics gathering and ADDM advisory services?

A. OFF

B. TYPICAL

C. ALL

D. BASIC

3. Which parameter is used to enable Automatic Memory Management?

A. AMM_TARGET

B. MEMORY_TARGET

C. SGA_TARGET

D. All of the above

4. Which statement about an index with the status UNUSABLE in DBA_INDEXES is true?

A. The index will be automatically fixed the next time it is used.

B. The Oracle optimizer throws an error when it tries to use the index.

C. The index must be recompiled using the ALTER INDEX…RECOMPILE statement.

D. The index must be reorganized using the ALTER INDEX…REBUILD statement before it
can be used again.

5. Suppose you have used EM Database Control to drill down into ADDM findings and have
found that a single SQL statement is causing the majority of I/O on your system. Which of
the following advisors is best suited to troubleshoot this SQL statement?

A. SQL Tuning Advisor

B. SQL Access Advisor

C. Both A and B

D. Neither A nor B

95127c14.indd 832 2/17/09 2:54:23 PM

Review Questions 833

6. You found out that few procedures in the APPS schema have an INVALID status in the DBA_
OBJECTS view. What are your options to fix the issue? (Choose the best two answers.)

A. Do nothing. When the procedure is accessed the next time, Oracle will try to recompile.

B. Drop the procedure so that users get a valid error.

C. Recompile the procedure using ALTER PROCEDURE…COMPILE.

D. Contact the developer or vendor to get the source code and re-create the procedure.

7. Which procedure is used to tell Oracle that the statistics gathered should not be published?

A. DBMS_STATS.PUBLISH_STATS

B. DBMS_STATS.SET_TABLE_PREFS

C. DBMS_STATS.PENDING_STATS

D. DBMS_STATS.GATHER_TABLE_STATS

8. Which data dictionary view contains information explaining why ADDM made its recom-
mendations?

A. DBA_ADVISOR_FINDINGS

B. DBA_ADVISOR_OBJECTS

C. DBA_ADVISOR_RECOMMENDATIONS

D. DBA_ADVISOR_RATIONALE

9. Which of the following advisors determines whether the space allocated to the shared pool,
large pool, or buffer cache is adequate?

A. SQL Tuning Advisor

B. SGA Tuning Advisor

C. Memory Advisor

D. Pool Advisor

10. Which of the following advisors determines whether the estimated instance-recovery dura-
tion is within the expected service-level agreements?

A. Undo Management Advisor

B. SQL Access Advisor

C. SQL Tuning Advisor

D. MTTR Advisor

11. If no email address is specified, where will alert information be displayed?

A. In the DBA_ALERTS data dictionary view.

B. In the V$ALERTS dynamic performance view.

C. In the EM Database Control main screen.

D. No alert information is sent or displayed.

95127c14.indd 833 2/17/09 2:54:24 PM

834 Chapter 14 N Maintaining the Database and Managing Performance

12. When you configure an alert, which of the following types of alert thresholds can you use
to monitor a tablespace for diminishing free space?

A. Warning threshold

B. Critical threshold

C. Both A and B

D. Neither A nor B

13. Multiple baseline metrics can be gathered and stored in the AWR. Why might you want
more than one metrics baseline?

A. You might want a separate baseline metric for each user.

B. You might want a separate baseline metric for daytime usage vs. off-hours usage.

C. You might want a separate baseline metric for each schema.

D. You would never want more than one baseline metric, even though it is possible to
gather and store them.

14. Using EM Database Control, you discover that two application PL/SQL functions and
a view are currently invalid. Which of the following might you use to fix these objects?
(Choose two.)

A. Shut down and restart the database.

B. Use EM Database Control to recompile the object.

C. Export the invalid objects, drop them, and then import them.

D. Use the ALTER FUNCTION…COMPILE and ALTER VIEW…COMPILE commands.

15. Which statement about MEMORY_TARGET parameter is not true?

A. It is a dynamic initialization parameter.

B. It represents the total maximum memory that can be allocated to the instance memory
(PGA and SGA combined).

C. Its default value is zero.

D. You will not get an error when SGA_TARGET and PGA_AGGREGATE_TARGET parameters
are set to nonzero values.

16. Which of the following is a performance metric that could be defined as “the amount of
work that a system can perform in a given amount of time”?

A. Response time

B. Uptime

C. Throughput

D. Runtime

95127c14.indd 834 2/17/09 2:54:24 PM

Review Questions 835

17. Which of the following is typically not one of the three primary sources of performance
metric information on the EM Database Control Performance tab?

A. Host

B. Session

C. Instance

D. Network

18. By default, how long will database statistics be retained in the AWR?

A. 7 days

B. 30 days

C. 7 hours

D. Indefinitely

19. Your users have called to complain that system performance has suddenly decreased mark-
edly. Where would be the most likely place to look for the cause of the problem in EM
Database Control?

A. Main screen

B. Performance tab

C. Administration tab

D. Maintenance tab

20. Using EM Database Control, you’ve identified that the following SQL statement is the
source of a high amount of disk I/O:
SELECT NAME, LOCATION, CREDIT_LIMIT FROM CUSTOMERS

What might you do first to try to improve performance?

A. Run the SQL Tuning Advisor.

B. Run the SQL Access Advisor.

C. Check the EM Database Control main screen for alerts.

D. Click the Alert Log Content link in the EM Database Control main screen.

95127c14.indd 835 2/17/09 2:54:24 PM

836 Chapter 14 N Maintaining the Database and Managing Performance

Answers to Review Questions
1. B. The MMON process gathers statistics from the SGA and stores them in the AWR. The

ADDM process then uses these statistics to compare the current state of the database with
baseline and historical performance metrics before summarizing the results on the EM
Database Control screens.

2. D. Setting STATISTICS_LEVEL = BASIC disables the collection and analysis of AWR statis-
tics. TYPICAL is the default setting, and ALL gathers information for the execution plan and
operating-system timing. OFF is not a valid value for this parameter.

3. B. Automatic Memory Management is enabled by setting a nonzero value for the MEMORY_
TARGET parameter. The default value for this parameter is zero. SGA_TARGET enables the
ASSM (Automatic Shared Memory Management) feature.

4. D. Unusable indexes must be manually rebuilt by the DBA, or the user owning the index
can rebuild or drop/recreate as well, before the index can be used. The Oracle optimizer
ignores the unusable index.

5. C. You can use the SQL Tuning Advisor and SQL Access Advisor together to determine
whether I/O can be minimized and overall DB Time reduced to the targeted SQL statement.

6. A, C. Invalid PL/SQL objects will be automatically recompiled the next time they are
accessed. The DBA can manually recompile the procedure. Manual recompilation is the
recommended approach.

7. B. The DBMS_STATS.SET_TABLE_PREFS procedure is used to set the PUBLISH preference to
FALSE. To be able to use the pending statistics, the OPTIMIZER_USE_PENDING_STATISTICS
parameter must be set to TRUE in the session.

8. D. DBA_ADVISOR_RATIONALE provides the rationale for each ADDM recommendation. The
ADDM findings are stored in DBA_ADVISOR_FINDINGS. The objects related to the findings
are shown in DBA_ADVISOR_OBJECTS. The actual ADDM recommendations are found in
DBA_ADVISOR_RECOMMENDATIONS.

9. C. The Memory Advisor can help determine whether the overall size of the SGA is appro-
priate and whether memory is properly allocated to the SGA components.

10. D. The Mean Time To Recover (MTTR) Advisor provides recommendations that you can use
to configure the database so that the instance-recovery time fits within the service levels that
you specified.

11. C. By default, alerts are displayed in the Alerts section of the EM Database Control main
screen, even when email notifications are not configured.

12. C. You can specify both warning and critical thresholds for monitoring the available free
space in a tablespace. In this situation, the warning threshold is generally a lower number
than the critical threshold.

95127c14.indd 836 2/17/09 2:54:24 PM

Answers to Review Questions 837

13. B. Because many transactional systems run batch processing during off-hours, having a
relevant baseline for each type of usage pattern yields better results in terms of alerts and
ADDM recommendations.

14. B, D. After fixing the issue that originally caused the invalid status, you can use both EM
Database Control and SQL to compile an invalid object. Starting and stopping the database
will not fix invalid objects. Export/import is also not an appropriate technique for recom-
piling invalid objects.

15. B. MEMORY_TARGET represents the total size allocated for SGA and PGA components. The
maximum that can be allocated for these structures is determined by the MEMORY_MAX_
TARGET parameter. You still can set the SGA_TARGET and PGA_AGGREGATE_TARGET param-
eters; Oracle will use these as the minimums.

16. C. Throughput is an important performance metric because it is an overall measure of
performance that can be compared against similar measures taken before and after tuning
changes are implemented.

17. D. Network information may be contained in the Session Information section of the EM
Database Control Performance screen, but only if network issues contributed to session
wait times.

18. A. By default, database statistics are retained in the AWR for seven days. You can change
the default duration using the EM Database Control Automatic Workload Repository link
on the Performance tab or using the DBMS_WORKLOAD_REPOSITORY PL/SQL package.

19. B. The Performance tab of EM Database Control provides a quick overview of how the
host system, user sessions, and throughput are impacted by the system slowdown. You can
also drill down into any of these three areas to take a look at details about this slowdown.

20. A. Running the SQL Tuning Advisor provides the most information about how the perfor-
mance of this SQL statement might be improved. The SQL Access Advisor is run only after
the output from the SQL Tuning Advisor indicates that it will be useful. EM Database Control
does not store detailed information about I/O activity in either its alerts or the alert log.

95127c14.indd 837 2/17/09 2:54:24 PM

95127c14.indd 838 2/17/09 2:54:24 PM

Chapter

15
Implementing
Database Backups

Oracle DataBase 11g:
aDmInIstratIOn I exam OBjectIves
cOvereD In thIs chapter:

Backup and Recovery ConceptsÛÛ

Identify the importance of checkpoints, redo log files, and ÛN

archived log files

Overview of flash recovery areaÛN

Configure ARCHIVELOG modeÛN

Performing Database BackupsÛÛ

Create consistent database backupsÛN

Back up your database without shutting it downÛN

Create incremental backupsÛN

Automate database backupsÛN

Manage backups, view backup reports and monitor the flash ÛN

recovery area

95127c15.indd 839 2/17/09 3:01:51 PM

Oracle’s administration tool, Enterprise Manager Database
Control, makes configuring and performing backups easier.
Most, if not all, of the functionality available with the

command-line interface is available in a graphical user interface to save time and make
backup operations less error-prone.

Oracle Database 11g makes it easy for you to configure your database to be highly
available and reliable. In other words, you want to configure your database to minimize
the amount of downtime while at the same time being able to recover quickly and without
losing any committed transactions when the database becomes unavailable for reasons that
may be beyond your control.

In this chapter, I will first describe the components you will use to minimize or eliminate
data loss in your database while at the same time keeping availability high. Specifically, I
will cover the following:

CheckpointsÛN

Redo log filesÛN

Archived redo log filesÛN

The flash recovery area ÛN

Next, you will learn how to configure your database for recovery. This will include a
discussion of ARCHIVELOG mode and other required initialization parameters. Once your
environment is configured, you will need to know how to actually back it up, using both
operating-system commands and the RMAN utility. You will also learn how to automate
and manage your backups as well as how to monitor one of the key components in your
backup strategy: the flash recovery area. In Chapter 16, “Recovering the Database,” you
will then learn how to use the files created and maintained during your backups to quickly
recover the database in the event of a database failure.

Understanding and Configuring
Recovery Components
As a database administrator, your primary goal is to keep the database open and available
for users, usually 24 hours a day, 7 days a week. Your partnership with the server’s system
administrator includes the following tasks:

Proactively solving common causes of failuresÛN

Increasing the mean time between failure (MTBF)ÛN

95127c15.indd 840 2/17/09 3:01:51 PM

Understanding and Configuring Recovery Components 841

Ensuring a high level of hardware redundancyÛN

Increasing availability by using Oracle options such as Real Application Clusters ÛN

(RAC) and Oracle Streams (an advanced replication technology)

Decreasing the mean time to recover (MTTR) by setting the appropriate Oracle ini-ÛN

tialization parameters and ensuring that backups are readily available in a recovery
scenario

Minimizing or eliminating loss of committed transactions by using archived redo logs, ÛN

standby databases, and Oracle Data Guard

A number of structures and events in the database directly support backup and recovery
operations. The control files maintain the list of database files in the database, along with
a record of the most recent database backups (if you are using RMAN for your backups).
The checkpoint (CKPT) background process works in concert with the database writer
(DBWn) process to manage the amount of time required for instance recovery; during instance
recovery, the redo log files are used to synchronize the data files. For more serious types of
failures, such as media failures, archived redo log files are applied to a restored backup copy
of a data file to synchronize the data files and ensure that no committed transactions are lost.
Finally, the flash recovery area, introduced in Oracle 10g, is a common area for all recovery-
related files that makes your job much easier when backing up or recovering your database.

To maximize your database’s availability, it almost goes without saying that you want to
perform regularly scheduled backups. Most media failures require some kind of restoration
of a data file from a disk or tape backup before you can initiate media recovery.

In addition to regularly scheduled backups (see the section “Performing Backups” later
in this chapter), you can configure a number of other features to maximize your database’s
availability and minimize recovery time, such as multiplexing control files, multiplexing redo
log files, configuring the database in ARCHIVELOG mode, and using a flash recovery area.

Understanding Control Files
The control file is one of the smallest, yet also one of the most critical, files in the database.
Recovering from the loss of one copy of a control file is relatively straightforward; recov-
ering from the loss of your only control file or all control files is more of a challenge and
requires more-advanced recovery techniques.

In the following section, you will get an overview of the control file architecture. You
will then learn how maximize the recoverability of the control file in the section “Multi-
plexing Control Files.”

Control File Architecture
The control file is a relatively small (in the megabyte range) binary file that contains informa-
tion about the structure of the database. You can think of the control file as a metadata reposi-
tory for the physical database. It has the structure of the database, meaning the data files and
redo log files constitute a database. The control file is created when the database is created and
is updated with the physical changes, for example, whenever you add or rename a file.

The control file is updated continuously and should be available at all times. Don’t edit
the contents of the control file; only Oracle processes should update its contents. When you

95127c15.indd 841 2/17/09 3:01:51 PM

842 Chapter 15 N Implementing Database Backups

start up the database, Oracle uses the control file to identify and to open the data files and
redo log files. Control files play a major role when recovering a database.

The contents of the control file include the following:

The database name to which the control file belongs. A control file can belong to only ÛN

one database.

The database-creation timestamp.ÛN

The name, location, and online/offline status information of the data files.ÛN

The name and location of the redo log files.ÛN

Redo log archive information.ÛN

Tablespace names.ÛN

The current log sequence number, which is a unique identifier that is incremented and ÛN

recorded when an online redo log file is switched.

The most recent checkpoint information.ÛN

The beginning and ending of undo segments.ÛN

Recovery Manager’s backup information. Recovery Manager (RMAN) is the Oracle ÛN

utility you use to back up and recover databases.

The control file size is determined by the MAX clauses you provide when you create the
database:

MAXLOGFILESÛN

MAXLOGMEMBERSÛN

MAXLOGHISTORYÛN

MAXDATAFILESÛN

MAXINSTANCESÛN

Oracle preallocates space for these maximums in the control file. Therefore, when you
add or rename a file in the database, the control file size does not change.

When you add a new file to the database or relocate a file, an Oracle server process imme-
diately updates the information in the control file. Back up the control file after any struc-
tural changes. The log writer (LGWR) process updates the control file with the current log
sequence number. The CKPT process updates the control file with the recent checkpoint infor-
mation. When the database is in ARCHIVELOG mode, the archiver (ARCn) process updates the
control file with information such as the archive log filename and log sequence number.

The control file contains two types of record sections: reusable and not reusable.
RMAN information is kept in the reusable section. Items such as the names of the backup
data files are kept in this section, and once this section fills up, the entries are reused
in a circular fashion after the number of days specified by the initialization parameter
CONTROL_FILE_RECORD_KEEP_TIME is reached. Therefore, the control file can continue
to grow because of new RMAN backup information recorded in the control file before
CONTROL_FILE_RECORD_KEEP_TIME.

95127c15.indd 842 2/17/09 3:01:52 PM

Understanding and Configuring Recovery Components 843

You can query the control file names and their status by using EM Database Control.
On the Server tab, click the Control Files link under Storage. You will see the Control Files
screen, as shown in Figure 15.1.

F I gu r e 15 .1 Control Files screen of EM

The Record Section tab on this screen shows the record information from the control file,
as shown in Figure 15.2. It shows the size used in the control file for each section, the total
number of records that can be saved with the current size of the control file, and the number
or records used.

F I gu r e 15 . 2 Control Files screen’s Record Section tab

95127c15.indd 843 2/17/09 3:01:52 PM

844 Chapter 15 N Implementing Database Backups

Multiplexing Control Files
Because the control file is critical for database operation, at a minimum you must have two
copies of the control file; Oracle recommends a minimum of three copies. You duplicate the
control file on different disks either by using the multiplexing feature of Oracle or by using
the mirroring feature of your operating system. If you have multiple disk controllers on your
server, at least one copy of the control file should reside on a disk managed by a different
disk controller.

If you use the Database Configuration Assistant (DBCA) to create your database, three
copies of the control files are multiplexed by default.

The next two sections discuss the two ways that you can implement the multiplexing
feature: using an init.ora and using the server-side spfile.

Multiplexing Control Files Using init.ora

Multiplexing means keeping a copy of the same control file on different disk drives and
ideally on different controllers too. To multiplex a control file, copy the control file to mul-
tiple locations and change the CONTROL_FILES parameter in the text-based initialization file
init.ora to include all control filenames. The following syntax shows three multiplexed
control files:

CONTROL_FILES = (‘/ora01/oradata/MYDB/ctrlMYDB01.ctl’,

 ‘/ora02/oradata/MYDB/ctrlMYDB02.ctl’,

 ‘/ora03/oradata/MYDB/ctrlMYDB03.ctl’)

By storing the control file on multiple disks, you avoid the risk of a single point of fail-
ure. When multiplexing control files, updates to the control file can take a little longer,
but that is insignificant when compared with the benefits. If you lose one control file, you
can restart the database after copying one of the other control files or after changing the
CONTROL_FILES parameter in the initialization file.

When multiplexing control files, Oracle updates all the control files at the same time but
uses only the first control file listed in the CONTROL_FILES parameter for reading.

When creating a database, you can list the control file names in the CONTROL_FILES param-
eter, and Oracle creates as many control files as are listed. You can have a maximum of eight
multiplexed control file copies.

If you need to add more control file copies, follow these steps:

1. Shut down the database.

SQL> SHUTDOWN NORMAL

2. Copy the control file to more locations by using an operating-system command:

$ cp /u02/oradata/ord/control01.ctl /u05/oradata/ord/control04.ctl

3. Change the initialization-parameter file to include the new control file name(s) in the
parameter CONTROL_FILES by changing this:

CONTROL_FILES=(‘/u02/oradata/ord/control01.ctl’,

‘/u03/oradata/ord/control02.ctl’,

‘/u04/oradata/ord/control03.ctl’)

95127c15.indd 844 2/17/09 3:01:52 PM

Understanding and Configuring Recovery Components 845

to this:

CONTROL_FILES=(‘/u02/oradata/ord/control01.ctl’,

‘/u03/oradata/ord/control02.ctl’,

‘/u04/oradata/ord/control03.ctl’,

‘/u05/oradata/ord/control04.ctl’)

4. Start the instance:

SQL> STARTUP

This procedure is somewhat similar to the procedure for recovering from the loss of a
control file.

You can find examples of control file recovery in Chapter 16.

After creating the database, you can change the location of the control files, rename the
control files, or drop certain control files. You must have at least one control file for each
database. To add, rename, or delete control files, you need to follow the preceding steps.
Basically, you shut down the database, use the operating-system copy command (copying,
renaming, or deleting the control files accordingly), modify the init.ora parameter file,
and start up the database.

Multiplexing Control Files Using an Spfile

Multiplexing using a binary spfile is similar to multiplexing using init.ora. The major
difference is in how the CONTROL_FILES parameter is changed. Follow these steps:

1. Alter the spfile while the database is still open:

SQL> ALTER SYSTEM SET CONTROL_FILES =

 ‘/ora01/oradata/MYDB/ctrlMYDB01.ctl‘,

 ‘/ora02/oradata/MYDB/ctrlMYDB02.ctl‘,

 ‘/ora03/oradata/MYDB/ctrlMYDB03.ctl‘,

 ‘/ora04/oradata/MYDB/ctrlMYDB04.ctl‘ SCOPE=SPFILE;

This parameter change takes effect only after the next instance restart by using the
SCOPE=SPFILE qualifier. The contents of the binary spfile are changed immediately, but
the old specification of CONTROL_FILES is used until the instance is restarted.

2. Shut down the database:

SQL> SHUTDOWN NORMAL

3. Copy an existing control file to the new location:

$ cp /ora01/oradata/MYDB/ctrlMYDB01.ctl /ora04/oradata/MYDB/ctrlMYDB04.ctl

4. Start the instance:

SQL> STARTUP

95127c15.indd 845 2/17/09 3:01:52 PM

846 Chapter 15 N Implementing Database Backups

Understanding Checkpoints
The CKPT process controls the amount of time required for instance recovery. During a
checkpoint, CKPT updates the control file and the header of the data files to reflect the last
successful transaction by recording the last system change number (SCN). The SCN, which
is a number sequentially assigned to each transaction in the database, is also recorded in
the control file against the data file name that is taken offline or made read-only.

A checkpoint occurs automatically every time a redo log file switch occurs, either when
the current redo log file fills up or when you manually switch redo log files. The DBWn pro-
cesses in conjunction with CKPT routinely write new and changed buffers to advance the
checkpoint from where instance recovery can begin, thus reducing the MTTR.

You can find more information on tuning the MTTR and how often check-
pointing occurs in Chapter 16.

Understanding Redo Log Files
A redo log file records all changes to the database, in most cases before the changes are
written to the data files.

To recover from an instance or a media failure, redo log information is required to
roll data files forward to the last committed transaction. Ensuring that you have at least
two members for each redo log file group dramatically reduces the likelihood of data loss
because the database continues to operate if one member of a redo log file is lost.

In the following sections, I will give you an architectural overview of redo log files, as
well as show you how to add redo log groups, add or remove redo log group members, and
clear a redo log group in case one of the redo log group’s members becomes corrupted.

Redo Log File Architecture
Online redo log files are filled with redo records. A redo record, also called a redo entry,
consists of a group of change vectors, each of which describes a change made to a single
block in the database. Redo entries record data that you can use to reconstruct all changes
made to the database, including the undo segments. When you recover the database by
using redo log files, Oracle reads the change vectors in the redo records and applies the
changes to the relevant blocks.

The LGWR process writes redo information from the redo log buffer to the online redo
log files under a variety of circumstances:

When a user commits a transaction, even if this is the only transaction in the log bufferÛN

When the redo log buffer becomes one-third fullÛN

When the buffer contains approximately 1MB of ÛN changed records; this total does not
include deleted or inserted records

When a database checkpoint is performedÛN

95127c15.indd 846 2/17/09 3:01:52 PM

Understanding and Configuring Recovery Components 847

LGWR always writes its records to the online redo log file before DBWn
writes new or modified database buffer cache records to the data files.

Each database has its own set of online redo log groups. A redo log group can have
one or more redo log members (each member is a single operating-system file). If you have
a RAC configuration, in which multiple instances are mounted to one database, each
instance has one online redo thread. That is, the LGWR process of each instance writes
to the same online redo log files, and hence Oracle has to keep track of the instance from
where the database changes are coming. Single-instance configurations will have only one
thread, and that thread number is 1. The redo log file contains both committed and uncom-
mitted transactions. Whenever a transaction is committed, a system change number is
assigned to the redo records to identify the committed transaction.

The redo log group is referenced by an integer; you can specify the group number when
you create the redo log files—either when you create the database or when you create a redo log
group after you create the database. You can also change the redo log configuration (adding,
dropping, or renaming files) by using database commands. The following example shows a
CREATE DATABASE command:

CREATE DATABASE “MYDB01”

… … …

LOGFILE ‘/ora02/oradata/MYDB01/redo01.log’ SIZE 10M,

 ‘/ora03/oradata/MYDB01/redo02.log’ SIZE 10M;

This example creates two log-file groups; the first file is assigned to group 1, and the sec-
ond file is assigned to group 2. You can have more files in each group; this practice is known
as the multiplexing of redo log files, which I’ll discuss later in this chapter in the section
“Multiplexing Redo Log Files.” You can specify any group number—the range will be
between 1 and the initialization parameter MAXLOGFILES. Oracle recommends that all redo
log groups be the same size. The following is an example of creating the log files by specify-
ing the group number:

CREATE DATABASE “MYDB01”

… … …

LOGFILE GROUP 1 ‘/ora02/oradata/MYDB01/redo01.log’ SIZE 10M,

 GROUP 2 ‘/ora03/oradata/MYDB01/redo02.log’ SIZE 10M;

Log Switch Operations
The LGWR process writes to only one redo log file group at any time. The file that is actively
being written to is known as the current log file. The log files that are required for instance
recovery are known as the active log files. The other log files are known as inactive. Oracle
automatically recovers an instance when starting up the instance by using the online redo
log files. Instance recovery can be needed if you do not shut down the database cleanly or if
your database server crashes.

95127c15.indd 847 2/17/09 3:01:52 PM

848 Chapter 15 N Implementing Database Backups

The log files are written in a circular fashion. A log switch occurs when Oracle finishes
writing to one log group and starts writing to the next log group. A log switch always occurs
when the current redo log group is completely full and log writing must continue. You can
force a log switch by using the ALTER SYSTEM command. A manual log switch can be neces-
sary when performing maintenance on the redo log files by using the ALTER SYSTEM SWITCH
LOGFILE command.

Whenever a log switch occurs, Oracle allocates a sequence number to the new redo log
group before writing to it. As stated earlier, this number is known as the log sequence
number. If there are lots of transactions or changes to the database, the log switches can
occur too frequently. Size the redo log files appropriately to avoid frequent log switches.
Oracle writes to the alert log file whenever a log switch occurs.

Redo log files are written sequentially on the disk, so the I/O will be fast
if there is no other activity on the disk. (The disk head is always properly
positioned.) Keep the redo log files on a separate disk for better perfor-
mance. If you have to store a data file on the same disk as the redo log file,
do not put the SYSTEM, UNDOTBS, SYSAUX, or any very active data or index
tablespace file on this disk. A commit cannot complete until a transaction’s
information has been written to the redo logs, so maximizing the through-
put of the redo log files is a top priority.

Database checkpoints are closely tied to redo log file switches. You learned about check-
points earlier in the chapter in the section “Understanding Checkpoints.” A checkpoint is
an event that flushes the modified data from the buffer cache to the disk and updates the
control file and data files. The CKPT process updates the headers of data files and control
files; the actual blocks are written to the file by the DBWn process. A checkpoint is initiated
when the redo log file is filled and a log switch occurs; when the instance is shut down with
NORMAL, TRANSACTIONAL, or IMMEDIATE; when a tablespace status is changed to read-only or
put into BACKUP mode; or when other values specified by certain parameters (discussed later
in this section) are reached.

You can force a checkpoint if needed, as shown here:

ALTER SYSTEM CHECKPOINT;

Forcing a checkpoint ensures that all changes to the database buffers are written to the
data files on disk.

Another way to force a checkpoint is by forcing a log-file switch:

ALTER SYSTEM SWITCH LOGFILE;

The size of the redo log affects the checkpoint performance. If the size of the redo log
is smaller and the transaction volume is high, a log switch occurs often, and so does the
checkpoint. The DBWn process writes the dirty buffer blocks whenever a checkpoint
occurs. This situation might reduce the time required for instance recovery, but it might also

95127c15.indd 848 2/17/09 3:01:52 PM

Understanding and Configuring Recovery Components 849

affect the runtime performance. You can adjust checkpoints primarily by using the initializa-
tion parameter FAST_START_MTTR_TARGET. It is used to ensure that recovery time at instance
startup (if required) will not exceed a certain number of seconds.

You can use the FAST_START_MTTR_TARGET parameter to tune checkpoint
frequency; its value determines how long an instance can take to start
after an instance crash.

Multiplexing Redo Log Files
You can keep multiple copies of the online redo log file to safeguard against damage to
these files. When multiplexing online redo log files, LGWR concurrently writes the same
redo log information to multiple identical online redo log files, thereby eliminating a single
point of redo log failure. All copies of the redo file are the same size and are known as a
redo group, which is identified by an integer. Each redo log file in the group is known as a
redo member. You must have at least two redo log groups for normal database operation.

When multiplexing redo log files, keeping the members of a group on different disks is
preferable so that one disk failure will not affect the continuing operation of the database.
If LGWR can write to at least one member of the group, database operation proceeds as
normal; an entry is written to the alert log file. If all members of the redo log file group
are not available for writing, Oracle hangs, crashes, or shuts down. An instance recovery
or media recovery can be needed to bring up the database, and you can lose committed
transactions.

You can create multiple copies of the online redo log files when you create the database.
For example, the following statement creates two redo log file groups with two members
in each:

CREATE DATABASE “MYDB01”

… … …

LOGFILE

 GROUP 1 (‘/ora02/oradata/MYDB01/redo0101.log’,

 ‘/ora03/oradata/MYDB01/redo0102.log’) SIZE 50M,

 GROUP 2 (‘/ora02/oradata/MYDB01/redo0201.log’,

 ‘/ora03/oradata/MYDB01/redo0202.log’) SIZE 50M;

The maximum number of log file groups is specified in the clause MAXLOGFILES, and the
maximum number of members is specified in the clause MAXLOGMEMBERS. You can separate
the filenames (members) by using a space or a comma.

In the following sections, you will learn how to create a new redo log group, add a new
member to an existing group, rename a member, and drop a member from an existing
group. In addition, I’ll show you how to drop a group and clear all members of a group in
certain circumstances.

95127c15.indd 849 2/17/09 3:01:52 PM

850 Chapter 15 N Implementing Database Backups

redo log troubleshooting

In the case of redo log groups, it’s best to be generous with the number of groups and the
number of members for each group. After estimating the number of groups that would
be appropriate for your installation, add one more. The slight additional work involved in
maintaining either additional or larger redo logs is small in relation to the time needed to
fix a problem when the number of users and concurrent active transactions increase.

The space needed for additional log file groups is minimal and is well worth the effort up
front to avoid the undesirable situation in which writes to the redo log file are waiting on
the completion of writes to the database files or the archived log file destination.

Creating New Groups

You can create and add more redo log groups to the database by using the ALTER DATABASE
command. The following statement creates a new log file group with two members:

ALTER DATABASE ADD LOGFILE

 GROUP 3 (‘/ora02/oradata/MYDB01/redo0301.log’,

 ‘/ora03/oradata/MYDB01/redo0302.log’) SIZE 10M;

If you omit the GROUP clause, Oracle assigns the next available number. For example, the
following statement also creates a multiplexed group:

ALTER DATABASE ADD LOGFILE

 (‘/ora02/oradata/MYDB01/redo0301.log’,

 ‘/ora03/oradata/MYDB01/redo0302.log’) SIZE 10M;

To create a new group without multiplexing, use the following statement:

ALTER DATABASE ADD LOGFILE

 ‘/ora02/oradata/MYDB01/redo0301.log’ REUSE;

You can add more than one redo log group by using the ALTER DATABASE command—
just use a comma to separate the groups.

If the redo log files you create already exist, use the REUSE option, and
don’t specify the size. The new redo log size will be the same as that of the
existing file.

Adding a new redo log group is straightforward using EM Database Control. To do so,
click the Server tab, and then click the Redo Log Groups link under Storage. You can view
the current redo log groups and add another redo log group using the Create button, as you
can see in Figure 15.3 on the Redo Log Groups screen.

95127c15.indd 850 2/17/09 3:01:52 PM

Understanding and Configuring Recovery Components 851

F I gu r e 15 . 3 The Redo Log Groups maintenance screen

Adding New Members

If you forgot to multiplex the redo log files when creating the database (multiplexing redo
log files is the default when you use DBCA) or if you need to add more redo log members,
you can do so by using the ALTER DATABASE command. When adding new members, you do
not specify the file size, because all group members will have the same size.

If you know the group number, use the following statement to add a member to group 2:

ALTER DATABASE ADD LOGFILE MEMBER

‘/ora04/oradata/MYDB01/redo0203.log’ TO GROUP 2;

You can also add group members by specifying the names of other members in the
group, instead of specifying the group number. Specify all the existing group members with
this syntax:

ALTER DATABASE ADD LOGFILE MEMBER

 ‘/ora04/oradata/MYDB01/redo0203.log’ TO

(‘/ora02/oradata/MYDB01/redo0201.log’,

 ‘/ora03/oradata/MYDB01/redo0202.log’);

You can add a new member to a group in EM Database Control by clicking the Edit
button shown in Figure 15.3 and then clicking Add. Figure 15.4 shows the Edit Redo Log
Group screen, where you can add or remove redo log group members.

95127c15.indd 851 2/17/09 3:01:52 PM

852 Chapter 15 N Implementing Database Backups

F I gu r e 15 . 4 The Edit Redo Log Group screen

Renaming Log Members

If you want to move the log file member from one disk to another or just want a more
meaningful name, you can rename a redo log member. Before renaming the online redo
log members, the new (target) online redo files should exist. The SQL commands in Oracle
change only the internal pointer in the control file to a new log file; they do not change or
rename the operating-system file. You must use an operating-system command to rename
or move the file. Follow these steps to rename a log member:

1. Shut down the database.

2. Copy/rename the redo log file member to the new location by using an operating-system
command.

3. Start up the instance, and mount the database (STARTUP MOUNT).

4. Rename the log file member in the control file. Use ALTER DATABASE RENAME FILE
‘old_redo_file_name’ TO ‘new_redo_file_name’; .

5. Open the database (ALTER DATABASE OPEN).

6. Back up the control file.

Another way to achieve the same result is to add a new member to the group and then
drop the old member from the group, as discussed in the “Adding New Members” section
earlier in this chapter and the “Dropping Redo Log Groups” section, which is next.

You can rename a log-group member in EM Database Control by clicking the Edit but-
ton shown in Figure 15.4 and then changing the filename in the File Name box.

95127c15.indd 852 2/17/09 3:01:52 PM

Understanding and Configuring Recovery Components 853

Dropping Redo Log Groups

You can drop a redo log group and its members by using the ALTER DATABASE command.
Remember that you should have at least two redo log groups for the database to function
normally. The group that is to be dropped should not be the active group or the current
group—that is, you can drop only an inactive log-file group. If the log file to be dropped is
not inactive, use the ALTER SYSTEM SWITCH LOGFILE command.

To drop the log-file group 3, use the following SQL statement:

ALTER DATABASE DROP LOGFILE GROUP 3;

When an online redo log group is dropped from the database, the operating-system files
are not deleted from disk. The control files of the associated database are updated to drop the
members of the group from the database structure. After dropping an online redo log group,
make sure the drop is completed successfully, and then use the appropriate operating-system
command to delete the dropped online redo log files.

You can delete an entire redo log group in EM Database Control by clicking the Delete
button (see Figure 15.3, shown earlier) and then confirming the delete by clicking the Yes
button.

Dropping Redo Log Members

In much the same way that you drop a redo log group, you can drop only the members of an
inactive redo log group. Also, if there are only two groups, the log member to be dropped
should not be the last member of a group. Each redo log group can have a different number
of members, though this is not advised. For example, say you have three log groups, each
with two members. If you drop a log member from group 2 and a failure occurs to the sole
member of group 2, the instance will hang, crash, and potentially cause the loss of committed
transactions when attempts are made to write to the missing redo log group, as I discussed
earlier in this chapter. Even if you drop a member for maintenance reasons, ensure that all
redo log groups have the same number of members.

To drop a redo log member, use the DROP LOGFILE MEMBER clause of the ALTER DATABASE
command:
ALTER DATABASE DROP LOGFILE MEMBER

‘/ora04/oradata/MYDB01/redo0203.log’;

The operating-system file is not removed from the disk; only the control file is updated.
Use an operating-system command to delete the redo log file member from disk.

If a database is running in ARCHIVELOG mode, redo log members cannot be
deleted unless the redo log group has been archived.

You can drop a member of a redo log group in EM Database Control by clicking the
Edit button (see Figure 15.4, shown earlier), selecting the member to be dropped, and then
clicking the Remove button.

95127c15.indd 853 2/17/09 3:01:52 PM

854 Chapter 15 N Implementing Database Backups

Clearing Online Redo Log Files

Under certain circumstances, a redo log group member (or all members of a log group) can
become corrupted. To solve this problem, you can drop and add the log-file group or group
member again. It is much easier, however, to use the ALTER DATABASE CLEAR LOGFILE command.
The following example clears the contents of redo log group 3 in the database:

ALTER DATABASE CLEAR LOGFILE GROUP 3;

Another distinct advantage of this command is that you can clear a log group even if
the database has only two log groups and only one member in each group. Additionally,
by using the UNARCHIVED keyword, you can clear a log-group member even if it has not
been archived. In this case, it is advisable to do a full database backup at the earliest conve-
nience, because the unarchived redo log file is no longer usable for database recovery.

You can clear the redo logs by choosing Clear Logfile from the Actions drop-down box
and clicking Go (as shown earlier in Figure 15.3). The other options available in the drop-
down box are as follows:

Create LikeÛN

Force CheckpointÛN

Generate DDLÛN

Sizing AdviceÛN

Switch LogfileÛN

Understanding Archived Redo Log (ARCHIVELOG) Files
If you use only online redo log files, your database is protected against instance failure but
not media failure. Although saving the redo log files before they are overwritten takes addi-
tional disk space and management, the increased recoverability of the database outweighs
the slight additional overhead and maintenance costs.

In the following sections, I will present an overview of how archived redo log files work,
how to set the location for saving the archived redo log files, and how to enable archiving in
the database.

Archived Redo Log File Architecture
An archived redo log file is a copy of a redo log file before it is overwritten by new redo
information. Because the online redo log files are reused in a circular fashion, you have no
way of bringing a backup of a data file up to the latest committed transaction unless you
configure the database in ARCHIVELOG mode.

The process of copying is called archiving. The ARCn background processes do this
archiving. By archiving the redo log files, you can use them later to recover a database,
update a standby database, or use the LogMiner utility to audit the database activities.

95127c15.indd 854 2/17/09 3:01:53 PM

Understanding and Configuring Recovery Components 855

When an online redo log file is full and LGWR starts writing to the next redo log file,
ARCn copies the completed redo log file to the archive destination. It is possible to specify
more than one archive destination. The LGWR process waits for the ARCn process to com-
plete the copy operation before overwriting any online redo log file. As with LGWR, the
failure of one of the ARCn backup processes will cause instance failure, but no committed
transactions will be lost because the “Commit Complete” message is not returned to the
user or calling program until LGWR successfully records the transaction in the online redo
log file group.

When the archiver process is copying the redo log files to another destination, the data-
base is said to be in ARCHIVELOG mode. If archiving is not enabled, the database is said to be
in NOARCHIVELOG mode. In production systems, you cannot afford to lose data and should
therefore run the database in ARCHIVELOG mode so that in the event of a failure, you can
recover the database to the time of failure or to a point in time. You can achieve this ability
to recover by restoring the database backup and applying the database changes by using the
archived log files.

archive-logging space Issues

After you configure the database for ARCHIVELOG mode, your job is only half complete.
You need to continually make sure there is enough room for the archived log files. Other-
wise, the database will hang. At least once in your DBA career, you will get a phone call
from some users saying that the database is “hung.” It’s not until you check the alert log
that you discover the archiving process cannot find disk space for a newly filled log file in
the archiving destinations.

There should be enough space available for online archived redo log files to recover and
roll forward from the last full backup of each data file that is also online; the remaining
archived logs and any previous data file backups can be moved to another disk or to tape.

Remembering your zero-transaction-loss strategy (which should be every DBA’s strat-
egy), make sure you do not misplace or delete an archived log file before it is backed
up to tape; otherwise, you will not be able to perform a complete recovery because of a
media failure.

If you use RMAN and the flash recovery area for all your backup files, then you can fur-
ther automate this process by directing RMAN to maintain enough backups to satisfy a
recovery-window policy (number of days) or a redundancy policy (multiple copies of each
backup). Once an archived log or other backup file is no longer needed for the policy, the
files are automatically deleted from the flash recovery area.

95127c15.indd 855 2/17/09 3:01:53 PM

856 Chapter 15 N Implementing Database Backups

Setting the Archive Destination
You specify the archive destination in the initialization-parameter file. To change the archive
destination parameters during normal database operation, you use the ALTER SYSTEM com-
mand. The following sections cover some of the parameters associated with archive-log
destinations and the archiver process. You can find a complete list of initialization param-
eters in the Oracle documentation “Oracle 11g Reference” at http://tahiti.oracle.com.

LOG_ARCHIVE_DEST_n

Using this parameter, you can specify at most 10 archiving destinations. These locations
can be on the local machine or on a remote machine where the standby database is located.
The syntax for specifying this parameter in the initialization file is as follows:

LOG_ARCHIVE_DEST_n = “null_string” |

((SERVICE = tnsnames_name |

 LOCATION = ‘directory_name‘)

 [MANDATORY | OPTIONAL]

 [REOPEN [= integer]])

For example, the following specifies a location for the archive-log files on the local
machine at /archive/MYDB01. The MANDATORY clause specifies that writing to this location
must succeed.

LOG_ARCHIVE_DEST_1 = ((LOCATION=’/archive/MYDB01’) MANDATORY)

Here is another example, which applies the archive logs to a standby database on a
remote computer:

LOG_ARCHIVE_DEST_2 = (SERVICE=STDBY01) OPTIONAL REOPEN 60;

In this example, STDBY01 is the Oracle Net connect string used to connect to the remote
database. Because writing is optional, the database activity continues even if ARCn could
not write the archive-log file. It tries the writing operation again because the REOPEN clause
is specified. The REOPEN clause specifies when the next attempt to write to this location
should be made if the first attempt does not succeed. The default value is 300 seconds.

You can also use the EM Database Control web pages to configure the backup and recov-
ery settings by choosing the Availability tab of EM Database Control. Figure 15.5 shows the
Backup/Recovery section on the Availability tab.

F I gu r e 15 .5 Backup/Recovery section options in EM

95127c15.indd 856 2/17/09 3:01:53 PM

Understanding and Configuring Recovery Components 857

By clicking the Recovery Settings link, you can configure the archive-log destinations
using the Media Recovery section. For the database shown in the example, only one archive
location is set up, as shown in Figure 15.6.

F I gu r e 15 .6 The log-archive destinations

Destination 10 is the flash recovery area using the string USE_DB_RECOVERY_FILE_DEST.

The flash recovery area is discussed in the section “Understanding the
Flash Recovery Area,” later in this chapter.

LOG_ARCHIVE_MIN_SUCCEED_DEST

This parameter specifies the number of destinations that the ARCn process should success-
fully write at a minimum to proceed with overwriting the online redo log files. The default
value of this parameter is 1. This parameter cannot exceed the total number of enabled
destinations. If this parameter value is less than the number of MANDATORY destinations, the
parameter is ignored.

LOG_ARCHIVE_FORMAT

This parameter specifies the format in which to write the filename of the archived redo
log files. To ensure that the log files are not overwritten, you use predefined substitution

95127c15.indd 857 2/17/09 3:01:53 PM

858 Chapter 15 N Implementing Database Backups

variables to construct the name of each archived redo log file. You can provide a text string
and any of the predefined substitution variables. The variables are as follows:

%sÛN : This is the log sequence number.

%tÛN : This is the thread number.

%rÛN : This is the reset log’s ID, which ensures uniqueness even after using advanced
recovery techniques that reset the log sequence numbers.

%dÛN : This is the database ID.

The format you provide must include at least %s, %t, and %r. If you use the same archived
redo log location for multiple databases, you must also use %d. In Figure 15.6, shown previ-
ously, the log-archive filename format is defined as %t_%s_%r.dbf.

Setting ARCHIVELOG
Specifying these parameters does not start writing the archive-log files. To enable archiving
of the redo log files, place the database in ARCHIVELOG mode. You can specify the ARCHIVELOG
clause while creating the database. However, you might prefer to create the database first
and then enable ARCHIVELOG mode. To enable ARCHIVELOG mode, follow these steps:

1. Shut down the database.

2. Set up the appropriate initialization parameters.

3. Start up and mount the database; you can change ARCHIVELOG mode only when the
database is in the MOUNT state.

4. Enable ARCHIVELOG mode by using the command ALTER DATABASE ARCHIVELOG.

5. Open the database by using ALTER DATABASE OPEN.

6. Back up the database.

To disable ARCHIVELOG mode, follow these steps:

1. Shut down the database.

2. Start up and mount the database.

3. Disable ARCHIVELOG mode by using the command ALTER DATABASE NOARCHIVELOG.

4. Open the database by using ALTER DATABASE OPEN.

The dynamic performance view V$DATABASE tells you whether you are in ARCHIVELOG
mode, as you can see in this query:

SQL> SELECT dbid, name, created, log_mode

 FROM v$database;

 DBID NAME CREATED LOG_MODE

---------- --------- --------- ------------

1387044942 ORD 03-MAR-04 ARCHIVELOG

95127c15.indd 858 2/17/09 3:01:53 PM

Understanding and Configuring Recovery Components 859

Understanding the Flash Recovery Area
As the price of disk space drops, the difference in its price compared with tape is offset by
the advantages of using a disk as the primary backup medium. Even a slow disk can be
accessed randomly faster than a tape drive. This rapid access means that any database-
recovery operation takes only minutes instead of hours.

Using disk space as the primary medium for all database-recovery operations is the key
component of the Oracle 11g database’s flash recovery area. The flash recovery area is a
single, unified storage area for all recovery-related files and recovery activities in an Oracle
database.

The flash recovery area can be a single directory, an entire file system, or an Automatic
Storage Management (ASM) disk group. To further optimize the use of disk space for
recovery operations, a flash recovery area can be shared by more than one database.

In the following sections, I will cover all the major aspects of a flash recovery area: what
can and should be kept in the flash recovery area and how to set up a flash recovery using
initialization parameters and SQL commands. Also, as with other aspects of Oracle 11g, I
will show how you can manage most parts of the flash recovery area using EM Database
Control, and I’ll introduce some of the more advanced management techniques.

Flash Recovery Area Occupants
All the files needed to recover a database from a media failure or a logical error are contained
in the flash recovery area. The flash recovery area can contain the following:

Control files A copy of the control file is created in the flash recovery area when the data-
base is created. This copy of the control file can be used as one of the mirrored copies of
the control file to ensure that at least one copy of the control file is available after a media
failure.

Archived log files When the flash recovery area is configured, the initialization parameter
LOG_ARCHIVE_DEST_10 is automatically set to the flash recovery area location. The corre-
sponding ARCn processes create archived log files in the flash recovery area and any other
defined LOG_ARCHIVE_DEST_n locations.

Flashback logs If the flashback database is enabled, its flashback logs are stored in the
flash recovery area.

Control file and spfile autobackups The flash recovery area holds control file and spfile
autobackups generated by RMAN if RMAN is configured for control file autobackup. When
RMAN backs up data file 1, which is part of the SYSTEM tablespace, the control file is auto-
matically included in the RMAN backup.

Data file copies For RMAN BACKUP AS COPY image files, the default destination for the data
file copies is the flash recovery area.

RMAN backup sets By default, RMAN uses the flash recovery area for both backup sets
and image copies. In addition, RMAN puts restored archived log files from tape into the
flash recovery area in preparation for a recovery operation.

95127c15.indd 859 2/17/09 3:01:53 PM

860 Chapter 15 N Implementing Database Backups

The Flash Recovery Area and SQL Commands
You must define two initialization parameters to set up the flash recovery area: DB_RECOVERY_
FILE_DEST_SIZE and DB_RECOVERY_FILE_DEST. Because both of these are dynamic param-
eters, the instance doesn’t need to be shut down and restarted for the flash recovery area to
be usable.

DB_RECOVERY_FILE_DEST_SIZE, which must be defined before DB_RECOVERY_FILE_DEST,
defines the size of the flash recovery area. To maximize the benefits of the flash recovery
area, it should be large enough to hold a copy of all data files, incremental backups, online
redo logs, archived redo logs not yet backed up to tape, control files, and control file auto-
backups. At a bare minimum, you need enough space to hold the archived log files not yet
copied to tape.

Here is an example of configuring DB_RECOVERY_FILE_DEST_SIZE:

SQL> ALTER SYSTEM SET

 db_recovery_file_dest_size = 8g SCOPE=both;

The size of the flash recovery area will be 8GB, and because this example uses the
SCOPE=BOTH parameter in the ALTER SYSTEM command, the initialization parameter takes
effect immediately and stays in effect even after a database restart.

The parameter DB_RECOVERY_FILE_DEST specifies the physical location where all flash
recovery files are stored. The ASM disk group or file system must have at least as much
space as the amount specified with DB_RECOVERY_FILE_DEST_SIZE, and it can have signifi-
cantly more. DB_RECOVERY_FILE_DEST_SIZE, however, can be increased on the fly if more
space is needed and the file system where the flash recovery area resides has the space
available.

The following example uses the directory /OraFlash for the flash recovery area, like so:

SQL> ALTER SYSTEM SET

 db_recovery_file_dest = ‘/OraFlash’ SCOPE=both;

Clearing the value of DB_RECOVERY_FILE_DEST disables the flash recovery area; the
parameter DB_RECOVERY_FILE_DEST_SIZE cannot be cleared until the DB_RECOVERY_FILE_
DEST parameter has been cleared.

The Flash Recovery Area and EM Database Control
You can create and maintain the flash recovery area using EM Database Control. Click the
Availability tab, and then click the Recovery Settings link to display the Configure Recovery
Settings screen. Figure 15.7 shows the Flash Recovery section.

In the Flash Recovery section, the flash recovery area has been configured for a data-
base in the file system /u01/app/oracle/flash_recovery_area, with a maximum size of
15,000MB (15GB). Just more than 4GB of space is currently used in the flash recovery area.
Flashback logging has not yet been enabled for this database.

95127c15.indd 860 2/17/09 3:01:53 PM

Understanding and Configuring Recovery Components 861

F I gu r e 15 .7 Flash Recovery section of the Recovery Settings screen

You can enable flashback logging by selecting the Enable Flashback Database box.
Oracle’s flashback features complement the media-recovery options in the database. Using
the FLASHBACK DATABASE command in RMAN, you can revert the data file contents to a
state at a prior time. This operation is much faster than recovering from a full database
backup and applying the archive logs to recover the database to a point in time. The flash-
back logs contain the past versions of the data blocks.

You can enable flashback database using SQL*Plus. The steps needed are as follows:

1. Make sure the database is in ARCHIVELOG mode and the flash recovery area is config-
ured using the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE parameters.

2. Specify the length of desired flashback window using the DB_FLASHBACK_RETENTION_
TARGET parameter.

3. Shut down the database, and start in MOUNT state.

4. Enable the flashback database feature using the ALTER DATABASE FLASHBACK ON statement.

5. Open the database.

You can find more information about configuring and using flashback logs
with flashback database in OCP: Oracle Database 11g Administrator Certi-
fied Professional Study Guide (Sybex, 2009).

95127c15.indd 861 2/17/09 3:01:53 PM

862 Chapter 15 N Implementing Database Backups

Flash Recovery Area Management
Because the space in the flash recovery area is limited by the initialization parameter
DB_RECOVERY_FILE_DEST_SIZE, the Oracle database keeps track of which files are no longer
needed on disk so that they can be deleted when there is not enough free space for new files.
Each time a file is deleted from the flash recovery area, a message is written to the alert log.

A message is also written to the alert log in other circumstances. If no files can be
deleted and the recovery area’s used space is at 85 percent, a warning message is issued.
When the space used is at 97 percent, a critical warning is issued. These warnings are
recorded in the alert log file, can be viewed in the data dictionary view DBA_OUTSTANDING_
ALERTS, and are available on the main screen of EM Database Control.

When you receive these alerts, you have a number of options. If your retention policy
can be adjusted to keep fewer copies of data files or reduce the number of days in the recov-
ery window, this can help alleviate the space problems in the flash recovery area. Assuming
your retention policy is sound, you should instead add more disk space or back up some
of the files in the flash recovery area to another destination such as another disk or a tape
device.

If the flash recovery area is full, Oracle 11g will write ORA-19809 and ORA-
19804 errors to the alert log file. The flash recovery area is automatically
cleared based on the retention specified. To manually clear the flash recov-
ery area, you must perform BACKUP RECOVERY AREA to back up the flash
recovery area files and to delete the files.

Performing Backups
Your backup strategy depends on the activity of your database, the level of availability
required by your service-level agreements (SLAs), and how much downtime you can toler-
ate during a recovery effort.

In this section, I’ll first review some terminology, and then I will show you a way to back
up the control file to a text file that you can edit and use in case of the loss of all control files.
I will then discuss how to back up the database using OS utilities. Finally, I will introduce
Recovery Manager and show you how to make some of the backups described in the termi-
nology review.

Understanding Backup Terminology
You can make a whole backup, which backs up the entire database, or you can back up
only part of the database, which is called a partial backup. Whole backups and partial
backups are known as Oracle backup strategies. The backup type can be divided into two

95127c15.indd 862 2/17/09 3:01:53 PM

Performing Backups 863

general categories: full backups and incremental backups. Depending on whether you make
your database backups when the database is open or closed, backups can be further catego-
rized into the backup modes known as consistent backup and inconsistent backup.

Your backups can be managed using operating-system and SQL commands or entirely
by RMAN. Many backup types are available using RMAN only, such as incremental back-
ups; unless you have some specific requirements, it is highly recommended that you use
RMAN to implement your backup strategy.

The following are definitions for whole database backups, partial database backups, full
backups, incremental backups, consistent backups, and inconsistent backups:

Whole database A whole database backup includes all data files and at least one control
file. Online redo log files are never backed up; restoring backed-up redo log files and replac-
ing the current redo log files will result in loss of data during media recovery. Only one of
the control files needs to be backed up; all copies of the control file are identical.

Partial database A partial database backup includes zero or more tablespaces, which in
turn includes zero or more data files; a control file is optional in a partial database backup.
As you may infer, a partial database backup that includes no tablespaces and does not
include the control file backs up 0 bytes of data to the backup destination.

Full A full backup includes all blocks of every data file backed up in a whole or partial
database backup.

Incremental An incremental backup makes a copy of all data blocks that have changed
since a previous backup. Though Oracle11g supports five levels of incremental backups
from 0 to 4, 0 and 1 are most commonly used. An incremental backup at level 0 is consid-
ered a baseline backup; it is the equivalent of a full backup and contains all data blocks in
the data file(s) that are backed up. Although incremental backups can take less time, the
potential downside is that you must first restore the baseline backup and then apply all
incremental backups performed since the baseline backup.

Consistent A consistent backup, also known as an offline backup, is performed while
the database is not open. These backups are consistent because the SCN in the control file
matches the SCN in every data file’s header. Although recovering using a consistent backup
requires no additional recovery operation after a failure, you reduce your database’s avail-
ability during a consistent backup as well as risk the loss of committed transactions performed
since the consistent backup.

Inconsistent Although the term inconsistent backup may sound like something you might
avoid in a database, it is a way to maintain the availability of the database while perform-
ing backups. An inconsistent backup, also known as an online backup, is performed while
the database is open and available to users. The backup is inconsistent because the SCN in
the control file is most likely out of sync with the SCN in the header of the data files. Incon-
sistent backups require recovery when they are used for recovering from a media failure,
but they keep availability high because the database is open while the backup is performed.

Backups can be performed using two methods: using user-managed backup or using
Oracle’s backup and recovery tool called Recovery Manager. RMAN backups are easier to

95127c15.indd 863 2/17/09 3:01:53 PM

864 Chapter 15 N Implementing Database Backups

create, and the recovery operations are pretty much automated. I discuss RMAN backups
in the section “Using RMAN to Create Backups.”

In the next sections, you will learn to back up the control file, back up the database, and
use Recovery Manager.

Backing Up the Control File
In addition to multiplexing the control file, you can guard against the loss of all control files
by backing up the control file. You can back up the control using three methods:

An editable text file; this backup is called a ÛN backup to trace.

A binary backup of the control file.ÛN

RMAN backup of the control file.ÛN

Text Backup of Control File
The text backup is created using the ALTER DATABASE BACKUP CONTROLFILE TO TRACE state-
ment, and the file is created in the trace directory under <ADR_HOME>/trace. The trace file
format is sid_ora_pid.trc, where sid is the session database ID and pid is the process ID
of the user creating the trace backup. This special backup of the control file is not a trace
file per se; in other words, it is not a dump file or an error report for a failed user or system
process. It is a proactive rather than reactive report of the contents of the control file, and
the report happens to end up in a directory with other trace files.

Back up the control file to trace after any change to the structure of the database, such
as adding or dropping a tablespace or creating a new redo log file group. Using the command
line to create a backup of the control file is almost as easy as clicking the Backup to Trace
button within EM Database Control (see Figure 15.1 earlier in the chapter):

SQL> alter database backup controlfile to trace;

Database altered.

If you want to create the control file create statement in a named file, rather than an
Oracle-generated trace file name, you can do this:

SQL> alter database backup controlfile to trace as ‘/tmp/mydbcontrol.txt’;

Database altered.

The control file create statements are created in the file /tmp/mydbcontrol.txt.
Here is an excerpt from the output of the command; note that a lot of editing might be

required before using this file to re-create the control file:

--

-- The following are current System-scope REDO Log Archival related

-- parameters and can be included in the database initialization file.

--

-- LOG_ARCHIVE_DEST=’’

95127c15.indd 864 2/17/09 3:01:53 PM

Performing Backups 865

-- LOG_ARCHIVE_DUPLEX_DEST=’’

--

-- LOG_ARCHIVE_FORMAT=%t_%s_%r.dbf

--

-- DB_UNIQUE_NAME=”11GR11”

--

-- LOG_ARCHIVE_CONFIG=’SEND, RECEIVE, NODG_CONFIG’

-- LOG_ARCHIVE_MAX_PROCESSES=4

-- STANDBY_FILE_MANAGEMENT=MANUAL

-- STANDBY_ARCHIVE_DEST=?/dbs/arch

-- FAL_CLIENT=’’

-- FAL_SERVER=’’

--

-- LOG_ARCHIVE_DEST_10=’LOCATION=USE_DB_RECOVERY_FILE_DEST’

-- LOG_ARCHIVE_DEST_10=’OPTIONAL REOPEN=300 NODELAY’

-- LOG_ARCHIVE_DEST_10=’ARCH NOAFFIRM NOEXPEDITE NOVERIFY SYNC’

-- LOG_ARCHIVE_DEST_10=’REGISTER NOALTERNATE NODEPENDENCY’

-- LOG_ARCHIVE_DEST_10=’NOMAX_FAILURE NOQUOTA_SIZE NOQUOTA_USED NODB_UNIQUE_
NAME’

-- LOG_ARCHIVE_DEST_10=’VALID_FOR=(PRIMARY_ROLE,ONLINE_LOGFILES)’

-- LOG_ARCHIVE_DEST_STATE_10=ENABLE

--

-- LOG_ARCHIVE_DEST_1=’LOCATION=/u01/app/oracle/product/11.1.0/db_1/dbs/arch’

-- LOG_ARCHIVE_DEST_1=’MANDATORY NOREOPEN NODELAY’

-- LOG_ARCHIVE_DEST_1=’ARCH NOAFFIRM EXPEDITE NOVERIFY SYNC’

-- LOG_ARCHIVE_DEST_1=’NOREGISTER NOALTERNATE NODEPENDENCY’

-- LOG_ARCHIVE_DEST_1=’NOMAX_FAILURE NOQUOTA_SIZE NOQUOTA_USED NODB_UNIQUE_
NAME’

-- LOG_ARCHIVE_DEST_1=’VALID_FOR=(PRIMARY_ROLE,ONLINE_LOGFILES)’

-- LOG_ARCHIVE_DEST_STATE_1=ENABLE

--

-- The following commands will create a new control file and use it

-- to open the database.

-- Data used by Recovery Manager will be lost.

-- The contents of online logs will be lost and all backups will

-- be invalidated. Use this only if online logs are damaged.

-- After mounting the created controlfile, the following SQL

-- statement will place the database in the appropriate

-- protection mode:

-- ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE

95127c15.indd 865 2/17/09 3:01:53 PM

866 Chapter 15 N Implementing Database Backups

STARTUP NOMOUNT

CREATE CONTROLFILE REUSE DATABASE “11GR11” RESETLOGS ARCHIVELOG

 MAXLOGFILES 16

 MAXLOGMEMBERS 3

 MAXDATAFILES 100

 MAXINSTANCES 8

 MAXLOGHISTORY 292

LOGFILE

 GROUP 1 (

 ‘/u01/app/oracle/oradata/11GR11/redo01.log’,

 ‘/u02/app/oracle/oradata/11GR11/redo01.log’

) SIZE 50M,

 GROUP 2 (

 ‘/u01/app/oracle/oradata/11GR11/redo02.log’,

 ‘/u02/app/oracle/oradata/11GR11/redo02.log’

) SIZE 50M,

 GROUP 3 (

 ‘/u01/app/oracle/oradata/11GR11/redo03.log’,

 ‘/u02/app/oracle/oradata/11GR11/redo03.log’

) SIZE 50M

-- STANDBY LOGFILE

DATAFILE

 ‘/u01/app/oracle/oradata/11GR11/system01.dbf’,

 ‘/u01/app/oracle/oradata/11GR11/sysaux01.dbf’,

 ‘/u01/app/oracle/oradata/11GR11/undotbs01.dbf’,

 ‘/u01/app/oracle/oradata/11GR11/users01.dbf’,

 ‘/u01/app/oracle/oradata/11GR11/example01.dbf’,

 ‘/u01/app/oracle/oradata/11GR11/appl_data01.dbf’,

 ‘/u01/app/oracle/oradata/11GR11/appl_data02.dbf’

CHARACTER SET WE8MSWIN1252

;

-- Commands to re-create incarnation table

-- Below log names MUST be changed to existing filenames on

-- disk. Any one log file from each branch can be used to

-- re-create incarnation records.

-- ALTER DATABASE REGISTER LOGFILE ‘/u01/app/oracle/

flash_recovery_area/11GR11/archivelog/2008_10_26/o1_mf_1_1_%u_.arc’;

-- ALTER DATABASE REGISTER LOGFILE ‘/u01/app/oracle/

flash_recovery_area/11GR11/archivelog/2008_10_26/o1_mf_1_1_%u_.arc’;

-- Recovery is required if any of the datafiles are restored backups,

95127c15.indd 866 2/17/09 3:01:53 PM

Performing Backups 867

-- or if the last shutdown was not normal or immediate.

RECOVER DATABASE USING BACKUP CONTROLFILE

-- Database can now be opened zeroing the online logs.

ALTER DATABASE OPEN RESETLOGS;

-- Files in read-only tablespaces are now named.

ALTER DATABASE RENAME FILE ‘MISSING00008’

 TO ‘/u02/oradata/11GR11/11GR11/datafile/o1_mf_hr_data_46n3ck5t_.dbf’;

-- Online the files in read-only tablespaces.

ALTER TABLESPACE “HR_DATA” ONLINE;

-- Commands to add tempfiles to temporary tablespaces.

-- Online tempfiles have complete space information.

-- Other tempfiles may require adjustment.

ALTER TABLESPACE TEMP ADD TEMPFILE ‘/u01/app/oracle/oradata/11GR11/temp01.dbf’

 SIZE 400M REUSE AUTOEXTEND ON NEXT 100M MAXSIZE 4000M;

-- End of tempfile additions.

--

Binary Backup of Control File
Another way to back up your control file is to make a binary copy of it using the similar
ALTER DATABASE command, as in the following example:

SQL> alter database backup controlfile to

 ‘/ora_backup/11GR11/ctlfile20040911.bkp’;

Database altered.

You can then copy the binary backup of the control file to a backup device.

RMAN Backup of Control File
Using RMAN, you can back up the control file using the BACKUP CURRENT CONTROLFILE
statement, as shown here. This backup is also a binary backup.

RMAN> BACKUP CURRENT CONTROLFILE;

Starting backup at 26-OCT-08

using target database control file instead of recovery catalog

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=123 device type=DISK

channel ORA_DISK_1: starting full datafile backup set

channel ORA_DISK_1: specifying datafile(s) in backup set

including current control file in backup set

channel ORA_DISK_1: starting piece 1 at 26-OCT-08

channel ORA_DISK_1: finished piece 1 at 26-OCT-08

95127c15.indd 867 2/17/09 3:01:54 PM

868 Chapter 15 N Implementing Database Backups

piece handle=/u01/app/oracle/flash_recovery_area/

11GR11/backupset/2008_10_26/o1_mf_ncnnf_TAG20081026T225337_4jbgtcgs_.bkp

tag=TAG20081026T225337 comment=NONE

channel ORA_DISK_1: backup set complete, elapsed time: 00:00:02

Finished backup at 26-OCT-08

RMAN>

Backing Up the Database
An Oracle 11g database can be backed using different modes, depending on the ARCHIVELOG
setting of the database. If the database is in ARCHIVELOG mode, you can perform an online
database backup (also known as an inconsistent or hot backup) or offline database backup
(also known as a consistent or cold backup). If the database is in NOARCHIVELOG mode, you
can perform an offline backup only.

You can use OS utilities to perform the database backup or use the RMAN. Using
RMAN is the preferred and easier method of backup. In the following sections, you will
learn how to back up the database using OS utilities (user-managed backups). RMAN
backups are discussed in the next section.

User-Managed Cold Backups
Cold backups are performed after shutting down the database. Shut down the database cleanly
using the SHUTDOWN IMMEDIATE or SHUTDOWN TRANSACTIONAL statement, and copy all control
files and data files to another location or to your tape management system using OS com-
mands. You can also copy the redo logs, but this is not needed if the database shutdown is
clean. You also need to back up the parameter file (init file or spfile) and password file.

You can identify the control files in the database using the dynamic performance view
V$CONTROLFILE. The data files that need to be backed up can be identified by using the view
V$DATAFILE.

User-Managed Hot Backups
To perform a hot backup, the database must be in ARCHIVELOG mode. Before starting to copy
the data files belonging to a tablespace, you must place the tablespace in backup mode using
the BEGIN BACKUP clause. For example, if you want to back up the USERS tablespace, perform
the following:

SQL> ALTER TABLESPACE user BEGIN BACKUP;

When a tablespace is placed in the backup mode, data-block changes are written to the
redo log files. After you take the tablespace out of the backup mode, the database advances
the data file checkpoint SCN to the current database-checkpoint SCN.

When a tablespace is in backup mode, use OS utilities to copy the data files belonging to
the tablespace to another location or to the tape management system. To take the tablespace
out of the backup mode, use the END BACKUP clause as in the following example:

SQL> ALTER TABLESPACE user END BACKUP;

95127c15.indd 868 2/17/09 3:01:54 PM

Performing Backups 869

If your database is small or if you plan to place all the tablespaces in backup mode for
the hot backup, instead of placing each tablespace in backup mode, you can use the ALTER
DATABASE statement to make the whole database in backup mode, as in the following
example:

SQL> ALTER DATABASE BEGIN BACKUP;

You cannot perform incremental backups using user-managed backups.
You must use RMAN for incremental backups.

Using RMAN to Create Backups
RMAN is the primary component of the Oracle database used to perform backup and
recovery operations. You can use RMAN to back up all types: whole or partial databases,
full or incremental, and consistent or inconsistent. RMAN is closely integrated with EM
Database Control.

RMAN has a command-line interface for advanced configuration and backup opera-
tions; the most common backup functions are available via a GUI within EM Database
Control. It includes a scripting language to make it easy to automate backups, and it can
back up the most critical types of files in your database except for online redo log files
(which you should not back up anyway), password files, and text-based init.ora files. Data
files, control files, archived log files, and spfiles can be backed up using RMAN. In other
words, RMAN is a “one-stop shopping” solution for all your backup and recovery needs.
In the rare circumstance that you have to back up outside RMAN, you can register the file
created during this backup with RMAN for future use in an RMAN recovery scenario.

Because of the relatively static nature of password files and text-based
init.ora files, these can be included in the regular operating-system back-
ups, or you can back them up manually whenever they are changed.

In the following sections, I will explain the difference between image copies and backup
sets and how RMAN handles each of these backup types. After learning some of the RMAN
configuration settings, I will show you some examples of how RMAN performs full and
incremental backups, using both the command line and the graphical user interface.

Configuring RMAN Backup Settings
Configuring RMAN backup settings is straightforward using EM Database Control. On
the Availability tab, click Backup Settings to open the Device tab screen, as shown in
Figure 15.8.

95127c15.indd 869 2/17/09 3:01:54 PM

870 Chapter 15 N Implementing Database Backups

F I gu r e 15 . 8 The Backup Settings: Device screen

There is a separate section in this screen for your disk device and any tape devices.
Under the Disk Settings section, you can control the following parameters:

Parallelism To take advantage of multiple CPUs or disk controllers, increase the value of
this parameter to reduce the overall backup time by performing different portions of the
backup in parallel.

Disk Backup Location If you are not backing up to the flash recovery area, change this
value to the location where you want the backups stored.

Disk Backup Type You can choose image copy, backup set, or compressed backup set.

Under the Tape settings, you can specify whether you want the backups to be written
directly to the tape or media management tool. You also have the option to configure the
Oracle Secure Backup (OSB) tool on this screen. OSB is a separately licensed product from
Oracle to manage the backups and tape libraries. Using OSB, you can back up any type of
OS files anywhere on the network.

Click the Backup Set tab, and specify the maximum size for a backup-set piece (a single
file), as shown in Figure 15.9. In this case, set the maximum backup-set piece size to 2GB to
make it easier to move files around on file systems whose file-size limit is 2GB.

95127c15.indd 870 2/17/09 3:01:54 PM

Performing Backups 871

F I gu r e 15 . 9 The Backup Settings: Backup Set screen

You use the last tab on the Backup Settings screen, the Policy tab, to set a number of
other default backup settings, such as automatically backing up the control file with each
backup, skipping read-only and offline data files, and using a block-change tracking file. A
block-change tracking file keeps track of changed blocks in each tablespace so that incre-
mental backups need not read every block in every data file to determine which blocks
need to be backed up during an incremental backup. Figure 15.10 shows an example of the
Policy tab with a block-change tracking file specified.

Always enable the automatic backup of control files and spfiles. This is an
Oracle-recommended best practice.

Infrequently used parameters, such as the control file autobackup filename format and
the snapshot control file destination filename, are not available from the graphical user
interface; you must use the RMAN command-line interface to change these values.

You can invoke the RMAN command line by using the executable rman. RMAN can
optionally use a catalog database where the backup information is kept. If a catalog data-
base is not used, RMAN uses the database control file to perform the backup and recovery
operations.

95127c15.indd 871 2/17/09 3:01:54 PM

872 Chapter 15 N Implementing Database Backups

F I gu r e 15 .10 The Backup Settings: Policy screen

The following RMAN command-line session uses the RMAN SHOW ALL command to
display all default RMAN backup settings:

$ rman target / nocatalog

Recovery Manager: Release 11.1.0.6.0 - Production on Sun Oct 26 23:51:53 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

connected to target database: 11GR11 (DBID=4110949673)

using target database control file instead of recovery catalog

RMAN> SHOW ALL;

RMAN configuration parameters for database with db_unique_name 11GR11 are:

CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;

CONFIGURE BACKUP OPTIMIZATION OFF; # default

CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default

95127c15.indd 872 2/17/09 3:01:54 PM

Performing Backups 873

CONFIGURE CONTROLFILE AUTOBACKUP ON;

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT

FOR DEVICE TYPE DISK TO ‘/backup/database/%F’;

CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COMPRESSED BACKUPSET PARALLELISM 2;

CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default

CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default

CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT

 ‘/backup/database/%U’ MAXPIECESIZE 2 G;

CONFIGURE MAXSETSIZE TO UNLIMITED; # default

CONFIGURE ENCRYPTION FOR DATABASE OFF; # default

CONFIGURE ENCRYPTION ALGORITHM ‘AES128’; # default

CONFIGURE COMPRESSION ALGORITHM ‘BZIP2’; # default

CONFIGURE ARCHIVELOG DELETION POLICY TO BACKED UP 1 TIMES TO ‘SBT_TAPE’;

CONFIGURE SNAPSHOT CONTROLFILE NAME TO

‘/u01/app/oracle/product/11.1.0/db_1/dbs/snapcf_11GR11.f’; # default

RMAN>

You can enable block-change tracking in the database by using the SQL
statement ALTER DATABASE ENABLE BLOCK CHANGE TRACKING.

Understanding Image Copies and Backup Sets
Image copies are duplicates of data files or archived redo log files, which means that every
block of every file is backed up; you can use RMAN or operating-system commands to
make image copies. In contrast, backup sets are copies of one or more data files or archived
redo log files that are stored in a proprietary format readable only by RMAN; backup sets
consist of one or more physical files and do not include never-used blocks in the data files
being backed up. Backup sets can save even more space by using a compression algorithm
designed specifically for the type of data found in an Oracle data file.

Another difference between image copies and backup sets is that image copies can be
copied only to a disk location; backup sets can be written to disk or directly to a tape or
other secondary storage device.

Creating Full and Incremental Backups
The Oracle-recommended backup strategy uses RMAN to make a one-time, whole-data-
base, baseline incremental level-zero online backup weekly and then a level-one incremental
backup for the other days of the week. You can easily fine-tune this strategy for your own
needs by making, for example, a level-two incremental backup at noon during the week-
days if heavy Data Manipulation Language (DML) is occurring in the database.

95127c15.indd 873 2/17/09 3:01:54 PM

874 Chapter 15 N Implementing Database Backups

Using RMAN, you can accomplish this backup strategy with just a couple of the RMAN
commands that follow. First, here is the baseline level-one backup at the RMAN command
prompt:

RMAN> backup incremental level 0

 as compressed backupset database;

This backs up the entire database using compression to save disk space in addition to the
space savings already gained by using backup sets instead of image copies.

Starting with a baseline level-zero incremental backup, you can make level-one incre-
mental backups during the rest of the week, as in the following example:
RMAN> backup incremental level 1

 as compressed backupset database;

The options are the same as in the previous example, except that only the blocks that
have changed since the last backup are copied to the backup set.

Another variation is to make an incrementally updated backup. An incrementally
updated backup uses an incremental backup and updates the changed blocks in an exist-
ing image copy as if the entire image copy were backed up. In a recovery scenario, you
can restore the image copy of the data file(s) without using an incremental backup; the
incremental backup is already applied, saving a significant amount of time during a recov-
ery operation. The following RMAN script shows how an incrementally updated backup
works at the command line:

run

{

 recover copy of database with tag ‘inc_upd_img’;

 backup incremental level 1 for

 recover of copy with tag ‘inc_upd_img’ database;

}

This short and cryptic script demonstrates the advantages of using a graphical user
interface to perform incrementally updated backups. As you can see in Figure 15.11, on the
Schedule Backup: Options screen, you can click a check box to perform an incrementally
updated backup in addition to the full backup or incremental backup discussed previously
in this section. The Schedule backup link is under the Manage section on the Availability
screen (see Figure 15.5 earlier in the chapter).

The Oracle-suggested backup is provided on the right side of the screen. If you want
to enable this policy for backups, click the Schedule Oracle-Suggested Backup button. To
customize the backups according to your company policy, click the Schedule Customized
Backup button. You will be provided with four screens to schedule the backup. The first
screen is to specify the backup options, as shown in Figure 15.12.

95127c15.indd 874 2/17/09 3:01:54 PM

Performing Backups 875

F I gu r e 15 .11 Scheduling the backup and specifying the backup type

F I gu r e 15 .12 Customized backup schedule: Options screen

95127c15.indd 875 2/17/09 3:01:54 PM

876 Chapter 15 N Implementing Database Backups

On this screen, you can specify the backup type (full backup or incremental), backup
mode (online or offline), and whether to back up archive logs. Click the Next button to
advance to the next screen, where you specify the backup settings. Specify whether you
want to back up to disk or tape (see Figure 15.13). If you click the View Default Settings
button, you will be taken to the screen shown in Figure 15.8.

F I gu r e 15 .13 Customized backup schedule: Settings screen

If you do not want to change the default settings but do not want to use the default loca-
tion for backups, you can click the Override Current Settings button. The Schedule screen
gives you the option to perform the backup one time or on a repeating basis. If you choose
Repeating, you will be provided with the options to specify the backup repeating schedules,
as shown in Figure 15.14.

On the Review screen, you will be provided with a summary of all the options you chose
in the previous screens and the RMAN script that will be used to back up the database, as
shown in Figure 15.15. You also have the option to edit the RMAN script before schedul-
ing the job.

After reviewing the backup settings, click the Submit Job button to schedule the backup.
In the next section, you will learn about managing RMAN backups.

Managing Backups
Managing your database backups is straightforward using EM Database Control. In the fol-
lowing sections, you will get an overview of the RMAN backup- and catalog-maintenance
commands and learn how to monitor the flash recovery area and automate backups using
the Scheduler.

95127c15.indd 876 2/17/09 3:01:54 PM

Performing Backups 877

F I gu r e 15 .14 Customized backup schedule: Schedule screen

F I gu r e 15 .15 Customized backup schedule: Review screen

95127c15.indd 877 2/17/09 3:01:54 PM

878 Chapter 15 N Implementing Database Backups

Catalog Maintenance
A number of backup-management functions are available on the Manage Current Backups
screen in EM Database Control (see Figure 15.16). To get there, from the screen shown in
Figure 15.5, click the Manage Current Backups link.

F I gu r e 15 .16 The Manage Current Backups screen

This screen shows you the current backups based on the search criteria entered. The four
buttons at the top perform the following functions:

Catalog Additional Files This button adds any image-copy backups made outside RMAN
to the RMAN catalog.

Crosscheck All This button double-checks the backup files listed in the catalog (or control
file) against the actual files on disk (or tape) to make sure they are all available.

Delete All Obsolete This button deletes all backup files not needed to satisfy the existing
retention policy.

Delete All Expired This button deletes the catalog entry for any backups not found when
a crosscheck was performed.

Viewing Backup Reports
On the screen shown in Figure 15.5, click the Backup Reports link to show the View
Backup Report screen, as shown in Figure 15.17.

95127c15.indd 878 2/17/09 3:01:55 PM

Summary 879

F I gu r e 15 .17 View Backup Report screen

Click the name of the backup in the Backup Name column to display a detailed status
report of the backup, including what is being backed up (data files, control files, spfiles), the
size of the backup, the backup start and end times, and the backup pieces.

Summary
In this chapter, you learned the database structures that are key elements to ensure a
smooth recovery in the event of a database failure: control files, online redo log files, and
archived redo log files. You learned to back up the various pieces of the database and
learned how to schedule and manage backups using EM Database Control.

The control files contain the metadata about every other structure in the database. The
online redo log files provide performance benefits to ongoing transactions and ensure that no
committed transactions are lost after an instance failure; being able to change the number of
redo log groups and the number of members in each group enhances both the availability
and performance of the database. Archived redo log files make copies of online redo log
files to one or more destinations before they are overwritten by new transactions. The com-
mon thread through all three of these structures is multiplexing: creating redundant copies
of database components or redundant archival locations to minimize the impact of a media
failure.

95127c15.indd 879 2/17/09 3:01:55 PM

880 Chapter 15 N Implementing Database Backups

You learned about the flash recovery area and how it can be used as the central location
for backups of all database files, control files, initialization-parameter files, and archived
redo log files in the database. You can manage the flash recovery area via the EM Database
Control interface or by using a SQL command-line interface to set or change database ini-
tialization parameters that control its location and size.

Before making database backups, you must understand backup strategies, types, and
modes. ARCHIVELOG mode provides many benefits and few downsides, especially in a pro-
duction environment; NOARCHIVELOG mode, in many ways, restricts the types of backups
you can make.

Recovery Manager, or RMAN, provides a number of benefits over manual backup
methods using a combination of SQL and operating-system commands. You can access
most RMAN functionality via EM Database Control or with a command-line version for
advanced backup and recovery techniques. One of RMAN’s many benefits is the ability to
create compressed backup sets, which not only skips unused blocks in database data files
but also compresses the blocks before writing to the backup set, saving I/O bandwidth and
disk space.

Exam Essentials

Identify the purpose of the redo log files. Describe the redo log file architecture. Provide
details about how to create new redo log file groups and add new members to redo log file
groups. Be able to drop redo log group members. Know how to clear online redo log file
groups when a log file member becomes corrupted.

Be able to multiplex a control file. List the steps required to create additional copies of the
control file, for both an init.ora file and an spfile.

Describe the basic differences between operating a database in ARCHIVELOG mode and in
NOARCHIVELOG mode. Identify the initialization parameters and commands that control the
archive process. Briefly describe how archive-log information is recorded in the control file.

Identify and discuss backup terminology. Enumerate the backup strategies, the backup
types, and the backup modes. Give examples of how you can combine the strategies, types,
and modes in different scenarios.

List the benefits of using RMAN to create backups. Show how to configure RMAN
backup settings via the EM Database Control interface. Differentiate image copies from
backup sets. Provide examples of an incremental backup strategy.

Explain the benefits of the flash recovery area. Show how you can access the characteris-
tics and status of the flash recovery area using EM Database Control as well as via dynamic
performance views. Describe the database components that can be stored in the flash recov-
ery area. Enumerate the initialization parameters that control the location and size of the
flash recovery area.

95127c15.indd 880 2/17/09 3:01:55 PM

Exam Essentials 881

Know how flashback database option works. The flashback database option can greatly
reduce the time required to rewind the database to a prior point in time. Understand the
parameters associated with flashback database.

Understand backup catalog maintenance. Show how the EM Database Control interface
simplifies cataloging, crosschecking, and cleaning up.

95127c15.indd 881 2/17/09 3:01:55 PM

882 Chapter 15 N Implementing Database Backups

Review Questions
1. Among the failure events, which is the most serious?

A. The loss of an entire redo log file group but no loss in any other group

B. The loss of one member of each redo log file group

C. The failure of the ARC0 background process

D. The failure of the LGWR background process

2. To enable the flashback database option, the database must be in which of the following
modes?

A. NOARCHIVELOG mode

B. ARCHIVELOG mode

C. FLASHBACK LOG mode

D. BEGIN BACKUP mode

3. When the database is in ARCHIVELOG mode, database recovery is possible up to which event
or time?

A. The last redo log file switch

B. The last checkpoint position

C. The last commit

D. The last incremental backup using RMAN

4. From the following, choose the true statement regarding image copies and backup sets.

A. An image copy stores one data file per image copy, and a backup set can store all data
files in a single file.

B. An image copy stores one data file per image copy, and a backup set consists of one file
per data file backed up.

C. Both image copies and backup sets use a single file to store all objects to be backed up.

D. A backup set stores each data file in its own backup file, but an image copy places all
data files into a single output file.

5. The option on the EM Database Control backup-scheduling options screen that allows you
to refresh an image copy on disk with an incremental backup is known as which RMAN
feature?

A. Incrementally updated backups

B. Incremental level-zero backups

C. Compressed image-copy refresh

D. Compressed incremental backups

95127c15.indd 882 2/17/09 3:01:55 PM

Review Questions 883

6. When should the DBA make a trace copy of the control file using ALTER DATABASE BACKUP
CONTROLFILE TO TRACE?

A. After every backup

B. After multiplexing the control files

C. Whenever restarting the instance

D. Whenever the physical structure of the database changes

7. Which of the following is not a step in configuring your database to archive redo log files?

A. Place the database in ARCHIVELOG mode.

B. Multiplex the online redo log files.

C. Specify a destination for archived redo log files.

D. Specify a naming convention for your archived redo log files.

8. Why are online backups known as inconsistent backups?

A. Because not all control files are synchronized to the same SCN until the database is
shut down

B. Because both committed and uncommitted transactions are included in a backup when
the database is online

C. Because a database failure while an online backup is in progress can leave the database
in an inconsistent state

D. Because online backups make copies of data files while they are not consistent with the
control files

9. Which parameter is used to specify the archive-log destination?

A. ARCHIVE_LOG_DEST_n

B. LOG_ARCHIVE_DEST_n

C. DB_CREATE_FILE_DEST

D. DB_RECOVERY_FILE_DEST_n

10. Which of the following initialization parameters specifies the location where the control file
trace backup is sent?

A. DIAGNOSTIC_DEST

B. BACKGROUND_DUMP_DEST

C. LOG_ARCHIVE_DEST

D. CORE_DUMP_DEST

11. Which of the following pieces of information is not available in the control file?

A. Instance name

B. Database name

C. Tablespace names

D. Log sequence number

95127c15.indd 883 2/17/09 3:01:55 PM

884 Chapter 15 N Implementing Database Backups

12. Which data dictionary view shows that the database is in ARCHIVELOG mode?

A. V$INSTANCE

B. V$LOG

C. V$DATABASE

D. V$THREAD

13. Which file records all changes made to the database and is used only when recovering an
instance?

A. Archive-log file

B. Redo log file

C. Control file

D. Alert log file

14. Which initialization parameter contains the value used as the default for archived log file
destination 10?

A. LOG_ARCHIVE_DEST

B. STANDBY_ARCHIVE_DEST

C. LOG_ARCHIVE_DUPLEX_DEST

D. DB_RECOVERY_FILE_DEST

E. USE_DB_RECOVERY_FILE_DEST

15. Which of the following commands is a key step in multiplexing control files using an spfile?

A. ALTER SYSTEM SET CONTROL_FILES= ‘/u01/oradata/PRD/cntrl01.ctl’, ‘/u01/
oradata/PRD/cntrl02.ctl’ SCOPE=SPFILE;

B. ALTER SYSTEM SET CONTROL_FILES= ‘/u01/oradata/PRD/cntrl01.ctl’, ‘/u01/
oradata/PRD/cntrl02.ctl’ SCOPE=MEMORY;

C. ALTER SYSTEM SET CONTROL_FILES= ‘/u01/oradata/PRD/cntrl01.ctl’, ‘/u01/
oradata/PRD/cntrl02.ctl’ SCOPE=BOTH;

D. The number of control files is fixed when the database is created.

16. Which statement adds a member /logs/redo22.log to redo log file group 2?

A. ALTER DATABASE ADD LOGFILE ‘/logs/redo22.log’ TO GROUP 2;

B. ALTER DATABASE ADD LOGFILE MEMBER ‘/logs/redo22.log’ TO GROUP 2;

C. ALTER DATABASE ADD MEMBER ‘/logs/redo22.log’ TO GROUP 2;

D. ALTER DATABASE ADD LOGFILE ‘/logs/redo22.log’;

17. What is the biggest advantage of having the control files on different disks?

A. Database performance.

B. Guards against failure.

C. Faster archiving.

D. Writes are concurrent, so having control files on different disks speeds up control file writes.

95127c15.indd 884 2/17/09 3:01:55 PM

Review Questions 885

18. To place the database into ARCHIVELOG mode, in which state must you start the database?

A. MOUNT

B. NOMOUNT

C. OPEN

D. SHUTDOWN

E. Any of the above

19. Which of the following commands places the database in ARCHIVELOG mode?

A. ALTER SYSTEM ARCHIVELOG;

B. ALTER DATABASE ARCHIVELOG;

C. ALTER SYSTEM SET ARCHIVELOG=TRUE;

D. ALTER DATABASE ENABLE ARCHIVELOG MODE;

E. ALTER DATABASE ARCHIVELOG MODE;

20. Which of the following substitution-variable formats are always required for specifying the
names of the archived redo log files? (Choose all that apply.)

A. %d

B. %s

C. %r

D. %t

95127c15.indd 885 2/17/09 3:01:55 PM

886 Chapter 15 N Implementing Database Backups

Answers to Review Questions
1. A. Losing an entire redo log file group can result in losing committed transactions that may

not yet have been written to the database files. Losing all members of a redo log file group
except for one does not affect database operation and does not result in lost data. A mes-
sage is placed in the alert log file. The failure of LGWR or ARC0 causes an instance failure,
but you do not lose any committed transaction data.

2. B. To enable the flashback database option, the database must be in ARCHIVELOG mode.
FLASHBACK LOG mode is not a valid mode of database operation. BEGIN BACKUP mode is
used to perform hot backups without using RMAN.

3. C. In ARCHIVELOG mode, recovering the database is possible up to the last COMMIT state-
ment; in other words, no committed transactions are lost in ARCHIVELOG mode.

4. A. Image copies are duplicate data and log files in OS format. Backup sets are binary com-
pressed files in Oracle proprietary format. In addition to storing multiple data files in a
single output file, backup sets do not contain unused blocks.

5. A. Incrementally updated backups save time during a recovery operation because fewer
incremental backups need to be applied to the restored image copy.

6. D. In the rare event that all multiplexed copies of the control file are lost, having a trace
copy of the control file reduces the possibility of data loss and reduces downtime during
a recovery operation. The preferred and recommended way to back up a control file is to
enable control file autobackup using RMAN.

7. B. Although it is recommended that you multiplex your online redo log files, it is not
required to enable ARCHIVELOG mode of the database.

8. D. During an online backup, even if all data files are backed up at the same time, they are
rarely, if ever, in sync with the control file.

9. B. LOG_ARCHIVE_DEST_n specifies the archive-log location. You can configure up to 10
archive-log destinations. LOG_ARCHIVE_DEST_10 is reserved for the flash recovery area,
which is specified by the parameter DB_RECOVERY_FILE_DEST.

10. A. The trace backup is created in a subdirectory under the location specified by the
DIAGNOSTIC_DEST parameter—$DIAGNOSTIC_DEST/diag/<dbname>/<instancename>/
trace directory.

11. A. The instance name is not in the control file. The control file has information about the
physical database structure.

12. C. The V$DATABASE view in the column LOG_MODE shows whether the database is in
ARCHIVELOG mode or in NOARCHIVELOG mode.

13. B. The redo log file records all changes made to the database. The LGWR process writes the
redo log buffer entries to the redo log files. These entries are used to roll forward, or to update,
the data files during an instance recovery. Archive log files are used for media recovery.

95127c15.indd 886 2/17/09 3:01:55 PM

Answers to Review Questions 887

14. D. DB_RECOVERY_FILE_DEST points to the flash recovery area, and this is the default for
archived log-file destination number 10.

15. A. The location of the new control files is not valid until an operating-system copy is
made of the current control file to the new location(s) and the instance is restarted. The
SCOPE=SPFILE option specifies that the parameter change will not take place until a restart.
Specifying either MEMORY or BOTH causes an error, because CONTROL_FILES is not a dynamic
parameter.

16. B. When adding log-file members, specify the group number, or specify all the existing
group members.

17. B. Having the control files on different disks ensures that even if you lose one disk, you lose
only one control file. If you lose one of the control files, you can shut down the database
and copy a control file, or you can change the CONTROL_FILES parameter and restart the
database.

18. A. To put the database into ARCHIVELOG mode, the database must be in the MOUNT state; the
control files and all data files that are not offline must be available to change the database
to ARCHIVELOG mode.

19. B. You use the ALTER DATABASE ARCHIVELOG command while the database is in the MOUNT
state to enable archiving of online redo log files.

20. B, C, D. The substitution variable %d, which represents the database ID, is required only if
multiple databases share the same archive-log destination.

95127c15.indd 887 2/17/09 3:01:55 PM

95127c15.indd 888 2/17/09 3:01:55 PM

Chapter

16
Recovering the
Database

ORacle Database 11g:
aDministRatiOn i exam Objectives
cOveReD in this chapteR:

Backup and Recovery ConceptsÛÛ

Identify the types of failure that can occur in an Oracle ÛN

database

Describe ways to tune instance recoveryÛN

Performing Database RecoveryÛÛ

Overview of Data Recovery AdvisorÛN

Use Data Recovery Advisor to Perform recovery (Control file, ÛN

Redo log file, and Data file)

95127c16.indd 889 2/17/09 3:03:53 PM

Oracle Database 11g makes it easy for you to recover from a
number of database failures. In Chapter 15, “Implementing
Database Backups,” I emphasized the importance of check-

points, redo log files, and archived log files to maintain a high level of availability and
recoverability. I also showed you how to use the flash recovery area and several ways to
back up your database. In this chapter, I’ll show you how to use those backups effectively
when some kind of failure inevitably occurs.

First, you’ll understand the kinds of failures that can occur in an Oracle database and
explore how they can occur because of mistakes by users or DBAs or because of hardware
or software failures that are out of your direct control. Each of these failures can require
little or no action whatsoever, as in the case of an instance failure, but at the other end of the
spectrum, a crash of the disk containing the SYSTEM tablespace requires a recovery effort.

To balance performance with recoverability, you will learn how to tune instance recov-
ery to minimize the amount of time Oracle will require to recover from an instance failure
while still providing a reasonable response time for ongoing transactions. In a nutshell,
your job is to increase the mean time between failures (MTBF) by providing redundant
components where possible and leveraging other Oracle high-availability features such as
Real Application Clusters (RAC) and Streams (an advanced replication technology). Hand
in hand with increasing MTBF is decreasing the mean time to recovery (MTTR) to ensure
compliance with any service-level agreements you have in place. Last, but certainly not
least, these efforts should help you minimize data loss in such a way that committed trans-
actions are never lost.

In this chapter, you will also learn the steps required to recover from the loss of both
system-critical and non-system-critical data files for databases that are operating in both
ARCHIVELOG and NOARCHIVELOG modes. I’ll also show you how to recover from the loss of a
control file or a redo log file.

The Data Recovery Advisor was introduced in Oracle 11g, which automates most of the
recovery tasks and is integrated with Enterprise Manager (EM) Database Control. As with
most DBA operations in the database, EM Database Control makes many of these adminis-
tration tasks easier and less error-prone.

Understanding Types of Database Failure
Database-related failures fall into six general categories. Understanding which category a
failure belongs in will help you more quickly understand the nature of the recovery effort

95127c16.indd 890 2/17/09 3:03:53 PM

Understanding Types of Database Failure 891

you need to use to reverse the effects of the failure and maintain a high level of availability
and performance in your database. The six general categories of failures are as follows:

Statement A single database operation fails, such as a Data Manipulation Language
(DML) statement—INSERT, UPDATE, and so on.

User process A single database connection fails.

Network A network component between the client and the database server fails, and the
session is disconnected from the database.

User error An error message is not generated, but the operation’s result, such as dropping
a table, is not what the user intended.

Instance The database instance crashes unexpectedly.

Media One or more of the database files is lost, deleted, or corrupted.

In the next six sections, I’ll provide details on these failure types and suggest some pos-
sible solutions for each one. For one particular type of failure, media failure, I’ll provide
more detailed solutions for recovery later in this chapter.

Statement Failures
Statement failures occur when a single database operation fails, such as a single INSERT
statement or the creation of a table. Table 16.1 shows the most common problems that
occur when a statement fails, along with their solutions.

ta b le 16 .1 Common Problems and Solutions for When a Statement Fails

Problem Solution

Attempts to access tables without
the appropriate privileges

Provide the appropriate privileges, or create views on
the tables and grant privileges on the view.

Running out of space Add space to the tablespace, increase the user’s
quota on the tablespace, or enable resumable-space
allocation.

Entering invalid data If constraints and triggers are not in place to enforce
data integrity, entering bad data may succeed and
cause application issues. DBAs need to work with
users to validate and correct data.

Logic errors in applications Work with developers to correct program errors or
provide additional logic in the application to recover
gracefully from unavoidable errors.

95127c16.indd 891 2/17/09 3:03:53 PM

892 Chapter 16 N Recovering the Database

Although granting user privileges or additional quotas within a tablespace solves many
of these problems, also consider whether there are any gaps in the user education process
that might lead to some of these problems in the first place.

User-Process Failures
The abnormal termination of a user session is categorized as a user-process failure. After
a user-process failure, any uncommitted transaction must be cleaned up. The PMON (pro-
cess monitor) background process periodically checks all user processes to ensure that the
session is still connected. If the PMON finds a disconnected session, it rolls back the uncom-
mitted transaction and releases all locks held by the disconnected process. Causes for user-
process failures typically fall into one of these categories:

A user closes their SQL*Plus window without logging out.ÛN

The workstation reboots suddenly before the application can be closed.ÛN

The application program causes an exception and closes before the application can be ÛN

terminated normally.

A small percentage of user-process failures is generally no cause for concern unless it
becomes chronic. A failure may be a sign that user education is lacking—for example,
training users to terminate the application gracefully before shutting down their worksta-
tion. A DBA intervention is not needed for user-process failures, but administrators must
watch for trends, and if happens too often, they need to investigate because there may be
application problems or network issues that cause an excessive number of user-process
failures. More information may be available in the alert log file showing whether the user
process is hitting a bug and whether there are any trace files written.

Network Failures
Depending on the locations of your workstation and your server, getting from your work-
station to the server over the network might involve a number of hops; for example, you
might traverse several local switches and WAN routers to get to the database. From a net-
work perspective, this configuration provides a number of points where failure can occur.
These types of failures are called network failures.

In addition to hardware failures between the server and client, a listener process on the
Oracle server can fail, or the network card on the server itself can fail. To guard against
these kinds of failures, you can provide redundant network paths from your clients to the
server, as well as additional listener connections on the Oracle server and redundant net-
work cards on the server.

User-Error Failures
Even if all your redundant hardware is at peak performance and your users have been
trained to disconnect from their Oracle sessions properly, users can still inadvertently delete

95127c16.indd 892 2/17/09 3:03:53 PM

Understanding Types of Database Failure 893

or modify data in tables or drop an index. This is known as a user-error failure. Although
these operations succeed from a statement point of view, they might not be logically correct:
the DROP TABLE command worked fine, but you really didn’t want to drop that table!

If data was inadvertently deleted from a table and not yet committed, a ROLLBACK state-
ment will undo the damage. If a COMMIT has already been performed, you have a number
of options at your disposal, such as using data in the undo tablespace for a flashback query
or using data in the archived and online redo logs with the LogMiner utility, available as a
command-line interface or a graphical user interface.

You can recover a dropped table using Oracle’s recycle-bin functionality. A dropped
table is stored in a special structure in the tablespace and is available for retrieval as long as
the space occupied by the table in the tablespace is not needed for new objects. Even if the
table is no longer in the tablespace’s recycle bin, depending on the criticality of the dropped
table, you can use either tablespace point-in-time recovery (TSPITR) or flashback database
recovery to recover the table, taking into consideration the potential data loss for other
objects stored in the same tablespace for TSPITR or in the database if you use flashback
database recovery.

TSPITR and flashback database recovery are beyond the scope of this book
but are covered in more detail in OCP: Oracle Database 11g Administrator
Certified Professional Study Guide (Sybex, 2009).

If the inadvertent changes are limited to a small number of tables that have few or no
interdependencies with other database objects, flashback-table functionality is most likely
the right tool to bring back the table to a certain point in time.

Later in this chapter, in the section “Performing Recovery Operations,” I’ll show you
how to recover dropped tables from the recycle bin using the flashback drop functionality,
retrieve deleted rows from a table using the flashback query functionality, use the flashback
table functionality to bring a table back to a specific point in time along with its dependent
objects, and use LogMiner to query online and archived redo logs for the previous state of
modified rows.

The Oracle 11g database provides flashback technology, which is aimed to
recover from user errors.

Instance Failures
An instance failure occurs when the instance shuts down without synchronizing all the
database files to the same system change number (SCN), requiring a recovery operation the
next time the instance is started. Many of the reasons for an instance failure are out of your
direct control; in these situations, you can minimize the impact of these failures by tuning

95127c16.indd 893 2/17/09 3:03:53 PM

894 Chapter 16 N Recovering the Database

instance recovery. You will learn how to tune instance recovery later in this chapter, in the
section “Tuning Instance Recovery.”

Here are a few causes for instance failure:

A power outageÛN

A server-hardware failureÛN

Failure of an Oracle background processÛN

Emergency shutdown procedures (intentional power outage or ÛN SHUTDOWN ABORT)

In all these scenarios, the solution is easy: run the STARTUP command, and let Oracle auto-
matically perform instance recovery using the online redo logs and undo data in the undo
tablespace. If the cause of the instance failure is related to an Oracle background-process
failure, you can use the alert log and process-specific trace files to debug the problem. EM
Database Control makes it easy to review the contents of the alert log and any other alerts
generated right before the point of failure.

Media Failures
Another type of failure that is somewhat out of your control is media failure. A media
failure is any type of failure that results in the loss of one or more database files: data files,
control files, or redo log files. Although the loss of other database-related files such as an
init.ora file or a server-parameter file (spfile) is of great concern, Oracle Corporation does
not consider it a media failure. The database file can be lost or corrupted for a number of
reasons:

Failure of a disk driveÛN

Failure of a disk controllerÛN

Inadvertent deletion or corruption of a database fileÛN

Following the best practices defined in Chapter 15—in other words, adequately mirroring
control files and redo log files and ensuring that full backups and their subsequent archived
redo log files are available—will keep you prepared for any type of media failure.

In the next section, I will show you how to recover from the loss of control files, data files,
and redo log files.

Performing Recovery Operations
Once the inevitable database failure occurs, you can perform a relatively quick and painless
recovery operation if you have followed the backup guidelines presented in Chapter 15 and
clearly understand the types of failures presented earlier in this chapter.

Before I show you how to perform recovery, however, it is important for you to under-
stand how an Oracle instance starts up and what kinds of failures can occur at each startup
phase. Understanding the startup phases is important, because some types of recovery

95127c16.indd 894 2/17/09 3:03:54 PM

Performing Recovery Operations 895

operations must occur in a particular phase. Once a database is started, the instance will
fail under a number of conditions that I will describe in detail.

Next, I will describe how instance recovery works and how to tune instance recovery,
and then show you ways to easily recover from several types of user errors. Finally, I will
show you how to recover from media failures due to the loss of both critical and non–system-
critical data files.

Understanding Instance Startup
Starting up a database involves several phases, from being shut down to being open and
available to users. If certain prerequisites are not present, the database startup halts, and
you must take some kind of remedial action to permit the startup to proceed. In the follow-
ing list are the four basic database states along with their prerequisites after you type the
STARTUP command at the SQL*Plus prompt:

SHUTDOWN No background processes are active. A STARTUP command is used when the
database is in this state; the STARTUP command fails if you are in any other state unless you
are using STARTUP FORCE to restart an instance.

NOMOUNT Also known as the STARTED state, the instance must be able to access the
initialization-parameter file, either as a text-based init.ora file or as an spfile.

MOUNT In this state, the instance checks that all control files listed in the initialization-
parameter file are present and identical. Even if one of the multiplexed control files is
unavailable or corrupted, the instance does not enter the MOUNT state and stays in the
NOMOUNT state.

OPEN Most of the time spent in the instance startup occurs during this phase. All redo log
groups must have at least one member available, and all data files that are marked as online
must be available.

You are notified in a number of ways that a redo log group member is missing or a data
file is missing. If a data file is missing or corrupted, you will get a message while you are
running the STARTUP command, as in this example:

SQL> startup

ORACLE instance started.

Total System Global Area 197132288 bytes

Fixed Size 778076 bytes

Variable Size 162537636 bytes

Database Buffers 33554432 bytes

Redo Buffers 262144 bytes

Database mounted.

95127c16.indd 895 2/17/09 3:03:54 PM

896 Chapter 16 N Recovering the Database

ORA-01157: cannot identify/lock data file 4 - see DBWR trace file

ORA-01110: data file 4: ‘/u05/oradata/ord/users01.dbf’

SQL>

The message in SQL*Plus shows only the first data file that needs attention. You will
have to use the dynamic performance view V$RECOVER_FILE to list all the files that need
attention. Here is a query against the view V$RECOVER_FILE and a second query joining
V$RECOVER_FILE and V$DATAFILE given the previous STARTUP command:

SQL> select file#, error from v$recover_file;

 FILE# ERROR

---------- ---

 4 FILE NOT FOUND

 11 FILE NOT FOUND

SQL> select file#, name from

 2 v$datafile join v$recover_file using (file#);

 FILE# NAME

---------- --

 4 /u05/oradata/ord/users01.dbf

 11 /u08/oradata/ord/idx02.dbf

SQL>

If a data file is offline or taken offline, the instance can still start as long as the data file
does not belong to the SYSTEM or UNDO tablespace. Once the instance is started, you can
proceed to recover the missing or corrupted data file and subsequently bring it online. If all
files are available but out of sync, automatic instance recovery is performed as long as the
online redo log files can bring all data files to the same SCN. Otherwise, media recovery is
required using archived redo log files.

If a redo log group member is missing, a message is generated in the alert log, but the
database will still open.

Keeping an Instance from Failing
Media failures are not always critical, depending on which type of data file is lost. If any of
the multiplexed copies of the control file are lost, an entire redo log group is lost, or any data
file from the SYSTEM or UNDO tablespace is lost, the instance will fail.

In some cases, the instance becomes unavailable to users but will not shut down; in this
case, you can use SHUTDOWN ABORT to force the instance to shut down without resynchroniz-
ing the data files with the control file. The next time the instance is started, instance recov-

95127c16.indd 896 2/17/09 3:03:54 PM

Performing Recovery Operations 897

ery will be performed. If you plan on starting up the instance right after using SHUTDOWN
ABORT, you can instead use STARTUP FORCE as shorthand for a SHUTDOWN ABORT and a STARTUP.

Later in this chapter, I will show you how to recover from the loss of a con-
trol file, a redo log file member, or one or more data files.

Recovering from Instance Failure
As I discussed earlier, in the section “Instance Failures,” an instance failure is any kind of
failure that prevents the synchronization of the database’s data files and control files before
the instance is shut down.

Oracle automatically recovers from instance failure during instance recovery. Instance
recovery is initiated by simply starting up the database with the STARTUP command.

Instance recovery is also known as crash recovery.

During a STARTUP operation, Oracle first attempts to read the initialization file, and then
it mounts the control file and attempts to open the data files referenced in the control files.
If the data files are not synchronized, instance recovery is initiated.

Instance recovery occurs in phases:

Phase 1 Find data files that are out of sync with the control file.

Phase 2 Use the online redo log files to restore the data files to the state before instance
failure in a rollforward operation. After the rollforward, data files have committed and
uncommitted data.

Phase 3 Open the database. Once the rollforward operation completes, the database is
open to users.

Phase 4 Oracle then uses the undo segments to roll back any uncommitted transactions. The
rollback operation uses data in the undo tablespace; without a consistent undo tablespace,
the rollback operation cannot succeed. After the rollback phase, the data files contain only
committed data.

Tuning Instance Recovery
Before a user receives a “Commit complete” message, the new or changed data must be
successfully written to a redo log file. At some point in the future, the same information
must be used to update the data files; this operation usually lags behind the redo log file write
because sequential writes to the redo log file are by nature faster than random writes to one
or more data files on disk.

95127c16.indd 897 2/17/09 3:03:54 PM

898 Chapter 16 N Recovering the Database

As I discussed in Chapter 15, checkpoints keep track of what still needs to be written
from the redo log files to the data files. Any transactions not yet written to the data files are
at an SCN after the last checkpoint.

The amount of time required for instance recovery depends on how long it takes to bring
the data files up-to-date from the last checkpoint position to the latest SCN in the control
file. To prevent performance problems, the distance between the checkpoint position and
the end of the redo log group cannot be more than 90 percent of the size of the redo log
group.

You can tune instance recovery by setting an MTTR target, in seconds, using the initial-
ization parameter FAST_START_MTTR_TARGET. The default value for this parameter is zero;
the maximum is 3,600 seconds (1 hour).

A setting of zero disables the target, which reduces the likelihood of redo logs waiting
for writes to the data files. However, if FAST_START_MTTR_TARGET is set to a low nonzero
value, writes to the redo logs most likely have to wait for writes to the data files. Although
this reduces the amount of time it takes to recover the instance in the case of an instance
failure, it affects performance and response time. Setting this value too high can result in
an unacceptable amount of time needed to recover the instance after an instance failure.

Two other parameters control instance recovery time:

LOG_CHECKPOINT_TIMEOUT    This is the maximum number of seconds that any new or modi-
fied block in the buffer cache waits until it is written to disk.

FAST_START_IO_TARGET    This is similar to FAST_START_MTTR_TARGET, except that the recov-
ery operation is specified as the number of I/Os instead of the number of seconds to finish
instance recovery.

Setting either of these parameters overrides FAST_START_MTTR_TARGET. As part of the
enhanced manageability features introduced with Oracle9i, setting FAST_START_MTTR_TARGET
is the easiest and most straightforward way to define your database’s recovery time given
the time-based constraints included in most typical SLAs.

The EM Database Control interface makes it easy to adjust FAST_START_MTTR_TARGET.
On the Availability screen of Database Control, choose Recovery Settings. Figure 16.1
shows the Instance Recovery setting, which you can find in the top section of the Recovery
Settings screen.

F i gu R e 16 .1 Adjusting MTTR for instance recovery

95127c16.indd 898 2/17/09 3:03:54 PM

Performing Recovery Operations 899

Enter the desired value using seconds or minutes. When you click the Apply button, the
new value for FAST_START_MTTR_TARGET goes into effect immediately and stays in effect
when the instance is restarted.

Using the SQL*Plus command line, you can accomplish this task by using the ALTER
SYSTEM command, as in this example:

SQL> alter system set fast_start_mttr_target=60 scope=both;

System altered.

Using SCOPE=BOTH, the new value of the parameter takes effect immediately and stays in
effect the next time the instance is restarted.

Recovering from User Errors
Earlier in this chapter, in the section “User-Error Failures,” you learned a number of sce-
narios in which a user’s data was inadvertently changed or deleted or a table was dropped.
In the following sections, you’ll learn quite a few helpful tasks, such as how to do the
following:

Use flashback query to retrieve selected rows from a previous state of a tableÛN

Recover a table using flashback drop and a tablespace’s recycle binÛN

Bring an entire table and its dependent objects (such as indexes) back to a specific point ÛN

in time using flashback table

Roll back a specific transaction and its dependent transactions using flashback ÛN

transaction

Query previous transactions in the online and archived redo logs using the LogMiner ÛN

utility

Using Flashback Query
One of the features introduced in Oracle9i was called flashback query. It allows a user to
“go back in time” and view the contents of a table as it existed at some point in the recent
past. A flashback query looks a lot like a standard SQL SELECT statement, with the addition
of the AS OF TIMESTAMP clause.

Before users can take advantage of the flashback query feature, you, the DBA, must per-
form two tasks:

Make sure there is an undo tablespace in the database that is large enough to retain ÛN

changes made by all users for a specified period of time. This is the same tablespace
that is used to support COMMIT and ROLLBACK functionality (discussed in Chapter 13,
“Managing Data and Undo”).

Specify how long the undo information will be retained for use by flashback queries ÛN

by using the initialization parameter UNDO_RETENTION. This parameter is specified in
seconds; therefore, if you specify UNDO_RETENTION=172800 (default is 900), the undo
information for flashback queries can be available for up to two days.

95127c16.indd 899 2/17/09 3:03:54 PM

900 Chapter 16 N Recovering the Database

The key to the flashback query functionality is using the AS OF TIMESTAMP clause in the
SELECT statement; you can specify the timestamp as any valid expression that evaluates to a
date or timestamp value. In the following example, you want to query the EMPLOYEES table
as it existed 15 minutes ago:

SQL> SELECT employee_id, last_name, email

 FROM hr.employees

 AS OF TIMESTAMP (systimestamp - interval ‘15’ minute)

 WHERE employee_id = 101;

EMPLOYEE_ID LAST_NAME EMAIL

----------- --------------------- -------------------

 101 Kochhar NKOCHHAR

You can just as easily specify an absolute time of day to retrieve the contents of the row
at that time, as in this example:

SQL> SELECT employee_id, last_name, email

 FROM hr.employees

 AS OF TIMESTAMP

 (to_timestamp (‘01-Sep-04 16:18:57.845993’,

 ‘DD-Mon-RR HH24:MI:SS.FF’))

 WHERE employee_id = 101;

EMPLOYEE_ID LAST_NAME EMAIL

----------- --------------------- -------------------

 101 Kochhar NTKOCHHAR

If your flashback query requires undo data that is no longer available in the undo
tablespace, you will receive an error message:

SQL> SELECT employee_id, last_name, email

 FROM hr.employees

 AS OF TIMESTAMP (systimestamp - interval ‘10’ month)

 WHERE employee_id = 101;

select employee_id, last_name, email

 *

ERROR at line 1:

ORA-08180: no snapshot found based on specified time

95127c16.indd 900 2/17/09 3:03:54 PM

Performing Recovery Operations 901

using Flashback Query to Retrieve missing Rows

Recently an application administrator in my company inadvertently deleted a bunch of
rows from a database table and committed the transaction. He learned about the deletion
with the wrong WHERE clause only when users started calling him about the missing data
on their screens and the various errors they were getting.

Panicked, the application administrator called his manager and told her about what hap-
pened, and they planned an outage for the affected application and a couple of other
applications hosted in the same database.

In our company, the DBA is the last person to know about issues, but by the time a problem
comes to the DBA, it is a crisis.

The application administrator told the DBA team that there was a recovery situation and
that he had arranged for all the outages and notifications. One of our DBAs asked the
application administrator the time of the data deletion and the table name. The DBA did a
query similar to the following to show the records the administrator deleted. Luckily, there
were not many transactions going on in the database, because users were getting errors
and the changed rows were still available in the undo. If there were many transactions,
Oracle could have overwritten the committed transaction’s rollback space (depending on
the UNDO_RENTENTION setting):

SELECT * FROM vms.dvbt606a

AS OF TIMESTAMP to_timestamp (‘12-Sep-08 12:20’, ‘DD-Mon-RR HH24:MI’);

Then the DBA got the WHERE clause from the administrator to filter out the rows that the
administrator deleted and inserted those rows into the original table using the following
SQL statement:

INSERT INTO vms.dvbt606a

SELECT * FROM vms.dvbt606a

AS OF TIMESTAMP to_timestamp (‘12-Sep-08 12:20’, ‘DD-Mon-RR HH24:MI’)

WHERE TRANS_DATE BETWEEN TO_DATE(‘01-MAY-08’,’DD-MON-YY’)

 AND TO_DATE(‘31-MAY-08’,’DD-MON-YY’);

We did not have to take any applications offline, and the whole recovery operation took
less than 15 minutes after coming to the DBA. We could have also used the FLASHBACK
TABLE feature, which would have made the recovery sooner (and there would be no need
to know the WHERE clause used for deletion), but nobody thought of it.

95127c16.indd 901 2/17/09 3:03:54 PM

902 Chapter 16 N Recovering the Database

Using Flashback Drop and the Recycle Bin
Another user-recovery flashback feature, flashback drop, lets you restore a dropped
table without using tablespace point-in-time recovery. Although tablespace point-in-time
recovery could effectively restore a table and its contents to a point in time before it was
dropped, it is potentially time-consuming and has the side effect of losing work from other
transactions that occurred within the same tablespace after the table was dropped.

In the following sections, I will talk about the new logical structure available in each
tablespace—the recycle bin—and how you can query the recycle bin and retrieve dropped
objects from it. I will also describe some minor limitations involved in using the recycle bin.

Recycle-Bin Concepts

The recycle bin is a logical structure within each tablespace that holds dropped tables and
objects related to the tables, such as indexes. The space associated with the dropped table is
not immediately available but shows up in the data dictionary view DBA_FREE_SPACE. When
space pressure occurs in the tablespace, objects in the recycle bin are deleted in a first-in,
first-out (FIFO) fashion, maximizing the amount of time that the most recently dropped
object remains in the recycle bin.

The dropped object still belongs to the owner and still counts against the quota for the
owner in the tablespace; in fact, the table itself is still directly accessible from the recycle
bin, as you will see in subsequent examples.

Retrieving Dropped Tables from the Recycle Bin

You retrieve a dropped table from the recycle bin at the SQL command line by using the
FLASHBACK TABLE...TO BEFORE DROP command. In the following example, the user retrieves
the table ORDER_ITEMS from the recycle bin after discovering that the table was inadvertently
dropped:

SQL> select order_id, line_item_id, product_id

 2 from order_items

 3 where rownum < 5;

from order_items

 *

ERROR at line 2:

ORA-00942: table or view does not exist

SQL> flashback table order_items to before drop;

Flashback complete.

SQL> select order_id, line_item_id, product_id

 2 from order_items

 3 where rownum < 5;

95127c16.indd 902 2/17/09 3:03:54 PM

Performing Recovery Operations 903

 ORDER_ID LINE_ITEM_ID PRODUCT_ID

---------- ------------ ----------

 2355 1 2289

 2356 1 2264

 2357 1 2211

 2358 1 1781

SQL>

If the table ORDER_ITEMS was re-created after it was dropped, Gary would add the
RENAME TO clause in the FLASHBACK TABLE command to give the restored table a new name,
as in the following example:

SQL> drop table order_items;

Table dropped.

SQL> flashback table order_items to before drop

 2 rename to order_items_old_version;

Flashback complete.

SQL> select order_id, line_item_id, product_id

 2 from order_items_old_version

 3 where rownum < 5;

 ORDER_ID LINE_ITEM_ID PRODUCT_ID

---------- ------------ ----------

 2355 1 2289

 2356 1 2264

 2357 1 2211

 2358 1 1781

SQL>

If the table to be retrieved from the recycle bin was dropped more than once and you
want to retrieve an incarnation of the table before the most recent one, you can use the
name of the table in the recycle bin; you can query the view RECYCLEBIN or use the SHOW
RECYCLEBIN command.

Recycle-Bin Considerations and Limitations

A few limitations are associated with the recycle bin:

Only non-ÛN SYSTEM locally managed tablespaces can have a recycle bin. However, depen-
dent objects in a dictionary-managed tablespace are protected if the dropped object is
in a locally managed tablespace.

95127c16.indd 903 2/17/09 3:03:54 PM

904 Chapter 16 N Recovering the Database

A table’s dependent objects are saved in the recycle bin when the table is dropped, ÛN

except for bitmap join indexes, referential integrity constraints (foreign key con-
straints), and materialized view logs.

Indexes are protected only if the table is dropped first; explicitly dropping an index ÛN

does not place the index into the recycle bin.

Using Flashback Table
Flashback table allows you to recover one or more tables to a specific point in time without
having to use more time-consuming recovery operations such as tablespace point-in-time
recovery or flashback database that can also affect the availability of the rest of the database.
Flashback table works in place by rolling back only the changes made to the table or tables
and their dependent objects, such as indexes. Flashback table is different from flashback
drop; flashback table undoes recent transactions to an existing table, whereas flashback drop
recovers a dropped table. Flashback table uses data in the undo tablespace, whereas flash-
back drop uses the recycle bin.

The FLASHBACK TABLE command brings one or more tables back to a point in time before
any number of logical corruptions have occurred on the tables. To be able to flash back a
table, you must enable row movement for the table. Because DML operations are used to
bring the table back to its former state, the row IDs in the table change. As a result, flash-
back table is not a viable option for applications that depend on the table’s row IDs to
remain constant.

In the following example, you find out that someone in the HR department has acciden-
tally deleted all the employees in department 60, the IT department, along with the row for
IT in the DEPARTMENTS table. Because this happened less than 15 minutes ago, you are sure
that there is enough undo information to support a flashback table operation.

Before running the FLASHBACK TABLE command, you confirm that the row in DEPARTMENTS
for the IT department is still missing using this query:

SQL> SELECT * FROM hr.departments

 WHERE department_name = ‘IT’;

no rows selected

Next, you flash back the table to 15 minutes ago, specifying both tables in the same
command, as follows:
SQL> FLASHBACK TABLE hr.employees, hr.departments

 TO TIMESTAMP systimestamp - interval ‘15’ minute;

Flashback complete.

95127c16.indd 904 2/17/09 3:03:54 PM

Performing Recovery Operations 905

Finally, you check to see whether the IT department is truly back in the table:
SQL> SELECT * FROM hr.departments

 WHERE department_name = ‘IT’;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

------------- ------------------ ---------- -----------

 60 IT 103 1400

If you flash back either too far or not far enough, you can simply rerun the FLASHBACK
TABLE command with a different timestamp or SCN, as long as the undo data is still
available.

Although the rest of the database is unaffected by a flashback table operation, the
FLASHBACK TABLE command acquires exclusive DML locks on the tables involved in the
flashback. This is usually not an availability issue, because the users who would normally
use the table are waiting for the flashback operation to complete anyway!

Integrity constraints are not violated when one or more tables are flashed back; this is
why you typically group tables related by integrity constraints or parent-child relationships
in the FLASHBACK TABLE command. When a flashback operation is in progress, the triggers
on the table are disabled. If you want the triggers to fire during the flashback operation,
add the ENABLE TRIGGERS clause to the FLASHBACK TABLE statement, as in the following
example.

SQL> FLASHBACK TABLE hr.employees

 TO TIMESTAMP TO_TIMESTAMP(‘02NOV08 22:00’. ‘DDMONYY HH24:MI’)

 ENABLE TRIGGERS;

To be able to perform a flashback table operation, the table must have
ROW MOVEMENT enabled. Enable row movement using ALTER TABLE <name>
ENABLE ROW MOVEMENT.

Using EM Database Control to Perform Table Recovery
You can perform recovery operations using EM Database Control. On the Availability
screen, choose Perform Recovery under the Manage section of Backup/Recovery. On the
Perform Recovery screen, choose Tables as the recovery scope. As you can see in Fig-
ure 16.2, choosing Tables as the recovery scope gives you two options:

Flashback Existing TablesÛN

Flashback Dropped TablesÛN

95127c16.indd 905 2/17/09 3:03:55 PM

906 Chapter 16 N Recovering the Database

F i gu R e 16 . 2 Table recovery screen

Choose Flashback Existing Tables to roll back the table to a previous state. Click Recover
to get to the Perform Object Level Recovery screen, as shown in Figure 16.3. Here you have
four options to choose from:

Evaluate Row Changes and Transactions to Decide on a Point in TimeÛN

Flashback to a TimestampÛN

Flashback to a Restore PointÛN

Flashback to a Known SCNÛN

Based on the option you choose, you will be presented with one of three screens. Choose
Flashback to a Timestamp for this example. You will be presented with a screen to choose
the tables that you want to flash back, as shown in Figure 16.4.

Choose the tables you want to perform flashback on, and click Next. A summary screen
will be shown for you to review the specifications such as timestamp, corresponding SCNs,
and table names. Click Submit to perform the flashback operation.

To retrieve a dropped table, choose Flashback Dropped Tables from the screen shown
earlier, in Figure 16.2. You will be presented with all the tables that are in the recycle bin,
as shown in Figure 16.5. Choose the table(s) you want to restore, and click Next.

95127c16.indd 906 2/17/09 3:03:55 PM

Performing Recovery Operations 907

F i gu R e 16 . 3 Perform Object Level Recovery screen

F i gu R e 16 . 4 Perform Object Level Recovery: Flashback Tables screen

95127c16.indd 907 2/17/09 3:03:55 PM

908 Chapter 16 N Recovering the Database

F i gu R e 16 .5 Perform Object Level Recovery: Dropped Objects Selection screen

On the next screen, you will have the option to rename the restored table or to keep
the original name. A summary screen, as shown in Figure 16.6, will be displayed with the
impact analysis.

F i gu R e 16 .6 Perform Object Level Recovery: Review screen

Click Submit to retrieve the dropped table from the recycle bin.

95127c16.indd 908 2/17/09 3:03:55 PM

Performing Recovery Operations 909

Using Flashback Transaction
You can use the flashback transaction technology to undo a transaction and its dependent
transactions. The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure is used to accomplish
this task.

You must meet the following prerequisites to perform a flashback transaction on an
Oracle 11g database:

The database must be in ÛN ARCHIVELOG mode.

Supplemental logging must be enabled in the database using ÛN ALTER DATABASE ADD
SUPPLEMENTAL LOG DATA.

A supplemental log data primary key should be created using the statement ÛN ALTER DATA-
BASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS.

The user performing the flashback transaction must have the ÛN SELECT ANY TRANSACTION
privilege.

The user should have the ÛN EXECUTE privilege on DBMS_FLASHBACK.

The user also should have appropriate DML privileges on the tables (such as ÛN INSERT/
UPDATE/DELETE).

Using EM Database Control, you can perform the flashback transaction. In the Perform
Recovery screen (shown earlier, in Figure 16.2), choose Transactions as the recovery scope.
You will be presented with the screen shown in Figure 16.7.

F i gu R e 16 .7 Flashback Transaction: Perform Query screen

95127c16.indd 909 2/17/09 3:03:55 PM

910 Chapter 16 N Recovering the Database

Specify the time range of transactions you want to recover. If your database is very active,
you will be able to restrict the number of transactions retrieved for the time range by speci-
fying a query filter using the table name or username. When you click Next, Oracle will
mine the transactions that happened between the time range and give you the screen shown
in Figure 16.8.

F i gu R e 16 . 8 Flashback Transaction: Select Transaction screen

Here you can select the transaction you want to revert. To see the SQL statements that
made the change, click the transaction ID. Click Next to see the summary screen, as shown
in Figure 16.9.

Here clicking the Show Undo SQL Script button will show you the statements that are
run to undo the changes made in the transaction. Click Finish to complete the flashback-
transaction operation.

95127c16.indd 910 2/17/09 3:03:55 PM

Performing Recovery Operations 911

F i gu R e 16 . 9 Flashback Transaction: Review screen

Using LogMiner
Oracle LogMiner is another tool you can use to view past activity in the database. The
LogMiner tool can help find changed records in redo log files by using a set of PL/SQL
procedures and functions. LogMiner extracts all DDL and DML activity from the redo
log files for viewing via the dynamic performance view V$LOGMNR_CONTENTS. In addition
to extracting the DDL and DML statements used to change the database, the V$LOGMNR_
CONTENTS view also contains the DML statements needed to reverse the change made to the
database. This is a good tool for not only pinpointing when changes were made to a table
but also for automatically generating the SQL statements needed to reverse those changes.

LogMiner works differently from Oracle’s flashback query feature. The flashback query
feature allows a user to see the contents of a table at a specified time in the past, while Log-
Miner can search a time period for all changes against the table. A flashback query uses the
undo information stored in the undo tablespace; LogMiner uses redo logs, both online and
archived. Both tools can be useful for tracking down how and when changes to database
objects took place.

You can configure and use LogMiner either by using a SQL command line or by using
EM Database Control (choose View and Manage Transactions from the Availability
screen). Figure 16.10 shows the Log Miner screen.

95127c16.indd 911 2/17/09 3:03:55 PM

912 Chapter 16 N Recovering the Database

F i gu R e 16 .10 LogMiner screen

Specify the time range to mine the transactions. When you click Next, the screen shown
in Figure 16.11 will be displayed with all the SQL statements that went into the database
during the time range. Click the transaction ID to see all the related SQL statements in the
transaction.

F i gu R e 16 .11 LogMiner Results screen

95127c16.indd 912 2/17/09 3:03:56 PM

Performing Recovery Operations 913

When you click a transaction, you can see all the related transactions and have the
option to flash back the transaction. Click the Flashback Transaction button to undo the
changes made in that transaction. You can view the SQL statements that are executed in
that transaction using the SQL Redo column, as shown in Figure 16.12.

F i gu R e 16 .12 LogMiner’s Transaction Details screen

LogMiner does not actually undo the change; it only provides the state-
ments that you can use to undo the change. You can extract and run any or
all DML commands you find in the redo logs, keeping in mind any integrity
constraints in place for the tables you are modifying. The Flashback Trans-
action button on the LogMiner screen invokes the flashback transaction
feature of the database discussed earlier in the chapter.

Recovering from Loss of a Control File
Losing one of the multiplexed control files immediately aborts the instance. Assuming you
have not lost every control file, recovering from this failure is fairly straightforward.

Here are the steps to recover from the loss of a control file:

1. If the instance is not shut down, use SHUTDOWN ABORT to force a complete shutdown.

2. Copy one of the good copies of the control file to the location of the corrupted or miss-
ing control file. If the corrupted or missing control file resided on a failed disk, copy
it to another suitable location instead, and update the initialization-parameter file to
update the control-file reference. Alternatively, you can temporarily remove the reference
from the initialization-parameter file until you find a suitable location. However, it is

95127c16.indd 913 2/17/09 3:03:56 PM

914 Chapter 16 N Recovering the Database

highly desirable to maintain at least two, if not more, copies of the control file avail-
able in the case of another media failure.

3. Start the instance with STARTUP.

In the following example, you use a server-parameter file (spfile) for initialization param-
eters, and you decide to temporarily do without a third multiplexed control file until the
disk containing the lost control file is repaired. You’ll change the initialization-parameter
CONTROL_FILES using the ALTER SYSTEM … SCOPE=SPFILE command when the instance is
started in NOMOUNT mode. You cannot start in MOUNT mode because that mode checks for the
existence of all copies of the control file, and as far as the spfile is concerned, you are still
missing a control file.

The first step is to start the database in NOMOUNT mode, as you can see in this example:

SQL> startup nomount

ORACLE instance started.

Total System Global Area 188743680 bytes

Fixed Size 778036 bytes

Variable Size 162537676 bytes

Database Buffers 25165824 bytes

Redo Buffers 262144 bytes

SQL>

Looking at the dynamic performance view V$SPPARAMETER, you can see that you still
have three copies of the control file referenced, but the disk containing the third copy has
failed:

SQL> select name, value from v$spparameter

 where name = ‘control_files’;

NAME VALUE

--------------- --

control_files /u02/oradata/ord/control01.ctl

control_files /u06/oradata/ord/control02.ctl

control_files /u07/oradata/ord/control03.ctl

In the next step, you change the value of CONTROL_FILES in the spfile and restart the
instance, as you can see here:

SQL> alter system set control_files =

 ‘/u02/oradata/ord/control01.ctl’,

 ‘/u06/oradata/ord/control02.ctl’

 scope = spfile;

System altered.

95127c16.indd 914 2/17/09 3:03:56 PM

Performing Recovery Operations 915

SQL> shutdown immediate

ORA-01507: database not mounted

ORACLE instance shut down.

SQL> startup

ORACLE instance started.

Total System Global Area 188743680 bytes

Fixed Size 778036 bytes

Variable Size 162537676 bytes

Database Buffers 25165824 bytes

Redo Buffers 262144 bytes

Database mounted.

Database opened.

SQL>

Once the instance is restarted successfully, you confirm that the control file is no longer
being referenced, as you can see in this query:

SQL> select name, value from v$spparameter

 where name = ‘control_files’;

NAME VALUE

--------------- --------------------------------------

control_files /u02/oradata/ord/control01.ctl

control_files /u06/oradata/ord/control02.ctl

You still have two multiplexed copies of the control file; therefore, you are covered in
case of a media failure of the disk containing one of the remaining control files.

Using the Data Recovery Advisor
The Data Recovery Advisor (DRA) is a new tool introduced in the Oracle 11g database that
automatically diagnoses database failures and determines the appropriate recovery options.
In addition to recommending the recovery options available, it can perform the recovery
after the DBA confirms the operation. DRA can proactively check for failures, before the
database process detects corruption and signals an error.

DRA has user interfaces through the GUI of EM Database Control and through the
command-line utility RMAN. DRA in Oracle 11g Release 1 supports only single-instance
databases; it does not support RAC databases.

You can invoke the Data Recovery Advisor from EM Database Control using any of the
following methods:

Using the Perform Recovery screen shown earlier in Figure 16.2. If there are any failures ÛN

detected, the Advise and Recover button will be enabled, as shown in Figure 16.13. It
will also display a summary of failures with the failure description.

95127c16.indd 915 2/17/09 3:03:56 PM

916 Chapter 16 N Recovering the Database

F i gu R e 16 .13 Invoking DRA from Perform Recovery screen

Using the Support Workbench. Support Workbench is invoked from the Software and ÛN

Support tab of EM Database Control. The Checker Findings tab in Support Workbench
shows the failures in the database, as shown in Figure 16.14. By clicking the Launch
Recovery Advisor button, you can invoke DRA.

Using the Advisor Central page by clicking the Data Recovery Advisor link under Advisors.ÛN

F i gu R e 16 .14 Invoking DRA from the Support Workbench screen

95127c16.indd 916 2/17/09 3:03:56 PM

Performing Recovery Operations 917

The Health Monitor (HM) tool in the Oracle 11g database proactively monitors the health
of the database. It assesses data failures and reports to the Data Recovery Advisor. DRA con-
solidates the findings of HM into failures and assigns a priority based on the failure.

Failure checks in the database can be reactive or proactive. When an error occurs in the
database, reactive checks are automatically executed. The following are examples of data
failures where the DRA can analyze and suggest repair options:

Missing data filesÛN

Data files with incorrect OS permissionsÛN

Offline tablespacesÛN

Corrupted data files (physical corruption)ÛN

Corrupt index entry or dictionary entry (logical corruption)ÛN

I/O failuresÛN

Number of open files exceededÛN

In the following sections, you will look at the various scenarios of media-failure errors
and see how DRA can help analyze and fix errors.

Recovering from the Loss of a Redo Log File
A database instance stays up as long as at least one member of a redo log group is available.
The alert log records the loss of a redo log group member; as with most database status
information, EM Database Control allows you to easily review the contents of the alert log.

The dynamic performance view V$LOGFILE provides the status of each member of each
redo log file member of each redo log group; the STATUS column is defined as follows:

INVALID    The file is corrupted or missing.

STALE    This redo log file member is new and has never been used.

DELETED    The file is no longer being used.

<blank> The redo log file is in use and is not corrupted.

When you are aware of a missing or deleted redo log group member, follow these three
steps to ensure that you maintain a maximum level of redundancy. Losing the remaining
member(s) of the redo log group will cause the instance to fail.

1. Verify which redo log group member is missing.

2. Archive the redo log group’s contents; if you clear this redo log group before archiving
it, you must back up the full database to ensure maximum recoverability of the data-
base in case of the loss of a data file. Use the command ALTER SYSTEM ARCHIVE LOG
GROUP groupnum; to force the archive operation. (groupnum refers to the redo log group
that you want to archive.)

3. Clear the log group to re-create the missing redo log file members using the command
ALTER DATABASE CLEAR LOGFILE GROUP groupnum;. Alternatively, you can replace the
missing member by copying one of the good group members to the location of the

95127c16.indd 917 2/17/09 3:03:56 PM

918 Chapter 16 N Recovering the Database

missing member; using ALTER DATABASE CLEAR LOGFILE GROUP has the advantage of
being platform-independent.

In this example, you lose a redo log file group member and check the status of the redo
log file groups using V$LOGFILE:

SQL> select * from v$logfile

 order by group#;

 GROUP# STATUS TYPE MEMBER IS_

---------- ------- ------ ---------------------------- ---

 1 ONLINE /u07/oradata/ord/redo01.log NO

 1 ONLINE /u08/oradata/ord/redo01.log NO

 2 ONLINE /u07/oradata/ord/redo02.log NO

 2 ONLINE /u08/oradata/ord/redo02.log NO

 3 ONLINE /u07/oradata/ord/redo03.log NO

 3 ONLINE /u08/oradata/ord/redo03.log NO

SQL> ! rm /u08/oradata/ord/redo01.log

SQL> select * from v$logfile order by group#;

 GROUP# STATUS TYPE MEMBER IS_

---------- ------- ------ ---------------------------- ---

 1 ONLINE /u07/oradata/ord/redo01.log NO

 1 INVALID ONLINE /u08/oradata/ord/redo01.log NO

 2 ONLINE /u07/oradata/ord/redo02.log NO

 2 ONLINE /u08/oradata/ord/redo02.log NO

 3 ONLINE /u07/oradata/ord/redo03.log NO

 3 ONLINE /u08/oradata/ord/redo03.log NO

It appears that group number 1 has a missing member, so you want to archive group
number 1 using the ALTER SYSTEM ARCHIVE command:

SQL> alter system archive log group 1;

Finally, you can re-create the missing redo log file group member using the ALTER DATA-
BASE command mentioned in step 3:

SQL> alter database clear logfile group 1;

Database altered.

95127c16.indd 918 2/17/09 3:03:56 PM

Performing Recovery Operations 919

Checking the view V$LOGFILE again, you can see that the redo log group member is no
longer invalid:

SQL> select * from v$logfile order by group#;

 GROUP# STATUS TYPE MEMBER IS_

---------- ------- ------ ---------------------------- ---

 1 ONLINE /u07/oradata/ord/redo01.log NO

 1 ONLINE /u08/oradata/ord/redo01.log NO

 2 ONLINE /u07/oradata/ord/redo02.log NO

 2 ONLINE /u08/oradata/ord/redo02.log NO

 3 ONLINE /u07/oradata/ord/redo03.log NO

 3 ONLINE /u08/oradata/ord/redo03.log NO

6 rows selected.

By reviewing the contents of the alert log using either the EM Database Control interface
by clicking the Alert Log Content link at the bottom of the Database Control home page or
by reviewing the file $ORACLE_BASE/admin/ord/bdump/alert_ord.log, you can see the fail-
ures associated with the missing redo log group member:

Sun Sep 12 17:31:43 2008

ARC1: Evaluating archive log 1 thread 1 sequence 2500

Sun Sep 12 17:31:43 2008

Errors in file
/u01/app/oracle/diag/rdbms/11gr11/11GR11/trace/11GR11_ora_3506.trc:

ORA-00313: open failed for members of log group 1 of thread 1

ORA-00312: online log 1 thread 1: ‘/u02/app/oracle/oradata/11GR11/redo01.log’

ORA-27037: unable to obtain file status

Linux Error: 2: No such file or directory

Additional information: 3

The Database Recovery Advisor knows about the failure. You can see the error reported
on the EM Database Control home page, as shown in Figure 16.15.

F i gu R e 16 .15 Critical errors in the Alerts section of home page

When you invoke DRA, you can see more details about these failures. As shown in
Figure 16.16, you can click the Advise button to see more information about how this fail-
ure could have happened and how to remediate the failure.

95127c16.indd 919 2/17/09 3:03:56 PM

920 Chapter 16 N Recovering the Database

F i gu R e 16 .16 View and Manage Failures screen

You can increase or decrease the priority of a failure by using the Set Priority High
and Set Priority Low buttons. If you have taken care of the issue or if you do not want to
resolve a noncritical failure, you can use the Close button to close the failure incident.

To fix a missing redo log group member, you can use the actions such as
Switch Log File and Clear Log File on the Redo Log Groups screen.

Recovering from the Loss of a Non–System-Critical
Data File
If you lose a non-system-critical data file (in other words, not the SYSTEM or UNDO tablespace),
your options are similar to those when you lose a system-critical data file, except that most
of your recovery effort in ARCHIVELOG mode can occur while the database is open to users,
who can use tablespaces other than the one being recovered.

Loss of a Non-System-Critical Data File in NOARCHIVELOG Mode
The loss of a non-system-critical data file in NOARCHIVELOG mode requires the complete resto-
ration of the database, including the control files and all data files, not just the missing data
files. As a result, you must reenter any changes made to the database since the last backup.

Loss of a Non-System-Critical Data File in ARCHIVELOG Mode
The loss of a non-system-critical data file in ARCHIVELOG mode affects only objects that
are in the missing file, and recovery can proceed while the rest of the database is online.

95127c16.indd 920 2/17/09 3:03:56 PM

Performing Recovery Operations 921

Because you are in ARCHIVELOG mode, no committed transactions in the lost data file will
have to be reentered.

Recovering from the loss of a non–system-critical data file is not quite as complicated as
the recovery from a system-critical data file, which I will cover in the next section; the data-
base is continuously available to all users, except for the data files being recovered.

In the EM Database Control interface, invoke the Data Recovery Advisor. Choose
the failure you want to fix, and click the Advice button. Figure 16.17 shows the Manual
Actions screen.

F i gu R e 16 .17 Manual Actions screen of DRA

Click the Continue with Advise button to see the recovery advice. DRA generates a
RMAN script to execute, as shown in Figure 16.18. You can run this script manually using
the RMAN command line with no modification.

F i gu R e 16 .18 Recovery Advice screen of DRA

Click Continue to review and submit a job to start the restore and recovery.

95127c16.indd 921 2/17/09 3:03:57 PM

922 Chapter 16 N Recovering the Database

You can also recover from the failure without using DRA. On the Perform Recovery
screen, choose Datafiles as the recovery scope. You will be presented with four options to
recover, as shown in Figure 16.19:

Recover to Current Time: Restore the data file from backup, and recover the data file ÛN

using archive log and redo log files.

Restore Datafiles: No recovery is performed.ÛN

Recover from Previously Restored Datafile: Continue recovery after the data file ÛN

restore.

Block Recovery: Recover the corrupted blocks in a data file.ÛN

F i gu R e 16 .19 User-directed recovery of a data file

You have the option to restore the data file to its original location or to another loca-
tion. You also have the option to edit the RMAN script generated. When you click Submit,
the RMAN script is executed, and the data file is recovered. Because the database is in
ARCHIVELOG mode, you will not lose any committed transactions in the USERS tablespace.

You can run the RMAN statement LIST FAILURE at the RMAN command prompt, and you
will see output similar to the following:

$ rman target /

Recovery Manager: Release 11.1.0.6.0 - Production on Mon Nov 3 02:57:39 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

connected to target database: 11GR11 (DBID=4110949673)

95127c16.indd 922 2/17/09 3:03:57 PM

Performing Recovery Operations 923

RMAN> list failure;

using target database control file instead of recovery catalog

List of Database Failures

=========================

Failure ID Priority Status Time Detected Summary

---------- -------- --------- ------------- -------

482 HIGH OPEN 03-NOV-08

 One or more non-system datafiles are missing

RMAN>

The ADVISE FAILURE commands lists the failures. You can list all failures, or you can
specify options such as CRITICAL, HIGH, so on. Here is some output from the ADVISE FAILURE
statement:

RMAN> advise failure all;

List of Database Failures

=========================

Failure ID Priority Status Time Detected Summary

---------- -------- --------- ------------- -------

482 HIGH OPEN 03-NOV-08

 One or more non-system datafiles are missing

analyzing automatic repair options; this may take some time

using channel ORA_DISK_1

using channel ORA_DISK_2

analyzing automatic repair options complete

Mandatory Manual Actions

========================

no manual actions available

Optional Manual Actions

=======================

1. If file /u01/app/oracle/oradata/11GR11/appl_data02.dbf

was unintentionally renamed or moved, restore it

95127c16.indd 923 2/17/09 3:03:57 PM

924 Chapter 16 N Recovering the Database

Automated Repair Options

========================

Option Repair Description

------ ------------------

1 Restore and recover datafile 7

 Strategy: The repair includes complete media recovery with no data loss

 Repair script: /u01/app/oracle/diag/rdbms/11gr11/11GR11/hm/reco_2087308400.hm

RMAN>

To fix the failures using DRA, you can use the command REPAIR FAILURE, as shown
next. It asks for your confirmation before performing the restore and recovery. If you do
not want the confirmation, include the NOPROMPT clause, which will automatically repair all
HIGH and CRITICAL priority failures. The REPAIR FAILURE command can be executed only
after performing the ADVISE FAILURE.
RMAN> repair failure;

Strategy: The repair includes complete media recovery with no data loss

Repair script: /u01/app/oracle/diag/rdbms/11gr11/11GR11/hm/reco_2087308400.hm

contents of repair script:

 # restore and recover datafile

 sql ‘alter database datafile 7 offline’;

 restore datafile 7;

 recover datafile 7;

 sql ‘alter database datafile 7 online’;

Do you really want to execute the above repair (enter YES or NO)? YES

executing repair script

sql statement: alter database datafile 7 offline

Starting restore at 03-NOV-08

using channel ORA_DISK_1

using channel ORA_DISK_2

channel ORA_DISK_1: starting datafile backup set restore

channel ORA_DISK_1: specifying datafile(s) to restore from backup set

channel ORA_DISK_1: restoring datafile 00007 to

/u01/app/oracle/oradata/11GR11/appl_data02.dbf

channel ORA_DISK_1: reading from backup piece /backup/database/0ejunlkq_1_1

95127c16.indd 924 2/17/09 3:03:57 PM

Performing Recovery Operations 925

channel ORA_DISK_1: piece handle=/backup/database/0ejunlkq_1_1

 tag=BACKUP_11GR11_0000_110208102644

channel ORA_DISK_1: restored backup piece 1

channel ORA_DISK_1: restore complete, elapsed time: 00:00:07

Finished restore at 03-NOV-08

Starting recover at 03-NOV-08

using channel ORA_DISK_1

using channel ORA_DISK_2

starting media recovery

archived log for thread 1 with sequence 193 is already on disk as file

 /flash_recovery_area/11GR11/archivelog/2008_11_02/o1_mf_1_193_4jwzm1yv_.arc

… … …

media recovery complete, elapsed time: 00:00:01

Finished recover at 03-NOV-08

sql statement: alter database datafile 7 online

repair failure complete

RMAN>

When you run REPAIR FAILURE, the Data Recovery Advisor closes the failure after suc-
cessfully repairing the failure. As you saw in the Figure 16.16, you can increase or decrease
the priority of a failure by using the CHANGE FAILURE command in RMAN. You can also
close a failure using this command.

RMAN> CHANGE FAILURE 2 PRIORITY LOW;

RMAN> CHANGE FAILURE 5 CLOSE;

Data Recovery advisor views

The Data Recovery Advisor added four new views to the Oracle 11g data dictionary.
These views start with V$IR_.

V$IR_FAILUREÛN : List of all the failures in the database (the same result you see with
the LIST FAILURE command)

V$IR_MANUAL_CHECKLISTÛN : List of the manual-actions section of ADVISE FAILURE

V$IR_REPAIRÛN : Repair recommendations as provided by the ADVISE FAILURE
command

V$IR_FAILURE_SETÛN : Link between V$IR_REPAIR and V$IR_FAILURE

95127c16.indd 925 2/17/09 3:03:57 PM

926 Chapter 16 N Recovering the Database

Recovering from the Loss of a System-Critical Data File
When you lose a system-critical data file (in other words, a file from the SYSTEM or
UNDO tablespace), the kinds of recovery available depend on whether you are operating
in ARCHIVELOG mode or NOARCHIVELOG mode. Oracle strongly recommends operating in
ARCHIVELOG mode for any production database that is not read-only.

Loss of a System-Critical Data File in NOARCHIVELOG Mode
The loss of a system-critical data file in NOARCHIVELOG mode requires a complete restoration
of the database, including the control files and all data files, not just the missing data files.
As a result, you must reenter any changes made to the database since the last backup, which
must have been a cold backup.

Loss of a System-Critical Data File in ARCHIVELOG Mode
The loss of a system-critical data file in ARCHIVELOG mode cannot proceed while the data-
base is open; recovery must be performed while the database is in the MOUNT state. Because
the database is operating in ARCHIVELOG mode, you will not have to reenter any committed
transactions in the database.

When a system-critical data file is lost, such as the data file for the SYSTEM tablespace,
the instance will abort; in the rare circumstance that this does not happen, shut down the
database, and start it in MOUNT mode, as in this example:

SQL> shutdown abort

ORACLE instance shut down.

SQL> startup mount

ORACLE instance started.

Total System Global Area 197132288 bytes

Fixed Size 778076 bytes

Variable Size 162537636 bytes

Database Buffers 33554432 bytes

Redo Buffers 262144 bytes

Database mounted.

SQL>

Once the database is mounted, you can restore and recover the missing data file. After
the recovery is completed, open the database.

To use the Data Recovery Advisor for the recovery, invoke Perform Recovery from the
Availability screen of EM Database Control. Select Datafiles as the recovery scope, choose
Restore to Current Time, and add the files that need recovery. Submit the job to complete
the recovery operation. After the recovery operation is completed, open the database using
ALTER DATABASE OPEN.

Users are not required to reenter any data because the recovery is up to the time of the
last commit in the database.

95127c16.indd 926 2/17/09 3:03:57 PM

Summary 927

The difference between recovering from the loss of a system-critical
data file and non–system-critical data file is the state of the database.
To recover a system-critical data file, the database must be in MOUNT state,
not OPEN.

Summary
In this chapter, you learned about the types of failures that can occur in the database. You
learned the stages in instance startup and how to improve the instance recovery time. You
also learned to recover from failures using the Data Recovery Advisor framework.

Understanding failure is critical to deciding the type of action required to recover from
the failure. This chapter reviewed the six types of failures in a database: statement, user
process, network, user error, instance, and media.

In addition to knowing how an instance fails, you need to know what is required to keep
a database up and running: all control files, at least one member of each redo log group,
and all data files for the SYSTEM and UNDO tablespaces. For instance failures, you want to
know how long the database will take to recover. You can use the initialization parameter
FAST_START_MTTR_TARGET to specify the target recovery time, making it easier to meet
service-level agreements.

You learned ways to recover from three of the failure types: instance, user errors, and
media. In the discussion on instance failures, you learned the steps required to successfully
start up the database, identifying the prerequisites that must be in place for the startup
phase to complete.

In many cases, users themselves can solve their errors; flashback query can retrieve rows
that have been deleted from a table in the past, even after a COMMIT has been performed.
Dropped tables are kept in the recycle bin, which lets a user bring back the entire table as
long as the space occupied by the table in the tablespace was not overwritten by new objects.
Flashback table brings a table back to a given point in time without affecting other objects
or users in the database; flashback query and flashback table are often used as complemen-
tary tools when many rows or even a few rows in a table have been lost or inadvertently
deleted. Flashback transaction is used to flash back an entire transaction and its dependent
transactions. Finally, you can access previous transactions against a table from the online
and archived redo logs when the self-service recovery tools are not successful in recovering
user data.

Also in this chapter, I presented scenarios of media failures and how to recover from
such failures using the Data Recovery Advisor. If the database is in ARCHIVELOG mode, you
can recover the database from these failures without losing any committed transactions. If
the database is in NOARCHIVELOG mode, you can recover only to the last good cold backup.
RMAN includes several commands to support the Data Recovery Advisor.

95127c16.indd 927 2/17/09 3:03:57 PM

928 Chapter 16 N Recovering the Database

Exam Essentials

Identify the initialization parameters used to tune instance recovery. Be able to define the
possible values for FAST_START_MTTR_TARGET, FAST_START_IO_TARGET, and LOG_CHECKPOINT_
TIMEOUT. Show the relationship between these parameters and in which situations each is
most appropriately used.

List the phases of instance startup. Show how the database instance moves from SHUTDOWN
to NOMOUNT to MOUNT to OPEN, and describe the conditions required in each step before the
instance can proceed to the next phase.

Be able to list the types of failures that can occur in a database. Identify the six types of
failures: statement, user process, network, user error, instance, and media.

List the features supported by Oracle to help users fix their own errors. Describe each
type of user-error recovery solution: flashback query, flashback table, flashback transaction,
and flashback drop.

Be able to use flashback query to retrieve previous table data. Show how flashback query
can help a user look at the contents of a table at some point in time in the past. Demon-
strate the flexibility in specifying the date at which the flashback query is executed.

Describe how flashback drop is used. Describe the components of flashback drop, such
as the recycle bin, and show how it can store a deleted table unless space pressure occurs in
the tablespace. Be able to identify the restrictions on the types of objects that can be saved
in the recycle bin.

Understand how many control files and redo log members are required for the database to
function. When you use multiplexed control files and redo log files, Oracle Database 11g
requires all control files to be available and at least one member of the redo log group to be
available for the database to function.

Understand the failures that can be identified and repaired by the Data Recovery Advisor.
The Data Recovery Advisor can detect and repair all types of media failures and logical
corruption. It cannot detect user errors or network issues.

Identify the three types of database files affected by media failures. Compare and con-
trast the loss of control files, redo log file group members, and data files, and describe how
to recover from the loss of each of these files. Understand how the loss of certain types of
data files may have a larger impact on availability and recoverability than others.

Familiarize yourself with the commands you can use to identify and perform recovery using
RMAN. RMAN commands such as LIST FAILURE, ADVISE FAILURE, REPAIR FAILURE,
and CHANGE FAILURE are used to support the Data Recovery Advisor actions.

95127c16.indd 928 2/17/09 3:03:57 PM

Review Questions 929

Review Questions
1. The distance between the checkpoint position in a redo log group and the end of the redo

log group can never be what percentage of the smallest redo log group?

A. 15

B. 100

C. 50

D. 90

E. None of the above; the distance is relative to the size of the largest redo log group.

2. A database user tries to add a new row to a table, but the tablespace where the table resides
is out of space. This type of failure is considered a failure, and the DBA can
solve this problem by .

A. user error; providing additional user privileges

B. user error; increasing the user’s quota

C. statement failure; enabling resumable-space allocation

D. statement failure; changing the application logic

3. Which of the following initialization parameters controls the mean time to recover the
database, in seconds, after an instance failure?

A. FAST_START_IO_TARGET

B. LOG_CHECKPOINT_TIMEOUT

C. FAST_START_MTTR_TARGET

D. MTTR_TARGET_ADVICE

E. FAST_START_TARGET_MTTR

4. What background process frees up locks and rolls back uncommitted changes for an abnor-
mally disconnected session?

A. ORB0

B. RBAL

C. SMON

D. PMON

5. Which of the following is not an example of a user-process failure?

A. A user’s PC suddenly reboots.

B. The network or an application develops problems.

C. The DBA kills the user session.

D. Users terminate SQL*Plus without logging out.

95127c16.indd 929 2/17/09 3:03:57 PM

930 Chapter 16 N Recovering the Database

6. Which of the following can help prevent database network failures? (Choose all that apply.)

A. Configure a backup listener process on the server.

B. Open more than one session when updating the database.

C. Configure multiple network cards on the server.

D. Create a standby database.

7. Identify the statement that is not true regarding the loss of a control file.

A. A damaged control file can be repaired by using one of the remaining undamaged con-
trol files, assuming there are at least two copies of the control file.

B. The missing or damaged control file can be replaced while the instance is still active.

C. You can temporarily run the instance with one fewer control file, as long as you
remove one of the references to the missing control file in the spfile or init.ora file.

D. An instance typically fails when one of the multiplexed control files is lost or damaged.

8. Which failures can be detected by the Data Recovery Advisor, which then provides repair
recommendations? (Choose all that apply.)

A. Instance failure

B. Accidental deletion of a data file

C. Disk containing one redo log member is offline

D. User accidentally dropped a table

9. The instance can still be started even if some data files are missing; this rule does not apply
to which tablespaces? (Choose all that apply.)

A. USERS

B. SYSTEM

C. TEMP

D. SYSAUX

E. UNDO

10. Select the statement that is not true regarding media failure. A media failure occurs when

A. the network card on the server fails.

B. the DBA accidentally deletes one of the data files for the SYSTEM tablespace.

C. there is a head crash on all physical drives in the RAID controller box.

D. a corrupted track on a CD containing a read-only tablespace causes a query to fail.

11. Choose the correct statement about the Data Recovery Advisor.

A. The Data Recovery Advisor is a stand-alone tool.

B. The Data Recovery Advisor does not support RAC databases.

C. The CHANGE FAILURE command can be used in SQL*Plus session.

D. The REPAIR FAILURE command works only after LIST FAILURE.

95127c16.indd 930 2/17/09 3:03:57 PM

Review Questions 931

12. To recover a data file from the SYSTEM or UNDO tablespace, the instance must be in which
database state?

A. NOMOUNT

B. OPEN

C. ABORT

D. MOUNT

13. The STATUS column of the dynamic performance view V$LOGFILE contains what value if
one of the redo log file group members has been lost because of a media failure?

A. INVALID

B. STALE

C. DELETED

D. The column contains a NULL value.

14. Place the following events or actions leading up to and during instance recovery in the cor-
rect order.

1. The database is opened and available.

2. Oracle uses undo segments in the undo tablespace to roll back uncommitted
transactions.

3. The DBA issues the STARTUP command at the SQL*Plus prompt.

4. Oracle applies the information in the online redo log files to the data files.

A. 4, 3, 2, 1

B. 3, 4, 1, 2

C. 2, 1, 3, 4

D. 2, 1, 4, 3

E. 3, 2, 4, 1

F. 3, 4, 2, 1

15. You noticed that when your instance crashes, it takes a long time to start up the database.
Which advisor can be used to tune this situation?

A. The Undo Advisor

B. The SQL Tuning Advisor

C. The Database Tuning Advisor

D. The MTTR Advisor

E. The Instance Tuning Advisor

16. If a data file is missing when the instance is started, where is the error message recorded?

A. Only in the alert log.

B. All missing files are returned directly to the administrator in the SQL*Plus session.

C. The first missing file is returned directly to the administrator in the SQL*Plus session,
and the rest of the missing files are identified in V$RECOVER_FILE.

D. Only in the alert log and in the DBWR background-process trace files.

95127c16.indd 931 2/17/09 3:03:57 PM

932 Chapter 16 N Recovering the Database

17. In ARCHIVELOG mode, the loss of a data file for any tablespace other than the SYSTEM or
UNDO tablespace affects which objects in the database?

A. The loss affects only objects whose extents reside in the lost data file.

B. The loss affects only the objects in the affected tablespace, and work can continue in
other tablespaces.

C. The loss will not abort the instance but will prevent other transactions in any
tablespace other than SYSTEM or UNDO until the affected tablespace is recovered.

D. The loss affects only those users whose default tablespace contains the lost or damaged
data file.

18. Which dynamic performance view shows the data files either needing media recovery or
missing at instance startup?

A. V$RECOVER_FILE

B. V$DATAFILE

C. V$TABLESPACE

D. V$RECOVERY_FILE_DEST

E. V$RECOVERY_FILE_STATUS

19. A fire breaks out in the server room near the routers, and the operations manager cuts off
power to all servers, including the database servers. Before the fire is put out, the disk drive
containing the SYSTEM tablespace and both network cards on the Oracle Database 11g
server are destroyed. The user SCOTT was about to create a new table, but the connection
was dropped after the power was disconnected from the server. This scenario is primarily
an example of what kind of failure?

A. Network

B. Instance

C. Statement

D. Media

E. User error

F. User process

20. Which of the following conditions prevents the instance from progressing through the
NOMOUNT, MOUNT, and OPEN states?

A. One of the redo log file groups is missing a member.

B. The instance was previously shut down uncleanly with SHUTDOWN ABORT.

C. Either the spfile or init.ora file is missing.

D. One of the five multiplexed control files is damaged.

E. The USERS tablespace is offline, with one of its data files deleted.

95127c16.indd 932 2/17/09 3:03:57 PM

Answers to Review Questions 933

Answers to Review Questions
1. D. The distance (in bytes) between the checkpoint position in a redo log group and the end

of the current redo log group can never be more than 90 percent of the size of the smallest
redo log group.

2. C. The failure of one statement is considered a statement failure, and one way to solve the
problem is to enable resumable-space allocation. When resumable space is enabled, Oracle
generates an alert and places the session in a suspended state.

3. C. The parameter FAST_START_MTTR_TARGET specifies the desired time, in seconds, to
recover a single instance from a crash or instance failure. The parameters LOG_CHECKPOINT_
TIMEOUT and FAST_START_IO_TARGET can still be used in Oracle 11g but should be used
only together with an advanced-tuning scenario or for compatibility with older versions of
Oracle. MTTR_TARGET_ADVICE and FAST_START_TARGET_MTTR are not valid initialization
parameters.

4. D. The PMON process periodically polls server processes to make sure their sessions are
still connected.

5. C. A DBA’s disconnection of a session is an intentional process termination, not a failure.
If a user’s PC reboots, the user does not get a chance to log off, and the session is cleaned
up by PMON; similarly, disconnecting from the application or SQL*Plus before logging out
is considered a user-process failure. A network problem can prematurely disconnect a user
session, causing a user-process failure. In all cases, PMON performs the session cleanup,
whether the disconnection was intentional or not.

6. A, C. In addition to configuring a backup listener process and installing multiple network
cards, you can implement connect-time failover and a backup network connection to reduce
the possibility of network failures.

7. B. The instance must be shut down, if it is not already down, to repair or replace the missing
or damaged control file.

8. B, C. Media failure, physical corruption, logical corruption, and missing data files all can
be identified by the Data Recovery Advisor, which also provides recommendations for repair.

9. B, E. If a tablespace is taken offline because a data file is missing, the instance can still be
started as long as the missing data file does not belong to the SYSTEM or UNDO tablespace.

10. A. If a network card fails, the failure type is network; the actual media containing the
database files are not affected.

11. B. The Data Recovery Advisor in Oracle 11g Release 1 does not support RAC databases.
It is integrated with EM Database Control and with RMAN. CHANGE FAILURE and other
commands can be executed using RMAN. The ADVISE FAILURE command must be run
before you can perform REPAIR FAILURE.

95127c16.indd 933 2/17/09 3:03:57 PM

934 Chapter 16 N Recovering the Database

12. D. Unlike recovery of non–system-critical tablespaces other than SYSTEM or UNDO that can
be recovered with the database in OPEN state, the database must be in MOUNT state to recover
either the SYSTEM or UNDO tablespace.

13. A. If the redo log file group member has been lost because of a media failure or inadvertent
deletion, the STATUS column is set to INVALID when an attempt is made to write redo infor-
mation to that member.

14. B. Instance recovery, also known as crash recovery, occurs when the DBA attempts to open
the database but the files were not synchronized to the same SCN when the database was
shut down. Once the DBA issues the STARTUP command, Oracle uses information in the redo
log files to restore the data files (including the undo tablespace’s data files) to the state before
the instance failure. Oracle then uses undo data in the undo tablespace after the database
has been opened and made available to users to roll back uncommitted transactions.

15. D. The MTTR Advisor can tell the DBA the most effective value for the FAST_START_
MTTR_TARGET parameter. This parameter specifies the maximum time required in seconds
to perform instance recovery.

16. C. In addition to reporting the first missing file to the administrator and listing all the
missing files in the dynamic performance view V$RECOVER_FILE, the missing data file(s) are
noted in the DBWR background-process trace files.

17. B. The loss of one or more of a tablespace’s data files does not prevent other users from
doing their work in other tablespaces. Recovering the affected data files can continue while
the database is still online and available.

18. A. The dynamic performance view V$RECOVER_FILE contains a list of the data files that
either need media recovery or are missing when the instance is started.

19. B. The primary failure in this scenario is instance. Subsequently, a network failure will
occur when connections are attempted through the burned-out router. However, no con-
nections are possible until the network card in the server is replaced; the instance cannot
start because of a media failure on the disk containing the SYSTEM tablespace.

20. D. All copies of the control files as defined in the spfile or the init.ora file must be iden-
tical and available. If one of the redo log file groups is missing a member, a warning is
recorded in the alert log, but instance startup still proceeds. If the instance was previously
shut down with SHUTDOWN ABORT, instance recovery automatically occurs during startup.
Only an spfile or an init.ora file is needed to enter the NOMOUNT state, not both. If a
tablespace is offline, the status of its data files is not checked until an attempt is made to
bring it online; therefore, it will not prevent instance startup.

95127c16.indd 934 2/17/09 3:03:58 PM

Chapter

17
Moving Data and
Using EM Tools

OraclE DaTabasE 11g:
aDMinisTraTiOn i ExaM ObjEcTivEs
cOvErED in This chapTEr:

Moving DataÛÛ

Describe and use methods to move data (Directory objects, ÛN

SQL*Loader, External Tables)

Explain the general architecture of Oracle Data PumpÛN

Use Data Pump Export and Import to move data between ÛN

Oracle databases

Intelligent Infrastructure EnhancementsÛÛ

Use the Enterprise Manager Support WorkbenchÛN

Managing PatchesÛN

95127c17.indd 935 2/17/09 3:10:37 PM

As a DBA, you are often required to move data between
databases, extract data, or load data received from external
sources. Oracle 11g provides tools to move data. You can

use these tools to back up data from a table or a schema before making changes for quick
recovery. Oracle Data Pump is a high-performance data-movement tool that you can use to
unload and load data between Oracle databases, and you can use the SQL*Loader tool to
load data received from external sources such as flat files.

In this chapter you will also learn about contacting Oracle Support through Enterprise
Manager Support Workbench. EM Support Workbench is new in Oracle 11g and can be
used to examine a database problem and contact Oracle Support for a resolution. EM can
also alert you when database patches are ready. You will learn to use EM to stage and
apply a patch.

Understanding Data Pump
The Data Pump facility is a high-speed mechanism for transferring data or metadata
from one database to another or from operating-system files. Data Pump employs direct
path unloading and direct path loading technologies. Unlike the older export and import
programs (exp and imp), which operated on the client side of a database session, the Data
Pump facility runs on the server. Thus, you must use a database directory to specify dump-
file and log-file locations.

You can use Data Pump to copy data from one schema to another between two data-
bases or within a single database. You can also use it to extract a logical copy of the entire
database, a list of schemas, a list of tables, or a list of tablespaces to portable operating-
system files. Data Pump can also transfer or extract the metadata (DDL statements) for a
database, schema, or table.

You can call Data Pump from the command-line programs expdp and impdp or through
the DBMS_DATAPUMP PL/SQL package, or you can invoke it from EM.

Data Pump export extracts data and metadata from your database, and Data Pump
import loads this extracted data into the same database or into a different database, option-
ally transforming metadata along the way. These transformations let you, for example, copy
tables from one schema to another or remap a tablespace from one database to another.

These are some of the key features of Data Pump:

A fine-grained object selection using ÛN INCLUDE and EXCLUDE options

An option to specify a lower-compatibility version so only supported object types are ÛN

exported

95127c17.indd 936 2/17/09 3:10:38 PM

Understanding Data Pump 937

The ability to perform export and import in using parallel processesÛN

The ability to detach and attach to a job from the client session, allowing the DBA to ÛN

close the export/import session and yet have the ability to administer the jobs

An option to change target table names, tablespace names, and schema namesÛN

Another option to compress metadata or data or both during exportÛN

A tablespace metadata export to support the transportable tablespace feature of the ÛN

database

An option to append data to an existing table or to truncate and load data to an exist-ÛN

ing table

The automatic use of direct path export whenever possibleÛN

The ability to copy data from one database to another using a networkÛN

The ability to specify a sample percentage to unload only a subset of dataÛN

The ability to monitor job progress; job status can be queried from the database or ÛN

using EM

An option to restart or terminate failed export and import jobsÛN

Architecture of Data Pump
In Oracle 11g Data Pump, the database does all the work. This is a major deviation from
the architecture of export/import utilities, which previously ran as clients and did the major
part of the work. The dump files for export/import were stored at the client, whereas the
Data Pump files are stored at the server. Figure 17.1 shows the Data Pump architecture.

Data Pump Components
Data Pump consists of the following components:

Data Pump API DBMS_DATAPUMP is the PL/SQL API for Data Pump, which is the engine.
Data Pump jobs are created and monitored using this API.

Metadata API The DBMS_METADATA API provides the database object definition to the Data
Pump processes.

Client Tools Data Pump client tools expdp and impdp use the procedures provided by the
DBMS_DATAPUMP package. These tools make calls to the Data Pump API to initiate and moni-
tor Data Pump operations.

Data-movement APIs Data Pump uses the Direct Path API (DPAPI) to move data. Certain
circumstances do not allow the use of DPAPI; in those cases, the Oracle external table with
the ORACLE_DATADUMP access driver API is used.

95127c17.indd 937 2/17/09 3:10:38 PM

938 Chapter 17 N Moving Data and Using EM Tools

F i gU r E 17.1 Data Pump architecture

Export Dump
Client: expdp

Import Dump
Client: impdp

Other Clients:
Enterprise
Manager,
SQL*Plus

Metadata API:
DBMS_METADATA

Database

DBMS_DATAPUMP: Data and Metadata Movement Engine

Direct Path API
External Table

ORACLE_DATAPUMP
API

Data Pump Processes
Oracle Data Pump jobs, once started, are performed by various processes on the database
server. The following are the processes involved in the Data Pump operation:

Client process This process is initiated by the client utility—expdp, impdp, or other clients—
to make calls to the Data Pump API. Since Data Pump is completely integrated into the
database, once the Data Pump job is initiated, this process is not necessary for the progress
of the job.

Shadow process When a client logs into the Oracle Database, a foreground process is
created (a standard feature of Oracle). This shadow process services the client data dump API
requests. This process creates the master table and creates Advanced Queries (AQ) queues
used for communication. Once the client process ends, the shadow process goes away too.

Master control process (MCP) The master control process controls the execution of the
Data Pump job; there is one MCP per job. MCP divides the Data Pump job into various
metadata and data-load or -unload jobs and hands them over to the worker processes. The
MCP has a process name of the format <ORACLE_SID>_DMnn_<PROCESS_ID>. It maintains the
job state, job description, restart information, and file information in the master table.

95127c17.indd 938 2/17/09 3:10:38 PM

Understanding Data Pump 939

Worker process The MCP creates the worker processes based on the value of the PAR-
ALLEL parameter. The workers perform the tasks requested by the MCP, mainly loading
or unloading data and metadata. The worker processes have the format <ORACLE_SID>_
DWnn_<PROCESS_ID>. The worker processes maintain the current status in the master table
that can be used to restart a failed job.

Parallel query (PQ) processes The worker processes can initiate parallel-query processes
if an external table is used as the data-access method for loading or unloading. These are
standard parallel-query slaves of the parallel-execution architecture.

Oracle Data Pump cannot be used to load data into a database from data
exported using the exp utility.

Let’s consider the example of an export Data Pump operation and see all the activities
and processes involved. Say user A invokes the expdp client, which initiates the shadow pro-
cess. The client calls the DBMS_DATAPUMP.OPEN procedure to establish the kind of export to
be performed. The OPEN call starts the MCP process and creates two AQ queues.

The first queue is the status queue, used to send the status of the job, which includes log-
ging information and errors. Clients interested in the status of the job can query this queue.
This is strictly a unidirectional queue—the MCP posts the information to the queue, and
the clients consume the information. The second queue is the command-and-control queue,
which is used to control the worker processes established by the MCP and to perform
API commands and file requests. This is a bidirectional queue where the MCP listens and
writes. The commands are sent to this queue by the DBMS_DATAPUMP methods or by using
the parameters of the expdp client.

Once all the components (parameters and filters) of the job are defined, the client (expdp)
invokes DBMS_DATAPUMP.START_JOB. Based on the number of parallel processes requested,
the MCP starts the worker processes. The MCP directs one of the worker processes to do
the metadata extraction using the DBMS_METADATA API.

During the operation, a master table is maintained in the schema of the user who initi-
ated the Data Pump export. The master table has the same name as the name of the Data
Pump job. This table maintains one row per object with status information. In the event of
a failure, Data Pump uses the information in this table to restart the job. The master table
is the heart of every Data Pump operation; it maintains all the information about the job.
Data Pump uses the master table to restart a failed or suspended job. The master table is
dropped (by default) when the Data Pump job finishes successfully.

The master table is written to the dump file set as the last step of the export dump opera-
tion and is removed from the user’s schema. For an import dump operation, the master table
is loaded from the dump file set to the user’s schema as the first step and is used to sequence
the objects being imported.

While the export job is underway, the original client who invoked the export job can detach
from the job without aborting the job. This is especially useful when performing long-running
data export jobs. Users can attach the job at any time using the DBMS_DATAPUMP methods
and query the status or change the parallelism of the job.

95127c17.indd 939 2/17/09 3:10:38 PM

940 Chapter 17 N Moving Data and Using EM Tools

Since the master table is created in the Data Pump user’s schema as a
table, if there is an existing table in the schema with the Data Pump job
name, the job fails. The user must have appropriate privileges to create the
table and have appropriate tablespace quotas.

Data Access Methods
Data Pump chooses the most appropriate data-access method. Two methods are supported:
direct path access and external table access. Direct path export has been supported since
Oracle 7.3. External tables were introduced in Oracle9i, and support for writing to external
tables has been available since Oracle 10g. Data Pump provides an external-tables access
driver (ORACLE_DATAPUMP) that can be used to read and write files. The format of the file is
the same as the direct path methods; hence, it’s possible to load data that is unloaded in
another method. Data Pump uses the Direct Load API whenever possible. The following
are the exceptions when an external tables method will be used:

Tables with fine-grained access control are enabled in insert and select operations.ÛN

A domain index exists for a ÛN LOB column.

A global index on multipartition table exists during a single-partition load.ÛN

Clustered table or table has an active trigger during import.ÛN

A table contains ÛN BFILE columns.

A referential integrity constraint is present during import.ÛN

A table contains a ÛN VARRAY column with an embedded opaque type.

Loading and unloading very large tables and partitions, where the ÛN PARALLEL SQL
clause can be used to an advantage.

Loading tables that are partitioned differently at load time and unload time.ÛN

Using Data Pump Clients
Oracle 11g comes with the expdp utility to invoke Data Pump for export and comes with
impdp for import. The Data Pump export utility (expdp) unloads data and metadata to a set
of OS files called dump files. The Data Pump import utility (impdp) loads data and meta-
data stored in an export dump file to a target database. expdp and impdp accept parameters
that are then passed to the DBMS_DATAPUMP program. The command-line executable name
for Data Pump export is expdp and for Data Pump import is impdp on Windows as well as
Unix platforms. For a user to invoke expdp/impdp, they need to set up a directory where the
dump files will be stored and they must have appropriate privileges to perform Data Pump
export/import. In the next section, I will discuss how to set up the export dump location.

95127c17.indd 940 2/17/09 3:10:38 PM

Understanding Data Pump 941

Setting Up the Dump Location
Since Data Pump is server-based, directory objects must be created in the database where
the Data Pump files will be stored. Directory objects are named directory locations on
the database server representing the physical location on the server’s file system. Directo-
ries are used with several database features, including BFILEs, external tables, utl_file,
SQL*Loader, and Data Pump.

The directory object contains the location of a specific operating-system directory. By
using a named directory object, you do not have to hard-code the directory path in pro-
grams, and you get file-management flexibility.

Under Unix, you create directories with the CREATE DIRECTORY statement, like this:

CREATE DIRECTORY dump_dir AS ‘/oracle/data_pump/dumps’;

CREATE DIRECTORY log_dir AS ‘/oracle/data_pump/logs’;

Under Windows, you create directories like this:

CREATE DIRECTORY dpump_dir AS ‘G:\datadumps’;

Directories are not schema objects, like tables or synonyms, because they are not owned
by a schema. Instead, directories are like profiles or roles in that they are owned by the
database. To control access to a directory, you need to grant the READ or WRITE object privi-
lege on that directory, like this:

GRANT read,write ON DIRECTORY dump_dir TO PUBLIC;

To create directories, you must have the CREATE ANY DIRECTORY system privilege. By
default, only the users SYSTEM and SYS have this privilege. Be careful in granting this system
privilege to users, because the database employs the operating-system credentials of the
database-instance owner.

Directory objects are owned by the SYS user; thus, the directory names
must be unique across the database.

The user executing Data Pump must have been granted permissions on the directory.
READ permission is required to import, and WRITE permission is required to export and to
create log files or SQL files.

Note that the oracle user (who owns the software installation and database files) must
have read and write OS privileges on the directory. The user SCOTT, for example, need not
have any OS privileges on the directory for Data Pump to succeed.

A default directory can be created for Data Pump operations in the database. Privileged
users (with the EXP_FULL_DATABASE or IMP_FULL_DATABASE privilege) need not specify a
directory object name when performing the Data Pump operation. The name of the default
directory must be DATA_PUMP_DIR. Also, the privileged users need not have explicit READ or
WRITE permission on DATA_PUMP_DIR.

95127c17.indd 941 2/17/09 3:10:38 PM

942 Chapter 17 N Moving Data and Using EM Tools

Using EM Database Control, you can create and edit directory objects. On the Database
Control Schema page, click Directory Objects under Database Objects. Figure 17.2 shows
the Directory Objects screen that appears.

F i gU r E 17. 2 Directory Objects screen of EM

Click the Edit button to change the physical directory. You can also use the Delete but-
ton to delete an existing directory and the Create button to create a new directory.

Data Pump can write three types of files to the OS directory defined in the database.
Remember that absolute paths are not supported; Data Pump can write only to a directory
defined by a directory database object. The file types are as follows:

Dump files These contain data and metadata information.

Log files These record the standard output to a file and contain job progress and status
information.

SQL files Data- dump import can extract the metadata information from a dump file,
which can be used to create database objects without using the Data Pump import utility.

You can specify the location of the files to the Data Pump clients using three methods
(given in the order of precedence):

Prefix the filename with the directory name separated by a colon; for example, ÛN

DUMPFILE=dumplocation:myfile.dmp.

Use the ÛN DIRECTORY parameter on the OS environment.

Define the ÛN DATA_DUMP_DIR directory in the database for privileged users.

The export and import done using the expdp and impdp tools can have different modes
based on the requirement. The next section discusses this.

95127c17.indd 942 2/17/09 3:10:38 PM

Understanding Data Pump 943

Specifying Export and Import Modes
Export and import using the Data Pump clients can be performed in five different modes to
unload or load different portions of the database. When performing the dump-file import,
specifying the mode is optional; when no mode is specified, the entire dump file is loaded
with the mode automatically set to the one used for export.

Table 17.1 describes the export and import modes.

Ta b lE 17.1 Export and Import Modes in Data Pump

Mode Description Export Import

Database Performed by speci-
fying the FULL=Y
parameter

The export user
requires the EXP_FULL_
DATABASE role.

The import user requires
the IMP_FULL_DATABASE
role.

Tablespace Performed by
specifying the
TABLESPACES
parameter

Data and metadata
for only those objects
contained in the
specified tablespaces
are unloaded. The export
user requires the EXP_
FULL_DATABASE role.

All objects contained in
the specified tablespaces
are loaded. The import
user requires the IMP_
FULL_DATABASE privilege.
The source dump file can
be exported in database,
tablespace, schema, or
table mode.

Schema Performed by speci-
fying the SCHEMAS
parameter. This is the
default mode

Only objects belonging to
the specified schema are
unloaded. The EXP_FULL_
DATABASE role is required
to specify a list of schemas.

All objects belonging to
the specified schema are
loaded. The source can be a
database or schema-mode
export. The IMP_FULL_
DATABASE role is required to
specify a list of schema.

Table Performed by speci-
fying the TABLES
parameter

Only the specified table,
its partitions, and its
dependent objects are
unloaded. The export user
must have the SELECT
privilege on the tables.

Only the specified table,
its partitions, and its
dependent objects are
loaded. This requires the
IMP_FULL_DATABASE role
to specify tables belong-
ing to a different user.

Transport
tablespace

Performed by
specifying the
TRANSPORT_
TABLESPACES
parameter

Only metadata for tables
and their dependent
objects within the speci-
fied set of tablespaces are
unloaded. Use this mode to
transport tablespaces from
one database to another.

Metadata from a trans-
port tablespace export is
loaded.

95127c17.indd 943 2/17/09 3:10:38 PM

944 Chapter 17 N Moving Data and Using EM Tools

In a database-mode export, the entire database is exported to operating-system files,
including user accounts, public synonyms, roles, and profiles. In a schema-mode export,
all data and metadata for a list of schemas is exported. At the most granular level is the
table-mode export, which includes the data and metadata for a list of tables. A tablespace-
mode export extracts both data and metadata for all objects in a tablespace list as well as
any object dependent on those in the specified tablespace list. Therefore, if a table resides in
your specified tablespace list, all its indexes are included whether or not they also reside in
the specified tablespace list. In each of these modes, you can further specify that only data
or only metadata be exported. The default is to export both data and metadata.

With some objects, such as indexes, only the metadata is exported; the actual internal
structures contain physical addresses and are always rebuilt on import.

The files created by a Data Pump export are called dump files, and one or more of
these files can be created during a single Data Pump export job. Multiple files are created
if your Data Pump job has a parallel degree greater than 1 or if a single dump file exceeds
the filesize parameter. All the export dump files from a single Data Pump export job are
called a dump-file set.

Using expdp
You use the expdp utility to perform Data Pump exports. Any user can export objects or a
complete schema owned by the user without any additional privileges. Nonprivileged users
must have WRITE permission on the directory object and must specify the DIRECTORY param-
eter or specify the directory object name along with the dump filename.

Here is an example to perform an export by user SCOTT. Since Scott is not a privileged
user, he must specify the DIRECTORY object name.
$ expdp scott/tiger

Export: Release 11.1.0.6.0 - Production on Saturday, 15 November, 2008
13:50:05

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

ORA-39002: invalid operation

ORA-39070: Unable to open the log file.

ORA-39145: directory object parameter must be specified and non-null

Let’s create a directory for user SCOTT and grant read and write privileges on this
directory:

SQL> CREATE DIRECTORY dumplocation AS ‘/u02/dpump’;

Directory created.

95127c17.indd 944 2/17/09 3:10:38 PM

Understanding Data Pump 945

SQL> GRANT READ, WRITE on DIRECTORY dumplocation TO scott;

Grant succeeded.

Now, let’s try the export specifying the directory:

$ expdp scott/tiger directory=dumplocation

Export: Release 11.1.0.6.0 - Production on Saturday, 15 November, 2008
16:04:22

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

FLASHBACK automatically enabled to preserve database integrity.

Starting “SCOTT”.”SYS_EXPORT_SCHEMA_01”: scott/********
directory=dumplocation

Estimate in progress using BLOCKS method...

Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

Total estimation using BLOCKS method: 192 KB

Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA

Processing object type SCHEMA_EXPORT/TABLE/TABLE

Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT

Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS

Processing object type SCHEMA_EXPORT/TABLE/COMMENT

Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS

Processing object type SCHEMA_EXPORT/POST_SCHEMA/PROCACT_SCHEMA

. . exported “SCOTT”.”DEPT” 5.914 KB 4 rows

. . exported “SCOTT”.”EMP” 8.570 KB 14 rows

. . exported “SCOTT”.”SALGRADE” 5.867 KB 5 rows

. . exported “SCOTT”.”BONUS” 0 KB 0 rows

Master table “SCOTT”.”SYS_EXPORT_SCHEMA_01” successfully loaded/unloaded

**

Dump file set for SCOTT.SYS_EXPORT_SCHEMA_01 is:

 /u02/dpump/expdat.dmp

Job “SCOTT”.”SYS_EXPORT_SCHEMA_01” successfully completed at 16:04:55

$

Since you did not specify any other parameters, expdp used default values for the file-
names (expdat.dmp and export.log), did schema-level export (login schema), calculated
job estimation using the blocks method, used a default job name (SYS_EXPORT_SCHEMA_01),
and exported both data and metadata.

95127c17.indd 945 2/17/09 3:10:38 PM

946 Chapter 17 N Moving Data and Using EM Tools

Data Pump Export Parameters

You can use various parameters while invoking expdp. You can obtain a list of parameters
by specifying expdp help=y:

$ expdp help=y

Export: Release 11.1.0.6.0 - Production on Saturday, 15 November, 2008
16:54:49

Copyright (c) 2003, 2007, Oracle. All rights reserved.

The Data Pump export utility provides a mechanism for transferring data
objects

between Oracle databases. The utility is invoked with the following command:

 Example: expdp scott/tiger DIRECTORY=dmpdir DUMPFILE=scott.dmp

You can control how Export runs by entering the ‘expdp’ command followed

by various parameters. To specify parameters, you use keywords:

 Format: expdp KEYWORD=value or KEYWORD=(value1,value2,...,valueN)

 Example: expdp scott/tiger DUMPFILE=scott.dmp DIRECTORY=dmpdir
SCHEMAS=scott

 or TABLES=(T1:P1,T1:P2), if T1 is partitioned table

USERID must be the first parameter on the command line.

Keyword Description (Default)

--

ATTACH Attach to existing job, e.g. ATTACH [=job name].

COMPRESSION Reduce size of dumpfile contents where valid keyword.

 values are: ALL, (METADATA_ONLY), DATA_ONLY and NONE.

CONTENT Specifies data to unload where the valid keyword

 values are: (ALL), DATA_ONLY, and METADATA_ONLY.

DATA_OPTIONS Data layer flags where the only valid value is:

 XML_CLOBS-write XML datatype in CLOB format

DIRECTORY Directory object to be used for dumpfiles and logfiles.

DUMPFILE List of destination dump files (expdat.dmp),

 e.g. DUMPFILE=scott1.dmp, scott2.dmp, dmpdir:scott3.dmp.

ENCRYPTION Encrypt part or all of the dump file where valid keyword

 values are: ALL, DATA_ONLY, METADATA_ONLY,

 ENCRYPTED_COLUMNS_ONLY, or NONE.

ENCRYPTION_ALGORITHM Specify how encryption should be done where valid

 keyword values are: (AES128), AES192, and AES256.

ENCRYPTION_MODE Method of generating encryption key where valid keyword

 values are: DUAL, PASSWORD, and (TRANSPARENT).

95127c17.indd 946 2/17/09 3:10:38 PM

Understanding Data Pump 947

ENCRYPTION_PASSWORD Password key for creating encrypted column data.

ESTIMATE Calculate job estimates where the valid keyword

 values are: (BLOCKS) and STATISTICS.

ESTIMATE_ONLY Calculate job estimates without performing the export.

EXCLUDE Exclude specific object types, e.g. EXCLUDE=TABLE:EMP.

FILESIZE Specify the size of each dumpfile in units of bytes.

FLASHBACK_SCN SCN used to set session snapshot back to.

FLASHBACK_TIME Time used to get the SCN closest to the specified time.

FULL Export entire database (N).

HELP Display Help messages (N).

INCLUDE Include specific object types, e.g. INCLUDE=TABLE_DATA.

JOB_NAME Name of export job to create.

LOGFILE Log file name (export.log).

NETWORK_LINK Name of remote database link to the source system.

NOLOGFILE Do not write logfile (N).

PARALLEL Change the number of active workers for current job.

PARFILE Specify parameter file.

QUERY Predicate clause used to export a subset of a table.

REMAP_DATA Specify a data conversion function,

 e.g. REMAP_DATA=EMP.EMPNO:REMAPPKG.EMPNO.

REUSE_DUMPFILES Overwrite destination dump file if it exists (N).

SAMPLE Percentage of data to be exported;

SCHEMAS List of schemas to export (login schema).

STATUS Frequency (secs) job status is to be monitored where

 the default (0) will show new status when available.

TABLES Identifies a list of tables to export - one schema only.

TABLESPACES Identifies a list of tablespaces to export.

TRANSPORTABLE Specify whether transportable method can be used where

 valid keyword values are: ALWAYS, (NEVER).

TRANSPORT_FULL_CHECK Verify storage segments of all tables (N).

TRANSPORT_TABLESPACES List of tablespaces from which metadata will be
unloaded.

VERSION Version of objects to export where valid keywords are:

 (COMPATIBLE), LATEST, or any valid database version.

The following commands are valid while in interactive mode.

Note: abbreviations are allowed

Command Description
--
ADD_FILE Add dumpfile to dumpfile set.
CONTINUE_CLIENT Return to logging mode. Job will be re-started if idle.

95127c17.indd 947 2/17/09 3:10:39 PM

948 Chapter 17 N Moving Data and Using EM Tools

EXIT_CLIENT Quit client session and leave job running.
FILESIZE Default filesize (bytes) for subsequent ADD_FILE commands.
HELP Summarize interactive commands.
KILL_JOB Detach and delete job.
PARALLEL Change the number of active workers for current job.
 PARALLEL=<number of workers>.
REUSE_DUMPFILES Overwrite destination dump file if it exists (N).
START_JOB Start/resume current job.
STATUS Frequency (secs) job status is to be monitored where
 the default (0) will show new status when available.
 STATUS[=interval]
STOP_JOB Orderly shutdown of job execution and exits the client.
 STOP_JOB=IMMEDIATE performs an immediate shutdown of the
 Data Pump job.

$

FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive parameters.

The DUMPFILE parameter can specify more than one file. The filenames can be comma-
separated, or you can use the %U substitution variable. If you specify %U in the DUMPFILE file-
name, the number of files initially created is based on the value of the PARALLEL parameter.
Preexisting files that match the name of the files generated are not overwritten; an error
is flagged. To forcefully overwrite the files, use the REUSE_DUMPFILES=Y parameter. The
FILESIZE parameter determines the size of each file. Table 17.2 shows some examples.

You can specify all the parameters in a file and specify the filename with
the PARFILE parameter. The only exception is the PARFILE parameter
inside the parameter file. Recursive PARFILE is not supported.

The SAMPLE parameter is useful to get a subset of data unloaded from the source table.
Specify the percentage of rows that need to be unloaded using this parameter. The SAMPLE
parameter is not valid for network exports.

In the next section, I will discuss the impdp utility, which does the import from a dump
file created using expdp.

95127c17.indd 948 2/17/09 3:10:39 PM

Understanding Data Pump 949

Ta b lE 17. 2 Data Pump DUMPFILE Examples

Parameter Examples File Characteristics

DUMPFILE=exp%U.dmp
FILESIZE=200M

Initially the exp01.dmp file will be created; once the file is
200MB, the next file will be created.

DUMPFILE=exp%U_%U.dmp
PARALLEL=3

Initially three files will be created: exp01_01.dmp,
exp02_02.dmp, and exp03_03.dmp. Notice that every occur-
rence of the substitution variable is incremented each time.
Since there is no FILESIZE, no more files will be created.

DUMPFILE=DMPDIR1:exp%U.dmp,
DMPDIR2:exp%U.dmp
FILESIZE=100M

This method is especially useful if you do not have enough
space in one directory to perform the complete export job.
The dump files are stored in directories defined by DMPDIR1
and DMPDIR2.

Using impdp
The Data Pump import program impdp is the utility that can read and apply the dump file
created by the expdp utility. The directory permission and privileges for using impdp are
similar to those for expdp.

impdp has several modes of operation, including full, schema, table, and tablespace. In
the full mode, the entire content of an export file set is loaded. In a schema-mode import,
all content for a list of schemas in the specified file set is loaded. The specified file set for a
schema-mode import can be from either a database or a schema-mode export. With a table-
mode import, only the specified table and dependent objects are loaded from the export file
set. With a tablespace-mode import, all objects in the export file set that were in the specified
tablespace list are loaded.

With all these modes, the source can be a live database instead of a set of export files.
Table 17.3 shows the supported mapping of export mode to import mode.

Ta b lE 17. 3 Export to Import Modes

Source Export Mode Import Mode

Database
Schema
Table

Tablespace
Live database

Full

95127c17.indd 949 2/17/09 3:10:39 PM

950 Chapter 17 N Moving Data and Using EM Tools

Source Export Mode Import Mode

Database
Schema
Live database

Schema

Database
Schema
Table
Tablespace
Live database

Table

Database
Schema
Table
Tablespace
Live database

Tablespace

The IMP_FULL_DATABASE role is required if the source is a live database or the export ses-
sion required the EXP_FULL_DATABASE role.

Data Pump Import Parameters

You can use various parameters while invoking impdp. You can obtain a list of parameters
by specifying impdp help=y:

$ impdp help=y

Import: Release 11.1.0.6.0 - Production on Saturday, 15 November, 2008
21:13:53

Copyright (c) 2003, 2007, Oracle. All rights reserved.

The Data Pump Import utility provides a mechanism for transferring data
objects

between Oracle databases. The utility is invoked with the following command:

 Example: impdp scott/tiger DIRECTORY=dmpdir DUMPFILE=scott.dmp

You can control how Import runs by entering the ‘impdp’ command followed

by various parameters. To specify parameters, you use keywords:

 Format: impdp KEYWORD=value or KEYWORD=(value1,value2,...,valueN)

 Example: impdp scott/tiger DIRECTORY=dmpdir DUMPFILE=scott.dmp

USERID must be the first parameter on the command line.

Ta b lE 17. 3 Export to Import Modes (continued)

95127c17.indd 950 2/17/09 3:10:39 PM

Understanding Data Pump 951

Keyword Description (Default)

--

ATTACH Attach to existing job, e.g. ATTACH [=job name].

CONTENT Specifies data to load where the valid keywords are:

 (ALL), DATA_ONLY, and METADATA_ONLY.

DATA_OPTIONS Data layer flags where the only valid value is:

 SKIP_CONSTRAINT_ERRORS-constraint errors are not fatal.

DIRECTORY Directory object to be used for dump, log, and sql

files.

DUMPFILE List of dumpfiles to import from (expdat.dmp),

 e.g. DUMPFILE=scott1.dmp, scott2.dmp, dmpdir:scott3.dmp.

ENCRYPTION_PASSWORD Password key for accessing encryptß ed column data.

 This parameter is not valid for network import jobs.

ESTIMATE Calculate job estimates where the valid keywords are:

 (BLOCKS) and STATISTICS.

EXCLUDE Exclude specific object types, e.g. EXCLUDE=TABLE:EMP.

FLASHBACK_SCN SCN used to set session snapshot back to.

FLASHBACK_TIME Time used to get the SCN closest to the specified time.

FULL Import everything from source (Y).

HELP Display help messages (N).

INCLUDE Include specific object types, e.g. INCLUDE=TABLE_DATA.

JOB_NAME Name of import job to create.

LOGFILE Log file name (import.log).

NETWORK_LINK Name of remote database link to the source system.

NOLOGFILE Do not write logfile.

PARALLEL Change the number of active workers for current job.

PARFILE Specify parameter file.

PARTITION_OPTIONS Specify how partitions should be transformed where the

 valid keywords are: DEPARTITION, MERGE and (NONE)

QUERY Predicate clause used to import a subset of a table.

REMAP_DATA Specify a data conversion function,

 e.g. REMAP_DATA=EMP.EMPNO:REMAPPKG.EMPNO

REMAP_DATAFILE Redefine datafile references in all DDL statements.

REMAP_SCHEMA Objects from one schema are loaded into another schema.

REMAP_TABLE Table names are remapped to another table,

 e.g. REMAP_TABLE=EMP.EMPNO:REMAPPKG.EMPNO.

REMAP_TABLESPACE Tablespace object are remapped to another tablespace.

REUSE_DATAFILES Tablespace will be initialized if it already exists (N).

SCHEMAS List of schemas to import.

SKIP_UNUSABLE_INDEXES Skip indexes that were set to the Index Unusable state.

SQLFILE Write all the SQL DDL to a specified file.

STATUS Frequency (secs) job status is to be monitored where

 the default (0) will show new status when available.

95127c17.indd 951 2/17/09 3:10:39 PM

952 Chapter 17 N Moving Data and Using EM Tools

STREAMS_CONFIGURATION Enable the loading of Streams metadata

TABLE_EXISTS_ACTION Action to take if imported object already exists.

 Valid keywords: (SKIP), APPEND, REPLACE and TRUNCATE.

TABLES Identifies a list of tables to import.

TABLESPACES Identifies a list of tablespaces to import.

TRANSFORM Metadata transform to apply to applicable objects.

 Valid transform keywords: SEGMENT_ATTRIBUTES, STORAGE,

 OID, and PCTSPACE.

TRANSPORTABLE Options for choosing transportable data movement.

 Valid keywords: ALWAYS and (NEVER).

 Only valid in NETWORK_LINK mode import operations.

TRANSPORT_DATAFILES List of datafiles to be imported by transportable mode.

TRANSPORT_FULL_CHECK Verify storage segments of all tables (N).

TRANSPORT_TABLESPACES List of tablespaces from which metadata will be loaded.

 Only valid in NETWORK_LINK mode import operations.

VERSION Version of objects to export where valid keywords are:

 (COMPATIBLE), LATEST, or any valid database version.

 Only valid for NETWORK_LINK and SQLFILE.

The following commands are valid while in interactive mode.

Note: abbreviations are allowed

Command Description (Default)

--

CONTINUE_CLIENT Return to logging mode. Job will be re-started if idle.

EXIT_CLIENT Quit client session and leave job running.

HELP Summarize interactive commands.

KILL_JOB Detach and delete job.

PARALLEL Change the number of active workers for current job.

 PARALLEL=<number of workers>.

START_JOB Start/resume current job.

 START_JOB=SKIP_CURRENT will start the job after skipping

 any action which was in progress when job was stopped.

STATUS Frequency (secs) job status is to be monitored where

 the default (0) will show new status when available.

 STATUS[=interval]

STOP_JOB Orderly shutdown of job execution and exits the client.

 STOP_JOB=IMMEDIATE performs an immediate shutdown of the

 Data Pump job.

$

95127c17.indd 952 2/17/09 3:10:39 PM

Understanding Data Pump 953

You must include one parameter to specify the mode, either full, schemas, tables, or
tablespaces. You can include several other parameters on the command line or place them
in a file and use the parfile= parameter to instruct impdp where to find them. Here are
some examples of imports:

Read the dump file ÛN FULL.DMP and extract all DDL, placing it in the file FULL.SQL. Do
not write a log file.

impdp system/password full=y dumpfile=dumplocation:FULL.DMP

 nologfile=y sqlfile= dumplocation:FULL.SQL

Read the data accessed via the database link ÛN PROD, and import schema HR into schema
HR_TEST, importing only metadata, writing the log file to the database directory chap7,
and naming this log file HR_TEST.imp.

impdp system/password network_link=prod schemas=”HR”

 remap_schema=”HR:HR_TEST” content=metadata_only

 logfile= dumplocation:HR_TEST.imp

Read the dump file ÛN HR.DMP, and write to the SQL file HR_proc_give.sql all the DDL to
create any procedures with the name LIKE ‘GIVE%’. Do not write a log file.

impdp system/password full=y dumpfile= dumplocation:HR.DMP

 nologfile=y sqlfile= dumplocation:HR_proc_give.SQL

 include=PROCEDURE:”LIKE ‘GIVE%’”

The combinations of parameters you can use in copying data and metadata give you, the
DBA, flexibility in administering your databases.

When using the schema-level import with the SCHEMAS parameter, if the
schema does not exist in the target database, the import operation creates
it with the same attributes from the source. The schema created by the
import operation will need to have the password reset.

You can use the CONTENT, INCLUDE, and EXCLUDE parameters in the impdp utility to filter
the metadata objects. Their behavior is the same as in the expdp utility. I’ll discuss them in
detail in the “Data and Metadata Filters” section. In the next section, I will discuss meth-
ods to use a different target for tablespaces, schemas, and data files.

Import Transformations

While performing the import, you can specify a different target name for data files,
tablespaces, or schemas. These transformations are possible because the object metadata is
stored in the dump file as XML. The REMAP_ parameters are used to specify this. When any
one of the three REMAP_ parameters is used, Data Pump makes transformations to the meta-
data DDL during import. The IMP_FULL_DATABASE role is required to use these parameters.
You can use these parameters multiple times if there is more than one transformation to

95127c17.indd 953 2/17/09 3:10:39 PM

954 Chapter 17 N Moving Data and Using EM Tools

be made, but the same source cannot be repeated more than once. The following are the
parameters you can use to specify a different target name for each type of object:

REMAP_DATAFILES    Using this parameter, you can specify a different name for the data file.
The filename referenced could be in a CREATE TABLESPACE, CREATE LIBRARY, or CREATE
DIRECTORY statement. REMAP_DATAFILES is especially useful when performing a full data-
base import, when the tablespaces are being created by impdp and the source directories do
not exist in the target database server, or when the source and target platforms are different
(VMS, Windows, Unix). The syntax is as follows:

REMAP_DATAFILE=source_datafile:target_datafile

REMAP_SCHEMA    Using this parameter, you can load all the objects belonging to the source
schema to a target schema. Multiple source schemas can map to the same target schema. If
the target schema specified does not exist, the import operation creates the schema and per-
forms the load. The syntax is as follows:

REMAP_SCHEMA=source_schema:target_schema

REMAP_TABLE Using this parameter, you can rename a table while performing the import.
Only the table is renamed; its dependent indexes, triggers, constraints, and columns are not
renamed. The syntax is as follows:

REMAP_TABLE=source_table:target_table

REMAP_TABLESPACE    Using this parameter, you can create the objects that belong to a
tablespace in the source to another in the target. The syntax is as follows:

REMAP_TABLESPACE=source_tablespace:target_tablespace

TRANSFORM    Using the TRANSFORM parameter, you can specify that the storage clause should
not be generated in the DDL for import. This is useful if the storage characteristics of the
source and target databases are different. TRANSFORM has the following syntax:

TRANSFORM=name:boolean_value[:object_type]

The name of the transform can be either SEGMENT_ATTRIBUTES or STORAGE. STORAGE removes
the STORAGE clause from the CREATE statement DDL, whereas SEGMENT_ATTRIBUTES
removes physical attributes, tablespaces, logging, and storage attributes. boolean_value can
be Y or N; the default is Y. The type of object is optional; the valid values are TABLE and INDEX.

For example, if you want to ignore the storage characteristics during the import and use
the defaults for the tablespace, you can do the following:

impdp dumpfile=scott.dmp transform=storage:N:table exclude=indexes

The next example will remove all the segment attributes; the import will use the user’s
default tablespace and its default storage characteristics:

impdp dumpfile=scott.dmp transform=segment_attributes:N

In the next section, I will discuss how data can be copied from one database to another
without using a dump file.

95127c17.indd 954 2/17/09 3:10:39 PM

Understanding Data Pump 955

Network-Mode Import
NETWORK_LINK enables the network-mode import using a database link. The database link
must be created before performing the import. Export is performed on the source database
based on the various parameters; the data and metadata are passed to the source database
using the database link and loaded. To get a consistent export from the source database,
you can use the FLASHBACK_SCN or FLASHBACK_TIME parameter.

Using FLASHBACK_SCN, FLASHBACK_TIME, ESTIMATE, or TRANSPORT_TABLESPACES requires
the NETWORK_LINK parameter to also be specified. Here is an example of how to copy the
SCOTT schema in the source (remote) database to LARRY in the target (local) database. Scott’s
objects are stored in the USERS tablespace; in the target, you will create Larry’s objects in
the EXAMPLE tablespace. The database link name is NEW_DB.

$ impdp schemas=scott network_link=new_db remap_schema=scott:larry

 remap_tablespace=users:example

The network mode import is different from using SQL*Net to perform the
import: impdp username/password@database.

In the next example, data is read via the database link PROD, and it imports only the data
from HR.DEPARTMENTS into schema HR_TEST.DEPARTMENTS. Write a log file to file DEPT_DATA.log.

impdp system/password network_link=prod schemas=”HR”

 remap_schema=”HR:HR_TEST” content=data_only

 include=TABLE:”= ‘DEPARTMENTS’”

 logfile= dumplocation:HR_TEST.imp

Using network Mode to refresh Test Data from production

Consider that you periodically refresh the Oracle10g test database with production data.
Since you have to preserve all the grants on the test schema, you can perform the follow-
ing steps using SQL*Plus and exp/imp tools to perform the data refresh:

1. Disable all the foreign keys.

2. Disable all the primary keys.

3. Drop the indexes so that the import goes faster.

4. Truncate the tables.

5. Export the data from the production database.

95127c17.indd 955 2/17/09 3:10:39 PM

956 Chapter 17 N Moving Data and Using EM Tools

 6. Import the data to the test database using parameters:

COMMIT=Y

BUFFERS=10485760

FROMUSER=SCHEMAPROD

TOUSER=SCHEMATEST

IGNORE=Y

GRANTS=N

You can achieve the same results in a single step using impdp with the following param-
eters (TEST_SCHEMA is the name of database link and must exist):

SCHEMAS=SCHEMAPROD

NETWORK_LINK=TEST_SCHEMA

REMAP_SCHEMA=SCHEMAPROD:SCHEMATEST

TABLE_EXISTS_ACTION=REPLACE

EXCLUDE=OBJECT_GRANT

Data and Metadata Filters
The Data Pump provides fine-grained object selection to filter the metadata objects during
export and import. You can specify the EXCLUDE and INCLUDE parameters with expdp and
impdp clients to filter metadata objects. You can use the CONTENT parameter to specify
whether you need to export/import just data, just metadata, or both. You can use the
QUERY parameter to filter data rows.

The EXCLUDE and INCLUDE parameters are mutually exclusive. Also, when you specify
either parameter, you cannot specify CONTENT=DATA_ONLY. The QUERY, EXCLUDE, and INCLUDE
parameters have the following syntax:
QUERY=[schema.][table_name:]”query clause”

EXCLUDE=object_type[:”object names”]

INCLUDE=object_type[:”object names”]

Table 17.4 shows examples of data and metadata filter usage. Though the explanations
in the Accomplishes column refer to unloading, it is applicable to loading also.

Ta b lE 17. 4 Data Pump Metadata Filter Examples

Parameter Examples Accomplishes

schemas=traing
content=metadata_only

Unloads the metadata information for all
objects owned by the TRAING schema. No
data row will be unloaded.

95127c17.indd 956 2/17/09 3:10:39 PM

Understanding Data Pump 957

Parameter Examples Accomplishes

content=data_only
schemas=traing
query=traing.student:”where ee_dept =
‘IST’”

No metadata will be unloaded; only data
rows will be unloaded. All data rows will be
unloaded for all tables owned by TRAING,
except the STUDENT table, where only the
rows that belong to the IST dept is unloaded.

content=data_only
tables=traing.student
query=”where ee_dept = ‘IST’”

Only rows in the STUDENT table that belong
to the IST department are unloaded.

schemas=traing
exclude=view,package,procedure,
function,grant,trigger
exclude=index:”like ‘S%’”

Table rows will be unloaded. Metadata defi-
nitions for view, trigger, procedure, function,
grants, packages, and indexes that begin
with S are not unloaded.

Content=data_only
schemas=hr
include=table:”in
(‘EMPLOYEES’,’DEPARTMENTS’)”
query=”where DEPARTMENT_ID = 10”

Only rows belonging to the department
10 are unloaded from the EMPLOYEES and
DEPARTMENTS tables.

You can obtain the parameter values for INCLUDE and EXCLUDE by querying the OBJECT_
PATH column from the following data dictionary views:

DATABASE_EXPORT_OBJECTSÛN for full-database export parameters

SCHEMA_EXPORT_OBJECTSÛN for schema-level export parameters

TABLE_EXPORT_OBJECTSÛN for table-level export parameters

The following query shows the values that can be used with the INCLUDE/EXCLUDE param-
eters when performing a schema-level export that is related to packages:

SQL> select object_path, comments

 from schema_export_objects

 where object_path like ‘%PACKAGE%’;

OBJECT_PATH COMMENTS

------------------ --

ALTER_PACKAGE_SPEC Recompile package specifications in the selected

 schemas

PACKAGE Packages (both specification and body) in sele-

 cted schemas and their dependent grants and audits

Ta b lE 17. 4 Data Pump Metadata Filter Examples (continued)

95127c17.indd 957 2/17/09 3:10:39 PM

958 Chapter 17 N Moving Data and Using EM Tools

PACKAGE_BODY Package bodies in the selected schemas

PACKAGE_SPEC Package specifications in the selected schemas

… … …

SQL>

Data Pump has the ability to monitor the jobs and make adjustments to the jobs. The
jobs initiated by impdp and expdp can be monitored and modified by using the same clients.
In the next section, I will discuss managing the jobs using expdp and impdp.

Managing Data Pump Jobs
Data Pump clients expdp and impdp provide an interactive command interface. Since each
export and import operation has a job name, you can attach to that job from any computer
and monitor the job or make adjustments to the job. Table 17.5 lists the parameters that
can be used interactively.

Ta b lE 17.5 Data Pump Interactive Parameters

Parameter Purpose

ADD_FILE Adds another file or a file set to the DUMPFILE set.

CONTINUE_CLIENT Changes mode from interactive client to logging mode.

EXIT_CLIENT Leaves the client session and discontinues logging but leaves the cur-
rent job running.

KILL_JOB Detaches all currently attached client sessions and terminates the job.

PARALLEL Increases or decreases the number of threads.

START_JOB Starts (restarts) a job that is not currently running. The SKIP_CURRENT
option can be used to skip the recent failed DDL statement that caused
the job to stop.

STOP_JOB Stops the current job; the job can be restarted later.

STATUS Displays detailed status of the job; the refresh interval can be specified
in seconds. The detailed status is displayed to the output screen but
not written to the log file.

The data dictionary view DBA_DATAPUMP_JOBS shows the active job information along
with its current state, the number of threads, and the number of client sessions attached.
You can join this view with DBA_DATAPUMP_SESSIONS to get the SADDR column of the sessions
attached and can join the SADDR column with V$SESSION to get more information. The

95127c17.indd 958 2/17/09 3:10:39 PM

Understanding Data Pump 959

V$SESSION_LONGOPS view also has an entry showing the progress of the job. Use the SID and
SERIAL# columns from V$SESSOIN to query V$SESSION_LONGOPS.

The following example should help you understand the parameters more clearly. Say you
have an export dump job to be performed. You start the job with the following parameters
in a parameter file:

DIRECTORY=DUMPLOCATION

DUMPFILE=volest.dmp

LOGFILE=volest.exp.log

SCHEMAS=volest

JOB_NAME=VOLEST_EXP_TEST

A table with name VOLEST_EXP_TEST is created in your schema. This is the master
control table. Querying the DBA_DATAPUMP_JOBS view will show the status of the jobs
running:

SQL> SELECT job_name, state

 2 FROM dba_datapump_jobs;

JOB_NAME STATE

------------------------------ ----------------

VOLEST_EXP_TEST EXECUTING

SQL>

By pressing Ctrl+C, you can stop the logging screen, and you can enter interactive mode.
If you find that the job is halfway through and is consuming resources on the server, you
can suspend the job and restart it later when the server is less busy:

Export> stop_job

Are you sure you wish to stop this job ([y]/n): y

oracle@linux>

Let’s say you went home and logged back in to your company network. From home, you
see the status of the job; the job is in suspended mode. Now, you may use more processing
power available in the server to resume the job, so the first step is to attach to the job:

oracle@linux:> expdp bill/billthedba attach=VOLEST_EXP_TEST

Export: Release 11.1.0.6.0 - Production on Saturday, 15 November, 2008
23:33:18

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

95127c17.indd 959 2/17/09 3:10:39 PM

960 Chapter 17 N Moving Data and Using EM Tools

Job: VOLEST_EXP_TEST

 Owner: BILL

 Operation: EXPORT

 Creator Privs: FALSE

 GUID: D8C25554B641EF14E030007F0200562C

 Start Time: Friday, 23 April, 2004 15:16

 Mode: SCHEMA

 Instance: BT10GNF1

 Max Parallelism: 1

 EXPORT Job Parameters:

 Parameter Name Parameter Value:

 CLIENT_COMMAND bill/******** parfile=volest.par

 DATA_ACCESS_METHOD AUTOMATIC

 ESTIMATE BLOCKS

 INCLUDE_METADATA 1

 LOG_FILE_DIRECTORY DUMPLOCATION

 LOG_FILE_NAME volest.exp.log

 TABLE_CONSISTENCY 0

 USER_METADATA 1

 State: IDLING

 Bytes Processed: 730,622,512

 Percent Done: 69

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: /oradata/dumpfiles/volest.dmp

 bytes written: 733,958,144

Worker 1 Status:

 State: UNDEFINED

Export> parallel=4

Export> status=60

Job: VOLEST_EXP_TEST

 Operation: EXPORT

 Mode: SCHEMA

 State: IDLING

 Bytes Processed: 730,622,512

95127c17.indd 960 2/17/09 3:10:39 PM

Understanding Data Pump 961

 Percent Done: 69

 Current Parallelism: 4

 Job Error Count: 0

 Dump File: /oradata/dumpfiles/volest.dmp

 bytes written: 733,958,144

Worker 1 Status:

 State: UNDEFINED

Export> start_job

Export> continue_client

After attaching to the job, you increased the threads to 4 from 1 (parallel=4), set up
to display detailed status to the screen every minute (status=60), restarted the job (start_
job), and let the output display on the screen (continue_client).

Multiple clients (sessions) can attach to a job.

You can use Enterprise Manager Grid Control or Database Control to perform the Data
Pump export and import. You can also do the job monitoring using OEM. The next section
discusses using the Data Pump Wizard in EM.

Using Fine-grained Object selection

The fine-grained object selection in Data Pump export came as a real boon for DBAs. As
DBAs, we perform daily exports on the OLTP database excluding certain large (maybe I
should say “huge”) tables. This particular database includes tables that are DSS in nature
in addition to the OLTP tables. In Oracle8i and Oracle9i, I had to re-create one of the dic-
tionary views to exclude certain multimillion-row transaction tables. I’m not listing the
view name here because changing SYS-owned data dictionary views isn’t supported.

In Oracle 10g and Oracle 11g, you do not have to mess with the dictionary views anymore
to perform a selective export excluding certain objects. After upgrading the database, I
did a tablespace reorganization to better group the tables. I organized the tables into mul-
tiple tablespaces based on the expected size of the tables. The tablespaces have a nam-
ing convention of %LARGE, %MED, and %SMALL.

While performing the daily export dump using expdp, you simply use
EXCLUDE=TABLESPACE:”like ‘%LARGE’”, which excludes all the objects created in
the %LARGE tablespaces.

95127c17.indd 961 2/17/09 3:10:40 PM

962 Chapter 17 N Moving Data and Using EM Tools

Using the Data Pump Wizard
You can use EM Database Control as a menu-driven interface to Data Pump export jobs.
This program steps you through several options and then shows you the PL/SQL code that
it will execute. Therefore, you can also use EM Database Control to learn more about using
the PL/SQL interface. From the Database Control home page, click the Data Movement
tab. Under Move Row Data, you will see links related to Data Pump operations:

Export to Export FilesÛN

Import from Export Files ÛN

Import from DatabaseÛN

Monitor Export and Import JobsÛN

Figure 17.3 shows the Data Movement tab in EM Database Control.

F i gU r E 17. 3 Data Movement tab in EM

Click the Export to Export Files link to start a Data Pump export job. The export and
import both support database, schema, table, and tablespace modes. On the first screen,
you choose the mode of export. The screen shown on Figure 17.4 appears when you choose
the Database export mode. Here you have the option to estimate the disk space required for
the dump file as well as the number of threads (PARALLEL) required.

You can expand the Show Advanced Options link to specify whether you want data-
only export or metadata-only export, to include or exclude objects, to export a consistent
view of data as of a timestamp or SCN, and to filter rows using a query. On the next two
screens, you can specify the location of the dump file and job schedule. You have the option
to run the job immediately, to run the job at a later time, or to repeatedly run the job. The
final screen shows a review of the Data Pump export, as shown in Figure 17.5. Click Submit
Job to start the Data Pump export.

95127c17.indd 962 2/17/09 3:10:40 PM

Understanding Data Pump 963

F i gU r E 17. 4 Data Pump Export: Options screen in EM

F i gU r E 17.5 Data Pump Export: Review screen in EM

95127c17.indd 963 2/17/09 3:10:40 PM

964 Chapter 17 N Moving Data and Using EM Tools

Click the Show PL/SQL link to see the PL/SQL code behind the export job. You can run
this code using SQL*Plus to perform the export job. Here is an example:

declare

 h1 NUMBER;

begin

 h1 := dbms_datapump.open (

 operation => ‘EXPORT’,

 job_mode => ‘FULL’,

 job_name => ‘EXPORT000041’,

 version => ‘COMPATIBLE’);

 dbms_datapump.set_parallel(handle => h1, degree => 1);

 dbms_datapump.add_file(handle => h1,

 filename => ‘EXPDAT.LOG’,

 directory => ‘AUDIT_DIR’, filetype => 3);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘KEEP_MASTER’, value => 0);

 dbms_datapump.add_file(handle => h1,

 filename => ‘EXPDAT%U.DMP’,

 directory => ‘AUDIT_DIR’, filetype => 1);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘INCLUDE_METADATA’, value => 1);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘DATA_ACCESS_METHOD’, value => ‘AUTOMATIC’);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘ESTIMATE’, value => ‘BLOCKS’);

 dbms_datapump.start_job(handle => h1,

 skip_current => 0, abort_step => 0);

 dbms_datapump.detach(handle => h1);

end;

/

Once the Data Pump job is submitted, you can view its progress by clicking the Monitor
Export and Import Jobs link on the Data Movement screen. A summary of the job appears,
as shown in Figure 17.6.

Here you have the option to increase the parallelism of the job; use the Change Job State but-
ton to stop or suspend the job. You also have option to specify another location for the dump file.

Import Using EM Database Control
Click the Import from Export Files link on the Data Movement screen to invoke the Data
Pump Import Wizard. Similar to export, import also has four modes: database, schema,
table, and tablespace. After you choose the type of import, the next screen lets you choose
the dump file to import from. On the next screen, you have the option to remap the schema
and tablespace. On the import schema screen shown in Figure 17.7, HR schema objects are

95127c17.indd 964 2/17/09 3:10:40 PM

Understanding Data Pump 965

imported to the JAMES schema, and the objects in the EXAMPLE tablespace are moved to the
USERS tablespace.

F i gU r E 17.6 Data Pump export job run status

F i gU r E 17.7 Data Pump Import: Re-mapping screen

95127c17.indd 965 2/17/09 3:10:40 PM

966 Chapter 17 N Moving Data and Using EM Tools

On the next screen, you can specify the number of parallel processes and the log-file des-
tination directory. Similar to export, you can specify to run the job immediately or at a later
time. By clicking the Submit Job button on the Review screen, as shown in Figure 17.8, you
submit the import job.

F i gU r E 17. 8 Data Pump Import: Review screen

Similar to export, clicking the Show PL/SQL link shows the PL/SQL code behind the
import:

declare

 h1 NUMBER;

begin

 h1 := dbms_datapump.open (operation => ‘IMPORT’,

 job_mode => ‘SCHEMA’, job_name => ‘IMPORT000043’,

 version => ‘COMPATIBLE’);

 dbms_datapump.set_parallel(handle => h1, degree => 1);

 dbms_datapump.add_file(handle => h1, filename => ‘IMPORT.LOG’,

 directory => ‘AUDIT_DIR’, filetype => 3);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘KEEP_MASTER’, value => 0);

 dbms_datapump.add_file(handle => h1, filename => ‘EXPDAT%U.DMP’,

 directory => ‘AUDIT_DIR’, filetype => 1);

 dbms_datapump.metadata_remap(handle => h1, name => ‘REMAP_SCHEMA’,

 old_value => ‘HR’, value => ‘JAMES’);

 dbms_datapump.metadata_remap(handle => h1,

 name => ‘REMAP_TABLESPACE’,

 old_value => ‘EXAMPLE’, value => ‘USERS’);

95127c17.indd 966 2/17/09 3:10:40 PM

Loading Data with SQL*Loader 967

 dbms_datapump.metadata_filter(handle => h1,

 name => ‘SCHEMA_EXPR’, value => ‘IN(‘’HR’’)’);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘INCLUDE_METADATA’, value => 1);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘DATA_ACCESS_METHOD’, value => ‘AUTOMATIC’);

 dbms_datapump.set_parameter(handle => h1,

 name => ‘SKIP_UNUSABLE_INDEXES’, value => 0);

 dbms_datapump.start_job(handle => h1, skip_current => 0,

 abort_step => 0);

 dbms_datapump.detach(handle => h1);

end;

/

Loading Data with SQL*Loader
SQL*Loader is a program that reads data files in many possible formats, parses the data
(breaks it into meaningful pieces), and loads the data into database tables. Like Data Pump,
myriad options are available and a hefty book could be devoted to its use. The Oracle Data-
base Utilities manual devotes several hundred pages of reference material to SQL*Loader
alone. This section will not be so comprehensive or attempt to cram all possible uses of
SQL*Loader into a few short pages. Instead, I will cover the basics and teach you what is nec-
essary for the exam.

SQL*Loader uses the following file types:

Log This is a mandatory file. If you do not specify a log file, SQL*Loader will try to create
one in the current directory with the name of your control file and a .log filename exten-
sion. If SQL*Loader cannot create the log file, execution is aborted. The log file contains a
summary of the SQL*Loader session, including any errors that were generated.

Control This is a mandatory file. This file tells SQL*Loader where the other files are, how
to parse and load the data, and which tables to load the data into, and this file can contain
the data as well.

Data Data files are optional and, if included, hold the data that SQL*Loader reads
and loads into the database. The data can be located in the control file, so these files are
optional.

Bad This holds the “bad” data records—those that did not pass validation by either
SQL*Loader or the database. Bad files are created only if one or more records fail valida-
tion. Just as with the log file, if you do not specify a bad file, the database will create one,
with the name of your control file and a .bad filename extension.

95127c17.indd 967 2/17/09 3:10:40 PM

968 Chapter 17 N Moving Data and Using EM Tools

Discard This holds data records that did not get loaded because they did not satisfy the
record-selection criteria in the control file. Discard files are created only if data records
were discarded because they did not satisfy the selection criteria.

SQL*Loader provides a robust toolkit to build data-loading programs for your Oracle 11g
database. It can operate either on the database server or on a client machine.

The following section will show you how to employ SQL*Loader to load data into your
database tables.

Specifying SQL*Loader Command-Line Parameters
To invoke the SQL*Loader program, use the command sqlldr followed by one or more
command-line parameters. These parameters can be identified positionally on the com-
mand line or with a keyword=value pair. You can mix positional and keyword notation pro-
vided that all the keyword-notation parameters appear after all the positional parameters.

For example, to invoke SQL*Loader, telling it to use the connect string system/password
and use the control file regions.ctl, you can execute any of the following command lines:

sqlldr system/password regions.ctl

sqlldr control=regions.ctl userid=system/password

sqlldr system/password control=regions.ctl

The command-line parameters include those shown here, by executing the sqlldr com-
mand with no parameters:

$ sqlldr

SQL*Loader: Release 11.1.0.6.0 - Production on Sun Nov 16 00:46:00 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Usage: SQLLDR keyword=value [,keyword=value,...]

Valid Keywords:

 userid -- ORACLE username/password

 control -- control file name

 log -- log file name

 bad -- bad file name

 data -- data file name

 discard -- discard file name

discardmax -- number of discards to allow (Default all)

 skip -- number of logical records to skip (Default 0)

 load -- number of logical records to load (Default all)

 errors -- number of errors to allow (Default 50)

95127c17.indd 968 2/17/09 3:10:40 PM

Loading Data with SQL*Loader 969

 rows -- number of rows in conventional path bind array

 or between direct path data saves

 (Default: Conventional path 64, Direct path all)

 bindsize -- size of conventional path bind array in bytes (Default 256000)

 silent -- suppress messages during run

 (header,feedback,errors,discards,partitions)

 direct -- use direct path (Default FALSE)

 parfile -- parameter file: name of file that contains

 parameter specifications

 parallel -- do parallel load (Default FALSE)

 file -- file to allocate extents from

skip_unusable_indexes -- disallow/allow unusable indexes or

 index partitions (Default FALSE)

skip_index_maintenance -- do not maintain indexes, mark affected

 indexes as unusable (Default FALSE)

commit_discontinued -- commit loaded rows when load

 is discontinued (Default FALSE)

readsize -- size of read buffer (Default 1048576)

external_table -- use external table for load;

 NOT_USED, GENERATE_ONLY, EXECUTE (Default NOT_USED)

columnarrayrows -- number of rows for direct path column array (Default 5000)

streamsize -- size of direct path stream buffer in bytes (Default 256000)

multithreading -- use multithreading in direct path

resumable -- enable or disable resumable for current session (Default FALSE)

resumable_name -- text string to help identify resumable statement

resumable_timeout -- wait time (in seconds) for RESUMABLE (Default 7200)

date_cache -- size (in entries) of date conversion cache (Default 1000)

PLEASE NOTE: Command-line parameters may be specified either by

position or by keywords. An example of the former case is ‘sqlldr

scott/tiger foo’; an example of the latter is ‘sqlldr control=foo

userid=scott/tiger’. One may specify parameters by position before

but not after parameters specified by keywords. For example,

‘sqlldr scott/tiger control=foo logfile=log’ is allowed, but

‘sqlldr scott/tiger control=foo log’ is not, even though the

position of the parameter ‘log’ is correct.

$

Many of the command-line parameters can also appear in the control file. When they
appear as both command-line parameters and in the control file, the command-line options
take precedence.

95127c17.indd 969 2/17/09 3:10:40 PM

970 Chapter 17 N Moving Data and Using EM Tools

Specifying Control File Options
The control file contains commands to tell SQL*Loader where to find the data, how to parse it,
how to load it, what to do when errors occur, and what to do with records that fail validation.
A control file has two or three main sections. The first contains session-wide information, such
as log filename, bind size, and whether direct or conventional path loading will be used. The
second section contains one or more INTO TABLE blocks. These blocks specify the target tables
and columns. The third section, if present, is the actual data. Comments can appear anywhere
in the control files (except in the data lines) and should be used liberally. The control file lan-
guage can be somewhat cryptic, so generous use of comments is encouraged. Comments in a
control file start with a double dash and end with a new line. The control file must begin with
the line LOAD DATA or CONTINUE LOAD DATA and also have an INTO TABLE clause, together with
directions on how to parse the data and load it into which columns.

The best way to learn how to construct a control file is to look at examples and then use
variations of them to build your control file. This section gives you several examples but
is certainly not a comprehensive sampling. Again, the intent is to present you with enough
information to get you going.

For a comprehensive reference, see the Oracle manual “Oracle Database
Utilities 11g Release 1.”

The first example is rather simple and straightforward. The control file contains both
control file commands and the data. The command line is as follows:

sqlldr hr/hr control=regions.ctl

The control file regions.ctl contains the following:

LOAD DATA

-- Control file begins with LOAD DATA

INFILE *

-- The * tells SQL*Loader the data is inline

INTO TABLE regions TRUNCATE

-- truncate the target table before loading

FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘“‘

-- how to parse the data

 (region_id, region_name)

-- positional mapping of data file fields to table columns

-- lines following BEGINDATA are loaded

-- no comments are allowed after BEGINDATA

BEGINDATA

1,”Europe”

2,”Americas”

3,”Asia”

4,”Middle East and Africa”

95127c17.indd 970 2/17/09 3:10:40 PM

Loading Data with SQL*Loader 971

The LOAD DATA command tells SQL*Loader that you are beginning a new data load.
If you are continuing a data load that was interrupted, specify CONTINUE LOAD DATA. The
command INFILE * tells SQL*Loader that the data will appear in the control file. The table
REGIONS is loaded. The keyword TRUNCATE tells SQL*Loader to truncate the table before
loading it. Instead of TRUNCATE, you can specify INSERT (the default), which requires the
table to be empty at the start of the load. APPEND tells SQL*Loader to add the data to any
existing data in the table. REPLACE tells SQL*Loader to issue a DELETE to empty out the
table before loading. DELETE differs from a TRUNCATE; for DELETE the DML triggers fire and
DELETE can be rolled back.

The lines in the control file that follow the BEGINDATA contain the data to parse and load.
The parsing specification tells SQL*Loader that the data fields are comma-delimited and
that text data can be enclosed by double quotation marks. These double quotation marks
should not be loaded as part of the data. The list of columns enclosed in parentheses are the
table columns that will be loaded with the data fields.

In the second example, the same data is loaded into the same table, but it is located
in a stand-alone file called regions.dat and is in the following pipe-delimited, fixed
format:

1|Europe |

2|Americas |

3|Asia |

4|Middle East and Africa |

The command line is as follows:

sqlldr hr/hr control=regions.ctl

The content of the control file is as follows:

LOAD DATA

INFILE ‘/apps/seed_data/regions.dat’

BADFILE ‘/apps/seed_data/regions.bad’

DISCARDFILE ‘/apps/seed_data/regions.dsc’

OPTIONS (DIRECT=TRUE)

-- data file spec

INTO TABLE regions APPEND

-- add this data to the existing target table

(region_id POSITION(1) INTEGER EXTERNAL

,region_name POSITION(3:25) NULLIF region_name = BLANKS

) -- how to parse the data

The control file tells SQL*Loader where to find the data file (INFILE) as well as the
bad and discard files (BADFILE and DISCARDFILE). The OPTIONS line specifies direct path load-
ing. With fixed-format data, the column specification identifies the starting and ending
positions. A numeric datatype can be identified as INTEGER EXTERNAL. The directive

95127c17.indd 971 2/17/09 3:10:40 PM

972 Chapter 17 N Moving Data and Using EM Tools

NULLIF region_name = BLANKS tells SQL*Loader to set the region_name column to NULL if
the data field contains only white space.

You shouldn’t have to know the minutiae of how to tell SQL*Loader precisely how to
parse data—the options are far too arcane to expect you to recite them off the top of your
head for an exam—but knowing the SQL*Loader capabilities of reading fixed-format and
variable-format data is essential. More important to your job is knowing about direct path
loads and unusable indexes, which are discussed in the next section.

Using Direct Path Loading
Direct path loading is a SQL*Loader option that allows you, under certain conditions, to
use the direct path interface to load data into a table. The direct path interface can be sig-
nificantly faster than conventional path loading. With conventional loading, SQL*Loader
loads data into a bind array and passes it to the database engine to process with an INSERT
statement. Full undo and redo mechanisms operate on conventional path loads. Direct path
loading is enabled by specifying the DIRECT=Y parameter.

With direct path loading, SQL*Loader reads data, passing it to the database via the
direct path API. The API formats it directly into Oracle data blocks in memory and then
flushes these blocks, en masse, directly to the data files using multiblock I/O, bypassing
the buffer cache, as well as redo and undo mechanisms. Direct path loads always write to
a table above the high-water mark; thus, always increase the number of data blocks that a
table is actually using.

The important thing to remember about direct path load is that it is fast but has restric-
tions, including the following:

Indexes are rebuilt at the end of a direct path load. If unique constraint violations are ÛN

found, the unique index is left in an unusable state. To correct the index, you must find
and remove the constraint violations and then rebuild the index.

Unusable indexes are a possible result of direct path loading. Make sure
you know what causes an unusable index and how to fix it.

Direct path load cannot occur if there are active transactions against the table being ÛN

loaded.

Triggers do not fire during direct path loads.ÛN

Direct path loading into clustered tables is not supported.ÛN

During direct path loads, foreign key constraints are disabled at the beginning of the ÛN

load and then reenabled after the load.

95127c17.indd 972 2/17/09 3:10:40 PM

Loading Data with SQL*Loader 973

Only primary key, unique, and ÛN NOT NULL constraints are enforced.

Direct path load prevents other users from making changes to the table while the direct ÛN

load operation is in progress.

Using EM to Load Data
You can invoke the SQL*Loader API from EM Database Control using the Load Data from
User Files link on the Data Movement screen (shown earlier in Figure 17.3). You have the
option to generate a control file using the wizard or to use an existing control file. The EM
Wizard uses seven screens to collect information to build a control file.

Figure 17.9 shows the first screen, where you specify the file locations. You can specify
the location on the database server (using directory objects) or on the local machine.

F i gU r E 17. 9 SQL*Loader data file location

On the next screen, you specify the table to load data into as well as the file format. A
sample of the data file appears for you to preview. On the File Format Attributes screen,
you can specify the delimiter used to separate columns and have the option to verify the
column mappings. On the next screen (Load Method), you specify whether you want to use
conventional load or direct load. You can also choose Parallel Direct Load, which is the
fastest of all loading options.

95127c17.indd 973 2/17/09 3:10:41 PM

974 Chapter 17 N Moving Data and Using EM Tools

Figure 17.10 shows the loading options. Here you can specify the discard file, bad file,
and log file. You can also specify a variety of other options.

F i gU r E 17.10 SQL*Loader options

On the next screen, you can schedule the load operation for immediately or for later.
Finally, you’ll have a chance to review your options before submitting the load job.

Populating External Tables
External tables were introduced in Oracle9i and were read-only from the Oracle Database.
In Oracle 10g, external tables were made writable. In Oracle9i, ORACLE_LOADER was the
only access driver available for external tables; Oracle 10g introduced the ORACLE_DATAPUMP
access driver. The external tables that use the ORACLE_LOADER access driver are read-only—
they read ASCII flat files from the OS. Only the external tables created with the ORACLE_
DATAPUMP access driver can be written to. The resulting file is in proprietary format (Oracle
native external representation, DPAPI), which only Data Pump can read. You can use this
file to load to another Oracle Database.

You may ask how is this beneficial—why don’t you use the Oracle Data Pump clients to
generate the file? Well, though Oracle Data Pump can handle a certain level of filtering, join
operations with another table are not possible. Using the external table ORACLE_DATAPUMP

95127c17.indd 974 2/17/09 3:10:41 PM

Populating External Tables 975

access driver, you can unload data that is derived from complex queries. This is useful in
loading data marts from data warehouse or similar applications. Data from external tables
can be used in SQL queries.

In the following sections, you will learn how to populate an external table using the
ORACLE_DATAPUMP and ORACLE_LOADER DPAPI.

Loading External Tables Using Data Pump
You use the ORACLE_DATAPUMP access driver to unload data from an Oracle Database to a
flat file (DPAPI format) using the external table method. The external table must be created
using the CREATE TABLE...AS SELECT... (CTAS) method. You can specify the PARALLEL
clause when creating the table; the ORACLE_DATAPUMP access driver unloads data into multiple
flat files at the same time. One parallel execution server will write to only one file at a time.
Unloading data in the context of an external table means creating an external table using
the CTAS method.

During the unload (or populate) operation, the data goes from the subquery to the SQL
engine for the data to be processed and is extracted in the DPAPI format to write to the flat
file. The external table to unload data can be created only using the CTAS method with the
ORACLE_DATAPUMP access driver. The unload operation does not include the metadata for the
tables. You can use the VERSION clause when unloading the data to make sure it loads correctly
on the target database.

I’ll now demonstrate how to unload data using the ORACLE_DATAPUMP access driver. You
will join the EMPLOYEES and DEPARTMENTS tables of the HR schema to unload data. The follow-
ing statement creates the table in the database as well as creates two files, empl_comm1.dmp
and empl_comm2.dmp, in the OS:

SQL> CREATE TABLE empl_commission

 2 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP

 3 DEFAULT DIRECTORY work_dir

 4 LOCATION (‘empl_comm1.dmp’,’empl_comm2.dmp’))

 5 PARALLEL 2

 6 AS

 7 SELECT employee_id,

 8 first_name || ‘ ‘ || last_name employee_name,

 9 department_name,

 10 TO_CHAR(hire_date,’DD-MM-YYYY’) hire_date,

 11 salary * NVL(commission_pct, 0.5) commission

 12 FROM hr.employees JOIN hr.departments USING (department_id)

 13 ORDER BY first_name || ‘ ‘ || last_name

SQL> /

Table created.

95127c17.indd 975 2/17/09 3:10:41 PM

976 Chapter 17 N Moving Data and Using EM Tools

SQL> SELECT department_name, sum(commission) total_comm

 2 FROM empl_commission

 3 GROUP BY department_name;

DEPARTMENT_NAME TOTAL_COMM

------------------------------ ----------

Accounting 10150

Finance 25800

Human Resources 3250

Marketing 9500

Purchasing 12450

Sales 72640

Shipping 78200

Administration 2200

Executive 29000

IT 14400

Public Relations 5000

11 rows selected.

SQL>

ORGANIZATION EXTERNAL specifies that the resulting table is an external table. TYPE ORACLE_
DATAPUMP specifies that the Data Pump access driver should be used. DEFAULT DIRECTORY
specifies the location of the dump files. The LOCATION parameter specifies the filenames.
Most often when external tables are used, a very large amount of data is unloaded; hence,
using the PARALLEL clause will speed up the operation. If the parallel clause is used, the
number of files specified in the LOCATION clause must match the PARALLEL degree. If you did
not specify enough files to match the degree of parallelism, Oracle decreases the parallelism
to match the number of files provided.

The files created using the ORACLE_DATAPUMP access driver can be read-only by Oracle
11g because the data is unloaded in a proprietary format. You can use this method to move
data from one database to another.

You can copy the dump files to another Oracle 10g or 11g database and load it using the
Data Pump utility, or you can create an external table on these dump files and load from it.
Let’s create an external table using these dump files and query it:

SQL> CREATE TABLE new_empl_commission (

 2 employee_id NUMBER (6),

 3 employee_name VARCHAR2 (40),

 4 department_name VARCHAR2 (30),

 5 hire_date VARCHAR2 (10),

95127c17.indd 976 2/17/09 3:10:41 PM

Populating External Tables 977

 6 commission NUMBER)

 7 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP

 8 DEFAULT DIRECTORY work_dir

 9 ACCESS PARAMETERS (

 10 LOGFILE ‘new_empl_commission.log’)

 11 LOCATION (‘empl_comm1.dmp’, ‘expl_comm2.dmp’));

Table created.

The data dictionary views DBA_EXTERNAL_TABLES and DBA_EXTERNAL_LOCA-
TIONS can be queried to view the characteristics, location, and filenames of
external tables.

Loading External Tables Using Loader
You use the ORACLE_LOADER access driver to load data to an Oracle database from a flat
file using the external table method. You can specify the PARALLEL clause when creating
the table; the ORACLE_LOADER access driver divides the large flat file into chunks that can
be processed separately. Loading data in the context of external table means reading data
from the external table (flat file) and loading to a table in the database using the INSERT
statement.

Let’s create an external table using the ORACLE_LOADER access driver; say the user already
has privilege to read from and write to the directory WORK_DIR. The source data file is
employee.dat, which has fixed column data (name, title, and salary). The following code
shows the contents of the employee.dat file, creates the external table using the ORACLE_
LOADER driver, and queries the external table. You can use the data from this external table
to load other tables using INSERT statements.

linux:oracle>cat employee.dat

SMITH CLERK 800

SCOTT ANALYST 3000

ADAMS CLERK 1100

MILLER CLERK 1300

linux:oracle>

SQL> CREATE TABLE employees (

 2 ename VARCHAR2 (10),

 3 title VARCHAR2 (10),

 4 salary NUMBER (8))

 5 ORGANIZATION EXTERNAL (

 6 TYPE ORACLE_LOADER

95127c17.indd 977 2/17/09 3:10:41 PM

978 Chapter 17 N Moving Data and Using EM Tools

 7 DEFAULT DIRECTORY WORK_DIR

 8 ACCESS PARAMETERS (RECORDS DELIMITED BY NEWLINE FIELDS (

 9 ename CHAR(10),

 10 title CHAR(10),

 11 salary CHAR(8)))

 12 LOCATION (‘employee.dat’))

 13 PARALLEL

SQL> /

Table created.

SQL> SELECT * FROM employees;

ENAME TITLE SALARY

---------- ---------- ----------

SMITH CLERK 800

SCOTT ANALYST 3000

ADAMS CLERK 1100

MILLER CLERK 1300

SQL>

Only SELECT statements are allowed on external tables; no INSERT, UPDATE,
or DELETE operation is permitted on external tables.

You have learned to move data to and from a database using various tools. Next, you
will learn the infrastructure enhancements available in Enterprise Manager to contact
Oracle Support and to manage patches.

Using EM Support Workbench
Oracle 11g comes with an advanced fault diagnostic infrastructure framework for detect-
ing, diagnosing and resolving database problems. The problems that are targeted are critical
errors that affect the health of the database (such as ORA-600, ORA-7445, and so on).

When a critical error occurs in the database, Oracle flags them as incidents and assigns
an incident number. All the diagnostic data such as trace files, alert log information, and
dumps related to the error are captured and tagged with the incident number. This data

95127c17.indd 978 2/17/09 3:10:41 PM

Using EM Support Workbench 979

is then stored in the Automatic Diagnostic Repository, where it can be retrieved using the
ADRCI utility or using EM Database Control.

The EM Database Control feature that enables you to interact with the fault diagnostic
infrastructure of the database is called EM Support Workbench. With Support Workbench,
you can investigate, report, diagnose, and repair the problem. In the following sections, you
will learn how the Support Workbench works by going through the phases of a problem.

Identifying a Problem
The Health Check framework of Oracle 11g performs proactive checks on the database
periodically. Upon detecting a critical error, the fault diagnostic infrastructure runs a few
more checks to analyze the critical error. These errors are then tagged as incidents and
reported. You can view active incident counts on the Database Control home page, as
shown in Figure 17.11.

F i gU r E 17.11 Database Control home page showing active incidents and alerts

By clicking the Active Incidents count, you will be taken to the Support Workbench
home page. You can also invoke the Support Workbench using the Software and Support
page in Database Control. The Support Workbench groups similar incidents together and
calls it a problem. As you can see in Figure 17.12, there are three incidents of the ORA-600
error, and they are grouped together as one problem.

95127c17.indd 979 2/17/09 3:10:41 PM

980 Chapter 17 N Moving Data and Using EM Tools

F i gU r E 17.12 Support Workbench Problems screen

Select the problem by checking the box next to it, and click the View button to see more
details about the problem, as shown in Figure 17.13.

F i gU r E 17.13 Support Workbench Problem Details screen

In the next section, you will learn how to gather more information about the problem.

95127c17.indd 980 2/17/09 3:10:41 PM

Using EM Support Workbench 981

Gathering Additional Diagnostic Information
On the Problem Details screen, under the Investigate and Resolve section, you have various
options. On the Self Service tab, you have links available to gather more information about
the problem. If you prefer self-service, you can run more checks on the database, diagnose
the current problem, or resolve the issue by running the SQL Repair Advisor (if the error is
caused by a SQL Statement). The following are your options on the Self Service tab:

Assess DamageÛN

Run Checkers: Run the database health check again to find more issues.ÛN

Database Instance Health: Show the database health screen, which shows the num-ÛN

ber of incidents and problems by hour for the last 24 hours.

DiagnoseÛN

Alert Log: Shows the alert log entries related to the incident. ÛN

Related Problems Across Topology: Shows any other incidents that may be related ÛN

to the current problem.

Diagnostic Dumps for Last Incident: Shows the dump and trace files associated ÛN

with the incident.

Go to Metalink and Research: Metalink is Oracle’s support site, where you can ÛN

search and find solutions to the issue.

Resolve:ÛN

SQL Repair Advisor: Since the problem is caused by a SQL statement, you can run ÛN

the SQL Repair Advisor to fix the SQL issue.

You can use the tools under Diagnose to gather more information about the incident and
problem. If you have identified the SQL causing the problem and you find an issue with the SQL,
you can resolve the problem by yourself. You may also get an answer by searching Oracle’s
support website, Metalink. Contacting Metalink is discussed later in the chapter.

After self-service, if you could not resolve the problem or could not find more informa-
tion about the problem of symptoms, you can contact Oracle Support. EM Support Work-
bench makes contacting Oracle Support easy without having to remember the URL or
phone number and gathers all the information that would be of help to the support analyst.
Let’s go through the next steps of Support Workbench to contact Oracle Support for a reso-
lution to the example problem.

Creating a Service Request
If you cannot identify or resolve the issue yourself, the next logical step is to contact Oracle
Support for help. On the Problem Details page shown in Figure 17.13, click the Oracle Sup-
port tab under the Investigate and Resolve section. Figure 17.14 shows the Oracle Support tab.

95127c17.indd 981 2/17/09 3:10:41 PM

982 Chapter 17 N Moving Data and Using EM Tools

F i gU r E 17.14 Contacting the Oracle Support section of Support Workbench

The Create a Service Request with Metalink link takes you to the Metalink login page,
where you can log in and enter a service request. The URL for Metalink is https://
metalink.oracle.com. Once the service request (SR) is created, you can use the Edit button
on the Problem Details screen to update the SR number.

After you create the SR, the next step is to send relevant trace and dump files to Oracle
for analysis. Support Workbench provides a packaging service to make this task easier for
the DBA.

Oracle Support Services (OSS) is a 24/7 operation providing support to all Oracle cus-
tomers throughout the world. The primary method of contacting OSS is using the web page
at https://metalink.oracle.com. You have to register for an account first and provide
information such as the customer service identifier (CSI) number, your contact information,
so on.

Once you log in to Metalink, you can find a wealth of information, including the
following:

Searches for known issuesÛN

Forum to discuss various issuesÛN

Opening an SRÛN

Patches and updatesÛN

Product certificationÛN

Bug informationÛN

Knowledge Base articlesÛN

User documentationÛN

Electronic technical reference documentsÛN

The Metalink forums enable you to interact with other customers to share ideas and
provide solutions. You can download patches and patch documentation.

95127c17.indd 982 2/17/09 3:10:41 PM

Using EM Support Workbench 983

See Metalink note 166650.1, “Global Customer Support Working Effectively
with Support,” for more information on using the Oracle Support Services.

Packaging Diagnostic Data
You can invoke packaging in two ways. On the Support Workbench page, you can select
the problem and click the Package button. This gives you the option to create a quick pack-
age or a custom package. A quick package gathers information for a single problem with
all the default options. With a custom package, you have the option to edit the package
contents, remove any sensitive data, and add more traces and test cases. Another option to
invoke packages is from the Problem Details screen, where you can invoke quick packaging
for the problem. You can also optionally upload the packaged information to Oracle under
the service request number. Figure 17.15 shows the Quick Packaging screen.

F i gU r E 17.15 Quick Packaging screen

On this screen, you have the option to upload the created package to Oracle Support. If
you want Support Workbench to upload the information, provide your Metalink username
and password along with the CSI number. If you have not created an SR yet, you have the
option to create a new SR from this screen. Enter the SR number for uploading diagnostic
information for an existing SR.

95127c17.indd 983 2/17/09 3:10:42 PM

984 Chapter 17 N Moving Data and Using EM Tools

If you choose custom packaging, the screen will look like Figure 17.16. Here Oracle will
show you all the incidents to report and the files that are being packaged. You can exclude
the files you do not want to send. Also, you have the option to add more incidents to the
same package.

F i gU r E 17.16 Customize Package screen

In the Packaging Tasks section, you have the option to add more problems or exclude
problems. You can also edit the files you sent to Oracle. Once you have added all the neces-
sary files, click the Finish Contents Preparation link. You will see a confirmation screen with
all the files you choose to include in the packaging and an option to generate the upload file.
After the file is generated, the Send to Oracle button will be enabled, and you can use it to
send the information to Oracle.

Configuring Incident Packaging
You can customize the package-retention and -configuration rules by using the Incident
Packaging Configuration link in the Related Links section of the Support Workbench
screen. Figure 17.17 shows the default retention and packaging settings.

95127c17.indd 984 2/17/09 3:10:42 PM

Using EM Support Workbench 985

F i gU r E 17.17 Incident packaging configuration

Click the Edit button to change the defaults. You can change the following values:

Incident Metadata Retention Period Information such as the incident ID, time, and prob-
lem are known as the metadata. The default is to keep this information for 365 days.

Incident Files Retention Period Specify how long you want to keep the files (data) related
to an incident; the default is 30 days.

Cutoff Age for Incident Inclusion Include the incidents that are not older than the value
specified here in days.

Leading Incidents Count and Trailing Incidents Count If a problem has several incidents,
the packaging by default includes only three incidents from the time it started occurring
and three incidents from the latest occurrence.

Correlation Time Proximity Specify the interval in minutes that should be treated as
“happened at the same time” for related incidents. The default is 90 minutes.

Time Window for Package Content This is the time in minutes to include incidents in the
package; the default is 24 minutes.

Tracking and Closing the Incident
You can track the progress of the incident by adding comments to the activity log. The activ-
ity log is available on the Problem Details screen as well as on the packaging screens. The
Activity Log tab shows the system-generated operations that have occurred on the problem

95127c17.indd 985 2/17/09 3:10:42 PM

986 Chapter 17 N Moving Data and Using EM Tools

so far. This tab enables you to add your own comments while investigating the problem.
Figure 17.18 shows the Activity Log tab.

F i gU r E 17.18 Problem activity log

You can add an entry using the Add Comment button. If the problem is related to an
Oracle bug, you can add the bug number on the Problem Details screen by clicking the Edit
button (shown earlier in Figure 17.13).

As you saw on the Self Service tab of the Problem Details screen, the Oracle advisors
that can help you repair critical errors are the SQL Repair Advisor and the Data Recovery
Advisor.

When you have a resolution for the issue, you can close the incident by clicking the Close
button on the Support Workbench screen or by clicking the Close the Problem link on the
Problem Details screen.

By default closed incidents are not shown on the Problem Details screen.
All incidents (open and closed) are purged after 30 days. You can disable
the incident purging on the Incident Details page. You can get to the Inci-
dent Details page by clicking the incident ID on the Problem Details screen
(shown earlier in Figure 17.13). Click the Disable Purging button to disable
the purging of the incident.

In the next section, you will learn how Enterprise Manager can help DBAs manage patches.

Using EM to Manage Patches
As a DBA, you have several reasons to download and apply patches. In Oracle 11g, Oracle
has made the patch research and application easier by integrating OSS with Enterprise
Manager. Oracle Corporation releases the following types of patches for its database
product:

Patch release A patch release is a major patch that changes the version number of the
database. Oracle release numbers have the format 11.1.0.6.0, where 11 is the major release

95127c17.indd 986 2/17/09 3:10:42 PM

Using EM to Manage Patches 987

number, 1 is the maintenance release number, 0 is the application-server release number,
6 is the component-specific release number, and 0 is the platform-specific release number.
When a patch release is applied, the component-specific release number will change. Patch
releases go through rigorous regression testing. Patch releases are cumulative, which means
the latest patch release will include most interim patches and critical patch updates, as well
as lower patch releases.

Interim patches Interim patches are one-off patches to fix a specific issue on a platform.
The Oracle release numbers do not change when applying interim patches. Interim patches
do not go through regression testing.

Critical patch updates Critical patch updates (CPUs) include security patches and other
patches that depend on the security patches. CPUs are cumulative, which means previ-
ous CPUs are included. CPUs go through regression testing, and they do not advance the
release numbers.

Patch releases are installed using the Oracle Universal Installer (OUI). You can install
interim patches and CPUs using the OPatch utility. You can use opatch lsinventory to
review all the patches applied to an Oracle Home installation:

$ $ORACLE_HOME/OPatch/opatch lsinventory

Invoking OPatch 11.1.0.6.0

Oracle Interim Patch Installer version 11.1.0.6.0

Copyright (c) 2007, Oracle Corporation. All rights reserved.

Oracle Home : /u01/app/oracle/product/11.1.0/db_1

Central Inventory : /u01/app/oraInventory

 from : /etc/oraInst.loc

OPatch version : 11.1.0.6.0

OUI version : 11.1.0.6.0

OUI location : /u01/app/oracle/product/11.1.0/db_1/oui

Log file location : /u01/app/oracle/product/11.1.0/db_1/

 cfgtoollogs/opatch/opatch2008-11-16_23-08-22PM.log

Lsinventory Output file location :

/u01/app/oracle/product/11.1.0/db_1/cfgtoollogs/opatch/

 lsinv/lsinventory2008-11-16_23-08-22PM.txt

--

Installed Top-level Products (1):

Oracle Database 11g 11.1.0.6.0

There are 1 products installed in this Oracle Home.

95127c17.indd 987 2/17/09 3:10:42 PM

988 Chapter 17 N Moving Data and Using EM Tools

Interim patches (1) :

Patch 6529615 : applied on Sun Nov 16 23:08:05 CST 2008

 Created on 7 Nov 2008, 04:01:26 hrs US/Pacific

 Bugs fixed:

 6529615

--

OPatch succeeded.

$

To apply a patch using OPatch, first read the README.txt file accompanying each patch
for instructions. Most of the patches are installed by using the opatch apply statement,
from the patch staging directory. Enterprise Manager can be used to review, download, and
apply patches. The patch-management links are in the Database Software Patching section
on the Software and Support tab of Database Control, as shown in Figure 17.19.

F i gU r E 17.19 Database Software Patching links on EM

I will discuss each link in the following sections.

Using the Patch Advisor
The Patch Advisor shows the critical patch updates and the recommended patches for the
release of the database on your server. Before you can use the Patch Advisor, you must set
up Metalink login credentials and perform Metalink integration with EM. You can do this
in two steps:

1. Enter the Metalink username and password. Click the Setup link on the top-right
corner of EM Database Control. Click Patching Setup on the left menu, as shown in
Figure 17.20.

2. Run the Refresh from Metalink job. Under the Related Links section on the Database
Control home page, click the Jobs link to invoke the Job Activity screen. Under the
Create drop-down list, choose Refresh from Metalink, and click Go, as shown in
Figure 17.21.

Click the Patch Advisor link on the screen shown in Figure 17.19. The Patch Advi-
sor screen shows critical security patches that need to be applied to ORACLE_HOME and

95127c17.indd 988 2/17/09 3:10:42 PM

Using EM to Manage Patches 989

recommended patches, as shown in Figure 17.22. Oracle can show the recommended
patches based on the features used in the database. Select All from the drop-down box to
show all the recommended patches.

F i gU r E 17. 20 Software patching setup in EM

F i gU r E 17. 21 Refresh from Metalink job setup in EM

95127c17.indd 989 2/17/09 3:10:42 PM

990 Chapter 17 N Moving Data and Using EM Tools

F i gU r E 17. 22 Patch Advisor screen on EM

You can also invoke the patching setup screen by clicking the Patching Setup link in the
Related Links section.

Viewing the Patch Cache
The patch cache is the location on the server where all your patches are downloaded and
kept. One advantage of having the patch cache is that you can apply the patch to multiple
Oracle Homes from one download. Figure 17.23 shows the Patch Cache screen.

F i gU r E 17. 23 Patch Cache screen in EM

You can click the View ReadMe button to read the patch application details, and you
can click the Patch button to apply the patch.

95127c17.indd 990 2/17/09 3:10:42 PM

Using EM to Manage Patches 991

Finding the Patch Prerequisites
Click the Patch Prerequisite Check link to get the screen to evaluate the standard prerequisite
checks on Oracle Home and Server with deployment-specific checks. Figure 17.24 shows the
Patch prerequisite checker screen.

F i gU r E 17. 24 Patch Prerequisite Checker screen in EM

Staging a Patch
You can download patches from Metalink and stage them for later application. Figure 17.25
shows the staging patch screen.

You can select the patch to download by specifying the patch number or by specifying
the product and release-number criteria. When the patches are displayed, choose the patch
you want to stage. Click Next to prepare for staging or applying the patch.

On the next screen, specify the targets or destination of the patch. You can choose the
Oracle Instance name or the Oracle home location. On the Set Credentials screen, specify
the host operating-system username and password. On the Stage or Apply screen, you can
choose to download the patch or to apply the patch after downloading. On the Schedule
screen, specify whether you want the patch to be downloaded immediately or at a later time.
Figure 17.26 shows the Summary screen. Review the patch sizes, where the patches will be
applied, and so on, and click the Finish button to download the patch.

95127c17.indd 991 2/17/09 3:10:42 PM

992 Chapter 17 N Moving Data and Using EM Tools

F i gU r E 17. 25 Staging patch screen in EM

F i gU r E 17. 26 Patch: Summary screen in EM

Staged patches are stored under the $ORACLE_HOME/EMStagedPatches directory in
this example.

95127c17.indd 992 2/17/09 3:10:43 PM

Using EM to Manage Patches 993

Applying a Patch
When you click the Apply Patch link on the Software and Support page, you invoke the
Patch Wizard. Figure 17.27 shows the first screen, where the wizard prompts you to select
the patches.

F i gU r E 17. 27 Apply Patch Wizard in EM

Click the Add Patches button to select the patches to apply. The Add Patches button
brings you to the page shown in Figure 17.28, where you can search for patches and select
the patch.

The Target List step is skipped for non-RAC instances; the Library Step Properties step
is also skipped most of the time, unless you have customized the deployment procedures.
The Credentials and Schedule screen prompts you to enter the Oracle software-owner user-
name and password. For the schedule, you can specify one time (immediately), one time
(later), or repeating.

95127c17.indd 993 2/17/09 3:10:43 PM

994 Chapter 17 N Moving Data and Using EM Tools

F i gU r E 17. 28 Searching for and selecting patches in EM

Figure 17.29 shows the review screen. The patch will be downloaded and applied when
you click the Finish button.

F i gU r E 17. 29 Apply patch Summary screen in EM

As you can see from the previous screens and options, EM Database Control helps DBAs
be proactive about the critical and recommended patches they need.

95127c17.indd 994 2/17/09 3:10:43 PM

Exam Essentials 995

Summary
In this chapter, I discussed how to move data using Oracle Data Pump, using SQL*Loader,
and using external tables. You also learned how to use Enterprise Manger to diagnose and
contact Oracle Support as well as manage patches.

Data Pump is a very high-speed infrastructure for data and metadata movement. The
client utilities expdp and impdp are used to unload and load data and metadata. The Data
Pump architecture includes the data and metadata movement engine DBMS_DATAPUMP, the
Direct Path API that supports a stream interface, the metadata API DBMS_METADATA, the
external tables API, and the client utilities.

Data Pump export and import are performed on the server. You can attach to a job from
any computer and monitor its progress or make resource adjustments. In the interactive
mode, you can add a file to export a dump-file set, kill a job, stop a job, change the paral-
lelism, and enable detailed status logging.

SQL*Loader is used to load ASCII files to the Oracle database. You can invoke Data Pump
and SQL*Loader using EM Database Control.

You can also use external tables to move data. You can use the ORACLE_DATAPUMP access
driver to write data into an external table, and you can use the ORACLE_LOADER access driver
to read flat files into Oracle Database.

EM Database Control infrastructure enhancements include Support Workbench and
patch management. Using Support Workbench, you can identify, investigate, diagnose, and
resolve incidents. The Patch Advisor provides the patches that are needed on the database
and can be used to stage and apply patches.

Exam Essentials

Know how to create database directory objects. Directory objects are required for use in
the Data Pump export and Data Pump import programs.

Know that directory objects are not owned by individual schema. Directory objects are
not schema objects. Instead, they are owned by the database like roles or profiles.

Be aware of the Data Pump export and import modes. Data Pump export has database,
schema, table, and tablespace modes, and Data Pump import has full, schema, table, and
tablespace modes. Although these modes sound similar, they differ between the two tools.

Be familiar with the Data Pump options that let you transfer both data and metadata from
one schema to another. The content= parameter controls whether data, metadata, or
both are copied. The remap_schema parameter allows you to transfer data from one schema
to another.

95127c17.indd 995 2/17/09 3:10:43 PM

996 Chapter 17 N Moving Data and Using EM Tools

Be aware of the limitations of SQL*Loader direct-path mode, including unusable indexes.
SQL*Loader direct-path mode has several limitations, the most prominent being that it
locks the table in exclusive mode for the duration of the load. Unique indexes are marked
unusable if unique violations are found after a direct path load. These unique violations
must be resolved before the index can be rebuilt.

Know the external table access drivers. ORACLE_DATAPUMP and ORACLE_LOADER are the
access drivers used with external tables. The ORACLE_DATAPUMP access driver can be used to
read and write to an external table. The ORACLE_LOADER access driver is read-only.

Understand Support Workbench’s capabilities. Support Workbench can identify, diagnose,
and package an incident to contact Oracle Support Services for help.

Be familiar with the Patch Advisor and patch staging screens. EM Database Control
makes patch management easy. You can get information about the patches relevant to the
database, you can stage patches, and you can apply patches.

95127c17.indd 996 2/17/09 3:10:43 PM

Review Questions 997

Review Questions
1. Which two PL/SQL packages are used by Oracle Data Pump?

A. UTL_DATAPUMP

B. DBMS_METADATA

C. DBMS_DATAPUMP

D. UTL_FILE

E. DBMS_SQL

2. These options list the benefits of Oracle Data Pump; pick two that are not true.

A. Data Pump supports fine-grained object selection using the EXCLUDE, INCLUDE, and
CONTENT options.

B. Data Pump has the ability to specify the target version of the database so that the
objects exported are compatible. This is useful in moving data from Oracle 10g to
 Oracle9i.

C. Data Pump has the ability to specify the maximum number of threads to unload data.

D. The DBA can choose to perform the export using direct path or external tables.

E. The Data Pump job can be monitored from another computer on the network.

3. The Data Pump job maintains a master control table with information about Data Pump.
Choose the right statement.

A. The master table is the heart of Data Pump operation and is maintained in the SYS
schema.

B. The master table contains one row for the operation that keeps track of the object
being worked so that the job can be restarted in the event of failure.

C. During the export, the master table is written to the dump file set at the beginning of
export operation.

D. The Data Pump job runs in the schema of the job creator with that user’s rights and
privileges.

E. All of the above.

4. When using the expdp and impdp clients, the parameters LOGFILE, DUMPFILE, and SQLFILE
need a directory object where the files will be written to or read from. Choose the non-
supported method for non-privileged users.

A. Specify the DIRECTORY parameter.

B. Specify the filename parameters with directory:file_name.

C. Use the initialization parameter DATA_PUMP_DIR.

D. None of the above (all are supported).

95127c17.indd 997 2/17/09 3:10:43 PM

998 Chapter 17 N Moving Data and Using EM Tools

5. Which command-line parameter of expdp and impdp clients connects you to an existing job?

A. CONNECT_CLIENT

B. CONTINUE_CLIENT

C. APPEND

D. ATTACH

6. Which option unloads the data and metadata of the SCOTT user, except the tables that begin
with TEMP? The dump file also should have the DDL to create the user.

A. CONTENT=BOTH TABLES=(not like ‘TEMP%’) SCHEMAS=SCOTT

B. SCHEMAS=SCOTT EXCLUDE=TABLE:”LIKE ‘TEMP%’”

C. INCLUDE=METADATA EXCLUDE=TABLES:”NOT LIKE ‘TEMP%’” SCHEMAS=SCOTT

D. TABLES=”NOT LIKE ‘TEMP%’” SCHEMAS=SCOTT

7. Which parameter is not a valid one for using the impdp client?

A. REMAP_INDEX

B. REMAP_TABLE

C. REMAP_SCHEMA

D. REMAP_TABLESPACE

E. REMAP_DATAFILE

8. When do you use the FLASHBACK_TIME parameter in the impdp utility?

A. To load data from the dump file that was modified after a certain time.

B. To discard data from the dump file that was modified after a certain time.

C. When the NETWORK_LINK parameter is used.

D. FLASHBACK_TIME is valid only with expdp, not with impdp.

9. To perform a Data Pump import from a live database, which parameter needs to be set?

A. db_link

B. network_link

C. dumpfile

D. directory

10. Choose two statements about EM Support Workbench that are true.

A. It can identify problems, contact Oracle Support, and resolve problems automatically.

B. It helps collect diagnostic data and package it to send to Oracle Support.

C. Multiple incidents of similar nature are combined as a problem.

D. It is primarily used to track service requests created with Oracle Support.

95127c17.indd 998 2/17/09 3:10:43 PM

Review Questions 999

11. Which types of patches do not undergo rigorous testing?

A. Interim patches

B. Critical patch updates

C. Patch releases

D. None of the above

12. When is it most appropriate to use external table?

A. When you need to read binary files (PDF and photos) into Oracle Database

B. To query a large file without loading the data into the database

C. When the expdp and impdp utilities are not licensed for use

D. To load a large file into the database quickly

13. Which constraint is not enforced during the direct path load using SQL*Loader?

A. Primary key.

B. Unique key.

C. Not null.

D. Check.

E. All the constraints are enforced.

F. No constraints are enforced.

14. Which utility can be used to identify the patches applied to your Oracle Database home
location?

A. ADRCI

B. OPatch

C. Oracle Universal Installer (OUI)

D. All of the above

15. Choose the correct statement about Oracle Support Services.

A. Support can be contacted using the metalink.oracle.com web page.

B. Anyone can register and search Oracle Support’s Knowledge Base.

C. There is no published phone number to contact OSS.

D. Support analysts are available only during U.S. Pacific time zone work hours.

16. When using EM Database Control to load data into Oracle Database from a flat file, you
should do which of the following?

A. Cut and paste the file content into the data text box.

B. Always build your own control file and specify it for the data load.

C. Keep the log file, bad file, and data file in the same directory.

D. Load the data file from the server or on your client machine.

E. Load the data from the client machine.

95127c17.indd 999 2/17/09 3:10:43 PM

1000 Chapter 17 N Moving Data and Using EM Tools

17. Choose the statement that is not true from the following about direct path load.

A. Direct path load cannot occur if active transactions against the table are being loaded.

B. Triggers do not fire during direct path loads.

C. During direct path loads, foreign key constraints are disabled at the beginning of the
load and then reenabled after the load.

D. Only primary key, unique, and NOT NULL constraints are enforced.

E. Direct path load allows other users to perform DML operations on the table while the
direct load operation is in progress.

18. Which two advisors can help you repair critical errors?

A. SQL Tuning Advisor

B. SQL Repair Advisor

C. SQL Syntax Advisor

D. Data Recovery Advisor

19. When using EM Support Workbench, how is a problem closed?

A. When the error is no longer appearing

B. When Oracle Support Services closes the SR in Metalink

C. When the DBA manually closes the incident

D. All of the above

20. To register for Oracle Support Services Metalink access, you must do which of the following?
(Choose all that apply.)

A. Have a valid driver’s license

B. Be an Oracle customer with a valid CSI number

C. Get approval from the CSI administrator

D. Be a member of the IOUG or OAUG user group

95127c17.indd 1000 2/17/09 3:10:43 PM

Answers to Review Questions 1001

Answers to Review Questions
1. B, C. The DBMS_METADATA package provides the database object definitions to the export

worker process in the proper order of their creation. The DBMS_DATAPUMP package has the
API for high-speed export and import for bulk data and metadata loading and unloading.

2. B, D. Oracle Data Pump is known to versions 10g and newer; Oracle9i does not support
Data Pump. Though Data Pump can perform data access using the direct-path or external-
table method, Data Pump makes the decision automatically; the DBA cannot specify the
data-access method. Data Pump also supports network mode to import directly from the
source database and can estimate the space requirements for the dump file.

3. D. The master table is the heart of the Data Pump operation and is maintained in the
schema of the job creator. It bears the name of the job, contains one row for each object
and each operation, and keeps status. Using this information helps restart a failed job or
suspend and resume a job. The master table is written to the dump file as the last step of the
export and is loaded to the schema of the user as the first step of the import.

4. C. If a directory object is created with name DATA_PUMP_DIR, the privileged users can use
this location as the default location for Data Pump files. Privileged users are users with
EXP_FULL_DATABASE or IMP_FULL_DATABASE roles. Using %U in the filename generates mul-
tiple files for parallel unloads with each parallel process writing to one file.

5. D. The ATTACH parameter lets you attach or connect to an existing Data Pump job and
places you in interactive mode. ATTACH without any parameters attaches to the currently
running job, if there is only one job from the user. Otherwise, you must specify the job
name when using the ATTACH parameter.

6. B. If the CONTENT parameter is not specified, both data and metadata will be unloaded. The
valid values for CONTENT are METADATA_ONLY, DATA_ONLY, and ALL. If Scott is performing
the export, SCHEMAS=SCOTT is optional.

7. A. REMAP_DATAFILE changes the name of the source data file to the target data filename in
all DDL statements where the source data file is referenced. REMAP_SCHEMA loads all objects
from the source schema into the destination schema. When using REMAP_TABLESPACE, all
objects selected for import with persistent data in the source tablespace are remapped to be
created in the destination tablespace. REMAP_TABLE changes the name of the table. Since the
dump file is in XML format, Data Pump can make these transformations easily. REMAP_INDEX
is an invalid parameter.

8. C. You can specify the FLASHBACK_TIME or FLASHBACK_SCN parameter only when perform-
ing a network import where the source is a database.

9. B. The network_link parameter specifies a database link to the source database.

10. B, C. Oracle Support Workbench can help DBAs diagnose the problem, collect more informa-
tion and related traces, and dump files into a package to send to Oracle Support for analysis.

95127c17.indd 1001 2/17/09 3:10:43 PM

1002 Chapter 17 N Moving Data and Using EM Tools

11. A. Interim patches are also known as one-off patches, created for a specific problem. CPU
and patch releases undergo rigorous testing.

12. B. External tables can be used to read ASCII flat files without loading into the database.
The external table must be created with the ORACLE_LOADER access driver.

13. D. Primary key, unique key, and not null constraints are enforced during direct path load.
Check and foreign key constraints are not enforced.

14. B. OPatch is used to apply the CPU and interim patches. The lsinventory option of the
$ORACLE_HOME/OPatch/opatch command is used to query patches.

15. A. OSS can be contacted via phone or the Web. The Web is the preferred method of contact.

16. D. The data file, log file, and bad file can be on the database server or on the client machine.
When using a database server, you must specify the file location using directory objects.

17. E. While the direct path load is in progress, users cannot run any DML statements against
the table. Only queries are allowed.

18. B, D. The SQL Repair Advisor can be invoked to diagnose issues arising out of SQL state-
ments. The Data Recovery Advisor can be used to recover from block corruptions and miss-
ing data files.

19. C. Problems are closed manually by the DBA. If the retention periods are not changed,
incident data will be purged from the Automatic Diagnostic Repository after 30 days, and
Metadata will be kept for 1 year.

20. B, C. You must have a valid customer support identifier to register and use the OSS web page.

95127c17.indd 1002 2/17/09 3:10:43 PM

Appendix About the
Companion CD

In thIs AppenDIx:

What you’ll find on the CD■■

System requirements■■

Using the CD ■■

Troubleshooting■■

95127bapp.indd 1003 2/17/09 3:12:26 PM

What You’ll Find on the CD
The following sections are arranged by category and summarize the software and other
goodies you’ll find on the CD. If you need help with installing the items provided on the
CD, refer to the installation instructions in the “Using the CD” section of this appendix.

Some programs on the CD might fall into one of these categories:

Shareware programs are fully functional, free, trial versions of copyrighted programs.
If you like particular programs, register with their authors for a nominal fee and
receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities. You can
copy them to as many computers as you like—for free—but they offer no technical
support.

GNU software is governed by its own license, which is included inside the folder of
the GNU software. There are no restrictions on distribution of GNU software. See the
GNU license at the root of the CD for more details.

Trial, demo, or evaluation versions of software are usually limited either by time or by
functionality (such as not letting you save a project after you create it).

Sybex Test Engine
For Windows

The CD contains the Sybex test engine, which includes all the assessment test and chap-
ter review questions in electronic format, as well as two bonus exams located only on the CD.

PDF of the Book
For Windows

We have included an electronic version of the text in .pdf format. You can view the elec-
tronic version of the book with Adobe Reader.

95127bapp.indd 1004 2/17/09 3:12:26 PM

Using the CD 1005

Adobe Reader
For Windows

We’ve also included a copy of Adobe Reader so you can view PDF files that accompany
the book’s content. For more information on Adobe Reader or to check for a newer version,
visit Adobe’s website at www.adobe.com/products/reader/.

Electronic Flashcards
For PC, Pocket PC, and Palm

These handy electronic flashcards are just what they sound like. One side contains a
question or fill-in-the-blank question, and the other side shows the answer.

System Requirements
Make sure your computer meets the minimum system requirements shown in the following
list. If your computer doesn’t match up to most of these requirements, you may have prob-
lems using the software and files on the companion CD. For the latest and greatest infor-
mation, please refer to the ReadMe file located at the root of the CD-ROM.

A PC running Microsoft Windows 98, Windows 2000, Windows NT4 (with SP4 or NN

later), Windows Me, Windows XP, or Windows Vista

An Internet connectionNN

A CD-ROM driveNN

Using the CD
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive. The license agreement appears.

2. Read the license agreement, and then click the Accept button if you want to use the CD.

The CD interface appears. The interface allows you to access the content with just one
or two clicks.

95127bapp.indd 1005 2/17/09 3:12:26 PM

1006 Appendix N About the Companion CD

Windows users : The interface won’t launch if you have autorun disabled.
In that case, click Start Run (for Windows Vista, Start All Programs
Accessories Run). In the dialog box that appears, type D:\Start.exe.
(Replace D with the proper letter if your CD drive uses a different letter.
If you don’t know the letter, see how your CD drive is listed under My
Computer.) Click OK.

Troubleshooting
Wiley has attempted to provide programs that work on most computers with the minimum
system requirements. Alas, your computer may differ, and some programs may not work
properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM) for the pro-
grams you want to use or you have other programs running that are affecting installation
or running of a program. If you get an error message such as “Not enough memory” or
“Setup cannot continue,” try one or more of the following suggestions and then try using
the software again:

Turn off any antivirus software running on your computer. Installation programs
sometimes mimic virus activity and may make your computer incorrectly believe that
it’s being infected by a virus.

Close all running programs. The more programs you have running, the less memory is
available to other programs. Installation programs typically update files and programs;
so if you keep other programs running, installation may not work properly.

Have your local computer store add more RAM to your computer. This is, admittedly,
a drastic and somewhat expensive step. However, adding more memory can really help
the speed of your computer and allow more programs to run at the same time.

Customer Care
If you have trouble with the book’s companion CD-ROM, please call the Wiley Product
Technical Support phone number at (800) 762-2974. Outside the United States, call +1 (317)
572-3994. You can also contact Wiley Product Technical Support at http://sybex.custhelp
.com. John Wiley & Sons will provide technical support only for installation and other
general quality-control items. For technical support on the applications themselves, consult
the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please
call (877) 762-2974.

95127bapp.indd 1006 2/17/09 3:12:26 PM

Glossary

95127bgloss.indd 1007 2/17/09 3:20:41 PM

1008 Glossary

A
Active Session History (ASH) Sampled data at specified intervals from the current state
of all active sessions. The data is collected in memory and can be accessed by V$ views.

ADDM See Automated Database Diagnostic Monitoring (ADDM).

aggregate functions Functions that operate on groups of rows, also known as group
functions. The exact number of inputs for aggregate functions is not determined until the
query is executed and all rows are fetched. This differs from single-row functions, in which
the number of inputs is known at parse time, before the query is executed.

alert log file A file where Oracle Database writes information about the database start-
ups, shutdown, check points, redo log switches, errors, and warning information.

anonymous block An unnamed PL/SQL program.

archived redo log file A file that contains the contents of a previously used redo log file.
It’s created only when the database is operating in ARCHIVELOG mode.

ARCHIVELOG mode A database configuration in which redo log files are copied to the
archive log destination, which ensures that they won’t be overwritten and lost. These
archived logs are used primarily for media recovery.

ARCn An Oracle background process that copies the online redo log files to an archived
log destination.

arithmetic operators Operators used to manipulate information in the arithmetic expres-
sions. Addition (+), subtraction (–), multiplication (*), and division (/) are the arithmetic
operators.

ASM See Automated Storage Management (ASM).

auditing The monitoring and recording of specific database activities.

Automated Database Diagnostic Monitoring (ADDM)
The process that analyzes the data in the Automatic Workload Repository (AWR) to iden-
tify sources of potential performance bottlenecks and that recommends solutions for cor-
recting the problem. See also Automatic Workload Repository (AWR).

automated maintenance tasks Tasks performed by Oracle Database to gather database
statistics, run the segment-space advisor periodically, and so on.

Automated Storage Management (ASM) A type of storage mechanism that is new in
Oracle 10g. Oracle manages the storage definitions of the database within a second data-
base used exclusively by ASM to keep track of the disk allocations for your databases.

Automatic Memory Management (AMM) A mechanism to manage the memory require-
ment automatically by allocating the total memory to Oracle. Oracle will manage the SGA
and PGA based on demand.

95127bgloss.indd 1008 2/17/09 3:20:41 PM

Glossary 1009

Automatic Shared Memory Management (ASMM) A mechanism to manage the shared
memory requirement automatically by allocating the memory to Oracle. Oracle will manage
the individual pools in SGA based on demand.

Automatic Workload Repository (AWR) The collection of tables, owned by the SYSMAN
schema, that stores the performance statistics gathered from the system global area (SGA)
by the Memory Monitor (MMON) background process.

AWR See Automatic Workload Repository (AWR).

B
B-tree index An index database object that organizes table data in a binary tree format.

back up to trace A method of backing up the control file contents to a text file in the loca-
tion specified.

backup sets A set of Recovery Manager (RMAN) files that contains the saved data from
a backup.

base tables The tables used to define a view.

baseline metrics A collection of performance statistics against which current or future
database performance is measured to determine whether a significant performance devia-
tion has occurred.

bigfile tablespace A tablespace built on a single data file that can be up to 232 data blocks
in size.

binary operators Operators that take two operands. All operators are binary, except the +
or – used to represent the sign of a numeric value.

bitmap index An index database object that organizes table data in a series of bitmaps. A
bitmap index is analogous to a two-dimensional matrix, where index keys and table rows
are the axes.

block The smallest unit of data storage in the database.

block change tracking file A file that tracks the blocks changed since the last incremental
backup, saving time during an incremental backup because not all blocks in every data file
need to be checked for changes.

C
cardinality The number of distinct values. If a table has a cardinality of 1,000, it has
1,000 rows. If a column has a cardinality of 30, it has 30 distinct values (there may be
1,000 rows but only 30 distinct values).

95127bgloss.indd 1009 2/17/09 3:20:41 PM

1010 Glossary

Cartesian join A join that joins two tables with no common condition, also known as a
cross join. Each row from the first table is joined against every row in the second table.

CASE An expression that can be used to derive IF…THEN…ELSE logic in SQL.

change vectors A description of a change made to a single block in the database.

CHAR Datatype used to store fixed-length character data.

checkpoint An event during which the dirty data-block buffers are flushed to disk and
database files are updated to reflect this action. The database is put into a consistent state.

checkpoint (CKPT) process The Oracle background process that updates the control file
and the data file headers to reflect the last successful transaction by recording the last sys-
tem change number (SCN).

CKPT See checkpoint (CKPT) process.

column The vertical space in a table or a view that holds a specific domain of data. In the
relational model, an entity has attributes. When this model is implemented in an Oracle
Database, an entity becomes a table, and an attribute becomes a column.

column alias Another name for the column to display with the query results. Alias names
can provide meaningful names for the result set.

COMMIT    The SQL command for making permanent the changes made during a transaction.

comparison operators Operators that compare two values or expressions and give a
Boolean result of TRUE, FALSE, or NULL.

complex join A join that includes additional filter criteria along with the join conditions in
the WHERE clause.

compound query A query that includes a set operator to join two or more queries.

concatenation operator Operator used to join two text strings. The operator is ||.

concurrency The condition where many users/sessions can access and modify data at the
same time.

connection The communication channel between the user process and the server process.
See also server process; user process.

Connection Manager See Oracle Connection Manager.

consistency A state maintained by the database. A statement/transaction sees a time-
consistent image of the data plus any uncommitted data from the statement/transaction.

consistent backup A backup performed while the database is shut down and unavailable.
This is also referred to as offline backup.

95127bgloss.indd 1010 2/17/09 3:20:41 PM

Glossary 1011

constraint An optional schema object that restricts values in the dependent table to a
specified condition. Constraints enforce business rules about data.

control file A small binary file that contains metadata about the physical structure of the
database, such as the database name, locations of the data files and redo logs, and recovery
information.

conversion functions Single-row functions used to convert the datatype of input between
numeric, character, and datetime values.

correlated subquery A subquery that references the column names of the parent query.

cost-based optimizer The Oracle optimizer mode that uses statistics about the size, selec-
tivity, and dispersion of the tables and indexes in the database to formulate the most effi-
cient execution plan.

cross join A join that joins two tables with no common condition, also known as a Carte-
sian join. Each row from the first table is joined against every row in the second table.

CURRVAL The sequence pseudocolumn that will return the last number generated from the
sequence-number generator.

D
data block The smallest unit of disk allocation in data or temp files, composed of one or
more file-system blocks.

Data Control Language (DCL) The category of SQL commands that control access to
database objects, including the GRANT and REVOKE commands.

Data Definition Language (DDL) The category of SQL commands used to create objects
in the database, including CREATE, ALTER, and DROP.

Data Manipulation Language (DML) The category of SQL commands used to create,
modify, or remove data from a table, including INSERT, UPDATE, and DELETE.

Data Recovery Advisor A tool to identify failures, recommend resolution, and perform
recovery action.

database A collection of control files, data files, and redo logs.

database buffer cache The portion of the system global area (SGA) where copies of the
data blocks are cached in memory. See also system global area (SGA).

Database Configuration Assistant (DBCA)
A Java-based tool you can use to create Oracle databases. The DBCA can store and manage
definitions of your databases in the form of templates that can be used to make copies of a
database.

95127bgloss.indd 1011 2/17/09 3:20:41 PM

1012 Glossary

Database Control A web-based component of the Enterprise Management Framework for
managing Oracle Database 10g. Database Control allows you to monitor and administer a
single Oracle Database instance or a single Real Application Clusters (RAC) environment.

database templates XML-based documents that the DBCA creates to store information
about database definitions. The documents contain everything the DBCA needs to create a
database. See also Database Configuration Assistant (DBCA).

Database Writer (DBWn) The Oracle background process that is responsible for writing
changed data-block buffers from the database buffer cache back to the data files on disk.

data files The physical database files that store the database’s segments, such as tables,
indexes, rollback, and partition.

datatype A characteristic assigned to each column in a table that defines what type of data
can be stored in the column and its valid values.

DATE Datatype used to store date and time information.

DB Time A cumulative measure of time spent by the database responding to user requests,
including wait times for access to resources such as memory, disk, and CPU for all nonidle
user sessions.

DBCA See Database Configuration Assistant (DBCA).

DBMS_DATAPUMP    The Procedural Language SQL (PL/SQL) package that is an API to
Data Pump.

DBWn See Database Writer (DBWn).

DCL See Data Control Language (DCL).

DDL See Data Definition Language (DDL).

deadlock A special kind of lock conflict that prevents two or more transactions from com-
pleting because each transaction has a lock on a resource needed by the other transaction.

declarative constraints Constraints that are not enforced. These constraints will have a
state of DISABLE NOVALIDATE.

dedicated server A type of connection in which every client connection has an associated
dedicated server process on the machine where the Oracle server exists. See also shared
server process.

default role A role initially enabled for every user session.

default tablespace The tablespace where a user’s tables and indexes are stored if not
declared explicitly.

deferred constraint checking Constraint checking that is deferred to a transaction level.
By default, constraints are checked at the statement level.

95127bgloss.indd 1012 2/17/09 3:20:42 PM

Glossary 1013

DELETE SQL statement used to remove rows from a table.

DIAGNOSTIC_DEST    Parameter specifying the location of the parent directory where all
trace, log, and dump files will be written on the server.

directory object A database object that identifies a file-system location. Directory objects
are used by Data Pump jobs.

dispatcher A process in an Oracle Shared Server environment that manages requests from
one or more client connections.

DML See Data Manipulation Language (DML).

DUAL A dummy table in the Oracle Database. DUAL has one column and one row. It is
mainly used to query the system variables such as SYSDATE and USER.

dynamic service registration The ability of an Oracle instance to automatically register
its existence with a listener.

E
Emctl The command-line utility used to stop and start the Oracle Management agent.

Enterprise Manager (EM) Database Control The web-based GUI tool for managing
Oracle environments.

environment variables Variables that define the SQL*Plus environment. These variables are
set using the SET command. The SHOW command is used to display the value of the variables.

equality join (equijoin) A join in which two tables are joined with an equality operator or
an IN operator. Natural joins and JOIN…USING are examples of equality joins.

escape character A character used to prefix a pattern-matching character, such as % or _,
to allow the inclusion of the pattern-matching character in the string.

exclusive lock A table lock that will block all changes to data and all other table locks.

expression A combination of one or more values, operators, and SQL functions that result
in a value.

extent management Defines how free and used extents are managed in a tablespace.

extents A group of contiguous data blocks allocated to a segment.

Extproc The default name of the callout process that is used when executing external pro-
cedures from Oracle.

95127bgloss.indd 1013 2/17/09 3:20:42 PM

1014 Glossary

F
FAST_START_MTTR_TARGET    An initialization parameter that specifies the desired amount of
time, in seconds, to perform instance recovery after an instance failure.

FGA See fine-grained auditing (FGA).

fine-grained auditing (FGA) Special auditing that allows custom rules to be used in moni-
toring and capturing audit records.

firewall Generally, a combination of hardware and software that controls network traffic
and prevents intruders from compromising corporate network security.

flash recovery area A single, unified storage area for all recovery-related files and recov-
ery activities in an Oracle database.

flashback database A flashback feature that lets you recover the entire database to a spe-
cific point in time in the past.

flashback drop A flashback feature that retrieves a table after it has been dropped with-
out using other more complicated and disruptive recovery techniques such as point-in-time
recovery or flashback database.

flashback query A feature of the Oracle database that allows a user to view the contents
of a table as of a user-specified point in time in the past. How far in the past a flashback
query can retrieve rows depends on the size of the undo tablespace and on the setting of the
UNDO_RETENTION system parameter.

flashback table A flashback feature that allows you to recover one or more existing tables
to a specific point in time. Flashback table is done in place by rolling back only the changes
made to the table or tables and their dependent objects, such as indexes.

foreign key A relationship between two tables. The foreign key defined on a table refers to
the primary key or unique key of another table.

full backup A backup that includes all blocks of every data file backed up in a whole or
partial database backup.

full outer join A join between two tables that returns rows based on the matching condi-
tion, as well as unmatched rows from the table on the right and left of the JOIN clause.

function A PL/SQL program that returns a value and is called in an expression.

G
Generic Connectivity One of the Heterogeneous Services offered by Oracle that allows for
connectivity solutions based on third-party connection options such as OLEDB (a Microsoft
standard) and Open Database Connectivity (ODBC). See also Heterogeneous Services.

95127bgloss.indd 1014 2/17/09 3:20:42 PM

Glossary 1015

granule The unit of contiguous memory used within the system global area (SGA) for
allocating space to the shared pool, database buffer cache, Java pool, and large pool.

grid computing The concept of spreading Oracle’s memory structures across two or more
computers on an as-needed basis in order to maximize the performance of the application
during peak usage and minimize the use of resources during low usage.

Grid Control
A web-based user interface that communicates with and centrally manages all the compo-
nents within the Oracle enterprise. From a centralized location, Grid Control lets you moni-
tor and administer the entire computing environment, including hosts, databases, listeners,
application servers, HTTP servers, and web applications.

GROUP BY    Clause used in queries to group aggregate data.

H
HAVING Clause used in queries to filter out aggregated results.

Health Monitor Component of Oracle Database to proactively monitor the health of database.

Heterogeneous Services The facility that lets you communicate with non-Oracle data-
bases and services.

host The physical machine on which the Oracle server is located. This can be an IP
address or a real name that is resolved via some external naming solution, such as DNS.

host string The database alias name used to connect to the Oracle database. You connect
to the database by supplying a username, a password, and a host string. The host string can
be omitted if the database is local.

hostnaming method A name-resolution method for small networks that minimizes the
amount of configuration work you must perform.

I
identifiers Names used in the database, such as table names, column names, and so on.
An identifier must begin with an alphabetic character and can contain alphabetic charac-
ters, digits, and three special characters: #, $, and _.

image copies A bit-for-bit duplicate of data files or archived redo log files in a database.
You can create image copies using operating-system commands or Recovery Manager
(RMAN).

inconsistent backup A backup performed when the database is open and the system
change number (SCN) in the data files and the control file do not necessarily match. This is
also referred to as an online backup.

95127bgloss.indd 1015 2/17/09 3:20:42 PM

1016 Glossary

incremental backup A backup that makes a copy of all data blocks that have changed
since a previous baseline backup.

incrementally updated backup A backup that applies an incremental backup to an image
copy, reducing the amount of time required in the event of media recovery.

index A data structure that physically organizes data from a table in order to improve
table access speed.

index key A single occurrence of an index value.

inline view A subquery that appears in the FROM clause. This type of subquery is similar to
selecting from a view.

inner join A join that selects only matching rows of both tables. This is the default type
of join.

INSERT SQL statement used to add rows to a table.

instance The Oracle system global area (SGA) and all the Oracle background processes.
See also system global area (SGA).

instance failure A circumstance in which the database instance fails unexpectedly because
of a power outage or the failure of an Oracle background process.

instance recovery The process of synchronizing the contents of each data file with the
control file during instance startup using the online redo log files and data in the undo
tablespace.

integrity constraints Constraints that protect the data integrity. They are business rules
defined in the database.

IP-filtering firewalls A type of firewall that monitors the network packet traffic on IP net-
works and filters out packets that either originated or did not originate from specific groups
of machines.

J
Java pool The system global area (SGA) memory structure where Java code is cached. See
also system global area (SGA).

Java Virtual Machine (JVM) The software that interprets and executes Java code inside
the database.

join A relationship between two tables specified by using common columns or a condition
to join two tables together.

95127bgloss.indd 1016 2/17/09 3:20:42 PM

Glossary 1017

Julian date A date that refers to the number of days since January 1, 4712 BC.

JVM See Java Virtual Machine (JVM).

K
key A distinct value in an index or a unique combination of columns in a table to identify
the primary key.

key-preserved A state of a table in a join view. A table in the join view is key-preserved if
the primary and unique keys of the table are unique to the view’s result set.

L
large pool An optional area in the system global area (SGA) used for specific database
operations such as backup or recovery. See also system global area (SGA); user global
area (UGA).

least recently used (LRU) algorithm The mechanism that the Oracle kernel uses to man-
age the shared pool and database buffer caches, whereby the SQL or buffers that have been
least recently accessed are those that are overwritten to make room for new SQL or buffers
when these requests are made by user server processes.

left outer join A join between two tables that returns rows based on the matching condi-
tion, as well as unmatched rows from the table to the left of the JOIN clause.

LGWR See log writer (LGWR).

listener A server-side process that is responsible for listening and establishing connections
to an Oracle server in response to a client connection request.

listener.ora    The configuration file for the Oracle listener located on the Oracle server.

literals Values that represent a fixed value (constant). There are four types of literals: inte-
ger, character, number, and interval.

load balancing The ability of the Oracle listener to balance the number of connections
between a group of dispatcher processes in an Oracle Shared Server environment.

local naming method A name-resolution method that relies on resolving an Oracle Net
service name via the tnsnames.ora file.

log sequence number An identifier unique to the database that is incremented and
recorded when an online redo log file is switched.

log writer (LGWR) The background process that writes redo log entries from the redo log
buffer to the online redo logs. See also redo log buffer.

95127bgloss.indd 1017 2/17/09 3:20:42 PM

1018 Glossary

logging The recording of the Data Manipulation Language (DML) statements, creation of
new objects, and other changes in the redo logs. The process also records significant events,
such as starting and stopping the listener, along with certain kinds of network errors. See
also Data Manipulation Language (DML).

logical operators Operators that are used to combine the results of two comparison con-
ditions to produce a single result or to reverse the result of a single comparison. NOT, AND,
and OR are the logical operators.

long query warning alert An alert generated when a query issues an “ORA-01555: snap-
shot too old error” message. This error usually occurs either when there is not enough space
in the undo tablespace to hold the previous values of changed data or when the undo reten-
tion period for the database is set too low.

lsnrctl    The command-line utility to manage the Oracle listener.

M
managed targets Entities that can be monitored and managed within the Oracle Man-
agement Framework. These entities include databases, application servers, web servers,
applications, and Oracle agents such as the Oracle Net listener and Connection Manager.
See also Oracle Connection Manager.

mean time to recovery (MTTR) The average amount of time it takes to recover the data-
base and make it available after an instance failure occurs.

media failure A failure in which one or more database files is damaged. Media failure
applies to control files, redo log files, temp files, and data files.

metadata Data that describes data. Metadata includes table definitions, stored PL/SQL
program code, and privileges but not the information found in tables.

metric A measurement that is collected and stored in the Automatic Workload Recovery
(AWR) repository. See also Automatic Workload Recovery (AWR).

middleware Software and hardware that sits between a client and the Oracle server. Mid-
dleware can provide a variety of functions, such as load balancing, security, and application-
specific business-logic processing.

MTTR See mean time to recovery (MTTR).

multiple-column subquery A subquery that selects multiple columns in the subquery.
Such subqueries are generally used in UPDATE statements or in the WHERE clause.

multiple-row subquery A subquery that returns no rows or more than one row.

95127bgloss.indd 1018 2/17/09 3:20:42 PM

Glossary 1019

multiplexing Creating multiple copies of a redo log file or control file in different locations
so that the loss of one copy does not significantly affect your ability to recover a database.

multitable join A join that joins more than two tables in a query.

N
NAMES.DIRECTORY_PATH    An entry found in the sqlnet.ora file that defines the net service
name search method hierarchy for a client.

natural join A join that joins two tables using the columns with the same name and data-
type in both tables.

nested subquery A subquery within another subquery.

Net Service Names The name of an Oracle service on the network. This is the name the
user enters when referring to an Oracle service.

network failure A failure in the network connection between the client and the database;
for example, a router reboot or a failure of a network card in the server.

NEXTVAL The sequence pseudocolumn that will cause the generation of the next number
from the sequence-number generator.

NOARCHIVELOG mode    A database mode in which redo log files are not written to an archive
destination before they are overwritten. A database in NOARCHIVELOG mode can recover only
from an instance failure.

nonequality join A join that joins two tables with a nonequality operator.

n-tier architecture A network architecture involving at least three computers, typically a
client computer, a middle-tier computer, and a database server.

NULL A value that represents unknown or missing data. Most functions return NULL when
called with a NULL argument.

NUMBER    Datatype used to store numeric values in table.

O
object privilege A database privilege that allows the grantee to perform a specific opera-
tion on a database object, such as a SELECT, an UPDATE, or a DELETE operation on a table.

OFA See Optimal Flexible Architecture (OFA).

Optimal Flexible Architecture (OFA) A model for organizing mount points, directory
structures, and files so that they will be easier to manage, maintain, and back up.

95127bgloss.indd 1019 2/17/09 3:20:42 PM

1020 Glossary

optimizer statistics Measures such as number of rows, average row length, number of
leaf blocks, and degree of selectivity that are stored as metadata whenever statistics are
automatically or manually collected for database tables and indexes.

Oracle Connection Manager A networking solution from Oracle with connection multi-
plexing, access control and multiprotocol support. It enables a large number of users to
connect to a database with a minimal number of network connections.

Oracle flash recovery area A component of the new automated disk-based recovery
mechanisms in Oracle 10g. Flash recovery is designed to simplify your life in terms of Ora-
cle backups by providing a centralized location to maintain and manage all the files related
to database backups.

Oracle Management Agent A process that identifies and collects data about entities of
interest within the Oracle Management Framework.

Oracle Management Framework An integrated set of tools that lets you perform tradi-
tional tasks more easily and efficiently as well as provides an effective mechanism for moni-
toring components within the enterprise.

Oracle Net Networking software that establishes a connection between Oracle Database
and a client session.

Oracle server The combination of an Oracle instance and database.

Oracle Services Oracle Corporation’s nonsoftware offerings, such as education and
consulting services.

Oracle Shared Server A connection configuration that enhances the scalability of the
Oracle Server through the use of dispatcher processes and Shared Server resources. Shared
Server allows the server to support a larger number of lightweight concurrent connections
by allowing them to share resources.

Oracle Transparent Gateway A connectivity product that seamlessly extends the reach of
Oracle to non-Oracle data stores and allows you to treat non-Oracle data sources as if they
were part of the Oracle environment.

Oracle Universal Installer (OUI) The Java-based installation tool for installing Oracle
software.

OUI See Oracle Universal Installer (OUI).

outer join A join used to select data from a table even if there is no matching row in the
joined table. These are the rows that are not returned by using a simple join. An outer join
is specified by the outer-join operator (+) or the FULL OUTER JOIN keywords.

95127bgloss.indd 1020 2/17/09 3:20:42 PM

Glossary 1021

P
package A container for bundling procedures, functions, and data structures.

package body The part of a package that contains the program implementation.

package specification The part of a package that declares its external interface.

partial database backup A backup that includes zero or more tablespaces, which in turn
include zero or more data files; a control file is optional in a partial database backup.

password A secret word associated with each user ID to authenticate a database
connection.

password file The encrypted file that contains the usernames and passwords of users who
have been granted SYSDBA and SYSOPER privileges.

pfile A plain-text file that contains database-initialization parameters. Oracle reads this
file at startup and uses the information to configure various aspects of the Oracle instance
and database.

PGA See program global area (PGA).

ping A TCP/IP utility that checks basic network connectivity between two computers.

PMON See Process Monitor (PMON).

port Used with TCP/IP to name the ends of logical connections, which carry conversa-
tions between two computers.

primary key A column or combination of column values that can identify a row uniquely.
Primary key columns cannot have NULL values.

principle of least privilege Permits only the minimal set of privileges that are required for
the situation.

private synonym A restricted alias to another object.

privileges The assigned permissions to create, modify, remove, or use a database object or
a feature.

proactive monitoring Monitoring the Oracle server for potential issues before they occur,
thus avoiding the impact on the database’s performance, availability, or manageability.

procedure A PL/SQL program that is invoked as a stand-alone statement.

Process Monitor (PMON) The background process that cleans up failed user connections.

profile A set of limits on database resources or password characteristics.

program global area (PGA) An area of memory in which information for each client ses-
sion is maintained. PGA includes bind variable, cursor information, and the client’s sort area.

95127bgloss.indd 1021 2/17/09 3:20:42 PM

1022 Glossary

proxy-based firewall A firewall that prevents information from outside the firewall from
flowing directly into the corporate network. The firewall acts as a gatekeeper, inspecting
packets and sending only the appropriate information to the corporate network.

public synonym A global alias to another object.

Q
query A category of SQL statement that retrieves rows from database tables.

R
raw device A disk that does not contain an operating system–managed file system. Instead
of a file system managing the reading and writing activities, Oracle does so.

reactive monitoring Monitoring the Oracle server for issues after they have occurred, too
late to avoid impacting the database’s performance, availability, or manageability.

read consistency Oracle’s read consistency uses undo data to ensure that a statement (or a
transaction) sees a set of data that does not change during its execution.

recycle bin A logical container in each tablespace holding dropped tables that can be
retrieved by a database user as long as the space occupied by the deleted object is not
required for new objects in the tablespace.

redo entry A group of change vectors. Redo entries record data that you can use to recon-
struct all changes made to the database, including the undo segments. This is also referred
to as a redo record.

redo log The physical files on disk that store the transaction recovery information written
from the redo log buffer by the LGWR (log writer) process. See also log writer (LGWR).

redo log buffer The portion of the system global area (SGA) where transaction recovery
information is stored until it can be written to the redo log files. See also system global
area (SGA).

redo log file One of the files that constitutes a redo log group. This is also referred to as a
redo log member.

redo log group A collection of multiplexed (mirrored) redo log files that contain informa-
tion about changes in the database.

redo log group member One of the redo logs within a redo log group.

referential integrity Enforcing business rules within or between tables using primary key
constraints and foreign key constraints.

95127bgloss.indd 1022 2/17/09 3:20:42 PM

Glossary 1023

refuse packet A packet sent via TCP/IP that acknowledges the refusal of some network
request.

request queue A location in the system global area (SGA) in an Oracle Shared Server
environment in which the dispatcher process places client requests. The shared server pro-
cess then processes these requests. See also system global area (SGA).

response queue The location in the system global area (SGA) in an Oracle Shared Server
environment where a shared server process places a completed client request. The dispatcher
process then picks up the completed request and sends it back to the client.

response time The time it takes for a single user’s request to return the desired result
while using an application. Frequently used as a performance measure in data warehouse
systems.

right outer join A join between two tables that returns rows based on the matching con-
dition, as well as unmatched rows from the table to the right of the JOIN clause.

role A mechanism for grouping privileges for ease in administering them.

role privilege A database privilege that, by proxy, gives the grantee any combination of
object, system, or other role privileges. Some role privileges that are included with all Oracle
databases are DBA, resource, and java_admin.

rollforward The first phase of instance recovery, during which information in the online
redo log files is applied to the data files (including the undo tablespace) to bring the data
files up to their state before the instance failed.

ROLLBACK    The SQL statement to undo a transaction.

rollback The second phase of instance recovery, during which uncommitted transactions
are backed out from the data files.

rollback segments Manually managed segments for storing undo information. This
information is used for read consistency and recovery purposes. Rollback segments were
replaced by system-managed undo segments when automatic undo management was used.

rolling back The process of undoing one or more changes to data within a transaction.

row A single instance of data in a table. In the relational model, a row is analogous to
a tuple.

row exclusive lock A table lock that is implicitly acquired with an INSERT, an UPDATE, a
MERGE, or a DELETE statement.

row share lock A table lock that is implicitly acquired with a SELECT FOR UPDATE statement.

ROWID A pseudocolumn in every table that is the physical address of a row in the database.

95127bgloss.indd 1023 2/17/09 3:20:42 PM

1024 Glossary

S
savepoint An intermediate point within a transaction to which changes can be rolled
back, without rolling back the entire transaction.

scalability The ability of a system to continue to provide adequate performance as the
amount of data, the number of users, or both increases.

scalar subquery A subquery that returns one row and one column value. If the scalar
subquery returns no rows, the resulting value is NULL.

SCN See system change number (SCN).

script file One or more SQL and/or SQL*Plus commands saved in a file for reuse.

segment A schema object that stores data outside the data dictionary. Tables and indexes
are segments, while constraints and sequences are not.

segment space management Defines how free space within a segment is managed.

SELECT The SQL statement used to query data. This is the most commonly used statement
in Oracle.

self join A join in which a table is joined to itself in a query.

self-referencing foreign key A foreign key constraint that refers to the primary key col-
umn of the same table.

sequence A named sequential-number generator.

server parameter file (spfile) A binary, dynamically modifiable file that stores a list of
instance configuration parameters.

server process The operating-system process that executes on the host server on behalf
of the user. The server process is responsible for parsing and placing SQL statements into the
shared pool, copying database blocks into the database buffer cache, and placing transaction-
recovery information into the redo log buffer.

session The term used to describe a user’s connection to an instance.

set operators Operators used to write compound queries. UNION, UNION ALL, MINUS, and
INTERSECT are the set operators.

SGA See system global area (SGA).

shadow process Another name for a dedicated server process. See also shared server process.

share lock A table lock that will block all changes to data and exclusive locks but will
allow other share locks.

95127bgloss.indd 1024 2/17/09 3:20:42 PM

Glossary 1025

share row exclusive lock A table lock that will block all changes to data and other locks,
except other row share locks.

shared server process Processes in an Oracle Shared Server configuration that executes
the client requests.

shared pool The portion of the system global area (SGA) where cached SQL statements
and supported metadata are stored.

single-row functions Functions that operate on a single row at a time. These functions
know how many arguments they will operate on at compile time, before any data is fetched.

single-row subquery A subquery that returns only one row.

single-tier architecture A network architecture in which the client and server processes
all run on the same computer.

smallfile tablespace A traditional tablespace that can have multiple data files, each limited
to 222 data blocks in size.

spfile See server parameter file (spfile).

SQL See Structured Query Language (SQL).

SQL buffer A buffer where the previously executed SQL statement is stored. SQL in the
buffer can be edited, or it can be run using the / command.

SQL*Loader The Oracle bulk load program to load data from a flat file.

statement A single SQL command that can include subqueries.

statement failure The failure of a single database operation such as a Data Manipulation
Language (DML) statement; for example, INSERT, UPDATE, and so on. See also Data Manip-
ulation Language (DML).

static service registration The inputting of service-name information directly into the
listener.ora file.

Streams pool The portion of the system global area (SGA) that is used to cache Oracle
queuing information when the Oracle Streams feature is used. See also system global
area (SGA).

Structured Query Language (SQL) The English-like language developed to allow users to
easily query and manipulate the data stored in relational databases.

subquery A query within another query. A subquery answers queries that have multiple
parts. The subquery answers one part of the question, and the parent query answers the
other part.

95127bgloss.indd 1025 2/17/09 3:20:43 PM

1026 Glossary

substitution variable A variable that will accept values from the user during execution of
the SQL.

superaggregates Summary rows (created by the ROLLUP and CUBE clauses) containing
NULL in the grouped expressions. The GROUPING function returns a 1 for these summary
rows and a 0 for the nonsummary rows, and it is used to distinguish the summary rows
from the nonsummary rows.

Support Workbench Support Workbench can be used to examine a database problem and
contact Oracle Support for a resolution.

synonym An alias to another object.

SYSASM    A special database authorization given to users to manage ASM instances.

SYSDATE A built-in function to get the current system date and time.

SYSDBA    A special all-empowering database authorization assigned to users that allows
them to perform any database task.

SYSOPER    A special database authorization assigned to users that allows them to perform a
variety of database tasks, such as startup and shutdown. Its capabilities are not as encom-
passing as SYSDBA.

system change number (SCN) A unique number sequentially assigned to each transac-
tion in the database.

system global area (SGA) The shared memory structure that Oracle uses to cache appli-
cation users’ SQL statements, data, index, and rollback buffers, Java, and redo information.

system monitor (SMON) The background process that is responsible for instance recov-
ery, temporary tablespace management, and space management.

system privilege A database privilege that allows the grantee to perform a specific system
operation, such as creating a session or altering any table.

T
table The basic structure in the database to store data. Tables are defined with columns
and contain rows of data.

table alias name An alias name for a table in queries generally used to qualify ambiguous
columns to tell Oracle specifically to which table the column belongs.

tablespace A logical storage area for database segments.

temporary tablespace The tablespace in which a user’s temporary segments are stored.

95127bgloss.indd 1026 2/17/09 3:20:43 PM

Glossary 1027

throughput The amount of work that an application or the database can perform in a
specified amount of time. This is frequently used as a performance measure in systems.

time-zone displacement The difference between the time zone and UTC (Coordinated
Universal Time zone).

TIMESTAMP    Datatype used to storage datetime data with a fraction of seconds, and optional
time-zone information.

tnsnames.ora    The name of the physical file that is used to resolve an Oracle Net service
name when you are using the local naming resolution method.

tnsping An Oracle-supplied utility used to test basic connectivity from an Oracle client to
an Oracle listener.

tracing A configuration that records all events that occur on a network, even when an
error does not occur. This facility can be established at the client, the middle tier, or the
server location.

transaction A unit of work within a series of SQL statements. A statement begins with
the user’s first Data Manipulation Language (DML) statement and ends with a COMMIT or
ROLLBACK command. See also Data Manipulation Language (DML).

trigger A Procedural Language/SQL (PL/SQL) program that is invoked in response to a
database event.

two-tier architecture A network architecture that is characterized by a client computer and
a back-end server that communicate using some type of network protocol, such as TCP/IP.

U
UGA See user global area (UGA).

Undo Advisor A tool within the Oracle advisory framework that uses past undo usage to
recommend settings for the UNDO_RETENTION parameter as well as an optimal size for the
undo tablespace.

undo data The data blocks changed or updated, along with pointers to rows inserted that
are stored in an undo tablespace to support read consistency, rolling back, and recovery from
failed transactions or an instance crash. This is also referred to as rollback information.

undo segment The segment that stores the before image of modified data. This is used for
rollback or transaction-recovery purposes.

undo tablespace A special type of tablespace that holds undo data. Only one undo
tablespace can be active in the database at any given time.

95127bgloss.indd 1027 2/17/09 3:20:43 PM

1028 Glossary

Unicode A multibyte character set that can represent characters from any language. Uni-
code can, for example, represent characters from English, Greek, Urdu, and Japanese within
a single character set.

updatable join view A view that queries from more than one table and can be used to
update the base tables through the view.

UPDATE SQL statement used to modify existing rows in a table.

user error A user operation that does not generate an error message, but whose result was
unintended, such as accidentally dropping a table.

user global area (UGA) An area in either the system global area (SGA) or program global
area (PGA) used to keep track of session-specific information. See also program global area
(PGA); system global area (SGA).

user process The process that runs on the client computer or application server and con-
nects to the instance using a server process.

user-process failure The failure of a single connection to the database.

username A unique identification to connect to Oracle Database.

V
VARCHAR2 Datatype used to store variable-length character data.

view A customized representation of data from one or more tables. Views can be used to
present a different perspective of data, to limit the data access, or to hide a complex query.

W
WHERE A clause used with SQL statements to limit the number of rows retrieved.

whole-database backup A database backup that includes all data files and at least one
control file.

95127bgloss.indd 1028 2/17/09 3:20:43 PM

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discus-
sions of a topic. Italicized page numbers indicate illustrations.

A
ABS function, 82
absolute value, 82
access

Connection Manager, 598
Data Pump, 940
views for, 354

accessibility, network, 601
ACCOUNT LOCK option, 667
accounts. See user accounts
ACOS function, 82
active log files, 847
Active Session History (ASH), 784,

788 – 789, 788–789
activity log, 985 – 986, 986
Add Address screen, 614, 634
ADD clause

tables, 321
tablespaces, 538

ADD_FILE command, 947
ADD_FILE parameter, 958
ADD_MONTHS function, 94 – 95
ADD_POLICY procedure, 705 – 706
addition

dates, 299
expressions, 20
months, 94 – 95

ADDM (Automated Database Diagnostic
Monitoring) feature, 792

EM Database Control, 792 – 798,
794 – 797

views, 798 – 800
addmrpt.sql script, 796

ADDRESS attribute, 645
ADDRESS parameter

listener.ora, 611
tnsnames.ora, 633

ADDRESS_LIST parameter, 633
ADR (Automatic Diagnostic Repository),

766, 805 – 809
ADRCI interface, 807 – 809
Advanced Security feature, 599
ADVISE FAILURE command, 923 – 924
Advisor Central screen, 796 – 798, 797
advisors

DRA, 915 – 917, 916
non-system-critical data file

recovery, 921 – 925, 921 – 922
system-critical data file

recovery, 926
overview, 800 – 802
Patch Advisor, 988 – 990, 989 – 990

AFTER LOGON events, 732
AFTER SERVERERROR events, 733
AFTER STARTUP events, 733
AFTER SUSPEND events, 733
aggregate functions, 148 – 150

descriptions, 156 – 176
exam essentials, 187
GROUP BY clause, 150 – 154
HAVING clause, 176 – 177
nesting, 184 – 186
overview, 154 – 156
in queries, 161 – 163
review questions, 188 – 196
summary, 187
superaggregates, 177 – 184

95127bindex.indd 1029 2/18/09 6:41:35 AM

1030 Alert Log Contents screen – ALTER SYSTEM statement

Alert Log Contents screen, 511, 511
alert logs

monitoring, 506 – 511, 511
for performance, 811
viewing, 806 – 809, 810

alerts
Automatic Diagnostic Repository for,

805 – 809
and incidents, 979, 979
server-generated, 802 – 805, 803

aliases
columns, 26
tables, 200 – 201

ALL EXCEPT clause, 683
ALL keyword

aggregate functions, 148
INSERT, 257

ALL operator
comparisons, 32
subqueries, 224 – 225

ALL_TABLES view, 368, 485 – 486, 486
ALL_UPDATABLE_COLUMNS

view, 356
ALTER COMPILE statement, 734
ALTER DATABASE ADD LOGFILE

statement, 850 – 851
ALTER DATABASE BACKUP

CONTROLFILE statement, 864, 867
ALTER DATABASE CLEAR LOGFILE

statement, 854, 917 – 918
ALTER DATABASE DATAFILE

statement, 547, 557
ALTER DATABASE DATAFILE

OFFLINE statement, 547
ALTER DATABASE DATAFILE ONLINE

statement, 547
ALTER DATABASE DEFAULT

TABLESPACE statement, 665

ALTER DATABASE DROP LOGFILE
GROUP statement, 853

ALTER DATABASE DROP LOGFILE
MEMBER statement, 853

ALTER DATABASE ENABLE
BLOCK CHANGE TRACKING
statement, 873

ALTER DATABASE FLASHBACK
statement, 861

ALTER DATABASE MOUNT
statement, 503

ALTER DATABASE OPEN statement,
503, 926

ALTER DATABASE RENAME
DATAFILE statement, 548

ALTER DATABASE RENAME FILE
statement, 548 – 549

ALTER event triggers, 731
alter logs, reviewing, 919, 919
ALTER privilege, 671 – 672
ALTER PROFILE statement, 689 – 694
ALTER SEQUENCE statement, 366, 697
ALTER SESSION statement

date format conversions, 91
date functions, 93 – 94
Oracle Managed Files, 551
parameters, 496

ALTER SESSION SET CONSTRAINT
statement, 327, 572

ALTER SYSTEM statement
archived redo log files, 856
circuits, 649
control files, 845
dispatchers, 648 – 649
dynamic initialization parameters, 821
flash recovery area, 860
log switches, 848
Oracle Managed Files, 551
parameters, 496 – 497

95127bindex.indd 1030 2/18/09 6:41:36 AM

ALTER SYSTEM ARCHIVE LOG GROUP statement – ANALYZE ANY privilege 1031

shared servers, 649 – 650
tablespaces, 528

ALTER SYSTEM ARCHIVE LOG
GROUP statement, 917 – 918

ALTER SYSTEM CHECKPOINT
statement, 848

ALTER SYSTEM KILL SESSION
statement, 741

ALTER SYSTEM SET statement
auditing, 696
resources, 688, 691

ALTER SYSTEM SWITCH LOGFILE
statement, 848

ALTER TABLE statement
auditing option, 697
constraints, 319
triggers, 733

ALTER TABLE ADD statement, 310 – 312
ALTER TABLE ADD CONSTRAINT

statement, 321 – 324
ALTER TABLE DISABLE

CONSTRAINT statement, 325
ALTER TABLE DISABLE PRIMARY

KEY CASCADE statement, 325
ALTER TABLE DROP statement, 314 – 315
ALTER TABLE DROP CONSTRAINT

statement, 325
ALTER TABLE DROP PRIMARY KEY

CASCADE statement, 325
ALTER TABLE DROP UNIQUE

statement, 325
ALTER TABLE ENABLE statement,

325 – 326
ALTER TABLE ENABLE ROW

MOVEMENT statement, 905
ALTER TABLE MODIFY statement, 313,

320, 325
ALTER TABLE MODIFY

CONSTRAINT statement, 572

ALTER TABLE MOVE statement, 566
ALTER TABLE READ ONLY

statement, 317
ALTER TABLE RENAME COLUMN

statement, 314
ALTER TABLE RENAME TO

statement, 317
ALTER TABLE SET UNUSED

COLUMNS clause, 315
ALTER TABLESPACE statement, 754
ALTER TABLESPACE ADD DATAFILE

statement, 538, 551
ALTER TABLESPACE APPL_DATA

statement, 538
ALTER TABLESPACE BEGIN BACKUP

statement, 540, 868 – 869
ALTER TABLESPACE END BACKUP

statement, 540, 868
ALTER TABLESPACE READ ONLY

statement, 540
ALTER TABLESPACE READ WRITE

statement, 540
ALTER TABLESPACE USER_DATA

statement, 539
ALTER TRIGGER statement, 733
ALTER USER DEFAULT ROLE

statement, 684
ALTER USER PASSWORD

statement, 669
ALTER USER privilege, 679
ALTER USER PROFILE statement, 666
ALTER USER QUOTA statement, 666
ALTER VIEW statement, 347 – 349
AMM (Automatic Memory Management),

822 – 824
ampersands (&)

positional notation for variables, 50
substitute variables, 45, 47 – 49

ANALYZE ANY privilege, 679

95127bindex.indd 1031 2/18/09 6:41:36 AM

1032 ANALYZE_DB procedure – auditing

ANALYZE_DB procedure, 797
ANALYZE event triggers, 731
AND DATAFILES clause, 537
AND operators, 33 – 34, 83
ANSI syntax for joins

Cartesian, 209 – 210
inner, 202
outer, 212 – 214

ANY operator, 32, 224 – 225
ANY privilege, 687 – 688
APPEND keyword

query results files, 15
SQL buffer, 10
SQL*Loader, 971

Apply Patch Wizard, 993, 993
applying patches, 993 – 994, 993 – 994
architecture, 398 – 399, 400

instances, 402, 402
memory structures, 402 – 408, 405
processes structures, 408 – 415
storage structures, 415 – 423, 417, 423
user processes, 400 – 401, 401

archive log mode, 421
archive logs, 421
archived log files, 859
archived redo log files, 854

architecture, 854 – 855
contents, 415
destinations, 856 – 858, 856 – 857
space issues, 855

ARCHIVELOG clause, 858
ARCHIVELOG mode, 854 – 855

non-system-critical data file recovery,
920 – 925, 921 – 922

system-critical data file recovery, 926
Archiver process, 409
archiving process, 854
ARCn process, 409, 421 – 422, 421

arithmetic
dates, 299 – 301
operators, 20

AS OF TIMESTAMP clause, 899 – 900
AS SELECT clause, 308 – 310
ASBM process, 409
ASC keyword, 38
ASCII function, 70
ASCIISTR function, 104
ASH (Active Session History), 784,

788 – 789, 788 – 789
ashrpt.sql script, 788
ASIN function, 82 – 83
ASM (Automated Storage

Management), 460
ASM Balance process, 409
ASM Disk process, 409
ASMM (Automatic Shared Memory

Management), 470, 820 – 822
ASMM screen, 825 – 826, 826
ASSOCIATE event triggers, 731
asterisks (*)

column selection, 26
comments, 15
dates, 300
multiplication, 20

ATAN function, 83
ATAN2 function, 83
AUD$ table, 704
AUDIT event triggers, 731
Audit Settings screen, 704, 705
AUDIT statement, 697
AUDIT_SYS_OPERATIONS

parameter, 700
auditing, 695 – 696

fine-grained, 705 – 708
objects, 702 – 704
privileges, 701 – 702
purging audit trails, 704, 705
statements, 696 – 701

95127bindex.indd 1032 2/18/09 6:41:36 AM

authentication – baselines in AWR 1033

authentication, 663 – 664
AUTHID CURRENT_USER clause, 727
AUTOALLOCATE option, 529 – 530
AUTOEXTEND clause, 546 – 547,

556 – 557, 751
Automated Database Diagnostic

Monitoring (ADDM) feature, 792
EM Database Control, 792 – 798,

794 – 797
views, 798 – 800

Automated Maintenance Tasks, 768,
782, 783

Automated Maintenance Tasks screen,
782, 783

Automated Storage Management
(ASM), 460

Automatic Diagnostic Repository (ADR),
766, 805 – 809

Automatic Maintenance Tasks screen,
474, 475

Automatic Memory Management (AMM),
822 – 824

AUTOMATIC segment space
management, 531

Automatic Shared Memory Management
(ASMM), 470, 820 – 822

Automatic SQL Execution Memory
Management, 822

Automatic Undo Management screen,
751, 751

Automatic Workload Repository (AWR)
baselines, 789 – 792, 791 – 792
collection, 784 – 787, 785 – 786
snapshots, 787 – 789

Automatic Workload Repository screen,
785, 785, 787

AUTOSTATS_TARGET parameter, 775
Availability screen, 898, 926

averages, 156 – 157
AVG function, 156 – 157
AWR (Automatic Workload Repository)

baselines, 789 – 792, 791 – 792
collection, 784 – 787, 785 – 786
snapshots, 787 – 789

AWR Baselines screen, 791, 791

B
B code in number conversions, 116
B-tree indexes, 372, 572 – 573
BACKUP CURRENT CONTROLFILE

statement, 867
BACKUP RECOVERY AREA

statement, 862
backup sets, 873
backup to trace backups, 864
backups, 862

catalog maintenance, 878, 878
control files, 864 – 868
database, 868 – 869
exam essentials, 880 – 881
full and incremental, 873 – 876,

875 – 877
image copies and backup sets, 873
managing, 876 – 879, 878 – 879
reports, 878 – 879, 879
review questions, 882 – 887
RMAN, 869 – 876, 870 – 872, 875 – 877
settings, 869 – 873, 870 – 872
summary, 879 – 880
tablespace backup mode for, 540 – 541
terminology, 862 – 863

Bad file type with SQL*Loader, 967
base tables, 342
baselines in AWR, 789 – 792, 791 – 792

95127bindex.indd 1033 2/18/09 6:41:36 AM

1034 BEFORE LOGOFF events – Change Tracking Writer process

BEFORE LOGOFF events, 732
BEFORE SHUTDOWN events, 733
BEGIN BACKUP clause, 540, 868 – 869
BEGINDATA keyword, 971
bequeath connections, 603
BETWEEN operator, 36
BFILE datatype, 302
BFILENAME function, 124
bigfile tablespaces, 527 – 528
BIN_TO_NUM function, 104
binary backups, 867
binary datatypes, 301 – 302
BINARY_DOUBLE datatype, 295
BINARY_FLOAT datatype, 295
binary operators, 20
binary parameter files (sfiles), 489
bit field conversion functions, 104
BITAND function, 83
bitmap indexes, 373, 572 – 573
BITMAP keyword, 373
BLOB datatype

columns, 562
conversions, 120
functions, 126
syntax, 302

block sizes, 423
nonstandard, 533 – 534
setting, 471

blocks, 422 – 423
BLOCKSIZE clause, 533
bodies, package, 727 – 728
BOTH trimming value, 79
buckets

hash functions, 129
histograms, 89 – 90

BUFFER_POOL parameter, 561
buffers

database, 403, 405 – 406, 405, 561
redo log, 403, 406, 414
SQL, 8, 10 – 15

BY ACCESS clause, 697
BY SESSION clause, 697
BYTE keyword, 292

C
C code in number conversions, 115
CACHE parameter

sequences, 361
tables, 564

caches
database, 403, 405 – 406, 405
patches, 990, 990
sequences, 361
tables, 564

CALL command, 727
carets (̂) for inequality operator, 30
Cartesian joins, 208 – 210
CASCADE clause

constraints, 325
statistics preferences, 775
users, 668

CASCADE CONSTRAINTS clause,
315 – 316

CASE expression
scalar subqueries in, 229
syntax, 44 – 45

CAST function, 105
Catalog Additional Files button, 878
catalog maintenance, 878, 878
catalog.sql script, 488
catproc.sql script, 488
CBO (cost-based optimizer), 767
CD installation, 431
CEIL function, 84
CHANGE command, 11
CHANGE FAILURE command, 925
change_password command, 621
Change Tracking Writer process, 410

95127bindex.indd 1034 2/18/09 6:41:36 AM

change vectors – committed undo information 1035

change vectors, 406
CHAR datatype, 16, 292
character datatypes, 16 – 17, 291 – 294

conversion functions, 104, 111 – 117,
122 – 123

single-row functions, 68 – 80
character sets

configuring, 472 – 473, 472
template definitions, 455

Character Sets tab, 472 – 473, 472
CHARTOROWID function, 106
CHECK clause, 320 – 321, 569
check constraints, 320 – 321, 569
Checkpoint process, 408, 413
checkpoints, 413, 846
child tables, 394
CHR function, 70
CHUNK parameter, 563
CIRCUITS parameter, 649
CJQn process, 409
CKPT process, 408, 413, 846
CLEAR BUFFER command, 12
clearing online redo log files, 854
client configuration, 626

Easy Connect method, 628 – 629
local naming method, 629 – 635,

630 – 632, 634
name resolution, 626 – 628
tnsnames.ora file, 633
troubleshooting, 635 – 637

client/server architecture, 593 – 594
clients, Data Pump, 938, 940
CLOB datatype

columns, 562
conversions, 120
functions, 126
syntax, 293

closing incidents, 985 – 986, 986
CLUSTER_DATABASE parameter, 489

clusters
description, 290, 395
RAC, 399, 642

COALESCE function, 67 – 68
coefficient of correlation function,

163 – 164
cold backups, 868
collecting statistics, 768 – 769

AWR, 784 – 787, 785 – 786
EM Grid Control, 770 – 773, 770 – 773
SQL*PLUS, 769 – 770

columns
adding, 310 – 312
alias names, 26
CREATE TABLE, 559
datatypes, 557 – 558
default values, 306 – 308
defined names, 344 – 345
definition changes, 313
derived, 308
dropping, 314 – 315
names, 303 – 305, 558
renaming, 314
virtual, 288

COLUMNS CONTINUE clause, 315
commas (,) in number conversions, 115
COMMENT event triggers, 731
COMMENT statement, 308
COMMENT ON COLUMN statement,

308, 697
COMMENT ON TABLE statement,

308, 697
comments

script files, 15
tables, 308

COMMIT statement
deadlocks, 742
transactions, 268 – 271

committed undo information, 750

95127bindex.indd 1035 2/18/09 6:41:36 AM

1036 Common Options section – CONTINUE_CLIENT parameter

Common Options section, 455
comparison operators, 29 – 32
COMPATIBLE parameter, 489
Compile Invalid View, 818, 818
compiling

files in installation, 437 – 438, 437
invalid and unusable objects, 815 – 818,

817 – 819
complex inner joins, 200
COMPOSE function, 106
composite indexes, 371 – 372
composite keys, 321
COMPOSITE_LIMIT resource, 690 – 691
compound queries, 216 – 221
COMPRESS clause, 574
COMPUTE STATISTICS clause, 574
CONCAT function, 70 – 71
concatenated indexes, 373
concatenating strings, 20 – 21, 70 – 71
concatenation operator, 20 – 21
concurrency, locks for, 736 – 737
Configure Automated Maintenance Tasks

screen, 782, 783
Configure Automatic Storage Management

(ASM) option, 453
Configure Backup Settings: Backup Set

screen, 870 – 871, 871
Configure Backup Settings: Device screen,

869 – 870, 870
Configure Backup Settings: Policy screen,

871 – 872, 872
Configure Database Options option, 452
Confirmation screen, 479, 479
conflicts, locks, 739 – 742, 740 – 741
CONNECT command, 7
CONNECT_DATA parameter, 633
CONNECT role, 685
CONNECT_TIME resource, 689

CONNECT_TIMEOUT parameter, 612
CONNECT TO clause, 370
Connection Manager, 598
Connection Mode tab, 473, 473
connections

listener requests, 602 – 605, 603 – 605
Oracle Shared Server, 650 – 651
processes, 400
settings, 473, 473

CONNECTIONS attribute, 645
connectivity, network, 596, 596
consistency in transaction control,

272 – 273
consistent backups, 863, 868
constraints, 319, 526, 568

check, 320 – 321, 569
creating, 319 – 320, 328 – 331
deferred checking, 327 – 328, 571 – 572
description, 395
disabled, 324
dropping, 324 – 325
enabling and disabling, 325 – 326
exam essentials, 332
example, 578
foreign key, 323 – 324, 571 – 572
NOT NULL, 320
parent-child relationships, 394
primary key, 322 – 323, 570
review questions, 333 – 339
summary, 331
unique, 321 – 322, 569 – 570
validated, 326 – 327
on views, 347

CONTENT parameter, 953, 956
CONTINUE_CLIENT command

expdp, 947
impdp, 952

CONTINUE_CLIENT parameter, 958

95127bindex.indd 1036 2/18/09 6:41:36 AM

CONTINUE LOAD DATA command – CREATE PUBLIC DATABASE LINK statement 1037

CONTINUE LOAD DATA command,
970 – 971

CONTROL_FILE_RECORD_KEEP_
TIME parameter, 842

control files, 415 – 417, 417, 841
architecture, 841 – 843, 843
backing up, 864 – 868
failure recovery, 913 – 915
in flash recovery area, 859
multiplexing, 844 – 845
SQL*Loader, 967, 970 – 972

CONTROL_FILES parameter, 489,
844 – 845, 914

Control Files screen, 843, 843
Control Files section for template

definitions, 455
CONTROLFILE_RECORD_KEEP_

TIME parameter, 416
conversions

date formats, 91
functions summary, 101 – 123
numbers to words, 119 – 120

CONVERT function, 106 – 107
Coordinated Universal Time (UTC), 296
copying files in installation, 437 – 438, 437
core dump files, 806
corporation passwords, 694 – 695
CORR function, 163 – 164
correlated subqueries, 221, 227 – 228
Correlation Time Proximity setting, 985
COS function, 84
COSH function, 84
cost-based optimizer (CBO), 767
COUNT function, 148, 157 – 158
COVAR_POP function, 164 – 165
COVAR_SAMP function, 165
CPU_PER_CALL resource, 689
CPU_PER_SESSION resource, 689
CPUs (critical patch updates), 987
crash recovery, 897

Create a Database option, 452
CREATE_BASELINE procedure, 789
Create Baseline: Repeating Baseline

screen, 792, 792
Create Baseline: Single Baseline screen,

791, 791
CREATE BIGFILE statement, 527
CREATE BITMAP INDEX statement, 373
Create Database option, 477
CREATE DATABASE statement

Oracle Managed Files, 551
redo log files, 847, 849
tablespaces, 527
temporary tablespaces, 534 – 535

CREATE DATABASE LINK
statement, 370

CREATE DIRECTORY statement, 941
CREATE_EXTENDED_STATS

statement, 779
CREATE FUNCTION statement, 726
CREATE GLOBAL TEMPORARY

TABLE statement, 565
CREATE INDEX statement, 372
Create Listener screen, 614, 615
Create Net Service Name page, 634
Create New Service Name page, 634
CREATE OR REPLACE FUNCTION

statement, 694, 726
CREATE OR REPLACE PACKAGE

statement, 727 – 728
CREATE OR REPLACE PROCEDURE

statement, 726
CREATE OR REPLACE TRIGGER

statement, 729 – 730, 732
CREATE OR REPLACE VIEW statement,

347 – 348
CREATE PROFILE statement, 688 – 691
CREATE PUBLIC DATABASE LINK

statement, 370

95127bindex.indd 1037 2/18/09 6:41:36 AM

1038 CREATE PUBLIC SYNONYM statement – CYCLE keyword

CREATE PUBLIC SYNONYM statement,
367 – 368

CREATE ROLE statement, 682, 684
CREATE SEQUENCE statement,

360 – 361
CREATE SMALLFILE statement, 528
CREATE_SNAPSHOT statement, 787
CREATE SYNONYM statement, 367
CREATE TABLE statement, 303, 559 – 562

constraints, 319 – 322
external tables, 975 – 977

CREATE TABLE AS SELECT statement,
308 – 310

CREATE TABLE IOT statement, 576
CREATE TABLE ORGANIZATION

EXTERNAL statement, 559
CREATE TABLESPACE statement,

527 – 531
CREATE TABLESPACE APPL_DATA

statement, 529, 532, 546
CREATE TABLESPACE DATAFILE

statement, 553
CREATE TEMPORARY TABLESPACE

statement, 534 – 535
CREATE UNDO TABLESPACE

statement, 536 – 537
CREATE UNIQUE INDEX

statement, 372
CREATE USER IDENTIFIED BY

statement, 663
CREATE USER IDENTIFIED

EXTERNALLY statement, 664
CREATE USER IDENTIFIED

GLOBALLY statement, 664
Create User screen, 668, 668
CREATE USER statement, 662 – 663

profiles, 666
quotas, 666
tablespaces, 665

CREATE VIEW statement, 342 – 345
Creation Options screen, 477 – 481, 478
credentials

database, 457 – 458, 458
patches, 993

Credentials and Schedule screen, 993
Critical alert level, 804
critical patch updates (CPUs), 987
cross joins, 209 – 210
cross-protocol connectivity, 598
Crosscheck All button, 878
CTAS syntax, 309
CTWR process, 410
CUBE modifier, 177 – 178, 180 – 184
CUME_DIST function, 165 – 166
cumulative distributions, 165 – 166
CURRENT_DATE function, 95
current_listener command, 622
current log files, 847
current session, retrieving, 45 – 47
Current tab, 494
CURRENT_TIMESTAMP function,

95 – 96
CURRVAL keyword, 361 – 362
custom packages, 983
custom scripts, 467 – 468, 468
Customize Package screen, 984, 984
Customized backup schedule: Options

screen, 874, 875
Customized backup schedule: Review

screen, 876, 877
Customized backup schedule: Schedule

screen, 876, 877
Customized backup schedule: Settings

screen, 876, 876
Cutoff Age for Incident Inclusion

setting, 985
CYCLE keyword, 361

95127bindex.indd 1038 2/18/09 6:41:36 AM

D code in number conversions – Database Configuration Assistant (DBCA) 1039

D
D code in number conversions, 115
data blocks, 524
data concurrency, 736 – 737
data consistency, 272 – 273
Data Control Language (DCL)

statements, 718
Data Definition Language (DDL)

statements, 718
description, 6
event triggers, 730 – 731
lock waits, 738 – 739
tablespaces, 543

data dictionary
caches, 407
protecting, 686
unusable objects in, 816 – 817
views, 485 – 486, 486, 488, 815

data files, 415, 417 – 418, 419, 546
exam essentials, 583
in flash recovery area, 859
information about, 555 – 557
moving, 550
online and offline, 547
Oracle Managed Files, 550 – 554
overview, 524 – 526, 525
renaming, 548 – 549
review questions, 584 – 589
size, 545 – 546
SQL*Loader, 967
summary, 582

Data Manipulation Language statements.
See DML (Data Manipulation
Language) statements

Data Pump Export: Options screen,
962, 963

Data Pump Export: Review screen,
962, 963

Data Pump facility, 936 – 937
access methods, 940
architecture, 937, 938
clients, 940
components, 937
data and metadata filters, 956 – 958
EM Database Control, 962 – 967,

962 – 963, 965 – 967
exam essentials, 995 – 996
export and import modes, 943 – 944
exports, 944 – 949, 962 – 964, 962 – 963
fine-grained object selection, 961
imports, 949 – 956, 964 – 967, 965 – 967
job management, 958 – 961
loading external tables, 975 – 977
location setup, 941 – 942, 942
processes, 938 – 940
review questions, 997 – 1002
summary, 995

Data Pump Import: Re-mapping screen,
964, 965

Data Pump Import: Review screen,
966, 966

Data Recovery Advisor (DRA), 802, 890,
915 – 917, 916

non-system-critical data file recovery,
921 – 925, 921 – 922

system-critical data file recovery, 926
data visibility, 271 – 272
Data Warehouse template, 453
database-authenticated accounts, 663
Database Configuration Assistant

(DBCA), 450 – 451
configuration settings, 481 – 482
content settings, 464 – 466, 464 – 466
creation options, 477 – 481, 478 – 481
credential settings, 457 – 458, 458
database deletions, 482
exam essentials, 515

95127bindex.indd 1039 2/18/09 6:41:37 AM

1040 Database Content screen – databases

file location settings, 460 – 462, 461
identification settings, 455 – 456, 456
initialization parameters, 468 – 473,

469 – 474
invoking, 451 – 453, 451 – 452
management options, 456 – 457, 457
password management, 480, 480
recovery configuration, 462 – 464,

462, 464
review questions, 516 – 521
sample schemas and custom scripts,

467 – 468, 468
security and maintenance settings,

474, 475
storage options, 459 – 460, 460,

475 – 477, 476 – 477
summary, 514
template definitions

creating, 483 – 484, 483
deleting, 484
predefined, 453 – 455, 453 – 454

Database Content screen, 464 – 467,
464 – 465

Database Control. See Enterprise Manager
Database Control tool

Database Control screen, 501, 501,
505, 505

Database Credentials screen, 457 – 458 458
DATABASE_EXPORT_OBJECTS

view, 957
Database File Locations screen,

460 – 462, 461
Database Identification screen,

455 – 456, 456
DATABASE LINK statement, 697
database maintenance, 766 – 767

ADR, 805 – 809
advisory framework, 800 – 802
automated, 782, 783

exam essentials, 831
optimizer statistics. See optimizer

statistics
performance statistics. See performance

statistics
review questions, 832 – 837
server-generated alerts, 802 – 805, 803
summary, 830

database management systems
(DBMSs), 392

Database mode for Data Pump, 943
DATABASE_PROPERTIES view, 486,

528, 665
Database Schema Live database role, 950
Database Schema Table role, 949
Database Schema Table Tablespace Live

role, 949
Database Services screen, 609, 609
Database Storage screen, 475 – 477,

476 – 477
Database Templates screen, 453, 453
Database Writer process, 408, 413
databases

alert logs, 506 – 511, 511
auditing. See auditing
backups. See backups
buffer caches, 403, 405 – 406, 405
configuring, 481 – 482
creating, 512 – 513
defined, 399
deleting, 482
event triggers, 732 – 733
file locations, 460 – 462, 461
links, 290, 370, 395
maintaining. See database maintenance
objects, 394 – 395
Oracle Managed Files for, 551 – 553
overview, 392 – 393
privileges, 674

95127bindex.indd 1040 2/18/09 6:41:37 AM

DATAFILE clause – DBA_FREE_SPACE view 1041

recovering. See recovering databases;
recovery components

relational, 393 – 394, 393
roles, 685
shutting down, 503 – 506, 505
starting up, 498 – 503
startup states, 503
storage, 475 – 477, 476 – 477
templates, 453 – 455, 453 – 454

DATAFILE clause, 553
Datafiles section for template

definitions, 455
datatypes, 15 – 16, 290 – 291, 291

binary, 301 – 302
character, 16 – 17, 291 – 294
columns, 557 – 558
conversion function, 105
date and time, 19, 295 – 301
numeric, 17 – 19, 294 – 295
row ID, 302

DATE datatype, 19, 296
date datatypes, 16, 19, 295 – 301
DATE keyword, 23
dates

arithmetic, 299 – 301
conversions, 111 – 115, 117 – 118, 122
default format, 473
format conversions, 91
retrieving, 95
rounding, 100
single-row functions, 90 – 101
truncating, 101

datetime datatypes
literals, 23
single-row functions, 90 – 101

DB_BLOCK_SIZE parameter, 489, 534
DB_CACHE_SIZE parameter, 406, 534
DB_CREATE_FILE_DEST parameter,

490, 528, 551 – 552

DB_CREATE_ONLINE_LOG_DEST
parameter, 490, 551 – 552

DB_DOMAIN parameter, 490
DB_K_CACHE_SIZE parameter, 534
DB_KEEP_CACHE_SIZE parameter, 406
DB_NAME parameter, 490
DB_RECOVERY_FILE_DEST parameter,

490, 860 – 861
DB_RECOVERY_FILE_DEST_SIZE

parameter, 490, 860 – 862
DB_RECYCLE_CACHE_SIZE

parameter, 406
DB_UNIQUE_NAME parameter, 490
DB_WRITER_PROCESSES

parameter, 413
DBA_ADDM_FINDINGS view, 798, 800
DBA_ADDM_TASKS view, 798
DBA_ADVISOR_ACTIONS view,

798 – 800
DBA_ADVISOR_FINDINGS view, 798
DBA_ADVISOR_OBJECTS view,

798 – 800
DBA_ADVISOR_RATIONALE view,

798, 800
DBA_ADVISOR_

RECOMMENDATIONS view, 798
DBA_ALERT_HISTORY view, 804
DBA_AUDIT_POLICIES view, 707
DBA_AUDIT_TRAIL view, 700
DBA_DATA_FILES view, 231, 418, 542,

547, 555 – 556, 815
DBA_DATAPUMP_JOBS view, 958 – 959
DBA_DATAPUMP_SESSIONS view, 958
DBA_EXTERNAL_LOCATIONS

view, 977
DBA_EXTERNAL_TABLES view, 977
DBA_FGA_AUDIT_TRAIL view, 708
DBA_FREE_SPACE view, 231, 815, 902

95127bindex.indd 1041 2/18/09 6:41:37 AM

1042 DBA_HIST_ACTIVE_SESS_HISTORY view – DBWn process

DBA_HIST_ACTIVE_SESS_HISTORY
view, 788

DBA_HIST_SNAPSHOT view, 787
DBA_HISTOGRAMS view, 815
DBA_INDEX_PARTITIONS view, 816
DBA_INDEXES view, 815 – 816
DBA_LOCK view, 741
DBA_OBJ_AUDIT_OPTS view, 703
DBA_OBJECTS view, 815 – 816
DBA_OUTSTANDING_ALERTS view,

804, 862
DBA_PRIV_AUDIT_OPTS view, 702
DBA privilege, 687
DBA role, 685
DBA_ROLLBACK_SEGS view, 744
DBA_SEGMENTS view, 161, 815
DBA_SOURCE view, 725
DBA_STMT_AUDIT_OPTS view, 699
DBA_SYS_PRIVS view, 681 – 682
DBA_TAB_COLUMNS view, 486
DBA_TAB_STAT_PREFS view, 776
DBA_TABLES view, 485 – 486, 486, 815
DBA_TABLESPACES view, 231, 541, 815
DBA_TEMP_FILES view, 231, 542,

556 – 557
DBA_THRESHOLDS dictionary view, 804
DBA_TRIGGERS view, 725, 733
DBA_UPDATABLE_COLUMNS

view, 356
DBA_WAITERS view, 741, 815
DBCA. See Database Configuration

Assistant (DBCA)
dbca command, 451
DBCA Database Templates screen, 455
DBMS_ADD package, 797
DBMS_AUTO_TASK package, 768
DBMS_CRYPTO package, 686
DBMS_DATAPUMP package,

936 – 937, 939

DBMS_DATAPUMP.OPEN
procedure, 939

DBMS_DATAPUMP.START_JOB
procedure, 939

DBMS_FGA.ADD_POLICY procedure,
705 – 706

DBMS_FGA.DISABLE_POLICY
procedure, 707

DBMS_FGA.DROP_POLICY
procedure, 707

DBMS_FGA.ENABLE_POLICY
procedure, 707

DBMS_FLASHBACK.TRANSACTION_
BACKOUT procedure, 909

DBMS_METADATA package, 733,
937, 939

DBMS_MONITOR package, 733, 811
DBMS_OBFUSCATION_TOOLKIT

package, 686
DBMS_SERVER_ALERT package, 804
DBMS_SPACE_ADMIN package, 530
DBMS_STATS package, 733,

767 – 770, 773
DBMS_STATS.CREATE_EXTENDED_

STATS procedure, 779
DBMS_STATS.GATHER_DATABASE_

STATS_JOB_PROC procedure, 768
DBMS_STATS.SET_GLOBAL_PREFS

procedure, 774 – 775
DBMS_STATS.SET_SCHEMA_PREFS

procedure, 776
DBMS_TRACE package, 45
DBMS_WORKLOAD_REPOSITORY

package, 785
DBMSs (database management

systems), 392
DBSNMP account, 458, 669
DBTIMEZONE function, 96
DBWn process, 406, 408, 413

95127bindex.indd 1042 2/18/09 6:41:37 AM

DCL (Data Control Language) statements – DESC keyword 1043

DCL (Data Control Language)
statements, 718

DDL (Data Definition Language)
statements, 718

description, 6
event triggers, 730 – 731
lock waits, 738 – 739
tablespaces, 543

DDL_LOCK_TIMEOUT parameter, 739
deadlocks, 742
DEBUG privilege, 671 – 672
debugging-oriented system privileges,

674 – 675
declarative constraints, 347
DECODE function, 124 – 125, 182, 184
DECOMPOSE function, 107
dedicated connections

listeners, 603 – 604, 603 – 604
Oracle Shared Server, 650 – 651

Dedicated Server Mode, 473
dedicated servers

connection settings, 473, 473
listeners, 602
vs. shared servers, 638 – 640, 639

DEFAULT cache, 406
DEFAULT clause, 307
Default Date setting, 473
Default Language setting, 472
DEFAULT pool, 406
DEFAULT profile, 691
DEFAULT STORAGE clause,

532 – 533, 538
DEFAULT TABLESPACE clause, 665
DEFAULT TEMPORARY TABLESPACE

clause, 534 – 535
defaults

column values, 306 – 308
data file size, 553
date format, 473

initialization-parameter files, 493
locales, 482
roles, 684 – 685
statistics staleness threshold, 777
tablespaces, 526 – 527
user accounts, 669

DEFERRABLE clause, 327 – 328, 571 – 572
DEFERRED keyword, 496
deferring constraint checks, 327 – 328,

571 – 572
DEFINE command, 47 – 48
defined column names, 344 – 345
definitions

templates, 455, 483 – 484, 483
views, 348

DEGREE parameter, 775
DEL command, 11 – 12
Delete a Database option, 452
Delete All Expired button, 878
Delete All Obsolete button, 878
DELETE_CATALOG_ROLE role, 685
DELETE event triggers, 730
DELETE privilege, 671
DELETE procedure in ADDM

analysis, 797
DELETE statement

audit trails, 704
rows, 263 – 265, 723 – 724
SQL*Loader, 971
in subqueries, 236 – 237

DELETE TABLE statement, 697
deleting

databases, 482
rows, 263 – 265, 723 – 724
template definitions, 484
through views, 351 – 353

DENSE_RANK function, 166 – 167
derived columns, 308
DESC keyword, 38 – 39

95127bindex.indd 1043 2/18/09 6:41:37 AM

1044 DESCRIBE command – Dnnn process

DESCRIBE command, 9, 42
columns, 304
stored programs, 734

DESCRIPTION parameter
DISPATCHERS, 645
listener.ora, 610

destinations for archived redo log files,
856 – 858, 856 – 857

DIA0 process, 409
DIAG process, 409
Diagnosability process, 409
diagnostic data

EM Support Workbench, 981
packaging, 983 – 985, 983 – 985

DIAGNOSTIC_DEST parameter,
510, 805

dictionary-managed tablespaces, 529
DICTIONARY view, 488
dictionary views, 231 – 235, 485 – 486,

486, 488
dimensions, 290
direct handoff connections, 603 – 604, 604
Direct Path API (DPAPI), 937
direct path loading, 972 – 973
directories

Data Pump, 941 – 942, 942
naming, 597
OFA paths, 427 – 430

Directory Objects screen, 942, 942
dirty buffers, 405
DISABLE clause, 733
DISABLE CONSTRAINT clause, 325
DISABLE NOVALIDATE clause, 326, 347
DISABLE_POLICY procedure, 707
DISABLE PRIMARY KEY CASCADE

clause, 325
DISABLE procedure, 768
DISABLE STORAGE IN ROW clause, 563

DISABLE VALIDATE constraint,
326 – 327

disabled constraints, 324
disabling

constraints, 325 – 326
FGA policies, 707
object auditing, 704
privilege auditing, 702
roles, 683 – 684
statement auditing, 700
triggers, 733

DISASSOCIATE STATISTICS events, 731
discard files, 968
Disk Backup Location parameter, 870
Disk Backup Type parameter, 870
disk space requirements, 425
Dispatcher process, 409
dispatcher processes, 638
DISPATCHERS parameter, 645 – 647
Displaymode command, 622
DISTINCT keyword

aggregate functions, 148
SELECT, 26 – 27, 40
subqueries, 225

division, 20
DML (Data Manipulation Language)

statements, 252, 718
DELETE, 263 – 265
description, 5
event triggers, 729 – 730
exam essentials, 274 – 275
INSERT, 253 – 259
MERGE, 265 – 267
review questions, 276 – 286
subqueries in, 236 – 237
summary, 274
UPDATE, 259 – 263
views, 356

Dnnn process, 409

95127bindex.indd 1044 2/18/09 6:41:37 AM

documentation in Oracle installation – EEEE code in number conversions 1045

documentation in Oracle installation, 424
dollar signs ($)

identifier names, 304
number conversions, 115

dots (.)
number conversions, 115
substitution variables, 48

double quotation marks (“)
column names, 558
identifier names, 304

DPAPI (Direct Path API), 937
DRA (Data Recovery Advisor), 802, 890,

915 – 917, 916
non-system-critical data file recovery,

921 – 925, 921 – 922
system-critical data file recovery, 926

DROP_BASELINE procedure, 790
DROP clause, 314 – 315
DROP CONSTRAINT clause, 325
DROP event triggers, 731
DROP_EXTENDED_STATISTICS

procedure, 782
DROP INDEX statement, 373
DROP LOGFILE MEMBER clause, 853
DROP_POLICY procedure, 707
DROP PRIMARY KEY CASCADE

clause, 325
DROP PUBLIC SYNONYM

statement, 367
DROP SEQUENCE statement, 361, 366
DROP_SNAPSHOT_RANGE

procedure, 787
DROP SYNONYM statement, 367
DROP TABLE statement, 316
DROP TABLESPACE statement, 537
DROP UNIQUE clause, 325
DROP UNUSED COLUMNS clause, 315
DROP USER statement, 668
DROP VIEW statement, 349 – 350

dropping
baselines, 790
columns, 314 – 315
constraints, 324 – 325
FGA policies, 707
indexes, 373
redo log groups, 853
redo log members, 853
sequences, 361, 366
synonyms, 367
tables, 316
tablespaces, 537
user accounts, 668
views, 349 – 350

DUAL table, 28
_DUMP_DEST parameters, 806
_DUMP_DIRECTORY parameters, 805
dump file sets, 944
dump files

Data Pump, 940, 944
file locations, 806

DUMP function, 125 – 126
DUMPFILE parameter, 948
dynamic performance tables, 487
dynamic performance views, 404,

487 – 488, 784, 813 – 814
dynamic service registration, 611, 623 – 624

E
Easy Connect method, 628 – 629
Edit Address screen, 616
Edit Archive Mode Parameters dialog box,

463, 464
EDIT command for SQL buffer, 10, 12
Edit Listener screen, 616, 616
editing SQL buffer, 10 – 15
EEEE code in number conversions, 116

95127bindex.indd 1045 2/18/09 6:41:37 AM

1046 ELSE clause – Enterprise Manager Grid Control

ELSE clause, 44
EMNC process, 409
EMPTY_BLOB function, 126
EMPTY_CLOB function, 126
Enable Archive option, 463
ENABLE clause

constraints, 325
triggers, 733

ENABLE NOVALIDATE constraint, 326
ENABLE_POLICY procedure, 707
ENABLE procedure, 768
ENABLE STORAGE IN ROW clause, 563
ENABLE TRIGGERS clause, 905
ENABLE VALIDATE constraint, 326
enabling

constraints, 325 – 326
FGA policies, 707
object auditing, 703
Oracle Managed Files, 551
privilege auditing, 701 – 702
roles, 682 – 683
statement auditing, 696 – 699
triggers, 733

END BACKUP clause, 868
END keyword in CASE, 44
End of Installation screen, 439, 439
Enterprise Manager

installing, 456 – 457
local naming method, 634 – 635, 634

Enterprise Manager Database Control
tool, 395, 397 – 398, 398

ADDM analysis, 792 – 798, 794 – 797
alert logs, 511, 511, 809, 810, 919, 919
alerts, 803 – 804, 803, 979, 979
ASH statistics, 788, 788 – 789
AWR baselines, 790 – 792, 791 – 792
AWR statistics, 785 – 787, 785 – 786
backups, 878, 878
control files, 417, 417, 843, 843

data files, 419, 419
Data Pump, 942, 942, 962 – 967,

962 – 963, 965 – 967
DRA, 915 – 917, 916
flash recovery area, 860 – 862, 861
home page, 481, 481
incidents, 979, 979
initialization-parameter files,

493 – 494, 494
instance failures, 898 – 899, 898
listeners, 613 – 616, 613 – 616
lock conflicts, 740 – 741, 740 – 741
memory management, 824 – 827,

825 – 826
non-system-critical data file recovery,

921 – 922, 921 – 922
patches. See patches
performance metrics, 827 – 829,

828 – 829
redo logs, 420, 420, 850 – 853, 852,

856 – 857, 856 – 857
SGA components, 405, 405
shutting down Oracle, 505 – 506, 505
SQL*Loader, 973 – 974, 973 – 974
starting up Oracle, 500 – 502, 500 – 502
system-critical data file recovery, 926
tablespace information, 543 – 546,

544 – 545, 613 – 616, 613 – 616
trace files, 812, 813
undo tablespace, 751 – 754, 751, 753
unusable objects, 817 – 818, 817 – 819
user error recovery, 905 – 908, 906 – 908

Enterprise Manager Gather Statistics
Wizard, 770

Enterprise Manager Grid Control
auditing, 704, 705
automated maintenance tasks, 782, 783
optimizer statistics, 770 – 774, 770 – 774
user accounts, 667 – 668, 667 – 668

95127bindex.indd 1046 2/18/09 6:41:37 AM

Enterprise Manager Repository component – external tables 1047

Enterprise Manager Repository
component, 466

Enterprise Manager Support Workbench,
916, 916, 978 – 979

diagnostic data packaging, 983 – 985,
983 – 985

diagnostic information, 981
exam essentials, 995 – 996
incident tracking and closing,

985 – 986, 986
problem identification, 979 – 980,

979 – 980
review questions, 997 – 1002
service requests, 981 – 982, 982
summary, 995

environment variables, 427 – 430
equal signs (=)

equality operator, 29 – 30
inequality operator, 30
joins, 199
single-row subqueries, 222

equality joins, 199
equality operator, 29 – 30
error codes, client-side, 637
errors, views with, 345 – 346
ESCAPE clause, 37 – 38
ESTIMATE parameter, 955
ESTIMATE_PERCENT parameter, 775
event alerts, 802
Event Monitor process, 409
event triggers

databases, 732 – 733
DDL, 730 – 731
DML, 729 – 730

exclamation points (!) for inequality, 30
EXCLUDE parameter, 953, 956 – 957
EXCLUSIVE lock mode, 737
exclusive locks, 274, 737
EXEC command, 727

EXECUTE_CATALOG_ROLE role, 685
EXECUTE privilege, 672, 687
EXECUTE PROCEDURE statement, 697
EXISTS operator, 36 – 37, 224, 228
EXIT command

lsnrctl, 621
SQL*PLUS, 8

EXIT_CLIENT command
expdp, 948
impdp, 952

EXIT_CLIENT parameter, 958
EXP_FULL_DATABASE role, 950
EXP function, 84
expdp utility, 940, 944 – 949
expired undo information, 750
explicit locks, 273
exponent function, 84
exports, Data Pump

EM Database Control, 962 – 964,
962 – 963

expdp, 940, 944 – 949
export modes, 943 – 944

expressions, 43 – 44
CASE, 44 – 45
PL/SQL, 725

extended statistics, 779 – 782
EXTENT MANAGEMENT LOCAL

clause
temporary tablespaces, 535
undo tablespaces, 537

EXTENT MANAGEMENT LOCAL
UNIFORM SIZE clause, 529

extents, 524
defined, 423, 423
managing, 528 – 530

external procedures, 601
external tables

description, 559
populating, 974 – 978

95127bindex.indd 1047 2/18/09 6:41:37 AM

1048 externally authenticated users – FREELISTS parameter

externally authenticated users, 663 – 664
extproc process, 601
EXTRACT function, 96 – 97

F
FAILED_LOGIN_ATTEMPTS

parameter, 691 – 692
failures, 890 – 891

instance, 893 – 894
media, 894
network, 892
statement, 891 – 892
user error, 892 – 893
user process, 892

FALSE value, 33
FAST_START_IO_TARGET

parameter, 898
FAST_START_MTTR_TARGET

parameter, 802, 849, 898 – 899
FDBA process, 409
FET$ table, 529
FGA (fine-grained auditing), 705 – 708
File Location Variables dialog box,

476, 476
file locations for databases, 460 – 462, 461
file system storage, 459
filenames, parsing, 77 – 78
FILESIZE command, 948
FILESIZE parameter, 947
filling strings, 73 – 75
filters, data and metadata, 956 – 958
fine-grained auditing (FGA), 705 – 708
fine-grained object selection, 961
fired triggers, 729
firewalls, 599 – 600
fixed views, 487

flash recovery area, 463, 859
EM Database Control, 860 – 862, 861
managing, 862
occupants, 859
SQL commands, 860

FLASHBACK ANY TABLE privilege, 680
Flashback Data Archive process, 409
FLASHBACK DATABASE command, 861
flashback features

drop, 902 – 904
logs, 859
queries, 899 – 901
table, 904 – 905
transactions, 909 – 910, 909 – 910

FLASHBACK ON/OFF clause, 533
FLASHBACK_SCN parameter, 955
FLASHBACK TABLE statement, 902 – 905
FLASHBACK_TIME parameter, 955
FLOAT datatype, 295
floating-point literals, 22
FLOOR function, 85
FM code in number conversions, 115
FOLLOWS clause, 730
FOR DROP clause, 547
FOR EACH ROW clause, 729
FOR RECOVER option, 539
FOR UPDATE clause, 273, 346
FORCE LOGGING clause, 533
FORCE mode, 499 – 500
FORCE option for views, 345 – 346
foreign key constraints, 323 – 324, 571 – 572
foreign keys, 394
formats for dates, 91, 473
free buffers, 405
free space

dictionary views for, 231 – 235
requirements, 425

FREELIST GROUPS parameter, 561
FREELISTS parameter, 561

95127bindex.indd 1048 2/18/09 6:41:37 AM

From an Existing Database (Structure As Well As Data) option – GUID generation 1049

From an Existing Database (Structure As
Well As Data) option, 484

From an Existing Database (Structure
Only) option, 484

From an Existing Template option, 484
FROM clause

DELETE, 263
multiple-table queries, 198
SELECT, 24 – 25, 29

FROM_TZ function, 97
full backups, 863, 873 – 876, 875 – 877
full outer joins, 214
function-based indexes, 573, 575
functions, 290

group. See aggregate functions
nesting, 184 – 186
PL/SQL, 725 – 726
single-row. See single-row functions
stored, 395

G
G code in number conversions, 115
GATHER_ procedures, 769
GATHER_DATABASE_STATS_JOB_

PROC procedure, 768
Gather Optimizer Statistics screen,

771 – 772, 772 – 773
GATHER_TABLE_STATS procedure, 779
General Purpose or Transaction

Processing template, 453 – 454
Generate Database Creation Scripts

option, 477
GET_THRESHOLD procedure, 804
GLOBAL_DBNAME parameter, 611, 628
GLOBAL_NAME view, 486
Global Statistics Gathering Options

screen, 774, 774

global temporary tables (GTTs), 288, 305
globally authenticated users, 664
GRANT ANY OBJECT PRIVILEGE

privilege, 679
GRANT ANY PRIVILEGE privilege, 679
GRANT ANY ROLE privilege, 676, 680
GRANT event triggers, 731
GRANT statement, 672 – 674, 680 – 682
GRANT PROCEDURE statement, 697
GRANT SELECT ON statement, 369
GRANT SEQUENCE statement, 697
GRANT TABLE statement, 697
granting privileges, 670, 672 – 674, 673,

680 – 683, 681
GRANULARITY parameter, 775
granules, 403
greater than operators, 31 – 32
greater than signs (>)

inequality operator, 30
more than operators, 31 – 32

GREATEST function, 126 – 127
green-screen applications, 593
Greenwich mean time, 296
GROUP BY clause

aggregate functions, 150 – 154
superaggregates, 177 – 184
views, 351

GROUP_ID function, 168, 182
GROUPING function, 148, 168, 182
GROUPING_ID function, 168, 182 – 184
groups

functions. See aggregate functions
redo log, 850, 851, 920

GTTs (global temporary tables), 288, 305
guaranteed undo retention, 753 – 754
GUID generation, 134

95127bindex.indd 1049 2/18/09 6:41:38 AM

1050 hash functions – INDEX_STATS view

H
hash functions, 129 – 130
HAVING clause, 176 – 177
Health Check framework, 979
Health Monitor (HM) tool, 917
heap tables, 558
HELP command

expdp, 948
impdp, 952

Heterogeneous Services component, 601
HEXTORAW function, 107
high-cardinality columns, 372, 573
high-think applications, 637
histograms, 89 – 90
HM (Health Monitor) tool, 917
host naming methods, 627 – 628, 631, 631
HOST parameter

listener.ora, 611
tnsnames.ora, 633

hosts, listeners, 608
hot backups, 868 – 869
hyphens (-)

dates, 299 – 300
statement continuation, 8
subtraction, 20

I
IDENTIFIED BY keywords, 663,

682 – 683
IDENTIFIED EXTERNALLY

keywords, 664
IDENTIFIED GLOBALLY keywords, 664
identifiers for tables and columns,

303 – 304
IDLE_TIME resource, 689
image copies, 873

IMMEDIATE option
parameter changes, 496 – 497
tablespaces, 539

IMP_FULL_DATABASE role, 950, 953
impdp utility, 940, 949 – 954
implicit data conversions, 91
implicit locks, 273
imports, Data Pump

EM Database Control, 964 – 967,
965 – 967

impdp, 949 – 954
import modes, 943 – 944
network-mode, 955 – 956

IN operator, 35, 224, 227
inactive log files, 847
Incident File Retention Period setting, 985
Incident Metadata Retention Period

setting, 985
incidents

dump file locations, 806
EM Database Control, 979, 979
packaging, 984 – 985, 985
tracking and closing, 985 – 986, 986

INCLUDE parameter, 953, 956 – 957
INCLUDING CONTENTS clause, 537
INCLUDING CONTENTS AND

DATAFILES clause, 537
inconsistent backups, 863, 868
INCREMENT BY clause, 360, 365
incremental backups, 863, 873 – 876,

875 – 877
INCREMENTAL parameter, 775
INDEX ANY TABLE privilege, 680, 682
INDEX auditing option, 698
index-organized tables (IOTs)

description, 395, 558 – 559
working with, 575 – 576

INDEX privilege, 671
INDEX_STATS view, 815

95127bindex.indd 1050 2/18/09 6:41:38 AM

indexes – installing Oracle 11g 1051

indexes, 371, 572 – 574
B-tree, 372
bitmap, 373
defined, 289
description, 394
dropping, 373
example, 577
function-based, 575
keys, 572
operation, 371
Optimizer with, 373 – 377
privileges, 675
rebuilding, 817 – 818, 819
reverse key, 575
storage, 573 – 574

inequality operator, 30
INFILE command, 971
init.ora file

multiplexing control files, 844 – 845
registering services, 623 – 624

INITCAP function, 71
initialization of sequences, 362 – 363
initialization-parameter files

default, 493
exam essentials, 515
managing, 488 – 492
modifying, 493 – 498
review questions, 516 – 521
summary, 514
template definitions, 455

Initialization Parameters screen, 468,
494, 494

Character Sets tab, 472 – 473, 472
collection levels, 786
Connection Mode tab, 473, 473
Memory tab, 469 – 470, 469 – 470
Sizing tab, 471 – 472, 471

INITIALLY DEFERRED clause,
327 – 328, 571 – 572

INITIALLY IMMEDIATE clause, 327,
571 – 572

INITRANS parameter, 561, 574
inline constraints, 347
inline storage, 563
inline views, 221, 357 – 360
inner joins, 199

ANSI syntax, 202
complex, 200
JOIN…ON syntax, 205
JOIN…USING syntax, 204 – 205
multiple columns, 206 – 208
multitable, 206
natural, 202 – 204
simple, 199
table aliases, 200 – 201

input
runtime, 47 – 51
SQL buffer, 11

INPUT command, 11
INSERT event triggers, 730
INSERT_FINDING_DIRECTIVE

procedure, 797
INSERT privilege, 671
INSERT_SEGMENT_DIRECTIVE

procedure, 797
INSERT_SQL_DIRECTIVE

procedure, 797
INSERT statement, 253 – 255

multiple tables, 256 – 259
rows, 719 – 721
SQL*Loader, 971
subqueries, 237, 255 – 256
through views, 351 – 353

INSERT TABLE statement, 698
Install Location screen, 434, 434
installing Oracle 11g, 424

documentation, 424
exam essentials, 441

95127bindex.indd 1051 2/18/09 6:41:38 AM

1052 Instance Locks screen – joins

OFA directory paths, 427 – 430
OUI. See Oracle Universal

Installer (OUI)
planning, 425 – 426
review questions, 442 – 445
summary, 440
system requirements, 424 – 425
user accounts, 426
volume and mount point names,

426 – 427
Instance Locks screen, 740, 740
INSTANCE_NAME parameter, 623 – 624
INSTANCE_NUMBER parameter, 490
instances, 399 – 401, 400

exam essentials, 515
failure occurrences, 893 – 894
failure recovery, 894 – 899, 898
overview, 402, 402
review questions, 516 – 521
shutting down, 503 – 506, 505
starting up, 498 – 503, 500 – 501
startup process, 895 – 896
summary, 514

INSTR function, 71 – 72
INSTRB function, 72
integer literals, 22
integrity constraints, 319
interactive SQL statements, 47 – 51
interim patches, 987
Internet, 595
INTERSECT operator, 219
INTERVAL DAY TO SECOND datatype,

298 – 299, 301
interval literals, 23
INTERVAL YEAR TO MONTH

datatype, 298
INTO clause

INSERT, 257
MERGE, 265

INTO TABLE clause, 970
invalid objects, 815 – 818, 817 – 819
INVALID synonyms, 368
INVALID views, 345
invoking DBCA, 451 – 453, 451 – 452
IOTs (index-organized tables)

description, 395, 558 – 559
working with, 575 – 576

IP-filtering firewalls, 600
IS keyword, 727
IS NOT NULL operator, 37
IS NULL operator, 37

J
J format, 119
Java applications, 596
Java Database Connectivity (JDBC)

drivers, 596, 596
Java objects, 290

description, 395
privileges, 672

JAVA_POOL_SIZE parameter, 407
Java pools, 403, 407
JDBC (Java Database Connectivity)

drivers, 596, 596
Jnnn process, 409
Job Queue process, 409
Job Queue Monitor process, 409
job scheduler, 675
JOIN…ON syntax, 205
JOIN…USING syntax, 204 – 205
joins, 199

Cartesian, 208 – 210
exam essentials, 238 – 239
inner. See inner joins
join views, 354 – 356
nonequality, 215 – 216

95127bindex.indd 1052 2/18/09 6:41:38 AM

Julian dates – loading data 1053

outer, 210 – 214
review questions, 240 – 250
self-joins, 215
summary, 238

Julian dates, 299

K
KEEP cache, 406
KEEP function, 168 – 169
KEEP pool, 406
key-preserved join views, 354
keys

constraints, 321 – 322, 394
index, 572

KILL_JOB parameter, 958

L
L code in number conversions, 115
large object datatypes, 16
LARGE_POOL_SIZE parameter, 407
large pools, 403, 407, 642
largest integer function, 85
LAST_DAY function, 97
$LD_LIBRARY_PATH variable, 430
LDAP (Lightweight Directory Access

Protocol), 597
LDAP_DIRECTORY_SYSAUTH

parameter, 490
Leading Incidents Count setting, 985
LEADING trimming value, 79
leaf blocks, 573
LEAST function, 127 – 128
least recently used algorithm (LRU

algorithm), 405 – 406
left outer joins, 213
LENGTH function, 72 – 73

length of strings, 72 – 73
LENGTHB function, 73
less than operators, 30
less than signs (<)

inequality operator, 30
less than operators, 30 – 31

LGWR process, 406, 408, 414, 419 – 422,
846 – 847, 849, 855

library caches, 407
Lightweight Directory Access Protocol

(LDAP), 597
LIKE operator, 37 – 38
limiting rows, 28 – 29, 42
links, database, 290, 370, 395
LIST command, 10
LIST FAILURE command, 922 – 923
Listener administration screen, 615, 615
LISTENER attribute, 645
LISTENER listener, 607
listener.ora file, 602, 610 – 613
LISTENER parameter, 610
listeners, 602

connection requests, 602 – 605,
603 – 605

managing, 605, 606
listener.ora parameters, 610 – 613
lsnrctl, 616 – 623
Oracle Enterprise Manager,

613 – 616, 613 – 616
Oracle Net Manager, 606 – 611, 606,

608 – 609
Oracle Shared Server, 642 – 644, 644

listing listeners, 620 – 621
literals, 21 – 23
LN function, 85
load balancing, 642
LOAD DATA command, 970 – 971
loading data, 967 – 974, 973 – 974

95127bindex.indd 1053 2/18/09 6:41:38 AM

1054 LOB structures – lsnrctl interface for listeners

LOB structures
conversions, 120
storing, 562 – 564

LOCAL_LISTENER parameter, 623
local naming method, 629 – 635,

630 – 632, 634
Local Naming screen, 634, 634
%LOCAL% variable, 430
locales, 472
locally managed tablespaces, 529
LOCALTIMESTAMP function, 94
LOCATION parameter, 976
location transparency, 597
LOCK TABLE statement, 273, 698, 738
lock time for passwords, 693
locking user accounts, 667
locks, 735 – 736

conflicts, 739 – 742, 740 – 741
data concurrency, 736 – 737
modes, 737 – 739
transaction control, 273 – 274

LOG_ARCHIVE_DEST_n parameter,
490, 856 – 857, 859

LOG_ARCHIVE_DEST_STATE_
parameter, 490

LOG_ARCHIVE_FORMAT parameter,
857 – 858

LOG_ARCHIVE_MIN_SUCCEED_
DEST parameter, 857

LOG_BUFFER parameter, 406
LOG_CHECKPOINT_TIMEOUT

parameter, 898
log_directory command, 622
log_file command, 622
LOG_FILE parameter, 612
log files and logging

alerts
monitoring, 506 – 511, 511
for performance, 811
viewing, 806 – 809, 810

archive, 463
Data Pump, 942
listener.ora, 612, 622
Oracle Net servers, 624 – 625
redo. See redo log files
SQL*Loader, 967

LOG function, 85
log sequence numbers, 848
log_status command, 622
log switch operations, 847 – 849
Log Writer process, 408, 414
logarithms, 85
LOGGING clause

indexes, 574
tables, 563 – 564
tablespaces, 533

logical database structure, 422 – 423, 423
logical operators, 33 – 35
LOGICAL_READS_PER_CALL

resource, 690
LOGICAL_READS_PER_SESSION

resource, 690
LogMiner tool, 911 – 913, 912 – 913
long and raw datatypes, 16, 294, 301 – 302
LONG datatype, 294
long query warning alerts, 752
LONG RAW datatype, 301 – 302
low-cardinality columns, 373
LOWER function, 73
lowercase functions, 73
LPAD function, 73 – 74
LRU algorithm (least recently used

algorithm), 405 – 406
lsnrctl interface for listeners, 616 – 617

command summary, 621 – 622
dispatcher, 650
listing, 620 – 621
reloading, 618 – 619
starting, 617 – 618

95127bindex.indd 1054 2/18/09 6:41:38 AM

LTRIM function – MERGE statement 1055

status, 619 – 620
stopping, 622 – 623

LTRIM function, 74

M
maintenance

catalog, 878, 878
database. See database maintenance
DBCA settings, 474, 475

Manage Current Backups screen, 878, 878
Manage Optimizer Statistics screen,

770 – 771, 771
Manage Templates option, 452
manageability of networks, 597
Management Agent, 456
Management Options screen,

456 – 457, 457
Manual Actions screen, 921, 921
manual Oracle Shared Server

connections, 651
Manual Shared Memory Management

option, 470
master control process (MCP) in Data

Pump, 938 – 939
materialized views

description, 394
uses, 290, 343

MAX_DISPATCHERS parameter,
647 – 648

MAX_ENABLED_ROLES parameter,
683 – 684

MAX function, 158, 186
MAX_SERVERS parameter, 649
MAX_SHARED_SERVERS

parameter, 649
MAXDATAFILES clause, 556
maximum sequence values, 361, 364 – 365

MAXLOGFILES clause, 847, 849
MAXLOGMEMBERS clause, 849
MAXVALUE keyword, 360 – 361, 364
MCP (master control process) in Data

Pump, 938 – 939
mean time between failures (MTBF), 890
mean time to recovery (MTTR), 890
media failures, 894
MEDIAN function, 159 – 160
medium-cardinality columns, 373
members in redo log groups, 851 – 853, 852
memory

advisors, 801
AMM, 822 – 824
ASMM, 820 – 822
Automatic SQL Execution Memory

Management, 822
components, 819 – 820
EM Database Control, 824 – 827,

825 – 826
initialization parameters, 469 – 470,

469 – 470
requirements, 425
structures, 402 – 408, 405

Memory Advisors screen, 824 – 825, 825
Memory Components screen, 826, 826
Memory Distribution screen, 469 – 470,

469 – 470
Memory Manager process, 410
MEMORY_MAX_TARGET parameter,

403, 823 – 824
Memory Monitor Light (MMNL) process,

410, 784
Memory Monitor (MMON) process,

410, 784
Memory tab, 469 – 470, 469 – 470
MEMORY_TARGET parameter, 822 – 823
MERGE statement, 265 – 267, 722 – 723

95127bindex.indd 1055 2/18/09 6:41:38 AM

1056 metadata – multitable joins

metadata, 485
data dictionary views, 485 – 486, 486
dynamic performance views, 487 – 488
exam essentials, 515
filters, 956 – 958
incidents, 985
review questions, 516 – 521
summary, 514

Metalink, 982, 988, 989
METHOD_OPT parameter, 775, 779
Metric and Policy Settings screen, 803, 803
metrics for performance, 827 – 829,

828 – 829
MI code in number conversions, 116
middle-tier solutions, 597
middleware components, 594
MIN function, 158 – 159, 186
MINEXTENTS parameter, 560
MINIMUM EXTENT clause, 533
minimum sequence values, 361, 364 – 365
MINUS operator, 219
minus signs (-)

dates, 299 – 300
statement continuation, 8
subtraction, 20

MINVALUE keyword, 361, 364
missing rows, 901
missing sequence values, 363 – 364
MMAN process, 410
MMNL (Memory Monitor Light) process,

410, 784
MMON (Memory Monitor) process,

410, 784
MOD function, 85 – 86
MODIFY clause, 313
modulo function, 85 – 86
monitoring

alert log, 506 – 511, 511
databases. See database maintenance

server-generated alerts, 802 – 805, 803
undo tablespace, 750 – 752, 751

months
adding, 94 – 95
between dates, 98
last day function, 97

MONTHS_BETWEEN function, 98
more than operators, 31
MOUNT mode, 499, 914
mount point names, 426 – 427
MOUNT state, 503, 895
MOVE clause, 566
moving data, 936

data files, 550
Data Pump. See Data Pump facility
exam essentials, 995 – 996
populating external tables, 974 – 978
review questions, 997 – 1002
SQL*Loader, 967 – 974, 973 – 974
summary, 995
tablespaces, 548 – 549

MTBF (mean time between failures), 890
MTTR (mean time to recovery), 890
MTTR Advisor, 802
multiple-column subqueries, 235 – 236
multiple operating systems, 596
multiple-row subqueries, 223 – 225
multiple-table queries, 198

joins. See joins
set operators, 216 – 221

multiple tables, inserting rows into,
256 – 259

multiplexing
Connection Manager, 598
control files, 844 – 845
redo log files, 849 – 854, 851 – 852

multiplication, 20
multiprotocol support, 596
multitable joins, 206

95127bindex.indd 1056 2/18/09 6:41:38 AM

n-tier architecture – NOCOMPRESS parameter 1057

N
n-tier architecture, 594 – 595, 595
names

aliases, 26, 200 – 201
client-side resolution, 626 – 628
columns, 26, 303 – 305, 314,

344 – 345, 558
constraints, 319
data files, 548 – 549
directories, 597
listeners, 614
log members, 852
tables, 200 – 201, 303 – 305, 558
volumes and mount points, 426 – 427

NAMES.DEFAULT_DOMAIN
parameter, 636 – 637

NAMES.DIRECTORY_PATH parameter,
627, 629, 636

namespaces
USERENV, 130 – 133
working with, 567 – 568

NaN function, 86
NANVL function, 86
national-language support (NLS), 91
natural joins, 202 – 204
natural logarithms, 85
NCHAR datatype, 292 – 293
NCLOB datatype, 293 – 294, 562
nesting

functions, 65, 184 – 186
subqueries, 221

Net Service Name wizard, 630 – 632,
630 – 632

Net Services Administration screen,
614, 614

NETWORK_LINK parameter, 955
Network Manager, 606
network-mode imports, 955 – 956

networks
accessibility, 601
architectures, 592 – 595, 593 – 595
connectivity, 596, 596
exam essentials, 653 – 654
failures, 892
file locations, 636
manageability, 597
Oracle Net. See Oracle Net
Oracle Shared Server. See Oracle

Shared Server
protocol selection, 630, 631
review questions, 655 – 660
scalability, 598
security, 598 – 600, 599
summary, 652 – 653

NEW_TIME function, 98 – 99
NEXT_DAY function, 99
NEXTVAL keyword, 361 – 362, 365
NLS (national-language support), 91
NLS_DATE_FORMAT parameter, 91, 93
NLS_DATE_LANGUAGE

specification, 111
NLS_LANGUAGE parameter, 490
NLS_TERRITORY parameter, 490
NLS_TIMESTAMP_TZ_FORMAT

parameter, 93 – 94
NO FORCE option, 345
NO_INVALIDATE parameter, 775
NOARCHIVELOG mode, 855

non-system-critical data file recovery
in, 920

system-critical data file recovery in, 926
NOAUDIT event triggers, 731
NOAUDIT statement, 700, 702, 704
NOCACHE parameter

sequences, 361
tables, 564

NOCOMPRESS parameter, 574

95127bindex.indd 1057 2/18/09 6:41:38 AM

1058 NOCYCLE parameter – offsets

NOCYCLE parameter, 361, 364
NOLOGGING parameter

indexes, 574
tables, 563 – 564
tablespaces, 533

NOMOUNT mode, 499, 914
NOMOUNT state, 503, 895
non-system-critical data file recovery,

920 – 925, 921 – 922
nonequality joins, 215 – 216
nonseed templates, 483
nonstandard block sizes, 533 – 534
nonunique indexes, 372, 573
NOPARALLEL parameter

indexes, 574
tables, 564

NORMAL tablespace option, 539
NOT DEFERRABLE clause, 571 – 572
NOT EXISTS statement, 698
NOT IN operator, 35 – 36, 227
NOT NULL constraint, 307, 313, 320,

568 – 569
NOT operator, 33, 35
NOVALIDATE keyword, 326
NOWAIT mode, 738
NULL values, 65

aggregate functions, 148
COALESCE function, 67 – 68
columns, 306 – 307
concatenation, 21
NOT NULL constraint, 307, 313, 320,

568 – 569
NVL function, 65 – 66
NVL2 function, 66 – 67
operators, 37
sorting, 41 – 42
subqueries, 226 – 227

NULLIF function, 123, 128 – 129
NULLS FIRST keywords, 41
NULLS LAST keywords, 41

NUMBER datatype, 17 – 19, 294
number signs (#) in identifier names, 304
numbers

conversion functions, 107 – 110,
115 – 117, 119 – 121

literals, 22 – 23
single-row functions, 80 – 90
view definitions, 344

numeric datatypes, 16 – 19, 294 – 295
NUMTODSINTERVAL function, 107, 300
NUMTOYMINTERVAL function,

107 – 108
NVARCHAR2 datatype, 293
NVL function, 65 – 66
NVL2 function, 66 – 67

O
Object Level Statistics Gathering

Preferences screen, 775 – 776, 776
object tables, 559
objects, 288 – 289, 394 – 395

auditing, 702 – 704
information about, 9
privileges, 670 – 671
reference resolution, 369
schemas, 289 – 290

OFA (Optimal Flexible Architecture)
model

directory paths, 427 – 430
file system storage, 459
installation process, 426

offline backups, 863
OFFLINE clause

data files, 547
tablespaces, 533

offline data files, 547
offline tablespaces, 539
offsets, time zone, 101, 296

95127bindex.indd 1058 2/18/09 6:41:38 AM

OID (Oracle Internet Directory) – Oracle Managed Files (OMF) feature 1059

OID (Oracle Internet Directory), 597, 627
ON clause for joins, 205 – 206
ON COMMIT clause, 305, 565
ON DATABASE clause, 730
ON DELETE clause, 324
online backups, 863
ONLINE clause

data files, 547
indexes, 574, 817
tablespaces, 533

online data files, 547
online redo log files, 854
online tablespaces, 539
OPEN_CURSORS parameter, 490
OPEN mode, 499
OPEN procedure, 939
OPEN state for instances, 895
operating systems

multiple, 596
user accounts, 426

Operations screen, 451 – 453, 452,
481 – 484

operators, 20 – 21
comparison, 29 – 32
logical, 33 – 35
miscellaneous, 35 – 38
precedence, 21
set, 216 – 219

OPS$ accounts, 663 – 664
Optimal Flexible Architecture (OFA) model

directory paths, 427 – 430
file system storage, 459
installation process, 426

optimizer statistics, 767 – 768
collecting, 768 – 772, 770 – 773
extended, 779 – 782
pending, 778 – 779
preferences, 773 – 776, 774, 776

Optimizer with indexes, 373 – 377

optional components, 465 – 466
OR operator, 34
OR REPLACE option

functions, 726
views, 347 – 348

ORA_HASH function, 129 – 130
ORA_ROWSCN pseudocolumn, 109
Oracle 11g overview

architecture. See architecture
database fundamentals, 392 – 398, 393,

396 – 398
exam essentials, 441
installation. See installing Oracle 11g
review questions, 442 – 447
storage structures, 415 – 423, 417,

419 – 421, 423
summary, 440

ORACLE_BASE parameter, 463, 510
$ORACLE_BASE variable, 427
%ORACLE_BASE% variable, 428 – 430
Oracle Database Vault component, 466
ORACLE_DATAPUMP access driver,

974 – 976
Oracle Enterprise Manager. See Enterprise

Manager
Oracle flash recovery option, 463
ORACLE_HOME parameter, 611
$ORACLE_HOME variable, 427
%ORACLE_HOME% variable, 428 – 429
Oracle Internet Directory (OID), 597, 627
Oracle Label Security component, 465
ORACLE_LOADER access driver, 974,

977 – 978
Oracle Managed Files (OMF) feature

benefits, 550 – 551
database creation, 551 – 553
default file size, 552
enabling, 551
tablespaces, 528, 552 – 553

95127bindex.indd 1059 2/18/09 6:41:39 AM

1060 Oracle Net – outer joins

Oracle Net, 601
client configuration. See client

configuration
dynamically registering services,

623 – 624
file type, 415
listeners. See listeners
logging and tracing, 624 – 626

Oracle Net Configuration Assistant,
605, 606

Oracle Net Manager
dedicated connections, 651
Easy Connect configuration, 629
listeners, 606, 606

configuring, 607
creating, 607 – 609, 608
service name information,

609 – 611, 609
local naming method, 630 – 633,

630 – 632
Oracle OLAP component, 465
Oracle Shared Server, 598, 637 – 638

connection methods, 604 – 605,
604 – 605

dedicated connections, 650 – 651
dedicated servers vs. shared servers,

638 – 640, 639
information about, 650
listener role, 642 – 644, 644
parameters, 644 – 649
PGA and SGA changes, 641 – 642, 643

Oracle SID, 455
%ORACLE_SID% variable, 429
$ORACLE_SID variable, 429
Oracle Spatial component, 465
Oracle Support Services (OSS),

981 – 982, 982

Oracle Text component, 465
Oracle Ultra Search component, 465
Oracle Universal Installer (OUI), 430 – 431

copying and compiling files,
437 – 438, 437

patch releases, 987
postinstall tasks, 439, 439
preinstallation checks, 431 – 432,

431 – 432
product selection, 434 – 437, 434 – 437
prompts, 432 – 434, 433
starting, 431
system check by, 425

Oracle Warehouse Builder component, 466
OracleService service, 415
orainstRoot.sh script, 438
ORDER BY clause

inline views, 359
scalar subqueries in, 230 – 231
SELECT, 42
sorting rows, 38 – 41

order of precedence, 21
ORGANIZATION EXTERNAL

clause, 976
ORGANIZATION INDEX clause, 576
OS_AUTHENT_PREFIX parameter, 664
OSS (Oracle Support Services),

981 – 982, 982
OUI. See Oracle Universal Installer (OUI)
out-of-line constraints, 347
out-of-line storage, 563
outer joins, 210 – 212

ANSI syntax, 212 – 214
full, 214
left, 213
right, 213

95127bindex.indd 1060 2/18/09 6:41:39 AM

PACKAGE type – PCT_USED parameters 1061

P
PACKAGE type, 727
PACKAGE BODY type, 727 – 728
packages, 290

built-in, 733
description, 395
PL/SQL, 727 – 728
wrapped, 725

packaging diagnostic data, 983 – 985,
983 – 985

PARALLEL command
expdp, 948
impdp, 952

PARALLEL parameter
Data Pump clients, 958
indexes, 574
tables, 564, 975 – 977

parallel query (PQ) processes, 939
Parallel Query Slave process, 409
PARALLEL_THREADS_PER_CPU

parameter, 564
Parallelism parameter, 870
parameter files, 415
parameters, initialization. See

initialization-parameter files
parent tables, 394
parentheses ()

column definitions, 303
operator precedence, 21
outer joins, 210 – 213

PARFILE parameter, 949
parsing filenames, 77 – 78
partial backups, 862
partial rollbacks, 269 – 271, 270
partitioning tables, 560
PASSWORD EXPIRE option, 666, 669
password files, 415

PASSWORD_GRACE_TIME
parameter, 692

PASSWORD_LIFE_TIME parameter, 692
PASSWORD_LOCK_TIME

parameter, 691
Password Management dialog box,

480, 480
PASSWORD_REUSE_MAX

parameter, 692
PASSWORD_REUSE_TIME

parameter, 692
PASSWORD_VERIFY_FUNCTION

parameter, 693
passwords

corporations, 694 – 695
DBCA management, 480, 480
expiring, 666, 669
implementing, 691 – 695
listeners, 612
lock time, 693
roles, 684
user accounts, 663

PASSWORDS parameter, 612
patches

applying, 993 – 994, 993 – 994
caches, 990, 990
exam essentials, 995 – 996
Patch Advisor, 988 – 990, 989 – 990
prerequisites, 991, 991
releases, 986 – 988, 988
review questions, 997 – 1002
staging, 991, 992
summary, 995

%PATH% variable, 430
$PATH variable, 430
paths, OFA directory, 427 – 430
pattern matching, 37 – 38
PCT_FREE parameters, 530 – 531
PCT_USED parameters, 530 – 531

95127bindex.indd 1061 2/18/09 6:41:39 AM

1062 PCTFREE parameter – populating external tables

PCTFREE parameter
block storage, 530, 561
indexes, 574
segments, 530

PCTUSED parameter
block storage, 530, 561
indexes, 574
segments, 530

PCTVERSION parameter, 563
pending statistics, 778 – 779
PERCENT_RANK function, 170
percent signs (%) in pattern matching, 37
PERCENTILE_CONT function, 171 – 172
PERCENTILE_DISC function, 172 – 173
Perform Object Level Recovery: Dropped

Objects Selection screen, 906, 908
Perform Object Level Recovery: Flashback

Tables screen, 906, 907
Perform Object Level Recovery: Point-in-

time screen, 906, 907
Perform Object Level Recovery: Review

screen, 908, 908
Perform Query screen, 909, 909
Perform Recovery screen, 915, 916, 922
performance, 810

alert logs for, 811
data dictionary views, 815
dynamic performance views, 813 – 814
exam essentials, 831
indexes, 371
invalid and unusable objects, 815 – 818,

817 – 819
memory. See memory
metrics, 827 – 829, 828 – 829
review questions, 832 – 837
summary, 830
trace files for, 811 – 812, 812 – 813

performance statistics, 784
ADDM, 792 – 800, 794 – 797
ASH, 788 – 789, 788 – 789

AWR, 784 – 788, 785 – 786
AWR baselines, 789 – 792, 791 – 792

Performance tab, 795, 795 – 796
pfiles (plain text files), 489
PGA (program global area)

allocation, 469 – 470, 469 – 470
managing, 822 – 824
memory advisors, 801
Oracle Shared Server changes, 641 – 642
purpose, 401, 401
tuning, 819 – 820

PGA_AGGREGATE_TARGET
parameter, 490, 822 – 823

ping utility, 628
pinned buffers, 405
PL/SQL programs, 290, 724 – 725

administration, 733 – 734
exam essentials, 756
functions, 725 – 726
packages, 727 – 728
procedures, 726 – 727
review questions, 757 – 763
summary, 755
triggers, 728 – 733

plain text files (pfiles), 489
plus signs (+)

addition, 20
dates, 299 – 300
outer joins, 210 – 213

PMON process, 408, 414
policies, FGA, 705 – 708
POOL attribute, 645
pools

dispatchers, 645
Java, 407
large, 407
SGA, 403
shared, 406 – 407
streams, 403, 408

populating external tables, 974 – 978

95127bindex.indd 1062 2/18/09 6:41:39 AM

PORT parameter – prompts 1063

PORT parameter
listener.ora, 611
tnsnames.ora, 633

ports
listeners, 608, 611, 633
local naming method, 631, 631

positional notation for variables, 50 – 51
postinstall tasks, 439, 439
POWER function, 86
PQ (parallel query) processes, 939
PR code in number conversions, 116
precedence of operators, 21
precision

interval values, 298
numbers, 17 – 19

primary key constraints, 322 – 323, 570
primary keys, 394
principle of least privilege, 686 – 688
priorities for failures, 920
PRIVATE_SGA resource, 690
private synonyms, 366 – 369
Privileged Operating System Groups

screen, 436, 436
privileges, 670

auditing, 701 – 702
Data Pump, 941
databases, 674
debugging-oriented, 674 – 675
granting, 670, 672 – 674, 673,

680 – 683, 681
indexes, 675
job scheduler, 675
principle of least privilege, 686 – 688
procedures, 675
profiles, 676
revoking, 672 – 673, 673, 681, 681
roles, 676, 681 – 685
sequences, 671 – 672, 676
session-oriented, 677
stored packages, 672

synonyms, 677
system, 674 – 681, 681
tables, 670 – 671, 677 – 678
tablespaces, 678
triggers, 678
user accounts, 679
views, 671, 679

proactive monitoring, 766
Problems screen, 979, 980
Problems Details screen, 980 – 981, 980,

983, 985 – 986
PROCEDURE statement, 698
procedures, 290

external, 601
PL/SQL, 726 – 727
privileges, 675
stored, 395

Process Monitor process, 408, 414
processes

Data Pump, 938 – 940
maximum number of, 471 – 472
Shared Server, 639
structures, 408 – 415
user, 400 – 401, 401, 892

PROCESSES parameter, 490
Processes setting, 471 – 472
Product-Specific Prerequisite Checks

screen, 434, 435
PROFILE statement, 698
profiles

privileges, 676
resources, 688
user accounts, 666 – 668, 667 – 668

program global area. See PGA (program
global area)

program name, retrieving, 45 – 47
prompts

OUI, 432 – 434, 433
SQL*Plus, 7 – 8

95127bindex.indd 1063 2/18/09 6:41:39 AM

1064 PROTOCOL attribute for dispatchers – recovering databases

PROTOCOL attribute for dispatchers,
645 – 646

PROTOCOL parameter
listener.ora, 611
tnsnames.ora, 633

proxy-based firewalls, 600
ps command, 410
PUBLIC database links, 370
public synonyms, 366 – 368
PUBLIC user, privileges for, 686 – 687
PUBLISH parameter, 775
PUBLISH_PENDING_STATS

procedure, 779
PURGE clause, 566
purging audit trails, 704, 705

Q
QMNn process, 409
Qnnn process, 409
queries

aggregate functions in, 161 – 163
compound, 216 – 221
flashback, 899 – 901
and locks, 736
multiple-table. See joins
saving results, 15
SELECT statement. See SELECT

statement
views in, 350 – 351
writing, 23 – 24

Queue Monitor process, 409
queues, response, 638 – 639, 639
quick packages, 983
Quick Packaging screen, 983, 983
QUIT command

lsnrctl, 621
SQL, 8

quotas, 666

R
RAC (Real Application Clusters), 399, 642
RANK function, 173 – 174
rank functions, 166 – 167, 170, 173 – 174
RAW datatype, 301 – 302
raw devices storage, 460
rawmode command, 622
RAWTOHEX function, 108
RBAL process, 409
RDBMSs (relational database management

systems), 198, 393
reactive monitoring, 766
read consistency, 746 – 747
READ ONLY clause

tables, 317
tablespaces, 540

READ_ONLY_OPEN_DELAYED
parameter, 540

read-only tables, 317 – 318
read-only tablespaces, 539 – 540, 549
read-only views, 346 – 347
Real Application Clusters (RAC), 399, 642
REBUILD command, 817
rebuilding indexes, 817 – 818, 819
RECO process, 409
recompiling views, 348 – 349
Recoverer process, 409
recovering databases, 890

control file loss, 913 – 915
database failure categories, 890 – 894
DRA, 915 – 917, 916
exam essentials, 928
instance failures, 894 – 899, 898
non-system-critical data files, 920 – 925,

921 – 922
redo log file failures, 917 – 920,

919 – 920
review questions, 928 – 934

95127bindex.indd 1064 2/18/09 6:41:39 AM

Recovery Advice screen – RENAME statement 1065

summary, 927
system-critical data files, 926 – 927
user errors. See user errors, recovering

from
Recovery Advice screen, 921, 921
recovery components, 840 – 841

backups. See backups
checkpoints, 846
control files, 841 – 845, 843
exam essentials, 880 – 881
flash recovery area, 859 – 862, 861
redo log files. See redo log files
review questions, 882 – 887
summary, 879 – 880

Recovery Configuration screen,
462 – 464, 462

Recovery Manager (RMAN)
backups, 869

control files, 842, 867 – 868
in flash recovery area, 463, 859
full and incremental, 873 – 876,

875 – 877
image copies and backup sets, 873
settings, 869 – 873, 870 – 872

non-system-critical data file recovery,
921 – 923

user accounts, 669
Recovery Settings screen, 860 – 861, 861,

898, 898
Recovery Writer process, 410
recycle bin, 902

considerations and limitations,
903 – 904

dropped table retrieval from, 902 – 903
RECYCLE cache, 406
RECYCLEBIN command, 903
redirect connection method, 603 – 605,

604 – 605
redo entries, 406

redo log files, 415, 419 – 422,
420 – 421, 846

architecture, 846 – 847
archived. See archived redo log files
buffers, 403, 406, 414
failure recovery, 917 – 920, 919 – 920
groups and group members, 419, 455,

850, 851
log switch operations, 847 – 849
members, 851 – 853, 852
multiplexing, 849 – 854, 851 – 852
troubleshooting, 850

Redo Log Groups screen, 850, 851, 920
references, object, 369
REFERENCES privilege, 671
registering services, 623 – 624
relational database management systems

(RDBMSs), 198, 393
relational databases, 393 – 394, 393
releases, patch, 986 – 988, 988
reload command, 618
reloading listeners, 618 – 619
REMAINDER function, 86 – 87
remainder functions, 85 – 87
REMAP_DATAFILES parameter, 954
REMAP_SCHEMA parameter, 954
REMAP_TABLE parameter, 954
REMAP_TABLESPACE parameter, 954
REMARKS command, 15
REMOTE_LISTENER parameter, 490
REMOTE_LOGIN_PASSWORDFILE

parameter, 491
REMOTE_OS_AUTHENT

parameter, 688
RENAME COLUMN clause, 314
RENAME DATAFILE clause, 548
RENAME event triggers, 731
RENAME FILE clause, 548
RENAME statement, 316 – 317

95127bindex.indd 1065 2/18/09 6:41:39 AM

1066 RENAME TO clause – rows

RENAME TO clause, 317
renaming

columns, 314
data files, 548 – 549
log members, 852
tables, 316 – 317

reorganizing tables, 566
Repair Advisor, 981
REPAIR FAILURE command, 924 – 925
repeating baselines, 789
REPLACE command, 12
REPLACE function, 74 – 75
replacing

characters in strings, 78 – 79
strings, 74 – 78

reports
backups, 878 – 879, 879
FGA audit trail entries, 708

RESIZE clause for data files, 547
resolving object references, 369
RESOURCE role, 685
resource usage control, 688 – 695
response queues, 638 – 639, 639
response time, 827
RESTRICT mode, 500
result caches, 403, 407
Results screen, 912, 912
RETENTION setting, 754
RETENTION GUARANTEE setting,

537, 747, 749, 752 – 753
RETURN statement, 725
REUSE_DUMPFILES command, 948
REUSE option for redo log files, 850
REUSE STORAGE clause, 566
reverse key indexes, 573, 575
REVERSE keyword, 573
Review screen, 910, 911
REVOKE event triggers, 731
revoking privileges, 672 – 673, 673, 681, 681

right outer joins, 213
RMAN. See Recovery Manager (RMAN)
rn code in number conversions, 116
RN code in number conversions, 116
role privileges, 670
ROLE statement auditing option, 698
roles

creating and managing, 682
database, 685
default, 684 – 685
disabling, 683 – 684
enabling, 682 – 683
password-protected, 684
privileges, 676, 681 – 685

ROLLBACK_SEGMENTS parameter, 491
ROLLBACK statement, 268 – 271, 742
ROLLBACK TO SAVEPOINT statement,

268 – 271
rollbacks

missing sequence values from, 363 – 364
segments, 272, 743 – 745
transaction control, 269 – 271, 270, 746

ROLLUP function, 182
ROLLUP modifier, 177 – 180
root.sh script, 438
ROUND function

dates, 100
numbers, 87

ROW EXCLUSIVE lock mode, 737
ROW SHARE lock mode, 737
ROWID datatype, 16, 302

conversions, 106
indexes, 371 – 372, 576

ROWIDTOCHAR function, 108
ROWNUM variable, 359
rows

caches, 407
deleting, 263 – 265, 723 – 724
description, 558

95127bindex.indd 1066 2/18/09 6:41:39 AM

RPAD function – segments 1067

inserting. See INSERT statement
limiting, 28 – 29, 42
sorting, 38 – 41

RPAD function, 75
RTRIM function, 76
RUN command, 10, 25
runInstaller.sh command, 431, 431
runtime input, 47 – 51
RVWR process, 410

S
S code in number conversions, 116
sample schemas, 465, 467 – 468
Sample Schemas component, 465
Save as a Database Template option, 477
SAVE command, 12
save_config command, 621
save_config_on_stop command for

lsnrctl, 622
SAVE_CONFIG_ON_STOP parameter

for listener.ora, 612
savepoints, 269 – 271, 270
saving

query results, 15
variables, 49 – 50

scalability
networks, 598
performance, 827

scalar subqueries, 221, 228 – 231
scale digits, 17 – 19
SCHEMA_EXPORT_OBJECTS view, 957
Schema mode in Data Pump, 943
schema objects, 423, 557

constraints. See constraints
description, 466 – 467
exam essentials, 379, 583
indexes. See indexes
objects, 289 – 290

review questions, 380 – 387, 584 – 589
sample, 467 – 468
sequences. See sequences
summary, 378, 582
synonyms, 366 – 370
tables. See tables
views. See views

SCN_TO_TIMESTAMP function, 108
SCNs (system change numbers)

checkpoints, 846
conversions, 108 – 109
transaction control, 273

SCOPE clause, 496 – 497
script files, 12

comments, 15
custom, 467 – 468, 468

searching in strings, 71 – 72
security

auditing. See auditing
DBCA settings, 474, 475
exam essentials, 709
networks, 598 – 600, 599
privileges. See privileges
resource usage control, 688 – 695
review questions, 710 – 716
summary, 708
user accounts. See user accounts

Security Settings screen, 474, 475
seed templates, 483
seeds in hash functions, 129
Segment Advisor, 802
SEGMENT SPACE MANAGEMENT

clause, 530 – 531
segments

allocating, 560
headers, 561
managing, 530 – 531
tablespaces, 423, 423, 524 – 526, 525
undo, 743 – 745

95127bindex.indd 1067 2/18/09 6:41:40 AM

1068 Select a Product to Install screen – SESSION_TRACE_DISABLE procedure

Select a Product to Install screen, 432, 432
SELECT ANY DICTIONARY

privilege, 680
SELECT ANY TABLE privilege, 681, 686
SELECT_CATALOG_ROLE role, 685
Select Configuration Option screen,

434, 436
SELECT FOR UPDATE statement, 273
Select Installation Method screen,

431, 432
Select Installation Type screen, 434, 434
SELECT privilege, 670
SELECT statement, 24 – 25

column alias names, 26
comparison operators, 29 – 32
DUAL table, 28
exam essentials, 52
expressions, 43 – 47
GROUP BY clause, 150 – 154
limiting rows, 28 – 29, 42
logical operators, 33 – 35
miscellaneous operators, 35 – 38
multiple-table queries, 198
review questions, 53 – 62
scalar subqueries, 229 – 230
sorting NULLs, 41 – 42
sorting rows, 38 – 41
substitution variables, 47 – 49
summary, 51 – 52
uniqueness, 26 – 28
user error recovery, 899 – 900

SELECT SEQUENCE statement, 698
SELECT TABLE statement, 698
Select Transaction screen, 910, 910
self-joins, 215
semicolons (;) for statements, 8
SEQUENCE statement auditing option, 698

sequences
altering, 365 – 366
creating, 360 – 361
defined, 289
description, 395
dropping, 361, 366
initialization, 362 – 363
maximum and minimum values,

364 – 365
missing values, 363 – 364
next number in, 361
privileges, 671 – 672, 676

SERIAL# for sessions, 811 – 812
server-generated alerts, 802 – 805, 803
Server tab, 543, 544
servers

architecture, 399, 400
connection settings, 473, 473
dedicated, 638 – 640, 639
listeners, 602
logging, 624 – 625
processes, 400 – 401, 401
shared

vs. dedicated, 638 – 640, 639
Oracle. See Oracle Shared Server

trace file locations, 806
tracing, 624 – 626

SERVICE attribute for dispatchers, 645
service name information for listeners,

609 – 611, 609
SERVICE_NAME parameter, 633
SERVICE_NAMES parameter, 623 – 624
service registration types, 611
service requests, 981 – 982, 982
services command, 620 – 621, 650
SESSION_ROLES view, 683
SESSION statement auditing option, 698
SESSION_TRACE_DISABLE procedure,

734, 811

95127bindex.indd 1068 2/18/09 6:41:40 AM

SESSION_TRACE_ENABLE procedure – show command in lsnrctl 1069

SESSION_TRACE_ENABLE procedure,
734, 811

sessions
current, 45 – 47
defined, 497
history information, 788 – 789, 788 – 789
privileges, 677
processes, 400
SQL category, 6

SESSIONS attribute for dispatchers, 645
SESSIONS parameter, 491
SESSIONS_PER_USER resource, 690
SESSIONTIMEZONE function, 100
SET AUTOTRACE statement, 373
SET AUTOTRACE TRACEONLY

statement, 373
SET clause for sequences, 362
set commands in lsnrctl, 622
SET CONSTRAINTS statement, 327, 572
SET CONSTRAINTS ALL DEFERRED

statement, 328
Set Credentials screen, 991
SET DOCUMENT OFF command, 15
SET_GLOBAL_PREFS procedure,

774 – 775
SET NLS_DATE_FORMAT command,

91, 93
set operators, 216 – 217

INTERSECT, 219
MINUS, 219
UNION, 217 – 218
UNION ALL, 218
working with, 219 – 221

SET ROLE statement, 682 – 684
SET_SCHEMA_PREFS procedure, 776
SET SQLPROMPT command, 7
SET TIME_ZONE clause, 94 – 96
SET TRANSACTION statement, 268, 747
SET UNUSED COLUMNS clause, 315

SET VERIFY OFF command, 49
severity levels for alerts, 804
sfiles (binary parameter files), 489
SGA (system global area)

allocation, 469 – 470, 469 – 470
components, 402 – 406, 402
limiting, 690
managing, 822 – 824
memory advisors, 801
Oracle Shared Server changes,

641 – 642, 643
tuning, 819 – 820

SGA_MAX_SIZE parameter, 403
SGA_TARGET parameter, 491, 821 – 823
shadow processes

client connections, 638
Data Pump, 938

SHARE lock mode, 737
share locks, 274, 737
SHARE ROW EXCLUSIVE lock

mode, 737
SHARED keyword for database links, 370
shared memory, 470, 470
shared PL/SQL area, 407
SHARED_POOL_SIZE parameter, 407
shared pools, 403, 406 – 407
Shared Server Mode, 473
Shared Server process, 409
SHARED_SERVER_SESSIONS

parameter, 648 – 649
shared servers

vs. dedicated, 638 – 640, 639
Oracle. See Oracle Shared Server

SHARED_SERVERS parameter, 491, 648
shared SQL area, 407
SHOW ALERT command, 808 – 809
SHOW ALL command, 872
show command in lsnrctl, 622

95127bindex.indd 1069 2/18/09 6:41:40 AM

1070 SHOW PARAMETER statement – SPOOL command

SHOW PARAMETER statement,
497 – 498

SHOW RECYCLEBIN statement, 903
SHOW SGA command, 404
SHUTDOWN statement, 506
SHUTDOWN ABORT statement, 361,

504 – 505, 896 – 897, 913
SHUTDOWN IMMEDIATE statement,

504 – 506, 868
SHUTDOWN NORMAL statement, 503
SHUTDOWN state for instances, 895
SHUTDOWN TRANSACTIONAL

statement, 504, 868
shutting down instances, 503 – 506, 505
SID_DESC parameter, 611
SID_LIST_ parameter, 611
SID_NAME parameter, 611
SIDs

listeners, 611
Oracle, 455
sessions, 811 – 812

SIGN function, 88
simple indexes, 373
simple inner joins, 199
SIN function, 88
single baselines, 789
single quotation marks (‘) for text literals,

21 – 22
single-row functions, 64 – 65

characters, 68 – 80
conversion, 101 – 123
date, 90 – 101
exam essentials, 137
miscellaneous, 123 – 136
nesting with group functions, 185 – 186
NULL handling, 65 – 68
numeric, 80 – 90
review questions, 138 – 145
summary, 136

single-row subqueries, 222 – 223
single-tier architecture, 593, 593
SINH function, 88
size

blocks, 423, 471 – 472, 471, 533 – 534
control files, 842
data files, 545 – 546
undo tablespace, 752, 753

Sizing tab, 471 – 472, 471
slashes (/)

comments, 15
dates, 300
division, 20
statements, 8

smallest integer function, 84
smallfile tablespaces, 527 – 528
SMON process, 408, 414 – 415
“Snapshot too old” error, 752
snapshots

AWR, 787 – 788
materialized views, 343

Snnn process, 409
SOME operator, 32, 224
sorting

NULLs, 41 – 42
rows, 38 – 41

SOUNDEX function, 76
space quotas, 666
spawn command, 622
specifications in packages, 727
Specify Inventory Directory and

Credentials, 432, 433
SPFile tab, 493 – 494, 494
spfiles

autobackups in flash recovery area, 859
multiplexing control files, 845
settings, 493 – 494, 494

SPOOL command, 15, 807

95127bindex.indd 1070 2/18/09 6:41:40 AM

SQL (Structured Query Language) – startup process for instances 1071

SQL (Structured Query Language), 4 – 5, 718
alerts, 804 – 805
buffers, 8, 10 – 15
Data Pump files, 942
database startup states, 503
datatypes, 15 – 19
DELETE statement, 723 – 724
exam essentials, 52
flash recovery area, 860
INSERT statement, 719 – 721
MERGE statement, 722 – 723
operators and literals, 20 – 23
PL/SQL. See PL/SQL programs
review questions, 53 – 62
SELECT statement. See SELECT

statement
SQL*Plus, 6 – 9, 7
statements

categories, 5 – 6
entering, 8

summary, 51 – 52
UPDATE statement, 721 – 722

SQL Access Advisor, 801
SQL Developer tool, 396 – 397, 397
SQL Repair Advisor, 981
SQL Tuning Advisor, 801
sqlldr command, 968
SQL*Loader, 967 – 968

command-line parameters, 968 – 969
control file options, 970 – 972
direct path loading, 972 – 973
EM Database Control, 973 – 974,

973 – 974
sqlnet.ora file, 625, 630
sqlplus command, 7 – 8, 396
SQL*Plus utility, 6 – 8, 7

AWR baselines, 789 – 790
buffer, 10
commands, 8 – 9

initialization-parameter files, 495 – 498
optimizer statistics, 769 – 770
overview, 396, 396
shutting down Oracle, 506
starting Oracle, 502 – 503
tablespace information, 541 – 543

SQRT function, 88
Stage or Apply screen, 991
staging patches, 991, 992
STALE_PERCENT parameter, 775
staleness threshold for optimizer

statistics, 777
standard block size, 533 – 534
Standard Database Components screen,

466, 466
standard deviation functions, 160, 174 – 175
STAR_TRANSFORMATION_

ENABLED parameter, 491
START command

lsnrctl, 617
SQL buffer, 12

START_JOB command
expdp, 948
impdp, 952

START_JOB parameter, 958
START_JOB procedure, 939
start listener command, 621
START WITH clause, 360 – 361
STARTED state for instances, 895
starting listeners, 617 – 618, 621
starting up databases, 498 – 503
STARTUP command, 502, 895
STARTUP FORCE command,

499 – 500, 503
startup modes, 498 – 499
STARTUP MOUNT command, 499, 502
STARTUP NOMOUNT command, 499
STARTUP OPEN command, 499, 502
startup process for instances, 895 – 896

95127bindex.indd 1071 2/18/09 6:41:40 AM

1072 STARTUP RESTRICT command – STREAMS_POOL_SIZE parameter

STARTUP RESTRICT command, 500, 502
Startup/Shutdown: Advanced Shutdown

Options screen, 505, 505
Startup/Shutdown: Confirmation screen,

501, 505 – 506
Startup/Shutdown: Specify Host and

Target Credentials screen, 505
Startup/Shutdown: Specify Host and

Target Database Credentials screen,
501, 501

startup states for databases, 503
STARTUP_WAIT_TIME parameter,

612 – 613
STARTUP_WAIT_TIME_LISTENER

parameter, 613
startup_waittime command, 622
statements

auditing, 696 – 701
DCL, 718
DDL. See DDL (Data Definition

Language) statements
DML. See DML (Data Manipulation

Language) statements
entering, 8
failures, 891 – 892
interactive, 47 – 51

static service registration, 609, 611
statistics

optimizer, 767 – 768
collecting, 768 – 772, 770 – 773
extended, 779 – 782
pending, 778 – 779
preferences, 773 – 776, 774, 776

performance, 784
ADDM, 792 – 800, 794 – 797
ASH, 788 – 789, 788 – 789
AWR, 784 – 788, 785 – 786
AWR baselines, 789 – 792, 791 – 792

STATISTICS_LEVEL parameter, 784, 821
STATUS command

expdp, 948
impdp, 952
lsnrctl, 619 – 620

status listener command, 621
status of listeners, 619 – 621
STATUS parameter, 958
STDDEV function, 160
STDDEV_POP function, 174 – 175
STDDEV_SAMP function, 175
stop command in lsnrctl, 622 – 623
STOP_JOB command

expdp, 948
impdp, 952

STOP_JOB parameter, 958
stop listener command, 621
stopping listeners, 621 – 623
storage

configuring, 459 – 460, 460
databases, 475 – 477, 476 – 477
indexes, 573 – 574
structures, 415

control files, 416 – 417, 417
data files, 417 – 418, 419
LOB, 562 – 564
logical, 422 – 423, 423
redo log files, 419 – 422, 420 – 421

tablespace defaults, 538
STORAGE clause, 561, 563, 573 – 574
Storage Options screen, 459, 460
stored functions, 395, 672
stored packages, 672
stored procedures, 395, 672
strategies, backup, 862
streams pool, 403, 408
STREAMS_POOL_SIZE parameter, 408

95127bindex.indd 1072 2/18/09 6:41:40 AM

strings – system privileges 1073

strings
concatenating, 20 – 21, 70 – 71
conversion functions, 106 – 109, 120
filling, 73 – 75
length, 72 – 73
lowercase functions, 73
replacing, 74 – 78
replacing characters in, 78 – 79
searching in, 71 – 72
Soundex representation, 76
trimming, 74, 76, 79
uppercase functions, 71, 79 – 80

Structured Query Language. See SQL
(Structured Query Language)

subqueries, 221
correlated, 227 – 228
in DML statements, 236 – 237
exam essentials, 238 – 239
inserting rows from, 255 – 256
multiple-column, 235 – 236
multiple-row, 223 – 225
NULL values, 226 – 227
review questions, 240 – 250
scalar, 228 – 231
single-row, 222 – 223
summary, 238
tables from, 564 – 565
updating rows in, 260 – 261

substitute variables, 45, 47 – 49
SUBSTR function, 76 – 78
SUBSTRB function, 78
subtraction

dates, 299 – 300
expressions, 20

SUM function, 159
Summary screen

installation, 436, 437
patches, 991, 992, 994, 994

superaggregates, 177 – 184

Support Workbench. See Enterprise
Manager Support Workbench

swap space requirements, 425
switch operations for log files, 847 – 849
SYNONYM statement auditing option, 698
synonyms, 366 – 367

creating, 367
defined, 289
description, 395
dropping, 367
private, 368 – 369
privileges, 677
public, 367 – 368

SYS account, 458, 669
SYS_CONTEXT function, 130 – 134
SYS_EXTRACT_UTC function, 100
SYS_GUID function, 134
SYSASM privilege, 680
SYSAUX tablespace, 417, 525 – 526
SYSDATE function, 28, 93
SYSDBA authorization, 498
SYSDBA privilege, 680, 687
SYSMAN account, 458, 669
SYSOPER authorization, 498
SYSOPER privilege, 680
SYSTEM account, 458, 669
SYSTEM AUDIT statement, 698
system change numbers (SCNs)

checkpoints, 846
conversions, 108 – 109
transaction control, 273

System Control statement category, 6
system-critical data file recovery, 926 – 927
system global area. See SGA (system

global area)
SYSTEM GRANT statement, 698
System Monitor process, 408, 414 – 415
SYSTEM_PRIVILEGE_MAP view, 674
system privileges, 670, 674 – 681, 681

95127bindex.indd 1073 2/18/09 6:41:40 AM

1074 system requirements – TANH function

system requirements, 424 – 425
SYSTEM tablespace, 417, 525 – 526
SYSTIMESTAMP function, 93 – 94

T
TABLE_EXPORT_OBJECTS view, 957
Table mode in Data Pump, 943
Table recovery screen, 905, 906
TABLE statement auditing option, 699
tables

aliases, 200 – 201
columns. See columns
comments, 308
creating, 303, 328 – 331, 559 – 562
defined, 288
description, 394
dropping, 316
exam essentials, 332
example, 576 – 581
LOB structures, 562 – 564
names, 303 – 305, 558
from other tables, 308 – 310
overview, 557 – 559
privileges, 670 – 671, 677 – 678
read-only, 317 – 318
renaming, 316 – 317
reorganizing, 566
review questions, 333 – 339
rows. See rows
from subqueries, 564 – 565
summary, 331
temporary, 288, 565
truncating, 264 – 265, 566 – 567

TABLESPACE clause
auditing option, 699
indexes, 817
LOB segments, 563

table location, 561
user accounts, 664 – 665

Tablespace Live database role, 949
Tablespace mode, 943
tablespace point-in-time recovery

(TSPITR), 893
tablespaces, 526

backup mode, 540 – 541
creating, 527 – 528
DDL for, 543
default, 526 – 527
exam essentials, 583
extent management, 528 – 530
information about, 541 – 546, 544 – 545
modifying, 538 – 541
moving, 548 – 549
nonstandard block sizes, 534
offline and online, 539
options, 531 – 534
Oracle Managed Files, 528, 552 – 553
overview, 422, 423, 524 – 526, 525
privileges, 678
read-only, 539 – 540
removing, 537
required, 417 – 418
review questions, 584 – 589
segments, 530 – 531
summary, 582
template definitions, 455
temporary, 534 – 535, 665
undo, 536 – 537, 743, 746

configuring, 748 – 750
guaranteed undo retention, 753 – 754
monitoring, 750 – 752, 751
sizing, 752, 753

user accounts, 664 – 665
Tablespaces screen, 543, 544
TAN function, 89
TANH function, 89

95127bindex.indd 1074 2/18/09 6:41:40 AM

temp space requirements – Trailing Incidents Count setting 1075

temp space requirements, 425
TEMP tablespace, 417
TEMPFILE keyword, 535
Template Details screen, 454, 454
templates

baseline, 790
database, 453 – 455, 453 – 454
definitions, 455, 483 – 484, 483

TEMPORARY option, 539
TEMPORARY TABLE keywords, 305
temporary tables, 288

creating, 305, 565
description, 558

TEMPORARY TABLESPACE clause, 665
temporary tablespaces, 534 – 535, 665
temporary views, 357
text backups for control files, 864 – 867
text literals, 21 – 22
thin drivers, 596
threshold alerts, 802
throughput, 827
time datatypes, 19, 295 – 301
time stamps

conversion functions, 108 – 109, 121
datatypes, 19, 23, 296 – 298
LOCALTIMESTAMP function, 94
retrieving, 95 – 96
SYSTIMESTAMP function, 93 – 94

Time Window for Package Content
setting, 985

TIME_ZONE command, 94 – 96
time zones

constants, 98 – 99
offsets, 101, 296
retrieving, 97, 100
setting, 94 – 96

TIMESTAMP datatype, 19, 23, 296
TIMESTAMP_TO_SCN function, 109

TIMESTAMP WITH LOCAL TIME
ZONE datatype, 296 – 298

TIMESTAMP WITH TIME ZONE
datatype, 296

TNS_ADMIN variable, 629, 636
%TNS_ADMIN% variable, 429
$TNS_ADMIN variable, 429
tnsnames.ora file, 607 – 608, 629 – 630,

632 – 633, 632
tnsping utility, 635
TO_BINARY_DOUBLE function, 109
TO_BINARY_FLOAT function, 110
TO_CHAR function, 101, 111 – 117, 119
TO_CLOB function, 117
TO_DATE function, 23, 117 – 119
TO_DSINTERVAL function, 120
TO keyword, 549
TO_LOB function, 120
TO_MULTI_BYTE function, 120
TO_NUMBER function, 101, 120 – 121
TO_SINGLE_BYTE function, 121
TO_TIMESPACE function, 23
TO_TIMESTAMP function, 121
TO_TIMESTAMP_TZ function, 121
TO_YMINTERVAL function, 122
Top Activity screen, 828, 828
Top Consumers screen, 828, 829
top-n analysis, 359 – 360
Top Sessions screen, 812, 813
total space, finding, 231 – 235
Trace command in lsnrctl, 621
TRACE_FILE parameter, 612
trace files

locations, 806
for performance, 811 – 812, 812 – 813

TRACE_LEVEL parameter, 612
tracing Oracle Net servers, 624 – 626
tracking incidents, 985 – 986, 986
Trailing Incidents Count setting, 985

95127bindex.indd 1075 2/18/09 6:41:41 AM

1076 TRAILING trimming value – undo management

TRAILING trimming value, 79
TRANSACTION_BACKOUT

procedure, 909
Transaction Details screen, 913, 913
transactions and transaction control,

267 – 269
consistency, 272 – 273
data visibility, 271 – 272
description, 6
exam essentials, 274 – 275
locks, 273 – 274, 735 – 736

conflicts, 739 – 742, 740 – 741
data concurrency, 736 – 737
modes, 737 – 739

review questions, 276 – 286
rollbacks and savepoints, 269 – 271,

270, 746
summary, 274

transformations, import, 953 – 954
TRANSLATE function, 78 – 79
Transport tablespace mode, 943
TRANSPORT_TABLESPACES

parameter, 55
trc_directory command, 622
trc_file command, 622
trc_level command, 622
TRIGGER statement auditing option, 699
triggers, 290

databases, 732 – 733
DDL, 730 – 731
description, 395
DML, 729 – 730
enabling and disabling, 733
PL/SQL, 728 – 733
privileges, 678

trigonometric functions, 82 – 84, 88 – 89
TRIM function, 79
trimming strings, 74, 76, 79

troubleshooting
client-side connection problems,

635 – 637
redo log files, 850

TRUE value, 33
TRUNC function

dates, 101
numbers, 89

TRUNCATE event triggers, 731
TRUNCATE statement, 316, 566 – 567, 971
truncating tables, 264 – 265, 566 – 567, 971
truth tables, 34 – 35
TSPITR (tablespace point-in-time

recovery), 893
two-task common layers, 596
$TWO_TASK variable, 430
two-tier architecture, 593 – 594, 594
type II drivers, 596
TZ_OFFSET function, 101

U
UET$ table, 529
UID function, 134
UNARCHIVED keyword, 854
unary operators, 20
UNDEFINE command, 50
underscores (_)

identifier names, 304
pattern matching, 37

Undo Advisor, 752, 753, 802
undo management, 743

administration, 747
data, 745
exam essentials, 756
read consistency, 746 – 747
review questions, 757 – 763
segments, 272, 743 – 745
summary, 755

95127bindex.indd 1076 2/18/09 6:41:41 AM

UNDO_MANAGEMENT parameter – user global area (UGA) 1077

transaction rollback, 746
undo tablespaces, 536 – 537, 743, 746

configuring, 748 – 750
guaranteed undo retention, 753 – 754
monitoring, 750 – 752, 751
sizing, 752, 753

UNDO_MANAGEMENT parameter,
491, 747 – 748

UNDO_RETENTION parameter, 537,
749 – 750, 752, 899

UNDO_TABLESPACE parameter,
491, 747 – 749

undocumented configuration
parameters, 492

unexpired undo, 750
UNIFORM option, 529, 535
UNION operator, 214, 217 – 218
UNION ALL operator, 218
unique constraints, 321 – 322, 569 – 570
unique indexes, 372, 573
UNIQUE keyword

aggregate functions, 149
indexes, 372, 573
SELECT, 26 – 28

UNISTR function, 122 – 123
Unix systems, installation on, 425
UNKNOWN value, 33
UNLIMITED keyword

passwords, 692
quotas, 666

unusable objects, 815 – 818, 817 – 819
updatable join views, 354
UPDATE event triggers, 730
UPDATE privilege, 671
UPDATE statement and updating

rows, 259 – 260, 721 – 722
sequences, 362
subqueries, 236 – 237, 260 – 261
through views, 351 – 353
WHERE clauses, 262 – 263

UPDATE TABLE statement auditing
option, 699

UPPER function, 79 – 80
uppercase functions, 71, 79 – 80
UROWID datatype, 302
Use Automatic Memory Management

option, 470
Use Common Location for all Database

Files option, 461
Use Database File Locations from

Template option, 461
USE_DB_RECOVERY_FILE_DEST

parameter, 857
Use Oracle-Managed Files option, 462
user accounts

authentication, 663 – 664
creating, 426, 662 – 663
default, 669
preconfigured, 458
privileges, 679
profiles and settings, 666 – 668,

667 – 668
quotas, 666
removing from databases, 668
resource usage control, 688 – 695
tablespaces, 664 – 665

USER_AUDIT_TRAIL view, 700
USER_DB_LINK view, 370
user errors, recovering from,

892 – 893, 899
EM Database Control, 905 – 908,

906 – 908
flashback drop, 902 – 904
flashback queries, 899 – 901
flashback table, 904 – 905
flashback transactions, 909 – 910,

909 – 910
LogMiner, 911 – 913, 912 – 913

USER function, 28, 135
user global area (UGA), 642

95127bindex.indd 1077 2/18/09 6:41:41 AM

1078 user-managed backups – views

user-managed backups, 540
user processes

failures, 892
overview, 400 – 401, 401

USER statement auditing option, 699
USER_TABLES view, 485 – 486, 486
user trace file locations, 806
USER_UPDATABLE_COLUMNS

view, 356
USERENV function, 135
USERENV namespace, 130 – 133
USING clause

joins, 204 – 205
MERGE, 265

UTC (Coordinated Universal Time),
100, 296

UTL_FILE package, 686, 734
UTL_HTTP package, 686
UTL_MAIL package, 734
UTL_SMTP package, 686
UTL_TCP package, 686

V
V code in number conversions, 116
V$ACTIVE_SESSION_HISTORY

view, 788
VALID synonyms, 368
VALIDATE keyword, 326
validated constraints, 326 – 327
values input at runtime, 47 – 51
VAR_POP function, 175 – 176
VAR_SAMP function, 176
VARCHAR datatype, 293
VARCHAR2 datatype, 17, 293
variables

positional notation, 50 – 51
saving, 49 – 50
substitute, 45, 47 – 49

VARIANCE function, 161
V$BGPROCESS view, 411
V$CONTROLFILE view, 416, 868
V$DATABASE view, 487
V$DATAFILE view, 547, 555, 814,

868, 896
V$DIAG_INFO view, 510
Version command in lsnrctl, 621
vertical bars (||) for concatenation, 21
V$EVENT_NAME view, 814
V$FILESTAT view, 814
V$FIXED_TABLE view, 488
View Alert Log Contents screen, 810, 810
View and Manage Failures screen,

919, 920
View Backup Report screen, 878 – 879, 879
VIEW statement auditing option, 699
views

for access control, 354
ADDM analysis, 798 – 800
constraints on, 347
creating, 342 – 344
data dictionary, 485 – 486, 486,

488, 815
defined, 288
defined column names, 344 – 345
definitions, 348
description, 394
DML operations, 356
dropping, 349 – 350
dynamic performance, 404, 487 – 488,

784, 813 – 814
with errors, 345 – 346
exam essentials, 379
inline, 221, 357 – 360
inserting, updating, and deleting

through, 351 – 353
join, 354 – 356
materialized, 290, 343

95127bindex.indd 1078 2/18/09 6:41:41 AM

V$IR_FAILURE view – WHENEVER SUCCESSFUL clause 1079

modifying, 347 – 349
privileges, 671, 679
purposes, 350
in queries, 350 – 351
read-only, 346 – 347
recompiling, 348 – 349
review questions, 380 – 387
summary, 378
top-n analysis, 359 – 360

V$IR_FAILURE view, 925
V$IR_FAILURE_SET view, 925
V$IR_MANUAL_CHECKLIST view, 925
V$IR_REPAIR view, 925
virtual circuits, 642
virtual columns, 288
visibility in transaction control, 271 – 272
V$LOCK view, 814
V$LOG view, 420
V$LOGFILE view, 419, 917 – 918
V$LOGMNR_CONTENTS view, 911
V$MEMORY_DYNAMIC_

COMPONENTS view, 824
V$MEMORY_TARGET_ADVICE

view, 823
V$METRIC view, 805
V$METRIC_HISTORY view, 805
volume names, 426 – 427
V$OPTION view, 487
V$PARAMETER view, 495 – 498,

814, 914
V$PGASTAT view, 813
V$RECOVER_FILE view, 896
V$ROLLNAME view, 744
V$SESSION view, 45, 811, 814, 958 – 959
V$SESSION_EVENT view, 814
V$SESSION_LONGOPS view, 959
V$SESSION_WAIT view, 814

V$SESSTAT view, 814
V$SGA view, 404
V$SGA_TARGET_ADVICE view, 821
V$SGAINFO view, 404, 813, 821
VSIZE function, 135 – 136
V$SPPARAMETER view, 495 – 498,

814, 914
V$SQL view, 487
V$STATNAME view, 814
V$SYSSTAT view, 184 – 185, 814
V$SYSTEM_EVENT view, 814
V$TABLESPACE view, 542
V$TEMPFILE view, 555, 814
V$TEMPSEG_USAGE view, 814
V$TIMEZONE_NAMES view, 96, 101
V$TRANSACTION view, 744
V$UNDOSTAT view, 752
V$VERSION view, 487
V$WAITSTAT view, 814

W
WAIT mode, 738
wall clock time, 689
Warning alert level, 804
web applications, 597
Welcome screen in DBCA, 451, 451
WHEN clause, 44, 257, 720
WHEN MATCHED clause, 722
WHEN MATCHED THEN UPDATE

clause, 265
WHEN NOT MATCHED clause, 722
WHEN NOT MATCHED THEN

INSERT clause, 265
WHENEVER NOT SUCCESSFUL clause,

697, 699 – 700
WHENEVER SUCCESSFUL clause, 697

95127bindex.indd 1079 2/18/09 6:41:41 AM

1080 WHERE clause – zeros in number conversions

WHERE clause
aggregate functions, 176
DELETE, 263, 724
MERGE, 265
processes, 411
scalar subqueries in, 230
SELECT, 28 – 29, 42
UPDATE, 259 – 260, 262 – 263
views, 351 – 352

whole backups, 862 – 863
WIDTH_BUCKET function, 89 – 90
windows for aggregate functions, 163
WITH clauses in subqueries, 237
WITH ADMIN OPTION clause,

680 – 681
WITH CHECK OPTION clause, 352, 355
WITH GRANT OPTION clause,

672 – 674, 681 – 682

WITH READ ONLY option, 346
words, converting numbers to, 119 – 120
WORKAREA_SIZE_POLICY

parameter, 822
worker processes, 939
wrapped packages, 725

X
X code in number conversions, 116
XMLDB account, 669

Z
zeros in number conversions, 115

95127bindex.indd 1080 2/18/09 6:41:41 AM

READ THIS. You should carefully read these terms and
conditions before opening the software packet(s) included
with this book “Book”. This is a license agreement
“Agreement” between you and Wiley Publishing, Inc.
“WPI”. By opening the accompanying software packet(s),
you acknowledge that you have read and accept the fol-
lowing terms and conditions. If you do not agree and
do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software
packet(s) to the place you obtained them for a full refund.
1. License Grant. WPI grants to you (either an individual
or entity) a nonexclusive license to use one copy of the
enclosed software program(s) (collectively, the “Soft-
ware,” solely for your own personal or business purposes
on a single computer (whether a standard computer or
a workstation component of a multi-user network). The
Software is in use on a computer when it is loaded into
temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device).
WPI reserves all rights not expressly granted herein.
2. Ownership. WPI is the owner of all right, title, and
interest, including copyright, in and to the compilation
of the Software recorded on the physical packet included
with this Book “Software Media”. Copyright to the
individual programs recorded on the Software Media is
owned by the author or other authorized copyright owner
of each program. Ownership of the Software and all pro-
prietary rights relating thereto remain with WPI and its
licensers.
3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software
to a single hard disk, provided that you keep the original
for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any
computer subscriber system or bulletin-board system, or
(iii) modify, adapt, or create derivative works based on
the Software.
(b) You may not reverse engineer, decompile, or disas-
semble the Software. You may transfer the Software and
user documentation on a permanent basis, provided that
the transferee agrees to accept the terms and conditions
of this Agreement and you retain no copies. If the Soft-
ware is an update or has been updated, any transfer must
include the most recent update and all prior versions.
4. Restrictions on Use of Individual Programs. You
must follow the individual requirements and restrictions
detailed for each individual program in the About the
CD-ROM appendix of this Book or on the Software
Media. These limitations are also contained in the
individual license agreements recorded on the Software
Media. These limitations may include a requirement that
after using the program for a specified period of time,
the user must pay a registration fee or discontinue use. By
opening the Software packet(s), you will be agreeing to
abide by the licenses and restrictions for these individual
programs that are detailed in the About the CD-ROM
appendix and/or on the Software Media. None of the
material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form,
for commercial purposes.
5. Limited Warranty.
(a) WPI warrants that the Software and Software Media
are free from defects in materials and workmanship
under normal use for a period of sixty (60) days from the

date of purchase of this Book. If WPI receives notifica-
tion within the warranty period of defects in materials or
workmanship, WPI will replace the defective Software
Media.
(b) WPI AND THE AUTHOR(S) OF THE BOOK DIS-
CLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS,
THE SOURCE CODE CONTAINED THEREIN, AND/
OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
WPI DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERA-
TION OF THE SOFTWARE WILL BE ERROR FREE.
(c) This limited warranty gives you specific legal rights,
and you may have other rights that vary from jurisdiction
to jurisdiction.
6. Remedies.
(a) WPI’s entire liability and your exclusive remedy for
defects in materials and workmanship shall be limited
to replacement of the Software Media, which may be
returned to WPI with a copy of your receipt at the fol-
lowing address: Software Media Fulfillment Department,
Attn.: OCA Oracle Database 11g Administrator Certified
Associate Study Guide, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-
762-2974. Please allow four to six weeks for delivery.
This Limited Warranty is void if failure of the Software
Media has resulted from accident, abuse, or misapplica-
tion. Any replacement Software Media will be warranted
for the remainder of the original warranty period or
thirty (30) days, whichever is longer.
(b) In no event shall WPI or the author be liable for any
damages whatsoever (including without limitation dam-
ages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss)
arising from the use of or inability to use the Book or the
Software, even if WPI has been advised of the possibility
of such damages.
(c) Because some jurisdictions do not allow the exclusion
or limitation of liability for consequential or incidental
damages, the above limitation or exclusion may not apply
to you.
7. U.S. Government Restricted Rights. Use, duplication,
or disclosure of the Software for or on behalf of the
United States of America, its agencies and/or instrumen-
talities “U.S. Government” is subject to restrictions as
stated in paragraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause of DFARS 252.227-
7013, or subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR
supplement, as applicable.
8. General. This Agreement constitutes the entire under-
standing of the parties and revokes and supersedes all
prior agreements, oral or written, between them and may
not be modified or amended except in a writing signed
by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over
any other documents that may be in conflict herewith. If
any one or more provisions contained in this Agreement
are held by any court or tribunal to be invalid, illegal, or
otherwise unenforceable, each and every other provision
shall remain in full force and effect.

Wiley Publishing, Inc.
End-User License Agreement

95127bmeddis.indd 1087 2/17/09 3:32:47 PM

he Best OCA: Oracle Database 11g
Book/CD Package on the Market!T

Get ready for your Oracle Certified
Administrator for Oracle Database 11g
certification with the most comprehensive
and challenging sample tests anywhere!

The Sybex Test Engine features:

All the review questions, as covered in each N
chapter of the book.

Challenging questions representative of N
those you’ll find on the real exam.

Four full-length bonus exams—two each for N
exams 1Z0-501 and 1Z0-502—available only
on the CD.

An Assessment Test to narrow your focus to N
certain objective groups.

Use the Electronic Flashcards for PCs or
Palm devices to jog your memory and
prep last-minute for the exam!

Reinforce your understanding of key N
concepts with these hardcore flashcard-
style questions.

Download the Flashcards to your Palm N
device and go on the road. Now you can
study for the Oracle Database 11g: SQL
Fundamentals I (1Z0-051) and Oracle
Database 11g: Administration I (1Z0-052)
exams anytime, anywhere.

Search through the complete book in PDF!

Access the entire N OCA: Oracle Database
11g Administrator Certified Associate
Study Guide complete with figures and
tables, in electronic format.

Search the N OCA: Oracle Database 11g
Administrator Certified Associate Study
Guide chapters to find information on
any topic in seconds.

95127bmedinst.indd 1088 2/17/09 3:35:45 PM

Oracle® Database 11g
Administrator Certifi ed
Associate
STUDY GUIDE

Biju Thomas

Covers Both the 1Z0-051 and 1Z0-052 Exams!

OCA

Includes Real-World Scenarios, Hands-On Exercises,
and Leading-Edge Exam Prep Software Featuring:

• Custom Test Engine

• Hundreds of Sample Questions

• Electronic Flashcards for PCs, Pocket PCs,
 and Palm Handhelds

• Entire Book in PDF

Exams 1Z0-051
and 1Z0-052

SERIOUS SKILLS.

OCA

O
racle

® D
atabase 11g

A
dm

inistrator C
ertifi ed A

ssociate

STUDY GUIDE

Thomas

FEATURED ON THE CD

ISBN: 978-0-470-39512-7

Study, practice, and review for OCA certifi cation in Oracle 11g,
Oracle’s new release of its top-selling database software. Inside
this in-depth guide, you’ll fi nd full coverage of essential topics
for two required OCA certifi cation exams: SQL Fundamentals I
(1Z0-051) and Administration I (1Z0-052). Explore topics such as
basic SQL SELECT statements, group functions, creating schema
objects, restricting and sorting data, and much more with this
essential two-in-one guide. Inside, you’ll fi nd:

Full coverage of all exam objectives in a systematic approach, so you
can be confi dent you’re getting the instruction you need for the exam

Practical hands-on exercises to reinforce critical skills

Real-world scenarios that put what you’ve learned in the context
of actual job roles

Challenging review questions in each chapter to prepare you for
exam day

Exam Essentials, a key feature in each chapter that identifi es critical
areas you must become profi cient in before taking the exam

A handy tear card that maps every offi cial exam objective to the
corresponding chapter in the book, so you can track your exam prep
objective by objective

Biju Thomas, OCA, OCP, is a senior database administrator with more than 15 years
of Oracle application development and database management experience. He has
coauthored fi ve Oracle certifi cation books published by Sybex and has written articles
for multiple Oracle technical publications.

Prepare for two OCA certifi cation
exams with this one book

$89.99 US
$107.99 CN

A B O U T T H E A U T H O R

Look inside for complete coverage
of all exam objectives.

www.sybex.com

SYBEX TEST ENGINE:
Test your knowledge with advanced
testing software. Includes all chapter
review questions and bonus exams.

ELECTRONIC FLASHCARDS:
Reinforce your understanding with
fl ashcards that can run on your PC,
Pocket PC, or Palm handheld.

Also on CD, you’ll fi nd the entire
book in searchable and printable PDF.
Study anywhere, any time, and
approach the exam with confi dence.

C A T E G O R Y
COMPUTERS/Certifi cation Guides

Exam 1Z0-051
Exam 1Z0-052

	OCA: Oracle Database 11g Administrator Certified Associate Study Guide (1Z0-051 and 1Z0-052)
	About the Author
	Contents at a Glance
	Contents
	Introduction
	SQL Fundamentals I Assessment Test
	Answers to SQL Fundamentals I Assessment Test
	Administration I Assessment Test
	Answers to Administration I Assessment Test
	Part I: Oracle Database 11g: SQL Fundamentals I
	Chapter 1: Introducing SQL
	SQL Fundamentals
	Writing Simple Queries
	Accepting Values at Runtime
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 2: Using Single-Row Functions
	Single-Row Function Fundamentals
	Using Single-Row Character Functions
	Using Single-Row Numeric Functions
	Using Single-Row Date Functions
	Using Single-Row Conversion Functions
	Using Other Single-Row Functions
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 3: Using Group Functions
	Group-Function Fundamentals
	Utilizing Aggregate Functions
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 4: Using Joins and Subqueries
	Writing Multiple-Table Queries
	Using Set Operators
	Subqueries
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 5: Manipulating Data
	Using DML Statements
	Understanding Transaction Control
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 6: Creating Tables and Constraints
	Database Objects Overview
	Built-in Datatypes
	Creating Tables
	Modifying Tables
	Managing Constraints
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 7: Creating Schema Objects
	Creating and Modifying Views
	Creating and Managing Sequences
	Creating and Managing Synonyms
	Creating and Managing Indexes
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Part II: Oracle Database 11g: Administration I
	Chapter 8: Introducing Oracle Database 11g Components and Architecture
	Oracle Database Fundamentals
	Oracle 11g Architecture
	Installing Oracle 11g
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 9: Creating an Oracle 11g Database
	Using DBCA to Create Oracle 11g Databases
	Working with Oracle 11g Metadata
	Managing Initialization-Parameter Files
	Starting Up and Shutting Down an Oracle Instance
	Monitoring the Database Alert Log
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 10: Allocating Database Storage and Creating Schema Objects
	Tablespaces and Data Files Overview
	Managing Tablespaces
	Managing Data Files
	Working with Schema Objects
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 11: Understanding Network Architecture
	Introducing Network Configurations
	An Overview of Oracle Net Features
	Configuring Oracle Net on the Server
	Configuring Oracle Net for the Client
	An Overview of Oracle Shared Server
	Oracle Shared Server Infrastructure
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 12: Implementing Security and Auditing
	Creating and Managing User Accounts
	Granting and Revoking Privileges
	Controlling Resource Usage by Users
	Auditing Database Activity
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 13: Managing Data and Undo
	Manipulating Data through SQL
	Identifying PL/SQL Objects
	Monitoring Locks and Resolving Lock Conflicts
	Leveraging Undo Management
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 14: Maintaining the Database and Managing Performance
	Proactive Database Maintenance
	Managing Performance
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 15: Implementing Database Backups
	Understanding and Configuring Recovery Components
	Performing Backups
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 16: Recovering the Database
	Understanding Types of Database Failure
	Performing Recovery Operations
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 17: Moving Data and Using EM Tools
	Understanding Data Pump
	Loading Data with SQL*Loader
	Populating External Tables
	Using EM Support Workbench
	Using EM to Manage Patches
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Appendix: About the Companion CD
	What You’ll Find on the CD
	System Requirements
	Using the CD
	Troubleshooting

	Glossary
	Index

