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Preface

Screw compressors are rotary positive displacement machines, which are compact, 

have few moving parts and which operate at high efficiency over a wide range of 

speeds and pressure differences. Consequently a substantial proportion of all in-

dustrial compressors now produced are of this type.

There are few published books on the principles of their operation and how 

best to design them, especially in English. The authors made a first step to fill this 

void with an earlier work on mathematical modelling and performance calculation 

of these machines. This described analytical procedures which are generally ade-

quate for most applications, especially when dealing with oil flooded machines, in 

which temperature changes are relatively small and thus the effect of changes of 

shape of the key components on performance may be neglected. This assumption 
permitted the use of analytical procedures based on flow through passages with 

dimensions that are invariant with temperature and pressure. 

As manufacturing accuracy increases, clearances can be reduced and compres-

sors thereby made smaller and more efficient. To obtain full advantage of this at 

the design stage, more accurate procedures are required to determine the internal 

fluid flow patterns, the pressure and temperature distribution and their effects on 

the working process. This is especially true for oil free machines, in which tem-

perature changes are much larger and thus make thermal distortion effects more 

significant.

The present volume was prepared, as a sequel to the authors’ earlier work and 

describes the most up to date results of methods, which are still being developed 
to meet this need. These are based on the simulation of three-dimensional fluid 

flow within a screw machine. 

Such an approach requires the simultaneous solution of the governing equa-

tions of momentum, energy, mass, concentration and space conservation. In order 

to be solved, the equations are accompanied by constitutive relations for a Newto-

nian fluid in the form of Stokes, Fourier’s and Fick’s laws. Although this model is 

generally applicable, at least three features have been derived, without which the 

solution of the flow pattern within a screw machine would not be possible. Firstly, 

there is the application of the Euler-Lagrange method for the solution of multi-

phase flow of both the injected fluid and the liquid phase of the main fluid. Its 

equations define mass, energy and concentration source terms for the main equa-

tions. The introduction of a ‘boundary domain’ in which the pressure is kept con-
stant by injection or by subtraction of mass, is the next innovation in and allows 

simulation of the real operational mode of a screw compressor. Finally, a rather 

simple method is used here for calculation of the properties of real fluids. This 
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permits a fast but still reasonably accurate procedure even for the calculation of 

processes like evaporation or condensation within the working chamber.  

A computer program has been developed for Windows or UNIX oriented ma-

chines, based on the methodology, thus described. It automatically generates files 

which contain node, cell and region specifications as well as user subroutines for a 

general CFD solver of the finite volume type. The method and program have been 

tested on a commercial CFD solver and good simulations of positive displacement 

screw machines were obtained.
Four examples outline the scope of the applied mathematical model for three 

dimensional calculation of fluid flow and stresses in the solid parts of the screw 

machine. In the first example, the results for two oil-free air screw compressors 

with different rotor profiles are compared with each other and with results ob-

tained from one-dimensional calculation. Advantages are found in the use of the 

three-dimensional simulation model, in which the suction and discharge dynamic 

losses are accounted for in the results. 

The second example verifies the results of three-dimensional calculations with 

measurements obtained in an experimental test rig. The influence of turbulence 

upon the process in a screw compressor is also investigated. It is concluded that, 

despite the excessive dissipation of kinetic energy of turbulence, the overall pa-

rameters of a positive displacement machine do not significantly change if it is 
calculated either as turbulent or laminar flow. Investigation of the grid size influ-

ence on the accuracy of 3-D calculations is performed and it shows that coarser 

numerical meshes cannot capture all of the flow variations within the compressor 

accurately. However, the integral parameters are in all cases reasonably accurate.

In the third example the procedures for real fluid properties enabled fast 

calculation of ammonia compressor parameters. The importance of the oil 

injection port position is outlined here through the oil distribution obtained by the 

three dimensional calculations. Such figures of oil distribution within the screw 

compressor have never been found in the open literature. This achievement is 

therefore a step forward in understanding screw compressor internal flows.

The fourth application covers the simultaneous calculation of the solid fluid in-
teraction. The influence of the rotor deformation on the integral screw compressor 

parameters caused by the change in clearance is presented together with how rotor 

clearances are reduced due to the enlargement of the rotors caused by temperature 

dilatations. This results in an increase in both, the compressor flow and power in-

put. The influence of pressure causes the rotors to bend. For a moderate compres-

sor pressure, the clearances gap is enlarged only slightly and hence has only a neg-

ligible influence on the delivery and power consumption. In the case of high 

working pressures, the rotors deform more and the decrease in the delivery and 

rise in specific power becomes more pronounced.

Ahmed Kovacevic
Nikola Stosic

Ian Smith

London,

February 2006
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Notation

A - area of the cell surface

a1, b1 - radius vectors of boundary points

A1, A2 - constants in the saturation temperature equation 

bi - constant 

B1, B2 - constants in the compressibility factor equation 

ci - concentration of species

c1-c4 - tension spline coefficients

C1, C2 - coefficients of the orthogonalisation procedure

Cdrag - drag coefficient

Cp - specific heat capacity at constant pressure 

C,  - constants in k- model of turbulence
di - distance in transformed coordinate system 
Di - mass diffusivity of the dispersed phase

do - Sauter mean droplet diameter

D1-D4 - constants in the vapour specific heat equation 

D - rate of strain tensor 
e1, e2 - cell edges maximal values in coordinate directions 

fi(s) - adaptation variable

fb - resultant body force

fe - expansion factor 

fi
k - weight function 

Fi(s) - integrated adaptation variable

h1-h8 - blending functions of Hermite interpolation 

h - enthalpy

hL - enthalpy of evaporation

k - turbulent kinetic energy

K1-K4 - coefficients for Hermite interpolation
kP - point counter 

K - number of points

m - mass

mo - mass of species

mi - mass in the numerical cell

mL - mass of evaporated or condensed fluid
n - rotor speed

Nu - Nuselt number

p - pressure

P - production of turbulence energy
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Notation

Pr - Prandtl number

qci - diffusion flux of species

qh - heat flux 

qk - diffusion flux in kinetic energy equation

q - diffusion flux in dissipation equation

qS - flux source in the generic transport equation

qV - volume source in the generic transport equation

conQ - convective heat flux 

massQ - heat flux due to phase change

r - radius vector

Re - Reynolds number

Ri - grid point ratio

S - cell surface 

s - transformed coordinate 

s - area vector

Sci - source term of species

Sh - heat source term 

S - viscous part of stress tensor

t - time
T - temperature

T - stress tensor

u - displacement vector

v - fluid velocity

vci - velocity of the dispersed phase

vi - Cartesian component of velocity vector

vs - surface velocity

V - cell volume

VCM - volume of the control mass

VCV - control volume

w - weight factor
W - weight function 

X - grid spacing
x, y, z - physical coordinates 

X, Y, Z – points on physical boundaries

xp, yp - coordinates of the calculation point

yp’, yp” - first and second derivatives in vicinity of the point P

y+ - dimensionless distance from the wall

z - compressibility factor

VIII
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Notation

Greek symbols

t - linear thermal expansion coefficient

,  - tension spline coefficients

1, 1 - blending functions

 - Kroneker delta function

t - time step

 - dissipation of turbulent kinetic energy

 - transported property in generic transport equation

 - interlobe angle of male rotor

 - Diffusive term in generic transport equation 

  - Lame coefficients

 - thermal conductivity

 - viscosity

t - turbulent viscosity

 - the ratio of a circle’s circumference to its diameter

 - angular velocity

 - density

 - tension spline parameter

o - oil surface tension

cv - normalised cell volume

 - computational coordinates

1
ˆ ˆ,o  - one-dimensional stretching functions

̂ - multi-dimensional stretching function

Subscripts

1 - male rotor

2 - female rotor

add - injected / subtracted fluid

const - constant prescribed value

D - discharge bearings

i - dispersed phase

L - evaporated/condensed fluid 

l - liquid
M - mixture

max - maximum

min - minimum

o - oil

ref - reference value

s - grid values

S - surface

IX
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Notation

sat - saturation 

t - turbulence

v - vapour

V - volume

Superscripts

’ - fluctuating components for time averaging

” - fluctuating component for density-weighted averaging

k - number of time steps

X
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1Introduction

1.1 Screw Machines

The operating principle of screw machines, as expanders or compressors, has been 

known for over 120 years. Despite this, serious efforts to produce them were not 

made until low cost manufacturing methods became available for accurate ma-

chining of the rotor profiles. Since then, great improvements have been made in 

performance prediction, rotor profile design and manufacturing techniques. Screw 
compressors are now highly efficient, compact, simple and reliable. Consequently, 

they have largely replaced reciprocating machines for the majority of industrial 

applications and in many refrigeration systems.

Screw compressors and expanders are positive displacement rotary machines. 

They consist essentially of a pair of meshing helical lobed rotors, which rotate 

within a fixed casing that totally encloses them, as shown in Figure 1-1. 

Figure 1-1 Screw Compressor Components

Although screw machines can function as either expanders or compressors, their 

overwhelmingly common use is as compressors, of which there are two main 

types. These are oil flooded, commonly known as oil injected, and oil free com-

pressors. An example of each, with similar rotor sizes, is shown in Figure 1-2.
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1 Introduction2

Figure 1-2 Types of Screw Compressor

In oil injected compressors, a relatively large mass, though a very small volume, 

of oil is admitted with the gas to be compressed. The oil acts as a lubricant be-

tween the contacting rotors, a sealant of any clearances between the rotors and be-

tween the rotors and the casing and as a coolant of the gas during the compression 

process. This cooling effect improves the compression efficiency and permits 

pressure ratios of up to approximately 15:1 in a single stage, without an excessive 
temperature rise, by maintaining an oil:gas mass ratio of 4:1 or even more. The ef-

fects of thermal expansion are then relatively small and now that screw compres-

sor components can be manufactured with tolerances of the order of 5m, inter-

nal clearances can be as little as 30-60m.

In oil free compressors, only gas is admitted into the working chamber. Exter-

nal timing gear is therefore needed, in order to prevent rotor contact, and internal 

shaft seals have to be located between the bearings at each end of the rotor shaft 

and the main body of the rotor. The shaft seals are needed to prevent oil, which is 

supplied to the bearings through an external lubrication system, from entering the 

working chamber and thereby contaminating the gas being compressed. Because 

there is no injected oil to cool the gas in this type of machine, the temperature rise 
of the compressed gas is much higher than in oil flooded compressors and pres-

sure ratios are therefore limited to approximately 3:1, depending on the type of gas 

being compressed. Above this value the temperature rise associated with compres-

sion creates problems related to rotor and casing distortions. Clearances therefore 

have to be much larger in order to avoid contact between the rotors or between the 

rotors and their casing caused by thermal distortion. It is believed that the adia-

batic efficiency of oil free compressors could be increased by as much as 10%, if 

minium safe clearances could be predicted accurately.
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1.2 Calculation of Screw Machine Processes 3

1.2 Calculation of Screw Machine Processes

Up till approximately 1980, screw compressors were designed assuming an ideal 

gas in a leak proof working chamber going through a compression process which 

could reasonably be approximated in terms of pressure-volume changes by the 

choice of a suitable value of exponent “n” in the relationship pVn = Constant. 

To improve on this procedure it was first necessary to obtain an algorithm 

which could be used to estimate the trapped volume between the rotors and the 

casing and the areas of all leakage passages, at any rotational angle. The latter are 

formed by clearances between the rotors and between the rotors and the casing. In 

addition, the area of the inlet or exit passage exposed to bulk flow of fluid into or 

out of the working chamber had to be obtained where applicable.

The assumption of dimensionless non-steady bulk fluid flow and steady one 

dimensional leakage flow through the working chamber, together with suitable 
flow coefficients through the passages and an equation of state for the working 

fluid, made it possible to develop a set of non-linear differential equations which 

describe the instantaneous flow of fluid, work and heat transfer through the sys-

tem. These could be solved numerically to estimate pressure-volume changes 

through the suction, compression and delivery stages and hence determine the net 

torque, power input, fluid delivery and isentropic and volumetric efficiencies of a 

compressor. More details of this are given in the authors’ earlier volume Stosic, 

Smith and Kovacevic, (2005). 

1.3 Fluid Flow Calculation

In recent years there has been a steady growth in the use of Computational Fluid 

Dynamics (CFD) as a means of calculating 3-D external and internal flow fields. It 

is widely used today for estimating flow in rotating machinery and specialised 
codes have been developed for this to allow faster calculations.

Many books on fluid dynamics such as Bird et al (1962), Fox and McDonald

(1982) and White (1986) contain a detailed derivation of general conservation 

laws. Three main groups of methods have been developed through the years as de-

scribed by Ferziger and Perić (1995). These are the finite difference, finite ele-

ment and finite volume methods. It is believed that the finite difference was first 

described by Euler in the 18th century but, more recently, Smith (1985) gave a 

comprehensive account of all its aspects.

The finite element method was initially developed for structural analysis, but 

later has also been used for the study of fluid flow. It has been described exten-

sively by many authors, such as Oden (1972), Fletcher (1991) and Zienkiewicz 

and Taylor (1991).
A summary of the finite volume method is given by Versteeg and Malalasekera

(1995). Since the finite volume method has already been used to solve problems 

involving unsteady flow with moving boundaries and strong pressure-velocity-

density coupling, it is of particular interest for this book. The ‘space conservation 

www.mepcafe.com



1 Introduction4

law’ was introduced by Trulio and Trigger (1961) and used in conjunction with a 

finite difference method. The importance of the space conservation law was dis-

cussed by Demirdžić and Perić (1988) and introduced to the finite volume method 

for prediction of fluid flow in complex domains with moving boundaries by the 

same authors (1990) and also by Demirdžić, Issa and Lilek (1990). They followed 

the attempts of many other authors to apply it to solve some special cases. Typi-

cally, Gosman and Watkins (1977), Gosman and Johns (1978) and Gosman

(1984) reported the calculations of flows in a cylinder with moving boundaries. 
Stošić (1982) applied the method to internal unsteady flows of a compressible 

fluid. Thomas and Lombard (1979) presented solutions of steady and unsteady su-

personic flows while Gosman (1984) and Durst et al (1985) reported that simple 

transformation of the conservation equations enables easy discretisation when 

only one of the domain boundaries moves in one direction. Perić (1985) intro-

duced a finite volume methodology for prediction of three-dimensional flows in 

complex ducts where, among others, he gave an evaluation of various pressure-

derivation algorithms for orthogonal and non-orthogonal grids. Additional analy-

sis on pressure-velocity coupling is given by Perić (1990) and later discussed and 

improved by Demirdžić at al (1992) and Demirdžić and Muzaferija (1995) where 

they applied the method simultaneously to fluid flow and solid body stress analy-

sis. Turbulence modeling is discussed by many authors, among whom Hanjalić 
(1970) gave an essential introduction to its wider use. Bradshaw (1994) and Han-

jalić (1994) gave good summaries on the subject. Lumley (1999) outlined impor-

tant subjects on turbulence in internal flows of positive displacement machines.

Despite a large number of publications on CFD, little has been written on its 

use for the analysis of flow through screw machines. This is mainly due to the 

complexity of both, the machine configuration and the flow paths through them. 

Some existing commercial CFD codes have facilities that can cope with the com-

plex geometry of screw machines. Unfortunately, these codes need to be improved 

in order to give useful results. In addition, a pre-processor needs to be developed 

to generate a numerical mesh that describes their shape with sufficient accuracy 

and allows for the complex stretching and sliding motion associated with the flow. 
With the advance of computing, it is now possible to predict internal flow in 

screw compressors by 3-D methods so that the internal pressure and temperature 

distribution can be estimated throughout the machine. Further, this can be used as 

a basis for determining the distribution of injected oil in oil flooded machines, as a 

means to estimate thermal distortion within an oil free compressor and to design 

inlet and exit port passages with minimum flow losses.

Such a procedure makes it possible to reduce the size of screw compressors by 

bringing internal leakage to a minimum. This would improve the adiabatic effi-

ciency of such machines by virtue of the reduced internal losses and greatly re-

duce the cost of developing new products by cutting the time and cost of experi-

mental testing and development.
Despite a significant increase in the number of papers published recently in the 

area of computational fluid dynamics, only a few deal with the application of 

computational fluid dynamics to screw compressors. All of them are recent papers 

by Kovacevic, Stosic and Smith published between 1999 and 2005. These papers 
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introduced 3-D numerical analysis to the screw compressor world. Their latter pa-

pers are related to both, grid generation in screw compressors and 3D numerical 

performance estimation, Kovacevic et al (2003) and (2005). These include fluid 

solid interaction in screw machines, Kovacevic et al (2004).
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2Computational Fluid Dynamics in Screw 
Machines

2.1 Introduction

As computer technology and its associated computational methods advance, the 

use of 3-D Computational Fluid Dynamics (CFD) to design and analyse positive 

displacement machinery working processes is gradually becoming more practica-

ble. In general, the CFD modelling process can be split into four phases.

The first phase is concerned with defining the problem that has to be solved. 

Both the ease of solution and implementation of results into the design process are 

heavily dependent on this critical starting step. Two different approaches are 

available for screw machines. The first is to select one interlobe on the main rotor 

and the corresponding interlobe on the gate rotor in order to make a computational 

domain. This is probably the easiest to implement but takes no account of impor-

tant phenomena such as interlobe leakage, blow-hole losses, oil injection and oil 
distribution. Another approach assumes that the whole domain of a screw machine 

is analysed. This includes the suction chamber and its port, the compression or ex-

pansion chamber with its moving rotor boundaries and the discharge system of the 

machine. By this means, the leakage paths and any additional inlet or outlet ports 

are included in the domain to be analysed. Realism in representing the machine 

working process gives a large advantage to this approach. The design procedure 

and the CFD numerical analysis can then be easily connected and interchanged 

and the calculation of the operational parameters of such machines is thereby fa-

cilitated. Unfortunately, such a complex geometry cannot be represented by a 

small number of computational points. 

In the second phase, a mathematical model that is capable of describing the 
problem has to be selected. There are again two types of situation. The first is 

where an adequate mathematical description exists and can be used, e.g. heat con-

duction, elastic stress analysis and laminar fluid flow. The second is where such a 

description either does not exist or is impracticable to use, e.g. non-linear stress 

analysis and turbulent fluid flow. In the case of positive displacement machines, it 

is unlikely that any analytical solutions exist. This is because highly compressible 

flow appears inside both domains with turbulent flow regimes and domains with 

low Reynolds numbers. There is additional non-linearity introduced by two-phase 

flow, particle flow, moving and stretching domains and sliding boundaries. Due to 
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2 Computational Fluid Dynamics in Screw Machines8

all these, the mathematical model implemented here needs to cope with a variety 

of different requirements. It is based on the general laws of mass, momentum, en-

ergy and space conservation. The resulting system of governing equations is not 

closed because it contains more unknowns than resulting equations. It is closed by 

constitutive relations, which give information about the response of a particular 

continuum material to external influences. The whole concept of mathematical 

modelling is based on a phenomenological approach which employs the principle 

of a continuum as the physical background. It can be applied only when an ele-
mentary part of material or the smallest characteristic length of the flow, which 

has to be analysed, is much bigger then the mean free molecular path. Fortunately, 

this condition is fulfilled for the majority of fluids and practically for all solid 

structures. 

The mathematical description of problems in continuum mechanics is very 

rarely amenable in a closed-form of analytical solution and an iterative numerical 

procedure is thus the only alternative that can be applied to solve models in posi-

tive displacement machines. Numerical methods transform the differential equa-

tions of the mathematical model into a system of algebraic equations. The third 

phase is therefore to select the discretisation method. To do that a number of ap-

proximations are made: the continuum is replaced by a set of computational points 

with finite distances between them in space and time, while the continuous func-
tions which represent the exact solution of the mathematical model are approxi-

mated by polynomials, typically of a second order. Because of the complexity of 

positive displacement machines, the standard approach to spatial discretisation is 

not applicable and a special grid generation method has to be developed and ap-

plied to them. The equations are discretised by the finite volume method, which 

appears to have a more conservative form of governing laws then any other nu-

merical method. The result of discretisation is a system of algebraic equations the 

size of which depends on the number of numerical cells. 

The resulting set of algebraic equations is then solved by approximate iterative 

methods. Iterations are necessary due to the non-linearity of the mathematical 

model. Even for linear problems, an iterative solution method is usually more effi-
cient than a direct one. In addition, iterative solution methods are less sensitive to 

round-off errors due to the finite accuracy of the computer arithmetic. 

2.2 Continuum Model applied to Processes in Screw Machines

A mathematical model of the transport processes, which exist within both twin 

screw and other types of positive displacement machine, is presented here. It in-

cludes the mass, momentum and energy conservation equations in integral form, a 

space conservation law, which has to be satisfied for problems with a moving 

mesh, constitutive relations required for the problem closure, a model of dispersed 

flow, models of turbulence in fluid flow and boundary conditions.

All the equations are presented in a symbolic coordinate-free notation which di-

rectly conveys the physical meaning of particular terms without unnecessary ref-
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2.2 Continuum Model applied to Processes in Screw Machines 9

erence to any coordinate system. However, numerical solution of these equations 

requires a coordinate system and vectors and tensors have to be specified in terms 

of their components. 

2.2.1 Governing Equations 

Fluid contained within a screw compressor can be gas, vapour or a wet mixture of 

liquid and vapour. In some cases, it can be pure liquid. Its density varies with both 

pressure and temperature. The compressor flow is governed by equations based on 
the general laws of continuity, momentum and energy conservation. The most 

general approach is to write these equations in integral form and apply them to an 

arbitrary part of the fluid or solid continuum of volume V, which is bounded by a 

moving surface S, as shown in Figure 2-1.

Reynolds’ transport theorem can be expressed as:  

( )

CM CV

s

V V S

d d
dV dV d

dt dt
       v v s (2.1)

where, VCM is the volume of the control mass, VCV is the control volume enclosed 

by the surface S. Vector ds stands for the outward pointing surface vector, defined 

by its unit vector n and surface area dS as ds=n dS. In equation (2.1),  represents 
any intensive property based on mass, momentum, energy, concentration or other 

parameter. 

Figure 2-1 Control volume of part of the continuum

Vector vs is the velocity with which the surface of the control volume moves. If 

the control volume is fixed, then its surface velocity vs=0. Equation (2.1) then 

makes the rate of change of the amount of property in the control mass equal to 

the sum of the rate of change of that property within the control volume and its net 
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2 Computational Fluid Dynamics in Screw Machines10

flux through the control volume boundary due to relative fluid motion. If the con-

trol volume moves with the same velocity as the boundary of the control mass, 

then the boundary velocity is equal to the velocity of the control mass, v=vs. For 

convenience, the control volume is denoted as V and its surface as S. 

If the variable  in equation (2.1) has the value of 1, then the equation repre-
sents that of continuity:

s
( ) 0

V S

d
dV d

dt
      v v s , (2.2)

If the conserved property is velocity, i.e.  =v, then equation (2.1) becomes that of 
the conservation of momentum:

s( )
V S

d
dV d

dt
      v v v v s f (2.3)

where the right hand side of the equation represents the sum of surface and body 

forces which act on the matter in the control volume. Since the body forces acting 

on the whole matter trapped in the control volume are independent of the shape of 

the boundary surface, they represent a vector field and can be integrated over the 

control volume. However, surface forces such as pressure forces, normal and shear 

stress forces or surface tension forces, depend on the surface on which they act, 

and they represent momentum fluxes across the surface. More details of this can 

be found in Ferziger and Peric (1995). In order to close the system of equations, 
these fluxes must be written in terms of properties whose conservation is governed 

by the equation in question. In equation (2.3) the conserved property is the veloc-

ity v. For Newtonian fluids, a constitutive relation between stress T and strain D is 

Stokes’ law. Hookes’ law gives a constitutive relation for thermo-elastic solids. 

The momentum equation (2.3) then becomes:

s( ) b

V S S V

d
dV d d dV

dt
         v v v v s T s f (2.4)

where T is the stress tensor and fb is the resultant body force.

If the conserved property  in equation (2.1) is scalar, then the equation can be 
written in the following form:

s( )
V

d
dV d

dt
      

S

v v s f , (2.5)

where the term on the right hand side is the sum of all the modes of transport of 

the property , other than convection, which is already on the left side of this 
equation, and any sources or sinks of that property. This sum generally consists of 
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2.2 Continuum Model applied to Processes in Screw Machines 11

two terms; the diffusive transport and the sink or source of the conserved property. 

The diffusive transport is:

gradd

S S

f d d      s q s . (2.6)


 is the diffusivity of . Equation (2.5) in that case becomes a general conserva-
tion equation:

s( )
V S S V

d
dV d d S dV

dt
          v v s q s (2.7)

where S is the source or sink of property  per unit mass. Equation (2.7) appears
to be a generic equation valid for all intensive properties of matter. 

From equation (2.7) one can get the energy equation, in the form of enthalpy, 

directly as:

s

s

( ) +

( grad : grad ) p

h h

V S S V

V S V

d
hdV h d d s dV

dt

d
p dV d pdV

dt

     

    

   

  

v v s = q s

v S v v s

(2.8)

S is the viscous part of the stress tensor:

p S T I (2.9)

I is a unit tensor.

If applied to the concentration scalar i
i

m
c

m
 , where mi denotes the mass of 

the dispersed fluid in the working fluid and m defines the overall mass, equation 

(2.7) becomes:

s( )
i ii i c c

V S S V

d
c dV c d d S dV

dt
         v v s q s , (2.10)

where qci is the diffusion flux and Sci is the source or sink of the dispersed phase.

If the conserved property in equation (2.7) is defined as =1/ then this equa-
tion becomes the space conservation law which must be satisfied in all cases even 

if the domain boundaries move:

s 0
V S

d
dV d

dt
    v s . (2.11)
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2 Computational Fluid Dynamics in Screw Machines12

This equation links the rate of change of volume V and surface the velocity vs.

Equations (2.2), (2.4), (2.8), (2.10) and (2.11) constitute a mathematical model 

which is valid for the majority of fluids and solids in engineering practice. For the 

numerical modelling of a screw machine, the first three of these equations should 

be solved for the working gas or vapour, which is a background fluid. Equation 

(2.10) is solved for the disperse phase, which is either oil or other fluid injected 

into the working chamber and dispersed into the background fluid, while the equa-

tion of space must be satisfied for any case, because the compression or expansion 
in a positive displacement machine is caused entirely by the movement of the

boundary. In two-phase flow, the liquid phase of the working fluid can also be 

considered as the dispersed phase. This approach assumes that the dispersed phase 

is a passive ‘species’ in the background fluid. It allows separate calculation for 

these two phases. The influence of the dispersed phase on the main flow and vice 

versa is through the source terms in the governing equations. Such a method does 

not require the additional calculation of mixture properties such as density and 

viscosity. This is convenient and physically sound in the case of an oil-injected 

compressor where the two phases are fluids of a different type. Although these 

two flows are usually calculated from the unique density and viscosity of the va-

pour-liquid mixture, it is more convenient to take account of the values of the va-

pour and liquid properties separately with concentration as the blending factor be-
tween them.

2.2.2 Constitutive Relations 

The numerical method contains information about material properties that have to 

be incorporated into the model. These are used to express the stress tensor T, heat 

flux qh and diffusion flux qci. Relatively simple assumptions can be made to de-

fine values for these in many engineering circumstances. The stress tensor, which 

represents the viscous rate of transport of momentum and closes equation (2.4), 

can be defined for Newtonian fluids by Stokes law as:

2
2 div

3
p   T D vI I , (2.12)

where the rate of strain is defined as:

 1
grad grad 

2

T   D v v . (2.13)

Superscript T represents the transposed tensor. Stokes law gives the relation be-

tween the stress and the rate of deformation for Newtonian fluids.

Solid material can be treated as thermo-elastic. For such solids, the constitu-

tive relation that closes equation (2.4) is Hooke’s law. It defines the relation be-

tween the stress and strain in solids as:
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2.2 Continuum Model applied to Processes in Screw Machines 13

2 div (3 + 2 ) t+ T      T D u I I , (2.14)

where the strain tensor is:

 1
grad grad 

2

T   D u u . (2.15)

Equations (2.12) and (2.14) have the same form. This allows them to be incorpo-

rated into a mathematical model and solved by the same method. By this means, 

the simultaneous calculation of fluid flow and deformation in solids permits the 

analysis of fluid-solid interaction.
The viscous part of the stress tensor, which appears in equation (2.8), is now 

fully defined by equations (2.9), (2.12) and (2.13). 

The heat flux through the surface boundary qh is defined through Fourier’s law 

as the product of the thermal conductivity  and the temperature gradient.

h grad Tq . (2.16)

The mass flux of the dispersed phase, relative to the mean flow is defined by equa-

tion (2.10), by the use of Fick’s law:

ic gradi iD cq , (2.17)

where Di is the mass diffusivity of the dispersed phase. In the case of only one 

fluid dispersed in the main flow, which is the most common case in oil injected 

screw compressors, equation (2.17) satisfies the overall mass concentration equa-

tion:

ic ( )
ii c mc q v v . (2.18)

The velocity of the dispersed phase is vci, while the mass averaged velocity of the 

mixture is 
0 i

N

m i ci
c


 v v . Equation (2.18) is satisfied if the fluid is dispersed. 

Otherwise, it is valid if each fluid satisfies its own equation. On the other hand, 

Fick’s law satisfies equation (2.18) only if 
0

0
i

N

i ci
c


 q . This happens only if the 

diffusion coefficients of all the dispersed fluids have the same value. 

Even if all the variables, which define the material properties, are known, the 

system of equations is still not closed because the pressure p exists in both, the en-

ergy equation (2.8) and in the stress tensor (2.12) which forms part of the momen-

tum equation (2.10). An equation of state, which balances the mass equation with 

thermodynamic properties, usually pressure and temperature, is then required to 

close the system. This is normally of the form:
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2 Computational Fluid Dynamics in Screw Machines14

( , ), ( , )p T e e T    (2.19)

Equations of state are directly applicable to all engineering fluids and solids, both 

ideal and real. Common examples are incompressible fluids and solids where 

=const, or ideal gases where =p/RT. However, real fluids are not rare in screw 
machinery. In that case, the density of the real gas or mixture can be calculated 

based on a user specified procedure and later introduced to the model. These equa-
tions must have the form of equation (2.19).

2.2.3 Multiphase Flow

In an oil-flooded screw compressor, the dispersed phase in the working fluid is

comprised of both the liquid part of the working fluid and the oil. Both compo-

nents give flow through the machine a multiphase character. There are two differ-

ent approaches to multiphase flows. One of them is the Eulerian approach where 

each of two or more phases is contained in its own domain, strictly separated in 

space from any other but connected with them through a boundary interface. An 

example of this is an oil tank in which the level of oil is above space occupied by 

water. If the Eulerian approach is assumed, then a sharp interface exists between 
the oil and the water and separate numerical meshes can be generated. Both, the 

oil and the water have to satisfy the governing equations described in 2.2.1. 

This is not applicable to two-phase flow within a screw machine. Here, the so-

called Eulerian-Lagrangian approach is more appropriate, in which both phases 

occupy a common working domain without a strict interface between them. In 

such a case, the background fluid must satisfy the governing equations of mass, 

energy and momentum, while the dispersed phase should satisfy the governing 

equation of concentration. Such an approach allows for the dispersed phase to be 

either a passive or an active component. The dispersed phase in the form of oil or 

other injected liquid has an important role in the screw compressor working cycle. 

It is there to cool the fluid, seal the clearance gaps and lubricate the compressor 

moving parts. The influence of the dispersed phase on the background fluid and 
vice versa must be incorporated in the governing equations. This is done through 

source terms in the mass, momentum and energy equations. 

The Energy Source

The energy balance of a dispersed phase trapped in the control volume can be 

written in the following form:

( )i i i i
i iL con mass

d m h dh dm
m h Q Q

dt dt dt
     (2.20)

The first term on the right hand side of this equation represents the convective heat 

flux between the dispersed phase and the background fluid while the second term 
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2.2 Continuum Model applied to Processes in Screw Machines 15

represents the heat transfer due to mass interchange between the phases. The last 

one is significant only for two-phase flow of the same fluid in the working cham-

ber. In the case of an oil-flooded compressor, the convection term has a significant 

role. In equation (2.20) hi is the specific enthalpy per unit mass while hiL defines 

the specific enthalpy of vaporisation. It represents the difference between the spe-

cific enthalpies of the liquid and vapour phases, i.e. the dispersed and continuous 

phases. If the specific heat of oil is constant, then equation (2.20) becomes:

( )
o

i i o L

o p L con mass

d m T dT dm
m C h Q Q

dt dt dt
     , (2.21)

There are two approaches to allow for convective heat transport between the dis-

persed phase and the background fluid.

The first approach assumes that the dispersed phase is completely dissolved in 

the background fluid. That means that the droplet size of the dispersed phase is 

very small, ie. 0od  . In that case, an ideal process of heat transfer can be as-

sumed where the temperature of the dispersed phase is assumed to be equal to the 

temperature of the background fluid T=To. Heat exchange between the phases is 

then calculated from the temperature difference of the continuous phase, at two 

consecutive instants of time, multiplied by the mass and specific heat of the dis-
persed phase as:

1

o o

k k

con o p o p

dT T T
Q m C m C

dt t


  , (2.22)

where Tk is the temperature in the current time step and Tk-1 is the temperature 

from the previous time step or iteration. t is the time step. If the time step is 
small then this equation has the exact differential form of convective heat transfer. 

The assumption of an infinitesimally small droplet size is not completely correct 

but analysis of the influence of oil on screw compressor process performance by 

Stosic et al (1992) showed that a change in droplet size from 0 to 10 m, does not 
affect the oil and consequently the gas temperature very much. Therefore, it is ac-

curate enough to calculate the heat exchanged between the continuous and dis-

persed phases by means of equation (2.22). 

When necessary, another approach can be used to calculate the convective heat 
transfer term in equation (2.21). It should be applied whenever the temperatures of 

the continuous and dispersed phases cannot be considered to be equal. It is then 

assumed that the dispersed phase, contained in the control volume, consists of 

spherical droplets with a Sauter mean diameter defined as:

0.7

1
0.0092 1o o

o

o

d
c

   
      v

(2.23)
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where o is the surface tension and v is the absolute value of the fluid velocity. 

The convective heat flux then becomes:

Nu ( )
con o o

Q d T T   , (2.24)

where, T and To are temperatures of the continuous and dispersed phases respec-

tively and the Nusselt number is given by:

0.5 0.33Nu 2 0.6 Re Pr  . (2.25)

In the previous equation the Prandtl number is defined as:

Pr
p

C


 (2.26)

Reynolds number is:

Re
o o

d






v v
, (2.27)

The velocity of the dispersed phase is ov . There are again two possible ap-

proaches. The first is to assume the velocity of the dispersed phase to be the same 

as the velocity of the continuous phase. In this case v=vo. This can be assumed if 

the size of the droplet defined by equation (2.23) is small, e.g. less then 20 m. If 
this is not the case, a different approach has to be applied and the velocity vector 

of the dispersed phase has to be calculated by another procedure. Whatever the ve-

locity, the temperature of the dispersed phase is derived from the balance of two 

equations that define heat transfer namely: (2.22), which represents the amount of 

heat taken in by the dispersed phase, and (2.24) which defines amount of heat 

given out by the continuous phase. This can be written as:

1

Nu ( )
o

k k
ko o

o p o o

T T
m C d T T

t
 




  , (2.28)

where To
k and To

k-1 are temperatures of the dispersed phase in the two consecutive 

time steps.

When equation (2.25) is applied, the temperature of the dispersed phase becomes:

1

1

k

k t o
o o

t

T k T
T T

k


 


, (2.29)
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where the time constant kt is defined as:

Nu

oo p

t

o

m C
k

d t  
 (2.30)

In all the previous equations, the mass of the dispersed phase in the control vol-
ume is calculated from the mass concentration co defined from equation (2.10) as:

(1 )

o o

o o o

o o o

V c
m V

c c

 


 
 

 
(2.31)

where o and  are the densities of the dispersed and the continuous phases respec-
tively. Both densities are calculated from the equation of state (2.19). 

The last term in equation (2.21) represents heat transfer due to mass transfer 

between the phases. It is significant when a real fluid evaporates or condenses in 

the machine. It can be expressed as:

s

L L L L
mass L L L L L

dm m m m
Q h h h h m

dt t t 

 
     , (2.32)

where mL is the mass exchanged between the liquid dispersed phase and the con-
tinuous phase. It is defined as the difference between the mass of the continuous 

phase in the control volume, calculated from the mass balance equation (2.2), and 

the mass of the continuous phase, calculated by the equation of state (2.19), at the 

pressure obtained from the governing equations and the saturation temperature at 

the same pressure. 

The latent heat of evaporation hL is the difference between the specific en-

thalpy of the liquid hl and the specific enthalpy of the vapour hv at saturation pres-

sure p, which is calculated from the model:

L v lh h h  (2.33)

Since these two specific enthalpies at present are not known they should be calcu-

lated together with other properties of the real fluid.

The heat fluxes calculated from equations (2.24) and (2.32) represent the source 
terms in the energy equation (2.8).

The Mass Source

The mass of the dispersed phase changes in two-phase flow because of evapora-

tion or condensation in the control volume. The amount of mass exchanged be-

tween the two phases is defined as:
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s

L L L L
L

dm m m m
m

dt t t 

 
   . (2.34)

In practice, if the control volume is assumed constant during one time step, the 

pressure and temperature are calculated from the governing equations together 

with the mass of the continuous phase. The mass concentration of the dispersed 

phase is calculated from equation (2.10). This procedure defines the mass of the 
dispersed phase mo through equation (2.31). If two-phase flow exists in the control 

volume, the temperature of the mixture is the saturation temperature for the calcu-

lated pressure. If the temperature calculated by the model does not satisfy this 

condition, mass must be exchanged between the dispersed and continuous phases 

to establish equilibrium. The exchanged mass transfers the heat of evaporation be-

tween the phases until equilibrium is established. The heat of evaporation is calcu-

lated from the balance equation of the heat exchanged between the phases and the 

heat required to adjust the temperature of the mixture to the saturation temperature 

for the pressure calculated in the control volume:

( )L L pm satm h m C T T      (2.35)

This mass becomes either a source or a sink in the mass equation for the continu-

ous phase. Also, it is subtracted from the concentration of the dispersed phase 

through the source term in equation (2.10). 

The Momentum Source

The equation of motion for an individual droplet of the dispersed phase in a posi-

tive displacement machine is given in the form of an ordinary differential equation 
based on Newton’s second law:

( )o o
drag pres body am

d m

dt
   

v
f f f f , (2.36)

where, often, the pressure forces, fpres, body forces, fbody, and apparent mass forces, 
fam, can be neglected. The interphase drag force fdrag is:

1
(

2
drag o drag o oA C   f v v v v) , (2.37)

where 2 4o oA d  is the surface of the dispersed phase particle with Sauter 

mean diameter do, vo is the velocity of the dispersed phase in the control volume 

and Cdrag is the drag coefficient which, in case of a Newtonian fluid, depends only 

on the Reynolds number defined by equation (2.27). When applicable, equation 

(2.36) is used to calculate the velocity of the dispersed phase while equation (2.27)

www.mepcafe.com



2.2 Continuum Model applied to Processes in Screw Machines 19

gives a source term for the momentum equation. If one assumes ideal heat transfer 

with a particle of size 0, then the drag force is also 0.

2.2.4 Equation of State of Real Fluids

Refrigerating and air conditioning and process compressors, as well as process gas 

compressors operate with real fluids i.e. where the assumption of ideal gas rela-

tionships is too gross. In such a case, complex functions are required to describe 

the fluid property changes. Commercial software packages are available today for 
the calculation of real fluids. Most of these packages are impractical for use in 

CFD because of the large number of calculations required to obtain the required 

thermodynamic properties. However, often users develop property software for 

their own requirements which gives good agreement over the required range of 

operating conditions. 

In the case of two-phase flow, the required thermodynamic properties are: 

saturation temperature, density of the mixture, specific heat of the mixture, latent 

heat of evaporation and C he latter is a constant that appears in the mass flux 
correction in the coupling procedure of the mass equation and equation of state. It 

defines the rate of change of density with change in pressure to correct the pres-

sure-velocity coupling procedure. It is expressed as:

T

C
p



 
   

, (2.38)

for constant temperature in one iteration. In the case of an ideal gas, the value of 

this constant is derived directly from the equation of state p
RT


 as:

1

T

C
p p RT



  
    

. (2.39)

However, for a real fluid, the equation of state is expressed as:

( , )
p

z RT z p T RT


  , (2.40)

where z is the compressibility factor. This is generally a non-linear function of 

pressure and temperature. There are approximations derived for this factor and it 

is assumed here to be a linear function of the working pressure:

1 2z p B B  , (2.41)

www.mepcafe.com



2 Computational Fluid Dynamics in Screw Machines20

where B1 and B2 are constants with different values for each fluid. For the ideal 

gas B1=0 and B2=1. The compressibility factor is approximated such that coeffi-

cients B1 and B2 are calculated from measured thermodynamic properties of satu-

rated vapour at pressures of 1 and 20 bar. Screw machines usually operate within 

this range of working pressures regardless of their application and this approxima-

tion does not involve a large error in the estimation of thermodynamic properties. 

It leads to a maximum error of approximately 2% at 10 bar. This is sufficiently ac-

curate, but outside this range different coefficients need to be used. 
If the compressibility factor at the working pressure and temperature is known, 

then the density of the vapour or gas is derived from:

v

p

z RT
  , (2.42)

It can be assumed that liquids in screw machines used for lubrication and gener-

ated as a result of the condensation process, are incompressible at the machine 

pressures. This means that the density of the liquid is constant:

l const  , (2.43)

The density of a liquid-vapour mixture in the saturated domain can be written as:

 2 2 2
2

1

1
1

v l l

p

c c c
c zRT p



  

 


  

, (2.44)

To obtain an equation for C, the temperature is regarded as constant within the it-
eration. The first derivative of equation (2.44) gives:

2
2

2
2

1 (1 )

(1 )

l

T

l

dz c
c RT

dpd

cdp
c zRT p

 




  
 

 
   

. (2.45)

The derivative in the second term on the right side represents the change of com-

pressibility factor with pressure. It follows from equation (2.41) that this deriva-

tive is constant and has the value B1. Introducing that feature into the previous 

equation, the coefficient C can finally be obtained as:
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2
2 1

2
2

1 (1 )

(1 )

l

T

l

c
c RT B

d
C

cdp
c zRT p



 




  
 

  
   

. (2.46)

If as a consequence of the pressure and temperature in the control volume, the 

working fluid is liquid, which gives c2 =1, the coefficient C reads zero and its 
value is not a function of pressure. If only vapour or real gas occupy the working 

chamber, c2=0 and equation (2.46) becomes:

11 v

T

Bd
C

dp zRT z


 
   

 
. (2.47)

If the fluid is ideal, then B1 becomes zero and z tends to one. In that case equation 

(2.46) becomes the same as equation (2.39). However, if the fluid is real, B1 be-

comes slightly negative and z tends to values less then 1. This means that the sec-

ond term becomes positive and it contributes to the value of the first term. The 

value of that term increases with the change of the ‘fluid reality’, which is ex-

pressed through constants B1 and B2 in (2.41). This term becomes significant in 

comparison with the first term if the fluid is real. In the case of ammonia, for ex-

ample, at a pressure of 5 bar the first term has a value of 6.7�10-6 while the value 

of the second term is 2.9�10-2. The coefficient C derived from equation (2.47) is 
later used for the calculation of pressure in the pressure-velocity-density coupling 

procedure.

Other thermodynamic properties are not directly derived from the equation of 

state but, as a consequence of the fluid behaviour, these are calculated from ther-

modynamic properties of both the liquid and vapour phases. 

The saturation temperature is calculated from a modified version of Antoine’s 

equation, which is in its original form expressed as: 

2
1

3

log
A

p A
t A

 


(2.48)

which is an explicit expression for saturation pressure as a function of tempera-

ture, Walas (1984). Constants A1, A2 and A3 vary for different fluids and they are 

obtained from experimental results. The value of the coefficient A3 is usually 

small and in many cases can be neglected. In that case, the equation explicitly 

gives saturation temperature in terms of pressure as:

2

3

1 log
sat

A
T A

A p
 


(2.49)

www.mepcafe.com



2 Computational Fluid Dynamics in Screw Machines22

The saturation temperature calculated from the previous equation is used in equa-

tion (2.35) to estimate the mass exchanged during evaporation/condensation. That 

equation gives the mass which transfers the latent heat of evaporation from one 

phase to the other. The latent heat of evaporation is calculated for the saturation 

pressure by means of the Clapeyron equation. This is expressed as:

L sat lv

sat

dp
h T v

dT

   
 

, (2.50)

where vlv is the difference between the vapour and liquid specific volumes. Typi-

cally, more about equation (2.50) can be found in Cengel and Boles (1989). 
The specific heat at constant pressure is a fluid property needed to calculate the 

specific enthalpy of the mixture. The specific heat of the mixture Cpm is the 

weighted sum of the specific heats of vapour Cpv and liquid Cpl for constant pres-

sure, ie:

2 2(1 )pm pv plC c C c C   (2.51)

The specific heat of vapour can be calculated from the following equation:

2 3

0 1 2 3pvC D D T D T D T    (2.52)

where D0, D1, D2 and D3 are constants which vary for different fluids. Their values 

can be found in Sonntag and Borgnakke (2001). If the specific heat of liquid at 
constant pressure is assumed constant, which is reasonably accurate over a limited 

temperature range, then equation (2.51) gives the specific heat of the mixture. 

Even if the concentration of the liquid phase in the working chamber is equal to 

zero, this equation can be used to express the specific heat of the working fluid, 

which in this case is vapour.

By use of the equations derived in this Section, the properties of real fluids, 

which are liquid, vapour or their mixture, are completely described. The procedure 

is fast and efficient for calculation in the numerical CFD solver, because all equa-

tions are analytical and the variables are derived explicitly from the pressure, the 

value of which is obtained from the mass-velocity-pressure coupling procedure. 

The procedure is equally applicable to ideal gases, and incompressible fluids. The 

coefficient C calculated from the equation (2.46) is used in the next iteration as a 

source term. 

2.2.5 Turbulent Flow

Turbulent flows are well described by the governing differential equations pre-

sented in section 2.2. However, their direct numerical simulation requires a mesh 

with spacing smaller than the length scale of the smallest turbulent eddies, at 
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which the energy is transformed to heat, and time steps smaller than the smallest 

time scale of the turbulent fluctuations. Some calculations show that the average 

length scale of the smallest eddies in positive displacement machines is of the or-

der of 10m while their time scale is of the order of a couple of milliseconds. This 
requires computer resources, which are not yet available.

Alternatives are either large eddy simulation, in which only the largest un-

steady motions are resolved and the rest is modelled, or a solution to the Reynolds 

averaged Navier-Stokes equations where all turbulent effects on the mean flow are 

modelled as functions of mean fluid flow quantities. 

The Reynolds averaged Navier-Stokes equations (RANS) are obtained by us-
ing a statistical description of the turbulent motion formulated in terms of aver-

aged flow quantities. Many such models of turbulence are developed to date, 

which are suitable for different fluid flow situations. Only two of them are de-

scribed in some details in Appendix A. These are the Zero-Equation model and the 

Standard k- two-equation model. More details on turbulence phenomena can be 
found for example in Wilcox (1993). 

2.2.6 Pressure Calculation

The pressure in the source term of the fluid momentum equation is unknown be-

cause it does not appear explicitly in the continuity equation. This constraint is sat-

isfied only if the pressure field is adjusted to the resulting fluid flow. The method 

of calculation of the pressure and pressure gradient fields consists now of three 

steps. The first one is to obtain the velocity field from the momentum equation re-
gardless of whether the continuity equation is satisfied or not. The second is a pre-

dictor stage in which a pressure correction is calculated to satisfy the continuity 

equation and the third one is a corrector stage in which new values of the velocity, 

pressure and density fields are calculated. The method is known as a SIMPLE al-

gorithm and is described in Appendix C.

2.2.7 Boundary Conditions

Special treatment of boundaries is introduced due to the compressor communicat-

ing with its surroundings through small receivers at suction and discharge and also

through oil injection. The common practice is to keep the pressure in these receiv-

ers constant. Therefore, an appropriate amount of mass and energy is added or 
subtracted from these receivers. 

Wall Boundaries

There are two types of walls applied to a screw compressor; moving walls, if they 

bound the domain on the compressor rotors, and stationary walls in other places. 

Boundary conditions on these walls are explicitly given for all equations in the 
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numerical model. In the case of turbulent flow, dependent variables vary steeply 

near the solid boundaries and a method, which can model near wall effects, is

used. If the flow is laminar, then the dependent variable is either known on the 

boundary, or its flux is given on the boundary. The walls are treated as ‘no-slip 

walls’, which is the case when viscous fluid sticks to the boundary wall.

Boundary conditions for the momentum equation are given through the known 

velocities on the wall. For the rotor walls, the velocities are calculated from the 

given rotational speed n of the male rotor as:

1 1 1

1

2 1 2 2

2

2
;

60

;

i 1i

i 2i

n

z

z


 

  

 

  

v r

v r

(2.53)

Subscript 1 indicates the male rotor while the value 2 is related to the female rotor. 

z1 and z2 are the number of lobes on the rotors, r1i and r2i are radius vectors of the 

boundary points on the male and female rotors respectively in an absolute coordi-

nate system. 1 and 2 are the angular velocities on the male and female rotors 

respectively. For all stationary walls, the wall velocity is equal to zero.

More details of the equations, which incorporate wall boundaries to the mathe-

matical model of the screw compressor process, are given in B. 

Constant Pressure in the Inlet, Outlet and Oil Receivers

Even if the compressor cycle can be considered steady, this is true only if it is av-
eraged in time over a period in which a compressor completes a number of cycles. 

However, within one cycle, the compressor system is always in a state of transi-

tion. Such a transition is caused by rotation of the rotors, which moves the corre-

sponding part of the numerical mesh. That movement is defined by the angular ve-

locity r. Movement of the computational domain causes change in its volume, 
which further causes pressure change within it. The pressure difference between 

the cells causes fluid to flow through the machine. Contrary to the rotor domains, 

other parts of the compressor such as the inlet and outlet ports and receivers main-

tain a constant volume. The fluid flow induced between the rotors inevitably leads 

to change of the pressure in the parts which keep a constant volume. In a real 

compressor, such a situation causes additional fluid to flow into or out of the 

chambers, keeping the pressure constant. This process is simulated in the numeri-

cal procedure. 
The first possibility is to apply standard inlet and outlet boundaries. However, 

in that case, either the inlet velocity or the mass flux should be prescribed in ad-

vance, which is extremely difficult. The compressor flow depends on the rotor 

speed and varies considerably during the cycle. Additionally, reverse flow can ex-

ist at the outlet boundary if it is not far enough from the discharge port. That situa-
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tion is not allowed with the standard boundary conditions. Therefore, these 

boundary conditions are not adequate for a screw compressor. 

The other possibility is to apply pressure boundaries at the inlet and outlet. In the 

standard pressure boundary condition a prescribed pressure on the boundary is 

combined with the following boundary condition:

0
Bn

 
  

v (2.54)

to obtain boundary velocities vB(rb,t). Other treatments are necessary in the case of 

supersonic and subsonic flows. If the outlet flow is supersonic, then both the pres-

sure and the velocity should be obtained by extrapolating from the upstream re-

gion. It is obvious that the pressure boundary conditions are similar to the inlet or 

outlet boundaries, firstly because they couple pressure and velocity directly and 

secondly because for all equations, apart from the momentum equation, the 

boundary properties are calculated from the velocity. This procedure may cause 

instability in the compressor cycle especially when the flow changes its direction 

at the boundary.

In opposition to both types of boundary condition mentioned above, applica-

tion of the boundary domain, in which an amount of mass is added or subtracted to 
maintain constant pressure, is natural and gives a stable and relatively fast solu-

tion. 

Starting from the equation of state for a real fluid (2.40) for constant instant 

temperature and density of fluid in a receiver of volume V, or in an individual nu-

merical cell of volume Vi, the following equation can be derived:

i i i
add

i

V V p
V

t p t 

 
  (2.55)

It gives the relation between the volume change and the pressure change. The 

value of Vi is the volume flow that corresponds to the change in pressure ip dur-

ing time t . As the density is assumed constant, then the mass flux, which corre-

sponds to the pressure change, is:

i i

add i

i

V p
m

p t






 (2.56)

This is the amount of mass, which must be added or subtracted to a receiver of 

constant volume V or to an individual numerical cell placed in the considered re-

ceiver to maintain constant pressure. 

The amount of mass calculated from (2.56) represents a mass source in the 

pressure correction procedure explained in Section 2.2.6. It will maintain constant 
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pressure in the considered cell and the momentum equation correction would re-

sult in a new velocity in the cell. 

The energy equation is corrected in order to keep the system in balance. It is 

done through the volume source in the governing equation of energy:

i i r

add i pi i pi

T T T
q m C m C

t t

 
 

 
 . (2.57)

In the last term of equation (0.57) Ti is the temperature calculated in the cell, Tr is 

the specified temperature which has to be maintained and t is the time step.

When an amount of mass of dispersed phase is added to the selected set of 

cells, the equation for species also has to be updated. The concentration of the dis-

persed phase can be known, or prescribed, in some domains while in others it has 
to be estimated. For example, the concentration of oil in the oil injection port al-

ways has a value which is close to 1. Similarly, the concentration of liquid in the 

inlet port of a two-phase expander is defined by the pressure and quality of the 

mixture. However, there are some compressor domains where the value of con-

centration is not known but the pressure has to be maintained constant. In that 

case, the value of concentration must be extrapolated from the neighbouring do-

main. 

When the concentration is known, then its value should be kept as close as 

possible to the prescribed value. The mass of the dispersed phase carried by the 

continuous phase is calculated by equation (2.31) in which the concentration co is 

substituted by the prescribed value cp. The last term in the transport equation for 
the concentration of the dispersed phase (2.10), is the volume source term, which 

is expressed as:

i i

i
c c i i i

V

c
S dV S V V m

t



  

  . (2.58)

This volume source, when integrated over the cell volume, is the amount of mass 

of the dispersed phase added to or subtracted from the mass of the numerical cell. 

If the concentration of the dispersed phase has to be maintained constant, a correc-

tion to the equation of species has to be added through the volume source. The 

source term in equation (2.10) is the mass flux of the dispersed phase. Its calcula-

tion is based on the desired concentration of the dispersed phase. Equation (2.31)

is used for that and co is replaced by the desired concentration in the cell. In such a 
situation, the volume source in the oil concentration equation becomes:

(1 )

cons

o o add

cons cons

o m o

c c o

m o o oV

V c
S S dV m

c c

 

 
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  (2.59)
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In the case of two-phase flow with evaporation or condensation, the equation for 

the concentration of the liquid phase of the working fluid has to be updated 

through its volume source term. This term is calculated from equation (2.34) as:

l l

L

c c L

V

m
S S dV m

t


      (2.60)

Other equations, like these for the turbulence model, do not need to be updated for 

this case.

2.3 Finite Volume Discretisation

2.3.1 Introduction 

The finite volume method is employed to solve fluid flow equations. It can also

be applied to solid body stress analysis, independently or when coupled with fluid 

flow. The method is fully implicit and can accommodate both structured and un-

structured moving grids with cells of arbitrary topology. Although the procedure is 
described here for fluid flow in screw compressors, it is general and can be used 

for any physical problem which is described by the given equation set.

A segregated approach is used to solve the resulting set of coupled non-linear 

system of algebraic equations. The equations are solved by an iterative conjugate 

gradient solver which retains the sparsity of a coefficient matrix, thus achieving 

the efficient use of computer resources.

If an appropriate constitutive relation is applied to each conservation law, 

namely mass, momentum and energy balance, a closed set of M equations is ob-

tained for each numerical cell in a particular time step. The number of equations 

M depends on the problem that has to be solved. 7 equations are required for a 

screw compressor, including two-phase flow with oil injection. All the conserva-
tion equations can be conveniently written in the form of the following generic 

transport equation:

( ) grads S V

V S S S V

d
dV d d ds q dV

dt
                 v v s s q (2.61)

The continuity equation is combined with the momentum equation to obtain an 
equation for pressure or pressure correction. The meaning of symbols used in this 

equation is given in the nomenclature. The diffusive flux and sources are given in 

Table 2-1 for each property . 
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Table 2-1 Terms in the generic transport equation (2.61)

Equation   qS qV

Continu-
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1 0 0 0
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 
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 

v

The ability of expressing all transport equations in the form of a prototype equa-
tion (2.61) facilitates the discretisation procedure, which together with the ap-

pro5priate initial and boundary conditions, forms the mathematical model of con-

tinuum mechanics problems.

The Finite Volume Method (FVM) is used to discretise the governing equa-

tions. All dependent variables are stored in a collocated variable arrangement, 

which requires only one set of control volumes to be generated. This enables even-

tual implementation of the multigrid method and local grid refinement. 

Equation (2.61) can be written for a control volume in a Cartesian coordinate 

frame, as presented in Figure 2-2. This equation is still general and exact:

1 1 1

( ) grad
f f f

j j j

n n n

s S V

j j jV S S S V

d
dV d d ds q dV

dt
    

  

 
          
 
 

      v v s s q
(2.62)

It consists of four terms which describe the effects of rate of change with time, 

convection, diffusion and source respectively. For each cell, all quantities are then 

written in the form of equation (2.62) and set up as a system of n*m partial differ-

ential equations. Each cell acts as a control volume, the total number of which is n,

while the number of unknowns for each cell is m. These are all transferred to a 

system of n*m algebraic equations in order to be solved numerically.
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Figure 2-2 Notation applied to a hexahedral control volume

Therefore, the surface and volume integrals, appearing in the equations are re-

placed by quadrature approximations, the spatial derivatives are replaced by an in-

terpolation function and the time integration scheme is selected and after that the 

control volume surface velocities vs are determined.

2.3.2 Space Discretisation

In this work, space is discretised by an unstructured mesh with polyhedral control 

volumes with an arbitrary number of faces. However, hexahedra are used wher-

ever possible, which facilitates the local grid refinement. In some cases this may 

be essential for accuracy. The spatial discretisation of a screw compressor working 

domain is presented in a separate chapter.

2.3.3 Time Discretisation

The time interval of interest is divided into an arbitrary number of subinterval time 

steps, which are not necessarily of the same duration. However, the procedure 

used for mesh movement requires the time steps in the simulation procedure of the 
screw compressor working cycle to be constant. It is aimed that all variables at the 

start and end of a calculation cycle are equal. The calculation cycle is represented 

by rotation of the male rotor either for a full revolution or only for one lobe rota-

tion. The constant time step, however, is not given arbitrarily. It depends on the 

chosen number of rotational steps within the tooth span angle on the male rotor 

and the speed of rotation n. The angular speed of the male rotor is:

1 2 [ / ].
60

n
rad s  (2.63)
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If the compressor rotates at constant speed, the unit angle is:

angn


  (2.64)

where  is the interlobe angle of the male rotor and nang is number of divisions of 
that angle for the rotation of one full interlobe. The time step is then defined as 

1

t





 (2.65)

Although the time step in the majority of calculations of screw compressor per-

formance is constant, if a transient state has to be calculated, the time step changes 

during marching in time. This is especially the case for compressor start up and 

shut down procedures. In these cases, the time step within two consequent rota-

tions of the compressor rotors depends on the first time derivative of the compres-

sor speed. Again, it is necessary to calculate the angular velocity for each time 

step and consequently to update the time step.

2.3.4 Discretisation of Equations 

Discretisation Principles

The result of discretisation of the prototype equation (2.62) is a system of alge-

braic equations. Surface and volume integrals are replaced by quadrature ap-

proximations, spatial derivatives are replaced by some interpolation function and 

either a two-times-level or a three-times-level integration scheme in time is se-

lected. These procedures are explained in detail in Appendix C.

Boundary and Initial Conditions

The boundary conditions on the cell faces which coincide with the solution do-

main boundary are applied prior to solution of the algebraic equations. All com-

pressor solid parts are no-slip walls with either, a known temperature or a tem-

perature approximated, in advance, through a known procedure. Therefore a cell 

face flux j
* represents the boundary flux B for all equations in the boundary 

cells. In such a case, the mass flux in the momentum equation at the boundary is 
zero, the heat flux through the boundary for the energy equation is calculated from 

the wall temperature and the thermal conductivity in the near wall region, while 

the concentration flux is zero. Diffusive fluxes are also replaced with their bound-

ary values. 
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Screw compressor flow simulation is transient, which requires initial conditions to 

be prescribed for the dependent variables in each control volume. A close match 

of these is important for quick solution convergence. 

The initial values of the velocities in the momentum equation are set to zero in 

all cells within the working chamber. The initial pressures prescribed for the cells 

in the inlet and outlet receiver are the inlet and outlet pressure. For all other cells 

the initial values are calculated by linear interpolation between these values with 

respect to the relative distance in the z direction as:

 0 0 0 0i
i inl out inl

z
p p p p

L
   . (2.66)

zi is the cell centre distance starting from the coordinate origin, while L is the 
overall compressor length. This simple method to prescribe initial values often 

gives a consistent final solution within 4 to 5 compressor cycles. The initial tem-

perature is calculated in the same manner as the pressure by linear interpolation 

between prescribed inlet and outlet temperatures. The density is then calculated 

according to equation (2.44) Concentration is also interpolated between the pre-

scribed values at the inlet 0
inl and outlet 0

out of the compressor similarly to the 
other variables. The initial values of kinetic energy and its dissipation rate are set 

as zero throughout the domain. 

If implicit time integration is employed, these prescribed values at time t0 are 

sufficient for the calculation. If, however, the three time level implicit scheme is 

used, values at the time 1 0 0t t t   must be given. They are set at the same 

value as those at time t0.

Derived System of Algebraic Equations

If discretisation methods and boundary conditions are implemented in the proto-

type equation (2.62) for all control volumes then the derived algebraic equation 

has the same form for all variables:

00 P P

1

i

j

n

j

j

a a b   


  (2.67)

where index 0 determines the control volume in which the variable is calculated 

and index j defines the neighbouring cells. Symbol ni represents a number of in-

ternal cell faces between the calculating cell and its neighbouring cells. The right 

hand side contains all terms for which the variables are known from either the 

previous iteration or the time step. All the coefficients, central a0, neighbouring 

aj and right hand side b, are treated explicitly using a deferred correction ap-
proach to increase computational efficiency.
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dj is a distance vector. It is effective if the mesh is non-orthogonal and it is then 

used to correct the cell face value. It is defined as the normal distance between the 

line connecting two neighbouring cell points and the cell face centre. nB is the 

number of boundary faces surrounding the cell P0. The coefficient a for the cen-
tre point at the boundary cell face is calculated similarly to the neighbouring coef-

ficient aj, assuming the distance between the boundary point and the centre of the 
cell. 

2.4 Solution of a Coupled System of Nonlinear Equations

Equations in the form of (2.67) are obtained for each dependent variable like ve-

locity, pressure, temperature and concentration at all points of the computational

domain. As a consequence of convective transport and because of other flow char-

acteristics, the equations are non-linear and coupled. In order to be solved, they 

are linearized and decoupled. The segregate iterative algorithm is adopted. 

Coefficients aj and source terms b are known in advance from the previous 

iteration or time step. As a result, a system of linear algebraic equations is ob-
tained for each dependent variable. This can be written in matrix notation as:

A  b (2.69)

Here A  is an N x N matrix, the vector  contains values of the dependent vari-

ables  at N nodal points in the CV centres and b is the source vector. The result-

ing matrix A  obtained by the discretisation method is sparse, with the number of 
non-zero elements in each row equal to the number of nearest neighbours plus 

one, ni +1. The matrix is symmetric only for the momentum equation of an elastic 

solid body and the pressure correction for incompressible fluids. The matrix is di-

agonally dominant 
0 1

i

j

n

j
A a 

  . This allows solution of the equation system 
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(2.69) by a number of iterative methods resulting in reasonable computer memory 

requirements. The conjugate gradient method (CG) is used when the matrix is 

symmetric and the preconditioned conjugate gradient stable method (CGSTAB) is 

used when the matrix is asymmetric.

Equation (2.69) is then solved in sequence for each dependent variable. There 

is no need to solve it to a tight tolerance since its coefficients and sources are only 

approximate based on the values of the dependent variables from the previous it-

eration or time step. These iterations are called inner iterations. 
The sequence is then repeated in the outer iterations by updating the coeffi-

cient matrix and the source terms until the solution converges. 

A   r b (2.70)

The convergence criterion is usually achieved when the residuals of (2.70) are re-

duced by three to four orders of magnitude.

2.5 Calculation of Screw Compressor Integral Parameters

Once a solution is obtained in the form of the velocity and pressure fields within 

the compressor, integral parameters which quantify the screw compressor working 

cycle, are calculated. 

Integral parameters are used to evaluate and compare the processes in screw 

machines and to serve as input parameters for the design of these machines. They 

are divided into two groups; those based on the compressor delivery, which is the 

volume flow calculated at the suction conditions, and those based on the compres-

sor power input. Other integral parameters are calculated from the previous two. 
These are specific power, volumetric and adiabatic efficiencies, load on the com-

pressor rotors and bearings, torque on the male and female rotors and oil flow. 

Apart from these, the indicator diagram can be calculated from the pressure distri-

bution within the compressor working cycle. 

The volume flow is calculated at the inlet and at the outlet of the screw com-

pressor by the use of the Gauss divergence theorem to calculate flow from the ve-

locity in each particular cell in a cross section and then to integrate all of them 

over the complete cross section, or by integration of the mass sources along the 

inlet and outlet receivers.

The Gauss divergence theorem: 

s V

d div dV v s v= (2.71)

This equation is integrated over a layer of cells in the cross section of the inlet or 

outlet port to get:
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( )

1

( 1,2,..., )
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t

f f fi

i

V v S i I


  (2.72)

where index f represents the direction of flow. S and v are the cell surface area and 

the velocity component in the direction of fluid flow. Equation (2.72) is calculated 
for each time step in the compressor working cycle and integrated over the com-

plete cycle to estimate the volumetric flow at that cross section pressure and tem-

perature:

( ) 360 min
end

start

t
t

t t

V V m


      . (2.73)

The volume flow obtained from this equation can be compared with the volume 

flow calculated from the mass added to or subtracted from the inlet and outlet re-

ceivers. These two should be the same for each time step as well as for the com-

plete compressor cycle.

The mean density values for equal cell volumes are calculated for each time 

step together with the main flow:

( ) 1

I

i
t i

I



 


(2.74)

If the mean density is multiplied by the corresponding volume flow it gives the 

mass flow in its integral form as:

( ) ( )
end

start

t
t t

t t

m V 


   (2.75)

The compressor mass flow is calculated separately for the inlet and outlet cham-

bers and these values must be identical for steady flow conditions. If they differ, 

then the procedure has not converged. 

Another group of variables is based on the value of pressure in the working 

chamber. 

A cell on the rotor boundary is shown in Figure 2-3. The pressure in the cell 

generates the force on the boundary surface. That force is calculated as the product 
of the pressure in the rotor boundary cell and the boundary cell surface area. This 

force can be also divided in three components acting in the x, y and z directions of 

the absolute coordinate system. When calculated, these three components are:

; ;x b xb y b yb z b zbF p A F p A F p A   , (2.76)
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where pb is the pressure in the boundary cell and Axb, Ayb and Azb are projections of 

the boundary cell surface in the main directions of the absolute coordinate system. 

Figure 2-3 Pressure forces on the boundary surface

A free body diagram, with all pressure forces acting on a cell face and the restraint 

forces, is shown in Figure 2-4.

The balance for both, male and female rotor is expressed by the same set of 

equations:

 
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(2.77)

In these equations l is the rotor length. This set of equations applies both to the 
male rotor, where a=0 and to the female rotor where a is equal to the distance be-

tween the centre lines of the rotor axes. 
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Figure 2-4 Restraint forces and torques on rotors

The torque and restraint forces on the suction and discharge bearings are calcu-

lated from these equations as: 

 

 
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(2.78)

All the forces in equation (2.78) are support forces caused by the pressure loads in 

one boundary cell i. To obtain the integral radial and axial forces and the torque 
they are integrated over the whole boundary and for both rotors:

1 1

1 1

( ),[ ] ( ), [ ]

( ),[ ] ( ), [ ]

I I

rS rS rD rD

i i

I I

a a

i i

F F i N F F i N

F F i N T T i Nm

 

 

 

 

 

 

(2.79)

Once calculated, the torque is used to estimate the power transmitted to the rotor 

shaft:

2 ( ), [ ]m m f fP n T n T W  (2.80)

where n is the speed of the male rotor while TM and TF are the torque on the male 

and female rotors respectively. Specific power is defined as:
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3,
min1000

kWPPspec
mV

     
(2.81)

And finally, the values v and i , the volumetric and adiabatic efficiencies respec-
tively are:

ad
v i

d

PV
V P

   (2.82)

where Vd is the theoretical displacement and Pad is the adiabatic power input.

Since the pressure across the working chamber does not vary too much within 

one time step, it is sufficiently accurate to average the pressure values arithmeti-

cally in each working chamber in order to plot a pressure versus shaft angle, (p-
diagram. 
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3Grid generation of Screw Machine Geometry

3.1 Introduction

The finite volume method, described in the last chapter is a convenient technique

which allows fast and sufficiently accurate solution of the governing equations for 

fluid flow within complex geometries. The resulting system of algebraic equations 

remains conservative within a calculation volume. To use this method a spatial 

domain must be replaced by a finite number of discrete volumes constructed be-
tween grid points. The number of control volumes used to discretise a computa-

tional domain depends on the geometry and physics of the problem and on the re-

quired accuracy. The number of grid points used to construct the numerical cells 

depends on the dimensionality of the problem and on the type of numerical cell se-

lected for calculation. For two-dimensional cases, numerical cells can be con-

structed from three or more numerical points, but rectangular and triangular cells 

are those mostly used in practice. If the problem is three-dimensional, the most 

frequently used cells are hexahedral and tetrahedral volumes constructed around 

four and eight numerical points respectively. However, volumes may be con-

structed from an arbitrary number of faces for which a corresponding number of 

points can be calculated. The use of hexahedral cells gives the most conservative 

interpolation of values in neighbouring cell centres and is therefore the preferred 
grid type. This is especially important when geometrical and physical parameters 

vary substantially across a domain, as is the case in a screw machine.

The process of replacing a spatial domain by a system of grid points is called 

grid generation. The grid generation process, referred to as space discretisation, is 

essential for accuracy, efficiency and ease of numerical solution. Ability to gener-

ate an ‘acceptable’ grid system is a factor which determines whether a three-

dimensional numerical method, such as the finite volume, can be used. Inability to 

generate an adequate numerical mesh for screw machines was the main reason 

why they have not been previously analysed by the use of three-dimensional nu-

merical methods. The grid generation process is performed in the selected coordi-

nate system with constraints given for a specific problem. Therefore, a coordinate 
system must be introduced and the required constraints have to be set. An absolute 

Cartesian coordinate system is used in the grid generation process because it gives 

the best results for the finite volume method.
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Grid generation problems are mainly connected with computational fluid dynam-

ics but, as reviewed by Thompson (1996), the applicability of the concepts used in 

making numerical grids is not in any way limited to this area. Several international 

conferences have been held on grid generation. Conference Proceedings edited by 

Smith (1992), Eiseman et al (1994) and Soni et al (1996) are typical examples of 

these and describe a number of applications to CFD and other fields, especially 

computer graphics.

There are four major textbooks on grid generation. The early monograph by 
Thompson, Warsi and Mastin (1985) is now also published on the Web 

http://www.erc.msstate.edu/education/gridbook. It covers the entire subject of grid 

generation developed around structured grids with boundary conforming. A later 

book by Knupp and Steinberg (1993) gives fundamentals of grid generating tech-

niques.  Thompson’s (1999) Handbook of Grid Generation describes the principles 

of all structured, unstructured and hybrid grids that can be generated either ana-

lytically or by solving partial differential equations (PDE). It also gives a very de-

tailed review of most of the major computer codes used for meshing. A book on 

‘Grid generation Methods’ by Liseikin (1999) was originally printed in Russian by 

the Siberian Branch of the Russian Academy of Sciences in Novosibirsk and then 

translated into English and printed in Germany and the USA. It gives a most de-

tailed mathematical basis of grid generation methods with all necessary theoretical 
backgrounds. It pays special attention to reviewing the most recent and promising 

approaches and methods, which have not been sufficiently covered in previous 

monographs.

A considerable number of general methods for structured grid generation have 

been reviewed by Thompson (1984), Thompson, Warsi and Mastin (1985), Eise-

man (1985), Liseikin (1991), Thompson and Weatherhill (1993) and Thompson

(1996). The last one was also published on the Web in year 2000: 

http://www.erc.msstate.edu/~joe/gridconf. All these consider an algebraic ap-

proach to grid generation as well as to the solution of either elliptic, hyperbolic or 

parabolic partial differential equations. From these, it can be deduced that more 

control of numerical mesh orthogonality and smoothness is achievable by solving 
the PDE than by using an analytical approach. However, these methods are gener-

ally more computer time consuming then the algebraic ones. 

Although, officially, transfinite interpolation for meshing purposes was first in-

troduced at the grid conference in Nashville in 1982 by Gordon and Thiel, alge-

braic grid generation, which uses a transfinite interpolation method, has its roots in 

the early work by Gordon (1969, 1973). Many authors after that referred to their 

achievements in analytical methods. It started with Smith’s Algebraic Grid Gen-

eration in 1982 when Hermite interpolation between two opposite boundaries was 

presented. Then Vinkour (1993) introduced one-dimensional stretching functions. 

Two, four and six boundary interpolation which use one-dimensional stretching 

functions were well summarised by Shih et all (1991) and later applied to complex 
grids using enhanced control of grid distribution by Steinhorsson, Shih and Roelke

(1992). Their latest paper proposed the use of multidimensional stretching func-

tions, applied to two opposite boundaries in the four-boundary method. Other 

simpler methods were also developed and reported such as that of Saha and Basu
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(1991), but they were applicable only to rather simple grids. Orthogonality and 

clustering control for algebraic grid generation was reported by Chawner and 

Anderson (1991). An algebraic homotopy procedure for 2 and 3-D domains was 

introduced by Moitra (1992). Zhu, Rodi and Schoenung (1992) suggested a fast 

method for smooth grids by algebraic transfinite interpolation. Some of the meth-

ods previously reported were revised in the paper given by Soni (1992) and ap-

plied to internal flow configurations. More recently, Liou and Yeng (1995) pre-

sented an algebraic method which generates a numerical grid by combining two 
grids and uses a marching method in calculating the final mesh. Zhou (1998) pre-

sented a ‘simple’ method using functions of the first, second or third order to in-

terpolate between the boundaries. The method, although simple and fast, often 

produces overlapping and irregularity for complicated domains. The main problem 

that remained during all these years of development of algebraic methods was that 

meshes generally have not been orthogonal and smooth and that overlapping ap-

peared as the major problem in complex domains. More recently, Lehtimaki

(2000) suggested another method in which the first step is to generate a correct 

mesh without overlapping, not necessarily smooth and orthogonal, and then to ap-

ply orthogonalization and smoothing to it by moving internal points. The method 

appeared to be extremely useful but required additional checking of the mesh 

regularity. Field (2000) in his journal paper presented qualitative measures for ini-
tial meshes, which, together with a good description and mathematical background 

of the grid quality measures by Liseikin (1999), reasonably covers the problem.

Differential methods for the structured grids to solve elliptic, parabolic or hy-

perbolic equations were discussed by many authors and were well summarised by 

Thompson (1985, 1996 and 1999) and Liseikin (1999).

Surveys on general adaptive methods were presented by Eiseman (1985), 

Liseikin (1996, 1998 and 1999) and Thompson (1999). Practical applications of 

adaptive methods have been published by Kim and Thompson (1990) and 

Samareh-Abolashi and Smith (1992). The latest described a practical approach to 

the grid adaptation based on two physical properties. The method was used for 

dynamic grid adaptation in supersonic flow domains.
The methods for unstructured grids were revised by a number of authors among 

whom are Thompson (1985, 1999), Liseikin (1999), Eiseman (1985) and Owen

(1998). The latter published his review on unstructured grid methods on the Web (

http://www.andrew.cmu.edu/user/sowen/survey/index.html) where a summary on 

recently developed methods in automatic generation for complicated domains is 

given. Among these methods, the major ones are conformal mapping by Barker 

and Lantz (1997), control point grid generation by Eiseman (1991 and 1992) and 

quad-mapping by Owen et al (1998).

More recently a huge effort has been made to develop grid generation in Carte-

sian co-ordinates by Lin and Chen (1998). Its main advantage lies in the fact that 

the conservation laws are completely satisfied, without the need for additional 
terms, but they have a great disadvantage in the need for mesh refinement in the 

vicinity of the boundaries.
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3.1.1 Types of Grid Systems

Grid systems are structured, unstructured or mixed, depending on how the grid

points are connected to each other. These types are presented in Figure 3-1. Un-

structured numerical grids are easier to generate. However, obtaining a solution 

with them is more difficult then from structured grids. 

Structured grids are either single or composite grids. A single grid is shown in 

Figure 3-2. A composite grid consists of two or more single grids patched to-
gether. Depending on how the individual single grids are assembled together, a 

composite grid system can further be classified as completely discontinuous, par-

tially discontinuous, partially continuous and completely continuous as shown in 

Figure 3-2.

Figure 3-1 Types of a grid system

Figure 3-2a shows an overlapping or Chimera grid. This grid is easy to construct 

and implement for complex geometries. However conservation is not always 

achieved on block boundaries. The patching process requires only the generation 

of a single grid over each compressor rotor without considering the interface be-

tween them. The constraint in such a case is the amount of overlap between the 

grids on the rotors. Another advantage of this grid is that it allows separate com-

putation on each grid, which preserves the computer resources. The disadvantage 

of this procedure is that conserved monotonic values have to be maintained in the 

grid points of the overlapping regions, during the solution and this is not always 

possible.

Partially discontinuous composite grids are usually called block-structured 
grids with a non-matching interface. Grids of this type are generated by partition-

ing the domain of interest into a number of non-overlapping continuous blocks. 

Then a structured numerical mesh is generated within each of the blocks. After 

that the blocks are patched together through the non-overlapping interface. This 

grid is flexible and it allows generation of the grid with the desired resolution and 

topology in each particular block which can be later refined in a block wise man-

ner. Moreover, methods for conservative treatment of a non-matching interface al-
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ready exist and these are already implemented in standard CFD software. Block 

structured grids are used for spatial discretisation of screw machine rotors.

Figure 3-2 Types of composite structured grids

Partially and fully continuous composite grids are difficult to generate. Their 

points at the matching interface coincide. In the case of a three-dimensional do-

main this is difficult to achieve. These grids can numerically be treated as a single 

grid because there is no real interface between them. The conservation of proper-

ties is as well satisfied as for a single grid. These types of grid are used for the 

suction and discharge chambers and for other sub domains of a screw machine 

other then the rotors. A structured grid system, either single or composite must 
satisfy a number of conditions. 

The total number of grid points should be kept to the minimum needed for the 

numerical method to yield a solution of the desired accuracy. The numerical 

points which form the boundary grid lines should coincide with the boundary of 

the spatial domains. If possible, one set of grid lines should align with the flow di-

rection. This condition is not easy to fulfil, but it helps to obtain an accurate nu-

merical solution. The grid lines should be perpendicular to the boundary. This al-

lows easier implementation and calculation of derivatives at the boundaries of the 

domain. In the interior, the intersecting lines need be only nearly orthogonal. The 

spacing between the grid points should change slowly from a region with concen-

trated points to a region with sparsely distributed nodes, especially if the gradients 

of the flow values are large in these regions.
The most efficient structured grids are boundary-fitted or boundary-confirming 

grids. These grids are formed in such a manner that one set of points is fitted to the 

boundary of a domain so that the boundary conditions are directly applied to the 

boundary region without the need for interpolation. In that case, the boundary 

conditions are considered as input data.  

It is common practice to generate and distribute numerical points on physical 

boundaries and then extend them successively from the boundary to the interior of 

the domain. Based on this, three basic groups of grid generation methods have 
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been developed: algebraic methods, which use interpolation or some special func-

tions, differential methods based on the solution of partial differential equations in 

the transformed spatial region, and variational methods, based on optimisation of 

the grid quality properties.

Algebraic methods calculate interior points of the grid through transfinite in-

terpolation, which is a multivariate interpolation procedure. They are relatively 

simple and they enable the grid to be generated quickly. However, in regions with 

a complicated shape, cell faces generated by algebraic methods can degenerate so 
that cells may overlap or cross the boundary. These methods are therefore com-

monly used to generate grids in domains with smooth boundaries which are not 

highly deformed, or as an initial approximation for iterative processes in a differ-

ential grid solver. Algebraic methods generate a screw compressor numerical grid 

of the desired quality, if used in conjunction with boundary adaptation and proce-

dures to obtain orthogonal grids.  

Differential methods are iterative procedures to solve elliptic, parabolic or hy-

perbolic partial differential equations, of spatial point distribution. The interior co-

ordinate lines derived through these methods are smooth, assuring that disconti-

nuities from the boundary surface do not extend into the domain interior. In 

practice, hyperbolic systems are simpler then elliptic or parabolic ones but these 

are not always mathematically correct and are not applicable to regions in which a 
complete boundary surface is strictly defined. 

Variational methods can be used to generate grids which satisfy more then one 

generating condition, that cannot be satisfied either by algebraic or differential 

methods. However, these are not widely used mainly because their formulation 

does not always lead to a well posed mathematical problem. 

3.1.2 Properties of a Computational Grid

A numerical grid should divide a physical domain to enable efficient computation 

of the physical quantities. The accuracy is influenced by the grid size and its ex-

pansion factor. The grid size is determined by the number of grid points, while the 

cell size implies the maximum length of the cell edges. A grid generation proce-
dure should produce a mesh for an arbitrary number of cell nodes or for an arbi-

trary cell size in such a way that the cell size is reduced if the desired number of 

nodes increases. This property is important for obtaining an accurate solution 

which might require refined cells to be generated in specific domains of interest. 

The ability to increase the number of grid points and to reduce the size of a cell 

enables the convergence rate to be increased and the accuracy enhanced. The im-

portant factor is a grid cell shape, quantified through the expansion factor fe, which 

is the ratio of dimensions in two neighbouring cells. It is difficult to suggest a 

maximum value for this factor, because it depends on local grid topology and os-

cillation of the dependent variables in the considered region.  

Grid orthogonalisation and smoothness are obtained by algebraic generation to 

achieve a better numerical solution. The finite volume method is not so sensitive 
to grid non-orthogonality, but some orthogonality and smoothness are recom-
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mended, especially at boundaries. It allows easier implementation of boundary 

conditions and increases the stability of the calculation, especially at the interfaces 

between grid blocks.  

Cell and grid deformation is a measure of departure from a standard and non-

deformed cell. It is defined through at least three values, the aspect ratio, angle of 

non-orthogonality and a warp angle, as shown in Figure 3-3. Both the numerical 

accuracy and the stability are dependent on these three factors. The aspect ratio fa

is between the longest and the shortest edge of the numerical cell and it should be 

close to unity. The non-orthogonality angle no is between the surface vector and 

the distance vector, which connects the centres of two neighbouring cells that 

share the surface. Its value should be close to zero. The warp angle w measures 
non-coplanarity of the cell face. For coplanar cell faces, the vectors are parallel 

and the warp angle is zero. Otherwise, the angle between the surface normal to the 

two triangular subsurfaces differs from zero. 

Figure 3-3 Measures of grid quality

Although the limiting values for mesh quality measures are different for each par-

ticular problem, the following values are recommended:

Expansion factor fe < 2

Aspect ratio fa > 0.1

Angle of non-orthogonality no < 50o

Wrap angle w < 50o

Consistency with geometry is a mesh property that significantly influences the re-

sult. It has two important aspects. The first is that the numerical mesh must have a 

sufficient number of points in the interior of the computational domain, which ac-

curately describe the physical domain. When the number of points increases to in-

finity, the point distance should reduce to zero. This is important for a screw ma-

chine where the domain size changes by several orders of magnitude between the 
clearance and the main domain while the number of points is kept constant. The 

second requirement is that a sufficient number of points is specified on the bound-

ary. This can be achieved by increasing the number of points or by adjustment of 
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the boundary according to its geometry. With both requirements fulfilled, the nu-

merical mesh is boundary fitting or boundary confirming.

Figure 3-4 Vector definition of a two-dimensional cell

If the grid is generated by an analytical procedure before carrying out the flow 

calculations, then it cannot be dynamically adapted during the calculation of the 

physical values associated with the flow. Hence it should be set initially with 

finer resolution in the regions of high flow gradients in order to maintain consis-

tency between grid generation methods and the physics of the flow. This condition 

is difficult to fulfil at the beginning of the grid generation or prior to obtaining a 
solution. Therefore, based on the available data, it must be possible to adjust the 

generated grid to both the geometry and the flow regime. Generally, if the lines 

connecting numerical points follow the direction of the flow and if the distance 

between the points is smaller in the regions near the walls, this condition may be 

fulfilled. 

Finite volume methods, in the current state are capable of producing a solution 

with both, structured and unstructured grids. However, conservation principles are 

easier to obtain on structured meshes with hexahedral cells. Therefore, these 

should be generated wherever possible. This gives the possibility of connecting 

the generated numerical mesh to a wider range of numerical solvers. 

The quality of different meshes may be assessed by different criteria. One of 

these is the skewness value, which is calculated to give a measure of the quality of 
each particular cell and of the mesh as a whole. If a two-dimensional cell is con-

sidered, the skewness value s is defined as the cell area divided by the maximum 
lengths of cell edges in two curvilinear coordinate directions as shown in Figure

3-4:

1 2

s

A

e e
  (3.1)

where 
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   1 1, , 1, 1 , 1 2 , 1 , 1, 1 1,max , ; max ,i j i j i j i j i j i j i j i je e            r r r r r r r r

and the cell area is calculated as half the vector product of the diagonals:

1 2

1

2
A  d d .

The sign of the skewness factor indicates whether a numerical cell is regular or 

not. Positive values are obtained for regular cells, while negative skewness indi-

cates that the cell is inverted or twisted. At the same time, this indicates whether 

the cell is orthogonal or not. For an orthogonal cell the skewness value s=1. Oth-
erwise, the value of the skewness factor is less then 1 and tends to zero for ex-

treme non-orthogonality. For three-dimensional cells, the skewness can be calcu-

lated as the ratio of cell volume to the values of the maximum edge lengths in the 

three curvilinear coordinate directions.

Grid quality indicators are calculated for every cell in a computational domain. 

The mesh can be accepted as regular only if all cells have a skewness value 

greater then zero.

3.1.3 Grid Topology 

Block structured grids are convenient for the grid generation of complex geome-

tries. But although the grid generation process is simplified when the whole do-

main is subdivided into a number of simpler blocks, it is not always easy to select 
a suitable grid topology within a block. Also, although simpler for a whole do-

main, a sub-domain is not necessarily an efficient means of grid generation. The 

aim of algebraic grid generation is to find a function x() which transforms a com-

putational domain n to the physical domain Xn or vice versa, as shown in Figure 
3-5. Four basic topologies are used to specify a numerical grid within the block. 

These are polyhedral, H, O and C grids. Only polyhedral and O grids have been 

used in screw machine grid generation. 

a) A block type grid is represented as a polyhedron, which retains the sche-

matic form of a block domain. This type is mainly used for single-block 

grids. A numerical grid has all the properties of a computational block 

and fulfils the requirements of a physical domain by boundary fitting to 

the computational domain. It is used here to produce grids of the inlet and 

outlet ports as well as other regions which retain a polyhedral block 
shape. Both physical and numerical domains keep their block shape as 

shown in Figure 3-5a. The numerical domain is transformed in a hexahe-

dral block while the physical domain remains fitted within the specified 

boundaries.
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b) An O type of numerical grid is generated as a solid cube or rectangle in 

the computational domain and transformed to the physical domain as pre-

sented in Figure 3-5b. This type of numerical grid has only two boundary 

faces in two dimensions and four boundaries in 3D. The remaining two 

boundary faces are connected implicitly point to point. 

Figure 3-5 Patterns of grid topology in a screw machine

H and C grid types are constructed to a block grid by a similar procedure, with the 
required shape formed by explicit connectivity between required points.

3.2 Decomposition of a Screw Machine Working Domain

To apply a CFD procedure, the spatial domain of a screw machine is replaced by a 

grid with discrete finite volumes and a composite grid, made of several structured 

grid blocks patched together and based on a single boundary fitted co-ordinate 

system, as shown in Figure 3-6. The number of these volumes depends on the 

problem dimensionality and accuracy required. It consists of several sub-domains, 

two of which are critical. These are the fluid domains around the male and female 

compressor rotors. Not only is the main working domain contained in them but 

also all the clearances and leakage paths, such as the radial, axial and interlobe 

leakage gaps and the blow-hole area. The suction and discharge and other ports, 

such is the oil injection port, are each presented by an additional block. The grid 

blocks are then connected over the regions on their boundaries which coincide 
with the other parts of the numerical mesh. 
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Figure 3-6 Numerical mesh of a screw compressor

The rotors of a screw machine are helical surface elements generated by simulta-

neous rotation and translation along the rotor axis, that are based on a two-

dimensional definition of the profile points in cross section. The rotors are the 

main machine parts between which the compression process takes place. There-

fore, these are studied in more detail here, while other parts of the numerical mesh 

are explained only briefly. 

Grid generation of screw machine rotors starts from the rotor profile coordi-

nates and their derivatives. These are obtained by means of a generation proce-
dure. Interlobe clearances are accounted for by the geometry and added to the ro-

tors. They depend on the application of the screw machine and their distribution is

specified in advance. 

The envelope meshing method, Stosic (1998) is applied for generation of both 

the male and female rotor profiles as shown in Figure 3-7a. The rotor geometry is 

completed by generating the profile around the rotor axis for an angle defined by 

the number of lobes:

1 1 2 1 1 22 ;r r ri z z z         , (3.2)

where z1 and z2 are number of lobes on the male and female rotors respectively. 

By this means, the rotor geometry is obtained for each cross section, together with 

the inner boundary of the “O” mesh on the rotors. 

To obtain the outer boundary of the “O” mesh, the rotor rack is used and con-

nected to the outer rotor circle to form a closed line as shown in Figure 3-7b. The 

circle, to which the rack is connected, represents the rotor housing. It is formed by 

adding a radial clearance to the outer rotor circle ro:

1 21 1 2 2;
o e o or rr r r r     . (3.3)
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Figure 3-7 Phases in the generation of screw compressor rotor boundaries

The boundary points then may be set at a constant distance along the profile. 

However, in such a case, some details of the rotor profile may be lost. Therefore, 
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the boundaries are discretised according to the rotor geometry particulars and flow 

characteristics. The distribution is applied to the inner boundary to follow the rotor 

coordinate points. The regular point distribution on the outer boundary assures a 

proper generation of inner grid points. 

Figure 3-8 Hexahedral numerical cell

When both boundaries are mapped by an equal number of boundary nodes, an 

analytical transfinite interpolation is applied to generate the internal points of the 

numerical mesh. The screw machine rotor geometry is described by the boundary 

and internal points in a sequence of rotor cross sections. A 3-D numerical mesh is 
then formed by connecting these points in consecutive cross sections. Preferably, 

the entire numerical mesh is formed of hexahedral control volumes with a right-

hand definition in which eight grid points form a right-handed coordinate system 

as in Figure 3-8. However, if hexahedral cells are not attainable, the numerical 

cells may degenerate to form either a prism, a pyramid or a tetrahedron, as shown 

in Figure 3-9. In the case of the degenerated cells, when the edges collapse, the co-

inciding points are retained to keep their index.

After the cells of the entire numerical mesh are defined, the boundary regions 

are defined through which the domains are connected or at which the boundary 

conditions are applied.

Figure 3-9 Degenerated cell shapes: prism, pyramid and tetrahedron
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Region elements of either a quadrilateral or triangular shape are formed, depend-

ing on the shape of the boundary cell face, by using the vertices of the boundary 

cell face. This defines the numerical mesh by the vertex, cell and region specifica-

tions. This form of data allows convenient connection to a general numerical 

solver of the finite volume type.  

3.3 Generation and Adaptation of Domain Boundaries

Grid adaptation is achieved by the use of differential or algebraic methods. Differ-

ential methods are based on the simultaneous solution of the Euler-Lagrange dif-
ferential equations and the fluid flow equations when the mesh is adapted. Alge-

braic methods are based on a direct equidistribution technique which does not 

require solution of the differential equations. 

Numerical grid adaptation can be performed dynamically or statically. Dy-

namic adaptation is mainly used for the simulation of fluid flow with high local 

gradients. It is applied together with the calculation of the flow properties. Static 

grid adaptation is usually used to improve a numerical grid in advance, before ob-

taining a flow solution. Such adaptation is based on the existing boundary geome-

try and on the flow characteristics expected in the domain.

Figure 3-10 Comparison of cell sizes in the working chamber and clearances

A static analytical adaptation is applied here to the rotor boundaries of a screw 

machine. Firstly, this is because the cells in the clearance regions are excessively 

deformed as a consequence of their being equal in number in the radial direction 

to those in the working cavity, as shown in Figure 3-10. As a result their aspect ra-

tio can be as high as 1000:1. Therefore, the cell shapes easily become too de-

formed for accurate calculation. Secondly, if a low number of boundary points is 

applied to a very curved boundary, for example on the top of the female rotor, 

some of the geometry features which significantly affect flow, may be lost. This 

situation can be overcome by introducing more cells along the boundary or alter-

natively by local mesh refinement. Both approaches lead to an increase in the 
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number of control volumes, which adversely affects both the efficiency and speed 

of calculation. 

The approach adopted here distributes numerical points selectively with more, 

for example, in the clearances, and less in other places. The numerical mesh in 

Figure 3-10 is generated from adapted 2-D rotor boundaries where the ratio of the 

working chamber to clearance size was 400:1.  

3.3.1 Adaptation Function

The analytical equi-distribution technique minimises the error by redistributing 

points along a curve to keep the product of the ‘weight function’ and the grid 

spacing constant, i.e.

.X W const   (3.4)

where X 
represents the grid spacing and W is the weight function. 

This is the Euler-Lagrange equation. When integrated with the respect to a 

computational coordinate  it becomes:

 
   

1

0 0

d d
X

w w


 


 

   . (3.5)

In equation (3.5), both the grid spacing and the weight function depend on the 

computational coordinate  . This means that the equation is implicit and must be 

solved iteratively. 

However, if equation (3.4) is integrated with respect to the physical coordinate 

x, it has an explicit form which can be solved directly. According to Samareh-

Abolhassani and Smith (1992) this is:

 
max

min min

( ) ( )

Xx

X X

x W x dx W x dx    . (3.6)

Finally, if the starting equation is integrated with respect to the natural coordinate 

or an arc length, which follows a curve, its form is:

 
max

0 0

( ) ( )

s S

s W s ds W s ds    . (3.7)

The last form of the equation is the most appropriate for adaptation of complex 

curves which represent the boundaries of screw machines. Its one-dimensional na-

ture allows adaptation along one single grid line only, or along the set of grid lines 
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which all follow a single natural direction. Multidimensional adaptation can be 

achieved by successive repetition of this procedure along all the sets of grid lines.

The way a grid line is adapted depends only on the selection of the weight 

function. 

1

( ) 1 ( )
I

i i

i

W s b f s


   , (3.8)

where i is the number of variables which influence the adaptation, bi are constants 

and fi(s) are adaptation functions or their first derivatives. The adaptation function, 

which appears in the same equation, is integrated along the length of the grid as:

0

( ) ( )
S

i iF s f s ds  . (3.9)

Equations (3.7), (3.8) and (3.9) together give:

  1

max max

1

( )

( )

I
i i

i

I
i i

i

s b F s

s

S b F S

 











. (3.10)

Equation (3.10) can be used to move the grid points along a fixed curve. Parame-

ters bi and Fi have positive values in order to be monotonic in ( )s . However, if 

the line, which is adapted, changes in time, or if the adaptation has to be applied to 

a group of grid lines in a two or three dimensional grid, bi has to be updated to 

keep the same emphasis on the point concentration. In this more general case it is 

useful to define a grid point ratio R j, assigned to each particular function f j as:

max max max

1

( ) ( ) , 1, 2,...,
I

j j j i i

i

R b F S S b F S j I


 
   

 
 (3.11)

Now, if the grid point ratio (3.11) is calculated, continuous updating of bi is 

avoided and the emphasis on the point concentration is kept constant. After im-

plementing (3.11) to equation (3.10) the final form of the adaptation function be-
comes:

1 1max max

( )
( ) 1

( )

iI I
i i

i
i i

s F s
s R R

S F S


 

  
     

   
  (3.12)
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3.3.2 Adaptation Variables 

In order to map boundaries of a computational domain using the previous equa-

tion, adaptation variables must be selected, which form a weight function. Six ad-

aptation variables with different effects are presented here but the simultaneous 

combination of any two of them is sufficient. The tangent angle on the curve at the 

calculation point, radius of curvature in the vicinity of the calculation point and 

distance of the calculation point from the rotor centre respectively are:

arctan
p

P

p

x

y


 
    

,
2

1 3

2

P
P

P

y
r

y


 


, 2 2

P P Pd x y  , (3.13)

The curve flatness around the calculation point, sinusoidal distribution of points 

and cosinusoidal distribution of points are:

   2 2

o o

o

P P P P

P

P P

x x y y
E

d d

  



,

sin sin ( )PC k K  ,
cos cos ( )PC k K  .

All the above variables are geometrical characteristics, whose gradients along the 

boundary curve give various distributions in the characteristic region. For exam-

ple, if the radius of curvature changes rapidly with the natural coordinate, then the 

adoption of rP as the adaptation variable will give more points in this region than 

in other places. A similar situation happens if other adaptation variables are ap-

plied. 

Although the computational method applied here allows adaptation by two ad-
aptation variables, it is still general, which means that any other number of adapta-

tion variables can be introduced for adaptation if necessary.

3.3.3 Adaptation Based on Two Variables

Any geometrical or flow characteristic can be used for boundary adaptation. For

illustration of the method, the gradients of a tangent angle and radius of curvature 

have been used as weight functions 1

k
f and 2

k
f respectively in the first and sec-

ond adaptation criterion:

1 21 1 1 1

1 1 1 1

,P P P Pk k k kP P
k k

k kk k k k

r rr
f f

s s s s s s

     

   

  
   

   
(3.14)

In the previous equation, index k counts the numerical points along the curve 

which is adapted. Here, weight functions are given both differentially and in the 

form of finite differences. Derivatives with respect to the arc-length, i.e. the physi-
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cal coordinate, are the most convenient for static adaptation. However, in the case 

of general dynamic adaptation, derivatives with respect to the computational coor-

dinate  are probably more suitable. The usual way to present them is as a central 
differencing on the computational mesh with equidistant distribution of the points:

1 21 1 1 1,
2 2

P P P Pk k k kP P
k k

k k

r rr
f f

 

 
     

   
 

(3.15)

The next step in modifying the boundaries is to evaluate the integral adaptation 

variable (3.9) which is later used to calculate the point distribution from equation 

(3.10). A trapezoidal rule for non-uniform spacing of the physical coordinate sk is 
used here for calculation of the integrated adaptation variable at each numerical 

point. The discretised formula has a standard form for all applied weight func-

tions:

 1 1

1 1( ) 0, ( ) ( )
2

i i

k k k ki i i

k k

f f s s
F S F s F s

 



       , (3.16)

where k=2,3,…,K is the number of points along the curve, while i=1,2,..., I is the 

number of variables used for adaptation. 

The third step is the calculation of a new computational coordinate along the 

curve as a function of the previous physical coordinate. This step is performed 

through equation (3.12), which requires the grid ratio from equation (3.11) to be 

known. As a result, a new coordinate distribution is given as function of the previ-

ous distribution as:

( ) ( )
k

k S  . (3.17)

In a more convenient form, this equation, which gives a new distribution of points, 

is written as:

 
 

( ) 1

i

ki ik

i
i iK K

F SS
k R R

S F S


 
     

 
  , (3.18)

where Ri is the weight coefficient for each adaptation variable when applying a 

new distribution. The sum of factors R for all adaptation variables i should be less 

then or equal to 1. 
Finally, the fourth step is to find the inverse function of (3.17) which gives a 

new physical coordinate kS in the new coordinate system k . This is done by an 

interpolation procedure which aims to find a new arc-length in the form of

www.mepcafe.com



3.3 Generation and Adaptation of Domain Boundaries 57

1

( ) ( ) ( )
K

k k m k k k

m

S L S  


  , (3.19)

where the overscored values represent new values of the physical and computa-

tional coordinates and the others are previous values. The new transformed coor-
dinate and both the starting and ending values nmin and nmax of the Lagrangian 

product of transformed coordinates:

   
 

max

min

( 1) ( 1)k

n n
m

m
n mn n

n m

k K

L



 


 






  


 

(3.20)

must satisfy the conditions:

min min1 min max; 1n k n n and n K       . (3.21)

An example of the use of a geometrical weight function to adapt the rotor bound-

ary of a screw machine is shown in Figure 3-11. In the figure on the left hand side, 

a pair of rotors with 4 male lobes and 6 female lobes (4/6) is shown with uniform 

distribution. The number of cells generated in both rotors is the same. 

Figure 3-11 Comparison between the original (left) and adapted rotors (right)
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The boundary distribution on the rotors on the right hand side is modified by two 

weighting functions, namely the tangent angle and the radius of curvature which 

values are 0.2. As a result, a better arrangement of both the boundary points and 

the entire mesh is obtained. This is particularly noticeable in the gaps and rotor in-

ter-connections. However, in the parts of the numerical mesh where the cells are 

not so deformed and where the pattern of flow variables is nearly uniform, the cell 

size is not modified at all.

The distribution of boundary points plays a significant role in the grid genera-
tion process. A more appropriate boundary distribution allows easier generation of 

inner mesh nodes. 

3.3.4 Mapping the Outer Boundary 

The desired distribution on the rotor inner boundary of a 2-D “O” mesh is ob-

tained by adapted mapping. In Figure 3-12, points are given in index notation with 

respect to the physical coordinate system:

 , 0 , 0 ,i j i j x y r r (3.22)

The outer boundary needs be mapped with the same number of points as the inner 

boundary. The easiest way to obtain the same number of points on both bounda-

ries is to apply the same arc-length distribution of points to the outer boundary as 

to the inner one. This successfully distributes the boundary nodes for generation of 

the inner points only if the mesh is simple and its aspect ratio does not change rap-

idly. However, for complex meshes and high aspect ratios, this method usually 

does not produce a distribution which results in a regular mesh. Therefore, a new 

arc-length on the outer boundary has to be specified before the generation of the 

inner points can be performed. The procedure is to transform the outer boundary 

to a straight line, which is then adapted to a new coordinate system. 

Figure 3-12 Point distribution for rotor and circle with equal arc-length
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This is followed by reverse transformation to the physical boundary in parametric 

form. To apply the procedure, the outer circle is first mapped with the same num-

ber of points and the same arc-length distribution as the rotor itself:

 , ' 1 , ' 1 , ' 1
i

i j i j i j

I

s
x, y

s
  

 
  

 
r r = r (3.23)

where si is the natural coordinate of the rotor i.e. this is the distance from the 

starting point to the point i along the rotor curve, while sI is the length of the rotor 
boundary.

Figure 3-12 shows how the initial distribution of the points on the outer circle 

is achieved by the same arc-length as on the screw compressor female rotor. The 

distribution of points obtained by this means is not always satisfactory especially 

if the points are extrapolated to a rack. 

Lengths a, b and c are shown for an arbitrary point i in the physical domain, as 

shown on the left of Figure 3-13. These are calculated as:

   

   

   

2 2

1 10 0

2 2

1, 0 1, ' 1 1, 0 1, ' 1

2 2

, 0 1, ' 1 , 0 1, ' 1

,

.

=

i i i ij j

i j i j i j i j

i j i j i j i j

a x x y y

b x x y y

c x x y y

  

       

     

   

   

  

(3.24)

The angle between a and c is determined by the cosine theorem:

2 2 2

cos
2

ac

a b c

a b


 
 (3.25)

The computational coordinate system - with transformed coordinates of the ro-
tor and circle is shown on the right of Figure 3-13. The outer circle in the physical 

domain is transformed to a straight line along the  axis in the computational do-
main. The rotor profile is transformed from the physical to the computational do-

main so that each computational point on the rotor has the same value on the 

coordinate as its corresponding point on the circle.
The point coordinates in the computational domain are given by the following 

expressions:

, 0 1, 0 , ' 1 , 0

, 0 , ' 1

cos ,

sin , 0

i j i j ac i j i j

i j ac i j

c

c

    

  

    

 

  

 
(3.26)
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Figure 3-13 Transformation from physical (left) to computational domain (right)

The computational cells are formed between the points in the computational do-

main, as shown in Figure 3-13. As a consequence of the transformation, both the 

right and left cell boundaries are produced as vertical lines. Unfortunately, some 

of the cells generated by this procedure are either inverted or twisted. However, 

these can become regular if the points on the straight edge in the computational 
domain can be rearranged to form a monotonically increasing or decreasing se-

quence. In that case, the reverse transformation from the computational domain 

would also give a regular point distribution on boundaries in the physical domain. 

Consider point i in the computational domain on the rotor boundary as shown 

in the right diagram of Figure 3-13. The line normal to the rotor profile at that 

point is defined by the angle between that line and the axis as:

tan
d

d





 (3.27)

Assume that point P lies on that normal line and its projection on the  axis gives 
the desired point distribution on the horizontal boundary, as shown in the diagram 

by the dashed line. The position of point P is defined by its vertical coordinate ’i. 

The distance between points P and i is given by i, which is a function of the ver-
tical coordinate of point Pi. In that case, the horizontal projection of the point Pi

can be calculated as:

*
'i i i    , (3.28)

The vertical projection is specified as:

' sini i i      . (3.29)
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The ratio between the distance i and the vertical coordinate of point Pi is given 
by:

'i
i

i

k



 , (3.30)

where the coefficient ki can be any number greater then or equal to zero. If ki is 

equal to zero then the point Pi is positioned on the  axis. However, if 

k   then i becomes zero and point Pi corresponds to point i on the rotor. In 

that case, the distribution of the points is unchanged. By inserting (3.30) into equa-

tions (3.28) and (3.29), the new point projection on the  axis becomes:

* cos

sin
i i i

ik


  


  


. (3.31)

If the coefficient k in equation (3.31) has a constant value k=1, the new point dis-

tribution in the computational domain is always regular, as shown in the left part 

of Figure 3-14. 
It then remains to make the inverse transformation from the line in the computa-

tional domain to the circle in the physical domain with respect to the new arc-

length:

 
*

* *

, ' 1 , ' 1 , ' 1 *

i
i j i j I j

I

x, y



  

 
  

 
r r = r . (3.32)

The result of that procedure is shown on the right diagram in Figure 3-14. Linear 

interpolation or extrapolation between corresponding points on the circle j’=1 and 

rotor j=0 gives the point on the rack, as shown in the right drawing of Figure 3-14.

Figure 3-14 Final distribution of points in computational (left) and physical (right) 
domain
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This method ensures the satisfactory distribution of boundary points in the 2D 

cross section of the screw machine rotor domains. The level of redistribution can 

be controlled by the factor ki, which may be constant for all points through the 

domain or can be changed for each point by use of some characteristic parameter. 

For screw machine rotors, it appears that a constant value k=1 always gives a 

regular distribution of points on the boundaries. This is an essential prerequisite 

for successful generation of the internal points.

3.4 Algebraic Grid Generation for Complex Boundaries

Figure 3-15 Conformal mapping of a physical domain X2 to computational domain 2

Algebraic grid generation is often based on transfinite interpolation. This is de-

fined as a multivariate interpolation procedure or a Boolean sum of univariate in-

terpolations along each computational coordinate. The method is commonly used 

for grid generation in domains with smooth boundaries that are not highly de-

formed, or as an initial approximation for the iterative process of an elliptic grid 

solver. Transfinite interpolation, in conjunction with a boundary adaptation and 
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orthogonalisation procedure, has been found to be a successful method for screw 

machine numerical grid generation and is therefore described here. 

After the boundaries of a physical domain have been calculated and the 

boundary points adapted to the geometry conditions, they have to be mapped to a 

computational domain, in which the inner nodes of a computational mesh are es-

timated. The coordinates of the 2D physical domain are given in an x-y coordinate 

system while the computational coordinates are - as shown in Figure 3-15. The 
transfinite interpolation method is used for calculation of the inner point coordi-

nates. Both, the block grid (left) and the “O” grid (right) are mapped on a similar 

computational grid. These domains are highlighted in the figure.

3.4.1 Standard Transfinite Interpolation

The coordinates of four boundary faces generated in two dimensions, with the

help of adaptation methods, can be written in vector form as:

( ) ( , ), 1, 2

( ) ( , ), 1, 2 ,

l l

l l

l

l

  

  

 

 

a r

b r
(3.33)

where the coordinates of the transformed computational coordinate system,  and 

 , are:

( 1)

( 1)

i

I






and 

( 1)

( 1)

j

J






.

i and j denote point numbers in physical coordinates while I and J are the overall 

number of points on these coordinates. As defined by the transfinite mapping 

method, the coordinates of the interior points are given as:

2

1

1

2

1 1

1

( , ) ( ) ( )

( , ) ( , ) ( )[ ( ) ( , )] ,

l l

l

l l l

l

    

        







  





r a

r r b r

(3.34)

Blending functions 
1( )  and 

1( )  are arbitrary functions of the computational 

coordinates that satisfy the cardinality conditions given by (3.35) to ensure that the 

edges of the domain are reproduced as a part of the solution.

( ) , =1,2 =1,2

( ) , =1,2 =1,2

l k kl

l k kl

k l

k l

  

  




(3.35)
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where  is the Kronecker delta.

By use of equation (3.33), equation (3.34) for a 2-D domain can be written in 

the following general form of the transfinite interpolation method. This connects 

the coordinates in the physical and numerical domains:

1 1 2 2

1 1 2 2

( , ) ( , ) ( ) ( , ) ( )

( , ) ( , ) ( ) ( , ) ( )

x X X

y Y Y

         

         

 

 
(3.36)

The ability of the analytical transfinite interpolation method of (3.36) to produce a 

regular distribution of internal points is highly dependent upon the selection of the 

blending functions 1( )  and 1( )  . These functions define the curvature and 

orthogonality of the internal grid lines.

Lagrange Blending Functions

The simplest method of obtaining blending functions is by Lagrange interpolation:

1 2

1 2

( ) 1 ( )

( ) 1 ( )

     

     

  

  
(3.37)

Applying (3.37) to equation (3.36) gives the inner mesh points as:

1 2

1 2

( , ) (1 ) ( , ) ( , )

( , ) (1 ) ( , ) ( , )

x X X

y Y Y

       

       

  

  
(3.38)

where X1 and Y1 are points on one boundary of a physical domain, while X2 and Y2

define the other boundary. The connections between the two opposite boundaries 

are produced here as straight lines, generally non-orthogonal to the boundaries. 

This method gives a satisfactory mesh only for simple geometries and is not usu-

ally applicable to the rotor domains of screw machines except as an initial grid for 

further orthogonalisation and smoothing. By this means, physical domains of a 

less complex shape can be successfully mapped, but orthogonality of the bounda-
ries is not necessarily achieved. A numerical mesh generated by the transfinite in-

terpolation method with Lagrange blending functions is presented in Figure 3-16. 

The discharge port of a compressor is mapped on the left of the figure, (a), while a 

working chamber with rotors of 3/5 configuration is presented on the right (b). 

The detail in the top left corner shows how the transition between the main do-

main and the clearances is mapped.
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Figure 3-16 Numerical mesh generated by TFI using Lagrange blending function

3.4.2 Ortho Transfinite Interpolation

A better and more accurate solution can be obtained by applying a modified trans-

finite interpolation formula with Hermite blending functions. Equation (3.34) can 

be written in a more general form as:

2 1

1

1 0

2 1

1 1

1 0

( , ) ( ) ( )

( , ) ( , ) ( )[ ( ) ( , )] ,

n n

l l

l n

n
n n

l l ln
l n

    

        


 

 




  







r a

r r b r

(3.39)

and represents the Ortho transfinite interpolation formula. The representation of 

boundary points in this formula is similar to (3.33) but includes the derivatives on 
the boundaries: 

( ) ( , ), 1,2 0,1

( ) ( , ), 1,2 0,1

n
n

l ln

n
n

l ln

l n

l n

  


  



  




  



a r

b r

(3.40)

Equation (3.34) contains eight terms, four of which refer to the edges and four to 

the corners. On the other hand, equation (3.39) contains not only the terms for the 
coordinate data on four edges and four corners, but also their derivatives on four 

edges, two tangent vectors in each corner and a mixed derivative in each corner. 

This forms a combination of 24 terms. 

Cardinality conditions are consequently more complex for ortho methods be-

cause the conditions are imposed on the slope of the blending function as:
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( ) , =1,2 =1,2 =0,1 =0,1

( ) , =1,2 =1,2 =0,1 =0,1

n
n

l k kl nmn

n
n

l k kl nmn

k l n m

k l n m

   


   












(3.41)

Indices l and k in equations (3.39) to (3.41), correspond to the 2-D boundary faces, 

while the indices m and n indicate the corners.  

Figure 3-17 Classification of physical domains with respect to mapping requirements

Equation (3.39) applies to a two-dimensional domain however, it can easily be ap-

plied to three dimensions if the coordinate z is added perpendicularly to the x-y

plane and accounted for in the equation. Physical domains, which have to be 
mapped, can be classified either as a two-, four- or six- boundary mapping prob-
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lem. In which group the problem is categorised depends not only on the dimen-

sionality of the domain, but also on the characteristics of the boundaries. Exam-

ples are shown in Figure 3-17. Case a) is a two-boundary mapping problem where 

only two opposite boundaries in the y direction need to be mapped. In case b), all 

four boundaries must be mapped in order to preserve the regular boundary fitting. 

Case c) is a three-dimensional problem in which all six boundaries must be 

mapped. The geometry of the rotor domains in a screw machine can be regarded 

as 2� dimensional. It is because the rotors of a screw machine are generated from 
a profile which is revolved around its axis and moved along the same axis. In that 

case, the four boundary mapping method has to be applied at each of the 2-D cross 

sections, which are later connected to obtain a three dimensional mesh.

Hermite Blending Functions

Contrary to the Lagrange blending functions used in the previous section, Hermite 

blending functions involve derivatives at the end curve points to enforce orthogo-

nality at the boundaries. The blending functions are applied in a cubic form as:

0 3 2 1 3 2
1 1 1 2

0 3 2 1 3 2
2 3 2 4

( ) 2 3 1, ( ) 2 3

( ) 2 , ( )

h h

h h

       

        

       

      
, (3.42)

which satisfy cardinality conditions (3.41). The Hermite blending functions h1 to 

h4, defined by the previous equation, are now functions only of the computational 

coordinate . Applying these functions to equation (3.39) for a two dimensional 
problem, one can easily get:

0 1
1 1 2 2 3 4

0 1
1 1 2 2 3 4

( , ) ( , )
'( , ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , )
'( , ) ( ) ( ) ( ) ( ) ( ) ( )

x x
x X h X h h h

y y
y Y h Y h h h

   
       

 

   
       

 

 
   

 

 
   

 

(3.43)

The values for computational coordinates at the start and end points in the previ-

ous equation are 0 =0 and 1=1. The boundary points in the same equation are

1 0 1 1 0 1

2 1 2 2 1 2

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

X x X Y y Y

X x X Y y Y

     

     

   

   
. (3.44)

Equations (3.43) represent a two-boundary method of transfinite interpolation pro-

cedure with Hermite blending functions for two-dimensional domains. The partial 

derivatives at the boundaries ensure orthogonality. These are:
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0 1 1 2
1 2

0 1 1 2
1 2
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K K
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 

   

   
 

   

   
   

   
   

     
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(3.45)

The coefficients K1 and K2 are positive numbers smaller than 1. They are usually 

chosen by trial and error to avoid overlapping of connecting curves inside the do-

main.

The four-boundary method, which assumes interpolation between all four 

boundaries in the 2-D domain can be written in the following form:

( , ) '( , ) ( , )

( , ) '( , ) ( , )

x x x

y y y

     

     

  

  
(3.46)

For this boundary method, two additional opposite boundaries must be mapped. 

These are:

3 0 3 3 0 3

4 1 4 4 1 4

( , ) ( ), ( , ) ( )

( , ) ( ), ( , ) ( )

X x X Y y Y

X x X Y y Y

     

     

   

   
(3.47)

The first term in (3.46) is calculated in equation (3.43) while the second term de-

fines a mapping between the other two boundaries as:

0 0
3 3 5 4 4 6 7

1 1
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3 3 5 4 4 6 7

1 1

( , ) '( , )
( , ) ( ' ) ( ) ( ' ) ( ) ( )
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 
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 

   
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 

   

 

  
         

  
    

  
         

  
    

8 ( )h 

(3.48)

The partial derivatives at the boundary points in equation (3.48) ensure that ap-

propriate derivatives in the corners of the domain are accounted as part of the so-

lution:
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, (3.49)

while the remaining partial derivatives in the same equation account for deriva-

tives on two additional edges as:

0 3 1 4
3 4
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 
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   
     

   

   
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. (3.50)

The remaining Hermite factors are:

3 2 3 2
5 6

3 2 3 2
7 8

2 3 1, 2 3

2 ,

h h

h h

   

    

     

    
(3.51)

The four-boundary Hermite interpolation method gives reasonably good distribu-

tion of internal points with freedom to maintain the orthogonality and curvature on 

and near the boundaries. This method usually gives a sufficiently good result for 

the domains of the screw machine inlet and outlet ports. However, for the rotor 

domains of a screw machine, where the geometry changes rapidly, it sometimes 

causes the internal domain lines to overlap or even to exceed the boundaries. The 

intensity of that depends on the values selected for the coefficients K1 to K4. 

Figure 3-18 shows some domains, as in Figure 3-16, but this time the four-

boundary method for Ortho transfinite interpolation is used in combination with 
Hermite blending functions to generate the grid. On rotors, in the part where the 

radial distance between the opposite sides changes rapidly, this method results in 

overlap and even in grid lines exceeding the boundary lines. In other parts of the 

mesh, the result is sufficiently good and the internal lines are orthogonal to the 

boundaries. At the outlet port, which is significantly easier to map, the resulting 

numerical mesh is regular, boundary fitted and boundary orthogonal. The numeri-

cal mesh for the rotor domains presented in this figure is generated with very low 

values of coefficients K1 to K4.
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Figure 3-18 Numerical mesh generated by TFI using Hermite blending function

Multidimensional Stretching Functions

The algebraic methods presented in previous sections employ either Lagrange or 

Hermite blending functions to control the distribution of grid points in the physical 

domain. These functions are generated from the one-dimensional stretching func-

tions  and  with equal values for all grid lines throughout the domain. Since this 
is a limitation for complex geometries, another method is introduced based on the 

construction of multidimensional stretching functions as proposed by Steinthorrs-

son et al (1992). A two-dimensional grid system with x and y coordinates in the 

physical domain and with coordinates  and  in the computational domain is ana-

lysed. In the transformed computational domain, coordinates  and  vary be-

tween zero and one as shown in Figure 3-15. Considering the coordinate  it is 

obvious that all points on boundaries o and  affect the distribution of the inner 

points in that direction. The same situation appears for the  coordinates. There-

fore, two one-dimensional stretching functions in  direction can be identified for 

two opposite boundaries: 0 1( ), ( )   
 

for the points on 0 and 1 respec-

tively. The edges of the computational domain are one-dimensional lines on which 

one-dimensional stretching functions can be easily obtained either by Lagrange 

(3.37) or by Hermite interpolation (3.51). In this study, the point distribution on 

the edges is known and therefore the stretching functions at the boundaries are 

known in advance. 

Multidimensional stretching functions can be determined once the one-

dimensional functions are selected. By application of linear Lagrange interpola-

tion, the following multidimensional function can be constructed:

   0 1, ( ) 1 ( )            
  

. (3.52)
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To improve the situation, cubic polynomials similar to Hermite interpolation fac-

tors can be used in order to produce multidimensional stretching functions of the 

following form:

     0 1 1 2, ( ) ( )h h           
  

, (3.53)

where coefficients h1 and h2 are obtained from equation (3.42). These coefficients 

can be functions not only of the computational coordinate , but also they can be 
specified as a function of the arc-length of the newly calculated inner grid line, i.e. 

its natural coordinate, as:

3 2 3 2

1 2( ) 2 3 1, ( ) 2 3h s s s h s s s      , (3.54)

If the boundaries of the physical domain have to be mapped together with the in-

ner points, then analytical stretching functions have to be calculated each time a 

boundary is mapped and then updated throughout the entire domain. However, if 

the boundary points are distributed on the edges in advance, the procedure looks 

significantly simpler because the natural coordinate s defines a stretching function 

directly through its arc-length. Based on that, the equivalent stretching functions 
can be defined as:

0
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 
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 (3.55)

where
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d d


  , (3.56)

They are used to construct multidimensional stretching functions in (3.52) or 

(3.53).

The method described above can be applied on all, one-, two- or three-

boundary procedures simply by replacing the one-dimensional stretching functions 
with the multidimensional stretching functions (3.53). This method often gives a 

satisfactory grid quality for complex systems and it is not too difficult to apply. 

However, in certain points of the mesh, where gradients of the cell size are ex-

tremely high, this method can produce instabilities and severe irregularities of the 

mesh, as a consequence of attempts to keep the mesh orthogonal. The numerical 

mesh generated by this method is shown in Figure 3-19. The error is magnified 

100 times to become visible. The other parts of the mesh are mapped regularly 

with satisfactory control on orthogonality and smoothness. To use this method fur-

ther, one must try to prevent unwanted oscillations. 
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Figure 3-19 Numerical mesh generated with multidimensional stretching functions, 
where errors are magnified 100 times

Blending Functions Based on a Tension Spline Interpolation

Hermite transfinite interpolation based on cubic polynomials makes possible ex-

tensive skewness or overlap of the grid lines. This is the result of the use of K-

factors in the equations. The reason is that K factors control the magnitude of the 

first-derivatives, which in turn control the curvature of the lines. The curvature of 

these lines is also affected by normal vectors on the edge. It is possible to correct 

these factors by implementing normalised boundary vectors. Although this ap-

proach is simple for a two-boundary method, it requires special attention in the 

case of a four-boundary method, because of the constraint on orthogonality in the 

interior and boundary points. 
Similar control of the curvature of lines can be achieved if blending functions 

based on the tension spline interpolation are used instead of Hermite blending 

functions. The tension spline interpolation changes its nature with change in the 

tension parameter  which was first introduced by Thompson et al (1985). 
To use blending functions based on tension spline interpolation, the Hermite 

blending factors in equation (3.46) should be replaced by:
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where the coefficients are defined as:
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The curvature of grid lines is now controlled by the tension parameter . If the 

tension parameter increases to infinity (   ), blending functions 

         1 2 3 41 , , 0 and 0h s s h s s h s h s     , based on the tension 

spline interpolation, become linear. However, decrease in this factor to zero 

( 0  ) causes the blending functions to become cubic polynomials. This fea-

ture gives significant flexibility to the method. Therefore, equation (3.57) can be 
used to interpolate any function in the interval (0,1) of the computational coordi-

nate if the function values and first derivatives are known at the end points of the 

interval. The flexibility of this method ensured its significant role in the grid gen-

eration of screw machines.

3.4.3 Simple Unidirectional Interpolation 

There are cases where the complex, time and space consuming approach presented 

in the previous section is not essential for achieving satisfactory meshes. This is 

especially true for regions of less-complex boundary shapes, when boundary or-

thogonalisation is required, or for initial meshes for more complex domains. This 

is the case of the outlet port or oil injection port, for example. The idea is to use a 
simple unidirectional interpolation instead of a transfinite interpolation, as pro-

posed by Zhou (1998). Interpolation is applied between two opposite, non-

contacting boundaries of a two-dimensional domain. The method, although sim-

ple, can be easily compared with the two-boundary transfinite interpolation 

method, because its nature is originally two-dimensional. However, the same 
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method can be applied to all four boundaries of the domain if unidirectional inter-

polation is applied in turn to both pairs of boundaries. 

Consider the case in Figure 3-15 in which a physical domain in the x-y coordi-

nate system has to be mapped by the use of a computational domain in the -

coordinate system. Both the  and  coordinates of the computational domain 
vary between 0 and 1. Uni-directional interpolation in the following mathematical 

expression is applied to obtain the grid points of the physical domain:

       
       

0 1 0
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(3.59)

The stretching functions  and  are defined by Lagrange interpolation as:
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(3.60)

where w and w are weight functions of the appropriate coordinates and of the 
constant m. The aim of this constant is to control the effect of boundary stretching 

functions 1 and 0. The weight functions are:
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. (3.61)

The exponent m in the above equations takes the values of 1, 2 or 3 which corre-

spond to linear, quadratic and cubic transformation between the opposite bounda-

ries respectively. Stretching functions on the boundaries, which are implemented 

in equation (3.60), are calculated as a projection of the appropriate computational 

boundary on the x or y axis. Which axis is used for the projection depends on the 

difference obtained between the two end points on that boundary. If the difference 

between the end points on the original physical coordinate differs from zero, then 

that coordinate is used. The specification is given with:
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(3.62)

and
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(3.63)

Examples of use of a simple unidirectional interpolation are given in Figure 3-20. 

Figure 3-20 Numerical meshes generated by simple unidirectional interpolation

The use of a linear weight function is presented in Figure 3-20a. The final mesh is 

very similar to the one generated by a Lagrange TFI and even the effort required 

to obtain the result is almost the same. A quadratic weight function Figure 3-20b 

gives a better result for simple numerical meshes. However, for complex meshes it 

usually gives overlapping grid lines in regions where the mesh changes rapidly. 

More importantly, the generation of derivatives on boundaries depends on the ab-

solute position of the boundary in the physical domain. This causes unwanted and 

unphysical curvature of the inner grid lines. Therefore, it appears to be almost un-

acceptable for the generation of complicated screw compressor grids. A similar 

situation occurs with a cubic weight function Figure 3-20c, which produces even 

higher uncertainties about the mesh.

3.4.4 Grid Orthogonalisation

By combining the analytical grid generation methods mentioned above, it should 

generally be possible to produce a satisfactory grid for the CFD analysis of screw 

machine flows. If this is not the case, as for rotors with a very small radius on the 
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lobe tips, orthogonalisation and smoothing, together with boundary adaptation 

must be applied. The approach to orthogonalisation of a screw compressor grid is 

similar to one suggested by Lehtimaki (2000). 

Figure 3-21 Orthogonalisation to the boundary line j=0

Ortho transfinite interpolation with Hermite blending factors provides inherent or-

thogonality properties. However, this is controlled by K-factors on boundaries 

which in certain cases lead to overlapping of the grid lines. The orthogonalisation 

proposed here is, however, independent of the grid generation process and, there-

fore, can be performed on any grid generated in advance. This can lead to signifi-

cant savings in the computational effort otherwise wasted in generation of an or-

thogonal grid. The method is based on the moving of the computational point 

towards its orthogonal projection normal to the boundary, as presented in Figure

3-21. 

The position of a numerical point in the physical domain, calculated by some 
algebraic grid generating method, which has to be orthogonalised, is given by vec-

tor 
,'i jr while the perpendicular projection of that point to the normal of the 

boundary is 
,"i jr . A weighting factor between the original point 

,'i jr and the pro-

jected point is applied to avoid over specification caused by any discrepancy be-

tween the two boundaries. The new point is therefore defined by its radius vector: 

, , , , ,
(1 ) ' "

i j i j i j i j i j
w w  r r r (3.64)

The weighting factor has an exponential form:
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(3.65)
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where 2 2

, , ,0 , ,0( ) ( )i j i j i i j i        are the arc-length values. The first term 

in the equation is used for damping of the interior of the grid while the second af-

fects damping at the boundary line. Coefficients are provided to control the 

amount of damping. Both coefficients in equation (3.65) should have positive val-

ues. Higher values of C1 make damping of the orthogonalisation to the interior of 

the domain higher, while a higher C2 reduces the region which is orthogonalised to 

the central part of the boundary. The intensity of orthogonalisation is always 

damped to a certain level defined by the coefficients C1 and C2. It implies that the 
orthogonalisation procedure can be applied many times in succession. Each repeti-

tion leads to further orthogonalisation of the mesh. 

Figure 3-22 Comparison of different grid generation methods

Three numerical meshes are compared in Figure 3-24. Case a) is a standard TFI 

with Lagrange blending functions which gives a regular but non-orthogonal mesh. 

This mesh is later used as the basis for the orthogonalisation process. The middle 

case b) is Ortho TFI with Hermite blending functions. The K factors are set to 0.2 

to avoid overlapping of grid lines. Therefore, the lines in the main domain tend to 

be linear, while in the clearance gaps these become more curved but, often, not 

properly controlled. In the third case c), the mesh generated by standard TFI (case 

a) is additionally orthogonalised. The result achieved by orthogonalisation in c) is 

better than both the previous cases. Although the damping of orthogonalisation of 

grid lines is set to be high, the mesh is orthogonal in both the main domains and 
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the gaps. The mesh is more consistent, and regular with lower values of aspect and 

expansion ratios than in both the previous cases. 

Because of its obvious advantages, this method is always applied for the gen-

eration of the final mesh used for finite volume calculation of fluid flow in screw 

machinery. It can be even further improved by smoothing the numerical mesh, as 

is described in the next section.

3.4.5 Grid Smoothing

Discontinuities which appear at the mesh boundary, despite the mesh being or-

thogonalised, propagate in the interior of the domain, causing cells along these 

lines to remain non orthogonal. The problem can be conveniently solved by intro-

ducing a smoothing procedure. The following formula is among the easiest to ap-

ply:

 
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, , 1, , 1,

1
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(3.66)

where C is constant and n=0,1,2, …,N is the number of repetitions. This constant 

must satisfy condition 0.5C  to preserve the stability of the method. 

Equation (3.66) can be repeatedly applied as many times as required to obtain 

a smooth grid. However, its use can affect orthogonality on the boundaries and, 

therefore, it must be used with care. The difference between a mesh to which 

smoothing is not applied (left) and a smooth grid is shown in Figure 3-23.

Figure 3-23 Application of smoothing function
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3.4.6 Moving Grid

A numerical mesh generated by methods presented previously consists of vertex, 

cell and region definitions. Each vertex is uniquely defined by its coordinate in an 

absolute coordinate system:

( , , , )
i i

x y z r r , (3.67)

and the vertex number Vi. Control volumes, i.e. computational cells are generally 

hexahedral, defined by eight vertices. These can also be deformed by merging ver-

tices, Figure 3-9.

Rotor movement in a screw machine is rotation around the rotor axis. The 

male and female rotors rotate in opposite directions to each other at angular speeds 

proportional to the number of lobes z1/z2. 
To simulate rotation of the rotors by movement of the numerical mesh, one has 

only to define a new vertex position before starting the calculation for each time 

step. By this means, the cells are moved and deformed without any redefinition 

other than specifying new positions of the vertices. Although, the inner boundary 

of the mesh, which belongs to a rotor, rotates around the axis, the other one, repre-

sented by the rack and housing does not rotate. The imaginary rack plane used to 

divide the working chamber of the screw machine rotors in two parts is visible on 

the main rotor domain in Figure 3-24. It is connected to the housing bore of the 

machine along a straight line where the bores of the male and female rotors con-

nect. The rack plane moves in translation with the speed of the male rotor pitch 

circle. However, the other part of the same boundary, which represents the ma-
chine housing, rotates at the same angular speed as the rotor. Therefore, a complex 

combination of rotation and translation of the outer boundary has to be performed. 

It seems almost impossible to do that without disturbing the consistency of the 

mesh. Therefore, another approach is used.

The rotors of a screw machine are specially profiled helical gears. These are 

completely specified by the profile coordinates, rotor length and helix angle. The 

coordinates of the profile explicitly define the rotor diameter. One can imagine 

that the movement of the rotor domain can be simulated by removing the last cross 

section segment on one side of the rotor, when all the remaining vertices are 

moved axially along the axis such that only their z coordinate is changed and fi-

nally an appropriate segment is added to the other side of the rotor. By this means, 
the rotor is mapped in the following time step with the same number of vertices 

whose positions are only redefined, while the cell definitions remain unchanged. 

This procedure is simple and reliable but an additional file, containing vertices 

with an extended number of cross sections, has to be generated. 
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Figure 3-24 Moving strategy for screw machine numerical mesh

In Figure 3-24, a mesh which consists of a number of cross sections along the z

axis is shown. Cross sections are defined at equal distances from each other 

1 lobe

Lz
z n

  ,

where L is the rotor length, z1 is the number of teeth on the male rotor and nlobe is 

the number of cross sections for one interlobe distance on the z axis. By this 

means, the cell length in the axial direction is specified as constant for all the cells 

in the domain. This has great advantages for the grid movement, but its weak point 

is that the time step and machine rotational speed are directly coupled. To show 

that, a unit angle is defined as 

1

h

lobez n


  , (3.68)

which defines rotation between the two time steps, while the time step is 
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60
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 , (3.69)

where n is the speed of rotation, (rpm). Therefore, the time step is inversely pro-

portional to the speed of rotation. That, in turn, means that the numerical mesh has 

to be changed for different rotation speeds in order to keep the ratio of time and 

spatial step constant. It’s not always essential to keep the ratio constant but it is 

certainly limited by Courant stability conditions which give a maximum allowed 
ratio of time and spatial discretisation as:

c

u c t

x


 



(3.70)

where c is the speed of sound and c is a parameter which according to Peric 
(1990) depends on the particular time advance method used.

3.5 Computer Program

The procedures described in this chapter have been employed to form a stand 

alone CAD-CFD interface to generate a 3-D mesh of a screw machine working 
domain. The interface program is written in Fortran and is named SCORG, which 

stands for Screw COmpressor Rotor grid Generator. The program calculates a 

numerical mesh for a screw machine based on given rack or rotor curves, by 

means of boundary adaptation and transfinite interpolation for all domains within 

the screw machine. These are: the working chamber, which surrounds the rotors 

and is divided into two parts, of which one belongs to each male and female rotor, 

the inlet and outlet ports and other openings, which may be pre-specified, like an 

oil injection port, or specified by a user program.

Transfer files are produced and imported into a numerical solver. Separate 

files are produced for the node, cell and region definitions for each domain of 

screw machine geometry. The transfer files also contain user subroutines for the 

numerical solver. These specify the initial and boundary conditions, the grid 
movement, the control parameters and the post-processing functions. The interface 

files are imported into a commercial CFD package through its pre-processor. 
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4Applications

4.1 Introduction

This chapter demonstrates the scope of the method developed for the three-

dimensional analysis of a screw compressor. The CFD package used in this case

was COMET developed by ICCM GmbH Hamburg, today a part of CD-Adapco. 

The analysis of the flow and performance characteristics of a number of types of 

screw machines is performed to demonstrate a variety of parameters used for grid 
generation and calculation.

The first example is concerned with a dry air screw compressor. A common 

compressor casing is used with two alternative pairs of rotors. The rotors have 

identical overall geometric properties but different lobe profiles. The application 

of the adaptation technique enables convenient grid generation for geometrically 

different rotors. The results obtained by three dimensional modelling are com-

pared with those derived from a one-dimensional model, previously verified by 

comparison with experimental data. The relative advantages of each rotor profile 

are demonstrated.

The second example shows the application of three dimensional flow analysis 

to the simulation of an oil injected air compressor. The results, thus obtained, are 

compared with test results obtained by the authors from a compressor and test rig, 
designed and built at City University. They are presented in the form of both inte-

gral parameters and a p- indicator diagram. Calculations based on the assump-

tions of the laminar flow are compared to those of turbulent flow. The effect of 

grid size on the results is also considered and shown here.

The third example gives the analysis of an oil injected compressor in an am-
monia refrigeration plant. This utilises the real fluid property subroutines in the 

process calculations and demonstrates the blow hole area and the leakage flow 

through the compressor clearances.

The fourth example presents two cases, one of a dry screw compressor to show 

the influence of thermal expansion of the rotor on screw compressor performance 

and one of a high pressure oil-flooded screw compressor to show the influence of 

high pressure loads upon the compressor performance. 
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4.2 Flow in a Dry Screw Compressor

Dry screw compressors are commonly used to produce pressurised air, free of any 

oil. A typical example of such a machine, similar in configuration to the compres-

sor modelled, is shown in Figure 4-1. This is a single stage machine with 4 male 

and 6 female rotor lobes. The male and female rotor outer diameters are 142.380 

mm and 135.820 mm respectively, while their centre lines are 108.4 mm apart. 

The rotor length to main diameter ratio l/d=1.77. Thus, the rotor length is 252.0 

mm. The male rotor with wrap angle w=248.40 is driven at a speed of 6000 rpm 
by an electric motor through a gearbox. The male and female rotors are synchro-

nised through timing gears with the same ratio as that of the compressor rotor 

lobes i.e. 1.5. The female rotor speed is therefore 4000 rpm. The male rotor tip 

speed is then 44.7m/s, which is a relatively low value for a dry air compressor. 

The working chamber is sealed from its bearings by a combination of lip and laby-

rinth seals.
Each rotor is supported by one radial and one axial bearing, on the discharge 

end, and one radial bearing on the suction end of the compressor. The bearings are 

loaded by a high frequency force, which varies due to the pressure change within 

the working chamber. Both radial and axial forces, as well as the torque change 

with a frequency of 4 times the rotational speed. This corresponds to 400Hz and 

coincides with the number of working cycles that occur within the compressor per 

unit time.

Figure 4-1 Cross section of a dry screw compressor

The compressor takes in air from the atmosphere and discharges it to a receiver at 

a constant output pressure of 3 bar. Although the pressure rise is moderate, leak-

age through radial gaps of 150 m is substantial. In many studies and modelling 

procedures, volumetric losses are assumed to be a linear function of the cross sec-

tional area and the square root of pressure difference, assuming that the interlobe 
clearance is kept more or less constant by the synchronising gears. The leakage 

through the clearances is then proportional to the clearance gap and the length of 

the leakage line. However, a large clearance gap is needed to prevent contact with 
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the housing caused by rotor deformation due to the pressure and temperature 

changes within the working chamber. Hence, the only way to reduce leakage is to 

minimise the length of the sealing line. This can be achieved by careful design of 

the screw rotor profile. Although minimising leakage is an important means of 

improving a screw compressor efficiency, it is not the only one. Another is to in-

crease the flow area between the lobes and thereby increase the compressor flow 

capacity, thereby reducing the relative effect of leakage. Modern profile genera-

tion methods take these various effects into account by means of optimisation pro-
cedures which lead to enlargement of the male rotor interlobes and reduction in 

the female rotor lobes. The female rotor lobes are thereby strengthened and their 

deformation thus reduced. 

To demonstrate the improvements possible from rotor profile optimisation, a 

three dimensional flow analysis has been carried out for two different rotor pro-

files within the same compressor casing, as shown in Figure 4-2. Both rotors are 

of the “N” type and rack generated.

Figure 4-2‘N’ Rotors, Case-1 upper, Case-2 lower

Case 1 is an older design, similar in shape to SRM “D” rotors. Its features imply 

that there is a large torque on the female rotor, the sealing line is relatively long 

and the female lobes are relatively weak.

Case 2, shown on the bottom of Figure 4-2, has rotors optimised for operating 

on dry air. The female rotor is stronger and the male rotor is weaker. This results 
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in higher delivery, a relatively shorter sealing line and less torque on the female 

rotor. All these features help to improve screw compressor performance.

The results of these two analyses are presented in the form of velocity distribu-

tions in the planes defined by cross-sections A-A and B-B, shown in Figure 4-1.

In the case of this study, the effect of rotor profile changes on compressor inte-

gral performance parameters can be predicted fairly accurately with one-

dimensional models, even if some of the detailed assumptions made in such ana-

lytical models are inaccurate. Hence the integral results obtained from the three-
dimensional analysis are compared with those from a one-dimensional model.

4.2.1 Grid Generation for a Dry Screw Compressor

In Case-1, the rotors are mapped with 52 numerical cells along the interlobe on the 

male rotor and 36 cells along each interlobe on the female rotor in the circumfer-

ential direction. This gives 208 and 216 numerical cells respectively in the circum-

ferential direction for the male and female rotors. A total of 6 cells in the radial di-

rection and 97 cells in the axial direction is specified for both rotors. This 

arrangement results in a numerical mesh with 327090 cells for the entire machine. 

The cross section for the Case-1 rotors is shown in Figure 4-3. The female rotor is 

relatively thin and has a large radius on the lobe tip. Therefore, it is more easily 

mapped than in Case-2 where the tip radius is smaller, as shown in Figure 4-4.

Figure 4-3 Cross section through the numerical mesh for Case-1 rotors

The rotors in Case 2 are mapped with 60 cells along the male rotor lobe and 40 
cells along the female lobe, which gives 240 cells along both rotors in the circum-

ferential direction. In the radial direction, the rotors are mapped with 6 cells while 

111 cells are selected for mapping along the rotor axis. Thus, the entire working 

chamber for this compressor has 406570 cells. In this case, different mesh sizes 

are applied and different criteria are chosen for the boundary adaptation of these 

rotors. The main adaptation criterion selected for the rotors is the local radius cur-
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vature with a grid point ratio of 0.3 to obtain the desired quality of distribution 

along the rotor boundaries. By this means, the more curved rotors are mapped 

with only a slight increase in the grid size to obtain a reasonable value of the grid 

aspect ratio. To obtain a similar grid aspect ratio without adaptation, 85 cells 

would have been required instead of 60 along one interlobe on the female rotor. 

This would give 510 cells in the circumferential direction on each of rotors. If the 

number of cells in the radial direction is also increased to be 8 instead of 6 but the 

number of cells along axis is kept constant, the entire grid would contain more 
then a million cells which would, in turn, result in a significantly longer calcula-

tion time and an increased requirement for computer memory. 

Figure 4-4 Cross section through the numerical mesh for Case-2 rotors

4.2.2 Mathematical Model for a Dry Screw Compressor

The mathematical model used is based on the momentum, energy and mass con-

servation equations as given in Chapter 2. The equation for space law conserva-

tion is calculated in the model in order to obtain cell face velocities caused by the 
mesh movement. The system of equations is closed by Stoke’s, Fourier’s and 

Fick’s laws and the equation of state for an ideal gas. This defines all the proper-

ties needed for the solution of the governing equations.

4.2.3 Comparison of the Two Different Rotor Profiles 

The results obtained for both Case 1 and Case 2 compressors are presented here. 

To establish the full range of working conditions and to obtain an increase of pres-

sure from 1 to 3 bars between the compressor suction and discharge, 15 time steps 

were required. A further 25 time steps were then needed to complete the full com-

pressor cycle. Each time step needed about 30 minutes running time on an 800 

MHz AMD Athlon processor. The computer memory required was about 400 MB.
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In Figure 4-5 the velocity vectors in the cross and axial sections are compared. 

The top diagram is given for Case-1 rotors and the bottom one for Case-2. As may 

be seen, the Case 2 rotors realised a smoother velocity distribution than the Case 1 

rotors. This may have some advantage and could have increased the compressor 

adiabatic efficiency by reduction in flow drag losses. In both cases, recirculation 

within the entrapped working chamber occurs as consequence of the drag forces in 

the air as shown in the figure. On the other hand, different fluid flow patterns can 

be observed in the suction port. The velocities within the working chambers and 
the suction and discharge ports are kept relatively low while the flow through the 

clearance gaps changes rapidly and easily reaches sonic velocity. 

Figure 4-5 Velocity field in the compressor cross section for Case1 and Case2 rotors
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Figure 4-6 Velocity field in the compressor axial section for Case1 and Case2 rotors

These differences are confirmed in the view of the vertical compressor section 

through the female rotor axis, shown in Figure 4-6. In Case 2, lower velocities are 

achieved not only in the working chamber but also in the suction and discharge 

ports. In the suction port, this is significant because of the fluid recirculation 
which appears at the end of the port. This recirculation causes losses which cannot 

be recovered later in the compression process. Therefore, many compressors are 

designed with only an axial port instead of both, radial and axial ports. Such a 

situation reduces suction dynamic losses caused by recirculation but, on the other 

hand, increases the velocity in the suction chamber which in turn decreases effi-

ciency. Some of these problems can be avoided only by the design of screw com-

pressor rotors with larger lobes and a bigger swept volume and a shape which al-

lows the suction process to be completed more easily. However, rotor profile 

design based on existing one-dimensional procedures neglects flow variations in 
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the ports and hence is inferior for this purpose. In such cases, only a full three di-

mensional approach such as this, will be effective. 

Similarly, in the discharge port, velocities are lower for Case 2 then for Case 1. 

This is an additional advantage of larger flow cross sectional area of rotors, which 

in turn, gives a larger discharge port through which the same or even a larger 

amount of gas is delivered at lower speed. Additionally, the longer clearance gaps 

on the female rotor tip give more resistance to airflow and this reduces the clear-

ance volume losses through this passage.

Figure 4-7 Pressure field in the cross section, Case 1 – Top; Case 2 – Bottom

The rise in pressure is similar across the compressor working domains in both 

cases as presented in Figure 4-7. However, leakages in the second case are smaller 

due to the shorter sealing line and consequently the pressure rise is slightly 
steeper. This affects the consumed power, which is lower in Case 2 than in Case 1, 

despite the higher compressor delivery. These benefits are also visible in Figure

4-9, in which the diagrams of pressure against angle of rotation are presented and 

compared with each other. 
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Figure 4-8 Comparison of Pressure-angle diagrams for 1-D and 3-D models

Left - Case 1; Right – Case 2

The 3-D simulations have been validated by comparison with the results obtained 
from the one-dimensional software, which has been verified and regarded as reli-

able for compressor design. More about that software can be found in Stosic et al

(2005). Results of the comparison are shown in Figure 4-8.

Figure 4-9 Comparison of Pressure-angle diagrams for both cases

Agreement of the presented results is good for the compression within the en-

trapped chamber represented by the middle part of the p- diagram. However, 
some differences are visible in the suction and discharge regions. A higher pres-

sure drop is obtained with the 3-D model than with the 1-D model for both rotor 
cases. This may be due to the inability of a 1-D model to predict dynamic flow 

losses in both the suction and discharge ports caused by substantial recirculation, 
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as shown in Figure 4-6. This opens many questions about how the shape and posi-

tion of the inlet and outlet ports can be altered in order to improve screw compres-

sor design. Thus, the mathematical model established in this book and the grid 

generating tool developed for that purpose can be used to explore this further.

Figure 4-10 Radial bearing forces, Case 1 -top, Case 2 –bottom
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Forces on the bearings are a consequence of the pressure differences within the 

screw compressor working chambers. Radial bearing forces on both the suction 

and discharge sides are presented in Figure 4-10. 

Figure 4-11 Comparison of the compressor torque in Case 1 and Case 2
Top – Both rotors; Bottom – Female rotors
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The average values are practically the same in both cases. However, the distribu-

tion of forces upon the suction and discharge sides differs for the two cases ana-

lysed. The forces on both the male and the female radial bearings are lower in 

Case 2 than in Case 1, while the bearings on the discharge side are loaded with 

almost equal forces in both cases. Although the radial forces are similar, the 

torque is significantly different for the two cases. The torque is a function of the 

compressor suction and discharge pressures, which, according to Figure 4-9 are 

almost the same. However, the profile shape is significantly different for these two 
cases and consequently the distribution of torque on the male and female rotors is 

not the same. In Case 2 the torque on the male rotor is higher than in Case 1 but 

the torque transmitted to the female rotor is significantly lower, Figure 4-11. The 

bottom diagram of that figure shows that the torque on the female rotor is reduced 

from 10 (Nm) in Case 1 to practically zero in Case 2, while at the same time the 

female rotor is thicker. The increased thickness gives many advantages to the ro-

tors in Case 2. Among others, the most important features are: lower female rotor 

deformation caused by the pressure, a greater flow cross sectional area and a 

shorter sealing line.

All the features listed above, confirmed by the diagrams, obtained from the 3-

D CFD calculations, show that the modern rotors in Case 2 have significant ad-

vantages over the more traditional rotors of Case 1. This is also confirmed by 
comparison of the integral parameters given in Table 4-1. Here it can be seen that 

the specific power of the compressor with Case 2 rotors is 12% lower then in the 

other case. This indicates that both the input power is lower and the delivered flow 

rate is greater. This is confirmed by a 12% higher volumetric efficiency v and a 

10% higher thermal efficiency i for the compressor with the Case 2 rotor profile.

Table 4-1 Comparison of the integral parameters for the two cases

V (m3/min)
P (kW) Pspec(kW/m3min) v (%)  (%)

Case 1 17.3 56.8 3.28 74.4 61.0

Case 2 19.6 55.9 2.84 83.9 67.5

4.3 Flow in an Oil Injected Screw Compressor

Figure 4-12 shows an oil-injected screw compressor, designed and built at City

University. The cross section in Figure 4-13 shows how the two rotors are sup-
ported by six bearings. Two of these are thrust bearings on the discharge side on 

the far right of the figure, while the others are cylindrical roller bearings. Oil is

supplied through an injection port in order to seal, cool and lubricate the rotors. 

The same oil is supplied to the bearings, in order to lubricate them. Therefore, no 

seals are required within the compressor. Only the driving shaft requires an exter-

nal shaft seal to protect the compressor from the surroundings, as presented on the 

far left of this figure. Three cross sectional planes are indicated in Figure 4-13. 

Two of them are normal to the rotor axes indicated by A-A and B-B. The first one 
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crosses the suction port, rotors and the oil injection port while the other is closer to 

the discharge port. The remaining section is parallel to the rotor axes lying be-

tween the rotors. All results in this example are presented for these three cross sec-

tions.

Figure 4-12 Oil injected screw compressor with ‘N’ rotors.

Figure 4-13 Section of the analysed oil injected compressor

The Rotor profiles are of the ‘N’ type with a 5/6 lobe configuration. The rotor 

outer diameters are 128 and 101 mm for the male and female rotors respectively, 
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and their centre lines are 90 mm apart. The rotor length to diameter ratio is 1.66. 

Both, a drawing and photograph of the rotors are presented in Figure 4-14.

Figure 4-14 Drawing and photograph of 5/6 male and female ‘N’ rotors
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4.3.1 Grid Generation for an Oil-Flooded Compressor

The male and female rotors have 40 numerical cells along each interlobe in the 

circumferential direction, 6 cells in the radial direction and 112 in the axial direc-

tion. These form a total number of 444,830 cells for both rotors and the housing. 

To avoid the need to increase the number of grid points, if a more precise calcula-

tion is required, an adaptation method has been applied to the boundary definition.

The number of time changes was 25 for one interlobe cycle in this case. The 
total number of time steps needed for one full rotation of the male rotor is then 

125. The number of cells in the rotors was kept the same for each time step. To 

achieve this, a special grid moving procedure was developed in which the time 

step was determined by the compressor speed, as explained in Chapter 4. The nu-

merical grid for the initial time step is presented in Figure 4-15.

Figure 4-15 Numerical grid for oil injected screw compressor with 444,830 cells

4.3.2 Mathematical Model for an Oil-Flooded Compressor

The mathematical model consists of the momentum, energy, mass and space equa-
tions, as described in section 2.2, but an additional equation for the scalar property 

of oil concentration was added to enable the influence of oil on the entire com-
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pressor performance to be calculated. The constitutive relations are the same as in 

the previous example. The oil is treated in the model as a ‘passive’ species, which 

does not mix with the background fluid - air. Its influence on the air is accounted 

for through the energy and mass sources which are added to or subtracted from the 

appropriate equation of the main flow model. In this case, the momentum equation 

is affected by drag forces as described earlier.

To establish the full range of working conditions and starting from a suction 

pressure of 1 bar to obtain an increase in pressure of 6, 7, 8 and 9 bars at dis-
charge, a numerical mesh of nearly 450,000 cells was used. For each case only 25 

time steps were required to obtain the required working conditions, followed by a 

further 25 time steps to complete a full compressor cycle. Each time step needed 

about 30 minutes running time on an 800 MHz AMD Athlon processor. The com-

puter memory required was about 450 MB.

4.3.3 Comparison of the Numerical and Experimental results for an Oil-

Flooded Compressor

In the absence of velocity field measurements in the compressor chamber, an ex-

perimentally obtained pressure history within the compressor cycle and the meas-

ured air flow and compressor power served as a valuable basis to validate the re-

sults of the CFD calculation. To obtain these values, the 5/6 oil flooded 

compressor, already described, was tested on a rig installed in the compressor labo-
ratory at City University London, Figure 4-16.

Figure 4-16 Oil-Injected air screw compressor 5/6-128mm (a=90mm) in the test bed
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The test rig meets all Pneurop/Cagi requirements for screw compressor acceptance 

tests. The compressor was tested according to ISO 1706 and its delivery flow was 

measured following BS 5600. 

The pressures were measured with high quality pressure transducers, with 

readings taken at the inlet to the compressor, discharge from the compressor and 

in the separator. 

The temperatures were measured by FeCo thermocouples at the inlet to and 

discharge from the compressor and after the oil separator. Measurements of tem-
perature were also taken of both, the oil and the cooling water at the inlet end of 

the oil cooler. The oil flow rate was calculated from the cooler and compressor 

energy and mass balances.

Torque was measured by a laboratory type torque meter transducer IML TRP-

500 connected between the engine and the compressor driving shaft. The com-

pressor was driven by a diesel engine prime mover of 100 kW maximum output, 

which could operate at variable speed. The compressor speed was measured by a 

frequency meter and the signal was transferred to a data logger after converting to 

current.

Figure 4-17 Computer screen of compressor test rig measuring program

The compressor flow was measured by an orifice plate according to BS 5600 with 

the differential pressure measured by a pressure transducer PDCR 120/35WL over 

an operating range of 0-200 kPa.

The measured values of all relevant pulsating quantities were used to obtain 

details of the thermodynamic cycle. Of these, the pressure in the trapped volume 
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was the most significant since it was required to plot the machine p-V diagram. 

Accordingly, a method was developed to construct an entire p-V diagram from the 

recording of pressure changes at only 4 discrete points in the machine casing. 

Endevco piezoresistive transducers E8180B were used to measure the instan-

taneous values of the absolute pressure in the compressor. Each transducer re-

corded the pressure in one interlobe space. Starting from the suction end, 4 trans-

ducers were positioned in the compressor casing to record the changes in each 
consecutive interlobe space. When plotted in sequence they gave a pressure-time 

diagram for the whole compressor working cycle.

Figure 4-18 Velocity vectors in the two compressor cross sections 
Top – cross section A-A through the suction port, Bottom – cross section B-B

All measured values were automatically logged and transferred to a PC through a 

high-speed InstruNet data logger. The data acquisition system enabled high speed 
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measurements to be made at frequencies of more then 2 kHz. An acquisition and 

measuring program for the PC was written for this in Visual Basic that permitted 

online measurement and calculation of the compressor working parameters. A 

computer screen record of this measuring program is given in Figure 4-17.

In Figure 4-18 the velocity vectors in two cross sections are presented. One of 

these is through the inlet port and oil injection pipe and the other is close to dis-

charge. Figure 4-19 shows the velocities in the vertical section through the com-

pressor. High velocity values in the gaps, both between the rotors and their hous-
ing and between the two rotors, are generated by the sharp pressure gradients 

through the clearances. These are clearly distinguished from the velocities in the 

interlobe regions where the fluid flows relatively slowly. The fluid flow is caused 

there only by movement of the numerical mesh, which is generated in a manner to 

follow the movement of the rotors in time. The top diagram shows the cross sec-

tion through both the suction port and oil injection openings. Recirculation in the 

suction port is substantial and seems to be high because of the position of the oil 

injection hole. If the oil injection had been positioned further downstream, the re-

circulation would have been reduced. The bottom diagram, which shows a cross 

section close to the discharge port, indicates that more recirculation is present in 

the lobes with lower pressures, as is visible in the top of the diagram. The veloci-

ties in the high pressure regions are smoothed to relatively low values, to some ex-
tent similar to the wall velocities. 

The velocity field in the axial section C-C, which crosses both rotors along the 

rotor bore cusp, is shown in Figure 4-19.

Figure 4-19 Velocity vectors in the compressor axial section C-C

Smoothing of the velocities is visible in the high pressure regions at the right end 

of the figure. In the upper portions of the compressor, where both, low pressures 

and low pressure gradients occur, flow patterns are more curved, thus indicating 

flow swirls. There is also recirculation in the far end of the suction port while, at 

the same time, the flow through the axial part of the port is more intensive.
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The oil distribution and pressure field in the cross section A-A are shown on the 

top and bottom diagrams of Figure 4-20 respectively. As noted earlier, some fluid 

recirculates from the working chamber to the suction port through the compressor 

clearances. Figure 4-20 indicates that together with air, the oil escapes from the 

pressurised working chamber to the suction port through the rotor-to-rotor leakage 

paths. The presence of oil in the suction port was also observed visually during 

tests on this compressor. However, no measurements were made of it. 

Figure 4-20 Cross section through the inlet port and oil injection port A-A
Top – mass concentration of oil, Bottom - Pressure distribution

Some limited results of an experimental investigation on oil distribution within a 

screw compressor are published by Xing et al (2001). In that case, the oil flow was 

observed by making the compressor casing from a transparent material. Although 
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the authors do not have a complete record of their results, it appears from what 

they published that the oil flow patterns obtained from the 3-D calculations are 

similar to those obtained in their experiments. The presence of hot oil in the suc-

tion port, although beneficial for the lubrication of the rotors, increases the gas 

temperature before the working chamber is closed. This reduces the trapped mass 

and hence the compressor capacity and is another of the effects which are not 

modelled by one-dimensional models of screw compressor processes.

Figure 4-21 shows the pressure distribution within the compressor with a male 
rotor speed of 5000 rpm. This figure indicates that the pressure within the each 

working chamber is almost uniform and that it can be regarded as such for almost 

all calculations and comparisons. Due to that, the results obtained from the 3-D 

calculations may be compared with those obtained from measurements.

Figure 4-21 Axial section between two rotors - Pressure distribution

The change in pressure within the working chamber is shown in Figure 4-22 as a 

function of the male rotor shaft angle. Here the pressure-shaft angle diagrams are 

compared with results from the compressor tests. The results shown are for dis-

charge pressures of 6, 7, 8 and 9 bar absolute at a shaft speed of 5000 rpm. In all 

cases, the inlet pressure was 1 bar. The agreement between the predicted and 

measured values is reasonable, especially during the compression process. Some 

differences are recorded in the suction and discharge regions. Those in the suction 

region are probably the consequence of the flow fluctuations visible in Figure

4-19, which shows that the flow during suction and at the very beginning of the 

compression is not so damped. On the other hand, the piezoresistive transducers 

used for the measurement of pressure are subjected to a higher error at lower pres-
sure differences, which are close to zero in these areas. The differences recorded 

at the high pressure end, during the discharge process, are probably generated be-

cause of the inability to capture real geometry accurately. The calculated discharge 

port was simplified from the real one. It was also mapped with a relatively low 

number of cells. The influence of the mesh size on the calculation accuracy is ana-

lysed in more detail in section 4.3.5.
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Figure 4-22 Pressure-shaft angle diagram; comparison of CFD calculations and 

measurements

The compressor radial bearing forces are presented in Figure 4-23. There, the 

force on the female rotor radial discharge bearing and the force on the male rotor 

radial suction bearing are given. The reason why these two radial bearings were 

selected for the diagram is that each of them is loaded with a higher force then its 
counterpart on the other rotor. It can be seen that both the mean value and ampli-

tude of the forces rise with the discharge pressure. More frequent dynamic load 

with higher amplitude puts a greater demand on the bearings. In compressor de-

sign, these have to be selected carefully to withstand such loads.

Figure 4-23 Radial bearing forces acting on supporting bearings

400350300250

P
re

s
s
u
re

 [
b
a
r]

Angle of rotation [deg]

200150100500
0

1

2

3

4

5

6

Measure - 6 bar
Measure - 7 bar
Measure - 8 bar
Measure - 9 bar
CFD Model - 6 bar
CFD Model - 7 bar
CFD Model - 8 bar

P-α diagram for the Screw Compressor
'N' profile, 5/6, 128mm, 5000rpm

CFD Model - 9 bar

7

8

9

10

4000

'N' profile, 5/6, 128mm, 5000rpm

3500

3000

2500

2000

1500

1000

500

0
0 50 100 150

Angle of rotation [deg]

R
a
d
ia

l 
F

o
rc

e
 [
N

]

200 250

Discharge - Female - 9 bar
Discharge - Female - 8 bar
Discharge - Female - 7 bar
Discharge - Female - 6 bar
Suction - Male - 9 bar
Suction - Male - 8 bar
Suction - Male - 7 bar
Suction - Male - 6 bar

300 350

Radial forces on the Screw Compressor bearings

www.mepcafe.com



4.3 Flow in an Oil Injected Screw Compressor 105

Diagrams of the torque on the male and female rotors versus the shaft angle, are 

shown in Figure 4-24. Changes in torque have the same frequency as those of the 

radial force or any other parameter of screw compressor processes that correspond 

to the product of the shaft speed and the number of lobes on the compressor male 

rotor. It is very important for a compressor, which works in the oil flooded opera-

tional mode, to have as low as possible torque on the female rotor which is usually 

driven by the male rotor by direct contact. The rotor profile of this compressor is 

such that the female rotor operates with a very small positive torque. 
The results obtained from the CFD simulation model are later used to calcu-

late such compressor integral parameters as the delivered flow rate and consumed 

power input. From them, the specific power and efficiencies are obtained by a 

procedure described in section 2.5. The estimated and measured values of the 

compressor delivery and input power are presented and compared in Figure 4-25

for all selected discharge pressures. 

Figure 4-24 Torque on the male and female rotors

The maximum difference between the estimated and measured power input is 8%, 
while the values of the compressor flow differ by up to 10%. The difference is lar-

ger for low discharge pressures where the calculations gave lower flow rates and 

higher power consumption than were measured. It implies that some effects of the 

compressor flow are not estimated well enough. The results presented for this 

compressor were obtained by calculation assuming the flow to be laminar. In the 

following section, a k- model of turbulence is incorporated in the flow calcula-
tion and the results are compared with the laminar flow calculations. 
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Figure 4-25 Comparison of the integral parameters at 5000 rpm shaft speed

4.3.4 Influence of Turbulence on Screw Compressor Flow

A standard k- model of turbulence is applied here and the results of the laminar 
and turbulent flow calculations obtained by these models within the same screw 

compressor are compared. Turbulence is implemented through the two additional 

governing equations of kinetic energy of turbulence and its dissipation, as ex-

plained in 2.2.5. These two equations are solved separately and the k and  values 
thus derived are used to balance the momentum and pressure equations through 

turbulence viscosity in the next iteration step. The next step approach is applied 

for two reasons. Firstly, profiles of turbulent kinetic energy and its dissipation 

contain more peaks than the main velocity profile and these are difficult to cap-

ture. Secondly, non-physical negative values of k and  can possibly appear in 
some cases which lead to numerical instability. An additional problem in the im-

plementation of the turbulence model to screw compressor calculations is the very 
high value of the ratio of the main compressor chamber dimensions to the clear-

ances. In order to maintain a block structured configuration of the numerical mesh, 

the number of cells in the main domain and in the clearances must be the same. 

This means that the numerical cells within a compressor change in size by about 

the same ratio. The kinetic energy of turbulence and especially its dissipation are 

both ‘stiff’ in such situations, which easily leads to calculation instability and ex-

cessive rise in dissipation rate. To explore such a situation, simple approximate 

calculations are applied to estimate the dissipation level and the scale of turbu-

lence, which are similar to calculations performed by Lumley (1999).

Turbulence is a phenomenon in which a part of mechanical energy of the main 

fluid flow is transformed to internal energy. It consists of three phases, namely
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production, transport and dissipation. In the production phase the kinetic energy of 

the main flow is transferred to the largest eddies that possibly can appear in the 

flow. Then the energy is passed on to eddies of progressively smaller scale until 

the smallest value is reached. This constitutes the transport phase of turbulence. 

The energy passed to the smallest eddies is transformed to heat through the dissi-

pation phase. The amount of energy of turbulence dissipated per unit mass is 

called the dissipation . It is proportional to the energy of the turbulence and the 
natural time scale of the most energetic eddies. It can be expressed as:

3

3 2
2 u u k

u
l l l

    , (4.1)

where u is the velocity, l is the length scale of the most energetic eddies and k is 
the kinetic energy of turbulence. The smallest scale at which the energy is trans-

ferred to heat is called the Kolmogorov microscale,

3

4





 (4.2)

where  is the kinematic viscosity. According to Lumley (1999), it is an experi-
mental fact that the most energetic eddies, responsible for most of the turbulent 

transport, are about 1/6 of the size of the largest eddy. For a screw compressor this 

will be 1/6 of an interlobe or 1/6 of the clearance in the gaps. Bearing all these fac-

tors in mind, the following estimate is valid for the compressor under considera-

tion here.
In the interlobe: The size of an interlobe is obtained as the difference between 

the outer and inner rotor radii, =24.1 mm. This can be regarded as the size of the 
largest eddy which can fit in the interlobe. The size of the most energetic eddy will 

thus be 4l mm . The fluid velocity in that area is of the same order of magnitude 

as the rotor velocity. The male rotor rotates at 5000 rpm which gives 33.2 m/s tip 

speed and 20 m/s root speed. Assume that the turbulent velocity is twice the mean 

value of these two velocities, i.e. u  50 m/s. The kinematic viscosity of air at 20oC 

suction temperature is 
5 21.51 10 m s   . This gives a dissipation rate of 

73 10 30W kg M W kg    , and the length scale of the smallest eddy 

62 10 2m m    . The value of 30 MW/kg is enormous but the mass of air in 

the interlobe is only about 2 g and it remains there for very short time, in this case 

only about 2 ms. 

In the clearance: Assume the mean clearance size in this compressor is =100 

m. The size of the most energetic eddy in this case is 15l m . The velocity in 

the clearances rises to the speed of sound, which for a suction temperature of 20oC 

has the value of 341 m/s. For a discharge temperature of 150oC, the speed of 

sound is 422 m/s. If the density at discharge has increased six times from the suc-
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tion value, the kinematic viscosity becomes 6 25 10 m s   . In that case, the 

dissipation rate increases to the enormous value of 124 10 W kg   while the 

Kolmogorov microscale drops to a fraction of a micrometer, say 0.1 m. One 
should bear in mind that the leakage flow is less then 10% of the main flow which 
means that the mass in the clearances is one order of magnitude lower than that of 

the main flow. In addition, the time for which the fluid remains in the clearance 

gaps is only a fraction of the compressor cycle. Due to that, the energy wasted by 

turbulence in clearances is not large. 

The Reynolds number of turbulence in the main domain and in the clearances 

can be calculated from the above values using:

1 1
33 34 4

4

4 3 3 l
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l l u l

  



   
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   
. (4.3)

In the main domain, the Reynolds number of turbulence is 42.5 10lR   and in the 

clearances 28 10lR   . Assuming similarity of molecular and turbulent transport 

of momentum for gases, one can state that the effective viscosity is proportional to 

the velocity scale and the length scale of the process responsible for transport. 

Therefore, the measure of molecular transport is  and the measure of turbulent 

transport is T u l  . Then,

T
l

u l
R



 
  . (4.4)

Using the previous equation, values for turbulent or eddy viscosity are obtained in 

the main domain and in the clearances. These are 1 23.8 10T m s   in the main 

domain and 2 2
1.2 10T m s   in the clearances. These are far larger than the 

molecular viscosity. 

One more measure can be introduced here. This is the relative distance for which 

the turbulence will carry a property. That property can be either momentum or the 

fluid itself. The relative distance can be estimated from:

2

3
TL   , (4.5)

where  is the time for which the turbulence remains in a particular place. There-

fore, in the interlobe, turbulence will carry a property for 
2

2
0.68

3

L l
u   

 
, 
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while in the clearances 
2

2
0.63

3

L l
u 

 
  . From these two values, it may be 

concluded that turbulence plays some role in screw compressor processes. It is 

more important in the suction domain and interlobes exposed to the suction where 

turbulent viscosity can be four orders of magnitude higher than its molecular 

equivalent and where a property is transported by turbulence for about two thirds 

of the available interlobe space. Turbulence dies out in the compression chambers 

as the pressure increases and the velocity decreases and has no significant influ-

ence in the discharge domain. In the clearances, turbulent transport exists, but it 

lasts for an extremely short time and produces no excessive heat. However, the 
fluid is transported by turbulence for approximately two thirds of the available 

space in the clearances.

The values calculated above give an insight into the problems associated with 

turbulence. The turbulence effects here are estimated by a turbulence model based 

on the Reynolds averaged Navier-Stokes equations. Both, the kinetic energy of 

turbulence and its dissipation rate are high in certain regions of the compressor 

and remain there for an extremely short time. Their exact calculation requires a 

numerical mesh with a large number of numerical cells and a very short time step. 

As it was not practical to perform such calculations, the standard k-model is used 
here to show the ability of the model and to give values of the local and integral 

parameters of the calculated flow. These are compared with the results of calcula-

tions assuming laminar flow. The development of a turbulence model suitable for 

positive displacement machines is recommended for the future. 
In order to compare the significance of turbulent and laminar flow assumptions 

on compressor performance predictions, without including secondary influences, a 

further analysis was made on the compressor referred to earlier, in which the pres-

ence of oil was excluded. The numerical mesh taken for this purpose contains 

236,780 numerical cells. The discharge pressure was kept at 3 bar. The low dis-

charge pressure was preferred because of the larger difference in flow parameters 

between laminar flow calculations and measurements noticed under these condi-

tions. It seems that turbulence has more significant influence under these circum-

stances. The compressor speed was 5000 rpm.

The pressure distribution and velocity field for both the laminar and turbulent 

flow cases are compared in Figure 4-26. The laminar results on the top diagram 

and the turbulent ones on the bottom diagram are not significantly different. 
Higher velocities in the interlobes at low pressure are recorded with laminar flow 

calculations while the pressure fields seem to be very similar. 

The pressure rise in the compressor is compared in more detail in the pressure-

angle diagram, 

Figure 4-27. Only a small difference is recorded between the two flows where 

a slightly higher pressure was obtained with the turbulent flow model. This gives 

the impression that turbulence has some influence on the calculation in the leakage 

path area. Turbulence reduces the leakage flow, which results in more delivery 

and raises pressure in the working chamber. However, the difference in power ob-

tained by this means was very small, being only 0.5%, as shown in Table 4-2. 
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Figure 4-26 Comparison of pressure field and velocity vectors across the screw 
compressor

Top – laminar model; Bottom – turbulent model
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Figure 4-27 Comparison of pressure change for turbulent and laminar flow calculations

The difference in the compressor flow obtained from laminar and turbulent calcu-

lations is presented in Figure 4-28. The mass flows at suction and discharge are 

given as functions of the shaft angle. On average, 4% higher flow is calculated 

with the turbulent model. The difference was greater at the discharge end of the 

compressor, both in the mean value and in the amplitude. This agrees with the re-

sults obtained from the approximate calculations where turbulent transport 

through clearances is significant. The difference in flow obtained at the suction 

end is, on average, less than 3%. This shows that a compressor with a large suc-

tion opening has no significant dynamical losses, although turbulence exists in the 

compressor low pressure domains. It is expected that the difference between the 
laminar and turbulent flow calculations will be smaller for higher discharge pres-

sures and lower compressor speeds. 

Figure 4-28 Comparison of fluid flow at inlet and exit of screw compressor
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The integral parameters obtained from both the laminar and turbulent numerical 

models are presented in Table 4-2. According to these results, it can be concluded 

that turbulence has some influence on the screw compressor. Its effect is greater at 

lower pressure ratios and low compressor speeds. 

Table 4-2 Integral parameters calculated with laminar and turbulent model

Flow rate
(m3/mim)

Power
(kW)

Specific power
(kW/m3/min)

Out temp
(K)

Laminar 2.749 15.57 5.684 402.3

Turbulent 2.861 15.66 5.473 402.5

More detailed insights into the results obtained from the k- model of turbulence 
can be found in the following four figures; Figure 4-29 shows the kinetic energy 

of turbulence. The dissipation rate is presented in Figure 4-30, the turbulent vis-

cosity in Figure 4-31 and the dimensionless distance from wall y+ is given in 

Figure 4-32. 

Figure 4-29 Kinetic energy of turbulence within the screw compressor
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Figure 4-30 Dissipation rate within the screw compressor

Figure 4-31 Turbulent viscosity within the screw compressor
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Figure 4-32 Dimensionless distances from the wall within the compressor

The results in all these diagrams are presented in horizontal sections through the 

blow hole areas on the suction and discharge side of the compressor, in vertical 

sections through the rotor axes and in cross sections at suction and discharge. The 

kinetic energy of turbulence, dissipation, turbulent viscosity and y+ are all high 

for the lobes exposed to the suction domains. All these gradually die out towards 

discharge. The dissipation rate is extremely high in the clearance gaps between the 

rotors, as shown in Figure 4-30, while in the other domains it is significantly 

lower. On the other hand, y+ is small in the clearance gaps while in the main do-

mains at suction it has higher values, as shown in Figure 4-32.

4.3.5 The Influence of the Mesh Size on Calculation Accuracy 

Most calculations in this book are presented for numerical meshes with an average 

number of 30 cells along one interlobe and a similar number of time steps selected 

for the rotor to rotate between two interlobe positions. The numerical mesh for the 

compressor in this example consists of about 450,000 cells of which About 

322,000 numerical cells define the rotor domains. This was a convenient number 

of cells to use with a PC computer with an ATHLON 800 processor and 1GB of 

RAM, which was used for this study. Although the results obtained on that mesh 

appeared to be satisfactory and agreed well with the experimental data, an investi-

gation of the influence of the mesh size on the calculation accuracy had to be con-

ducted. For that reason, two additional meshes were generated for the same com-

pressor. A smaller one was generated with 20 points along the rotor interlobe, 
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which gave 190,000 cells on both rotors while the other compressor parts were 

mapped with almost the same number of cells as originally. The overall number of 

numerical cells was about 353,000. A lower number of cells on the rotors results 

in a geometry, which does not follow the rotor shape precisely, and the intercon-

nection between rotors would possibly become inappropriate. This number of nu-

merical cells is probably the lowest for which reliable results can be obtained. The 

largest numerical mesh generated for this investigation consists of 45 numerical 

cells along the rotor interlobe. That gave 515,520 cell on the rotors and 637,000 
cells for the entire compressor domain. This was the biggest numerical mesh that 

could be loaded into the available computer memory without disc swapping dur-

ing the solution. These three numerical meshes are presented in Figure 4-33 in the 

cross section perpendicular to the rotor axes.

Figure 4-33 Three different mesh sizes for the same compressor

The results of the calculations are presented in Figure 4-34 in the form of a pres-

sure-angle diagram, and in Figure 4-36 as a discharge flow-angle diagram. The 

first diagram shows how the calculated working pressures for all three investi-

gated mesh sizes agree with the measurements. The lowest number of cells gives 

the highest pressure in the working chamber and vice versa. As a result of that, the 

consumed power is changed slightly, from 42 kW obtained with the smallest mesh 
to slightly less then 41 kW for the largest mesh. The difference between the two is 

less then 3%. This situation is shown in Figure 4-35. The diagram shows the larg-

est difference within the cycle to be in the discharge area of the compressor. Some 

difference is also visible in the middle area of the diagram which seems to be a 

consequence of the leakage flows obtained with smaller meshes between the ro-

tors. In that area, the mesh is probably too coarse to capture all the oscillations 

which appear in the flow.
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Figure 4-34 P-alpha diagrams for three different mesh sizes

Figure 4-35 Compressor power calculated with three different mesh sizes

www.mepcafe.com



4.3 Flow in an Oil Injected Screw Compressor 117

Figure 4-36 Discharge flow rates for different mesh sizes

Figure 4-37 Integral flow rate and Specific power obtained with different mesh sizes

Diagrams of discharge flow as a function of rotation angle are given in Figure

4-36. The coarser mesh shows less oscillation in the flow then the finer meshes. 

However, the mean value of the flow remained the same for all three mesh sizes, 
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as shown in Figure 4-37. Specific power is calculated from the values obtained 

previously. It shows a slight fall in value as the number of computational cells is 

increased. 

The results obtained with the three different mesh sizes for the compressor in-

vestigated here give the impression that the calculation conducted for the com-

pressor on an average size of the mesh with 25 to 30 numerical cells along the ro-

tor interlobe is sufficiently accurate. 

4.4 A Refrigeration Compressor

This example is given for an oil injected ammonia refrigeration compressor with 5 
lobes on the male rotor and 6 lobes on the female one. The distance between the 

rotor axes is 108.36 mm, the diameter of the male rotor is 144.43 mm and the fe-

male rotor diameter is 121.92 mm. The rotor length is 200 mm, which gives a 

length over diameter ratio 1.384l d  . The clearances are distributed on the com-

pressor rotors such that the mean value is 100 m. The compressor rotates at 5000 
rpm and works between 2 bar at suction and 7 and 9 bar at discharge. A cross sec-

tion through the compressor rotors is given in Figure 4-38.

Figure 4-38 Cross section of the ammonia refrigeration compressor rotors

4.4.1 Grid Generation for a Refrigeration Compressor

The numerical mesh of this compressor consists of 256,690 numerical cells gener-

ated with 20 computational points distributed along one interlobe. Such a low 

number of cells has been selected because the geometry of the compressor ap-
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peared to be convenient for grid generation. That is because a large radius was put 

on the female rotor tip, which gives less curvature of the rotor lobes. Also, the ro-

tor lobes are relatively shallow which is a consequence of the profile generation 

method used for these rotors. It is explained in more detail by Rinder (1984). All 

these factors were convenient for grid generation with only small values needed 

for the geometrical criteria used in boundary adaptation on the rotors. The mesh 

was checked both visually and numerically and the appropriate connections be-

tween the mesh blocks were established. Only 20 time steps for one interlobe rota-
tion were needed for reliable results.

4.4.2 Mathematical Model of a Refrigeration Compressor

Ammonia is a natural working fluid with favourable features. In this example, the 

fluid properties of ammonia are calculated from an equation of state of a real fluid 

implemented in the numerical solver through user functions, as is explained in 

section 2.2. An equation for liquid concentration was included in the calculation, 

in addition to the standard momentum, energy, mass, space and oil concentration 

equations. By this means, fluid phase change was accounted for in the model. 

However, oil is regarded as an inert fluid which did not dissolve in the main fluid. 

Such an assumption appeared to be appropriate in this case because the production 

of liquid within the compression process was negligible. This was confirmed by 
the values of liquid refrigerant concentration which were practically zero through-

out the complete domain.

4.4.3 Three Dimensional Calculations for a Refrigeration Compressor

Results of the three dimensional calculation are presented in the form of the veloc-

ity field, pressure distribution and oil concentration in two different cross sections, 

one normal to the rotor axis and in another horizontal section through the blow 

hole area. Based on these, integral parameters are calculated for this compressor in 

the form of pressure, torque and delivered flow.

Figure 4-39 shows an axial section through the rotors of the oil injected am-

monia compressor. The unshaded area on the left of the figure outlines the male 
rotor while that on the right shows the female rotor. The section is taken through 

the high pressure blow hole area with the suction port at the top of the figure and 

the discharge opening at the bottom. The rotor profile allows a large blow hole 

area through which a substantial amount of fluid leaks back to the domain at lower 

pressure. The pressure distribution is shown in this figure together with the veloc-

ity vectors. The oil injection port is positioned on the bottom right of the figure. 

The oil enters the compressor through that port at relatively high speed. High ve-

locities indicate a substantial leakage in the blow hole. The discharge pressure in 

this case was 9 bar. In the figure, the values of the relative pressure are given.

The oil concentration is presented in Figure 4-40, together with the velocity 

field. The dark shades on the bottom right of the figure indicate a high oil concen-
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tration at the injection point. Oil is distributed across the entire compressor with 

the higher concentration towards the discharge port. However, some oil, leaks 

back, together with the gas, to the lower pressure domains through both the clear-

ances and the blow hole. This situation is attained when the oil injection port is 

positioned properly and is shown in Figure 4-41. 

Figure 4-39 Pressure distribution and velocity field in the ammonia screw compressor

Figure 4-40 Oil concentration and velocity field for ammonia screw compressor
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The position of the oil port is important for the compressor efficiency. It is usually 

located at the place in the compressor where temperature of the gas has the same 

value as that of the injected oil and where the pressure in the compressor chamber 

is lower than the pressure in the oil tank. If these criteria are met, the oil concen-

tration would be as in Figure 4-41. A substantial amount of oil is then distributed 

along the compressor for lubrication and cooling. 

Figure 4-41 Oil concentration in the compressor with proper position of the oil injection 
port

Figure 4-42 Oil concentration in the compressor with improper position of oil injection 
port
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However, if the oil port was rotated by only 45o, as shown in Figure 4-42, the oil 

would not flood the compressor. This could lead to an excessive rise in tempera-

ture and decrease of efficiency. Also, a low amount of oil would not be sufficient 

for lubrication and seizure of the rotors is then possible. Although the velocity dis-

tribution is different for the two cases, it seems that the velocity in the clearance 

gaps has not changed much. 

A pressure versus angle diagram is presented in Figure 4-43 for discharge 

pressures of 7 and 9 bar. The pressure gradient in the last phase of the compres-
sion process for 7 bar discharge is lower than is the case for the higher discharge 

pressure. This is the consequence of leakage through the large blow hole area. 

Figure 4-43 Pressure angle diagram of an oil injected ammonia screw compressor

Figure 4-44 Torque and discharge flow diagrams of an ammonia screw compressor
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Figure 4-44 presents the torque distribution between the male and female rotors 

and the discharge flow for both 7 and 9 bar discharge pressures. The torque trans-

mitted to the female rotor is large in this compressor and is more then 20% of the 

male rotor torque. The light female rotor is therefore more likely to deform and 

possibly seize. The discharge flow rate is presented in the same diagram. Larger 

oscillations in the compressor discharge flow are recorded during the compressor 

cycle with a higher discharge pressure. The fluid flow is lower at the higher pres-

sure, which is confirmed by the mean values of the discharge flow presented in the 
figure. The reason for lower flow at higher pressures is due to the higher leakage 

flow which is consequence of larger pressure difference through both the blow 

hole areas and the clearances. 

4.5 Fluid-Solid Interaction

Efforts are continually being made to produce screw compressors with smaller 

clearances in order to reduce internal leakage. However, since the compression 

process induces large pressure and temperature differences across the rotors, they 

deform. A reliable method of estimating the interaction between fluid flow pa-

rameters and rotor deflection is thus needed in order to minimise clearances while 

avoiding contact between the rotors and the casing. A 3-D mathematical procedure 

is presented here to generate a numerical grid comprising both solid and fluid do-

mains. This can be used to calculate the fluid flow and compressor structural de-

formation simultaneously by means of a suitable commercial numerical solver. 
Simulation results demonstrate the effect on compressor performance of changes

in working clearances, caused by rotor deformation.

4.5.1 Grid Generation for Fluid-Solid Interaction

Grid generation of screw compressor geometry is a necessary preliminary to CCM 

calculation. Firstly, it defines spatial domains that represent the metal material in-

side the rotors and the fluid passages outside the rotors. These are determined by 

the rotor profile coordinates and their derivatives and are obtained by means of the 

rack generation procedure. 

By use of the methods already described, an algebraic grid generation method 

for screw compressor fluid flow is applied, based on a transfinite interpolation 
procedure. This includes stretching functions to ensure grid orthogonality and 

smoothness. In that case, the compressor spatial domain is divided into a number 

of sub-domains, which allow the generation of a fully structured numerical grid of 

discrete volumes. A composite grid is then made of several blocks patched to-

gether and based on a single boundary fitted co-ordinate system. Block structured 

grids allow easier mapping for complex geometries. Two basic block topologies 

are used for screw compressor grid generation, namely polyhedral blocks and O-

meshes as shown in Figure 3-5. 
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A feature associated with the interaction of the fluid flow and solid structure is 

that the numerical grid for both, the fluid around the rotors and the rotors them-

selves is generated simultaneously in a single, fully structured block. This allows 

distortions to change the interlobe, radial and end clearances and accounts for 

them in the fluid flow calculation. The number of points required to define the ro-

tor geometry accurately in this case is generally not very large. However, if a slid-

ing interface between the solid and fluid is applied, the number of points needed 

may be so large that a numerical mesh, thus formed, cannot be used. One means of 
resolving this problem, which combines accuracy with fast solution, is to keep the 

number of computational cells as low as possible and to modify the distribution of 

points according to the local requirements. An additional reason for this approach 

is that the principal dimension of a screw compressor chamber may vary from as 

little as 30 micrometers to tens of millimetres. It is therefore not unusual for a grid 

length scale ratio to exceed 500. Since the number of cells in the radial direction is 

kept constant throughout the compressor solid section, as well as in the flow 

chamber and in the gaps, the ratio between the circumferential and radial dimen-

sions of the cell can easily become unacceptable. However, the same number of 

cells can form a suitable grid if the boundary is adapted carefully to keep the grid 

aspect ratio as uniform as possible. 

An equi-distribution procedure is therefore applied to the boundary regions be-
tween the rotor and its fluid domain. It requires the product of the grid spacing and 

a ‘weight function’ to be constant. The weight function is based on an adaptation 

variable, which can be selected according to geometry requirements. The adapta-

tion procedure is carried out in four major steps; namely: a) selection of adaptation 

variables, b) evaluation of integral adaptation functions, c) calculation of new 

transformed coordinate and d) obtaining new physical coordinate by inverse inter-

polation.

Once a satisfactory point distribution on the rotor boundary is achieved, the 

distribution of points on the opposite sliding interface boundary, must be obtained 

for convenient generation of the numerical points in the interior of the domain. 

That boundary is mapped with the same number of points as the previous one so 
the cells that are formed from the appropriate nodes on both boundaries are always 

regular. For that reason, a special procedure was developed to transform the 

physical domain into a simplified computational domain in which the adaptation is 

performed. 

4.5.2 Numerical Solution of the Fluid-Solid Interaction

The compressor flow and the structure of compressor parts are fully described by 

the mass averaged conservation equations of fluid continuity, momentum equa-

tions for fluid and solid body, energy and space, which are accompanied by the 

turbulence model equations and an equation of state. In the case of multiphase 

flow, a concentration equation is added to the system. The numerical solution of 

such a system of partial differential equations is then made possible by inclusion 
of constitutive relations in the form of Stoke’s, Fick’s and Fourier’s laws for the 
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fluid momentum, concentration and energy equations respectively and Hooke’s 

law for the momentum equations of a thermo-elastic solid body. 

All these equations are conveniently written in the form of a generic transport 

equation (2.61). The meaning of source terms, for the fluid and solid transport 

equations is given in Table 2-1.

The resulting system of partial differential equations is discretised by means of 

a finite volume method in a general Cartesian coordinate frame. This method en-

hances the conservation of the governing equations while at the same time enables 
a coupled system of equations to be solved simultaneously for both the solid and 

fluid regions.

This mathematical scheme is accompanied by boundary conditions for both the 

solid and fluid parts. The compressor was positioned between the two relatively 

small suction and discharge receivers. By this means, the compressor system is 

separated from the surroundings by adiabatic walls only. It communicates with its 

surroundings through the mass and energy sources or sinks placed in these receiv-

ers to maintain constant suction and discharge pressures. 

The effects of oil injected in the working chamber are calculated based on the 

Euler-Lagrange method. In that case, the air is regarded as a background fluid for 

which all transport equations are solved, while the oil is considered as a dispersed 

phase for which only a concentration equation is solved. Interaction between the 
phases in the form of drag forces and heat transfer is calculated based on an ex-

perimentally derived mean droplet diameter. The solid part of the system is con-

strained by both Dirichlet and Neuman boundary conditions through zero dis-

placement in the restraints and zero tractions elsewhere. The temperature and 

displacement from the solid body surface are boundary conditions for the fluid 

flow and vice versa. The connection between the solid and fluid parts is therefore 

determined explicitly.

The numerical grid was applied to a commercial CCM solver to obtain the dis-

tribution of the pressure, temperature, velocity and density fields throughout the 

fluid domain as well as deformation and stress in the solid compressor elements. 

Integral parameters of screw compressor performance were calculated, based on 
the solution of these equations,.

4.5.3 Presentation and Discussion of the Results of Fluid-Solid Interaction

The interaction between fluid flow and rotor deformation is analysed for a screw 

compressor shown in Figure 4-14. The Rotor profiles are of the ‘N’ type with a 

5/6 lobe configuration. The rotor outer diameters are 127 and 101 mm, for the 

male and female rotors respectively, and their centre distance is 90 mm. The rotor 

length to diameter ratio is 1.65. A numerical mesh for the test case in this study 

comprises 513,617 numerical cells of which 162,283 cells represent the solid part 

of the rotors, 189,144 other cells are mapped on the fluid parts between the rotors 

while the rest are numerical cells of the suction and discharge domains, which in-

clude both the suction and discharge ports and the oil openings. 

www.mepcafe.com



4 Applications126

Figure 4-45 Numerical mesh for rotors (left) and their fluid parts (right)

A cross section through the numerical mesh for rotors and their fluid paths is pre-
sented in 

Figure 4-45.

Figure 4-46 Displacement vectors and the acting pressure on deformed rotors for oil 
injected compressor
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Grid and other control parameters generated by the interface were applied to

Comet, a commercial CMM solver of CD-Adapco. The solver is based on the fi-

nite volume method and adapted for the simultaneous multi domain solution of the 

governing laws. Depending on the selected set of equations, alternative differenc-

ing schemes and relaxation factors were used. The results obtained are presented 

for three different applications, namely, for an oil-injected air compressor of mod-

erate pressure ratio, a dry air compressor, in which the pressure ratio is low, due to 

discharge temperature restrictions, and a high pressure oil flooded compressor.

The calculations were carried out on a computer powered by an Athlon 800 

MHz processor and 1 GB memory. Compressor rotation was simulated by means 

of 24 time steps for one interlobe rotation. This was equivalent to 120 time steps 
for one full rotation of the male rotor. The time step length was synchronised with 

a compressor speed of 5000 rpm. An error reduction of 4 orders of magnitude was 

required, and achieved in approximately 50 outer iterations at each time step, each 

of which took approximately 30 minutes of computer time. The overall compres-

sor parameters such as torque, volume flow, forces, efficiencies and compressor 

specific power were then calculated. 

In case 1, the oil flooded air compressor works between 1 bar and 20 
oC suc-

tion and 7 bar discharge. A substantial amount of oil was injected in the compres-

sor in order to keep the discharge temperature as low as possible. The average 

temperature at the compressor exit of 40oC was retained throughout the compres-

sor working cycle. Consequently, rotor deformation was caused mainly by the 
pressure field in the compressor working chamber.

Figure 4-47 Rotor displacement vectors and temperature distribution for an oil free 
compressor
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Two views of the rotors for that condition are presented in Figure 4-46, one from 

the bottom of the rotors and the other one from the female rotor side. Pressure 

forces push the rotors apart and bend them in space, which is visible from the top 

diagram. By this means, the leakage path through the sealing line between the ro-

tors is biggest on the discharge side where the pressure ratio between the two rotor 

sides is the greatest. Also, rotor bending increases the clearance gap between the 

rotor and the housing on the discharge side of the compressor. The female rotor is 

weaker and therefore is deformed more than the male rotor. The highest recorded 
deformation in this case was in the range of only a few micrometers. In order to 

visualise the rotors in the deformed state, the distortion has been magnified 20,000 

times while other physical and geometrical values are kept at their original scale.

Case 2 is an oil free air compressor of the same rotor and housing arrangement 

as in Case 1. The compressor works between suction conditions of 1 bar and 20 oC 

and a discharge pressure of 3 bar. Due to the lack of oil cooling, the temperature 

rise in the compressor is much greater, so the temperature at the discharge port has 

an average value of 150oC. Such working conditions cause a completely different 

rotor deformation to that in Case 1. This is presented in Figure 4-47. The deforma-

tion caused by the pressure difference is negligible compared to that caused by the 

temperature change. The fluid temperature in the immediate vicinity of the solid 

boundary changes rapidly as shown in the bottom diagram. However, the tempera-
ture of the rotor pair is lower due to the continuous averaging oscillations of pres-

sure and temperature in the neighbouring fluid. This is shown in the top diagram 

of Figure 4-47, where the temperature distribution is given in cross section for 

both the fluid flow and the rotor body. The deformation shown in the bottom of 

the figure demonstrates the enlargement of the rotors in the discharge area. This is 

more than an order of magnitude higher than in the case of the oil flooded com-

pressor. It reaches 50m in the discharge section of the rotors and thus reduces the 
working clearances between the rotors by the same amount. By this means, the 

leakage flow in the most critical areas is reduced. However, in a design of the dry 

screw compressor, sufficient initial clearance should be allowed to prevent rotor 

seizure caused by temperature distortion. The deformations in Figure 4-47 are 

magnified 1,500 times in order to make them visible.
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Figure 4-48 Deformations of a high pressure oil injected compressor

Case 3 represents a high pressure oil injected compressor. An example is given 

here for a CO2 compressor with suction conditions of 30 bar and 0oC and a dis-
charge pressure of 90 bar. The discharge temperature was 40oC. In this case, the 

large pressure difference caused higher rotor deflections than in Case 1, as shown 

in Figure 4-48. The highest deformation was in excess of 15m, which is of the 
same order of magnitude as was found in the case where temperature deformation 

was dominant. The deformation pattern of the rotors is similar to that in Case 1 but 

only slightly enlarged at the discharge side.
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Figure 4-49 Influence of the rotor deflection to the integral compressor parameters

The influence of the rotor deformation on the integral screw compressor parame-

ters caused by the change in clearance is given in Figure 4-49. The reduction of 
rotor clearances due to the enlargement of the rotors caused by temperature dilata-

tions results in an increase in both, the compressor flow and power input. How-

ever the flow increase is relatively larger than that of the power and hence results 

in a decrease in specific power, or more conventionally, an increase in efficiency, 

as shown in the diagram. However, the rotor deflections, caused by the pressure,

enlarge the clearances. For a moderate compressor pressure, the clearance gap is 

enlarged only slightly and hence has only a negligible influence on the delivery 

and power consumption. In the case of high working pressures as, for example, in 

CO2 a refrigeration application, the rotors deform more and the decrease in the de-

livery and rise in specific power becomes more pronounced.
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5Conclusions

The analytical methods described in this work should be regarded as indicators of 

the scope for improvement that can yet be made in twin screw compressor and ex-

pander design rather than final solutions. Thus, the procedures used are still in the 

process of validation by continuing experiment. However, while validation pro-
ceeds, these same methods are being extended further to attempt to use the solid-

fluid interaction effects to model noise generation in screw compressors and use 

this to eliminate unwanted effects at the design stage. In addition, a management 

system is being developed to integrate one-dimensional flow models and three-

dimensional flow models with a CAD system in an interactive manner. By this 

means a compressor can be designed, initially using a simple one-dimensional 

flow approach. This can then be improved by applying three-dimensional model-

ling where it is most needed and any changes, thus generated, will be automati-

cally incorporated in the original analysis to show how such design changes will 

affect the final performance. In the long run, similar as in internal combustion en-

gine modelling, it may be possible to produce a virtual compressor, with full per-

formance simulations prior to prototype manufacture. 
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AModels of Turbulent Flow

The Navier-Stokes equations can be used to describe any fluid flow, including 

turbulent flows. However, their direct numerical solution for turbulent flows re-

quires a mesh with spacing smaller than the length scale of the smallest turbulent 

eddies at which the energy is transformed to heat and time steps smaller than the 

smallest time scale of the turbulent fluctuations. The average length scale of the 

smallest eddies in positive displacement machines is expected to be of the order of 

10m while their time scale is of the order of milliseconds, Lumley (1999). Use-

ful solutions on this scale are beyond the scope of existing computer technology.
The alternatives are either large eddy simulation, in which only the largest un-

steady motions are resolved and the rest are modelled, or the use of Reynolds av-

eraged Navier-Stokes equations (RANS), obtained by the use of a statistical de-

scription of turbulent motion, formulated in terms of averaged quantities. The 

most popular is the averaging for flows with constant density, whereby each de-

pendent variable is expressed as the sum of its mean, or time-averaged value  , 

and a fluctuating component :

     . (A.1)

The value  is averaged over a time interval, which is large enough, compared to 

the time scale of the turbulent fluctuations, but small with respect to the scale of 

other time dependant effects. For compressible flow a density-weighted, Favre av-

eraging is used through the following definition:

'    (A.2)

with the time averaged value 


 , and the fluctuating component calculated 

as 0   .

Applied to the governing equations of Section 3.2.1, the averaging procedure 

produces a set of additional unknowns in the equations of momentum, energy and 

species. These unknowns are fluctuating parts in the diffusive term of the equa-

tions, while other dependent variables are considered as averaged quantities. With 

this approach, the stress tensor T in the momentum equation is substituted with its 
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effective value Te=T+T
t, the heat flux qh in the energy equation is incorporated in 

the effective value qh
e=qh+qh

t, while the effective value of diffusive mass flux in 

the concentration equation becomes qci
e=qci+qci

t. The averaged parts are the same 

as in the original equations while the fluctuating parts are defined as follows:

Turbulent momentum flux, known as Reynolds stress is:

t ' ' T v v (A.3)

Turbulent heat flux is

t

h e' ' q v
(A.4)

Turbulent mass flux is

t

ci ic' ' q v
(A.5)

These new unknown values are accompanied by a turbulence model which pro-

vides correlations of the fluctuations in terms of the mean quantities, in order to be 

incorporated into the governing equations of Section 3.2.1. The popular turbulence 
models are eddy-viscosity models based on the analogy between turbulent and 

viscous diffusion. By the use of this model, equations (A.3) to (A.5) become:

 t

t

h

t

ci ,

2
2 div ,

3

grad ,

grad .

t t

t

i t ui

k

T

D c

  





 





T D - v I

q

q



(A.6)

The effect of turbulence is introduced through the turbulent diffusivity, viscosity 

and conductivity as given in (A.8). These are fluctuating parts of the effective dif-

fusivity, viscosity and conductivity values: 

, , ,

,

,

i eff i i t

eff t

eff t

D D D

  

  

 

 

 

(A.7)

defined respectively in the next set of equations:
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, , , .
t pt

i t t t

ci T

C
D C k L


   

 
   (A.8)

Here, ci , C T are empirical coefficients reasonably similar for all RANS tur-

bulence models. They are usually C =0.09, ci = T =0.9. In the previous equa-

tion k is the kinetic energy of turbulence and L is a length scale. Turbulent kinetic 

energy is defined as:

1

2
k   v v (A.9)

Turbulent diffusivity and conductivity in (A.8) are directly estimated from the tur-

bulent viscosity.
Two RANS models are used in compressor calculation, the Zero-Equation 

model and the Standard k- two-equation model. More details on turbulence phe-
nomena can be found in such works as Ferziger and Peric (1995) and Wilcox 

(1993). 

Zero Equation Model 

Turbulence may be characterized by its kinetic energy k or by the turbulent veloc-

ity 2q k , and the length scale L. From equation (A.8) the turbulent viscosity 

for the zero-equation model is:

t C qL  (A.10)

The kinetic energy of turbulence in this model is determined from the mean veloc-

ity field using: 

v
q L

y





(A.11)

where L is a given function dependent on the coordinates. Accurate determination 

of L is difficult for separated and three-dimensional flows and, despite being sim-

ple, this model is not often used for engineering flow simulation.
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k- Model 

The difficulty in prescribing turbulence quantities suggests the use of differential 

equations for their estimation. Since the turbulent velocity and length scale are 

needed, a model is based on two such equations. The equation of the turbulent ki-

netic energy k usually determines the velocity scale. The equation of the length 
scale is derived, taking into account that, for equilibrium turbulent flows, the dis-

sipation , kinetic energy k and length ratio L are related by:

3
2k

L
  (A.12)

Partial differential equations for both kinetic energy and its dissipation can be de-

rived from the Navier-Stokes equations. The final form of these equations is given 

as:

   

 
2

1 2 3

s k

V S S V

s

V S S V

d
kdV k d d P dV

dt

d
dV d d C P C C div dV

dt k k


  

 
   

     

 
       

 

   

   

v v s = q s

v v s = q s v

(A.13)

where k is the turbulent kinetic energy,  is its dissipation, while P is production 

of turbulence energy given by:

 t : 2 :t t

2
P grad - div k div

3
    T v D D v v  (A.14)

Diffusion fluxes in (A.13)are:

,t t
k

k

grad k grad



 
  

 

   
      

   
q q . (A.15)

while, after implementing (A.12), the turbulent viscosity is:

2

t

k
C 


 (A.16)

The constants are derived experimentally and they are: C =0.09, 
k

 =1, 
e

 =1.3, 

C1=1.44, 
2

C =1.92, C3= -0.33.
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Implementation of the k- turbulence model is relatively simple. All the model 
equations have the same form as the main flow equations if the viscosity is re-

placed by the effective viscosity (A.7). Equations for the kinetic energy of turbu-

lence and its dissipation are solved separately, after the main equations are solved,

by use of the k and  values from the previous iteration. The main reason for that 
is the ‘stiffness’ of the turbulence model equations. To overcome the problem, ei-

ther a finer grid could be used for the turbulence model equations than for the 

main equations or a local blending of numerical schemes of different order can be 

applied. It is also useful to under-relax the iterative method for these two quanti-

ties in order to avoid negative values of k and , which can lead to numerical in-
stability. 
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BWall Boundaries

Two types of wall are applied to a screw compressor, namely, moving walls, if 

they bound the domain of the compressor rotors, and stationary walls in all other 

places. Boundary conditions on these walls are explicitly given for all equations in 

the numerical model. In the case of turbulent flow, dependent variables vary rap-

idly close to the solid boundaries and a method, which can model near-wall effects 

is used. If the flow is laminar, then either the values of the dependent variables or 

their gradients are known at the boundary. Screw compressor walls are treated as 
‘no-slip walls’, where the fluid velocity at the wall coincides with the wall veloc-

ity. All stationary walls have zero wall velocity. The rotor wall velocities are cal-

culated from the given rotational speed:

1 1 1 1

1
2 1 2 2 2

2

2
;

60

;

i i

i i

n

z

z


  

   

k v r

v r

 

  

(B.1)

Indices 1 and 2 indicate the male and female rotors respectively. z1 and z2 are the 

number of teeth on the rotors. r1i and r2i are the vectors of the boundary points on 

the male and female rotors in the absolute coordinate system while 1 and 2
are the angular velocities of the male and female rotors. 

If the numerical grid is coarse, large velocity variations in the near-wall region 

have to be interpolated in order to obtain realistic values of the shear stress. The 

mode of interpolation is dependent on the wall functions. These are based on a 

logarithmic velocity profile. Thus, the viscosity near the wall is replaced by the 

value w, which is determined from the logarithmic velocity profile as:

; 1
ln( )

v

w

v

y for y y
y

u
u y for y y

 


  



   

 


  


(B.2)

where  is the wall roughness, which is constant for a logarithmic profile. K=0.41 
is the von Karman constant, y+ is a nondimensional distance from the wall and yv

+ 

is the viscous sub-layer thickness. 

If the zero-equation turbulence model is applied, then 
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1
.ty

K

 


 

 (B.3)

For the k- model of turbulence this distance is:

4

.
P nPC k

y
 



  (B.4)

In the previous equation, kP is the kinetic energy of turbulence at the centre of the 

boundary cell, while nP denotes the normal distance from the centre of the 
boundary cell to the wall.

The viscous sub-layer thickness is defined as the larger root of the equation:

 1
lnv vy y

K
  (B.5)

The boundary condition for the continuity equation is the mass flux through the 

wall, which is equal to zero. This condition implies zero gradient for the pressure 
correction in the direction normal to the wall. Thus pressure is always extrapolated 

from inside the solution domain. 

Figure A- 1 Wall thermal resistance

At the wall boundaries mixed boundary conditions for the energy equation may be 

applied. There are no walls in the screw compressor that are adiabatic or through 

which the flux rate is known. The temperature on the wall is generally not known 

but the temperature of its surroundings, Ts, is given. If the heat transfer coefficient 

between the surroundings and the wall can be estimated, the wall temperature TW
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can easily be calculated from its surrounding temperature and the wall thermal re-

sistance coefficient kw, which is defined as:

1wall

w

wall s

d
k

 
  (B.6)

where the wall thickness dwall, the thermal conductivity wall and the heat transfer 

coefficient between the wall and the surrounding s are defined in Figure A- 1.
For turbulent flow, when the mesh is too coarse to resolve large temperature 

variations in the near wall region, interpolation based on the logarithmic tempera-

ture profile is applied. The heat flux can be obtained by use of the modified ther-
mal conductivity in the near wall region on Figure A- 1, which has the following 

form:

T

w p

T

T T

for y y

Cy
for y y

u



 



 


 



 


 
  P

(B.7)

where PT is the viscous sub-layer resistance factor defined by the Prandtl number 

Pr and the turbulent Prandtl number T as:

0.75

Pr Pr
9.24 1 1 0.28exp 0.007

T

T T
 

      
        
      

P (B.8)

The thermal sub-layer thickness yT
+ is defined as the larger root of the non linear 

equation:

 Pr 1
lnT T v

T

y y
K

  (B.9)

where T is the wall roughness parameter in the logarithmic temperature profile.

The k-e turbulence model, in conjunction with the wall functions, requires that 

the production of turbulent kinetic energy and the dissipation rate of the turbulent 

kinetic energy are given in the boundary cell. These two values are calculated 

from the logarithmic velocity profile. According to Ferziger and Peric (1995), the 

diffusive flux of the kinetic energy through the wall is assumed to be zero.

For the governing equations of the concentration of the oil and liquid phases, 
Neuman boundary conditions are applied, with the diffusive flux through the wall 

set to zero.
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CFinite Volume Discretisation  

Governing Equations

The mathematical model for screw compressor fluid flow consists of the continu-

ity, momentum, energy, concentration, space and turbulence model equations. All 

of them are written in their general form as:

 
1 1

f f f

j j j

n n n

s S V

j=1 j jV S S S V

d
dV d grad d d q dV

dt
    

 

 
        
 
 

      v v s = s q s
(C.1)

The space is divided into cells of known volume and surface area. The surface and 

volume integrals are replaced by quadrature approximations. The spatial deriva-

tives are replaced by an interpolation function, a time integration scheme is ap-

plied and the surface velocities, vs , are determined. The result is a system of alge-

braic equations. 

The volume of a computational cell is calculated using Gauss’s theorem:

1

1

3

f

o

n

P j j

jV S

div dV d V


     r r s r s . (C.2)

rj is the position vector of the cell face centre, sj is a cell face surface vector and nf

is the number of cell faces. 

Since the edges of the control volume are straight lines, the projections of the 

faces onto Cartesian coordinate surfaces are independent of the surface shape:

   1 1 1

3

1

2

v
jn

j i i

i

s 


      r r r r (C.3)

Here, nv
j is the number of vertices in the cell-face j, and ri is the position vector of 

the vertex i. The cell face area is independent of the choice of the common vertex 

r1.
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Figure A- 2 Notation applied to a hexahedral control volume

The integrals and gradients are also estimated by a quadrature approximation. The 

simplest and the most frequently used of these is the midpoint rule approximation 

which is the product of the integrand at the centre of the integration domain and 

the surface or volume of the domain:

0 0j jd , d
j

P P
S V

f V f V    f s f s (C.4)

where f and f are arbitrary vectors and scalars respectively.

Although the variables and fluid properties are defined at the computational 

nodes in the centre of the control volume, they are often needed at locations other 

than the cell centres. In such a case, an interpolation based on the shape function is 

used. A second-order linear approximation is used here.

     
0 00

P PP
grad    r r - r (C.5)

This equation applied to the cell face centre, in the symmetric form reads:

         
0 0 j0 j

j P Pj j P j PP P

1 1

2 2
grad grad          

 
r - r r - r

(C.6)

The form of this equation ensures a unique approximation of the property at the 
centre of the cell face for control volumes on both sides of the face. rj is the posi-

tion vector of the cell face centre while Po and Pj represent the centres of the calcu-

lating and neighbouring control volume, as shown in Figure 2-2. The first term in 
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this equation is a linear interpolation between the neighbouring cell centres, while 

the second term gives the correction for the cell non-orthogonality. 

Since the variables are required at both the cell centres and the cell face centres, 

the gradients of the variables at these locations are also needed. Gauss’s theorem 

and the midpoint rule integral approximation is a simple and efficient way to ob-

tain second order accuracy. 

 
0

0

j jP
j 1P

1
grad d d grad

fn

V S
V

V
   



     s s (C.7)

Here,  j is the value of variable  at the cell face centre. 
The first term in the prototype equation is different to the others because it con-

tains an integral with respect to time. If the equation is rearranged into the follow-

ing form:

 d
F

dt


 (C.8)

where

 
0PV

dB V B V     and  , t  r

then the left side of this equation is exactly integrated in the time interval between 

tm-1 and tm=tm-1+ tm. However, the mean value of the right hand side, which in-

corporates the convective and diffusive fluxes and source terms, is approximated 

over the interval tm. This is done through a two-time-level implicit Euler scheme 
or a three-time-level implicit scheme. The first is a first-order fully implicit ap-

proximation that requires less computer memory then the second and imposes no 

limitations on the time step size. Its implicit form means that the current value of 

F is used for calculation of the quantity  at tm time:

1m m m

mF t    (C.9)

The three-time-level implicit scheme extends the time integrating domain for one 

more time step and in the case of constant time steps it reads as:

 1 1 22 1

3 3

m m m m m

mF t          . (C.10)

It is accurate to the second order and is more stable than other schemes of the 

same accuracy. Switching to the Euler scheme, when accuracy is not essential, is 

straightforward.
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Solution of the prototype equation for the moving boundaries requires imple-

mentation of the space conservation law. The mesh movement is known in ad-

vance for both the fluid flow and the solid body. The cell surface velocity vs is 

calculated when either the two-time level or the three-time level scheme is used. It 

is more convenient to express that term as the sum of fluxes than to calculate the 

surface velocity separately. In the Euler implicit scheme the volume fluxes 

through the faces are:

f f f

0 0

j

1 n n n
P P j

s j
S

j 1 j 1 j 1

d

m m m

m

m m

V V V
V

t t




 



  


      v s  (C.11)

while in the three-time-level implicit scheme, the face volume fluxes are:

f f f

0 0 0

j

1 2 1n n n
P P P j j j

s
S

j 1 j 1 j 1

4
d
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m m m m m m

m m m
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  

  

  
      v s (C.12)

The values 
0 0 0

1 2

P P P, ,m m mV V V 
are the volumes of the cell being calculated at times 

tm, tm-1 and tm-2 respectively and 1

j jandm mV V   are the volumes swept by the cell 

face sj during the two consecutive time intervals tm. This is an arrangement which 
allows the volume fluxes at the cell faces to be calculated without exactly know-

ing the value of the cell face velocity. The swept volumes are calculated when the 

coordinates of the vertices are known.

Transient Term

Transient rate of change is discretised through either the two-time-level Euler dis-

cretisation (C.9) or the three-time-level implicit discretisation scheme (C.10). 

If the two-time-level implicit Euler scheme is used for approximation of the 

transient term, it becomes:

   
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 (C.13)

Assuming constant time steps, the transient term for the three-time-level implicit 

scheme becomes:

     
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3 4d
d

d

m m
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 
 

 (C.14)
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The transient term has the same form for all dependent variables in the fluid flow 

model where B stands for ci, vi, h, k,  and only differs in the momentum equation 
for solids.

Convective Flux

The convective flux of variable through the cell face j in the prototype equation 
is a nonlinear term and it must first be linearized. This is done by the Picard itera-

tion approach which assumes that the mass flux is known for the calculation of the 

variable, after which it is corrected by an iterative procedure until the iteration cri-

terion is satisfied. The convective term then becomes:

  *

j j j
j

ds
S

C m     v v s  . (C.15)

The mass flux through the cell face jm is defined as:

   * *

j j j j j
j

ds
S

m V       v v s v s  , (C.16)

where the density 
*

j and velocity 
*

jv are calculated through the pressure correc-

tion procedure described later in this appendix (C.29).

Figure A- 3 Upwind, central and downwind cell arrangement

There are more possibilities for the calculation of the value at the cell face centre 

j
* in equation (C.15). To investigate them, variables at the centre of the cells and 

at the cell face centre are defined according to Figure A-3. A criterion to avoid 
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non-physical oscillations is that the value 
U C D D C U

or         in the 

central cell must be locally bounded between upstream and downstream values. Its 

value depends on the flow direction.

The normalised variables at the end face j and at the centre of the cell C are 
calculated as

j U C U
j C

D U D U

;
   

 
   

 
 

 
(C.17)

The criterion for the appearance of non-physical oscillations j in the function of 

C is presented in Figure A- 4. j for each numerical cell falls in the hatched re-

gion of the upper triangle if 
C

0 1  and lies on the line j=C if the numerical 

solution is bounded. Fulfilment of this criterion is especially important if the 

physical property may not be negative, like density or concentration, or when it

may not exceed unity, as in the case of concentration. However, many factors af-

fect these conditions like the presence of sources in the equations. Three schemes 

are mentioned here for the solution of the convective flux.

Figure A- 4 Normalised variable diagram NVD

Upwind differencing is the scheme in which the value at the cell faces is equal to 

the value at the node upstream of the face. The value of the variable at the bound-

ary j
* is defined as:

  0

j

P j*

j
P j

( ) 0

( ) 0

UD if

if






 
   

v n

v n
(C.18)
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Upwind differencing is the only approximation that satisfies the bounding crite-

rion because j=C and it never leads to an oscillatory solution. However, it im-
poses numerical diffusion on the calculation and results in first order accuracy. 

The values Po and Pj are specified for the computational point and the centre of 
the neighbouring cell respectively.

Linear upwind differencing corrects the upwind value by the gradient of the 

variable. This accounts only for the upstream neighbours. The same rule as for the 

upwind differencing is applied. The cell face value is:

 
   
   

0 00

j 0

*

P j P jP*

j *

P j Pj jP

grad ( ) 0

grad ( ) 0

LUD
if

if

 


 

      
    

r r v n

r r v n

(C.19)

The scheme has a second order value of accuracy because of the linear interpola-

tion between points but it is only conditionally bounded because j=1.5C as pre-
sented Figure A- 4.

The central differencing scheme is similar to the linear upwind but the value at 

the cell face is obtained from linear interpolation between the values at the calcu-

lating and neighbouring cells. The value of the variable at the cell face has the 
form of equation (C.6) and is written as:

         
0 0 j0 j

CD

j P Pj j P j PP P

1 1
grad grad

2 2
          

 
r - r r - r

(C.20)

Gradients in this equation are calculated from the values in both the central and 

neighbouring cells. The central differencing scheme is of second order of accuracy 

and, similar to the linear upwind, it can give unbounded and oscillatory solutions. 

This happens if the computational grid is too coarse. However, once the grid is 

sufficiently fine, the result converges faster than in other schemes.
There are other schemes which combine these three basic ones and take advan-

tage of each of them. For example, the MINMOD scheme is always of second or-

der of accuracy and it uses upwind differencing in the unbounded regions when C 

< 0 and C > 1, linear upwind in the region 0 < C < 0.5 and central differencing 

for 0.5 < C < 1. There are also some recent schemes, which are incorporated in 
commercial software, like thatof Przulj and Basara (2001). 

To prevent non-physical oscillations and wiggles, a combination i.e. a blending 

of the second and first order schemes is often used. It is based on the following 

formula:

 * FO SO FO

j j j j       (C.21)

where, j
FO is the value obtained by the scheme of first order accuracy, while j

SO 

represents the second order scheme. The blending factor 
is a constant for the 

calculating domain but its value depends on the mesh quality.
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Diffusive Flux

The diffusive flux of the variable  through the internal cell face j is approximated 
by the use of the mid point rule approximation of the surface integral.

   
0

* *

j j jP j
grad d grad

jS
D         s s (C.22)

In this equation j stands for diffusivity at the cell face centre, obtained by using 
(C.6). However, a second order approximation of the gradient from (C.7) cannot 

handle oscillations which have a period of twice the characteristic length of the 

numerical mesh and due to that, a third order dissipative term should be added to 

the interpolated value. 

Source Terms

The source terms on the right hand side of the prototype equation consist of the 

surface and volume integrals. They are discretised by means of the midpoint rule 

(C.4). As a result of discretisation, the surface integral over all the faces of the 

numerical cell becomes:

S j

1

d
fn

S S
S

j

Q  


    q s q s (C.23)

while the volume integral in the CV becomes:

 
0

0

P
P

dV V V
V

Q q V q V    (C.24)

After the necessary values for the prototype equation are set, the boundary and ini-

tial conditions are implemented and a procedure for pressure-velocity coupling has 

to be applied before the system of algebraic equations can be solved.

Boundary and Initial Conditions

Boundary conditions on the cell faces coinciding with the boundary of the solution 
domain are applied prior to solution of the system of algebraic equations. All 

boundaries to the fluid flow through which it is connected to the solid parts are no-

slip walls with either, known temperature or a temperature approximated by the 

earlier explained procedure. Due to that, a cell face flux j
* becomes a boundary 
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flux B in all equations where boundary cell faces are considered. In such a case, 
the mass flux in the momentum equation at the boundary is zero, the heat flux 

through the boundary for the energy equation is calculated from the wall tempera-

ture and the thermal conductivity in the near wall region (B.7), while the concen-

tration flux reads zero. Diffusive fluxes are also replaced with their boundary val-

ues. 

Since the compressor flow is always in a transient state, unsteady calculation is 

necessary. This, in turn, requires the initial conditions to be prescribed for the de-

pendent variables at each control volume of the computational domain. A proper 

estimation of these plays a significant role in the efficiency and computational 
time required to obtain consistent results. The calculation is complete if the time 

history for all dependant variables is equal for two consecutive cycles. 

The initial values of the velocities in the momentum equation are set to zero in 

all the cells within the working chamber. The initial pressure is prescribed for the 

cells at the inlet and outlet receiver as the inlet and outlet pressure. For all other 

cells the initial values are calculated as a linear interpolation between these values 

with respect to the relative distance in the z direction as:

 0 0 0 0i
i inl out inl

z
p p p p

L
   . (C.25)

zi is the cell centre distance starting from the coordinate origin, while L is the 

overall compressor length. This simple method to prescribe the initial values often 

gives a consistent final solution within 4 to 5 compressor cycles. The initial tem-

perature is calculated in the same manner as the pressure, i.e. as the linear interpo-
lation between the prescribed inlet and outlet temperatures T0

inl and T0
out. The den-

sity is then calculated from the equation of state. The concentration is also 

interpolated between the prescribed values at the inlet and the outlet of the com-

pressor in a similar manner to the other variables. Initial values of the kinetic en-

ergy and its dissipation rate are set at zero throughout the domain. 

When the Euler implicit time integration is employed, these prescribed values 

at time t0 are sufficient for the calculation. If, however, the three time level im-

plicit scheme is used, the values at the time t-1=t0-t should be given. They are set 
at the same as values at time t0.

Derived System of Algebraic Equations

Discretisation of the derived algebraic equation results in the same form for all 

variables:

00 P P

1

i

j

n

j

j

a a b   


  , (C.26)
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where the index 0 determines the control volume in which the variable is calcu-

lated and the index j defines the neighbouring cells. The number ni represents the 

internal cell faces between the calculating cell and the neighbouring cells. The 

right hand side terms are known from either the previous iteration or the time step. 

All the coefficients, central a0, neighbouring aj and right hand side b, are 
treated explicitly to increase computational efficiency.

 

 

           
 

0

0 0 j 00 j

0

j j

j j

1

P

0

1

j j

j j

1 j j

j P j P P PP P
1

1

P

1

min( ,0),

,

grad grad

grad grad
2 abs

f

f

f

B

j j j

m
n

j

j m

n

j j
j

n
j

j
j j

m
n

S V B B

B

a m

V
a a

t

b

m
m

m

V
Q Q a

t

 

 

 



  





 


   

 

















  



 

 
        

 
        
 
 

  









s s

d s

s s
s d

d s

r r r r








.
m

(C.27)

dj is a distance vector, which is effective if the mesh is non-orthogonal. It is then 

used to correct the cell face value. It is the normal distance between the line con-

necting two neighbouring cell points and the cell face centre. nB is the number of 

boundary faces surrounding the cell P0. The coefficient a for the centre point at 
the boundary cell face is calculated in a similar manner to that of the neighbouring 

coefficient aj, assuming the distance between the boundary point and the centre of 
the cell. 

Pressure Calculation 

Pressure has no governing equation and a special procedure is developed for its 

calculation. It is performed in three steps. Firstly the velocity and density fields 

are obtained from the momentum equation regardless of whether the continuity 

equation is satisfied. Then a pressure correction is calculated to satisfy the conti-

nuity equation in the predictor step and finally a corrector stage is applied in 
which new values of the velocity, pressure and density fields are calculated. This 

procedure is called SIMPLE algorithm. The velocity through the cell face is calcu-

lated to take into account the pressure diffusion:
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00

0

P P*
grad

j j jP j

j j

v j jj j

p pV p

a

             

d sd
v v

d sd d

(C.28)

The first term in this equation is the cell face velocity obtained by the use of (C.6), 

while the remainder is a third order pressure diffusion term. It acts as a correction 

to the interpolated velocity if oscillations in the pressure field are present. Other-

wise it is negligible. This term vanishes if the pressure varies linearly or quadrati-

cally and in other cases it is proportional to the square of the mesh spacing. There-

fore, it is reduced by grid refinement together with other discretisation errors of 

the second order. The value avo in this term is the corresponding central coefficient 

of the momentum equation.

To enhance stability, the value of the density at the centre of the cell face is 
calculated as a blend of the first and second order interpolations in the same man-

ner as in (C.21). The value of the blending factor is usually high, 0.95r  :

 * UD CD UD
j j j j       (C.29)

The pressure correction equation is now constructed to satisfy the momentum 

equation in which predictor stage values v
pred, ppred and pred featuring in (C.28)

and (C.29) also satisfy the continuity equation. If the Euler implicit time differenc-

ing scheme is employed the continuity equation can be written in a form conven-

ient for further calculation as:

   
0 0

1

P P

1

0
f

m
n

j

jm

V V
m

t

 








   (C.30)

The pressure correction equation is now:

' '
P Pj00

' '

'

1

i

j

n

pp p
j

a p a p b


  , (C.31)

with coefficients:

 

    
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0

0
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0

0
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0 0
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j j P
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1 P

1

P P
1

1
1 min( , 0) ,

2
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.
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f

P * *

j j j j j pp
v

n

p p
j m

n
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V
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a p

V
a a

t p

b m V V

 


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



 







     
                

 
    

   





s s
v s v s

d s



(C.32)
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The central coefficient in (C.32) is obtained from ‘conjugate’ values 'ˆ
jp

a of the 

central coefficients at the neighbouring cells '
jp

a if P0 and Pj exchange their roles. 

The compressibility coefficient defined as C
p

 
is calculated in Section 

2.2.4, while p is the under-relaxation factor for the pressure correction equation.
Finally, in the corrector stage, the velocity, pressure and density fields are cor-

rected for the calculated value of pressure correction:

0 0

0

0 0 0

0 0 0

0

pred '

P P

1

pred '

P P P

pred '

P P P

P

1
,

,

.

fn

j j

jv

p

p

p
a

p p p

p
p




  



 

 

 
    

v v s

(C.33)

The mass fluxes which satisfy the continuity equation are calculated from the 
equation:

' ' ' '
0

pred ˆ
j j j

j j p p p p
m m a p a p    (C.34)

and these are used for computation of the convective fluxes in the next iteration.

Since the boundary conditions of the momentum equation are prescribed ve-

locities, in the case of screw compressor flow, and these are Dirichlet boundary 

conditions, then the zero gradient boundary conditions on the pressure correction 

are applied. 

The pressure correction equation adjusts itself automatically to the type of the 

flow. In the region of low Mach numbers the contribution of the density correction 
is small. In regions of Mach number close and higher then 1, the contribution of 

the density correction becomes dominant and the equation becomes hyperbolic 

contrary to the previous case, when it was elliptic. This feature is very important 

for screw compressor flows in which both low and high Mach number regions are 

encountered. 
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