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PREFACE

An unprecedented amount of data is being generated at increasingly rapid
rates in many disciplines. Every day retail companies collect data on sales
transactions, organizations log mouse clicks made on their websites, and
biologists generate millions of pieces of information related to genes.
It is practically impossible to make sense of data sets containing more
than a handful of data points without the help of computer programs.
Many free and commercial software programs exist to sift through data,
such as spreadsheet applications, data visualization software, statistical
packages and scripting languages, and data mining tools. Deciding what
software to use is just one of the many questions that must be considered
in exploratory data analysis or data mining projects. Translating the raw
data collected in various ways into actionable information requires an
understanding of exploratory data analysis and data mining methods and
often an appreciation of the subject matter, business processes, software
deployment, project management methods, change management issues,
and so on.

The purpose of this book is to describe a practical approach for making
sense out of data. A step-by-step process is introduced, which is designed
to walk you through the steps and issues that you will face in data analysis
or data mining projects. It covers the more common tasks relating to
the analysis of data including (1) how to prepare data prior to analysis,
(2) how to generate summaries of the data, (3) how to identify non-trivial

ix



x PREFACE

facts, patterns, and relationships in the data, and (4) how to create models
from the data to better understand the data and make predictions.

The process outlined in the book starts by understanding the problem
you are trying to solve, what data will be used and how, who will use
the information generated, and how it will be delivered to them, and the
specific and measurable success criteria against which the project will be
evaluated.

The type of data collected and the quality of this data will directly impact
the usefulness of the results. Ideally, the data will have been carefully col-
lected to answer the specific questions defined at the start of the project. In
practice, you are often dealing with data generated for an entirely different
purpose. In this situation, it is necessary to thoroughly understand and
prepare the data for the new questions being posed. This is often one of the
most time-consuming parts of the data mining process where many issues
need to be carefully adressed.

The analysis can begin once the data has been collected and prepared.
The choice of methods used to analyze the data depends on many factors,
including the problem definition and the type of the data that has been
collected. Although many methods might solve your problem, you may
not know which one works best until you have experimented with the
alternatives. Throughout the technical sections, issues relating to when
you would apply the different methods along with how you could optimize
the results are discussed.

After the data is analyzed, it needs to be delivered to your target audience.
This might be as simple as issuing a report or as complex as implementing
and deploying new software to automatically reapply the analysis as new
data becomes available. Beyond the technical challenges, if the solution
changes the way its intended audience operates on a daily basis, it will need
to be managed. It will be important to understand how well the solution
implemented in the field actually solves the original business problem.

Larger projects are increasingly implemented by interdisciplinary teams
involving subject matter experts, business analysts, statisticians or data
mining experts, IT professionals, and project managers. This book is aimed
at the entire interdisciplinary team and addresses issues and technical
solutions relating to data analysis or data mining projects. The book also
serves as an introductory textbook for students of any discipline, both
undergraduate and graduate, who wish to understand exploratory data
analysis and data mining processes and methods.

The book covers a series of topics relating to the process ofmaking sense
of data, including the data mining process and how to describe data table
elements (i.e., observations and variables), preparing data prior to analysis,
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visualizing and describing relationships between variables, identifying and
making statements about groups of observations, extracting interesting
rules, and building mathematical models that can be used to understand
the data and make predictions.

The book focuses on practical approaches and covers information on
how the techniques operate as well as suggestions for when and how to use
the different methods. Each chapter includes a “Further Reading” section
that highlights additional books and online resources that provide back-
ground as well as more in-depth coverage of the material. At the end of
selected chapters are a set of exercises designed to help in understanding
the chapter’s material. The appendix covers a series of practical tutorials
that make use of the freely available Traceis software developed to accom-
pany the book, which is available from the book’s website: http://www.
makingsenseofdata.com; however, the tutorials could be used with other
available software. Finally, a deck of slides has been developed to accom-
pany the book’s material and is available on request from the book’s
authors.

The authors wish to thank Chelsey Hill-Esler, Dr. McCullough, and
Vinod Chandnani for their help with the book.

http://www.makingsenseofdata.com
http://www.makingsenseofdata.com




CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Almost every discipline from biology and economics to engineering and
marketing measures, gathers, and stores data in some digital form. Retail
companies store information on sales transactions, insurance companies
keep track of insurance claims, and meteorological organizations measure
and collect data concerning weather conditions. Timely and well-founded
decisions need to be made using the information collected. These deci-
sions will be used to maximize sales, improve research and development
projects, and trim costs. Retail companies must determine which prod-
ucts in their stores are under- or over-performing as well as understand the
preferences of their customers; insurance companies need to identify activ-
ities associated with fraudulent claims; and meteorological organizations
attempt to predict future weather conditions.

Data are being produced at faster rates due to the explosion of internet-
related information and the increased use of operational systems to collect
business, engineering and scientific data, and measurements from sensors
or monitors. It is a trend that will continue into the foreseeable future. The
challenges of handling and making sense of this information are significant

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining,
Second Edition. Glenn J. Myatt and Wayne P. Johnson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 INTRODUCTION

because of the increasing volume of data, the complexity that arises from
the diverse types of information that are collected, and the reliability of the
data collected.

The process of taking raw data and converting it into meaningful infor-
mation necessary tomake decisions is the focus of this book. The following
sections in this chapter outline the major steps in a data analysis or data
mining project from defining the problem to the deployment of the results.
The process provides a framework for executing projects related to data
mining or data analysis. It includes a discussion of the steps and challenges
of (1) defining the project, (2) preparing data for analysis, (3) selecting
data analysis or data mining approaches that may include performing an
optimization of the analysis to refine the results, and (4) deploying and
measuring the results to ensure that any expected benefits are realized.
The chapter also includes an outline of topics covered in this book and the
supporting resources that can be used alongside the book’s content.

1.2 SOURCES OF DATA

There are many different sources of data as well as methods used to collect
the data. Surveys or polls are valuable approaches for gathering data to
answer specific questions. An interview using a set of predefined questions
is often conducted over the phone, in person, or over the internet. It is used
to elicit information on people’s opinions, preferences, and behavior. For
example, a poll may be used to understand how a population of eligible
voters will cast their vote in an upcoming election. The specific questions
along with the target population should be clearly defined prior to the inter-
views. Any bias in the survey should be eliminated by selecting a random
sample of the target population. For example, bias can be introduced in
situations where only those responding to the questionnaire are included
in the survey, since this group may not be representative of a random sam-
ple of the entire population. The questionnaire should not contain leading
questions—questions that favor a particular response. Other factors which
might result in segments of the total population being excluded should also
be considered, such as the time of day the survey or poll was conducted.
A well-designed survey or poll can provide an accurate and cost-effective
approach to understanding opinions or needs across a large group of indi-
viduals without the need to survey everyone in the target population.

Experiments measure and collect data to answer specific questions in a
highly controlled manner. The data collected should be reliably measured;
in otherwords, repeating themeasurement should not result in substantially
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different values. Experiments attempt to understand cause-and-effect phe-
nomena by controlling other factors that may be important. For example,
when studying the effects of a new drug, a double-blind study is typically
used. The sample of patients selected to take part in the study is divided
into two groups. The new drug is delivered to one group, whereas a placebo
(a sugar pill) is given to the other group. To avoid a bias in the study on
the part of the patient or the doctor, neither the patient nor the doctor
administering the treatment knows which group a patient belongs to. In
certain situations it is impossible to conduct a controlled experiment on
either logistical or ethical grounds. In these situations a large number of
observations are measured and care is taken when interpreting the results.
For example, it would not be ethical to set up a controlled experiment to
test whether smoking causes health problems.

As part of the daily operations of an organization, data is collected
for a variety of reasons. Operational databases contain ongoing business
transactions and are accessed and updated regularly. Examples include
supply chain and logistics management systems, customer relationship
management databases (CRM), and enterprise resource planning databases
(ERP). An organization may also be automatically monitoring operational
processes with sensors, such as the performance of various nodes in a
communications network. A data warehouse is a copy of data gathered
from other sources within an organization that is appropriately prepared for
making decisions. It is not updated as frequently as operational databases.
Databases are also used to house historical polls, surveys, and experiments.
In many cases data from in-house sources may not be sufficient to answer
the questions now being asked of it. In these cases, the internal data can
be augmented with data from other sources such as information collected
from the web or literature.

1.3 PROCESS FOR MAKING SENSE OF DATA

1.3.1 Overview

Following a predefined process will ensure that issues are addressed and
appropriate steps are taken. For exploratory data analysis and data mining
projects, you should carefully think through the following steps, which are
summarized here and expanded in the following sections:

1. Problem definition and planning: The problem to be solved and the
projected deliverables should be clearly defined and planned, and an
appropriate team should be assembled to perform the analysis.
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FIGURE 1.1 Summary of a general framework for a data analysis project.

2. Data preparation: Prior to starting a data analysis or data min-
ing project, the data should be collected, characterized, cleaned,
transformed, and partitioned into an appropriate form for further
processing.

3. Analysis: Based on the information from steps 1 and 2, appropriate
data analysis and data mining techniques should be selected. These
methods often need to be optimized to obtain the best results.

4. Deployment: The results from step 3 should be communicated and/or
deployed to obtain the projected benefits identified at the start of the
project.

Figure 1.1 summarizes this process. Although it is usual to follow the
order described, there will be interactions between the different steps that
may require work completed in earlier phases to be revised. For example,
it may be necessary to return to the data preparation (step 2) while imple-
menting the data analysis (step 3) in order to make modifications based on
what is being learned.

1.3.2 Problem Definition and Planning

The first step in a data analysis or data mining project is to describe
the problem being addressed and generate a plan. The following section
addresses a number of issues to consider in this first phase. These issues
are summarized in Figure 1.2.

FIGURE 1.2 Summary of some of the issues to consider when defining and
planning a data analysis project.
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It is important to document the business or scientific problem to be
solved along with relevant background information. In certain situations,
however, it may not be possible or even desirable to know precisely the sort
of information that will be generated from the project. These more open-
ended projects will often generate questions by exploring large databases.
But even in these cases, identifying the business or scientific problem
driving the analysis will help to constrain and focus the work. To illus-
trate, an e-commerce company wishes to embark on a project to redesign
their website in order to generate additional revenue. Before starting this
potentially costly project, the organization decides to perform data anal-
ysis or data mining of available web-related information. The results of
this analysis will then be used to influence and prioritize this redesign. A
general problem statement, such as “make recommendations to improve
sales on the website,” along with relevant background information should
be documented.

This broad statement of the problem is useful as a headline; however,
this description should be divided into a series of clearly defined deliver-
ables that ultimately solve the broader issue. These include: (1) categorize
website users based on demographic information; (2) categorize users of
the website based on browsing patterns; and (3) determine if there are any
relationships between these demographic and/or browsing patterns and
purchasing habits. This information can then be used to tailor the site to
specific groups of users or improve how their customers purchase based
on the usage patterns found in the analysis. In addition to understanding
what type of information will be generated, it is also useful to know how
it will be delivered. Will the solution be a report, a computer program to
be used for making predictions, or a set of business rules? Defining these
deliverables will set the expectations for those working on the project and
for its stakeholders, such as the management sponsoring the project.

The success criteria related to the project’s objective should ideally be
defined in ways that can be measured. For example, a criterion might be to
increase revenue or reduce costs by a specific amount. This type of criteria
can often be directly related to the performance level of a computational
model generated from the data. For example, when developing a compu-
tational model that will be used to make numeric projections, it is useful
to understand the required level of accuracy. Understanding this will help
prioritize the types of methods adopted or the time or approach used in
optimizations. For example, a credit card company that is losing customers
to other companies may set a business objective to reduce the turnover
rate by 10%. They know that if they are able to identify customers likely
to switch to a competitor, they have an opportunity to improve retention
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through additional marketing. To identify these customers, the company
decides to build a predictive model and the accuracy of its predictions will
affect the level of retention that can be achieved.

It is also important to understand the consequences of answering ques-
tions incorrectly. For example, when predicting tornadoes, there are two
possible prediction errors: (1) incorrectly predicting a tornado would strike
and (2) incorrectly predicting there would be no tornado. The consequence
of scenario (2) is that a tornado hits with no warning. In this case, affected
neighborhoods and emergency crews would not be prepared and the con-
sequences might be catastrophic. The consequence of scenario (1) is less
severe than scenario (2) since loss of life is more costly than the incon-
venience to neighborhoods and emergency services that prepared for a
tornado that did not hit. There are often different business consequences
related to different types of prediction errors, such as incorrectly predicting
a positive outcome or incorrectly predicting a negative one.

There may be restrictions concerning what resources are available for
use in the project or other constraints that influence how the project pro-
ceeds, such as limitations on available data as well as computational hard-
ware or software that can be used. Issues related to use of the data, such as
privacy or legal issues, should be identified and documented. For example,
a data set containing personal information on customers’ shopping habits
could be used in a data mining project. However, if the results could be
traced to specific individuals, the resulting findings should be anonymized.
There may also be limitations on the amount of time available to a compu-
tational algorithm to make a prediction. To illustrate, suppose a web-based
data mining application or service that dynamically suggests alternative
products to customers while they are browsing items in an online store is
to be developed. Because certain data mining or modeling methods take
a long time to generate an answer, these approaches should be avoided if
suggestionsmust be generated rapidly (within a few seconds) otherwise the
customer will become frustrated and shop elsewhere. Finally, other restric-
tions relating to business issues include thewindow of opportunity available
for the deliverables. For example, a company may wish to develop and use
a predictive model to prioritize a new type of shampoo for testing. In this
scenario, the project is being driven by competitive intelligence indicating
that another company is developing a similar shampoo and the company
that is first to market the product will have a significant advantage. There-
fore, the time to generate the model may be an important factor since there
is only a small window of opportunity based on business considerations.

Cross-disciplinary teams solve complex problems by looking at the
data from different perspectives. Because of the range of expertise often
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required, teams are essential—especially for large-scale projects—and it
is helpful to consider the different roles needed for an interdisciplinary
team. A project leader plans and directs a project, and monitors its results.
Domain experts provide specific knowledge of the subject matter or busi-
ness problems, including (1) how the data was collected, (2) what the
data values mean, (3) the accuracy of the data, (4) how to interpret the
results of the analysis, and (5) the business issues being addressed by
the project. Data analysis/mining experts are familiar with statistics, data
analysis methods, and data mining approaches as well as issues relating
to data preparation. An IT specialist has expertise in integrating data sets
(e.g., accessing databases, joining tables, pivoting tables) as well as knowl-
edge of software and hardware issues important for implementation and
deployment. End users use information derived from the data routinely or
from a one-off analysis to help them make decisions. A single member
of the team may take on multiple roles such as the role of project leader
and data analysis/mining expert, or several individuals may be responsible
for a single role. For example, a team may include multiple subject matter
experts, where one individual has knowledge of how the data wasmeasured
and another has knowledge of how it can be interpreted. Other individuals,
such as the project sponsor, who have an interest in the project should be
included as interested parties at appropriate times throughout the project.
For example, representatives from the finance group may be involved if the
solution proposes a change to a business process with important financial
implications.

Different individuals will play active roles at different times. It is desir-
able to involve all parties in the project definition phase. In the data prepa-
ration phase, the IT expert plays an important role in integrating the data in
a form that can be processed. During this phase, the data analysis/mining
expert and the subject matter expert/business analyst will also be working
closely together to clean and categorize the data. The data analysis/mining
expert should be primarily responsible for ensuring that the data is trans-
formed into a form appropriate for analysis. The analysis phase is primarily
the responsibility of the data analysis/mining expert with input from the
subject matter expert or business analyst. The IT expert can provide a valu-
able hardware and software support role throughout the project and will
play a critical role in situations where the output of the analysis is to be
integrated within an operational system.

With cross-disciplinary teams, communicating within the group may
be challenging from time-to-time due to the disparate backgrounds of the
members of the group. A useful way of facilitating communication is to
define and share glossaries defining terms familiar to the subject matter
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experts or to the data analysis/data mining experts. Teammeetings to share
information are also essential for communication purposes.

The extent of the project plan depends on the size and scope of the
project. A timetable of events should be put together that includes the
preparation, implementation, and deployment phases (summarized in Sec-
tions 1.3.3, 1.3.4, and 1.3.5). Time should be built into the timetable for
reviews after each phase. At the end of the project, a valuable exercise that
provides insight for future projects is to spend time evaluating what did and
did not work. Progress will be iterative and not strictly sequential, moving
between phases of the process as new questions arise. If there are high-risk
steps in the process, these should be identified and contingencies for them
added to the plan. Tasks with dependencies and contingencies should be
documented using timelines or standard project management support tools
such as Gantt charts. Based on the plan, budgets and success criteria can
be developed to compare costs against benefits. This will help determine
the feasibility of the project and whether the project should move forward.

1.3.3 Data Preparation

In many projects, understanding the data and getting it ready for analysis
is the most time-consuming step in the process, since the data is usually
integrated from many sources, with different representations and formats.
Figure 1.3 illustrates some of the steps required for preparing a data set.
In situations where the data has been collected for a different purpose, the
data will need to be transformed into an appropriate form for analysis.
For example, the data may be in the form of a series of documents that
requires it to be extracted from the text of the document and converted
to a tabular form that is amenable for data analysis. The data should
be prepared to mirror as closely as possible the target population about
which new questions will be asked. Since multiple sources of data may be
used, care must be taken not to introduce errors when these sources are
brought together. Retaining information about the source is useful both for
bookkeeping and for interpreting the results.

FIGURE 1.3 Summary of steps to consider when preparing the data.
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It is important to characterize the types of attributes that have been col-
lected over the different items in the data set. For example, do the attributes
represent discrete categories such as color or gender or are they numeric
values of attributes such as temperature or weight? This categorization
helps identify unexpected values. In looking at the numeric attributeweight
collected for a set of people, if an item has the value “low” then we need
to either replace this erroneous value or remove the entire record for that
person. Another possible error occurs in values for observations that lie
outside the typical range for an attribute. For example, a person assigned
a weight of 3,000 lb is likely the result of a typing error made during
data collection. This categorization is also essential when selecting the
appropriate data analysis or data mining approach to use.

In addition to addressing the mistakes or inconsistencies in data collec-
tion, it may be important to change the data to make it more amenable for
data analysis. The transformations should be done without losing impor-
tant information. For example, if a data mining approach requires that all
attributes have a consistent range, the data will need to be appropriately
modified. The datamay also need to be divided into subsets or filtered based
on specific criteria to make it amenable to answering the problems outlined
at the beginning of the project. Multiple approaches to understanding and
preparing data are discussed in Chapters 2 and 3.

1.3.4 Analysis

As discussed earlier, an initial examination of the data is important in
understanding the type of information that has been collected and the
meaning of the data. In combination with information from the problem
definition, this categorization will determine the type of data analysis and
data mining approaches to use. Figure 1.4 summarizes some of the main
analysis approaches to consider.

FIGURE 1.4 Summary of tasks to consider when analyzing the data.
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One common category of analysis tasks provides summarizations and
statements about the data. Summarization is a process by which data is
reduced for interpretation without sacrificing important information. Sum-
maries can be developed for the data as a whole or in part. For example, a
retail company that collected data on its transactions could develop sum-
maries of the total sales transactions. In addition, the company could also
generate summaries of transactions by products or stores. It may be impor-
tant to make statements with measures of confidence about the entire data
set or groups within the data. For example, if you wish to make a statement
concerning the performance of a particular store with slightly lower net
revenue than other stores it is being compared to, you need to know if it is
really underperforming or just within an expected range of performance.
Data visualization, such as charts and summary tables, is an important tool
used alongside summarization methods to present broad conclusions and
make statements about the data with measures of confidence. These are
discussed in Chapters 2 and 4.

A second category of tasks focuses on the identification of important
facts, relationships, anomalies, or trends in the data. Discovering this infor-
mation often involves looking at the data in many ways using a combi-
nation of data visualization, data analysis, and data mining methods. For
example, a retail company may want to understand customer profiles and
other facts that lead to the purchase of certain product lines. Cluster-
ing is a data analysis method used to group together items with simi-
lar attributes. This approach is outlined in Chapter 5. Other data mining
methods, such as decision trees or association rules (also described in
Chapter 5), automatically extract important facts or rules from the data.
These data mining approaches—describing, looking for relationships, and
grouping—combined with data visualization provide the foundation for
basic exploratory analysis.

A third category of tasks involves the development of mathematical
models that encode relationships in the data. These models are useful
for gaining an understanding of the data and for making predictions. To
illustrate, suppose a retail company wants to predict whether specific con-
sumers may be interested in buying a particular product. One approach
to this problem is to collect historical data containing different customer
attributes, such as the customer’s age, gender, the location where they live,
and so on, as well as which products the customer has purchased in the
past. Using these attributes, a mathematical model can be built that encodes
important relationships in the data. Itmay be that female customers between
20 and 35 that live in specific areas aremore likely to buy the product. Since
these relationships are described in the model, it can be used to examine a
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list of prospective customers that also contain information on age, gender,
location, and so on, to make predictions of those most likely to buy the
product. The individuals predicted by the model as buyers of the product
might become the focus of a targeted marketing campaign. Models can
be built to predict continuous data values (regression models) or categori-
cal data (classification models). Simple methods to generate these models
include linear regression, logistic regression, classification and regression
trees, and k-nearest neighbors. These techniques are discussed in Chapter
6 along with summaries of other approaches. The selection of the methods
is often driven by the type of data being analyzed as well as the problem
being solved. Some approaches generate solutions that are straightforward
to interpret and explain which may be important for examining specific
problems. Others are more of a “black box” with limited capabilities for
explaining the results. Building and optimizing these models in order to
develop useful, simple, and meaningful models can be time-consuming.

There is a great deal of interplay between these three categories of
tasks. For example, it is important to summarize the data before building
models or finding hidden relationships.Understanding hidden relationships
between different items in the data can be of help in generating models.
Therefore, it is essential that data analysis or data mining experts work
closely with the subject matter expertise in analyzing the data.

1.3.5 Deployment

In the deployment step, analysis is translated into a benefit to the orga-
nization and hence this step should be carefully planned and executed.
There are many ways to deploy the results of a data analysis or data min-
ing project, as illustrated in Figure 1.5. One option is to write a report
for management or the “customer” of the analysis describing the business
or scientific intelligence derived from the analysis. The report should be
directed to those responsible for making decisions and focused on sig-
nificant and actionable items—conclusions that can be translated into a
decision that can be used to make a difference. It is increasingly common
for the report to be delivered through the corporate intranet.

FIGURE 1.5 Summary of deployment options.
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When the results of the project include the generation of predictive mod-
els to use on an ongoing basis, these models can be deployed as standalone
applications or integrated with other software such as spreadsheet applica-
tions orweb services. The integration of the results into existing operational
systems or databases is often one of the most cost-effective approaches
to delivering a solution. For example, when a sales team requires the
results of a predictive model that ranks potential customers based on
the likelihood that they will buy a particular product, the model may be
integrated with the customer relationship management (CRM) system that
they already use on a daily basis. This minimizes the need for training and
makes the deployment of results easier. Prediction models or data mining
results can also be integrated into systems accessible by your customers,
such as e-commerce websites. In the web pages of these sites, additional
products or services that may be of interest to the customer may have been
identified using a mathematical model embedded in the web server.

Models may also be integrated into existing operational processes where
a model needs to be constantly applied to operational data. For example,
a solution may detect events leading to errors in a manufacturing system.
Catching these errors early may allow a technician to rectify the problem
without stopping the production system.

It is important to determine if the findings or generated models are being
used to achieve the business objectives outlined at the start of the project.
Sometimes the generated models may be functioning as expected but the
solution is not being used by the target user community for one reason or
another. To increase confidence in the output of the system, a controlled
experiment (ideally double-blind) in the field may be undertaken to assess
the quality of the results and the organizational impact. For example, the
intended users of a predictive model could be divided into two groups. One
group, made up of half of the users (randomly selected), uses the model
results; the other group does not. The business impact resulting from the
two groups can then be measured. Where models are continually updated,
the consistency of the results generated should also be monitored over
time.

There are a number of deployment issues that may need to be consid-
ered during the implementation phase. A solution may involve changing
business processes. For example, a solution that requires the development
of predictive models to be used by end users in the field may change the
work practices of these individuals. The users may even resist this change.
A successful method for promoting acceptance is to involve the end users
in the definition of the solution, since they will be more inclined to use
a system they have helped design. In addition, in order to understand
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and trust the results, the users may require that all results be appro-
priately explained and linked to the data from which the results were
generated.

At the end of a project it is always a useful exercise to look back at what
worked and what did not work. This will provide insight for improving
future projects.

1.4 OVERVIEW OF BOOK

This book outlines a series of introductory methods and approaches impor-
tant to many data analysis or data mining projects. It is organized into five
technical chapters that focus on describing data, preparing data tables,
understanding relationships, understanding groups, and building models,
with a hands-on tutorial covered in the appendix.

1.4.1 Describing Data

The type of data collected is one of the factors used in the selection of the
type of analysis to be used. The information examined on the individual
attributes collected in a data set includes a categorization of the attributes’
scale in order to understand whether the field represents discrete elements
such as gender (i.e., male or female) or numeric properties such as age or
temperature. For numeric properties, examining how the data is distributed
is important and includes an understanding of where the values of each
attribute are centered and how the data for that attribute is distributed
around the central values. Histograms, box plots, and descriptive statistics
are useful for understanding characteristics of the individual data attributes.
Different approaches to characterizing and summarizing elements of a data
table are reviewed in Chapter 2, as well as methods that make statements
about or summarize the individual attributes.

1.4.2 Preparing Data Tables

For a given data collection, it is rarely the case that the data can be used
directly for analysis. The data may contain errors or may have been col-
lected or combined frommultiple sources in an inconsistent manner. Many
of these errors will be obvious from an inspection of the summary graphs
and statistics as well as an inspection of the data. In addition to cleaning the
data, it may be necessary to transform the data into a form more amenable
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for data analysis. Mapping the data onto new ranges, transforming cate-
gorical data (such as different colors) into a numeric form to be used in a
mathematical model, as well as other approaches to preparing tabular or
nonstructured data prior to analysis are reviewed in Chapter 3.

1.4.3 Understanding Relationships

Understanding the relationships between pairs of attributes across the items
in the data is the focus of Chapter 4. For example, based on a collection of
observations about the population of different types of birds throughout the
year as well as the weather conditions collected for a specific region, does
the population of a specific bird increase or decrease as the temperature
increases? Or, based on a double-blind clinical study, do patients taking
a new medication have an improved outcome? Data visualization, such
as scatterplots, histograms, and summary tables play an important role in
seeing trends in the data. There are also properties that can be calculated to
quantify the different types of relationships. Chapter 4 outlines a number of
common approaches to understand the relationship between two attributes
in the data.

1.4.4 Understanding Groups

Looking at an entire data set can be overwhelming; however, exploring
meaningful subsets of items may provide a more effective means of ana-
lyzing the data.

Methods for identifying, labeling, and summarizing collections of items
are reviewed in Chapter 5. These groups are often based upon the multiple
attributes that describe the members of the group and represent subpopu-
lations of interest. For example, a retail store may wish to group a data set
containing information about customers in order to understand the types
of customers that purchase items from their store. As another example,
an insurance company may want to group claims that are associated with
fraudulent or nonfraudulent insurance claims. Three methods of automati-
cally identifying such groups—clustering, association rules, and decision
trees—are described in Chapter 5.

1.4.5 Building Models

It is possible to encode trends and relationships across multiple attributes
as mathematical models. These models are helpful in understanding rela-
tionships in the data and are essential for tasks involving the prediction
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of items with unknown values. For example, a mathematical model could
be built from historical data on the performance of windmills as well as
geographical and meteorological data concerning their location, and used
to make predictions on potential new sites. Chapter 6 introduces important
concepts in terms of selecting an approach to modeling, selecting attributes
to include in the models, optimization of the models, as well as methods
for assessing the quality and usefulness of the models using data not used
to create the model. Various modeling approaches are outlined, including
linear regression, logistic regression, classification and regression trees,
and k-nearest neighbors. These are described in Chapter 6.

1.4.6 Exercises

At the conclusion of selected chapters, there are a series of exercises to help
in understanding the chapters’ material. It should be possible to answer
these practical exercises by hand and the process of going through them
will support learning the material covered. The answers to the exercises
are provided in the book’s appendix.

1.4.7 Tutorials

Accompanying the book is a piece of software called Traceis, which is
freely available from the book’s website. In the appendix of the book, a
series of data analysis and data mining tutorials are provided that provide
practical exercises to support learning the concepts in the book using a
series of data sets that are available for download.

FIGURE 1.6 Summary of steps to consider in developing a data analysis or data
mining project.
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1.5 SUMMARY

This chapter has described a simple four-step process to use in any data
analysis or data mining projects. Figure 1.6 outlines the different stages as
well as deliverables to consider when planning and implementing a project
to make sense of data.

FURTHER READING

This chapter has reviewed some of the sources of data used in exploratory
data analysis and data mining. The following books provide more infor-
mation on surveys and polls: Fowler (2009), Rea (2005), and Alreck &
Settle (2003). There aremany additional resources describing experimental design,
including Montgomery (2012), Cochran & Cox (1999), Barrentine (1999), and
Antony (2003). Operational databases and data warehouses are summarized in the
following books: Oppel (2011) and Kimball & Ross (2013). Oppel (2011) also
summarizes access andmanipulation of information in databases. The CRISP-DM
project (CRoss Industry Standard Process for Data Mining) consortium has pub-
lished in Chapman et al. (2000) a data mining process covering data mining stages
and the relationships between the stages. SEMMA (Sample, Explore, Modify,
Model, Assess) describes a series of core tasks for model development in the SAS
Enterprise MinerTM software authored by Rohanizadeh & Moghadam (2009).
This chapter has focused on issues relating to large and potentially complex data
analysis and data mining projects. There are a number of publications that provide
a more detailed treatment of general project management issues, including Berkun
(2005), Kerzner (2013), and the Project Management Institute (2013). The fol-
lowing references provide additional case studies: Guidici & Figini (2009), Rud
(2000), and Lindoff & Berry (2011).



CHAPTER 2

DESCRIBING DATA

2.1 OVERVIEW

The starting point for data analysis is a data table (often referred to as a
data set) which contains the measured or collected data values represented
as numbers or text. The data in these tables are called raw before they have
been transformed or modified. These data values can be measurements of
a patient’s weight (such as 150 lb, 175 lb, and so on) or they can be differ-
ent industrial sectors (such as the “telecommunications industry,” “energy
industry,” and so on) used to categorize a company. A data table lists the
different items over which the data has been collected or measured, such as
different patients or specific companies. In these tables, information con-
sidered interesting is shown for different attributes. The individual items
are usually shown as rows in a data table and the different attributes shown
as columns. This chapter examines ways in which individual attributes
can be described and summarized: the scales on which they are measured,
how to describe their center as well as the variation using descriptive sta-
tistical approaches, and how to make statements about these attributes
using inferential statistical methods, such as confidence intervals or
hypothesis tests.

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining,
Second Edition. Glenn J. Myatt and Wayne P. Johnson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2.2 OBSERVATIONS AND VARIABLES

All disciplines collect data about items that are important to that field.
Medical researchers collect data on patients, the automotive industry on
cars, and retail companies on transactions. These items are organized into
a table for data analysis where each row, referred to as an observation, con-
tains information about the specific item the row represents. For example,
a data table about cars may contain many observations on different types
of cars. Data tables also contain information about the car, for example, the
car’s weight, the number of cylinders, the fuel efficiency, and so on. When
an attribute is thought of as a set of values describing some aspect across
all observations, it is called a variable. An example of a table describing
different attributes of cars is shown in Table 2.1 from Bache & Lichman
(2013). Each row of the table describes an observation (a specific car)
and each column describes a variable (a specific attribute of a car). In this
example, there are five observations (“Chevrolet Chevelle Malibu,” “Buick
Skylark 320,” “Plymouth Satellite,” “AMCRebel SST,” “Ford Torino”) and
these observations are described using nine variables: Name,MPG, Cylin-
ders, Displacement, Horsepower, Weight, Acceleration, Model year, and
Origin. (It should be noted that throughout the book variable names in the
text will be italicized.)

A generalized version of the data table is shown in Table 2.2, since
a table can represent any number of observations described over multiple
variables. This table describes a series of observations (from o1 to on) where
each observation is described using a series of variables (from x1 to xp). A
value is provided for each variable of each observation. For example, the
value of the first observation for the first variable is x11, the value for the
second observation’s first variable is x21, and so on. Throughout the book
we will explore different mathematical operations that make use of this
generalized form of a data table.

The most common way of looking at data is through a spreadsheet,
where the raw data is displayed as rows of observations and columns of
variables. This type of visualization is helpful in reviewing the raw data;
however, the table can be overwhelming when it contains more than a
handful of observations or variables. Sorting the table based on one or
more variables is useful for organizing the data; however, it is difficult
to identify trends or relationships by looking at the raw data alone. An
example of a spreadsheet of different cars is shown in Figure 2.1.

Prior to performing data analysis or data mining, it is essential to under-
stand the data table and an important first step is to understand in detail the
individual variables. Many data analysis techniques have restrictions on
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TABLE 2.2 Generalized Form of a Data Table

Variables

Observations x1 x2 x3 . . . xp
o1 x11 x12 x13 . . . x1p
o2 x21 x22 x23 . . . x2p
o3 x31 x32 x33 . . . x3p
. . . . . . . . . . . . . . . . . .
on xn1 xn2 xn3 . . . xnp

the types of variables that they are able to process. As a result, knowing the
types of variables allow these techniques to be eliminated from considera-
tion or the data must be transformed into a form appropriate for analysis. In
addition, certain characteristics of the variables have implications in terms
of how the results of the analysis will be interpreted.

2.3 TYPES OF VARIABLES

Each of the variables within a data table can be examined in different
ways. A useful initial categorization is to define each variable based on
the type of values the variable has. For example, does the variable contain
a fixed number of distinct values (discrete variable) or could it take any
numeric value (continuous variable)?Using the examples fromSection 2.1,
an industrial sector variable whose values can be “telecommunication
industry,” “retail industry,” and so on is an example of a discrete variable
since there are a finite number of possible values. A patient’s weight is an
example of a continuous variable since any measured value, such as 153.2
lb, 98.2 lb, is possible within its range. Continuous variables may have an
infinite number of values.

FIGURE 2.1 Spreadsheet showing a sample of car observation.
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Variables may also be classified according to the scale on which they are
measured. Scales help us understand the precision of an individual variable
and are used to make choices about data visualizations as well as methods
of analysis.

A nominal scale describes a variable with a limited number of different
values that cannot be ordered. For example, a variable Industry would
be nominal if it had categorical values such as “financial,” “engineering,”
or “retail.” Since the values merely assign an observation to a particular
category, the order of these values has no meaning.

An ordinal scale describes a variable whose values can be ordered or
ranked. As with the nominal scale, values are assigned to a fixed number of
categories. For example, a scalewhere the only values are “low,” “medium,”
and “high” tells us that “high” is larger than “medium” and “medium” is
larger than “low.”However, although the values are ordered, it is impossible
to determine the magnitude of the difference between the values. You
cannot compare the difference between “high” and “medium” with the
difference between “medium” and “low.”

An interval scale describes values where the interval between values can
be compared. For example, when looking at three data values measured
on the Fahrenheit scale—5◦F, 10◦F, 15◦F—the differences between the
values 5 and 10, and between 10 and 15 are both 5◦. Because the intervals
between values in the scale share the same unit of measurement, they can
be meaningfully compared. However, because the scale lacks a meaningful
zero, the ratios of the values cannot be compared. Doubling a value does
not imply a doubling of the actual measurement. For example, 10◦F is not
twice as hot as 5◦F.

A ratio scale describes variables where both intervals between values
and ratios of values can be compared. An example of a ratio scale is a bank
account balancewhose possible values are $5, $10, and $15. The difference
between each pair is $5; and $10 is twice as much as $5. Scales for which
it is possible to take ratios of values are defined as having a natural zero.

A variable is referred to as dichotomous if it can contain only two
values. For example, the values of a variable Gender may only be “male”
or “female.” A binary variable is a widely used dichotomous variable with
values 0 or 1. For example, a variable Purchase may indicate whether a
customer bought a particular product using 0 to indicate that a customer did
not buy and 1 to indicate that they did buy; or a variableFuel Efficiencymay
use 0 to represent low efficiency vehicles and 1 to represent high efficiency
vehicles. Binary variables are often used in data analysis because they
provide a convenient numeric representation for many different types of
discrete data and are discussed in detail throughout the book.
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Certain types of variables are not used directly in data analysis, but
may be helpful for preparing data tables or interpreting the results of
the analysis. Sometimes a variable is used to identify each observation
in a data table, and will have unique values across the observations. For
example, a data table describing different cable television subscribers may
include a customer reference number variable for each customer. You
would never use this variable in data analysis since the values are intended
only to provide a link to the individual customers. The analysis of the
cable television subscription data may identify a subset of subscribers that
are responsible for a disproportionate amount of the company’s profit.
Including a unique identifier provides a reference to detailed customer
information not included in the data table used in the analysis. A variable
may also have identical values across the observations. For example, a
variableCalibrationmay define the value of an initial setting for a machine
used to generate a particular measurement and this value may be the same
for all observations. This information, although not used directly in the
analysis, is retained both to understand how the data was generated (i.e.,
what was the calibration setting) and to assess the data for accuracy when
it is merged from different sources. In merging data tables generated from
two sensors, if the data was generated using different calibration settings
then either the two tables cannot be merged or the calibration setting needs
to be included to indicate the difference in how the data was measured.

Annotations of variables are another level of detail to consider. They
provide important additional information that give insight about the context
of the data: Is the variable a count or a fraction?A time or a date?Afinancial
term? A value derived from a mathematical operation on other variables?
The units of measurement are useful when presenting the results and are
critical for interpreting the data and understanding how the units should
align or which transformations apply when data tables are merged from
different sources.

In Chapter 6, we further categorize variables (independent variables
and response variables) by the roles they play in the mathematical models
generated from data tables.

2.4 CENTRAL TENDENCY

2.4.1 Overview

Of the various ways in which a variable can be summarized, one of the
most important is the value used to characterize the center of the set of
values it contains. It is useful to quantify the middle or central location of
a variable, such as its average, around which many of the observations’
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values for that variable lie. There are several approaches to calculating
this value and which is used can depend on the classification of the vari-
able. The following sections describe some common descriptive statistical
approaches for calculating the central location: the mode, the median, and
the mean.

2.4.2 Mode

The mode is the most commonly reported value for a particular variable.
The mode calculation is illustrated using the following variable whose
values (after being ordered from low to high) are

3, 4, 5, 6, 7, 7, 7, 8, 8, 9

The mode would be the value 7 since there are three occurrences of 7
(more than any other value). The mode is a useful indication of the central
tendency of a variable, since the most frequently occurring value is often
toward the center of the variable’s range.

When there is more than one value with the same (and highest) number
of occurrences, either all values are reported or a midpoint is selected. For
example, for the following values, both 7 and 8 are reported three times:

3, 4, 5, 6, 7, 7, 7, 8, 8, 8, 9

The mode may be reported as {7, 8} or 7.5.
Mode provides the only measure of central tendency for variables mea-

sured on a nominal scale; however, the mode can also be calculated for
variables measured on the ordinal, interval, and ratio scales.

2.4.3 Median

The median is the middle value of a variable, once it has been sorted from
low to high. The following set of values for a variable will be used to
illustrate:

3, 4, 7, 2, 3, 7, 4, 2, 4, 7, 4

Before identifying the median, the values must be sorted:

2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7

There are 11 values and therefore the sixth value (five values above and
five values below) is selected as the median value, which is 4:

2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7
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For variables with an even number of values, the average of the two
values closest to the middle is selected (sum the two values and divide
by 2).

The median can be calculated for variables measured on the ordinal,
interval, and ratio scales and is often the best indication of central tendency
for variables measured on the ordinal scale. It is also a good indication of
the central value for a variable measured on the interval or ratio scales
since, unlike the mean, it will not be distorted by extreme values.

2.4.4 Mean

The mean—commonly referred to as the average—is the most commonly
used summary of central tendency for variables measured on the interval
or ratio scales. It is defined as the sum of all the values divided by the
number of values. For example, for the following set of values:

3, 4, 5, 7, 7, 8, 9, 9, 9

The sum of all nine values is (3 + 4 + 5 + 7 + 7 + 8 + 9 + 9 + 9) or 61.
The sum divided by the number of values is 61 ÷ 9 or 6.78.

For a variable representing a subset of all possible observations (x), the
mean is commonly referred to as x̄. The formula for calculating a mean,
where n is the number of observations and xi is the individual values, is
usually written:

x̄ =

n∑
i=1
xi

n

The notation
∑n

i=1 is used to describe the operation of summing all
values of x from the first value (i = 1) to the last value (i = n), that is
x1 + x2 +⋯ + xn.

2.5 DISTRIBUTION OF THE DATA

2.5.1 Overview

While the central location is a single value that characterizes an individual
variable’s data values, it provides no insight into the variation of the data
or, in other words, how the different values are distributed around this
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location. The frequency distribution, which is based on a simple count of
how many times a value occurs, is often a starting point for the analysis
of variation. Understanding the frequency distribution is the focus of the
following section and can be performed using simple data visualizations
and calculated metrics. As you will see later, the frequency distribution
also plays a role in selecting which data analysis approaches to adopt.

2.5.2 Bar Charts and Frequency Histograms

Visualization is an aid to understanding the distribution of data: the range of
values, the shape created when the values are plotted, and the values called
outliers that are found by themselves at the extremes of the range of values.
A handful of charts can help to understand the frequency distribution of
an individual variable. For a variable measured on a nominal scale, a bar
chart can be used to display the relative frequencies for the different values.
To illustrate, the Origin variable from the auto-MPG data table (partially
shown in Table 2.2) has three possible values: “America,” “Europe,” and
“Asia.” The first step is to count the number of observations in the data
table corresponding to each of these values. Out of the 393 observations in
the data table, there are 244 observations where the Origin is “America,”
79 where it is “Asia,” and 70 where it is “Europe.” In a bar chart, each
bar represents a value and the height of the bars is proportional to the
frequency, as shown in Figure 2.2.

For nominal variables, the ordering of the x-axis is arbitrary; however,
they are often ordered alphabetically or based on the frequency value. The

FIGURE 2.2 Bar chart for the Origin variable from the auto-MPG data table.
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FIGURE 2.3 Bar charts for the Origin variables from the auto-MPG data table
showing the proportion and percentage.

y-axis which measures frequency can also be replaced by values repre-
senting the proportion or percentage of the overall number of observations
(replacing the frequency value), as shown in Figure 2.3.

For variables measured on an ordinal scale containing a small number of
values, a bar chart can also be used to understand the relative frequencies
of the different values. Figure 2.4 shows a bar chart for the variable PLT
(number of mother’s previous premature labors) where there are four pos-
sible values: 1, 2, 3, and 4. The bar chart represents the number of values
for each of these categories. In this example you can see that most of the
observations fall into the “1” category with smaller numbers in the other
categories. You can also see that the number of observations decreases as
the values increase.

FIGURE 2.4 Bar chart for a variable measured on an ordinal scale, PLT.
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FIGURE 2.5 Frequency histogram for the variable “Acceleration.”

The frequency histogram is useful for variables with an ordered scale—
ordinal, interval, or ratio—that contain a larger number of values. As
with the bar chart, each variable is divided into a series of groups based
on the data values and displayed as bars whose heights are proportional to
the number of observations within each group. However, the criteria for
inclusion within a single bar is a specific range of values. To illustrate, a
frequency histogram is shown in Figure 2.5 displaying a frequency distri-
bution for a variable Acceleration. The variable has been grouped into a
series of ranges from 6 to 8, 8 to 10, 10 to 12, and so on. Since we will
need to assign observations that fall on the range boundaries to only one
category, we will assign a value to a group where its value is greater than or
equal to the lower extreme and less than the upper extreme. For example,
an Acceleration value of 10 will be categorized into the range 10–12. The
number of observations that fall within each range is then determined. In
this case, there are six observations that fall into the range 6–8, 22 observa-
tions that fall into the range 8–10, and so on. The ranges are ordered from
low to high and plotted along the x-axis. The height of each histogram
bar corresponds to the number of observations for each of the ranges. The
histogram in Figure 2.5 indicates that the majority of the observations are
grouped in the middle of the distribution between 12 and 20 and there are
relatively fewer observations at the extreme values. It is usual to display
between 5 and 10 groups in a frequency histogram using boundary values
that are easy to interpret.

The frequency histogram helps to understand the shape of the frequency
distribution. Figure 2.6 illustrates a number of commonly encountered fre-
quency distributions. The first histogram illustrates a variable where, as
the values increase, the number of observations in each group remains
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FIGURE 2.6 Examples of frequency distributions.

constant. The second histogram is of a distribution where most of the
observations are centered around the mean value, with far fewer obser-
vations at the extremes, and with the distribution tapering off toward the
extremes. The symmetrical shape of this distribution is often identified as
a bell shape and described as a normal distribution. It is very common for
variables to have a normal distribution and many data analysis techniques
assume an approximate normal distribution. The third example depicts a
bimodal distribution where the values cluster in two locations, in this case
primarily at both ends of the distribution. The final three histograms show
frequency distributions that either increase or decrease linearly as the val-
ues increase (fourth and fifth histogram) or have a nonlinear distribution
as in the case of the sixth histogram where the number of observations is
increasing exponentially as the values increase.

A frequency histogram can also tell us if there is something unusual
about the variables. In Figure 2.7, the first histogram appears to contain two
approximately normal distributions and leads us to question whether the
data table contains two distinct types of observations, each with a separate

FIGURE 2.7 More complex frequency distributions.
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frequency distribution. In the second histogram, there appears to be a small
number of high values that do not follow the bell-shaped distribution that
the majority of observations follow. In this case, it is possible that these
values are errors and need to be further investigated.

2.5.3 Range

The range is a simple measure of the variation for a particular variable. It
is calculated as the difference between the highest and lowest values. The
following variable will be used to illustrate:

2, 3, 4, 6, 7, 7, 8, 9

The range is 7 calculated from the highest value (9) minus the lowest
value (2). Ranges can be used with variables measured on an ordinal,
interval, or ratio scale.

2.5.4 Quartiles

Quartiles divide a continuous variable into four even segments based on
the number of observations. The first quartile (Q1) is at the 25% mark,
the second quartile (Q2) is at the 50% mark, and the third quartile (Q3) is
at the 75% mark. The calculation for Q2 is the same as the median value
(described earlier). The following list of values is used to illustrate how
quartiles are calculated:

3, 4, 7, 2, 3, 7, 4, 2, 4, 7, 4

The values are initially sorted:

2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7

Next, the median or Q2 is located in the center:

2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7

We now look for the center of the first half (shown underlined) or Q1:

2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7

The value of Q1 is recorded as 3.
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FIGURE 2.8 Overview of elements of a box plot.

Finally, we look for the center of the second half (shown underlined)
or Q3:

2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7

The value of Q3 is identified as 7.
When the boundaries of the quartiles do not fall on a specific value,

the quartile value is calculated based on the two numbers adjacent to the
boundary. The interquartile range is defined as the range from Q1 to Q3.
In this example it would be 7 − 3 or 4.

2.5.5 Box Plots

Box plots provide a succinct summary of the overall frequency distribution
of a variable. Six values are usually displayed: the lowest value, the lower
quartile (Q1), the median (Q2), the upper quartile (Q3), the highest value,
and the mean. In the conventional box plot displayed in Figure 2.8, the box
in the middle of the plot represents where the central 50% of observations
lie. A vertical line shows the location of the median value and a dot
represents the location of themean value. The horizontal linewith a vertical
stroke between “lowest value” and “Q1” and “Q3” and “highest value” are
the “tails”—the values in the first and fourth quartiles.

Figure 2.9 provides an example of a box plot for one variable (MPG).
The plot visually displays the lower (9) and upper (46.6) bounds of the
variable. Fifty percent of observations begin at the lower quartile (17.5)

FIGURE 2.9 Box plot for the variable MPG.
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FIGURE 2.10 Comparison of frequency histogram and a box plot for the vari-
ableMPG.

and end at the upper quartile (29). The median and the mean values are
close, with the mean slightly higher (around 23.6) than the median (23).
Figure 2.10 shows a box plot and a histogram side-by-side to illustrate how
the distribution of a variable is summarized using the box plot.

“Outliers,” the solitary data values close to the ends of the range of
values, are treated differently in various forms of the box plot. Some box
plots do not graphically separate them from the first and fourth quartile
depicted by the horizontal lines that are to the left and the right of the
box. In other forms of box plots, these extreme values are replaced with
the highest and lowest values not considered an outlier and the outliers are
explicitly drawn (using small circles) outside the main plot as shown in
Figure 2.11.

Box plots help in understanding the symmetry of a frequency distri-
bution. If both the mean and median have approximately the same value,

FIGURE 2.11 A box plot with extreme values explicitly shown as circles.
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there will be about the same number of values above and below the mean
and the distribution will be roughly symmetric.

2.5.6 Variance

The variance describes the spread of the data and measures how much
the values of a variable differ from the mean. For variables that represent
only a sample of some population and not the population as a whole, the
variance formula is

s2 =

n∑
i=1

(xi − x̄)2

n − 1

The sample variance is referred to as s2. The actual value (xi) minus the
mean value (x̄) is squared and summed for all values of a variable. This
value is divided by the number of observations minus 1 (n − 1).

The following example illustrates the calculation of a variance for a
particular variable:

3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9

where the mean is

x̄ = 3 + 4 + 4 + 5 + 5 + 5 + 6 + 6 + 6 + 7 + 7 + 8 + 9
13

x̄ = 5.8

Table 2.3 is used to calculate the sum, using the mean value of 5.8.
To calculate s2, we substitute the values from Table 2.3 into the variance

formula:

s2 =

n∑
i=1

(xi − x̄)2

n − 1

s2 = 34.32
13 − 1

s2 = 2.86

The variance reflects the average squared deviation and can be calculated
for variables measured on the interval or ratio scale.
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TABLE 2.3 Variance Intermediate Steps

x x̄ (xi − x̄) (xi − x̄)2

3 5.8 −2.8 7.84
4 5.8 −1.8 3.24
4 5.8 −1.8 3.24
5 5.8 −0.8 0.64
5 5.8 −0.8 0.64
5 5.8 −0.8 0.64
6 5.8 0.2 0.04
6 5.8 0.2 0.04
6 5.8 0.2 0.04
7 5.8 1.2 1.44
7 5.8 1.2 1.44
8 5.8 2.2 4.84
9 5.8 3.2 10.24

Sum = 34.32

2.5.7 Standard Deviation

The standard deviation is the square root of the variance. For a sample
from a population, the formula is

s =

√√√√√ n∑
i=1

(xi − x̄)2

n − 1

where s is the sample standard deviation, xi is the actual data value, x̄ is the
mean for the variable, and n is the number of observations. For a calculated
variance (e.g., 2.86) the standard deviation is calculated as

√
2.86 or 1.69.

The standard deviation is the most widely used measure of the devia-
tion of a variable. The higher the value, the more widely distributed the
variable’s data values are around the mean. Assuming the frequency distri-
bution is approximately normal (i.e., a bell-shaped curve), about 68% of all
observations will fall within one standard deviation of the mean (34% less
than and 34% greater than). For example, a variable has a mean value of
45 with a standard deviation value of 6. Approximately 68% of the obser-
vations should be in the range 39–51 (45 ± one standard deviation) and
approximately 95% of all observations fall within two standard deviations
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of the mean (between 33 and 57). Standard deviations can be calculated
for variables measured on the interval or ratio scales.

It is possible to calculate a normalized value, called a z-score, for each
data element that represents the number of standard deviations that ele-
ment’s value is from the mean. The following formula is used to calculate
the z-score:

z =
xi − x̄

s

where z is the z-score, xi is the actual data value, x̄ is the mean for the
variable, and s is the standard deviation. A z-score of 0 indicates that
a data element’s value is the same as the mean, data elements with z-
scores greater than 0 have values greater than the mean, and elements with
z-scores less than 0 have values less than the mean. The magnitude of the
z-score reflects the number of standard deviations that value is from the
mean. This calculation can be useful for comparing variables measured on
different scales.

2.5.8 Shape

Previously in this chapter, we discussedways to visualize the frequency dis-
tribution. In addition to these visualizations, there are methods for quanti-
fying the lack of symmetry or skewness in the distribution of a variable. For
asymmetric distributions, the bulk of the observations are either to the left
or the right of themean. For example, in Figure 2.12 the frequency distribu-
tion is asymmetric and more of the observations are to the left of the mean
than to the right; the right tail is longer than the left tail. This is an example
of a positive, or right skew. Similarly, a negative, or left skew would have
more of the observations to the right of the mean value with a longer tail
on the left.

It is possible to calculate a value for skewness that describes whether the
variable is positively or negatively skewed and the degree of skewness. One
formula for estimating skewness, where the variable is x with individual
values xi, and n data values is

skewness =

(√
n × (n − 1)

n − 2

)
×

1∕n ×
∑n

i=1(xi − x̄)3(
1∕n ×

∑n
i=1(xi − x̄)2

)3∕2
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FIGURE 2.12 Frequency distribution showing a positive skew.

A skewness value of zero indicates a symmetric distribution. If the lower
tail is longer than the upper tail the value is positive; if the upper tail is
longer than the lower tail, the skewness score is negative. Figure 2.13 shows
examples of skewness values for two variables. The variable alkphos in the
plot on the left has a positive skewness value of 0.763, indicating that the
majority of observations are to the left of the mean, whereas the negative
skewness value for the variable mcv in the plot on the right indicates that
the majority are to the right of the mean. That the skewness value for mcv
is closer to zero than alkphos indicates that mcv is more symmetric than
alkphos.

In addition to the symmetry of the distribution, the type of peak the
distribution has should be considered and it can be characterized by a
measurement called kurtosis. The following formula can be used for

20 40 60 80

alkphos mcv

Skewness = –0.394Skewness = 0.763
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FIGURE 2.13 Skewness estimates for two variables.
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FIGURE 2.14 Kurtosis estimates for two variables.

calculating kurtosis for a variable x, where xi represents the individual
values, and n the number of data values:

kurtosis = n − 1
(n − 2) × (n − 3)

×
⎛⎜⎜⎜⎝(n + 1) ×

∑n
i=1

(
xi − x̄

)4/
n(∑n

i=1(xi − x)2/
n

)2
− 3

⎞⎟⎟⎟⎠ + 6

Variables with a pronounced peak near the mean have a high kurtosis
score while variables with a flat peak have a low kurtosis score. Figure 2.14
illustrates kurtosis scores for two variables.

It is important to understand whether a variable has a normal distri-
bution, since a number of data analysis approaches require variables to
have this type of frequency distribution. Values for skewness and kurtosis
close to zero indicate that the shape of a frequency distribution for a vari-
able approximates a normal distribution which is important for checking
assumptions in certain data analysis methods.

2.6 CONFIDENCE INTERVALS

Up to this point, we have been looking at ways of summarizing information
on a set of randomly collected observations. This summary information is
usually referred to as statistics as they summarize only a collection of obser-
vations that is a subset of a larger population. However, information derived
from a sample of observations can only be an approximation of the entire
population. To make a definitive statement about an entire population,
every member of that population would need to be measured. For example,
if we wanted to say for certain that the average weight of men in the United
States is 194.7 lb, we would have to collect the weight measurements
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for every man living in the United States and derive a mean from these
observations. This is not possible or practical in most situations.

It is possible, however, to make estimates about a population by using
confidence intervals. Confidence intervals are a measure of our uncertainty
about the statistics we calculate from a single sample of observations. For
example, the confidence interval might state that the average weight of
men in the United States is between 191.2 lb and 198.2 lb to take into
account the uncertainty of measuring only a sample of the total population.
Only if the sample of observations is a truly random sample of the entire
population can these types of estimates be made.

To understand how a statistic, such as the mean or mode, calculated
from a single sample can reliably be used to infer a corresponding value
of the population that cannot be measured and is therefore unknown, you
need to understand something about sample distributions. Each statistic
has a corresponding unknown value in the population called a parameter
that can be estimated. In the example used in this section, we chose to
calculate the statistic mean for the weight of US males. The mean value
for the random sample selected is calculated to be 194.7 lb. If another
random sample with the same number of observations were collected,
the mean could also be calculated and it is likely that the means of the
two samples would be close but not identical. If we take many random
samples of equal size and calculate the mean value from each sample,
we would begin to form a frequency distribution. If we were to take
infinitely many samples of equal size and plot on a graph the value of
the mean calculated from each sample, it would produce a normal fre-
quency distribution that reflects the distribution of the sample means for
the population mean under consideration. The distribution of a statistic
computed for each of many random samples is called a sampling distri-
bution. In our example, we would call this the sampling distribution of
the mean.

Just as the distributions for a statistical variable discussed in earlier
sections have a mean and a standard deviation, so also does the sampling
distribution. However, to make clear when these measures are being used
to describe the distribution of a statistic rather than the distribution of a
variable, distinct names are used. The mean of a sampling distribution
is called the expected value of the mean: it is the mean expected of the
population. The standard deviation of the sampling distribution is called
the standard error: it measures how much error to expect from equally
sized random samples drawn from the same population. The standard error
informs us of the average difference between the mean of a sample and the
expected value.
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The sample size is important. It is beyond the scope of this book to
explain the details, but regardless of how the values of a variable for the
population are distributed, the sampling distribution of a statistic calculated
on samples from that variablewill have a normal formwhen the size chosen
for the samples has at least 30 observations. This is known as the law of
large numbers, or more formally as the central limit theorem.

The standard error plays a fundamental role in inferential statistics by
providing a measurable level of confidence in how well a sample mean
estimates the mean of the population. The standard error can be calculated
from a sample using the following formula:

standard error of the sampling distribution = s√
n

where s is the standard deviation of a sample and n is the number of
observations in the sample. Because the size n is in the denominator and
the standard deviation s is in the numerator, small samples with large
variations increase the standard error, reducing the confidence that the
sample statistic is a close approximation of the population parameter we
are trying to estimate.

The data analyst or the team calculating the confidence interval should
decide what the desired level of confidence should be. Confidence intervals
are often based on a 95% confidence level, but sometimes a more stringent
99%confidence level or less stringent 90% level is used.Using a confidence
interval of 95% to illustrate, one way to interpret this confidence level is
that, on average, the correct population value will be found within the
derived confidence interval 95 times out of every 100 samples collected.
In these 100 samples, there will be 5 occasions on average when this value
does not fall within the range. The confidence level is usually stated in
terms of 𝛼 from the following equation:

confidence interval = 100 × (1 − 𝛼)

For a 90% confidence level alpha is 0.1; for a 95% confidence level
alpha is 0.05; for a 99% confidence level 𝛼 is 0.01; and so on. The value
used for this level of confidence will affect the size of the interval; that is,
the higher the desired level of confidence the wider the confidence interval.

Along with the value of 𝛼 selected, the confidence interval is based on
the standard error. The estimated range or confidence interval is calcu-
lated using this confidence level along with information on the number of
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FIGURE 2.15 Illustration of the standard z-distribution to calculate z𝛼∕2.

observations in the sample as well as the variation in the sample’s data. The
formula showing a confidence interval for a mean value is shown here:

x̄ ± z𝛼∕2

(
s√
n

)

where x̄ is the mean value, s is the standard deviation, and n is the number
of observations in the sample. The value for z𝛼∕2 is based on the area to
the right of a standard z-distribution as illustrated in Figure 2.15 since the
total area under this curve is 1. This number can be derived from a standard
statistical table or computer program.

To illustrate, the fuel efficiency of 100 specific cars is measured and a
mean value of 30.35 MPG is calculated with a standard deviation of 2.01.
Using an alpha value of 0.05 (which translates into a z𝛼∕2 value of 1.96),
the confidence interval is calculated as

x̄ ± z𝛼∕2

(
s√
n

)

30.35 ± 1.96

(
2.01√
100

)

Hence, the confidence interval for the average fuel efficiency is 30.35 ±
0.393 or between 29.957 and 30.743.

For calculation of a confidence interval where sigma is unknown and
the number of observations is less than 30 observations, a t-distribution
should be used (see Urdan (2010), Anderson et al. (2010), Witte & Witte
(2009), Kachigan (1991), Freedman et al. (2007), and Vickers (2010) for
more details).
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2.7 HYPOTHESIS TESTS

Hypothesis tests are used to support making decisions by helping to under-
stand whether data collected from a sample of all possible observations
supports a particular hypothesis. For example, a company manufacturing
hair care products wishes to say that the average amount of shampoowithin
the bottles is 200 mL. To test this hypothesis, the company collects a ran-
dom sample of 100 shampoo bottles and precisely measures the contents
of the bottle. If it is inferred from the sample that the average amount of
shampoo in each bottle is not 200 mL then a decision may be made to stop
production and rectify the manufacturing problem.

The first step is to formulate the hypothesis that will be tested. This
hypothesis is referred to as the null hypothesis (H0). The null hypothesis
is stated in terms of what would be expected if there were nothing unusual
about the measured values of the observations in the data from the samples
we collect—“null” implies the absence of effect. In the example above, if
we expected each bottle of shampoo to contain 200 mL of shampoo, the
null hypothesis would be: the average volume of shampoo in a bottle is
200 mL. Its corresponding alternative hypothesis (Ha) is that they differ
or, stated in a way that can be measured, that the average is not equal to
200 mL. For this example, the null hypothesis and alternative hypothesis
would be shown as

H0 : 𝜇 = 200

Ha : 𝜇 ≠ 200

This hypothesis will be tested using the sample data collected to deter-
mine whether the mean value is different enough to warrant rejecting the
null hypothesis. Hence, the result of a hypothesis test is either to fail to
reject or reject the null hypothesis. Since we are only looking at a sample of
the observations—we are not testing every bottle being manufactured—it
is impossible to make a statement about the average with total certainty.
Consequently, it is possible to reach an incorrect conclusion. There are two
categories of errors that can be made. One is to reject the null hypothesis
when, in fact, the null hypothesis should stand (referred to as a type I
error); the other is to accept the null hypothesis when it should be rejected
(or type II error). The threshold of probability used to determine a type I
error should be decided before performing the test. This threshold, which
is also referred to as the level of significance or 𝛼, is often set to 0.05
(5% chance of a type I error); however, more stringent (such as 0.01 or 1%
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chance) or less stringent values (such as 0.1 or 10% chance) can be used
depending on the consequences of an incorrect decision.

The next step is to specify the standardized test statistic (T).We are inter-
ested in determining whether the average of the sample data we collected is
either meaningfully or trivially different from the population average. Is it
likely that we would find as great a difference from the population average
were we to collect other random samples of the same size and compare
their mean values? Because the hypothesis involves the mean, we use the
following formula to calculate the test statistic:

T =
x̄ − 𝜇0

s
/√

n

where x̄ is the calculated mean value of the sample, 𝜇0 is the population
mean that is the subject of the hypothesis test, s is the standard deviation of
the sample, and n is the number of observations. (Recall that the denom-
inator is the standard error of the sampling distribution.) In this example,
the average shampoo bottle volume measured over the 100 samples (n) is
199.94 (x̄) and the standard deviation is 0.613 (s).

T = 199.94 − 200

0.613
/√

100

= −0.979

Assuming we are using a value for 𝛼 of 0.05 as the significance level to
formulate a decision rule to either let the null hypothesis stand or reject it,
it is necessary to identify a range of values where 95% of all the sample
means would lie. As discussed in Section 2.6, the law of large numbers
applies to the sampling distribution of the statistic T: when there are at
least 30 observations, the frequency distribution of the sample means is
approximately normal and we can use this distribution to estimate regions
to accept the null hypothesis. This region has two critical upper and lower
bound values C1 and C2. Ninety-five percent of all sample means lie
between these values and 5% lie outside these values (0.025 below C2 and
0.025 above C1) (see Figure 2.16). We reject the null hypothesis if the
value of T is outside this range (i.e., greater than C1 or less than C2) or let
the null hypothesis stand if it is inside the range.

Values for C1 and C2 can be calculated using a standard z-distribution
table lookup and would be C2 = −1.96 and C1 = +1.96. These z-values
were selected where the combined area to the left of C2 and to the right of
C1 would equal 0.05.
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FIGURE 2.16 Standard z-distribution.

Since T is −0.979 and is greater than −1.96 and less than +1.96, we
let the null hypothesis stand and conclude that the value is within the
acceptable range.

In this example, the hypothesis test is referred to as a two-tailed test—
that is, we tested the hypothesis for values above and below the critical
values; however, hypothesis tests can be structured such that they are testing
for values only above or below a value.

It is a standard practice to also calculate a p-value which corresponds
to the probability of obtaining a test statistic value at least as extreme as
the observed value (assuming the null hypothesis is true). This p-value can
also be used to assess the null hypothesis, where the null hypothesis is
rejected if it is less than the value of alpha. This value can be looked up
using a standard z-distribution table as found by an online search or readily
available software. In this example, the p-value would be 0.33. Since this
value is not less than 0.05 (as defined earlier) we again do not reject the
null hypothesis.

EXERCISES

A set of 10 hypothetical patient records from a large database is presented
in Table 2.4. Patients with a diabetes value of 1 have type-II diabetes and
patients with a diabetes value of 0 do not have type-II diabetes.

1. For each of the following variables, assign them to one of the following
scales: nominal, ordinal, interval, or ratio:
(a) Name
(b) Age
(c) Gender
(d) Blood group
(e) Weight (kg)
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(f) Height (m)
(g) Systolic blood pressure (mmHg)
(h) Diastolic blood pressure (mmHg)
(i) Diabetes

TABLE 2.5 Table with
Variables Name and Age

Name Age

P. Lee 35
R. Jones 52
J. Smith 45
A. Patel 70
M. Owen 24
S. Green 43
N. Cook 68
W. Hands 77
P. Rice 45
F. Marsh 28

TABLE 2.6 Retail Transaction Data Set

Customer Store
Product
Category

Product
Description

Sale
Price
($)

Profit
($)

B. March New York, NY Laptop DR2984 950 190
B. March New York, NY Printer FW288 350 105
B. March New York, NY Scanner BW9338 400 100
J. Bain New York, NY Scanner BW9443 500 125
T. Goss Washington, DC Printer FW199 200 60
T. Goss Washington, DC Scanner BW39339 550 140
L. Nye New York, NY Desktop LR21 600 60
L. Nye New York, NY Printer FW299 300 90
S. Cann Washington, DC Desktop LR21 600 60
E. Sims Washington, DC Laptop DR2983 700 140
P. Judd New York, NY Desktop LR22 700 70
P. Judd New York, NY Scanner FJ3999 200 50
G. Hinton Washington, DC Laptop DR2983 700 140
G. Hinton Washington, DC Desktop LR21 600 60
G. Hinton Washington, DC Printer FW288 350 105
G. Hinton Washington, DC Scanner BW9443 500 125
H. Fu New York, NY Desktop ZX88 450 45
H. Taylor New York, NY Scanner BW9338 400 100
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2. Calculate the following statistics for the variable Age (from Table 2.5):
(a) Mode
(b) Median
(c) Mean
(d) Range
(e) Variance
(f) Standard deviation

3. Using the data in Table 2.6, create a histogram of Sale Price ($) using
the following intervals: 0 to less than 250, 250 to less than 500, 500 to
less than 750, and 750 to less than 1000.

FURTHER READING

A number of books provide basic introductions to statistical methods including
Donnelly (2007) and Levine & Stephan (2010). Numerous books provide addi-
tional details on the descriptive and inferential statistics as, for example, Urdan
(2010), Anderson et al. (2010), Witte & Witte (2009), Kachigan (1991), Freed-
man et al. (2007), and Vickers (2010). The conceptual difference between standard
error and standard deviation described in Sections 2.6 and 2.7 is often difficult to
grasp. For further discussion, see the section on sampling distributions inKachigan
(1991) and the chapter on standard error in Vickers (2010). For further reading on
communicating information, see Tufte (1990, 1997a, 1997b, 2001, 2006). These
works describe a theory of data graphics and information visualization that are
illustrated by many examples.





CHAPTER 3

PREPARING DATA TABLES

3.1 OVERVIEW

Preparing the data is one of the most time-consuming parts of a data
analysis/data mining project. This chapter outlines concepts and steps
necessary to prepare a data set prior to beginning data analysis or data
mining. The way in which the data is collected and prepared is critical
to the confidence with which decisions can be made. The data needs
to be merged into a table and this may involve integration of the data
from multiple sources. Once the data is in a tabular format, it should be
fully characterized as discussed in the previous chapter. The data should
be cleaned by resolving ambiguities and errors, removing redundant and
problematic data, and eliminating columns of data irrelevant to the analysis.
New columns of data may need to be calculated. Finally, the table should
be divided, where appropriate, into subsets that either simplify the analysis
or allow specific questions to be answered more easily.

In addition to the work done preparing the data, it is important to record
the details about the steps that were taken and why they were done. This
not only provides documentation of the activities performed so far, but it
also provides a methodology to apply to similar data sets in the future. In
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48 PREPARING DATA TABLES

addition, when validating the results, these records will be important for
recalling assumptions made about the data.

The following chapter outlines the process of preparing data for analy-
sis. It includes methods for identifying and cleaning up errors, removing
certain variables or observations, generating consistent scales across differ-
ent observations, generating new frequency distributions, converting text
to numbers and vice versa, combining variables, generating groups, and
preparing unstructured data.

3.2 CLEANING THE DATA

For variables measured on a nominal or ordinal scale (where there are a
fixed number of possible values) it is useful to inspect all possible values
to uncover mistakes, duplications and inconsistencies. Each value should
map onto a unique term. For example, a variable Company may include
a number of different spellings for the same company such as “General
Electric Company,” “General Elec. Co.,” “GE,” “Gen. Electric Company,”
“General electric company,” and “G.E. Company.”When these values refer
to the same company, the various terms should be consolidated into one.
Subject matter expertise may be needed to correct and harmonize these
variables. For example, a company name may include one of the divisions
of the General Electric Company and for the purpose of this specific project
it should also be included as the “General Electric Company.”

A common problem with numeric variables is the inclusion of non-
numeric terms. For example, a variable generally consisting of numbers
may include a value such as “above 50” or “out of range.” Numeric analysis
cannot interpret a non-numeric value and hence, relying on subject matter
expertise, these terms should be converted to a number or the observation
removed.

Another problem arises when observations for a particular variable are
missing data values. Where there is a specific meaning for a missing data
value, the value may be replaced based on knowledge of how the data was
collected.

It can be more challenging to clean variables measured on an interval or
ratio scale since they can take any possible value within a range. However,
it is useful to consider outliers in the data. Outliers are a single or a small
number of data values that differ greatly from the rest of the values. There
are many reasons for outliers. For example, an outlier may be an error
in the measurement or the result of measurements made using a different
calibration. An outlier may also be a legitimate and valuable data point.
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FIGURE 3.1 Histogram showing an outlier.

Histograms and box plots can be useful in identifying outliers as previously
described. The histogram in Figure 3.1 displays a variable Height where
one value is eight times higher than the average of all data points.

A particular variable may have been measured over different units. For
example, a variableWeightmay have beenmeasured using both pounds and
kilograms for different observations or a variable Price may be measured
in different currencies. These should be standardized to a single scale so
that they can be compared during analysis. In situations where data has
been collected over time, changes related to the passing of time may no
longer be relevant to the analysis. For example, when looking at a variable
Cost of production for which the data has been collected over many years,
the rise in costs attributable to inflation may need to be considered for the
analysis. When data is combined from multiple sources, an observation
is more likely to have been recorded more than once. Duplicate entries
should be removed.

3.3 REMOVING OBSERVATIONS AND VARIABLES

After an initial categorization of the variables, it may be possible to remove
variables from consideration. For example, constants and variables with
too many missing data values would be candidates for removal. Similarly,
it may be necessary to remove observations that have data missing for a
particular variable. For more information on this process, see Section 3.10.

3.4 GENERATING CONSISTENT SCALES
ACROSS VARIABLES

Sometimes data analysis and data mining programs have difficulty pro-
cessing data in its raw form. For these cases, certain mathematical
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transformations can be applied to the data.Normalization uses amathemat-
ical function to transform numeric columns to a new range. Normalization
is important in preventing certain data analysis methods from giving some
variables undue influence over others because of differences in the range
of their values. For example, when analyzing customer credit card data,
the Credit limit value (whose values might range from $500 to $100,000)
should not be given more weight in the analysis than the Customer’s age
(whose values might range from 18 to 100).

The min–max transformation maps the values of a variable to a new
range, such as from 0 to 1. The following formula is used:

x′i =
xi − OriginalMin

OriginalMax − OriginalMin
× (NewMax − NewMin) + NewMin

where x′i is the new normalized value, xi is the original variable’s value,
OriginalMin is the minimum possible value in the original variable, Orig-
inalMax is the maximum original possible value, NewMin is the minimum
value for the normalized range, and NewMax is the maximum value for
the normalized range. Since the minimum and maximum values for the
original variable are needed, if the original data does not contain the full
range, either an estimate of the range is needed or the formula should be
restricted to the range specified for future use.

The z-score transformation normalizes the values around the mean of
the set, with differences from the mean being recorded as standardized
units, based on the frequency distribution of the variable, as discussed in
Section 2.5.7.

The decimal scaling transformation moves the decimal point to ensure
the range is between 1 and −1. The following formula is used:

x′i =
xi
10n

where n is the number of digits of the maximum absolute value. For
example, if the largest number is 9948 then n would be 4. 9948 would
normalize to 9948/104 or 9948/10,000 or 0.9948.

The normalization process is illustrated using the data in Table 3.1.
As an example, to calculate the normalized values using the min–max
equation for the variable Weight, first the minimum and maximum values
should be identified: OriginalMin = 1613 and OriginalMax = 5140. The
new normalized values will be between 0 and 1, hence NewMin = 0 and
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TABLE 3.1 Normalization of the Variable Weight Using the Min–Max,
z-score, and Decimal Scaling Transformations

Min–Max z-score Decimal Scaling
Car Name Weight (Weight) (Weight) (Weight)

Datsun 1200 1613 0 −1.59 0.161
Honda Civic Cvcc 1800 0.053 −1.37 0.18
Volkswagen Rabbit 1825 0.0601 −1.34 0.182
Renault 5 gtl 1825 0.0601 −1.34 0.182
Volkswagen Super Beetle 1950 0.0955 −1.19 0.195
Mazda glc 4 1985 0.105 −1.15 0.198
Ford Pinto 2046 0.123 −1.08 0.205
Plymouth Horizon 2200 0.166 −0.898 0.22
Toyota Corolla 2265 0.185 −0.822 0.226
AMC Spirit dl 2670 0.3 −0.345 0.267
Ford Maverick 3158 0.438 0.229 0.316
Plymouth Volare Premier v8 3940 0.66 1.15 0.394
Dodge d200 4382 0.785 1.67 0.438
Pontiac Safari (sw) 5140 1 2.56 0.514

NewMax= 1. To calculate the newmin–max normalized value for the Ford
maverick using the formula:

x′i =
xi − OriginalMin

OriginalMax − OriginalMin
× (NewMax − NewMin) + NewMin

x′i =
3158 − 1613
5140 − 1613

× (1 − 0) + 0

x′i = 0.438

Table 3.1 shows some of the calculated normalized values for the min–
max normalization, the z-score normalization, and the decimal scaling
normalization.

3.5 NEW FREQUENCY DISTRIBUTION

A variable may not conform to a normal frequency distribution; however,
certain data analysis methods may require that the data follow a normal
distribution. Methods for visualizing and describing normal frequency
distributions are described in the previous chapter. To transform the data
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FIGURE 3.2 Log transformation converting a variable (IC50) to adjust the
frequency distribution.

so that it more closely approximates a normal distribution, it may be
necessary to take the log, exponential, or a Box–Cox transformation. The
formula for a Box–Cox transformation is

x′i =
x𝜆i − 1

𝜆

where 𝜆 is a value greater than 1.
Figure 3.2 shows how the distribution of the original variable IC50

(figure on the left) is transformed to a closer approximation of the normal
distribution after the log transformation has been applied (figure on the
right).

3.6 CONVERTING TEXT TO NUMBERS

To use variables that have been assigned as nominal or ordinal and
described using text values within certain numerical analysis methods,
it is necessary to convert the variable’s values into numbers. For exam-
ple, a variable with values “low,” “medium” and “high” may have “low”
replaced by 0, “medium” replaced by 1, and “high” replaced by 2.

Another way to handle nominal data is to convert each value into a
separate column with values 1 (indicating the presence of the category)
and 0 (indicating the absence of the category). These new variables are
often referred to as dummy variables. In Table 3.2, for example, the variable
Color has now been divided into five separate columns, one for each color.
While we have shown a column for each color, in practice five dummy
variables are not needed to encode the five colors. We could get by with
only four variables (Color = “Black,” Color = “Blue,” Color = “Red,” and
Color = “Green”). To represent the five colors, the values for the “Black,”
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TABLE 3.2 Generating a Series of Dummy Variables from the Single
Color Variable

Color = Color = Color = Color = Color =
Product ID Color Black Blue Red Green White

89893-22 Black 1 0 0 0 0
849082-35 Blue 0 1 0 0 0
27037-84 Red 0 0 1 0 0
2067-09 Green 0 0 0 1 0
44712-61 White 0 0 0 0 1
98382-34 Blue 0 1 0 0 0
72097-52 Green 0 0 0 1 0

“Blue,” “Red,” and “Green” variables would be for Black: 1,0,0,0, for Blue:
0,1,0,0, for Red: 0,0,1,0, for Green: 0,0,0,1, and for White: 0,0,0,0.

3.7 CONVERTING CONTINUOUS DATA TO CATEGORIES

By converting continuous data into discrete values, it might appear that
we are reducing the information content of the variable. However, this
conversion is desirable in a number of situations. First, where a value
is defined on an interval or ratio scale but when knowledge about how
the data was collected suggests the accuracy of the data does not warrant
these scales, a variable may be a candidate for conversion to a categorical
variable that reflects the true variation in the data. Second, because certain
techniques can only process categorical data, converting continuous data
into discrete values makes a numeric variable accessible to these methods.
For example, a continuous variable credit score may be divided into four
categories: poor, average, good, and excellent; or a variable Weight that
has a range from 0 to 350 lb may be divided into five categories: less than
100 lb, 100–150 lb, 150–200 lb, 200–250 lb, and above 250 lb. All values
for the variable Weight must now be assigned to a category and assigned
an appropriate value such as the mean of the assigned category. It is often
useful to use the frequency distribution to understand appropriate range
boundaries.

This process can also be applied to nominal variables, especially in
situations where there are a large number of values for a given nominal
variable. If the data set were to be summarized using each of the values,
the number of observations for each value may be too small to reach any



54 PREPARING DATA TABLES

meaningful conclusions. However, a new variable could be created that
generalizes the values using a mapping of terms. For example, a data set
concerning customer transactions may contain a variable Company that
details the individual customer’s company. There may only be a handful of
observations for each company. However, this variable could be mapped
onto a new variable, Industries. The mapping of specific companies onto
generalized industriesmust be defined using a conceptmapping (i.e., which
companymaps ontowhich industry). Now,when the data set is summarized
using the values for the Industries variable, meaningful trends may be
observed.

3.8 COMBINING VARIABLES

The variable that you are trying to use may not be present in the data set but
it may be derived from existing variables.Mathematical operations, such as
average or sum, could be applied to one or more variables in order to create
an additional variable. For example, a project may be trying to understand
issues regarding a particular car’s fuel efficiency (Fuel Efficiency) using a
data set of different journeys in which the fuel level at the start (Fuel Start)
and end (Fuel End) of a trip is measured along with the distance covered
(Distance). An additional column may be calculated using the following
formula:

Fuel Efficiency = (Fuel End − Fuel Start)∕Distance

Different approaches to generating newvariables to supportmodel build-
ing will be discussed in Chapter 6.

3.9 GENERATING GROUPS

Generally, larger data sets take more computational time to analyze and
creating subsets from the data can speed up the analysis. One approach
is to take a random subset which is effective where the data set closely
matches the target population.

Another reason for creating subsets is when a data set that has been
built up over time for operational purposes, but is now to be used to
answer an alternative business research question. It may be necessary to
select a diverse set of observations that more closely matches the new
target population. For example, suppose a car safety organization has been
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measuring the safety of individual cars based on specific requests from
the government. Over time, the government may have requested car safety
studies for certain types of vehicles. If the historical data set is to be used
to answer questions on the safety of all cars, this data set does not reflect
the new target population. However, a subset of the car studies could be
selected to represent the more general questions now being asked of the
data. The chapter on grouping will discuss how to create diverse data sets
when the data does not represent the target population.

A third reason is that when building predictive models from a data set, it
is important to keep the models as simple as possible. Breaking the data set
down into subsets based on your knowledge of the data may allow you to
create several simpler models. For example, a project to model factors that
contribute to the price of real estate may use a data set of nationwide house
prices and associated factors. However, your knowledge of the real estate
market suggests that factors contributing to housing prices are contingent
upon the area in which the house is located. Factors that contribute to
house prices in coastal locations are different from factors that contribute
to house prices in the mountains. It may make sense in this situation to
divide the data set up into smaller sets based on location and model these
locales separately. When doing this type of subsetting, it is important to
note the criteria you are using to subset the data. The specific criteria is
needed when data to be predicted are presented for modeling by assigning
the data to one or more models. In situations where multiple predictions are
generated for the same unknown observation, a method for consolidating
these predictions is required.

3.10 PREPARING UNSTRUCTURED DATA

In many disciplines, the focus of a data analysis or data mining project
is not a simple data table of observations and variables. For example, in
the life sciences, the focus of the analysis is genes, proteins, biological
pathways, and chemical structures. In other disciplines, the focus of the
analysis could be documents, web logs, device readouts, audio or video
information, and so on. In the analysis of these types of data, a preliminary
step is often the computational generation of different attributes relevant
to the problem. For example, when analyzing a data set of chemicals, an
initial step is to generate variables based on the composition of the chemical
such as its molecular weight or the presence or absence of molecular
components.
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EXERCISES

A set of 10 hypothetical patient records from a large database is presented
in Table 3.3. Patients with a diabetes value of 1 have type-II diabetes and
patients with a diabetes value of 0 do not have type-II diabetes.

1. Create a new column by normalizing the Weight (kg) variable into
the range 0–1 using the min–max normalization.

2. Create a new column by binning the Weight (kg) variable into three
categories: low (less than 60 kg), medium (60–100 kg), and high
(greater than 100 kg).

3. Create an aggregated column, body mass index (BMI), which is
defined by the formula:

BMI =
Weight(kg)

(Height(m))2

FURTHER READING

For additional data preparation approaches including the handling of missing data
see Pearson (2005), Pyle (1999), and Dasu & Johnson (2003).





CHAPTER 4

UNDERSTANDING RELATIONSHIPS

4.1 OVERVIEW

A critical step in making sense of data is an understanding of the rela-
tionships between different variables. For example, is there a relation-
ship between interest rates and inflation or education level and income?
The existence of an association between variables does not imply that
one variable causes another. These relationships or associations can be
established through an examination of different summary tables and data
visualizations as well as calculations that measure the strength and con-
fidence in the relationship. The following sections examine a number
of ways to understand relationships between pairs of variables through
data visualizations, tables that summarize the data, and specific calcu-
lated metrics. Each approach is driven by how the variables have been
categorized such as the scale on which they are measured. The use
of data visualizations is important as it takes advantage of the human
visual system’s ability to recognize complex patterns in what is seen
graphically.

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining,
Second Edition. Glenn J. Myatt and Wayne P. Johnson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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4.2 VISUALIZING RELATIONSHIPS BETWEEN VARIABLES

4.2.1 Scatterplots

Scatterplots can be used to identify whether a relationship exists between
two continuous variables measured on the ratio or interval scales. The
two variables are plotted on the x-and y-axis. Each point displayed on the
scatterplot is a single observation. The position of the point is determined
by the value of the two variables. The scatterplot in Figure 4.1 presents
hundreds of observations on a single chart.

Scatterplots allow you to see the type of relationship that may exist
between two variables. A positive relationship results when higher values
in the first variable coincide with higher values in the second variable
and lower values in the first variable coincide with lower values in the
second variable (the points in the graph are trending upward from left to
right). Negative relationships result when higher values in the first variable
coincide with lower values in the second variable and lower values in the
first variable coincide with higher values in the second variable (the points
are trending downward from left to right). For example, the scatterplot in
Figure 4.2 shows that the relationship between petal length (cm) and sepal
length (cm) is positive.

The nature of the relationships—linearity or nonlinearity—is also
important. A linear relationship exists when a second variable changes
proportionally in response to changes in the first variable. A nonlinear rela-
tionship is drawn as a curve indicating that as the first variable changes,
the change in the second variable is not proportional. In Figure 4.2 the
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FIGURE 4.1 Example of a scatterplot where each point corresponds to an
observation.
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FIGURE 4.2 A scatterplot showing a positive relationship.

relationship is primarily linear—as sepal length (cm) increases, petal length
(cm) increases proportionally. A scatterplot can also show if there are points
(e.g., X on Figure 4.3) that do not follow this linear relationship. These are
referred to as outliers.

Scatterplots may also indicate negative relationships. For example, it
can be seen in Figure 4.4 that as the values for weight increase, the val-
ues for MPG decrease. In situations where the relationship between the
variables is more complex, there may be a combination of positive and
negative relationships at various points. In Figure 4.4, the points follow a
curve indicating that there is also a nonlinear relationship between the two
variables—as weight increases MPG decreases, but the rate of decrease is
not proportional.
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FIGURE 4.3 Observation (marked as X) that does not follow the relationship.
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FIGURE 4.4 Scatterplot showing a negative nonlinear relationship.

Scatterplots can also show the lack of any relationship. In Figure
4.5, the points scattered throughout the graph indicates that there is no
obvious relationship between Alcohol and Nonflavonoid phenols in this
data set.

4.2.2 Summary Tables and Charts

Asimple summary table is a commonway of understanding the relationship
between two variables where at least one of the variables is discrete. For
example, a national retail company may have collected information on the
sale of individual products for every store. To summarize the performance
of these stores, theymay wish to generate a summary table to communicate
the average sales per store.
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FIGURE 4.5 Scatterplot showing no relationships.
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FIGURE 4.6 Example of a summary table.

A single categorical variable (or a continuous variable converted into
categories) is used to group the observations, and each row of the table
represents a single group. Summary tables will often show a count of
the number of observations (or percentage) that has the particular value
(or range). Any number of other columns can be shown alongside to
summarize the second variable. Since each row now refers to a set of
observations, other columns of variables included in the table must also
contain summary information. Descriptive statistics that summarize a set of
observations can be used including mean, median, mode, sum, minimum,
maximum, variance, and standard deviation.

In Figure 4.6, the relationship between two variables class and petal
width (cm) is shown from Fisher (1936). The class variable is a discrete
variable (nominal) that can take values “Iris-setosa,” “Iris-versicolor,” and
“Iris-virginica” and each of these values is shown in the first column.
There are 50 observations that correspond to each of these values and each
row of the table describes the corresponding 50 observations. Each row
is populated with summary information about the second variable (petal
width (cm)) for the set of 50 observations. In this example, the minimum
and maximum values are shown alongside the mean, median, and standard
deviation. It can be seen that the class “Iris-setosa” is associated with the
smallest petal width with a mean of 0.2. The set of 50 observations for the
class “Iris-versicolor” has a mean of 1.33, and the class “Iris-virginica”
has the highest mean of 2.03.

It can also be helpful to view this information as a graph. For example in
Figure 4.7, a bar chart is drawn with the x-axis showing the three nominal
class categories and the y-axis showing the mean value for petal width
(cm). The relative mean values of the three classes can be easily seen using
this view.

More details on the frequency distribution of the three separate sets
can be seen by using box plots for each category as shown in Figure 4.8.
Again, the x-axis represents the three classes; however, the y-axis is now
the original values for the petal width of each observation. The box plot
illustrates for each individual class how the observations are distributed
relative to the other class. For example, the 50 observations in the “Iris-
setosa” class have no overlapping values with either of the other two
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FIGURE 4.7 Example of a summary graph.

classes. In contrast, the frequency distribution of the “Iris-versicolor” and
the “Iris-virginica” show an amount of overlap at the extreme values.

Summary tables can also be used to show the relationship between
ordinal variables and another variable. In the example shown in Figure
4.9, three ordered categories are used to group the observations. Since
the categories can be ordered, it is possible to see how the mean weight
changes as the MPG category increases. It is clear from this table that as
MPG categories increases the mean weight decreases.

The same information can be seen as a histogram and a series of box
plots. By ordering the categories on the x-axis and plotting the information,
the trend can be seen more easily, as shown in Figure 4.10.

In many situations, a binary variable is used to represent a variable
with two possible values, with 0 representing one value and 1 the other.
For example, 0 could represent the case where a patient has a specific
infection and 1 the case where the patient does not. To illustrate, a new
blood test is being investigated to predict whether a patient has a specific

FIGURE 4.8 Example of a multiple box plot graph.
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FIGURE 4.9 Example of summary table where the categorical variable is
ordinal.

type of infection. This test calculates a value between −5.0 and +1.0, with
higher values indicating the patient has the infection and lower values
indicating the patient does not have the infection. The results of this test
are summarized in Figure 4.11, which shows the data categorized by the
two patient classes. There are 23 patients in the data that did not have the
infection (infection = 0) and 32 that did have the infection (infection = 1).
It can be seen that there is a difference between the blood test results for the
two groups. Themean value of the blood test in the groupwith the infection
is −3.05, whereas the mean value of the blood test over patients without
the infection is −4.13. Although there is a difference, the overlap of the
blood test results between the two groups makes it difficult to interpret the
results.

A different way to assess this data would be to use the blood test results
to group the summary table and then present descriptive statistics for the
infection variable. Since the blood test values are continuous, the first step
is to organize the blood test results into ranges. Range boundaries were
set at −5, −4, −3, −2, −1, 0, +1, and +2 and groups generated as shown
in Figure 4.12. The mean of the binary variable infection is shown in the

FIGURE 4.10 Graph of summary data for an ordinal variable against a contin-
uous (weight).
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FIGURE 4.11 Summary table and corresponding box plot chart to summarizing
the results of a trial for a new blood test to predict an infection.

summary table corresponding to each of the groups and also plotted using
a histogram. If all observations in a group were 0, then the mean would
be 0; and if all observations in a group were 1, then the mean would be
1. Hence the upper and lower limits on these mean values are 0 and 1.
This table and chart more clearly shows the relationship between these
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−

−

−
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−

−

FIGURE 4.12 Summary table and histogram using continuous data that has
been binned to generate the group summarized using the binary variable.
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FIGURE4.13 Contingency table showing the relationship between two dichoto-
mous variables.

two variables. For lower values of the blood test (from −5 to −2) there are
few cases of the infection—the test correctly predicts the majority of these
cases as negative. Similarly, for the range −1 to 2 most of these cases are
positive and the test would correctly predict most of these cases as positive.
However, for the range of blood test from −2 to −1, 55% are predicted
positive and 45% are predicted negative (based on the mean value for this
range). For this range of values the blood test performs poorly. It would be
reasonable to decide that for a test result in this range, the results should
not be trusted.

4.2.3 Cross-Classification Tables

Cross-classification tables or contingency tables provide insight into the
relationship between two categorical variables (or non-categorical vari-
ables transformed to categorical variables). A variable is often dichoto-
mous; however, a contingency table can represent variables with more
than two values. Figure 4.13 provides an example of a contingency table
for two variables over a series of patients: Test Results and Infection Class.
The variable Infection Class identifies whether a patient has the specific
infection and can take two possible values (“Infection negative” and “Infec-
tion positive”). The correspondingTest Results identifiedwhether the blood
test results were positive (“Blood test positive”) or negative (“Blood test
negative”). In this data set therewere 55 observations (shown in the bottom-
right cell). Totals for the Test Results values are shown in the rightmost
column labeled “Totals” and totals for Infection Class values are shown
on the bottom row also labeled “Totals.” In this example, there are 27
patients where the values for Test Results are “Blood test negative” and
28 that are “Blood test positive” (shown in the right column). Similarly,
there are 23 patients that are categorized as “Infection negative” and 32
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FIGURE 4.14 Contingency table illustrating the number of females and males
in each age-group.

as “Infection positive.” The table cells in the center of the table show the
number of patients that correspond to pairs of values. For example, there
are 17 patients who had a negative blood test result and did not have the
infection (“Infection negative”), 10 patients who had a negative blood test
result but had an infection, 6 who had a positive blood test result and did
not have an infection, and 22 who had a positive blood test and had an
infection. Contingency tables provide a view of the relationship between
two categorical variables. It can be seen from this example that although
the new blood test did not perfectly identify the presence or absence of
the infection, it correctly classified the presence of the infection for 39
patients (22 + 17) and incorrectly classified the infection in 16 patients
(10 + 6).

Contingency tables can be used to understand relationships between
categorical (both nominal and ordinal) variables where there are more
than two possible values. In Figure 4.14, the data set is summarized using
two variables: gender and age-group. The variable gender is dichoto-
mous and the two values (“female” and “male”) are shown in the table’s
header on the x-axis. The other selected variable is age-group, which has
been broken down into nine categories: 10–19, 20–29, 30–39, etc. For
each level of each variable, a total is displayed. For example, there are
21,790 observations where gender is “male” and there are 1657 obser-
vations where age is between 10 and 19. The total number of observa-
tions summarized in the table is shown in the bottom right-hand corner
(32,561).
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4.3 CALCULATING METRICS ABOUT RELATIONSHIPS

4.3.1 Overview

There are many ways to measure the strength of the relationship between
two variables. These metrics are usually based on the types of variables
being considered, such as a comparison between categorical variables and
continuous variables. The following section describes common methods
for quantifying the strength of relationships between variables.

4.3.2 Correlation Coefficients

For pairs of variables measured on an interval or ratio scale, a correlation
coefficient (r) can be calculated. This value quantifies the linear relation-
ship between the variables by generating values from −1.0 to +1.0. If the
optimal straight line is drawn through the points on a scatterplot, the value
of r reflects how closely the points lie to this line. Positive numbers for r
indicate a positive correlation between the pair of variables, and negative
numbers indicate a negative correlation. A value of r close to 0 indicates
little or no relationship between the variables.

For example, the two scatterplots shown in Figure 4.15 illustrate dif-
ferent values for r. The first graph illustrates a strong positive correlation
because the points lie relatively close to an imaginary line sloping upward
from left to right through the center of the points; the second graph illus-
trates a weaker correlation.

The formula used to calculate r is shown here:

r =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n − 1)sxsy
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FIGURE 4.15 Scatterplots illustrate values for the correlation coefficient (r).
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TABLE 4.1 Table of Data with Values for
the x and y Variables

x y

92 6.3
145 7.8
30 3.0
70 5.5
75 6.5
105 5.5
110 6.5
108 8.0
45 4.0
50 5.0
160 7.5
155 9.0
180 8.6
190 10.0
63 4.2
85 4.9
130 6
132 7

where x and y are variables, xi are the individual values of x, yi are the
individual values of y, x̄ is the mean of the x variable, ȳ is the mean of
the y variable, sx and sy are the standard deviations of the variables x
and y, respectively, and n is the number of observations. To illustrate the
calculation, two variables (x and y) are used and shown in Table 4.1. The
scatterplot of the two variables indicates a positive correlation between
them, as shown in Figure 4.16. The specific value of r is calculated using
Table 4.2:

r =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n − 1)sxsy

r = 1357.06
(18 − 1)(47.28)(1.86)

r = 0.91
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FIGURE 4.16 Scatterplot to illustrate the relationship between the x and y
variables.

TABLE 4.2 Table Showing the Calculation of the Correlation Coefficient

xi yi (xi − x̄) (yi − ȳ) (xi − x̄)(yi − ȳ)

92 6.3 −14.94 −0.11 1.64
145 7.8 38.06 1.39 52.90
30 3 −76.94 −3.41 262.37
70 5.5 −36.94 −0.91 33.62
75 6.5 −31.94 0.09 −2.87

105 5.5 −1.94 −0.91 1.77
110 6.5 3.06 0.09 0.28
108 8 1.06 1.59 1.69
45 4 −61.94 −2.41 149.28
50 5 −56.94 −1.41 80.04

160 7.5 53.06 1.09 58.07
155 9 48.06 2.59 124.68
180 8.6 73.06 2.19 160.00
190 10 83.06 3.59 298.19
63 4.2 −43.94 −2.21 97.11
85 4.9 −21.94 −1.51 33.13

130 6 23.06 −0.41 −9.45
132 7 25.06 0.59 14.79

x̄ = 106.94 ȳ = 6.41 Sum = 1,357.06
sx = 47.28 sy = 1.86
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4.3.3 Kendall Tau

Kendall Tau is another approach for measuring associations between pairs
of variables. It is based on a ranking of the observations for two variables.
This ranking can be derived by ordering the values and then replacing the
actual values with a rank from 1 to n (where n is the number of observations
in the data set). The overall formula is based on counts of concordant and
discordant pairs of observations. Table 4.3 is used to illustrate Kendall Tau
using two variables, Variable X and Variable Y, containing a ranking with
10 observations (A through J).

A pair of observations is concordant if the difference of one of the two
variable’s values is in the same direction as the difference of the other
variable’s values. For example, to determine if the observations A and B
are concordant, we compare the difference of the values for Variable X
(XB − XA or 2 − 1 = 1) with the difference of the values for Variable Y
(YB − YA or 4 − 2 = 2). Since these differences are in the same direction—
1 and 2 are both positive—the observations A and B are concordant. We
would get the same result if we compared the difference of (XA − XB)
and (YA − YB). In this case the differences would both be negative, but
still in the same direction. Calculated either way, the observations A and B
are concordant. A discordant pair occurs when the differences of the two
variables’ values move in opposite directions. The pair of observations B
and C illustrates this. The difference of the values for Variable X (XC − XB
or 3 − 2 = 1) compared with the difference of the values for Variable Y
(YC − YB or 1 − 4 = −3) are in different directions: the first is positive and
the second negative. The pair of observations B and C is discordant.

TABLE 4.3 Data Table of Rankings for Two Variables

Observation name Variable X Variable Y

A 1 2
B 2 4
C 3 1
D 4 3
E 5 6
F 6 5
G 7 7
H 8 8
I 9 10
J 10 9
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TABLE 4.4 Calculation of Concordant and Discordant Pairs

Observation Concordant Discordant
Name Variable X Variable Y Pairs Pairs

A 1 2 8 1
B 2 4 6 2
C 3 1 7 0
D 4 3 6 0
E 5 6 4 1
F 6 5 4 0
G 7 7 2 1
H 8 8 2 0
I 9 10 0 1
J 10 9 0 0

Sum: 39 6

In Table 4.4, the observations A–J are ordered using Variable X, and
each unique pair of observations is compared. For example, observation
A is compared with all other observations (B, C, . . . , J) and the number
of concordant and discordant pairs are summed as shown in the last two
columns of Table 4.4. For observations A, there are eight concordant pairs
(A–B, A–D, A–E, A–F, A–G, A–H, A–I, A–J) and one discordant pair (A–
C). Tomake sure that each pair of observations is considered in this process,
this is repeated for all other observations. Observation B is compared to
observations C through J, observation C compared to D though J, and
so on. The number of concordant and discordant pairs is shown for each
observation, and the sum of the concordant and discordant pairs is also
computed.

AfinalKendall Taumeasure is computed based on these computed sums.
Kendall Tau measures associations between variables with 1 indicating a
perfect ranking and −1 a perfect disagreement of the rankings. A zero
value—assigned when the ranks are tied—indicates a lack of association,
or in other words, that the two variables are independent. The simplest form
of the Kendall Tau calculation is referred to as Tau A and has the formula:

𝜏A =
nc − nd

n (n − 1)∕2

where nc and nd are the number of concordant and discordant pairs,
respectively, and n is the number of observations. In this example, the Tau
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A (𝜏A) would be:

𝜏A = 39 − 6
45

𝜏A = 0.73

In most practical situations, there are ties based on either variable. In
these situations, the formula Tau B is often used. It considers the ties in the
first variable (tx) and the ties in the second variable (ty) and is computed
using the following formulas:

𝜏B =
nc − nd√

(nc + nd + tx)(nc + nd + ty)

In most software applications the Kendall Tau B function is used.

4.3.4 t-Tests Comparing Two Groups

In Chapter 2, we used a hypothesis test (t-test) to determine whether the
mean of a variable was sufficiently different from a specified value as to be
considered statistically significant, meaning that it would be unlikely that
the difference between the value and the mean was due to normal variation
or chance. This concept can be extended to compare themean values of two
subsets. We can explore if the means of two groups are different enough to
say the difference is significant, or conclude that a difference is simply due
to chance. This concept is similar to the description in Chapter 2; however,
different formulas are utilized.

In looking at the difference between two groups, we need to not only
take into account the values for the mean values of the two groups, but also
the deviation of the data for the two groups.

The formula is used where it is assumed that the value being assessed
across the two groups is both independently and normally distributed and
variances between the two groups are either equal or similar. The for-
mula takes into account the difference between the two groups as well as
information concerning the distribution of the two groups:

T =
x̄1 − x̄2

sp

√
1
n1

+ 1
n2

where x̄1 is the mean value of the first group, x̄2 is the mean value of the
second group, and n1 and n2 are the number of observations in the first and
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second group respectively, and sp is an estimate of the standard deviation
(pooled estimate). The sp is calculated using the following formula:

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

where n1 and n2 are again the number of observations in group 1 and group
2 respectively, and s21, s

2
2 are the calculated variances for group 1 and group

2. This formula follows a t-distribution, with the number of degrees of
freedom (df) calculated as

df = n1 + n2 − 2

where it cannot be assumed that the variances across the two groups are
equal, another formula is used:

T =
x̄1 − x̄2√
s21
n1

+
s22
n1

where x̄1and x̄2 are the average values for the two groups (1 and 2), s
2
1 and

s22 are the calculated variances for the two groups, and n1 and n2 are the
number of observations in the two groups.

Again, it follows a t-distribution and the number of degrees of freedom
(df) is calculated using the following formula:

df =

(
s21
n1

+
s21
n2

)2

1
n1 − 1

(
s21
n1

)2

+ 1
n2 − 1

(
s22
n2

)2

These t-values will be positive if the mean of group 1 is larger than
the mean of group 2 and negative if the mean of group 2 is larger than
the mean of group 1. In a similar manner as described in Chapter 2, these
t-values can be used in a hypothesis test where the null hypothesis states
that the two means are equal and the alternative hypothesis states that the
two means are not equal. This t-value can be used to accept or reject the
null hypothesis as well as calculate a p-value, either using a computer or a
statistical table, in a manner similar to that described in Chapter 2.
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TABLE 4.5 Calls Processed by Different Call Centers

Call Center A Call Center B Call Center C Call Center D

136 124 142 149
145 131 145 157
139 128 139 154
132 130 145 155
141 129 143 151
143 135 141 156
138 132 138
139 146

4.3.5 ANOVA

The following section reviews a technique called the completely random-
ized one-way analysis of variance that compares the means of three or
more different groups. The test determines whether there is a difference
between the groups. This method can be applied to cases where the groups
are independent and random, the distributions are normal and the pop-
ulations have similar variances. For example, an online computer retail
company has call centers in four different locations. These call centers are
approximately the same size and handle a certain number of calls each day.
An analysis of the different call centers based on the average number of
calls processed each day is required to understand whether one or more of
the call centers are under- or over-performing. Table 4.5 illustrates the calls
serviced daily.

As with other hypothesis tests, it is necessary to state a null and alterna-
tive hypothesis. Generally, the hypothesis statement will take the standard
form:

H0: The means are equal.
Ha: The means are not equal.

To determine whether a difference exists between the means or whether
the difference is due to random variation, we must perform a hypothesis
test. This test will look at both the variation within the groups and the
variation between the groups. The test performs the following steps:

1. Calculate group means and variance.
2. Determine the within-group variation.
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TABLE 4.6 Calculating Means and Variances

Call Call Call Call Groups
Center A Center B Center C Center D (k = 4)

136 124 142 149
145 131 145 157
139 128 139 154
132 130 145 155
141 129 143 151
143 135 141 156
138 132 138
139 146

Count 8 7 8 6 Total count
N = 29

Mean 139.1 129.9 142.4 153.7
Variance 16.4 11.8 8.6 9.5

3. Determine the between-group variation.
4. Determine the F-statistic, which is based on the between-group and

within group ratio.
5. Test the significance of the F-statistic.

The following sections describe these steps in detail:

Calculate group means and variances
In Table 4.6, for each call center a count along with the mean and

variance has been calculated. In addition, the total number of groups
(k = 4) and the total number of observations (N = 29) is listed. An average

of all values (x = 140.8) is calculated by summing all values and dividing
it by the number of observations:

x = 136 + 145 +…+ 151 + 156
29

= 140.8

Determine the within-group variation
The variation within groups is defined as the within-group variance or

mean square within (MSW). To calculate this value, we use a weighted
sum of the variance for the individual groups. The weights are based on
the number of observations in each group. This sum is divided by the
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number of degrees of freedom calculated by subtracting the number of
groups (k) from the total number of observations (N):

MSW =

k∑
i=1

(ni − 1)s2i

N − k

In this example:

MSW = (8− 1)× 16.4+ (7 − 1)× 11.8+ (8− 1)× 8.6+ (6− 1)× 9.5
(29− 4)

MSW = 11.73

Determine the between-group variation
Next, the between-group variation or mean square between (MSB) is

calculated. TheMSB is the variance between the group means. It is calcu-
lated using a weighted sum of the squared difference between the group

mean (x̄i) and the average of all observations (x). This sum is divided by
the number of degrees of freedom. This is calculated by subtracting one
from the number of groups (k). The following formula is used to calculate
theMSB:

MSB =

k∑
i=1

ni(x̄i − x)2

k − 1

where ni is the number for each group and x̄i is the average for each group.
In this example,

MSB =

(8 × (139.1 − 140.8)2) + (7 × (129.9 − 140.8)2)
+(8 × (142.4 − 140.8)2) + (6 × (153.7 − 140.8)2)

4 − 1

MSB = 624.58

Determine the F-statistic
The F-statistic is the ratio of the MSB and the MSW:

F = MSB
MSW
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In this example:

F = 624.58
11.73

F = 53.25

Test the significance of the F-statistic
Before we can test the significance of this value, we must determine the

degrees of freedom (df) for the two mean squares (within and between).
The degrees of freedom for the MSW (dfwithin) is calculated using the
following formula:

dfwithin = N − k

where N is the total number of observations in all groups and k is the
number of groups.

The degrees of freedom for the MSB (df between) is calculated using the
following formula:

df between = k − 1

where k is the number of groups.
In this example,

df between = 4 − 1 = 3

dfwithin = 29 − 4 = 25

We already calculated the F-statistic to be 53.39. This number indicates
that the mean variation between groups is much greater than the mean
variation within groups due to errors. To test this, we look up the critical
F-statistic from an F-table (see the Further Readings section). To find this
critical value we need 𝛼 (confidence level), v1 (df between), and v2 (dfwithin).
The critical value for the F-statistic is 3.01 (when 𝛼 is 0.05). Since the
calculated F-statistic is greater than the critical value, we reject the null
hypothesis. The means for the different call centers are not equal.

4.3.6 Chi-Square

The chi-square test for indepedence is a hypothesis test for use with vari-
ables measured on a nominal or ordinal scale. It allows an analysis of
whether there is a relationship between two categorical variables. As with
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TABLE 4.7 Calculation of Chi-Square

k Category Observed (O) Expected (E) (O − E)2/E

1 r = Brand X, c = 43221 5,521 4,923 72.6
2 r = Brand Y, c = 43221 4,597 4,913 20.3
3 r = Brand Z, c = 43221 4,642 4,925 16.3
4 r = Brand X, c = 43026 4,522 4,764 12.3
5 r = Brand Y, c = 43026 4,716 4,754 0.3
6 r = Brand Z, c = 43026 5,047 4,766 16.6
7 r = Brand X, c = 43212 4,424 4,780 26.5
8 r = Brand Y, c = 43212 5,124 4,770 26.3
9 r = Brand Z, c = 43212 4,784 4,782 0.0008

Sum = 191.2

other hypothesis tests, it is necessary to state a null and alternative hypoth-
esis. Generally, these hypothesis statements are as follows:

H0: There is no relationship.
Ha: There is a relationship.

Using Table 4.7, we will look at whether a relationship exists between
where a consumer lives (represented by a zip code) and the brand of
washing powder they buy (brand X, brand Y, and brand Z). The “r” and
“c” refer to the row (r) and column (c) in a contingency table.

The Chi-Square test compares the observed frequencies with the
expected frequencies. The expected frequencies are calculated using the
following formula:

Er,c =
r × c
n

where Er,c is the expected frequency for a particular cell in a contingency
table, r is the row count, c is the column count and n is the total number of
observations in the sample.

For example, to calculate the expected frequency for the table cell where
the washing powder is brand X and the zip code is 43221 would be

EBrand X,43221 =
14,467 × 14,760

43,377

EBrand X,43221 = 4,923
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The Chi-Square test (𝜒2) is computed with the following equation:

𝜒2 =
k∑
i=1

(Oi − Ei)
2

Ei

where k is the number of all categories, Oi is the observed cell frequency
and Ei is the expected cell frequency. The test is usually performed when
all observed cell frequencies are greater than 10. Table 4.7 shows the
computed 𝜒2 for this example.

There is a critical value at which the null hypothesis is rejected (𝜒2
c ) and

this value is found using a standard Chi-Square table (see Further Reading
Section). The value is dependent on the degrees of freedom (df ), which is
calculated:

df = (r − 1) × (c − 1)

For example, the number of degrees of freedom for the above example
is (3 − 1) × (3 − 1) which equals 4. Looking up the critical value for
df = 4 and 𝛼 = 0.05, the critical value is 9.488. Since 9.488 is less than
the calculated chi-square value of 191.2, we reject the null hypothesis and
state that there is a relationship between zip codes and brands of washing
powder.

EXERCISES

Table 4.8 shows a series of retail transactions monitored by the main office
of a computer store.

1. Generate a contingency table summarizing the variables Store and
Product category.

2. Generate the following summary tables:
a. Grouping byCustomerwith a count of the number of observations

and the sum of Sale price ($) for each row.
b. Grouping by Storewith a count of the number of observations and

the mean Sale price ($) for each row.
c. Grouping by Product category with a count of the number of

observations and the sum of the Profit ($) for each row.
3. Create a scatterplot showing Sales price ($) against Profit ($).
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TABLE 4.8 Retail Transaction Data Set

Product Product Sale Profit
Customer Store Category Description Price ($) ($)

B. March New York, NY Laptop DR2984 950 190
B. March New York, NY Printer FW288 350 105
B. March New York, NY Scanner BW9338 400 100
J. Bain New York, NY Scanner BW9443 500 125
T. Goss Washington, DC Printer FW199 200 60
T. Goss Washington, DC Scanner BW39339 550 140
L. Nye New York, NY Desktop LR21 600 60
L. Nye New York, NY Printer FW299 300 90
S. Cann Washington, DC Desktop LR21 600 60
E. Sims Washington, DC Laptop DR2983 700 140
P. Judd New York, NY Desktop LR22 700 70
P. Judd New York, NY Scanner FJ3999 200 50
G. Hinton Washington, DC Laptop DR2983 700 140
G. Hinton Washington, DC Desktop LR21 600 60
G. Hinton Washington, DC Printer FW288 350 105
G. Hinton Washington, DC Scanner BW9443 500 125
H. Fu New York, NY Desktop ZX88 450 45
H. Taylor New York, NY Scanner BW9338 400 100

FURTHER READING

For more information on inferential statistics used to assess relationships see
Urdan (2010), Anderson et al. (2010), Witte & Witte (2009), and Vickers
(2010).



CHAPTER 5

IDENTIFYING AND UNDERSTANDING
GROUPS

5.1 OVERVIEW

It is often useful to decompose a data set into simpler subsets to help make
sense of the entire collection of observations. These groups may reflect
the types of observations found in a data set. For example, the groups
might summarize the different types of customers who visit a particular
shop based on collected demographic information. Finding subgroups may
help to uncover relationships in the data such as groups of consumers who
buy certain combinations of products. The process of grouping a data set
may also help identify rules from the data, which can in turn be used to
support future decisions. For example, the process of grouping historical
data can be used to understand which combinations of clinical treatments
lead to the best patient outcomes. These rules can then be used to select an
optimal treatment plan for new patients with the same symptoms. Finally,
the process of grouping also helps discover observations dissimilar from
those in the major identified groups. These outliers should be more closely
examined as possible errors or anomalies.

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining,
Second Edition. Glenn J. Myatt and Wayne P. Johnson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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FIGURE 5.1 Simple summary table showing how the mean petal width changes
for the different classes of flowers.

The identification of interesting groups is not only a common deliv-
erable for a data analysis project, but can also support other data mining
tasks such as the development of a model to use in forecasting future
events (as described in Chapter 6). This is because the process of grouping
and interpreting the groups of observations helps the analyst to thoroughly
understand the data set which, in turn, supports the model building
process. This grouping process may also help to identify specific subsets
that lead to simpler and more accurate models than those built from the
entire set. For example, in developing models for predicting house prices,
there may be groups of houses (perhaps based on locations) where a
simple and clear relationship exists between a specific variable collected
and the house prices which allows for the construction of specific models
for these subpopulations.

The analysis we have described in Chapter 4 looks at the simple rela-
tionship between predefined groups of observations—those encoded using
a single predefined variable—and one other variable. For example, in look-
ing at a simple categorization such as types of flowers (“Iris-setosa,” “Iris-
versicolor,” and “Iris-virginica”), a question we might ask is how a single
variable such as petal width varies among different species as illustrated
in Figure 5.1.

This can be easily extended to help understand the relationships between
groups and multiple variables, as illustrated in Figure 5.2 where three
predefined categories are used to group the observations. Summary infor-
mation on multiple variables is presented (using the mean value in this

FIGURE 5.2 The use of a summary table to understand multiple variables for a
series of groups.



OVERVIEW 85

example). As described earlier, these tables can use summary statistics
(e.g., mean, mode, median, and so on) in addition to graphs such as box
plots that illustrate the subpopulations. The tables may also include other
metrics that summarize associations in the data, as described in Chapter 4.
A variety of graphs (e.g., histograms, box plots, and so on) for each group
can also be shown in a table or grid format known as small multiples that
allows comparison. For example, in Figure 5.3, a series of variables are
plotted (cylinder, displacement, horsepower, acceleration, and MPG) for
three groups (“American cars,” “European cars,” and “Asian cars”), which
clearly illustrates changes in the frequency distribution for each of these
classes of cars.

Through an interactive technique known as brushing, a subset of obser-
vations can also be highlighted within a frequency distribution of the
whole data set as illustrated using the automobile example in Figure 5.4.
The shaded areas of the individual plots are observations where the car’s
origin is “American.” The chart helps visualize how this group of selected
cars is associated with lower fuel efficiency. As shown in the graph in the
top left plot (MPG), the distribution of the group (dark gray) overlays the
distribution of all the cars in the data set (light gray).

In this chapter, we will explore different ways to visualize and
group observations by looking at multiple variables simultaneously. One
approach is based on similarities of the overall set of variables of interest,
as in the case of clustering. For example, observations that have high val-
ues for certain variables may form groups different from those that have
low values for the same variables. In this approach, the pattern of values of
variables for observations within a group will be similar, even though the
individual data values may differ. A second approach is to identify groups
based on interesting combinations of predefined categories, as in the case
of association rules. This more directed approach identifies associations
or rules about groups that can be used to support decision making. For
example, a rule might be that a group of customers who historically pur-
chased products A, B, and C also purchased product X. A third directed
approach, referred to as decision trees, groups observations based on a
combination of ranges of continuous variables or of specific categories. As
an example, a data set of patients could be used to generate a classification
of cholesterol levels based on information such as age, genetic predisposi-
tion, lifestyle choices, and so on. This chapter describes how each of these
approaches calculates groups and explains techniques for optimizing the
results. It also discusses the strengths and weaknesses of each approach
and provides worked examples to illustrate them.
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5.2 CLUSTERING

5.2.1 Overview

For a given data set it is not necessarily known beforehand what groups of
observations the entire data set is composed of. For example, in examining
customer data collected from a particular store, it is possible to identify and
summarize classes of customers directly from the data to answer questions
such as “What types of customers visit the store?” Clustering groups data
into sets of related observations or clusters, so that observations within
each group are more similar to other observations within the group than to
observations within other groups. Here, we use the concept of similarity
abstractly but define it more precisely in Section 5.2.2.

Clustering is an unsupervised method for grouping. By unsupervised,
we mean that the groups are not known in advance and a goal—a specific
variable—is not used to direct how the grouping is generated. Instead, all
variables are considered in the analysis. The clustering method chosen to
subdivide the data into groups applies an automated procedure to discover
the groups based on some criteria and its solution is extracted from patterns
or structure existing in the data. There are many clustering methods, and
it is important to know that each will group the data differently based on
the criteria it uses, regardless of whether meaningful groups exist or not.
For clustering, there is no way to measure accuracy and the solution is
judged by its “usefulness.” For that reason, clustering is used as an open-
ended way to explore, understand, and formulate questions about the data
in exploratory data analysis.

To illustrate the process of clustering, a set of observations are shown
on the scatterplot in Figure 5.5. These observations are plotted using two
hypothetical dimensions and the similarity between the observations is
proportional to the physical distance between the observations. There are
two clear regions that can be considered as clusters: Cluster A and Cluster
B, since many of the observations are contained within these two regions
on the scatterplot.

Clustering is a flexible approach for grouping. For example, based on the
criteria for clustering the observations, observation X was not determined
to be a member of cluster A. However, if a more relaxed criterion was
used, X may have been included in cluster A. Clustering not only assists
in identifying groups of related observations, it can also locate outliers—
observations that are not similar to others—since they fall into groups of
their own. In Figure 5.5, there are six observations that do not fall within
cluster A or B.
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FIGURE 5.5 Illustration of clusters and outliers.

There are two major categories of clustering. Some clustering methods
organize data sets hierarchically, which may provide additional insight into
the problem under investigation. For example, when clustering genomics
data sets, hierarchical clustering may provide insight into the biological
functional processes associated with collections of related genes. Other
clustering methods partition the data into lists of clusters based on a pre-
defined number of groups. For these methods, the speed of computation
outweighs the challenge of determining in advance the number of groups
that should be used.

There are other factors to consider in choosing and fine-tuning the clus-
tering of a data set. Adjusting the criteria clustering methods use includes
options for calculating the similarity between observations and for select-
ing cluster size. Different problems require different clustering options and
may require repeated examination of the results as the options are adjusted
to make sense of a particular cluster. Finally, it is important to know the
limits of the algorithms. Some clustering methods are time-consuming
and, especially for large data sets, may be too computationally expensive
to consider, while other methods may have limitations on the number of
observations they can process.

To illustrate how clustering works, two clustering techniques will
be described in this section: hierarchical agglomerative clustering and
k-means clustering. References to additional clustering methods will be
provided in the Further Reading section of this chapter. All approaches to



90 IDENTIFYING AND UNDERSTANDING GROUPS

TABLE 5.1 Table Showing Two Observations A and B

Observation ID Variable 1 Variable 2

A 2 3
B 7 8

clustering require a formal approach to defining how similar two observa-
tions are to each other as measured by the distance between them, and this
is described in Section 5.2.2.

5.2.2 Distances

A method of clustering needs a way to measure how similar observations
are to each other. To calculate similarity, we need to compute the distance
between observations. To illustrate the concept of distance we will use a
simple example with two observations and two variables (see Table 5.1).
We can see the physical distance between the two observations by plotting
them on the following scatterplot (Figure 5.6). In this example, the distance
between the two observations is calculated using simple trigonometry:

x = 7 − 2 = 5

y = 8 − 3 = 5

d =
√
x2 + y2 =

√
25 + 25 = 7.07

FIGURE 5.6 Distance between two observations A and B.
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TABLE 5.2 Three Observations with Values for Five Variables

ID Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 0.7 0.8 0.4 0.5 0.2
B 0.6 0.8 0.5 0.4 0.2
C 0.8 0.9 0.7 0.8 0.9

It is possible to calculate distances between observations with more
than two variables by extending this approach. This calculation is called
the Euclidean distance (d) and its general formula is

d =

√√√√ n∑
i=1

(pi − qi)2

This formula calculates the distance between two observations p and
q where each observation has n variables. To illustrate the Euclidean
distance calculation for observations with more than two variables, we
will use Table 5.2.

The Euclidean distance between A and B is

dA−B =
√
(0.7 − 0.6)2 + (0.8 − 0.8)2 + (0.4 − 0.5)2 + (0.5 − 0.4)2 + (0.2 − 0.2)2

dA−B = 0.17

The Euclidean distances between A and C is

dA−C =
√
(0.7 − 0.8)2 + (0.8 − 0.9)2 + (0.4 − 0.7)2 + (0.5 − 0.8)2 + (0.2 − 0.9)2

dA−C = 0.83

The Euclidean distance between B and C is

dB−C =
√
(0.6 − 0.8)2 + (0.8 − 0.9)2 + (0.5 − 0.7)2 + (0.4 − 0.8)2 + (0.2 − 0.9)2

dB−C = 0.86

The distance between A and B is 0.17, whereas the distance between
A and C is 0.83, which indicates that there is more similarity between
observations A and B than A and C. C is not closely related to either A or
B. This can be seen in Figure 5.7 where the values for each variable are
plotted along the horizontal axis and the height of the bar measured against
the vertical axis represents the data value. The shape of histograms A and
B are similar, whereas the shape of histogram C is not similar to A or B.
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FIGURE 5.7 Distances between three observations: A–B, B–C, and A–C.

Sometimes a distance metric can only be used for a particular type of
variable. The Euclidean distance metric can be used only for numerical
variables. Other metrics are needed for binary variables and one of which
is the Jaccard distance. This approach is based on the number of common
or different 0/1 values between corresponding variables across each pair
of observations using the following counts:

� Count11: Count of all variables that are 1 in “Observation 1” and 1 in
“Observation 2.”

� Count10: Count of all variables that are 1 in “Observation 1” and 0 in
“Observation 2.”

� Count01: Count of all variables that are 0 in “Observation 1” and 1 in
“Observation 2.”

� Count00: Count of all variables that are 0 in “Observation 1” and 0 in
“Observation 2.”
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TABLE 5.3 Three Observations Measured over Five Binary Variables

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 1 1 0 0 1
B 1 1 0 0 0
C 0 0 1 1 1

The following formula is used to calculate the Jaccard distance:

d =
Count10 + Count01

Count11 + Count10 + Count01

The Jaccard distance is illustrated using Table 5.3.
Between observations A and B are two variables where both values are 1

(Variable 1 andVariable 2), two valueswhere both variables are 0 (Variable
3 and Variable 4), one value where the value is 1 in observation A but 0 in
observationB (Variable 5) and no valueswhere a value is 0 in observationA
and 1 in observation B. Therefore, the Jaccard distance between A and B is

dA−B = (1 + 0)∕(2 + 1 + 0) = 0.33

The Jaccard distance between A and C is

dA−C = (2 + 2)∕(1 + 2 + 2) = 0.8

The Jaccard distance between B and C is

dB−C = (2 + 3)∕(0 + 2 + 3) = 1.0

The Euclidean and Jaccard distance metrics are two examples of
techniques for determining the distance between observations. Other tech-
niques include Mahalanobis, City Block, Minkowski, Cosine, Spearman,
Hamming, and Chebyshev (see the Further Reading section for references
on these and other methods).

5.2.3 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering is an example of a hierarchical
method for grouping observations. It uses a “bottom-up” approach to clus-
tering as it starts with each observation and progressively creates clusters
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TABLE 5.4 Table of Observations to Cluster

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 7.9 8.6 4.4 5.0 2.5
B 6.8 8.2 5.2 4.2 2.2
C 8.7 9.6 7.5 8.9 9.8
D 6.1 7.3 7.9 7.3 8.3
E 1.5 2.0 5.1 3.6 4.2
F 3.7 4.3 5.4 3.3 5.8
G 7.2 8.5 8.6 6.7 6.1
H 8.5 9.7 6.3 5.2 5.0
I 2.0 3.4 5.8 6.1 5.6
J 1.3 2.6 4.2 4.5 2.1
K 3.4 2.9 6.5 5.9 7.4
L 2.3 5.3 6.2 8.3 9.9
M 3.8 5.5 4.6 6.7 3.3
N 3.2 5.9 5.2 6.2 3.7

by merging observations together until all are a member of a final single
cluster. The major limitation of agglomerative hierarchical clustering is
that it is normally limited to data sets with fewer than 10,000 observations
because the computational cost to generate the hierarchical tree can be
high, especially for larger numbers of observations.

To illustrate the process of agglomerative hierarchical clustering, the
data set of 14 observations measured over 5 variables as shown in Table 5.4
will be used. In this example, the variables are all measured on the same
scale; however, where variables are measured on different scales they
should be normalized to a comparable range (e.g., 0–1) prior to clustering.
This prevents one or more variables from having a disproportionate weight
and creating a bias in the analysis.

First, the distance between all pairs of observations is calculated. The
method for calculating the distance along with the variables to include in
the calculation should be set prior to clustering. In this example, we
will use the Euclidean distance across all continuous variables shown in
Table 5.4. The distances between all combinations of observations are sum-
marized in a distance matrix, as illustrated in Table 5.5. In this example,
the distances between four observations are shown (A, B, C, D) and each
value in the table shows the distance between two indexed observations.
The diagonal values are excluded, since these pairs are of the same obser-
vation. It should be noted that a distance matrix is usually symmetrical
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TABLE 5.5 Distance Matrix Format

A B C D . . .

A dA,B dA,C dA,D . . .
B dB,A dB,C dB,D . . .
C dC,A dC,B dC,D . . .
D dD,A dD,B dD,C . . .
. . . . . . . . . . . . . . .

about the diagonal as the distance between, for example, A and B is the
same as the distance between B and A.

For the 14 observations in Table 5.4, the complete initial distance matrix
is shown in Table 5.6. This table is symmetrical about the diagonal since, as
described previously, the ordering of the pairs is irrelevant when using the
Euclidean distance. The two closest observations are identified (M andN in
this example) and are merged into a single cluster. These two observations
from now on will be considered a single group.

Next, all observations (minus the two that have been merged into a
cluster) along with the newly created cluster are compared to see which
observation or cluster should be joined into the next cluster. Since we are
now analyzing individual observations and clusters, a joining or linkage
rule is needed to determine the distance between an observation and a
cluster of observations. This joining/linkage rule should be set prior to
clustering. In Figure 5.8, two clusters have already been identified: Cluster
A and Cluster B. We now wish to determine the distance between observa-
tion X and the cluster A or B (to determine whether or not to merge X with
one of the two clusters). There are a number of ways to calculate the dis-
tance between an observation and an already established cluster including
average linkage, single linkage, and complete linkage. These alternatives
are illustrated in Figure 5.9.

� Average linkage: the distance between all members of the cluster
(e.g., a, b, and c) and the observation under consideration (e.g., x) are
calculated and the average is used for the overall distance.

� Single linkage: the distance between all members of the cluster (e.g.,
a, b, and c) and the observation under consideration (e.g., x) are
calculated and the smallest is selected.

� Complete linkage: the distance between all members of the cluster
(e.g., a, b, and c) and the observation under consideration (e.g., x) are
calculated and the highest is selected.
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FIGURE 5.8 Comparing observation X with two clusters A and B.

Distances between all combinations of groups and observations are
considered and the smallest distance is selected. Since we now may need
to consider the distance between two clusters, the linkage/joining concept
is extended to the joining of two clusters, as illustrated in Figure 5.10. The
process of assessing all pairs of observations/clusters, then combining the
pair with the smallest distance is repeated until there are no more clusters
or observations to join together since only a single cluster remains.

Figure 5.11 illustrates this process for some steps based on the obser-
vations shown in Table 5.6. In step 1, it is determined that observations
M and N are the closest and they are combined into a cluster, as shown.
The horizontal length of the lines joining M and N reflects the distance at
which the cluster was formed (0.196). From now on M and N will not be
considered individually, but only as a cluster. In step 2, distances between
all observations (except M and N) as well as the cluster containing M and
N are calculated. To determine the distance between the individual obser-
vations and the cluster containing M and N, the average linkage rule was
used. It is now determined that A and B should be joined as shown. Once
again, all distances between the remaining ungrouped observations and the
newly created clusters are calculated and the smallest distance selected.

FIGURE5.9 Different linkage rules for considering an observation and a cluster.
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FIGURE 5.10 Different linkage rules for considering two clusters.

Steps 3 to 5 follow the same process. In step 6, the shortest distance is
between observation I and the cluster containing M and N and in step 8,
the shortest distance is between the cluster {M,N} and the cluster {F,I,K}.
This process continues until only one cluster containing all the observa-
tions remains. Figure 5.12 shows the completed hierarchical clustering for
all 14 observations.

When clustering completes, a tree called a dendrogram is generated
showing the similarity between observations and clusters as shown in
Figure 5.12. To divide a data set into a series of distinct clusters, we must
select a distance at which the clusters are to be created. Where this distance
intersects with a horizontal line on the tree, a cluster is formed, as illustrated

FIGURE 5.11 Steps 1 through 8 of the clustering process.
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FIGURE 5.12 Completed hierarchical clustering for the 14 observations.

in Figure 5.13. In this example, three different distances (i, j, k) are used to
divide the tree into clusters. Where this vertical line intersects with the tree
(shown by the circles) at distance i, two clusters are formed: {L,C,D,G}
and {H,A,B,E,J,M,N,F,I,K}; at distance j, four clusters are formed: {L},
{C,D,G}, {H,A,B}, and {E,J,M,N,F,I,K}; and at distance k, nine clusters
are formed: {L}, {C}, {D,G}, {H}, {A,B}, {E,J}, {M,N}, {F}, and {I,K}.
As illustrated in Figure 5.13, adjusting the cut-off distance will change the
number of clusters created. Distance cut-offs toward the left will result in
fewer clusters with more diverse observations within each cluster. Cut-offs
toward the right will result in a greater number of clusters withmore similar
observations within each cluster.

Different joining/linkage rules change how the final hierarchical cluster-
ing is presented. Figure 5.14 shows the hierarchical clustering of the same
set of observations using the average linkage, single linkage, and complete
linkage rules. Since the barrier for merging observations and clusters is
lowest with the single linkage approach, the clustering dendrogram may
contain chains of clusters as well as clusters that are spread out. The barrier
to joining clusters is highest with complete linkage; however, it is possible
that an observation is closer to observations in other clusters than the clus-
ter to which it has been assigned. The average linkage approach moderates
the tendencies of the single or complete linkage approaches.
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FIGURE 5.13 Cluster generation using three distance cut-offs.

The following example uses a data set of 392 cars that will be explored
using hierarchical agglomerative clustering. A portion of the data table is
shown in Table 5.7.

This data set was clustered using the Euclidean distance method and the
complete linkage rule. The following variables were used in the clustering:
Displacement, Horsepower, Acceleration, and MPG (miles per gallon).

FIGURE 5.14 Different results using three different methods for joining
clusters.
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FIGURE 5.15 Hierarchical agglomerative clustering dendrogram generated for
the automobile data set.

The dendrogram in Figure 5.15 of the generated clusters shows the rela-
tionships between observations based on the similarity of the four selected
variables. Each horizontal line at the right represents a single automobile
and the order of the observations is related to how similar each car is to its
neighbors.

In Figure 5.16 a distance cut-off has been set such that the data is divided
into three clusters. In addition to showing the dendrogram, three small
multiple charts illustrate the composition of each cluster – the highlighted
region – for each of the four variables. Cluster 1 is a set of 97 observations
with low fuel efficiency and low acceleration values, and generally higher
values for horsepower and displacement. Cluster 2 contains 85 observa-
tions with generally good fuel efficiency and acceleration as well as low
horsepower and displacement. Cluster 3 contains 210 observations, the
majority of which have average fuel efficiency and acceleration as well as
few high values for displacement or horsepower.

To explore the data set further we can adjust the distance cut-off to
generate different numbers of clusters. Figure 5.17 displays the case in
which the distance was set to create nine clusters. Cluster 1 (from Figure
5.16) is now divided into three clusters of sizes 36, 4, and 57. The new
cluster 1 is a set of 36 observations with high horsepower and displacement
values, as well as low fuel efficiency and acceleration; cluster 2 represents a
set of only 4 cars with the worst fuel efficiency and improved acceleration;
and cluster 3 is a set of 57 cars with lower horsepower than cluster 1 or 2
and improved MPG values. Similarly, cluster 2 (from Figure 5.16) is now
divided into three clusters of sizes 33, 4, and 48 and cluster 3 (from Figure
5.16) is now divided into three clusters of sizes 73, 35, and 102.

Since the ordering of the observations provides insight into the data set’s
organization, a clustering dendrogram is often accompanied by a colored
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FIGURE 5.17 Automobile data set cluster and split into nine groups.

heatmap that uses different colors or shades to represent the different
observation values across variables of interest. For example, in Figure 5.18
the 14 observations fromTable 5.6 have been clustered using agglomerative
hierarchical cluster, based on the Euclidean distance over the 5 continuous
variables and the average linkage joining method. A heatmap, shown to
the right of the dendrogram, is used to represent the data values for the 14
observations. Different shades of gray are used to represent the data values
(binned as shown in the legend). It is possible to see patterns in the data set
using this approach because observations with similar patterns have been
grouped close together.
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FIGURE 5.18 Clustering dendrogram coupled with a colored heatmap.

5.2.4 k-Means Clustering

k-Means clustering is an example of a nonhierarchical method for grouping
a data set. It groups data using a “top-down” approach since it starts with
a predefined number of clusters and assigns all observations to each of
them. There are no overlaps in the groups; each observation is assigned
only to a single group. This approach is computationally faster and can
handle greater numbers of observations than agglomerative hierarchical
clustering. However, there are several disadvantages to using this method.
The most significant is that the number of groups must be specified before
creating the clusters and this number is not guaranteed to provide the best
partitioning of the observations. Another disadvantage is that when a data
set contains many outliers, k-means may not create an optimal grouping
(discussed later in this section). Finally, no hierarchical organization is
generated using k-means clustering and hence there is no ordering of the
individual observations.

The process of generating clusters starts by defining the value k, which
is the number of groups to create. The method then initially allocates an
observation – usually selected randomly – to each of these groups. Next,
all other observations are compared to each of the allocated observations
and placed in the group to which they are most similar. The center point for
each of these groups is then calculated. The grouping process continues by
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FIGURE 5.19 Illustrating conceptually k-means clustering.

determining the distance from all observations to these new group centers.
If an observation is closer to the center of another group, it is moved to the
group that it is closest to. The centers of its old and new groups are then
recalculated. The process of comparing and moving observations where
appropriate is repeated until no observations aremoved after a recalculation
of the group’s center.

To illustrate the process of clustering using k-means, a set of 12 hypothet-
ical observations are used: a, b, c, d, e, f, g, h, i, j, k, and l. These observations
are shown as colored circles in Figure 5.19. It was determined at the start
that three groups should be generated. Initially, an observation is randomly
assigned to each of the three groups as shown in step 1: f to cluster 1, d to
cluster 2, and e to cluster 3. Next, all remaining observations are assigned
to the cluster to which they are closest using one of the distance functions
described earlier. For example, observation c is assigned to cluster 1 since
it is closer to f than to d or e. Once all observations have been assigned to
an initial cluster, the point at the center of each cluster is then calculated.
Next, distances from each observation to the center of each cluster are
calculated. It is determined in step 3 that observation c is closer to the
center of cluster 2 than the other two clusters, so c is moved to cluster 1.
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TABLE 5.8 Data Table Used in the k-Mean Clustering Example

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 7.9 8.6 4.4 5.0 2.5
B 6.8 8.2 5.2 4.2 2.2
C 8.7 9.6 7.5 8.9 9.8
D 6.1 7.3 7.9 7.3 8.3
E 1.5 2.0 5.1 3.6 4.2
F 3.7 4.3 5.4 3.3 5.8
G 7.2 8.5 8.6 6.7 6.1
H 8.5 9.7 6.3 5.2 5.0
I 2.0 3.4 5.8 6.1 5.6
J 1.3 2.6 4.2 4.5 2.1
K 3.4 2.9 6.5 5.9 7.4
L 2.3 5.3 6.2 8.3 9.9
M 3.8 5.5 4.6 6.7 3.3
N 3.2 5.9 5.2 6.2 3.7

It is also determined that e and k are now closer to the center of cluster 1
so these observations are moved to cluster 1. Since the contents of all three
clusters have changed, the centers for all clusters are recalculated. This
process continues until no more observations are moved between clusters,
as shown in step n on the diagram.

A disadvantage of k-means clustering is that when a data set contains
many outliers, k-meansmay not create an optimal grouping. This is because
the reassignment of observations is based on closeness to the center of
the cluster and outliers pull the centers of the clusters in their direction,
resulting in assignment of the remaining observations to other groups.

The following example will illustrate the process of calculating the cen-
ter of a cluster. The observations in Table 5.8 are grouped into three clusters
using the Euclidean distance to determine the distance between observa-
tions. A single observation is randomly assigned to the three clusters as
shown in Figure 5.20: I to cluster 1, G to cluster 2, D to cluster 3. All other

FIGURE 5.20 Single observation randomly assigned to each cluster.
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TABLE 5.9 Euclidean Distances and Cluster Assignments

Name Cluster 1 Cluster 2 Cluster 3 Cluster Assignment

A 1.178 1.106 1.2 2
B 1.064 0.025 1.147 2
C 1.468 0.709 0.582 3
E 0.542 1.518 1.406 1
F 0.57 1.191 1.092 1
H 1.218 0.648 0.808 2
J 0.659 1.624 1.543 1
K 0.346 1.033 0.797 1
L 0.727 1.108 0.744 1
M 0.553 1.148 1.065 1
N 0.458 1.051 0.974 1

observations are compared to the three clusters by calculating the distance
between the observations and I, G, and D. Table 5.9 shows the Euclidean
distance to I, G, and D from every other observation, along with the cluster
it is initially assigned to. All observations are now assigned to one of the
three clusters (Figure 5.21).

Next, the center of each cluster is calculated by taking the average value
for each variable in the group, as shown in Table 5.10. For example, the
center of cluster 1 is now

{Variable 1 = 2.65; Variable 2 = 3.99; Variable 3 = 5.38;

Variable 4 = 5.58; Variable 5 = 5.25}

Each observation is now compared to the centers of each cluster and
the process of examining the observations and moving them as appropriate
is repeated until no further moves are needed. In this example, the final
assignment is shown in Figure 5.22.

FIGURE 5.21 Initial assignment of other observations to each cluster.
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TABLE 5.10 Calculating the Center of Each Cluster

Cluster 1
Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

E 1.5 2 5.1 3.6 4.2
F 3.7 4.3 5.4 3.3 5.8
I 2 3.4 5.8 6.1 5.6
J 1.3 2.6 4.2 4.5 2.1
K 3.4 2.9 6.5 5.9 7.4
L 2.3 5.3 6.2 8.3 9.9
M 3.8 5.5 4.6 6.7 3.3
N 3.2 5.9 5.2 6.2 3.7
Average (Center) 2.65 3.99 5.38 5.58 5.25

Cluster 2
Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 7.9 8.6 4.4 5 2.5
B 6.8 8.2 5.2 4.2 2.2
G 7.2 8.5 8.6 6.7 6.1
H 8.5 9.7 6.3 5.2 5
Average (Center) 7.60 8.75 6.13 5.28 3.95

Cluster 3
Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

C 8.7 9.6 7.5 8.9 9.8
D 6.1 7.3 7.9 7.3 8.3
Average (Center) 7.40 8.45 7.70 8.10 9.05

A data set of 392 cars is grouped using k-means clustering. This is the
same data set used in the agglomerative hierarchical clustering example.
The Euclidean distance was used and the number of clusters was set to
3. The same set of variables was used as in the agglomerative hierarchi-
cal clustering example. Although both methods produce similar results,
they are not identical. k-means cluster 3 (shown in Figure 5.23) is almost

FIGURE 5.22 Final assignment of observations using k-means clustering.
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identical to the agglomerative hierarchical cluster 1 (shown in Figure 5.16).
There is some similarity between cluster 2 (k-means) and cluster 3 (agglom-
erative hierarchical) as well as cluster 1 (k-means) and cluster 3 (agglom-
erative hierarchical). Figure 5.24 shows the results of a k-means method
generating nine groups.

5.3 ASSOCIATION RULES

5.3.1 Overview

The association rulesmethod groups observations and attempts to discover
links or associations between different attributes of the group. Associative
rules can be applied in many situations such as data mining retail transac-
tions. This method generates rules from the groups as, for example,

IF the customer is age 18 AND
the customer buys paper AND
the customer buys a hole punch
THEN the customer buys a binder

The rule states that 18-year-old customers who purchase paper and a
hole punch often buy a binder at the same time. Using this approach, the
rule would be generated directly from a data set and using this information
the retailer may decide, for example, to create a package of products for
college students.

The association rules method is an example of an unsupervised group-
ing method. (Recall from Section 5.2 that unsupervised methods are undi-
rected, i.e., no specific variable is selected to guide the process.) The
advantages of this method include the generation of rules that are easy to
understand, the ability to perform an action based on the rule as in the pre-
vious example which allowed the retailer to apply the rule to make changes
to the marketing strategy, and the possibility of using this technique with
large numbers of observations.

There are, however, limitations. This method forces you to either restrict
your analysis to variables that are categorical or convert continuous vari-
ables to categorical variables. Generating the rules can be computationally
expensive, especially where a data set has many variables or many possi-
ble values per variable, or both. There are ways to make the analysis run
faster but they often compromise the final results. Finally, this method can
generate large numbers of rules that must be prioritized and interpreted.
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TABLE 5.11 Data Table of Three Sample Examples
Observations with Three Variables

Customer ID Gender Purchase

932085 Male Television
596720 Female Camera
267375 Female Television

In this method, creating useful rules from the data is done by grouping
it, extracting rules from the groups, and then prioritizing the rules. The
following sections describe the process of generating association rules.

5.3.2 Grouping by Combinations of Values

Let us first consider a simple situation concerning a shop that sells only
cameras and televisions. A data set of 31,612 sales transactions is used
which contains three variables: Customer ID, Gender, and Purchase. The
variable Gender identifies whether the buyer is “male” or “female”. The
variable Purchase refers to the item purchased and can have only two
values: “camera” and “television.” Table 5.11 shows three rows from this
table. Each row of the table contains an entry where values are assigned
for each variable (i.e., there are no missing values). By grouping this set
of 31,612 observations, based on specific values for the variables Gender
and Purchase, the groups shown in Table 5.12 are generated. There are
eight ways of grouping this trivial example based on the values for the
different categories of Gender and Purchase. For example, there are 7,889
observations where Gender is “male” and Purchase is “camera.”

TABLE 5.12 Grouping by Different Value Combinations

Group Number Count Gender Purchase

Group 1 16,099 Male Camera or Television
Group 2 15,513 Female Camera or Television
Group 3 16,106 Male or Female Camera
Group 4 15,506 Male or Female Television
Group 5 7,889 Male Camera
Group 6 8,210 Male Television
Group 7 8,217 Female Camera
Group 8 7,296 Female Television
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TABLE 5.13 Table Showing Groups by Different Value Combinations

Group
Number Count Gender Purchase Income

Group 1 16,099 Male Camera or Television Below $50K or
Above $50K

Group 2 15,513 Female Camera or Television Below $50K or
Above $50K

Group 3 16,106 Male or Female Camera Below $50K or
Above $50K

Group 4 15,506 Male or Female Television Below $50K or
Above $50K

Group 5 15,854 Male or Female Camera or Television Below $50K
Group 6 15,758 Male or Female Camera or Television Above $50K
Group 7 7,889 Male Camera Below $50K or

Above $50K
Group 8 8,210 Male Television Below $50K or

Above $50K
Group 9 8,549 Male Camera or Television Below $50K
Group 10 7,550 Male Camera or Television Above $50K
Group 11 8,217 Female Camera Below $50K or

Above $50K
Group 12 7,296 Female Television Below $50K or

Above $50K
Group 13 7,305 Female Camera or Television Below $50K
Group 14 8,208 Female Camera or Television Above $50K
Group 15 8,534 Male or Female Camera Below $50K
Group 16 7,572 Male or Female Camera Above $50K
Group 17 7,320 Male or Female Television Below $50K
Group 18 8,186 Male or Female Television Above $50K
Group 19 4,371 Male Camera Below $50K
Group 20 3,518 Male Camera Above $50K
Group 21 4,178 Male Television Below $50K
Group 22 4,032 Male Television Above $50K
Group 23 4,163 Female Camera Below $50K
Group 24 4,054 Female Camera Above $50K
Group 25 3,142 Female Television Below $50K
Group 26 4,154 Female Television Above $50K

If an additional variable is added to this data set, the number of possible
groups will increase as, for example, if another variable Income which has
two values – above $50K and below $50K – is added to the table, the
number of groups would increase to 26 as shown in Table 5.13.

Increasing the number of variables or the number of possible values for
each variable or both increases the number of groups. When the number of
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FIGURE 5.25 Twenty-six observations characterized by shape, color, and bor-
der attributes.

groups becomes too large, it becomes impractical to generate all combina-
tions. However, most data sets contain many combinations of values with
only a few or no observations. Techniques for generating the groups take
advantage of this by requiring that groups reach a certain size before they
are generated. This results in fewer groups and shortens the time required
to compute the results. However, care should be taken in setting this cut-off
value since rules can only be created from groups that are generated. For
example, if this number is set to 10, then no rules will be generated from
groups containing fewer than 10 observations. Subject matter knowledge
and information generated from the data characterization phase will help
in setting the cut-off value. There is a trade-off between speed of compu-
tation and how fine-grained the rules need to be (i.e., rules based on a few
observations).

5.3.3 Extracting and Assessing Rules

So far a data set has been grouped according to specific values for each
of the variables. In Figure 5.25, 26 observations (A through Z) are char-
acterized by three variables: Shape, Color, and Border. Observation A has
Shape = square, Color = white and Border = thick and observation W has
Shape = circle, Color = gray and Border = thin.

As described in the previous section, the observations are grouped. An
example of such a grouping is shown in Figure 5.26 where Shape = circle,
Color = gray and Border = thick.
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FIGURE 5.26 Group of six observations (gray circles with thick borders).

The next step is to extract a rule from the group. There are three possible
rules (containing all three variables) that could be derived from this group
(Figure 5.26):

Rule 1

IF Color = gray AND
Shape = circle
THEN Border = thick

Rule 2

IF Border = thick AND
Color = gray
THEN Shape = circle

Rule 3

IF Border = thick AND
Shape = circle
THEN Color = gray

We now examine each rule in detail and make a comparison to the
whole data set in order to prioritize the rules. Three values are calculated
to support this assessment: support, confidence, and lift.
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Support The support is a measure of the number of observations a rule
maps on to. Its value is the proportion of the observations a rule selects
out of all observations in the data set. In this example, the data set has 26
observations and the group of gray circles with a thick border is 6, then the
group has a support value of 6 out of 26 or 0.23 (23%).

Confidence Each rule is divided into two parts: antecedent and conse-
quence. The IF-part or antecedent refers to a list of statements linked with
AND in the first part of the rule. For example,

IF Color = gray AND
Shape = circle
THEN Border = thick

The IF-part is the list of statements Color = gray AND Shape = circle.
The THEN-part of the rule or consequence refers to statements after the
THEN (Border = thick in this example).

The confidence score is a measure for how predictable a rule is. The con-
fidence or predictability value is calculated using the support for the entire
group divided by the support for all observations satisfied by the IF-part
of the rule:

Confidence = group support∕IF-part support

For example, the confidence value for Rule 1 is calculated using the
support value for the group and the support value for the IF-part of the rule
(see Figure 5.27).

Rule 1

IF Color = gray AND
Shape = circle
THEN Border = thick

The support value for the group (gray circles with a thick border) is 0.23
and the support value for the IF-part of the rule (gray circles) is 7 out of 26
or 0.27. To calculate the confidence, we divide the support for the group
by the support for the IF-part:

Confidence = 0.23∕0.27 = 0.85
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FIGURE 5.27 Seven observations for gray circles.

Confidence values range from no confidence (0) to high confidence (1).
Since a value of 0.85 is close to 1, we have a high degree of confidence in
this rule.

Lift The confidence value does not indicate the strength of the association
between gray circles (IF-part) and thick borders (THEN-part). The lift score
takes this into account. The lift is often described as the importance of the
rule as it describes the association between the IF-part of the rule and the
THEN-part of the rule. It is calculated by dividing the confidence value by
the support value across all observations of the THEN-part:

Lift = confidence∕THEN-part support

For example, the lift for Rule 1:

Rule 1

IF Color = gray AND
Shape = circle
THEN Border = thick

is calculated using the confidence and the support for the THEN-part of the
rule (see Figure 5.28). The confidence for Rule 1 is calculated as 0.85 and
the support for the THEN-part of the rule (thick borders) is 14 out of 26 or
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FIGURE 5.28 Fourteen observations for thick border objects.

0.54. To calculate the lift value, the confidence is divided by the support
value for the THEN-part of the rule:

Lift = 0.85∕0.54 = 1.57

Lift values greater than 1 indicate a positive association.
Figure 5.29 is used to determine the confidence and support for all three

potential rules:
The following shows the calculations for support, confidence, and lift

for the three rules:

Rule 1

Support = 6/26 = 0.23
Confidence = 0.23/(7/26) = 0.85
Lift = 0.85/(14/26) = 1.58

Rule 2

Support = 6/26 = 0.23
Confidence = 0.23/(6/26) = 1
Lift = 1/(9/26) = 2.89
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FIGURE 5.29 Separating objects for each rule calculation.

Rule 3

Support = 6/26 = 0.23
Confidence = 0.23/(7/26) = 0.85
Lift = 0.85/(11/26) = 2.01

The values are summarized in Table 5.14.
Rule 2 would be considered the most interesting because it has a confi-

dence score of 1 and a high positive lift score indicating that gray shapes
with a thick border are likely to be circles.

TABLE 5.14 Summary of Support, Confidence, and
Lift for the Three Rules

Rule 1 Rule 2 Rule 3

Support 0.23 0.23 0.23
Confidence 0.85 1.0 0.85
Lift 1.58 2.89 2.01
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5.3.4 Example

In this example, we will compare two rules generated from the Adult data
set available from Bache and Lichman (2013), a set of income data that
includes the following variables along with all possible values shown in
parenthesis:

� Class of work (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov,
Local-gov, State-gov, Without-pay, Never-worked)

� Education (Bachelors, Some-college, 11th, HS-grad, Prof-school,
Assoc-acdm, Assoc-voc, 9th, 7th–8th, 12th, Masters, 1st–4th, 10th,
Doctorate, 5th–6th, Preschool)

� Income (>50K, ≤50K)

There are 32,561 observations. Using the associative rule method, many
rules were identified. For example,

Rule 1

IF Class of work is Private AND
Education is Doctorate
THEN Income is <=50K

Rule 2

IF Class of work is Private AND
Education is Doctorate
THEN Income is >50K

Here is a summary of the counts:
Class of work is Private: 22,696 observations
Education is Doctorate: 413 observations
Class of work is private and Education is Doctorate: 181 observations
Income is <=50K: 24,720 observations
Income is >50K: 7841 observations

Table 5.15 shows the information calculated for the rules. Of the 181
observations where Class of work is Private and Education is Doctor-
ate, 132 (73%) of those observations also had Income >50K. This is
reflected in the much higher confidence score for Rule 2 (0.73) compared
to Rule 1 (0.27). Over the entire data set of 32,561 observations there
are about three times the number of observations where income ≤50K as
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TABLE 5.15 Summary of Scores for Two Rules

Rule 1 Rule 2

Count 49 132
Support 0.0015 0.0041
Confidence 0.27 0.73
Lift 0.36 3.03

compared to observations where the income is >50K. The lift term takes
into consideration the relative frequency of the THEN-part of the rule.
Hence, the lift value for Rule 2 is considerably higher (3.03) than the lift
value for Rule 1. Rule 2 has good confidence and lift values, making it an
interesting rule. Rule 1 has poor confidence and lift values. The following
illustrates examples of other generated rules:

Rule 3

IF Class of work is State-gov AND
Education is 9th
THEN Income is <=50K
(Count: 6; Support: 0.00018; Confidence: 1; Lift: 1.32)

Rule 4

IF Class of work is Self-emp-inc AND
Education is Prof-school
THEN Income is >50K
(Count: 78; Support: 0.0024 Confidence: 0.96; Lift: 4)

Rule 5

IF Class of work is Local-gov AND
Education is 12th
THEN Income is <=50K
(Count: 17; Support: 0.00052; Confidence: 0.89; Lift: 1.18)

5.4 LEARNING DECISION TREES FROM DATA

5.4.1 Overview

It is often necessary to ask a series of questions before coming to a decision.
The answers to one question may lead to other questions or may lead to
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FIGURE 5.30 Decision tree for the diagnosis of colds and flu.

a decision. For example, you may visit a doctor and your doctor may ask
you to describe your symptoms. You respond by saying you have a stuffy
nose. In trying to diagnose your condition the doctor may ask you further
questions such as whether you are suffering from extreme exhaustion.
Answering yes may suggest you have the flu, whereas answering no might
suggest that you have a cold. This line of questioning is common to many
decision-making processes and can be shown visually as a decision tree,
as shown in Figure 5.30.

Decision trees are often generated by hand to precisely and consistently
define a decision-making process; however, they can also be generated
automatically from the data. They consist of a series of decision points
based on certain selected variables. Figure 5.31 illustrates a simple decision
tree. This decision tree generated was based on a data set of cars that
included variables for the number of cylinders (Cylinders) and the car’s
fuel efficiency (MPG). The decision tree uses the number of cylinders
(Cylinders) to attempt to achieve the goal of classifying the observations
according to their fuel efficiency.At the top of the tree is a node representing
the entire data set of 392 observations (Size = 392). The data set is initially
divided into two subsets: to the left is a set of 203 cars (i.e., Size = 203)
where the number of cylinders is fewer than 5 and to the right are the
remaining observations (number of cylinders 5 or greater). We describe in
a later section how this division was determined. Cars with fewer than five
cylinders are grouped together as they generally have good fuel efficiency.
In this case the average ofMPG is 29.11. The remaining 189 cars are further
classified into a set of 86 cars where the number of cylinders is fewer than
7. This set does not include the cars with fewer than five cylinders because
those cars were moved to a separate group in an earlier step. The set
of 86 cars are grouped together as they generally have reasonable fuel
efficiency—the average ofMPG is 20.23—as compared with the poor fuel
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FIGURE 5.31 Decision tree generated from a data set of cars.

efficiency of the remaining group. The remaining group is a set of 103 cars
where the number of cylinders in each car is greater than 7 and the average
ofMPG is 14.96.

In contrast with clustering or association rules, decision trees are an
example of a supervisedmethod. Supervised methods, as opposed to unsu-
pervised methods, are an attempt to place (classify) each observation into
interesting groups (based on a selected variable). These methods iterate
over a training set of observations and adjust parameters as the classifier
correctly or incorrectly classifies each observation. In this example, the
data set was classified into groups using the variable MPG to guide how
the tree was constructed. Figure 5.32 illustrates how the tree, guided by the
data, was put together. A histogram of the MPG data is shown alongside
the nodes used to classify the vehicles. The overall shape of the histograms
depicts the frequency distribution for the MPG variable. The highlighted
frequency distribution is the subset within the node. The frequency distri-
bution for the node containing 203 observations shows a set biased toward
good fuel efficiency, whereas for the node of 103 observations it illustrates
a set biased toward poor fuel efficiency. The MPG variable has not been
used in any of the decision points, only the number of cylinders. This is
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FIGURE 5.32 Decision tree illustrating the use of a response variable MPG to
guide the tree generation.

a trivial example, but it shows how a data set can be divided into regions
using decision trees.

There are two primary reasons to use decision trees. First, they are
easy to understand and use in explaining how decisions are reached based
on multiple criteria. Second, they can handle categorical and continuous
variables since they partition a data set into distinct regions based on ranges
or specific values. However there are disadvantages, as building decision
trees can be computationally expensive, particularlywhen analyzing a large
data set with many continuous variables. In addition, generating a useful
decision tree automatically can be challenging, since large and complex
trees can be easily generated; trees that are too small may not capture
enough information; and generating the “best” tree through optimization
is difficult. At the end of this chapter, there are a series of references to
methods for optimizing decision trees further.

5.4.2 Splitting

A tree is made up of a series of decision points, where the split of the
entire set of observations or a subset of the observations is based on some
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FIGURE 5.33 Relationship between parent and child nodes.

criteria. Each point in the tree represents a set of observations called a node.
The relationship between two connected nodes is defined as a parent–child
relationship. The larger set that will be divided into two or more smaller
sets is the parent node. The nodes resulting from the division of the parent
are child nodes as shown in Figure 5.33. A child node with no children is
a leaf node as shown in Figure 5.34.

A table of data is used to generate a decision tree where certain variables
are used as potential decision points (splitting variables) and one variable is
used to guide the construction of the tree (response variable). The response
variable will be used to guide which splitting variables are selected and
at what value the split is made. A decision tree splits the data set into
increasingly smaller, nonoverlapping subsets. The topmost node, or root of
the tree, contains all observations. Based on some criteria, the observations
are usually split into two new nodes, where each node represents a subset of
observations as shown in Figure 5.35. Node N1 represents all observations.
By analyzing all splitting variables and examining many splitting points
for each variable, an initial split is made (C1). The data set represented
at node N1 is now divided into a subset N2 that meets criteria C1, and a
subset represented by node N3 that does not satisfy the criteria.

The process of examining the variables to determine a criterion for
splitting is repeated for all subsequent nodes. Additionally, a condition is
needed to end the process. For example, the process can stop when the size
of the subset is less than a predetermined value. In Figure 5.36, each of the
two newly created subsets (N2 and N3) is examined in turn to determine
if they should be further split or whether the splitting should stop.
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FIGURE 5.34 Illustration of leaf nodes.

FIGURE 5.35 Node N1 split into two based on the criteria C1.

FIGURE 5.36 Evaluation of whether to continue to grow the tree.
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FIGURE 5.37 Tree further divided.

In Figure 5.37, the subset at node N2 is examined to determine if
the splitting should stop. In this case, because the condition for stopping
splitting is not met, the process continues. All the variables assigned as
splitting variables are considered along with alternative values. The best
criterion is selected and the set at node N2 is again divided into two subsets,
represented by N4 and N5. Node N4 represents a set of observations
that satisfies the splitting criteria (C2) and node N5 the remaining set of
observations. Next, node N3 is examined. In this case, the condition to stop
splitting is met and the process is halted.

5.4.3 Splitting Criteria

Dividing Observations It is common for the split at each level to be a
two-way split. Although there are methods that split more than two ways,
care should be taken when using these methods because making too many
splits early in the construction of the tree may result in missing interesting
relationships that become exposed as tree construction continues. This
results from dividing the set into small groups based on a single criterion.
Figure 5.38 illustrates the two alternatives.

Any variable type can be split using a two-way split (as shown in Figure
5.39):

� Dichotomous: Variables with two values are the most straightforward
to split since each branch represents a specific value. For example,
a variable Temperature may have only two values: “hot” and “cold.”



LEARNING DECISION TREES FROM DATA 129

FIGURE 5.38 Alternative splitting of nodes.

Observations will be split to separate those with “hot” and those with
“cold” temperature values.

� Nominal: Since nominal values are discrete values with no order, a
two-way split is accomplished by one subset being composed of a set
of observations that equal a certain value and the other being those
observations that do not equal that value. For example, a variableColor
that can take the values “red,” “green,” “blue,” and “black” may be
split two-ways. Observations, for example, which haveColor equaling
“red” generate one subset and those not equaling “red” creating the
other subset, that is, “green,” “blue,” and “black.”

� Ordinal: In the case where a variable’s discrete values are ordered,
the resulting subsets may be made up of more than one value, as

FIGURE 5.39 Splitting examples based on variable type.
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long as the ordering is retained. For example, a variable Quality with
possible values “low,” “medium,” “high,” and “excellent” may be split
four ways. For example, observations with Quality equaling “low”
or “medium” may be in one subset and observations with Quality
equaling “high” and “excellent” in another. Another possibility is that
“low” values of Quality are in one set and “medium,” “high,” and
“excellent” values are in the other set.

� Continuous: For variables with continuous values to be split two-
ways, a specific cut-off value needs to be determined so that obser-
vations with values less than the cut-off are in the subset on the left
and those with values greater than or equal to are in the subset on
the right. For example, a variable Weight which can take any value
between 0 and 1,000 with a selected cut-off of 200. The left subset
would be those observations where the Weight is below 200 and the
right subset those where the Weight is greater than or equal to 200.

A splitting criterion usually has two components: (1) the variable on
which to split and (2) the values of that variable to use for the split. To
determine the best split, a ranking is made of all possible splits of all
variables using a score calculated for each split. There are many ways
to rank the split. The following describes two approaches for prioritizing
splits, based on whether the response is categorical or continuous.

Scoring Splits for Categorical Response Variables To illustrate
how to score splits when the response is a categorical variable, three splits
(Split a, Split b, Split c) for a set of observations are shown in Figure
5.40. The objective for an optimal split is to create subsets which result
in observations with a single response value. In this example, there are 20
observations prior to splitting. The response variable (Temperature) has

FIGURE 5.40 Evaluating splits based on categorical response data.
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two possible values: “hot” and “cold.” Prior to the split, the response has
an even distribution: the number of observations where the Temperature
equals “hot” is 10 and the number of observations where the Temperature
equals “cold” is also 10.

Different criteria are considered for splitting these observations, which
results in different distributions of the response variables for each subset
(N2 and N3):

� Split a: Each subset contains 10 observations. All 10 observations in
N2 have “hot” temperature values and all 10 observations in node N3
are “cold.”

� Split b: Again each subset (N2 and N3) contain 10 observations.
However, in this case there is an even distribution of “hot” and “cold”
values in each subset.

� Split c: In this case the splitting criterion results in two subsets where
node N2 has nine observations (1 “hot” and 8 “cold”) and node N3
has 11 observations (9 “hot” and 2 “cold”).

Split a is the best split since each node contains observations where
the response for each node is all of the same category. Split b results in
the same even split of “hot” and “cold” values (50% “hot,” 50% “cold”)
in each of the resulting nodes (N2 and N3) and would not be considered
a good split. Split c is a good split even though the split is not as clean
as Split a, since both subsets have a mixture of “hot” and “cold” values.
The proportion of “hot” and “cold” values in node N2 is biased toward
cold values and in node N3 toward hot values. The “goodness” of the
splitting criteria is determined by how clean each split is: it is based on
the proportion of the different categories of the response variable, which
is a measurement known as impurity. As the tree is being generated, it is
desirable to decrease the level of impurity until ideally there is only one
category at a terminal node (a node with no children).

There are three primary methods for calculating impurity:misclassifica-
tion, Gini, and entropy. In the following examples the entropy calculation
will be used; however, the other methods give similar results. To illustrate
the use of the entropy calculation, a set of 10 observations with two possi-
ble response values (“hot” and “cold”) are used (Table 5.16). All possible
scenarios for splitting this set of 10 observations are shown: Scenario 1
through 11. In scenario 1, all 10 observations have value “cold” whereas
in scenario 2, one observation has value “hot” and nine observations have
value “cold.” For each scenario, an entropy score is calculated. Cleaner
splits result in lower scores. In scenario 1 and scenario 11 the split cleanly
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TABLE 5.16 Entropy Scores According to Different
Splitting Criteria

Response Values

Scenario Hot Cold Entropy

Scenario 1 0 10 0
Scenario 2 1 9 0.469
Scenario 3 2 8 0.722
Scenario 4 3 7 0.881
Scenario 5 4 6 0.971
Scenario 6 5 5 1
Scenario 7 6 4 0.971
Scenario 8 7 3 0.881
Scenario 9 8 2 0.722
Scenario 10 9 1 0.469
Scenario 11 10 0 0

breaks the set into observations with only one value. The score for these
scenarios is 0. In scenario 6, the observations are split evenly across the
two values and this is reflected in a score of 1. In other cases, the score
reflects how cleanly the two values are split.

The formula for entropy is

Entropy(S) = −
c∑
i=1

pi log2 pi

The entropy calculation is performed on a set of observations S. pi refers
to the fraction of the observations that belong to a particular value and c
is the number of different possible values of the response variable. For
example, for a set of 100 observations where the Temperature response
variable had 60 observations with “hot” values and 40 with “cold” values,
the phot would be 0.6 and the pcold would be 0.4. When pi = 0, then the
value for 0 log2 (0) = 0.

We illustrate this with the example shown in Figure 5.40. Values for
entropy are calculated for each of the three splits:

Split a

Entropy (N1) = −(10/20) log2 (10/20) − (10/20) log2 (10/20) = 1
Entropy (N2) = −(10/10) log2 (10/10) − (0/10) log2 (0/10) = 0
Entropy (N3) = − (0/10) log2 (0/10) − (10/10) log2 (10/10) = 0
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Split b

Entropy (N1) = −(10/20) log2 (10/20) − (10/20) log2 (10/20) = 1
Entropy (N2) = −(5/10) log2 (5/10) − (5/10) log2 (5/10) = 1
Entropy (N3) = −(5/10) log2 (5/10) − (5/10) log2 (5/10) = 1

Split c

Entropy (N1) = −(10/20) log2 (10/20) − (10/20) log2 (10/20) = 1
Entropy (N2) = −(1/9) log2 (1/9) − (8/9) log2 (8/9) = 0.503
Entropy (N3) = −(9/11) log2 (9/11) − (2/11) log2 (2/11) = 0.684

In order to determine the best split, we now need to calculate a ranking
based on how cleanly each split separates the response data. This is calcu-
lated based on the impurity before and after the split. The formula for this
calculation is

Gain = Entropy(parent) −
k∑
j=1

N(vj)

N
Entropy(vj)

where N is the number of observations in the parent node, k is the number
of possible resulting nodes, N(vj) is the number of observations for each of
the j child nodes, and vj is the set of observations for the jth node. It should
be noted that the Gain formula can be used with other impurity metrics by
replacing the entropy calculation.

In the example described throughout this section, the gain values are
calculated and shown in Figure 5.41.

FIGURE 5.41 Calculation of gain for each split.
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Gain(Splita) = 1 − (((10∕20) 0) + ((10∕20) 0)) = 1

Gain(Splitb) = 1 − (((10∕20) 1) + ((10∕20) 1)) = 0

Gain(Split c) = 1 − (((9∕20) 0.503) + ((11∕20) 0.684)) = 0.397

The criterion used in Split a is selected as the best splitting criteria.
During the tree generation process, the method examines all possible

splitting values for all splitting variables, calculates a gain function, and
selects the best splitting criterion.

Scoring Splits for Continuous Response Variables When the
response variable is continuous, one popular method for ranking the splits
uses the sum of the squares of error (SSE). The resulting split should ide-
ally result in sets where the response values are close to the mean of the
group. The lower a group’s SSE value is, the closer that group’s values are
to the mean of the set. For each potential split, a SSE value is calculated
for each resulting node. A score for the split is calculated by summing
the SSE values of each resulting node. Once all splits for all variables are
computed, then the split with the lowest score is selected.

The formula for SSE is

SSE =
n∑
i=1

(yi − ȳ)2

For a subset of n observations, the SSE value is computed where yi is the
individual value for the response and ȳ is the average value for the subset.
To illustrate, the data in Table 5.17 is processed to identify the best split.
The variable Weight is assigned as a splitting variable and MPG will be

TABLE 5.17 Table of Eight Observations
with Values for Two Variables

Observations Weight MPG

A 1,835 26
B 1,773 31
C 1,613 35
D 1,834 27
E 4,615 10
F 4,732 9
G 4,955 12
H 4,741 13
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FIGURE 5.42 Illustration of splitting values.

used as the response variable. A series of values is used to split the variable
Weight: 1,693, 1,805, 1,835, 3,225, 4,674, 4,737, and 4,955. These values
are the midpoint between each pair of values (after sorting) and were
selected because they divided the data set into all possible two-ways splits,
as illustrated in Figure 5.42. In this example, we will only calculate a score
for splits which result in three or more observations, that is, Split 3, Split
4, and Split 5. TheMPG response variable is used to calculate the score.

Split 3

For the subset where Weight is less than 1835 (C, B, D):

Average = (35 + 31 + 27)/3 = 31
SSE = (35 − 31)2 + (31 − 31)2 + (27 − 31)2 = 32
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For the subset where Weight is greater than or equal to 1835 (A, E, F,
H, G):

Average = (26 + 10 + 9 + 13 + 12)/5 = 14
SSE = (26 − 14)2 + (10 − 14)2 + (9 − 14)2 + (13 − 14)2

+ (12 − 14)2 = 190

Split score = 32 + 190 = 222

Split 4

For the subset where Weight is less than 3225 (C, B, D, A):

Average = (35 + 31 + 27 + 26)/4 = 29.75
SSE = (35 – 29.75)2 + (31 – 29.75)2 + (27 – 29.75)2

+ (26 – 29.75)2 = 50.75

For the subset where Weight is greater than or equal to 3225 (E, F, H,
G):

Average = (10 + 9 + 13 + 12)/4 = 11
SSE = (10 − 11)2 + (9 − 11)2 + (13 − 11)2 + (12 − 11)2 = 10

Split score = 50.75 + 10 = 60.75

Split 5

For the subset where Weight is less than 4674 (C, B, D, A, E):

Average = (35 + 31 + 27 + 26 + 10)/5 = 25.8
SSE = (35 – 25.8)2 + (31 – 25.8)2 + (27 – 25.8)2 + (26 – 25.8)2

+ (10 – 25.8)2 = 362.8

For the subset where Weight is greater than or equal to 4674 (F, H, G):

Average = (9 + 13 + 12)/3 = 11.33
SSE = (9 – 11.33)2 + (13 – 11.33)2 + (12 – 11.33)2 = 8.67

Split score = 362.8 + 8.67 = 371.47

In this example, Split 4 has the lowest score and would be selected as
the best split.
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5.4.4 Example

In the following example, a set of 392 cars is analyzed using a decision tree.
Two variables were used to split nodes in the tree: Horsepower, Weight.
MPG (miles per gallon) was used to guide the generation of the tree. A
decision tree (Figure 5.43) was automatically generated using a 40 node
minimum as the terminating criterion.

The leaf nodes of the tree can be interpreted using a series of rules.
The decision points that are traversed in getting to the node are the rule
conditions. The average MPG value for the leaf nodes will be interpreted
here as low (less than 22), medium (22–26), and high (greater than 26).
The following two example rules can be extracted from the tree:

Node A

IF Horsepower <106 AND
Weight < 2067.5
THEN MPG is high

Node B

IF Horsepower <106 AND
Weight 2067.5 – 2221.5
THEN MPG is high

In addition to grouping data sets, decision trees can also be used in
making predictions and this will be reviewed in Chapter 6.

EXERCISES

Patient data was collected concerning the diagnosis of cold or flu (Table
5.18).

1. Calculate the Jaccard distance (replacing None with 0, Mild with
1, and Severe with 2) using the variables: Fever, Headaches, Gen-
eral aches,Weakness, Exhaustion, Stuffy nose, Sneezing, Sore throat,
Chest discomfort, for the following pairs of patient observations:
(a) 1326 and 398
(b) 1326 and 1234
(c) 6377 and 2662
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2. The patient observations described in Table 5.18 are being clus-
tered using agglomerative hierarchical clustering. The Euclidean dis-
tance is used to calculate the distance between observations using
the following variables: Fever, Headaches, General aches, Weak-
ness, Exhaustion, Stuffy nose, Sneezing, Sore throat, Chest discom-
fort (replacing None with 0, Mild with 1, and Severe with 2). The
average linkage joining rule is being used to create the hierarchical
clusters. During the clustering process observations 6377 and 2662
are already grouped together. Calculate the distance from observation
398 to this group.

3. A candidate rule has been extracted using the associative rulemethod:
If Exhaustion = None AND
Stuffy nose = Severe
THEN Diagnosis = cold

Calculate the support, confidence, and lift for this rule.
4. Table 5.18 is to be used to build a decision tree to classify whether a

patient has a cold or flu. As part of this process the Fever column is
being considered as a splitting point. Two potential splitting values
are being considered:
(a) Where the data is divided into two sets when (1) Fever is none

and (2) Fever is mild and severe.
(b) Where the data is divided into two sets when (1) Fever is severe

and (2) Fever is none and mild.
Calculate the gain for each of these splits using the entropy impurity
calculation.

FURTHER READING

For additional information on general data mining approaches to grouping and
outlier detection, see Han et al. (2012) and Hand et al. (2001). Everitt et al. (2011)
and Myatt & Johnson (2009) provide further details about similarity methods
and approaches to clustering, with Fielding (2007) focusing on clustering and
classification methods and their application to bioinformatics and the biological
sciences. In addition, Hastie et al. (2009) covers in detail additional grouping
approaches.



CHAPTER 6

BUILDING MODELS FROM DATA

6.1 OVERVIEW

In Chapter 4, we looked at different ways to understand and quantify rela-
tionships between variables. Is there a relationship between age and choles-
terol levels? Do patients in a clinical trial taking a drug have improved out-
comes versus patients taking a placebo? Formal ways to describe, encode,
and test if and howone ormore variables relate to others is to build and eval-
uate models from the data. These models describe important relationships
in the data, including the strength and direction—positive or negative—of
the relation. The models can encode linear and nonlinear relationships in
the data. They can also be used to confirm a hypothesis about relationships.
All these uses help to summarize and understand the data. However, one
of the most widely used applications of a model is for making predic-
tions. For example, a data set of historical purchases along with customer
geographical and demographic data (such as the customer’s age, location,
salary, and so on) could be collected and used to generate a model that
encodes what type of products clients purchase. Once the model is built, it
could be used to identify from a list of potential clients those most likely

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining,
Second Edition. Glenn J. Myatt and Wayne P. Johnson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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y  =  f(xi)

FIGURE 6.1 Illustration of response versus independent variables.

to make a purchase, and customers on this prioritized list could be targeted
with marketing material or other promotions.

In this chapter, we will review how models can be built from data sets.
A model is usually built to predict values for a specific variable. For exam-
ple, were a data set composed of historical data containing attributes of
pharmaceuticals and their observed side effects to be collected, a model
can be generated from this data to predict the side effects from the phar-
maceuticals’ attributes.

A variable that a model is to predict is often referred to as a y-variable
or response variable. The variables that will be encoded in the model and
used in predicting this response are referred to as the x-variables or the
independent variables. In Figure 6.1, a data table composed of cars is
used to generate a model. Because we want the model to predict the car’s
fuel efficiency, we have chosen the response variable to be miles per gallon
(MPG). Other variables will be used as independent variables (x-variables).
In this case, these will be Cylinders (x1), Displacement (x2), Horsepower
(x3),Weight (x4), and Acceleration (x5). A generalized format for the model
is shown where some function of the independent variables (xi) is used to
predict the response (y), which in this case isMPG.

Models built to predict categorical variables (such as a binary variable or
a nominal variable) are referred to as classificationmodels, whereasmodels
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that predict continuous variables are called regression models. There are
many ways to generate classification and regression models. For example,
a classification tree is a method for building a classification model while
a multiple linear regression is a method for building a regression model.
Specific approaches may have restrictions relating to the types of variables
that can be used in the model as, for example, a model that requires contin-
uous variables to have a normal frequency distribution. For certain types of
models it is possible to fine-tune the performance of the model by varying
different parameters. In building amodel, it will be important to understand
the restrictions placed on the types of independent or response variables or
both, as well as how to optimize the performance of the model by varying
the values of the parameters. Another way in which approaches to mod-
eling differ is in the ease of access to the internal calculations, otherwise
known as the transparency of the model, in order to explain the results: is
it possible to understand how the model calculated a prediction or is the
model a “black box” that only calculates a prediction result with no corre-
sponding explanation? Issues related to transparency may be important in
explaining the results when the model is deployed in certain situations.

Although the response variable is known, when building models it is not
always apparent beforehandwhich variables should be used as independent
variables. Therefore, the selection of the independent variables is an impor-
tant step in building a model. A good model will make reliable predictions,
be plausible, and use as few independent variables as possible. In Chapter
4, we reviewed different visualizations and metrics to use in understanding
relationships in the data, such as scatterplots, contingency tables, t-tests,
Chi-Square tests, and so on. These approaches can be used to prioritize can-
didate independent variables to use in building a model, especially where
there are many variables to consider. However, care should be taken when
using statistical tests to prioritize large numbers of potential independent
variables as a correction may need to be used (see the Further Reading
section of this chapter for more information). For example, a matrix of
scatterplots could be used to visually identify which variables have the
strongest relationship to the response variable. In addition, knowledge of
the problem can also guide the choice of variables to use in the models.
Alternatively, we could build multiple models with different combinations
of independent variables and select the best fitting model.

Another issue to consider when selecting independent variables is the
relationship between the independent variables. Combinations of variables
that have strong relationships to each other should be avoided since they
will be essentially encoding the same relationship to the response. Includ-
ing all the variables from each group of strongly related variables produces
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overly complex models (violating the “as simple as possible rule”) and
with some approaches to modeling can produce results that are difficult to
interpret.

In developing a model, it may also be necessary to use derived vari-
ables, that is, a new variable that is a function of one or more variables. For
example, if the model expects the variables of a data set to have a normal
frequency distribution and some variables have an exponential frequency
distribution, it may be necessary to create new variables using a log trans-
formation. As another example, because most modeling methods require
numeric data, if a data set has nominal variables that will be used in the
model, the values of these variables must be transformed into numbers.
For example, if color is an important variable with values “Blue,” “Green,”
“Red,” and “Yellow,” color could be transformed into a series of binary
dummy variables as described in Chapter 3.

In this chapter, we discuss how to generate models from data sets. The
data set used to build amodel is referred to as the training set. To objectively
test the performance of a generated model, a test set with observations
different from those in the training set is used to test how well the model
performs. The model uses the values of each observation in the test set to
predict a value for the response variable. From these predictions, a variety
ofmetrics, such as the number of correct versus incorrect predictionsmade,
are used to assess the accuracy of the model. The use of training and test
sets is illustrated in Figure 6.2.

A goodway to build and test amodel would be to use all the observations
in the original data set as the training set to build the model and to use new,
independent observations as the test set to measure accuracy. However,
because the number of available test sets is often small, a common way to
test the performance of amodel is to use a category ofmethods called cross-
validation. In the k-fold partitioningmethod, the original data set is divided

FIGURE 6.2 Use of training sets to build models and test sets to assess their
performance.
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into k equally sized partitions. The model is measured k times. In the first
iteration, one of the partitions is selected as the test set and the remaining
partitions comprise the training set. The model is tested and an accuracy
score is generated. In each subsequent iteration, a partition different from
any already used as a test set is selected as the test set and the remaining
partitions become the training set. Another score is calculated. At the end
of this process, the accuracy of the model is based on the average of the
k scores. For example, suppose we partition a data set into 10 partitions
where each partition consists of observations randomly selected from the
data set. In each of the 10 iterations, we designate one partition (10% of
the data set) as the test set and the other 9 partitions (90% of the data set)
as the training set. At the end of the 10 iterations, an average of the 10
scores is used to assess the model’s accuracy. Taking k-fold partitioning to
an extreme would result in the case where k is the number of observations
in the data set and each partition contains a single observation. This is a
cross-validation method known as leave-one-out.

In cross-validation, each partition will have been used as a test set or, in
other words, every observation in the data set will have been tested once.
This ensures that a prediction will be calculated for every observation in
the data set and avoids introducing bias into a model. Bias is a measure
of the model’s accuracy and indicates how close the predictions of the
response value made by the model are to the actual response value of new
observations. It can be introduced when models become overly complex
by optimizing the model for just the training set used to build the model.
When the performance is tested for these overtrained models against either
a separate test set or through cross-validation, the performance will be
poorer. In cross-validation methods, bias can be introduced when training
sets overlap (some observations are used more than once) or the combined
training sets do not cover the data set (some observations are never used).

For classification models, one way to assess the performance of a model
is to look at the results of applying themodels (such as the results from a test
set or the cross-validation results) and determine how many observations
are correctly or incorrectly classified. The accuracy or concordance of the
model is based on the proportion or percentage of correctly predicted
observations in comparison to the whole set. For example, if the test
set contained 100 observations and the model predicted 78 correctly (22
incorrectly), then the concordance would be 78/100 or 78%.

A common type of classification model is a model to predict a binary
response, where a true response is coded as 1 and a false response is coded
as 0. For example, a model could be built to predict, based on geologi-
cal data, whether there is evidence of an oil deposit, with a true response
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TABLE 6.1 Contingency Table Summarizing the Correct and Incorrect
Predictions from a Binary Classification Model

Actual

True (1) False (0)

Prediction True (1) True positives
(TP)

False positive
(FP)

Number of
observations
predicted true (1)

False (0) False negatives
(FN)

True negatives
(TN)

Number of
observations
predicted false (0)

Number of
actual true (1)
values

Number of
actual false
(0) values

Total
observations

encoded as a value of 1 when there is evidence for an oil deposit and a
false response as a value of 0 if there is not. A good way to evaluate a
classification model’s performance is through a contingency table sum-
marizing the number of correct and incorrect classifications. The number
of correctly predicted positive observations (true positives or TP) and the
number of correctly predicted negative observations (true negatives or TN)
is shown in Table 6.1. In addition, the number of positive predictions that
are incorrect is referred to as false positives (or FP) and the number of
negative predictions that are incorrect is referred to as false negatives (or
FN) are also summarized in Table 6.1.

To illustrate the difference in how well models are able to predict
positive and negative values, the results from three models are presented
in Figure 6.3. Model 1 correctly predicts 75% (36 out of 48 positives and
39 out of 52 negatives). In Model 1, the number of false positives (12) and
the number of false negatives (13) are quite similar. Model 2 has an overall
concordance of 80% with few false negatives (only 3) but a larger number
of false positives (17). In Model 3, the balance of the false positives and
false negatives is more biased toward false negatives (22) than to false
positives (9). However, the overall concordance values do not reflect
biases in the model’s ability to predict true or false values. To better assess
the overall performance of a binary classification model, it is necessary
to calculate additional metrics. Two commonly used calculations are
sensitivity and specificity:

Sensitivity = TP∕(TP + FN)

Specificity = TN∕(TN + FP)
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FIGURE 6.4 Scatterplot for a well- and poorly fitting regression model.

Sensitivity generally describes how well a model predicts positives,
whereas specificity generally describes how well a model predicts nega-
tives. The values for sensitivity and specificity in Model 1 are similar since
the number of false positives and false negatives are similar. In Model 2,
the sensitivity value is high (91%) which reflects the low number of false
negatives, whereas the specificity in Model 3 is high reflecting the lower
number of false positives.

In assessing the performance of a regression model, a scatterplot with
axes showing the actual values and the predicted values is a useful way to
start to understand the performance of the model. Models that accurately
predict a response variable have points close to and evenly distributed
about a straight line, as shown in the left scatterplot in Figure 6.4, whereas
poor performing models have points scattered as illustrated in the right
scatterplot in Figure 6.4. Scatterplots can also help to understand if there
are observations that will be poorly predicted for a given model. These
observations appear as points that do not fall close to the best fit line. If the
scatterplot trend has a nonlinear shape, then the model is not capturing the
nonlinear relationships and one or more of the variables included in the
model may require a data transformation or a nonlinear modeling approach
selected. The error or residual is the difference between the predicted value
and the actual value. An overall score based on these residual values can
be helpful in assessing the relative performance of different models. Since
a residual can contain positive and negative values, it is usual to calculate
an overall assessment of the residuals, such as the sum of the absolute
residual or the square of the residual.

In using a model in practice, it is not advisable to apply a model to data
sets that are not similar to those used in building the model (extrapolation).
It is usual to place some restriction on the variables of the data sets that will
be input to the model, such as the requirement that values not be outside
the range of the training set variables.
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The following sections outline a number of common and diverse
approaches to building models: linear regression, logistic regression, k-
nearest neighbors, and classification and regression trees (CART). The
chapter ends with a review of other approaches to building models and
additional information on resources for these topics.

6.2 LINEAR REGRESSION

6.2.1 Overview

The following section discusses how to generate linearmodels to describe
a relationship between one or more independent variables and a single
response variable. For example, we could build a linear regression model
to predict cholesterol levels using data about a patient’s age. This model
will likely be a poor predictor of cholesterol levels; however, incorporating
more information, such as body mass index (BMI) may result in a model
that provides a better prediction of cholesterol levels. Using a single inde-
pendent variable is referred to as simple linear regression, whereas using
more than one independent variable is referred to asmultiple linear regres-
sion. Although these models do not make causal inferences, they are useful
for understanding how a set of independent variables is associated with a
response variable. The following sections describe how to generate and
assess linear regression models and test the assumptions about the model.

6.2.2 Fitting a Simple Linear Regression Model

A simple linear regression model can be generated where there is a linear
relationship between two variables. For example, Figure 6.5 shows the
relationship between the independent variable Age and the response vari-
able Blood fat content. The diagram shows a high degree of correlation
between the two variables. As variable Age increases, response variable
Blood fat content increases proportionally. A straight line, representing a
linear model, can be drawn through the center of the points.

This straight line can be described using the formula

y = b0 + b1x

where b0 is the point of intersection with the y-axis and b1 is the slope
of the line, which is shown graphically in Figure 6.6. The simple linear
regression model is usually shown with an error term; however, it is not
included here to simplify the example.
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FIGURE 6.5 A straight line drawn through the relationship between variables
Age and Blood fat content.

The point at which the line intercepts with the y-axis is noted (approx-
imately 100) and the slope of the line is calculated (approximately 5.3).
For this data set, an approximate formula for the relationship between Age
and Blood fat content is

Blood fat content = 100 + 5.3 × Age

Parameters b0 and b1 can be derived manually by drawing a line
through the points in the scatterplot and then visually inspecting where
the line crosses the y-axis (b0) and measuring the slope (b1), as previously
described. The least-squares method is able to calculate these parameters
automatically. The formula for calculating a slope (b1) is

b1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
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FIGURE 6.6 Deriving the straight line formula from the graph.

where xi and yi are the individual values for the independent variable (x)
and the response variable (y), and where x̄ is the mean of x and ȳ is the
mean of y.

The formula for calculating the intercept with the y-axis is

b0 = ȳ − b1x̄

The slope and intercept are calculated using the data from Table 6.2.
The mean of x is 39.12 and the mean of y is 310.72.

Slope (b1) = 19,157.84∕3,600.64
Slope (b1) = 5.32

Intercept (b0) = 310.72 − (5.32 × 39.12)

Intercept (b0) = 102.6

Hence the equation is

Blood fat content = 102.6 + 5.32 × Age
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TABLE 6.2 Calculation of Linear Regression with Least Square Method

X Y (xi − x̄) (yi − ȳ) (xi − x̄)(yi − ȳ) (xi − x̄)2

46 354 6.88 43.28 297.7664 47.3344
20 190 −19.12 −120.72 2,308.1664 365.5744
52 405 12.88 94.28 1,214.3264 165.8944
30 263 −9.12 −47.72 435.2064 83.1744
57 451 17.88 140.28 2,508.2064 319.6944
25 302 −14.12 −8.72 123.1264 199.3744
28 288 −11.12 −22.72 252.6464 123.6544
36 385 −3.12 74.28 −231.7536 9.7344
57 402 17.88 91.28 1,632.0864 319.6944
44 365 4.88 54.28 264.8864 23.8144
24 209 −15.12 −101.72 1,538.0064 228.6144
31 290 −8.12 −20.72 168.2464 65.9344
52 346 12.88 35.28 454.4064 165.8944
23 254 −16.12 −56.72 914.3264 259.8544
60 395 20.88 84.28 1,759.7664 435.9744
48 434 8.88 123.28 1,094.7264 78.8544
34 220 −5.12 −90.72 464.4864 26.2144
51 374 11.88 63.28 751.7664 141.1344
50 308 10.88 −2.72 −29.5936 118.3744
34 220 −5.12 −90.72 464.4864 26.2144
46 311 6.88 0.28 1.9264 47.3344
23 181 −16.12 −129.72 2,091.0864 259.8544
37 274 −2.12 −36.72 77.8464 4.4944
40 303 0.88 −7.72 −6.7936 0.7744
30 244 −9.12 −66.72 608.4864 83.1744

Sum 19,157.84 3,600.64

These coefficient values are close to the values calculated using the
manual approach.

For each value of the x-variable, the corresponding y-variable value
(taken from the straight line) represents the expected mean y value. The
actual values will fall above and below the straight line since the line
represents the mean.

Once a formula for the straight line has been established, predicting
values for the y response variable based on the x independent variable can
be easily calculated. However, the formula should only be used for values
of the x variable within the range in which the formula was derived. In
this example, Age values should only be between 20 and 60. A prediction
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for Blood fat content based on Age can be calculated, for example, for an
individual whose age is 33, the Blood fat content would be predicted as

Blood fat content = 102.6 + 5.32 × 33 = 278.16

The slope can be interpreted as the average amount that the Blood fat
content changes for each unit (year) change inAge. The intercept represents
the average value of the Blood fat content when Age is zero; however, in
this case an Age of zero is out of the range of meaningful interpretation.

6.2.3 Fitting a Multiple Linear Regression Model

In most practical situations, a simple linear regression is not sufficient
because the models will need more than one independent variable. The
general form for a multiple linear regression equation is a linear function
of the independent variables:

y = b0 + b1x1i + b2x2i +⋯ + bkxpi + ei

where the response variable (y) is shown with p independent variables
(x-variables), b0 is a constant value, k is the number of coefficients of
the independent variables, and ei refers to an error term measuring the
unexplained variation or noise in the linear relationship.

The set of coefficients are calculated as part of the model building
process to minimize the overall differences between the observed and the
predicted response values. Since the mathematics for computing all but the
simplest models make it impossible to compute by hand, software tools
are typically used to perform the computation. This results in an equation
where the coefficients are estimated:

ŷ = b̂0 + b̂1x1 + b̂2x2 +⋯ + b̂pxk

In this equation, the coefficients are shown with a “hat” to represent
that they are estimated. This form was not presented for the simple linear
regression example to simplify the example. For example, a data set of
cruise ships is used to build a model to predict the number of crew required
in hundreds (Crew), with the first five rows (out of a total of 154) shown in
Table 6.3 from Winner (2013). A multiple linear regression model is built
using the variable Cabins (number of cabin on the ship in hundreds) and
Passenger density (the passenger to space ratio). The model equation is

Crew = −0.423 + 0.75 × Cabins + 0.0377 × Passenger density
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TABLE 6.3 Sample from the Data Set of Cruise Ships

Order Ship Name Cruise Line Cabins Passenger Density Crew

1 Journey Azamara 3.55 42.64 3.55
2 Quest Azamara 3.55 42.64 3.55
3 Celebration Carnival 7.43 31.8 6.7
4 Destiny Carnival 13.21 38.36 10
5 Ecstasy Carnival 10.2 34.29 9.2

It is now possible to estimate the number of crew that would be required
for a cruise ship. For example, a cruise ship with 11.1 cabins (1,100 actual
cabins) and passenger density of 42.7 would require a crew of 9.51 or 951
(since the Crew variable is based on hundreds):

Crew = −0.423 + 0.75 × 11.1 + 0.0377 × 42.7 = 9.51

The individual coefficients, similar to the simple linear regression situa-
tion, can be interpreted as slopes of the independent variables. In assessing
the slope (coefficient) for a particular variable, the slope represents the
average amount of increase (for positive slope values) or decrease (for
negative slope values) of the response per one unit increase/decrease in
the variable under consideration (keeping the other variables constant).
For example, if Passenger density is held constant then an increase in the
Cabins variable of 1.0 would mean an increase in the Crew variable of 0.75
(the coefficient or slope value for Cabins).

6.2.4 Assessing the Model Fit

As part of the process of generating the linear regression model, or in
other words estimating the model coefficients, a set of statistics are usu-
ally generated that help to understand the overall accuracy of the model.
The residual (ê) is an error term representing the difference between the
observed value (y) and the predicted value (ŷ):

ê = y − ŷ

For example, Table 6.4 shows Table 6.3 with two additional columns.
Column (ŷ) was added to show the predicted value for each row. Since
the actual and predicted values differ, another column was added to show
the residual (ê). For the ship “Journey,” the actual value for Crew is 3.55,
whereas the predicted value is slightly higher (3.85) resulting in a negative
residual (−0.3). For the ship “Celebration,” the actual value is 6.7, whereas
the predicted value is 6.35 and so the residual is positive (0.35).
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TABLE 6.4 Cruise Ship Data Annotated with Predicted Values and
Calculated Residuals

Cruise Passenger Predicted Residual
Order Ship Name Line Cabins Density Crew (ŷ) (ê)

1 Journey Azamara 3.55 42.64 3.55 3.85 −0.3
2 Quest Azamara 3.55 42.64 3.55 3.85 −0.3
3 Celebration Carnival 7.43 31.8 6.7 6.35 0.35
4 Destiny Carnival 13.21 38.36 10 10.9 −0.9
5 Ecstasy Carnival 10.2 34.29 9.2 8.52 0.68

Looking at the residual—the difference between the prediction and the
actual value—helps to better understand howwell the model is performing.

The sum of squares total (SST) is a measure of the variation of the
y-values about their mean:

SST =
n∑
i=1

(yi − ȳ)2

Of this total variation, part of the variation is explained and attributable
to the relationship between the x-variables and the y-variable or sum of
squares due to regression (SSR). This formula looks at the differences
between the predicted values (calculated from the regression equation)
and the average y-values:

SSR =
n∑
i=1

(ŷi − ȳ)2

The other part of the total variation is unexplained by the model and
hence attributable to the error or sum of squares of error (SSE) and looks at
the differences between the actual y-values (yi) and the predicted y-values
(ŷi):

SSE =
n∑
i=1

(yi − ŷi)
2

Since the total sum of squares (SST) is composed of the explained (SSR)
and the unexplained (SSE) variations, it follows that the value of SST can
be derived from SSR and SSE:

SST = SSR + SSE

In the example of the cruise ship linear model SSR is 1,484, SSE is
88.3 and SST is 1,573. The coefficient of determination (R2) represents the
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proportion of the variation that is explained by the set of x-variables in the
model and is the ratio of SSR to SST:

R2 = SSR
SST

Using the values from the cruise ship example, R2 would be

R2 = 1,484
1,573

= 0.94

94% of the variableCrew can be explained by the variability in the inde-
pendent variables (Cabins and Passenger density) with 5.7% attributable to
something else. R2 values vary between 0 and 1. The closer the values are
to 1, the more accurate are the predictions of the model; we say these mod-
els have a closer fit. With multiple linear regression, an adjusted R2 value
(R2

adj) is usually considered to better account for the multiple independent
variables used in the analysis as well as the sample size. Its formula is

R2
adj = 1 −

[
(1 − R2)(n − 1)
n − k − 1

]
where n is the number of observations and k is the number of independent
variables. In the cruise ship example, the value of R2

adj is

R2
adj = 1 −

[
(1 − 0.94)(154 − 1)

154 − 2 − 1

]
= 0.94

It is also a typical practice to calculate the standard error of the esti-
mate (sy.x), which is a measure of the variation of the y-values about the
regression line. This value is interpreted in a similar manner to standard
deviation and has the formula

sy.x =
√

SSE
n − 2

In the cruise ship example, s would be

sy.x =
√

88.3
154 − 2

= 0.76

The value indicates the model’s accuracy: the larger the value for the
standard error of estimate, the lower the precision.
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As long as the linear regression assumptions (described in Section 6.2.5)
are not seriously violated, inferences can be made. A t-test is used to deter-
mine whether there is a significant linear relationship between a specific
independent variable and the response. As described earlier, the null and
alternative hypothesis should be defined where the null hypothesis is that
there is no linear relationship and the alternative hypothesis states that
there is. If the null hypothesis can be rejected, then there is evidence of
a linear relationship. The following formula for calculating the t-value
is used:

t =
b̂i − bi
sbi

where

sbi =
sx.y√∑
(xi − x̄)2

For the Cabins variable, the t-value is calculated as follows using 0 for
bi to represent that there is no relationship:

t = 0.75 − 0
0.0151

= 49.7

For the Passenger density variable, the t-value is calculated as

t = 0.0377 − 0
0.00734

= 5.14

Using a value for ∝ of 0.05, the critical t-value is ±1.96. Since the
t-values for both Cabins and Passenger density are greater than the critical
value, we reject the null hypothesis and conclude that each of the two
individual coefficients exhibit a significant relationship with the response
variable. It is usual to calculate a p-value, which would be less than 0.0001
for both the Cabins and the Passenger density coefficient.

The F-test is used to test whether there is a statistically significant
relationship between the x-variables and the y-response. Again, a null
hypothesis (there is no linear relationship) and an alternative hypothesis (a
linear relationship exists between at least one of the independent variables)
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is stated. The F-test makes use of the formulas for mean square regression
(MSR) and mean square error (MSE):

MSR = SSR
k

MSE = SSE
n − k − 1

F = MSR
MSE

where n is the size of the data set and k is the degrees of freedom (as
discussed in Section 4.3.5). The null hypothesis is rejected where the
F-value is greater than the critical value of F based on k degrees of freedom
(regression) and n − k − 1 degrees of freedom (error).

In the cruise ship example,

MSR = 1,484
2

= 742

MSE = 88.3
154 − 2 − 1

= 0.585

F = 742
0.585

= 1,268

Since this value is greater than the critical value of F (identified from a
standard F-distribution table), we reject the null hypothesis and conclude
that there is at least one significant relationship.

The full results of a linear regression are often presented as shown in
Figure 6.7.

6.2.5 Testing Assumptions

Linear regression models are based on a series of assumptions. If a data set
does not conform to these assumptions then either the model needs to be
adjusted—such as applying a mathematical transformation to the data—or
multiple linear regression may not be suitable for modeling the data set.

The first assumption is that of linearity: the relationship between the
independent variables and the response variable should be linear. A scat-
terplot displaying the actual response values plotted against the predicted
values is one approach to checking this assumption. The points on the
scatterplot should be evenly distributed on both sides of the regression
line. Another approach is to look at the residual values plotted against the
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FIGURE 6.7 Summary of the multiple linear regression results.

predicted values. There should be no discernable trend in the data. Fig-
ure 6.8 is a scatterplot of the residual values plotted on the y-axis and the
predicted values plotted on the x-axis showing no readily observable trend.
If a nonlinear trend is observed, a mathematical transformation, such as a
log transformation or the introduction of an additional x2 value (to obtain
an equation in the form y = b0 + b1x + b2x

2), should be considered.
The second assumption is the normality of the error distribution. The

error about the line of regression should be approximately normally dis-
tributed for each value of x. This assumption can be tested using either a
frequency histogram, statisticalmeasures of skewness/kurtosis, or a normal
probability plot. If the residuals frequency distribution does not approx-
imate a normal distribution, then transformations of the variables should
be considered to map them more closely onto a normal distribution. The
presence of outliers in the data may also affect the distribution and these
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FIGURE 6.8 Scatterplot of the residuals against the predicted values.

should be checked in case there are errors or anomalies that would warrant
removing them from the data set.

A third assumption is homoscedasticity of the errors. The variation of
the error or residual across each of the independent variables should remain
constant either as a function of time (in time-series data sets) or a function
of the predicted value. For example, the errors in models generated from
stock market data could be affected by seasonal changes or by an increase
in the rate of inflation over time. There should be no discerning trend when
the residuals are plotted on the y-axis against (1) the order in which the
values were measured, (2) the predicted values, and (3) the independent
variables. Trends such as the variation in the error getting larger or smaller
as the values along the x-axis increase or decreasewould suggest a violation
of the homoscedasticity assumption.

The final assumption is the independence of errors. There should be
no trend in the residuals based on the order in which the observations
were collected. Again, this can be tested using a scatterplot of the residual
values versus the order in which they were collected. There should be no
discernable trend in the data—the observations should spread out evenly.
Methods examining this assumption in more detail include the use of the
Durbin–Watson statistic.

6.2.6 Selecting and Assessing Independent Variables

An important part of generating linear regression models is the selection of
independent variables. It is important to start with a plausible combination
of variables, which is a set that a domain expert would identify as having
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a relationship to the response. It is also important to generate the simplest
possible model that contains only those independent variables considered
necessary. A rule of thumb is to keep the number of independent variables
to a relatively small set and to include at least 10 observations in the training
set for every independent variable included in the model.

As described in Chapter 3, it may also be necessary to perform transfor-
mations on the pool of potential independent variables. Several techniques
are available for doing this. Dummy variables can ge generated where there
are nominal variables that need to be included. Continuous variables that
need to be transformed into a categorical variable can use a function that
incorporates a series of cutoffs identified by one or more points at which
the response changes dramatically. If the relationship between a potential
independent variable and the response variable needs to be converted from
nonlinear to linear, it can be done by the application of transformations
such as a log or exponential function. Finally, it may be necessary to intro-
duce a new independent variable that is a function of two or more variables,
such as a multiplication or a ratio.

Prior to building a prediction model, it is helpful to use exploratory
data analysis methods to inspect the relationships between the variables.
This includes the relationship between each independent variable under
consideration and the response. It is also important to understand the
relationships between each pair of independent variables because including
variables strongly related to each other adds little new information to the
model and makes the final model difficult to interpret.

Multiple combinations of different independent variables can be used to
build a set of models from which the best performing, most plausible, and
simplest model is selected. In addition, there are ways of automatically
selecting the “best” combinations of independent variables (discussed in
the Further Reading section) using methods such as stepwise regression.

Once the equation parameters have been selected and a model has
been built, tools that generate linear regression models produce a series
of statistics about the coefficients. In addition to the value of the constants
used in the equations, the standard error, t-stat, and p-value is calculated,
as discussed earlier, which can be used to help in the selection of the
independent variables.

6.3 LOGISTIC REGRESSION

6.3.1 Overview

As discussed in the previous section, the multiple linear regression
approach can only be used to make predictions when the response variable
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is continuous. It cannot be used when the response variable is categori-
cal. Logistic regression is a popular approach to building models where
the response variable is usually binary (dichotomous). For example, the
response variable could indicate whether a consumer purchases a product
(1 if they purchase and 0 if they do not) or whether a candidate drug is
potent (1 if the candidate drug is potent and 0 if it is not). Logistic regres-
sion provides a flexible and easy-to-interpret method for building models
from binary data. The following section outlines how to build, use, and
assess logistic regression models.

6.3.2 Fitting a Simple Logistic Regression Model

A data set related to the presence of gold deposits (five rows of which
are shown in Table 6.5) will be used to illustrate how a logistic regression
model operates from Sahoo and Pandalai (1999). The data set includes
observations showing measured Sb levels (log transformed) and whether
there is a gold deposit within 0.5 km (1 indicates there is a gold deposit
and 0 indicates there is none). The average log(Sb level) where Gold
deposit proximity is 1 is 0.445 and the average value when Gold deposit
proximity is 0 is −0.444 indicating that there is a difference between the
two values; however, it does not describe the type of relationship well. To
better understand this relationship, we will make the values of the log(Sb
level) discrete and plot these values, as shown in Table 6.6 and Figure 6.9.

The relationship between the average value of theGold deposit proximity
variable and the log(Sb level) can be seen in Figure 6.10. As the values for
log(Sb level) increase, the mean values for the Gold deposit proximity also
rise; however, the relationship is not linear. It follows an S-shaped curve,
starting at a mean value of 0 (all values are 0) and ending at a mean value
of 1 (all values are 1), with a more rapid transition from the low to high
mean values toward the center of the graph. The graph can never go below
0 or above 1 and the mean values at the low end of the log(Sb level) range
as well as at the high log(Sb level) range are flat.

TABLE 6.5 Five Rows from the Gold Data Set

Log(Sb level) Gold Deposit Proximity

−0.251811973 0
−0.22184875 0
−0.15490196 1
−0.096910013 0
−0.040958608 0
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TABLE 6.6 The Mean Value for the Variable Gold Deposit
Proximity for Different Ranges of Log(Sb Level)

Log(Sb Level) Ranges Mean Gold Deposit Proximity

−1.1 to −0.7 0
−0.7 to −0.3 0.04
−0.3 to 0.1 0.43
0.1 to 0.5 0.89
0.5 to 0.9 0.9
0.9 to 1.3 1

To generate a model that describes the relationship between the inde-
pendent variable or x-variable (log(Sb level)) and the response or y-variable
(Gold deposit proximity), we will need to understand the relationship
between the mean or expected value (E) of the response (Y) given a specific
value for the x variable (E(Y|x)). In Figure 6.10 we are showing the mean
response value on the y-axis. In order to map the x values onto the mean
y-values we need to model this S-shaped curve which can be accomplished
through a logistic formula:

E(Y|x) = e𝛽0+𝛽1x

1 + e𝛽0+𝛽ix

FIGURE 6.9 Graph showing how the mean values for variable Gold deposit
proximity increase as values for the log-transformed Sb level increase.
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FIGURE 6.10 Shape of the graph showing how the mean values for variable
Gold deposit proximity increase as values for the log-transformed Sb level
increase.

In this equation, the expected value of y given x (E(Y|x)) is calculated
where e is the exponential function and 𝛽0, 𝛽1 are constant values. This
formula will calculate values for the E(Y|x) along the “S”-shaped curve.
It also ensures that values do not exceed 1 or go below 0, as shown in
Figure 6.10.

The error for logistic regression has different characteristics to the error
discussed in the section on linear regression. Since the values of Y can be
only 1 or 0, the error is either 1 − E(Y|x) or 0 − E(Y|x), hence it follows
a binomial distribution (rather than an approximate normal distribution as
in the case of linear regression).

For a given data set, the beta coefficients are estimated using amaximum
likelihood method (see Hosmer et al. (2013) for details). This process is
invariably performed using computer software. For the data set illustrated
in Table 6.5, the following formula is generated:

E(Gold deposit proximity|log(Sb level)) = e−0.0728+5.82×log(Sb level)

1 + e−0.0728+5.85×log(Sb level)

To calculate a value for the expected value (mean) for the Gold
deposit proximity (E(Gold deposit proximity|log(Sb level)) we can sub-
stitute the original value with its log-transformed value in the formula.
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If log(Sb level) was 0.4, then

E(Gold deposit proximity|log(Sb level) = 0.4) = e−0.0728+5.82×0.4

1 + e−0.0728+5.85×0.4

= 0.905

Since the expected value is close to 1, we could conclude that it is likely
there will be a gold deposit within 0.5 km.

6.3.3 Fitting and Interpreting Multiple Logistic
Regression Models

In almost all practical situations, multiple independent variables will be
used to build a logistic regression model. The formula can be extended to
accommodate p independent variables:

E(Y|x) = e𝛽0+𝛽1x1+𝛽2x2+⋯+𝛽pxp

1 + e𝛽0+𝛽1x1+𝛽2x2+⋯+𝛽pxp

For example, two measurements, As levels and Sb levels, could be col-
lected and used to predict whether a gold deposit will be identified within
0.5 km (Gold deposit proximity). Again the log transformation of the origi-
nal As levels and Sb levelmeasurements will be used: log(As levels), log(Sb
levels). By loading the data set into a computational package, it is possible
to derive a formula to predict the expected value forGold deposit proximity:

E(Y|x) = e−1.84+5.2 log(As levels)+3.5 log(Sb levels)

1 + e−1.84+5.2 log(As levels)+3.5 log(Sb levels)

The predicted value based on actual As levels and Sb levels would be

E(Y|x) = e−1.84+5.2×0.1+3.5×0.05

1 + e−1.84+5.2×0.1+3.5×0.05
= 0.24

where a log(As level) of 0.1 and a log(Sb level) of 0.05 has been used. Since
0.24 is closer to 0 we might conclude that it is unlikely that there will be a
gold deposit within 0.5 km.

6.3.4 Significance of Model and Coefficients

When the coefficients of a logistic regression model are calculated, the
method for identifying these coefficients attempts to maximize the log
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likelihood (L), which takes into account the difference between the actual
value of y (yi) and the predicted value 𝜋i:

L =
n∑
i=1

(yi ln(𝜋i) + (1 − yi) ln(1 − ln(𝜋i)))

In the Gold example, the log likelihood function is calculated to be
−9.02. To better understand the significance of this model, this value is
compared to the log likelihood for the constant only model (in this example
−43.7). The model’s log likelihood is clearly higher; however, we can
perform a test using the likelihood ratio statistic (LR). This statistic takes
into account both the full model (based on the two independent variables
in this example) as well as the reduced model (in this case the constant
only model). It is calculated using the following formula:

LR = −2 [L (reduced) − L (full)]

In this example this translates to

LR = −2 [(−43.7) − (−9.02)] = 69

The LR statistic follows a chi-square distribution and we can determine
a p-value by looking up the value in a chi-square distribution table where
the degrees of freedom are the difference in the number of independent
variables between the two models being assessed. In this case, p < 0.0001
and hence it would be considered significant. The LR statistic can be also
used to understand the difference between two models containing different
sets of independent variables.

We can also look at the significance of the individual coefficients in
a manner similar to the linear regression coefficients. This assessment
makes use of the Wald test (see Hosmer et al. (2013) for details). In this
example, the coefficients are summarized in Table 6.7. It can be seen that

TABLE 6.7 Summary of the Logistic Regression Coefficients for the Gold
Model

Independent Beta Standard
Variable Coefficients Error z-Values p-Values

Constant −1.84 0.95 −1.93 0.052
Log(As Level) 5.2 1.91 2.72 0.0063
Log(Sb Level) 3.5 1.82 1.92 0.054
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TABLE 6.8 Accuracy, Sensitivity, and Specificity Based on Three Cut-Off
Values

Cut-Off Accuracy (%) Sensitivity (%) Specificity (%)

0.2 89.10 96.40 83.30
0.5 92.20 92.90 91.70
0.8 84.40 71.40 94.40

log(As level) has a low p-value below 0.05 and is clearly an important
variable in the model; whereas log(Sb level) is around 0.05.

6.3.5 Classification

Up to this point we have been calculating a value for the response E(Y|x);
however, we may wish to have the predicted value in the same form as the
y-variable, which is either 0 or 1. To map a value to either 0 or 1, we need to
determine a cut-off value where values greater than or equal to the cut-off
are assigned the value 1 and those less than the cut-off are assigned the
value 0. Once we have the prediction in this form (0 or 1), we can assess
the overall accuracy of the model in terms of the percentage of correct
predictions as well as the sensitivity and specificity of the model.

One approach to determining the cut-off is to select a value by hand.
To illustrate, we will use three possible cut-off values: 0.2, 0.5, and
0.8. By applying these values to the gold deposit example, the overall
classification accuracy as well as sensitivity and specificity will change, as
shown in Table 6.8. It is possible to automatically identify a cut-off value
that is a good balance of sensitivity and specificity, and in this example it
would be 0.532.

6.4 k-NEAREST NEIGHBORS

6.4.1 Overview

The k-nearest neighbors (kNN) method provides a simple approach to cal-
culating predictions for unknown observations. This method calculates a
prediction by looking at similar observations in the training set and uses
some function of their response values, such as an average, to calculate
the prediction. Like all prediction methods, it starts with a training set. It
differs from other methods by determining the optimal number of simi-
lar observations to use in making the prediction rather than producing a
mathematical model.



168 BUILDING MODELS FROM DATA

26

24

22

20

18

16

14

12

10

A
c
c
e

le
ra

ti
o

n

1500 2000 2500 3000 3500

Weight

4000 4500 5000 5500

8

6

Good fuel efficiency

Poor fuel efficiency

FIGURE 6.11 Scatterplot showing fuel efficiency classifications.

The scatterplot in Figure 6.11 is based on a data set of cars and will be
used to illustrate how kNN operates. Two variables that will be used as
independent variables are plotted on the x- and y-axis (Weight and Acceler-
ation). The response variable is a dichotomous variable (Fuel Efficiency)
which has two values: good and poor fuel efficiency. The darker shaded
observations have good fuel efficiency and the lighter shaded observations
have poor fuel efficiency.

During the learning phase, the “best” number of similar observations
is chosen (k). The selection of k is described in Section 6.4.2. Once a
value for k has been determined it is possible to make a prediction for a car
with unknown fuel efficiency. To illustrate, cars A andBwith unknown fuel
efficiency are presented to the kNNmodel in Figure 6.12. The Acceleration
and Weight of these observations are known and the two observations are
plotted alongside the training set. Based on the optimal value for k, the
k-nearest neighbors (most similar observations) to A and B are identified
in Figure 6.12. For example, if k was calculated to be 10, then the 10 most
similar observations from the training set would be selected. A prediction
is made for A and B based on the response of the nearest neighbors (see
Figure 6.13). In this case, observation A would be predicted to have good
fuel efficiency since its neighbors primarily have good fuel efficiency.
Observation B would be predicted to have poor fuel efficiency since its
neighbors all have poor fuel efficiency.

kNN is relatively insensitive to errors or outliers in the data and can be
usedwith large training sets; however, it can be computationally slowwhen
it is applied to a new data set since a similarity score must be generated
between the observations presented to the model and every member of the
training set.
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FIGURE 6.12 Two test set observations (A and B).
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FIGURE 6.13 Looking at similar observation to support making predictions for
A and B.
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6.4.2 Training

A kNN model uses the k most similar neighbors to the observation to
calculate a prediction. Where a response variable is continuous, the pre-
diction is the mean of these nearest neighbors. Where a response variable
is categorical, the prediction can be presented as a mean or a particular
classification scheme that selects the most common classification term.

In the learning phase, three items should be considered and optimized:
(1) the similarity method (2) the value of k, and (3) the combination of
independent variables to use. As described in Chapter 5, there are many
methods for determining whether two observations are similar including,
for example, the Euclidean or the Jaccard distance. As with clustering, it
is important to normalize the values of the variables so that no variables
are considered to be more important based solely on the range of values
over which they were measured. The number of similar observations that
produces the best predictions or k must be determined. If this value is too
high, the kNN model will overgeneralize; if the value is too small, it will
lead to a large variation in the prediction.

The selection of k is performed by evaluating different values of kwithin
a range and selecting the value that gives the “best” prediction. To ensure
that models generated using different values of k are not over-fitting, a
separate training and test set should be used, such as a 10%cross-validation.

To assess the different values for k, the SSE evaluation criteria will be
used:

SSE =
n∑
i=1

(yi − ŷi)
2

Smaller SSE values indicate that the predictions are closer to the actual
values.

To illustrate, a data set of cars will be used and a model built to test the
car’s fuel efficiency (MPG). The following variables will be used as inde-
pendent variables within the model: Cylinders, Weight, and Acceleration.
The Euclidean distance calculation was selected to represent the distance
between observations. To calculate an optimal value for k, different values
of k were selected between 1 and 20. The SSE evaluation criterion was
used to assess the quality of each model. In this example, the value of k
with the lowest SSE value is 8 and this value is selected for use with the
kNN model (see Table 6.9).

6.4.3 Predicting

Once a value for k has been set in the training phase, the model can now be
used to make predictions. For example, an observation x has values for the
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TABLE 6.9 Values for SSE
for Different Values of K

k SSE

1 12,003
2 8,358
3 7,525
4 7,246
5 6,870
6 6,906
7 6,628
8 6,504
9 6,533
10 6,658
11 6,621
12 6,612
13 6,648
14 6,773
15 6,811
16 6,943
17 6,965
18 7,015
19 6,963
20 6,996

independent variables but not for the response. Using the same technique
for determining similarity as used in the model building phase, observa-
tion x is compared against all observations in the training set. A distance is
computed between x and each training set observation. The closest k obser-
vations are selected and a prediction is made, for example, the average of
the k-nearest neighbors is calculated to determine a prediction.

The observation (Chevrolet Chevelle Malibu) in Table 6.10 was pre-
sented to the kNN model built to predict a car’s fuel efficiency (MPG).
The Chevrolet Chevelle Malibu observation was compared to all obser-
vations in the training set and a Euclidean distance was computed. The
eight observations with the smallest distance scores are selected, as shown

TABLE 6.10 kNN Test Observations

Car Name Cylinders Weight Acceleration

Chevrolet Chevelle Malibu 6 3897 18.5
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TABLE 6.11 Calculating the kNN Prediction Based on the Eight Nearest
Neighbors

Calculated
Car Name Distance Cylinders Weight Acceleration MPG

Dodge Aspen 0.0794 6 3620 18.7 18.6
Amc Matador 0.0808 6 3632 18 16
Dodge Aspen Se 0.0844 6 3651 17.7 20
Plymouth Volare Custom 0.0894 6 3630 17.7 19
Chevrolet Chevelle
Malibu Classic

0.0951 6 3781 17 16

Mercedes-Benz 280s 0.1093 6 3820 16.7 16.5
Ford Granada 0.1095 6 3525 19 18.5
Pontiac Phoenix Lj 0.1108 6 3535 19.2 19.2

Average 18

in Table 6.11. The prediction is 18, which is the average of these eight
observations.

The training set of observations can be used to explain how the prediction
was reached and to assess the confidence in this prediction. For example,
if the response values for all these observations are close, it increases the
confidence in the prediction.

6.5 CLASSIFICATION AND REGRESSION TREES

6.5.1 Overview

In Chapter 5, decision trees were described as a way of grouping obser-
vations based on specific values or ranges of independent variables. For
example, the tree in Figure 6.14 organizes a set of observations based on
the car’s number of cylinders (Cylinders). The tree was constructed using
the variableMPG as the response variable. This variable was used to guide
how the tree was constructed, resulting in groupings that characterize a
car’s fuel efficiency. The terminal nodes of the tree (A, B, and C) show a
partitioning of cars into sets with good (node A), moderate (node B), and
poor (node C) fuel efficiency.

Each terminal node is a mutually exclusive set of observations, that is,
there is no overlap in observations between nodes A, B, or C. The criteria
for inclusion in each of these nodes are defined by the set of branch points
used to partition the data. For example, terminal node B is defined as
observations where Cylinders ≥ 5 and Cylinders < 7.
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FIGURE 6.14 Decision tree built from an automobile data set.

Decision trees can be used as both classification and regression predic-
tion models. Decision trees that are built to predict a continuous response
variable are called regression trees and decision trees built to predict a cat-
egorical response are called classification trees. During the learning phase,
a decision tree is constructed using the training set. Predictions in decision
trees are made using the criteria associated with the trees terminal nodes.
A new observation is assigned to a terminal node in the tree using these
splitting criteria. The prediction for the new observation is either the node’s
classification (in the case of a classification tree) or the average value (in
the case of a regression tree). As with other approaches to predtive model-
ing, the quality of the prediction can be assessed using a separate training
set.

6.5.2 Predicting

In Figure 6.15, a set of cars are shown on a scatterplot. The cars are defined
as having good or poor fuel efficiency. Those with good fuel efficiency
are shaded darker than those with poor fuel efficiency. Values for the
Acceleration andWeight variables are shown on the two axes.
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FIGURE 6.15 Scatterplot of cars show those with good and poor fuel efficiency.

A decision tree is generated using the car’s fuel efficiency as the response
variable. This results in a decision tree where the terminal nodes partition
the set of observations according to ranges in the independent variables.
One potential partition of the data is shown in Figure 6.16. The prediction
is then made based on the observations used to train the model that are
within the specific region, such as the most popular class or the average
value (see Figure 6.17).

When an observation with unknown fuel efficiency is presented to the
decision tree model it is placed within one of the regions. The placement
is based on the observation’s values for the independent variables. Two
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FIGURE 6.16 Region of interest generated from the decision tree.
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FIGURE6.17 Scatterplot illustrating the classification response per region iden-
tified by the decision tree.

observations (A and B) with values for Acceleration and Weight but
no value for whether the cars have a good or poor fuel efficiency are
presented to the model. These observations are shown on the scatterplot in
Figure 6.18 showing how the ranges of the variables used as independent
variables partition the data. Observation A will be predicted to have good
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FIGURE 6.18 Classification of two automobiles with unknown MPG values.
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fuel efficiency whereas observation B will be predicted to have poor fuel
efficiency.

Decision trees are useful for prediction since the results are easy to
explain. Unfortunately these types of models can be quite sensitive to large
variation in the training set that cannot be explained.

The same parameters used to build the tree (described in Section 5.5)
can be set to build a decision tree model, that is, different input variable
combinations and different stopping criteria for the tree.

6.5.3 Example

The decision tree in Figure 6.19 was built from a data set of 382 cars
using the continuous variable MPG to split the observations. The average
value shown in the diagram is the MPG value for the set of observations.
The nodes are not split further if there are less than 40 observations in the
terminal node.

In Table 6.12, three observations not used in building the tree are shown
with both an actual and a predicted value. The second to last column (Rule)
indicates the node in the tree that was used to calculate the prediction. For
example, the “AMC Matador” with a weight of 3,730, six cylinders, and
an acceleration of 19 will fit into a region defined by node F in the tree.
Node F has an average MPG value of 16.9 and hence this is the predicted
MPG value. The table also indicates the actual MPG values for the
cars tested.

The examples used in this section were simple in order to describe how
predictions can be made using decision trees. It is standard practice to use
larger numbers of independent variables. Also, building a series of models
by changing the terminating criteria can also be a useful way to optimize
the decision tree models.

TABLE 6.12 Test Set of Three Automobiles Not Used in Building the
Model

Car Name Cylinders Weight Acceleration MPG Rule Prediction

Oldsmobile Cutlass
Salon Brougham

8 3420 22.2 23.9 E 20.48

Amc Matador 6 3730 19 15 F 16.9
Dodge D200 8 4382 13.5 11 G 13.98
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The terminal nodes in the decision trees can be described as rules (as
shown in Section 5.4.4) and these rules can be useful in explaining how
a prediction was made. In addition, looking at the data on which each
rule is based allows you to understand the degree of confidence for each
prediction. For example, the number of observations and the distribution
of the response variable can help to understand how much confidence you
should have in the prediction.

6.6 OTHER APPROACHES

6.6.1 Neural Networks

Like all prediction models, the neural network approach uses a training set
of examples to generate themodel. This training set is used to generalize the
relationships between the “input” independent variables and the “output”
response variables. As part of this process, a series of interconnected nodes
are organized between the input nodes (each input node corresponds to
an independent variable) and the output response variables (represented as
nodes). These nodes can be organized intomultiple layers of interconnected
nodes. As part of the process of learning, weights on the connections
between the nodes in the neural network are refined to generate a prediction
model. Once a neural network has been created, it can be used to make
predictions. A prediction is made by presenting a test observation to the
input nodes of the network and, based on local calculations, allowing
the values to propagate through the network to eventually generate the
scores for the output variables. These scores are the final prediction. Neural
networks are a flexible way to generate models from the data and are
capable of modeling complex linear and nonlinear relationships between
the input variables and one or more response variables. They are, however,
considered a “black box” since it is difficult to get a useful explanation of
how the predictions were derived.

6.6.2 Support Vector Machines

Support vector machines are used primarily for classification problems.
They attempt to identify a hyper-plane that separates the different classes
being modeled. The observations on one side of the plane represent one
of the classes being predicted, whereas the observations on the other side
represent the other class. Despite their general usefulness and ability to
handle complex classification problems, they can be difficult to interpret.
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6.6.3 Discriminant Analysis

Discriminant analysis is an example of a classification approach. It classi-
fies two or more values by constructing a linear combination of variables
that characterize the different classes. One necessary assumption is that
the independent variables are normally distributed.

6.6.4 Naı̈ve Bayes

Naı̈ve Bayes is a classification approach to building a predictive model.
It makes use of the Bayesian theorem to compute probabilities of class
membership. It provides a simple approach to modeling and can be easily
used on large data sets. In addition, it can also be used to rank observations
using a computed probability.

6.6.5 Random Forests

Random forests make use of multiple decision trees, with each tree using
a different set of independent variables. The final prediction is calculated
from the collection of decision tree results. As with Classification and
Regression Trees or CART, this approach can be used for both classification
and regression problems.

EXERCISES

1. A classification prediction model was built using a training set of exam-
ples. A separate test set of 20 examples is used to test the model.
Table 6.13 shows the results of applying this test set.

Calculate the model’s
(a) concordance
(b) sensitivity
(c) specificity

2. A regression predictionmodel was built using a training set of examples.
A separate test set was applied to the model and the results are shown
in Table 6.14.
(a) Calculate the residual for each observation.
(b) Determine the sum of the square of the residual.

3. Table 6.15 shows the relationship between the amount of fertilizer used
and the height of a plant.
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TABLE 6.13 Table of Actual Versus
Predicted Values (Categorical Response)

Observation Actual Predicted

1 0 0
2 1 1
3 1 1
4 0 0
5 0 0
6 1 0
7 0 0
8 0 0
9 1 1

10 1 1
11 1 1
12 0 1
13 0 0
14 1 1
15 0 0
16 1 1
17 0 0
18 1 1
19 0 1
20 0 0

(a) Calculate a simple linear regression equation using Fertilizer as the
independent variable and Height as the response.

(b) Predict the height when fertilizer is 12.3.

4. A kNN model is being used to predict house prices. A training set was
used to generate a kNN model and k is determined to be 5. The unseen
observation in Table 6.16 is presented to the model. The kNN model
determines the five observations in Table 6.17 from the training set to
be the most similar. What would be the predicted house price value?

5. Aclassification treemodel is being used to predictwhich brand of printer
a customer would purchase with a computer. The tree in Figure 6.20
was built from a training set of examples. For a customer whose Age =
32 and Income = $35,000, which brand of printer would the tree predict
they would buy?
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TABLE 6.14 Table of Actual Versus
Predicted (Continuous Response)

Observation Actual Predicted

1 13.7 12.4
2 17.5 16.1
3 8.4 6.7
4 16.2 15.7
5 5.6 8.4
6 20.4 15.6
7 12.7 13.5
8 5.9 6.4
9 18.5 15.4

10 17.2 14.5
11 5.9 5.1
12 9.4 10.2
13 14.8 12.5
14 5.8 5.4
15 12.5 13.6
16 10.4 11.8
17 8.9 7.2
18 12.5 11.2
19 18.5 17.4
20 11.7 12.5

TABLE 6.15 Table of Plant Experiment

Fertilizer Height

10 0.7
5 0.4
12 0.8
18 1.4
14 1.1
7 0.6
15 1.3
13 1.1
6 0.6
8 0.7
9 0.7
11 0.9
16 1.3
20 1.5
17 1.3
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TABLE 6.16 House with Unknown Price

Bedroom Number of Bathrooms Square Feet Garage House Price

2 2 1810 0

TABLE 6.17 Table of Similar Observations

Bedroom Number of Bathrooms Square Feet Garage House Price

2 2 1504 0 355,000
2 2 1690 0 352,000
2 3 1945 0 349,000
3 2 2146 0 356,000
3 2 1942 0 351,000

FIGURE 6.20 A classification tree model used to predict which brand of printer
a customer would purchase.

FURTHER READING

When using statistical approaches (such as a t-tests) to identify independent vari-
ables from a large number of potential variables, it is important to use correction
factors such as those discussed in Westfall et al. (1999) and Hsu (1996). Principal
component analysis is an approach to dimension reduction and outlined in Jol-
liffe (2002) and Jackson (2003). See Kleinbaum et al. (2013) for a more detailed
treatment of linear regression including a discussion of confidence intervals for
coefficients and prediction; the use of the Durbin–Watson and autocorrelation
methods for testing normality assumptions; and the use of automated approaches,
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including stepwise linear regression, to automatically identify combination of
independent variables to use in the model. For a more detailed discussion on
logistic regression, including the use of the Score Test, the use of the odds ratios
to help interpret the models and the use of stepwise logistic regression see Hosmer
et al. (2013). Agresti (2013) covers logistic regression as well as other methods
to handle categorical data. For a more comprehensive treatment of advanced data
mining approaches see Fausett (1993), Cristianini & Shawe-Taylor (2000), and
Hastie et al. (2009).





APPENDIX A

ANSWERS TO EXERCISES

Chapter 2

1a. Nominal
1b. Ratio
1e. Ratio
1f. Ratio
1g. Ratio
1h. Ratio
1i. Nominal
2a. 45
2b. 45
2c. 48.7
2d. 53
2e. 324.9
2f. 18.02
3. See Figure A.1

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining,
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FIGURE A.1 Frequency distribution for Exercise 3 from Chapter 2.

Chapter 3

1. See Table A.1
2. See Table A.2
3. See Table A.3

Chapter 4

See Table A.4
2a. See Table A.5
2b. See Table A.6
2c. See Table A.7
See Figure A.2

TABLE A.1 Chapter 3, Question 1 Answer

Name Weight (kg) Weight (kg)—Normalize to 0–1

P. Lee 50 0.095
R. Jones 115 0.779
J. Smith 96 0.579
A. Patel 41 0
M. Owen 79 0.4
S. Green 109 0.716
N. Cook 73 0.337
W. Hands 104 0.663
P. Rice 64 0.242
F. Marsh 136 1
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TABLE A.2 Chapter 3, Question 2 Answer

Weight (kg)—Categorized
Name Weight (kg) (Low, Medium, High)

P. Lee 50 Low
R. Jones 115 High
J. Smith 96 Medium
A. Patel 41 Low
M. Owen 79 Medium
S. Green 109 High
N. Cook 73 Medium
W. Hands 104 High
P. Rice 64 Low
F. Marsh 136 High

TABLE A.3 Chapter 3, Question 3 Answer

Name Weight (kg) Height (m) BMI

P. Lee 50 1.52 21.6
R. Jones 115 1.77 36.7
J. Smith 96 1.83 28.7
A. Patel 41 1.55 17.1
M. Owen 79 1.82 23.8
S. Green 109 1.89 30.5
N. Cook 73 1.76 23.6
W. Hands 104 1.71 35.6
P. Rice 64 1.74 21.1
F. Marsh 136 1.78 42.9

TABLE A.4 Chapter 4, Question 1 Answer

Store

New York, NY Washington, DC Totals

Product Category Laptop 1 2 3
Printer 2 2 4
Scanner 4 2 6
Desktop 3 2 5
Totals 10 8 18
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TABLE A.5 Chapter 4, Question 2a Answer

Customer Number of Observations Sum of Sales Price ($)

B. March 3 1700
J. Bain 1 500
T. Goss 2 750
L. Nye 2 900
S. Cann 1 600
E. Sims 1 700
P. Judd 2 900
G. Hinton 4 2150
H. Fu 1 450
H. Taylor 1 400

TABLE A.6 Chapter 4, Question 2b Answer

Store Number of Observations Mean Sale Price ($)

New York, NY 10 485
Washington, DC 8 525

TABLE A.7 Chapter 4, Question 2c Answer

Product Category Number of Observations Sum of Profit ($)

Laptop 3 470
Printer 4 360
Scanner 6 640
Desktop 5 295
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FIGURE A.2 Scatterplot, Chapter 4 question 3.
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Chapter 5

1a. 4.8
1b. 2.8
1c. 0
2. 2.24
3. Support = 0.47, Confidence = 1, Lift = 1.89
4a. 0.83
4b. 0.998

Chapter 6

1a. 0.85
1b. 0.89
1c. 0.82
2a. 0.87

TABLE A.8 Chapter 6, Question 2b Answer

Observation Actual Predicted Residual

1 13.7 12.4 1.3
2 17.5 16.1 1.4
3 8.4 6.7 1.7
4 16.2 15.7 0.5
5 5.6 8.4 −2.8
6 20.4 15.6 4.8
7 12.7 13.5 −0.8
8 5.9 6.4 −0.5
9 18.5 15.4 3.1
10 17.2 14.5 2.7
11 5.9 5.1 0.8
12 9.4 10.2 −0.8
13 14.8 12.5 2.3
14 5.8 5.4 0.4
15 12.5 13.6 −1.1
16 10.4 11.8 −1.4
17 8.9 7.2 1.7
18 12.5 11.2 1.3
19 18.5 17.4 1.1
20 11.7 12.5 −0.8
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2b See Table A.8
3a. Height = −9.8 + 0.9 Fertilizer
3b. 1.3
4. $352,600
5. Brand B



APPENDIX B

HANDS-ON TUTORIALS

B.1 TUTORIAL OVERVIEW

Traceis 2014 is a software tool for exploratory data analysis and data min-
ing, designed to be used alongside this book to provide practical experience
of the methods described. It includes a number of tools for preparing and
summarizing data, as well as methods for grouping, exploring patterns
and trends, and building models. The following sections describe how to
install and use the Traceis 2014 software and provide a series of hands-on
exercises making use of sample data sets.

B.2 ACCESS AND INSTALLATION

The Traceis 2014 software can be accessed from the website
http://www.makingsenseofdata.com/. The software is contained in a zipped
file. Once downloaded, it can be unzipped into a folder on a computer. In
addition to downloading the zipped file, a license key to use the software
can be obtained by sending an email to software@makingsenseofdata.com.
An email will be sent to you containing the key, which is simply a number.

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining,
Second Edition. Glenn J. Myatt and Wayne P. Johnson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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The associatedwebsite (http://www.makingsenseofdata.com/) contains the
current minimum requirements for running the software, which can be used
on a computer with the Java Virtual Machine (JVM) installed. The JVM
usually comes installed on most computers; however, it can be downloaded
from the Java website (http://www.java.com/), if necessary.

To run the software, either double click on the Traceis.jar file or open
the Traceis.jar file from the Java software platform software. The first
time the software runs, you will be asked to enter the license key number
mentioned in the email sent. Also contained in the folder with the software
is a subfolder called “Tutorial data sets,” which contains sample data sets
to use with the software, along with descriptions of the data sets.

B.3 SOFTWARE OVERVIEW

The Traceis 2014 software contains a series of tools, such as multiple linear
regression or clustering. These tools are available throughout the Traceis
2014 user interface. The user interface is divided into five areas, as shown
in Figure B.1: “Categories,” “Tools,” “Options,” “Results,” and “Selected
observations.”

FIGURE B.1 Organization of the Traceis 2014 user interface.

http://www.makingsenseofdata.com/
http://www.java.com/
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TABLE B.1 Tools Available in the Traceis 2014 Software

Category Tools

Preparation Loading the data (open), searching the data set (search),
characterizing variables (characterize), removing
observations and variables (remove), cleaning the data
(clean), transforming variables (transform), segmenting the
data set (segment), and principal component analysis (PCA)

Tables and
graphs

Contingency table, summary table, graphs, and graph matrices

Statistics Descriptive statistics, confidence intervals, t-tests, chi-square
test, ANOVA, and comparative statistics

Grouping Clustering, association rules, decision trees
Models Linear regression, discriminant analysis, logistic regression,

Naı̈ve Bayes, k-nearest neighbors (kNN), classification and
regression trees (CART), and neural networks

The different types of tools are organized within the four-step pro-
cess outlined in Chapter 1 of this book: (1) definition, (2) preparation,
(3) analysis, and (4) deployment. The “Categories” options that can be
selected are “Prepare,” “Tables and graphs,” “Statistics,” “Grouping,”
“Models,” and “Apply models.” In Figure B.1 the “Tables and graphs” cat-
egory has been selected and the tools available are presented accordingly,
as shown in the tabs “Contingency table,” “Summary table,” “Graphs,”
and “Graph matrices.” In this example, the “Graphs” tool was selected.
The tools option area of the screen shows the different parameters and
settings for performing or displaying an analysis of the data. For example,
different types of graphs along with the graph’s axes have been selected in
Figure B.1. The “Results” area of the screen contains the results of a visu-
alization or analysis. In Figure B.1 the selected graphs that are displayed
are interactive. All cars with four cylinders were selected (by clicking on
the four-cylinder bar in the top left chart) and the selected observations are
highlighted on the other graphs in the display and shown in the selected
observations area of the user interface. Table B.1 shows the tools that can
be selected.

B.4 READING IN DATA

The first step is to load data into the system. The data set should be in a
text file and should contain all observations in the data set with informa-
tion on all variables. The format follows the conventions of comma- or
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tab-separated tabular data files. Each observation should be on a sepa-
rate line and the values of the observed properties should be recorded
consistently. The variable names should be on the first line in the file. A
specific separator or delimiter should separate each individual value, such
as a comma, tab, or semicolon. The following provides an example of the
content of a text file containing a data table:

Ship Name;Cruise Line;Age;Tonnage;Passengers
Journey;Azamara;6;30.277;6.94
Quest;Azamara;6;30.277;6.94
Celebration;Carnival;26;47.262;14.86

The first row contains the column headings (variable names), each sub-
sequent row contains the individual observations, and the values are con-
sistently separated with semicolons.

Selecting the “Open” button, as shown in FigureB.1, initiates the process
of loading a data set. Once the file has been located, you will be asked to
review the data table to make sure it is formatted into the correct rows
and columns, as shown in Figure B.2. If the data does not look correct,

FIGURE B.2 Preview of the data to be loaded.
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you may override the default assumptions made by the software about
the data format. If no header is contained in the text file, the software will
automatically assign a header to each column (“Variable(1),” “Variable(2),”
and so on). Once the data is correctly assigned as rows and columns,
clicking on the “OK” button will load the data into the Traceis 2014
software.

B.5 PREPARATION TOOLS

B.5.1 Searching the Data

Once a data set has been loaded, one or more defined queries can be
used to search the data set from the “Search” tab. These queries will
search over specific variables. The queries may include different operators
(=, <, >, and ≠), as well as specific values. You may also generate a
new dummy variable from the search results, where a value of one is
assigned if an observation satisfied the criteria of the search and zero is
assigned otherwise. By checking the box “Generate variable from results”
and entering a name, the new variable is generated after the search you
initiate is completed.

B.5.2 Variable Characterization

Once loaded, the variables are analyzed and automatically assigned to
various categories. This assignment can be reviewed by clicking on the
“Characterization” tab.

B.5.3 Removing Observations and Variables

The “Remove” tab provides ways to remove observations or variables from
the data table. Observations can be selected from most pages and may be
removed by either clicking on the “Delete” button at the top of the user
interface or from the “Remove” tab. Constants or specific variables can
also be removed.

B.5.4 Cleaning the Data

For variables containing missing data or non-numeric data, a series of
options are available from the “Clean” tab to “clean” the data. Once a
variable is selected, the following summaries are provided: a count of the
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TABLE B.2 Available Options for Transforming One or More Variables

Tool Options

Normalization (new range) Min-max, z-score, decimal scaling
Normalization (new distribution) log, −log, Box-Cox
Normalization (text-to-numbers) Values for selected variable
Value mapping (dummy variables) Variables
Discretization (using ranges) Select ranges for selected variable
Discretization (using values) Select new values for existing values, for

the selected variable
General transformations Single variable: x × c, x + c, x ÷ c, c ÷ x,

x − c, c − x, x2, x3, and
√
x

Two variables: mean, minimum,
maximum, x + y, x ÷ y, y ÷ x, x − y, and
y − x

More than two variables: mean, minimum,
maximum, sum, and product

numeric observations, a count of non-numeric observations, and a count
of observations with missing data. Non-numeric observations in the data
may either be removed or replaced by a numeric value. A similar set of
options are available for handling missing data. Once the variable has been
updated, the changes will be reflected in the results area of the updated
table.

B.5.5 Transforming the Data

The “Transform” tab provides a number of options for transforming one or
more variables into a newvariable. These tools are summarized in TableB.2
and can be selected from the drop-down “Select type of transformation.”
It should be noted that all transformation options generate a new variable
and do not replace the original variable(s).

The “Normalization (new range)” option provides three alternatives for
transforming a single variable to a new range: min-max, z-score, and deci-
mal scaling. Certain analysis options require that the frequency distribution
reflect a normal or bell-shaped curve. The “Normalization (new distribu-
tion)” option provides a number of transformations that generates a new
frequency distribution for a variable. The following transformations are
available: log (log base 10 transformation), −log (a negative log base 10
transformation), and Box-Cox.
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Certain ordinal variables contain text values, and before these variables
can be used within numeric analyses a conversion from the text values to
numeric values must be performed. The “Valuemapping (text-to-number)”
option provides tools to change each value of the selected variable into a
specific number. To use nominal variables within numeric analyses, the
variables are usually converted into a series of dummy variables. Each
dummy variable corresponds to specific values for the nominal variable,
where one indicates the presence of the value while a zero indicates its
absence. The “Value mapping (dummy variables)” tool can be applied to a
variable containing text values, and it will automatically generate a series
of variables.

The “Discretization (using ranges)” option provides tools for convert-
ing a continuous numeric variable into a series of discrete values. Having
selected a single variable, you can set the number of ranges and the lower
and upper bounds for each range. Once the ranges are set, this tool substi-
tutes the old, continuous numeric variable with the new value associated
with the range in which that variable falls (greater than or equal to the
lower bound and less than the upper bound). Additionally, categorical
variables can be transformed to a series with fewer discrete values using
“Discretization (using values).” Instead of grouping the values into ranges,
this technique involves grouping the values of selected variables into a
larger set, and assigning all of the observations within that larger set to the
new value. The individual values can either be typed in or selected from a
drop-down containing the alternatives already entered.

A series of “General transformations” can be selected in order to per-
form mathematical operations on one or more variables. Having selected
“General transformation,” one or more variables can be selected. To select
a single variable, click once on the desired variable name; to select multiple
variables use the <ctrl> + click to add individual items to the selection
and <shift> + click to add all items between the current and the initial
selection. When a single variable has been selected, the following com-
mon mathematical operations are available, where x refers to the selected
variable and c is a specified constant: x × c, x + c, x ÷ c, c ÷ x, x − c, c − x,
x2, x3, and

√
x. When two variables x and y have been selected, in addition

to the mean, minimum, and maximum functions, the following mathemat-
ical transformations are also available: x + y, x ÷ y, y ÷ x, x − y, and y − x.
When more than two variables are selected, the following operations can
be applied to the values: mean, minimum, maximum, sum, and product.
By combining the results of these transformations, more complex formu-
las can be generated. Figure B.3 shows the generation of a specific new
variable.
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FIGURE B.3 A general transformation applied to a variable.

B.5.6 Segmentation

In some situations, to conduct an efficient analysis of the data it may be
necessary to generate a smaller subset of observations. The desired number
of observations to be included in the subset should be set from the “Seg-
ment” tab. The options “Random” and “Diverse” are available for selecting
a subset of observations. The “Random” option will select the specified
number of observations randomly and each observation in the original set
has an equal chance of being included in the new set. The “Diverse” option
will identify the desired number of observations that are representative of
the original set. The selection of the diverse set of observations is done
by clustering and then choosing from each cluster a representative for the
cluster. The clustering is performed using k-means clustering, where k is
the target number of observations in the subset, with the Euclidean distance
metric measuring the distance between pairs of observations; the represen-
tative chosen from the cluster is the one closest to the center of the cluster.
There are two options available from the “Select how to create subset”
drop-down to describe what to do with the identified subset: (1) generate
a new data set containing only the subset (“Remove observations”), or (2)
generate a new dummy variable where one (1) represents the inclusion
of the observation in the new subset, and zero (0) indicates its absence
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(“Generate dummy variable”). If option (2) is selected, the name of this
new dummy variable should also be entered.

B.6 TABLES AND GRAPH TOOLS

B.6.1 Contingency Tables

A contingency table can be generated from the “Contingency table” option.
The x- and y-axes on the table are both categorical variables, and they can
be selected from the options. Having selected the x- and y-axes, clicking
on the “Display” button will generate a contingency table in the results
window. The table shows counts corresponding to pairs of values from
the selected categorical variables. In addition, totals are presented for each
row and column in the table. Each of the cells in the table can be selected,
and the observations included in these counts will be displayed in the
selected observations panel and highlighted in other views involving those
observations. An example is shown in Figure B.4.

FIGURE B.4 Contingency table generated from a data set.
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B.6.2 Summary Tables

A summary table groups observations using a single categorical variable
and provides summarized information about other variables for each of
these groups. A summary table can be generated from the “Summary
table” tab. First, a categorical variable for grouping the observations is
selected. An optional count of the number of observations in each group
can also be selected. A number of additional columns can be added to the
table, and this number is set with the “Number of columns” counter. There
are seven options for summarizing each selected variable: (1) mean, (2)
mode, (3) minimum, (4) maximum, (5) sum, (6) variance, and (7) standard
deviation. Clicking on the “Display” button will generate a summary table
corresponding to the options selected. Individual rows can be selected, and
the resulting observations will be shown in the selected observations panel
as well as in other views, as illustrated in Figure B.5.

B.6.3 Graphs

One or more graphs can be shown on a single screen to summarize the
data set and these specific graphs are selected from the “Graphs” tab.

FIGURE B.5 Generation of a summary table from a data set.
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FIGURE B.6 Different data graphs generated from the data set.

After identifying the desired number of graphs to display, a series of
options for each graph is provided. There are four types of graphs: (1)
histogram, (2) scatterplot, (3) box plot, and (4) frequency polygram. In
addition, the variable or pair of variables to display should be selected.
Once the collection of graphs to display has been determined, clicking on
the “Display” button will show these graphs in the results area. In each
of the graphs, selected observations will be highlighted on all graphs with
darker shading. The histograms, frequency polygrams, and scatterplots
are all interactive. For instance, observations can be selected by clicking
on a histogram bar or a point in the scatterplot or frequency polygram.
In addition, a lasso can be drawn around multiple bars or points. Any
selection will be updated on the other graphs in the results area, as well as
being made available in other analysis options throughout the program, as
illustrated in Figure B.6.

B.6.4 Graph Matrices

The “Graph matrices” tab generates a matrix of graphs in one view. The
tools provide options to display a histogram, scatterplot, or a box plot
matrix for the selected variables. Multiple variables can be selected using
<ctrl>+ click for non-contiguous variables,<shift>+ click for continuous
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variables, and <ctrl> + A for all variables. Clicking on the “Display”
button will show the matrix in the results area. The histogram and box plot
matrices present the graphs only for the selected variables. In contrast, the
scatterplot matrix shows scatterplots for all combinations of the variables
selected. The names of the scatterplot axes are shown in the boxes where
no graphs are drawn.

B.7 STATISTICS TOOLS

B.7.1 Descriptive Statistics

The tools available in the “Descriptive” tab will generate a variety of
descriptive statistics for a single variable. For the selected variable, descrip-
tive statistics can be generated for (1) all observations, (2) the selected
observations, and (3) observations not selected. Clicking on the “Display”
button presents the selected descriptive statistics in the results area. For
each of the sets of observations selected, a number of descriptive statistics
are calculated. They are organized into the following categories: number
of observations, central tendency (mode, medium, and mean), variation
(minimum value, maximum value, the three quartiles—Q1, Q2, and Q3,
variance, and standard deviation), and shape (estimates of skewness and
kurtosis).

B.7.2 Confidence Intervals

The “Confidence intervals” analysis calculates an interval estimate for a
selected variable that is based on a specific confidence level. In addition,
confidence intervals for groups of observations—defined using a single
categorical variable—can also be displayed. The confidence intervals for
the variables, as well as for any selected groups, can be seen in the results
area.

B.7.3 t-test

The “t-test” tool will perform a hypothesis test on a single variable.When a
categorical variable is selected, the hypothesis test takes into consideration
the proportion of the selected variable with a specified value. This value
must be set with the “Where x is:” drop-down option, where x is the selected
categorical variable.When a continuous variable is selected, the hypothesis
test uses the mean. The test can take into consideration one or two groups
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of observations. When the “single group” option is selected, the members
of this group should be defined. The four alternatives for membership
are: (1) all observations in the data table, (2) selected observations, (3)
observations not selected, or (4) observations corresponding to a specific
value of a categorical variable. The confidence level, or alpha, should be
selected and set to one of the following: 0.1, 0.05, or 0.01. The hypothesis
test should then be described for the selected observations. The value for
the null hypothesis should be set along with information about whether the
value for the alternative hypothesis should be greater than, less than, or not
equal to value for the null hypothesis.

There are two options when looking at two groups: “Two groups (equal
variance)” and “Two groups (unequal variance).” After the two groups are
selected, the members of each group should then be defined. The three
alternatives are: (1) selected observations, (2) observations not selected,
and (3) observations corresponding to a specific value of a categorical
variable. As before, the confidence level, or alpha, should be selected from
one of the following: 0.1, 0.05, or 0.01. The specific hypothesis test should
be defined for the selected observations. The choice for null hypothesis will
be either that the twomeans are equal or the proportions of the two selected
variables are the same. Again, the value of the alternative hypothesis should
be set to either “less than,” “greater than,” or “not equal to” the value of the
null hypothesis. The results of the hypothesis test are presented in the results
area. These results include details of the variable and the observations
assessed, including the mean value or values, the actual hypothesis test
with confidence level, as well as the hypothesis or z-score, the critical
z-score, the p-value, and whether to accept or reject the null hypothesis.

B.7.4 Chi-Square Test

The “Chi-Square” option allows for comparison between two categorical
variables that are selected from the two drop-down menus. The results of
the analysis are shown in two contingency tables in the results area. One
of the contingency tables includes the actual data, and the second contains
expected results. A Chi-Square assessment is also calculated along with
its attained significance level.

B.7.5 ANOVA

The “ANOVA” tool assesses the relationship for a particular variable
between different groups of observations within that variable. The vari-
able to assess and the categorical variable used to group the observations
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FIGURE B.7 Comparing variables within a data set.

should be selected and a confidence level, or alpha, should be assigned. The
resulting analysis is presented in the results area, which shows the groups
identified using the selected categorical variable, the number of observa-
tions in each group, the mean value for each group, and the variance for
each group. The mean square within and between is calculated, along with
the F-statistic and p-value.

B.7.6 Comparative Statistics

There are a number of ways to calculate metrics showing the strength of the
relationships between combinations of variables. There are four options
for displaying the association between variables: the correlation coefficient
(r), the squared correlational coefficient (r2), Kendall Tau, and Spearman
Rho. For the selected variables the tool will present in one or more tables
the select coefficients for all pairs of variables, as illustrated in Figure B.7.

B.8 GROUPING TOOLS

B.8.1 Clustering

A number of methods for clustering observations are available includ-
ing agglomerative hierarchical clustering and partitioned (k-means) clus-
tering. These clustering methods require the selection of one or more
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variables, as well as the selection of a distance measure used to assess
the degree of similarity between observations. For numeric variables
(not binary), a number of distance calculations are available including
Euclidean; for binary variables, a different set of distance methods are
provided including Jaccard. It should be noted that it is not necessary to
normalize the data to a standard range, as the software will perform this
step automatically.

If the “Agglomerative hierarchical clustering” option is selected, a link-
age method must be chosen from the list: average linkage, complete link-
age, or single linkage. The assignment of the observations to specific
clusters can be stored as a separate column in the table by selecting the
“Generate clusters as column(s)” option where a single variable will be
generated. Having specified the type of clustering required, clicking on
the “Cluster” button will generate the clusters and the results will be sum-
marized in the results area. When agglomerative hierarchical clustering is
selected, the results are displayed as a dendrogram showing the hierarchi-
cal organization of the data. A vertical line dissects the dendrogram, thus
creating clusters of observations to the right of the vertical line. A rectangle
is placed around each cluster and, space permitting, a number indicating
the size of the cluster is annotated on the right. When the data set has a
label variable, clusters with only a single observation are replaced by the
label’s value. The cut-off is interactive; it can be moved by clicking on
the square toward the bottom of the cut-off line and moving it to the left
or right. Moving the line changes the distance at which the clusters are
generated, and hence the number of clusters will change as the cut-off line
moves. If the “Generate clusters as column(s)” option is selected, the col-
umn in the data table describing the cluster membership will also change.
Agglomerative hierarchical clustering is illustrated in Figure B.8.

If the “Partitioned (k-means)” clustering option is selected, the number
of clusters needs to be specified and the results are presented in a table
where each row represents a single cluster. The centroid values for each
cluster are presented next to the number of observations in the cluster.
This “number of observations” cell in the table can be selected, and those
selected observations are displayed in the selected observations panel, as
well as throughout the program.

B.8.2 Association Rules

The “Association rules” option will group observations into overlapping
groups that are characterized by “If . . . then . . . ” rules. A set of cat-
egorical variables can be selected, and specific values corresponding to
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FIGURE B.8 Illustration of agglomerative hierarchical clustering.

these variables will be used in the generated rules. The software includes
a “Restrict rules on the THEN-part” option, which will only result in rules
where the THEN-part incorporates the selected variable. Also, the “Restrict
rules by specific value” function allows for the selection of an appropriate
value from the drop-down list. This option is particularly useful when the
rules are being generated from a series of dummy variables, and only rules
with values of “one” (1) contain useful information. Generating rules with
a minimum value for support, consequence, and lift can also be set. The
resulting rules are shown as a table in the results area, where the “IF-part”
of the rule is shown in the first column, and the “THEN-part” of the rule is
shown in the second column. Other columns display a count of the number
of observations from which the rule is derived. The table also displays
values for support, consequence, and lift. The table can be sorted by any
of these columns. Selecting a single row will display the observations in
the selected observations panel (as illustrated in Figure B.9), and those
observations will be highlighted throughout the program.

B.8.3 Decision Trees

A decision tree can be built from a data table using the “Decision tree”
option. Any number of variables can be used as independent variables and a
single variable should be assigned as the response. In addition, a minimum



MODELS TOOLS 207

FIGURE B.9 Illustration of the association rules results.

tree node size should be set which prevents the software from generating
a tree with fewer nodes than this specified value. Once a decision tree
has been built, the results will be shown in the results area. The nodes
of the decision tree represent sets of observations, which are summarized
with a count, along with the average value for the response variable (if the
response variable is continuous). For categorical response variables, the
number of observations in the set is shown, along with the most common
value qualified by the number of occurrences of that value compared to the
total number of nodes. In both trees, the criteria used to split the trees are
indicated just above the node. Oval nodes represent non-terminal nodes,
whereas rectangular nodes represent terminal nodes. The decision trees are
interactive; each node can be selected, and the selected observations can be
seen below the tree as well as in other views, as illustrated in Figure B.10.

B.9 MODELS TOOLS

B.9.1 Linear Regression

Tools for building multiple linear regression models are found under the
“Linear regression” tab. Any number of independent variables can be
selected using<ctrl>+ click to select non-contiguous individual variables
and <shift> + click to select a continuous range of variables. A single
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FIGURE B.10 Illustration of view with decision tree results.

continuous response variable should also be selected. The cross-validation
percentage should be set to indicate the proportion of observations to set
aside for testing. To further analyze the results, a series of new variables can
be generated: Prediction,CV Prediction, andOrder. A final multiple linear
regression model will be built from the entire data set, and the Prediction
variable will have a prediction of all observations from this model. CV
Prediction represents the cross-validated prediction, where the predicted
values are calculated using a model built from other observations. Order
contains a number for each observation reflecting the order in which the
observation appears in the data set.

Once a model is built, the results are displayed in the results area.
The independent variables and the response variable are initially summa-
rized, including the model coefficients and the significance of the coeffi-
cients. The software provides a regression analysis summarizing the model
accuracy, including R-squared, adjusted R-squared, and standard error. An
ANOVA analysis is generated showing the degrees of freedom (df) of the
regression and the residual, along with the mean square (MS), the sum of
squares (SS), the F-statistic, and the p-value (as shown in Figure B.11). To
evaluate themodel inmore detail, a residual variable can be generated using
the “Transform” tab option under “Preparation.” To create a residual vari-
able, first select a “General transformation” and select the actual response
and the prediction, and then select “Actual–prediction.” This data can be
plotted in the “Graphs” tab to analyze the model further. Once a model is
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FIGURE B.11 Illustration of the results of running a linear regression model.

built and evaluated, it can be saved permanently. The model is saved by
clicking on the “Save model” button. A file name should be provided and
the model will be saved to a file for future use with other data sets.

B.9.2 Logistic Regression

The “Logistic regression” option enables the generation of a logistic regres-
sion model which can only be built for binary response variables. Numeric
variables can be used as independent variables. A logistic regression model
generates an expected value of the y-variable or probability, and the clas-
sification prediction is generated from this probability using a specified
threshold value or by automatically generating a cut-offwhich is a good bal-
ance of sensitivity and specificity. Observations above this threshold value
will be assigned a prediction of one, and those below will be assigned
a prediction of zero. In addition to the cross-validated percentage to set
aside, a number of predicted values can be optionally generated by select-
ing the “Generate results” option: “Prediction,” “Prediction prob.,” “CV
Prediction,” and “CV Prediction prob.” The “Prediction” is the 0 or 1
classification using the final model with the “Prediction prob.” being the
probability calculated. “CV Prediction” and “CV Prediction prob.” report
the same information as part of the cross-validation. Once a model has
been built, the results are displayed in the results area. The independent
variables and the response variable are initially summarized, along with
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FIGURE B.12 Illustration of the results from a logistic regression.

the model coefficients and their significance. A summary of the cross-
validated results is also presented. Figure B.12 illustrates the results from
a logistic regression model. Generated models can be saved for use with
other data sets using the “Save model.”

B.9.3 k-Nearest Neighbor

The “kNN” analysis tab lets you build k-nearest neighbor models. Models
can be built for any type of response variable, and any type of numeric
variable can be selected as an independent variable. It is not necessary
to normalize the data to a standard range as the software will do this
automatically. The distance metric should be selected from the drop-down
menu. A value for k can be set manually. Alternatively, a range can be
specified which instructs the Traceis software to build all models between
the lower and upper bound and from these select themodelwith the smallest
error. In addition to the cross-validated percentage to set aside, a number
of predicted values can be optionally generated by selecting the “Generate
results” option: “kNN-Pred” and “kNN-Pred(CV),” which are the predicted
values for the final model, along with the predicted values from the cross-
validated models. Once a model has been built, the results are displayed in
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the results area. The independent variables and the response variable are
shown, as well as the value for the k-nearest neighbor parameter that was
either set manually or automatically derived. A summary of the standard
cross-validated results is presented. Models that are generated can be saved
for future use with other data sets, using the “Save model” button.

B.9.4 CART

The “CART” analysis tab is used to build models based on either a regres-
sion tree or a classification tree.Models can be built for any type of response
variable or independent variables. Decision trees are generated for themod-
els. If the “Minimum node size” is set, the process that generates decision
tree will prune from the tree nodes that are smaller than the specified size.
Other predicted values can be optionally generated by selecting the “Gen-
erate results” option: “CART-Pred” and “CART-Pred(CV).” Once a model
has been built, the results are displayed in the results area. The indepen-
dent variables along with the response variable are shown, as well as the
values used for minimum node size, where size is a count of the number
of observations at each node. A summary of the standard cross-validated
results is presented. Models that are generated can be saved for later use
with other data sets, using the “Save model” button.

B.10 APPLY MODEL

Models that are built and saved can be used with a new data set by selecting
the “Applymodel” option under the “4. Deployment” step.When themodel
and the new data set are opened, a summary of the model and the data is
shown. Selecting the “Apply” button will generate a prediction for the
observations in the new data set. The column headings must match those
used to build the model. In addition, the ranges of the variables must be
within the variable ranges used to build the model, otherwise a prediction
cannot be generated.

B.11 EXERCISES

B.11.1 Overview

The following four exercises are available to use with the Traceis software
or other available software. The data set for use with this hands-on tutorial
are available from the tutorials folder. In addition, a series of other data
sets is available to use with the Traceis 2014 software.
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B.11.2 Exercise 1: Analysis of Recycling Data

The data set contains 31 observations, where each observation represents
a Scottish local authority from Baird et al. (2013). The file contains five
variables (1) Local authority, (2) Recycling capacity (in liters/week), (3)
Residual Capacity (in liters/week), (4) Extended materials (number of
extended materials collected), and (5) Yield of extended materials (in
kg/hh/wk). The data set is available in the tutorials folder under the name
scottish_recycle.txt.

The objective of this exercise is to generate a regression model that
predicts the Yield of extended materials.

Step 1: Load the data set into Traceis 2014 software by clicking on the
“Open” button and find the file scottish_recycle.txt in the tutorials folder.
Select “OK” from the preview window and you should be able to see the
data as in Figure B.13.

Step 2: Characterize the variables based on the scales over which they
were measured.

Step 3: Plot the frequency histogram (from the “Graphs” panel) and
generate summary statistics (from the “Descriptive” statistics panel) for
each numeric variable, generating the information shown in Figure B.14.

FIGURE B.13 Data loaded into the Traceis software.
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Recycling capacity

Residual capacity

Extended materials

Yield of extended
mat.

FIGURE B.15 Scatterplot matrix and correlation coefficients.

Step 4: Look at the relationship between the variables using the scatter-
plot matrix (“Graph matrices”) and the correlation statistics (r) (“Compar-
ative statistics”), as shown in Figure B.15.

Step 5: Build a series of linear regression models (from models “Linear
Regression”) using all combinations of independent variables (Recycling
capacity, Residual capacity, and Extended materials) to predict Yield of
extended materials and select the best performing, simplest model (as seen
in Figure B.16). Check the “Generate results” option and click on “Save”
to save this model.

Step 6: Calculate a residual value (from “Transform,” which is an option
under the “Prepare” category). Choose “General transformations,” select
the Prediction variable as well as the actual response variable (Yield of
extended materials) using <ctrl> + click for non-contiguous variables
selection and select the specific transformation of “Yield of extended
material—Prediction.” Name the new variable “Residual” as shown in
Figure B.17. Look at the different graphs (from the “Graphs” tab), as
shown in Figure B.18, to test the model assumptions.
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FIGURE B.16 Linear regression model built.

FIGURE B.17 Calculating a residual value.
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FIGURE B.18 Testing linear regression assumptions.

Step 7: Apply the saved model as shown in Figure B.19, using either
a hypothetical test set with the same column names or the original
data set.

B.11.3 Exercise 2: Analysis of Gold Deposit Data

This data set contains 64 observations concerning whether a gold deposit
was identified within 0.5 km (Gold deposit proximity) (Sahoo & Pandalai,
1999). For this variable, the values are 1 if a gold deposit was identified
and 0 if not. Other variables were measured that will be used to predict
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FIGURE B.19 Applying a saved model.

whether a gold deposit is within 0.5 km: As level, Sb level, and Lineament
proximity.

The objective of this exercise is to develop a classification model to
predict Gold deposit proximity from any combination of the collected data
(As level, Sb level, Lineament proximity).

Step 1: Load the data into the Traceis software by selecting the
gold_target1.txt from the tutorials folder.

Step 2: Explore and determine the scales over which the variables are
measured.

Step 3: Look at the frequency distribution and the descriptive statistics
for the variables in the data, as shown in Figure B.20, using the “Graphs”
and “Descriptive” statistics tools.

Step 4: Since the As level and Sb level variables do not follow a normal
distribution, perform a log transformation on the values of these two vari-
ables (from the “Transform” tool using “Normalization (new distribution)”
option) and then re-examine the new frequency distributions (as illustrated
in Figure B.21).

Step 5: Look at the relationships between Gold deposit proximity and
Lineaments proximity using the “Contingency table” tool. Next, explore
the relationship between Gold deposit proximity and As level and Sb
level by first creating a discretized version of the log (As level) and log
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FIGURE B.21 Frequency distribution for As level and Sb level as well as log
transformed As level and Sb level.

(Sb level) variables using the “Transform” tool with the “Discretization
(using ranges)” options, and then using the “Summary table” tool to create
a summary of how the mean Gold deposit proximity values change as the
As and Sb levels increase. Figure B.22 illustrates the three graphs.

Step 6: Build a series of logistic regression models (from the “Logistic
regression” tool) to predict Gold deposit proximity from all combinations
of: Lineament proximity, log (As level), and log (Sb level), as illustrated
in Figure B.23. Select the simplest, best performing model and save the
model.

B.11.4 Exercise 3: Analysis of Morphologic Difference across
the Iris Plant Species

This data set contains 150 observations concerning morphologic differ-
ences across three species of the Iris flower (class): “Iris setosa,” “Iris
virginica,” and “Iris versicolor” from Fisher (1936). In biology, morphol-
ogy refers to the study of living organisms through their form and structure.

The objective of this analysis is to understand how the three species
are characterized by the morphologic variations: sepal width (cm), sepal
length (cm), petal width (cm), and petal length (cm). These will be your
morphological variables.

Step 1: Open the IRIS.txt file located in the tutorials directory.

FIGURE B.22 Exploring the relationships to gold deposit proximity.
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FIGUREB.23 Logistic regressionmodel built to predict gold deposit proximity.

Step 2: Characterize the scales over which the variables are measured
and calculate descriptive statistics and frequency distributions for all mea-
sured variables (as shown in Figure B.24).

Step 3: Generate three scatterplot matrices using the measured morpho-
logic variables where each matrix is highlighted with a different species
of the Iris flower, as shown in Figure B.25. The histogram of the Iris
flower species can be displayed from the “Graphs” tool and highlighted by
clicking on the histogram bar. The “Graph matrices” tool can be used to
generate the scatterplot matrix where any selected set of observations will
also be highlighted.

Step 4: Cluster the data set with agglomerative hierarchical clustering
(using Euclidean distance to measure similarity between observations and
average linkage to determine how clusters are formed) and set the cut-off
value such that there are three clusters generated. Figure B.26 shows how
the scatterplot matrices and the species histogram are highlighted when
you select each of the three clusters (as shown in the first row of graphs in
Figure B.26).

Step 5: Build a classification tree (with the “Decision tree” tool) using
the four measured properties and the response (class) to guide how the tree
was generated, using a minimum of 30 observations per node (as seen in
Figure B.27).
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FIGURE B.27 Decision tree generated to classify the Iris plant species.

B.11.5 Exercise 4: Analysis of Census Data

This data set was collected from the 1994 census data and includes obser-
vations on individuals making either less than or greater than $50K per
year. These measurements are captured in the variable salary from Kohavi
& Becker (1994). There are 32,561 records with a set of variables contain-
ing measurements that include the following: age, workclass, education,
education-num, and occupation.

The objective of this exercise is to characterize the differences between
individuals making less than $50K and those making greater than $50K.

Step 1: Load the adult data set file Adult.txt located in the tutorials
directory.

Step 2: Calculate new values for both the education-num and age vari-
ables that contain categories based on ranges, as shown in Figures B.28
and B.29.
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FIGURE B.28 Generation of a new variable with discretized values for the
education-num.

FIGURE B.29 Generation of a new variable with discretized values for the age.
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FIGURE B.30 Association rules generated from the adult data set.

Step 3: Generate association rules by selecting the “Association rules”
tool, and selecting the following variables: workclass, occupation, salary,
age (discretized), and education-num (discretized), with “Restrict rule on
THEN-part” set to salary, “Minimum support” set to 15, “Minimum con-
fidence” to 0.8, and “Minimum lift” to 1.0 (as shown in Figure B.30).

Step 4: Click on the individual rules to view the underlying data (as
shown in Figure B.30).
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Residuals, 148, 154
Roles of individuals involved in

analysis, 7
Rules, see Association rules

Sample standard deviation, 33–34
Sample variance, 32
Samples, 36
Sampling distribution, 37. See also

Distribution
Scale, 21

interval, 21
nominal, 21
ordinal, 21
ratio, 21

Scaling, decimal, 50
Scatterplot matrix, 201–202. See also
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